-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
336 lines (284 loc) · 11.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import gc
import os
import sys
import time
import glob
import torch
import wandb
from functools import partial
from torch.nn.parallel import DistributedDataParallel as DDP
from trainer import Trainer
from models import build_unitok, build_discriminator
from utils import config, misc, dist
from utils.lpips import LPIPS
from utils.data import build_clip_transforms, build_vae_transforms, load_data
from utils.optimizer import build_optimizer
from utils.visualizer import setup_visualizer
from utils.scheduler import LRScheduler
from utils.eval_fid import eval_fid
from utils.logger import SmoothedValue, MetricLogger, ProfileLogger, wandb_log
from open_clip.tokenizer import tokenize
from open_clip.loss import ClipLoss
from utils.eval_acc import evaluate as eval_clip
def maybe_auto_resume(args: config.Args, pattern='ckpt*.pth'):
if len(args.resume_from):
resume = args.resume_from
print(f'[auto_resume] load from args.resume @ {resume} ...')
else:
all_ckpt = glob.glob(os.path.join(args.output_dir, pattern), recursive=False)
all_ckpt = sorted(all_ckpt, key=os.path.getmtime, reverse=True)
if len(all_ckpt) == 0:
resume = None
print(f'[auto_resume] no ckpt found @ {pattern}')
print(f'[auto_resume quit]')
else:
resume = all_ckpt[0]
print(f'[auto_resume] auto load from @ {resume} ...')
if resume is not None:
try:
ckpt = torch.load(resume, map_location='cpu')
dist.barrier()
resume_epoch = ckpt['epoch']
resume_iter = ckpt['iter']
if resume_epoch == args.epoch:
print(f'[auto_resume] Training finished, skipping ...\n\n')
exit()
else:
print(f'[auto_resume success] resume from ep{resume_epoch}, it{resume_iter}')
return ckpt
except Exception as e:
print(f'[auto_resume] failed, {e} @ {resume}')
return {}
else:
return {}
def load_clip_pretrain(model, ckpt_path):
ckpt = torch.load(ckpt_path, map_location='cpu')
converted_state_dict = dict()
for k, v in ckpt.items():
if k.startswith('visual.'):
if 'head' in k or 'pos_embed' in k:
continue
new_k = k.replace('visual.trunk.', 'encoder.')
converted_state_dict[new_k] = v
elif k.startswith('text.'):
new_k = k.replace('text.', 'text_encoder.')
converted_state_dict[new_k] = v
# elif k == 'logit_scale':
# converted_state_dict[k] = v
model.load_state_dict(converted_state_dict, strict=False)
def train_one_ep(
args,
data,
epoch,
trainer,
start_iter,
unitok_scheduler,
disc_scheduler,
visualizer,
tokenizer
):
dataloader = data['train'].dataloader
num_iters = data['train'].num_batches
metric_logger = MetricLogger(cur_epoch=epoch, total_epoch=args.epoch, delimiter=' ')
[metric_logger.add_meter(x, SmoothedValue(window_size=1, fmt='{value:.2g}')) for x in ('glr', 'dlr')]
[metric_logger.add_meter(x, SmoothedValue(window_size=1, fmt='{median:.2f}')) for x in ('gnm', 'dnm')]
[metric_logger.add_meter(x, SmoothedValue(fmt='{median:.3f}')) for x in ('L1', 'Lnll', 'Ld', 'Lc', 'Wg')]
disc_start_iter = args.disc_start_ep * num_iters
disc_warmup_iter = args.disc_warmup_ep * num_iters
profile_log_freq = 1000
profile_logger = ProfileLogger(args, profile_log_freq)
eval_interval = int(num_iters // args.eval_per_epoch)
for cur_iter, sample in metric_logger.monitor_enumerate(dataloader, start_iter, num_iters, print_freq=100):
profile_logger.log(cur_iter)
imgs, texts = sample
