diff --git a/Project.toml b/Project.toml index 18dafa1234..c67f713934 100644 --- a/Project.toml +++ b/Project.toml @@ -48,7 +48,7 @@ ChainRulesCore = "1.12" Compat = "4.10.0" Enzyme = "0.12, 0.13" Functors = "0.4" -MLDataDevices = "1.4.0" +MLDataDevices = "1.4.1" MLUtils = "0.4" MPI = "0.20.19" MacroTools = "0.5" diff --git a/test/ext_cuda/cuda.jl b/test/ext_cuda/cuda.jl index 8afba712fe..c2f3cefd2f 100644 --- a/test/ext_cuda/cuda.jl +++ b/test/ext_cuda/cuda.jl @@ -113,10 +113,10 @@ end # Even more trivial: no movement @test gradient(x -> sum(abs, cpu(x)), a)[1] isa Matrix - @test_broken gradient(x -> sum(abs, cpu(x)), a')[1] isa Matrix + @test gradient(x -> sum(abs, cpu(x)), a')[1] isa Matrix @test gradient(x -> sum(cpu(x)), a)[1] isa typeof(gradient(sum, a)[1]) # FillArray @test gradient(x -> sum(abs, gpu(x)), ca)[1] isa CuArray - @test_broken gradient(x -> sum(abs, gpu(x)), ca')[1] isa CuArray + @test gradient(x -> sum(abs, gpu(x)), ca')[1] isa CuArray # More complicated, Array * CuArray is an error g0 = gradient(x -> sum(abs, (a * (a * x))), a)[1] @@ -131,8 +131,8 @@ end # Scalar indexing of an array, needs OneElement to transfer to GPU # https://github.com/FluxML/Zygote.jl/issues/1005 - @test_broken gradient(x -> cpu(2 .* gpu(x))[1], Float32[1,2,3]) == ([2,0,0],) - @test_broken gradient(x -> cpu(gpu(x) * gpu(x))[1,2], Float32[1 2 3; 4 5 6; 7 8 9]) == ([2 6 8; 0 2 0; 0 3 0],) + @test gradient(x -> cpu(2 .* gpu(x))[1], Float32[1,2,3]) == ([2,0,0],) + @test gradient(x -> cpu(gpu(x) * gpu(x))[1,2], Float32[1 2 3; 4 5 6; 7 8 9]) == ([2 6 8; 0 2 0; 0 3 0],) end @testset "gpu(x) and cpu(x) on structured arrays" begin