This repository has been archived by the owner on Jun 13, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHausman.py
53 lines (49 loc) · 1.79 KB
/
Hausman.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from scipy import stats
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
def hausmantest(session: dict):
filename = session["filename"]
data = pd.read_csv(filename).dropna()
independent = session["independent"]
dependent = session["dependent"]
X = list(independent)
all = list(independent)
params = []
ts_b = []
sd_b = []
p_values = []
raw = data[all]
for i in range(len(X)):
tmp = X.pop(i)
tmp_y = data[tmp]
X1 = data[X]
X1 = sm.add_constant(X1)
haus_reg1 = sm.RLM(tmp_y, X1)
haus_reg1 = haus_reg1.fit()
u = pd.DataFrame(haus_reg1.resid, columns=['resid'])
newdf = pd.concat([u, raw], axis=1)
haus_reg2 = sm.RLM(data[dependent], newdf)
haus_reg2 = haus_reg2.fit()
sd_b.append(np.round(haus_reg2.bse.values[1], 3))
ts_b.append(np.round(haus_reg2.tvalues.values[1], 3))
p_values.append(np.round(haus_reg2.pvalues.values[1], 4))
params.append(np.round(haus_reg2.params.values[1], 4))
X = list(independent)
html = """<center><h2>Hausman Test</h2><table border='1'><tr><th>variable</th><th>Coefficients</th><th>std err</th><th>t-value</th><th>p-value</th></tr>"""
for i in range(len(independent)):
html += "<tr><td>{}</td><td>{}</td><td>{}</td><td>{}</td><td>{}</td></tr>".format(
X[i], params[i], sd_b[i], ts_b[i], p_values[i])
return html + "</table></center>"
if __name__ == '__main__':
print(
hausmantest({
"filename":
"/Users/dcy/code/asdfghjkl/sourceCode/tk/daily_Ashare.csv",
"dependent": "open",
"independent": ["high", "low"],
"ans": {
"coefficient": [1, 2, 3]
}
}))