-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmainEA.py
201 lines (162 loc) · 6.63 KB
/
mainEA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# -*- coding: utf-8 -*-
import os
import random
import numpy as np
import matplotlib.pyplot as plt
from deap import creator, base, tools, algorithms
from sklearn.metrics import mean_squared_error as mse
from time import time
def degmatrix(W):
tam = W.shape[0]
d = np.zeros((tam, 1))
I = np.identity(tam)
for i in range(tam):
for j in range(tam):
d[i] = d[i] + W[i, j]
D = I * d
return D
def graphLaplacian(W, D):
L = D - W
sqD = D
for i in range(len(sqD)):
if sqD[i,i] != 0:
sqD[i,i] = 1 / np.sqrt(sqD[i,i])
else:
sqD[i, i] = 0
gLap = np.dot(sqD,np.dot(L,sqD))
return gLap
def eigen(gLap):
(LANDA, PHY) = np.linalg.eig(gLap) # calculamos los autovalores
tam = PHY.shape[1]
ind = np.argsort(LANDA) # de menor a mayor
#ind = ind[::-1] # de mayor a menor
LANDA = LANDA[ind]
for i in range(tam):
PHY[i] = PHY[i][ind]
return PHY, LANDA
def eigen_reduce(PHY, LANDA):
del_ind = np.where(LANDA <= 0)[0]
LANDA_ses = np.delete(LANDA, del_ind)
PHY_ses = np.delete(PHY, del_ind, 1)
return PHY_ses, LANDA_ses
def eigen_aisle(PHY_ses):
# Aislamos el 9º autovector
phy9 = np.empty(0)
for i in range(PHY_ses.shape[0]):
phy9 = np.hstack((phy9, PHY_ses[i, 7].real))
return phy9
def fit_function(individual, phy_mean):
degmat = degmatrix(individual)
lmat = graphLaplacian(individual, degmat)
(phys, landas) = eigen(lmat)
phys_ses, landa_ses = eigen_reduce(phys, landas)
phy9 = eigen_aisle(phys_ses)
# Aplicamos el MSE (Error Cuadrático Medio) como función a minimizar
error_phy = mse(phy_mean, phy9)
return error_phy,
def matMutFloat(individual, rowindpb, elemindpb, mask):
size = len(individual)
for i in range(size):
rowindMut = random.random()
if rowindMut < rowindpb:
for j in range(size):
elemindMut = random.random()
if elemindMut < elemindpb:
attrMut = random.random()
individual[i][j], individual[j][i] = attrMut, attrMut
np.place(individual, mask, 0)
return individual,
def patchCx(ind1, ind2):
n = len(ind1)
tam = np.random.randint(1, (n / 2) + 1)
patch1 = ind1[0:tam,(n-tam):n].copy()
patch2 = ind2[0:tam, (n - tam):n].copy()
ind1[0:tam, (n - tam):n], ind1[(n - tam):n, 0:tam] = patch2, patch2.T
ind2[0:tam, (n - tam):n], ind2[(n - tam):n, 0:tam] = patch1, patch1.T
del patch1
del patch2
return ind1, ind2,
def obtainMask(file):
mask = np.genfromtxt(file, delimiter=",")
mask = np.where(mask > 0, 0, 1)
return mask
def graphInd(icls, dim, mask):
indGenerator = np.random.rand(dim, dim)
graphInd = (indGenerator + indGenerator.T) / 2
np.place(graphInd, mask, 0)
return icls(graphInd)
def main(file,refFile):
mask = obtainMask(file)
phy_mean = np.genfromtxt(refFile, delimiter=',')
creator.create('FitnessMin', base.Fitness, weights=(-1.0,))
creator.create('Individual', np.ndarray, fitness=creator.FitnessMin)
toolbox = base.Toolbox()
toolbox.register('individual', graphInd, creator.Individual, dim=70, mask=mask)
toolbox.register('population', tools.initRepeat, list, toolbox.individual)
toolbox.register('evaluate', fit_function,phy_mean=phy_mean)
toolbox.register('mate', patchCx)
toolbox.register('mutate', matMutFloat, rowindpb=0.1, elemindpb=0.1, mask=mask)
toolbox.register('select', tools.selTournament, tournsize=3)
mutpb = 0.1
cxpb = 0.6
stats = tools.Statistics(key=lambda ind: ind.fitness.values)
stats.register('min', np.min, axis=0)
stats.register('avg', np.mean, axis=0)
logbook = tools.Logbook()
population = toolbox.population(100)
NGEN = 15000
print("Starting optimization with " + str(NGEN) + " generations")
for gen in range(NGEN):
offspring = algorithms.varAnd(population, toolbox, cxpb, mutpb)
fits = toolbox.map(toolbox.evaluate, offspring)
for fit, ind in zip(fits, offspring):
ind.fitness.values = fit
population = toolbox.select(offspring, k=len(population))
top = tools.selBest(population, k=1)
record = stats.compile(population)
logbook.record(gen=gen, **record)
print("Generation (" + str(gen + 1) + "/" + str(NGEN) + ") completed")
return logbook, top, phy_mean
if __name__ == "__main__":
directory = '/home/enrique/Proyectos/PersonalityTraitsOptimization/Data/DS00071/WmatrixGrouped/lowOpenness'
subjects = os.listdir(directory)
for i in range(len(subjects)):
name = subjects[i]
path = directory + '/' + name + '/'
file = path + 'Wmat_' + name + '.txt'
refFile = '/home/enrique/Proyectos/PersonalityTraitsOptimization/Data/DS00071/WmatrixGrouped/highOpenness/phy9_mean.txt'
logbook, top, phy_mean = main(file, refFile)
generation = logbook.select('gen')
fitness_min = logbook.select('min')
fitness_avg = logbook.select('avg')
top_ind = top[0]
w_pat = np.genfromtxt(file, delimiter=",")
wdiff = top_ind - w_pat
init_error = fit_function(w_pat, phy_mean)
init_error = init_error[0]
fitness_rel = (fitness_min / init_error) * 100
fitness_avg_rel = (fitness_avg / init_error) * 100
plt.figure()
line1 = plt.plot(generation, fitness_rel, "b-", label="Relative fitness")
line2 = plt.plot(generation, fitness_avg_rel, "r-", label="Relative average Fitness", alpha=0.5)
plt.axis([0, len(generation), -10, 120])
plt.xlabel("Generation")
plt.ylabel("Fitness")
lines1 = [line1[0], line2[0]]
labs1 = [line1[0].get_label(), line2[0].get_label()]
plt.legend(lines1, labs1, loc="upper right")
plt.title(name + " | cxpb= 0.6 mutpb= 0.1")
plotPath = path + 'optimizationResults/optPlot.pdf'
fitAvgPath = path + 'optimizationResults/fitAvg.csv'
fitMinPath = path + 'optimizationResults/fitMin.csv'
fitAvgRelPath = path + 'optimizationResults/fitAvgRel.csv'
fitMinRelPath = path + 'optimizationResults/fitMinRel.csv'
topIndPath = path + 'optimizationResults/topInd.csv'
WdiffPath = path + 'optimizationResults/Wdiff.csv'
np.savetxt(fitAvgPath, fitness_avg, delimiter=',')
np.savetxt(fitMinPath, fitness_min, delimiter=',')
np.savetxt(fitAvgRelPath, fitness_avg_rel, delimiter=',')
np.savetxt(fitMinRelPath, fitness_rel, delimiter=',')
np.savetxt(topIndPath, top_ind, delimiter=',')
np.savetxt(WdiffPath, wdiff, delimiter=',')
plt.savefig(plotPath)