forked from Dietz0r/core
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnuts_bolts.h
239 lines (195 loc) · 6.89 KB
/
nuts_bolts.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
/*
nuts_bolts.h - Header file for shared definitions, variables, and functions
Part of grblHAL
Copyright (c) 2017-2024 Terje Io
Copyright (c) 2011-2016 Sungeun K. Jeon for Gnea Research LLC
Copyright (c) 2009-2011 Simen Svale Skogsrud
grblHAL is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
grblHAL is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with grblHAL. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _NUTS_BOLTS_H_
#define _NUTS_BOLTS_H_
#include "grbl.h"
#include "errors.h"
#ifndef true
#define false 0
#define true 1
#endif
#define Off 0
#define On 1
#define SOME_LARGE_VALUE 1.0E+38f
#ifndef M_PI
#define M_PI 3.14159265358979323846f
#endif
#define TOLERANCE_EQUAL 0.0001f
#define RADDEG 0.01745329251994329577f // Radians per degree
#define DEGRAD 57.29577951308232087680f // Degrees per radians
#define SQRT3 1.73205080756887729353f
#define SIN120 0.86602540378443864676f
#define COS120 -0.5f
#define TAN60 1.73205080756887729353f
#define SIN30 0.5f
#define TAN30 0.57735026918962576451f
#define TAN30_2 0.28867513459481288225f
#define ABORTED (sys.abort || sys.cancel)
// Convert character to uppercase
#define CAPS(c) ((c >= 'a' && c <= 'z') ? (c & 0x5F) : c)
#define LCAPS(c) ((c >= 'A' && c <= 'Z') ? (c | 0x20) : c)
#if !(defined(STM32F103xB) || defined(STM32F303xC))
#ifndef UNUSED
#define UNUSED(x) (void)(x)
#endif
#endif
#if defined(__MSP430F5529__) || defined(__MSP432P401R__) || defined(__MSP432E401Y__) || defined(PART_TM4C123GH6PM) || defined(PART_TM4C1294NCPDT)
#define isnanf(x) __isnanf(x)
#define isinff(x) __isinff(x)
#endif
// Axis array index values. Must start with 0 and be continuous.
#define X_AXIS 0 // Axis indexing value.
#define Y_AXIS 1
#define Z_AXIS 2
#define X_AXIS_BIT bit(X_AXIS)
#define Y_AXIS_BIT bit(Y_AXIS)
#define Z_AXIS_BIT bit(Z_AXIS)
#if N_AXIS > 3
#define A_AXIS 3
#define A_AXIS_BIT bit(A_AXIS)
#endif
#if N_AXIS > 4
#define B_AXIS 4
#define B_AXIS_BIT bit(B_AXIS)
#endif
#if N_AXIS > 5
#define C_AXIS 5
#define C_AXIS_BIT bit(C_AXIS)
#endif
#if N_AXIS > 6
#define U_AXIS 6
#define U_AXIS_BIT bit(U_AXIS)
#endif
#if N_AXIS == 8
#define V_AXIS 7
#define V_AXIS_BIT bit(V_AXIS)
#endif
#if N_AXIS == 3
#define AXES_BITMASK (X_AXIS_BIT|Y_AXIS_BIT|Z_AXIS_BIT)
#elif N_AXIS == 4
#define AXES_BITMASK (X_AXIS_BIT|Y_AXIS_BIT|Z_AXIS_BIT|A_AXIS_BIT)
#elif N_AXIS == 5
#define AXES_BITMASK (X_AXIS_BIT|Y_AXIS_BIT|Z_AXIS_BIT|A_AXIS_BIT|B_AXIS_BIT)
#elif N_AXIS == 6
#define AXES_BITMASK (X_AXIS_BIT|Y_AXIS_BIT|Z_AXIS_BIT|A_AXIS_BIT|B_AXIS_BIT|C_AXIS_BIT)
#elif N_AXIS == 7
#define AXES_BITMASK (X_AXIS_BIT|Y_AXIS_BIT|Z_AXIS_BIT|A_AXIS_BIT|B_AXIS_BIT|C_AXIS_BIT|U_AXIS_BIT)
#else
#define AXES_BITMASK (X_AXIS_BIT|Y_AXIS_BIT|Z_AXIS_BIT|A_AXIS_BIT|B_AXIS_BIT|C_AXIS_BIT|U_AXIS_BIT|V_AXIS_BIT)
#endif
#ifdef V_AXIS
#define N_ABC_AXIS 5
#elif defined(U_AXIS)
#define N_ABC_AXIS 4
#elif defined(C_AXIS)
#define N_ABC_AXIS 3
#elif defined(B_AXIS)
#define N_ABC_AXIS 2
#elif defined(A_AXIS)
#define N_ABC_AXIS 1
#else
#define N_ABC_AXIS 0
#endif
extern char const *const axis_letter[];
typedef union {
uint8_t mask;
uint8_t value;
struct {
uint8_t x :1,
y :1,
z :1,
a :1,
b :1,
c :1,
u :1,
v :1;
};
} axes_signals_t;
typedef union {
float values[2];
struct {
float x;
float y;
};
} point_2d_t;
#pragma pack(push, 1)
//! \brief Limit switches struct, consists of four packed axes_signals_t structs in 32 bits.
