-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpolypy.py
968 lines (882 loc) · 38.6 KB
/
polypy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
import sys, os, re, time, string, math, itertools, argparse, pdb
from copy import copy
## only ClayFF atoms
# element names
elements = ["O", "Al", "Si", "Ca" ]
## VDW radii
#radii = [1.52, 1.84, 2.1, 2.31 ]
## Lengthened radii to lengthen bonds
#radii = [2.0, 2.2, 2.2, 0.1 ]
### FV attempt to get all rings need to lengthen radii
radii = [2.12, 2.4, 2.4, 0.1 ]
radius = dict(zip(elements,radii))
atomnumber = dict(zip(elements,range(len(elements))))
######### MAIN #########
def main(args):
print(args)
#!/usr/bin/python
polypy_version=1.416
''' polypy -- python program to calculate rings in a graph, using Franzblau statistics
(Phys. Rev. B, vol 44, 4925 (1991): D.S. Franzblau, "Computation of ring statistics for network models of solid")
Copyright (C) 2010-2013 Jaap Kroes ([email protected])
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
notation used in this program:
g - graph
r - ring, list of vertices that are form ring in g (note, rings also form graphs)
v - vertex
n - neighboring vertex, relative to v
'''
parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter,description='''\
This program uses Franzblau statistics [Phys. Rev. B, vol 44, 4925 (1991)] (with a correction since v1.4) to find irreducible rings in molecular structures.
Options include
- searching for rings,
- searching for chains,
- printing the coordination of each atom,
- calculating improper dihedrals of atoms with more than 3 neighbors,
- writing an output marked according to ringsize of coordination,
- writing simple output for large multi-framed files
''')
#define command line options
parser.add_argument(dest="geo",type=str,help="input xyz file")
parser.add_argument("-c", "--chainbool", action="store_true", help="identify chains of atoms: defined as a connected line of 2n-atoms (default=false)")
parser.add_argument("-d", "--depth", type=int, default=7, help="maximum ring size, computation time is O(x^d), where x is average coordination. (default=7), note: 0=infinite depth")
parser.add_argument("-g", "--cluster_rings", dest="clusterbool", action="store_true", help="group/cluster connected rings (default=false)")
parser.add_argument("-m", "--mark", type=int, default=0, help="determine output marking criterium : 0 (none, default), 1 (neighbors), 2 (ring-size), 3 (chains), 4, 5, 6 (same but in PDB format instead of XYZ)")
parser.add_argument("--polygon", action="store_true", help="write polygon file for 3D visualization")
parser.add_argument("-b", "--pbc", action="store_true", help="use periodic boundary conditions, cell size on 2nd line of xyz-file as Lx Ly Lz")
parser.add_argument("-l", "--ringbool", action="store_false", help="switch on/off: search for rings/loops (default=true)")
parser.add_argument("-p", "--impropbool", action="store_true", help="calculate improper angles (default=false)")
parser.add_argument("--improplimit", type=float, default=0, help="lower limit for counting improper angles in simple NFO (default=0)")
parser.add_argument("--n2r6", action="store_true", help="calculate number of \"SP\"-atoms (two neighbors in a hexagon) (default=false)")
parser.add_argument("--n3r6", action="store_true", help="calculate number of \"SP2\"-atoms (three neighbors in a hexagon) (default=false)")
parser.add_argument("-f", "--floodfill", action="store_true", help="find disconnected subgraphs (default=false)")
parser.add_argument("-o", "--origin", type=int, default=-1, help="find neighbor-shells of atom i (disabled if < 0)")
parser.add_argument("--connect", type=str, help="define explicit connections, file-format: one line per atom, defining all neighbors for this atom (indices run from 0 to n-1)")
parser.add_argument("-i", "--info", action="store_false", help="write nfo file (default=true)")
parser.add_argument("--stride", default=1, type=int, help="stride xyz file")
parser.add_argument("-s", "--simple", action="store_true",help="print simple nfo file, prints only ring counts (default=false)")
parser.add_argument("-q", "--quiet", action="store_true",help="suppress progress bars (default=false)")
parser.add_argument("-x", "--franzblau", action="store_false", help="removed rings that are not shortest path rings (default=true)")
