forked from sourcegraph/zoekt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
score.go
190 lines (160 loc) · 6.55 KB
/
score.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
// Copyright 2016 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package zoekt
import (
"fmt"
"math"
"strconv"
"strings"
)
const maxUInt16 = 0xffff
// addScore increments the score of the FileMatch by the computed score. If
// debugScore is true, it also adds a debug string to the FileMatch. If raw is
// -1, it is ignored. Otherwise, it is added to the debug string.
func (m *FileMatch) addScore(what string, computed float64, raw float64, debugScore bool) {
if computed != 0 && debugScore {
var b strings.Builder
fmt.Fprintf(&b, "%s", what)
if raw != -1 {
fmt.Fprintf(&b, "(%s)", strconv.FormatFloat(raw, 'f', -1, 64))
}
fmt.Fprintf(&b, ":%.2f, ", computed)
m.Debug += b.String()
}
m.Score += computed
}
// scoreFile computes a score for the file match using various scoring signals, like
// whether there's an exact match on a symbol, the number of query clauses that matched, etc.
func (d *indexData) scoreFile(fileMatch *FileMatch, doc uint32, mt matchTree, known map[matchTree]bool, opts *SearchOptions) {
atomMatchCount := 0
visitMatchAtoms(mt, known, func(mt matchTree) {
atomMatchCount++
})
addScore := func(what string, computed float64) {
fileMatch.addScore(what, computed, -1, opts.DebugScore)
}
// atom-count boosts files with matches from more than 1 atom. The
// maximum boost is scoreFactorAtomMatch.
if atomMatchCount > 0 {
fileMatch.addScore("atom", (1.0-1.0/float64(atomMatchCount))*scoreFactorAtomMatch, float64(atomMatchCount), opts.DebugScore)
}
maxFileScore := 0.0
for i := range fileMatch.LineMatches {
if maxFileScore < fileMatch.LineMatches[i].Score {
maxFileScore = fileMatch.LineMatches[i].Score
}
// Order by ordering in file.
fileMatch.LineMatches[i].Score += scoreLineOrderFactor * (1.0 - (float64(i) / float64(len(fileMatch.LineMatches))))
}
for i := range fileMatch.ChunkMatches {
if maxFileScore < fileMatch.ChunkMatches[i].Score {
maxFileScore = fileMatch.ChunkMatches[i].Score
}
// Order by ordering in file.
fileMatch.ChunkMatches[i].Score += scoreLineOrderFactor * (1.0 - (float64(i) / float64(len(fileMatch.ChunkMatches))))
}
// Maintain ordering of input files. This
// strictly dominates the in-file ordering of
// the matches.
addScore("fragment", maxFileScore)
if opts.UseDocumentRanks && len(d.ranks) > int(doc) {
weight := scoreFileRankFactor
if opts.DocumentRanksWeight > 0.0 {
weight = opts.DocumentRanksWeight
}
ranks := d.ranks[doc]
// The ranks slice always contains one entry representing the file rank (unless it's empty since the
// file doesn't have a rank). This is left over from when documents could have multiple rank signals,
// and we plan to clean this up.
if len(ranks) > 0 {
// The file rank represents a log (base 2) count. The log ranks should be bounded at 32, but we
// cap it just in case to ensure it falls in the range [0, 1].
normalized := math.Min(1.0, ranks[0]/32.0)
addScore("file-rank", weight*normalized)
}
}
md := d.repoMetaData[d.repos[doc]]
addScore("doc-order", scoreFileOrderFactor*(1.0-float64(doc)/float64(len(d.boundaries))))
addScore("repo-rank", scoreRepoRankFactor*float64(md.Rank)/maxUInt16)
if opts.DebugScore {
fileMatch.Debug = fmt.Sprintf("score: %.2f <- %s", fileMatch.Score, strings.TrimSuffix(fileMatch.Debug, ", "))
}
}
// calculateTermFrequency computes the term frequency for the file match.
//
// Filename matches count more than content matches. This mimics a common text
// search strategy where you 'boost' matches on document titles.
func calculateTermFrequency(cands []*candidateMatch, df termDocumentFrequency) map[string]int {
// Treat each candidate match as a term and compute the frequencies. For now, ignore case
// sensitivity and treat filenames and symbols the same as content.
termFreqs := map[string]int{}
for _, cand := range cands {
term := string(cand.substrLowered)
if cand.fileName {
termFreqs[term] += 5
} else {
termFreqs[term]++
}
}
for term := range termFreqs {
df[term] += 1
}
return termFreqs
}
// idf computes the inverse document frequency for a term. nq is the number of
// documents that contain the term and documentCount is the total number of
// documents in the corpus.
func idf(nq, documentCount int) float64 {
return math.Log(1.0 + ((float64(documentCount) - float64(nq) + 0.5) / (float64(nq) + 0.5)))
}
// termDocumentFrequency is a map "term" -> "number of documents that contain the term"
type termDocumentFrequency map[string]int
// termFrequency stores the term frequencies for doc.
type termFrequency struct {
doc uint32
tf map[string]int
}
// scoreFilesUsingBM25 computes the score according to BM25, the most common
// scoring algorithm for text search: https://en.wikipedia.org/wiki/Okapi_BM25.
//
// This scoring strategy ignores all other signals including document ranks.
// This keeps things simple for now, since BM25 is not normalized and can be
// tricky to combine with other scoring signals.
func (d *indexData) scoreFilesUsingBM25(fileMatches []FileMatch, tfs []termFrequency, df termDocumentFrequency, opts *SearchOptions) {
// Use standard parameter defaults (used in Lucene and academic papers)
k, b := 1.2, 0.75
averageFileLength := float64(d.boundaries[d.numDocs()]) / float64(d.numDocs())
// This is very unlikely, but explicitly guard against division by zero.
if averageFileLength == 0 {
averageFileLength++
}
for i := range tfs {
score := 0.0
// Compute the file length ratio. Usually the calculation would be based on terms, but using
// bytes should work fine, as we're just computing a ratio.
doc := tfs[i].doc
fileLength := float64(d.boundaries[doc+1] - d.boundaries[doc])
L := fileLength / averageFileLength
sumTF := 0 // Just for debugging
for term, f := range tfs[i].tf {
sumTF += f
tfScore := ((k + 1.0) * float64(f)) / (k*(1.0-b+b*L) + float64(f))
score += idf(df[term], int(d.numDocs())) * tfScore
}
fileMatches[i].Score = score
if opts.DebugScore {
fileMatches[i].Debug = fmt.Sprintf("bm25-score: %.2f <- sum-termFrequencies: %d, length-ratio: %.2f", score, sumTF, L)
}
}
}