-
Notifications
You must be signed in to change notification settings - Fork 0
/
deploy.py
595 lines (492 loc) · 30.3 KB
/
deploy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
import pandas as pd
import numpy as np
# from matplotlib import pyplot as plt
import requests
import json
import re
import string
from io import StringIO
import streamlit as st
import random
import time
from datetime import *
import math
import contextlib # for error handling
st.title('NFT CollaBot')
st_user_input=st.text_input('Please enter your Tezos Wallet Address/Domain or Twitter Username registered to your Tezos Profile:')
# objktcom api endpoint will be used for several times to evaluate queries
api_endpoint = 'https://data.objkt.com/v3/graphql'
def findWalletAddress_byTwitter(twitter_address):
creator_walletAddress_byTwitter_query="""query MyQuery {
token_creator(
where: {holder: {twitter: {_eq: "twitter_address"}}}){
holder {
address
}
}
}
"""
evaluated_twitterAddress = f"https://twitter.com/{str(twitter_address)}" # query requires full link of the address
creator_walletAddress_byTwitter_query = creator_walletAddress_byTwitter_query.replace("twitter_address",evaluated_twitterAddress)
creator_twitter = requests.post(api_endpoint, json={'query': creator_walletAddress_byTwitter_query})
creator_twitter = json.loads(creator_twitter.text)
creator_twitter = creator_twitter ['data']['token_creator']
if creator_twitter == [] or creator_twitter[0]['holder'] == "null":
st.write("There are no Tezos profiles registered with this username. Please enter an input again<3")
twitter_username=creator_twitter[0]['holder']
return list(twitter_username.values())[0]
def findWalletAddress_byTezDomain(tezos_domain):
creator_walletAddress_byDomain_query="""query findWallet_byDomainAddress {
tzd_domain(where: {id: {_eq: "tez_domain"}}) {
owner
token {
holders {
holder {
twitter
}
}
}
}
}"""
creator_walletAddress_byDomain_query = creator_walletAddress_byDomain_query.replace("tez_domain",tezos_domain)
creator_tezDomain = requests.post(api_endpoint, json={'query': creator_walletAddress_byDomain_query})
creator_tezDomain = json.loads(creator_tezDomain.text)
creator_tezDomain = creator_tezDomain ['data']['tzd_domain']
if creator_tezDomain != [] and creator_tezDomain[0]['owner'] != "null":
return str(creator_tezDomain[0]['owner'])
else: st.write("Unavailable Tezos Domain. Please enter an input again<3")
def isWalletAddress(wallet_address):
account_data_url=f"https://api.tzkt.io/v1/accounts/{wallet_address}" # tzkt.io API endpoint
response = requests.get(account_data_url)
with contextlib.suppress(KeyError or json.decoder.JSONDecodeError):
response=response.json()
if response['type']!="empty":
return wallet_address
else: st.write("Unavailable tezos wallet address. Please enter an input again<3")
def recognize_user_input(user_input):
if len(user_input) == 36 and user_input.startswith("tz"):
return isWalletAddress(user_input)
elif user_input.endswith(".tez"):
return findWalletAddress_byTezDomain(user_input)
elif user_input:
return findWalletAddress_byTwitter(user_input)
counter_N=[0]
def creator_allCreated_NFTs(wallet_address):
if counter_N[0]>0:global nft_pk_val
if counter_N[0]==0:nft_pk_val=0
creator_allNFTs_pk_query="""query{
listing(where: {token: {creators: {creator_address: {_eq: "wallet_address"}, token_pk: {_gt: "nft_pk_val"}}}}, distinct_on: token_pk) {
token_pk
timestamp
}
}"""
creator_allNFTs_pk_query = creator_allNFTs_pk_query.replace("nft_pk_val",str(nft_pk_val))
