-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathstepper.c
196 lines (186 loc) · 7.07 KB
/
stepper.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
/**
* @file stepper.c
* @brief 步进电机驱动
* @author Ellu ([email protected])
* @version 1.0
* @date 2022-12-12
*
* THINK DIFFERENTLY
*/
#include "stepper.h"
#define LOG_MODULE "stepper"
#include "log.h"
#include "math.h"
#include "tim.h"
/**
* @brief 初始化步进电机
* @param step 步进电机控制结构体
* @param timMaster 主定时器句柄(用于PWM输出)
* @param timSlave 从定时器句柄(用于脉冲计数)
* @param timMasterCh 主定时器PWM通道
* @param dirPort 方向控制端口
* @param dirPin 方向控制引脚
* @param dirLogic 方向控制逻辑
*/
void Stepper_Init(step_ctrl_t* step, TIM_HandleTypeDef* timMaster,
TIM_HandleTypeDef* timSlave, uint32_t timMasterCh,
GPIO_TypeDef* dirPort, uint16_t dirPin, uint8_t dirLogic) {
step->speed = 0;
step->angle = 0;
step->angleTarget = 0;
step->rotating = 0;
step->dir = 0;
step->slaveTimReload = 0;
step->slaveTimITCnt = 0;
step->timMaster = timMaster;
step->timSlave = timSlave;
step->timMasterCh = timMasterCh;
step->dirPort = dirPort;
step->dirPin = dirPin;
step->dirLogic = dirLogic;
__HAL_TIM_SET_COUNTER(step->timMaster, 0);
__HAL_TIM_SET_COUNTER(step->timSlave, 0);
}
/**
* @brief 设置步进电机速度
* @param step 步进电机控制结构体
* @param speed 速度(单位:度/秒)
*/
void Stepper_Set_Speed(step_ctrl_t* step, double speed) {
LOG_ASSERT_CMD(speed < -0.01 || speed > 0.01, return, "[STEP] setspeed=0");
speed = fabs(speed);
double pulsePerSec =
speed / 360 * STEPPER_PULSE_PER_ROUND; // 等价于pwm频率
if (pulsePerSec > STEPPER_PWM_MAX_FREQ) {
pulsePerSec = STEPPER_PWM_MAX_FREQ;
speed = pulsePerSec / STEPPER_PULSE_PER_ROUND * 360;
}
uint32_t prescaler = STEPPER_TIM_BASE_CLK / pulsePerSec / 2;
uint16_t period = 2;
while (prescaler > 0xFFFF) {
prescaler /= 2;
period *= 2;
}
// LOG_DEBUG("Stepper_Set_Speed: speed = %f, pwmFreq = %f, PSC = %d, ARR = %d",
// speed,
// pulsePerSec, prescaler, period);
__HAL_TIM_SET_PRESCALER(step->timMaster, prescaler - 1);
__HAL_TIM_SET_AUTORELOAD(step->timMaster, period - 1);
__HAL_TIM_SET_COMPARE(step->timMaster, step->timMasterCh, period / 2);
__HAL_TIM_SET_COUNTER(step->timMaster, 0); // 重置计数器
step->speed = speed;
}
/**
* @brief 在从定时器中断中调用
* @param step 步进电机控制结构体
* @param htim 中断定时器句柄
*/
void Stepper_IT_Handler(step_ctrl_t* step, TIM_HandleTypeDef* htim) {
if (htim->Instance == step->timSlave->Instance) {
if (__HAL_TIM_GET_FLAG(step->timSlave, TIM_FLAG_CC1) != RESET) {
__HAL_TIM_CLEAR_FLAG(step->timSlave, TIM_FLAG_CC1);
if (step->rotating) {
if (step->slaveTimITCnt == 0) { // 旋转结束
LRotateFinish:
HAL_TIM_PWM_Stop_IT(step->timMaster, step->timMasterCh);
HAL_TIM_Base_Stop_IT(step->timSlave);
step->rotating = 0;
step->angle = step->angleTarget;
LOG_DEBUG("[STEP] Stop");
return;
} else { // 从定时器溢出
step->slaveTimITCnt--;
