forked from DiT-3D/DiT-3D
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
647 lines (489 loc) · 25 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
import os
import torch
from pprint import pprint
from metrics.evaluation_metrics import jsd_between_point_cloud_sets as JSD
from metrics.evaluation_metrics import compute_all_metrics, EMD_CD
import torch.nn as nn
import torch.utils.data
import torch.multiprocessing as mp
import torch.distributed as dist
import argparse
from torch.distributions import Normal
from utils.file_utils import *
from utils.visualize import *
from tqdm import tqdm
from datasets.shapenet_data_pc import ShapeNet15kPointClouds
from models.dit3d import DiT3D_models
from utils.misc import Evaluator
'''
models
'''
def normal_kl(mean1, logvar1, mean2, logvar2):
"""
KL divergence between normal distributions parameterized by mean and log-variance.
"""
return 0.5 * (-1.0 + logvar2 - logvar1 + torch.exp(logvar1 - logvar2)
+ (mean1 - mean2)**2 * torch.exp(-logvar2))
def discretized_gaussian_log_likelihood(x, *, means, log_scales):
# Assumes data is integers [0, 1]
assert x.shape == means.shape == log_scales.shape
px0 = Normal(torch.zeros_like(means), torch.ones_like(log_scales))
centered_x = x - means
inv_stdv = torch.exp(-log_scales)
plus_in = inv_stdv * (centered_x + 0.5)
cdf_plus = px0.cdf(plus_in)
min_in = inv_stdv * (centered_x - .5)
cdf_min = px0.cdf(min_in)
log_cdf_plus = torch.log(torch.max(cdf_plus, torch.ones_like(cdf_plus)*1e-12))
log_one_minus_cdf_min = torch.log(torch.max(1. - cdf_min, torch.ones_like(cdf_min)*1e-12))
cdf_delta = cdf_plus - cdf_min
log_probs = torch.where(
x < 0.001, log_cdf_plus,
torch.where(x > 0.999, log_one_minus_cdf_min,
torch.log(torch.max(cdf_delta, torch.ones_like(cdf_delta)*1e-12))))
assert log_probs.shape == x.shape
return log_probs
class GaussianDiffusion:
def __init__(self,betas, loss_type, model_mean_type, model_var_type):
self.loss_type = loss_type
self.model_mean_type = model_mean_type
self.model_var_type = model_var_type
assert isinstance(betas, np.ndarray)
self.np_betas = betas = betas.astype(np.float64) # computations here in float64 for accuracy
assert (betas > 0).all() and (betas <= 1).all()
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
# initialize twice the actual length so we can keep running for eval
# betas = np.concatenate([betas, np.full_like(betas[:int(0.2*len(betas))], betas[-1])])
alphas = 1. - betas
alphas_cumprod = torch.from_numpy(np.cumprod(alphas, axis=0)).float()
alphas_cumprod_prev = torch.from_numpy(np.append(1., alphas_cumprod[:-1])).float()
self.betas = torch.from_numpy(betas).float()
self.alphas_cumprod = alphas_cumprod.float()
self.alphas_cumprod_prev = alphas_cumprod_prev.float()
# calculations for diffusion q(x_t | x_{t-1}) and others
self.sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod).float()
self.sqrt_one_minus_alphas_cumprod = torch.sqrt(1. - alphas_cumprod).float()
self.log_one_minus_alphas_cumprod = torch.log(1. - alphas_cumprod).float()
self.sqrt_recip_alphas_cumprod = torch.sqrt(1. / alphas_cumprod).float()
self.sqrt_recipm1_alphas_cumprod = torch.sqrt(1. / alphas_cumprod - 1).float()
betas = torch.from_numpy(betas).float()
alphas = torch.from_numpy(alphas).float()
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.posterior_variance = posterior_variance
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.posterior_log_variance_clipped = torch.log(torch.max(posterior_variance, 1e-20 * torch.ones_like(posterior_variance)))
self.posterior_mean_coef1 = betas * torch.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)
self.posterior_mean_coef2 = (1. - alphas_cumprod_prev) * torch.sqrt(alphas) / (1. - alphas_cumprod)
@staticmethod
def _extract(a, t, x_shape):
"""
Extract some coefficients at specified timesteps,
then reshape to [batch_size, 1, 1, 1, 1, ...] for broadcasting purposes.
