-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain.py
414 lines (319 loc) · 18.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
import os
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
from functools import partial
import traci
from time import time
import matplotlib.pyplot as plt
import random
import torch
from utils.comput_process import *
from utils.train_process import * # train_process
from utils.gen_model import * # gen_process
import numpy as np
from utils.experiment_process import Experiment
from IPython.display import clear_output
from utils.env_classes import *
import collections
from sumolib import checkBinary
import argparse
import configparser
import signal
from subprocess import DEVNULL, STDOUT, check_call
import xml.etree.ElementTree as ET
class TimeoutException(Exception): # Custom exception class
pass
def timeout_handler(signum, frame): # Custom signal handler
raise TimeoutException
# Change the behavior of SIGALRM
signal.signal(signal.SIGALRM, timeout_handler)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--config-dir', type=str, nargs='+', required=True, help="location of configurations")
args = parser.parse_args()
return args
def create_exp(params, seed, real_net, real_net_address, n_workers, memory_queue, request_end, learn_model_queue, comput_model_queue, reward_queue, additional_reward_queue, Policy_Type, mode, greedy_reward_queue, tested_end, tested, num):
############################################################################################################################################
def get_network():
netaddress = 'sumo_nets/' + str(seed) +'/myNet.net.xml'
os.system("rm -r " + folderaddress)
os.system("mkdir " + folderaddress)
os.system("cp sumo_nets/" + ("myConfigGen.sumocfg" if additional_env_params['gen_trips_before_exp'] else "myConfig.sumocfg")+ " " + folderaddress)
if real_net :
if additional_env_params['net_name'] == 'Manhattan':
os.system("cp " + real_net_address + " " + folderaddress + "/myNet.net.xml" + ' > /dev/null 2>&1')
else:
os.system("netconvert --osm-files " + real_net_address + " -o " + folderaddress +"/myNet.net.xml " + "--no-turnarounds --no-internal-links" + ' > /dev/null 2>&1')
else:
if additional_env_params["grid"] == True:
os.system("netgenerate --grid --seed=" + (str(seed) if (mode == 'train' and not additional_env_params["specialist"] and additional_env_params["GCN"]) else str(100)) + " -o " + netaddress + ' --grid.length=' + str(additional_env_params["grid_lane_length"]) + " --grid.attach-length=" + str(additional_env_params["grid_lane_length"]) + " --grid.x-number=" + str(additional_env_params["col_num"]) + " --grid.y-number=" + str(additional_env_params["row_num"]) + " -j=traffic_light --no-turnarounds=true" + ' > /dev/null 2>&1' )
else:
os.system("netgenerate --rand --default.lanenumber=" + str(additional_env_params["max_num_lanes"]) + " --rand.random-lanenumber --seed=" + (str(int(seed+(num*n_workers))) if (not additional_env_params["specialist"] and additional_env_params["GCN"]) else str(int(2000+(num if num!=2 else 5)))) + " -o " + netaddress + " --rand.iterations=" + str(additional_env_params['num_edges_random_net_train']) + " -j=traffic_light --no-turnarounds=true --rand.max-distance=" + str(additional_env_params['max_lane_length']) + ' --rand.min-distance=' + str(additional_env_params['min_lane_length']) + ' > /dev/null 2>&1')
return netaddress
def gen_traffic():
os.system('rm '+ folderaddress + "/trips.rou.xml" + ' > /dev/null 2>&1')
os.system('rm '+ folderaddress + "/trips.trips.xml" + ' > /dev/null 2>&1')
os.system("python utils/randTrips.py -n " + folderaddress +"/myNet.net.xml --demand-duration " +str(additional_env_params["demand_duration"]) + " --lane-demand-variance " +str(additional_env_params["lane_demand_variance"]) +" --min-distance "+ str(additional_env_params["min_distance"]) +" --fringe-factor " +str(additional_env_params["fringe_factor"]) + " --seed " + str(int(seed + 1 + (n_workers*num) + (200 if mode == 'test' else (step_counter+1)) + (10000 if (num == 3 and seed == 10 and additional_env_params["period"] == 2) else 0))) + " -b 0 -e "+ str(additional_env_params["nb_steps_per_exp"] * (1 if (not real_net and mode == 'test') else 1))+" --binomial 100 --period " + str(additional_env_params["period"]) + " --validate true -o " + folderaddress + "/trips.rou.xml -r " + folderaddress + "/trips.trips.xml" + ' > /dev/null 2>&1')