parser.add_argument('--verbose', '-v', action='count')
parser.add_argument('--version', action='version', version="%(prog)s version " + str(polypy_version))
args = parser.parse_args(args)
starttime = time.time()
basename = args.geo[:-4]
d = args.depth
if args.verbose: sys.stderr.write("Starting polypy %s: file = %s, depth = %d\n" %(polypy_version, args.geo, d))
data,max_radius = loadxyz(args.geo) # load data
if args.verbose: sys.stderr.write("Data loaded from %s : max atomic radius = %f\n"%(args.geo,max_radius))
nframes = len(data) # number of frames
if args.info or args.simple:
basename = basename.split('/')[-1]
nfo_file = open(basename+'.nfo','w')
nfo_file.write('################################## \n')
nfo_file.write('# polypy %s\n'%polypy_version)
nfo_file.write('# file: '+args.geo+'\n')
nfo_file.write('# current path: '+os.path.abspath('./')+'\n')
nfo_file.write('# frames: '+str(nframes)+'\n')
nfo_file.write('# max_depth: '+str(d)+'\n')
nfo_file.write('# max_radius: '+str(max_radius)+'\n')
nfo_file.write('# arguments: '+str(args)+'\n')
nfo_file.write('################################## \n')
if args.simple: # write header for simple nfo-file : columns for coordination, rings, chains
nfo_file.write("#frame 0n 1n 2n 3n 4n")
dstrings = d if d>2 else 10
for m in range(3,dstrings+1): nfo_file.write(" %3ir" % int(m))
if args.n2r6: nfo_file.write(" 2n6r")
if args.n3r6: nfo_file.write(" 3n6r")
if args.impropbool: nfo_file.write(" #IMPR")
if args.chainbool: nfo_file.write(" nc lc")
nfo_file.write("\n")
# evaluate data
if args.mark>0 and args.mark<=3: marked_file=open(basename+'_marked.xyz','w') # remove old data
for i,snap in enumerate(data):
if not i%args.stride==0: continue
if(nframes>1): sys.stderr.write("FRAME %d / %d\n"%(i,nframes))
if args.quiet: g = graph(snap) # initialize a graph based on data
else: g = graph(snap, progressbar(25))
if args.pbc: g.box = snap['cell'] # set cell size
if args.connect: g.connect_file(args.connect) # read connections from file
else: g.connect_sparse(max_radius,args.pbc) # connect graph (based on atomic radii)
if args.origin > -1: g.shells(args.origin,d) # print neighbor shells
if args.ringbool:
g.polycount(d) # find rings
if args.franzblau: g.remove_filled_polygons() # remove non-elementary rings
if args.chainbool: g.find_chains() # find chains
if args.clusterbool: g.find_clusters() # cluster rings
if args.floodfill: g.floodfill() # find connected subgraphs
if args.impropbool: g.improp(args.pbc)
if args.mark:
if args.mark==1 or args.mark==4: g.mark_neighbors(args.mark) # mark atoms of different coordination by atom type
if args.mark==2 or args.mark==5: g.mark_rings(args.mark) # mark elements of ring by different atom type
if args.mark==3 or args.mark==6: g.mark_chains(args.mark) # mark atoms in chains as Helium (He)
if args.mark>3: g.writepdb(open(basename+'_marked.pdb','w'),args.pbc,"-- marked pdb file --")
elif args.mark>0: g.writexyz(marked_file,"-- marked xyz file --")
if args.polygon: g.writepolygons(open('polygons.dat','w'))
if args.simple:
nfo_file.write("%-6d" % i+' ')
g.print_simple_info(nfo_file,d,args) # print info to file
elif args.info: g.print_info(nfo_file,args) # print extended info to file
if args.verbose: sys.stderr.write("Finished in %.2f seconds.\n"%(time.time()-starttime))
return 0
####### END MAIN ########
class vertex:
''' Vertices represent the atoms
A vertex is some object with neighbors.
It is usually given an ID so we can print this to stdout.
Position is used to see if atoms are connected.
'''
def __init__(v, id = 0, pos = [], atom = 'C'):
v.neighbors = [] # list of neighbors, e.g. [1,2,6] (actually they are only pointers to other vertices)
v.neighborscopy = []
v.nn = 0 # number of neighbors
v.id = id # site id, used for convenience of printing
v.pos = pos # position, [x,y,z]
v.atom = atom # atom label (element of periodic table)
v.mark = 0 # mark for pdb
v.ingraph = True # flag if atom was visited, setting to false effectively removes it from the graph
v.visited = False
def __str__(v):
return "vertex id %d, type %s, position [%.3f, %.3f, %.3f]" % (v.id,v.atom,v.pos[0],v.pos[1],v.pos[2])
class graph:
''' A graph is a set of vertices
Every graph has a size (the number of vertices/atoms) and a list of vertices.
Based on this information we can calculate rings in the graph.
