From 62614a1841c840052aa00820a60ed876a587d2da Mon Sep 17 00:00:00 2001 From: acl-pwc-bot <94475230+acl-pwc-bot@users.noreply.github.com> Date: Thu, 1 Sep 2022 03:07:14 +0200 Subject: [PATCH] Update metadata from Papers with Code --- data/xml/2020.blackboxnlp.xml | 1 + data/xml/2020.findings.xml | 2 +- data/xml/2020.lrec.xml | 1 + data/xml/2020.trac.xml | 1 + data/xml/2021.crac.xml | 2 +- data/xml/2021.econlp.xml | 2 +- data/xml/2021.gwc.xml | 2 ++ data/xml/2022.acl.xml | 1 + data/xml/2022.findings.xml | 3 ++- data/xml/2022.naacl.xml | 3 ++- data/xml/W16.xml | 1 + data/xml/W18.xml | 1 + 12 files changed, 15 insertions(+), 5 deletions(-) diff --git a/data/xml/2020.blackboxnlp.xml b/data/xml/2020.blackboxnlp.xml index 981e20995e..40e6d02d12 100644 --- a/data/xml/2020.blackboxnlp.xml +++ b/data/xml/2020.blackboxnlp.xml @@ -141,6 +141,7 @@ 2020.blackboxnlp-1.10.OptionalSupplementaryMaterial.zip 10.18653/v1/2020.blackboxnlp-1.10 treviso-martins-2020-explanation + deep-spin/spec e-SNLI diff --git a/data/xml/2020.findings.xml b/data/xml/2020.findings.xml index a504ee4009..3ef65152ac 100644 --- a/data/xml/2020.findings.xml +++ b/data/xml/2020.findings.xml @@ -4458,7 +4458,7 @@ 2020.findings-emnlp.301 10.18653/v1/2020.findings-emnlp.301 gehman-etal-2020-realtoxicityprompts - + allenai/real-toxicity-prompts WebText diff --git a/data/xml/2020.lrec.xml b/data/xml/2020.lrec.xml index f4dda3713c..9e86a31785 100644 --- a/data/xml/2020.lrec.xml +++ b/data/xml/2020.lrec.xml @@ -7266,6 +7266,7 @@ 2020.lrec-1.578 eng amin-nejad-etal-2020-exploring + amin-nejad/mimic-website Multi-lingual Mathematical Word Problem Generation using Long Short Term Memory Networks with Enhanced Input Features diff --git a/data/xml/2020.trac.xml b/data/xml/2020.trac.xml index 78299bd084..64a95cbfe2 100644 --- a/data/xml/2020.trac.xml +++ b/data/xml/2020.trac.xml @@ -163,6 +163,7 @@ 2020.trac-1.12 eng baruah-etal-2020-aggression + Urdu Online Reviews <fixed-case>L</fixed-case>a<fixed-case>STUS</fixed-case>/<fixed-case>TALN</fixed-case> at <fixed-case>TRAC</fixed-case> - 2020 Trolling, Aggression and Cyberbullying diff --git a/data/xml/2021.crac.xml b/data/xml/2021.crac.xml index b15549a8ca..a807688a98 100644 --- a/data/xml/2021.crac.xml +++ b/data/xml/2021.crac.xml @@ -168,7 +168,7 @@ 2021.crac-1.12 toshniwal-etal-2021-generalization 10.18653/v1/2021.crac-1.12 - shtoshni92/fast-coref + shtoshni92/fast-coref GAP Coreference Dataset OntoGUM PreCo diff --git a/data/xml/2021.econlp.xml b/data/xml/2021.econlp.xml index f2a4b3f68f..4a53330a6d 100644 --- a/data/xml/2021.econlp.xml +++ b/data/xml/2021.econlp.xml @@ -37,7 +37,7 @@ 2021.econlp-1.2 loukas-etal-2021-edgar 10.18653/v1/2021.econlp-1.2 - nlpaueb/edgar-crawler + nlpaueb/edgar-crawler EDGAR-CORPUS diff --git a/data/xml/2021.gwc.xml b/data/xml/2021.gwc.xml index 29c53313e7..165c2b63ed 100644 --- a/data/xml/2021.gwc.xml +++ b/data/xml/2021.gwc.xml @@ -36,6 +36,8 @@ The results reported in this paper aim to increase the presence of the Uzbek language in the Internet and its usability within IT applications. We describe the initial development of a “word-net” for the Uzbek language compatible to Princeton WordNet. We called it UZWORDNET. In the current version, UZWORDNET contains 28140 synsets, 64389 sense and 20683 words; its estimated accuracy is 75.98%. To the best of our knowledge, it is the largest wordnet for Uzbek existing to date, and the second wordnet developed overall. 