forked from hietwll/LBM_Taichi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlbm_solver.py
199 lines (183 loc) · 8.67 KB
/
lbm_solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Fluid solver based on lattice boltzmann method using taichi language
# About taichi : https://github.com/taichi-dev/taichi
# Author : Wang ([email protected])
import taichi as ti
import numpy as np
import matplotlib
import matplotlib.cm as cm
import matplotlib.pyplot as plt
ti.init(arch=ti.gpu)
@ti.data_oriented
class lbm_solver:
def __init__(self,
nx, # domain size
ny,
niu, # viscosity of fluid
bc_type, # [left,top,right,bottom] boundary conditions: 0 -> Dirichlet ; 1 -> Neumann
bc_value, # if bc_type = 0, we need to specify the velocity in bc_value
cy = 0, # whether to place a cylindrical obstacle
cy_para = [0.0, 0.0, 0.0], # location and radius of the cylinder
steps = 60000): # total steps to run
self.nx = nx # by convention, dx = dy = dt = 1.0 (lattice units)
self.ny = ny
self.niu = niu
self.tau = 3.0 * niu + 0.5
self.inv_tau = 1.0 / self.tau
self.rho = ti.field(dtype=ti.f32, shape=(nx, ny))
self.vel = ti.Vector.field(2, dtype=ti.f32, shape=(nx, ny))
self.mask = ti.field(dtype=ti.f32, shape=(nx, ny))
self.f_old = ti.Vector.field(9, dtype=ti.f32, shape=(nx, ny))
self.f_new = ti.Vector.field(9, dtype=ti.f32, shape=(nx, ny))
self.w = ti.field(dtype=ti.f32, shape=9)
self.e = ti.field(dtype=ti.i32, shape=(9, 2))
self.bc_type = ti.field(dtype=ti.i32, shape=4)
self.bc_value = ti.field(dtype=ti.f32, shape=(4, 2))
self.cy = cy
self.cy_para = ti.field(dtype=ti.f32, shape=3)
self.bc_type.from_numpy(np.array(bc_type, dtype=np.int32))
self.bc_value.from_numpy(np.array(bc_value, dtype=np.float32))
self.cy_para.from_numpy(np.array(cy_para, dtype=np.float32))
self.steps = steps
arr = np.array([ 4.0 / 9.0, 1.0 / 9.0, 1.0 / 9.0, 1.0 / 9.0, 1.0 / 9.0, 1.0 / 36.0,
1.0 / 36.0, 1.0 / 36.0, 1.0 / 36.0], dtype=np.float32)
self.w.from_numpy(arr)
arr = np.array([[0, 0], [1, 0], [0, 1], [-1, 0], [0, -1], [1, 1],
[-1, 1], [-1, -1], [1, -1]], dtype=np.int32)
self.e.from_numpy(arr)
@ti.func # compute equilibrium distribution function
def f_eq(self, i, j, k):
eu = ti.cast(self.e[k, 0], ti.f32) * self.vel[i, j][0] + ti.cast(self.e[k, 1],
ti.f32) * self.vel[i, j][1]
uv = self.vel[i, j][0]**2.0 + self.vel[i, j][1]**2.0
return self.w[k] * self.rho[i, j] * (1.0 + 3.0 * eu + 4.5 * eu**2 - 1.5 * uv)
@ti.kernel
def init(self):
for i, j in self.rho:
self.vel[i, j][0] = 0.0
self.vel[i, j][1] = 0.0
self.rho[i, j] = 1.0
self.mask[i, j] = 0.0
for k in ti.static(range(9)):
self.f_new[i, j][k] = self.f_eq(i, j, k)
self.f_old[i, j][k] = self.f_new[i, j][k]
if(self.cy==1):
if ((ti.cast(i, ti.f32) - self.cy_para[0])**2.0 + (ti.cast(j, ti.f32)
- self.cy_para[1])**2.0 <= self.cy_para[2]**2.0):
self.mask[i, j] = 1.0
@ti.kernel
def collide_and_stream(self): # lbm core equation
for i, j in ti.ndrange((1, self.nx - 1), (1, self.ny - 1)):
for k in ti.static(range(9)):
ip = i - self.e[k, 0]
jp = j - self.e[k, 1]
self.f_new[i,j][k] = (1.0-self.inv_tau)*self.f_old[ip,jp][k] + \
self.f_eq(ip,jp,k)*self.inv_tau
@ti.kernel
def update_macro_var(self): # compute rho u v
for i, j in ti.ndrange((1, self.nx - 1), (1, self.ny - 1)):
self.rho[i, j] = 0.0
self.vel[i, j][0] = 0.0
self.vel[i, j][1] = 0.0
for k in ti.static(range(9)):
self.f_old[i, j][k] = self.f_new[i, j][k]
self.rho[i, j] += self.f_new[i, j][k]
self.vel[i, j][0] += (ti.cast(self.e[k, 0], ti.f32) *
self.f_new[i, j][k])
self.vel[i, j][1] += (ti.cast(self.e[k, 1], ti.f32) *
self.f_new[i, j][k])
self.vel[i, j][0] /= self.rho[i, j]
self.vel[i, j][1] /= self.rho[i, j]
@ti.kernel
def apply_bc(self): # impose boundary conditions
# left and right
for j in ti.ndrange(1, self.ny - 1):
# left: dr = 0; ibc = 0; jbc = j; inb = 1; jnb = j
self.apply_bc_core(1, 0, 0, j, 1, j)
# right: dr = 2; ibc = nx-1; jbc = j; inb = nx-2; jnb = j
self.apply_bc_core(1, 2, self.nx - 1, j, self.nx - 2, j)
# top and bottom
for i in ti.ndrange(self.nx):
# top: dr = 1; ibc = i; jbc = ny-1; inb = i; jnb = ny-2
self.apply_bc_core(1, 1, i, self.ny - 1, i, self.ny - 2)
# bottom: dr = 3; ibc = i; jbc = 0; inb = i; jnb = 1
self.apply_bc_core(1, 3, i, 0, i, 1)
