forked from coroa/OSeMOSYS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathosemosys_samba.txt
486 lines (481 loc) · 58.6 KB
/
osemosys_samba.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
# OSeMOSYS_2013_05_10.txt
#
# Open Source energy Modeling SYStem
#
# Main changes to previous version OSEMOSYS_2012_06_01_BETA
# - Introduced the option to choose between sinking fund and straight line depreciation
# - Removed parameter SalvageFactor, which was not used by the model
# - Fixed a bug which caused an out-of-bounds error if more than one day type was used
# - Included table statements immediately before the objective function and after the solve statement
# to demonstrate how parameters can be imported and exported. The table statements are commented out,
# and just serve as examples.
#
# ============================================================================
#
# Copyright [2010-2013] [OSeMOSYS Forum steering committee see: www.osemosys.org]
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
#
# This file (OSeMOSYS_2013_05_10.txt) is based on OSeMOSYS_2013_03_14.mod, but modified by Ken Noble
# of Noble-Soft Systems to be compatible for use with ANSWER-OSeMOSYS,
# a special version of the ANSWER interface for working with the OSeMOSYS model.
# The following modifications were made:
#
# (1) Re-order the arguments of parameters, variables and constraints to be compatible for use with ANSWER.
# (2) Re-write the summary results section so that the comma-delimited results file
# is compatible for import into ANSWER
#
# #########################################
###################### Model Definition #############
# #########################################
#
###############
# Sets #
###############
#
set YEAR;
set TECHNOLOGY;
set TIMESLICE;
set FUEL;
set EMISSION;
set MODE_OF_OPERATION;
set REGION;
set SEASON;
set DAYTYPE;
set DAILYTIMEBRACKET;
set FLEXIBLEDEMANDTYPE;
set STORAGE;
#
#####################
# Parameters #
#####################
#
param SalvageFactor{r in REGION, t in TECHNOLOGY, y in YEAR};
######## Global #############
#
param YearSplit{l in TIMESLICE, y in YEAR};
param DiscountRate{r in REGION, t in TECHNOLOGY};
param DaySplit{lh in DAILYTIMEBRACKET, y in YEAR};
param Conversionls{l in TIMESLICE, ls in SEASON};
param Conversionld{l in TIMESLICE, ld in DAYTYPE};
param Conversionlh{l in TIMESLICE, lh in DAILYTIMEBRACKET};
param DaysInDayType{ls in SEASON, ld in DAYTYPE, y in YEAR};
param TradeRoute{r in REGION, rr in REGION, f in FUEL, y in YEAR};
param DepreciationMethod{r in REGION};
#
######## Demands #############
#
param SpecifiedAnnualDemand{r in REGION, f in FUEL, y in YEAR};
param SpecifiedDemandProfile{r in REGION, f in FUEL, l in TIMESLICE, y in YEAR};
param AccumulatedAnnualDemand{r in REGION, f in FUEL, y in YEAR};
#
######### Performance #############
#
param CapacityToActivityUnit{r in REGION, t in TECHNOLOGY};
param TechWithCapacityNeededToMeetPeakTS{r in REGION, t in TECHNOLOGY};
param CapacityFactor{r in REGION, t in TECHNOLOGY, l in TIMESLICE, y in YEAR};
param AvailabilityFactor{r in REGION, t in TECHNOLOGY, y in YEAR};
param OperationalLife{r in REGION, t in TECHNOLOGY};
param ResidualCapacity{r in REGION, t in TECHNOLOGY, y in YEAR};
param InputActivityRatio{r in REGION, t in TECHNOLOGY, f in FUEL, m in MODE_OF_OPERATION, y in YEAR};
param OutputActivityRatio{r in REGION, t in TECHNOLOGY, f in FUEL, m in MODE_OF_OPERATION, y in YEAR};
#
######### Technology Costs #############
#
param CapitalCost{r in REGION, t in TECHNOLOGY, y in YEAR};
param VariableCost{r in REGION, t in TECHNOLOGY, m in MODE_OF_OPERATION, y in YEAR};
param FixedCost{r in REGION, t in TECHNOLOGY, y in YEAR};
#
######### Storage #############
#
param TechnologyToStorage{r in REGION, t in TECHNOLOGY, s in STORAGE, m in MODE_OF_OPERATION};
param TechnologyFromStorage{r in REGION, t in TECHNOLOGY, s in STORAGE, m in MODE_OF_OPERATION};
param StorageLevelStart{r in REGION, s in STORAGE};
param StorageMaxChargeRate{r in REGION, s in STORAGE};
param StorageMaxDischargeRate{r in REGION, s in STORAGE};
param MinStorageCharge{r in REGION, s in STORAGE, y in YEAR};
param OperationalLifeStorage{r in REGION, s in STORAGE};
param CapitalCostStorage{r in REGION, s in STORAGE, y in YEAR};
param DiscountRateStorage{r in REGION, s in STORAGE};
param ResidualStorageCapacity{r in REGION, s in STORAGE, y in YEAR};
#
######### Capacity Constraints #############
#
param CapacityOfOneTechnologyUnit{r in REGION, t in TECHNOLOGY, y in YEAR};
param TotalAnnualMaxCapacity{r in REGION, t in TECHNOLOGY, y in YEAR};
param TotalAnnualMinCapacity{r in REGION, t in TECHNOLOGY, y in YEAR};
#
######### Investment Constraints #############
#
param TotalAnnualMaxCapacityInvestment{r in REGION, t in TECHNOLOGY, y in YEAR};
param TotalAnnualMinCapacityInvestment{r in REGION, t in TECHNOLOGY, y in YEAR};
#
######### Activity Constraints #############
#
param TotalTechnologyAnnualActivityUpperLimit{r in REGION, t in TECHNOLOGY, y in YEAR};
param TotalTechnologyAnnualActivityLowerLimit{r in REGION, t in TECHNOLOGY, y in YEAR};
param TotalTechnologyModelPeriodActivityUpperLimit{r in REGION, t in TECHNOLOGY};
param TotalTechnologyModelPeriodActivityLowerLimit{r in REGION, t in TECHNOLOGY};
#
#param MinElecGeneration{r in REGION, t in TECHNOLOGY, l in TIMESLICE, y in YEAR};
param MinElecGeneration{r in REGION, t in TECHNOLOGY, y in YEAR};
param MinGenerationTagTechonology{r in REGION, t in TECHNOLOGY};
#
######### Reserve Margin #############
#
param ReserveMarginTagTechnology{r in REGION, t in TECHNOLOGY, y in YEAR};
param ReserveMarginTagFuel{r in REGION, f in FUEL, y in YEAR};
param ReserveMargin{r in REGION, f in FUEL, y in YEAR};
#
######### RE Generation Target #############
#
param RETagTechnology{r in REGION, t in TECHNOLOGY, y in YEAR};
param RETagFuel{r in REGION, f in FUEL, y in YEAR};
param REMinProductionTarget{r in REGION, y in YEAR};
#
######### Emissions & Penalties #############
#
param EmissionActivityRatio{r in REGION, t in TECHNOLOGY, e in EMISSION, m in MODE_OF_OPERATION, y in YEAR};
param EmissionsPenalty{r in REGION, e in EMISSION, y in YEAR};
param AnnualExogenousEmission{r in REGION, e in EMISSION, y in YEAR};
param AnnualEmissionLimit{r in REGION, e in EMISSION, y in YEAR};
param ModelPeriodExogenousEmission{r in REGION, e in EMISSION};
param ModelPeriodEmissionLimit{r in REGION, e in EMISSION};
#
######################
# Model Variables #
######################
#
var DemandByTimeSlice{r in REGION, f in FUEL, l in TIMESLICE, y in YEAR};
var FuelProductionByTimeSlice{r in REGION, f in FUEL, l in TIMESLICE, y in YEAR};
var TotalAnnualCapacity{r in REGION, t in TECHNOLOGY, y in YEAR};
var AnnualProductionByTechnology{r in REGION, t in TECHNOLOGY, f in FUEL, y in YEAR};
var AnnualUseByTechnology{r in REGION, t in TECHNOLOGY, f in FUEL, y in YEAR};
var ProductionByTechnologyByTimeSlice{r in REGION, t in TECHNOLOGY, f in FUEL, l in TIMESLICE, y in YEAR};
#var UseByTechnologyByTimeSlice{r in REGION, t in TECHNOLOGY, f in FUEL, l in TIMESLICE, y in YEAR};
var AnnualEmissions{r in REGION, e in EMISSION, y in YEAR};
var AnnualEmissionsByTechnology{r in REGION, t in TECHNOLOGY, e in EMISSION, y in YEAR};
######## Demands #############
#
#var RateOfDemand{r in REGION, l in TIMESLICE, f in FUEL, y in YEAR}>= 0;
#var Demand{r in REGION, l in TIMESLICE, f in FUEL, y in YEAR}>= 0;
#
######## Storage #############
#
var NewStorageCapacity{r in REGION, s in STORAGE, y in YEAR} >=0;
var SalvageValueStorage{r in REGION, s in STORAGE, y in YEAR} >=0;
var StorageLevelYearStart{r in REGION, s in STORAGE, y in YEAR} >=0;
var StorageLevelYearFinish{r in REGION, s in STORAGE, y in YEAR} >=0;
var StorageLevelSeasonStart{r in REGION, s in STORAGE, ls in SEASON, y in YEAR} >=0;
var StorageLevelDayTypeStart{r in REGION, s in STORAGE, ls in SEASON, ld in DAYTYPE, y in YEAR} >=0;
