-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchap7.tex
250 lines (216 loc) · 9.2 KB
/
chap7.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
%!TEX TS-program = xelatex
%!TEX encoding = UTF-8 Unicode
\documentclass[11pt]{report}
\usepackage[margin = 1in]{geometry}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{mleftright}
\usepackage{enumitem}
\usepackage{textcomp, gensymb}
\usepackage{tikz, tikz-cd}
\usepackage{bbding}
\usepackage{tabularx}
\usepackage{booktabs}
\usepackage{nicematrix}
\usepackage{extarrows}
\usepackage{lastpage}
\usepackage{hyperref}
\usepackage{fancyhdr} % Header and Footer formatting
\usetikzlibrary{decorations.markings}
% \usepackage{mathpazo}
\usepackage{unicode-math}
\setmainfont[
BoldFont={TeX Gyre Termes Bold},
ItalicFont={TeX Gyre Termes Italic},
BoldItalicFont={TeX Gyre Termes Bold Italic},
PunctuationSpace=2
]{TeX Gyre Termes}
\setmathfont
[Extension = .otf,
math-style= TeX,
BoldFont = XITSMath-Bold.otf,
BoldItalicFont = XITS-BoldItalic.otf
]{XITSMath-Regular}
\usepackage{multicol}
\hypersetup{colorlinks = true,
linkcolor = blue,
citecolor = red,
urlcolor = teal}
\pagestyle{fancy}
\renewcommand{\headrulewidth}{0.4pt}
\renewcommand{\footrulewidth}{0.4pt}
\setlength{\headheight}{18pt}
% Header and Footer Information
\lhead{\small\emph{Baitian Li}}
\chead{}
\rhead{\textsc{Representation Theory of Finite Groups}}
\lfoot{\today}
\cfoot{}
\rfoot{\thepage\ of \pageref{LastPage}} % Counts the pages.
\makeatletter % This provides a total page count as \ref{NumPages}
\AtEndDocument{\immediate\write\@auxout{\string\newlabel{NumPages}{{\thepage}}}}
\makeatother
%\lineskiplimit=-\maxdimen\relax
\usepackage{amsthm} % This will create the Problem environment
\newtheorem*{lemma}{Lemma}
\newtheorem*{theorem}{Theorem}
\newtheoremstyle{mythm}%
{12pt}{}%
{\sffamily}{}%
{\bfseries \sffamily}{.}%
{.5em}%
{\thmname{#1}\thmnumber{ #2}\thmnote{ #3}}
\theoremstyle{mythm}
\expandafter\let\expandafter\oldproof\csname\string\proof\endcsname
\let\oldendproof\endproof
\renewenvironment{proof}[1][\proofname]{%
\oldproof[\normalfont \bfseries #1]%
}{\oldendproof}
\newtheorem{exercise}{Exercise}[chapter]
\renewcommand*{\proofname}{Proof}
\newtheoremstyle{myans}%
{12pt}{}%
{}{}%
{\bfseries}{.}%
{.5em}%
{\thmname{#1}\thmnumber{ #2}\thmnote{ #3}}
\theoremstyle{myans}
\newtheorem*{answer}{Answer}
\setlist[enumerate]{noitemsep, topsep = 0.2em}
\setlist[enumerate, 1]{label = {\arabic*.}}
% \setlist[enumerate, 2]{label = {(\alph*)}}
\setlist[description]{topsep = 0.2em, listparindent = \parindent, font = \normalfont,
itemsep = 0em}
\newcommand{\bbR}{\mathbb R}
\newcommand{\bbN}{\mathbb N}
\newcommand{\bbZ}{\mathbb Z}
\newcommand{\bbQ}{\mathbb Q}
\newcommand{\bbC}{\mathbb C}
\newcommand{\Id}{\mathit{Id}}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\End}{End}
\DeclareMathOperator{\Tr}{Tr}
\DeclareMathOperator{\sgn}{sgn}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\GL}{GL}
\newcommand{\ang}[1]{\langle #1 \rangle}
\newcommand{\Ang}[1]{\left\langle #1 \right\rangle}
\newcommand{\norm}[1]{\| #1 \|}
\begin{document}
\setcounter{chapter}{6}
\chapter{Group Actions and Permutation Representations}
\setcounter{exercise}{1}
\begin{exercise}
Let $\sigma\colon G \to S_X$ be a transitive group action with $|X| \geq 2$.