"""
bs, = t.shape
assert x_shape[0] == bs
out = torch.gather(a, 0, t)
assert out.shape == torch.Size([bs])
return torch.reshape(out, [bs] + ((len(x_shape) - 1) * [1]))
def q_mean_variance(self, x_start, t):
mean = self._extract(self.sqrt_alphas_cumprod.to(x_start.device), t, x_start.shape) * x_start
variance = self._extract(1. - self.alphas_cumprod.to(x_start.device), t, x_start.shape)
log_variance = self._extract(self.log_one_minus_alphas_cumprod.to(x_start.device), t, x_start.shape)
return mean, variance, log_variance
def q_sample(self, x_start, t, noise=None):
"""
Diffuse the data (t == 0 means diffused for 1 step)
"""
if noise is None:
noise = torch.randn(x_start.shape, device=x_start.device)
assert noise.shape == x_start.shape
return (
self._extract(self.sqrt_alphas_cumprod.to(x_start.device), t, x_start.shape) * x_start +
self._extract(self.sqrt_one_minus_alphas_cumprod.to(x_start.device), t, x_start.shape) * noise
)
def q_posterior_mean_variance(self, x_start, x_t, t):
"""
Compute the mean and variance of the diffusion posterior q(x_{t-1} | x_t, x_0)
"""
assert x_start.shape == x_t.shape
posterior_mean = (
self._extract(self.posterior_mean_coef1.to(x_start.device), t, x_t.shape) * x_start +
self._extract(self.posterior_mean_coef2.to(x_start.device), t, x_t.shape) * x_t
)
posterior_variance = self._extract(self.posterior_variance.to(x_start.device), t, x_t.shape)
posterior_log_variance_clipped = self._extract(self.posterior_log_variance_clipped.to(x_start.device), t, x_t.shape)
assert (posterior_mean.shape[0] == posterior_variance.shape[0] == posterior_log_variance_clipped.shape[0] ==
x_start.shape[0])
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, denoise_fn, data, t, y, clip_denoised: bool, return_pred_xstart: bool):
model_output = denoise_fn(data, t, y)
if self.model_var_type in ['fixedsmall', 'fixedlarge']:
# below: only log_variance is used in the KL computations
model_variance, model_log_variance = {
# for fixedlarge, we set the initial (log-)variance like so to get a better decoder log likelihood
'fixedlarge': (self.betas.to(data.device),
torch.log(torch.cat([self.posterior_variance[1:2], self.betas[1:]])).to(data.device)),
'fixedsmall': (self.posterior_variance.to(data.device), self.posterior_log_variance_clipped.to(data.device)),
}[self.model_var_type]
model_variance = self._extract(model_variance, t, data.shape) * torch.ones_like(data)
model_log_variance = self._extract(model_log_variance, t, data.shape) * torch.ones_like(data)
else:
raise NotImplementedError(self.model_var_type)
if self.model_mean_type == 'eps':
x_recon = self._predict_xstart_from_eps(data, t=t, eps=model_output)
if clip_denoised:
x_recon = torch.clamp(x_recon, -.5, .5)
model_mean, _, _ = self.q_posterior_mean_variance(x_start=x_recon, x_t=data, t=t)
else:
raise NotImplementedError(self.loss_type)
assert model_mean.shape == x_recon.shape == data.shape
