diff --git a/docs/src/examples/char-rnn.md b/docs/src/examples/char-rnn.md index b1706931e7..3f874e9d08 100644 --- a/docs/src/examples/char-rnn.md +++ b/docs/src/examples/char-rnn.md @@ -58,3 +58,30 @@ sample(model[1:end-1], 100) ``` `sample` then produces a string of Shakespeare-like text. This won't produce great results after only a single epoch (though they will be recognisably different from the untrained model). Going for 30 epochs or so produces good results. + +Trained on [a dataset from base Julia](https://gist.githubusercontent.com/MikeInnes/c2d11b57a58d7f2466b8013b88df1f1c/raw/4423f7cb07c71c80bd6458bb94f7bf5338403284/julia.jl), the network can produce code like: + +```julia +function show(io::IO, md::Githompty) + Buffer(jowerTriangular(inals[i], initabs_indices), characters, side, nextfloat(typeof(x))) + isnull(r) && return + start::I! + for j = 1:length(b,1) + a = s->cosvect(code) + return + end + indsERenv | maximum(func,lsg)) + for i = 1:last(Abjelar) && fname (=== nothing) + throw(ArgumentError("read is declave non-fast-a/remaining of not descride method names")) + end + if e.ht === Int + # update file to a stroducative, but is decould. + # xna i -GB =# [unsafe_color