-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
332 lines (267 loc) · 16.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# local imports
from agent import Traveler
from data import data
from traffic import get_uxsim_world
# package imports
from mesa import Model
from mesa.experimental.devs.simulator import DEVSimulator
import numpy as np
import pandas as pd
from dataclasses import asdict
import pickle
import gc
from uxsim.Utilities import get_shortest_path_distance_between_all_nodes
data = data
real_population = 991575 # sum(self.pop_dict_pc4_city.values())
class UrbanModel(Model):
def __init__(self, step_time=1/12, start_time=5, end_time=11, choice_model="rational_vot", enable_av=True, av_cost_factor=0.25, av_vot_factor=0.5, ext_vehicle_load=0.8, uxsim_platoon_size=10, car_comfort=0.5, bike_comfort=1.33, av_density=1.0, induced_demand=1.0, policy_tarif=0, policy_tarif_time="peak", policy_speed_reduction=0, policy_area="autoluw", simulator=None):
super().__init__()
n_agents = int(real_population / uxsim_platoon_size)
print(f"### Initializing UrbanModel with {n_agents} agents, step time {step_time:.3f} hours, start time {start_time}, end time {end_time}, choice model {choice_model}, AV enabled {enable_av}, AV cost factor {av_cost_factor}, AV VOT factor {av_vot_factor}, external vehicle load {ext_vehicle_load}, UXsim platoon size {uxsim_platoon_size}, car comfort {car_comfort}, bike comfort {bike_comfort},"
f"av density {av_density}, induced demand {induced_demand}, policy tarif {policy_tarif}, policy tarif time {policy_tarif_time}, policy speed reduction {policy_speed_reduction}, policy area {policy_area}.")
# Set up simulator time
self.n_agents = n_agents
self.simulator = simulator
self.simulator.time = float(start_time)
self.uxsim_platoon_size = uxsim_platoon_size
# Set up time variables
self.step_time = step_time
self.start_time = start_time
self.end_time = end_time
# External vehicle load
self.ext_vehicle_load = ext_vehicle_load
self.induced_demand = induced_demand
self.av_density = av_density
# Policy variables
self.policy_tarif = policy_tarif
self.policy_tarif_time = policy_tarif_time
policy_hour_dict = {
"peak": set([7, 8, 16, 17]), # Peak traffic according to V-MRDH model (7-9, 16-18)
"day": set(range(6, 18)), # Daytime as used for speed limits in the Netherlands (6-19)
"all": set(range(24))
}
self.policy_tarif_hours = policy_hour_dict[policy_tarif_time]
self.policy_speed_reduction = policy_speed_reduction
self.policy_area = policy_area
# Set up the choice model
self.choice_model = choice_model
self.available_modes = ["car", "bike", "transit"]
if enable_av:
self.available_modes.append("av")
# Set up the cost factors
self.transit_price_per_km = 0.169 # https://www.treinonderweg.nl/wat-kost-de-trein.html
self.car_price_per_km_variable = 0.268
# kleine middenklasse, https://www.nibud.nl/onderwerpen/uitgaven/autokosten/
self.car_price_per_km_total = 0.604
self.av_initial_costs = 3.79 * av_cost_factor
self.av_costs_per_km = 1.41 * av_cost_factor # TODO: Update from Waymo regression https://waymo-pricing.streamlit.app/
self.av_costs_per_sec = 0.40 / 60 * av_cost_factor
self.av_vot_factor = av_vot_factor
# https://www.kimnet.nl/binaries/kimnet/documenten/publicaties/2023/12/04/nieuwe-waarderingskengetallen-voor-reistijd-betrouwbaarheid-en-comfort/Significance_Value+of+Travel+Time+in+the+Netherlands+2022_final+technical+report.pdf
self.default_value_of_times = {
"car": 10.42,
"bike": 10.39,
"transit": 7.12,
}
self.default_value_of_times["av"] = self.default_value_of_times["car"] * self.av_vot_factor
self.default_value_of_times = {mode: vot / 3600 for mode, vot in self.default_value_of_times.items()} # Euros per second
self.comfort_factors = {
"car": car_comfort,
"bike": bike_comfort,
"transit": 1,
"av": car_comfort,
}
# Create a dictionary of locations pc4 locations and their populations from pop_gdf_nl_pc4 with in_city == True
gdf = data.pop_gdf_nl_pc4[data.pop_gdf_nl_pc4["in_city"] == True]
gdf = gdf[gdf["aantal_inwoners"] > 100] # Filter out insignificant areas (from 129 to 124)
# select only the rows where the 65x65 Nummer is in the mrhd65 index
gdf = gdf[gdf["65x65 Nummer"].isin(data.gdf_mrdh_65.index)] # Rotterdam area.