creator_allNFTs_pk_query = creator_allNFTs_pk_query.replace("wallet_address",str(wallet_address))
creator_allNFTs_pk = requests.post(api_endpoint, json={'query': creator_allNFTs_pk_query})
creator_allNFTs_pk = json.loads(creator_allNFTs_pk.text)
creator_allNFTs_pk = creator_allNFTs_pk['data']['listing']
# start the mechanism if there are 500 responses
# otherwise, it is nonsense to wait executing all because one request is enough to get all data
if len(creator_allNFTs_pk)==500:
if counter_N[0]>0:
global creators_allNFTs_pk_df
global loop_of_allNFT_listings_df
if counter_N[0]==0:
creators_allNFTs_pk_df=pd.DataFrame()
loop_of_allNFT_listings_df=pd.DataFrame()
loop_of_allNFT_listings_df=pd.DataFrame(creator_allNFTs_pk)
creators_allNFTs_pk_df=pd.concat([creators_allNFTs_pk_df,loop_of_allNFT_listings_df])
else:creators_allNFTs_pk_df = pd.DataFrame(creator_allNFTs_pk)
# there may be multiple listings on primary, so drop duplicates
creators_allNFTs_pk_df = creators_allNFTs_pk_df.drop_duplicates()
# convert timestamp attribute data type as date
creators_allNFTs_pk_df['timestamp']=pd.to_datetime(creators_allNFTs_pk_df['timestamp']).dt.date
creators_allNFTs_pk_df=creators_allNFTs_pk_df.sort_values(by='timestamp',ascending=True)
# have to set index again after dropping and sorting operation
creators_allNFTs_pk_df = creators_allNFTs_pk_df.reset_index()
del creators_allNFTs_pk_df['index']
counter_N[0]=+1 # increase counter after each iteration of the function
if len(creators_allNFTs_pk_df)==500:
nft_pk_val=str(creators_allNFTs_pk_df['token_pk'][499])
return creator_allCreated_NFTs(wallet_address)
else:
counter_N[0]=0
return creators_allNFTs_pk_df
def creator_availablePrimary_NFTs(wallet_address):
if counter_N[0]>0:global nft_primaryKey_val
if counter_N[0]==0:nft_primaryKey_val=0
creator_nft_primaryNFT_info_query="""{
listing(where: {seller_address: {_eq: "wallet_address"}, status: {_eq: "active"}, token: {creators: {creator_address: {_eq: "wallet_address"}, token_pk: {_gt: "nft_primaryKey_val"}}}}) {
token_pk
}
}
"""
creator_nft_primaryNFT_info_query = creator_nft_primaryNFT_info_query.replace("nft_primaryKey_val",str(nft_primaryKey_val))
creator_nft_primaryNFT_info_query = creator_nft_primaryNFT_info_query.replace("wallet_address",str(wallet_address))
creator_primary_nft_pk = requests.post(api_endpoint, json={'query': creator_nft_primaryNFT_info_query})
creator_primary_nft_pk = json.loads(creator_primary_nft_pk.text)
creator_primary_nft_pk = creator_primary_nft_pk['data']['listing']
# start the mechanism if there are 500 responses
# otherwise, it is nonsense to wait executing all because one request is enough to get all data
if len(creator_primary_nft_pk)==500:
if counter_N[0]>0:
global creators_availablePrimaryNFTs_pk_df
global loop_ofPrimary_NFT_listings_df
if counter_N[0]==0:
creators_availablePrimaryNFTs_pk_df=pd.DataFrame()
loop_ofPrimary_NFT_listings_df=pd.DataFrame()
loop_ofPrimary_NFT_listings_df=pd.DataFrame(creator_primary_nft_pk)
creators_availablePrimaryNFTs_pk_df=pd.concat([creators_availablePrimaryNFTs_pk_df,loop_ofPrimary_NFT_listings_df])
else:creators_availablePrimaryNFTs_pk_df = pd.DataFrame(creator_primary_nft_pk)
# there may be multiple listings on primary, so delete duplicates
creators_availablePrimaryNFTs_pk_df = creators_availablePrimaryNFTs_pk_df.drop_duplicates()
creators_availablePrimaryNFTs_pk_df = creators_availablePrimaryNFTs_pk_df.reset_index() # have to set index again after dropping operation
del creators_availablePrimaryNFTs_pk_df['index']