# cylindrical obstacle
# Note: for cuda backend, putting 'if statement' inside loops can be much faster!
for i, j in ti.ndrange(self.nx, self.ny):
if (self.cy == 1 and self.mask[i, j] == 1):
self.vel[i, j][0] = 0.0 # velocity is zero at solid boundary
self.vel[i, j][1] = 0.0
inb = 0
jnb = 0
if (ti.cast(i,ti.f32) >= self.cy_para[0]):
inb = i + 1
else:
inb = i - 1
if (ti.cast(j,ti.f32) >= self.cy_para[1]):
jnb = j + 1
else:
jnb = j - 1
self.apply_bc_core(0, 0, i, j, inb, jnb)
@ti.func
def apply_bc_core(self, outer, dr, ibc, jbc, inb, jnb):
if (outer == 1): # handle outer boundary
if (self.bc_type[dr] == 0):
self.vel[ibc, jbc][0] = self.bc_value[dr, 0]
self.vel[ibc, jbc][1] = self.bc_value[dr, 1]
elif (self.bc_type[dr] == 1):
self.vel[ibc, jbc][0] = self.vel[inb, jnb][0]
self.vel[ibc, jbc][1] = self.vel[inb, jnb][1]
self.rho[ibc, jbc] = self.rho[inb, jnb]
for k in ti.static(range(9)):
self.f_old[ibc,jbc][k] = self.f_eq(ibc,jbc,k) - self.f_eq(inb,jnb,k) + \
self.f_old[inb,jnb][k]
def solve(self):
gui = ti.GUI('lbm solver', (self.nx, 2 * self.ny))
self.init()
for i in range(self.steps):
self.collide_and_stream()
self.update_macro_var()
self.apply_bc()
## code fragment displaying vorticity is contributed by woclass
vel = self.vel.to_numpy()
ugrad = np.gradient(vel[:, :, 0])
vgrad = np.gradient(vel[:, :, 1])
vor = ugrad[1] - vgrad[0]
vel_mag = (vel[:, :, 0]**2.0+vel[:, :, 1]**2.0)**0.5
## color map
colors = [(1, 1, 0), (0.953, 0.490, 0.016), (0, 0, 0),
(0.176, 0.976, 0.529), (0, 1, 1)]
my_cmap = matplotlib.colors.LinearSegmentedColormap.from_list(
'my_cmap', colors)
vor_img = cm.ScalarMappable(norm=matplotlib.colors.Normalize(
vmin=-0.02, vmax=0.02),cmap=my_cmap).to_rgba(vor)
vel_img = cm.plasma(vel_mag / 0.15)
img = np.concatenate((vor_img, vel_img), axis=1)
gui.set_image(img)
gui.show()
if (i % 1000 == 0):
print('Step: {:}'.format(i))
# ti.imwrite((img[:,:,0:3]*255).astype(np.uint8), 'fig/karman_'+str(i).zfill(6)+'.png')
def pass_to_py(self):
return self.vel.to_numpy()[:,:,0]
if __name__ == '__main__':
flow_case = 0
if (flow_case == 0): # von Karman vortex street: Re = U*D/niu = 200
lbm = lbm_solver(801, 201, 0.01, [0, 0, 1, 0],
[[0.1, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]],
1,[160.0, 100.0, 20.0])
lbm.solve()
elif (flow_case == 1): # lid-driven cavity flow: Re = U*L/niu = 1000
lbm = lbm_solver(256, 256, 0.0255, [0, 0, 0, 0],
[[0.0, 0.0], [0.1, 0.0], [0.0, 0.0], [0.0, 0.0]])
lbm.solve()
# compare with literature results
y_ref, u_ref = np.loadtxt('data/ghia1982.dat', unpack=True, skiprows=2, usecols=(0, 2))
fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(4, 3), dpi=200)
axes.plot(np.linspace(0, 1.0, 256), lbm.pass_to_py()[256 // 2, :] / 0.1, 'b-', label='LBM')
axes.plot(y_ref, u_ref, 'rs', label='Ghia et al. 1982')
axes.legend()
axes.set_xlabel(r'Y')
axes.set_ylabel(r'U')
plt.tight_layout()
plt.show()