var StorageLevelDayTypeFinish{r in REGION, s in STORAGE, ls in SEASON, ld in DAYTYPE, y in YEAR} >=0;
#var RateOfStorageCharge{r in REGION, s in STORAGE, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, y in YEAR};
#var RateOfStorageDischarge{r in REGION, s in STORAGE, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, y in YEAR};
#var NetChargeWithinYear{r in REGION, s in STORAGE, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, y in YEAR};
#var NetChargeWithinDay{r in REGION, s in STORAGE, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, y in YEAR};
#var StorageLowerLimit{r in REGION, s in STORAGE, y in YEAR}>=0;
#var StorageUpperLimit{r in REGION, s in STORAGE, y in YEAR} >=0;
#var AccumulatedNewStorageCapacity{r in REGION, s in STORAGE, y in YEAR} >=0;
#var CapitalInvestmentStorage{r in REGION, s in STORAGE, y in YEAR} >=0;
#var DiscountedCapitalInvestmentStorage{r in REGION, s in STORAGE, y in YEAR} >=0;
#var DiscountedSalvageValueStorage{r in REGION, s in STORAGE, y in YEAR} >=0;
#var TotalDiscountedStorageCost{r in REGION, s in STORAGE, y in YEAR} >=0;
#
######### Capacity Variables #############
#
var WBResidualCapacity{r in REGION, t in TECHNOLOGY, y in YEAR};
var NumberOfNewTechnologyUnits{r in REGION, t in TECHNOLOGY, y in YEAR} >= 0,integer;
var NewCapacity{r in REGION, t in TECHNOLOGY, y in YEAR} >= 0;
var AccumulatedNewCapacity{r in REGION, t in TECHNOLOGY, y in YEAR} >= 0;
var TotalCapacityAnnual{r in REGION, t in TECHNOLOGY, y in YEAR}>= 0;
#
######### Activity Variables #############
#
var RateOfActivity{r in REGION, l in TIMESLICE, t in TECHNOLOGY, m in MODE_OF_OPERATION, y in YEAR} >= 0;
var UseByTechnology{r in REGION, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, y in YEAR}>= 0;
var Trade{r in REGION, rr in REGION, l in TIMESLICE, f in FUEL, y in YEAR};
var UseAnnual{r in REGION, f in FUEL, y in YEAR}>= 0;
#var RateOfTotalActivity{r in REGION, t in TECHNOLOGY, l in TIMESLICE, y in YEAR} >= 0;
var TotalTechnologyAnnualActivity{r in REGION, t in TECHNOLOGY, y in YEAR} >= 0;
#var TotalAnnualTechnologyActivityByMode{r in REGION, t in TECHNOLOGY, m in MODE_OF_OPERATION, y in YEAR}>=0;
#var RateOfProductionByTechnologyByMode{r in REGION, l in TIMESLICE, t in TECHNOLOGY, m in MODE_OF_OPERATION, f in FUEL, y in YEAR}>= 0;
#var RateOfProductionByTechnology{r in REGION, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, y in YEAR}>= 0;
#var ProductionByTechnology{r in REGION, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, y in YEAR}>= 0;
#var ProductionByTechnologyAnnual{r in REGION, t in TECHNOLOGY, f in FUEL, y in YEAR}>= 0;
#var RateOfProduction{r in REGION, l in TIMESLICE, f in FUEL, y in YEAR} >= 0;
#var Production{r in REGION, l in TIMESLICE, f in FUEL, y in YEAR} >= 0;
#var RateOfUseByTechnologyByMode{r in REGION, l in TIMESLICE, t in TECHNOLOGY, m in MODE_OF_OPERATION, f in FUEL, y in YEAR}>= 0;
#var RateOfUseByTechnology{r in REGION, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, y in YEAR} >= 0;
#var UseByTechnologyAnnual{r in REGION, t in TECHNOLOGY, f in FUEL, y in YEAR}>= 0;
#var RateOfUse{r in REGION, l in TIMESLICE, f in FUEL, y in YEAR}>= 0;
#var Use{r in REGION, l in TIMESLICE, f in FUEL, y in YEAR}>= 0;
#var TradeAnnual{r in REGION, rr in REGION, f in FUEL, y in YEAR};
#var ProductionAnnual{r in REGION, f in FUEL, y in YEAR}>= 0;
#
######### Costing Variables #############
#
var CapitalInvestment{r in REGION, t in TECHNOLOGY, y in YEAR}>= 0;
var DiscountedCapitalInvestment{r in REGION, t in TECHNOLOGY, y in YEAR}>= 0;
#
var VariableOperatingCost{r in REGION, t in TECHNOLOGY, l in TIMESLICE, y in YEAR}>= 0;
var SalvageValue{r in REGION, t in TECHNOLOGY, y in YEAR}>= 0;
var DiscountedSalvageValue{r in REGION, t in TECHNOLOGY, y in YEAR}>= 0;
var OperatingCost{r in REGION, t in TECHNOLOGY, y in YEAR}>= 0;
#var DiscountedOperatingCost{r in REGION, t in TECHNOLOGY, y in YEAR}>= 0;
var AnnualVariableOperatingCost{r in REGION, t in TECHNOLOGY, y in YEAR}>= 0;
var AnnualFixedOperatingCost{r in REGION, t in TECHNOLOGY, y in YEAR}>= 0;
var TotalDiscountedCostByTechnology{r in REGION, t in TECHNOLOGY, y in YEAR}>= 0;
var TotalDiscountedCost{r in REGION, y in YEAR}>= 0;
var ModelPeriodCostByRegion{r in REGION} >= 0;
#
######### Reserve Margin #############
#
#var TotalCapacityInReserveMargin{r in REGION, y in YEAR}>= 0;
#var DemandNeedingReserveMargin{r in REGION,l in TIMESLICE, y in YEAR}>= 0;
#
######### RE Gen Target #############
#
#var TotalREProductionAnnual{r in REGION, y in YEAR};
#var RETotalDemandOfTargetFuelAnnual{r in REGION, y in YEAR};
#
#var TotalTechnologyModelPeriodActivity{r in REGION, t in TECHNOLOGY};
#
######### Emissions #############
#
#var DiscountedTechnologyEmissionsPenalty{r in REGION, t in TECHNOLOGY, y in YEAR};
#var ModelPeriodEmissions{r in REGION, e in EMISSION}>= 0;
#var AnnualTechnologyEmissionByMode{r in REGION, t in TECHNOLOGY, e in EMISSION, m in MODE_OF_OPERATION, y in YEAR};
#var AnnualTechnologyEmission{r in REGION, t in TECHNOLOGY, e in EMISSION, y in YEAR};
#var AnnualTechnologyEmissionPenaltyByEmission{r in REGION, t in TECHNOLOGY, e in EMISSION, y in YEAR};
var AnnualTechnologyEmissionsPenalty{r in REGION, t in TECHNOLOGY, y in YEAR};
#var AnnualEmissions{r in REGION, e in EMISSION, y in YEAR}>= 0;
#
# table data IN "CSV" "data.csv": s <- [FROM,TO], d~DISTANCE, c~COST;
# table capacity IN "CSV" "SpecifiedAnnualDemand.csv": [YEAR, FUEL, REGION], SpecifiedAnnualDemand~ColumnNameInCSVSheet;
#
######################
# Objective Function #
######################
#
minimize cost: sum{r in REGION, t in TECHNOLOGY, y in YEAR} (((((sum{yy in YEAR: y-yy < OperationalLife[r,t] && y-yy>=0} NewCapacity[r,t,yy])+ ResidualCapacity[r,t,y])*FixedCost[r,t,y] + sum{m in MODE_OF_OPERATION, l in TIMESLICE} RateOfActivity[r,l,t,m,y]*YearSplit[l,y]*VariableCost[r,t,m,y])/((1+DiscountRate[r,t])^(y-min{yy in YEAR} min(yy)+0.5))+CapitalCost[r,t,y] * NewCapacity[r,t,y]/((1+DiscountRate[r,t])^(y-min{yy in YEAR} min(yy)))-DiscountedSalvageValue[r,t,y]) + sum{s in STORAGE} (CapitalCostStorage[r,s,y] * NewStorageCapacity[r,s,y]/((1+DiscountRateStorage[r,s])^(y-min{yy in YEAR} min(yy)))-CapitalCostStorage[r,s,y] * NewStorageCapacity[r,s,y]/((1+DiscountRateStorage[r,s])^(y-min{yy in YEAR} min(yy)))));
#
#####################
# Constraints #
#####################
#
#s.t. EQ_SpecifiedDemand{r in REGION, l in TIMESLICE, f in FUEL, y in YEAR}: SpecifiedAnnualDemand[r,f,y]*SpecifiedDemandProfile[r,f,l,y] / YearSplit[l,y]=RateOfDemand[r,l,f,y];
#
######### Capacity Adequacy A #############
#
s.t. CAa1_TotalNewCapacity{r in REGION, t in TECHNOLOGY, y in YEAR}:AccumulatedNewCapacity[r,t,y] = sum{yy in YEAR: y-yy < OperationalLife[r,t] && y-yy>=0} NewCapacity[r,t,yy];
s.t. CAa2_TotalAnnualCapacity{r in REGION, t in TECHNOLOGY, y in YEAR}: ((sum{yy in YEAR: y-yy < OperationalLife[r,t] && y-yy>=0} NewCapacity[r,t,yy])+ ResidualCapacity[r,t,y]) = TotalCapacityAnnual[r,t,y];
#s.t. CAa3_TotalActivityOfEachTechnology{r in REGION, t in TECHNOLOGY, l in TIMESLICE, y in YEAR}: sum{m in MODE_OF_OPERATION} RateOfActivity[r,l,t,m,y] = RateOfTotalActivity[r,t,l,y];
s.t. CAa4_Constraint_Capacity{r in REGION, l in TIMESLICE, t in TECHNOLOGY, y in YEAR}: sum{m in MODE_OF_OPERATION} RateOfActivity[r,l,t,m,y] <= ((sum{yy in YEAR: y-yy < OperationalLife[r,t] && y-yy>=0} NewCapacity[r,t,yy])+ ResidualCapacity[r,t,y])*CapacityFactor[r,t,l,y]*CapacityToActivityUnit[r,t];
s.t. CAa5_TotalNewCapacity{r in REGION, t in TECHNOLOGY, y in YEAR: CapacityOfOneTechnologyUnit[r,t,y]<>0}: CapacityOfOneTechnologyUnit[r,t,y]*NumberOfNewTechnologyUnits[r,t,y] = NewCapacity[r,t,y];
#
# Note that the PlannedMaintenance equation below ensures that all other technologies have a capacity great enough to at least meet the annual average.
