forked from xmed-lab/CLIP_Surgery
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
272 lines (217 loc) · 11.8 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import clip
import torch
import cv2
import numpy as np
from PIL import Image
from matplotlib import pyplot as plt
from torchvision.transforms import Compose, Resize, ToTensor, Normalize
from torchvision.transforms import InterpolationMode
BICUBIC = InterpolationMode.BICUBIC
from segment_anything import sam_model_registry, SamPredictor
### Init CLIP and data
device = "cuda" if torch.cuda.is_available() else "cpu"
model, _ = clip.load("ViT-B/16", device=device)
model.eval()
preprocess = Compose([Resize((224, 224), interpolation=BICUBIC), ToTensor(),
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))])
pil_img = Image.open("demo.jpg")
cv2_img = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
image = preprocess(pil_img).unsqueeze(0).to(device)
all_texts = ['airplane', 'bag', 'bed', 'bedclothes', 'bench', 'bicycle', 'bird', 'boat', 'book', 'bottle', 'building', 'bus', 'cabinet', 'car', 'cat', 'ceiling', 'chair', 'cloth', 'computer', 'cow', 'cup', 'curtain', 'dog', 'door', 'fence', 'floor', 'flower', 'food', 'grass', 'ground', 'horse', 'keyboard', 'light', 'motorbike', 'mountain', 'mouse', 'person', 'plate', 'platform', 'potted plant', 'road', 'rock', 'sheep', 'shelves', 'sidewalk', 'sign', 'sky', 'snow', 'sofa', 'table', 'track', 'train', 'tree', 'truck', 'tv monitor', 'wall', 'water', 'window', 'wood']
target_texts = ['bench', 'person', 'ground', 'building']
### Explain raw predictions of CLIP, which are opposite and noisy.
with torch.no_grad():
# Extract image features
image_features = model.encode_image(image)
image_features = image_features / image_features.norm(dim=1, keepdim=True)
# Prompt ensemble for text features with normalization
text_features = clip.encode_text_with_prompt_ensemble(model, all_texts, device)
# Similarity map from image tokens with min-max norm and resize, B,H,W,N
features = image_features @ text_features.t()
similarity_map = clip.get_similarity_map(features[:, 1:, :], cv2_img.shape[:2])
# Draw similarity map
for b in range(similarity_map.shape[0]):
for n in range(similarity_map.shape[-1]):
if all_texts[n] not in target_texts:
continue
vis = (similarity_map[b, :, :, n].cpu().numpy() * 255).astype('uint8')
vis = cv2.applyColorMap(vis, cv2.COLORMAP_JET)
vis = cv2_img * 0.4 + vis * 0.6
vis = cv2.cvtColor(vis.astype('uint8'), cv2.COLOR_BGR2RGB)
print('CLIP:', all_texts[n])
plt.imshow(vis)
plt.show()
### Explain CLIP via our CLIP Surgery
model, preprocess = clip.load("CS-ViT-B/16", device=device)
model.eval()
with torch.no_grad():
# CLIP architecture surgery acts on the image encoder
image_features = model.encode_image(image)
image_features = image_features / image_features.norm(dim=1, keepdim=True)
# Prompt ensemble for text features with normalization
text_features = clip.encode_text_with_prompt_ensemble(model, all_texts, device)
# Apply feature surgery
similarity = clip.clip_feature_surgery(image_features, text_features)
similarity_map = clip.get_similarity_map(similarity[:, 1:, :], cv2_img.shape[:2])
# Draw similarity map
for b in range(similarity_map.shape[0]):
for n in range(similarity_map.shape[-1]):
if all_texts[n] not in target_texts:
continue
vis = (similarity_map[b, :, :, n].cpu().numpy() * 255).astype('uint8')
vis = cv2.applyColorMap(vis, cv2.COLORMAP_JET)
vis = cv2_img * 0.4 + vis * 0.6
vis = cv2.cvtColor(vis.astype('uint8'), cv2.COLOR_BGR2RGB)
print('CLIP Surgery:', all_texts[n])
plt.imshow(vis)
plt.show()
### CLIP Surgery using higher resolution
# This preprocess for all next cases
preprocess = Compose([Resize((512, 512), interpolation=BICUBIC), ToTensor(),
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))])
