forked from microsoft/SealPIR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpir_server.cpp
451 lines (357 loc) · 16.3 KB
/
pir_server.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
#include "pir_server.hpp"
#include "pir_client.hpp"
using namespace std;
using namespace seal;
using namespace seal::util;
PIRServer::PIRServer(const EncryptionParameters ¶ms, const PirParams &pir_params) :
params_(params),
pir_params_(pir_params),
is_db_preprocessed_(false)
{
auto context = SEALContext::Create(params, false);
evaluator_ = make_unique<Evaluator>(context);
}
void PIRServer::preprocess_database() {
if (!is_db_preprocessed_) {
for (uint32_t i = 0; i < db_->size(); i++) {
evaluator_->transform_to_ntt_inplace(
db_->operator[](i), params_.parms_id());
}
is_db_preprocessed_ = true;
}
}
// Server takes over ownership of db and will free it when it exits
void PIRServer::set_database(unique_ptr<vector<Plaintext>> &&db) {
if (!db) {
throw invalid_argument("db cannot be null");
}
db_ = move(db);
is_db_preprocessed_ = false;
}
void PIRServer::set_database(const std::unique_ptr<const std::uint8_t[]> &bytes,
uint64_t ele_num, uint64_t ele_size) {
uint32_t logt = floor(log2(params_.plain_modulus().value()));
uint32_t N = params_.poly_modulus_degree();
// number of FV plaintexts needed to represent all elements
uint64_t total = plaintexts_per_db(logt, N, ele_num, ele_size);
// number of FV plaintexts needed to create the d-dimensional matrix
uint64_t prod = 1;
for (uint32_t i = 0; i < pir_params_.nvec.size(); i++) {
prod *= pir_params_.nvec[i];
}
uint64_t matrix_plaintexts = prod;
assert(total <= matrix_plaintexts);
auto result = make_unique<vector<Plaintext>>();
result->reserve(matrix_plaintexts);
uint64_t ele_per_ptxt = elements_per_ptxt(logt, N, ele_size);
uint64_t bytes_per_ptxt = ele_per_ptxt * ele_size;
uint64_t db_size = ele_num * ele_size;
uint64_t coeff_per_ptxt = ele_per_ptxt * coefficients_per_element(logt, ele_size);
assert(coeff_per_ptxt <= N);
cout << "Server: total number of FV plaintext = " << total << endl;
cout << "Server: elements packed into each plaintext " << ele_per_ptxt << endl;
uint32_t offset = 0;
for (uint64_t i = 0; i < total; i++) {
uint64_t process_bytes = 0;
if (db_size <= offset) {
break;
} else if (db_size < offset + bytes_per_ptxt) {
process_bytes = db_size - offset;
} else {
process_bytes = bytes_per_ptxt;
}
// Get the coefficients of the elements that will be packed in plaintext i
vector<uint64_t> coefficients = bytes_to_coeffs(logt, bytes.get() + offset, process_bytes);
offset += process_bytes;
uint64_t used = coefficients.size();
assert(used <= coeff_per_ptxt);
// Pad the rest with 1s
for (uint64_t j = 0; j < (N - used); j++) {
coefficients.push_back(1);
}
Plaintext plain;
vector_to_plaintext(coefficients, plain);
// cout << i << "-th encoded plaintext = " << plain.to_string() << endl;
result->push_back(move(plain));
}
// Add padding to make database a matrix
uint64_t current_plaintexts = result->size();
assert(current_plaintexts <= total);
#ifdef DEBUG
cout << "adding: " << matrix_plaintexts - current_plaintexts
<< " FV plaintexts of padding (equivalent to: "
<< (matrix_plaintexts - current_plaintexts) * elements_per_ptxt(logtp, N, ele_size)
<< " elements)" << endl;
#endif
vector<uint64_t> padding(N, 1);
for (uint64_t i = 0; i < (matrix_plaintexts - current_plaintexts); i++) {
Plaintext plain;
vector_to_plaintext(padding, plain);
result->push_back(plain);
}
set_database(move(result));
}
void PIRServer::set_galois_key(std::uint32_t client_id, seal::GaloisKeys galkey) {
galkey.parms_id() = params_.parms_id();
galoisKeys_[client_id] = galkey;
}
PirReply PIRServer::generate_reply(PirQuery query, uint32_t client_id) {
vector<uint64_t> nvec = pir_params_.nvec;
uint64_t product = 1;
for (uint32_t i = 0; i < nvec.size(); i++) {
product *= nvec[i];
}
auto coeff_count = params_.poly_modulus_degree();
vector<Plaintext> *cur = db_.get();
vector<Plaintext> intermediate_plain; // decompose....
