diff --git a/pipelines/SDM/SDM_maxEnt_outputs.json b/pipelines/SDM/SDM_maxEnt_outputs.json index 8059dc66..3fe52d56 100644 --- a/pipelines/SDM/SDM_maxEnt_outputs.json +++ b/pipelines/SDM/SDM_maxEnt_outputs.json @@ -959,7 +959,7 @@ }, "metadata": { "name": "Species distribution modeling with Maxent", - "description": "This pipeline generates predictions for a species distribution model using the Maxent algorithm. Several background methods are possible, including randomly distributed pseudo-absences throughout the region, background thickening ([Vollering et al. 2019](https://doi.org/10.1111/ecog.04503)) and target-group background selection ([Phillips et al. 2009](https://doi.org/10.1890/07-2153.1). Bias correction is achieved using the target-group background selection method. A variance map to represent the prediction uncertainty is generated through bootstraping.", + "description": "This pipeline generates predictions for a species distribution model using the Maxent algorithm. Several background methods are possible, including randomly distributed pseudo-absences throughout the region, background thickening ([Vollering et al. 2019](https://doi.org/10.1111/ecog.04503)) and target-group background selection ([Phillips et al. 2009](https://doi.org/10.1890/07-2153.1)). Bias correction is achieved using the target-group background selection method. A variance map to represent the prediction uncertainty is generated through bootstraping.", "author": [ { "name": "Sarah Valentin",