-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAlgorithms.lyx
12250 lines (9125 loc) · 201 KB
/
Algorithms.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.0 created this file. For more info see http://www.lyx.org/
\lyxformat 413
\begin_document
\begin_header
\textclass book
\begin_preamble
\renewcommand{\thefootnote}{\fnsymbol{footnote}}
\usepackage[perpage]{footmisc}
\end_preamble
\use_default_options true
\begin_modules
theorems-std
\end_modules
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman default
\font_sans default
\font_typewriter default
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\float_placement H
\paperfontsize default
\spacing single
\use_hyperref true
\pdf_title "Algorithms"
\pdf_author "Eyal Arubas"
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks false
\pdf_pdfborder true
\pdf_colorlinks false
\pdf_backref false
\pdf_pdfusetitle true
\papersize default
\use_geometry false
\use_amsmath 1
\use_esint 1
\use_mhchem 1
\use_mathdots 1
\cite_engine basic
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\use_refstyle 1
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
Algorithms
\end_layout
\begin_layout Author
Eyal Arubas
\end_layout
\begin_layout Standard
\begin_inset Box Boxed
position "t"
hor_pos "c"
has_inner_box 1
inner_pos "t"
use_parbox 0
use_makebox 0
width "100col%"
special "none"
height "1in"
height_special "totalheight"
status open
\begin_layout Plain Layout
\series bold
Warning:
\end_layout
\begin_layout Plain Layout
This is a rough, incomplete and inaccurate (probably with many typos) draft.
Use at your own risk.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
This notebook is based on an algorithms course I took in 2012 at the Hebrew
University of Jerusalem, Israel.
The material is based on my notes from the lectures of
\begin_inset CommandInset href
LatexCommand href
name "Prof. Alex Samorodnitsky"
target "http://www.cs.huji.ac.il/~salex/"
\end_inset
, as well as some entries in
\begin_inset CommandInset href
LatexCommand href
name "Wikipedia"
target "http://www.wikipedia.com/"
\end_inset
and more.
\end_layout
\begin_layout Standard
I wrote this notebook because I find the subject interesting, and it helped
me prepare for my exam.
Hopefully it will help whoever is reading it as well.
\end_layout
\begin_layout Standard
Needless to say, I take no responsibility for the accuracy, completeness
and correctness of what is written here.
I'm not, in any way, an authority on algorithms, so take it as it is.
That being said, I still wish this book to be as helpful as possible, so
if you find any mistakes or inaccuracies, please send me an email to
\series bold
\begin_inset CommandInset href
LatexCommand href
target "[email protected]"
type "mailto:"
\end_inset
\series default
.
\end_layout
\begin_layout Standard
Also, you are more than welcomed to just tell me what you think of this
book.
I like the feedback.
\end_layout
\begin_layout Standard
The structure of the book is such that each chapter will begin with several
examples of relevant problems.
These examples will demonstrate a situation in which we need to reach a
solution by solving a problem of a certain type.
Then in the rest of the chapter we will discuss methods for solving this
type of problems, as well as many examples.
Each chapter is independent, so you can just jump directly to a subject
of your choice.
\end_layout
\begin_layout Standard
The latest version of this book can be downloaded from my website at
\series bold
\begin_inset CommandInset href
LatexCommand href
target "http://EyalArubas.com/AlgorithmsBook"
\end_inset
\series default
.
\end_layout
\begin_layout Standard
I encourage you to share this book and pass it along, if you find it useful
of course.
\end_layout
\begin_layout Standard
\begin_inset CommandInset toc
LatexCommand tableofcontents
\end_inset
\end_layout
\begin_layout Chapter
Greedy Algorithms
\begin_inset Index idx
status open
\begin_layout Plain Layout
Greedy Algorithm
\end_layout
\end_inset
\end_layout
\begin_layout Section
Exchange Lemmas
\begin_inset Index idx
status open
\begin_layout Plain Layout
Exchange Lemma
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Oftentimes we can formulate an algorithm which we theorize solves some optimizat
ion problem.
If it indeed does solve the problem, we want to be able to prove it.
Usually we do it by saying that if some optimal solution to the problem
exists, then it will coincide with the solution of our algorithm.
Alternatively, we can say that given any other solution to the problem,
our solution will be better.
Our goal, then, is to show that we can take the other (optimal or not)
solution (which is usually not unique), manipulate it without damaging
its optimality, if it's optimal, or make it better if it's not optimal;
and reach the solution given by our algorithm; thus showing that it, too,
is an optimal solution.
\end_layout
\begin_layout Standard
For this purpose we use
\emph on
exchange lemmas.
\emph default
What these lemmas actually do is show that we can manipulate the uknown
solution, i.e.
\emph on
exchange
\emph default
part of it with part of our own solution.