counter_N[0]=+1
if len(creators_availablePrimaryNFTs_pk_df)==500:
nft_primaryKey_val=str(creators_availablePrimaryNFTs_pk_df['token_pk'][499])
return creator_availablePrimary_NFTs(wallet_address)
else:
counter_N[0]=0
return creators_availablePrimaryNFTs_pk_df
def creator_all_NFT_sales(wallet_address):
if counter_N[0]>0:global nft_timestamp_val
if counter_N[0]==0:nft_timestamp_val="2000-01-01T00:00:00+00:00" # initialize the timestamp value
creator_all_sales_query="""query{
listing_sale(where: {token: {creators: {creator_address: {_eq: "wallet_address"}}}, timestamp: {_gt: "nft_timestamp_val"}}, distinct_on: timestamp) {
token_pk
timestamp
}
}"""
creator_all_sales_query = creator_all_sales_query.replace("nft_timestamp_val",str(nft_timestamp_val))
creator_all_sales_query = creator_all_sales_query.replace("wallet_address",str(wallet_address))
creator_all_sales_response= requests.post(api_endpoint, json={'query': creator_all_sales_query})
creator_all_sales_response = json.loads(creator_all_sales_response.text)
creator_all_sales_response = creator_all_sales_response['data']['listing_sale']
if counter_N[0]>0:
global all_NFT_sales_df
global loop_NFT_sales_df
if counter_N[0]==0:
all_NFT_sales_df=pd.DataFrame()
loop_NFT_sales_df=pd.DataFrame()
loop_NFT_sales_df = pd.DataFrame(creator_all_sales_response)
loop_NFT_sales_df['token_pk']=loop_NFT_sales_df['token_pk'].astype(int)
all_NFT_sales_df=pd.concat([ all_NFT_sales_df,loop_NFT_sales_df])
counter_N[0]+=1
# print(nft_timestamp_val) # to check how it works
if len(creator_all_sales_response)==500: # max retrieves are 500, if less there are no more data to response from api
nft_timestamp_val=str(loop_NFT_sales_df['timestamp'][499])
return creator_all_NFT_sales(wallet_address)
else:
counter_N[0]=0 # reset counter in the end
all_NFT_sales_df=all_NFT_sales_df.reset_index()
del all_NFT_sales_df['index'] # also reset index, sufficient for the multiple request cases
return all_NFT_sales_df
def creator_primary_NFT_sales(wallet_address):
if counter_N[0]>0:global nft_timestamp_val
if counter_N[0]==0:nft_timestamp_val="2000-01-01T00:00:00+00:00" # initialize the timestamp value
creator_primary_sales_query="""{
listing_sale(where: {token: {creators: {creator_address: {_eq: "wallet_address"}}}, timestamp: {_gt: "nft_timestamp_val"}, seller_address: {_eq: "wallet_address"}}, distinct_on: timestamp) {
price
token_pk
buyer_address
timestamp
}
}"""
creator_primary_sales_query = creator_primary_sales_query.replace("nft_timestamp_val",str(nft_timestamp_val))
creator_primary_sales_query = creator_primary_sales_query.replace("wallet_address",str(wallet_address))
creator_primary_sales_response= requests.post(api_endpoint, json={'query': creator_primary_sales_query})
creator_primary_sales_response = json.loads(creator_primary_sales_response.text)
creator_primary_sales_response = creator_primary_sales_response['data']['listing_sale']
if counter_N[0]>0:
global all_NFT_sales_df
global loop_NFT_sales_df
if counter_N[0]==0:
all_NFT_sales_df=pd.DataFrame()
loop_NFT_sales_df=pd.DataFrame()
loop_NFT_sales_df = pd.DataFrame(creator_primary_sales_response)
loop_NFT_sales_df['token_pk']=loop_NFT_sales_df['token_pk'].astype(int)
all_NFT_sales_df=pd.concat([ all_NFT_sales_df,loop_NFT_sales_df])
counter_N[0]+=1
if len(creator_primary_sales_response)==500: # max retrieves are 500, if less there are no more data to response from api
nft_timestamp_val=str(loop_NFT_sales_df['timestamp'][499])
return creator_primary_NFT_sales(wallet_address)
else:
