Skip to content

Latest commit

 

History

History
33 lines (26 loc) · 1.35 KB

README.md

File metadata and controls

33 lines (26 loc) · 1.35 KB

Pytorch Converter

Pytorch model to Caffe & ncnn

Model Examples

Attentions

  • Mind the difference on ceil_mode of pooling layer among Pytorch and Caffe, ncnn

    • You can convert Pytorch models with all pooling layer's ceil_mode=True.
    • Or compile a custom version of Caffe/ncnn with floor() replaced by ceil() in pooling layer inference.
  • Python Error: AttributeError: grad_fn

    • Update your version to pytorch-0.2.0 and torchvision-0.1.9 at least.
  • Other Python packages requirements:

    • to Caffe: numpy, protobuf (to gen caffe proto)
    • to ncnn: numpy
    • for testing Caffe result: pycaffe, cv2
  • Model Loading Error

    • Use compatible model saving & loading method, e.g.

      # Saving, notice the difference on DataParallel
      net_for_saving = net.module if use_nn_DataParallel else net
      torch.save(net_for_saving.state_dict(), path)
      
      # Loading
      net.load_state_dict(torch.load(path, map_location=lambda storge, loc: storage))