-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnet.py
38 lines (34 loc) · 1.38 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import torch.nn as nn
class ConvFCNet(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(8, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.relu1 = nn.Sigmoid()
self.conv2 = nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.relu2 = nn.ReLU()
self.conv3 = nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.relu3 = nn.Sigmoid()
self.conv4 = nn.Conv2d(64, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.fc1 = nn.Linear(in_features=2304*8, out_features=512, bias=True)
self.relu4 = nn.ReLU()
self.fc2 = nn.Linear(in_features=512, out_features=128, bias=True)
self.relu5 = nn.Sigmoid()
self.fc3 = nn.Linear(in_features=128, out_features=28, bias=True)
def forward(self, x, torch=None):
x1 = self.conv1(x)
x2 = self.relu1(x1)
x3 = self.conv2(x2)
x4 = self.relu2(x3)
x5 = self.conv3(x4)
x6 = self.relu3(x5)
x7 = self.conv4(x6)
x8 = self.relu3(x7)
x9 = x8.reshape(x8.shape[0], -1)
x10 = self.fc1(x9)
x11 = self.relu5(x10)
x12 = self.fc2(x11)
x13 = self.relu5(x12)
x14 = self.fc3(x13)
resnet_out = x14.reshape(-1, 7, 4)
action = torch.softmax(resnet_out, -1)
return action