diff --git a/.github/workflows/R-CMD-check.yaml b/.github/workflows/R-CMD-check.yaml
index 0d25c63..237cc7b 100644
--- a/.github/workflows/R-CMD-check.yaml
+++ b/.github/workflows/R-CMD-check.yaml
@@ -6,13 +6,11 @@ on:
- main
- master
- pre-release
- - censored
pull_request:
branches:
- main
- master
- pre-release
- - censored
name: R-CMD-check
@@ -28,7 +26,7 @@ jobs:
config:
- {os: windows-latest, r: 'release'}
- {os: macOS-latest, r: 'release'}
- - {os: ubuntu-20.04, r: 'release', rspm: "https://packagemanager.rstudio.com/cran/__linux__/focal/latest"}
+ - {os: ubuntu-latest, r: 'release'}
env:
R_REMOTES_NO_ERRORS_FROM_WARNINGS: true
@@ -36,13 +34,13 @@ jobs:
GITHUB_PAT: ${{ secrets.GITHUB_TOKEN }}
steps:
- - uses: actions/checkout@v2
+ - uses: actions/checkout@v3
- - uses: r-lib/actions/setup-r@v1
+ - uses: r-lib/actions/setup-r@v2
with:
r-version: ${{ matrix.config.r }}
- - uses: r-lib/actions/setup-pandoc@v1
+ - uses: r-lib/actions/setup-pandoc@v2
- name: Query dependencies
run: |
@@ -64,8 +62,7 @@ jobs:
while read -r cmd
do
eval sudo $cmd
- apt-get install libcurl4-openssl-dev
- done < <(Rscript -e 'writeLines(remotes::system_requirements("ubuntu", "20.04"))')
+ sudo apt-get install libcurl4-openssl-dev
- name: Install dependencies
run: |
@@ -90,7 +87,6 @@ jobs:
if: runner.os == 'Windows'
env:
_R_CHECK_CRAN_INCOMING_REMOTE_: false
- JAGS_ROOT: "/c/progra~1/JAGS/JAGS-4.2.0"
run: |
options(crayon.enabled = TRUE)
rcmdcheck::rcmdcheck(
diff --git a/.github/workflows/R-CMD-tests.yaml b/.github/workflows/R-CMD-tests.yaml
index d05bf8f..d2682c1 100644
--- a/.github/workflows/R-CMD-tests.yaml
+++ b/.github/workflows/R-CMD-tests.yaml
@@ -6,13 +6,11 @@ on:
- main
- master
- pre-release
- - censored
pull_request:
branches:
- main
- master
- pre-release
- - censored
name: R-CMD-tests
@@ -28,7 +26,7 @@ jobs:
config:
- {os: windows-latest, r: 'release'}
- {os: macOS-latest, r: 'release'}
- - {os: ubuntu-20.04, r: 'release', rspm: "https://packagemanager.rstudio.com/cran/__linux__/focal/latest"}
+ - {os: ubuntu-latest, r: 'release'}
env:
R_REMOTES_NO_ERRORS_FROM_WARNINGS: true
@@ -36,13 +34,13 @@ jobs:
GITHUB_PAT: ${{ secrets.GITHUB_TOKEN }}
steps:
- - uses: actions/checkout@v2
+ - uses: actions/checkout@v3
- - uses: r-lib/actions/setup-r@v1
+ - uses: r-lib/actions/setup-r@v2
with:
r-version: ${{ matrix.config.r }}
- - uses: r-lib/actions/setup-pandoc@v1
+ - uses: r-lib/actions/setup-pandoc@v2
- name: Query dependencies
run: |
@@ -64,7 +62,6 @@ jobs:
while read -r cmd
do
eval sudo $cmd
- done < <(Rscript -e 'writeLines(remotes::system_requirements("ubuntu", "20.04"))')
- name: Install and test z-curve (non-Windows)
diff --git a/.github/workflows/pkgdown.yaml b/.github/workflows/pkgdown.yaml
index e809466..225c2c8 100644
--- a/.github/workflows/pkgdown.yaml
+++ b/.github/workflows/pkgdown.yaml
@@ -14,11 +14,11 @@ jobs:
env:
GITHUB_PAT: ${{ secrets.GITHUB_TOKEN }}
steps:
- - uses: actions/checkout@v2
+ - uses: actions/checkout@v3
- - uses: r-lib/actions/setup-r@v1
+ - uses: r-lib/actions/setup-r@v2
- - uses: r-lib/actions/setup-pandoc@v1
+ - uses: r-lib/actions/setup-pandoc@v2
- name: Query dependencies
run: |
diff --git a/DESCRIPTION b/DESCRIPTION
index 52b936b..d323d92 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -1,6 +1,6 @@