#
######### Capacity Adequacy B #############
#
s.t. CAb1_PlannedMaintenance{r in REGION, t in TECHNOLOGY, y in YEAR}: sum{l in TIMESLICE} sum{m in MODE_OF_OPERATION} RateOfActivity[r,l,t,m,y]*YearSplit[l,y] <= sum{l in TIMESLICE} (((sum{yy in YEAR: y-yy < OperationalLife[r,t] && y-yy>=0} NewCapacity[r,t,yy])+ ResidualCapacity[r,t,y])*CapacityFactor[r,t,l,y]*YearSplit[l,y])* AvailabilityFactor[r,t,y]*CapacityToActivityUnit[r,t];
#
######### Energy Balance A #############
#
#s.t. EBa1_RateOfFuelProduction1{r in REGION, l in TIMESLICE, f in FUEL, t in TECHNOLOGY, m in MODE_OF_OPERATION, y in YEAR: OutputActivityRatio[r,t,f,m,y] <>0}: RateOfActivity[r,l,t,m,y]*OutputActivityRatio[r,t,f,m,y] = RateOfProductionByTechnologyByMode[r,l,t,m,f,y];
#s.t. EBa2_RateOfFuelProduction2{r in REGION, l in TIMESLICE, f in FUEL, t in TECHNOLOGY, y in YEAR}: sum{m in MODE_OF_OPERATION: OutputActivityRatio[r,t,f,m,y] <>0} RateOfActivity[r,l,t,m,y]*OutputActivityRatio[r,t,f,m,y] = RateOfProductionByTechnology[r,l,t,f,y] ;
#s.t. EBa3_RateOfFuelProduction3{r in REGION, l in TIMESLICE, f in FUEL, y in YEAR}: sum{m in MODE_OF_OPERATION, t in TECHNOLOGY: OutputActivityRatio[r,t,f,m,y] <>0} RateOfActivity[r,l,t,m,y]*OutputActivityRatio[r,t,f,m,y] = RateOfProduction[r,l,f,y];
#s.t. EBa4_RateOfFuelUse1{r in REGION, l in TIMESLICE, f in FUEL, t in TECHNOLOGY, m in MODE_OF_OPERATION, y in YEAR: InputActivityRatio[r,t,f,m,y]<>0}: RateOfActivity[r,l,t,m,y]*InputActivityRatio[r,t,f,m,y] = RateOfUseByTechnologyByMode[r,l,t,m,f,y];
#s.t. EBa5_RateOfFuelUse2{r in REGION, l in TIMESLICE, f in FUEL, t in TECHNOLOGY, y in YEAR}: sum{m in MODE_OF_OPERATION: InputActivityRatio[r,t,f,m,y]<>0} RateOfActivity[r,l,t,m,y]*InputActivityRatio[r,t,f,m,y] = RateOfUseByTechnology[r,l,t,f,y];
#s.t. EBa6_RateOfFuelUse3{r in REGION, l in TIMESLICE, f in FUEL, y in YEAR}: sum{m in MODE_OF_OPERATION, t in TECHNOLOGY: InputActivityRatio[r,t,f,m,y]<>0} RateOfActivity[r,l,t,m,y]*InputActivityRatio[r,t,f,m,y] = RateOfUse[r,l,f,y];
#s.t. EBa7_EnergyBalanceEachTS1{r in REGION, l in TIMESLICE, f in FUEL, y in YEAR}: sum{m in MODE_OF_OPERATION, t in TECHNOLOGY: OutputActivityRatio[r,t,f,m,y] <>0} RateOfActivity[r,l,t,m,y]*OutputActivityRatio[r,t,f,m,y]*YearSplit[l,y] = Production[r,l,f,y];
#s.t. EBa8_EnergyBalanceEachTS2{r in REGION, l in TIMESLICE, f in FUEL, y in YEAR}: sum{m in MODE_OF_OPERATION, t in TECHNOLOGY: InputActivityRatio[r,t,f,m,y]<>0} RateOfActivity[r,l,t,m,y]*InputActivityRatio[r,t,f,m,y]*YearSplit[l,y] = Use[r,l,f,y];
#s.t. EBa9_EnergyBalanceEachTS3{r in REGION, l in TIMESLICE, f in FUEL, y in YEAR}: SpecifiedAnnualDemand[r,f,y]*SpecifiedDemandProfile[r,f,l,y] = Demand[r,l,f,y];
s.t. EBa10_EnergyBalanceEachTS4{r in REGION, rr in REGION, l in TIMESLICE, f in FUEL, y in YEAR}: Trade[r,rr,l,f,y] = -Trade[rr,r,l,f,y];
s.t. EBa11_EnergyBalanceEachTS5{r in REGION, l in TIMESLICE, f in FUEL, y in YEAR}: sum{m in MODE_OF_OPERATION, t in TECHNOLOGY: OutputActivityRatio[r,t,f,m,y] <>0} RateOfActivity[r,l,t,m,y]*OutputActivityRatio[r,t,f,m,y]*YearSplit[l,y] >= SpecifiedAnnualDemand[r,f,y]*SpecifiedDemandProfile[r,f,l,y] + sum{m in MODE_OF_OPERATION, t in TECHNOLOGY: InputActivityRatio[r,t,f,m,y]<>0} RateOfActivity[r,l,t,m,y]*InputActivityRatio[r,t,f,m,y]*YearSplit[l,y] + sum{rr in REGION} Trade[r,rr,l,f,y]*TradeRoute[r,rr,f,y];
#
######### Energy Balance B #############
#
#s.t. EBb1_EnergyBalanceEachYear1{r in REGION, f in FUEL, y in YEAR}: sum{m in MODE_OF_OPERATION, t in TECHNOLOGY, l in TIMESLICE: OutputActivityRatio[r,t,f,m,y] <>0} RateOfActivity[r,l,t,m,y]*OutputActivityRatio[r,t,f,m,y]*YearSplit[l,y] = ProductionAnnual[r,f,y];
#s.t. EBb2_EnergyBalanceEachYear2{r in REGION, f in FUEL, y in YEAR}: sum{m in MODE_OF_OPERATION, t in TECHNOLOGY, l in TIMESLICE: InputActivityRatio[r,t,f,m,y]<>0} RateOfActivity[r,l,t,m,y]*InputActivityRatio[r,t,f,m,y]*YearSplit[l,y] = UseAnnual[r,f,y];
#s.t. EBb3_EnergyBalanceEachYear3{r in REGION, rr in REGION, f in FUEL, y in YEAR}: sum{l in TIMESLICE} Trade[r,rr,l,f,y] = TradeAnnual[r,rr,f,y];
#s.t. EBb4_EnergyBalanceEachYear4{r in REGION, f in FUEL, y in YEAR}: sum{m in MODE_OF_OPERATION, t in TECHNOLOGY, l in TIMESLICE: OutputActivityRatio[r,t,f,m,y] <>0} RateOfActivity[r,l,t,m,y]*OutputActivityRatio[r,t,f,m,y]*YearSplit[l,y] >= sum{m in MODE_OF_OPERATION, t in TECHNOLOGY, l in TIMESLICE: InputActivityRatio[r,t,f,m,y]<>0} RateOfActivity[r,l,t,m,y]*InputActivityRatio[r,t,f,m,y]*YearSplit[l,y] + sum{l in TIMESLICE, rr in REGION} Trade[r,rr,l,f,y]*TradeRoute[r,rr,f,y] + AccumulatedAnnualDemand[r,f,y];
#
######### Accounting Technology Production/Use #############
#
#s.t. Acc1_FuelProductionByTechnology{r in REGION, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, y in YEAR}: sum{m in MODE_OF_OPERATION: OutputActivityRatio[r,t,f,m,y] <>0} RateOfActivity[r,l,t,m,y]*OutputActivityRatio[r,t,f,m,y] * YearSplit[l,y] = ProductionByTechnology[r,l,t,f,y];
#s.t. Acc2_FuelUseByTechnology{r in REGION, l in TIMESLICE, t in TECHNOLOGY, f in FUEL, y in YEAR}: sum{m in MODE_OF_OPERATION: InputActivityRatio[r,t,f,m,y]<>0} RateOfActivity[r,l,t,m,y]*InputActivityRatio[r,t,f,m,y] * YearSplit[l,y] = UseByTechnology[r,l,t,f,y];
#s.t. Acc3_AverageAnnualRateOfActivity{r in REGION, t in TECHNOLOGY, m in MODE_OF_OPERATION, y in YEAR}: sum{l in TIMESLICE} RateOfActivity[r,l,t,m,y]*YearSplit[l,y] = TotalAnnualTechnologyActivityByMode[r,t,m,y];
####s.t. Acc4_ModelPeriodCostByRegion{r in REGION}:sum{t in TECHNOLOGY, y in YEAR}(((((sum{yy in YEAR: y-yy < OperationalLife[r,t] && y-yy>=0} NewCapacity[r,t,yy])+ ResidualCapacity[r,t,y])*FixedCost[r,t,y] + sum{m in MODE_OF_OPERATION, l in TIMESLICE} RateOfActivity[r,l,t,m,y]*YearSplit[l,y]*VariableCost[r,t,m,y])/((1+DiscountRate[r,t])^(y-min{yy in YEAR} min(yy)+0.5))+CapitalCost[r,t,y] * NewCapacity[r,t,y]/((1+DiscountRate[r,t])^(y-min{yy in YEAR} min(yy)))+DiscountedTechnologyEmissionsPenalty[r,t,y]-DiscountedSalvageValue[r,t,y]) + sum{s in STORAGE} (CapitalCostStorage[r,s,y] * NewStorageCapacity[r,s,y]/((1+DiscountRateStorage[r,s])^(y-min{yy in YEAR} min(yy)))-CapitalCostStorage[r,s,y] * NewStorageCapacity[r,s,y]/((1+DiscountRateStorage[r,s])^(y-min{yy in YEAR} min(yy))))) = ModelPeriodCostByRegion[r];
#
######### Storage Equations #############
#
#s.t. S1_RateOfStorageCharge{r in REGION, s in STORAGE, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, y in YEAR}: sum{t in TECHNOLOGY, m in MODE_OF_OPERATION, l in TIMESLICE:TechnologyToStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyToStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh] = RateOfStorageCharge[r,s,ls,ld,lh,y];
#s.t. S2_RateOfStorageDischarge{r in REGION, s in STORAGE, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, y in YEAR}: sum{t in TECHNOLOGY, m in MODE_OF_OPERATION, l in TIMESLICE:TechnologyFromStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyFromStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh] = RateOfStorageDischarge[r,s,ls,ld,lh,y];