imgs = imgs.to(args.device, non_blocking=True)
texts = texts.to(args.device, non_blocking=True)
global_iter = epoch * num_iters + cur_iter
disc_global_iter = global_iter - disc_start_iter
unitok_lr_stats = unitok_scheduler.step(global_iter)
disc_lr_stats = disc_scheduler.step(disc_global_iter) if disc_global_iter >= 0 else [0]
unitok_lr_stats = list(set(unitok_lr_stats))
disc_lr_stats = list(set(disc_lr_stats))
stepping = (global_iter + 1) % args.grad_accu == 0
warmup_disc_schedule = 0 if disc_global_iter < 0 else min(1.0, disc_global_iter / disc_warmup_iter)
fade_blur_schedule = 0 if disc_global_iter < 0 else min(1.0, disc_global_iter / (disc_warmup_iter * 2))
fade_blur_schedule = 1 - fade_blur_schedule
trainer.train_step(
img=imgs,
text=texts,
global_iter=global_iter,
stepping=stepping,
metric_logger=metric_logger,
warmup_disc_schedule=warmup_disc_schedule,
fade_blur_schedule=fade_blur_schedule,
report_wandb=args.report_wandb
)
metric_logger.update(glr=max(unitok_lr_stats))
metric_logger.update(dlr=max(disc_lr_stats))
if args.report_wandb:
for i, lr in enumerate(unitok_lr_stats):
name = 'Param_unitok_group_{}_lr'.format(i)
wandb_log({name: lr}, step=global_iter, log_ferq=200)
for i, lr in enumerate(disc_lr_stats):
name = 'Param_disc_group_{}_lr'.format(i)
wandb_log({name: lr}, step=global_iter, log_ferq=200)
if (cur_iter + 1) % eval_interval == 0:
if dist.is_master():
vis_path = os.path.join(args.output_dir, f'img_{global_iter}.png')
visualizer.vis(epoch, report_wandb=args.report_wandb, png_path=vis_path)
if dist.is_master() and any(v in data for v in ('imagenet-val', 'imagenet-v2')):
metrics = eval_clip(trainer.unitok, tokenizer, data, args)
if args.report_wandb:
wandb_log(metrics, step=global_iter, commit=True)
if dist.is_master():
ckpt_path = os.path.join(args.output_dir, f'ckpt-ep{epoch}-iter{cur_iter}.pth')
torch.save({
'args': args.state_dict(),
'epoch': epoch, 'iter': cur_iter,
'trainer': trainer.state_dict(),
}, ckpt_path)
dist.barrier()
metric_logger.synchronize_between_processes()
stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()}
return stats
def main():
args = config.init_dist_and_get_args()
print(f'[args] initial args:\n{str(args)}')
# resume ckpt
ckpt = maybe_auto_resume(args, 'ckpt*.pth')
start_iter = ckpt.get('iter', 0)
start_epoch = ckpt.get('epoch', 0)
trainer_state = ckpt.get('trainer', {})
# load data
print(f'[data] load data...\n')
aug_cfg = {'scale': [0.64, 1.0]} if args.use_aug else None
preprocess_fns = build_clip_transforms(args, aug_cfg=aug_cfg)
tokenizer = partial(tokenize, context_length=args.text_context_length)
data = load_data(args, preprocess_fns, epoch=start_epoch, iters=start_iter, tokenizer=tokenizer)
# build models
unitok = build_unitok(args)
disc = build_discriminator(args)
if args.use_clip_pretrain:
load_clip_pretrain(unitok, args.clip_pretrain_path)
if args.lock_text:
unitok.lock_text_tower(
unlocked_layers=args.lock_text_unlocked_layers,
freeze_layer_norm=args.lock_text_freeze_layer_norm
)
print(f'[model] UniTok #paras {sum(p.numel() for p in unitok.parameters()) / 1e6:.2f}')
print(f'[model] Disc #paras {sum(p.numel() for p in disc.parameters()) / 1e6:.2f}')
# build optimizers & scheduler
unitok_optim = build_optimizer(args, 'unitok', unitok)
disc_optim = build_optimizer(args, 'dis', disc)
max_iter = args.epoch * data['train'].num_batches
