diff --git a/Project.toml b/Project.toml index 660ca26296..d1ff01fd21 100644 --- a/Project.toml +++ b/Project.toml @@ -40,6 +40,8 @@ Adapt = "3, 4" CUDA = "4, 5" ChainRulesCore = "1.12" Compat = "4.10.0" +Enzyme = "0.11" +FiniteDifferences = "0.12" Functors = "0.4" MLUtils = "0.4" MacroTools = "0.5" @@ -62,7 +64,9 @@ BSON = "fbb218c0-5317-5bc6-957e-2ee96dd4b1f0" CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba" ComponentArrays = "b0b7db55-cfe3-40fc-9ded-d10e2dbeff66" Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4" +Enzyme = "7da242da-08ed-463a-9acd-ee780be4f1d9" FillArrays = "1a297f60-69ca-5386-bcde-b61e274b549b" +FiniteDifferences = "26cc04aa-876d-5657-8c51-4c34ba976000" IterTools = "c8e1da08-722c-5040-9ed9-7db0dc04731e" LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" Metal = "dde4c033-4e86-420c-a63e-0dd931031962" @@ -71,4 +75,6 @@ Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" cuDNN = "02a925ec-e4fe-4b08-9a7e-0d78e3d38ccd" [targets] -test = ["Test", "Documenter", "IterTools", "LinearAlgebra", "FillArrays", "ComponentArrays", "BSON", "Pkg", "CUDA", "cuDNN", "Metal", "AMDGPU"] +test = ["Test", "Documenter", "IterTools", "LinearAlgebra", "FillArrays", + "ComponentArrays", "BSON", "Pkg", "CUDA", "cuDNN", "Metal", "AMDGPU", + "Enzyme", "FiniteDifferences"] diff --git a/test/ext_enzyme/enzyme.jl b/test/ext_enzyme/enzyme.jl new file mode 100644 index 0000000000..36212bb10f --- /dev/null +++ b/test/ext_enzyme/enzyme.jl @@ -0,0 +1,185 @@ +using Test +using Flux + +using Enzyme +using Functors +using FiniteDifferences +using CUDA + +Enzyme.API.typeWarning!(false) # suppresses a warning with Bilinear https://github.com/EnzymeAD/Enzyme.jl/issues/1341 +Enzyme.API.runtimeActivity!(true) # for Enzyme debugging +# Enzyme.Compiler.bitcode_replacement!(false) + +_make_zero(x::Union{Number,AbstractArray}) = zero(x) +_make_zero(x) = x +make_zero(model) = fmap(_make_zero, model) +## make_differential(model) = fmapstructure(make_zero, model) # NOT SUPPORTED, See https://github.com/EnzymeAD/Enzyme.jl/issues/1329 + +function gradient_fd(f, x...) + x = [cpu(x) for x in x] + ps_and_res = [x isa AbstractArray ? (x, identity) : Flux.destructure(x) for x in x] + ps = [f64(x[1]) for x in ps_and_res] + res = [x[2] for x in ps_and_res] + fdm = FiniteDifferences.central_fdm(5, 1) + gs = FiniteDifferences.grad(fdm, (ps...) -> f((re(p) for (p,re) in zip(ps, res))...), ps...) + return ((re(g) for (re, g) in zip(res, gs))...,) +end + +function gradient_ez(f, x...) + args = [] + for x in x + if x isa Number + push!(args, Active(x)) + else + push!(args, Duplicated(x, make_zero(x))) + end + end + ret = Enzyme.autodiff(ReverseWithPrimal, f, Active, args...) + g = ntuple(i -> x[i] isa Number ? ret[1][i] : args[i].dval, length(x)) + return g +end + +function test_grad(g1, g2; broken=false) + fmap_with_path(g1, g2) do kp, x, y + :state ∈ kp && return # ignore RNN and LSTM state + if x isa AbstractArray{<:Number} + # @show kp + @test x ≈ y rtol=1e-2 atol=1e-6 broken=broken + end + return x + end +end + +function test_enzyme_grad(loss, model, x) + Flux.trainmode!(model) + l = loss(model, x) + @test loss(model, x) == l # Check loss doesn't change with multiple runs + + grads_fd = gradient_fd(loss, model, x) |> cpu + grads_flux = Flux.gradient(loss, model, x) |> cpu + grads_enzyme = gradient_ez(loss, model, x) |> cpu + + # test_grad(grads_flux, grads_enzyme) + test_grad(grads_fd, grads_enzyme) +end + +@testset "gradient_ez" begin + @testset "number and arrays" begin + f(x, y) = sum(x.