-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap6.tex
206 lines (177 loc) · 6.34 KB
/
chap6.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
%!TEX TS-program = xelatex
%!TEX encoding = UTF-8 Unicode
\documentclass[11pt]{report}
\usepackage[margin = 1in]{geometry}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{mleftright}
\usepackage{enumitem}
\usepackage{textcomp, gensymb}
\usepackage{tikz, tikz-cd}
\usepackage{bbding}
\usepackage{tabularx}
\usepackage{nicematrix}
\usepackage{extarrows}
\usepackage{lastpage}
\usepackage{hyperref}
\usepackage{fancyhdr} % Header and Footer formatting
\usetikzlibrary{decorations.markings}
% \usepackage{mathpazo}
\usepackage{unicode-math}
\setmainfont[
BoldFont={TeX Gyre Termes Bold},
ItalicFont={TeX Gyre Termes Italic},
BoldItalicFont={TeX Gyre Termes Bold Italic},
PunctuationSpace=2
]{TeX Gyre Termes}
\setmathfont
[Extension = .otf,
math-style= TeX,
BoldFont = XITSMath-Bold.otf,
BoldItalicFont = XITS-BoldItalic.otf
]{XITSMath-Regular}
\usepackage{multicol}
\hypersetup{colorlinks = true,
linkcolor = blue,
citecolor = red,
urlcolor = teal}
\pagestyle{fancy}
\renewcommand{\headrulewidth}{0.4pt}
\renewcommand{\footrulewidth}{0.4pt}
\setlength{\headheight}{18pt}
% Header and Footer Information
\lhead{\small\emph{Baitian Li}}
\chead{}
\rhead{\textsc{Representation Theory of Finite Groups}}
\lfoot{\today}
\cfoot{}
\rfoot{\thepage\ of \pageref{LastPage}} % Counts the pages.
\makeatletter % This provides a total page count as \ref{NumPages}
\AtEndDocument{\immediate\write\@auxout{\string\newlabel{NumPages}{{\thepage}}}}
\makeatother
%\lineskiplimit=-\maxdimen\relax
\usepackage{amsthm} % This will create the Problem environment
\newtheorem*{lemma}{Lemma}
\newtheorem*{theorem}{Theorem}
\newtheoremstyle{mythm}%
{12pt}{}%
{\sffamily}{}%
{\bfseries \sffamily}{.}%
{.5em}%
{\thmname{#1}\thmnumber{ #2}\thmnote{ #3}}
\theoremstyle{mythm}
\expandafter\let\expandafter\oldproof\csname\string\proof\endcsname
\let\oldendproof\endproof
\renewenvironment{proof}[1][\proofname]{%
\oldproof[\normalfont \bfseries #1]%
}{\oldendproof}
\newtheorem{exercise}{Exercise}[chapter]
\renewcommand*{\proofname}{Proof}
\newtheoremstyle{myans}%
{12pt}{}%
{}{}%
{\bfseries}{.}%
{.5em}%
{\thmname{#1}\thmnumber{ #2}\thmnote{ #3}}
\theoremstyle{myans}
\newtheorem*{answer}{Answer}
\setlist[enumerate]{noitemsep, topsep = 0.2em}
\setlist[enumerate, 1]{label = {\arabic*.}}
% \setlist[enumerate, 2]{label = {(\alph*)}}
\setlist[description]{topsep = 0.2em, listparindent = \parindent, font = \normalfont,
itemsep = 0em}
\newcommand{\bbR}{\mathbb R}
\newcommand{\bbN}{\mathbb N}
\newcommand{\bbZ}{\mathbb Z}
\newcommand{\bbQ}{\mathbb Q}
\newcommand{\bbC}{\mathbb C}
\newcommand{\Id}{\mathit{Id}}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\End}{End}
\DeclareMathOperator{\Tr}{Tr}
\DeclareMathOperator{\sgn}{sgn}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\GL}{GL}
\newcommand{\ang}[1]{\langle #1 \rangle}
\newcommand{\Ang}[1]{\left\langle #1 \right\rangle}
\newcommand{\norm}[1]{\| #1 \|}
\begin{document}
\setcounter{chapter}{5}
\chapter{Burnside's Theorem}
\setcounter{exercise}{1}
\begin{exercise}
Let $G$ be a non-abelian group of order $39$.
\begin{enumerate}
\item Determine the degrees of the irreducible representations of $G$ and how many
irreducible representations $G$ has of each degree (up to equivalence).
\begin{answer}
The degree of an irreducible representation must be $1$ or $3$.