# Create a dictionary of pc4 locations and their populations
self.pop_dict_pc4_city = {pc4: pop for pc4, pop in zip(gdf.index, gdf["aantal_inwoners"])}
# SAVE THE pop_dict_pc4_city and gdf to a pickle file
with open("../data/TEMP_pop_dict_pc4_city.pkl", "wb") as f:
pickle.dump(self.pop_dict_pc4_city, f)
gdf.to_pickle("../data/TEMP_gdf.pkl")
# Normalize the population weights
weights = np.array(list(self.pop_dict_pc4_city.values())) / sum(self.pop_dict_pc4_city.values())
# Sample n_agents locations from the dictionary, weighted by population
locations = np.random.choice(list(self.pop_dict_pc4_city.keys()), n_agents, p=weights)
for i in range(n_agents):
Traveler(self, pc4=locations[i], mrdh65=gdf["65x65 Nummer"][locations[i]])
print(f"Default value of times: {self.default_value_of_times} (€/hour). Average vot factor: {self.agents.agg('vot_factor', np.mean):.4f}.")
for pc4 in self.pop_dict_pc4_city.keys():
# Dataframe is indexed by pc4, so we can directly access the number of licenses and cars
license_chance, car_chance = data.licenses_cars_pc4.loc[int(pc4)]
trav = self.agents.select(lambda a: a.pc4 == pc4)
# Give license_chance of the agents a license
trav_license = trav.shuffle(inplace=True).select(at_most=license_chance).set('has_license', True)
# Of those with a license, give n_car agents a car
n_car = round(len(trav) * car_chance)
trav_license.shuffle(inplace=True).select(at_most=n_car).set('has_car', True)
# Get all the unique mrdh65 values
self.mrdh65s = list(set([a.mrdh65 for a in self.agents]))
self.pc4s = list(set([a.pc4 for a in self.agents]))
# Policy PC4s used for congestion pricing
self.pc4s_autoluw = data.pop_gdf_nl_pc4[data.pop_gdf_nl_pc4["autoluw"] == True].index.to_list()
self.policy_pc4s = set(self.pc4s_autoluw if self.policy_area == "autoluw" else self.pc4s)
# Policy area for reducing the speed limits
polygon_dict = {"autoluw": data.autoluw_polygon_series, "city": data.city_polygon_series, "area": data.area_polygon_series}
self.policy_polygon = polygon_dict[self.policy_area]
# For agents that don't have a car, remove the car from the available modes
self.agents.select(lambda a: not a.has_car).do(lambda a: setattr(a, 'available_modes', [m for m in a.available_modes if m != "car"]))
