Skip to content

Latest commit

 

History

History
200 lines (158 loc) · 5.79 KB

README.md

File metadata and controls

200 lines (158 loc) · 5.79 KB

Tutorial

This tutorial addresses key challenges in the creation of diverse workflows that are portable, repeatable, and performant. We present the ExaWorks SDK, and its constituent components: Parsl, RADICAL-Cybertools (RCT), Swift/T, and Flux. These components are widely used, and available tools for developing workflow applications. This tutorial outlines modern workflow motifs on HPC platforms (e.g., ensemble campaigns, ML-in-the-loop), illustrates science examples of these motifs, and discusses solutions using the ExaWorks SDK.

Overview

We first introduce the ExaWorks component tools and explain their key capabilities. Through common workflow motifs and their instantiation, we describe common challenges and best-practices for developing and deploying HPC workflows.

AWS Instances

Logging in:  ssh -v developer@<ipaddr>
password:    m6a.}Ge-N^?$&8bn
ID IP User
1 3.21.204.204
2 3.21.122.117
3 3.15.153.65
4 3.145.25.225
5 3.145.214.192
6 3.145.160.119
7 3.145.120.110
8 3.144.179.117
9 3.143.144.45
10 3.142.142.38
11 3.137.191.101
12 18.223.156.156
13 18.222.229.113
14 18.222.217.193
15 18.221.238.9
16 18.220.64.55
17 18.219.138.59
18 18.217.182.168
19 18.216.158.156
20 18.191.214.30
21 18.191.10.243
22 18.188.255.40
23 18.117.97.125
24 18.117.246.104
25 18.117.191.159
26 13.59.240.75 Rafael

Writing Ensemble Applications with RCT

cd $HOME/tutorial/
.  1-ensemble-rct.env
cd 1-ensemble-rct
make clean
  • The tutorial folder has the following content:
makefile                 - provides 'make clean' to reset folder
orig                     - backup of original files
radical_entk_1.py        - first tutorial example
solution_1.1.py            - solution to first exercise
solution_1.2.py            - solution to second exercise
solution_1.3.py            - solution to second exercise
radical_entk_2.py        - second tutorial example
solution_2.1.py            - solution to first exercise

Swift/T Workflow Tutorial

$ cd ~/tutorial/2-workflow-dl-swift
$ git pull
$ source ~/tutorial/2-workflow-dl-swift/2-workflow-dl-swift/swift_demo.env
# May produce warnings about Conda, ignore them
$ cd ~/tutorial/2-workflow-dl-swift/2-workflow-dl-swift
  • Quick use example
$ swift-t -E 'trace(42);'
trace: 42

$ ls
01-hello  02-loop  03-dag 04-py  05-numpy
$ cd 01-hello
$ cat hello.swift  

/**
  Example 1 - HELLO.SWIFT
*/

import io;
printf("Hello world!");

$ swift-t hello.swift 
  • Setup
$ swift-t -v
STC: Swift-Turbine Compiler 0.9.0
         for Turbine: 1.3.0
Using Java VM:    /usr/bin/java
Using Turbine in: /home/developer/Public/sfw/swift-t/turbine

Turbine 1.3.0
 installed:    /home/developer/Public/sfw/swift-t/turbine
 source:       /home/developer/woz/swift-t/turbine/code
 using CC:     /usr/lib64/openmpi/bin/mpicc
 using MPI:    /usr/lib64/openmpi/lib mpi "OpenMPI"
 using Tcl:    /home/developer/Public/sfw/Anaconda3/bin/tclsh8.6
 using Python: /home/developer/Public/sfw/Anaconda3/lib python3.8
  • Examples 02, 03, 04, 05
# 02-loop
$ ./run.sh -n 8 loop.swift

# 03-dag
$ ./run.sh

# 04-numpy
$ swift-t add.swift

# 05-numpy 
$ swift-t numpy.swift
  • CANDLE/Supervisor example
$ git clone https://github.com/ECP-CANDLE/Benchmarks.git
$ cd Benchmarks
$ git checkout develop
$ cd ..
$ git clone https://github.com/ECP-CANDLE/Supervisor.git
$ cd Supervisor
$ git checkout develop
$ cd ..

# Run setup script
$ SC21-Tutorial/swift-t/candle-setup.sh path/to/Benchmarks

# Add Python:
$ PATH=/home/developer/Public/sfw/Anaconda3:$PATH

$ cd Benchmarks/Pilot1/NT3
$ nice python3 nt3_baseline_keras2.py

# UPF: Unrolled Parameter File (simple list of hyperparameters to run)
$ cd Supervisor/workflows/upf
$ nice test/upf-1.sh nt3 local

Writing Model-in-the-Loop Applications with Parsl

cd $HOME/tutorial/
.  3-molecular-design-parsl-demo.env
cd 3-molecular-design-parsl-demo
git pull
  • Alternatively, you can configure your own Conda environment (note this will take several minutes):
conda env create --file environment.yml

The tutorial folder has the following content:

data                                - Sample molecule data from QM9
figures                             - Figures for the notebook
chemfunctions.py                    - Python functions for chemistry tasks
environment.yml                     - Conda environment file
molecular-design-with-parsl.ipynb   - Tutorial notebook
setup.py                            - Install chemfunctions