From 21d6d1dc87718c4bf5e8b6d29673988161804dfe Mon Sep 17 00:00:00 2001 From: "Documenter.jl" Date: Wed, 11 Dec 2024 11:36:42 +0000 Subject: [PATCH] build based on e10d8f8 --- previews/PR2547/.documenter-siteinfo.json | 2 +- previews/PR2547/ecosystem/index.html | 2 +- previews/PR2547/guide/gpu/index.html | 2 +- .../PR2547/guide/models/basics/index.html | 2 +- .../PR2547/guide/models/overview/index.html | 2 +- .../PR2547/guide/models/quickstart/index.html | 2 +- .../PR2547/guide/models/recurrence/index.html | 2 +- previews/PR2547/guide/performance/index.html | 2 +- previews/PR2547/guide/saving/index.html | 2 +- .../PR2547/guide/training/training/index.html | 2 +- previews/PR2547/index.html | 2 +- .../reference/data/mldatadevices/index.html | 2 +- .../PR2547/reference/data/mlutils/index.html | 4 +- .../PR2547/reference/data/onehot/index.html | 2 +- .../PR2547/reference/destructure/index.html | 10 +-- .../reference/models/activation/index.html | 2 +- .../reference/models/functors/index.html | 8 +- .../PR2547/reference/models/layers/index.html | 82 +++++++++---------- .../PR2547/reference/models/losses/index.html | 34 ++++---- .../PR2547/reference/models/nnlib/index.html | 2 +- .../PR2547/reference/outputsize/index.html | 4 +- .../reference/training/callbacks/index.html | 8 +- .../reference/training/enzyme/index.html | 4 +- .../reference/training/optimisers/index.html | 2 +- .../reference/training/reference/index.html | 6 +- .../reference/training/zygote/index.html | 2 +- .../PR2547/reference/utilities/index.html | 22 ++--- .../PR2547/tutorials/custom_layers/index.html | 2 +- .../tutorials/linear_regression/index.html | 2 +- .../tutorials/logistic_regression/index.html | 2 +- .../PR2547/tutorials/model_zoo/index.html | 2 +- 31 files changed, 112 insertions(+), 112 deletions(-) diff --git a/previews/PR2547/.documenter-siteinfo.json b/previews/PR2547/.documenter-siteinfo.json index ff8863a186..6aa207d5a2 100644 --- a/previews/PR2547/.documenter-siteinfo.json +++ b/previews/PR2547/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.11.2","generation_timestamp":"2024-12-11T10:52:37","documenter_version":"1.8.0"}} \ No newline at end of file +{"documenter":{"julia_version":"1.11.2","generation_timestamp":"2024-12-11T11:33:27","documenter_version":"1.8.0"}} \ No newline at end of file diff --git a/previews/PR2547/ecosystem/index.html b/previews/PR2547/ecosystem/index.html index 29c3135234..fa2341791b 100644 --- a/previews/PR2547/ecosystem/index.html +++ b/previews/PR2547/ecosystem/index.html @@ -3,4 +3,4 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-36890222-9', {'page_path': location.pathname + location.search + location.hash}); -

The Julia Ecosystem around Flux

One of the main strengths of Julia lies in an ecosystem of packages globally providing a rich and consistent user experience.

This is a non-exhaustive list of Julia packages, nicely complementing Flux in typical machine learning and deep learning workflows. To add your project please send a PR. See also academic work citing Flux or citing Zygote.

Flux models

  • Flux's model-zoo contains examples from many domains.

Computer vision

  • ObjectDetector.jl provides ready-to-go image detection via YOLO.
  • Metalhead.jl includes many state-of-the-art computer vision models which can easily be used for transfer learning.
  • UNet.jl is a generic UNet implementation.

Natural language processing

  • Transformers.jl provides components for Transformer models for NLP, as well as providing several trained models out of the box.
  • TextAnalysis.jl provides several NLP algorithms that use Flux models under the hood.

Reinforcement learning

  • AlphaZero.jl provides a generic, simple and fast implementation of Deepmind's AlphaZero algorithm.
  • ReinforcementLearning.jl offers a collection of tools for doing reinforcement learning research in Julia.

Graph learning

  • GraphNeuralNetworks.jl is a fresh, performant and flexible graph neural network library based on Flux.jl.
  • GeometricFlux.jl is the first graph neural network library for julia.
  • NeuralOperators.jl enables training infinite dimensional PDEs by learning a continuous function instead of using the finite element method.
  • SeaPearl.jl is a Constraint Programming solver that uses Reinforcement Learning based on graphs as input.

Time series

Robust networks

  • RobustNeuralNetworks.jl includes classes of neural networks that are constructed to naturally satisfy robustness constraints.

Tools closely associated with Flux

Utility tools you're unlikely to have met if you never used Flux!

High-level training flows

  • FastAI.jl is a Julia port of Python's fast.ai library.
  • FluxTraining.jl is a package for using and writing powerful, extensible training loops for deep learning models. It supports callbacks for many common use cases like hyperparameter scheduling, metrics tracking and logging, checkpointing, early stopping, and more. It powers training in FastAI.jl
  • Ignite.jl is a Julia port of the Python library ignite for simplifying neural network training and validation loops, using events and handlers.
  • Tsunami.jl adds high-level ways to control training, parameter schedules & logging, heavily inspired by pytorch-lightning.

Datasets

Commonly used machine learning datasets are provided by the following packages in the julia ecosystem:

Plumbing

Tools to put data into the right order for creating a model.

  • Augmentor.jl is a real-time library augmentation library for increasing the number of training images.
  • DataAugmentation.jl aims to make it easy to build stochastic, label-preserving augmentation pipelines for vision use cases involving images, keypoints and segmentation masks.
  • MLUtils.jl (replaces MLDataUtils.jl and MLLabelUtils.jl) is a library for processing Machine Learning datasets.

Parameters


Differentiable programming

Packages based on differentiable programming but not necessarily related to Machine Learning.

  • The SciML ecosystem uses Flux and Zygote to mix neural nets with differential equations, to get the best of black box and mechanistic modelling.
  • DiffEqFlux.jl provides tools for creating Neural Differential Equations.
  • Flux3D.jl shows off machine learning on 3D data.
  • RayTracer.jl combines ML with computer vision via a differentiable renderer.
  • Duckietown.jl Differentiable Duckietown simulator.
  • The Yao.jl project uses Flux and Zygote for Quantum Differentiable Programming.
  • AtomicGraphNets.jl enables learning graph based models on atomic systems used in chemistry.
  • DiffImages.jl differentiable computer vision modeling in Julia with the Images.jl ecosystem.

Probabilistic programming

  • Turing.jl extends Flux's differentiable programming capabilities to probabilistic programming.
  • Omega.jl is a research project aimed at causal, higher-order probabilistic programming.
  • Stheno.jl provides flexible Gaussian processes.

Statistics


Useful miscellaneous packages

Some useful and random packages!

  • AdversarialPrediction.jl provides a way to easily optimise generic performance metrics in supervised learning settings using the Adversarial Prediction framework.
  • Mill.jl helps to prototype flexible multi-instance learning models.
  • MLMetrics.jl is a utility for scoring models in data science and machine learning.
  • Torch.jl exposes torch in Julia.
  • ValueHistories.jl is a utility for efficient tracking of optimization histories, training curves or other information of arbitrary types and at arbitrarily spaced sampling times.
  • InvertibleNetworks.jl Building blocks for invertible neural networks in the Julia programming language.
  • ProgressMeter.jl progress meters for long-running computations.
  • TensorBoardLogger.jl easy peasy logging to tensorboard in Julia
  • ArgParse.jl is a package for parsing command-line arguments to Julia programs.
  • Parameters.jl types with default field values, keyword constructors and (un-)pack macros.
  • BSON.jl is a package for working with the Binary JSON serialisation format.
  • DataFrames.jl in-memory tabular data in Julia.
  • DrWatson.jl is a scientific project assistant software.

This tight integration among Julia packages is shown in some of the examples in the model-zoo repository.


Alternatives to Flux

Julia has several other libraries for making neural networks.

  • SimpleChains.jl is focused on making small, simple, CPU-based, neural networks fast. Uses LoopVectorization.jl. (Was FastChain in DiffEqFlux.jl)

  • Knet.jl is a neural network library built around AutoGrad.jl.

  • Lux.jl (earlier ExplicitFluxLayers.jl) shares much of the design, use-case, and NNlib.jl / Optimisers.jl back-end of Flux. But instead of encapsulating all parameters within the model structure, it separates this into 3 components: a model, a tree of parameters, and a tree of model states.

Explicit or explicit?

Flux's training docs talk about changes from Zygote's implicit to explicit gradients, dictionary-like to tree-like structures. (See also Zygote's description of these.) Lux also uses Zygote, but uses the word "explicit" to mean something unrelated, namely storing the tree of parameters (and of state) separately from the model.

+

The Julia Ecosystem around Flux

One of the main strengths of Julia lies in an ecosystem of packages globally providing a rich and consistent user experience.

This is a non-exhaustive list of Julia packages, nicely complementing Flux in typical machine learning and deep learning workflows. To add your project please send a PR. See also academic work citing Flux or citing Zygote.

Flux models

  • Flux's model-zoo contains examples from many domains.

Computer vision

  • ObjectDetector.jl provides ready-to-go image detection via YOLO.
  • Metalhead.jl includes many state-of-the-art computer vision models which can easily be used for transfer learning.
  • UNet.jl is a generic UNet implementation.

Natural language processing

  • Transformers.jl provides components for Transformer models for NLP, as well as providing several trained models out of the box.
  • TextAnalysis.jl provides several NLP algorithms that use Flux models under the hood.

Reinforcement learning

  • AlphaZero.jl provides a generic, simple and fast implementation of Deepmind's AlphaZero algorithm.
  • ReinforcementLearning.jl offers a collection of tools for doing reinforcement learning research in Julia.

Graph learning

  • GraphNeuralNetworks.jl is a fresh, performant and flexible graph neural network library based on Flux.jl.
  • GeometricFlux.jl is the first graph neural network library for julia.
  • NeuralOperators.jl enables training infinite dimensional PDEs by learning a continuous function instead of using the finite element method.
  • SeaPearl.jl is a Constraint Programming solver that uses Reinforcement Learning based on graphs as input.

Time series

Robust networks

  • RobustNeuralNetworks.jl includes classes of neural networks that are constructed to naturally satisfy robustness constraints.

Tools closely associated with Flux

Utility tools you're unlikely to have met if you never used Flux!

High-level training flows

  • FastAI.jl is a Julia port of Python's fast.ai library.
  • FluxTraining.jl is a package for using and writing powerful, extensible training loops for deep learning models. It supports callbacks for many common use cases like hyperparameter scheduling, metrics tracking and logging, checkpointing, early stopping, and more. It powers training in FastAI.jl
  • Ignite.jl is a Julia port of the Python library ignite for simplifying neural network training and validation loops, using events and handlers.
  • Tsunami.jl adds high-level ways to control training, parameter schedules & logging, heavily inspired by pytorch-lightning.

Datasets

Commonly used machine learning datasets are provided by the following packages in the julia ecosystem:

Plumbing

Tools to put data into the right order for creating a model.

  • Augmentor.jl is a real-time library augmentation library for increasing the number of training images.
  • DataAugmentation.jl aims to make it easy to build stochastic, label-preserving augmentation pipelines for vision use cases involving images, keypoints and segmentation masks.
  • MLUtils.jl (replaces MLDataUtils.jl and MLLabelUtils.jl) is a library for processing Machine Learning datasets.

Parameters


Differentiable programming

Packages based on differentiable programming but not necessarily related to Machine Learning.

  • The SciML ecosystem uses Flux and Zygote to mix neural nets with differential equations, to get the best of black box and mechanistic modelling.
  • DiffEqFlux.jl provides tools for creating Neural Differential Equations.
  • Flux3D.jl shows off machine learning on 3D data.
  • RayTracer.jl combines ML with computer vision via a differentiable renderer.
  • Duckietown.jl Differentiable Duckietown simulator.
  • The Yao.jl project uses Flux and Zygote for Quantum Differentiable Programming.
  • AtomicGraphNets.jl enables learning graph based models on atomic systems used in chemistry.
  • DiffImages.jl differentiable computer vision modeling in Julia with the Images.jl ecosystem.

Probabilistic programming

  • Turing.jl extends Flux's differentiable programming capabilities to probabilistic programming.
  • Omega.jl is a research project aimed at causal, higher-order probabilistic programming.
  • Stheno.jl provides flexible Gaussian processes.

Statistics


Useful miscellaneous packages

Some useful and random packages!

  • AdversarialPrediction.jl provides a way to easily optimise generic performance metrics in supervised learning settings using the Adversarial Prediction framework.
  • Mill.jl helps to prototype flexible multi-instance learning models.
  • MLMetrics.jl is a utility for scoring models in data science and machine learning.
  • Torch.jl exposes torch in Julia.
  • ValueHistories.jl is a utility for efficient tracking of optimization histories, training curves or other information of arbitrary types and at arbitrarily spaced sampling times.
  • InvertibleNetworks.jl Building blocks for invertible neural networks in the Julia programming language.
  • ProgressMeter.jl progress meters for long-running computations.
  • TensorBoardLogger.jl easy peasy logging to tensorboard in Julia
  • ArgParse.jl is a package for parsing command-line arguments to Julia programs.
  • Parameters.jl types with default field values, keyword constructors and (un-)pack macros.
  • BSON.jl is a package for working with the Binary JSON serialisation format.
  • DataFrames.jl in-memory tabular data in Julia.
  • DrWatson.jl is a scientific project assistant software.

This tight integration among Julia packages is shown in some of the examples in the model-zoo repository.


Alternatives to Flux

Julia has several other libraries for making neural networks.

  • SimpleChains.jl is focused on making small, simple, CPU-based, neural networks fast. Uses LoopVectorization.jl. (Was FastChain in DiffEqFlux.jl)

  • Knet.jl is a neural network library built around AutoGrad.jl.

  • Lux.jl (earlier ExplicitFluxLayers.jl) shares much of the design, use-case, and NNlib.jl / Optimisers.jl back-end of Flux. But instead of encapsulating all parameters within the model structure, it separates this into 3 components: a model, a tree of parameters, and a tree of model states.

Explicit or explicit?

Flux's training docs talk about changes from Zygote's implicit to explicit gradients, dictionary-like to tree-like structures. (See also Zygote's description of these.) Lux also uses Zygote, but uses the word "explicit" to mean something unrelated, namely storing the tree of parameters (and of state) separately from the model.

diff --git a/previews/PR2547/guide/gpu/index.html b/previews/PR2547/guide/gpu/index.html index a42907c187..ee0a60c42c 100644 --- a/previews/PR2547/guide/gpu/index.html +++ b/previews/PR2547/guide/gpu/index.html @@ -174,4 +174,4 @@ true

For Metal GPU:

julia> using Metal
 
 julia> Metal.functional()
-true
+true diff --git a/previews/PR2547/guide/models/basics/index.html b/previews/PR2547/guide/models/basics/index.html index e4cc0a2de2..57855b49db 100644 --- a/previews/PR2547/guide/models/basics/index.html +++ b/previews/PR2547/guide/models/basics/index.html @@ -95,4 +95,4 @@ Flux.train!((m,x,y) -> (m(x) - y)^2, model3, data, Descent(0.01)) end

The same code will also work with model1 or model2 instead. Here's how to plot the desired and actual outputs:

using Plots
 plot(x -> 2x-x^3, -2, 2, label="truth")
-scatter!(x -> model3([x]), -2:0.1f0:2, label="fitted")

More detail about what exactly the function train! is doing, and how to use rules other than simple Descent, is what the next page in this guide is about: training.

+scatter!(x -> model3([x]), -2:0.1f0:2, label="fitted")

More detail about what exactly the function train! is doing, and how to use rules other than simple Descent, is what the next page in this guide is about: training.

diff --git a/previews/PR2547/guide/models/overview/index.html b/previews/PR2547/guide/models/overview/index.html index 86fc9d7701..6c68ad59bf 100644 --- a/previews/PR2547/guide/models/overview/index.html +++ b/previews/PR2547/guide/models/overview/index.html @@ -56,4 +56,4 @@ julia> y_test 1×5 Matrix{Int64}: - 26 30 34 38 42

The predictions are good. Here's how we got there.

First, we gathered real-world data into the variables x_train, y_train, x_test, and y_test. The x_* data defines inputs, and the y_* data defines outputs. The *_train data is for training the model, and the *_test data is for verifying the model. Our data was based on the function 4x + 2.

Then, we built a single input, single output predictive model, predict = Dense(1 => 1). The initial predictions weren't accurate, because we had not trained the model yet.

After building the model, we trained it with train!(loss, predict, data, opt). The loss function is first, followed by the model itself, the training data, and the Descent optimiser provided by Flux. We ran the training step once, and observed that the parameters changed and the loss went down. Then, we ran the train! many times to finish the training process.

After we trained the model, we verified it with the test data to verify the results.

This overall flow represents how Flux works. Let's drill down a bit to understand what's going on inside the individual layers of Flux.

+ 26 30 34 38 42

The predictions are good. Here's how we got there.

First, we gathered real-world data into the variables x_train, y_train, x_test, and y_test. The x_* data defines inputs, and the y_* data defines outputs. The *_train data is for training the model, and the *_test data is for verifying the model. Our data was based on the function 4x + 2.

Then, we built a single input, single output predictive model, predict = Dense(1 => 1). The initial predictions weren't accurate, because we had not trained the model yet.

After building the model, we trained it with train!(loss, predict, data, opt). The loss function is first, followed by the model itself, the training data, and the Descent optimiser provided by Flux. We ran the training step once, and observed that the parameters changed and the loss went down. Then, we ran the train! many times to finish the training process.

After we trained the model, we verified it with the test data to verify the results.

This overall flow represents how Flux works. Let's drill down a bit to understand what's going on inside the individual layers of Flux.

diff --git a/previews/PR2547/guide/models/quickstart/index.html b/previews/PR2547/guide/models/quickstart/index.html index 362effaa96..6e40b175b7 100644 --- a/previews/PR2547/guide/models/quickstart/index.html +++ b/previews/PR2547/guide/models/quickstart/index.html @@ -64,4 +64,4 @@ y_hat = m(x) Flux.logitcrossentropy(y_hat, y) end -end

For more complex models, you can define a custom struct MyModel containing layers and arrays and implement the call operator (::MyModel)(x) = ... to define the forward pass. This is all it is needed for Flux to work. Marking the struct with Flux.@layer will add some more functionality, like pretty printing and the ability to mark some internal fields as trainable or not (also see trainable).

+end

For more complex models, you can define a custom struct MyModel containing layers and arrays and implement the call operator (::MyModel)(x) = ... to define the forward pass. This is all it is needed for Flux to work. Marking the struct with Flux.@layer will add some more functionality, like pretty printing and the ability to mark some internal fields as trainable or not (also see trainable).

diff --git a/previews/PR2547/guide/models/recurrence/index.html b/previews/PR2547/guide/models/recurrence/index.html index 99d0c3c3df..8a89491aec 100644 --- a/previews/PR2547/guide/models/recurrence/index.html +++ b/previews/PR2547/guide/models/recurrence/index.html @@ -114,4 +114,4 @@ opt_state = Flux.setup(AdamW(1e-3), model) g = gradient(m -> Flux.mse(m(x), y), model)[1] -Flux.update!(opt_state, model, g) +Flux.update!(opt_state, model, g) diff --git a/previews/PR2547/guide/performance/index.html b/previews/PR2547/guide/performance/index.html index e9af8dfbb2..351b9c998c 100644 --- a/previews/PR2547/guide/performance/index.html +++ b/previews/PR2547/guide/performance/index.html @@ -14,4 +14,4 @@ function loss_total(x_batch::Matrix, y_batch::Matrix) y_preds = model(x_batch) sum(loss.(y_preds, y_batch)) -end

When doing this kind of concatenation use reduce(hcat, xs) rather than hcat(xs...). This will avoid the splatting penalty, and will hit the optimised reduce method.

Be aware of GPU memory inefficiencies

Currently, GPU memory is not handled as well as system memory. If your training loop is allocating significantly on the GPU, you can quickly fill your GPU memory and the piecemeal reclamation and shuffling of data between GPU and system memory can become extremely slow. If profiling shows that a significant portion of time is spent in the gpu function and your data sizes are not large, this may be the cause. Running an incremental garbage collection manually (GC.gc(false)) at regular intervals can keep your GPU memory free and responsive. See other tips for CUDA memory management here.

+end

When doing this kind of concatenation use reduce(hcat, xs) rather than hcat(xs...). This will avoid the splatting penalty, and will hit the optimised reduce method.

Be aware of GPU memory inefficiencies

Currently, GPU memory is not handled as well as system memory. If your training loop is allocating significantly on the GPU, you can quickly fill your GPU memory and the piecemeal reclamation and shuffling of data between GPU and system memory can become extremely slow. If profiling shows that a significant portion of time is spent in the gpu function and your data sizes are not large, this may be the cause. Running an incremental garbage collection manually (GC.gc(false)) at regular intervals can keep your GPU memory free and responsive. See other tips for CUDA memory management here.

diff --git a/previews/PR2547/guide/saving/index.html b/previews/PR2547/guide/saving/index.html index 369d2579f0..b3007fc8d4 100644 --- a/previews/PR2547/guide/saving/index.html +++ b/previews/PR2547/guide/saving/index.html @@ -64,4 +64,4 @@ Chain( Dense(10 => 5, relu), # 55 parameters Dense(5 => 2), # 12 parameters -) # Total: 4 arrays, 67 parameters, 476 bytes.
Warning

Saving models this way could lead to compatibility issues across julia versions and across Flux versions if some of the Flux layers' internals are changed. It is therefore not recommended for long term storage, use Flux.state instead.

