forked from microsoft/LightGBM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmulticlass.R
66 lines (53 loc) · 2.27 KB
/
multiclass.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
require(lightgbm)
# We load the default iris dataset shipped with R
data(iris)
# We must convert factors to numeric
# They must be starting from number 0 to use multiclass
# For instance: 0, 1, 2, 3, 4, 5...
iris$Species <- as.numeric(as.factor(iris$Species)) - 1
# We cut the data set into 80% train and 20% validation
# The 10 last samples of each class are for validation
train <- as.matrix(iris[c(1:40, 51:90, 101:140), ])
test <- as.matrix(iris[c(41:50, 91:100, 141:150), ])
dtrain <- lgb.Dataset(data = train[, 1:4], label = train[, 5])
dtest <- lgb.Dataset.create.valid(dtrain, data = test[, 1:4], label = test[, 5])
valids <- list(test = dtest)
# Method 1 of training
params <- list(objective = "multiclass", metric = "multi_error", num_class = 3)
model <- lgb.train(params,
dtrain,
100,
valids,
min_data = 1,
learning_rate = 1,
early_stopping_rounds = 10)
# We can predict on test data, outputs a 90-length vector
# Order: obs1 class1, obs1 class2, obs1 class3, obs2 class1, obs2 class2, obs2 class3...
my_preds <- predict(model, test[, 1:4])
# Method 2 of training, identical
model <- lgb.train(list(),
dtrain,
100,
valids,
min_data = 1,
learning_rate = 1,
early_stopping_rounds = 10,
objective = "multiclass",
metric = "multi_error",
num_class = 3)
# We can predict on test data, identical
my_preds <- predict(model, test[, 1:4])
# A (30x3) matrix with the predictions, use parameter reshape
# class1 class2 class3
# obs1 obs1 obs1
# obs2 obs2 obs2
# .... .... ....
my_preds <- predict(model, test[, 1:4], reshape = TRUE)
# We can also get the predicted scores before the Sigmoid/Softmax application
my_preds <- predict(model, test[, 1:4], rawscore = TRUE)
# Raw score predictions as matrix instead of vector
my_preds <- predict(model, test[, 1:4], rawscore = TRUE, reshape = TRUE)
# We can also get the leaf index
my_preds <- predict(model, test[, 1:4], predleaf = TRUE)
# Predict leaf index as matrix instead of vector
my_preds <- predict(model, test[, 1:4], predleaf = TRUE, reshape = TRUE)