-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathDCGAN.py
223 lines (190 loc) · 8.16 KB
/
DCGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Import
import tensorflow
from tensorflow.keras import layers
import matplotlib.pyplot as plt
import uuid
import os
import numpy as np
# Initialize variables
NUM_EPOCHS = 50
BUFFER_SIZE = 30000
BATCH_SIZE = 28
NOISE_DIMENSION = 75
UNIQUE_RUN_ID = str(uuid.uuid4())
PRINT_STATS_AFTER_BATCH = 50
OPTIMIZER_LR = 0.0002
OPTIMIZER_BETAS = (0.5, 0.999)
WEIGHT_INIT_STDDEV = 0.02
# Initialize loss function, init schema and optimizers
cross_entropy_loss = tensorflow.keras.losses.BinaryCrossentropy(from_logits=True)
weight_init = tensorflow.keras.initializers.RandomNormal(stddev=WEIGHT_INIT_STDDEV)
generator_optimizer = tensorflow.keras.optimizers.Adam(OPTIMIZER_LR, \
beta_1=OPTIMIZER_BETAS[0], beta_2=OPTIMIZER_BETAS[1])
discriminator_optimizer = tensorflow.keras.optimizers.Adam(OPTIMIZER_LR, \
beta_1=OPTIMIZER_BETAS[0], beta_2=OPTIMIZER_BETAS[1])
def make_directory_for_run():
""" Make a directory for this training run. """
print(f'Preparing training run {UNIQUE_RUN_ID}')
if not os.path.exists('./runs'):
os.mkdir('./runs')
os.mkdir(f'./runs/{UNIQUE_RUN_ID}')
def generate_image(generator, epoch = 0, batch = 0):
""" Generate subplots with generated examples. """
images = []
noise = generate_noise(BATCH_SIZE)
images = generator(noise, training=False)
plt.figure(figsize=(10, 10))
for i in range(16):
# Get image and reshape
image = images[i]
image = np.reshape(image, (28, 28))
# Plot
plt.subplot(4, 4, i+1)
plt.imshow(image, cmap='gray')
plt.axis('off')
if not os.path.exists(f'./runs/{UNIQUE_RUN_ID}/images'):
os.mkdir(f'./runs/{UNIQUE_RUN_ID}/images')
plt.savefig(f'./runs/{UNIQUE_RUN_ID}/images/epoch{epoch}_batch{batch}.jpg')
def load_data():
""" Load data """
(images, _), (_, _) = tensorflow.keras.datasets.mnist.load_data()
images = images.reshape(images.shape[0], 28, 28, 1)
images = images.astype('float32')
images = (images - 127.5) / 127.5
return tensorflow.data.Dataset.from_tensor_slices(images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
def create_generator():
""" Create Generator """
generator = tensorflow.keras.Sequential()
# Input block
generator.add(layers.Dense(7*7*128, use_bias=False, input_shape=(NOISE_DIMENSION,), \
kernel_initializer=weight_init))
generator.add(layers.BatchNormalization())
generator.add(layers.LeakyReLU())
# Reshape 1D Tensor into 3D
generator.add(layers.Reshape((7, 7, 128)))
# First upsampling block
generator.add(layers.Conv2DTranspose(56, (5, 5), strides=(1, 1), padding='same', use_bias=False, \
kernel_initializer=weight_init))
generator.add(layers.BatchNormalization())
generator.add(layers.LeakyReLU())
# Second upsampling block
generator.add(layers.Conv2DTranspose(28, (5, 5), strides=(2, 2), padding='same', use_bias=False, \
kernel_initializer=weight_init))
generator.add(layers.BatchNormalization())
generator.add(layers.LeakyReLU())
# Third upsampling block: note tanh, specific for DCGAN
generator.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh', \
kernel_initializer=weight_init))
# Return generator
return generator
def generate_noise(number_of_images = 1, noise_dimension = NOISE_DIMENSION):
""" Generate noise for number_of_images images, with a specific noise_dimension """
return tensorflow.random.normal([number_of_images, noise_dimension])
def create_discriminator():
""" Create Discriminator """
discriminator = tensorflow.keras.Sequential()
# First Convolutional block
discriminator.add(layers.Conv2D(28, (5, 5), strides=(2, 2), padding='same',
input_shape=[28, 28, 1], kernel_initializer=weight_init))
discriminator.add(layers.LeakyReLU())
discriminator.add(layers.Dropout(0.5))
# Second Convolutional block
discriminator.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', kernel_initializer=weight_init))
discriminator.add(layers.LeakyReLU())
discriminator.add(layers.Dropout(0.5))
