-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path.Rhistory
512 lines (512 loc) · 18 KB
/
.Rhistory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
#import data from the clipboard
clip_table <- read.table(pipe("pbpaste"), header=TRUE)
#import data from the clipboard
clip_table <- read.table(pipe("pbpaste"), header=TRUE)
#import data from the clipboard
clip_table <- read.table(pipe("pbpaste"))
#import data from the clipboard
clip_table <- read.table(pipe("pbpaste"))
install.packages("WWWusage")
pirates <- read.csv("/Users/bamflappy/Documents/rPlayground/PiratesPirate.csv")
pirates
colnames(pirates)
# load libraries
library(ggplot2)
# plot the Limbs vs ShipID
ggplot(pirates, aes(x = Limbs, y = ShipID)) +
geom_point()
# plot the Teeth vs ShipID
ggplot(pirates, aes(x = Teeth, y = ShipID)) +
geom_point()
# plot the Teeth vs ShipID
pirate_plot <- ggplot(pirates, aes(x = Teeth, y = ShipID)) +
geom_point()
# color the plot of Teeth vs ShipID by Origin
ggplot(pirates, aes(x = Teeth, y = ShipID, color = Origin)) +
geom_point()
# plot the PositionID vs ShipID
ggplot(pirates, aes(x = PositionID, y = ShipID)) +
geom_point()
# color the plot of PositionID vs ShipID by Origin
ggplot(pirates, aes(x = PositionID, y = ShipID, color = Origin)) +
geom_point()
# view the column names of the pirate data
colnames(pirates)
# view the first few lines of data
head(pirates)
# plot the Limbs vs ShipID
ggplot(pirates, aes(x = Limbs, y = ShipID)) +
geom_point()
# color the plot of Limbs vs ShipID by Origin
ggplot(pirates, aes(x = Limbs, y = ShipID, color = Origin)) +
geom_point()
# color the plot of Limbs vs ShipID by Origin
ggplot(pirates, aes(x = Limbs, y = ShipID, color = Origin)) +
geom_count()
# cretae a scatter plot the Origin vs Limbs
ggplot(data = pirates, aes(x = Origin, y = Limbs)) +
geom_point()
# change to a boxplot of Origin vs Limbs
ggplot(data = pirates, aes(x = Origin, y = Limbs)) +
geom_boxplot()
# cretae a scatter plot the Teeth vs Limbs
ggplot(data = pirates, aes(x = Teeth, y = Limbs)) +
geom_point()
source("~/.active-rstudio-document", echo=TRUE)
# cretae a scatter plot the Limbs vs Teeth
ggplot(data = pirates, aes(x = Limbs, y = Teeth)) +
geom_point()
# modify the scatter plot to include the count at each point
ggplot(data = pirates, aes(x = Limbs, y = Teeth)) +
geom_count()
# color the points of the count scatter plot by Origin
ggplot(data = pirates, aes(x = Limbs, y = Teeth, color = Origin)) +
geom_count()
# color the points of the count scatter plot by Origin
ggplot(data = pirates, aes(x = Limbs, y = Teeth, color = ShipID)) +
geom_count()
# color the points of the count scatter plot by Origin
ggplot(data = pirates, aes(x = Limbs, y = Teeth, color = ShipID)) +
geom_point()
# color the points of the count scatter plot by Origin
ggplot(data = pirates, aes(x = Limbs, y = Teeth, color = ShipID)) +
geom_count()
# color the points of the count scatter plot by Origin
ggplot(data = pirates, aes(x = Limbs, y = Teeth, color = Origin)) +
geom_count()
# color the points of the count scatter plot by Origin
ggplot(data = pirates, aes(x = Limbs, y = Teeth)) +
geom_count() +
facet_wrap(~ Origin)
# change to a boxplot to better describe the data at each point
ggplot(data = pirates, aes(x = Limbs, y = Teeth)) +
geom_boxplot()
# modify the scatter plot to include the count at each point
ggplot(data = pirates, aes(x = Limbs, y = Teeth)) +
geom_count()
?grepl
grepl("0.5" pirates$Limbs)
grepl("0.5", pirates$Limbs)
pirates[with(pirates, grepl("0.5", pirates$Limbs)), ]
# modify the scatter plot to include the count at each point
ggplot(data = pirates, aes(x = Limbs, y = Teeth)) +
geom_count()
# check the pirates with half limbs
pirates[pirates$Limbs == "2.5", ]