tree = ET.parse(folderaddress + '/trips.rou.xml')
root = tree.getroot()
trips_dict = collections.OrderedDict()
for child in root:
if int(float(child.attrib['depart'])) < 3600:
trips_dict[child.attrib['id']] = collections.OrderedDict({key:value for key,value in child.attrib.items() if key != 'id'})
return trips_dict
def gen_folders():
additional_env_params['tb_foldername']+= '/' + (str(num) if mode == 'train' else (str(tested.split("_")[0]) + "_" + str(num)))
os.system("rm -r " + additional_env_params["tb_foldername"] + ' > /dev/null 2>&1')
os.system("mkdir " + additional_env_params["tb_foldername"] + ' > /dev/null 2>&1')
if mode == 'train':
additional_env_params['save_model_path'] += '/' + str(num)
os.system("mkdir " + additional_env_params["save_model_path"] + ' > /dev/null 2>&1')
else:
additional_env_params['load_model_path'] += '/' + str(num) + '/' + "params_checkpoint.pt"
additional_env_params['rendering_path'] += '/' + str(tested)
os.system("mkdir " + additional_env_params["rendering_path"] + ' > /dev/null 2>&1')
additional_env_params['rendering_path'] += '/' + str(num)
os.system("rm -r " + additional_env_params["rendering_path"] + ' > /dev/null 2>&1')
os.system("mkdir " + additional_env_params["rendering_path"] + ' > /dev/null 2>&1')
############################################################################################################################################
# TEST MULTIPLE MODELS IN A SINGLE RUN (6 seeds per run)
if mode == 'test' and real_net:
num += seed//(n_workers/5)
num = int(num)
print(seed, ' : ', num)
params['gen_trips_before_exp'] = True
params['max_time_between_actions'] = 60
if params['policy'] == 'binary':
params['generated_graphs'] += ['tl_connection_lane_graph']
params['graph_of_interest'] = 'tl_connection_lane_graph'
else:
params['generated_graphs'] += ['full_graph']
params['graph_of_interest'] = 'full_graph'
if params['render']:
params['render'] = True
else:
params['render'] = False
params['save_render'] = False
if mode == 'test':
params['EPS_START'] = 0
params['num_specialist'] = n_workers * params['specialist']
if seed < int(params['num_specialist']):
params['specialist'] = True
else:
params['specialist'] = False
additional_env_params = params
if torch.cuda.is_available():
train_device = 'cuda:0'
if torch.cuda.device_count() == 1:
comput_device = 'cuda:0'
else:
comput_device = 'cuda:1'
else:
train_device = 'cpu'
train_device = 'cpu'
gen_folders()
# START OF THE LOOP
signal.alarm(params['exp_real_duration'])
port = 10000 + seed + n_workers*num
try:
epoch = 0
step_counter = 0
while True :
if real_net:
folderaddress = 'sumo_nets/Real/' + real_net_address.split(".")[0] + str(seed)
else:
folderaddress = 'sumo_nets/' + str(seed)
netaddress = get_network()
if additional_env_params['gen_trips_before_exp'] :
trips_dict = gen_traffic()
if additional_env_params['render']:
sumoBinary = checkBinary("sumo-gui")
else:
sumoBinary = checkBinary("sumo")
if mode == 'train':
print("step counter :", step_counter)
sumoCmd = [sumoBinary, "-c", folderaddress + "/" + ("myConfigGen.sumocfg" if additional_env_params['gen_trips_before_exp'] else "myConfig.sumocfg"), "--no-step-log", "--time-to-teleport=-1"]
while True:
try:
traci.start(sumoCmd, port = (port), label = str(port))
break
except:
port +=n_workers
traci.close(False)
traci_connection = traci.getConnection(str(port))
env = Env(additional_env_params, traci_connection)
env.seed = seed
exp = Experiment(env,seed,n_workers)
step_counter += exp.run(trips_dict, epoch, seed, num, n_workers, memory_queue, request_end, learn_model_queue, comput_model_queue, reward_queue, additional_reward_queue, Policy_Type, mode, greedy_reward_queue, tested_end, tested)
epoch+=1
traci.close(False)
traci_connection.close(False)
del env, trips_dict, exp
if mode == 'test' or step_counter >= params['exp_sim_duration']:
signal.alarm(0)
break
except TimeoutException as e:
traci_connection.close(False)
traci.close(False)
signal.alarm(0)
pass
def run_experiment(params, num = 0):
mode = params['mode']
real_net = params['real_net']
real_net_address = params['real_net_address']
Policy_Type = params['Policy_Type']
tested = params['tested']
from pathos.helpers import mp as multiprocess
import collections
import random
import torch
from pathos.multiprocessing import ProcessPool as Pool
import time
# INITIALIZING SEEDS
torch.manual_seed(0)
greedy_training = False
assert mode in ["train", "test"], "Invalid mode."
