-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfcc_3.py
477 lines (400 loc) · 14.4 KB
/
fcc_3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
#! /usr/bin/env python
from __future__ import print_function
import time
import math
from rmIsos import *
import tables
from AddFuncts import *
import metasci
from fcparams import *
from bright import *
from mass_stream import *
from isoname import *
from pyne.data import *
##################
### Prep Work! ###
##################
bright_config.write_hdf5 = True
bright_config.write_text = False
#Various Variables
snf_need = []
if not Quiet:
verbosity(100)
#General Functions
def MakeSep(s):
"Makes a dictionary of separation efficiencies based on values in fcparams."
"s is the reactor string."
prefix = s + "_SE_"
prelen = len(prefix)
seps = {}
for g in globals().keys():
if g.startswith(prefix):
seps[g[prelen:]] = globals()[g]
return seps
#redefine iUsotrak
trackfile = tables.openFile("FR.h5", 'r')
itrack = trackfile.root.ToIso_zz.read()
trackfile.close()
bright_config.track_isos = set([int(i) for i in itrack])
#Converts storage times to seconds
for key in vars().keys():
if key[-17:] == "_SNF_Storage_Time":
val = float( vars()[key] )
vars()[key] = metasci.time2sec(val, 'y')
#Calculates LWR Pin Size based on Fuel-to-Moderator Ratio
if 'LWR_Fuel2Mod' in vars().keys():
LWR_Params.fuel_radius = LWR_Params.unit_cell_pitch * math.sqrt(LWR_Fuel2Mod / math.pi)
#Seperation Dictionaries
sepeffLWR = {"92": 0.9, "93": 0.9, "94": 1, "95": 0, "96": 0, "55": 0, "38": 0}
sepeffFR = {"92": 0.9, "93": 0.9, "94": 1, "95": 0, "96": 0, "55": 0, "38": 0}
#Fuel Cycle Components
LWR = LightWaterReactor1G(libfile="LWR.h5",reactor_parameters=lwr_defaults(),name= "LWR")
FR = FastReactor1G(libfile= "FR.h5", reactor_parameters=FR_Params, name= "FR")
LWR_Rep = Reprocess(sepeff=sepeffLWR)
FR_Rep = Reprocess(sepeff=sepeffFR)
LWR_Stor = Storage(name = "LWR_Storage")
FR_Stor = Storage(name = "FR_Storage")
INT_Stor = Storage(name = "INT_Storage")
Rmv_Stor = Storage(name = "Rmv_Storage")
#######################
### LWR Computation ###
#######################
def LWR_delR_BU_(ms):
"Calculates the delta Reaction Rates at the target burnup."
LWR.ms_feed = ms
LWR.fold_mass_weights()
dR = LWR.batch_average(LWR_Params.BUt, "p") - LWR.batch_average(LWR_Params.BUt,"D")
return dR
U235 = MassStream({922350: 1.0}, 0.04, "U235")
U238 = MassStream({922380: 1.0}, 0.96, "U238")
delR_U235 = LWR_delR_BU_(U235)
delR_U238 = LWR_delR_BU_(U238)
#Calculate delta R for the Guess
LWR_CoreInput = U238 + U235
LWR_CoreInput.name = "LWR_CoreInput"
LWR_CoreInput.normalize()
LWR_delR_Guess = LWR_delR_BU_(LWR_CoreInput)
k = LWR.batch_average_k(LWR_Params.BUt)
n = 0
if not Quiet:
print("{0}) {1}".format(1, k), end=" ")
while 0.001 < abs(1.0 - k) and n < 10:
#Adjust Masses based on pertubation guess.