Package: zcurve
Title: An Implementation of Z-Curves
-Version: 2.3.0
+Version: 2.4.0
Authors@R: c(
person("František", "Bartoš", email = "f.bartos96@gmail.com", role = c("aut", "cre")),
person("Ulrich", "Schimmack", email = "ulrich.schimmack@utoronto.ca", role = c("aut")))
@@ -17,14 +17,16 @@ License: GPL-3
Encoding: UTF-8
LazyData: true
Roxygen: list(markdown = TRUE)
-RoxygenNote: 7.2.1
+RoxygenNote: 7.2.3
Imports:
Rcpp (>= 1.0.2),
nleqslv,
stats,
evmix,
graphics,
- Rdpack
+ ggplot2,
+ Rdpack,
+ rlang
LinkingTo: Rcpp
Suggests:
parallel,
diff --git a/NAMESPACE b/NAMESPACE
index a08a7bd..8390457 100644
--- a/NAMESPACE
+++ b/NAMESPACE
@@ -33,5 +33,6 @@ export(zcurve_clustered)
export(zcurve_data)
importFrom(Rcpp,sourceCpp)
importFrom(Rdpack,reprompt)
+importFrom(rlang,.data)
importFrom(utils,head)
useDynLib(zcurve, .registration = TRUE)
diff --git a/NEWS.md b/NEWS.md
index 1bc230a..becec42 100644
--- a/NEWS.md
+++ b/NEWS.md
@@ -1,3 +1,6 @@
+## version 2.4.0
+- Implementation of ggploting function.
+
## version 2.3.0
- Implementation of parallel bootstrap.
diff --git a/R/main.R b/R/main.R
index a23046e..2d499ef 100644
--- a/R/main.R
+++ b/R/main.R
@@ -66,7 +66,7 @@
#' "max_iter" = 9999,
#' "alpha" = .10
#' )
-#' \donttest{m1.EM <- zcurve(OSC.z, method = "EM", bootstrap = FALSE, control = ctr1)}
+#' \dontrun{m1.EM <- zcurve(OSC.z, method = "EM", bootstrap = FALSE, control = ctr1)}
#' # see '?control_EM' and '?control_density' for more information about different
#' # z-curves specifications
#' @seealso [summary.zcurve()], [plot.zcurve()], [control_EM], [control_density]
@@ -540,6 +540,9 @@ print.summary.zcurve <- function(x, ...){
#' to \code{FALSE}.
#' @param extrapolate Scale the chart to the extrapolated area. Defaults
#' to \code{FALSE}.
+#' @param plot_type Type of plot to by produced. Defaults to \code{"base"}
+#' for th base plotting function. An alternative is \code{"ggplot"} for a
+#' ggplot2.
#' @param y.anno A vector of length 8 specifying the y-positions
#' of the individual annotation lines relative to the figure's height.
#' Defaults to \code{c(.95, .88, .78, .71, .61, .53, .43, .35)}
@@ -553,7 +556,7 @@ print.summary.zcurve <- function(x, ...){
#' @export plot.zcurve
#' @rawNamespace S3method(plot, zcurve)
#'
-#' @examples
+#' @examples \dontrun{
#' # simulate some z-statistics and fit a z-curve
#' z <- abs(rnorm(300,3))
#' m.EM <- zcurve(z, method = "EM", bootstrap = 100)
@@ -566,11 +569,21 @@ print.summary.zcurve <- function(x, ...){
#'
#' # change the location of the annotation to the left
#' plot(m.EM, annotation = TRUE, CI = TRUE, x_text = 0)
+#' }
#' @seealso [zcurve()]
-plot.zcurve <- function(x, annotation = FALSE, CI = FALSE, extrapolate = FALSE,
+plot.zcurve <- function(x, annotation = FALSE, CI = FALSE, extrapolate = FALSE, plot_type = "base",
y.anno = c(.95, .88, .78, .71, .61, .53, .43, .35), x.anno = .6, cex.anno = 1, ...){
- if(is.null(x$boot))CI <- FALSE
+ if(is.null(x$boot))
+ CI <- FALSE
+
+ if(substr(tolower(plot_type), 1, 1) == "b"){
+ plot_type <- "base"
+ }else if(substr(tolower(plot_type), 1, 1) == "g"){
+ plot_type <- "ggplot"
+ }else{
+ stop("Unrecognized `plot_type` argument. The possibly options are `base` and `ggplot`.")