'''
def __init__(g, data = None, progress = None):
g.vertices = []
g.size = 0
if data:
for i,coords in enumerate(data['coords']):
v = vertex(i,coords,data['types'][i])
g.vertices.append(v)
g.size = data['size']
g.chains = []
g.rings = []
g.path = []
g.improper = []
g.progress = progress
def connect_file(g, filename):
with open(filename,'r') as f:
for line in f:
indices = [ int(index) for index in line.split() ]
i = indices[0]
if i>=len(g.vertices) : sys.exit("ERROR index out of range : "+str(i))
v = g.vertices[i]
for j in indices[1:]:
if j>=len(g.vertices) : sys.exit("ERROR index out of range : "+str(j))
n = g.vertices[j]
if n not in v.neighbors:
v.neighbors.append(n)
v.nn += 1
for v in g.vertices: # make a backup
for n in v.neighbors:
v.neighborscopy.append(n)
def connect_sparse(g, max_radius, pbc):
'''
algorithm Verlet lists: this algorithm is O(n) even for non-packed structures, see below
using the sparsity of the space (with dicts, since polypy 1.2), the memory usage is also O(n)
since polypy 1.4 the algorithm has improved speed thanks to 'cProfile'
usage of python profiler: python -m cProfile polypy testfile.xyz
1. find a box surrounding all atoms (h1,h2,h3), O(1)
2. divide the box into small boxes with size max_r, O(n) for n atoms
3. now for all elements in one of these boxes, O(n*d) for average density d
3a. find neighbors based on box itself and neighboring boxes, O(1)
'''
if g.progress: g.progress.updateinitial('neighbors','-+')
# clear old connections
for v in g.vertices:
del v.neighbors[:]
# 3D Verlet lists:
# coordinates
x = [v.pos[0] for v in g.vertices]
y = [v.pos[1] for v in g.vertices]
z = [v.pos[2] for v in g.vertices]
minx=min(x); miny=min(y); minz=min(z) # minimum x,y,z
maxx=max(x); maxy=max(y); maxz=max(z) # maximum x,y,z
# box dimensions
if pbc:
nx = int(g.box[0]/max_radius);
ny = int(g.box[1]/max_radius);
nz = int(g.box[2]/max_radius);
if nx is 0 or ny is 0 or nz is 0: sys.exit("using PBCs with too small or undefined cell for this frame")
else: nx=ny=nz=0
# Now we use that the space can be sparsely filled, so that we do not want to allocate memory for every box
# e.g. in a graphene structure with one atom far above the flat sample, all boxes (except 1) above the sample are empty..
vl = dict()
numtotal = 0
for v in g.vertices:
# place element in box with indices n1,n2,n3
key = (int((v.pos[0]-minx)/max_radius),int((v.pos[1]-miny)/max_radius),int((v.pos[2]-minz)/max_radius))
### if atom is exactly on pbc, place it in vertix 0 else it will not be recognized as a neighbor in line
### 255, if pbc: key2=((i+di)%nx,(j+dj)%ny,(k+dk)%nz) because for this atom i+dj == ny
### ([email protected], 2014-11-21, version 1.414)
if key[0] is nx: key = (0,key[1],key[2])
if key[1] is ny: key = (key[0],0,key[2])
if key[2] is nz: key = (key[0],key[1],0)
###
if key in vl:
vl[key].append(v)
else:
vl[key] = [v]
numtotal+=1
# store information in graph
g.vl = vl
g.max_radius = max_radius
# precalculate where possible
inv_numtotal = 1./numtotal
# progress counter to prevent unnecessary progress writes
current_percentage = 0
for num,(key,vbox) in enumerate(vl.items()):
(i,j,k) = key
if g.progress:
percentage = num*inv_numtotal
if int(percentage*100)/100. > current_percentage:
current_percentage = percentage
g.progress.update(percentage,'neighbors (%d/%d)'%(num+1,numtotal))
# for all atoms in this box
for v in vbox:
# go over all neighboring boxes (i+di,j+dj,k+dk)
for di in range(-1,2):
for dj in range(-1,2):
for dk in range(-1,2):
if pbc: key2=((i+di)%nx,(j+dj)%ny,(k+dk)%nz)
else: key2=(i+di,j+dj,k+dk)
if key2 in vl:
for n in vl[key2]:
if n != v: # neighbor not equal to self
dx = v.pos[0] - n.pos[0]
dy = v.pos[1] - n.pos[1]
dz = v.pos[2] - n.pos[2]
if pbc:
if abs(dx)>g.box[0]/2: dx = abs(dx)-g.box[0]
if abs(dy)>g.box[1]/2: dy = abs(dy)-g.box[1]
if abs(dz)>g.box[2]/2: dz = abs(dz)-g.box[2]
rij2 = dx*dx + dy*dy +dz*dz
if rij2 < r22[v.atom][n.atom]:
v.neighbors.append(n)
v.nn += 1
for v in g.vertices: # and make a backup
for n in v.neighbors:
v.neighborscopy.append(n)
if g.progress: g.progress.updatefinal('neighbors (%d/%d)'%(num+1,numtotal))
''' find_rings:
!!! Most important part of the program: here we actually search for the rings !!!
parameters:
v - a vertex that from where search starts
visited - keeps track of where we have been
depth - number of steps taken (equals number of items in 'visited')
root - root node from where search started, not equal to self because of recursivity
rings - saves the complete set of rings found thus far
'''
def find_rings(g, v, rings = [], visited = [], depth = 0, root = None, max_depth = None):
## initialization
if root is None: # At the first call:
root = v # - set root to current node and
root.ingraph = False # - remove root from the graph
if max_depth: # max_depth to search (None means search until any length, max = #atoms)
if depth >= max_depth: return False
visited.append(v) # add this point to visited points
''' algorithm depth-first search:
1. pick root node
2. search all neighboring nodes
3. start recursion (from 2nd neighbors)
3a. if neighbor equals root: ring found!