+) # Total: 4 arrays, 67 parameters, 476 bytes.
Warning

Saving models this way could lead to compatibility issues across julia versions and across Flux versions if some of the Flux layers' internals are changed. It is therefore not recommended for long term storage, use Flux.state instead.

diff --git a/previews/PR2547/guide/training/training/index.html b/previews/PR2547/guide/training/training/index.html index 692d0c2189..e18697f14c 100644 --- a/previews/PR2547/guide/training/training/index.html +++ b/previews/PR2547/guide/training/training/index.html @@ -118,4 +118,4 @@ train!(loss, bimodel, data, opt_state) # Un-freeze the entire model: -Flux.thaw!(opt_state)

While adjust! and freeze!/thaw! make temporary modifications to the optimiser state, permanently removing some fields of a new layer type from training is usually done when defining the layer, by calling for example @layerNewLayer trainable=(weight,).

+Flux.thaw!(opt_state)

While adjust! and freeze!/thaw! make temporary modifications to the optimiser state, permanently removing some fields of a new layer type from training is usually done when defining the layer, by calling for example @layerNewLayer trainable=(weight,).

diff --git a/previews/PR2547/index.html b/previews/PR2547/index.html index ef200e91ac..74f0deb11d 100644 --- a/previews/PR2547/index.html +++ b/previews/PR2547/index.html @@ -3,4 +3,4 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-36890222-9', {'page_path': location.pathname + location.search + location.hash}); -

Flux: The Julia Machine Learning Library

Flux is a library for machine learning. It comes "batteries-included" with many useful tools built in, but also lets you use the full power of the Julia language where you need it. We follow a few key principles:

  • Doing the obvious thing. Flux has relatively few explicit APIs. Instead, writing down the mathematical form will work – and be fast.
  • Extensible by default. Flux is written to be highly flexible while being performant. Extending Flux is as simple as using your own code as part of the model you want - it is all high-level Julia code.
  • Play nicely with others. Flux works well with unrelated Julia libraries from images to differential equation solvers, rather than duplicating them.

Installation

Download Julia 1.10 or later, preferably the current stable release. You can add Flux using Julia's package manager, by typing ] add Flux in the Julia prompt. For Nvidia GPU support, you will also need to install the CUDA and the cuDNN packages. For AMD GPU support, install the AMDGPU package. For acceleration on Apple Silicon, install the Metal package.

Learning Flux

The quick start page trains a simple neural network.

The rest of the guide provides a from-scratch introduction to Flux's take on models and how they work, starting with fitting a line. Once you understand these docs, congratulations, you also understand Flux's source code, which is intended to be concise, legible and a good reference for more advanced concepts.

There are some tutorials about building particular models. The model zoo has starting points for many other common ones. And finally, the ecosystem page lists packages which define Flux models.

The reference section includes, beside Flux's own functions, those of some companion packages: Zygote.jl (automatic differentiation), Optimisers.jl (training) and others.

Community

Everyone is welcome to join our community on the Julia discourse forum, or the slack chat (channel #machine-learning). If you have questions or issues we'll try to help you out.

If you're interested in hacking on Flux, the source code is open and easy to understand – it's all just the same Julia code you work with normally. You might be interested in our intro issues to get started, or our contributing guide.

+

Flux: The Julia Machine Learning Library

Flux is a library for machine learning. It comes "batteries-included" with many useful tools built in, but also lets you use the full power of the Julia language where you need it. We follow a few key principles:

  • Doing the obvious thing. Flux has relatively few explicit APIs. Instead, writing down the mathematical form will work – and be fast.
  • Extensible by default. Flux is written to be highly flexible while being performant. Extending Flux is as simple as using your own code as part of the model you want - it is all high-level Julia code.
  • Play nicely with others. Flux works well with unrelated Julia libraries from images to differential equation solvers, rather than duplicating them.

Installation

Download Julia 1.10 or later, preferably the current stable release. You can add Flux using Julia's package manager, by typing ] add Flux in the Julia prompt. For Nvidia GPU support, you will also need to install the CUDA and the cuDNN packages. For AMD GPU support, install the AMDGPU package. For acceleration on Apple Silicon, install the Metal package.

Learning Flux

The quick start page trains a simple neural network.

The rest of the guide provides a from-scratch introduction to Flux's take on models and how they work, starting with fitting a line. Once you understand these docs, congratulations, you also understand Flux's source code, which is intended to be concise, legible and a good reference for more advanced concepts.

There are some tutorials about building particular models. The model zoo has starting points for many other common ones. And finally, the ecosystem page lists packages which define Flux models.

The reference section includes, beside Flux's own functions, those of some companion packages: Zygote.jl (automatic differentiation), Optimisers.jl (training) and others.

Community

Everyone is welcome to join our community on the Julia discourse forum, or the slack chat (channel #machine-learning). If you have questions or issues we'll try to help you out.

If you're interested in hacking on Flux, the source code is open and easy to understand – it's all just the same Julia code you work with normally. You might be interested in our intro issues to get started, or our contributing guide.

diff --git a/previews/PR2547/reference/data/mldatadevices/index.html b/previews/PR2547/reference/data/mldatadevices/index.html index f270b0ff0c..c11e9f018a 100644 --- a/previews/PR2547/reference/data/mldatadevices/index.html +++ b/previews/PR2547/reference/data/mldatadevices/index.html @@ -27,4 +27,4 @@ end (i, summary(x)) = (1, "3×13 CuArray{Float32, 2, CUDA.DeviceMemory}") (i, summary(x)) = (2, "3×13 CuArray{Float32, 2, CUDA.DeviceMemory}") -(i, summary(x)) = (3, "3×7 CuArray{Float32, 2, CUDA.DeviceMemory}")source
+(i, summary(x)) = (3, "3×7 CuArray{Float32, 2, CUDA.DeviceMemory}")source
diff --git a/previews/PR2547/reference/data/mlutils/index.html b/previews/PR2547/reference/data/mlutils/index.html index 361fcd27ba..29c8242054 100644 --- a/previews/PR2547/reference/data/mlutils/index.html +++ b/previews/PR2547/reference/data/mlutils/index.html @@ -198,7 +198,7 @@ 1.7 1.7source
MLUtils.filterobsFunction
filterobs(f, data)

Return a subset of data container data including all indices i for which f(getobs(data, i)) === true.

data = 1:10
 numobs(data) == 10
 fdata = filterobs(>(5), data)
-numobs(fdata) == 5
source
Flux.flattenFunction

flatten(x)

Same as MLUtils.flatten, which should be prefered to this method existing only for backward compatibility.

source
MLUtils.flattenFunction
flatten(x::AbstractArray)

Reshape arbitrarly-shaped input into a matrix-shaped output, preserving the size of the last dimension.

See also unsqueeze.

Examples

julia> rand(3,4,5) |> flatten |> size
+numobs(fdata) == 5
source
Flux.flattenFunction

flatten(x)

Same as MLUtils.flatten, which should be prefered to this method existing only for backward compatibility.

source
MLUtils.flattenFunction
flatten(x::AbstractArray)

Reshape arbitrarly-shaped input into a matrix-shaped output, preserving the size of the last dimension.

See also unsqueeze.

Examples

julia> rand(3,4,5) |> flatten |> size
 (12, 5)
source
MLUtils.getobsFunction
getobs(data, [idx])

Return the observations corresponding to the observation index idx. Note that idx can be any type as long as data has defined getobs for that type. If idx is not provided, then materialize all observations in data.

If data does not have getobs defined, then in the case of Tables.table(data) == true returns the row(s) in position idx, otherwise returns data[idx].

Authors of custom data containers should implement Base.getindex for their type instead of getobs. getobs should only be implemented for types where there is a difference between getobs and Base.getindex (such as multi-dimensional arrays).

The returned observation(s) should be in the form intended to be passed as-is to some learning algorithm. There is no strict interface requirement on how this "actual data" must look like. Every author behind some custom data container can make this decision themselves. The output should be consistent when idx is a scalar vs vector.

getobs supports by default nested combinations of array, tuple, named tuples, and dictionaries.

See also getobs! and numobs.

Examples

# named tuples 
 x = (a = [1, 2, 3], b = rand(6, 3))
 
@@ -570,4 +570,4 @@
 julia> zeros_like(x, Float64)
 2×2 CuArray{Float64, 2, CUDA.Mem.DeviceBuffer}:
  0.0  0.0
- 0.0  0.0
source
+ 0.0 0.0source
diff --git a/previews/PR2547/reference/data/onehot/index.html b/previews/PR2547/reference/data/onehot/index.html index 5267df1438..1fd5e38ee2 100644 --- a/previews/PR2547/reference/data/onehot/index.html +++ b/previews/PR2547/reference/data/onehot/index.html @@ -73,4 +73,4 @@ 3 6 15 3 9 3 12 3 6 15 3source
OneHotArrays.OneHotArrayType
OneHotArray{T, N, M, I} <: AbstractArray{Bool, M}
 OneHotArray(indices, L)

A one-hot M-dimensional array with L labels (i.e. size(A, 1) == L and sum(A, dims=1) == 1) stored as a compact N == M-1-dimensional array of indices.

Typically constructed by onehot and onehotbatch. Parameter I is the type of the underlying storage, and T its eltype.

source
OneHotArrays.OneHotVectorType
OneHotVector{T} = OneHotArray{T, 0, 1, T}
 OneHotVector(indices, L)

A one-hot vector with L labels (i.e. length(A) == L and count(A) == 1) typically constructed by onehot. Stored efficiently as a single index of type T, usually UInt32.

source
OneHotArrays.OneHotMatrixType
OneHotMatrix{T, I} = OneHotArray{T, 1, 2, I}
-OneHotMatrix(indices, L)

A one-hot matrix (with L labels) typically constructed using onehotbatch. Stored efficiently as a vector of indices with type I and eltype T.

source
+OneHotMatrix(indices, L)

A one-hot matrix (with L labels) typically constructed using onehotbatch. Stored efficiently as a vector of indices with type I and eltype T.

source
diff --git a/previews/PR2547/reference/destructure/index.html b/previews/PR2547/reference/destructure/index.html index 9d1e3d3c7d..b73291423c 100644 --- a/previews/PR2547/reference/destructure/index.html +++ b/previews/PR2547/reference/destructure/index.html @@ -80,7 +80,7 @@ julia> getkeypath(x, KeyPath(:b, 1, "c")) 2-element Vector{Float64}: 3.0 - 4.0source
Optimisers.isnumericFunction
isnumeric(x) -> Bool

Returns true on any parameter to be adjusted by Optimisers.jl, namely arrays of non-integer numbers. Returns false on all other types.

Requires also that Functors.isleaf(x) == true, to focus on e.g. the parent of a transposed matrix, not the wrapper.

source
Flux.paramsFunction
params(model)

Returns a Zygote.Params object containing all parameter arrays from the model. This is deprecated! This function was the cornerstone of how Flux used Zygote's implicit mode gradients, but since Flux 0.13 we use explicit mode gradient(m -> loss(m, x, y), model) instead. To collect all the parameter arrays for other purposes, use Flux.trainables(model).

source

All Layers

Another kind of flat view of a nested model is provided by the modules command. This extracts a list of all layers:

Flux.modulesFunction
modules(m)

Return an iterator over non-leaf objects that can be reached by recursing m over the children given by Functors.functor.

Useful for applying a function (e.g. a regularizer) over specific modules or subsets of the parameters (e.g. the weights but not the biases).

Examples

julia> m1 = Chain(Dense(28^2, 64), BatchNorm(64, relu));
+ 4.0
source
Optimisers.isnumericFunction
isnumeric(x) -> Bool

Returns true on any parameter to be adjusted by Optimisers.jl, namely arrays of non-integer numbers. Returns false on all other types.

Requires also that Functors.isleaf(x) == true, to focus on e.g. the parent of a transposed matrix, not the wrapper.

source
Flux.paramsFunction
params(model)

Returns a Zygote.Params object containing all parameter arrays from the model. This is deprecated! This function was the cornerstone of how Flux used Zygote's implicit mode gradients, but since Flux 0.13 we use explicit mode gradient(m -> loss(m, x, y), model) instead. To collect all the parameter arrays for other purposes, use Flux.trainables(model).

source

All Layers

Another kind of flat view of a nested model is provided by the modules command. This extracts a list of all layers:

Flux.modulesFunction
modules(m)

Return an iterator over non-leaf objects that can be reached by recursing m over the children given by Functors.functor.

Useful for applying a function (e.g. a regularizer) over specific modules or subsets of the parameters (e.g. the weights but not the biases).

Examples

julia> m1 = Chain(Dense(28^2, 64), BatchNorm(64, relu));
 
 julia> m2 = Chain(m1, Dense(64, 10))
 Chain(
@@ -106,7 +106,7 @@
 L2 (generic function with 1 method)
 
 julia> L2(m2) isa Float32
-true
source

Save and Load

Flux.stateFunction
state(x)

Return an object with the same nested structure as x according to Functors.children, but made only of basic containers (e.g. named tuples, tuples, arrays, and dictionaries).

Besides trainable and non-trainable arrays, the state will contain leaf nodes that are not arrays, such as numbers, symbols, strings, and nothing values. The leaf types that end up in the state could increase in the future.

This method is particularly useful for saving and loading models, since the state contain only simple data types that can be easily serialized.

The state can be passed to loadmodel! to restore the model.

Examples

Copy the state into another model

julia> m1 = Chain(Dense(1, 2, tanh; init=ones), Dense(2, 1; init=ones));
+true
source

Save and Load

Flux.stateFunction
state(x)

Return an object with the same nested structure as x according to Functors.children, but made only of basic containers (e.g. named tuples, tuples, arrays, and dictionaries).

Besides trainable and non-trainable arrays, the state will contain leaf nodes that are not arrays, such as numbers, symbols, strings, and nothing values. The leaf types that end up in the state could increase in the future.

This method is particularly useful for saving and loading models, since the state contain only simple data types that can be easily serialized.

The state can be passed to loadmodel! to restore the model.

Examples

Copy the state into another model

julia> m1 = Chain(Dense(1, 2, tanh; init=ones), Dense(2, 1; init=ones));
 
 julia> s = Flux.state(m1)
 (layers = ((weight = [1.0; 1.0;;], bias = [0.0, 0.0], σ = ()), (weight = [1.0 1.0], bias = [0.0], σ = ())),)
@@ -132,7 +132,7 @@
 
 julia> JLD2.jldsave("checkpoint.jld2", model_state = s)
 
-julia> Flux.loadmodel!(m2, JLD2.load("checkpoint.jld2", "model_state"))
source
Flux.loadmodel!Function
loadmodel!(dst, src)

Copy all the parameters (trainable and non-trainable) from src into dst.

Recursively walks dst and src together using Functors.children, and calling copyto! on parameter arrays or throwing an error when there is a mismatch. Non-array elements (such as activation functions) are not copied and need not match. Zero bias vectors and bias=false are considered equivalent (see extended help for more details).

See also Flux.state.

Examples

julia> dst = Chain(Dense(Flux.ones32(2, 5), Flux.ones32(2), tanh), Dense(2 => 1; bias = [1f0]))
+julia> Flux.loadmodel!(m2, JLD2.load("checkpoint.jld2", "model_state"))
source
Flux.loadmodel!Function
loadmodel!(dst, src)

Copy all the parameters (trainable and non-trainable) from src into dst.

Recursively walks dst and src together using Functors.children, and calling copyto! on parameter arrays or throwing an error when there is a mismatch. Non-array elements (such as activation functions) are not copied and need not match. Zero bias vectors and bias=false are considered equivalent (see extended help for more details).

See also Flux.state.

Examples

julia> dst = Chain(Dense(Flux.ones32(2, 5), Flux.ones32(2), tanh), Dense(2 => 1; bias = [1f0]))
 Chain(
   Dense(5 => 2, tanh),                  # 12 parameters
   Dense(2 => 1),                        # 3 parameters
@@ -149,7 +149,7 @@
 false
 
 julia> iszero(dst[2].bias)
-true

Extended help

Throws an error when:

  • dst and src do not share the same fields (at any level)
  • the sizes of leaf nodes are mismatched between dst and src
  • copying non-array values to/from an array parameter (except inactive parameters described below)
  • dst is a "tied" parameter (i.e. refers to another parameter) and loaded into multiple times with mismatched source values

Inactive parameters can be encoded by using the boolean value false instead of an array. If dst == false and src is an all-zero array, no error will be raised (and no values copied); however, attempting to copy a non-zero array to an inactive parameter will throw an error. Likewise, copying a src value of false to any dst array is valid, but copying a src value of true will error.

source

KeyPath

Functors.KeyPathType
KeyPath(keys...)

A type for representing a path of keys to a value in a nested structure. Can be constructed with a sequence of keys, or by concatenating other KeyPaths. Keys can be of type Symbol, String, Int, or CartesianIndex.

For custom types, access through symbol keys is assumed to be done with getproperty. For consistency, the method Base.propertynames is used to get the viable property names.

For string, integer, and cartesian index keys, the access is done with getindex instead.

See also getkeypath, haskeypath.

Examples

julia> kp = KeyPath(:b, 3)
+true

Extended help

Throws an error when:

  • dst and src do not share the same fields (at any level)
  • the sizes of leaf nodes are mismatched between dst and src
  • copying non-array values to/from an array parameter (except inactive parameters described below)
  • dst is a "tied" parameter (i.e. refers to another parameter) and loaded into multiple times with mismatched source values

Inactive parameters can be encoded by using the boolean value false instead of an array. If dst == false and src is an all-zero array, no error will be raised (and no values copied); however, attempting to copy a non-zero array to an inactive parameter will throw an error. Likewise, copying a src value of false to any dst array is valid, but copying a src value of true will error.

source

KeyPath

Functors.KeyPathType
KeyPath(keys...)

A type for representing a path of keys to a value in a nested structure. Can be constructed with a sequence of keys, or by concatenating other KeyPaths. Keys can be of type Symbol, String, Int, or CartesianIndex.

For custom types, access through symbol keys is assumed to be done with getproperty. For consistency, the method Base.propertynames is used to get the viable property names.

For string, integer, and cartesian index keys, the access is done with getindex instead.

See also getkeypath, haskeypath.

Examples

julia> kp = KeyPath(:b, 3)
 KeyPath(:b, 3)
 
 julia> KeyPath(:a, kp, :c, 4) # construct mixing keys and keypaths
@@ -196,4 +196,4 @@
 true
 
 julia> haskeypath(x, KeyPath(:b, "d", 4))
-false
source
Functors.setkeypath!Function
setkeypath!(x, kp::KeyPath, v)

Set the value in x at the path kp to v.

See also KeyPath, getkeypath, and haskeypath.

source
+falsesource
Functors.setkeypath!Function
setkeypath!(x, kp::KeyPath, v)

Set the value in x at the path kp to v.

See also KeyPath, getkeypath, and haskeypath.

source
diff --git a/previews/PR2547/reference/models/activation/index.html b/previews/PR2547/reference/models/activation/index.html index 53aa75da45..20c1a2e1e6 100644 --- a/previews/PR2547/reference/models/activation/index.html +++ b/previews/PR2547/reference/models/activation/index.html @@ -430,4 +430,4 @@ -1 │⣀⣀⣀⣀⣀⣀⣀⣀⣀⡤⠤⠔⠒⠉⠁⠀⠀⠀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ └────────────────────────────────────────┘ ⠀-3⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀3⠀ - ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
+ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀x⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
diff --git a/previews/PR2547/reference/models/functors/index.html b/previews/PR2547/reference/models/functors/index.html index c1e6db8cd9..be6a1428e8 100644 --- a/previews/PR2547/reference/models/functors/index.html +++ b/previews/PR2547/reference/models/functors/index.html @@ -22,7 +22,7 @@ julia> tri # now the layer is printed compactly Trio(Dense(2 => 1, tanh), Dense(1 => 1; bias=false), Dropout(0.4)) # 4 parameters -julia> opt_state = Flux.setup(Adam(), tri); # `c` is not in the optimizer state

The macro also adds methods to make using Flux with Enzyme easier.

source
Functors.@leafMacro
@leaf T

Define functor for the type T so that isleaf(x::T) == true.

source
Functors.@functorMacro
@functor T
+julia> opt_state = Flux.setup(Adam(), tri); # `c` is not in the optimizer state

The macro also adds methods to make using Flux with Enzyme easier.

  • Duplicated(m::Layer) allocates a copy for the gradient (initially zero).
  • This is made callable, (m::Duplicated{<:Layer})(x...) = m.val(x...)
  • Pretty printing for show(io, mime, ::Duplicated{<:Layer})
source
Functors.@leafMacro
@leaf T

Define functor for the type T so that isleaf(x::T) == true.

source
Functors.@functorMacro
@functor T
 @functor T (x,)

Adds methods to functor allowing recursion into objects of type T, and reconstruction. Assumes that T has a constructor accepting all of its fields, which is true unless you have provided an inner constructor which does not.