+ }
additional <- list(...)
if(is.null(additional$main)){
@@ -701,86 +714,286 @@ plot.zcurve <- function(x, annotation = FALSE, CI = FALSE, extrapolate
x_min <- 0
}
- # plot z-scores used for fitting
- graphics::plot(h1,
- freq = FALSE, density = 0, angle = 0, border = "blue",
- xlim = c(x_min, x_max),
- ylim = c(y_min, y_max),
- ylab = ylab,
- xlab = xlab,
- main = main,
- cex.lab = cex.lab,
- cex.axis = cex.axis,
- lwd = 1, las = 1)
- # and un-used z-scores
- if(!is.null(h2)){
- graphics::par(new=TRUE)
- graphics::plot(h2,
- freq = FALSE, density = 0, angle = 0, border ="grey30",
+
+ if(plot_type == "base"){
+
+ # plot z-scores used for fitting
+ graphics::plot(h1,
+ freq = FALSE, density = 0, angle = 0, border = "blue",
xlim = c(x_min, x_max),
ylim = c(y_min, y_max),
- axes = FALSE, ann = FALSE, lwd = 1, las = 1)
- }
- # add the density estimate if the model was estimated by density
- if(x$method == "density"){
- graphics::lines(x$fit$density$x, x$fit$density$y, lty = 1, col = "grey60", lwd = 4)
- }
- # significance line
- if(x.anno*x_max < x$control$a){
- graphics::lines(rep(x$control$a,2), c(0, (min(y.anno) - .025)*y_max), col = "blue", lty = 2, lwd = 1)
- graphics::lines(rep(stats::qnorm(x$control$sig_level/2, lower.tail = FALSE),2), c(0, (min(y.anno) - .025)*y_max), col = "red", lty = 1, lwd = 2)
- }else{
- graphics::abline(v = x$control$a, col = "blue", lty = 2, lwd = 1)
- graphics::abline(v = stats::qnorm(x$control$sig_level/2, lower.tail = FALSE), col = "red", lty = 1, lwd = 2)
- }
- # predicted densities
- graphics::lines(x_seq, y_den, lty = 1, col = "blue", lwd = 5)
- if(CI & !is.null(x$boot)){
- graphics::lines(x_seq, y_den_l.CI, lty = 3, col = "blue", lwd = 3)
- graphics::lines(x_seq, y_den_u.CI, lty = 3, col = "blue", lwd = 3)
- }
- # add annotation
- if(annotation){
- x_summary <- summary(x)
-
- graphics::text(x.anno, y_max*y.anno[1] , paste0("Range: ",.r2d(min(x$data))," to ",.r2d(max(x$data))),
- adj = c(0, 0), cex = cex.anno)
-
- graphics::text(x.anno, y_max*y.anno[2] , paste0(x_summary$model$N_all, " tests, ", x_summary$model$N_sig, " significant"),
- adj = c(0, 0), cex = cex.anno)
-
- obs_proportion <- stats::prop.test(x_summary$model$N_sig, x_summary$model$N_all)
- graphics::text(x.anno, y_max*y.anno[3] , paste0("Observed discovery rate:"),
- adj = c(0, 0), cex = cex.anno)
- graphics::text(x.anno, y_max*y.anno[4] , paste0(.r2d(obs_proportion$estimate), " 95% CI [", .r2d(obs_proportion$conf.int[1]), " ,",
- .r2d(obs_proportion$conf.int[2]), "]"),
- adj = c(0, 0), cex = cex.anno)
-
- if(!is.null(x$boot)){
- graphics::text(x.anno, y_max*y.anno[5] , paste0("Expected discovery rate:"),
- adj = c(0, 0), cex = cex.anno)
- graphics::text(x.anno, y_max*y.anno[6] , paste0(.r2d(x_summary$coefficients["EDR","Estimate"]), " 95% CI [", .r2d(x_summary$coefficients["EDR","l.CI"]), " ,",
- .r2d(x_summary$coefficients["EDR","u.CI"]), "]"),
- adj = c(0, 0), cex = cex.anno)
-
- graphics::text(x.anno, y_max*y.anno[7] , paste0("Expected replicability rate:"),
- adj = c(0, 0), cex = cex.anno)
- graphics::text(x.anno, y_max*y.anno[8] , paste0(.r2d(x_summary$coefficients["ERR","Estimate"]), " 95% CI [", .r2d(x_summary$coefficients["ERR","l.CI"]), " ,",
- .r2d(x_summary$coefficients["ERR","u.CI"]), "]"),