3b. else search all (unvisited) neighbors
4. remove root node from the graph
5. define a list with rings in graph (g.rings)
'''
## start searching
depth += 1 # go one layer below
for n in v.neighbors: # for all neighbors
if depth > 2 and n is root: # did we find a ring?
rings.append(copy(visited)) # -> if so add a copy to the set of rings
# otherwise we search all neighbors that haven't been searched already
elif n.ingraph:
n.ingraph = False
g.find_rings(n, rings, visited, depth, root, max_depth)
n.ingraph = True
# !! BUG FIXED (v1.4), this error is also in [PRB 44-4925 (1991)]
# don't remove edge, remove only root from neighbors of v
if depth == 2:
if root in v.neighbors:
v.neighbors.remove(root)
visited.pop()
def shells(g, origin, max_depth):
o = g.vertices[origin]
sys.stdout.write("# nth neighbors of (%s)\n"%o)
oneighbors = g.search_from_origin(o,max_depth)
for d in oneighbors:
sys.stdout.write("[ n = %d ] " % d)
for v in sorted(oneighbors[d], key = lambda x : x.id):
sys.stdout.write("%d "%(v.id+1))
sys.stdout.write("\n")
def polycount(g, max_depth): # find the rings from every atom
if g.progress: g.progress.updateinitial('rings','o')
for i in range(g.size):
if g.progress and i%int(g.size/100.+1)==0: g.progress.update((float(i+1)/float(g.size)),'rings %d/%d'%(i+1,g.size))
g.find_rings(g.vertices[i], rings = g.rings, max_depth = max_depth)
if g.progress: g.progress.updatefinal('rings (%d/%d)'%(g.size,g.size))
for v in g.vertices: # restore backup of edges
v.neighbors = copy(v.neighborscopy)
def shortest_path(g, v, goal, max_depth, visited = [], depth = 1):
if depth < max_depth: # start searching
depth += 1 # go one layer below
visited.append(v) # add this point to visited points
if v == goal:
lp = len(g.path)
if depth < lp or not lp: # current path shorter or first path found
g.path = copy(visited)
max_depth = depth
else:
for n in v.neighborscopy: # search all neighbors
if n.ingraph: # not already searched
n.ingraph = False
g.shortest_path(n, goal, max_depth, visited, depth)
n.ingraph = True
visited.pop()
def remove_filled_polygons(g): # reduce rings by removing non-SP rings
if g.progress: g.progress.updateinitial('franzblau','#')
for v in g.vertices:
v.ingraph = True # make sure all are in the graph before SP-search
size = len(g.rings)
rings = g.rings
to_be_removed = []
for i in range(size): # for every ring, r
if g.progress and i%int(size/100.+1)==0: g.progress.update((float(i)/size),'franzblau (%d/%d)'%(i,size))
r = g.rings[i]; l=len(r)
remove = False
for j in range(l): # for vertex j in r
for k in range(j+2,l): # connect with all other, skip j-j (distance=0) and j-(j+1) (nearest neighbors)
if not remove:
v = r[j]; n = r[k]
djk = abs(j-k)
dist_r = min(djk,abs(djk-l))+1 # distance over the ring
g.path = []
g.shortest_path(v, n, depth = 0, max_depth = dist_r) # SP search between v and n
dist_g = len(g.path) # distance over the entire graph
if dist_g < dist_r:
remove = True
if remove: to_be_removed.append(r)
for r in to_be_removed:
g.rings.remove(r)
if g.progress: g.progress.updatefinal('franzblau (%d/%d)'%(size,size))
def find_chains(g):
# make subset of 2n vertices
if g.progress: g.progress.updateinitial("chains",'c')
begin = []
g2 = graph()
for v in g.vertices:
if v.nn == 2:
begin.append([v])
n = len(begin)
g.chains = []
if n==0: return
sys.setrecursionlimit(2*n) # maximum n merges and n copies to end
end = []
g.group_chains(begin,end)
for c in end:
if c:
# minimum chain size is 3
if len(c) > 2:
g.chains.append(c)
def group_chains(g,begin,end,iter=0):
iter += 1
n = len(begin)
mergebool1 = False
for i,c1 in enumerate(begin):
if c1:
if g.progress: g.progress.update(float(i)/float(n),'chains iter %d (%d/%d)'%(iter,i,n))
mergebool2 = False
for j,c2 in enumerate(begin):
if c2 and i != j:
if g.chain_overlap(c1,c2):
# if two chains have overlap: merge
begin[i] += c2
begin[j] = None
mergebool1 = True
mergebool2 = True
if not mergebool2:
end.append(c1)
begin[i] = None
if g.progress: g.progress.updatefinal('chains iter %d (%d/%d)'%(iter,n,n))
if mergebool1:
g.group_chains(begin,end,iter) # restart grouping
else: return
def chain_overlap(g,c1,c2):
for v1 in c1:
for v2 in c2:
if v1 in v2.neighbors: return True
return False
def find_clusters(g):
'''
A defect is described as a cluster of atypical rings
(i.e. in graphitic material, all deviations from hexagons).