If we can show that eventually we can replace the
\series bold
entire
\series default
uknown solution with our own solution, and be optimal, then we have shown
that our solution is as good and as optimal as any other.
\end_layout
\begin_layout Standard
\emph on
Unknown optimal solution
\emph default
sounds like a fallacy.
How can a solution be optimal without knowing what it is? The fact is that
we don't need to know exactly what this optimal solution is, but we just
need to know what characteristics it must hold in order to be optimal.
\end_layout
\begin_layout Standard
To demonstrate, we show several examples.
\end_layout
\begin_layout Subsection
Fractional Knapsack Problem
\begin_inset Index idx
status open
\begin_layout Plain Layout
Fractional Knapsack
\end_layout
\end_inset
\end_layout
\begin_layout Standard
This is a similar problem to the
\begin_inset Quotes eld
\end_inset
Robbing a bank
\begin_inset Quotes erd
\end_inset
example given at
\begin_inset CommandInset ref
LatexCommand ref
reference "sub:Robbing-a-Bank"
\end_inset
.
We have a knapsack which can carry a certain amount of weight.
We also have a list of items; each item has it's own weight and value.
We want to insert items into the knapsack such that the total value of
items inside the knapsack is maximal.
Notice that items needn't be whole, and can be inserted partially into
the knapsack.
\end_layout
\begin_layout Standard
Our input is:
\end_layout
\begin_layout Enumerate
\begin_inset Formula $W$
\end_inset
- The maximum wight the knapsack can carry.
\end_layout
\begin_layout Enumerate
A list of
\begin_inset Formula $n$
\end_inset
items.
Item
\begin_inset Formula $i$
\end_inset
is represented by the pair
\begin_inset Formula $\left(v_{i},w_{i}\right)$
\end_inset
, where
\begin_inset Formula $v_{i}$
\end_inset
is the value of the item and
\begin_inset Formula $w_{i}$
\end_inset
is the weight of the item.
All values and wights are non negative.
\end_layout
\begin_layout Standard
Our output should be:
\end_layout
\begin_layout Standard
A list of numbers
\begin_inset Formula $x_{1},x_{2},...,x_{n}$
\end_inset
, where
\begin_inset Formula $x_{i}$
\end_inset
is the fractional amount of item
\begin_inset Formula $i$
\end_inset
which is inserted into the knapsack (
\begin_inset Formula $0\leq x_{i}\leq1$
\end_inset
).
\end_layout
\begin_layout Standard
The numbers
\begin_inset Formula $x_{i}$
\end_inset
adhere to the constraint
\begin_inset Formula $\sum_{i=1}^{n}x_{i}w_{i}\leq W$
\end_inset
.
\end_layout
\begin_layout Standard
Our goal is to maximize the total value of items in the knapsack
\begin_inset Formula $\sum_{i=1}^{n}x_{i}v_{i}$
\end_inset
.
\end_layout
\begin_layout Subsubsection
Algorithm
\end_layout
\begin_layout Standard
We propose a greedy algorithm which yields an optimal solution to this problem.
We notice that greediness is the most natural approach in this case, since
our goal is to maximal the value of the knapsack, and we can (intuitivly)
achieve that by grabing as much as possible from the most valued items.
\end_layout
\begin_layout Standard
[TODO]
\end_layout
\begin_layout Subsection
Independent Vectors Set Problem
\begin_inset Index idx
status open
\begin_layout Plain Layout
Independent Vectors Set
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Suppose we have a finite vectors set
\begin_inset Formula $F$
\end_inset
of
\begin_inset Formula $n$
\end_inset
vectors, in some vector space
\begin_inset Formula $V$
\end_inset
, and a positive weight functions on these vectors
\begin_inset Formula $\mu:V\rightarrow R^{+}$
\end_inset
(this function assigns a positive scalar value to each vector).
\end_layout
\begin_layout Standard
Our goal is to find a subset
\begin_inset Formula $S$
\end_inset
of
\begin_inset Formula $F$
\end_inset
(
\begin_inset Formula $S\subseteq F$
\end_inset
), such that the vectors in
\begin_inset Formula $S$
\end_inset
are linearly independent and the total weight of
\begin_inset Formula $S$
\end_inset
is maximized (
\begin_inset Formula $\mu\left(S\right)=\sum_{v\in S}\mu\left(v\right)$
\end_inset
).
\end_layout
\begin_layout Subsubsection
Algorithm
\end_layout
\begin_layout Standard
In this problem, too, it's evident that greediness is the most intuitive
approach.
We want to maximize the weight of
\begin_inset Formula $S$
\end_inset
, so we just add the vectors with the maximal weight, as long as linear
independence in
\begin_inset Formula $S$
\end_inset
is preserved.