assert model_variance.shape == model_log_variance.shape == data.shape
if return_pred_xstart:
return model_mean, model_variance, model_log_variance, x_recon
else:
return model_mean, model_variance, model_log_variance
def _predict_xstart_from_eps(self, x_t, t, eps):
assert x_t.shape == eps.shape
return (
self._extract(self.sqrt_recip_alphas_cumprod.to(x_t.device), t, x_t.shape) * x_t -
self._extract(self.sqrt_recipm1_alphas_cumprod.to(x_t.device), t, x_t.shape) * eps
)
''' samples '''
def p_sample(self, denoise_fn, data, t, noise_fn, y, clip_denoised=False, return_pred_xstart=False):
"""
Sample from the model
"""
model_mean, _, model_log_variance, pred_xstart = self.p_mean_variance(denoise_fn, data=data, t=t, y=y, clip_denoised=clip_denoised,
return_pred_xstart=True)
noise = noise_fn(size=data.shape, dtype=data.dtype, device=data.device)
assert noise.shape == data.shape
# no noise when t == 0
nonzero_mask = torch.reshape(1 - (t == 0).float(), [data.shape[0]] + [1] * (len(data.shape) - 1))
sample = model_mean + nonzero_mask * torch.exp(0.5 * model_log_variance) * noise
assert sample.shape == pred_xstart.shape
return (sample, pred_xstart) if return_pred_xstart else sample
def p_sample_loop(self, denoise_fn, shape, device, y,
noise_fn=torch.randn, clip_denoised=True, keep_running=False):
"""
Generate samples
keep_running: True if we run 2 x num_timesteps, False if we just run num_timesteps
"""
assert isinstance(shape, (tuple, list))
img_t = noise_fn(size=shape, dtype=torch.float, device=device)
for t in reversed(range(0, self.num_timesteps if not keep_running else len(self.betas))):
t_ = torch.empty(shape[0], dtype=torch.int64, device=device).fill_(t)
img_t = self.p_sample(denoise_fn=denoise_fn, data=img_t,t=t_, noise_fn=noise_fn, y=y,
clip_denoised=clip_denoised, return_pred_xstart=False)
assert img_t.shape == shape
return img_t
def reconstruct(self, x0, t, y, denoise_fn, noise_fn=torch.randn, constrain_fn=lambda x, t:x):
assert t >= 1
t_vec = torch.empty(x0.shape[0], dtype=torch.int64, device=x0.device).fill_(t-1)
encoding = self.q_sample(x0, t_vec)
img_t = encoding
for k in reversed(range(0,t)):
img_t = constrain_fn(img_t, k)
t_ = torch.empty(x0.shape[0], dtype=torch.int64, device=x0.device).fill_(k)
img_t = self.p_sample(denoise_fn=denoise_fn, data=img_t, t=t_, noise_fn=noise_fn, y=y,
clip_denoised=False, return_pred_xstart=False, use_var=True).detach()
return img_t
class Model(nn.Module):
def __init__(self, args, betas, loss_type: str, model_mean_type: str, model_var_type:str):
super(Model, self).__init__()
self.diffusion = GaussianDiffusion(betas, loss_type, model_mean_type, model_var_type)
# DiT-3d
self.model = DiT3D_models[args.model_type](input_size=args.voxel_size, num_classes=args.num_classes)
def prior_kl(self, x0):
return self.diffusion._prior_bpd(x0)
def all_kl(self, x0, y, clip_denoised=True):