Two rings are clustered if they have at least one vertex in common.
In this algorithm, grouping is done recursively.
'''
n = g.size
g.clusters = []
if n==0: return
sys.setrecursionlimit(2*n) # maximum n merges and n copies to end
clusters = []
for r in g.rings:
if len(r)!=6:
i = len(clusters)
size = len(r)
c = dict(id = i, type = (str(size)+'r'), size = size, elements = r)
clusters.append(c)
g.group_clusters(clusters,g.clusters) # group rings into connected structures
def group_clusters(g,begin,end):
# if begin is empty we are done
if len(begin)==0:
return
r1 = begin[0] # first ring in begin
for i,r2 in enumerate(begin[1:]):
if g.overlap_rings(r1,r2):
# if two rings have overlap
begin.append(g.merge_clusters(r1,r2)) # merge
begin.pop(i+1) # remove old r2
begin.pop(0) # remove old r1
g.group_clusters(begin,end) # restart grouping
return # return if recursion jumps back
# if r1 has no overlap with any other ring
end.append(r1) # r1 is final
begin.pop(0) # remove r1 from begin
g.group_clusters(begin,end) # restart grouping
return # return if recursion jumps back
def overlap_rings(g,r1,r2):
for e1 in r1['elements']:
if e1 in r2['elements']:
return True
return False
def merge_clusters(g,r1,r2):
type = r1['type'] + r2['type']
elements = []
size = r1['size']
for e1 in r1['elements']:
elements.append(e1)
for e2 in r2['elements']:
if e2 not in elements:
elements.append(e2)
size += 1
return dict(type = type, size = size, elements = elements)
def floodfill(g):
if g.progress: g.progress.updateinitial("floodfill",'f')
# this is an iterative (queue-based) version of
# floodfill to avoid stack-overflow
nremoved = 0
for v in g.vertices: v.ingraph = True
start = copy(g.vertices)
subg = 1
while start:
q = [start[0]]
while q:
v = q.pop()
v.ingraph = False
v.subgraph = subg
if g.progress:
nremoved += 1
if nremoved % int(g.size/.100+1)==0:
g.progress.update(nremoved/g.size,"floodfill (%d/%d)"%(nremoved,g.size))
for n in v.neighbors:
if n.ingraph:
n.ingraph = False
q.append(n)
subg += 1
# this last line makes it O(n^2)..
start = [v for v in g.vertices if v.ingraph]
if g.progress: g.progress.updatefinal("floodfill (%d/%d)"%(nremoved,g.size))
def improp(g,pbc):
if g.progress: g.progress.updateinitial("improper",'I')
# calculate the improper dihedral angle (ijkl)
# with the vertex as the central atom (i)
SMALL = 0.001
nimprop = 0
for v in g.vertices:
if v.nn > 2:
# run over all planes for central vertex v spanned by 3 neighbors
theta = []
i = v
for plane in itertools.combinations(range(v.nn),3):
pneighs = v.neighbors[plane[0]],v.neighbors[plane[1]],v.neighbors[plane[2]]
ptheta = []
for n in range(3):
# left shift of neighbor tuple
nid = list(itertools.islice(itertools.cycle(plane), n, len(plane)+n))
j = v.neighbors[nid[0]]
k = v.neighbors[nid[1]]
l = v.neighbors[nid[2]]
rij = [a_i - b_i for a_i, b_i in zip(i.pos, j.pos)]
rkj = [a_i - b_i for a_i, b_i in zip(k.pos, j.pos)]
rlk = [a_i - b_i for a_i, b_i in zip(l.pos, k.pos)]
if pbc:
rij = minimum_image(rij,g.box)
rkj = minimum_image(rkj,g.box)
rlk = minimum_image(rlk,g.box)
Rij = math.sqrt(sum([p*q for p,q in zip (rij,rij)]))
Rkj = math.sqrt(sum([p*q for p,q in zip (rkj,rkj)]))
Rlk = math.sqrt(sum([p*q for p,q in zip (rlk,rlk)]))
c0 = (rij[0] * rlk[0] + rij[1] * rlk[1] + rij[2] * rlk[2]) / Rij / Rlk
c1 = (rij[0] * rkj[0] + rij[1] * rkj[1] + rij[2] * rkj[2]) / Rij / Rkj
c2 = -(rlk[0] * rkj[0] + rlk[1] * rkj[1] + rlk[2] * rkj[2]) / Rlk / Rkj
s1 = 1.0 - c1*c1
if s1 < SMALL: s1 = SMALL
s1 = 1.0 / s1
s2 = 1.0 - c2*c2
if s2 < SMALL: s2 = SMALL
s2 = 1.0 / s2
s12 = math.sqrt(s1*s2)
c = (c1*c2 + c0) * s12
if c > 1.0: c = 1.0
if c < -1.0: c = -1.0
ptheta.append(180.0*math.acos(c)/math.pi)