auto pool = MemoryManager::GetPool();
int N = params_.poly_modulus_degree();
int logt = floor(log2(params_.plain_modulus().value()));
cout << "expansion ratio = " << pir_params_.expansion_ratio << endl;
for (uint32_t i = 0; i < nvec.size(); i++) {
cout << "Server: " << i + 1 << "-th recursion level started " << endl;
vector<Ciphertext> expanded_query;
uint64_t n_i = nvec[i];
cout << "Server: n_i = " << n_i << endl;
cout << "Server: expanding " << query[i].size() << " query ctxts" << endl;
for (uint32_t j = 0; j < query[i].size(); j++){
uint64_t total = N;
if (j == query[i].size() - 1){
total = n_i % N;
}
cout << "-- expanding one query ctxt into " << total << " ctxts "<< endl;
vector<Ciphertext> expanded_query_part = expand_query(query[i][j], total, client_id);
expanded_query.insert(expanded_query.end(), std::make_move_iterator(expanded_query_part.begin()),
std::make_move_iterator(expanded_query_part.end()));
expanded_query_part.clear();
}
cout << "Server: expansion done " << endl;
if (expanded_query.size() != n_i) {
cout << " size mismatch!!! " << expanded_query.size() << ", " << n_i << endl;
}
/*
cout << "Checking expanded query " << endl;
Plaintext tempPt;
for (int h = 0 ; h < expanded_query.size(); h++){
cout << "noise budget = " << client.decryptor_->invariant_noise_budget(expanded_query[h]) << ", ";
client.decryptor_->decrypt(expanded_query[h], tempPt);
cout << tempPt.to_string() << endl;
}
cout << endl;
*/
// Transform expanded query to NTT, and ...
for (uint32_t jj = 0; jj < expanded_query.size(); jj++) {
evaluator_->transform_to_ntt_inplace(expanded_query[jj]);
}
// Transform plaintext to NTT. If database is pre-processed, can skip
if ((!is_db_preprocessed_) || i > 0) {
for (uint32_t jj = 0; jj < cur->size(); jj++) {
evaluator_->transform_to_ntt_inplace((*cur)[jj], params_.parms_id());
}
}
for (uint64_t k = 0; k < product; k++) {
if ((*cur)[k].is_zero()){
cout << k + 1 << "/ " << product << "-th ptxt = 0 " << endl;
}
}
product /= n_i;
vector<Ciphertext> intermediateCtxts(product);
Ciphertext temp;
for (uint64_t k = 0; k < product; k++) {
evaluator_->multiply_plain(expanded_query[0], (*cur)[k], intermediateCtxts[k]);
for (uint64_t j = 1; j < n_i; j++) {
evaluator_->multiply_plain(expanded_query[j], (*cur)[k + j * product], temp);
evaluator_->add_inplace(intermediateCtxts[k], temp); // Adds to first component.
}
}
for (uint32_t jj = 0; jj < intermediateCtxts.size(); jj++) {
evaluator_->transform_from_ntt_inplace(intermediateCtxts[jj]);
// print intermediate ctxts?
//cout << "const term of ctxt " << jj << " = " << intermediateCtxts[jj][0] << endl;
}
if (i == nvec.size() - 1) {
return intermediateCtxts;
} else {
intermediate_plain.clear();
intermediate_plain.reserve(pir_params_.expansion_ratio * product);
cur = &intermediate_plain;
auto tempplain = util::allocate<Plaintext>(
pir_params_.expansion_ratio * product,
pool, coeff_count);
for (uint64_t rr = 0; rr < product; rr++) {
decompose_to_plaintexts_ptr(intermediateCtxts[rr],
tempplain.get() + rr * pir_params_.expansion_ratio, logt);
for (uint32_t jj = 0; jj < pir_params_.expansion_ratio; jj++) {
auto offset = rr * pir_params_.expansion_ratio + jj;
intermediate_plain.emplace_back(tempplain[offset]);
}
}
product *= pir_params_.expansion_ratio; // multiply by expansion rate.