LWR_DeltaM_U238 = - LWR_delR_Guess / (delR_U238 - delR_U235)
U238.mass = U238.mass + LWR_DeltaM_U238
U235.mass = U235.mass - LWR_DeltaM_U238
#Recalculate core parameters for new masses guess
LWR_CoreInput = U238 + U235
LWR_CoreInput.name ="LWR_CoreInput"
LWR_CoreInput.normalize()
LWR_delR_Guess = LWR_delR_BU_(LWR_CoreInput)
k = LWR.batch_average_k(LWR_Params.BUt)
n = n+1
if not Quiet:
print(k, end=" ")
if not Quiet:
print()
print()
#Calculate and write output
LWR.BUd_bisection_method()
LWR.calc_ms_prod()
LWR.write()
LWR_SNF = 1.0 * LWR.ms_prod
LWR_SNF.name = "LWR_SNF"
LWR_Cooled = LWR_Stor.calc(LWR_SNF, LWR_SNF_Storage_Time)
LWR_Cooled.name = "LWR_Cooled"
RmvIsos = [RmIsos]
RmStor = MassStream({RmIsos: LWR_Cooled.comp[RmIsos]})
stor_t = 6 * half_life(RmIsos)
Rm_Stor = Rmv_Stor.calc(RmStor, stor_t)
LWR_Cooled = remove(LWR_Cooled, RmvIsos)
LWR_Cooled = LWR_Cooled + Rm_Stor
LWR_stream = LWR_Cooled.mult_by_mass()
with open('LWR_CooledIsos.txt', 'w') as f:
for iso in LWR_stream.keys():
f.write("{0:10}{1:.5E}\n".format(isoname.zzaaam_2_LLAAAM(iso), LWR_stream[iso]))
LWR_RepOut = LWR_Rep.calc(LWR_Cooled)
LWR_RepOut.name = "LWR_Reprocessing_Product"
#LWR_Rep.write_ms_pass()
#LWR_Stor.write_ms_pass()
######################
### FR Computation ###
######################
#Mass Streams
UTopUp = MassStream("U-TopUp.txt", 0.50, "UTopUp")
TRUTopUp = LWR_RepOut.get_tru("TRUTopUp")
FR_RepUout = MassStream({922350: 1.0}, 0.0, "RepUout")
FR_RepTRUout = MassStream({942380: 1.0}, 0.0, "RepTRUout")
FR_RepLANout = MassStream({591440: 1.0}, 0.0, "RepLANout")
TRU_per_kgLWR_FF = TRUTopUp.mass
TRUTopUp.mass = 0.5
def FR_delR_BU_(ms):
"Calculates the delta Reaction Rates at the target burnup."
FR.ms_feed = ms
FR.fold_mass_weights()
dR = FR.batch_average(FR_Params.BUt, "p") - FR.batch_average(FR_Params.BUt, "D")
return dR
def FR_Mass_Ratio_Calc():
delR_UTop = FR_delR_BU_(UTopUp)
delR_TRUTop = FR_delR_BU_(TRUTopUp)
#First Guess for UTopUp and TRUTopUp masses; each get half of the remaining mass space.
TopUpMassSpace = 1.0 - FR_RepUout.mass - FR_RepTRUout.mass - FR_RepLANout.mass
#Find bound for All U
UTopUp.mass = TopUpMassSpace * 1.0
TRUTopUp.mass = TopUpMassSpace * 0.0
CoreInput = UTopUp + TRUTopUp + FR_RepUout + FR_RepTRUout + FR_RepLANout
CoreInput.name = "CoreInput"
CoreInput.normalize()
delR_Guess = FR_delR_BU_(CoreInput)
k_AllU = FR.batch_average_k(FR_Params.BUt)
sign_U = (1.0 - k_AllU) / abs(1.0 - k_AllU)
#Find bound for All TRU
UTopUp.mass = TopUpMassSpace * 0.0
TRUTopUp.mass = TopUpMassSpace * 1.0
CoreInput = UTopUp + TRUTopUp + FR_RepUout + FR_RepTRUout + FR_RepLANout
CoreInput.name = "CoreInput"
CoreInput.normalize()
delR_Guess = FR_delR_BU_(CoreInput)
k_AllTRU = FR.batch_average_k(FR_Params.BUt)
sign_TRU = (1.0 - k_AllTRU) / abs(1.0 - k_AllTRU)
if sign_U == sign_TRU:
raise RuntimeError("BadFuelForm: Multiplication Factor Opperates on Range {0}".format([k_AllU, k_AllTRU]))
else:
#Continue nomrally
UTopUp.mass = TopUpMassSpace * 0.5
TRUTopUp.mass = TopUpMassSpace - UTopUp.mass
#Calculate delta R for the Guess
CoreInput = UTopUp + TRUTopUp + FR_RepUout + FR_RepTRUout + FR_RepLANout
CoreInput.name = "CoreInput"
CoreInput.normalize()
delR_Guess = FR_delR_BU_(CoreInput)
k = FR.batch_average_k(FR_Params.BUt)
n = 0
if not Quiet:
print("{0}) {1}".format(cyc+1, k), end=" ")
while 0.001 < abs(1.0 - k) and n < 10:
#Adjust Masses based on pertubation guess.
