-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsplit.jl
130 lines (106 loc) · 3.54 KB
/
split.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
"""
fluxSplit(Q, Fp, Fm, Ax, Ay, Az, tag)
Do Steger-Warming flux-vector splitting on grid points (include ghosts).
...
# Arguments
- `Q`: primitive variables
- `Fp, Fm`: F+ (plus) and F-(minus) fluxes.
- `Ax, Ay, Az`: metrics respect to split direction, e.g. `dξdx, dξdy, dξdz` for ξ direction.
- `tag`: IBM tag, 0-fluid, 1-solid, 2-boudnary, 3-ghost
# Notes
- For non-perfect gas, speed of sound is approximated.
...
"""
function fluxSplit(Q, Fp, Fm, Ax, Ay, Az, tag)
i = (blockIdx().x-1i32)* blockDim().x + threadIdx().x
j = (blockIdx().y-1i32)* blockDim().y + threadIdx().y
k = (blockIdx().z-1i32)* blockDim().z + threadIdx().z
if i > Nxp+2*NG || j > Ny+2*NG || k > Nz+2*NG
return
end
if tag[i, j, k] == 1
return
end
@inbounds ρ = Q[i, j, k, 1]
@inbounds u = Q[i, j, k, 2]
@inbounds v = Q[i, j, k, 3]
@inbounds w = Q[i, j, k, 4]
@inbounds p = Q[i, j, k, 5]
@inbounds ei = Q[i, j, k, 7]
@inbounds A1 = Ax[i, j, k]
@inbounds A2 = Ay[i, j, k]
@inbounds A3 = Az[i, j, k]
γ = p/ei + 1
@fastmath c = sqrt(γ*p/ρ)
# γ = 1.4
@fastmath ss = sqrt(A1^2 + A2^2 + A3^2)
E1 = A1*u + A2*v + A3*w
E2 = E1 - c*ss
E3 = E1 + c*ss
ss = 1/ss
A1 *= ss
A2 *= ss
A3 *= ss
E1P = (E1 + sqrt(E1^2+SWϵ2)) * 0.5
E2P = (E2 + sqrt(E2^2+SWϵ2)) * 0.5
E3P = (E3 + sqrt(E3^2+SWϵ2)) * 0.5
E1M = E1 - E1P
E2M = E2 - E2P
E3M = E3 - E3P
uc1 = u - c * A1
uc2 = u + c * A1
vc1 = v - c * A2
vc2 = v + c * A2
wc1 = w - c * A3
wc2 = w + c * A3
vvc1 = (uc1^2 + vc1^2 + wc1^2) * 0.50
vvc2 = (uc2^2 + vc2^2 + wc2^2) * 0.50
vv = (γ - 1.0) * (u^2 + v^2 + w^2)
W2 = (3-γ)/(2*(γ-1)) * c^2
tmp1 = ρ/(2 * γ)
tmp2 = 2 * (γ - 1)
@inbounds Fp[i, j, k, 1] = tmp1 * (tmp2 * E1P + E2P + E3P)
@inbounds Fp[i, j, k, 2] = tmp1 * (tmp2 * E1P * u + E2P * uc1 + E3P * uc2)
@inbounds Fp[i, j, k, 3] = tmp1 * (tmp2 * E1P * v + E2P * vc1 + E3P * vc2)
@inbounds Fp[i, j, k, 4] = tmp1 * (tmp2 * E1P * w + E2P * wc1 + E3P * wc2)
@inbounds Fp[i, j, k, 5] = tmp1 * (E1P * vv + E2P * vvc1 + E3P * vvc2 + W2 * (E2P + E3P))
@inbounds Fm[i, j, k, 1] = tmp1 * (tmp2 * E1M + E2M + E3M)
@inbounds Fm[i, j, k, 2] = tmp1 * (tmp2 * E1M * u + E2M * uc1 + E3M * uc2)
@inbounds Fm[i, j, k, 3] = tmp1 * (tmp2 * E1M * v + E2M * vc1 + E3M * vc2)
@inbounds Fm[i, j, k, 4] = tmp1 * (tmp2 * E1M * w + E2M * wc1 + E3M * wc2)
@inbounds Fm[i, j, k, 5] = tmp1 * (E1M * vv + E2M * vvc1 + E3M * vvc2 + W2 * (E2M + E3M))
return
end
"""
split(ρi, Q, Fp, Fm, Ax, Ay, Az, tag)
Do flux-vector splitting on grid points for species (include ghosts).
...
# Notes
- Species treated as scalar so only advect with velocity, the split is 1/2(U±|U|)
...
"""
function split(ρi, Q, Fp, Fm, Ax, Ay, Az, tag)
i = (blockIdx().x-1i32)* blockDim().x + threadIdx().x
j = (blockIdx().y-1i32)* blockDim().y + threadIdx().y
k = (blockIdx().z-1i32)* blockDim().z + threadIdx().z
if i > Nxp+2*NG || j > Ny+2*NG || k > Nz+2*NG
return
end
if tag[i, j, k] == 1
return
end
@inbounds u = Q[i, j, k, 2]
@inbounds v = Q[i, j, k, 3]
@inbounds w = Q[i, j, k, 4]
@inbounds A1 = Ax[i, j, k]
@inbounds A2 = Ay[i, j, k]
@inbounds A3 = Az[i, j, k]
un = A1*u + A2*v + A3*w
Ep = 0.5 * (un + abs(un))
Em = 0.5 * (un - abs(un))
for n = 1:Nspecs
@inbounds Fp[i, j, k, n] = Ep * ρi[i, j, k, n]
@inbounds Fm[i, j, k, n] = Em * ρi[i, j, k, n]
end
return
end