\end_layout
\begin_layout Standard
Formally, our algorithm is:
\end_layout
\begin_layout Standard
\begin_inset Float algorithm
placement H
wide false
sideways false
status open
\begin_layout Enumerate
Sort the vectors in
\begin_inset Formula $F$
\end_inset
by thier weight in descending order, such that
\begin_inset Formula $\mu\left(v_{1}\right)\geq\mu\left(v_{2}\right)\geq...\geq\mu\left(v_{n}\right)$
\end_inset
\end_layout
\begin_layout Enumerate
Initialize
\begin_inset Formula $S$
\end_inset
as the empty set:
\begin_inset Formula $S=\emptyset$
\end_inset
\end_layout
\begin_layout Enumerate
For
\begin_inset Formula $i=1...n$
\end_inset
:
\end_layout
\begin_deeper
\begin_layout Enumerate
If
\begin_inset Formula $S\cup\left\{ v_{i}\right\} $
\end_inset
is linearly independent, update:
\begin_inset Formula $S=S\cup\left\{ v_{i}\right\} $
\end_inset
\end_layout
\end_deeper
\begin_layout Enumerate
Return
\begin_inset Formula $S$
\end_inset
\end_layout
\begin_layout Plain Layout
\begin_inset Caption
\begin_layout Plain Layout
Maximal weight independent vectors set algorithm
\begin_inset CommandInset label
LatexCommand label
name "alg:Maximal-weight-independent"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Subsubsection
Proof
\end_layout
\begin_layout Standard
We want to prove that algorithm
\begin_inset CommandInset ref
LatexCommand ref
reference "alg:Maximal-weight-independent"
\end_inset
indeed returns a set of linearly independent vectors with maximal weight.
\end_layout
\begin_layout Standard
For this, we need to use the following lemma:
\end_layout
\begin_layout Lemma
\begin_inset CommandInset label
LatexCommand label
name "lem:Let--two"
\end_inset
Let
\begin_inset Formula $A,B$
\end_inset
two finite subsets of linearly independent vectors in vector space
\begin_inset Formula $V$
\end_inset
.
Suppose
\begin_inset Formula $\left|A\right|>\left|B\right|$
\end_inset
.
Then there is a vector
\begin_inset Formula $v\in A\backslash B$
\end_inset
such that
\begin_inset Formula $B\cup\left\{ v\right\} $
\end_inset
in linearly independent.
\end_layout
\begin_layout Standard
In others words, if
\begin_inset Formula $A$
\end_inset
has more vectors than
\begin_inset Formula $B$
\end_inset
, then we can find some vector
\begin_inset Formula $v$
\end_inset
in
\begin_inset Formula $A$
\end_inset
and add it to
\begin_inset Formula $B$
\end_inset
such that
\begin_inset Formula $B\cup\left\{ v\right\} $
\end_inset
is also linearly independent.
\end_layout
\begin_layout Proof
We need to show that there is a
\begin_inset Formula $v\in A\backslash B$
\end_inset
that is linearly independent with
\begin_inset Formula $B$
\end_inset
.
We will prove by negation.
Let's suppose that there is no such vector.
This means that
\series bold
all
\series default
vectors in
\begin_inset Formula $A$
\end_inset
are linearly dependent with
\begin_inset Formula $B$
\end_inset
.
In other words,
\begin_inset Formula $\forall v\in A:v\in B$
\end_inset
, which means that
\begin_inset Formula $span\left(A\right)\subseteq span\left(B\right)$
\end_inset
.
But then
\begin_inset Formula $\dim\left(span\left(A\right)\right)\leq\dim\left(span\left(B\right)\right)$
\end_inset
.
\end_layout
\begin_layout Proof
Because
\begin_inset Formula $A$
\end_inset
and
\begin_inset Formula $B$
\end_inset
are sets of linearly independent vectors, then
\begin_inset Formula $\left|A\right|=\dim\left(span\left(A\right)\right)$
\end_inset
and
\begin_inset Formula $\left|B\right|=\dim\left(span\left(B\right)\right)$
\end_inset
, but this means that
\begin_inset Formula $\left|A\right|\leq\left|B\right|$
\end_inset
, which is a contradiction to our assumption that
\begin_inset Formula $\left|A\right|>\left|B\right|$
\end_inset
.
Thus we conclude that indeed there is a vector
\begin_inset Formula $v\in A\backslash B$
\end_inset
such that
\begin_inset Formula $B\cup\left\{ v\right\} $
\end_inset
in linearly independent.
\end_layout
\begin_layout Standard
Now we can continue with the proof of the optimality of algorithm
\begin_inset CommandInset ref
LatexCommand ref
reference "alg:Maximal-weight-independent"
\end_inset
.