counter_N[0]=0 # reset counter in the end
return all_NFT_sales_df
# find the first mint date of a creator and return as year-month format
# will be using on multiple functions, creator_primary_sales_df() as well
def find_first_minting_date(wallet_address):
firstMintDate_ofCreator=creator_allCreated_NFTs(wallet_address) # assign data frame of all NFTs of the creator
firstMintDate_ofCreator=firstMintDate_ofCreator.loc[0]['timestamp'] # then assign first NFT's time to the variable
firstMintDate_ofCreator=firstMintDate_ofCreator.strftime('%Y-%m') # drop day from the date
return firstMintDate_ofCreator
# spotting the latest's date in year-month format
def find_last_sale_date(wallet_address):
last_sale_date=creator_all_NFT_sales(wallet_address)
last_sale_date=last_sale_date.apply(pd.to_datetime)
last_sale_date=last_sale_date.loc[len(last_sale_date)-1]['timestamp']
last_sale_date=last_sale_date.strftime('%Y-%m')
return last_sale_date
def creator_primary_sales_df(wallet_address):
creator_primary_sales_dataFrame=creator_primary_NFT_sales(wallet_address)
# manipulating price column to calculate exact value [as tezos] of a token
# dividing to 10^6
creator_primary_sales_dataFrame['price']=pd.to_numeric(creator_primary_sales_dataFrame['price'],downcast="float")
creator_primary_sales_dataFrame['price']=creator_primary_sales_dataFrame['price']/1000000
# manipulate timestamp attribute data type as date
creator_primary_sales_dataFrame['timestamp']=pd.to_datetime(creator_primary_sales_dataFrame['timestamp']).dt.date
# convert all days to 1 for grouping by year-month pair
creator_primary_sales_dataFrame['timestamp']=creator_primary_sales_dataFrame['timestamp'].apply(lambda dt: dt.replace(day=1))
creator_primary_sales_dataFrame = creator_primary_sales_dataFrame.groupby('timestamp').sum()
del creator_primary_sales_dataFrame['token_pk']
creator_primary_sales_dataFrame = creator_primary_sales_dataFrame.reset_index() # convert to data frame from pivot table
creator_primary_sales_dataFrame['timestamp'] = creator_primary_sales_dataFrame['timestamp'].apply(lambda x: x.strftime('%Y-%m'))
creator_primary_sales_dataFrame = creator_primary_sales_dataFrame.set_index('timestamp') # then set date as index
firstMintDate_ofCreator=find_first_minting_date(wallet_address)
lastSaleDate_ofCreator=find_last_sale_date(wallet_address)
def date_range_df(firstMintDate_ofCreator):
# define a range to fill missing months -if exists- in data frame
sale_date_range = pd.date_range(
start=firstMintDate_ofCreator, # using the variable for calculating minting range
end=lastSaleDate_ofCreator).to_period('m')
# create a data frame to save all of the months in the range
sale_date_range=pd.DataFrame(sale_date_range)
sale_date_range=sale_date_range.drop_duplicates(keep="first")
sale_date_range['price']= 0
sale_date_range=sale_date_range.rename(columns={0:'timestamp'})
sale_date_range['timestamp'] = sale_date_range['timestamp'].apply(lambda x: x.strftime('%Y-%m'))
sale_date_range=sale_date_range.groupby('timestamp').sum()
return sale_date_range
creator_primary_sales=date_range_df(firstMintDate_ofCreator) # assign the data frame returned from the function
creator_primary_sales=creator_primary_sales.reset_index() # then reset index before mapping
creator_primary_sales_dataFrame=creator_primary_sales_dataFrame.reset_index()
# use mapping to fill new data frame with values, keep NaN non-existing months on actual data frame
creator_primary_sales['price']=creator_primary_sales['timestamp'].map(creator_primary_sales_dataFrame.set_index('timestamp')['price'])