# TODO: Implement some car sharing / lending from friends/family thing here.
# Update currently available modes after having assigned cars
self.agents.do(lambda a: setattr(a, 'currently_available_modes', a.available_modes))
# For a weekday, take the average of days 0-3 (Monday-Thursday)
self.trips_by_hour_chance = data.trips_by_hour_chance = data.trips_by_hour_chances.iloc[:, 0:4].mean(axis=1).drop("Total")
# Save a copy of the original data for external vehicles, they don't need to be modified
self.trips_by_hour_chance_ext = self.trips_by_hour_chance.copy()
# Multiply the dict by the induced demand factor
self.trips_by_hour_chance *= self.induced_demand
# Drop the hours that are not in the range of the model and save as a dictionary
self.trips_by_hour_chance = self.trips_by_hour_chance.loc[start_time:(end_time-1)].to_dict()
print(f"Trip chance sum: {sum(self.trips_by_hour_chance.values()):.3f}, chance by hour: {self.trips_by_hour_chance}")
# self.trip_counts_distribution = data.trip_counts_distribution.to_dict()
# print(f"Trip counts distribution: {self.trip_counts_distribution}")
# UXsim world (from traffic.py)
self.uw = get_uxsim_world(save_mode=False, show_mode=True, uxsim_platoon_size=self.uxsim_platoon_size,
policy_speed_reduction=self.policy_speed_reduction, policy_polygon=self.policy_polygon)
self.mrdh65s_ext = data.od_ext_into_city.index.to_list()
self.ext_vehicles = 0
# Convert to NumPy, int16
self.od_ext_into_city = data.od_ext_into_city * self.ext_vehicle_load / self.uxsim_platoon_size
self.od_ext_out_city = data.od_ext_out_city * self.ext_vehicle_load / self.uxsim_platoon_size
# External vehicle load
# Get a list of origin and destination areas for the external trips
if self.ext_vehicle_load:
self.simulator.schedule_event_now(function=self.add_external_vehicle_load, function_args=[self.start_time])
for hour in range(self.start_time+1, self.end_time):
# Schedule an event 15 minutes before that hour
self.simulator.schedule_event_absolute(function=self.add_external_vehicle_load, time=hour-0.25, function_args=[hour])
# KPIs
self.trips_by_mode = {mode: 0 for mode in self.available_modes}
# Create nested dict
self.trips_by_hour_by_mode = {(hour, mode): 0 for hour in range(start_time, end_time) for mode in self.available_modes}
self.uxsim_data = {}
self.parked_per_area = {area: 0 for area in self.mrdh65s}
groups = self.agents.select(lambda a: a.has_car).groupby(by="mrdh65", result_type="list")
parked = {area: len(group) for area, group in groups}
self.parked_per_area.update(parked)
self.parked_dict = {self.simulator.time: self.parked_per_area.copy()}
print(f"Parked per area: {self.parked_per_area}")
self.successful_car_trips, self.failed_car_trips = 0, 0
# Request agents to do stuff
self.agents.do("generate_trip_times")
print(f"Events scheduled for agents: {len(self.simulator.event_list)} (on average {len(self.simulator.event_list) / n_agents:.3f} per agent)")
print(f"Trips planned by agents: {(total_trip_times := sum(map(len, self.agents.get('trip_times'))))} (on average {total_trip_times / n_agents:.3f} per agent)")
self.uw.finalize_scenario()
self.car_travel_distance_array = get_shortest_path_distance_between_all_nodes(self.uw, return_matrix=True) / 1000
inf_mask = np.isinf(self.car_travel_distance_array)
# Transpose the matrix and replace the 'inf' values using the inverse values
self.car_travel_distance_array[inf_mask] = self.car_travel_distance_array.T[inf_mask]
# Schedule a model step
self.simulator.schedule_event_now(self.step)
@property
def uw_time(self):
return (self.simulator.time - self.start_time) * 3600
def step(self):
# Print the current time
print(f"Model step (sim time: {self.simulator.time:.3f}, uw time: {self.uw_time:.1f}).", end=" ")
