-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulate.py
86 lines (74 loc) · 3.36 KB
/
simulate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import fwdpy11
import numpy as np
import sys
import argparse
# import gzip
import datetime
GENOME_LENGTH = 1.0
FITNESS_SCALING = 2.0
TWONS = 1000
SIMLEN = 20
def make_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
required = parser.add_argument_group("Required arguments")
required.add_argument("--popsize", '-N', type=int, default=None,
help="Population size")
required.add_argument("--mu", '-m', type=float, default=None,
help="Mutation rate")
required.add_argument('--recrate', '-r', type=float, default=None,
help="Recombination rate")
required.add_argument('--seed', type=int,
default=None, help="RNG seed")
required.add_argument('--outfile', '-o', type=str,
help="Output file name (gzipped)")
dfe = parser.add_argument_group("DFE options")
dfe.add_argument("--mean", "-M", type=float, default=-
1.0, help="Mean 2Ns of gamma DFE")
dfe.add_argument("--shape", "-S", type=float,
default=1, help="Shape of gamma DFE")
dfe.add_argument("--proportion", '-P', type=float, default=0.0,
help="Proportion of beneficial mutations")
return parser
def runsim(args):
rng = fwdpy11.GSLrng(args.seed)
pdict = {'gvalue': fwdpy11.Multiplicative(FITNESS_SCALING),
'rates': (0., args.mu, None),
'nregions': [],
'sregions': [fwdpy11.GammaS(0., GENOME_LENGTH, 1.0-args.proportion,
args.mean, args.shape, FITNESS_SCALING/2.0,
scaling=2*args.popsize, label=1),
fwdpy11.ConstantS(0, GENOME_LENGTH, args.proportion, TWONS,
FITNESS_SCALING/2.0, label=2,
scaling=2*args.popsize)],
'recregions': [fwdpy11.PoissonInterval(0, GENOME_LENGTH, args.recrate)],
'demography': np.array([args.popsize]*SIMLEN*args.popsize, dtype=np.uint32),
# This could easily be True for these sims:
'prune_selected': False
}
params = fwdpy11.ModelParams(**pdict)
pop = fwdpy11.DiploidPopulation(args.popsize, GENOME_LENGTH)
sampler = fwdpy11.RandomAncientSamples(
args.seed, args.popsize, [i for i in range(10*pop.N, SIMLEN*pop.N)])
# With a lot of ancient samples:
# 1. RAM use already skyrockets
# 2. Simplification slows down
# So, we should do it a little less often:
fwdpy11.evolvets(rng, pop, params, 1000, sampler,
suppress_table_indexing=True)
return pop
if __name__ == "__main__":
parser = make_parser()
args = parser.parse_args(sys.argv[1:])
print("Start sim:", datetime.datetime.now())
pop = runsim(args)
print("End sim:", datetime.datetime.now())
print("Start binary dump:", datetime.datetime.now())
# with gzip.open(args.outfile, 'wb') as f:
# pop.pickle_to_file(f)
pop.dump_to_file(args.outfile)
print("End binary dump:", datetime.datetime.now())
# print("Start dump to tskit:", datetime.datetime.now())
# ts = pop.dump_tables_to_tskit()
# ts.dump('tskit_format.trees')
# print("End dump to tskit:", datetime.datetime.now())