# Flatten and generate output prediction
discriminator.add(layers.Flatten())
discriminator.add(layers.Dense(1, kernel_initializer=weight_init, activation='sigmoid'))
# Return discriminator
return discriminator
def compute_generator_loss(predicted_fake):
""" Compute cross entropy loss for the generator """
return cross_entropy_loss(tensorflow.ones_like(predicted_fake), predicted_fake)
def compute_discriminator_loss(predicted_real, predicted_fake):
""" Compute discriminator loss """
loss_on_reals = cross_entropy_loss(tensorflow.ones_like(predicted_real), predicted_real)
loss_on_fakes = cross_entropy_loss(tensorflow.zeros_like(predicted_fake), predicted_fake)
return loss_on_reals + loss_on_fakes
def save_models(generator, discriminator, epoch):
""" Save models at specific point in time. """
tensorflow.keras.models.save_model(
generator,
f'./runs/{UNIQUE_RUN_ID}/generator_{epoch}.model',
overwrite=True,
include_optimizer=True,
save_format=None,
signatures=None,
options=None
)
tensorflow.keras.models.save_model(
discriminator,
f'./runs/{UNIQUE_RUN_ID}/discriminator{epoch}.model',
overwrite=True,
include_optimizer=True,
save_format=None,
signatures=None,
options=None
)
def print_training_progress(batch, generator_loss, discriminator_loss):
""" Print training progress. """
print('Losses after mini-batch %5d: generator %e, discriminator %e' %
(batch, generator_loss, discriminator_loss))
@tensorflow.function
def perform_train_step(real_images, generator, discriminator):
""" Perform one training step with Gradient Tapes """
# Generate noise
noise = generate_noise(BATCH_SIZE)
# Feed forward and loss computation for one batch
with tensorflow.GradientTape() as discriminator_tape, \
tensorflow.GradientTape() as generator_tape:
# Generate images
generated_images = generator(noise, training=True)
# Discriminate generated and real images
discriminated_generated_images = discriminator(generated_images, training=True)
discriminated_real_images = discriminator(real_images, training=True)
# Compute loss
generator_loss = compute_generator_loss(discriminated_generated_images)
discriminator_loss = compute_discriminator_loss(discriminated_real_images, discriminated_generated_images)
# Compute gradients
generator_gradients = generator_tape.gradient(generator_loss, generator.trainable_variables)
discriminator_gradients = discriminator_tape.gradient(discriminator_loss, discriminator.trainable_variables)
# Optimize model using gradients
generator_optimizer.apply_gradients(zip(generator_gradients, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(discriminator_gradients, discriminator.trainable_variables))
# Return generator and discriminator losses
return (generator_loss, discriminator_loss)
def train_gan(num_epochs, image_data, generator, discriminator):
""" Train the GAN """
# Perform one training step per batch for every epoch
for epoch_no in range(num_epochs):
num_batches = image_data.__len__()
print(f'Starting epoch {epoch_no+1} with {num_batches} batches...')
batch_no = 0
# Iterate over batches within epoch
for batch in image_data:
generator_loss, discriminator_loss = perform_train_step(batch, generator, discriminator)
batch_no += 1
# Print statistics and generate image after every n-th batch
if batch_no % PRINT_STATS_AFTER_BATCH == 0:
print_training_progress(batch_no, generator_loss, discriminator_loss)
generate_image(generator, epoch_no, batch_no)
# Save models on epoch completion.
save_models(generator, discriminator, epoch_no)
# Finished :-)
print(f'Finished unique run {UNIQUE_RUN_ID}')
def run_gan():
""" Initialization and training """
# Make run directory
make_directory_for_run()
# Set random seed
tensorflow.random.set_seed(42)
# Get image data
data = load_data()
# Create generator and discriminator
generator = create_generator()
discriminator = create_discriminator()
# Train the GAN
print('Training GAN ...')
train_gan(NUM_EPOCHS, data, generator, discriminator)
if __name__ == '__main__':
run_gan()