total_bpd_b, vals_bt, prior_bpd_b, mse_bt = self.diffusion.calc_bpd_loop(self._denoise, x0, y, clip_denoised)
return {
'total_bpd_b': total_bpd_b,
'terms_bpd': vals_bt,
'prior_bpd_b': prior_bpd_b,
'mse_bt':mse_bt
}
def _denoise(self, data, t, y):
B, D,N= data.shape
assert data.dtype == torch.float
assert t.shape == torch.Size([B]) and t.dtype == torch.int64
out = self.model(data, t, y)
assert out.shape == torch.Size([B, D, N])
return out
def get_loss_iter(self, data, noises=None, y=None):
B, D, N = data.shape # [16, 3, 2048]
t = torch.randint(0, self.diffusion.num_timesteps, size=(B,), device=data.device)
if noises is not None:
noises[t!=0] = torch.randn((t!=0).sum(), *noises.shape[1:]).to(noises)
losses = self.diffusion.p_losses(
denoise_fn=self._denoise, data_start=data, t=t, noise=noises, y=y)
assert losses.shape == t.shape == torch.Size([B])
return losses
def gen_samples(self, shape, device, y, noise_fn=torch.randn,
clip_denoised=True,
keep_running=False):
return self.diffusion.p_sample_loop(self._denoise, shape=shape, device=device, y=y, noise_fn=noise_fn,
clip_denoised=clip_denoised,
keep_running=keep_running)
def gen_sample_traj(self, shape, device, y, freq, noise_fn=torch.randn,
clip_denoised=True,keep_running=False):
return self.diffusion.p_sample_loop_trajectory(self._denoise, shape=shape, device=device, y=y, noise_fn=noise_fn, freq=freq,
clip_denoised=clip_denoised,
keep_running=keep_running)
def train(self):
self.model.train()
def eval(self):
self.model.eval()
def multi_gpu_wrapper(self, f):
self.model = f(self.model)
def get_betas(schedule_type, b_start, b_end, time_num):
if schedule_type == 'linear':
betas = np.linspace(b_start, b_end, time_num)
elif schedule_type == 'warm0.1':
betas = b_end * np.ones(time_num, dtype=np.float64)
warmup_time = int(time_num * 0.1)
betas[:warmup_time] = np.linspace(b_start, b_end, warmup_time, dtype=np.float64)
elif schedule_type == 'warm0.2':
betas = b_end * np.ones(time_num, dtype=np.float64)
warmup_time = int(time_num * 0.2)
betas[:warmup_time] = np.linspace(b_start, b_end, warmup_time, dtype=np.float64)
elif schedule_type == 'warm0.5':
betas = b_end * np.ones(time_num, dtype=np.float64)
warmup_time = int(time_num * 0.5)
betas[:warmup_time] = np.linspace(b_start, b_end, warmup_time, dtype=np.float64)
else:
raise NotImplementedError(schedule_type)
return betas
def get_constrain_function(ground_truth, mask, eps, num_steps=1):
'''
:param target_shape_constraint: target voxels
:return: constrained x
'''
# eps_all = list(reversed(np.linspace(0,np.float_power(eps, 1/2), 500)**2))
eps_all = list(reversed(np.linspace(0, np.sqrt(eps), 1000)**2 ))
def constrain_fn(x, t):
eps_ = eps_all[t] if (t<1000) else 0
for _ in range(num_steps):
x = x - eps_ * ((x - ground_truth) * mask)
return x
return constrain_fn
# utils
@torch.no_grad()
def concat_all_gather(tensor):
"""
Performs all_gather operation on the provided tensors.