theta.append([pneighs,ptheta])
# store central vertex, neighbor vertices and
# theta of planes spanned by all neighboring vertices
g.improper.append([i,theta])
if g.progress:
nimprop += 1
if nimprop % int(g.size/.100+1)==0:
g.progress.update(nimprop/g.size,"improper (%d/%d)"%(nimprop,g.size))
if g.progress: g.progress.updatefinal("improper (%d/%d)"%(nimprop,g.size))
def search_from_origin(g,v,max_depth):
# breadth-first-search (BFS)
Q = []
neighbors = {}
for vertex in g.vertices: vertex.ingraph = True
v.ingraph = False
for vertex in v.neighbors:
vertex.ingraph = False
Q.append({'v':vertex,'d':1,'i':vertex.id})
while Q != []:
t = Q.pop(0)
d = t['d']
if d > max_depth:
return neighbors
if not d in neighbors: neighbors[d] = []
neighbors[d].append(t['v'])
for n in t['v'].neighbors:
if n.ingraph:
n.ingraph = False
Q.append({'v':n, 'd':t['d']+1,'i':n.id})
return neighbors
def mark_rings(g,mark):
# initialize markings
if mark<=3:
for v in g.vertices: v.atom = elements[0]
# ring list (set->list), sort inverted by ring size 7,7,7,...,6,6,6...,5,5,...
rl = sorted(g.rings, key = lambda r: len(r))
# this has some ambiguity because one atom can be part of multiple rings
# rings are marked according to the order in 'rl', which is based on size (...,8,7,6,5,4,3)
for r in rl:
if len(r)==6: continue
for v in r:
# label size by periodic table element
if mark>3: v.mark = len(r)
else:
if len(r) < len(elements): v.atom = elements[len(r)]
else: v.atom = elements[0]
def mark_neighbors(g,mark):
# mark atoms by number of neighbors:
for v in g.vertices:
if mark>3: v.mark = v.nn
else: v.atom = elements[v.nn+3] # +3 so that graphitic atoms (3nn) are marked as carbon
def mark_chains(g,mark):
for v in g.vertices:
if v.nn == 2:
if mark>3: v.mark=1
else: v.atom = "He" # so that chain atoms (2nn) are marked as He, not to interfere with ring-marking
else:
if mark>3: v.mark=0
def writexyz(g, file, header):
file.write("%5i\n" % g.size) # header1 (# atoms)
file.write(header+"\n")
for v in g.vertices: file.write("%2s %12.8f %12.8f %12.8f\n" % (v.atom, v.pos[0], v.pos[1], v.pos[2]))
def writepdb(g, file, pbc, header):
if pbc: file.write("REMARK\nCRYST1%9.3f%9.3f%9.3f 90.00 90.00 90.00 P 1 1\n"%(g.box[0],g.box[1],g.box[2]))
else : file.write("REMARK\nCRYST1%9.3f%9.3f%9.3f 90.00 90.00 90.00 P 1 1\n"%(100,100,100))
for i,v in enumerate(g.vertices):
file.write("ATOM%7d %2s XXX 1 %8.3f%8.3f%8.3f%6.2f%6.2f\n"%(i,v.atom,v.pos[0],v.pos[1],v.pos[2],v.nn,v.mark))
def writepolygons(g, file):
for r in g.rings:
l = len(r)
file.write('color %d\n'%l)
c = [0,0,0]
for v in r:
for i in range(3): c[i] += v.pos[i]/float(l)
for i,v in enumerate(r):
n = r[(i+1)%l]
x = v.pos
y = n.pos
file.write('graphics top triangle {%.3f %.3f %.3f} {%.3f %.3f %.3f} {%.3f %.3f %.3f}\n'%\
(x[0],x[1],x[2],y[0],y[1],y[2],c[0],c[1],c[2]))
def print_info(g, f, args):
f.write('=========== Statistics:\n')
# element neighbor list
enl = [v.nn for v in g.vertices]
nl = [sorted([n.id for n in v.neighbors]) for v in g.vertices]
#### SUMMARIZED DATA ####
if args.ringbool:
# ring list:
# - ring element sorting by id [5,7,1] -> [1,5,7]
# - ring list sorting by size
# - for rings of same size sort by
# - sort ring inter all unique rings, sorted by size and id
rl = [sorted([int(v.id) for v in r]) for r in g.rings]
# len(x) is the main key, x[0] is the subkey, etc. (note a ring always has at least 3 elements
rl = sorted(rl, key=lambda x: (len(x),x[0],x[1],x[2]))
# ring size list
rsl = [len(l) for l in rl]
# all loops and their size
for i in range(max(rsl+[0])+1): # i=0,1,2,...,max(rsl)
c = rsl.count(i) # number of times a ring of size i is found
if c != 0: f.write(str(c)+' loops of size '+str(i)+'\n')