2021.gwc-1.2 agostini-etal-2021-uzwordnet + LDKR-Group/UzWordnet + UzWordnet Practical Approach on Implementation of <fixed-case>W</fixed-case>ord<fixed-case>N</fixed-case>ets for <fixed-case>S</fixed-case>outh <fixed-case>A</fixed-case>frican Languages diff --git a/data/xml/2022.acl.xml b/data/xml/2022.acl.xml index 74ef15c7ee..7ad5421ee3 100644 --- a/data/xml/2022.acl.xml +++ b/data/xml/2022.acl.xml @@ -5877,6 +5877,7 @@ in the Case of Unambiguous Gender 2022.acl-long.379 falk-lapesa-2022-reports 10.18653/v1/2022.acl-long.379 + blubberli/storytestimony Non-neural Models Matter: a Re-evaluation of Neural Referring Expression Generation Systems diff --git a/data/xml/2022.findings.xml b/data/xml/2022.findings.xml index d48675abdb..d544a15222 100644 --- a/data/xml/2022.findings.xml +++ b/data/xml/2022.findings.xml @@ -5640,7 +5640,7 @@ 2022.findings-naacl.47 nadejde-etal-2022-cocoa 10.18653/v1/2022.findings-naacl.47 - awslabs/sockeye + awslabs/sockeye <fixed-case>CLEAR</fixed-case>: Improving Vision-Language Navigation with Cross-Lingual, Environment-Agnostic Representations @@ -6348,6 +6348,7 @@ 2022.findings-naacl.92 gao-etal-2022-retrieval 10.18653/v1/2022.findings-naacl.92 + yifan-gao/multilingual_keyphrase_generation KP20k Microsoft Academic Graph diff --git a/data/xml/2022.naacl.xml b/data/xml/2022.naacl.xml index 79fe0501e4..edf9267266 100644 --- a/data/xml/2022.naacl.xml +++ b/data/xml/2022.naacl.xml @@ -855,6 +855,7 @@ 2022.naacl-main.57 lu-etal-2022-neurologic 10.18653/v1/2022.naacl-main.57 + GXimingLu/a_star_neurologic CommonGen ROCStories @@ -7822,7 +7823,7 @@ 2022.naacl-industry.24 ayoola-etal-2022-refined 10.18653/v1/2022.naacl-industry.24 - alexa/refined + amazon-research/ReFinED ACE 2004 AIDA CoNLL-YAGO AQUAINT diff --git a/data/xml/W16.xml b/data/xml/W16.xml index 98ae37a06d..7dd552142e 100644 --- a/data/xml/W16.xml +++ b/data/xml/W16.xml @@ -6556,6 +6556,7 @@ W16-3210 10.18653/v1/W16-3210 elliott-etal-2016-multi30k + Flickr30k diff --git a/data/xml/W18.xml b/data/xml/W18.xml index 59331666e4..4a95f74eb6 100644 --- a/data/xml/W18.xml +++ b/data/xml/W18.xml @@ -7316,6 +7316,7 @@ This paper describes our participation in the First Shared Task on Aggression Identification. The method proposed relies on machine learning to identify social media texts which contain aggression. The main features employed by our method are information extracted from word embeddings and the output of a sentiment analyser. Several machine learning methods and different combinations of features were tried. The official submissions used Support Vector Machines and Random Forests. The official evaluation showed that for texts similar to the ones in the training dataset Random Forests work best, whilst for texts which are different SVMs are a better choice. The evaluation also showed that despite its simplicity the method performs well when compared with more elaborated methods. orasan-2018-aggressive dinel/aggression_identification + 200 People-Chinese Speech Data by Mobile Phone Aggression Detection in Social Media using Deep Neural Networks