If $x \in X$, let
\[ G_x = \{ g\in G \mid \sigma_g(x) = x \}. \]
$G_x$ is a subgroup of $G$ called the \emph{stabilizer} of $x$. Prove that the following are
equivalent:
\begin{enumerate}
\item $G_x$ is transitive on $X\smallsetminus \{x\}$ for \emph{some} $x\in X$;
\item $G_x$ is transitive on $X\smallsetminus \{x\}$ for \emph{all} $x\in X$;
\item $G$ acts $2$-transitively on $X$.
\end{enumerate}
\begin{proof}
1 implies 2: Suppose such $x$ exists, for each $y$, let $a, b \neq y$,
we need to prove that there exists $g$ such that $\sigma_g(a) = b$.
Since the action is transitive, we have some $g$ such that $\sigma_g(x) = y$,
thus $x = \sigma_{g^{-1}}(y)$. Since $G_x$ is transitive on $X \smallsetminus \{x\}$,
we have $h\in G_x$ such that $\sigma_h$ maps $\sigma_{g^{-1}}(a)$ to $\sigma_{g^{-1}}(b)$,
since $\sigma_{g^{-1}}(a), \sigma_{g^{-1}}(b) \neq x$. Therefore,
$\sigma_{ghg^{-1}}(a) = b$. Noticed that $\sigma_g \sigma_h \sigma_{g^{-1}}(y) =
= \sigma_g \sigma_h(x) = \sigma_g(x) = y$, we have $ghg^{-1} \in G_y$.
2 implies 3: For each $(x, y)$ and $(x', y')$, suppose $x\neq y$ and $x'\neq y'$. Since $G$
is transitive, we have $g$ such that $\sigma_g(x, y) = (x', \sigma_g(y))$, we have $\sigma_g(y) \neq x'$.
Since $G_{x'}$ is transitive on $X\smallsetminus \{x'\}$, we have $h\in G_{x'}$ such that
$\sigma_h(x', \sigma_g(y)) = (x', y')$. We have $\sigma_{hg}(x, y) = (x', y')$.
3 clearly implies 1.
\end{proof}
\end{exercise}
\begin{exercise}
Compute the character table of $A_4$.
\begin{answer}
Noticed that $K=\{\Id, (1\ 2)(3\ 4),
(1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$ is the commutator subgroup of $A_4$. By cardinality we must have
$K/A_4\cong \bbZ/3\bbZ$, therefore $A_4$ has $3$ degree one representations $\chi_1, \chi_2, \chi_3$.
It's not hard to see that $A_4$ acts $2$-transitively on $[4]$, so the augmentation representation is irreducible,
we have a degree three representation, its character is $\chi_4(g) = \left|\operatorname{Fix}(g)\right| - 1$.
Since $1^2 + 1^2 + 1^2 + 3^2 = 12 = |A_4|$, we found all irreducible representations.
See table \ref{tab:chartableA4}.
\begin{table}[htbp]
\centering
\begin{tabular}[]{ccccc}
\toprule
& $\Id$ & $(1\ 2\ 3)$ & $(1\ 3\ 2)$ & $(1\ 2)(3\ 4)$ \\ \midrule
$\chi_1$ & $1$ & $1$ & $1$ & $1$ \\
$\chi_2$ & $1$ & $e^{2\pi i/3}$ & $e^{-2\pi i/3}$ & $1$ \\
$\chi_3$ & $1$ & $e^{-2\pi i/3}$ & $e^{2\pi i/3}$ & $1$ \\
$\chi_4$ & $3$ & $0$ & $0$ & $-1$ \\
\bottomrule
\end{tabular}
\caption{character table of $A_4$.} \label{tab:chartableA4}
\end{table}
\end{answer}
\end{exercise}
\begin{exercise}
Two group actions $\sigma\colon G\to S_X$ and $\tau\colon G\to S_Y$ are isomorphic if
there is a bijection $\psi \colon X \to Y$ such that $\psi \sigma_g =\tau_g\psi$ for all $g\in G$.