creator_primary_sales=creator_primary_sales.fillna(0)
return creator_primary_sales.set_index('timestamp')
def creator_secondary_NFT_sales_tokens(wallet_address):
if counter_N[0]>0:global nft_timestamp_val
if counter_N[0]==0:nft_timestamp_val="2000-01-01T00:00:00+00:00" # initialize the timestamp value
creator_secondary_sales_query="""{
listing_sale(where: {token: {creators: {creator_address: {_eq: "wallet_address"}}}, timestamp: {_gt: "nft_timestamp_val"}, seller_address: {_neq: "wallet_address"}}, distinct_on: timestamp) {
price
token_pk
buyer_address
timestamp
}
}"""
def send_request_sales(query_input): # the function is too complicated so wanted to minimize using a function
query_input = query_input.replace("nft_timestamp_val",str(nft_timestamp_val))
query_input = query_input.replace("wallet_address",str(wallet_address))
global response # avoid UnboundLocal Error
response = requests.post(api_endpoint, json={'query': query_input})
response = json.loads(response.text)
response = response['data']['listing_sale']
return response
creator_secondary_sales_response=send_request_sales(creator_secondary_sales_query)
if counter_N[0]>0:
global all_secondaryNFT_sales_df
global loop_secondaryNFT_sales_df
if counter_N[0]==0:
all_secondaryNFT_sales_df=pd.DataFrame()
loop_secondaryNFT_sales_df=pd.DataFrame()
loop_secondaryNFT_sales_df = pd.DataFrame(creator_secondary_sales_response)
loop_secondaryNFT_sales_df['token_pk']=loop_secondaryNFT_sales_df['token_pk'].astype(int)
loop_secondaryNFT_sales_df['price']=loop_secondaryNFT_sales_df['price'].astype(int)
# loop data frame saves the data for each iteration of the recursive algorithm, it is temporary data source...
# data frame starts with "all" includes all of the retrieved data, it is permanent data frame that loop data frame transports data
all_secondaryNFT_sales_df=pd.concat([ all_secondaryNFT_sales_df,loop_secondaryNFT_sales_df])
counter_N[0]+=1
if len(creator_secondary_sales_response)==500: # max retrieves are 500, if less there are no more data to response from api
nft_timestamp_val=str(loop_secondaryNFT_sales_df['timestamp'][499])
return creator_secondary_NFT_sales_tokens(wallet_address)
else:
counter_N[0]=0
return all_secondaryNFT_sales_df
def creator_secondary_NFT_sales_royalties(wallet_address):
if counter_N[0]>0:global nft_timestamp_val
if counter_N[0]==0:nft_timestamp_val="2000-01-01T00:00:00+00:00" # initialize the timestamp value
creator_secondary_sales_royalties_query="""{
listing_sale(where: {token: {creators: {creator_address: {_eq: "wallet_address"}}}, timestamp: {_gt: "nft_timestamp_val"}, seller_address: {_neq: "wallet_address"}}, distinct_on: timestamp) {
token {
royalties {
amount
}
}
timestamp
}
}"""
def send_request(query_input): # the function is too complicated so wanted to minimize using a function
query_input = query_input.replace("nft_timestamp_val",str(nft_timestamp_val))
query_input = query_input.replace("wallet_address",str(wallet_address))
global response # avoid UnboundLocal Error
response = requests.post(api_endpoint, json={'query': query_input})
response = json.loads(response.text)
response = response['data']['listing_sale']
return response
response=send_request(creator_secondary_sales_royalties_query)
if counter_N[0]>0:
global all_secondaryNFT_sales_df
global loop_secondaryNFT_sales_df
if counter_N[0]==0:
all_secondaryNFT_sales_df=pd.DataFrame()
loop_secondaryNFT_sales_df=pd.DataFrame()
loop_secondaryNFT_sales_df = pd.DataFrame(response)