assert Policy_Type in ["Q_Learning","Actor_Critic", "Critic"],"Policy is not recognized."
if Policy_Type == "Q_Learning":
n_workers = multiprocess.cpu_count()-2
elif 'critic' in Policy_Type.lower() and 'actor' in Policy_Type.lower():
n_workers = multiprocess.cpu_count()-2
work_processes = collections.OrderedDict()
# QUEUES
manager = multiprocess.Manager()
baseline_reward_queue = manager.Queue()
greedy_reward_queue = manager.Queue()
learn_model_queue = manager.Queue(1)
comput_model_queue = manager.Queue(1)
# DICTS
memory_queues = collections.OrderedDict()
reward_queues = collections.OrderedDict()
request_workers_ends = collections.OrderedDict()
request_comput_ends = collections.OrderedDict()
reward_workers_ends = collections.OrderedDict()
reward_other_ends = collections.OrderedDict()
memory_workers_ends = collections.OrderedDict()
memory_other_ends = collections.OrderedDict()
baselines_workers_ends = collections.OrderedDict()
baselines_learner_ends = collections.OrderedDict()
tested = params['tested']
if mode == "test":
n_workers = len(tested)
tested_workers_ends = collections.OrderedDict()
tested_learner_ends = collections.OrderedDict()
seeds = np.asarray(list(range(n_workers))) # RANDOM SEED FOR EVERY ENVz
params['n_workers'] = n_workers
for idx in range(n_workers):
if mode == "test":
tested_workers_ends[idx], tested_learner_ends[idx] = multiprocess.Pipe()
request_workers_ends[idx], request_comput_ends[idx] = multiprocess.Pipe()
reward_workers_ends[idx], reward_other_ends[idx] = multiprocess.Pipe()
memory_workers_ends[idx], memory_other_ends[idx] = multiprocess.Pipe()
memory_queues[idx] = manager.Queue()
reward_queues[idx] = manager.Queue()
work_processes[idx] = multiprocess.Process(target=create_exp, args=(params,
seeds[idx],
real_net,
real_net_address,
n_workers,
memory_workers_ends[idx],
request_workers_ends[idx],
learn_model_queue,
comput_model_queue,
reward_workers_ends[idx],
baseline_reward_queue if (mode == 'test' and idx == 1) else None,
Policy_Type,
mode,
greedy_reward_queue if (idx == 0 and (greedy_training or mode == 'test')) else None,
tested_workers_ends[idx] if mode =='test' else None,
tested[idx] if mode =='test' else None,
num
))
# WITH Q_LEARNING, WE USE A PROCESS FOR COMPUTATION IN EXPERIENCE GENERATION, AND ANOTHER TO TRAIN
if Policy_Type == "Q_Learning":
learn_process = multiprocess.Process(target=train, args=(memory_other_ends,
learn_model_queue,
comput_model_queue,
reward_other_ends,
baseline_reward_queue if mode == 'test' else None,
greedy_reward_queue if (greedy_training or mode == 'test') else None,
tested_learner_ends if mode == 'test' else None,
tested if mode == 'test' else None,
num))
comput_process = multiprocess.Process(target=comput, args=(request_comput_ends, comput_model_queue))
learn_process.start()
comput_process.start()
for k, work_process in work_processes.items():
work_process.start()
for k, work_process in work_processes.items():