\begin{enumerate}
\item Show that if $\tau\colon G \to S_X$ is a transitive group action, $x \in X$ and $G_x$ is the
stabilizer of $x$, then $\tau$ is isomorphic to the coset action $\sigma \colon G \to S_{G / G_x}$.
\begin{proof}
For each $y\in X$, by transitiveness we have $g$ such that $\sigma_g(x) = y$. It's not hard to
verify that $gG_x$ is the same coset whenever which $g$ we take, we can define
$\psi\colon y\mapsto gG_x$. Then for each $h\in G$ and $y\in X$, we have
$\psi \sigma_h(y) = \psi \sigma_h \sigma_g(x) = \psi \sigma_{hg}(x) = (hg)G_x
= \tau_h \psi(y)$. So we have $\psi \sigma_h = \tau_h \psi$, $\psi$ gives an isomorphism.
\end{proof}
\item Show that if $\sigma$ and $\tau$ are isomorphic group actions, then the corresponding permutation representations are equivalent.
\begin{proof}
Defined the linear transformation $\tilde{\psi}\colon \bbC X \to \bbC Y$ by
$\tilde{\psi}\colon \sum_x a_x x\to \sum_x a_x \psi(x)$, then we have
$\tilde{\psi} \widetilde{\sigma_g} = \widetilde{\tau_g} \tilde{\psi}$, so $\tilde \psi$ gives an
equivalence.
\end{proof}
\end{enumerate}
\end{exercise}
\begin{exercise}
Let $p$ be a prime. Let $G$ be the group of all permutations $\bbZ/p\bbZ\to \bbZ/p\bbZ$ of the form
$x\mapsto ax+b$ with $a\in \bbZ/p\bbZ^*$ and $b\in \bbZ/p\bbZ$. Prove that the action of $G$ on
$\bbZ/p\bbZ$ is $2$-transitive.
\begin{proof}
Firstly, since $p$ is a prime, $\bbZ/p\bbZ$ is a field. We have $ax_1 + b = ax_2 + b \iff a(x_1-x_2) = 0\iff x_1=x_2$.
So $x\mapsto ax+b$ is a permutation. For each $x, x'$, we have $a = 1$ and $b = x'-x$ maps $x$ to $x'$,
so $G$ is transitive on $\bbZ/p\bbZ$. Fix $0\mapsto 0$, for $x,x'\neq 0$, we have $a = x'x^{-1}$ and $b=0$
maps $x$ to $x'$, so we have $G$ acts $2$-transitively on $\bbZ/p\bbZ$.
\end{proof}
\end{exercise}
\begin{exercise}
Let $G$ be a finite group.
\begin{enumerate}
\item Suppose that $G$ acts transitively on a finite set $X$ with $|X| \geq 2$. Show that there is
an element $g \in G$ with no fixed points on $X$.
\begin{proof}
Suppose we have $\left| \operatorname{Fix}(g) \right| \geq 1$ for all $g$, since $G$ is transitive
on $X$, by Burnside's lemma, we also have
\[ \frac 1{|G|} \sum_{g\in G} \left| \operatorname{Fix}(g) \right| = 1, \]
to achieve this equality, we must have $\left| \operatorname{Fix}(g) \right| = 1$ for all $g$.
But clearly $\left| \operatorname{Fix}(e) \right| = |X| > 1$, contradiction.
\end{proof}
\end{enumerate}
\end{exercise}
\setcounter{exercise}{8}
\begin{exercise}
Suppose that $G$ is a finite group of order $n$ with $s$ conjugacy classes.
Suppose that one chooses a pair $(g, h) \in G \times G$ uniformly at random. Prove that the
probability $g$ and $h$ commute is $s/n$.
\begin{proof}
Clearly we have
\begin{align*}
p &= \frac 1{n^2} \sum_{g\in G} \left|\{h\in G \mid ghg^{-1} = h\}\right|\\
&= \frac 1{n^2} \sum_{g\in G} \left| \operatorname{Fix}(g) \right|\\
&\xlongequal{\text{Burnside's lemma}} \frac s n. \qedhere
\end{align*}
\end{proof}
\end{exercise}
\end{document}