By default all fields of T are considered children; this can be restricted be restructed by providing a tuple of field names.

Examples

julia> struct Foo; x; y; end
 
 julia> Functors.children(Foo(1,2))
@@ -185,7 +185,7 @@
 julia> m.bias
 2-element Vector{Float32}:
  0.0
- 0.0
source
Flux.gpuMethod
gpu(m)

Copies m to the current GPU device (using current GPU backend), if one is available. If no GPU is available, it does nothing (but prints a warning the first time). It recurses into structs according to Functors.jl.

Use cpu to copy back to ordinary Arrays. See also f32 and f16 to change element type only.

This function is just defined for convenience around gpu_device, and is equivalent to gpu_device()(m). You may consider defining device = gpu_device() once and then using device(m) to move data.

Example

julia> m = Dense(rand(2, 3))  # constructed with Float64 weight matrix
+ 0.0
source
Flux.gpuMethod
gpu(m)

Copies m to the current GPU device (using current GPU backend), if one is available. If no GPU is available, it does nothing (but prints a warning the first time). It recurses into structs according to Functors.jl.

Use cpu to copy back to ordinary Arrays. See also f32 and f16 to change element type only.

This function is just defined for convenience around gpu_device, and is equivalent to gpu_device()(m). You may consider defining device = gpu_device() once and then using device(m) to move data.

Example

julia> m = Dense(rand(2, 3))  # constructed with Float64 weight matrix
 Dense(3 => 2)       # 8 parameters
 
 julia> typeof(m.weight)
@@ -195,7 +195,7 @@
 Dense(3 => 2)       # 8 parameters
 
 julia> typeof(m_gpu.weight)
-CUDA.CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}
source
Flux.gpuMethod
gpu(data::DataLoader)
+CUDA.CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}
source
Flux.gpuMethod
gpu(data::DataLoader)
 cpu(data::DataLoader)

Transforms a given DataLoader to apply gpu or cpu to each batch of data, when iterated over. (If no GPU is available, this does nothing.)

Example

julia> dl = Flux.DataLoader((x = ones(2,10), y='a':'j'), batchsize=3)
 4-element DataLoader(::NamedTuple{(:x, :y), Tuple{Matrix{Float64}, StepRange{Char, Int64}}}, batchsize=3)
   with first element:
@@ -215,4 +215,4 @@
  1.0  1.0  1.0

For large datasets, this is preferred over moving all the data to the GPU before creating the DataLoader, like this:

julia> Flux.DataLoader((x = ones(2,10), y=2:11) |> gpu, batchsize=3)
 4-element DataLoader(::NamedTuple{(:x, :y), Tuple{CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}, UnitRange{Int64}}}, batchsize=3)
   with first element:
-  (; x = 2×3 CUDA.CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}, y = 3-element UnitRange{Int64})
Warning

This only works if gpu is applied directly to the DataLoader. While gpu acts recursively on Flux models and many basic Julia structs, it will not work on (say) a tuple of DataLoaders.

source
+ (; x = 2×3 CUDA.CuArray{Float32, 2, CUDA.Mem.DeviceBuffer}, y = 3-element UnitRange{Int64})
Warning

This only works if gpu is applied directly to the DataLoader. While gpu acts recursively on Flux models and many basic Julia structs, it will not work on (say) a tuple of DataLoaders.

source
diff --git a/previews/PR2547/reference/models/layers/index.html b/previews/PR2547/reference/models/layers/index.html index 0d1b52db24..9dd9ab95ce 100644 --- a/previews/PR2547/reference/models/layers/index.html +++ b/previews/PR2547/reference/models/layers/index.html @@ -23,7 +23,7 @@ julia> Flux.trainables(model2) # no trainable bias 1-element Vector{AbstractArray}: - [1.0 1.0 … 1.0 1.0; 1.0 1.0 … 1.0 1.0]source
Flux.BilinearType
Bilinear((in1, in2) => out, σ=identity; bias=true, init=glorot_uniform)
+ [1.0 1.0 … 1.0 1.0; 1.0 1.0 … 1.0 1.0]
source
Flux.BilinearType
Bilinear((in1, in2) => out, σ=identity; bias=true, init=glorot_uniform)
 Bilinear(W::AbstractArray, [bias, σ])

Creates a layer which is fully connected between two inputs and the output, and otherwise similar to Dense. Its output, given vectors x & y, is another vector z with, for all i ∈ 1:out:

z[i] = σ(x' * W[i,:,:] * y + bias[i])

If x and y are matrices, then each column of the output z = B(x, y) is of this form, with B the Bilinear layer.

If the second input y is not given, it is taken to be equal to x, i.e. B(x) == B(x, x)

The two inputs may also be provided as a tuple, B((x, y)) == B(x, y), which is accepted as the input to a Chain.

If the two input sizes are the same, in1 == in2, then you may write Bilinear(in => out, σ).

The initialisation works as for Dense layer, with W = init(out, in1, in2). By default the bias vector is zeros(Float32, out), option bias=false will switch off trainable bias. Either of these may be provided explicitly.

Examples

julia> x, y = randn(Float32, 5, 32), randn(Float32, 5, 32);
 
 julia> B = Flux.Bilinear((5, 5) => 7)
@@ -44,7 +44,7 @@
 (3, 32)
 
 julia> Flux.Bilinear(rand(4,8,16), false, tanh)  # first dim of weight is the output
-Bilinear((8, 16) => 4, tanh; bias=false)  # 512 parameters
source
Flux.ScaleType
Scale(size::Integer..., σ=identity; bias=true, init=ones32)
+Bilinear((8, 16) => 4, tanh; bias=false)  # 512 parameters
source
Flux.ScaleType
Scale(size::Integer..., σ=identity; bias=true, init=ones32)
 Scale(scale::AbstractArray, [bias, σ])

Create an element-wise layer, whose forward pass is given by:

y = σ.(scale .* x .+ bias)

This uses .* instead of matrix multiplication * of Dense.

The learnable scale & bias are initialised init(size...) and zeros32(size...), with init=ones32 by default. You may specify the function init, turn off trainable bias with bias=false, or provide the array(s) explicitly.

Used by LayerNorm with affine=true.

Examples

julia> a = Flux.Scale(2)
 Scale(2)            # 4 parameters
 
@@ -68,7 +68,7 @@
 
 julia> Flux.trainables(b)
 1-element Vector{AbstractArray}:
- Float32[1.0 2.0 3.0 4.0]
source

Perhaps Scale isn't quite fully connected, but it may be thought of as Dense(Diagonal(s.weights), s.bias), and LinearAlgebra's Diagonal is a matrix which just happens to contain many zeros.

Convolution Models

These layers are used to build convolutional neural networks (CNNs).

They all expect images in what is called WHCN order: a batch of 32 colour images, each 50 x 50 pixels, will have size(x) == (50, 50, 3, 32). A single grayscale image might instead have size(x) == (28, 28, 1, 1).

Besides images, 2D data, they also work with 1D data, where for instance stereo sound recording with 1000 samples might have size(x) == (1000, 2, 1). They will also work with 3D data, ndims(x) == 5, where again the last two dimensions are channel and batch.

To understand how strides and padding work, the article by Dumoulin & Visin has great illustrations.

Flux.ConvType
Conv(filter, in => out, σ = identity;
+ Float32[1.0 2.0 3.0 4.0]
source

Perhaps Scale isn't quite fully connected, but it may be thought of as Dense(Diagonal(s.weights), s.bias), and LinearAlgebra's Diagonal is a matrix which just happens to contain many zeros.

Convolution Models

These layers are used to build convolutional neural networks (CNNs).

They all expect images in what is called WHCN order: a batch of 32 colour images, each 50 x 50 pixels, will have size(x) == (50, 50, 3, 32). A single grayscale image might instead have size(x) == (28, 28, 1, 1).

Besides images, 2D data, they also work with 1D data, where for instance stereo sound recording with 1000 samples might have size(x) == (1000, 2, 1). They will also work with 3D data, ndims(x) == 5, where again the last two dimensions are channel and batch.

To understand how strides and padding work, the article by Dumoulin & Visin has great illustrations.

Flux.ConvType
Conv(filter, in => out, σ = identity;
      stride = 1, pad = 0, dilation = 1, groups = 1, [bias, init])
 Conv(weight, [bias, activation; stride, pad, dilation])

Standard convolutional layer. filter is a tuple of integers specifying the size of the convolutional kernel; in and out specify the number of input and output channels.

Image data should be stored in WHCN order (width, height, channels, batch). In other words, a 100×100 RGB image would be a 100×100×3×1 array, and a batch of 50 would be a 100×100×3×50 array. This has N = 2 spatial dimensions, and needs a kernel size like (5,5), a 2-tuple of integers.

To take convolutions along N feature dimensions, this layer expects as input an array with ndims(x) == N+2, where size(x, N+1) == in is the number of input channels, and size(x, ndims(x)) is (as always) the number of observations in a batch. Then:

  • filter should be a tuple of N integers.
  • Keywords stride and dilation should each be either single integer, or a tuple with N integers.
  • Keyword pad specifies the number of elements added to the borders of the data array. It can be
    • a single integer for equal padding all around,
    • a tuple of N integers, to apply the same padding at begin/end of each spatial dimension,
    • a tuple of 2*N integers, for asymmetric padding, or
    • the singleton SamePad(), to calculate padding such that size(output,d) == size(x,d) / stride (possibly rounded) for each spatial dimension.
  • Keyword groups is expected to be an Int. It specifies the number of groups to divide a convolution into.

Keywords to control initialization of the layer:

  • init - Function used to generate initial weights. Defaults to glorot_uniform.
  • bias - The initial bias vector is all zero by default. Trainable bias can be disabled entirely by setting this to false, or another vector can be provided such as bias = randn(Float32, out).

The second form of the constructor allows you to pass in a pre-constructed weight matrix and bias vector. This is useful when you want to initialize the weights yourself.

See also ConvTranspose, DepthwiseConv, CrossCor.

Examples

julia> xs = rand(Float32, 100, 100, 3, 50); # a batch of 50 RGB images
 
@@ -99,7 +99,7 @@
 (98, 5, 64)
 
 julia> Flux.trainables(layer) |> length
-2
source
Flux.ConvTransposeType
ConvTranspose(filter, in => out, σ=identity; stride=1, pad=0, outpad=0, dilation=1, [bias, init])
+2
source
Flux.ConvTransposeType
ConvTranspose(filter, in => out, σ=identity; stride=1, pad=0, outpad=0, dilation=1, [bias, init])
 ConvTranspose(weight, [bias, activation; stride, pad, outpad, dilation])

Standard convolutional transpose layer. filter is a tuple of integers specifying the size of the convolutional kernel, while in and out specify the number of input and output channels.

Note that pad=SamePad() here tries to ensure size(output,d) == size(x,d) * stride.

To conserve Conv inversability when stride > 1, outpad can be used to increase the size of the output in the desired dimensions. Whereas pad is used to zero-pad the input, outpad only affects the output shape.

Parameters are controlled by additional keywords, with defaults init=glorot_uniform and bias=true.

The second form of the constructor allows you to pass in a pre-constructed weight matrix and bias vector. This is useful when you want to initialize the weights yourself.

See also Conv for more detailed description of keywords.

Examples

julia> xs = rand(Float32, 100, 100, 3, 50);  # a batch of 50 RGB images
 
 julia> layer = ConvTranspose((5,5), 3 => 7, relu)
@@ -126,7 +126,7 @@
 (102, 4, 64)
 
 julia> Flux.trainables(layer) |> length
-2
source
Flux.CrossCorType
CrossCor(filter, in => out, σ=identity; stride=1, pad=0, dilation=1, [bias, init])
+2
source
Flux.CrossCorType
CrossCor(filter, in => out, σ=identity; stride=1, pad=0, dilation=1, [bias, init])
 CrossCor(weight::AbstractArray, [bias, activation; stride, pad, dilation])

Standard cross correlation layer. filter is a tuple of integers specifying the size of the convolutional kernel; in and out specify the number of input and output channels.

Parameters are controlled by additional keywords, with defaults init=glorot_uniform and bias=true.

The second form of the constructor allows you to pass in a pre-constructed weight matrix and bias vector. This is useful when you want to initialize the weights yourself

See also Conv for more detailed description of keywords.

Examples

julia> xs = rand(Float32, 100, 100, 3, 50);  # a batch of 50 RGB images
 
 julia> layer = CrossCor((5,5), 3 => 6, relu; bias=false)
@@ -144,7 +144,7 @@
 CrossCor((3,), 4 => 5, relu)  # 65 parameters
 
 julia> layer(randn(Float32, 100, 4, 64)) |> size
-(98, 5, 64)
source
Flux.DepthwiseConvFunction
DepthwiseConv(filter, in => out, σ=identity; stride=1, pad=0, dilation=1, [bias, init])
+(98, 5, 64)
source
Flux.DepthwiseConvFunction
DepthwiseConv(filter, in => out, σ=identity; stride=1, pad=0, dilation=1, [bias, init])
 DepthwiseConv(weight::AbstractArray, [bias, activation; stride, pad, dilation])

Return a depthwise convolutional layer, that is a Conv layer with number of groups equal to the number of input channels.

See Conv for a description of the arguments.

Examples

julia> xs = rand(Float32, 100, 100, 3, 50);  # a batch of 50 RGB images
 
 julia> layer = DepthwiseConv((5,5), 3 => 6, relu; bias=false)
@@ -154,7 +154,7 @@
 (96, 96, 6, 50)
 
 julia> DepthwiseConv((5, 5), 3 => 9, stride=2, pad=2)(xs) |> size
-(50, 50, 9, 50)
source
Flux.SamePadType
SamePad()

Passed as an option to convolutional layers (and friends), this causes the padding to be chosen such that the input and output sizes agree (on the first N dimensions, the kernel or window) when stride==1. When stride≠1, the output size equals ceil(input_size/stride).

See also Conv, MaxPool.

Examples

julia> xs = rand32(100, 100, 3, 50);  # a batch of images
+(50, 50, 9, 50)
source
Flux.SamePadType
SamePad()

Passed as an option to convolutional layers (and friends), this causes the padding to be chosen such that the input and output sizes agree (on the first N dimensions, the kernel or window) when stride==1. When stride≠1, the output size equals ceil(input_size/stride).

See also Conv, MaxPool.

Examples

julia> xs = rand32(100, 100, 3, 50);  # a batch of images
 
 julia> layer = Conv((2,2), 3 => 7, pad=SamePad())
 Conv((2, 2), 3 => 7, pad=(1, 0, 1, 0))  # 91 parameters
@@ -172,7 +172,7 @@
 Conv((5, 5), 3 => 7, pad=2, stride=2)  # 532 parameters
 
 julia> layer3(xs) |> size  # output size = `ceil(input_size/stride)` = 50
-(50, 50, 7, 50)
source

MultiHeadAttention

The basic blocks needed to implement Transformer architectures. See also the functional counterparts documented in NNlib's Attention section.

Flux.MultiHeadAttentionType
MultiHeadAttention(dims; [nheads, bias, init, dropout_prob])

The multi-head dot-product attention layer used in Transformer architectures [1].

Returns the transformed input sequence and the attention scores.

[1] Vaswani et al. "Attention is all you need." Advances in Neural Information Processing Systems. 2017.

Arguments

  • dims: The embedding dimensions of inputs, intermediate tensors and outputs. In the most general case, it is given as a) (q_in_dim, k_in_dim, v_in_dim) => (qk_dim, v_dim) => out_dim. Can take also simpler forms as b) dims::Int; c) in_dim::Int => (qk_dim, v_dim) => out_dim; d) in_dim::Int => qkv_dim => out_dim.
  • nheads: number of heads. Default 8.
  • init: weight initializer for the Dense layers. Default glorot_uniform.
  • bias : whether pointwise QKVO dense transforms use bias. Default false.
  • dropout_prob: dropout probability for the attention scores. Default 0.0.

Forward

(mha::MultiHeadAttention)(q_in, k_in, v_in, [bias]; [mask])

The arguments of the forward pass are:

  • q_in: Input query array of size (q_in_dim, q_len, batch_size).
  • k_in: Input key array of size (k_in_dim, kv_len, batch_size).
  • v_in: Input value array of size (v_in_dim, kv_len, batch_size).
  • bias: Bias array broadcastable to size (kv_len, q_len, nheads, batch_size). It will be added to the attention scores before the softmax. Default nothing.
  • mask: Input array broadcastable to size (kv_len, q_len, nheads, batch_size). The mask is applied to the attention scores just before the softmax. See NNlib.make_causal_mask for creating causal masks. Default nothing.

Alternative calling signatures are mha(q_in), equivalent to mha(q_in, q_in, q_in) (self-attention), and mha(q_in, k_in), equivalent to mha(q_in, k_in, k_in) (key and value are the same).

See also NNlib.dot_product_attention.

Examples

mha = MultiHeadAttention(64, nheads = 8)
+(50, 50, 7, 50)
source

MultiHeadAttention

The basic blocks needed to implement Transformer architectures. See also the functional counterparts documented in NNlib's Attention section.

Flux.MultiHeadAttentionType
MultiHeadAttention(dims; [nheads, bias, init, dropout_prob])

The multi-head dot-product attention layer used in Transformer architectures [1].

Returns the transformed input sequence and the attention scores.

[1] Vaswani et al. "Attention is all you need." Advances in Neural Information Processing Systems. 2017.

Arguments

  • dims: The embedding dimensions of inputs, intermediate tensors and outputs. In the most general case, it is given as a) (q_in_dim, k_in_dim, v_in_dim) => (qk_dim, v_dim) => out_dim. Can take also simpler forms as b) dims::Int; c) in_dim::Int => (qk_dim, v_dim) => out_dim; d) in_dim::Int => qkv_dim => out_dim.
  • nheads: number of heads. Default 8.
  • init: weight initializer for the Dense layers. Default glorot_uniform.
  • bias : whether pointwise QKVO dense transforms use bias. Default false.
  • dropout_prob: dropout probability for the attention scores. Default 0.0.

Forward

(mha::MultiHeadAttention)(q_in, k_in, v_in, [bias]; [mask])

The arguments of the forward pass are:

  • q_in: Input query array of size (q_in_dim, q_len, batch_size).
  • k_in: Input key array of size (k_in_dim, kv_len, batch_size).
  • v_in: Input value array of size (v_in_dim, kv_len, batch_size).
  • bias: Bias array broadcastable to size (kv_len, q_len, nheads, batch_size). It will be added to the attention scores before the softmax. Default nothing.
  • mask: Input array broadcastable to size (kv_len, q_len, nheads, batch_size). The mask is applied to the attention scores just before the softmax. See NNlib.make_causal_mask for creating causal masks. Default nothing.

Alternative calling signatures are mha(q_in), equivalent to mha(q_in, q_in, q_in) (self-attention), and mha(q_in, k_in), equivalent to mha(q_in, k_in, k_in) (key and value are the same).

See also NNlib.dot_product_attention.

Examples

mha = MultiHeadAttention(64, nheads = 8)
 q = rand(Float32, (64, 10, 32))
 k = rand(Float32, (64, 20, 32))
 v = rand(Float32, (64, 20, 32))
@@ -183,13 +183,13 @@
 mha = MultiHeadAttention(64 => 1024 => 1024, nheads = 8)
 y, α = mha(q) # self-attention
 # [y] = [1024, 10, 32]
-# [α] = [10, 10, 8, 32]
source

Pooling

These layers are commonly used after a convolution layer, and reduce the size of its output. They have no trainable parameters.

Flux.AdaptiveMaxPoolType
AdaptiveMaxPool(out::NTuple)

Adaptive max pooling layer. Calculates the necessary window size such that its output has size(y)[1:N] == out.

Expects as input an array with ndims(x) == N+2, i.e. channel and batch dimensions, after the N feature dimensions, where N = length(out).

See also MaxPool, AdaptiveMeanPool.

Examples

julia> xs = rand(Float32, 100, 100, 3, 50);  # batch of 50 RGB images
+# [α] = [10, 10, 8, 32]
source

Pooling

These layers are commonly used after a convolution layer, and reduce the size of its output. They have no trainable parameters.

Flux.AdaptiveMaxPoolType
AdaptiveMaxPool(out::NTuple)

Adaptive max pooling layer. Calculates the necessary window size such that its output has size(y)[1:N] == out.

Expects as input an array with ndims(x) == N+2, i.e. channel and batch dimensions, after the N feature dimensions, where N = length(out).

See also MaxPool, AdaptiveMeanPool.

Examples

julia> xs = rand(Float32, 100, 100, 3, 50);  # batch of 50 RGB images
 
 julia> AdaptiveMaxPool((25, 25))(xs) |> size
 (25, 25, 3, 50)
 
 julia> MaxPool((4,4))(xs) ≈ AdaptiveMaxPool((25, 25))(xs)
-true
source
Flux.MaxPoolType
MaxPool(window::NTuple; pad=0, stride=window)

Max pooling layer, which replaces all pixels in a block of size window with one.

Expects as input an array with ndims(x) == N+2, i.e. channel and batch dimensions, after the N feature dimensions, where N = length(window).

By default the window size is also the stride in each dimension. The keyword pad accepts the same options as for the Conv layer, including SamePad().