#s.t. S3_NetChargeWithinYear{r in REGION, s in STORAGE, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, y in YEAR}: sum{l in TIMESLICE:Conversionls[l,ls]>0&&Conversionld[l,ld]>0&&Conversionlh[l,lh]>0} (sum{t in TECHNOLOGY, m in MODE_OF_OPERATION:TechnologyToStorage[r,t,s,m]>0} (RateOfActivity[r,l,t,m,y] * TechnologyToStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh]) - (sum{t in TECHNOLOGY, m in MODE_OF_OPERATION:TechnologyFromStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyFromStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh])) * YearSplit[l,y] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh] = NetChargeWithinYear[r,s,ls,ld,lh,y];
#s.t. S4_NetChargeWithinDay{r in REGION, s in STORAGE, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, y in YEAR}: ((sum{t in TECHNOLOGY, m in MODE_OF_OPERATION, l in TIMESLICE:TechnologyToStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyToStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh]) - (sum{t in TECHNOLOGY, m in MODE_OF_OPERATION, l in TIMESLICE:TechnologyFromStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyFromStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh])) * DaySplit[lh,y] = NetChargeWithinDay[r,s,ls,ld,lh,y];
s.t. S5_and_S6_StorageLevelYearStart{r in REGION, s in STORAGE, y in YEAR}: if y = min{yy in YEAR} min(yy) then StorageLevelStart[r,s]
else StorageLevelYearStart[r,s,y-1] + sum{ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET} sum{l in TIMESLICE:Conversionls[l,ls]>0&&Conversionld[l,ld]>0&&Conversionlh[l,lh]>0} (sum{t in TECHNOLOGY, m in MODE_OF_OPERATION:TechnologyToStorage[r,t,s,m]>0} (RateOfActivity[r,l,t,m,y] * TechnologyToStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh]) - (sum{t in TECHNOLOGY, m in MODE_OF_OPERATION:TechnologyFromStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyFromStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh])) * YearSplit[l,y] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh]
= StorageLevelYearStart[r,s,y];
s.t. S7_and_S8_StorageLevelYearFinish{r in REGION, s in STORAGE, y in YEAR}: if y < max{yy in YEAR} max(yy) then StorageLevelYearStart[r,s,y+1]
else StorageLevelYearStart[r,s,y] + sum{ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET} sum{l in TIMESLICE:Conversionls[l,ls]>0&&Conversionld[l,ld]>0&&Conversionlh[l,lh]>0} (sum{t in TECHNOLOGY, m in MODE_OF_OPERATION:TechnologyToStorage[r,t,s,m]>0} (RateOfActivity[r,l,t,m,y] * TechnologyToStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh]) - (sum{t in TECHNOLOGY, m in MODE_OF_OPERATION:TechnologyFromStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyFromStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh])) * YearSplit[l,y] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh]
= StorageLevelYearFinish[r,s,y];
s.t. S9_and_S10_StorageLevelSeasonStart{r in REGION, s in STORAGE, ls in SEASON, y in YEAR}: if ls = min{lsls in SEASON} min(lsls) then StorageLevelYearStart[r,s,y]
else StorageLevelSeasonStart[r,s,ls-1,y] + sum{ld in DAYTYPE, lh in DAILYTIMEBRACKET} sum{l in TIMESLICE:Conversionls[l,ls]>0&&Conversionld[l,ld]>0&&Conversionlh[l,lh]>0} (sum{t in TECHNOLOGY, m in MODE_OF_OPERATION:TechnologyToStorage[r,t,s,m]>0} (RateOfActivity[r,l,t,m,y] * TechnologyToStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh]) - (sum{t in TECHNOLOGY, m in MODE_OF_OPERATION:TechnologyFromStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyFromStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh])) * YearSplit[l,y] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh]
= StorageLevelSeasonStart[r,s,ls,y];
s.t. S11_and_S12_StorageLevelDayTypeStart{r in REGION, s in STORAGE, ls in SEASON, ld in DAYTYPE, y in YEAR}: if ld = min{ldld in DAYTYPE} min(ldld) then StorageLevelSeasonStart[r,s,ls,y]
else StorageLevelDayTypeStart[r,s,ls,ld-1,y] + sum{lh in DAILYTIMEBRACKET} (((sum{t in TECHNOLOGY, m in MODE_OF_OPERATION, l in TIMESLICE:TechnologyToStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyToStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh]) - (sum{t in TECHNOLOGY, m in MODE_OF_OPERATION, l in TIMESLICE:TechnologyFromStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyFromStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh])) * DaySplit[lh,y]) * DaysInDayType[ls,ld-1,y]
= StorageLevelDayTypeStart[r,s,ls,ld,y];
s.t. S13_and_S14_and_S15_StorageLevelDayTypeFinish{r in REGION, s in STORAGE, ls in SEASON, ld in DAYTYPE, y in YEAR}: if ls = max{lsls in SEASON} max(lsls) && ld = max{ldld in DAYTYPE} max(ldld) then StorageLevelYearFinish[r,s,y]
else if ld = max{ldld in DAYTYPE} max(ldld) then StorageLevelSeasonStart[r,s,ls+1,y]
else StorageLevelDayTypeFinish[r,s,ls,ld+1,y] - sum{lh in DAILYTIMEBRACKET} (((sum{t in TECHNOLOGY, m in MODE_OF_OPERATION, l in TIMESLICE:TechnologyToStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyToStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh]) - (sum{t in TECHNOLOGY, m in MODE_OF_OPERATION, l in TIMESLICE:TechnologyFromStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyFromStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh])) * DaySplit[lh,y]) * DaysInDayType[ls,ld+1,y]
= StorageLevelDayTypeFinish[r,s,ls,ld,y];
#
########## Storage Constraints #############
#
s.t. SC1_LowerLimit_BeginningOfDailyTimeBracketOfFirstInstanceOfDayTypeInFirstWeekConstraint{r in REGION, s in STORAGE, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, y in YEAR}: 0 <= (StorageLevelDayTypeStart[r,s,ls,ld,y]+sum{lhlh in DAILYTIMEBRACKET:lh-lhlh>0} (((sum{t in TECHNOLOGY, m in MODE_OF_OPERATION, l in TIMESLICE:TechnologyToStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyToStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh]) - (sum{t in TECHNOLOGY, m in MODE_OF_OPERATION, l in TIMESLICE:TechnologyFromStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyFromStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh])) * DaySplit[lh,y]))-MinStorageCharge[r,s,y]*(sum{yy in YEAR: y-yy < OperationalLifeStorage[r,s] && y-yy>=0} NewStorageCapacity[r,s,yy]+ResidualStorageCapacity[r,s,y]);
s.t. SC1_UpperLimit_BeginningOfDailyTimeBracketOfFirstInstanceOfDayTypeInFirstWeekConstraint{r in REGION, s in STORAGE, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, y in YEAR}: (StorageLevelDayTypeStart[r,s,ls,ld,y]+sum{lhlh in DAILYTIMEBRACKET:lh-lhlh>0} (((sum{t in TECHNOLOGY, m in MODE_OF_OPERATION, l in TIMESLICE:TechnologyToStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyToStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh]) - (sum{t in TECHNOLOGY, m in MODE_OF_OPERATION, l in TIMESLICE:TechnologyFromStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyFromStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh])) * DaySplit[lh,y]))-(sum{yy in YEAR: y-yy < OperationalLifeStorage[r,s] && y-yy>=0} NewStorageCapacity[r,s,yy]+ResidualStorageCapacity[r,s,y]) <= 0;
