forked from HarshCasper/NeoAlgo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEditDistance.py
77 lines (62 loc) · 2.98 KB
/
EditDistance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
"""
Edit Distance using dynamic programming
Problem on Leetcode: https://leetcode.com/problems/edit-distance/
Given two strings, return the minimum number of operations required to convert one word to other.
You can apply the following operatiions:
1. Insert a character
2. Delete a character
3. Replace a character
m: length of first string
n: length of second string
Time Complexity : O(m*n) (Looping through both strings)
Space Complexity : O(m*n) (Matrix distance)
"""
def editDist(first_string, second_string):
# Length of both strings
first_length = len(first_string)
second_length = len(second_string)
# Distance table for computing edit distance
# Initializing edit distances as 0
distance = [[0 for x in range(second_length + 1)]
for x in range(first_length + 1)]
# Looping and comparing each letter of first_string with each of second_string
for first_sub_string in range(first_length + 1):
for second_sub_string in range(second_length + 1):
if first_sub_string == 0:
# first_sub_string is empty, so insert all charecters of second_sub_string
distance[first_sub_string][second_sub_string] = second_sub_string
elif second_sub_string == 0:
# second_sub_string is empty, so insert all charecters of first_sub_string
distance[first_sub_string][second_sub_string] = first_sub_string
elif first_string[first_sub_string - 1] == second_string[second_sub_string - 1]:
# If last charecters of both substring are same, no operation required here
# It's value will be equal to the edit distance of the substring without this same charecters ie. Diagonal value
distance[first_sub_string][second_sub_string] = distance[
first_sub_string - 1
][second_sub_string - 1]
else:
# If last charecters of both substring are not same, we can either insert, remove or replace a charecter
# We choose minimum possible edit distance of the substrings before performing operation
# and we add 1 to edit distance for the one operation we need to perform to convert first_string to second_string
distance[first_sub_string][second_sub_string] = 1 + min(
distance[first_sub_string][second_sub_string - 1], # Insert
distance[first_sub_string - 1][second_sub_string], # Remove
distance[first_sub_string - 1][second_sub_string - 1], # Replace
)
return distance[first_length][second_length]
if __name__ == '__main__':
print("Enter First string: ")
first_string = input()
print("Enter Second string: ")
second_string = input()
print("Minimum number of edits required: ",
editDist(first_string, second_string))
"""
Sample Input:
Enter First string:
shine
Enter Second string:
sings
Sample Output:
Minimum number of edits required: 3
"""