image = preprocess(pil_img).unsqueeze(0).to(device)
with torch.no_grad():
# CLIP architecture surgery acts on the image encoder
image_features = model.encode_image(image)
image_features = image_features / image_features.norm(dim=1, keepdim=True)
# Prompt ensemble for text features with normalization
text_features = clip.encode_text_with_prompt_ensemble(model, all_texts, device)
# Apply feature surgery
similarity = clip.clip_feature_surgery(image_features, text_features)
similarity_map = clip.get_similarity_map(similarity[:, 1:, :], cv2_img.shape[:2])
# Draw similarity map
for b in range(similarity_map.shape[0]):
for n in range(similarity_map.shape[-1]):
if all_texts[n] not in target_texts:
continue
vis = (similarity_map[b, :, :, n].cpu().numpy() * 255).astype('uint8')
vis = cv2.applyColorMap(vis, cv2.COLORMAP_JET)
vis = cv2_img * 0.4 + vis * 0.6
vis = cv2.cvtColor(vis.astype('uint8'), cv2.COLOR_BGR2RGB)
print('CLIP Surgery 512:', all_texts[n])
plt.imshow(vis)
plt.show()
### CLIP Surgery for a single text, without fixed label sets
texts = ['shoes']
with torch.no_grad():
# CLIP architecture surgery acts on the image encoder
image_features = model.encode_image(image)
image_features = image_features / image_features.norm(dim=1, keepdim=True)
# Prompt ensemble for text features with normalization
text_features = clip.encode_text_with_prompt_ensemble(model, texts, device)
# Extract redundant features from an empty string
redundant_features = clip.encode_text_with_prompt_ensemble(model, [""], device)
# Apply feature surgery for single text
similarity = clip.clip_feature_surgery(image_features, text_features, redundant_features)
similarity_map = clip.get_similarity_map(similarity[:, 1:, :], cv2_img.shape[:2])
# Draw similarity map
for b in range(similarity_map.shape[0]):
for n in range(similarity_map.shape[-1]):
vis = (similarity_map[b, :, :, n].cpu().numpy() * 255).astype('uint8')
vis = cv2.applyColorMap(vis, cv2.COLORMAP_JET)
vis = cv2_img * 0.4 + vis * 0.6
vis = cv2.cvtColor(vis.astype('uint8'), cv2.COLOR_BGR2RGB)
print('CLIP Surgery for a single text:', texts[n])
plt.imshow(vis)
plt.show()
### Text to points from CLIP Surgery to guide SAM
# Init SAM
sam_checkpoint = "sam_vit_h_4b8939.pth"
model_type = "vit_h"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
predictor = SamPredictor(sam)
predictor.set_image(np.array(pil_img))
# Inference CLIP Surgery and SAM
with torch.no_grad():
# CLIP architecture surgery acts on the image encoder
image_features = model.encode_image(image) # Image resized to 512
image_features = image_features / image_features.norm(dim=1, keepdim=True)
# Prompt ensemble for text features with normalization
text_features = clip.encode_text_with_prompt_ensemble(model, all_texts, device)
# Apply feature surgery, no batch
similarity = clip.clip_feature_surgery(image_features, text_features)[0]
# Inference SAM with points from CLIP Surgery
for n in range(similarity.shape[-1]):
if all_texts[n] not in target_texts:
continue
points, labels = clip.similarity_map_to_points(similarity[1:, n], cv2_img.shape[:2], t=0.8)
masks, scores, logits = predictor.predict(point_labels=labels, point_coords=np.array(points), multimask_output=True)
mask = masks[np.argmax(scores)]
mask = mask.astype('uint8')
# Visualize the results
vis = cv2_img.copy()
vis[mask > 0] = vis[mask > 0] // 2 + np.array([153, 255, 255], dtype=np.uint8) // 2
for i, [x, y] in enumerate(points):
cv2.circle(vis, (x, y), 3, (0, 102, 255) if labels[i] == 1 else (255, 102, 51), 3)
vis = cv2.cvtColor(vis.astype('uint8'), cv2.COLOR_BGR2RGB)
print('SAM guided by points from CLIP Surgery:', all_texts[n])
plt.imshow(vis)
plt.show()
print('Sometimes, the points are accurate, while the masks from SAM still need improvements.')
print('I mean, some failure cases are not caused by wrong points.')