*** Warning ***: torch.distributed.all_gather has no gradient.
"""
tensors_gather = [
torch.ones_like(tensor) for _ in range(torch.distributed.get_world_size())
]
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
output = torch.cat(tensors_gather, dim=0)
return output
#############################################################################
def get_dataset(dataroot, npoints,category,use_mask=False):
tr_dataset = ShapeNet15kPointClouds(root_dir=dataroot,
categories=[category], split='train',
tr_sample_size=npoints,
te_sample_size=npoints,
scale=1.,
normalize_per_shape=False,
normalize_std_per_axis=False,
random_subsample=True, use_mask = use_mask)
te_dataset = ShapeNet15kPointClouds(root_dir=dataroot,
categories=[category], split='val',
tr_sample_size=npoints,
te_sample_size=npoints,
scale=1.,
normalize_per_shape=False,
normalize_std_per_axis=False,
all_points_mean=tr_dataset.all_points_mean,
all_points_std=tr_dataset.all_points_std,
use_mask=use_mask
)
return tr_dataset, te_dataset
def get_dataloader(opt, train_dataset, test_dataset=None):
if opt.distribution_type == 'multi':
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset,
num_replicas=opt.world_size,
rank=opt.rank
)
if test_dataset is not None:
test_sampler = torch.utils.data.distributed.DistributedSampler(
test_dataset,
num_replicas=opt.world_size,
rank=opt.rank
)
else:
test_sampler = None
else:
train_sampler = None
test_sampler = None
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=opt.bs,sampler=train_sampler,
shuffle=train_sampler is None, num_workers=int(opt.workers), drop_last=True)
if test_dataset is not None:
test_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=opt.bs,sampler=test_sampler,
shuffle=False, num_workers=int(opt.workers), drop_last=False)
else:
test_dataloader = None
return train_dataloader, test_dataloader, train_sampler, test_sampler
def generate_eval(model, opt, gpu, outf_syn, evaluator):
_, test_dataset = get_dataset(opt.dataroot, opt.npoints, opt.category)
_, test_dataloader, _, test_sampler = get_dataloader(opt, test_dataset, test_dataset)
def new_y_chain(device, num_chain, num_classes):
return torch.randint(low=0,high=num_classes,size=(num_chain,),device=device)
with torch.no_grad():
samples = []
for i, data in tqdm(enumerate(test_dataloader), total=len(test_dataloader), desc='Generating Samples'):
x = data['test_points'].transpose(1,2)
m, s = data['mean'].float(), data['std'].float()
y = data['cate_idx']
gen = model.gen_samples(x.shape, gpu, new_y_chain(gpu,y.shape[0],opt.num_classes), clip_denoised=False).detach().cpu()
gen = gen.transpose(1,2).contiguous()
x = x.transpose(1,2).contiguous()
gen = gen * s + m
x = x * s + m
samples.append(gen.to(gpu).contiguous())
visualize_pointcloud_batch(os.path.join(outf_syn, f'{i}_{gpu}.png'), gen, None,
None, None)
# Compute metrics
results = compute_all_metrics(gen, x, opt.bs)
results = {k: (v.cpu().detach().item()
if not isinstance(v, float) else v) for k, v in results.items()}
jsd = JSD(gen.numpy(), x.numpy())
evaluator.update(results, jsd)
stats = evaluator.finalize_stats()
samples = torch.cat(samples, dim=0)
samples_gather = concat_all_gather(samples)
torch.save(samples_gather, opt.eval_path)
return stats
def main(opt):
if opt.category == 'airplane':
opt.beta_start = 1e-5
opt.beta_end = 0.008
opt.schedule_type = 'warm0.1'
output_dir = get_output_dir(opt.model_dir, opt.experiment_name)
copy_source(__file__, output_dir)
opt.dist_url = f'tcp://{opt.node}:{opt.port}'
print('Using url {}'.format(opt.dist_url))
if opt.distribution_type == 'multi':
opt.ngpus_per_node = torch.cuda.device_count()
opt.world_size = opt.ngpus_per_node * opt.world_size
mp.spawn(test, nprocs=opt.ngpus_per_node, args=(opt, output_dir))
else:
test(opt.gpu, opt, output_dir)
def test(gpu, opt, output_dir):
logger = setup_logging(output_dir)
if opt.distribution_type == 'multi':
should_diag = gpu==0
else:
should_diag = True
outf_syn, = setup_output_subdirs(output_dir, 'syn')
if opt.distribution_type == 'multi':
if opt.dist_url == "env://" and opt.rank == -1:
opt.rank = int(os.environ["RANK"])
base_rank = opt.rank * opt.ngpus_per_node
opt.rank = base_rank + gpu
dist.init_process_group(backend=opt.dist_backend, init_method=opt.dist_url,