DeltaM_U = - delR_Guess / (delR_UTop - delR_TRUTop)
UTopUp.mass = UTopUp.mass + DeltaM_U
TRUTopUp.mass = TRUTopUp.mass - DeltaM_U
#Recalculate core parameters for new masses guess
CoreInput = UTopUp + TRUTopUp + FR_RepUout + FR_RepTRUout + FR_RepLANout
CoreInput.name = "CoreInput"
CoreInput.normalize()
delR_Guess = FR_delR_BU_(CoreInput)
k = FR.batch_average_k(FR_Params.BUt)
n = n+1
if not Quiet:
print(k, end=" ")
if not Quiet:
print()
print()
#Calculate and write output
FR.BUd_bisection_method()
FR.calc_ms_prod()
FR.calcSubStreams()
FR.calc_tru_cr()
return
def FR_Calibrate_PNL_2_TRUCR():
# delta = 0.1
# delta = 0.05
delta = 0.01
#Determine Lower Bound
# pnl_a = 0.1
pnl_a = 0.30
FoundA = False
while not FoundA:
try:
FR.P_NL = pnl_a
FR_Mass_Ratio_Calc()
trucr_a = FR.tru_cr
sign_a = (trucr_a - FR_TRU_CR) / abs(trucr_a - FR_TRU_CR)
FoundA = True
except RuntimeError as e:
if ("BadFuelForm" not in str(e)) and ("FUEL COMPOSITION NOT COMPUTABLE!" not in str(e)):
raise e
pnl_a = pnl_a + delta
#Determine Upper Bound
#pnl_b = 1.2
pnl_b = 0.8
FoundB = False
while not FoundB:
try:
FR.P_NL = pnl_b
FR_Mass_Ratio_Calc()
trucr_b = FR.tru_cr
sign_b = (trucr_b - FR_TRU_CR) / abs(trucr_b - FR_TRU_CR)
FoundB = True
except RuntimeError as e:
if ("BadFuelForm" not in str(e)) and ("FUEL COMPOSITION NOT COMPUTABLE!" not in str(e)):
raise e
pnl_b = pnl_b - delta
DoA = 10.0**(-5) #Degree of accuracy to carry out calculations to.
q = 0
while (DoA < abs(pnl_a - pnl_b)) and (DoA < abs(trucr_a - trucr_b)) and q < 30:
#WARNING! This next block is a quick hack that sometimes fails.
GoodBoundary = False
n = 1
while not GoodBoundary:
try:
if not Quiet:
print("P_NL_c calculation try number {0}.".format(n))
pnl_c = (pnl_a + pnl_b) / 2.0
FR.P_NL = pnl_c
FR_Mass_Ratio_Calc()
GoodBoundary = True
except RuntimeError as e:
if ("BadFuelForm" not in str(e)) and ("FUEL COMPOSITION NOT COMPUTABLE!" not in str(e)):
raise e
pnl_a = pnl_a + 0.1*pnl_a
pnl_b = pnl_b - 0.1*pnl_b
n = n + 1
trucr_c = FR.tru_cr
sign_c = (trucr_c - FR_TRU_CR) / abs(trucr_c - FR_TRU_CR)
q = q + 1
if (sign_a == sign_c) and not (sign_b == sign_c):
pnl_a = pnl_c
trucr_a = trucr_c
sign_a = sign_c
elif (sign_b == sign_c) and not (sign_a == sign_c):
pnl_b = pnl_c
trucr_b = trucr_c
sign_b = sign_c
else:
if not Quiet:
print()
print("SOMETHING WENT WRONG WHILE FINDING THE TRU CONVERSION RATIO!!!")