# remove the row of data for the pirate with 2.5 Limbs
pirates <- pirates(-c(753), )
# remove the row of data for the pirate with 2.5 Limbs
pirates <- pirates[-c(753), ]
# re-plot to verify the change in the data
ggplot(data = pirates, aes(x = Limbs, y = Teeth)) +
geom_count()
# change to a boxplot to better describe the data at each point
ggplot(data = pirates, aes(x = Limbs, y = Teeth)) +
geom_boxplot()
# change to a boxplot to better describe the data at each point
ggplot(data = pirates, aes(x = factor(Limbs), y = Teeth)) +
geom_boxplot()
# import the pirate data
pirates <- read.csv("/Users/bamflappy/Documents/rPlayground/PiratesPirate.csv")
# change to a boxplot to better describe the data at each point
ggplot(data = pirates, aes(x = factor(Limbs), y = Teeth)) +
geom_boxplot()
# check the data for the outlier pirate with 2.5 Limbs
pirates[pirates$Limbs == "2.5", ]
# color the points of the count scatter plot by Origin
ggplot(data = pirates, aes(x = Limbs, y = Teeth)) +
geom_boxplot() +
facet_wrap(~ Origin)
# color the points of the count scatter plot by Origin
ggplot(data = pirates, aes(x = factor(Limbs), y = Teeth)) +
geom_boxplot() +
facet_wrap(~ Origin)
?factor''
?factor
# color the points of the count scatter plot by Origin
ggplot(data = pirates, aes(x = factor(Limbs), y = Teeth)) +
geom_boxplot() +
facet_wrap(~ Origin)
# color the points by Origin to look for patterns
ggplot(data = pirates, aes(x = Limbs, y = Teeth, color = Origin)) +
geom_count()
# color the points by Origin to look for patterns
ggplot(data = pirates, aes(x = factor(Limbs), y = Teeth, color = Origin)) +
geom_boxplot()
# use the facotr function to make the different numbers of Limbs into categories
ggplot(data = pirates, aes(x = factor(Limbs), y = Teeth)) +
geom_boxplot()
# look up color options on the internet by searching "ggplot boxplot color"
ggplot(data = pirates, aes(x = factor(Limbs), y = Teeth)) +
geom_boxplot(color="red", fill="orange", alpha=0.2)
# color the points by Origin to look for patterns
ggplot(data = pirates, aes(x = factor(Limbs), y = Teeth, color = Origin)) +
geom_boxplot()
# create a separate boxplot for each Origin of pirates
ggplot(data = pirates, aes(x = factor(Limbs), y = Teeth)) +
geom_boxplot(color="red", fill="orange", alpha=0.2) +
facet_wrap(~ Origin)
# example 2 from r-graph-gallery.com/264-control-ggplot2-boxplot-colors.html
ggplot(data = pirates, aes(x = factor(Limbs), y = Teeth)) +
geom_boxplot(alpha=0.3) +
theme(legend.position="none")
# example 2 from r-graph-gallery.com/264-control-ggplot2-boxplot-colors.html
ggplot(data = pirates, aes(x = factor(Limbs), y = Teeth, fill = class)) +
geom_boxplot(alpha=0.3) +
theme(legend.position="none")
# example 2 from r-graph-gallery.com/264-control-ggplot2-boxplot-colors.html
ggplot(data = pirates, aes(x = factor(Limbs), y = Teeth, fill = Origin)) +
geom_boxplot(alpha=0.3) +
theme(legend.position="none")
# color the points by Origin to look for patterns
ggplot(data = pirates, aes(x = factor(Limbs), y = Teeth, color = Origin)) +
geom_boxplot()
# example 2 from r-graph-gallery.com/264-control-ggplot2-boxplot-colors.html
ggplot(data = pirates, aes(x = factor(Limbs), y = Teeth, fill = Origin)) +
geom_boxplot(alpha=0.3) +
theme(legend.position="none")
# example 3 from r-graph-gallery.com/264-control-ggplot2-boxplot-colors.html
ggplot(data = pirates, aes(x = factor(Limbs), y = Teeth, fill = Origin)) +
geom_boxplot(alpha=0.3) +
theme(legend.position="none") +
scale_fill_brewer(palette="BuPu")
# create a separate boxplot for each Origin of pirates
# look up facet options on the internet by searching "ggplot boxplot facet"
# www.sthda.com/english/wiki/ggplot2-facet-split-a-plot-into-a-matrix-of-panels
ggplot(data = pirates, aes(x = factor(Limbs), y = Teeth)) +
