-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrefValues.py
77 lines (63 loc) · 2.06 KB
/
refValues.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#-*- coding: utf-8 -*-
import numpy as np
import os
def degmatrix(W):
tam = W.shape[0]
d = np.zeros((tam, 1))
I = np.identity(tam)
for i in range(tam):
for j in range(tam):
d[i] = d[i] + W[i, j]
D = I * d
return D
def graphLaplacian(W, D):
L = D - W
sqD = D
for i in range(len(sqD)):
if sqD[i,i] != 0:
sqD[i,i] = 1 / np.sqrt(sqD[i,i])
else:
sqD[i, i] = 0
gLap = np.dot(sqD,np.dot(L,sqD))
return gLap
def eigen(gLap):
(LANDA, PHY) = np.linalg.eig(gLap) # calculamos los autovalores
tam = PHY.shape[1]
ind = np.argsort(LANDA) # de menor a mayor
#ind = ind[::-1] # de mayor a menor
LANDA = LANDA[ind]
for i in range(tam):
PHY[i] = PHY[i][ind]
return PHY, LANDA
def eigen_reduce(PHY, LANDA):
del_ind = np.where(LANDA <= 0)[0]
LANDA_ses = np.delete(LANDA, del_ind)
PHY_ses = np.delete(PHY, del_ind, 1)
return PHY_ses, LANDA_ses
def eigen_aisle(PHY_ses, LANDA_ses):
landa9 = LANDA_ses[7].real # Aislamos el 9º par autovalor/vector
phy9 = np.empty(0)
for i in range(PHY_ses.shape[0]):
phy9 = np.hstack((phy9, PHY_ses[i, 7].real))
return phy9, landa9
if __name__=="__main__":
path = '/home/enrique/Proyectos/PersonalityTraitsOptimization/Data/DS00071/Wmatrix/highConscientiousness'
files = os.listdir(path)
os.chdir(path)
phy9_list = []
landa9_list = []
for i in range(len(files)):
file = files[i]
if file.endswith('.txt'):
W = np.genfromtxt(file, delimiter=",")
D = degmatrix(W)
gLap = graphLaplacian(W, D)
PHY, LANDA = eigen(gLap)
PHY_ses, LANDA_ses = eigen_reduce(PHY, LANDA)
phy9, landa9 = eigen_aisle(PHY_ses, LANDA_ses)
phy9_list.append(phy9)
landa9_list.append(landa9)
phy9_mean = np.mean(phy9_list, axis=0)
landa9_mean = np.array([np.mean(landa9_list)])
np.savetxt('phy9_mean.txt', phy9_mean, delimiter=',')
np.savetxt('landa9_mean.txt', landa9_mean)