See also Conv, MeanPool, AdaptiveMaxPool, GlobalMaxPool.

Examples

julia> xs = rand(Float32, 100, 100, 3, 50);  # batch of 50 RGB images
+true
source
Flux.MaxPoolType
MaxPool(window::NTuple; pad=0, stride=window)

Max pooling layer, which replaces all pixels in a block of size window with one.

Expects as input an array with ndims(x) == N+2, i.e. channel and batch dimensions, after the N feature dimensions, where N = length(window).

By default the window size is also the stride in each dimension. The keyword pad accepts the same options as for the Conv layer, including SamePad().

See also Conv, MeanPool, AdaptiveMaxPool, GlobalMaxPool.

Examples

julia> xs = rand(Float32, 100, 100, 3, 50);  # batch of 50 RGB images
 
 julia> m = Chain(Conv((5, 5), 3 => 7, pad=SamePad()), MaxPool((5, 5), pad=SamePad()))
 Chain(
@@ -207,7 +207,7 @@
 MaxPool((5,), pad=2, stride=3)
 
 julia> layer(rand(Float32, 100, 7, 50)) |> size
-(34, 7, 50)
source
Flux.GlobalMaxPoolType
GlobalMaxPool()

Global max pooling layer.

Transforms (w,h,c,b)-shaped input into (1,1,c,b)-shaped output, by performing max pooling on the complete (w,h)-shaped feature maps.

See also MaxPool, GlobalMeanPool.

julia> xs = rand(Float32, 100, 100, 3, 50);
+(34, 7, 50)
source
Flux.GlobalMaxPoolType
GlobalMaxPool()

Global max pooling layer.

Transforms (w,h,c,b)-shaped input into (1,1,c,b)-shaped output, by performing max pooling on the complete (w,h)-shaped feature maps.

See also MaxPool, GlobalMeanPool.

julia> xs = rand(Float32, 100, 100, 3, 50);
 
 julia> m = Chain(Conv((3,3), 3 => 7), GlobalMaxPool());
 
@@ -215,13 +215,13 @@
 (1, 1, 7, 50)
 
 julia> GlobalMaxPool()(rand(3,5,7)) |> size  # preserves 2 dimensions
-(1, 5, 7)
source
Flux.AdaptiveMeanPoolType
AdaptiveMeanPool(out::NTuple)

Adaptive mean pooling layer. Calculates the necessary window size such that its output has size(y)[1:N] == out.

Expects as input an array with ndims(x) == N+2, i.e. channel and batch dimensions, after the N feature dimensions, where N = length(out).

See also MaxPool, AdaptiveMaxPool.

Examples

julia> xs = rand(Float32, 100, 100, 3, 50);  # batch of 50 RGB images
+(1, 5, 7)
source
Flux.AdaptiveMeanPoolType
AdaptiveMeanPool(out::NTuple)

Adaptive mean pooling layer. Calculates the necessary window size such that its output has size(y)[1:N] == out.

Expects as input an array with ndims(x) == N+2, i.e. channel and batch dimensions, after the N feature dimensions, where N = length(out).

See also MaxPool, AdaptiveMaxPool.

Examples

julia> xs = rand(Float32, 100, 100, 3, 50);  # batch of 50 RGB images
 
 julia> AdaptiveMeanPool((25, 25))(xs) |> size
 (25, 25, 3, 50)
 
 julia> MeanPool((4,4))(xs) ≈ AdaptiveMeanPool((25, 25))(xs)
-true
source
Flux.MeanPoolType
MeanPool(window::NTuple; pad=0, stride=window)

Mean pooling layer, averaging all pixels in a block of size window.

Expects as input an array with ndims(x) == N+2, i.e. channel and batch dimensions, after the N feature dimensions, where N = length(window).

By default the window size is also the stride in each dimension. The keyword pad accepts the same options as for the Conv layer, including SamePad().

See also Conv, MaxPool, AdaptiveMeanPool.

Examples

julia> xs = rand(Float32, 100, 100, 3, 50);
+true
source
Flux.MeanPoolType
MeanPool(window::NTuple; pad=0, stride=window)

Mean pooling layer, averaging all pixels in a block of size window.

Expects as input an array with ndims(x) == N+2, i.e. channel and batch dimensions, after the N feature dimensions, where N = length(window).

By default the window size is also the stride in each dimension. The keyword pad accepts the same options as for the Conv layer, including SamePad().

See also Conv, MaxPool, AdaptiveMeanPool.

Examples

julia> xs = rand(Float32, 100, 100, 3, 50);
 
 julia> m = Chain(Conv((5,5), 3 => 7), MeanPool((5,5), pad=SamePad()))
 Chain(
@@ -233,12 +233,12 @@
 (96, 96, 7, 50)
 
 julia> m(xs) |> size
-(20, 20, 7, 50)
source
Flux.GlobalMeanPoolType
GlobalMeanPool()

Global mean pooling layer.

Transforms (w,h,c,b)-shaped input into (1,1,c,b)-shaped output, by performing mean pooling on the complete (w,h)-shaped feature maps.

julia> xs = rand(Float32, 100, 100, 3, 50);
+(20, 20, 7, 50)
source
Flux.GlobalMeanPoolType
GlobalMeanPool()

Global mean pooling layer.

Transforms (w,h,c,b)-shaped input into (1,1,c,b)-shaped output, by performing mean pooling on the complete (w,h)-shaped feature maps.

julia> xs = rand(Float32, 100, 100, 3, 50);
 
 julia> m = Chain(Conv((3,3), 3 => 7), GlobalMeanPool());
 
 julia> m(xs) |> size
-(1, 1, 7, 50)
source

Upsampling

The opposite of pooling, these layers increase the size of an array. They have no trainable parameters.

Flux.UpsampleType
Upsample(mode = :nearest; [scale, size]) 
+(1, 1, 7, 50)
source

Upsampling

The opposite of pooling, these layers increase the size of an array. They have no trainable parameters.

Flux.UpsampleType
Upsample(mode = :nearest; [scale, size]) 
 Upsample(scale, mode = :nearest)

An upsampling layer. One of two keywords must be given:

If scale is a number, this applies to all but the last two dimensions (channel and batch) of the input. It may also be a tuple, to control dimensions individually. Alternatively, keyword size accepts a tuple, to directly specify the leading dimensions of the output.

Currently supported upsampling modes and corresponding NNlib's methods are:

Examples

julia> m = Upsample(scale = (2, 3))
 Upsample(:nearest, scale = (2, 3))
 
@@ -249,7 +249,7 @@
 Upsample(:bilinear, size = (4, 5))
 
 julia> m(ones(2, 2, 1, 1)) |> size
-(4, 5, 1, 1)
source
Flux.PixelShuffleType
PixelShuffle(r::Int)

Pixel shuffling layer with upscale factor r. Usually used for generating higher resolution images while upscaling them.

See NNlib.pixel_shuffle.

Examples

julia> p = PixelShuffle(2);
+(4, 5, 1, 1)
source
Flux.PixelShuffleType
PixelShuffle(r::Int)

Pixel shuffling layer with upscale factor r. Usually used for generating higher resolution images while upscaling them.

See NNlib.pixel_shuffle.

Examples

julia> p = PixelShuffle(2);
 
 julia> xs = [2row + col + channel/10 for row in 1:2, col in 1:2, channel in 1:4, n in 1:1]
 2×2×4×1 Array{Float64, 4}:
@@ -301,7 +301,7 @@
  4.1  4.3  5.1  5.3  6.1  6.3
  4.2  4.4  5.2  5.4  6.2  6.4
  7.1  7.3  8.1  8.3  9.1  9.3
- 7.2  7.4  8.2  8.4  9.2  9.4
source

Embedding Vectors

These layers accept an index, and return a vector (or several indices, and several vectors). The possible embedding vectors are learned parameters.

Flux.EmbeddingType
Embedding(in => out; init=randn32)

A lookup table that stores embeddings of dimension out for a vocabulary of size in, as a trainable matrix.

This layer is often used to store word embeddings and retrieve them using indices. The input to the layer can be a vocabulary index in 1:in, an array of indices, or the corresponding onehot encoding.

For indices x, the result is of size (out, size(x)...), allowing several batch dimensions. For one-hot ohx, the result is of size (out, size(ohx)[2:end]...).

Examples

julia> emb = Embedding(26 => 4, init=Flux.identity_init(gain=22))
+ 7.2  7.4  8.2  8.4  9.2  9.4
source

Embedding Vectors

These layers accept an index, and return a vector (or several indices, and several vectors). The possible embedding vectors are learned parameters.

Flux.EmbeddingType
Embedding(in => out; init=randn32)

A lookup table that stores embeddings of dimension out for a vocabulary of size in, as a trainable matrix.

This layer is often used to store word embeddings and retrieve them using indices. The input to the layer can be a vocabulary index in 1:in, an array of indices, or the corresponding onehot encoding.

For indices x, the result is of size (out, size(x)...), allowing several batch dimensions. For one-hot ohx, the result is of size (out, size(ohx)[2:end]...).

Examples

julia> emb = Embedding(26 => 4, init=Flux.identity_init(gain=22))
 Embedding(26 => 4)  # 104 parameters
 
 julia> emb(2)  # one column of e.weight (here not random!)
@@ -322,7 +322,7 @@
 true
 
 julia> emb(rand(1:26, (10, 1, 12))) |> size  # three batch dimensions
-(4, 10, 1, 12)
source
Flux.EmbeddingBagType
EmbeddingBag(in => out, reduction=mean; init=Flux.randn32)

A lookup table that stores embeddings of dimension out for a vocabulary of size in. Differs from Embedding in that, instead of acting on a single vocabulary index, it always acts a vector of indices which it calls a "bag". Their individual embedding vectors are reduced to one, using mean or some other function.

Instead of acting on one "bag", such as x::Vector{Int}, the layer can also act on several:

  • Acting on a vector of "bags", it produces a matrix whose columns are the reduced vectors. More generally on x::Array{Vector{Int}}, its output is of size (out, size(x)...).

  • Any higher-rank array of integers is interpreted as a collection of "bags" each along the first dimension. Thus the output is mapslices(e, x; dims=1) when e::EmbeddingBag and x::Array{Int,N}. This method is more efficient, but requires that all "bags" have the same length.

  • A vector of "bags" may also be produced by splitting a vector of indices at specified points. For this case the layer takes two inputs, both vectors of integers. See details below.

The "bag" may equivalently be represented as a OneHotMatrix. A collection of these, or one higher-rank OneHotArray, again produce a stack of embeddings. See details below.

Examples

julia> vocab_size = 26;  # embed into 3 dimensions, with non-random vectors:
+(4, 10, 1, 12)
source
Flux.EmbeddingBagType
EmbeddingBag(in => out, reduction=mean; init=Flux.randn32)

A lookup table that stores embeddings of dimension out for a vocabulary of size in. Differs from Embedding in that, instead of acting on a single vocabulary index, it always acts a vector of indices which it calls a "bag". Their individual embedding vectors are reduced to one, using mean or some other function.

Instead of acting on one "bag", such as x::Vector{Int}, the layer can also act on several:

  • Acting on a vector of "bags", it produces a matrix whose columns are the reduced vectors. More generally on x::Array{Vector{Int}}, its output is of size (out, size(x)...).

  • Any higher-rank array of integers is interpreted as a collection of "bags" each along the first dimension. Thus the output is mapslices(e, x; dims=1) when e::EmbeddingBag and x::Array{Int,N}. This method is more efficient, but requires that all "bags" have the same length.

  • A vector of "bags" may also be produced by splitting a vector of indices at specified points. For this case the layer takes two inputs, both vectors of integers. See details below.

The "bag" may equivalently be represented as a OneHotMatrix. A collection of these, or one higher-rank OneHotArray, again produce a stack of embeddings. See details below.

Examples

julia> vocab_size = 26;  # embed into 3 dimensions, with non-random vectors:
 
 julia> eb = EmbeddingBag(vocab_size => 3, init=Flux.identity_init(gain=100))
 EmbeddingBag(26 => 3)  # 78 parameters
@@ -371,7 +371,7 @@
 3×2 Matrix{Float32}:
  33.3333    0.0
  66.6667    0.0
-  0.0     100.0
source

Dataflow Layers, or Containers

The basic Chain(F, G, H) applies the layers it contains in sequence, equivalent to H ∘ G ∘ F. Flux has some other layers which contain layers, but connect them up in a more complicated way: SkipConnection allows ResNet's residual connection.

Flux.ChainType
Chain(layers...)
+  0.0     100.0
source

Dataflow Layers, or Containers

The basic Chain(F, G, H) applies the layers it contains in sequence, equivalent to H ∘ G ∘ F. Flux has some other layers which contain layers, but connect them up in a more complicated way: SkipConnection allows ResNet's residual connection.

Flux.ChainType
Chain(layers...)
 Chain(name = layer, ...)

Collects multiple layers / functions to be called in sequence on a given input. Supports indexing and slicing, m[2] or m[1:end-1], and if names are given, m[:name] == m[1] etc.

Examples

julia> m = Chain(x -> x^2, x -> x+1);
 
 julia> m(5) == 26
@@ -394,12 +394,12 @@
 
 julia> Chain(x->@show(x), Parallel(+, inv, abs2))(4, 5)  # returns 1/4 + 5^2
 x = (4, 5)
-25.25

For large models, there is a special type-unstable path which can reduce compilation times. This can be used by supplying a vector of layers Chain([layer1, layer2, ...]). This feature is somewhat experimental, beware!

source
Flux.activationsFunction
activations(c::Chain, input)

Like calling a Chain, but saves the result of each layer as an output.

Examples

julia> using Flux: activations
+25.25

For large models, there is a special type-unstable path which can reduce compilation times. This can be used by supplying a vector of layers Chain([layer1, layer2, ...]). This feature is somewhat experimental, beware!

source
Flux.activationsFunction
activations(c::Chain, input)

Like calling a Chain, but saves the result of each layer as an output.

Examples

julia> using Flux: activations
 
 julia> c = Chain(x -> x + 1, x -> x * 2, x -> x ^ 3);
 
 julia> activations(c, 1)
-(2, 4, 64)
source
Flux.MaxoutType
Maxout(layers...)
+(2, 4, 64)
source
Flux.MaxoutType
Maxout(layers...)
 Maxout(f, n_alts)

This contains a number of internal layers, each of which receives the same input. Its output is the elementwise maximum of the internal layers' outputs.

Instead of defining layers individually, you can provide a zero-argument function which constructs them, and the number to construct.

Maxout over linear dense layers satisfies the universal approximation theorem. See Goodfellow, Warde-Farley, Mirza, Courville & Bengio "Maxout Networks" https://arxiv.org/abs/1302.4389.

See also Parallel to reduce with other operators.

Examples

julia> m = Maxout(x -> abs2.(x), x -> x .* 3);
 
 julia> m([-2 -1 0 1 2])
@@ -414,7 +414,7 @@
 )                   # Total: 6 arrays, 126 parameters, 816 bytes.
 
 julia> Flux.outputsize(m3, (5, 11))
-(7, 11)
source
Flux.SkipConnectionType
SkipConnection(layer, connection)

Create a skip connection which consists of a layer or Chain of consecutive layers and a shortcut connection linking the block's input to the output through a user-supplied 2-argument callable. The first argument to the callable will be propagated through the given layer while the second is the unchanged, "skipped" input.

The simplest "ResNet"-type connection is just SkipConnection(layer, +). Here is a more complicated example:

julia> m = Conv((3,3), 4 => 7, pad=(1,1));
+(7, 11)
source
Flux.SkipConnectionType
SkipConnection(layer, connection)

Create a skip connection which consists of a layer or Chain of consecutive layers and a shortcut connection linking the block's input to the output through a user-supplied 2-argument callable. The first argument to the callable will be propagated through the given layer while the second is the unchanged, "skipped" input.

The simplest "ResNet"-type connection is just SkipConnection(layer, +). Here is a more complicated example:

julia> m = Conv((3,3), 4 => 7, pad=(1,1));
 
 julia> x = ones(Float32, 5, 5, 4, 10);
 
@@ -424,7 +424,7 @@
 julia> sm = SkipConnection(m, (mx, x) -> cat(mx, x, dims=3));
 
 julia> size(sm(x)) == (5, 5, 11, 10)
-true

See also Parallel, Maxout.

source
Flux.ParallelType
Parallel(connection, layers...)
+true

See also Parallel, Maxout.

source
Flux.ParallelType
Parallel(connection, layers...)
 Parallel(connection; name = layer, ...)

Create a layer which passes an input array to each path in layers, before reducing the output with connection.

Obeys the similar rules to broadcasting:

  • Called with one input x, this is equivalent to connection([l(x) for l in layers]...).
  • With multiple inputs and just one layer, it is instead connection([layer(x) for x in inputs]...).
  • With multiple inputs and multiple layers, one input is passed to each layer, thus Parallel(+, f, g)(x, y) = f(x) + g(y).

Like Chain, its sub-layers may be given names using the keyword constructor. These can be accessed by indexing: m[1] == m[:name] is the first layer.

See also SkipConnection which is Parallel with one identity, and Maxout which reduces by broadcasting max.

Examples

julia> p = Parallel(+, abs2, sqrt);
 
 julia> p(3, 4)  # == 3^2 + √4, two functions two inputs
@@ -459,7 +459,7 @@
 (2,)
 
 julia> model2[:β] == model2[2]
-true
source
Flux.PairwiseFusionType
PairwiseFusion(connection, layers...)

Arguments

  • connection: A function taking 2 inputs and combining them into a single output
  • layers: The layers whose outputs are combined

Inputs

This layer behaves differently based on input type:

  1. If input x is a tuple of length N (or the input is xs with N x's), matching the number of layers,

then each layer receives a new input x[i] combined with the previous output y[i-1] using connection. Thus (y1, y2, y3) = PairwiseFusion(connection, layer1, layer2, layer3)((x1, x2, x3)) may be drawn as:

x1 → layer1 → y1 ↘
+true
source
Flux.PairwiseFusionType
PairwiseFusion(connection, layers...)

Arguments

  • connection: A function taking 2 inputs and combining them into a single output
  • layers: The layers whose outputs are combined

Inputs

This layer behaves differently based on input type:

  1. If input x is a tuple of length N (or the input is xs with N x's), matching the number of layers,

then each layer receives a new input x[i] combined with the previous output y[i-1] using connection. Thus (y1, y2, y3) = PairwiseFusion(connection, layer1, layer2, layer3)((x1, x2, x3)) may be drawn as:

x1 → layer1 → y1 ↘
                   connection → layer2 → y2 ↘
               x2 ↗                          connection → layer3 → y3
                                         x3 ↗

... or written as:

y1 = layer1(x1)
@@ -467,7 +467,7 @@
 y3 = layer3(connection(y2, x3))
  1. With just one input, each layer receives the same x combined with the previous output. Thus y = PairwiseFusion(connection, layers...)(x) obeys:
y[1] == layers[1](x)
 for i in 2:length(layers)
     y[i] == connection(layers[i](y[i-1]), x)
-end

Returns

A tuple of length N with the output of each fusion ((y1, y2, ..., yN) in the example above).

source

Recurrent Models

Much like the core layers above, but can be used to process sequence data (as well as other kinds of structured data).

Flux.RNNCellType
RNNCell(in => out, σ = tanh; init_kernel = glorot_uniform, 
+end

Returns

A tuple of length N with the output of each fusion ((y1, y2, ..., yN) in the example above).

source

Recurrent Models

Much like the core layers above, but can be used to process sequence data (as well as other kinds of structured data).

Flux.RNNCellType
RNNCell(in => out, σ = tanh; init_kernel = glorot_uniform, 
   init_recurrent_kernel = glorot_uniform, bias = true)

The most basic recurrent layer. Essentially acts as a Dense layer, but with the output fed back into the input each time step.

In the forward pass, implements the function

\[h^\prime = \sigma(W_i x + W_h h + b)\]

and returns h'.

See RNN for a layer that processes entire sequences.

Arguments

  • in => out: The input and output dimensions of the layer.
  • σ: The non-linearity to apply to the output. Default is tanh.
  • init_kernel: The initialization function to use for the input to hidden connection weights. Default is glorot_uniform.
  • init_recurrent_kernel: The initialization function to use for the hidden to hidden connection weights. Default is glorot_uniform.
  • bias: Whether to include a bias term initialized to zero. Default is true.

Forward

rnncell(x, [h])

The arguments of the forward pass are:

  • x: The input to the RNN. It should be a vector of size in or a matrix of size in x batch_size.
  • h: The hidden state of the RNN. It should be a vector of size out or a matrix of size out x batch_size. If not provided, it is assumed to be a vector of zeros, initialized by initialstates.

Examples

r = RNNCell(3 => 5)
 
 # A sequence of length 10 and batch size 4
@@ -488,7 +488,7 @@
 end
 
 h   # The final hidden state
-ŷ   # The hidden states at each time step
source
Flux.RNNType
RNN(in => out, σ = tanh; init_kernel = glorot_uniform, 
+ŷ   # The hidden states at each time step
source
Flux.RNNType
RNN(in => out, σ = tanh; init_kernel = glorot_uniform, 
   init_recurrent_kernel = glorot_uniform, bias = true)

The most basic recurrent layer. Essentially acts as a Dense layer, but with the output fed back into the input each time step.

