forked from microsoft/LightGBM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
early_stopping.R
48 lines (42 loc) · 1.86 KB
/
early_stopping.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
require(lightgbm)
require(methods)
# Load in the agaricus dataset
data(agaricus.train, package = "lightgbm")
data(agaricus.test, package = "lightgbm")
dtrain <- lgb.Dataset(agaricus.train$data, label = agaricus.train$label)
dtest <- lgb.Dataset(agaricus.test$data, label = agaricus.test$label)
# Note: for customized objective function, we leave objective as default
# Note: what we are getting is margin value in prediction
# You must know what you are doing
param <- list(num_leaves = 4,
learning_rate = 1)
valids <- list(eval = dtest)
num_round <- 20
# User define objective function, given prediction, return gradient and second order gradient
# This is loglikelihood loss
logregobj <- function(preds, dtrain) {
labels <- getinfo(dtrain, "label")
preds <- 1 / (1 + exp(-preds))
grad <- preds - labels
hess <- preds * (1 - preds)
return(list(grad = grad, hess = hess))
}
# User defined evaluation function, return a pair metric_name, result, higher_better
# NOTE: when you do customized loss function, the default prediction value is margin
# This may make buildin evalution metric not function properly
# For example, we are doing logistic loss, the prediction is score before logistic transformation
# The buildin evaluation error assumes input is after logistic transformation
# Take this in mind when you use the customization, and maybe you need write customized evaluation function
evalerror <- function(preds, dtrain) {
labels <- getinfo(dtrain, "label")
err <- as.numeric(sum(labels != (preds > 0))) / length(labels)
return(list(name = "error", value = err, higher_better = FALSE))
}
print("Start training with early Stopping setting")
bst <- lgb.train(param,
dtrain,
num_round,
valids,
objective = logregobj,
eval = evalerror,
early_stopping_round = 3)