s.t. SC2_LowerLimit_EndOfDailyTimeBracketOfLastInstanceOfDayTypeInFirstWeekConstraint{r in REGION, s in STORAGE, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, y in YEAR}: 0 <= if ld > min{ldld in DAYTYPE} min(ldld) then (StorageLevelDayTypeStart[r,s,ls,ld,y]-sum{lhlh in DAILYTIMEBRACKET:lh-lhlh<0} (((sum{t in TECHNOLOGY, m in MODE_OF_OPERATION, l in TIMESLICE:TechnologyToStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyToStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh]) - (sum{t in TECHNOLOGY, m in MODE_OF_OPERATION, l in TIMESLICE:TechnologyFromStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyFromStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh])) * DaySplit[lh,y]))-MinStorageCharge[r,s,y]*(sum{yy in YEAR: y-yy < OperationalLifeStorage[r,s] && y-yy>=0} NewStorageCapacity[r,s,yy]+ResidualStorageCapacity[r,s,y]);
s.t. SC2_UpperLimit_EndOfDailyTimeBracketOfLastInstanceOfDayTypeInFirstWeekConstraint{r in REGION, s in STORAGE, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, y in YEAR}: if ld > min{ldld in DAYTYPE} min(ldld) then (StorageLevelDayTypeStart[r,s,ls,ld+1,y]-sum{lhlh in DAILYTIMEBRACKET:lh-lhlh<0} (((sum{t in TECHNOLOGY, m in MODE_OF_OPERATION, l in TIMESLICE:TechnologyToStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyToStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh]) - (sum{t in TECHNOLOGY, m in MODE_OF_OPERATION, l in TIMESLICE:TechnologyFromStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyFromStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh])) * DaySplit[lh,y]))-(sum{yy in YEAR: y-yy < OperationalLifeStorage[r,s] && y-yy>=0} NewStorageCapacity[r,s,yy]+ResidualStorageCapacity[r,s,y]) <= 0;
s.t. SC3_LowerLimit_EndOfDailyTimeBracketOfLastInstanceOfDayTypeInLastWeekConstraint{r in REGION, s in STORAGE, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, y in YEAR}: 0 <= (StorageLevelDayTypeFinish[r,s,ls,ld,y] - sum{lhlh in DAILYTIMEBRACKET:lh-lhlh<0} (((sum{t in TECHNOLOGY, m in MODE_OF_OPERATION, l in TIMESLICE:TechnologyToStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyToStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh]) - (sum{t in TECHNOLOGY, m in MODE_OF_OPERATION, l in TIMESLICE:TechnologyFromStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyFromStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh])) * DaySplit[lh,y]))-MinStorageCharge[r,s,y]*(sum{yy in YEAR: y-yy < OperationalLifeStorage[r,s] && y-yy>=0} NewStorageCapacity[r,s,yy]+ResidualStorageCapacity[r,s,y]);
s.t. SC3_UpperLimit_EndOfDailyTimeBracketOfLastInstanceOfDayTypeInLastWeekConstraint{r in REGION, s in STORAGE, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, y in YEAR}: (StorageLevelDayTypeFinish[r,s,ls,ld,y] - sum{lhlh in DAILYTIMEBRACKET:lh-lhlh<0} (((sum{t in TECHNOLOGY, m in MODE_OF_OPERATION, l in TIMESLICE:TechnologyToStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyToStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh]) - (sum{t in TECHNOLOGY, m in MODE_OF_OPERATION, l in TIMESLICE:TechnologyFromStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyFromStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh])) * DaySplit[lh,y]))-(sum{yy in YEAR: y-yy < OperationalLifeStorage[r,s] && y-yy>=0} NewStorageCapacity[r,s,yy]+ResidualStorageCapacity[r,s,y]) <= 0;
s.t. SC4_LowerLimit_BeginningOfDailyTimeBracketOfFirstInstanceOfDayTypeInLastWeekConstraint{r in REGION, s in STORAGE, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, y in YEAR}: 0 <= if ld > min{ldld in DAYTYPE} min(ldld) then (StorageLevelDayTypeFinish[r,s,ls,ld-1,y]+sum{lhlh in DAILYTIMEBRACKET:lh-lhlh>0} (((sum{t in TECHNOLOGY, m in MODE_OF_OPERATION, l in TIMESLICE:TechnologyToStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyToStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh]) - (sum{t in TECHNOLOGY, m in MODE_OF_OPERATION, l in TIMESLICE:TechnologyFromStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyFromStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh])) * DaySplit[lh,y]))-MinStorageCharge[r,s,y]*(sum{yy in YEAR: y-yy < OperationalLifeStorage[r,s] && y-yy>=0} NewStorageCapacity[r,s,yy]+ResidualStorageCapacity[r,s,y]);
s.t. SC4_UpperLimit_BeginningOfDailyTimeBracketOfFirstInstanceOfDayTypeInLastWeekConstraint{r in REGION, s in STORAGE, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, y in YEAR}: if ld > min{ldld in DAYTYPE} min(ldld) then (StorageLevelDayTypeFinish[r,s,ls,ld-1,y]+sum{lhlh in DAILYTIMEBRACKET:lh-lhlh>0} (((sum{t in TECHNOLOGY, m in MODE_OF_OPERATION, l in TIMESLICE:TechnologyToStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyToStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh]) - (sum{t in TECHNOLOGY, m in MODE_OF_OPERATION, l in TIMESLICE:TechnologyFromStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyFromStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh])) * DaySplit[lh,y]))-(sum{yy in YEAR: y-yy < OperationalLifeStorage[r,s] && y-yy>=0} NewStorageCapacity[r,s,yy]+ResidualStorageCapacity[r,s,y]) <= 0;
s.t. SC5_MaxChargeConstraint{r in REGION, s in STORAGE, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, y in YEAR}: sum{t in TECHNOLOGY, m in MODE_OF_OPERATION, l in TIMESLICE:TechnologyToStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyToStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh] <= StorageMaxChargeRate[r,s];
s.t. SC6_MaxDischargeConstraint{r in REGION, s in STORAGE, ls in SEASON, ld in DAYTYPE, lh in DAILYTIMEBRACKET, y in YEAR}: sum{t in TECHNOLOGY, m in MODE_OF_OPERATION, l in TIMESLICE:TechnologyFromStorage[r,t,s,m]>0} RateOfActivity[r,l,t,m,y] * TechnologyFromStorage[r,t,s,m] * Conversionls[l,ls] * Conversionld[l,ld] * Conversionlh[l,lh] <= StorageMaxDischargeRate[r,s];
s.t. SC7_MinStorageLevelDayTypeStartConstraint{r in REGION, s in STORAGE, ls in SEASON, ld in DAYTYPE, y in YEAR}: StorageLevelDayTypeStart [r,s,ls,ld,y] <= ResidualStorageCapacity[r,s,y];
s.t. SC8_MinStorageLevelDayTypeFinishConstraint{r in REGION, s in STORAGE, ls in SEASON, ld in DAYTYPE, y in YEAR}: StorageLevelDayTypeFinish [r,s,ls,ld,y] <= ResidualStorageCapacity[r,s,y];
#
######### Storage Investments #############
#
s.t. SI6_SalvageValueStorageAtEndOfPeriod1{r in REGION, s in STORAGE, y in YEAR: (y+OperationalLifeStorage[r,s]-1) <= (max{yy in YEAR} max(yy))}: 0 = SalvageValueStorage[r,s,y];
#s.t. SI7_SalvageValueStorageAtEndOfPeriod2{r in REGION, s in STORAGE, y in YEAR: (DepreciationMethod[r]=1 && (y+OperationalLifeStorage[r,s]-1) > (max{yy in YEAR} max(yy)) && DiscountRateStorage[r,s]=0) || (DepreciationMethod[r]=2 && (y+OperationalLifeStorage[r,s]-1) > (max{yy in YEAR} max(yy)))}: CapitalCostStorage[r,s,y] * NewStorageCapacity[r,s,y]*(1-(max{yy in YEAR} max(yy) - y+1)/OperationalLifeStorage[r,s]) = SalvageValueStorage[r,s,y];
#s.t. SI8_SalvageValueStorageAtEndOfPeriod3{r in REGION, s in STORAGE, y in YEAR: DepreciationMethod[r]=1 && (y+OperationalLifeStorage[r,s]-1) > (max{yy in YEAR} max(yy)) && DiscountRateStorage[r,s]>0}: CapitalCostStorage[r,s,y] * NewStorageCapacity[r,s,y]*(1-(((1+DiscountRateStorage[r,s])^(max{yy in YEAR} max(yy) - y+1)-1)/((1+DiscountRateStorage[r,s])^OperationalLifeStorage[r,s]-1))) = SalvageValueStorage[r,s,y];