# A step is considerd once the step_time. Default is 1/12 hour (5 minutes).
# Schedule the travel_time execution 1 timestep ahead. This way all agents have had a chance to add their trips.
self.simulator.schedule_event_relative(function=self.req_exec_simulation, time_delta=self.step_time)
# Schedule next event
self.simulator.schedule_event_relative(function=self.step, time_delta=self.step_time)
self.parked_dict[self.simulator.time] = self.parked_per_area.copy()
def req_exec_simulation(self):
# Execute the simulation for a given duration
self.uw.exec_simulation(until_t=self.uw_time)
# show simulation
# self.uw.analyzer.network(self.uw.TIME, detailed=0, network_font_size=0, figsize=(6, 6), left_handed=0, node_size=0.2)
def add_external_vehicle_load(self, hour):
# Calculate the start and end times for this hour
sim_hour = hour - self.start_time
start_time = sim_hour * 3600
end_time = (sim_hour + 1) * 3600
# Get the trip multiplier for this hour
hour_multiplier = self.trips_by_hour_chance_ext[hour]
for ext_area in self.mrdh65s_ext:
for int_area in self.mrdh65s:
volume_in = round(self.od_ext_into_city[int_area][ext_area] * hour_multiplier)
volume_out = round(self.od_ext_out_city[ext_area][int_area] * hour_multiplier)
# print(f"Hour {hour}, ext {ext_area}, int {int_area}: in {volume_in}, out {volume_out}")
ext_nodes = self.uw.node_mrdh65_dict[ext_area]
int_nodes = self.uw.node_mrdh65_dict[int_area]
def add_vehicle_load(volume, orig_nodes, dest_nodes):
times = np.random.uniform(start_time, end_time, volume)
os, ds = self.random.choices(orig_nodes, k=volume), self.random.choices(dest_nodes, k=volume)
for time, o, d in zip(times, os, ds):
self.uw.addVehicle(orig=o, dest=d, departure_time=time)
if volume_in > 0:
add_vehicle_load(volume_in, ext_nodes, int_nodes)
if volume_out > 0:
add_vehicle_load(volume_out, int_nodes, ext_nodes)
self.ext_vehicles += volume_in + volume_out
def run_model(save_results=False, suffix="default", folder="default", params=None):
if params is None:
params = {}
simulator = DEVSimulator()
model = UrbanModel(simulator=simulator, **params)
simulator.model = model
print(f"### Running the model from {model.start_time} to {model.end_time} with {suffix}")
simulator.run_until(model.end_time)
print(f"### Model finished at {model.simulator.time}")
print(f"External vehicles added: {model.ext_vehicles}")
if save_results:
process_results(model, suffix, folder)
# Force garbage collection after the run
print("### Cleaning up memory.")
del simulator.model
del simulator
del model
gc.collect()
def process_results(model, suffix, folder):
# Journey data processing
all_journeys = [journey for agent in model.agents for journey in agent.journeys]
for journey in all_journeys:
journey.agent = journey.agent.unique_id
try:
journey.o_node = journey.o_node.name
journey.d_node = journey.d_node.name
except AttributeError:
pass
if not isinstance(journey.vehicle, int) and journey.vehicle is not None:
journey.vehicle = int(journey.vehicle.name)
journeys_df = pd.DataFrame([asdict(journey) for journey in all_journeys])
journeys_df['car_available'] = journeys_df['available_modes'].apply(lambda x: "car" in x).astype(bool)
journeys_df['av_available'] = journeys_df['available_modes'].apply(lambda x: "av" in x).astype(bool)
journeys_df.drop(columns="available_modes", inplace=True)
for mode in model.available_modes:
journeys_df[f"perceived_cost_{mode}"] = journeys_df['perceived_cost_dict'].apply(
lambda x: x.get(mode, np.nan)).astype(np.float32)
journeys_df.drop(columns="perceived_cost_dict", inplace=True)
journeys_df = journeys_df.astype(data.journey_dtypes)
journeys_df.to_feather(f"../results/{folder}journeys_df_{suffix}.feather")
# UXsim data processing
area_names, areas = zip(*model.uw.node_mrdh65_dict.items())
uxsim_data = model.uw.analyzer.area_to_pandas(areas, area_names, time_bin=900, set_index=True)
uxsim_data.drop(columns="n_links", inplace=True)
with open(f"../results/{folder}uxsim_df_{suffix}.pkl", "wb") as f:
pickle.dump(uxsim_data, f)
with open(f"../results/{folder}parked_dict_{suffix}.pkl", "wb") as f:
pickle.dump(model.parked_dict, f)
# Print summary statistics
mode_counts = journeys_df['mode'].value_counts(normalize=True).to_dict()
print(f"Mode choice distribution: {({mode: f'{count:.2%}' for mode, count in mode_counts.items()})}")
mode_counts_weighted = journeys_df.groupby('mode', observed=True)['distance'].sum() / journeys_df['distance'].sum()
print(
f"Distance weighted mode choice distribution: {({mode: f'{count:.2%}' for mode, count in mode_counts_weighted.items()})}")
print(
f"{model.successful_car_trips} of {model.successful_car_trips + model.failed_car_trips} car trips were successful.")
model.uw.analyzer.basic_analysis()
print(f"\nSimple stats: {model.uw.analyzer.print_simple_stats()}")
# Clear memory
del journeys_df
del uxsim_data
if __name__ == "__main__":
run_model(save_results=False, suffix="default", folder="default")