- adj = c(0, 0), cex = cex.anno)
+ ylab = ylab,
+ xlab = xlab,
+ main = main,
+ cex.lab = cex.lab,
+ cex.axis = cex.axis,
+ lwd = 1, las = 1)
+ # and un-used z-scores
+ if(!is.null(h2)){
+ graphics::par(new=TRUE)
+ graphics::plot(h2,
+ freq = FALSE, density = 0, angle = 0, border ="grey30",
+ xlim = c(x_min, x_max),
+ ylim = c(y_min, y_max),
+ axes = FALSE, ann = FALSE, lwd = 1, las = 1)
+ }
+ # add the density estimate if the model was estimated by density
+ if(x$method == "density"){
+ graphics::lines(x$fit$density$x, x$fit$density$y, lty = 1, col = "grey60", lwd = 4)
+ }
+ # significance line
+ if(x.anno*x_max < x$control$a){
+ graphics::lines(rep(x$control$a,2), c(0, (min(y.anno) - .025)*y_max), col = "blue", lty = 2, lwd = 1)
+ graphics::lines(rep(stats::qnorm(x$control$sig_level/2, lower.tail = FALSE),2), c(0, (min(y.anno) - .025)*y_max), col = "red", lty = 1, lwd = 2)
}else{
- graphics::text(x.anno, y_max*y.anno[5] , paste0("Expected discovery rate:"),
+ graphics::abline(v = x$control$a, col = "blue", lty = 2, lwd = 1)
+ graphics::abline(v = stats::qnorm(x$control$sig_level/2, lower.tail = FALSE), col = "red", lty = 1, lwd = 2)
+ }
+ # predicted densities
+ graphics::lines(x_seq, y_den, lty = 1, col = "blue", lwd = 5)
+ if(CI & !is.null(x$boot)){
+ graphics::lines(x_seq, y_den_l.CI, lty = 3, col = "blue", lwd = 3)
+ graphics::lines(x_seq, y_den_u.CI, lty = 3, col = "blue", lwd = 3)
+ }
+ # add annotation
+ if(annotation){
+ x_summary <- summary(x)
+
+ graphics::text(x.anno, y_max*y.anno[1] , paste0("Range: ",.r2d(min(x$data))," to ",.r2d(max(x$data))),
adj = c(0, 0), cex = cex.anno)
- graphics::text(x.anno, y_max*y.anno[6] , paste0(.r2d(x_summary$coefficients["EDR","Estimate"])),
+
+ graphics::text(x.anno, y_max*y.anno[2] , paste0(x_summary$model$N_all, " tests, ", x_summary$model$N_sig, " significant"),
adj = c(0, 0), cex = cex.anno)
- graphics::text(x.anno, y_max*y.anno[7] , paste0("Expected replicability rate:"),
+ obs_proportion <- stats::prop.test(x_summary$model$N_sig, x_summary$model$N_all)
+ graphics::text(x.anno, y_max*y.anno[3] , paste0("Observed discovery rate:"),
adj = c(0, 0), cex = cex.anno)
- graphics::text(x.anno, y_max*y.anno[8] , paste0(.r2d(x_summary$coefficients["ERR","Estimate"])),
+ graphics::text(x.anno, y_max*y.anno[4] , paste0(.r2d(obs_proportion$estimate), " 95% CI [", .r2d(obs_proportion$conf.int[1]), " ,",
+ .r2d(obs_proportion$conf.int[2]), "]"),
adj = c(0, 0), cex = cex.anno)
+
+ if(!is.null(x$boot)){
+ graphics::text(x.anno, y_max*y.anno[5] , paste0("Expected discovery rate:"),
+ adj = c(0, 0), cex = cex.anno)
+ graphics::text(x.anno, y_max*y.anno[6] , paste0(.r2d(x_summary$coefficients["EDR","Estimate"]), " 95% CI [", .r2d(x_summary$coefficients["EDR","l.CI"]), " ,",
+ .r2d(x_summary$coefficients["EDR","u.CI"]), "]"),
+ adj = c(0, 0), cex = cex.anno)
+
+ graphics::text(x.anno, y_max*y.anno[7] , paste0("Expected replicability rate:"),
+ adj = c(0, 0), cex = cex.anno)
+ graphics::text(x.anno, y_max*y.anno[8] , paste0(.r2d(x_summary$coefficients["ERR","Estimate"]), " 95% CI [", .r2d(x_summary$coefficients["ERR","l.CI"]), " ,",
+ .r2d(x_summary$coefficients["ERR","u.CI"]), "]"),
+ adj = c(0, 0), cex = cex.anno)
+ }else{
+ graphics::text(x.anno, y_max*y.anno[5] , paste0("Expected discovery rate:"),