#s.t. SI1_StorageUpperLimit{r in REGION, s in STORAGE, y in YEAR}: sum{yy in YEAR: y-yy < OperationalLifeStorage[r,s] && y-yy>=0} NewStorageCapacity[r,s,yy]+ResidualStorageCapacity[r,s,y] = StorageUpperLimit[r,s,y];
#s.t. SI2_StorageLowerLimit{r in REGION, s in STORAGE, y in YEAR}: MinStorageCharge[r,s,y]*(sum{yy in YEAR: y-yy < OperationalLifeStorage[r,s] && y-yy>=0} NewStorageCapacity[r,s,yy]+ResidualStorageCapacity[r,s,y]) = StorageLowerLimit[r,s,y];
#s.t. SI3_TotalNewStorage{r in REGION, s in STORAGE, y in YEAR}: sum{yy in YEAR: y-yy < OperationalLifeStorage[r,s] && y-yy>=0} NewStorageCapacity[r,s,yy]=AccumulatedNewStorageCapacity[r,s,y];
#s.t. SI4_UndiscountedCapitalInvestmentStorage{r in REGION, s in STORAGE, y in YEAR}: CapitalCostStorage[r,s,y] * NewStorageCapacity[r,s,y] = CapitalInvestmentStorage[r,s,y];
#s.t. SI5_DiscountingCapitalInvestmentStorage{r in REGION, s in STORAGE, y in YEAR}: CapitalCostStorage[r,s,y] * NewStorageCapacity[r,s,y]/((1+DiscountRateStorage[r,s])^(y-min{yy in YEAR} min(yy))) = DiscountedCapitalInvestmentStorage[r,s,y];
#s.t. SI9_SalvageValueStorageDiscountedToStartYear{r in REGION, s in STORAGE, y in YEAR}: SalvageValueStorage[r,s,y]/((1+DiscountRateStorage[r,s])^(max{yy in YEAR} max(yy)-min{yy in YEAR} min(yy)+1)) = DiscountedSalvageValueStorage[r,s,y];
#s.t. SI10_TotalDiscountedCostByStorage{r in REGION, s in STORAGE, y in YEAR}: (CapitalCostStorage[r,s,y] * NewStorageCapacity[r,s,y]/((1+DiscountRateStorage[r,s])^(y-min{yy in YEAR} min(yy)))-CapitalCostStorage[r,s,y] * NewStorageCapacity[r,s,y]/((1+DiscountRateStorage[r,s])^(y-min{yy in YEAR} min(yy)))) = TotalDiscountedStorageCost[r,s,y];
#
######### Capital Costs #############
#
#s.t. CC1_UndiscountedCapitalInvestment{r in REGION, t in TECHNOLOGY, y in YEAR}: CapitalCost[r,t,y] * NewCapacity[r,t,y] = CapitalInvestment[r,t,y];
####s.t. CC2_DiscountingCapitalInvestment{r in REGION, t in TECHNOLOGY, y in YEAR}: CapitalCost[r,t,y] * NewCapacity[r,t,y]/((1+DiscountRate[r,t])^(y-min{yy in YEAR} min(yy))) = DiscountedCapitalInvestment[r,t,y];
#
######### Salvage Value #############
#
s.t. SV1_SalvageValueAtEndOfPeriod1{r in REGION, t in TECHNOLOGY, y in YEAR: (y + OperationalLife[r,t]-1) > (max{yy in YEAR} max(yy)) && DiscountRate[r,t]>0}: SalvageValue[r,t,y] = CapitalCost[r,t,y]*NewCapacity[r,t,y]*(1-(((1+DiscountRate[r,t])^(max{yy in YEAR} max(yy) - y+1)-1)/((1+DiscountRate[r,t])^OperationalLife[r,t]-1)));
s.t. SV2_SalvageValueAtEndOfPeriod2{r in REGION, t in TECHNOLOGY, y in YEAR: (y + OperationalLife[r,t]-1) > (max{yy in YEAR} max(yy)) && DiscountRate[r,t]=0}: SalvageValue[r,t,y] = CapitalCost[r,t,y]*NewCapacity[r,t,y]*(1-(max{yy in YEAR} max(yy) - y+1)/OperationalLife[r,t]);
s.t. SV3_SalvageValueAtEndOfPeriod3{r in REGION, t in TECHNOLOGY, y in YEAR: (y + OperationalLife[r,t]-1) <= (max{yy in YEAR} max(yy))}: SalvageValue[r,t,y] = 0;
s.t. SV4_SalvageValueDiscountedToStartYear{r in REGION, t in TECHNOLOGY, y in YEAR}: DiscountedSalvageValue[r,t,y] = SalvageValue[r,t,y]/((1+DiscountRate[r,t])^(1+max{yy in YEAR} max(yy)-min{yy in YEAR} min(yy)));
#
######### Operating Costs #############
#
#s.t. OC1_OperatingCostsVariable{r in REGION, t in TECHNOLOGY, y in YEAR}: sum{m in MODE_OF_OPERATION, l in TIMESLICE} RateOfActivity[r,l,t,m,y]*YearSplit[l,y]*VariableCost[r,t,m,y] = AnnualVariableOperatingCost[r,t,y];
#s.t. OC2_OperatingCostsFixedAnnual{r in REGION, t in TECHNOLOGY, y in YEAR}: ((sum{yy in YEAR: y-yy < OperationalLife[r,t] && y-yy>=0} NewCapacity[r,t,yy])+ ResidualCapacity[r,t,y])*FixedCost[r,t,y] = AnnualFixedOperatingCost[r,t,y];
#s.t. OC3_OperatingCostsTotalAnnual{r in REGION, t in TECHNOLOGY, y in YEAR}: (((sum{yy in YEAR: y-yy < OperationalLife[r,t] && y-yy>=0} NewCapacity[r,t,yy])+ ResidualCapacity[r,t,y])*FixedCost[r,t,y] + sum{m in MODE_OF_OPERATION, l in TIMESLICE} RateOfActivity[r,l,t,m,y]*YearSplit[l,y]*VariableCost[r,t,m,y]) = OperatingCost[r,t,y];
####s.t. OC4_DiscountedOperatingCostsTotalAnnual{r in REGION, t in TECHNOLOGY, y in YEAR}: (((sum{yy in YEAR: y-yy < OperationalLife[r,t] && y-yy>=0} NewCapacity[r,t,yy])+ ResidualCapacity[r,t,y])*FixedCost[r,t,y] + sum{m in MODE_OF_OPERATION, l in TIMESLICE} RateOfActivity[r,l,t,m,y]*YearSplit[l,y]*VariableCost[r,t,m,y])/((1+DiscountRate[r,t])^(y-min{yy in YEAR} min(yy)+0.5)) = DiscountedOperatingCost[r,t,y];
#
######### Total Discounted Costs #############
#
#s.t. TDC1_TotalDiscountedCostByTechnology{r in REGION, t in TECHNOLOGY, y in YEAR}: ((((sum{yy in YEAR: y-yy < OperationalLife[r,t] && y-yy>=0} NewCapacity[r,t,yy])+ ResidualCapacity[r,t,y])*FixedCost[r,t,y] + sum{m in MODE_OF_OPERATION, l in TIMESLICE} RateOfActivity[r,l,t,m,y]*YearSplit[l,y]*VariableCost[r,t,m,y])/((1+DiscountRate[r,t])^(y-min{yy in YEAR} min(yy)+0.5))+CapitalCost[r,t,y] * NewCapacity[r,t,y]/((1+DiscountRate[r,t])^(y-min{yy in YEAR} min(yy)))+DiscountedTechnologyEmissionsPenalty[r,t,y]-DiscountedSalvageValue[r,t,y]) = TotalDiscountedCostByTechnology[r,t,y];
####s.t. TDC2_TotalDiscountedCost{r in REGION, y in YEAR}: sum{t in TECHNOLOGY}((((sum{yy in YEAR: y-yy < OperationalLife[r,t] && y-yy>=0} NewCapacity[r,t,yy])+ ResidualCapacity[r,t,y])*FixedCost[r,t,y] + sum{m in MODE_OF_OPERATION, l in TIMESLICE} RateOfActivity[r,l,t,m,y]*YearSplit[l,y]*VariableCost[r,t,m,y])/((1+DiscountRate[r,t])^(y-min{yy in YEAR} min(yy)+0.5))+CapitalCost[r,t,y] * NewCapacity[r,t,y]/((1+DiscountRate[r,t])^(y-min{yy in YEAR} min(yy)))+DiscountedTechnologyEmissionsPenalty[r,t,y]-DiscountedSalvageValue[r,t,y]) + sum{s in STORAGE} (CapitalCostStorage[r,s,y] * NewStorageCapacity[r,s,y]/((1+DiscountRateStorage[r,s])^(y-min{yy in YEAR} min(yy)))-CapitalCostStorage[r,s,y] * NewStorageCapacity[r,s,y]/((1+DiscountRateStorage[r,s])^(y-min{yy in YEAR} min(yy)))) = TotalDiscountedCost[r,y];
#
######### Total Capacity Constraints ##############
#
s.t. TCC1_TotalAnnualMaxCapacityConstraint{r in REGION, t in TECHNOLOGY, y in YEAR}: ((sum{yy in YEAR: y-yy < OperationalLife[r,t] && y-yy>=0} NewCapacity[r,t,yy])+ ResidualCapacity[r,t,y]) <= TotalAnnualMaxCapacity[r,t,y];
s.t. TCC2_TotalAnnualMinCapacityConstraint{r in REGION, t in TECHNOLOGY, y in YEAR: TotalAnnualMinCapacity[r,t,y]>0}: ((sum{yy in YEAR: y-yy < OperationalLife[r,t] && y-yy>=0} NewCapacity[r,t,yy])+ ResidualCapacity[r,t,y]) >= TotalAnnualMinCapacity[r,t,y];
#
######### New Capacity Constraints ##############
#
s.t. NCC1_TotalAnnualMaxNewCapacityConstraint{r in REGION, t in TECHNOLOGY, y in YEAR}: NewCapacity[r,t,y] <= TotalAnnualMaxCapacityInvestment[r,t,y];
s.t. NCC2_TotalAnnualMinNewCapacityConstraint{r in REGION, t in TECHNOLOGY, y in YEAR: TotalAnnualMinCapacityInvestment[r,t,y]>0}: NewCapacity[r,t,y] >= TotalAnnualMinCapacityInvestment[r,t,y];
#
######### Annual Activity Constraints ##############