typedef struct {
axes_signals_t min; //!< Min limit switches status, required.
axes_signals_t max; //!< Max limit switches status, optional.
axes_signals_t min2; //!< Secondary min limit switch(es) status, required for auto squaring enabled axes.
axes_signals_t max2; //!< Secondary max limit switches status, optional (of no practical use?).
} limit_signals_t;
//! \brief Home switches struct, consists of two packed axes_signals_t structs.
typedef struct {
axes_signals_t a; //!< Primary home switches status, optional. Limit signals are used for homing if not available.
axes_signals_t b; //!< Secondary home switch(es) status, required for auto squaring enabled axes if primary switches are available.
} home_signals_t;
#pragma pack(pop)
typedef enum {
DelayMode_Dwell = 0,
DelayMode_SysSuspend
} delaymode_t;
// Conversions
#define MM_PER_INCH (25.40f)
#define INCH_PER_MM (0.0393701f)
#define MAX_INT_DIGITS 9 // Maximum number of digits in int32 (and float)
#define STRLEN_COORDVALUE (MAX_INT_DIGITS + N_DECIMAL_COORDVALUE_INCH + 1) // 8.4 format - excluding terminating null
// Useful macros
#ifndef max
#define max(a,b) (((a) > (b)) ? (a) : (b))
#endif
#ifndef min
#define min(a,b) (((a) < (b)) ? (a) : (b))
#endif
#ifndef constrain
#define constrain(val, min, max) ((val) < (min) ? (min) : ((val) > (max) ? (max) : (val)))
#endif
#define clear_vector(a) memset(a, 0, sizeof(a))
#define isequal_position_vector(a, b) !memcmp(a, b, sizeof(coord_data_t))
#define is0_position_vector(a) !memcmp(a, &((coord_data_t){0}), sizeof(coord_data_t))
// Bit field and masking macros
#ifndef bit
#define bit(n) (1UL << (n))
#endif
#define bit_true(x, mask) (x) |= (mask)
#define bit_false(x, mask) (x) &= ~(mask)
#define BIT_SET(x, bit, v) { if (v) { x |= (bit); } else { x &= ~(bit); } }
#define bit_istrue(x, mask) ((x & (mask)) != 0)
#define bit_isfalse(x, mask) ((x & (mask)) == 0)
// Converts an uint32 variable to string.
char *uitoa (uint32_t n);
// Converts a float variable to string with the specified number of decimal places.
char *ftoa (float n, uint8_t decimal_places);
// Returns true if float value is a whole number (integer)
bool isintf (float value);
status_code_t read_uint (char *line, uint_fast8_t *char_counter, uint32_t *uint_ptr);
// Read a floating point value from a string. Line points to the input buffer, char_counter
// is the indexer pointing to the current character of the line, while float_ptr is
// a pointer to the result variable. Returns true when it succeeds
bool read_float (char *line, uint_fast8_t *char_counter, float *float_ptr);
// Non-blocking delay function used for general operation and suspend features.
bool delay_sec (float seconds, delaymode_t mode);
float convert_delta_vector_to_unit_vector(float *vector);
// parse ISO8601 datetime
struct tm *get_datetime (const char *s);
// calculate checksum byte for data
uint8_t calc_checksum (uint8_t *data, uint32_t size);
char *strcaps (char *s);
void dummy_handler (void);
#endif