In the forward pass computes

\[h_t = \sigma(W_i x_t + W_h h_{t-1} + b)\]

for all len steps t in the in input sequence.

See RNNCell for a layer that processes a single time step.

Arguments

  • in => out: The input and output dimensions of the layer.
  • σ: The non-linearity to apply to the output. Default is tanh.
  • init_kernel: The initialization function to use for the input to hidden connection weights. Default is glorot_uniform.
  • init_recurrent_kernel: The initialization function to use for the hidden to hidden connection weights. Default is glorot_uniform.
  • bias: Whether to include a bias term initialized to zero. Default is true.

Forward

rnn(x, [h])

The arguments of the forward pass are:

  • x: The input to the RNN. It should be a matrix size in x len or an array of size in x len x batch_size.
  • h: The initial hidden state of the RNN. If given, it is a vector of size out or a matrix of size out x batch_size. If not provided, it is assumed to be a vector of zeros, initialized by initialstates.

Returns all new hidden states h_t as an array of size out x len x batch_size.

Examples

julia> d_in, d_out, len, batch_size = 4, 6, 3, 5;
 
 julia> x = rand(Float32, (d_in, len, batch_size));
@@ -509,7 +509,7 @@
 
 (m::Model)(x) = m.rnn(x, m.h0)
 
-model = Model(RNN(32 => 64), zeros(Float32, 64))
source
Flux.LSTMCellType
LSTMCell(in => out; init_kernel = glorot_uniform,
+model = Model(RNN(32 => 64), zeros(Float32, 64))
source
Flux.LSTMCellType
LSTMCell(in => out; init_kernel = glorot_uniform,
   init_recurrent_kernel = glorot_uniform, bias = true)

The Long Short Term Memory cell. Behaves like an RNN but generally exhibits a longer memory span over sequences.

In the forward pass, computes

\[i_t = \sigma(W_{xi} x_t + W_{hi} h_{t-1} + b_i) f_t = \sigma(W_{xf} x_t + W_{hf} h_{t-1} + b_f) c_t = f_t \odot c_{t-1} + i_t \odot \tanh(W_{xc} x_t + W_{hc} h_{t-1} + b_c) @@ -527,7 +527,7 @@ julia> h′, c′ = l(x, (h, c)); julia> size(h′) # out x batch_size -(5, 4)

source
Flux.LSTMType
LSTM(in => out; init_kernel = glorot_uniform,
+(5, 4)
source
Flux.LSTMType
LSTM(in => out; init_kernel = glorot_uniform,
   init_recurrent_kernel = glorot_uniform, bias = true)

Long Short Term Memory recurrent layer. Behaves like an RNN but generally exhibits a longer memory span over sequences.

See this article for a good overview of the internals.

In the forward pass, computes

\[i_t = \sigma(W_{xi} x_t + W_{hi} h_{t-1} + b_i) f_t = \sigma(W_{xf} x_t + W_{hf} h_{t-1} + b_f) c_t = f_t \odot c_{t-1} + i_t \odot \tanh(W_{xc} x_t + W_{hc} h_{t-1} + b_c) @@ -547,7 +547,7 @@ x = rand(Float32, (d_in, len, batch_size)) model = Model(LSTM(d_in => d_out), zeros(Float32, d_out), zeros(Float32, d_out)) h = model(x) -size(h) # out x len x batch_size

source
Flux.GRUCellType
GRUCell(in => out; init_kernel = glorot_uniform,
+size(h)  # out x len x batch_size
source
Flux.GRUCellType
GRUCell(in => out; init_kernel = glorot_uniform,
   init_recurrent_kernel = glorot_uniform, bias = true)

Gated Recurrent Unit layer. Behaves like an RNN but generally exhibits a longer memory span over sequences. This implements the variant proposed in v1 of the referenced paper.

In the forward pass, computes

\[r = \sigma(W_{xi} x + W_{hi} h + b_i) z = \sigma(W_{xz} x + W_{hz} h + b_z) h̃ = \tanh(W_{xh} x + r \odot W_{hh} h + b_h) @@ -559,7 +559,7 @@ julia> x = rand(Float32, 3, 4); # in x batch_size -julia> h′ = g(x, h);

source
Flux.GRUType
GRU(in => out; init_kernel = glorot_uniform,
+julia> h′ = g(x, h);
source
Flux.GRUType
GRU(in => out; init_kernel = glorot_uniform,
   init_recurrent_kernel = glorot_uniform, bias = true)

Gated Recurrent Unit layer. Behaves like an RNN but generally exhibits a longer memory span over sequences. This implements the variant proposed in v1 of the referenced paper.

The forward pass computes

\[r_t = \sigma(W_{xi} x_t + W_{hi} h_{t-1} + b_i) z_t = \sigma(W_{xz} x_t + W_{hz} h_{t-1} + b_z) h̃_t = \tanh(W_{xh} x_t + r_t \odot W_{hh} h_{t-1} + b_h) @@ -567,11 +567,11 @@ gru = GRU(d_in => d_out) x = rand(Float32, (d_in, len, batch_size)) h0 = zeros(Float32, d_out) -h = gru(x, h0) # out x len x batch_size

source
Flux.GRUv3CellType
GRUv3Cell(in => out; init_kernel = glorot_uniform,
+h = gru(x, h0)  # out x len x batch_size
source
Flux.GRUv3CellType
GRUv3Cell(in => out; init_kernel = glorot_uniform,
   init_recurrent_kernel = glorot_uniform, bias = true)

Gated Recurrent Unit layer. Behaves like an RNN but generally exhibits a longer memory span over sequences. This implements the variant proposed in v3 of the referenced paper.

The forward pass computes

\[r = \sigma(W_{xi} x + W_{hi} h + b_i) z = \sigma(W_{xz} x + W_{hz} h + b_z) h̃ = \tanh(W_{xh} x + W_{hh̃} (r \odot W_{hh} h) + b_h) -h' = (1 - z) \odot h̃ + z \odot h\]

and returns h'. This is a single time step of the GRU.

See GRUv3 for a layer that processes entire sequences. See GRU and GRUCell for variants of this layer.

Arguments

  • in => out: The input and output dimensions of the layer.
  • init_kernel: The initialization function to use for the input to hidden connection weights. Default is glorot_uniform.
  • init_recurrent_kernel: The initialization function to use for the hidden to hidden connection weights. Default is glorot_uniform.
  • bias: Whether to include a bias term initialized to zero. Default is true.

Forward

gruv3cell(x, [h])

The arguments of the forward pass are:

  • x: The input to the GRU. It should be a vector of size in or a matrix of size in x batch_size.
  • h: The hidden state of the GRU. It should be a vector of size out or a matrix of size out x batch_size. If not provided, it is assumed to be a vector of zeros, initialized by initialstates.

Returns the new hidden state h' as an array of size out or out x batch_size.

source
Flux.GRUv3Type
GRUv3(in => out; init_kernel = glorot_uniform,
+h' = (1 - z) \odot h̃ + z \odot h\]

and returns h'. This is a single time step of the GRU.

See GRUv3 for a layer that processes entire sequences. See GRU and GRUCell for variants of this layer.

Arguments

  • in => out: The input and output dimensions of the layer.
  • init_kernel: The initialization function to use for the input to hidden connection weights. Default is glorot_uniform.
  • init_recurrent_kernel: The initialization function to use for the hidden to hidden connection weights. Default is glorot_uniform.
  • bias: Whether to include a bias term initialized to zero. Default is true.

Forward

gruv3cell(x, [h])

The arguments of the forward pass are:

  • x: The input to the GRU. It should be a vector of size in or a matrix of size in x batch_size.
  • h: The hidden state of the GRU. It should be a vector of size out or a matrix of size out x batch_size. If not provided, it is assumed to be a vector of zeros, initialized by initialstates.

Returns the new hidden state h' as an array of size out or out x batch_size.

source
Flux.GRUv3Type
GRUv3(in => out; init_kernel = glorot_uniform,
   init_recurrent_kernel = glorot_uniform, bias = true)

Gated Recurrent Unit layer. Behaves like an RNN but generally exhibits a longer memory span over sequences. This implements the variant proposed in v3 of the referenced paper.

The forward pass computes

\[r_t = \sigma(W_{xi} x_t + W_{hi} h_{t-1} + b_i) z_t = \sigma(W_{xz} x_t + W_{hz} h_{t-1} + b_z) h̃_t = \tanh(W_{xh} x_t + W_{hh̃} (r_t \odot W_{hh} h_{t-1}) + b_h) @@ -579,7 +579,7 @@ gruv3 = GRUv3(d_in => d_out) x = rand(Float32, (d_in, len, batch_size)) h0 = zeros(Float32, d_out) -h = gruv3(x, h0) # out x len x batch_size

source
Flux.initialstatesFunction
initialstates(rnn) -> AbstractVector

Return the initial hidden state for the given recurrent cell or recurrent layer.

Example

```julia using Flux

Create an RNNCell from input dimension 10 to output dimension 20

rnn = RNNCell(10 => 20)

Get the initial hidden state

h0 = initialstates(rnn)

Get some input data

x = rand(Float32, 10)

Run forward

res = rnn(x, h0)

source

Normalisation & Regularisation

These layers don't affect the structure of the network but may improve training times or reduce overfitting. Some of them contain trainable parameters, while others do not.

Flux.BatchNormType
BatchNorm(channels::Integer, λ=identity;
+h = gruv3(x, h0)  # out x len x batch_size
source
Flux.initialstatesFunction
initialstates(rnn) -> AbstractVector

Return the initial hidden state for the given recurrent cell or recurrent layer.

Example

```julia using Flux

Create an RNNCell from input dimension 10 to output dimension 20

rnn = RNNCell(10 => 20)

Get the initial hidden state

h0 = initialstates(rnn)

Get some input data

x = rand(Float32, 10)

Run forward

res = rnn(x, h0)

source

Normalisation & Regularisation

These layers don't affect the structure of the network but may improve training times or reduce overfitting. Some of them contain trainable parameters, while others do not.

Flux.BatchNormType
BatchNorm(channels::Integer, λ=identity;
           initβ=zeros32, initγ=ones32,
           affine=true, track_stats=true, active=nothing,
           eps=1f-5, momentum= 0.1f0)

Batch Normalization layer. channels should be the size of the channel dimension in your data (see below).

Given an array with N dimensions, call the N-1th the channel dimension. For a batch of feature vectors this is just the data dimension, for WHCN images it's the usual channel dimension.

BatchNorm computes the mean and variance for each D_1×...×D_{N-2}×1×D_N input slice and normalises the input accordingly.

If affine=true, it also applies a shift and a rescale to the input through to learnable per-channel bias β and scale γ parameters.

After normalisation, elementwise activation λ is applied.

If track_stats=true, accumulates mean and var statistics in training phase that will be used to renormalize the input in test phase.

Use testmode! during inference.

Examples

julia> using Statistics
@@ -591,7 +591,7 @@
 julia> Flux.trainmode!(m);
 
 julia> isapprox(std(m(xs)), 1, atol=0.1) && std(xs) != std(m(xs))
-true
source
Flux.DropoutType
Dropout(p; [dims, rng, active])

Layer implementing dropout with the given probability. This is used as a regularisation, i.e. to reduce overfitting.

While training, it sets each input to 0 (with probability p) or else scales it by 1 / (1 - p), using the NNlib.dropout function. While testing, it has no effect.

By default the mode will switch automatically, but it can also be controlled manually via Flux.testmode!, or by passing keyword active=true for training mode.

By default every input is treated independently. With the dims keyword, instead it takes a random choice only along that dimension. For example Dropout(p; dims = 3) will randomly zero out entire channels on WHCN input (also called 2D dropout).

Keyword rng lets you specify a custom random number generator. (Only supported on the CPU.)

Examples

julia> m = Chain(Dense(ones(3,2)), Dropout(0.4))
+true
source
Flux.DropoutType
Dropout(p; [dims, rng, active])

Layer implementing dropout with the given probability. This is used as a regularisation, i.e. to reduce overfitting.

While training, it sets each input to 0 (with probability p) or else scales it by 1 / (1 - p), using the NNlib.dropout function. While testing, it has no effect.

By default the mode will switch automatically, but it can also be controlled manually via Flux.testmode!, or by passing keyword active=true for training mode.

By default every input is treated independently. With the dims keyword, instead it takes a random choice only along that dimension. For example Dropout(p; dims = 3) will randomly zero out entire channels on WHCN input (also called 2D dropout).

Keyword rng lets you specify a custom random number generator. (Only supported on the CPU.)

Examples

julia> m = Chain(Dense(ones(3,2)), Dropout(0.4))
 Chain(
   Dense(2 => 3),                        # 9 parameters
   Dropout(0.4),
@@ -623,7 +623,7 @@
 1.9989999999999961
 
 julia> mean(iszero, y)  # is about 0.4
-0.4003
source
Flux.AlphaDropoutType
AlphaDropout(p; [rng, active])

A dropout layer. Used in Self-Normalizing Neural Networks. The AlphaDropout layer ensures that mean and variance of activations remain the same as before.

Does nothing to the input once testmode! is true.

Examples

julia> using Statistics
+0.4003
source
Flux.AlphaDropoutType
AlphaDropout(p; [rng, active])

A dropout layer. Used in Self-Normalizing Neural Networks. The AlphaDropout layer ensures that mean and variance of activations remain the same as before.

Does nothing to the input once testmode! is true.

Examples

julia> using Statistics
 
 julia> x = randn32(1000,1);
 
@@ -634,7 +634,7 @@
 julia> y = m(x);
 
 julia> isapprox(std(x), std(y), atol=0.2)
-true
source
Flux.LayerNormType
LayerNorm(size..., λ=identity; affine=true, eps=1f-5)

A normalisation layer designed to be used with recurrent hidden states. The argument size should be an integer or a tuple of integers.

In the forward pass, the layer normalises the mean and standard deviation of the input, then applies the elementwise activation λ. The input is normalised along the first length(size) dimensions for tuple size, and along the first dimension for integer size. The input is expected to have first dimensions' size equal to size.

If affine=true, it also applies a learnable shift and rescaling using the Scale layer.

See also BatchNorm, InstanceNorm, GroupNorm, and normalise.

Examples

julia> using Statistics
+true
source
Flux.LayerNormType
LayerNorm(size..., λ=identity; affine=true, eps=1f-5)

A normalisation layer designed to be used with recurrent hidden states. The argument size should be an integer or a tuple of integers.

In the forward pass, the layer normalises the mean and standard deviation of the input, then applies the elementwise activation λ. The input is normalised along the first length(size) dimensions for tuple size, and along the first dimension for integer size. The input is expected to have first dimensions' size equal to size.

If affine=true, it also applies a learnable shift and rescaling using the Scale layer.

See also BatchNorm, InstanceNorm, GroupNorm, and normalise.

Examples

julia> using Statistics
 
 julia> xs = rand(3, 3, 3, 2);  # a batch of 2 images, each having 3 channels
 
@@ -643,7 +643,7 @@
 julia> y = m(xs);
 
 julia> isapprox(std(y, dims=1:3), ones(1, 1, 1, 2), atol=0.1) && std(y, dims=1:3) != std(xs, dims=1:3)
-true
source
Flux.InstanceNormType
InstanceNorm(channels::Integer, λ=identity;
+true
source
Flux.InstanceNormType
InstanceNorm(channels::Integer, λ=identity;
              initβ=zeros32, initγ=ones32,
              affine=false, track_stats=false,
              eps=1f-5, momentum=0.1f0)

Instance Normalization layer. channels should be the size of the channel dimension in your data (see below).

Given an array with N > 2 dimensions, call the N-1th the channel dimension. For WHCN images it's the usual channel dimension.

InstanceNorm computes the mean and variance for each D_1×...×D_{N-2}×1×1 input slice and normalises the input accordingly.

If affine=true, it also applies a shift and a rescale to the input through to learnable per-channel bias β and scale γ parameters.

If track_stats=true, accumulates mean and var statistics in training phase that will be used to renormalize the input in test phase.

Warning: the defaults for affine and track_stats used to be true in previous Flux versions (< v0.12).

Examples

julia> using Statistics
@@ -655,7 +655,7 @@
 julia> y = m(xs);
 
 julia> isapprox(std(y, dims=1:2), ones(1, 1, 3, 2), atol=0.2) && std(y, dims=1:2) != std(xs, dims=1:2)
-true
source
Flux.GroupNormType
GroupNorm(channels::Int, G::Int, λ = identity;
+true
source
Flux.GroupNormType
GroupNorm(channels::Int, G::Int, λ = identity;
           initβ = zeros32,
           initγ = ones32,
           affine = true,
@@ -672,7 +672,7 @@
 true
 
 julia> isapprox(std(y[:, :, 3:4, 2]), 1, atol=0.1) && std(xs[:, :, 3:4, 2]) != std(y[:, :, 3:4, 2])
-true
source
Flux.normaliseFunction
normalise(x; dims=ndims(x), eps=1f-5)

Normalise x to mean 0 and standard deviation 1 across the dimension(s) given by dims. Per default, dims is the last dimension. eps is a small term added to the variance for numerical stability.

Examples

julia> using Statistics
+true
source
Flux.normaliseFunction
normalise(x; dims=ndims(x), eps=1f-5)

Normalise x to mean 0 and standard deviation 1 across the dimension(s) given by dims. Per default, dims is the last dimension. eps is a small term added to the variance for numerical stability.

Examples

julia> using Statistics
 
 julia> x = [90, 100, 110, 130, 70];
 
@@ -695,7 +695,7 @@
 julia> y = Flux.normalise(x, dims=1);
 
 julia> isapprox(std(y; dims=1, corrected=false), ones(1, 10), atol=1e-5)
-true
source

Test vs. Train

Several normalisation layers behave differently under training and inference (testing). By default, Flux will automatically determine when a layer evaluation is part of training or inference.

Warning

This automatic train/test detection works best with Zygote, the default automatic differentiation package. It may not work with other packages such as Tracker, Yota, or ForwardDiff.

The functions Flux.trainmode! and Flux.testmode! let you manually specify which behaviour you want. When called on a model, they will place all layers within the model into the specified mode.

Flux.testmode!Function
testmode!(model, [mode]) -> model

Set a layer, or all layers in a model, to test mode. This disables the effect of Dropout and some other regularisation layers.

If you manually set a model into test mode, you need to manually place it back into train mode during training phase, using trainmode!.

There is an optional second argument, which takes a symbol :auto to reset all layers back to the default automatic mode.

Example

julia> d = Dropout(0.3)
+true
source

Test vs. Train

Several normalisation layers behave differently under training and inference (testing). By default, Flux will automatically determine when a layer evaluation is part of training or inference.

Warning

This automatic train/test detection works best with Zygote, the default automatic differentiation package. It may not work with other packages such as Tracker, Yota, or ForwardDiff.

The functions Flux.trainmode! and Flux.testmode! let you manually specify which behaviour you want. When called on a model, they will place all layers within the model into the specified mode.

Flux.testmode!Function
testmode!(model, [mode]) -> model

Set a layer, or all layers in a model, to test mode. This disables the effect of Dropout and some other regularisation layers.

If you manually set a model into test mode, you need to manually place it back into train mode during training phase, using trainmode!.

There is an optional second argument, which takes a symbol :auto to reset all layers back to the default automatic mode.

Example

julia> d = Dropout(0.3)
 Dropout(0.3)
 
 julia> testmode!(d)   # dropout is now always disabled
@@ -705,4 +705,4 @@
 Dropout(0.3, active=true)
 
 julia> testmode!(d, :auto)  # back to default
-Dropout(0.3)
source
Flux.trainmode!Function
trainmode!(model) -> model

Set a layer, or all layers in a model, to training mode. Opposite to testmode!, see further details there.

source
+Dropout(0.3)source
Flux.trainmode!Function
trainmode!(model) -> model

Set a layer, or all layers in a model, to training mode. Opposite to testmode!, see further details there.

source
diff --git a/previews/PR2547/reference/models/losses/index.html b/previews/PR2547/reference/models/losses/index.html index e6142bbff6..13f2dabd89 100644 --- a/previews/PR2547/reference/models/losses/index.html +++ b/previews/PR2547/reference/models/losses/index.html @@ -10,16 +10,16 @@ loss(ŷ, y, agg=identity) # no aggregation.

Function listing

Flux.Losses.maeFunction
mae(ŷ, y; agg = mean)

Return the loss corresponding to mean absolute error:

agg(abs.(ŷ .- y))

Example

julia> y_model = [1.1, 1.9, 3.1];
 
 julia> Flux.mae(y_model, 1:3)
-0.10000000000000009
source
Flux.Losses.mseFunction
mse(ŷ, y; agg = mean)

Return the loss corresponding to mean square error:

agg((ŷ .- y) .^ 2)

See also: mae, msle, crossentropy.

Example

julia> y_model = [1.1, 1.9, 3.1];
+0.10000000000000009
source
Flux.Losses.mseFunction
mse(ŷ, y; agg = mean)

Return the loss corresponding to mean square error:

agg((ŷ .- y) .^ 2)

See also: mae, msle, crossentropy.