world_size=opt.world_size, rank=opt.rank)
opt.bs = int(opt.bs / opt.ngpus_per_node)
opt.workers = 0
'''
create networks
'''
betas = get_betas(opt.schedule_type, opt.beta_start, opt.beta_end, opt.time_num)
model = Model(opt, betas, opt.loss_type, opt.model_mean_type, opt.model_var_type)
if opt.distribution_type == 'multi': # Multiple processes, single GPU per process
def _transform_(m):
return nn.parallel.DistributedDataParallel(
m, device_ids=[gpu], output_device=gpu)
torch.cuda.set_device(gpu)
model.cuda(gpu)
model.multi_gpu_wrapper(_transform_)
elif opt.distribution_type == 'single':
def _transform_(m):
return nn.parallel.DataParallel(m)
model = model.cuda()
model.multi_gpu_wrapper(_transform_)
elif gpu is not None:
torch.cuda.set_device(gpu)
model = model.cuda(gpu)
else:
raise ValueError('distribution_type = multi | single | None')
if should_diag:
logger.info(opt)
logger.info("Model = %s" % str(model))
total_params = sum(param.numel() for param in model.parameters())/1e6
logger.info("Total_params = %s MB " % str(total_params)) # S4: 32.81 MB
model.eval()
evaluator = Evaluator(results_dir=output_dir)
with torch.no_grad():
if should_diag:
logger.info("Resume Path:%s" % opt.model)
resumed_param = torch.load(opt.model)
model.load_state_dict(resumed_param['model_state'])
opt.eval_path = os.path.join(outf_syn, 'samples.pth')
Path(opt.eval_path).parent.mkdir(parents=True, exist_ok=True)
stats = generate_eval(model, opt, gpu, outf_syn, evaluator)
if should_diag:
logger.info(stats)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, default='./checkpoints', help='path to save trained model weights')
parser.add_argument('--experiment_name', type=str, default='dit3d', help='experiment name (used for checkpointing and logging)')
parser.add_argument('--dataroot', default='ShapeNetCore.v2.PC15k/')
parser.add_argument('--category', default='chair')
parser.add_argument('--num_classes', type=int, default=55)
parser.add_argument('--bs', type=int, default=64, help='input batch size')
parser.add_argument('--workers', type=int, default=16, help='workers')
parser.add_argument('--niter', type=int, default=10000, help='number of epochs to train for')
parser.add_argument('--nc', default=3)
parser.add_argument('--npoints', default=2048)
parser.add_argument("--voxel_size", type=int, choices=[16, 32, 64], default=32)
'''model'''
parser.add_argument("--model_type", type=str, choices=list(DiT3D_models.keys()), default="DiT-S/4")
parser.add_argument('--beta_start', default=0.0001)
parser.add_argument('--beta_end', default=0.02)
parser.add_argument('--schedule_type', default='linear')
parser.add_argument('--time_num', type=int, default=1000)
#params
parser.add_argument('--attention', default=True)
parser.add_argument('--dropout', default=0.1)
parser.add_argument('--embed_dim', type=int, default=64)
parser.add_argument('--loss_type', default='mse')
parser.add_argument('--model_mean_type', default='eps')
parser.add_argument('--model_var_type', default='fixedsmall')
parser.add_argument('--model', default='',required=True, help="path to model (to continue training)")
'''distributed'''
parser.add_argument('--world_size', default=1, type=int,
help='Number of distributed nodes.')
parser.add_argument('--node', type=str, default='localhost')
parser.add_argument('--port', type=int, default=12345)
parser.add_argument('--dist_url', type=str, default='tcp://localhost:12345')
# parser.add_argument('--dist_url', default='tcp://127.0.0.1:9991', type=str,
# help='url used to set up distributed training')
parser.add_argument('--dist_backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--distribution_type', default='single', choices=['multi', 'single', None],
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
parser.add_argument('--rank', default=0, type=int,
help='node rank for distributed training')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use. None means using all available GPUs.')
'''eval'''
parser.add_argument('--eval_path',
default='')
parser.add_argument('--manualSeed', default=42, type=int, help='random seed')
opt = parser.parse_args()
return opt
if __name__ == '__main__':
opt = parse_args()
set_seed(opt)
main(opt)