# loop data frame saves the data for each iteration of the recursive algorithm, it is temporary data source...
# data frame starts with "all" includes all of the retrieved data, it is permanent data frame that loop data frame transports data
all_secondaryNFT_sales_df=pd.concat([ all_secondaryNFT_sales_df,loop_secondaryNFT_sales_df])
def clean_data(df):
df['token'] = df['token'].astype(str)
df['token'] = df['token'].str.replace(r"[a-zA-Z]",'')
df['token'] = df['token'].str.replace(f'[{string.punctuation}]', '')
# avoid errors in collaboration cases (in collabs there are multiple royalties. need only 1st)
df['token'] = [x[:5] for x in df['token']]
# available to convert numerical data type after necessary operations are implemented
df['token'] = df['token'].astype(int)
df['token'] = df['token']/10 # manipulate into exact value
return df
clean_data(all_secondaryNFT_sales_df)
counter_N[0]+=1
if len(response)==500: # max retrieves are 500, if less there are no more data to response from api
nft_timestamp_val=str(loop_secondaryNFT_sales_df['timestamp'][499])
return creator_secondary_NFT_sales_royalties(wallet_address)
else:
counter_N[0]=0
return all_secondaryNFT_sales_df
def creator_secondary_NFT_sales(wallet_address):
royalties_df=creator_secondary_NFT_sales_royalties(wallet_address)
tokens_df=creator_secondary_NFT_sales_tokens(wallet_address)
secondary_sales_df = pd.concat([tokens_df,royalties_df], axis=1, join="inner")
secondary_sales_df['artist_income'] = "" # create a new column to save calculated value
secondary_sales_df = secondary_sales_df.rename(columns={'token':'royalties'}) # rename to understand purpose of the attribute better
secondary_sales_df['artist_income'] = (secondary_sales_df[["price", "royalties"]].product(axis=1))
secondary_sales_df['artist_income'] = secondary_sales_df['artist_income']/100000000
# drop duplicate 'timestamp' column from the data frame
secondary_sales_df = secondary_sales_df.loc[:,~secondary_sales_df.T.duplicated(keep='last')]
return secondary_sales_df
def creator_secondary_sales_df(wallet_address):
secondary_sales_df=creator_secondary_NFT_sales(wallet_address)
secondary_sales_df=secondary_sales_df[['timestamp','artist_income']] # keep only these two columns
# manipulate timestamp attribute data type as date
secondary_sales_df['timestamp'] = pd.to_datetime(secondary_sales_df['timestamp']).dt.date
secondary_sales_df['timestamp'] = secondary_sales_df['timestamp'].apply(lambda dt: dt.replace(day=1))
secondary_sales_df['timestamp'] = secondary_sales_df['timestamp'].apply(lambda x: x.strftime('%Y-%m'))
secondary_sales_df = secondary_sales_df.groupby('timestamp').sum()
firstMintDate_ofCreator=find_first_minting_date(wallet_address)
lastSaleDate_ofCreator=find_last_sale_date(wallet_address)
def date_range_df(firstMintDate_ofCreator):
sale_date_range = pd.date_range(
start=firstMintDate_ofCreator,
end=lastSaleDate_ofCreator).to_period('m')
sale_date_range=pd.DataFrame(sale_date_range)
sale_date_range=sale_date_range.drop_duplicates(keep="first")
sale_date_range['artist_income']= 0
sale_date_range=sale_date_range.rename(columns={0:'timestamp'})
sale_date_range['timestamp'] = sale_date_range['timestamp'].apply(lambda x: x.strftime('%Y-%m'))
sale_date_range=sale_date_range.groupby('timestamp').sum()
return sale_date_range
creator_secondary_sales=date_range_df(firstMintDate_ofCreator) # assign the data frame returned from the function
creator_secondary_sales = creator_secondary_sales.reset_index() # then reset index before mapping