#
s.t. AAC2_TotalAnnualTechnologyActivityUpperLimit{r in REGION, t in TECHNOLOGY, y in YEAR}: sum{l in TIMESLICE, m in MODE_OF_OPERATION} RateOfActivity[r,l,t,m,y]*YearSplit[l,y] <= TotalTechnologyAnnualActivityUpperLimit[r,t,y] ;
s.t. AAC3_TotalAnnualTechnologyActivityLowerLimit{r in REGION, t in TECHNOLOGY, y in YEAR: TotalTechnologyAnnualActivityLowerLimit[r,t,y]>0}: sum{l in TIMESLICE, m in MODE_OF_OPERATION} RateOfActivity[r,l,t,m,y]*YearSplit[l,y] >= TotalTechnologyAnnualActivityLowerLimit[r,t,y] ;
s.t. AAC1_TotalAnnualTechnologyActivity{r in REGION, t in TECHNOLOGY, y in YEAR}: sum{l in TIMESLICE, m in MODE_OF_OPERATION} RateOfActivity[r,l,t,m,y]*YearSplit[l,y] = TotalTechnologyAnnualActivity[r,t,y];
#s.t. AAC4_MinElecGeneration{r in REGION, t in TECHNOLOGY, l in TIMESLICE, y in YEAR}: TotalCapacityAnnual[r,t,y] * CapacityToActivityUnit[r,t] * MinElecGeneration[r,t,l,y] <= RateOfTotalActivity[r,t,l,y];
#s.t. AAC5_MinElecGeneration{r in REGION, t in TECHNOLOGY, l in TIMESLICE, y in YEAR: MinGenerationTagTechonology[r,t]=1}: TotalCapacityAnnual[r,t,y] * CapacityToActivityUnit[r,t] * MinElecGeneration[r,t,l,y] <= RateOfTotalActivity[r,t,l,y];
#
s.t. AAC6_TotalAnnualMinElecGeneration{r in REGION, t in TECHNOLOGY, y in YEAR: MinGenerationTagTechonology[r,t]=1}: TotalCapacityAnnual[r,t,y] * CapacityToActivityUnit[r,t] * MinElecGeneration[r,t,y] <= TotalTechnologyAnnualActivity[r,t,y];
#
#
######### Total Activity Constraints ##############
#
s.t. TAC2_TotalModelHorizonTechnologyActivityUpperLimit{r in REGION, t in TECHNOLOGY}: sum{l in TIMESLICE, m in MODE_OF_OPERATION, y in YEAR} RateOfActivity[r,l,t,m,y]*YearSplit[l,y] <= TotalTechnologyModelPeriodActivityUpperLimit[r,t] ;
s.t. TAC3_TotalModelHorizenTechnologyActivityLowerLimit{r in REGION, t in TECHNOLOGY: TotalTechnologyModelPeriodActivityLowerLimit[r,t]>0}: sum{l in TIMESLICE, m in MODE_OF_OPERATION, y in YEAR} RateOfActivity[r,l,t,m,y]*YearSplit[l,y] >= TotalTechnologyModelPeriodActivityLowerLimit[r,t] ;
#s.t. TAC1_TotalModelHorizonTechnologyActivity{r in REGION, t in TECHNOLOGY}: sum{l in TIMESLICE, m in MODE_OF_OPERATION, y in YEAR} RateOfActivity[r,l,t,m,y]*YearSplit[l,y] = TotalTechnologyModelPeriodActivity[r,t];
#
######### Reserve Margin Constraint ############## NTS: Should change demand for production
#
#s.t. RM3_ReserveMargin_Constraint{r in REGION, l in TIMESLICE, y in YEAR}: sum{m in MODE_OF_OPERATION, t in TECHNOLOGY, f in FUEL: OutputActivityRatio[r,t,f,m,y] <>0} RateOfActivity[r,l,t,m,y]*OutputActivityRatio[r,t,f,m,y] * ReserveMarginTagFuel[r,f,y] * ReserveMargin[r,y]<= sum {t in TECHNOLOGY} ((sum{yy in YEAR: y-yy < OperationalLife[r,t] && y-yy>=0} NewCapacity[r,t,yy])+ ResidualCapacity[r,t,y]) * ReserveMarginTagTechnology[r,t,y] * CapacityToActivityUnit[r,t];
#s.t. RM1_ReserveMargin_TechologiesIncluded_In_Activity_Units{r in REGION, l in TIMESLICE, y in YEAR}: sum {t in TECHNOLOGY} ((sum{yy in YEAR: y-yy < OperationalLife[r,t] && y-yy>=0} NewCapacity[r,t,yy])+ ResidualCapacity[r,t,y]) * ReserveMarginTagTechnology[r,t,y] * CapacityToActivityUnit[r,t] = TotalCapacityInReserveMargin[r,y];
#s.t. RM2_ReserveMargin_FuelsIncluded{r in REGION, l in TIMESLICE, y in YEAR}: sum{m in MODE_OF_OPERATION, t in TECHNOLOGY, f in FUEL: OutputActivityRatio[r,t,f,m,y] <>0} RateOfActivity[r,l,t,m,y]*OutputActivityRatio[r,t,f,m,y] * ReserveMarginTagFuel[r,f,y] = DemandNeedingReserveMargin[r,l,y];
#
######### WB RESERVE MARGIN CONSTRAINTS (06.08.2013) ##########
#
s.t. NRM1_ReserMargin_Constraint{r in REGION, l in TIMESLICE, f in FUEL, y in YEAR}: sum{t in TECHNOLOGY, m in MODE_OF_OPERATION: OutputActivityRatio[r,t,f,m,y] <>0} RateOfActivity[r,l,t,m,y]*OutputActivityRatio[r,t,f,m,y] * ReserveMarginTagFuel[r,f,y] * ReserveMargin[r,f,y] <= sum {m in MODE_OF_OPERATION, t in TECHNOLOGY: OutputActivityRatio[r,t,f,m,y] <>0} ((sum{yy in YEAR: y-yy < OperationalLife[r,t] && y-yy>=0} NewCapacity[r,t,yy])+ ResidualCapacity[r,t,y]) * ReserveMarginTagTechnology[r,t,y] * CapacityToActivityUnit[r,t];
#
#
######### RE Production Target ############## NTS: Should change demand for production
#
#s.t. RE4_EnergyConstraint{r in REGION, y in YEAR}:REMinProductionTarget[r,y]*sum{l in TIMESLICE, f in FUEL} SpecifiedAnnualDemand[r,f,y]*SpecifiedDemandProfile[r,f,l,y]*RETagFuel[r,f,y] <= sum{m in MODE_OF_OPERATION, l in TIMESLICE, t in TECHNOLOGY, f in FUEL: OutputActivityRatio[r,t,f,m,y] <>0} RateOfActivity[r,l,t,m,y]*OutputActivityRatio[r,t,f,m,y] * YearSplit[l,y]*RETagTechnology[r,t,y];
#s.t. RE1_FuelProductionByTechnologyAnnual{r in REGION, t in TECHNOLOGY, f in FUEL, y in YEAR}: sum{m in MODE_OF_OPERATION, l in TIMESLICE: OutputActivityRatio[r,t,f,m,y] <>0} RateOfActivity[r,l,t,m,y]*OutputActivityRatio[r,t,f,m,y] * YearSplit[l,y] = ProductionByTechnologyAnnual[r,t,f,y];
#s.t. RE2_TechIncluded{r in REGION, y in YEAR}: sum{m in MODE_OF_OPERATION, l in TIMESLICE, t in TECHNOLOGY, f in FUEL: OutputActivityRatio[r,t,f,m,y] <>0} RateOfActivity[r,l,t,m,y]*OutputActivityRatio[r,t,f,m,y] * YearSplit[l,y]*RETagTechnology[r,t,y] = TotalREProductionAnnual[r,y];
#s.t. RE3_FuelIncluded{r in REGION, y in YEAR}: sum{l in TIMESLICE, f in FUEL} SpecifiedAnnualDemand[r,f,y]*SpecifiedDemandProfile[r,f,l,y]*RETagFuel[r,f,y] = RETotalDemandOfTargetFuelAnnual[r,y];
#s.t. RE5_FuelUseByTechnologyAnnual{r in REGION, t in TECHNOLOGY, f in FUEL, y in YEAR}: sum{m in MODE_OF_OPERATION, l in TIMESLICE: InputActivityRatio[r,t,f,m,y]<>0} RateOfActivity[r,l,t,m,y]*InputActivityRatio[r,t,f,m,y]*YearSplit[l,y] = UseByTechnologyAnnual[r,t,f,y];
#
######### Emissions Accounting ##############
#
#s.t. E5_DiscountedEmissionsPenaltyByTechnology{r in REGION, t in TECHNOLOGY, y in YEAR}: sum{e in EMISSION, l in TIMESLICE, m in MODE_OF_OPERATION: EmissionActivityRatio[r,t,e,m,y]<>0} EmissionActivityRatio[r,t,e,m,y]*RateOfActivity[r,l,t,m,y]*YearSplit[l,y]*EmissionsPenalty[r,e,y]/((1+DiscountRate[r,t])^(y-min{yy in YEAR} min(yy)+0.5)) = DiscountedTechnologyEmissionsPenalty[r,t,y];
s.t. E8_AnnualEmissionsLimit{r in REGION, e in EMISSION, y in YEAR}: sum{l in TIMESLICE, t in TECHNOLOGY, m in MODE_OF_OPERATION: EmissionActivityRatio[r,t,e,m,y]<>0} EmissionActivityRatio[r,t,e,m,y]*RateOfActivity[r,l,t,m,y]*YearSplit[l,y]+AnnualExogenousEmission[r,e,y] <= AnnualEmissionLimit[r,e,y];
#s.t. E9_ModelPeriodEmissionsLimit{r in REGION, e in EMISSION}: sum{l in TIMESLICE, t in TECHNOLOGY, m in MODE_OF_OPERATION, y in YEAR: EmissionActivityRatio[r,t,e,m,y]<>0} EmissionActivityRatio[r,t,e,m,y]*RateOfActivity[r,l,t,m,y]*YearSplit[l,y] + ModelPeriodExogenousEmission[r,e] <= ModelPeriodEmissionLimit[r,e] ;
#s.t. E1_AnnualEmissionProductionByMode{r in REGION, t in TECHNOLOGY, e in EMISSION, m in MODE_OF_OPERATION, y in YEAR}: EmissionActivityRatio[r,t,e,m,y]*sum{l in TIMESLICE} RateOfActivity[r,l,t,m,y]*YearSplit[l,y]=AnnualTechnologyEmissionByMode[r,t,e,m,y];
#s.t. E2_AnnualEmissionProduction{r in REGION, t in TECHNOLOGY, e in EMISSION, m in MODE_OF_OPERATION, y in YEAR: EmissionActivityRatio[r,t,e,m,y]<>0}: sum{l in TIMESLICE, m in MODE_OF_OPERATION} EmissionActivityRatio[r,t,e,m,y]*RateOfActivity[r,l,t,m,y]*YearSplit[l,y] = AnnualTechnologyEmission[r,t,e,y];