work_process.join()
work_process.terminate()
comput_process.terminate()
if Policy_Type == "Q_Learning":
learn_process.terminate()
if __name__ == '__main__':
# GATHERS ADRESSES OF THE 'CONFIG' FILES WHICH ARE TO BE USED
args = parse_args()
config = configparser.ConfigParser()
config.optionxform = str
config.read(args.config_dir)
params = collections.OrderedDict()
for name, section in config._sections.items():
for k,v in section.items():
params[k] = eval(v)
# PRINTS ADRESSES OF ALL THE 'CONFIG' FILES WHICH ARE TO BE USED AND ASKS THE USER TO CONFIRM
print(params['config_dirs'])
go = input ('confirm run ? (y/n) :')
if go.lower() != 'y':
sys.exit()
# WRITES THE ADRESSES OF ALL THE 'CONFIG' FILES WHICH ARE TO BE USED DURING THE CURRENT RUN.
outfile = open('current_schedule.pkl','wb')
pickle.dump(params['config_dirs'],outfile)
outfile.close()
# ITERATE OVER ALL 'CONFIG' FILES AND THEIR CORRESPONDING PARAMETERS
for file in params['config_dirs']:
assert os.path.isfile(file) , "File " + file + " was not found..."
for file in params['config_dirs']:
config = configparser.ConfigParser()
config.optionxform = str
config.read(file)
params = collections.OrderedDict()
for name, section in config._sections.items():
for k,v in section.items():
params[k] = eval(v)
# CREATE PATHS IN ORDER TO EASE THE ORGANIZATION OF FOLDERS
params['file'] = file[:file.rindex('/')+1] + 'results/'
os.system("mkdir " + params["file"] + ' > /dev/null 2>&1')
params['file'] += params['exp_name'] + '/'
os.system("mkdir " + params["file"] + ' > /dev/null 2>&1')
params['save_model_path'] = params['file'] + 'models_params/'
params['tb_foldername'] = params['file'] + 'tensorboard/'
if params['mode'] == 'train':
params['save_model_path'] = params['file'] + 'models_params/'
os.system("mkdir " + params["save_model_path"] + ' > /dev/null 2>&1')
else:
params['rendering_path'] = params['file'] + 'rendering/'
os.system("rm -r " + params["rendering_path"] + ' > /dev/null 2>&1')
os.system("mkdir " + params["rendering_path"] + ' > /dev/null 2>&1')
os.system("mkdir " + params["tb_foldername"] + ' > /dev/null 2>&1')
os.system("rm -r " + params["tb_foldername"] + ' > /dev/null 2>&1')
os.system("mkdir " + params["tb_foldername"] + ' > /dev/null 2>&1')
# IF EVALUATING
if params['mode'] == 'test':
# ITERATE OVER ALL POLICIES
for tested_policy in params['tests']:
params['tested']= []
# FOR A GIVEN RUN/EXPERIMENT, WE EVALUATE EVERY POLICY USING 'N_TESTS' PARALLEL ENVIRONMENTS (e.g. 30)
for t in range(params['n_tests']):
params['tested'].append(tested_policy + '_' + str(t))
# WE RUN THE EXPERIMENT 'N_EXP' TIMES (e.g. 5)
for n in range(params['n_exp']):
run_experiment(params,n)
print("FINISHED EXPERIMENT :", n)
# IF TRAINING
else:
params['tested'] = []
# WE RUN THE EXPERIMENT 'N_EXP' TIMES (e.g. 5)
for n in range(params['n_exp']):
run_experiment(params,n)
print("FINISHED EXPERIMENT :", n)
sys.exit()