+ adj = c(0, 0), cex = cex.anno)
+ graphics::text(x.anno, y_max*y.anno[6] , paste0(.r2d(x_summary$coefficients["EDR","Estimate"])),
+ adj = c(0, 0), cex = cex.anno)
+
+ graphics::text(x.anno, y_max*y.anno[7] , paste0("Expected replicability rate:"),
+ adj = c(0, 0), cex = cex.anno)
+ graphics::text(x.anno, y_max*y.anno[8] , paste0(.r2d(x_summary$coefficients["ERR","Estimate"])),
+ adj = c(0, 0), cex = cex.anno)
+ }
+ }
+
+ return(invisible())
+
+ }else if(plot_type == "ggplot"){
+
+ out <- ggplot2::ggplot() +
+ ggplot2::scale_x_continuous(
+ name = xlab,
+ breaks = pretty(c(x_min, x_max)),
+ limits = c(x_min, x_max)) +
+ ggplot2::scale_y_continuous(
+ name = ylab,
+ breaks = pretty(c(y_min, y_max)),
+ limits = c(y_min, y_max)) +
+ ggplot2::ggtitle(main) +
+ ggplot2::theme_classic()
+
+ # add significant z-scores
+ out <- out + ggplot2::geom_rect(
+ data = data.frame(
+ xmin = h1$breaks[-length(h1$breaks)],
+ xmax = h1$breaks[-1],
+ ymin = 0,
+ ymax = h1$density),
+ mapping = ggplot2::aes(
+ xmin = .data[["xmin"]],
+ xmax = .data[["xmax"]],
+ ymin = .data[["ymin"]],
+ ymax = .data[["ymax"]]),
+ fill = "white", col = "blue")
+
+ # add non-significant z-scores (if any)
+ if(!is.null(h2)){
+ out <- out + ggplot2::geom_rect(
+ data = data.frame(
+ xmin = h2$breaks[-length(h2$breaks)],
+ xmax = h2$breaks[-1],
+ ymin = 0,
+ ymax = h2$density),
+ mapping = ggplot2::aes(
+ xmin = .data[["xmin"]],
+ xmax = .data[["xmax"]],
+ ymin = .data[["ymin"]],
+ ymax = .data[["ymax"]]),
+ fill = "white", col = "grey")
+ }
+
+ # add the density estimate if the model was estimated by density
+ if(x$method == "density"){
+ out <- out + ggplot2::geom_line(
+ data = data.frame(
+ x = x$fit$density$x,
+ y = x$fit$density$y
+ ),
+ mapping = ggplot2::aes(
+ x = .data[["x"]],
+ y = .data[["y"]]
+ ),
+ linewidth = 1, col = "grey60", linetype = 4)
}
+
+ # significance line
+ if(x.anno*x_max < x$control$a){
+
+ #do not overdraw the annotation in case it is in the way
+ out <- out + ggplot2::geom_line(
+ data = data.frame(
+ x = rep(x$control$a,2),
+ y = c(0, (min(y.anno) - .025)*y_max)
+ ),
+ mapping = ggplot2::aes(
+ x = .data[["x"]],
+ y = .data[["y"]]
+ ),
+ linewidth = 1, col = "blue", linetype = 1)
+ out <- out + ggplot2::geom_line(
+ data = data.frame(
+ x = rep(stats::qnorm(x$control$sig_level/2, lower.tail = FALSE),2),
+ y = c(0, (min(y.anno) - .025)*y_max)
+ ),
+ mapping = ggplot2::aes(
+ x = .data[["x"]],
+ y = .data[["y"]]
+ ),
+ linewidth = 1.5, col = "red", linetype = 2)
+
+ }else{
+
+ out <- out + ggplot2::geom_vline(
+ xintercept = x$control$a,
+ linewidth = 1, col = "blue", linetype = 1)
+ out <- out + ggplot2::geom_vline(
+ xintercept = stats::qnorm(x$control$sig_level/2, lower.tail = FALSE),
+ linewidth = 1.5, col = "red", linetype = 2)
+
+ }
+
+ # predicted densities
+ out <- out + ggplot2::geom_line(
+ data = data.frame(
+ x = x_seq,
+ y = y_den
+ ),
+ mapping = ggplot2::aes(
+ x = .data[["x"]],
+ y = .data[["y"]]
+ ),
+ linewidth = 2, col = "blue", linetype = 1)
+
+ if(CI & !is.null(x$boot)){
+ out <- out + ggplot2::geom_line(
+ data = data.frame(
+ x = x_seq,
+ y = y_den_l.CI
+ ),
+ mapping = ggplot2::aes(
+ x = .data[["x"]],
+ y = .data[["y"]]
+ ),
+ linewidth = 1.75, col = "blue", linetype = 3)