### Inference CLIP Surgery and SAM for a single text
texts = ['bench']
with torch.no_grad():
# CLIP architecture surgery acts on the image encoder
image_features = model.encode_image(image)
image_features = image_features / image_features.norm(dim=1, keepdim=True)
# Prompt ensemble for text features with normalization
text_features = clip.encode_text_with_prompt_ensemble(model, texts, device)
# Extract redundant features from an empty string
redundant_features = clip.encode_text_with_prompt_ensemble(model, [""], device)
# CLIP feature surgery with costum redundant features
similarity = clip.clip_feature_surgery(image_features, text_features, redundant_features)[0]
# Inference SAM with points from CLIP Surgery
points, labels = clip.similarity_map_to_points(similarity[1:, 0], cv2_img.shape[:2], t=0.8)
masks, scores, logits = predictor.predict(point_labels=labels, point_coords=np.array(points), multimask_output=True)
mask = masks[np.argmax(scores)]
mask = mask.astype('uint8')
# Visualize the results
vis = cv2_img.copy()
vis[mask > 0] = vis[mask > 0] // 2 + np.array([153, 255, 255], dtype=np.uint8) // 2
for i, [x, y] in enumerate(points):
cv2.circle(vis, (x, y), 3, (0, 102, 255) if labels[i] == 1 else (255, 102, 51), 3)
vis = cv2.cvtColor(vis.astype('uint8'), cv2.COLOR_BGR2RGB)
print('SAM & CLIP Surgery for single text:', texts[0])
plt.imshow(vis)
plt.show()
### CLIP Surgery + SAM for combined targets
# We use "+" to combine texts, instead of a whole sentence (obvious text may take the lead thus overlook rest)
text = 'person+bench'
with torch.no_grad():
# CLIP architecture surgery acts on the image encoder
image_features = model.encode_image(image)
image_features = image_features / image_features.norm(dim=1, keepdim=True)
# Extract redundant features from an empty string
redundant_features = clip.encode_text_with_prompt_ensemble(model, [""], device)
# Prompt ensemble for text features with normalization
text_features = clip.encode_text_with_prompt_ensemble(model, text.split('+'), device)
# Combine features after removing redundant features and min-max norm
sm = clip.clip_feature_surgery(image_features, text_features, redundant_features)[0, 1:, :]
sm_norm = (sm - sm.min(0, keepdim=True)[0]) / (sm.max(0, keepdim=True)[0] - sm.min(0, keepdim=True)[0])
sm_mean = sm_norm.mean(-1, keepdim=True)
# get positive points from individual maps, and negative points from the mean map
p, l = clip.similarity_map_to_points(sm_mean, cv2_img.shape[:2], t=0.8)
num = len(p) // 2
points = p[num:] # negatives in the second half
labels = [l[num:]]
for i in range(sm.shape[-1]):
p, l = clip.similarity_map_to_points(sm[:, i], cv2_img.shape[:2], t=0.8)
num = len(p) // 2
points = points + p[:num] # positive in first half
labels.append(l[:num])
labels = np.concatenate(labels, 0)
# Inference SAM with points from CLIP Surgery
masks, scores, logits = predictor.predict(point_labels=labels, point_coords=np.array(points), multimask_output=True)
mask = masks[np.argmax(scores)]
mask = mask.astype('uint8')
# Visualize the results
vis = cv2_img.copy()
vis[mask > 0] = vis[mask > 0] // 2 + np.array([153, 255, 255], dtype=np.uint8) // 2
for i, [x, y] in enumerate(points):
cv2.circle(vis, (x, y), 3, (0, 102, 255) if labels[i] == 1 else (255, 102, 51), 3)
vis = cv2.cvtColor(vis.astype('uint8'), cv2.COLOR_BGR2RGB)
print('SAM & CLIP Surgery for texts combination:', text)
plt.imshow(vis)
plt.show()