\end_layout
\begin_layout Standard
Remember that we want to prove that the set
\begin_inset Formula $S$
\end_inset
which is returned by our algorithm has the maximal weight of all linearly
independent subsets of
\begin_inset Formula $F$
\end_inset
.
\end_layout
\begin_layout Standard
We will prove by negation.
\end_layout
\begin_layout Standard
Suppose there is some better, optimal, solution
\begin_inset Formula $T$
\end_inset
such that
\begin_inset Formula $\mu\left(T\right)>\mu\left(S\right)$
\end_inset
.
\end_layout
\begin_layout Standard
By lemma
\begin_inset CommandInset ref
LatexCommand ref
reference "lem:Let--two"
\end_inset
,
\begin_inset Formula $\left|S\right|=\left|T\right|$
\end_inset
, because:
\end_layout
\begin_layout Enumerate
If
\begin_inset Formula $\left|S\right|>\left|T\right|$
\end_inset
, then by the lemma, there is a vector
\begin_inset Formula $v\in S\backslash T$
\end_inset
such that
\begin_inset Formula $T\cup\left\{ v\right\} $
\end_inset
is linearly independent.
But this contradict the optimality of
\begin_inset Formula $T$
\end_inset
, thus it's impossible.
\end_layout
\begin_layout Enumerate
If
\begin_inset Formula $\left|T\right|>\left|S\right|$
\end_inset
, then by the lemma, there is a vector
\begin_inset Formula $v\in T\backslash S$
\end_inset
such that
\begin_inset Formula $S\cup\left\{ v\right\} $
\end_inset
is linearly independent.
But this contradicts the operation of our algorithm, which was supposed
to add this vector
\begin_inset Formula $v$
\end_inset
to
\begin_inset Formula $S$
\end_inset
.
So this is also impossible.
\end_layout
\begin_layout Standard
Thus indeed
\begin_inset Formula $\left|S\right|=\left|T\right|$
\end_inset
.
\end_layout
\begin_layout Standard
Let's write the vectors in
\begin_inset Formula $S$
\end_inset
and
\begin_inset Formula $T$
\end_inset
by descending weight order:
\end_layout
\begin_layout Standard
\begin_inset Formula $\begin{array}{cc}
S=\left\{ v_{1},v_{2},...,v_{k}\right\} & \mu\left(v_{1}\right)\geq\mu\left(v_{2}\right)\geq...\geq\mu\left(v_{k}\right)\\
T=\left\{ u_{1},u_{2},...,u_{k}\right\} & \mu\left(u_{1}\right)\geq\mu\left(u_{2}\right)\geq...\geq\mu\left(u_{k}\right)
\end{array}$
\end_inset
\end_layout
\begin_layout Standard
Because
\begin_inset Formula $\mu\left(T\right)>\mu\left(S\right)$
\end_inset
, then there must be some index
\begin_inset Formula $i$
\end_inset
which is the first occurance of
\begin_inset Formula $\mu\left(u_{i}\right)>\mu\left(v_{i}\right)$
\end_inset
.
\end_layout
\begin_layout Standard
We denote:
\end_layout
\begin_layout Standard
\begin_inset Formula $A=\left\{ v_{1},...,v_{i-1}\right\} $
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula $B=\left\{ u_{1},...,u_{i-1},u_{i}\right\} $
\end_inset
\end_layout
\begin_layout Standard
Obviously both
\begin_inset Formula $A$
\end_inset
and
\begin_inset Formula $B$
\end_inset
are sets of linearly independent vectors, and
\begin_inset Formula $\left|B\right|>\left|A\right|$
\end_inset
.
By lemma
\begin_inset CommandInset ref
LatexCommand ref
reference "lem:Let--two"
\end_inset
, there is a vector
\begin_inset Formula $u\in B\backslash A$
\end_inset
such that
\begin_inset Formula $A\cup\left\{ u\right\} $
\end_inset
is linearly independent.
Because
\begin_inset Formula $S$
\end_inset
and
\begin_inset Formula $T$
\end_inset
are ordered by descending weights, then the weight of this vector
\begin_inset Formula $u$
\end_inset
(whichever it may be) is at least as the smallest-weight vector in
\begin_inset Formula $B,$
\end_inset
which is
\begin_inset Formula $u_{i}$
\end_inset
.
In other words
\begin_inset Formula $\mu\left(u\right)\geq\mu\left(u_{i}\right)$
\end_inset
.
And by the definition of
\begin_inset Formula $i$
\end_inset
, also
\begin_inset Formula $\mu\left(u_{i}\right)>\mu\left(v_{i}\right)$
\end_inset
, and thus
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\strikeout off
\uuline off
\uwave off
\noun off
\color none
\begin_inset Formula $\mu\left(u\right)>\mu\left(v_{i}\right)$
\end_inset