+ out <- out + ggplot2::geom_line(
+ data = data.frame(
+ x = x_seq,
+ y = y_den_u.CI
+ ),
+ mapping = ggplot2::aes(
+ x = .data[["x"]],
+ y = .data[["y"]]
+ ),
+ linewidth = 1.75, col = "blue", linetype = 3)
+ }
+
+ # add annotation
+ if(annotation){
+
+ x_summary <- summary(x)
+ obs_proportion <- stats::prop.test(x_summary$model$N_sig, x_summary$model$N_all)
+ ggplot2_base_size <- 5
+
+ out <- out + ggplot2::geom_text(
+ data = data.frame(
+ x = x.anno,
+ y = y_max*y.anno[1:4],
+ label = c(
+ paste0("Range: ",.r2d(min(x$data))," to ",.r2d(max(x$data))),
+ paste0(x_summary$model$N_all, " tests, ", x_summary$model$N_sig, " significant"),
+ paste0("Observed discovery rate:"),
+ paste0(.r2d(obs_proportion$estimate), " 95% CI [", .r2d(obs_proportion$conf.int[1]), " ,",
+ .r2d(obs_proportion$conf.int[2]), "]")
+ )
+ ),
+ mapping = ggplot2::aes(
+ x = .data[["x"]],
+ y = .data[["y"]],
+ label = .data[["label"]]),
+ hjust = 0, vjust = 0, size = ggplot2_base_size*cex.anno)
+
+ if(!is.null(x$boot)){
+ out <- out + ggplot2::geom_text(
+ data = data.frame(
+ x = x.anno,
+ y = y_max*y.anno[5:8],
+ label = c(
+ paste0("Expected discovery rate:"),
+ paste0(.r2d(x_summary$coefficients["EDR","Estimate"]), " 95% CI [", .r2d(x_summary$coefficients["EDR","l.CI"]), " ,",
+ .r2d(x_summary$coefficients["EDR","u.CI"]), "]"),
+ paste0("Expected replicability rate:"),
+ paste0(.r2d(x_summary$coefficients["ERR","Estimate"]), " 95% CI [", .r2d(x_summary$coefficients["ERR","l.CI"]), " ,",
+ .r2d(x_summary$coefficients["ERR","u.CI"]), "]")
+ )
+ ),
+ mapping = ggplot2::aes(
+ x = .data[["x"]],
+ y = .data[["y"]],
+ label = .data[["label"]]),
+ hjust = 0, vjust = 0, size = ggplot2_base_size*cex.anno)
+ }else{
+ out <- out + ggplot2::geom_text(
+ data = data.frame(
+ x = x.anno,
+ y = y_max*y.anno[5:8],
+ label = c(
+ paste0("Expected discovery rate:"),
+ paste0(.r2d(x_summary$coefficients["EDR","Estimate"])),
+ paste0("Expected replicability rate:"),
+ paste0(.r2d(x_summary$coefficients["ERR","Estimate"]))
+ )
+ ),
+ mapping = ggplot2::aes(
+ x = .data[["x"]],
+ y = .data[["y"]],
+ label = .data[["label"]]),
+ hjust = 0, vjust = 0, size = ggplot2_base_size*cex.anno)
+ }
+ }
+ return(out)
}
}
diff --git a/R/zcurve-package.R b/R/zcurve-package.R
index 8dbddf8..24fbe20 100644
--- a/R/zcurve-package.R
+++ b/R/zcurve-package.R
@@ -8,5 +8,6 @@
#' @useDynLib zcurve, .registration = TRUE
#' @importFrom Rcpp sourceCpp
#' @importFrom Rdpack reprompt
+#' @importFrom rlang .data
## usethis namespace: end
NULL
diff --git a/R/zcurve_EM.R b/R/zcurve_EM.R
index 46cdb7c..22a6e78 100644
--- a/R/zcurve_EM.R
+++ b/R/zcurve_EM.R
@@ -234,7 +234,7 @@
#' fit_reps = 50,
#' mu = c(0, 1.5, 3, 4.5, 6)
#' )
-#' \donttest{zcurve(OSC.z, method = "EM", control = ctrl)}
+#' \dontrun{zcurve(OSC.z, method = "EM", control = ctrl)}
#'
#' @seealso [zcurve()], [control_density]
NULL
diff --git a/R/zcurve_density.R b/R/zcurve_density.R
index c13d46e..2b84958 100644
--- a/R/zcurve_density.R
+++ b/R/zcurve_density.R
@@ -193,7 +193,7 @@
#' version = 1,
#' max_iter = 300
#' )
-#' \donttest{zcurve(OSC.z, method = "density", control = ctrl)}
+#' \dontrun{zcurve(OSC.z, method = "density", control = ctrl)}
#'
#' @seealso [zcurve()], [control_density], [control_EM]
NULL