^2) + y^3 + x = Float32[1, 2, 3] + y = 3f0 + g = gradient_ez(f, x, y) + @test g[1] isa Array{Float32} + @test g[2] isa Float32 + @test g[1] ≈ 2x + @test g[2] ≈ 3*y^2 + end + + @testset "struct" begin + struct SimpleDense{W, B, F} + weight::W + bias::B + σ::F + end + SimpleDense(in::Integer, out::Integer; σ=identity) = SimpleDense(randn(Float32, out, in), zeros(Float32, out), σ) + (m::SimpleDense)(x) = m.σ.(m.weight * x .+ m.bias) + @functor SimpleDense + + model = SimpleDense(2, 4) + x = randn(Float32, 2) + loss(model, x) = sum(model(x)) + + g = gradient_ez(loss, model, x) + @test g[1] isa SimpleDense + @test g[2] isa Array{Float32} + @test g[1].weight isa Array{Float32} + @test g[1].bias isa Array{Float32} + @test g[1].weight ≈ ones(Float32, 4, 1) .* x' + @test g[1].bias ≈ ones(Float32, 4) + end +end + +@testset "Models" begin + function loss(model, x) + Flux.reset!(model) + sum(model(x)) + end + + models_xs = [ + (Dense(2, 4), randn(Float32, 2), "Dense"), + (Chain(Dense(2, 4, relu), Dense(4, 3)), randn(Float32, 2), "Chain(Dense, Dense)"), + (f64(Chain(Dense(2, 4), Dense(4, 2))), randn(Float64, 2, 1), "f64(Chain(Dense, Dense))"), + (Flux.Scale([1.0f0 2.0f0 3.0f0 4.0f0], true, abs2), randn(Float32, 2), "Flux.Scale"), + (Conv((3, 3), 2 => 3), randn(Float32, 3, 3, 2, 1), "Conv"), + (Chain(Conv((3, 3), 2 => 3, relu), Conv((3, 3), 3 => 1, relu)), rand(Float32, 5, 5, 2, 1), "Chain(Conv, Conv)"), + (Chain(Conv((4, 4), 2 => 2, pad=SamePad()), MeanPool((5, 5), pad=SamePad())), rand(Float32, 5, 5, 2, 2), "Chain(Conv, MeanPool)"), + (Maxout(() -> Dense(5 => 4, tanh), 3), randn(Float32, 5, 1), "Maxout"), + (RNN(3 => 2), randn(Float32, 3, 2), "RNN"), + (Chain(RNN(3 => 4), RNN(4 => 3)), randn(Float32, 3, 2), "Chain(RNN, RNN)"), + (LSTM(3 => 5), randn(Float32, 3, 2), "LSTM"), + (Chain(LSTM(3 => 5), LSTM(5 => 3)), randn(Float32, 3, 2), "Chain(LSTM, LSTM)"), + (SkipConnection(Dense(2 => 2), vcat), randn(Float32, 2, 3), "SkipConnection"), + (Flux.Bilinear((2, 2) => 3), randn(Float32, 2, 1), "Bilinear"), + ] + + for (model, x, name) in models_xs + @testset "check grad $name" begin + println("testing $name") + test_enzyme_grad(loss, model, x) + end + end +end + +@testset "Recurrence Tests" begin + function loss(model, x) + Flux.reset!(model) + for i in 1:3 + x = model(x) + end + return sum(x) + end + + models_xs = [ + (RNN(3 => 3), randn(Float32, 3, 2), "RNN"), + (LSTM(3 => 3), randn(Float32, 3, 2), "LSTM"), + # TESTS BELOW ARE BROKEN FOR ZYGOTE BUT CORRECT FOR ENZYME! + (Chain(RNN(3 => 5), RNN(5 => 3)), randn(Float32, 3, 2), "Chain(RNN, RNN)"), + (Chain(LSTM(3 => 5), LSTM(5 => 3)), randn(Float32, 3, 2), "Chain(LSTM, LSTM)"), + ] + + for (model, x, name) in models_xs + @testset "check grad $name" begin + println("testing $name") + test_enzyme_grad(loss, model, x) + end + end +end + +@testset "Broken Models" begin + function loss(model, x) + Flux.reset!(model) + sum(model(x)) + end + + device = Flux.get_device() + + models_xs = [ + (GRU(3 => 5), randn(Float32, 3, 10), "GRU"), + (ConvTranspose((3, 3), 3 => 2, stride=2), rand(Float32, 5, 5, 3, 1), "ConvTranspose"), + ] + + for (model, x, name) in models_xs + @testset "check grad $name" begin + println("testing $name") + broken = false + try + test_enzyme_grad(loss, model, x) + catch e + println(e) + broken = true + end + @test broken + end + end +end + diff --git a/test/runtests.jl b/test/runtests.jl index 8dca6becdd..2ff26a80bb 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -116,4 +116,9 @@ Random.seed!(0) @info "Skipping Metal tests, set FLUX_TEST_METAL=true to run them." end + @testset "Enzyme" begin + import Enzyme + include("ext_enzyme/enzyme.jl") + end + end