f.write('\n')
if args.chainbool:
chains = sorted(g.chains, key=lambda x: (len(x),x[0].id))
csl = [len(c) for c in chains]
# all chains and their size
for i in range(max(csl+[0])+1): # i=0,1,2,...,max(csl)
c = csl.count(i) # number of times a ring of size i is found
if c != 0: f.write(str(c)+' chains of size '+str(i)+'\n')
f.write('\n')
if args.clusterbool:
typelist = [c['type'] for c in g.clusters]
clusdict = {}
for t in typelist:
if not t in clusdict:
clusdict.update( { t : typelist.count(t) } )
f.write(str(clusdict[t])+" clusters of type %s\n" % t)
f.write('\n')
if args.floodfill:
subgraphdict = {}
for v in g.vertices:
if v.subgraph in subgraphdict:
subgraphdict[v.subgraph].append(v.id)
else:
subgraphdict[v.subgraph] = [v.id]
f.write(str(len(subgraphdict))+' subgraphs \n')
for key,item in subgraphdict.items():
f.write(str(key)+': ')
for i in item:
f.write(str(i)+' ')
f.write('\n')
f.write('\n')
# number of elements with n neighbors
for i in range(max(enl+[0])+1): # i=0,1,2,...,max(enl)
c = enl.count(i) # number of times a ring of size i is found
if i == 1:
f.write(str(c)+' elements with '+str(i)+' neighbor\n')
else:
f.write(str(c)+' elements with '+str(i)+' neighbors\n')
if args.n2r6:
# get elements with only 2 neighbors which are in a ring
# (they are not sp, they are sp2)
n2r6 = []
for v in g.vertices:
if v.nn == 2:
#check if atom is in 6r
for l in rl:
if v.id in l and len(l) == 6:
n2r6.append(v.id)
# print number of atoms with two neighbors and in six fold ring
f.write('%s elements with 2 neighbors are in loop of size 6\n' % len(n2r6))
if args.n3r6:
# get elements with only 3 neighbors which are in a ring
n3r6 = []
for v in g.vertices:
if v.nn == 3:
#check if atom is in 6r
for l in rl:
if v.id in l and len(l) == 6:
n3r6.append(v.id)
# print number of atoms with two neighbors and in six fold ring
f.write('%s elements with 3 neighbors are in loop of size 6\n' % len(list(set(n3r6))))
#### EXTENSIVE DATA ####
f.write('=========== Extensive data:\n')
if args.ringbool:
# list of rings (rl) with all unique rings, sorted by size and id
f.write('(size) [ring elements]:\n')
for l in rl:
#f.write('('+str(len(l))+") [")
f.write("[")
for li in l:
f.write(str(li))
if str(li) != str(l[len(l)-1]):
f.write(', ')
#f.write("]\n")
f.write("], ")
f.write("\n")
if args.chainbool:
f.write('/size/ [chain elements]:\n')
for c in chains:
f.write('/'+str(len(c))+'/ ')
for ci in c:
f.write(str(ci.id)+' ')
f.write('\n')
f.write('\n')
if args.clusterbool:
f.write('<size> type [cluster elements]:\n')
for i,c in enumerate(g.clusters):
f.write("<%d> %s [" % (i,c['type']))
for j in c['elements']:
f.write("%d "%j.id)
f.write("]\n")
f.write('\n')
if args.impropbool:
f.write('{central element (j)} [plane elements] (theta_ijkl,theta_kjli,theta_ljik) <theta>:\n')
for v,pl in g.improper:
for npl,theta in pl:
f.write("{%s} ["%v.id)
for np in npl:
f.write("%s "%np.id)
f.write("] (")
mtheta = 0.0
for ptheta in theta:
mtheta += ptheta
f.write("%.2f "%ptheta)
mtheta /= len(theta)
f.write(") %.2f\n"%mtheta)
f.write("\n")
# list of elements with number of neighbors
f.write('{element} #neighbors [neighbor list]\n')
for i in range(g.size):
f.write('{'+str(i)+'} '+str(enl[i])+' [')
for nli in nl[i]:
f.write(str(nli)+' ')
f.write("]\n")
f.write("\n")
def print_simple_info(g, f, max_depth, args):
# ring list:
# - ring element sorting by id [5,7,1] -> [1,5,7]
# - ring list sorting by size
# - for rings of same size sort by
# - sort ring inter all unique rings, sorted by size and id
rl = [sorted([int(v.id) for v in r]) for r in g.rings]
# len(x) is the main key, x[0] is the subkey, etc. (note a ring always has at least 3 elements
rl = sorted(rl, key=lambda x: (len(x),x[0],x[1],x[2]))