@@ -349,7 +349,7 @@ NULL
#' max_iter = 300,
#' criterion = 1e-4
#' )
-#' \donttest{zcurve(OSC.z, method = "density", control = ctrl)}
+#' \dontrun{zcurve(OSC.z, method = "density", control = ctrl)}
#'
#' @seealso [zcurve()], [control_density_v1], [control_EM]
NULL
diff --git a/man/control_EM.Rd b/man/control_EM.Rd
index b2c4a85..5353d78 100644
--- a/man/control_EM.Rd
+++ b/man/control_EM.Rd
@@ -64,7 +64,7 @@ ctrl <- list(
fit_reps = 50,
mu = c(0, 1.5, 3, 4.5, 6)
)
-\donttest{zcurve(OSC.z, method = "EM", control = ctrl)}
+\dontrun{zcurve(OSC.z, method = "EM", control = ctrl)}
}
\references{
diff --git a/man/control_density.Rd b/man/control_density.Rd
index 2104f3f..3422f9d 100644
--- a/man/control_density.Rd
+++ b/man/control_density.Rd
@@ -77,7 +77,7 @@ ctrl <- list(
max_iter = 300,
criterion = 1e-4
)
-\donttest{zcurve(OSC.z, method = "density", control = ctrl)}
+\dontrun{zcurve(OSC.z, method = "density", control = ctrl)}
}
\references{
diff --git a/man/control_density_v1.Rd b/man/control_density_v1.Rd
index 7227abc..b4e89d6 100644
--- a/man/control_density_v1.Rd
+++ b/man/control_density_v1.Rd
@@ -45,7 +45,7 @@ ctrl <- list(
version = 1,
max_iter = 300
)
-\donttest{zcurve(OSC.z, method = "density", control = ctrl)}
+\dontrun{zcurve(OSC.z, method = "density", control = ctrl)}
}
\references{
diff --git a/man/plot.zcurve.Rd b/man/plot.zcurve.Rd
index 582b366..80c87a6 100644
--- a/man/plot.zcurve.Rd
+++ b/man/plot.zcurve.Rd
@@ -9,6 +9,7 @@
annotation = FALSE,
CI = FALSE,
extrapolate = FALSE,
+ plot_type = "base",
y.anno = c(0.95, 0.88, 0.78, 0.71, 0.61, 0.53, 0.43, 0.35),
x.anno = 0.6,
cex.anno = 1,
@@ -27,6 +28,10 @@ to \code{FALSE}.}
\item{extrapolate}{Scale the chart to the extrapolated area. Defaults
to \code{FALSE}.}
+\item{plot_type}{Type of plot to by produced. Defaults to \code{"base"}
+for th base plotting function. An alternative is \code{"ggplot"} for a
+ggplot2.}
+
\item{y.anno}{A vector of length 8 specifying the y-positions
of the individual annotation lines relative to the figure's height.
Defaults to \code{c(.95, .88, .78, .71, .61, .53, .43, .35)}}
@@ -43,6 +48,7 @@ of annotations relative to the figure's width.}
Plot fitted z-curve object
}
\examples{
+\dontrun{
# simulate some z-statistics and fit a z-curve
z <- abs(rnorm(300,3))
m.EM <- zcurve(z, method = "EM", bootstrap = 100)
@@ -56,6 +62,7 @@ plot(m.EM, annotation = TRUE, CI = TRUE)
# change the location of the annotation to the left
plot(m.EM, annotation = TRUE, CI = TRUE, x_text = 0)
}
+}
\seealso{
\code{\link[=zcurve]{zcurve()}}
}
diff --git a/man/zcurve.Rd b/man/zcurve.Rd
index 12b5254..ec0141c 100644
--- a/man/zcurve.Rd
+++ b/man/zcurve.Rd
@@ -94,7 +94,7 @@ ctr1 <- list(
"max_iter" = 9999,
"alpha" = .10
)
-\donttest{m1.EM <- zcurve(OSC.z, method = "EM", bootstrap = FALSE, control = ctr1)}
+\dontrun{m1.EM <- zcurve(OSC.z, method = "EM", bootstrap = FALSE, control = ctr1)}
# see '?control_EM' and '?control_density' for more information about different
# z-curves specifications
}
diff --git a/tests/testthat/_snaps/zcurve/z-curve-cens-em-ggplot.svg b/tests/testthat/_snaps/zcurve/z-curve-cens-em-ggplot.svg
new file mode 100644
index 0000000..2a48b56
--- /dev/null
+++ b/tests/testthat/_snaps/zcurve/z-curve-cens-em-ggplot.svg
@@ -0,0 +1,89 @@
