diff --git a/src/docs/JOSS/paper.md b/src/docs/JOSS/paper.md index fa1c3af672..0c0e187235 100644 --- a/src/docs/JOSS/paper.md +++ b/src/docs/JOSS/paper.md @@ -163,7 +163,7 @@ In cases where such tight coupling is not required, one may decompose the monoli +===================+============+=====================+ --> -| Nodes | Ranks | DoF/rank | $\HUGE \frac{\text{Newton iter}}{\text{timestep}}$ | $\HUGE \frac{\text{GMRES iter}}{\text{Newton iter}}$ | Setup
[s] | Solve
[s] | Efficiency | +| Nodes | Ranks | DoF/rank | $\huge \frac{\text{Newton iter}}{\text{timestep}}$ | $\huge \frac{\text{GMRES iter}}{\text{Newton iter}}$ | Setup
[s] | Solve
[s] | Efficiency | | :---: | :---: | :------: | :-------------: | :-------------: | :-----: | :---: | ----------: | | 2 | 72 | 226K | 7.5 | 30.3 | 6,709 | 13,725 | 100% | | 4 | 144 | 113K | 7.5 | 30.9 | 3,816 | 7,479 | 90% | @@ -172,7 +172,7 @@ In cases where such tight coupling is not required, one may decompose the monoli Table 1: Strong scaling on LLNL/Quartz (Intel Xeon E5-2695 v4) -| Nodes | Ranks | DoF/rank | $\HUGE \frac{\text{Newton iter}}{\text{timestep}}$ | $\HUGE \frac{\text{GMRES iter}}{\text{Newton iter}}$ | Setup
[s] | Solve
[s] | Efficiency | +| Nodes | Ranks | DoF/rank | $\huge \frac{\text{Newton iter}}{\text{timestep}}$ | $\huge \frac{\text{GMRES iter}}{\text{Newton iter}}$ | Setup
[s] | Solve
[s] | Efficiency | | ---: | ---: |--------: | :-------: | :-------: | :-----: | -----: | ----------: | | 4 | 16 | 1,018K | 7.7 | 44.3 | 2,830 | 4,364 | 100% | | 8 | 32 | 509K | 7.5 | 46.2 | 1,834 | 3,636 | 66% |