-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdef_en_ef_min.py
192 lines (144 loc) · 5.69 KB
/
def_en_ef_min.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 27 17:32:06 2024
@author: evanp
========================================================================================
Input: energies_final.csv from vAtoms_code.py
Output: Charge Defect Plot with all defects at all specified point in elementEPA array
========================================================================================
"""
import matplotlib.pyplot as plt
import pandas as pd
import os
#Folder Name of Save Location
saveFolderName = "chargeDefectPlots"
#Creates Folder if it does not exist
if not os.path.exists(saveFolderName):
os.mkdir(saveFolderName)
testFile = pd.read_csv(r"./energies_final.csv")
#Energy per Atom of Elements
elementNames = ["Rb", "Sb", "I"]
elementEPA = [-3.475, -4.061, -3.576] #Condition 1 [-4.425, -6.911, -2.626] #Condition 4 [-4.518, -6.765, -2.628] #Condition 3 [-3.617, -4.061, -3.529]
# Condtion 2
E_f = 0.966852 #Fermi Energy (eV)
gap = 1.98 #Band Gap (eV)
stepSize = 0.01 #Size of Fermi Energy Step (eV)
iterations = gap/stepSize
bulkEnergy = float(testFile.iloc[0,2])
graphValues = []
fermiEnergies = []
#For graph of all defects on one plot
completeGraph = []
namesArray = []
#Plot Settings
ylimmax = 7
ylimmin = -9
xlimmax = gap
xlimmin = 0
count = 0
#Generates all Fermi Energies for Plot
for i in range(0, int(iterations)):
fermiEnergies.append(stepSize*i)
#Gets the name of the first defect for plots
storedName = testFile.iloc[1,0]
for i in range (1, len(testFile)):
bulkDefectEnergy = float(testFile.iloc[i,2])
defectName = testFile.iloc[i,0]
j = 0
firstElement = ""
secondElement = ""
#Gets the name of the first element
while(defectName[j] != "_"):
firstElement = firstElement + defectName[j]
j = j + 1
j = j + 1
#Gets the name of the second element
while(j != len(defectName)):
secondElement = secondElement + defectName[j]
j = j + 1
finalDefectEnergy = bulkDefectEnergy - bulkEnergy
#Calculates
for k in range(0, len(elementNames)):
#Subtract Energy From "Added" Element
if(firstElement == elementNames[k]):
finalDefectEnergy = finalDefectEnergy - elementEPA[k]
print(elementNames[k])
#Add Energy From "Subtracted" Element
if(secondElement == elementNames[k]):
finalDefectEnergy = finalDefectEnergy + elementEPA[k]
print(elementNames[k])
q = int(testFile.iloc[i, 1])
V = float(testFile.iloc[i, 4])
correction = float(testFile.iloc[i, 3])
#Account for Charge Defect and Correction Values
finalDefectEnergy = finalDefectEnergy + q*(E_f + V) + correction
energy = '{:<12} {:>6}'.format(defectName + "_" + str(q), str(round(finalDefectEnergy,5)))
print(energy)
if(storedName != defectName and i != 1):
tempArray = []
forGraph = []
#Appends minimum defetc energy at each fermi energy
for m in range (0, int(len(graphValues)/count)):
for n in range (0, count):
tempArray.append(graphValues[m + int(len(graphValues)/count)*n])
forGraph.append(min(tempArray))
completeGraph.append(forGraph[m])
tempArray = []
#Plots the individual charge defect plots
# plt.figure(figsize=(10,6))
# plt.title("Defect Plot of " + storedName)
# plt.xlabel("Fermi Energy (eV)")
# plt.ylabel("Defect Energy (eV)")
# plt.plot(fermiEnergies, forGraph)
# plt.xlim(xlimmin, xlimmax)
# plt.ylim(ylimmin, ylimmax)
# saveLocation = saveFolderName + "/" + str(storedName) + ".png"
# plt.savefig(saveLocation)
# plt.show()
namesArray.append(storedName)
storedName = defectName
#Clear Graph Values
graphValues = []
count = 0
#Everything Below is for plotting defect energy vs fermi energy
for k in range(0, int(iterations)):
graphValues.append(finalDefectEnergy + q*stepSize*k) #Adds the total fermi energy multiplied by charge
count = count + 1
#Erases temporary data for last graph
tempArray = []
forGraph = []
for m in range (0, int(len(graphValues)/count)):
for n in range (0, count):
tempArray.append(graphValues[m + int(len(graphValues)/count)*n])
forGraph.append(min(tempArray))
completeGraph.append(forGraph[m])
tempArray = []
#This plots the last individual defect
plt.figure(figsize=(10,6))
storedName = defectName
namesArray.append(storedName)
# plt.title("Defect Plot of " + defectName)
# plt.xlabel("Fermi Energy (eV)")
# plt.ylabel("Defect Energy (eV)")
# plt.plot(fermiEnergies, forGraph, label = str(q))
# plt.xlim(xlimmin, xlimmax)
# plt.ylim(ylimmin, ylimmax)
# saveLocation = saveFolderName + "/" + str(storedName) + ".png"
# plt.savefig(saveLocation)
# plt.show()
numberOfDefects = int(len(completeGraph)/len(fermiEnergies))
plt.figure(figsize=(3.5,6))
plt.title("Charge Defect Plot")
plt.xlabel("Fermi Energy (eV)")
plt.ylabel("Defect Energy (eV)")
plt.xlim(xlimmin, xlimmax)
plt.ylim(ylimmin, ylimmax)
for i in range(0, numberOfDefects):
tempData = []
for j in range(0, int(len(fermiEnergies))):
tempData.append(completeGraph[i*len(fermiEnergies) + j])
plt.plot(fermiEnergies, tempData, label = namesArray[i])
plt.legend()
saveLocation = saveFolderName + "/" + "combinedDefects.png"
plt.savefig(saveLocation)
plt.show()