}
cout << "Server: " << i + 1 << "-th recursion level finished " << endl;
cout << endl;
}
cout << "reply generated! " << endl;
// This should never get here
assert(0);
vector<Ciphertext> fail(1);
return fail;
}
inline vector<Ciphertext> PIRServer::expand_query(const Ciphertext &encrypted, uint32_t m,
uint32_t client_id) {
#ifdef DEBUG
uint64_t plainMod = params_.plain_modulus().value();
cout << "PIRServer side plain modulus = " << plainMod << endl;
#endif
GaloisKeys &galkey = galoisKeys_[client_id];
// Assume that m is a power of 2. If not, round it to the next power of 2.
uint32_t logm = ceil(log2(m));
Plaintext two("2");
vector<int> galois_elts;
auto n = params_.poly_modulus_degree();
if (logm > ceil(log2(n))){
throw logic_error("m > n is not allowed.");
}
for (int i = 0; i < ceil(log2(n)); i++) {
galois_elts.push_back((n + exponentiate_uint64(2, i)) / exponentiate_uint64(2, i));
}
vector<Ciphertext> temp;
temp.push_back(encrypted);
Ciphertext tempctxt;
Ciphertext tempctxt_rotated;
Ciphertext tempctxt_shifted;
Ciphertext tempctxt_rotatedshifted;
for (uint32_t i = 0; i < logm - 1; i++) {
vector<Ciphertext> newtemp(temp.size() << 1);
// temp[a] = (j0 = a (mod 2**i) ? ) : Enc(x^{j0 - a}) else Enc(0). With
// some scaling....
int index_raw = (n << 1) - (1 << i);
int index = (index_raw * galois_elts[i]) % (n << 1);
for (uint32_t a = 0; a < temp.size(); a++) {
evaluator_->apply_galois(temp[a], galois_elts[i], galkey, tempctxt_rotated);
//cout << "rotate " << client.decryptor_->invariant_noise_budget(tempctxt_rotated) << ", ";
evaluator_->add(temp[a], tempctxt_rotated, newtemp[a]);
multiply_power_of_X(temp[a], tempctxt_shifted, index_raw);
//cout << "mul by x^pow: " << client.decryptor_->invariant_noise_budget(tempctxt_shifted) << ", ";
multiply_power_of_X(tempctxt_rotated, tempctxt_rotatedshifted, index);
// cout << "mul by x^pow: " << client.decryptor_->invariant_noise_budget(tempctxt_rotatedshifted) << ", ";
// Enc(2^i x^j) if j = 0 (mod 2**i).
evaluator_->add(tempctxt_shifted, tempctxt_rotatedshifted, newtemp[a + temp.size()]);
}
temp = newtemp;
/*
cout << "end: ";
for (int h = 0; h < temp.size();h++){
cout << client.decryptor_->invariant_noise_budget(temp[h]) << ", ";
}
cout << endl;
*/
}
// Last step of the loop
vector<Ciphertext> newtemp(temp.size() << 1);
int index_raw = (n << 1) - (1 << (logm - 1));
int index = (index_raw * galois_elts[logm - 1]) % (n << 1);
for (uint32_t a = 0; a < temp.size(); a++) {
if (a >= (m - (1 << (logm - 1)))) { // corner case.
evaluator_->multiply_plain(temp[a], two, newtemp[a]); // plain multiplication by 2.