Example

julia> y_model = [1.1, 1.9, 3.1];
 
 julia> y_true = 1:3;
 
 julia> Flux.mse(y_model, y_true)
-0.010000000000000018
source
Flux.Losses.msleFunction
msle(ŷ, y; agg = mean, eps = eps(eltype(ŷ)))

The loss corresponding to mean squared logarithmic errors, calculated as

agg((log.(ŷ .+ ϵ) .- log.(y .+ ϵ)) .^ 2)

The ϵ == eps term provides numerical stability. Penalizes an under-estimation more than an over-estimatation.

Example

julia> Flux.msle(Float32[1.1, 2.2, 3.3], 1:3)
+0.010000000000000018
source
Flux.Losses.msleFunction
msle(ŷ, y; agg = mean, eps = eps(eltype(ŷ)))

The loss corresponding to mean squared logarithmic errors, calculated as

agg((log.(ŷ .+ ϵ) .- log.(y .+ ϵ)) .^ 2)

The ϵ == eps term provides numerical stability. Penalizes an under-estimation more than an over-estimatation.

Example

julia> Flux.msle(Float32[1.1, 2.2, 3.3], 1:3)
 0.009084041f0
 
 julia> Flux.msle(Float32[0.9, 1.8, 2.7], 1:3)
-0.011100831f0
source
Flux.Losses.huber_lossFunction
huber_loss(ŷ, y; delta = 1, agg = mean)

Return the mean of the Huber loss given the prediction and true values y.

             | 0.5 * |ŷ - y|^2,            for |ŷ - y| <= δ
+0.011100831f0
source
Flux.Losses.huber_lossFunction
huber_loss(ŷ, y; delta = 1, agg = mean)

Return the mean of the Huber loss given the prediction and true values y.

             | 0.5 * |ŷ - y|^2,            for |ŷ - y| <= δ
 Huber loss = |
              |  δ * (|ŷ - y| - 0.5 * δ), otherwise

Example

julia> ŷ = [1.1, 2.1, 3.1];
 
@@ -27,7 +27,7 @@
 0.005000000000000009
 
 julia> Flux.huber_loss(ŷ, 1:3, delta=0.05)  # changes behaviour as |ŷ - y| > δ
-0.003750000000000005
source
Flux.Losses.label_smoothingFunction
label_smoothing(y::Union{Number, AbstractArray}, α; dims::Int=1)

Returns smoothed labels, meaning the confidence on label values are relaxed.

When y is given as one-hot vector or batch of one-hot, its calculated as

y .* (1 - α) .+ α / size(y, dims)

when y is given as a number or batch of numbers for binary classification, its calculated as

y .* (1 - α) .+ α / 2

in which case the labels are squeezed towards 0.5.

α is a number in interval (0, 1) called the smoothing factor. Higher the value of α larger the smoothing of y.

dims denotes the one-hot dimension, unless dims=0 which denotes the application of label smoothing to binary distributions encoded in a single number.

Example

julia> y = Flux.onehotbatch([1, 1, 1, 0, 1, 0], 0:1)
+0.003750000000000005
source
Flux.Losses.label_smoothingFunction
label_smoothing(y::Union{Number, AbstractArray}, α; dims::Int=1)

Returns smoothed labels, meaning the confidence on label values are relaxed.

When y is given as one-hot vector or batch of one-hot, its calculated as

y .* (1 - α) .+ α / size(y, dims)

when y is given as a number or batch of numbers for binary classification, its calculated as

y .* (1 - α) .+ α / 2

in which case the labels are squeezed towards 0.5.

α is a number in interval (0, 1) called the smoothing factor. Higher the value of α larger the smoothing of y.

dims denotes the one-hot dimension, unless dims=0 which denotes the application of label smoothing to binary distributions encoded in a single number.

Example

julia> y = Flux.onehotbatch([1, 1, 1, 0, 1, 0], 0:1)
 2×6 OneHotMatrix(::Vector{UInt32}) with eltype Bool:
  ⋅  ⋅  ⋅  1  ⋅  1
  1  1  1  ⋅  1  ⋅
@@ -51,7 +51,7 @@
 true
 
 julia> Flux.crossentropy(y_dis, y) > Flux.crossentropy(y_dis, y_smoothed)
-true
source
Flux.Losses.crossentropyFunction
crossentropy(ŷ, y; dims = 1, eps = eps(eltype(ŷ)), agg = mean)

Return the cross entropy between the given probability distributions; calculated as

agg(-sum(y .* log.(ŷ .+ ϵ); dims))

Cross entropy is typically used as a loss in multi-class classification, in which case the labels y are given in a one-hot format. dims specifies the dimension (or the dimensions) containing the class probabilities. The prediction is supposed to sum to one across dims, as would be the case with the output of a softmax operation.

For numerical stability, it is recommended to use logitcrossentropy rather than softmax followed by crossentropy .

Use label_smoothing to smooth the true labels as preprocessing before computing the loss.

See also: logitcrossentropy, binarycrossentropy, logitbinarycrossentropy.

Example

julia> y_label = Flux.onehotbatch([0, 1, 2, 1, 0], 0:2)
+true
source
Flux.Losses.crossentropyFunction
crossentropy(ŷ, y; dims = 1, eps = eps(eltype(ŷ)), agg = mean)

Return the cross entropy between the given probability distributions; calculated as

agg(-sum(y .* log.(ŷ .+ ϵ); dims))

Cross entropy is typically used as a loss in multi-class classification, in which case the labels y are given in a one-hot format. dims specifies the dimension (or the dimensions) containing the class probabilities. The prediction is supposed to sum to one across dims, as would be the case with the output of a softmax operation.

For numerical stability, it is recommended to use logitcrossentropy rather than softmax followed by crossentropy .

Use label_smoothing to smooth the true labels as preprocessing before computing the loss.

See also: logitcrossentropy, binarycrossentropy, logitbinarycrossentropy.

Example

julia> y_label = Flux.onehotbatch([0, 1, 2, 1, 0], 0:2)
 3×5 OneHotMatrix(::Vector{UInt32}) with eltype Bool:
  1  ⋅  ⋅  ⋅  1
  ⋅  1  ⋅  1  ⋅
@@ -80,7 +80,7 @@
  0.05  0.05  0.9   0.05  0.05
 
 julia> Flux.crossentropy(y_model, y_smooth)
-1.5776052f0
source
Flux.Losses.logitcrossentropyFunction
logitcrossentropy(ŷ, y; dims = 1, agg = mean)

Return the cross entropy calculated by

agg(-sum(y .* logsoftmax(ŷ; dims); dims))

This is mathematically equivalent to crossentropy(softmax(ŷ), y), but is more numerically stable than using functions crossentropy and softmax separately.

See also: binarycrossentropy, logitbinarycrossentropy, label_smoothing.

Example

julia> y_label = Flux.onehotbatch(collect("abcabaa"), 'a':'c')
+1.5776052f0
source
Flux.Losses.logitcrossentropyFunction
logitcrossentropy(ŷ, y; dims = 1, agg = mean)

Return the cross entropy calculated by

agg(-sum(y .* logsoftmax(ŷ; dims); dims))

This is mathematically equivalent to crossentropy(softmax(ŷ), y), but is more numerically stable than using functions crossentropy and softmax separately.

See also: binarycrossentropy, logitbinarycrossentropy, label_smoothing.

Example

julia> y_label = Flux.onehotbatch(collect("abcabaa"), 'a':'c')
 3×7 OneHotMatrix(::Vector{UInt32}) with eltype Bool:
  1  ⋅  ⋅  1  ⋅  1  1
  ⋅  1  ⋅  ⋅  1  ⋅  ⋅
@@ -96,7 +96,7 @@
 1.5791205f0
 
 julia> Flux.crossentropy(softmax(y_model), y_label)
-1.5791197f0
source
Flux.Losses.binarycrossentropyFunction
binarycrossentropy(ŷ, y; agg = mean, eps = eps(eltype(ŷ)))

Return the binary cross-entropy loss, computed as

agg(@.(-y * log(ŷ + ϵ) - (1 - y) * log(1 - ŷ + ϵ)))

Where typically, the prediction is given by the output of a sigmoid activation. The ϵ == eps term is included to avoid infinity. Using logitbinarycrossentropy is recomended over binarycrossentropy for numerical stability.

Use label_smoothing to smooth the y value as preprocessing before computing the loss.

See also: crossentropy, logitcrossentropy.

Examples

julia> y_bin = Bool[1,0,1]
+1.5791197f0
source
Flux.Losses.binarycrossentropyFunction
binarycrossentropy(ŷ, y; agg = mean, eps = eps(eltype(ŷ)))

Return the binary cross-entropy loss, computed as

agg(@.(-y * log(ŷ + ϵ) - (1 - y) * log(1 - ŷ + ϵ)))

Where typically, the prediction is given by the output of a sigmoid activation. The ϵ == eps term is included to avoid infinity. Using logitbinarycrossentropy is recomended over binarycrossentropy for numerical stability.

Use label_smoothing to smooth the y value as preprocessing before computing the loss.

See also: crossentropy, logitcrossentropy.

Examples

julia> y_bin = Bool[1,0,1]
 3-element Vector{Bool}:
  1
  0
@@ -119,7 +119,7 @@
  1  ⋅  1
 
 julia> Flux.crossentropy(y_prob, y_hot)
-0.43989f0
source
Flux.Losses.logitbinarycrossentropyFunction
logitbinarycrossentropy(ŷ, y; agg = mean)

Mathematically equivalent to binarycrossentropy(σ(ŷ), y) but is more numerically stable.

See also: crossentropy, logitcrossentropy.

Examples

julia> y_bin = Bool[1,0,1];
+0.43989f0
source
Flux.Losses.logitbinarycrossentropyFunction
logitbinarycrossentropy(ŷ, y; agg = mean)

Mathematically equivalent to binarycrossentropy(σ(ŷ), y) but is more numerically stable.

See also: crossentropy, logitcrossentropy.

Examples

julia> y_bin = Bool[1,0,1];
 
 julia> y_model = Float32[2, -1, pi]
 3-element Vector{Float32}:
@@ -131,7 +131,7 @@
 0.160832f0
 
 julia> Flux.binarycrossentropy(sigmoid.(y_model), y_bin)
-0.16083185f0
source
Flux.Losses.kldivergenceFunction
kldivergence(ŷ, y; agg = mean, eps = eps(eltype(ŷ)))

Return the Kullback-Leibler divergence between the given probability distributions.

The KL divergence is a measure of how much one probability distribution is different from the other. It is always non-negative, and zero only when both the distributions are equal.

Example

julia> p1 = [1 0; 0 1]
+0.16083185f0
source
Flux.Losses.kldivergenceFunction
kldivergence(ŷ, y; agg = mean, eps = eps(eltype(ŷ)))

Return the Kullback-Leibler divergence between the given probability distributions.

The KL divergence is a measure of how much one probability distribution is different from the other. It is always non-negative, and zero only when both the distributions are equal.

Example

julia> p1 = [1 0; 0 1]
 2×2 Matrix{Int64}:
  1  0
  0  1
@@ -151,10 +151,10 @@
 0.0
 
 julia> Flux.kldivergence(p1, p2; eps = 0)  # about 17.3 with the regulator
-Inf
source
Flux.Losses.poisson_lossFunction
poisson_loss(ŷ, y; agg = mean)

Return how much the predicted distribution diverges from the expected Poisson distribution y; calculated as -

sum(ŷ .- y .* log.(ŷ)) / size(y, 2)

More information..

Example

julia> y_model = [1, 3, 3];  # data should only take integral values
+Inf
source
Flux.Losses.poisson_lossFunction
poisson_loss(ŷ, y; agg = mean)

Return how much the predicted distribution diverges from the expected Poisson distribution y; calculated as -

sum(ŷ .- y .* log.(ŷ)) / size(y, 2)

More information..

Example

julia> y_model = [1, 3, 3];  # data should only take integral values
 
 julia> Flux.poisson_loss(y_model, 1:3)
-0.5023128522198171
source
Flux.Losses.hinge_lossFunction
hinge_loss(ŷ, y; agg = mean)

Return the hinge_loss given the prediction and true labels y (containing 1 or -1); calculated as

sum(max.(0, 1 .- ŷ .* y)) / size(y, 2)

Usually used with classifiers like Support Vector Machines. See also: squared_hinge_loss

Example

julia> y_true = [1, -1, 1, 1];
+0.5023128522198171
source
Flux.Losses.hinge_lossFunction
hinge_loss(ŷ, y; agg = mean)

Return the hinge_loss given the prediction and true labels y (containing 1 or -1); calculated as

sum(max.(0, 1 .- ŷ .* y)) / size(y, 2)

Usually used with classifiers like Support Vector Machines. See also: squared_hinge_loss

Example

julia> y_true = [1, -1, 1, 1];
 
 julia> y_pred = [0.1, 0.3, 1, 1.5];
 
@@ -168,7 +168,7 @@
 true
 
 julia> Flux.hinge_loss(y_pred[2], y_true[2]) != 0 # opposite signs
-true
source
Flux.Losses.squared_hinge_lossFunction
squared_hinge_loss(ŷ, y)

Return the squared hinge_loss loss given the prediction and true labels y (containing 1 or -1); calculated as

sum((max.(0, 1 .- ŷ .* y)).^2) / size(y, 2)

Usually used with classifiers like Support Vector Machines. See also: hinge_loss

Example

julia> y_true = [1, -1, 1, 1];
+true
source
Flux.Losses.squared_hinge_lossFunction
squared_hinge_loss(ŷ, y)

Return the squared hinge_loss loss given the prediction and true labels y (containing 1 or -1); calculated as

sum((max.(0, 1 .- ŷ .* y)).^2) / size(y, 2)

Usually used with classifiers like Support Vector Machines. See also: hinge_loss

Example

julia> y_true = [1, -1, 1, 1];
 
 julia> y_pred = [0.1, 0.3, 1, 1.5];
 
@@ -182,13 +182,13 @@
 true
 
 julia> Flux.squared_hinge_loss(y_pred[2], y_true[2]) != 0
-true
source
Flux.Losses.dice_coeff_lossFunction
dice_coeff_loss(ŷ, y; smooth = 1)

Return a loss based on the dice coefficient. Used in the V-Net image segmentation architecture. The dice coefficient is similar to the F1_score. Loss calculated as:

1 - 2*sum(|ŷ .* y| + smooth) / (sum(ŷ.^2) + sum(y.^2) + smooth)

Example

julia> y_pred = [1.1, 2.1, 3.1];
+true
source
Flux.Losses.dice_coeff_lossFunction
dice_coeff_loss(ŷ, y; smooth = 1)

Return a loss based on the dice coefficient. Used in the V-Net image segmentation architecture. The dice coefficient is similar to the F1_score. Loss calculated as:

1 - 2*sum(|ŷ .* y| + smooth) / (sum(ŷ.^2) + sum(y.^2) + smooth)

Example

julia> y_pred = [1.1, 2.1, 3.1];
 
 julia> Flux.dice_coeff_loss(y_pred, 1:3)
 0.000992391663909964
 
 julia> 1 - Flux.dice_coeff_loss(y_pred, 1:3)  # ~ F1 score for image segmentation
-0.99900760833609
source
Flux.Losses.tversky_lossFunction
tversky_loss(ŷ, y; beta = 0.7)

Return the Tversky loss. Used with imbalanced data to give more weight to false negatives. Larger β == beta weigh recall more than precision (by placing more emphasis on false negatives). Calculated as:

1 - sum(|y .* ŷ| + 1) / (sum(y .* ŷ + (1 - β)*(1 .- y) .* ŷ + β*y .* (1 .- ŷ)) + 1)
source
Flux.Losses.binary_focal_lossFunction
binary_focal_loss(ŷ, y; agg=mean, gamma=2, eps=eps(eltype(ŷ)))

Return the binaryfocalloss The input, 'ŷ', is expected to be normalized (i.e. softmax output).

For gamma = 0, the loss is mathematically equivalent to Losses.binarycrossentropy.

See also: Losses.focal_loss for multi-class setting

Example

julia> y = [0  1  0
+0.99900760833609
source
Flux.Losses.tversky_lossFunction
tversky_loss(ŷ, y; beta = 0.7)

Return the Tversky loss. Used with imbalanced data to give more weight to false negatives. Larger β == beta weigh recall more than precision (by placing more emphasis on false negatives). Calculated as:

1 - sum(|y .* ŷ| + 1) / (sum(y .* ŷ + (1 - β)*(1 .- y) .* ŷ + β*y .* (1 .- ŷ)) + 1)
source
Flux.Losses.binary_focal_lossFunction
binary_focal_loss(ŷ, y; agg=mean, gamma=2, eps=eps(eltype(ŷ)))

Return the binaryfocalloss The input, 'ŷ', is expected to be normalized (i.e. softmax output).

For gamma = 0, the loss is mathematically equivalent to Losses.binarycrossentropy.

See also: Losses.focal_loss for multi-class setting

Example

julia> y = [0  1  0
             1  0  1]
 2×3 Matrix{Int64}:
  0  1  0
@@ -201,7 +201,7 @@
  0.731059  0.5  0.731059
 
 julia> Flux.binary_focal_loss(ŷ, y) ≈ 0.0728675615927385
-true
source
Flux.Losses.focal_lossFunction
focal_loss(ŷ, y; dims=1, agg=mean, gamma=2, eps=eps(eltype(ŷ)))

Return the focal_loss which can be used in classification tasks with highly imbalanced classes. It down-weights well-classified examples and focuses on hard examples. The input, 'ŷ', is expected to be normalized (i.e. softmax output).

The modulating factor, γ == gamma, controls the down-weighting strength. For γ == 0, the loss is mathematically equivalent to Losses.crossentropy.

Example

julia> y = [1  0  0  0  1
+true
source
Flux.Losses.focal_lossFunction
focal_loss(ŷ, y; dims=1, agg=mean, gamma=2, eps=eps(eltype(ŷ)))

Return the focal_loss which can be used in classification tasks with highly imbalanced classes. It down-weights well-classified examples and focuses on hard examples. The input, 'ŷ', is expected to be normalized (i.e. softmax output).

The modulating factor, γ == gamma, controls the down-weighting strength. For γ == 0, the loss is mathematically equivalent to Losses.crossentropy.

Example

julia> y = [1  0  0  0  1
             0  1  0  1  0
             0  0  1  0  0]
 3×5 Matrix{Int64}:
@@ -216,10 +216,10 @@
  0.665241   0.665241   0.665241   0.665241   0.665241
 
 julia> Flux.focal_loss(ŷ, y) ≈ 1.1277571935622628
-true

See also: Losses.binary_focal_loss for binary (not one-hot) labels

source
Flux.Losses.siamese_contrastive_lossFunction
siamese_contrastive_loss(ŷ, y; margin = 1, agg = mean)

Return the contrastive loss which can be useful for training Siamese Networks. It is given by

agg(@. (1 - y) * ŷ^2 + y * max(0, margin - ŷ)^2)

Specify margin to set the baseline for distance at which pairs are dissimilar.

Example

julia> ŷ = [0.5, 1.5, 2.5];
+true

See also: Losses.binary_focal_loss for binary (not one-hot) labels

source
Flux.Losses.siamese_contrastive_lossFunction
siamese_contrastive_loss(ŷ, y; margin = 1, agg = mean)

Return the contrastive loss which can be useful for training Siamese Networks. It is given by

agg(@. (1 - y) * ŷ^2 + y * max(0, margin - ŷ)^2)

Specify margin to set the baseline for distance at which pairs are dissimilar.

Example

julia> ŷ = [0.5, 1.5, 2.5];
 
 julia> Flux.siamese_contrastive_loss(ŷ, 1:3)
 -4.833333333333333
 
 julia> Flux.siamese_contrastive_loss(ŷ, 1:3, margin = 2)
--4.0
source
+-4.0source
diff --git a/previews/PR2547/reference/models/nnlib/index.html b/previews/PR2547/reference/models/nnlib/index.html index 0e1f70e96e..9fa07bbf92 100644 --- a/previews/PR2547/reference/models/nnlib/index.html +++ b/previews/PR2547/reference/models/nnlib/index.html @@ -375,4 +375,4 @@ [:, :, 1, 1] = 1.0 3.0 1.5 3.5 - 2.0 4.0source
NNlib.∇grid_sampleFunction
∇grid_sample(Δ::AbstractArray{T, 4}, input::AbstractArray{T, 4}, grid::AbstractArray{T, 4}; padding_mode = :zeros) where T

Arguments

  • Δ: Input gradient in (W_out, H_out, C, N) shape (same as output of the primal computation).
  • input: Input from primal computation in (W_in, H_in, C, N) shape.
  • grid: Grid from primal computation in (2, W_out, H_out, N) shape.
  • padding_mode: Out-of-bound padding. :zeros to use 0 for out-of-bound grid locations. :border to use border values for out-of-bound grid locations. Should be the same as in primal computation. Default is :zeros.

Returns

dinput (same shape as input) and dgrid (same shape as grid) gradients.

source

Losses

NNlib.ctc_lossFunction
ctc_loss(ŷ, y)

Computes the connectionist temporal classification loss between and y. must be a classes-by-time matrices, i.e., each row represents a class and each column represents a time step. Additionally, the logsoftmax function will be applied to , so must be the raw activation values from the neural network and not, for example, the activations after being passed through a softmax activation function. y must be a 1D array of the labels associated with . The blank label is assumed to be the last label category in , so it is equivalent to size(ŷ, 1). Used for sequence-to-sequence classification problems such as speech recognition and handwriting recognition where the exact time-alignment of the output (e.g., letters) is not needed to solve the problem. See Graves et al. (2006) or Graves (2012) for mathematical details.

source

Miscellaneous

NNlib.logsumexpFunction
logsumexp(x; dims = :)

Computes log.(sum(exp.(x); dims)) in a numerically stable way. Without dims keyword this returns a scalar.