# ring size list
rsl = [len(l) for l in rl]
# element neighbor list
enl = [v.nn for v in g.vertices]
for i in range(0,5): f.write("%-4d" % enl.count(i)+' ') # 0n,1n,2n,3n,4n
if not max_depth : max_depth = max(rsl)
for i in range(3,max_depth+1): f.write("%-4d" % rsl.count(i)+' ') # 3r,4r,5r,...,mr
if args.n2r6:
# get elements with only 2 neighbors which are in a ring
# (they are not sp, they are sp2)
n2r6 = []
for v in g.vertices:
if v.nn == 2:
#check if atom is in 6r
for l in rl:
if v.id in l and len(l) == 6:
n2r6.append(v.id)
# print number of atoms with two neighbors and in six fold ring
f.write("%-4d" % len(n2r6)+' ')
if args.n3r6:
# get elements with only 2 neighbors which are in a ring
# (they are not sp, they are sp2)
n3r6 = []
for v in g.vertices:
if v.nn == 3:
#check if atom is in 6r
for l in rl:
if v.id in l and len(l) == 6:
n3r6.append(v.id)
# print number of atoms with three neighbors and in six fold ring
f.write("%-4d" % len(list(set(n3r6)))+' ')
if args.impropbool:
# counter number of improper angles exceeding argument
nimproper = 0
for v,pl in g.improper:
for npl,theta in pl:
if sum(theta)/len(theta) > args.improplimit: nimproper+=1
f.write("%-4d" % nimproper)
if args.chainbool:
count = 0
length = 0
for c in g.chains:
count += 1
length += len(c)
if count != 0:
length = float(length)/float(count)
f.write("%-3d" % count+' ')
f.write("%-3d" % length+' ')
f.write('\n')
def loadxyz(filename):
data = []
file = open(filename,'r')
alltypes = set()
while True:
# header1 (number of atoms)
try: size = int(file.readline().strip())
except: break
snap = {'size':size, 'cell':[], 'coords':[], 'types':[]}
# header2 (cell size)
items = file.readline().split()
try: snap['cell'] = [float(items[0]),float(items[1]),float(items[2])]
except: snap['cell'] = [0,0,0]
# content (atom coordinates)
for i in range(size):
items = file.readline().split()
pos = [float(items[1]), float(items[2]), float(items[3])]
snap['coords'].append(pos)
snap['types'].append(items[0])
alltypes.add(items[0])
data.append(snap)
file.close()
max_radius = max(radius[t1] for t1 in alltypes)
return data,max_radius
def minimum_image(vec,box):
if abs(vec[0])>box[0]/2:
if vec[0] < 0.0: vec[0] += box[0];
else: vec[0] -= box[0]
if abs(vec[1])>box[1]/2:
if vec[1] < 0.0: vec[1] += box[1];
else: vec[1] -= box[1]
if abs(vec[2])>box[2]/2:
if vec[2] < 0.0: vec[2] += box[2];
else: vec[2] -= box[2]
return vec
class progressbar:
def __init__(self,minlen=10,symbol='-'):
import fcntl, termios, struct, os
self.fd = os.open(os.ctermid(), os.O_RDONLY)
(self.height,self.width) = struct.unpack('hh', fcntl.ioctl(self.fd, termios.TIOCGWINSZ, '1234'))
self.symbol = symbol
self.minlen = minlen
def update(self,percentage,message):
import fcntl, termios, struct
(self.height,self.width) = struct.unpack('hh', fcntl.ioctl(self.fd, termios.TIOCGWINSZ, '1234'))
message = message.ljust(self.minlen) # fill message to minlen with spaces
meslen = len(message)
barsize = max(0,int((self.width-meslen)*percentage)-2) # progress bar size : -2 for [,]
filsize = self.width - meslen - barsize - 2 # fill with spaces to end of line
sys.stderr.write('\r'+message+'[')
for i in range(barsize): sys.stderr.write(self.symbol[i%len(self.symbol)])
for i in range(filsize): sys.stderr.write(' ')
sys.stderr.write(']')
sys.stderr.flush()
def updateinitial(self,message,symbol=None):
if symbol: self.symbol = symbol
self.update(0,message)
def updatefinal(self,message):
self.update(1,message)
sys.stderr.write('\n')
r22 = {}
for e1 in elements:
r22[e1] = {}
for e2 in elements: r22[e1][e2]=radius[e1]*radius[e2]
if __name__ == "__main__":
main(sys.argv[1:])