+
+
diff --git a/tests/testthat/_snaps/zcurve/z-curve-clustered-mixed-ggplot-1.svg b/tests/testthat/_snaps/zcurve/z-curve-clustered-mixed-ggplot-1.svg
new file mode 100644
index 0000000..7a03ee9
--- /dev/null
+++ b/tests/testthat/_snaps/zcurve/z-curve-clustered-mixed-ggplot-1.svg
@@ -0,0 +1,100 @@
+
+
diff --git a/tests/testthat/_snaps/zcurve/z-curve-clustered-mixed-ggplot-2.svg b/tests/testthat/_snaps/zcurve/z-curve-clustered-mixed-ggplot-2.svg
new file mode 100644
index 0000000..f4d8ad5
--- /dev/null
+++ b/tests/testthat/_snaps/zcurve/z-curve-clustered-mixed-ggplot-2.svg
@@ -0,0 +1,100 @@
+
+
diff --git a/tests/testthat/_snaps/zcurve/z-curve-em-ggplot.svg b/tests/testthat/_snaps/zcurve/z-curve-em-ggplot.svg
new file mode 100644
index 0000000..abc688c
--- /dev/null
+++ b/tests/testthat/_snaps/zcurve/z-curve-em-ggplot.svg
@@ -0,0 +1,108 @@
+
+
diff --git a/tests/testthat/_snaps/zcurve/z-curve-kd2-ggplot.svg b/tests/testthat/_snaps/zcurve/z-curve-kd2-ggplot.svg
new file mode 100644
index 0000000..83ea8dc
--- /dev/null
+++ b/tests/testthat/_snaps/zcurve/z-curve-kd2-ggplot.svg
@@ -0,0 +1,99 @@
+
+
diff --git a/tests/testthat/_snaps/zcurve/z-curve-mixed-em-ggplot.svg b/tests/testthat/_snaps/zcurve/z-curve-mixed-em-ggplot.svg
new file mode 100644
index 0000000..1a8f0b2
--- /dev/null
+++ b/tests/testthat/_snaps/zcurve/z-curve-mixed-em-ggplot.svg
@@ -0,0 +1,89 @@
+
+
diff --git a/tests/testthat/test-zcurve.R b/tests/testthat/test-zcurve.R
index d65c644..f92118d 100644
--- a/tests/testthat/test-zcurve.R
+++ b/tests/testthat/test-zcurve.R
@@ -60,6 +60,7 @@ test_that("z-curve EM can be fitted and reproduces OSC results", {
# plot
expect_doppelganger("z-curve EM", function()plot(fit.EM, main = "OSC (with EM)", annotation = TRUE, CI = TRUE))
+ expect_doppelganger("z-curve EM (ggplot)", suppressWarnings(plot(fit.EM, main = "OSC (with EM)", annotation = TRUE, CI = TRUE, plot_type = "ggplot")))
})
test_that("z-curve KD2 can be fitted and reproduces OSC results", {
@@ -100,6 +101,7 @@ test_that("z-curve KD2 can be fitted and reproduces OSC results", {
# plot
expect_doppelganger("z-curve KD2", function()plot(fit.KD2))
+ expect_doppelganger("z-curve KD2 (ggplot)", plot(fit.KD2, plot_type = "ggplot"))
})
test_that("z-curve EM censoring works", {
@@ -131,6 +133,7 @@ test_that("z-curve EM censoring works", {
# plot
expect_doppelganger("z-curve mixed EM", function()plot(fit.mixed, CI = TRUE))
+ expect_doppelganger("z-curve mixed EM (ggplot)", plot(fit.mixed, CI = TRUE, plot_type = "ggplot"))
# censoring only
@@ -155,6 +158,7 @@ test_that("z-curve EM censoring works", {
# plot
expect_doppelganger("z-curve cens EM", function()plot(fit.cens, CI = TRUE))
+ expect_doppelganger("z-curve cens EM (ggplot)", plot(fit.cens, CI = TRUE, plot_type = "ggplot"))
})
test_that("z-curve clustered works", {
@@ -208,7 +212,7 @@ test_that("z-curve clustered works", {
plot(fitw)
})
-
+
# precise
data <- paste0("z = ",z)
data <- zcurve_data(data, id)
@@ -301,4 +305,7 @@ test_that("z-curve clustered works", {
plot(fitb)
plot(fitw)
})
+
+ expect_doppelganger("z-curve clustered mixed (ggplot-1)", plot(fitb, plot_type = "ggplot"))
+ expect_doppelganger("z-curve clustered mixed (ggplot-2)", plot(fitw, plot_type = "ggplot"))
})
\ No newline at end of file