See also logsoftmax.

source
NNlib.gluFunction
glu(x, dim = 1)

The gated linear unit from the "Language Modeling with Gated Convolutional Networks" paper.

Calculates a .* sigmoid(b), where x is split in half along given dimension dim to form a and b.

source
+ 2.0 4.0source
NNlib.∇grid_sampleFunction
∇grid_sample(Δ::AbstractArray{T, 4}, input::AbstractArray{T, 4}, grid::AbstractArray{T, 4}; padding_mode = :zeros) where T

Arguments

  • Δ: Input gradient in (W_out, H_out, C, N) shape (same as output of the primal computation).
  • input: Input from primal computation in (W_in, H_in, C, N) shape.
  • grid: Grid from primal computation in (2, W_out, H_out, N) shape.
  • padding_mode: Out-of-bound padding. :zeros to use 0 for out-of-bound grid locations. :border to use border values for out-of-bound grid locations. Should be the same as in primal computation. Default is :zeros.

Returns

dinput (same shape as input) and dgrid (same shape as grid) gradients.

source

Losses

NNlib.ctc_lossFunction
ctc_loss(ŷ, y)

Computes the connectionist temporal classification loss between and y. must be a classes-by-time matrices, i.e., each row represents a class and each column represents a time step. Additionally, the logsoftmax function will be applied to , so must be the raw activation values from the neural network and not, for example, the activations after being passed through a softmax activation function. y must be a 1D array of the labels associated with . The blank label is assumed to be the last label category in , so it is equivalent to size(ŷ, 1). Used for sequence-to-sequence classification problems such as speech recognition and handwriting recognition where the exact time-alignment of the output (e.g., letters) is not needed to solve the problem. See Graves et al. (2006) or Graves (2012) for mathematical details.

source

Miscellaneous

NNlib.logsumexpFunction
logsumexp(x; dims = :)

Computes log.(sum(exp.(x); dims)) in a numerically stable way. Without dims keyword this returns a scalar.

See also logsoftmax.

source
NNlib.gluFunction
glu(x, dim = 1)

The gated linear unit from the "Language Modeling with Gated Convolutional Networks" paper.

Calculates a .* sigmoid(b), where x is split in half along given dimension dim to form a and b.

source
diff --git a/previews/PR2547/reference/outputsize/index.html b/previews/PR2547/reference/outputsize/index.html index 441b0809c4..56cee07957 100644 --- a/previews/PR2547/reference/outputsize/index.html +++ b/previews/PR2547/reference/outputsize/index.html @@ -68,7 +68,7 @@ # plus 2 non-trainable, 10 parameters, summarysize 10.469 KiB. julia> outputsize(ans, (28, 28, 1, 32)) -(10, 32)

Limitations:

source
Flux.outputsizeFunction
outputsize(m, x_size, y_size, ...; padbatch=false)

For model or layer m accepting multiple arrays as input, this returns size(m((x, y, ...))) given size_x = size(x), etc.

Examples

julia> x, y = rand(Float32, 5, 64), rand(Float32, 7, 64);
+(10, 32)

Limitations:

  • While @autosize (5, 32) Flux.Bilinear(_ => 7) is OK, something like Bilinear((_, _) => 7) will fail.
  • While Scale(_) and LayerNorm(_) are fine (and use the first dimension), Scale(_,_) and LayerNorm(_,_) will fail if size(x,1) != size(x,2).
source
Flux.outputsizeFunction
outputsize(m, x_size, y_size, ...; padbatch=false)

For model or layer m accepting multiple arrays as input, this returns size(m((x, y, ...))) given size_x = size(x), etc.

Examples

julia> x, y = rand(Float32, 5, 64), rand(Float32, 7, 64);
 
 julia> par = Parallel(vcat, Dense(5 => 9), Dense(7 => 11));
 
@@ -81,4 +81,4 @@
 (13, 1)
 
 julia> par(x, y) == par((x, y)) == Chain(par, identity)((x, y))
-true

Notice that Chain only accepts multiple arrays as a tuple, while Parallel also accepts them as multiple arguments; outputsize always supplies the tuple.

source
+true

Notice that Chain only accepts multiple arrays as a tuple, while Parallel also accepts them as multiple arguments; outputsize always supplies the tuple.

source
diff --git a/previews/PR2547/reference/training/callbacks/index.html b/previews/PR2547/reference/training/callbacks/index.html index 5651895d8b..fe73fa7927 100644 --- a/previews/PR2547/reference/training/callbacks/index.html +++ b/previews/PR2547/reference/training/callbacks/index.html @@ -10,7 +10,7 @@ sleep(1) end Flux -Fluxsource

Patience Helpers

Flux provides utilities for controlling your training procedure according to some monitored condition and a maximum patience. For example, you can use early_stopping to stop training when the model is converging or deteriorating, or you can use plateau to check if the model is stagnating.

For example, below we create a pseudo-loss function that decreases, bottoms out, and then increases. The early stopping trigger will break the loop before the loss increases too much.

# create a pseudo-loss that decreases for 4 calls, then starts increasing
+Flux
source

Patience Helpers

Flux provides utilities for controlling your training procedure according to some monitored condition and a maximum patience. For example, you can use early_stopping to stop training when the model is converging or deteriorating, or you can use plateau to check if the model is stagnating.

For example, below we create a pseudo-loss function that decreases, bottoms out, and then increases. The early stopping trigger will break the loop before the loss increases too much.

# create a pseudo-loss that decreases for 4 calls, then starts increasing
 # we call this like loss()
 loss = let t = 0
   () -> begin
@@ -61,7 +61,7 @@
        end
 [ Info: Epoch 1
 [ Info: Epoch 2
-[ Info: Epoch 3
source
Flux.early_stoppingFunction
early_stopping(f, delay; distance = -, init_score = 0, min_dist = 0)

Return a function that internally counts by one when distance(best_score, f(...)) <= min_dist, where best_score is the last seen best value of f(...). If the count is greater than or equal to delay, the function returns true, otherwise it returns false. The count is reset when distance(best_score, f(...)) > min_dist.

Examples

julia> loss = let l = 0
+[ Info: Epoch 3
source
Flux.early_stoppingFunction
early_stopping(f, delay; distance = -, init_score = 0, min_dist = 0)

Return a function that internally counts by one when distance(best_score, f(...)) <= min_dist, where best_score is the last seen best value of f(...). If the count is greater than or equal to delay, the function returns true, otherwise it returns false. The count is reset when distance(best_score, f(...)) > min_dist.

Examples

julia> loss = let l = 0
          () -> l += 1
        end; # pseudo loss function that returns increasing values
 
@@ -74,7 +74,7 @@
        end
 [ Info: Epoch 1
 [ Info: Epoch 2
-[ Info: Epoch 3
source
Flux.plateauFunction
plateau(f, width; distance = -, init_score = 0, min_dist = 1f-6)

Return a function that internally counts by one when abs(distance(last_score, f(...))) <= min_dist, where last_score holds the last value of f(...). If the count is greater than or equal to width, the function returns true, otherwise it returns false. The count is reset when abs(distance(last_score, f(...))) > min_dist.

Examples

julia> f = let v = 10
+[ Info: Epoch 3
source
Flux.plateauFunction
plateau(f, width; distance = -, init_score = 0, min_dist = 1f-6)

Return a function that internally counts by one when abs(distance(last_score, f(...))) <= min_dist, where last_score holds the last value of f(...). If the count is greater than or equal to width, the function returns true, otherwise it returns false. The count is reset when abs(distance(last_score, f(...))) > min_dist.

Examples

julia> f = let v = 10
          () -> v = v / abs(v) - v
        end; # -9, 8, -7, 6, ...
 
@@ -88,4 +88,4 @@
 [ Info: Epoch 1
 [ Info: Epoch 2
 [ Info: Epoch 3
-[ Info: Epoch 4
source
+[ Info: Epoch 4source
diff --git a/previews/PR2547/reference/training/enzyme/index.html b/previews/PR2547/reference/training/enzyme/index.html index 60c34140d9..ce7d83f0ed 100644 --- a/previews/PR2547/reference/training/enzyme/index.html +++ b/previews/PR2547/reference/training/enzyme/index.html @@ -67,7 +67,7 @@ julia> Flux.gradient(dup_model, [1]; zero=false) do m, x # implict Const([1]), and grad accumulation sum(abs2, m(x)) end -((layers = ((weight = [12.0;;], bias = [12.0], σ = nothing),),), nothing)source
Flux.withgradientMethod
withgradient(f, args::Union{Const,Duplicated}...)

This should return the same answer as withgradient(f, model, args...), but it uses Enzyme.jl instead of Zygote.jl to compute the derivative.

Only available when Enzyme is loaded!

Experimental

Enzyme support like this is new and somewhat experimental. This method was added in Flux 0.15.

Example

julia> using Flux, Enzyme
+((layers = ((weight = [12.0;;], bias = [12.0], σ = nothing),),), nothing)
source
Flux.withgradientMethod
withgradient(f, args::Union{Const,Duplicated}...)

This should return the same answer as withgradient(f, model, args...), but it uses Enzyme.jl instead of Zygote.jl to compute the derivative.

Only available when Enzyme is loaded!

Experimental

Enzyme support like this is new and somewhat experimental. This method was added in Flux 0.15.

Example

julia> using Flux, Enzyme
 
 julia> model = Chain(Embedding([1.1 2.2 3.3]), Dense([4.4;;]), only);
 
@@ -82,4 +82,4 @@
 (val = (14.52, "aux"), grad = ((layers = ((weight = [0.0 0.0 4.4],), (weight = [3.3;;], bias = [1.0], σ = nothing), nothing),),))
 
 julia> Flux.withgradient(m -> (loss=m(3), aux=round.(m.(1:3); digits=3)), Duplicated(model))
-(val = (loss = 14.52, aux = [4.84, 9.68, 14.52]), grad = ((layers = ((weight = [0.0 0.0 4.4],), (weight = [3.3;;], bias = [1.0], σ = nothing), nothing),),))
source
Flux.Train.train!Method
train!(loss, Duplicated(model), data, opt_state)

This method uses Enzyme.jl instead of Zygote.jl to compute the gradients, but is otherwise the same as train!(loss, model, data, opt_state).

Only available when Enzyme is loaded.

New

This method was added in Flux 0.13.9.

source

Enzyme.jl has its own extensive documentation.

+(val = (loss = 14.52, aux = [4.84, 9.68, 14.52]), grad = ((layers = ((weight = [0.0 0.0 4.4],), (weight = [3.3;;], bias = [1.0], σ = nothing), nothing),),))source
Flux.Train.train!Method
train!(loss, Duplicated(model), data, opt_state)

This method uses Enzyme.jl instead of Zygote.jl to compute the gradients, but is otherwise the same as train!(loss, model, data, opt_state).

Only available when Enzyme is loaded.

New

This method was added in Flux 0.13.9.

source

Enzyme.jl has its own extensive documentation.

diff --git a/previews/PR2547/reference/training/optimisers/index.html b/previews/PR2547/reference/training/optimisers/index.html index 9863c0eccd..957fe41215 100644 --- a/previews/PR2547/reference/training/optimisers/index.html +++ b/previews/PR2547/reference/training/optimisers/index.html @@ -54,4 +54,4 @@ end

ParameterSchedulers.jl allows for many more scheduling policies including arbitrary functions, looping any function with a given period, or sequences of many schedules. See the ParameterSchedulers.jl documentation for more info.

Decays

Similar to optimisers, Flux also defines some simple decays that can be used in conjunction with other optimisers, or standalone.

Optimisers.SignDecayType
SignDecay(λ = 1e-3)
 SignDecay(; [lambda])

Implements $L_1$ regularisation, also known as LASSO regression, when composed with other rules as the first transformation in an OptimiserChain.

It does this by adding λ .* sign(x) to the gradient. This is equivalent to adding λ * sum(abs, x) == λ * norm(x, 1) to the loss.

See also [WeightDecay] for $L_2$ normalisation. They can be used together: OptimiserChain(SignDecay(0.012), WeightDecay(0.034), Adam()) is equivalent to adding 0.012 * norm(x, 1) + 0.017 * norm(x, 2)^2 to the loss function.

Parameters

  • Penalty (λ ≥ 0): Controls the strength of the regularisation.
source
Optimisers.WeightDecayType
WeightDecay(λ = 5e-4)
 WeightDecay(; [lambda])

Implements $L_2$ regularisation, also known as ridge regression, when composed with other rules as the first transformation in an OptimiserChain.

It does this by adding λ .* x to the gradient. This is equivalent to adding λ/2 * sum(abs2, x) == λ/2 * norm(x)^2 to the loss.

See also [SignDecay] for $L_1$ normalisation.

Parameters

  • Penalty (λ ≥ 0): Controls the strength of the regularisation.
source

Gradient Clipping

Gradient clipping is useful for training recurrent neural networks, which have a tendency to suffer from the exploding gradient problem. An example usage is

opt = OptimiserChain(ClipValue(1e-3), Adam(1e-3))
Optimisers.ClipGradType
ClipGrad(δ = 10)
-ClipGrad(; [delta])

Restricts every gradient component to obey -δ ≤ dx[i] ≤ δ.

Typically composed with other rules using OptimiserChain.

See also ClipNorm.

source
Optimisers.ClipNormType
ClipNorm(ω = 10, p = 2; throw = true)

Scales any gradient array for which norm(dx, p) > ω to stay at this threshold (unless p==0).

Throws an error if the norm is infinite or NaN, which you can turn off with throw = false.

Typically composed with other rules using OptimiserChain.

See also ClipGrad.

source
+ClipGrad(; [delta])

Restricts every gradient component to obey -δ ≤ dx[i] ≤ δ.

Typically composed with other rules using OptimiserChain.

See also ClipNorm.

source
Optimisers.ClipNormType
ClipNorm(ω = 10, p = 2; throw = true)

Scales any gradient array for which norm(dx, p) > ω to stay at this threshold (unless p==0).

Throws an error if the norm is infinite or NaN, which you can turn off with throw = false.

Typically composed with other rules using OptimiserChain.

See also ClipGrad.

source
diff --git a/previews/PR2547/reference/training/reference/index.html b/previews/PR2547/reference/training/reference/index.html index cf6bf96b48..42a56ad322 100644 --- a/previews/PR2547/reference/training/reference/index.html +++ b/previews/PR2547/reference/training/reference/index.html @@ -19,14 +19,14 @@ 10.19 julia> opt_state # mutated by Flux.train! -(weight = Leaf(Momentum(0.1, 0.9), [-2.018 3.027]), bias = Leaf(Momentum(0.1, 0.9), [-10.09]), σ = ())source
opt_state = setup(rule, model::Duplicated) = setup(rule, model.val)

Special method for use with Enzyme.jl, ignores the stored gradient.

source
Flux.Train.train!Method
train!(loss, model, data, opt_state)

Uses a loss function and training data to improve the model's parameters according to a particular optimisation rule encoded in opt_state. Iterates through data once, evaluating for each d in data either loss(model, d...) if d isa Tuple, or else loss(model, d) for other d.

If model is an Enzyme.Duplicated and Enzyme.jl is loaded, gradients will be computed with Enzyme, otherwise they will be computed with Zygote.

For example, with these definitions...

data = [(x1, y1), (x2, y2), (x3, y3)]
+(weight = Leaf(Momentum(0.1, 0.9), [-2.018 3.027]), bias = Leaf(Momentum(0.1, 0.9), [-10.09]), σ = ())
source
opt_state = setup(rule, model::Duplicated) = setup(rule, model.val)

Special method for use with Enzyme.jl, ignores the stored gradient.

source
Flux.Train.train!Method
train!(loss, model, data, opt_state)

Uses a loss function and training data to improve the model's parameters according to a particular optimisation rule encoded in opt_state. Iterates through data once, evaluating for each d in data either loss(model, d...) if d isa Tuple, or else loss(model, d) for other d.

If model is an Enzyme.Duplicated and Enzyme.jl is loaded, gradients will be computed with Enzyme, otherwise they will be computed with Zygote.

For example, with these definitions...

data = [(x1, y1), (x2, y2), (x3, y3)]
 
 loss3(m, x, y) = norm(m(x) .- y)        # the model is the first argument
 
 opt_state = Flux.setup(Adam(), model)   # explicit setup of optimiser momenta

...calling Flux.train!(loss3, model, data, opt_state) runs a loop much like this:

for d in data
     ∂L∂m = gradient(loss3, model, d...)[1]
     update!(opt_state, model, ∂L∂m)
-end

You can also write this loop yourself, if you need more flexibility. For this reason train! is not highly extensible. It adds only a few features to the loop above:

  • Stop with a DomainError if the loss is infinite or NaN at any point.

  • Show a progress bar using @withprogress.

New

This method was added in Flux 0.13.9. It has significant changes from the one used by Flux ≤ 0.13:

  • It now takes the model itself, not the result of Flux.params. (This is to move away from Zygote's "implicit" parameter handling, with Grads.)
  • Instead of loss being a function which accepts only the data, now it must also accept the model itself, as the first argument.
  • opt_state should be the result of Flux.setup. Using an optimiser such as Adam() without this step should give you a warning.
  • Callback functions are not supported. (But any code can be included in the above for loop.)
source
Optimisers.updateFunction
Optimisers.update(tree, model, gradient) -> (tree, model)

Uses the optimiser and the gradient to change the trainable parameters in the model. Returns the improved model, and the optimiser states needed for the next update. The initial tree of states comes from setup.

See also update!, which will be faster for models of ordinary Arrays or CuArrays.

Example

julia> m = (x = Float32[1,2,3], y = tanh);
+end

You can also write this loop yourself, if you need more flexibility. For this reason train! is not highly extensible. It adds only a few features to the loop above:

  • Stop with a DomainError if the loss is infinite or NaN at any point.

  • Show a progress bar using @withprogress.

New

This method was added in Flux 0.13.9. It has significant changes from the one used by Flux ≤ 0.13:

  • It now takes the model itself, not the result of Flux.params. (This is to move away from Zygote's "implicit" parameter handling, with Grads.)
  • Instead of loss being a function which accepts only the data, now it must also accept the model itself, as the first argument.
  • opt_state should be the result of Flux.setup. Using an optimiser such as Adam() without this step should give you a warning.
  • Callback functions are not supported. (But any code can be included in the above for loop.)
source
Optimisers.updateFunction
Optimisers.update(tree, model, gradient) -> (tree, model)

Uses the optimiser and the gradient to change the trainable parameters in the model. Returns the improved model, and the optimiser states needed for the next update. The initial tree of states comes from setup.

See also update!, which will be faster for models of ordinary Arrays or CuArrays.

Example

julia> m = (x = Float32[1,2,3], y = tanh);
 
 julia> t = Optimisers.setup(Descent(0.1), m)
 (x = Leaf(Descent(0.1), nothing), y = ())
@@ -115,4 +115,4 @@
 julia> Optimisers.thaw!(s)
 
 julia> s.x
-(Leaf(Momentum(0.01, 0.9), [0.0]), ())
source
Optimisers.thaw!Function
Optimisers.thaw!(tree)

The reverse of freeze!. Applies to all parameters, mutating every Leaf(rule, state, frozen = true) to Leaf(rule, state, frozen = false).

source
+(Leaf(Momentum(0.01, 0.9), [0.0]), ())source
Optimisers.thaw!Function
Optimisers.thaw!(tree)

The reverse of freeze!. Applies to all parameters, mutating every Leaf(rule, state, frozen = true) to Leaf(rule, state, frozen = false).

source
diff --git a/previews/PR2547/reference/training/zygote/index.html b/previews/PR2547/reference/training/zygote/index.html index 182ea46afa..8ae9eb701a 100644 --- a/previews/PR2547/reference/training/zygote/index.html +++ b/previews/PR2547/reference/training/zygote/index.html @@ -203,4 +203,4 @@ # this definition of map is for any AD that only defines a reverse mode. # It is not as good as the rrule that can be used if the AD defines a forward-mode as well. -rrule(conf::RuleConfig{>:Union{NoForwardsMode, HasReverseMode}}, typeof(map), ::Vector) = ...

For more details see rule configurations and calling back into AD.

source
ChainRulesCore.TangentType
Tangent{P, T} <: StructuralTangent{P} <: AbstractTangent

This type represents the tangent for a struct/NamedTuple, or Tuple. P is the the corresponding primal type that this is a tangent for.

Tangent{P} should have fields (technically properties), that match to a subset of the fields of the primal type; and each should be a tangent type matching to the primal type of that field. Fields of the P that are not present in the Tangent are treated as Zero.

T is an implementation detail representing the backing data structure. For Tuple it will be a Tuple, and for everything else it will be a NamedTuple. It should not be passed in by user.