warmup_iter = args.warmup_ep * data['train'].num_batches
disc_max_iter = max_iter - args.disc_start_ep * data['train'].num_batches
disc_warmup_iter = args.disc_warmup_ep * data['train'].num_batches
unitok_schedule = {
'lr': args.lr,
'type': args.schedule,
'start_factor': args.lr_start_ratio,
'end_factor': args.lr_end_ratio,
'warmup_iter': warmup_iter,
'max_iter': max_iter,
}
disc_schedule = {
'lr': args.disc_lr,
'type': args.schedule,
'start_factor': args.lr_start_ratio,
'end_factor': args.disc_lr_end_ratio,
'warmup_iter': disc_warmup_iter,
'max_iter': disc_max_iter,
}
unitok_scheduler = LRScheduler(unitok_optim.optimizer, unitok_schedule)
disc_scheduler = LRScheduler(disc_optim.optimizer, disc_schedule)
# build loss
clip_loss = ClipLoss(
local_loss=args.local_loss,
gather_with_grad=args.gather_with_grad,
cache_labels=True,
rank=dist.get_rank(),
world_size=dist.get_world_size(),
use_horovod=False,
)
lpips_loss: LPIPS = LPIPS(args.lpips_path).to(args.device)
# torch compile model
if args.compile_model:
unitok = torch.compile(unitok, backend='inductor')
disc = torch.compile(disc, backend='inductor')
lpips_loss = torch.compile(lpips_loss, backend='inductor')
# distributed wrapper
unitok = DDP(unitok, device_ids=[dist.get_local_rank()], static_graph=args.ddp_static)
disc = DDP(disc, device_ids=[dist.get_local_rank()], static_graph=args.ddp_static)
# build trainer
trainer = Trainer(
args=args,
unitok=unitok,
disc=disc,
unitok_optim=unitok_optim,
disc_optim=disc_optim,
clip_loss=clip_loss,
lpips_loss=lpips_loss,
)
if trainer_state:
trainer.load_state_dict(trainer_state, strict=True)
# setup visualizer
vis_transform = build_vae_transforms(args)[1]
visualizer = setup_visualizer(args, trainer, vis_transform)
# setup wandb
if args.report_wandb and dist.is_master():
wandb.init(
project='unitok',
resume='auto',
save_code=True,
id=args.run_id,
name=args.exp_name,
notes=args.wandb_notes,
config=args.state_dict()
)
# train
start_time = time.time()
gc.collect()
torch.cuda.empty_cache()
print(f'[train] exp output directory: {args.output_dir}')
print(f'[train] start exp at epoch {start_epoch} iter {start_iter}')
for epoch in range(start_epoch, args.epoch):
print(f'[dataloader] set_epoch({epoch})]')
data['train'].set_epoch(epoch)
start_iter = start_iter if epoch == start_epoch else 0
stats = train_one_ep(
args=args,
data=data,
epoch=epoch,
trainer=trainer,
start_iter=start_iter,
unitok_scheduler=unitok_scheduler,
disc_scheduler=disc_scheduler,
visualizer=visualizer,
tokenizer=tokenizer
)
if dist.is_master():
ckpt_path = os.path.join(args.output_dir, 'ckpt-last.pth')
torch.save({
'args': args.state_dict(),
'epoch': args.epoch, 'iter': 0,
'trainer': trainer.state_dict(),
}, ckpt_path)
dist.barrier()
fid, isc = eval_fid(
misc.unwrap_model(trainer.unitok),
args.fid_eval_src,
args.fid_eval_dst,
args.fid_feature_extractor
)
total_time = f'{(time.time() - start_time) / 60 / 60:.1f}h'
print(f"[train] Total Training Time: {total_time},\t Lg: {stats['Lnll']:.3f},\t Ld: {stats['Ld']:.3f}")
if args.report_wandb and dist.is_master():
wandb.run.summary['fid'] = fid
wandb.run.summary['inception_score'] = isc
wandb.run.summary['total_time'] = total_time
wandb.finish()
if isinstance(sys.stdout, dist.BackupStreamToFile) and isinstance(sys.stderr, dist.BackupStreamToFile):
sys.stdout.close(), sys.stderr.close()
if __name__ == '__main__':
main()