print("Here is some information that might help you debug ^_^")
print("pnl_%(ltr)s = %(pnl).16f\ttrucr_%(ltr)s = %(trucr)f\tsign_%(ltr)s = %(sign)f"%{'ltr': 'a', 'pnl': pnl_a, 'trucr': trucr_a, 'sign': sign_a})
print("pnl_%(ltr)s = %(pnl).16f\ttrucr_%(ltr)s = %(trucr)f\tsign_%(ltr)s = %(sign)f"%{'ltr': 'b', 'pnl': pnl_b, 'trucr': trucr_b, 'sign': sign_c})
print("pnl_%(ltr)s = %(pnl).16f\ttrucr_%(ltr)s = %(trucr)f\tsign_%(ltr)s = %(sign)f"%{'ltr': 'c', 'pnl': pnl_c, 'trucr': trucr_c, 'sign': sign_c})
print()
if not Quiet:
print()
print("Final Result P_NL Calibration to TRU_CR via Bisection Method Calculation:")
print("q = %i"%q)
print("pnl_%(ltr)s = %(pnl).16f\ttrucr_%(ltr)s = %(trucr)f\tsign_%(ltr)s = %(sign)f"%{'ltr': 'a', 'pnl': pnl_a, 'trucr': trucr_a, 'sign': sign_a})
print("pnl_%(ltr)s = %(pnl).16f\ttrucr_%(ltr)s = %(trucr)f\tsign_%(ltr)s = %(sign)f"%{'ltr': 'b', 'pnl': pnl_b, 'trucr': trucr_b, 'sign': sign_c})
print("pnl_%(ltr)s = %(pnl).16f\ttrucr_%(ltr)s = %(trucr)f\tsign_%(ltr)s = %(sign)f"%{'ltr': 'c', 'pnl': pnl_c, 'trucr': trucr_c, 'sign': sign_c})
print()
for cyc in range(10):
if cyc in [0]:
FR_Calibrate_PNL_2_TRUCR()
else:
delta = 0.001
BadKRange = True
while BadKRange:
try:
FR_Mass_Ratio_Calc()
BadKRange = False
except RuntimeError as e:
if "FUEL COMPOSITION NOT COMPUTABLE!" not in str(e):
raise e
pnl_regime = float(str(e).split()[-1][:-1])
if pnl_regime < 1.0:
FR.P_NL = FR.P_NL + delta
elif 1.0 <= pnl_regime:
FR.P_NL = FR.P_NL - delta
FR.write()
#Calculate the LWR SNF Top up needed
snf_need.append( TRUTopUp.mass / TRU_per_kgLWR_FF )
StorOut = FR_Stor.calc(FR.ms_prod, FR_SNF_Storage_Time)
StorOut.name = "StorOut"
StorOut = remove(StorOut, RmvIsos)
Rm_Stor = Rmv_Stor.calc(RmStor, stor_t)
StorOut = StorOut + Rm_Stor
FR_Stor.write()
FR_RepOut = FR_Rep.calc(StorOut)
FR_RepOut.name = "RepOut"
FR_Rep.write()
FR_RepUout = FR_RepOut.get_u(FR_RepUout.name)
FR_RepTRUout = FR_RepOut.get_tru(FR_RepTRUout.name)
FR_RepLANout = FR_RepOut.get_lan(FR_RepLANout.name)
if FR_LAN_FF_Cap < FR_RepLANout.mass:
FR_RepLANout.mass = FR_LAN_FF_Cap
#Write the SNF Needed line to output file
params = open(FR.name + "Params.txt", 'a')
params.write("LWR_SNF\t")
for el in snf_need:
params.write( "%.6E\t%.6E\t"%(el, 0.0) )
params.write("\n")
params.close()
FR_stream = StorOut.mult_by_mass()
with open('FR_CooledIsos.txt', 'w') as f:
for iso in FR_stream.keys():
f.write("{0:10}{1:.5E}\n".format(isoname.zzaaam_2_LLAAAM(iso), FR_stream[iso]))
#################################
### Construct HLW Mass Stream ###
#################################
#Define other FP
other_FP = []
for i in FP:
if i in LAN:
continue