secondary_sales_df = secondary_sales_df.reset_index()
# use mapping to fill new data frame with values, keep NaN non-existing months on actual data frame
creator_secondary_sales['artist_income'] = creator_secondary_sales['timestamp'].map(secondary_sales_df.set_index('timestamp')['artist_income'])
creator_secondary_sales = creator_secondary_sales.fillna(0)
return creator_secondary_sales.set_index('timestamp')
def creator_all_sales_df(wallet_address):
primary_df = creator_primary_sales_df(wallet_address)
secondary_df = creator_secondary_sales_df(wallet_address)
primary_df=primary_df.rename(columns={'price':'primary_income'})
secondary_df=secondary_df.rename(columns={'artist_income':'secondary_income'})
return pd.concat([primary_df,secondary_df],axis=1)
def creator_primarySales_byEditions_df(wallet_address):
creator_primary_sales_dataFrame=creator_primary_NFT_sales(wallet_address)
# deleting unnecessary attributes from data frame
del creator_primary_sales_dataFrame['buyer_address']
del creator_primary_sales_dataFrame['price']
# manipulate timestamp attribute data type as date
creator_primary_sales_dataFrame['timestamp']=pd.to_datetime(creator_primary_sales_dataFrame['timestamp']).dt.date
creator_primary_sales_dataFrame['timestamp']=creator_primary_sales_dataFrame['timestamp'].apply(lambda dt: dt.replace(day=1))
creator_primary_sales_dataFrame['timestamp']=creator_primary_sales_dataFrame['timestamp'].apply(lambda x: x.strftime('%Y-%m'))
creator_primary_sales_dataFrame = creator_primary_sales_dataFrame.groupby('timestamp').count()
# implementing the same algorithm with the function above to fill missing months, in case they exist
firstMintDate_ofCreator=creator_allCreated_NFTs(wallet_address)
firstMintDate_ofCreator=firstMintDate_ofCreator.loc[0]['timestamp']
firstMintDate_ofCreator=firstMintDate_ofCreator.strftime('%Y-%m')
def date_range_df(firstMintDate_ofCreator):
sale_date_range = pd.date_range(
start=firstMintDate_ofCreator,
end=creator_primary_sales_dataFrame.index[len(creator_primary_sales_dataFrame)-1]).to_period('m')
sale_date_range=pd.DataFrame(sale_date_range)
sale_date_range=sale_date_range.drop_duplicates(keep="first")
sale_date_range['token_pk']= 0
sale_date_range=sale_date_range.rename(columns={0:'timestamp'})
sale_date_range['timestamp'] = sale_date_range['timestamp'].apply(lambda x: x.strftime('%Y-%m'))
sale_date_range=sale_date_range.groupby('timestamp').sum()
return sale_date_range
creator_primary_sales=date_range_df(firstMintDate_ofCreator)
creator_primary_sales=creator_primary_sales.reset_index()
creator_primary_sales_dataFrame=creator_primary_sales_dataFrame.reset_index()
creator_primary_sales['token_pk']=creator_primary_sales['timestamp'].map(creator_primary_sales_dataFrame.set_index('timestamp')['token_pk'])
creator_primary_sales=creator_primary_sales.fillna(0)
creator_primary_sales['token_pk']=creator_primary_sales['token_pk'].astype(int)
creator_primary_sales=creator_primary_sales.rename(columns={'token_pk':'sold_editions'})
return creator_primary_sales
def creator_secondarySales_byEditions_df(wallet_address):
creator_secondary_sales_dataFrame=creator_secondary_NFT_sales(wallet_address)
# deleting unnecessary attributes from data frame
del creator_secondary_sales_dataFrame['buyer_address']
del creator_secondary_sales_dataFrame['price']
# manipulate timestamp attribute data type as date
creator_secondary_sales_dataFrame['timestamp'] = pd.to_datetime(creator_secondary_sales_dataFrame['timestamp']).dt.date