Let $n$ be the number of degree one representations, $m$ be the number
of degree $3$ representations, then we have
$n + 9m = 39$, thus $n \equiv 3 \pmod 9$. Lemma 6.2.7 asserts that
$n \mid 39$, we must have $n=3$, $m=4$.
\end{answer}
\item Determine the number of conjugacy classes of $G$.
\begin{answer}
$n + m = 7$.
\end{answer}
\end{enumerate}
\end{exercise}
\begin{exercise}
Let $G$ be a non-abelian group of order $21$.
\begin{enumerate}
\item Determine the degrees of the irreducible representations of $G$ and how many
irreducible representations $G$ has of each degree (up to equivalence).
\begin{answer}
The degree of an irreducible representation must be $1$ or $3$.
Let $n$ be the number of degree one representations, $m$ be the number
of degree $3$ representations, then we have
$n + 9m = 21$, thus $n \equiv 3 \pmod 9$. Lemma 6.2.7 asserts that
$n \mid 21$, we must have $n=3, m = 2$.
\end{answer}
\item Determine the number of conjugacy classes of $G$.
\begin{answer}
$n + m = 5$.
\end{answer}
\end{enumerate}
\end{exercise}
\setcounter{exercise}{4}
\begin{exercise}
Show that if $\varphi\colon G \to \GL_d(\bbC)$ is a representation with character
$\chi$, then $g \in \ker \varphi$ if and only if $\chi(g) = d$.
\begin{proof}
Since $\varphi_g$ has $d$ eigenvalues that are roots of unity $\lambda_1^n = \dots = \lambda_d^n = 1$,
we have $\chi(g) = \lambda_1 + \dots + \lambda_d = d$ iff $\lambda_1 = \dots = \lambda_d = 1$,
i.e., $\varphi_g = I$.
\end{proof}
\end{exercise}
\begin{exercise}
For $\alpha\in \bbC$, denote by $\bbZ[\alpha]$ the smallest
subring of $\bbC$ containing $\alpha$.
\begin{enumerate}
\item Prove that $\bbZ[\alpha]=\{a_0 +a_1 \alpha+\dots +a_n \alpha^n
\mid n\in \bbN, a_0,\dots,a_n \in \bbZ \}$.
\begin{proof}
Clearly these elements are closed under addition
and multiplication, so it is a ring. By the axiom of ring, every $a_0 +a_1 \alpha+\dots +a_n \alpha^n$
must be in $\bbZ[\alpha]$, so we have the minimality.
\end{proof}
\item Prove that the following are equivalent:
\begin{enumerate}
\item $\alpha$ is an algebraic integer;
\item The additive group of $\bbZ[\alpha]$ is finitely generated;
\item $\alpha$ is contained in a finitely generated subgroup of the additive group of $\bbC$,
which is closed under multiplication by $\alpha$.
\end{enumerate}
\begin{proof}
(a) implies (b): Suppose $\alpha$ is an algebraic integer, we have
$a_0 + a_1\alpha + \dots + a_{n-1}\alpha^{n-1} + \alpha^n = 0$.
Therefore $1, \alpha, \dots, \alpha^{n-1}$ generates $\bbZ[\alpha]$.
(b) clearly implies (c).
(c) implies (a): Let $y_1, \dots, y_n$ be a set of generators, $\alpha y_i$
then can be represented by $y_1, \dots, y_n$, by Lemma 6.1.5, $\alpha$ is an
algebraic integer.
\end{proof}
\end{enumerate}
\end{exercise}
\end{document}