// cout << client.decryptor_->invariant_noise_budget(newtemp[a]) << ", ";
} else {
evaluator_->apply_galois(temp[a], galois_elts[logm - 1], galkey, tempctxt_rotated);
evaluator_->add(temp[a], tempctxt_rotated, newtemp[a]);
multiply_power_of_X(temp[a], tempctxt_shifted, index_raw);
multiply_power_of_X(tempctxt_rotated, tempctxt_rotatedshifted, index);
evaluator_->add(tempctxt_shifted, tempctxt_rotatedshifted, newtemp[a + temp.size()]);
}
}
vector<Ciphertext>::const_iterator first = newtemp.begin();
vector<Ciphertext>::const_iterator last = newtemp.begin() + m;
vector<Ciphertext> newVec(first, last);
return newVec;
}
inline void PIRServer::multiply_power_of_X(const Ciphertext &encrypted, Ciphertext &destination,
uint32_t index) {
auto coeff_mod_count = params_.coeff_modulus().size();
auto coeff_count = params_.poly_modulus_degree();
auto encrypted_count = encrypted.size();
//cout << "coeff mod count for power of X = " << coeff_mod_count << endl;
//cout << "coeff count for power of X = " << coeff_count << endl;
// First copy over.
destination = encrypted;
// Prepare for destination
// Multiply X^index for each ciphertext polynomial
for (int i = 0; i < encrypted_count; i++) {
for (int j = 0; j < coeff_mod_count; j++) {
negacyclic_shift_poly_coeffmod(encrypted.data(i) + (j * coeff_count),
coeff_count, index,
params_.coeff_modulus()[j],
destination.data(i) + (j * coeff_count));
}
}
}
inline void PIRServer::decompose_to_plaintexts_ptr(const Ciphertext &encrypted, Plaintext *plain_ptr, int logt) {
vector<Plaintext> result;
auto coeff_count = params_.poly_modulus_degree();
auto coeff_mod_count = params_.coeff_modulus().size();
auto encrypted_count = encrypted.size();
uint64_t t1 = 1 << logt; // t1 <= t.
uint64_t t1minusone = t1 -1;
// A triple for loop. Going over polys, moduli, and decomposed index.
for (int i = 0; i < encrypted_count; i++) {
const uint64_t *encrypted_pointer = encrypted.data(i);
for (int j = 0; j < coeff_mod_count; j++) {
// populate one poly at a time.
// create a polynomial to store the current decomposition value
// which will be copied into the array to populate it at the current
// index.
double logqj = log2(params_.coeff_modulus()[j].value());
//int expansion_ratio = ceil(logqj + exponent - 1) / exponent;
int expansion_ratio = ceil(logqj / logt);
// cout << "local expansion ratio = " << expansion_ratio << endl;
uint64_t curexp = 0;
for (int k = 0; k < expansion_ratio; k++) {
// Decompose here
for (int m = 0; m < coeff_count; m++) {
plain_ptr[i * coeff_mod_count * expansion_ratio
+ j * expansion_ratio + k][m] =
(*(encrypted_pointer + m + (j * coeff_count)) >> curexp) & t1minusone;
}
curexp += logt;
}
}
}
}
vector<Plaintext> PIRServer::decompose_to_plaintexts(const Ciphertext &encrypted) {
vector<Plaintext> result;
auto coeff_count = params_.poly_modulus_degree();
auto coeff_mod_count = params_.coeff_modulus().size();
auto plain_bit_count = params_.plain_modulus().bit_count();
auto encrypted_count = encrypted.size();
// Generate powers of t.
uint64_t plainMod = params_.plain_modulus().value();
// A triple for loop. Going over polys, moduli, and decomposed index.
for (int i = 0; i < encrypted_count; i++) {
const uint64_t *encrypted_pointer = encrypted.data(i);
for (int j = 0; j < coeff_mod_count; j++) {
// populate one poly at a time.
// create a polynomial to store the current decomposition value
// which will be copied into the array to populate it at the current
// index.
int logqj = log2(params_.coeff_modulus()[j].value());
int expansion_ratio = ceil(logqj / log2(plainMod));
// cout << "expansion ratio = " << expansion_ratio << endl;
uint64_t cur = 1;
for (int k = 0; k < expansion_ratio; k++) {
// Decompose here
Plaintext temp(coeff_count);
transform(encrypted_pointer + (j * coeff_count),
encrypted_pointer + ((j + 1) * coeff_count),
temp.data(),
[cur, &plainMod](auto &in) { return (in / cur) % plainMod; }
);
result.emplace_back(move(temp));
cur *= plainMod;
}
}
}
return result;
}