-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathimages_features_extraction.py
90 lines (73 loc) · 3.98 KB
/
images_features_extraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import json
import os
import clip
from PIL import Image
import pickle
import torch
@torch.no_grad()
def main(datasets, encoder, proprecess, annotations, outpath):
results = []
if datasets == 'coco' or datasets == 'flickr30k': # coco, flickr30k
# format = {image_path: [caption1, caption2, ...]} -> [[image_path, image_features, [caption1, caption2, ...]], ...]
if datasets == 'coco':
rootpath = './annotations/coco/val2014/'
elif datasets == 'flickr30k':
rootpath = './annotations/flickr30k/flickr30k-images/'
for image_id in annotations:
caption = annotations[image_id]
image_path = rootpath + image_id
image = proprecess(Image.open(image_path)).unsqueeze(dim = 0).to(device)
image_features = encoder.encode_image(image).squeeze(dim = 0).to('cpu') # clip_hidden_size
results.append([image_id, image_features, caption])
else: # nocaps
# format = [{'split': 'near_domain', 'image_id': '4499.jpg', 'caption': [caption1, caption2, ...]}, ...]
# format = [[image_path, image_split, image_features, [caption1, captions2, ...]], ...]
rootpath = './annotations/nocaps/'
for annotation in annotations:
split = annotation['split']
image_id = annotation['image_id']
caption = annotation['caption']
image_path = rootpath + split + '/' + image_id
image = proprecess(Image.open(image_path)).unsqueeze(dim = 0).to(device)
image_features = encoder.encode_image(image).squeeze(dim = 0).to('cpu') # clip_hidden_size
results.append([image_id, split, image_features, caption])
with open(outpath, 'wb') as outfile:
pickle.dump(results, outfile)
if __name__ == '__main__':
device = 'cuda:0'
clip_type = 'ViT-B/32'
clip_name = clip_type.replace('/', '')
path_nocaps = './annotations/nocaps/nocaps_corpus.json'
path_val_coco = './annotations/coco/val_captions.json'
path_test_coco = './annotations/coco/test_captions.json'
path_val_flickr30k = './annotations/flickr30k/val_captions.json'
path_test_flickr30k = './annotations/flickr30k/test_captions.json'
outpath_nocaps = f'./annotations/nocaps/nocaps_corpus_{clip_name}.pickle'
outpath_val_coco = f'./annotations/coco/val_captions_{clip_name}.pickle'
outpath_test_coco = f'./annotations/coco/test_captions_{clip_name}.pickle'
outpath_val_flickr30k = f'./annotations/flickr30k/val_captions_{clip_name}.pickle'
outpath_test_flickr30k = f'./annotations/flickr30k/test_captions_{clip_name}.pickle'
# format = [{'split': 'near_domain', 'image_id': '4499.jpg', 'caption': [caption1, caption2, ...]}, ...]
# format = [[image_path, image_split, image_features, [caption1, captions2, ...]], ...]
with open(path_nocaps, 'r') as infile:
nocaps = json.load(infile)
# format = {image_path: [caption1, caption2, ...]} -> [[image_path, image_features, [caption1, caption2, ...]], ...]
with open(path_val_coco, 'r') as infile:
val_coco = json.load(infile)
with open(path_test_coco, 'r') as infile:
test_coco = json.load(infile)
with open(path_val_flickr30k, 'r') as infile:
val_flickr30k = json.load(infile)
with open(path_test_flickr30k, 'r') as infile:
test_flickr30k = json.load(infile)
encoder, proprecess = clip.load(clip_type, device)
if not os.path.exists(outpath_nocaps):
main('nocaps', encoder, proprecess, nocaps, outpath_nocaps)
if not os.path.exists(outpath_val_coco):
main('coco', encoder, proprecess, val_coco, outpath_val_coco)
if not os.path.exists(outpath_test_coco):
main('coco', encoder, proprecess, test_coco, outpath_test_coco)
if not os.path.exists(outpath_val_flickr30k):
main('flickr30k', encoder, proprecess, val_flickr30k, outpath_val_flickr30k)
if not os.path.exists(outpath_test_flickr30k):
main('flickr30k', encoder, proprecess, test_flickr30k, outpath_test_flickr30k)