geom_boxplot(color="blue", fill="green", alpha=0.2) +
facet_wrap(~ Origin)
# create a separate boxplot for each Origin of pirates
# look up facet options on the internet by searching "ggplot boxplot facet"
# www.sthda.com/english/wiki/ggplot2-facet-split-a-plot-into-a-matrix-of-panels
ggplot(data = pirates, aes(x = factor(Limbs), y = Teeth)) +
geom_boxplot(color="purple", fill="green", alpha=0.2) +
facet_wrap(~ Origin)
# create a separate boxplot for each Origin of pirates
# look up facet options on the internet by searching "ggplot boxplot facet"
# www.sthda.com/english/wiki/ggplot2-facet-split-a-plot-into-a-matrix-of-panels
ggplot(data = pirates, aes(x = factor(Limbs), y = Teeth)) +
geom_boxplot(color="blue", fill="purple", alpha=0.2) +
facet_wrap(~ Origin)
# create a separate boxplot for each Origin of pirates
# look up facet options on the internet by searching "ggplot boxplot facet"
# www.sthda.com/english/wiki/ggplot2-facet-split-a-plot-into-a-matrix-of-panels
ggplot(data = pirates, aes(x = factor(Limbs), y = Teeth)) +
geom_boxplot(color="blue", fill="green", alpha=0.2) +
facet_wrap(~ Origin)
# view the first few lines of data
head(pirates)
# change the appearance of the individual plot titles
# www.sthda.com/english/wiki/ggplot2-facet-split-a-plot-into-a-matrix-of-panels
ggplot(data = pirates, aes(x = factor(Limbs), y = Teeth)) +
geom_boxplot(color="blue", fill="green", alpha=0.2) +
facet_wrap(ShipID ~ Origin)
ships <- read.csv("/Users/bamflappy/Repos/rPlayground/data/PiratesShip.csv")
summary(ships)
mean(ships$CrewCapacity)
sum(ships$CrewCapacity)
swetwd
setwd
?setwd
#Load the edgeR library
library("edgeR")
?heatmap
# install packages, if necessary
if (!require("BiocManager", quietly = TRUE))
#Connect to a an ensembl website mart by specifying a BioMart and dataset parameters
#Mus_musculus.GRCm39
#ensembl = useEnsembl(biomart="ensembl", dataset="mmusculus_gene_ensembl")
#Homo_sapiens.GRCh38
ensembl = useEnsembl(biomart="ensembl", dataset="hsapiens_gene_ensembl")
library(biomaRt)
#Connect to a an ensembl website mart by specifying a BioMart and dataset parameters
#Mus_musculus.GRCm39
#ensembl = useEnsembl(biomart="ensembl", dataset="mmusculus_gene_ensembl")
#Homo_sapiens.GRCh38
ensembl = useEnsembl(biomart="ensembl", dataset="hsapiens_gene_ensembl")
#View available attributes
listAttributes(ensembl)
#View available attributes
View(listAttributes(ensembl))
#!/usr/bin/env Rscript
#R script to perform statistical analysis of gene count tables using edgeR exact test
#Usage: Rscript edgeR_projects.r mergedCountsFile
#Usage Ex: Rscript edgeR_projects.r 220705_Yoon_Adipocyte_Pool2_RNAseq_merged_counts_formatted.txt
#Usage Ex: Rscript edgeR_projects.r 220707_Yoon_Jurkat_Pool1_RNAseq_merged_counts_formatted.txt
#Install edgeR, this should only need to be done once
#if (!requireNamespace("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
#Install packages, this should only need to be done once
#BiocManager::install("edgeR")
#BiocManager::install("biomaRt")
#install.packages("msigdbr")
#install.packages("ggplot2")
#install.packages("tibble")
#install.packages("dplyr")
#install.packages("pheatmap")
#install.packages("ggplotify")
#Load libraries
library(edgeR)
library(biomaRt)
library(msigdbr)
library(ggplot2)
library(tibble)
library(dplyr)
library(pheatmap)
library(ggplotify)
#Connect to a an ensembl website mart by specifying a BioMart and dataset parameters
#Homo_sapiens.GRCh38
ensembl = useEnsembl(biomart="ensembl", dataset="hsapiens_gene_ensembl")
# load libraries
library("MODA")
browseVignettes(package="MODA")
browseVignettes("MODA")
install.packages("multcomp")