elif i in ["CS", "SR"]:
continue
else:
other_FP.append(i)
#Fist get LWR HLW
LWR_SNF_U = LWR_Stor.ms_prod.get_u()
LWR_SNF_NP = LWR_Stor.ms_prod.get_sub_stream(["NP"])
LWR_SNF_PU = LWR_Stor.ms_prod.get_pu()
LWR_SNF_AM = LWR_Stor.ms_prod.get_sub_stream(["AM"])
LWR_SNF_CM = LWR_Stor.ms_prod.get_sub_stream(["CM"])
LWR_SNF_CS = LWR_Stor.ms_prod.get_sub_stream(["CS"])
LWR_SNF_SR = LWR_Stor.ms_prod.get_sub_stream(["SR"])
LWR_SNF_LAN = LWR_Stor.ms_prod.get_lan()
LWR_SNF_oFP = LWR_Stor.ms_prod.get_sub_stream(other_FP)
LWR_SNF_oFP = LWR_SNF_oFP + MassStream({10010: 1.0 - LWR_SNF_U.mass - \
LWR_SNF_NP.mass - LWR_SNF_PU.mass - LWR_SNF_AM.mass - LWR_SNF_CM.mass - \
LWR_SNF_CS.mass - LWR_SNF_SR.mass - LWR_SNF_LAN.mass - LWR_SNF_oFP.mass})
LWR_HLW = LWR_SNF_oFP + LWR_SNF_LAN + \
((1.0 - LWR_SE_U) * LWR_SNF_U) + \
((1.0 - LWR_SE_NP) * LWR_SNF_NP) + \
((1.0 - LWR_SE_PU) * LWR_SNF_PU) + \
((1.0 - LWR_SE_AM) * LWR_SNF_AM) + \
((1.0 - LWR_SE_CM) * LWR_SNF_CM) + \
((1.0 - LWR_SE_CS) * LWR_SNF_CS) + \
((1.0 - LWR_SE_SR) * LWR_SNF_SR)
#mass of LWR_HLW = (kgLWR_HLW / kgLWR_SNF) * (kgLWR_SNF / kgFR_FF)
LWR_HLW = LWR_HLW * snf_need[-1]
#Then get FR HLW
FR_SNF_U = FR_Stor.ms_prod.get_u()
FR_SNF_NP = FR_Stor.ms_prod.get_sub_stream(["NP"])
FR_SNF_PU = FR_Stor.ms_prod.get_pu()
FR_SNF_AM = FR_Stor.ms_prod.get_sub_stream(["AM"])
FR_SNF_CM = FR_Stor.ms_prod.get_sub_stream(["CM"])
FR_SNF_CS = FR_Stor.ms_prod.get_sub_stream(["CS"])
FR_SNF_SR = FR_Stor.ms_prod.get_sub_stream(["SR"])
FR_SNF_LAN = FR_Stor.ms_prod.get_lan()
FR_SNF_oFP = FR_Stor.ms_prod.get_sub_stream(other_FP)
FR_SNF_oFP = FR_SNF_oFP + MassStream({10010: 1.0 - FR_SNF_U.mass - \
FR_SNF_NP.mass - FR_SNF_PU.mass - FR_SNF_AM.mass - FR_SNF_CM.mass - \
FR_SNF_CS.mass - FR_SNF_SR.mass - FR_SNF_LAN.mass - FR_SNF_oFP.mass})
FR_HLW = FR_SNF_oFP + FR_SNF_LAN + \
((1.0 - FR_SE_U) * FR_SNF_U) + \
((1.0 - FR_SE_NP) * FR_SNF_NP) + \
((1.0 - FR_SE_PU) * FR_SNF_PU) + \
((1.0 - FR_SE_AM) * FR_SNF_AM) + \
((1.0 - FR_SE_CM) * FR_SNF_CM) + \
((1.0 - FR_SE_CS) * FR_SNF_CS) + \
((1.0 - FR_SE_SR) * FR_SNF_SR)
#Finally
HLW = FR_HLW + LWR_HLW
HLW.normalize()
######################################
### Do Interim storage calculation ###
######################################
HLW_Cooled = INT_Stor.calc(HLW, INT_SNF_Storage_Time)
INT_Stor.calc_params()
INT_Stor.write()
HLW_stream = HLW_Cooled.mult_by_mass()
with open('HLW_CooledIsos.txt', 'w') as f:
for iso in HLW_stream.keys():
f.write("{0:10}{1:.5E}\n".format(isoname.zzaaam_2_LLAAAM(iso), HLW_stream[iso]))
writer2 = open('BUd.py','a')
n = LWR.BUd*snf_need[-1]
m = FR.BUd
writer2.write('LWR_BUd =' + str(n)+'\n')
writer2.write('FR_BUd =' + str(m))
writer2.close