creator_secondary_sales_dataFrame['timestamp'] = creator_secondary_sales_dataFrame['timestamp'].apply(lambda dt: dt.replace(day=1))
creator_secondary_sales_dataFrame['timestamp'] = creator_secondary_sales_dataFrame['timestamp'].apply(lambda x: x.strftime('%Y-%m'))
creator_secondary_sales_dataFrame = creator_secondary_sales_dataFrame.groupby('timestamp').count()
# implementing the same algorithm with the function above to fill missing months, in case they exist
firstMintDate_ofCreator=creator_allCreated_NFTs(wallet_address)
firstMintDate_ofCreator=firstMintDate_ofCreator.loc[0]['timestamp']
firstMintDate_ofCreator=firstMintDate_ofCreator.strftime('%Y-%m')
def date_range_df(firstMintDate_ofCreator):
sale_date_range = pd.date_range(
start=firstMintDate_ofCreator,
end=creator_secondary_sales_dataFrame.index[len(creator_secondary_sales_dataFrame)-1]).to_period('m')
sale_date_range=pd.DataFrame(sale_date_range)
sale_date_range=sale_date_range.drop_duplicates(keep="first")
sale_date_range['token_pk']= 0
sale_date_range=sale_date_range.rename(columns={0:'timestamp'})
sale_date_range['timestamp'] = sale_date_range['timestamp'].apply(lambda x: x.strftime('%Y-%m'))
sale_date_range=sale_date_range.groupby('timestamp').sum()
return sale_date_range
creator_secondary_sales=date_range_df(firstMintDate_ofCreator)
creator_secondary_sales=creator_secondary_sales.reset_index()
creator_secondary_sales_dataFrame=creator_secondary_sales_dataFrame.reset_index()
creator_secondary_sales['token_pk']=creator_secondary_sales['timestamp'].map(creator_secondary_sales_dataFrame.set_index('timestamp')['token_pk'])
creator_secondary_sales=creator_secondary_sales.fillna(0)
creator_secondary_sales['token_pk']=creator_secondary_sales['token_pk'].astype(int)
creator_secondary_sales=creator_secondary_sales.rename(columns={'token_pk':'sold_editions'})
return creator_secondary_sales
def creator_all_sales_byEditions_df(wallet_address):
primary_df = creator_primarySales_byEditions_df(wallet_address)
secondary_df = creator_secondarySales_byEditions_df(wallet_address)
primary_df=primary_df.set_index('timestamp')
secondary_df=secondary_df.set_index('timestamp')
primary_df=primary_df.rename(columns={'sold_editions':'sold_editions_onPrimary'})
secondary_df=secondary_df.rename(columns={'sold_editions':'sold_editions_onSecondary'})
all_sales_byEditions_df=pd.concat([primary_df,secondary_df],axis=1)
# there may na values can occur after merging, so implement filling NA and astype modules
all_sales_byEditions_df=all_sales_byEditions_df.fillna(0)
all_sales_byEditions_df['sold_editions_onPrimary']=all_sales_byEditions_df['sold_editions_onPrimary'].astype(int)
all_sales_byEditions_df['sold_editions_onSecondary']=all_sales_byEditions_df['sold_editions_onSecondary'].astype(int)
return all_sales_byEditions_df
# create sidebar and other sub-page components here
st.sidebar.write("NFT CollaBot is a data-oriented project designed by the requirements of NFT ecosystem and aims to strengthen community.")
page_column_1,page_column_2=st.columns(2)
# the part where NFT CollaBot responds to user with an output
with contextlib.suppress(KeyError):
if recognize_user_input(st_user_input) is False:
recognize_user_input(st_user_input)
else:
page_column_1.bar_chart(creator_all_sales_df(recognize_user_input(st_user_input)))
page_column_2.dataframe(creator_all_sales_df(recognize_user_input(st_user_input)))
page_column_1.line_chart(creator_all_sales_byEditions_df(recognize_user_input(st_user_input)))
page_column_2.dataframe(creator_all_sales_byEditions_df(recognize_user_input(st_user_input)))