?TukeyHSD
?interaction.plot
library("biomaRt")
listMarts()
ensembl=useMart("ensembl")
listDatasets(ensembl)
View(listDatasets(ensembl))
View(listDatasets(ensembl))
# specify the hsapiens mart
ensembl = useMart("ensembl",dataset="hsapiens_gene_ensembl")
# retrieve the Ensembl IDs
ensIDs=c("LOC124194901")
# map the Ensembl to the EntrezGene IDs
getBM(attributes=c('dp_ensembl', 'entrezgene'),
filters = 'dp_ensembl',
values = ensIDs,
mart = ensembl)
# retrieve the Ensembl IDs
ensIDs=c("202763_at","209310_s_at","207500_at")
# map the Ensembl to the EntrezGene IDs
getBM(attributes=c('dp_ensembl', 'entrezgene'),
filters = 'dp_ensembl',
values = ensIDs,
mart = ensembl)
# setup filters
filters = listFilters(ensembl)
# setup attributes
attributes = listAttributes(ensembl)
# map the Ensembl to the EntrezGene IDs
getBM(attributes=c('dp_ensembl', 'entrezgene'),
filters = 'dp_ensembl',
values = ensIDs,
mart = ensembl)
# map the Ensembl to the EntrezGene IDs
getBM(attributes=c('affy_hg_u133_plus_2', 'entrezgene'),
filters = 'affy_hg_u133_plus_2',
values = ensIDs,
mart = ensembl)
# retrieve the Ensembl IDs
ensIDs=c("202763_at","209310_s_at","207500_at")
# map the Ensembl to the EntrezGene IDs
getBM(attributes=c('affy_hg_u133_plus_2', 'entrezgene'),
filters = 'affy_hg_u133_plus_2',
values = ensIDs,
mart = ensembl)
# load libraries
library("biomaRt")
# specify the hsapiens mart
ensembl = useMart("ensembl",dataset="hsapiens_gene_ensembl")
# setup filters
filters = listFilters(ensembl)
# setup attributes
attributes = listAttributes(ensembl)
# retrieve the Ensembl IDs
ensIDs=c("202763_at","209310_s_at","207500_at")
# map the Ensembl to the EntrezGene IDs
getBM(attributes=c('affy_hg_u133_plus_2', 'entrezgene'),
filters = 'affy_hg_u133_plus_2',
values = ensIDs,
mart = ensembl)
# map the Ensembl to the EntrezGene IDs
getBM(attributes=c("affy_hg_u133_plus_2", "entrezgene"),
filters = "affy_hg_u133_plus_2",
values = ensIDs,
mart = ensembl)
# map the Ensembl to the EntrezGene IDs
getBM(attributes=c("affy_hg_u133_plus_2", "entrezgene_id"),
filters = "affy_hg_u133_plus_2",
values = ensIDs,
mart = ensembl)
# retrieve the Ensembl IDs
ensIDs=c("LOC124194901")
# map the Ensembl to the EntrezGene IDs
getBM(attributes=c("affy_hg_u133_plus_2", "entrezgene_id"),
filters = "affy_hg_u133_plus_2",
values = ensIDs,
mart = ensembl)
# map the Ensembl to the EntrezGene IDs
getBM(attributes=c("dp_ensembl", "entrezgene_id"),
filters = "dp_ensembl",
values = ensIDs,
mart = ensembl)
# retrieve the Ensembl IDs
ensIDs=c("202763_at","209310_s_at","207500_at")
# map the Ensembl to the EntrezGene IDs
getBM(attributes=c("dp_ensembl", "entrezgene_id"),
filters = "dp_ensembl",
values = ensIDs,
mart = ensembl)
View(attributes)
# retrieve the Ensembl IDs
ensIDs=c("XM_046589659.1")
# map the Ensembl to the EntrezGene IDs
getBM(attributes=c("ensembl_transcript_id", "entrezgene_id"),
filters = "ensembl_transcript_id",
values = ensIDs,
mart = ensembl)
# load libraries
library("biomaRt")
# specify the hsapiens mart
ensembl = useMart("ensembl",dataset="hsapiens_gene_ensembl")
# check out filters
filters = listFilters(ensembl)
View(filters)
# check out attributes
attributes = listAttributes(ensembl)
View(attributes)
# retrieve the Ensembl IDs
ensIDs=c("XM_046601202.1", "XR_006879527.1", "XR_006878626.1", "XR_006878982.1", "XM_046601405.1", "XM_046601407.1", "XM_046601408.1", "XM_046601117.1", "XR_006878744.1", "XR_006878741.1")
# map the Ensembl to the EntrezGene IDs
getBM(attributes=c("ensembl_transcript_id", "entrezgene_id"),
filters = "ensembl_transcript_id",
values = ensIDs,
mart = ensembl)
# retrieve the Ensembl IDs
ensIDs=c("XM_046580782.1")
# map the Ensembl to the EntrezGene IDs
getBM(attributes=c("ensembl_transcript_id", "entrezgene_id"),