For Tangents of Tuples, iterate and getindex are overloaded to behave similarly to for a tuple. For Tangents of structs, getproperty is overloaded to allow for accessing values via tangent.fieldname. Any fields not explictly present in the Tangent are treated as being set to ZeroTangent(). To make a Tangent have all the fields of the primal the canonicalize function is provided.

source
ChainRulesCore.canonicalizeFunction
canonicalize(tangent::Tangent{P}) -> Tangent{P}

Return the canonical Tangent for the primal type P. The property names of the returned Tangent match the field names of the primal, and all fields of P not present in the input tangent are explictly set to ZeroTangent().

source
+rrule(conf::RuleConfig{>:Union{NoForwardsMode, HasReverseMode}}, typeof(map), ::Vector) = ...

For more details see rule configurations and calling back into AD.

source
ChainRulesCore.TangentType
Tangent{P, T} <: StructuralTangent{P} <: AbstractTangent

This type represents the tangent for a struct/NamedTuple, or Tuple. P is the the corresponding primal type that this is a tangent for.

Tangent{P} should have fields (technically properties), that match to a subset of the fields of the primal type; and each should be a tangent type matching to the primal type of that field. Fields of the P that are not present in the Tangent are treated as Zero.

T is an implementation detail representing the backing data structure. For Tuple it will be a Tuple, and for everything else it will be a NamedTuple. It should not be passed in by user.

For Tangents of Tuples, iterate and getindex are overloaded to behave similarly to for a tuple. For Tangents of structs, getproperty is overloaded to allow for accessing values via tangent.fieldname. Any fields not explictly present in the Tangent are treated as being set to ZeroTangent(). To make a Tangent have all the fields of the primal the canonicalize function is provided.

source
ChainRulesCore.canonicalizeFunction
canonicalize(tangent::Tangent{P}) -> Tangent{P}

Return the canonical Tangent for the primal type P. The property names of the returned Tangent match the field names of the primal, and all fields of P not present in the input tangent are explictly set to ZeroTangent().

source
diff --git a/previews/PR2547/reference/utilities/index.html b/previews/PR2547/reference/utilities/index.html index c82f5bef47..40b7863ba6 100644 --- a/previews/PR2547/reference/utilities/index.html +++ b/previews/PR2547/reference/utilities/index.html @@ -32,7 +32,7 @@ julia> ans.bias 2-element Vector{Float32}: 0.0 - 0.0

References

[1] Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks." Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010.

source
Flux.glorot_normalFunction
glorot_normal([rng], size...; gain = 1) -> Array
+ 0.0

References

[1] Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks." Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010.

source
Flux.glorot_normalFunction
glorot_normal([rng], size...; gain = 1) -> Array
 glorot_normal([rng]; kw...) -> Function

Return an Array{Float32} of the given size containing random numbers drawn from a normal distribution with standard deviation gain * sqrt(2 / (fan_in + fan_out)), using nfan.

This method is described in [1] and also known as Xavier initialization.

Examples

julia> using Statistics
 
 julia> round(std(Flux.glorot_normal(10, 1000)), digits=3)
@@ -48,7 +48,7 @@
 Dense(10 => 1000, tanh)  # 11_000 parameters
 
 julia> round(std(ans.weight), sigdigits=3)
-4.45f0

References

[1] Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks." Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010.

source
Flux.kaiming_uniformFunction
kaiming_uniform([rng], size...; gain = √2) -> Array
+4.45f0

References

[1] Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks." Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010.

source
Flux.kaiming_uniformFunction
kaiming_uniform([rng], size...; gain = √2) -> Array
 kaiming_uniform([rng]; kw...) -> Function

Return an Array{Float32} of the given size containing random numbers drawn from a uniform distribution on the interval [-x, x], where x = gain * sqrt(3/fan_in) using nfan.

This method is described in [1] and also known as He initialization.

Examples

julia> round.(extrema(Flux.kaiming_uniform(100, 10)), digits=3)
 (-0.774f0, 0.773f0)
 
@@ -56,7 +56,7 @@
 (-0.243f0, 0.245f0)
 
 julia> round.(extrema(Flux.kaiming_uniform(100, 100)), digits=3)
-(-0.245f0, 0.245f0)

References

[1] He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." Proceedings of the IEEE international conference on computer vision. 2015.

source
Flux.kaiming_normalFunction
kaiming_normal([rng], size...; gain = √2) -> Array
+(-0.245f0, 0.245f0)

References

[1] He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." Proceedings of the IEEE international conference on computer vision. 2015.

source
Flux.kaiming_normalFunction
kaiming_normal([rng], size...; gain = √2) -> Array
 kaiming_normal([rng]; kw...) -> Function

Return an Array{Float32} of the given size containing random numbers taken from a normal distribution standard deviation gain / sqrt(fan_in), using nfan.

This method is described in [1] and also known as He initialization.

Examples

julia> using Statistics
 
 julia> round(std(Flux.kaiming_normal(10, 1000)), digits=3)
@@ -66,7 +66,7 @@
 0.45f0
 
 julia> round(std(Flux.kaiming_normal(1000, 1000)), digits=3)
-0.045f0

References

[1] He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." Proceedings of the IEEE international conference on computer vision. 2015.

source
Flux.truncated_normalFunction
truncated_normal([rng], size...; mean = 0, std = 1, lo = -2, hi = 2) -> Array
+0.045f0

References

[1] He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." Proceedings of the IEEE international conference on computer vision. 2015.

source
Flux.truncated_normalFunction
truncated_normal([rng], size...; mean = 0, std = 1, lo = -2, hi = 2) -> Array
 truncated_normal([rng]; kw...) -> Function

Return an Array{Float32} of the given size where each element is drawn from a truncated normal distribution. The numbers are distributed like filter(x -> lo<=x<=hi, mean .+ std .* randn(100)).

The values are generated by sampling a Uniform(0, 1) (rand()) and then applying the inverse CDF of the truncated normal distribution. This method works best when lo ≤ mean ≤ hi.

Examples

julia> using Statistics
 
 julia> Flux.truncated_normal(3, 4) |> summary
@@ -76,7 +76,7 @@
 (-2.0f0, 2.0f0)
 
 julia> round(std(Flux.truncated_normal(10^6; lo = -100, hi = 100)))
-1.0f0
source
Flux.lecun_normalFunction
lecun_normal([rng], size...) -> Array
+1.0f0
source
Flux.lecun_normalFunction
lecun_normal([rng], size...) -> Array
 lecun_normal([rng]; kw...) -> Function

Return an Array{Float32} of the given size containing random numbers drawn from a truncated normal distribution centered on 0 with stddev sqrt(1 / fan_in), where fan_in is the number of input units in the weight tensor.

Examples

julia> using Statistics
 
 julia> round(std(Flux.lecun_normal(10, 1000)), digits=3)
@@ -92,7 +92,7 @@
 Dense(10 => 1000, selu)  # 11_000 parameters
 
 julia> round(std(ans.weight), digits=3)
-0.313f0

References

[1] Lecun, Yann, et al. "Efficient backprop." Neural networks: Tricks of the trade. Springer, Berlin, Heidelberg, 2012. 9-48.

source
Flux.orthogonalFunction
orthogonal([rng], size...; gain = 1) -> Array
+0.313f0

References

[1] Lecun, Yann, et al. "Efficient backprop." Neural networks: Tricks of the trade. Springer, Berlin, Heidelberg, 2012. 9-48.

source
Flux.orthogonalFunction
orthogonal([rng], size...; gain = 1) -> Array
 orthogonal([rng]; kw...) -> Function

Return an Array{Float32} of the given size which is a (semi) orthogonal matrix, as described in [1].

Cannot construct a vector, i.e. length(size) == 1 is forbidden. For length(size) > 2, a prod(size[1:(end - 1)]) by size[end] orthogonal matrix is computed before reshaping it to the original dimensions.

Examples

julia> W = Flux.orthogonal(5, 7);
 
 julia> summary(W)
@@ -112,7 +112,7 @@
 julia> W3 = Flux.orthogonal(3, 3, 2, 4);
 
 julia> transpose(reshape(W3, :, 4)) * reshape(W3, :, 4) ≈ I(4)
-true

References

[1] Saxe, McClelland, Ganguli. "Exact solutions to the nonlinear dynamics of learning in deep linear neural networks", ICLR 2014, https://arxiv.org/abs/1312.6120

source
Flux.sparse_initFunction
sparse_init([rng], rows, cols; sparsity, std = 0.01) -> Array
+true

References

[1] Saxe, McClelland, Ganguli. "Exact solutions to the nonlinear dynamics of learning in deep linear neural networks", ICLR 2014, https://arxiv.org/abs/1312.6120

source
Flux.sparse_initFunction
sparse_init([rng], rows, cols; sparsity, std = 0.01) -> Array
 sparse_init([rng]; kw...) -> Function

Return a Matrix{Float32} of size rows, cols where each column contains a fixed fraction of zero elements given by sparsity. Non-zero elements are normally distributed with a mean of zero and standard deviation std.

This method is described in [1].

Examples

julia> count(iszero, Flux.sparse_init(10, 10, sparsity=1/5))
 20
 
@@ -125,7 +125,7 @@
 
 julia> count(iszero, ans.weight, dims=1)
 1×3 Matrix{Int64}:
- 5  5  5

References

[1] Martens, J, "Deep learning via Hessian-free optimization" Proceedings of the 27th International Conference on International Conference on Machine Learning. 2010.

source
Flux.identity_initFunction
identity_init(size...; gain=1, shift=0) -> Array
+ 5  5  5

References

[1] Martens, J, "Deep learning via Hessian-free optimization" Proceedings of the 27th International Conference on International Conference on Machine Learning. 2010.

source
Flux.identity_initFunction
identity_init(size...; gain=1, shift=0) -> Array
 identity_init(; kw...) -> Function

Return an Array{Float32} of the given size which yields an identity mapping when used as parameters in most Flux layers. Use gain to scale the identity by a constant.

Often useful in the context of transfer learning, i.e when one wants to add more capacity to a model but start from the same mapping.

Has the following behaviour

  • 1D: A Vector of zeros (useful for an identity bias)
  • 2D: An identity matrix (useful for an identity matrix multiplication)
  • More than 2D: A dense block array of center tap spatial filters (useful for an identity convolution)

Some caveats:

  • Not all layers will be identity mapping when used with this init. Exceptions include recurrent layers and normalization layers.

  • Layers must have input_size == output_size for identity mapping to be possible. When this is not the case, extra dimensions of the array are padded with zeros.

  • For convolutional layers, in addition to the above, the kernel sizes must also be odd and padding must be applied so that output feature maps have the same size as input feature maps, e.g by using SamePad.

Use keyword shift (integer or tuple) to apply circular shift to the output, equivalent to Base.circshift(identity_init(size...), shift).

For consistency with other initialisers, it accepts rng::AbstractRNG as an optional first argument. But this is ignored, since the result is not random.

Examples

julia> Flux.identity_init(3,5)
 3×5 Matrix{Float32}:
  1.0  0.0  0.0  0.0  0.0
@@ -157,7 +157,7 @@
 [:, :, 1, 1] =
  10.0  20.0  30.0
  40.0  50.0  60.0
- 70.0  80.0  90.0
source
Flux.ones32Function
ones32(size...) = ones(Float32, size...)

Return an Array{Float32} of the given size filled with 1s.

source
Flux.zeros32Function
zeros32(size...) = zeros(Float32, size...)

Return an Array{Float32} of the given size filled with 0s.

source
Flux.rand32Function
rand32([rng], size...)

Return an Array{Float32} of the given size, filled like rand. When the size is not provided, rand32(rng::AbstractRNG) returns a function.

source
Flux.randn32Function
randn32([rng], size...)

Return an Array{Float32} of the given size, filled like randn. When the size is not provided, randn32(rng::AbstractRNG) returns a function.

source
Flux.create_biasFunction
create_bias(weights, bias, size...)

Return a bias parameter for a layer, based on the value given to the constructor's keyword bias=bias.

  • bias == true creates a trainable array of the given size, of the same type as weights, initialised to zero.
  • bias == false returns false, which is understood by AD to be non-differentiable.
  • bias::AbstractArray uses the array provided, provided it has the correct size. It will also correct the eltype to match that of weights.
source

These functions call:

Flux.rng_from_arrayFunction
rng_from_array(x)

Create an instance of the RNG most appropriate for x. As an example, if x is aCuArray, it will return a CUDA.default_rng(). If x is an Array instead, it will return a Random.default_rng().

source
Flux.nfanFunction
nfan(n_out, n_in=1) -> Tuple
+ 70.0  80.0  90.0
source
Flux.ones32Function
ones32(size...) = ones(Float32, size...)

Return an Array{Float32} of the given size filled with 1s.

source
Flux.zeros32Function
zeros32(size...) = zeros(Float32, size...)

Return an Array{Float32} of the given size filled with 0s.

source
Flux.rand32Function
rand32([rng], size...)

Return an Array{Float32} of the given size, filled like rand. When the size is not provided, rand32(rng::AbstractRNG) returns a function.

source
Flux.randn32Function
randn32([rng], size...)

Return an Array{Float32} of the given size, filled like randn. When the size is not provided, randn32(rng::AbstractRNG) returns a function.

source
Flux.create_biasFunction
create_bias(weights, bias, size...)

Return a bias parameter for a layer, based on the value given to the constructor's keyword bias=bias.

  • bias == true creates a trainable array of the given size, of the same type as weights, initialised to zero.
  • bias == false returns false, which is understood by AD to be non-differentiable.
  • bias::AbstractArray uses the array provided, provided it has the correct size. It will also correct the eltype to match that of weights.
source

These functions call:

Flux.rng_from_arrayFunction
rng_from_array(x)

Create an instance of the RNG most appropriate for x. As an example, if x is aCuArray, it will return a CUDA.default_rng(). If x is an Array instead, it will return a Random.default_rng().

source
Flux.nfanFunction
nfan(n_out, n_in=1) -> Tuple
 nfan(dims...)
 nfan(dims::Tuple)

For a layer characterized by dimensions dims, return a tuple (fan_in, fan_out), where fan_in is the number of input neurons connected to an output one, and fan_out is the number of output neurons connected to an input one.

This function is mainly used by weight initializers, e.g., kaiming_normal.

Examples

julia> layer = Dense(10, 20);
 
@@ -167,7 +167,7 @@
 julia> layer = Conv((3, 3), 2=>10);
 
 julia> Flux.nfan(size(layer.weight))
-(18, 90)
source

Changing the type of all parameters

The default eltype for models is Float32 since models are often trained/run on GPUs. The eltype of model m can be changed to Float64 by f64(m):

Flux.f64Function
f64(m)

Converts the eltype of model's floating point parameters to Float64. Recurses into structs marked with @layer.

See also f32 and f16.

source
Flux.f32Function
f32(m)

Converts the eltype of model's floating point parameters to Float32 (which is Flux's default). Recurses into structs marked with @layer.

See also f64 and f16.

source
Flux.f16Function
f16(m)

Converts the eltype of model's floating point parameters to Float16. Recurses into structs marked with @layer.

Support for Float16 is limited on many CPUs. Julia may convert to Float32 for each operation, which is slow.

See also f32 and f64.

Example

julia> m = Chain(Dense(784, 2048, relu), Dense(2048, 10))  # all Float32
+(18, 90)
source

Changing the type of all parameters

The default eltype for models is Float32 since models are often trained/run on GPUs. The eltype of model m can be changed to Float64 by f64(m):

Flux.f64Function
f64(m)

Converts the eltype of model's floating point parameters to Float64. Recurses into structs marked with @layer.

See also f32 and f16.

source
Flux.f32Function
f32(m)

Converts the eltype of model's floating point parameters to Float32 (which is Flux's default). Recurses into structs marked with @layer.

See also f64 and f16.

source
Flux.f16Function
f16(m)

Converts the eltype of model's floating point parameters to Float16. Recurses into structs marked with @layer.

Support for Float16 is limited on many CPUs. Julia may convert to Float32 for each operation, which is slow.

See also f32 and f64.

Example

julia> m = Chain(Dense(784, 2048, relu), Dense(2048, 10))  # all Float32
 Chain(
   Dense(784 => 2048, relu),             # 1_607_680 parameters
   Dense(2048 => 10),                    # 20_490 parameters
@@ -177,4 +177,4 @@
 Chain(
   Dense(784 => 2048, relu),             # 1_607_680 parameters
   Dense(2048 => 10),                    # 20_490 parameters
-)                   # Total: 4 arrays, 1_628_170 parameters, 3.106 MiB.
source
+) # Total: 4 arrays, 1_628_170 parameters, 3.106 MiB.source
diff --git a/previews/PR2547/tutorials/custom_layers/index.html b/previews/PR2547/tutorials/custom_layers/index.html index 354371af28..e809f59a5b 100644 --- a/previews/PR2547/tutorials/custom_layers/index.html +++ b/previews/PR2547/tutorials/custom_layers/index.html @@ -104,4 +104,4 @@ # rms over all the mse ŷs = model(x) return sqrt(mean(Flux.mse(y, ŷ) for (y, ŷ) in zip(ys, ŷs))) -end
Note

This Split layer is available from the Fluxperimental.jl package.

+end
Note

This Split layer is available from the Fluxperimental.jl package.

diff --git a/previews/PR2547/tutorials/linear_regression/index.html b/previews/PR2547/tutorials/linear_regression/index.html index c8e91ecc1f..1b7ebfbf61 100644 --- a/previews/PR2547/tutorials/linear_regression/index.html +++ b/previews/PR2547/tutorials/linear_regression/index.html @@ -106,4 +106,4 @@ 27.1272f0

The loss went down significantly! It can be minimized further by choosing an even smaller δ.

Testing the Flux model

The last step of this tutorial would be to test our model using the testing data. We will first normalise the testing data and then calculate the corresponding loss.

julia> x_test_n = Flux.normalise(x_test);
 
 julia> loss(model, x_test_n, y_test)
-66.91015f0

The loss is not as small as the loss of the training data, but it looks good! This also shows that our model is not overfitting!


Summarising this tutorial, we started by generating a random yet correlated dataset for our custom model. We then saw how a simple linear regression model could be built with and without Flux, and how they were almost identical.

Next, we trained the model by manually writing down the Gradient Descent algorithm and optimising the loss. We also saw how Flux provides various wrapper functionalities and keeps the API extremely intuitive and simple for the users.

After getting familiar with the basics of Flux and Julia, we moved ahead to build a machine learning model for a real dataset. We repeated the exact same steps, but this time with a lot more features and data points, and by harnessing Flux's full capabilities. In the end, we developed a training loop that was smarter than the hardcoded one and ran the model on our normalised dataset to conclude the tutorial.

Info

Originally published on 21 November 2022, by Saransh Chopra.

+66.91015f0

The loss is not as small as the loss of the training data, but it looks good! This also shows that our model is not overfitting!


Summarising this tutorial, we started by generating a random yet correlated dataset for our custom model. We then saw how a simple linear regression model could be built with and without Flux, and how they were almost identical.

Next, we trained the model by manually writing down the Gradient Descent algorithm and optimising the loss. We also saw how Flux provides various wrapper functionalities and keeps the API extremely intuitive and simple for the users.

After getting familiar with the basics of Flux and Julia, we moved ahead to build a machine learning model for a real dataset. We repeated the exact same steps, but this time with a lot more features and data points, and by harnessing Flux's full capabilities. In the end, we developed a training loop that was smarter than the hardcoded one and ran the model on our normalised dataset to conclude the tutorial.

Info

Originally published on 21 November 2022, by Saransh Chopra.

diff --git a/previews/PR2547/tutorials/logistic_regression/index.html b/previews/PR2547/tutorials/logistic_regression/index.html index f9b50b3e51..7a116964e4 100644 --- a/previews/PR2547/tutorials/logistic_regression/index.html +++ b/previews/PR2547/tutorials/logistic_regression/index.html @@ -131,4 +131,4 @@ flux_accuracy(x, y) = 0.98 julia> flux_loss(flux_model, x, flux_y_onehot) -0.6952386604624324

We see a very similar final loss and accuracy.


Summarising this tutorial, we saw how we can run a logistic regression algorithm in Julia with and without using Flux. We started by importing the classic Iris dataset, and one hot encoded the labels. Next, we defined our model, the loss function, and the accuracy, all by ourselves.

Finally, we trained the model by manually writing down the Gradient Descent algorithm and optimising the loss. Interestingly, we implemented most of the functions on our own, and then parallelly compared them with the functionalities provided by Flux!

Info

Originally published on 1st April 2023, by Saransh Chopra.

+0.6952386604624324

We see a very similar final loss and accuracy.


Summarising this tutorial, we saw how we can run a logistic regression algorithm in Julia with and without using Flux. We started by importing the classic Iris dataset, and one hot encoded the labels. Next, we defined our model, the loss function, and the accuracy, all by ourselves.

Finally, we trained the model by manually writing down the Gradient Descent algorithm and optimising the loss. Interestingly, we implemented most of the functions on our own, and then parallelly compared them with the functionalities provided by Flux!

Info

Originally published on 1st April 2023, by Saransh Chopra.

diff --git a/previews/PR2547/tutorials/model_zoo/index.html b/previews/PR2547/tutorials/model_zoo/index.html index adf6f90b5e..d31bbaf780 100644 --- a/previews/PR2547/tutorials/model_zoo/index.html +++ b/previews/PR2547/tutorials/model_zoo/index.html @@ -3,4 +3,4 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'UA-36890222-9', {'page_path': location.pathname + location.search + location.hash}); -
+