#s.t. E3_EmissionsPenaltyByTechAndEmission{r in REGION, t in TECHNOLOGY, e in EMISSION, y in YEAR: EmissionActivityRatio[r,t,e,m,y]<>0}: sum{l in TIMESLICE, m in MODE_OF_OPERATION} EmissionActivityRatio[r,t,e,m,y]*RateOfActivity[r,l,t,m,y]*YearSplit[l,y]*EmissionsPenalty[r,e,y] = AnnualTechnologyEmissionPenaltyByEmission[r,t,e,y];
#s.t. E4_EmissionsPenaltyByTechnology{r in REGION, t in TECHNOLOGY, y in YEAR}: sum{e in EMISSION, l in TIMESLICE, m in MODE_OF_OPERATION} EmissionActivityRatio[r,t,e,m,y]*RateOfActivity[r,l,t,m,y]*YearSplit[l,y]*EmissionsPenalty[r,e,y] = AnnualTechnologyEmissionsPenalty[r,t,y];
#s.t. E6_EmissionsAccounting1{r in REGION, e in EMISSION, y in YEAR: EmissionActivityRatio[r,t,e,m,y]<>0}: sum{l in TIMESLICE, t in TECHNOLOGY, m in MODE_OF_OPERATION} EmissionActivityRatio[r,t,e,m,y]*RateOfActivity[r,l,t,m,y]*YearSplit[l,y] = AnnualEmissions[r,e,y];
#s.t. E7_EmissionsAccounting2{r in REGION, e in EMISSION: EmissionActivityRatio[r,t,e,m,y]<>0}: sum{l in TIMESLICE, t in TECHNOLOGY, m in MODE_OF_OPERATION, y in YEAR} EmissionActivityRatio[r,t,e,m,y]*RateOfActivity[r,l,t,m,y]*YearSplit[l,y] + ModelPeriodExogenousEmission[r,e] = ModelPeriodEmissions[r,e];
#
#
######### WB OUTPUT VARIABLES (22.05.2013) ##############
#
s.t. V1_TotalCost{r in REGION}: sum{t in TECHNOLOGY, y in YEAR}(((((sum{yy in YEAR: y-yy < OperationalLife[r,t] && y-yy>=0} NewCapacity[r,t,yy])+ ResidualCapacity[r,t,y])*FixedCost[r,t,y] + sum{m in MODE_OF_OPERATION, l in TIMESLICE} RateOfActivity[r,l,t,m,y]*YearSplit[l,y]*VariableCost[r,t,m,y])/((1+DiscountRate[r,t])^(y-min{yy in YEAR} min(yy)+0.5))+CapitalCost[r,t,y] * NewCapacity[r,t,y]/((1+DiscountRate[r,t])^(y-min{yy in YEAR} min(yy)))-DiscountedSalvageValue[r,t,y]) + sum{s in STORAGE} (CapitalCostStorage[r,s,y] * NewStorageCapacity[r,s,y]/((1+DiscountRateStorage[r,s])^(y-min{yy in YEAR} min(yy)))-CapitalCostStorage[r,s,y] * NewStorageCapacity[r,s,y]/((1+DiscountRateStorage[r,s])^(y-min{yy in YEAR} min(yy))))) = ModelPeriodCostByRegion[r];
#s.t. V2_DemandByTimeSlice{r in REGION, f in FUEL, l in TIMESLICE, y in YEAR}: SpecifiedAnnualDemand[r,f,y]*SpecifiedDemandProfile[r,f,l,y] = DemandByTimeSlice[r,f,l,y];
#s.t. V3_FuelProductionByTimeSlice{r in REGION, f in FUEL, l in TIMESLICE, y in YEAR}: sum{m in MODE_OF_OPERATION, t in TECHNOLOGY: OutputActivityRatio[r,t,f,m,y] <>0} RateOfActivity[r,l,t,m,y]*OutputActivityRatio[r,t,f,m,y]*YearSplit[l,y] = FuelProductionByTimeSlice[r,f,l,y];
s.t. V4_TotalAnnualCapacity{r in REGION, t in TECHNOLOGY, y in YEAR}: ((sum{yy in YEAR: y-yy < OperationalLife[r,t] && y-yy>=0} NewCapacity[r,t,yy])+ ResidualCapacity[r,t,y]) = TotalAnnualCapacity[r,t,y];
s.t. V5_AnnualProductionByTechnology{r in REGION, t in TECHNOLOGY, f in FUEL, y in YEAR}: sum{m in MODE_OF_OPERATION, l in TIMESLICE: OutputActivityRatio[r,t,f,m,y] <>0} RateOfActivity[r,l,t,m,y]*OutputActivityRatio[r,t,f,m,y] * YearSplit[l,y] = AnnualProductionByTechnology[r,t,f,y];
s.t. V6_AnnualUseByTechnology{r in REGION, t in TECHNOLOGY, f in FUEL, y in YEAR}: sum{m in MODE_OF_OPERATION, l in TIMESLICE: InputActivityRatio[r,t,f,m,y]<>0} RateOfActivity[r,l,t,m,y]*InputActivityRatio[r,t,f,m,y]*YearSplit[l,y] = AnnualUseByTechnology[r,t,f,y];
#s.t. V7_ProductionByTechnologyByTimeSlice{r in REGION, t in TECHNOLOGY, f in FUEL, l in TIMESLICE, y in YEAR}: sum{m in MODE_OF_OPERATION: OutputActivityRatio[r,t,f,m,y] <>0} RateOfActivity[r,l,t,m,y]*OutputActivityRatio[r,t,f,m,y] * YearSplit[l,y] = ProductionByTechnologyByTimeSlice[r,t,f,l,y];
#s.t. V8_UseByTechnologyByTimeSlice{r in REGION, t in TECHNOLOGY, f in FUEL, l in TIMESLICE, y in YEAR}: sum{m in MODE_OF_OPERATION: InputActivityRatio[r,t,f,m,y]<>0} RateOfActivity[r,l,t,m,y]*InputActivityRatio[r,t,f,m,y] * YearSplit[l,y] = UseByTechnologyByTimeSlice[r,t,f,l,y];
s.t. V9_AnnualEmissions{r in REGION, e in EMISSION, y in YEAR}: sum{l in TIMESLICE, t in TECHNOLOGY, m in MODE_OF_OPERATION} EmissionActivityRatio[r,t,e,m,y]*RateOfActivity[r,l,t,m,y]*YearSplit[l,y] = AnnualEmissions[r,e,y];
#s.t. V10_AnnualEmissionsByTechnology{r in REGION, t in TECHNOLOGY, e in EMISSION, y in YEAR}: sum{l in TIMESLICE, m in MODE_OF_OPERATION} EmissionActivityRatio[r,t,e,m,y]*RateOfActivity[r,l,t,m,y]*YearSplit[l,y] = AnnualEmissionsByTechnology[r,t,e,y];
#
s.t. CC1_UndiscountedCapitalInvestment{r in REGION, t in TECHNOLOGY, y in YEAR}: CapitalCost[r,t,y] * NewCapacity[r,t,y] = CapitalInvestment[r,t,y];
s.t. CC2_DiscountedCapitalInvestment{r in REGION, t in TECHNOLOGY, y in YEAR}: CapitalCost[r,t,y] * NewCapacity[r,t,y]/((1+DiscountRate[r,t])^(y-min{yy in YEAR} min(yy))) = DiscountedCapitalInvestment[r,t,y];
s.t. TDC1_TotalDiscountedCostByTechnology{r in REGION, t in TECHNOLOGY, y in YEAR}: ((((sum{yy in YEAR: y-yy < OperationalLife[r,t] && y-yy>=0} NewCapacity[r,t,yy])+ ResidualCapacity[r,t,y])*FixedCost[r,t,y] + sum{m in MODE_OF_OPERATION, l in TIMESLICE} RateOfActivity[r,l,t,m,y]*YearSplit[l,y]*VariableCost[r,t,m,y])/((1+DiscountRate[r,t])^(y-min{yy in YEAR} min(yy)+0.5))+CapitalCost[r,t,y] * NewCapacity[r,t,y]/((1+DiscountRate[r,t])^(y-min{yy in YEAR} min(yy)))-DiscountedSalvageValue[r,t,y]) = TotalDiscountedCostByTechnology[r,t,y];
s.t. TDC2_TotalDiscountedCost{r in REGION, y in YEAR}: sum{t in TECHNOLOGY}((((sum{yy in YEAR: y-yy < OperationalLife[r,t] && y-yy>=0} NewCapacity[r,t,yy])+ ResidualCapacity[r,t,y])*FixedCost[r,t,y] + sum{m in MODE_OF_OPERATION, l in TIMESLICE} RateOfActivity[r,l,t,m,y]*YearSplit[l,y]*VariableCost[r,t,m,y])/((1+DiscountRate[r,t])^(y-min{yy in YEAR} min(yy)+0.5))+CapitalCost[r,t,y] * NewCapacity[r,t,y]/((1+DiscountRate[r,t])^(y-min{yy in YEAR} min(yy)))-DiscountedSalvageValue[r,t,y]) + sum{s in STORAGE} (CapitalCostStorage[r,s,y] * NewStorageCapacity[r,s,y]/((1+DiscountRateStorage[r,s])^(y-min{yy in YEAR} min(yy)))-CapitalCostStorage[r,s,y] * NewStorageCapacity[r,s,y]/((1+DiscountRateStorage[r,s])^(y-min{yy in YEAR} min(yy)))) = TotalDiscountedCost[r,y];
s.t. OC1_OperatingCostsVariable{r in REGION, t in TECHNOLOGY, y in YEAR}: sum{m in MODE_OF_OPERATION, l in TIMESLICE} RateOfActivity[r,l,t,m,y]*YearSplit[l,y]*VariableCost[r,t,m,y] = AnnualVariableOperatingCost[r,t,y];
s.t. OC2_OperatingCostsFixedAnnual{r in REGION, t in TECHNOLOGY, y in YEAR}: ((sum{yy in YEAR: y-yy < OperationalLife[r,t] && y-yy>=0} NewCapacity[r,t,yy])+ ResidualCapacity[r,t,y])*FixedCost[r,t,y] = AnnualFixedOperatingCost[r,t,y];
#s.t. E4_EmissionsPenaltyByTechnology{r in REGION, t in TECHNOLOGY, y in YEAR}: sum{e in EMISSION, l in TIMESLICE, m in MODE_OF_OPERATION} EmissionActivityRatio[r,t,e,m,y]*RateOfActivity[r,l,t,m,y]*YearSplit[l,y]*EmissionsPenalty[r,e,y] = AnnualTechnologyEmissionsPenalty[r,t,y];
s.t. RC1_WBResidualCap{r in REGION, t in TECHNOLOGY, y in YEAR}: ResidualCapacity[r,t,y] = WBResidualCapacity[r,t,y];
#
#
#########################################################################################
#
solve;
end;