filters = "ensembl_transcript_id",
values = ensIDs,
mart = ensembl)
# load libraries
library("biomaRt")
# specify the hsapiens mart
ensembl = useMart("ensembl",dataset="hsapiens_gene_ensembl")
# check out filters
filters = listFilters(ensembl)
View(filters)
# check out attributes
attributes = listAttributes(ensembl)
View(attributes)
# retrieve the Ensembl IDs
ensIDs=c("XM_046580782.1")
# map the Ensembl to the EntrezGene IDs
getBM(attributes=c("ensembl_transcript_id", "entrezgene_id"),
filters = "ensembl_transcript_id",
values = ensIDs,
mart = ensembl)
#Import normalized gene count data
#inputTable <- read.csv(file=args[1], row.names="gene")[ ,args[2]:args[3]]
inputTable <- read.csv(file="/Users/bamflappy/PfrenderLab/OLYM_dMelUV/KAP4/DEGenotypes/glmQLF_normalizedCounts.csv", row.names="gene", header=TRUE)[ ,1:24]
head(inputTable)
# retrieve the Ensembl IDs
ensIDs=c("ATP6")
# map the Ensembl to the EntrezGene IDs
getBM(attributes=c("ensembl_gene_id", "entrezgene_id"),
filters = "ensembl_gene_id",
values = ensIDs,
mart = ensembl)
# map the Ensembl to the EntrezGene IDs
getBM(attributes=c("external_gene_name", "entrezgene_id"),
filters = "external_gene_name",
values = ensIDs,
mart = ensembl)
# retrieve the Ensembl IDs
ensIDs=c("gene-ATP6")
# map the Ensembl to the EntrezGene IDs
getBM(attributes=c("external_gene_name", "entrezgene_id"),
filters = "external_gene_name",
values = ensIDs,
mart = ensembl)
# retrieve the Ensembl IDs
ensIDs=c("ATP6")
# map the Ensembl to the EntrezGene IDs
getBM(attributes=c("hgnc_id", "entrezgene_id"),
filters = "hgnc_id",
values = ensIDs,
mart = ensembl)
# retrieve the Ensembl IDs
ensIDs=c("gene-ATP6")
# map the Ensembl to the EntrezGene IDs
getBM(attributes=c("hgnc_id", "entrezgene_id"),
filters = "hgnc_id",
values = ensIDs,
mart = ensembl)
# retrieve the Ensembl IDs
ensIDs=c("MT-ATP6")
# map the Ensembl to the EntrezGene IDs
getBM(attributes=c("hgnc_id", "entrezgene_id"),
filters = "hgnc_id",
values = ensIDs,
mart = ensembl)
# retrieve the Ensembl IDs
ensIDs=c("4508")
# map the Ensembl to the EntrezGene IDs
getBM(attributes=c("hgnc_id", "entrezgene_id"),
filters = "hgnc_id",
values = ensIDs,
mart = ensembl)
# retrieve the Ensembl IDs
ensIDs=c("P00846")
# map the Ensembl to the EntrezGene IDs
getBM(attributes=c("uniprot_gn_symbol", "entrezgene_id"),
filters = "uniprot_gn_symbol",
values = ensIDs,
mart = ensembl)
# map the Ensembl to the EntrezGene IDs
getBM(attributes=c("uniprot_gn_id", "entrezgene_id"),
filters = "uniprot_gn_id",
values = ensIDs,
mart = ensembl)
# retrieve the Ensembl IDs
ensIDs=c("E9HGM4")
# map the Ensembl to the EntrezGene IDs
getBM(attributes=c("uniprot_gn_id", "entrezgene_id"),
filters = "uniprot_gn_id",
values = ensIDs,
mart = ensembl)
listMarts()
head(inputTable)
View(inputTable)
inputTable$gene-ATP6
rownames(inputTable)$gene-ATP6
inputTable['gene-ATP6',]
inputTable['gene-LOC124194901',]
View(inputTable)
tail(inputTable)
??gbRecord
install.packages("biofiles")
install.packages("gschofl")
install.packages("gbRecord")
View(inputTable)
install.packages("ggplot2")
install.packages("ghibli")
install.packages("ggVennDiagram")
if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("edgeR")
BiocManager::install("edgeR")
#!/usr/bin/env Rscript
##
# Working Directory
##
# set the working directory
#setwd("/YOUR/PATH/")
setwd("/Users/bamflappy/Repos/NFCDSWorkshop_Fall2022/")
##
# Packages
##
# install packages, if necessary
#install.packages("ggplot2")
#install.packages("ghibli")
#install.packages("ggVennDiagram")
#if (!require("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
#BiocManager::install("edgeR")
# import libraries
library(ggplot2)