if (step->slaveTimITCnt == 0) { // 不存在下一次溢出
if (step->slaveTimReload != 0) {
__HAL_TIM_SET_AUTORELOAD(step->timSlave,
step->slaveTimReload);
} else {
goto LRotateFinish;
}
}
}
}
}
}
}
/**
* @brief 旋转步进电机
* @param step 步进电机控制结构体
* @param angle 旋转角度(单位:度)(正数:顺时针, 负数:逆时针)
*/
void Stepper_Rotate(step_ctrl_t* step, double angle) {
LOG_ASSERT_CMD(!step->rotating, return, "[STEP] In busy");
step->dir = angle > 0 ? 1 : 0;
if (!step->dirLogic)
HAL_GPIO_WritePin(step->dirPort, step->dirPin,
step->dir ? GPIO_PIN_RESET : GPIO_PIN_SET);
else
HAL_GPIO_WritePin(step->dirPort, step->dirPin,
step->dir ? GPIO_PIN_SET : GPIO_PIN_RESET);
angle = fabs(angle);
uint32_t targetPulse = angle * STEPPER_PULSE_PER_ROUND / 360;
LOG_ASSERT_CMD(targetPulse > 1, return, "[STEP] targetPulse<2");
// step->angleTarget = step->angle + angle; // 存在累加误差
step->angleTarget = (double)targetPulse * 360 / STEPPER_PULSE_PER_ROUND;
step->angleTarget = step->dir ? step->angle + step->angleTarget
: step->angle - step->angleTarget;
// LOG_DEBUG("Stepper_Rotate: angle = %f, pulse = %ld, dir = %d, angleT = %f",
// angle,
// targetPulse, step->dir, step->angleTarget);
step->slaveTimITCnt = targetPulse / (STEPPER_SLAVE_TIM_MAX_CNT + 1);
if (step->slaveTimITCnt > 0) {
step->slaveTimReload = targetPulse % (STEPPER_SLAVE_TIM_MAX_CNT + 1);
targetPulse = STEPPER_SLAVE_TIM_MAX_CNT;
// LOG_DEBUG("Stepper_Rotate: slaveTim ITCnt = %d, Reload = %d",
// step->slaveTimITCnt,
// step->slaveTimReload);
}
__HAL_TIM_SET_COUNTER(step->timMaster, 0);
__HAL_TIM_SET_COUNTER(step->timSlave, 0);
__HAL_TIM_SET_AUTORELOAD(step->timSlave, targetPulse - 1);
HAL_TIM_Base_Start_IT(step->timSlave);
HAL_TIM_PWM_Start_IT(step->timMaster, step->timMasterCh);
step->rotating = 1;
}
/**
* @brief 重设步进电机当前角度
* @param step 步进电机控制结构体
* @param angle 角度(单位:度)
*/
void Stepper_Set_Angle(step_ctrl_t* step, double angle) {
LOG_ASSERT_CMD(!step->rotating, return, "[STEP] In busy");
step->angle = angle;
step->angleTarget = angle;
}
/**
* @brief 旋转步进电机到指定角度
* @param step 步进电机控制结构体
* @param angle 目标角度(单位:度)
*/
void Stepper_Rotate_Abs(step_ctrl_t* step, double angle) {
Stepper_Rotate(step, angle - step->angle);
}
/**
* @brief 手动停止步进电机
* @param step 步进电机控制结构体
*/
void Stepper_Stop(step_ctrl_t* step) {
HAL_TIM_PWM_Stop_IT(step->timMaster, step->timMasterCh);
HAL_TIM_Base_Stop_IT(step->timSlave);
step->angle = Stepper_Get_Angle(step);
__HAL_TIM_SET_COUNTER(step->timSlave, 0);
step->rotating = 0;
LOG_DEBUG("[STEP] Manual stop");
}
/**
* @brief 获取步进电机当前角度
* @param step 步进电机控制结构体
* @retval
*/
double Stepper_Get_Angle(step_ctrl_t* step) {
if (!step->rotating)
return step->angle;
double progress = (double)__HAL_TIM_GET_COUNTER(step->timSlave) /
(double)__HAL_TIM_GET_AUTORELOAD(step->timSlave);
return (step->angleTarget - step->angle) * progress + step->angle;
}