-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMNA.py
331 lines (223 loc) · 7.74 KB
/
MNA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import graph as gph
from collections import deque
import numpy as np
import Types
class MNAEdge():
voltCount = 0
def __init__(self, n1, n2, type):
self.res = 0
self.voltIndex = 0
self.n1 = n1
self.n2 = n2
self.type = type
if type == Types.volt:
self.voltIndex = MNAEdge.voltCount
MNAEdge.voltCount += 1
def addStart(self, node):
self.n1 = node
def addEnd(self, node):
self.n2 = node
def __str__(self):
return str(self.n1.i) + " to " + str(self.n2.i) + " | type " + self.type
class MNANode():
count = 0
def __init__(self):
"""
:param node:
:type node: gph.Node
"""
self.conductance = 0
self.edges = []
self.volt = None
self.i = MNANode.count
MNANode.count += 1
def addEdge(self, node, type, res=None):
"""
:param edge:
:type edge: MNAEdge
:return: None
"""
edge = MNAEdge(self, node, type)
if res:
edge.res = res
self.edges.append(edge)
node.edges.append(edge)
def __str__(self):
return "<MNANode i = " + str(self.i) + ">"
class MNA():
def __init__(self, graph):
"""
:param graph:
:type graph: gph.SubGraph
"""
self.graph = graph
self.nodes = []
self.voltNodes = []
self.start = None
self.voltSources = 0
self.nodePos = {}
self.edges = {}
def findFirstLine(self):
for n in self.graph.nodes:
if n.type == Types.line:
return n
def makeGraph(self):
used = {}
queue = deque()
node = self.findFirstLine()
gNode = MNANode()
node.MNAnode = gNode
self.nodePos[gNode] = 0
self.nodes.append(gNode)
queue.append( ( node , gNode) )
while len( queue ) > 0:
node, gNode = queue.popleft()
#node, gNode = queue.pop()
print( "node=", node)
#if node in used:
#continue
used[node] = gNode
if node.type == Types.line:
for n in node.adj:
print("adj n", n)
if n not in used:
used[n] = node
queue.append( (n , gNode) )
n.MNAnode = gNode
elif node.type == Types.res:
gNode.conductance += 1/node.resVal
for n in node.adj:
if n.MNAnode:
self.addEdge(n1=node.MNAnode, n2=n.MNAnode, res=node.resVal ,type=Types.res)
print ("adj n", n)
if n not in used:
used[n] = node
newGNode = MNANode()
queue.append( (n, newGNode) )
self.nodes.append( newGNode )
#gNode.addEdge(node= newGNode, res= node.resVal, type= Types.res )
self.addEdge(n1=gNode, n2=newGNode, res=node.resVal, type=Types.res)
self.nodePos[newGNode] = newGNode.i
n.MNAnode = newGNode
elif node.type == Types.volt:
self.voltNodes.append(( node, self.voltSources ))
self.voltSources += 1
#gNode.volt += node.volt # check this
for n in node.adj:
if n.MNAnode:
self.addEdge(n1=node.MNAnode, n2=n.MNAnode, type=Types.volt)
if n not in used:
used[n] = node
newGNode = MNANode()
queue.append( (n, newGNode) )
self.nodes.append(newGNode)
#gNode.addEdge(node=newGNode, type=Types.volt)
self.addEdge(n1=gNode, n2=newGNode, type=Types.volt)
self.nodePos[newGNode] = newGNode.i
n.MNAnode = newGNode
def addEdge(self, n1, n2, type, res = None):
"""
:param n1:
:type n1: MNANode
:param n2:
:type n2: MNANode
:return:
"""
if n1.i == n2.i:
return
t = (n1,n2)
if t in self.edges:
return
self.edges[t] = True
n1.addEdge(n2, type=type, res=res)
def solve(self):
"""
A = G B
BT D
:return:
"""
self.makeGraph()
print ("Number of nodes = ", len(self.nodes))
ground = self.nodes.pop()
ground.volt = 0
print ("nodes = " , self.nodes)
print ("Calculing G matrix")
G = self.getGMatrix()
print("G = ", G)
print("Calculing B matrix")
self.nodes.append(ground)
B = self.getBMatrix()
print("B = " , B)
n = len( self.nodes ) + self.voltSources - 1
A = np.array( [[0.0 for i in range(n)] for j in range(n) ] )
for i in range(len( self.nodes )-1):
for j in range(len( self.nodes )-1):
A[i][j] = G[i][j]
A[i][len( self.nodes )-1] = B[i]
A[len(self.nodes) - 1][i] = B[i]
print("A = ", A)
z = self.makeZ()
print("z = ", z)
r = np.linalg.solve(A,z)
print("R = ", r)
ground = self.nodes.pop()
for node in self.nodes:
node.volt = r[node.i ]
self.nodes.append(ground)
def makeZ(self):
#TODO: for now z has only zeroes
z = np.array([ 0 for i in range(len(self.nodes) + self.voltSources - 1 ) ])
for t in self.voltNodes:
node, i = t
z[len(self.nodes)- 1 + i] = -node.volt
return z
def getGMatrix(self):
#TODO: maybe is not to node length but rather node length -1
size = len(self.nodes)
M = np.array( [ [ 0.0 for j in range( size ) ] for i in range( size ) ] )
for n in self.nodes:
print("node = ", n)
cond = 0
for e in n.edges:
print(" edge = ", e)
if e.res != 0:
cond += 1/e.res
print (" res = ", e.res)
if e.n1.i == size or e.n2.i == size:
continue
M[e.n1.i][e.n2.i] = -e.res # Solo funciona si tienen una sola coneccion
M[e.n2.i][e.n1.i] = -e.res
#if n.i != size:
M[n.i][n.i] = cond
return M
def getBMatrix(self):
print ("Volt sources = ", self.voltSources)
size = len(self.nodes) - 1
M = np.array( [ [ 0 for j in range( len(self.nodes) -1 ) ] for i in range( self.voltSources ) ])
print ("Empty M ", M)
usedEdges = {}
for n in self.nodes:
for edge in n.edges:
if edge in usedEdges:
continue
usedEdges[edge] = n
if edge.type == Types.volt:
n1 = edge.n1
n2 = edge.n2
print ("Volt index = ", edge.voltIndex)
if n1.i != size:
M[ edge.voltIndex][n1.i ] = 1
if n2.i != size:
M[ edge.voltIndex][n2.i ] = -1
print(M.transpose())
print(M)
return M.transpose()
def findStart(self):
node = self.NormalGraph.nodes[0]
queue = deque()
queue.append(node)
while len(queue) > 0:
node = queue.popleft()
if node.type == Node.ground or node.type == Node.volt:
self.start = node
return