diff --git a/.devcontainer/devcontainer.json b/.devcontainer/devcontainer.json index 5757d8230fa..216993fba02 100644 --- a/.devcontainer/devcontainer.json +++ b/.devcontainer/devcontainer.json @@ -2,7 +2,7 @@ "build": { "dockerfile": "Dockerfile", "args": { - "GEOS_TPL_TAG": "284-535" + "GEOS_TPL_TAG": "286-547" } }, "runArgs": [ diff --git a/.integrated_tests.yaml b/.integrated_tests.yaml index 71364ebb802..31ce96119a9 100644 --- a/.integrated_tests.yaml +++ b/.integrated_tests.yaml @@ -1,7 +1,6 @@ baselines: bucket: geosx - baseline: integratedTests/baseline_integratedTests-pr3374-8621-bbb3cb2 - + baseline: integratedTests/baseline_integratedTests-pr3450-9221-37d940c allow_fail: all: '' streak: '' diff --git a/BASELINE_NOTES.md b/BASELINE_NOTES.md index 3af18f0dec8..3b097223255 100644 --- a/BASELINE_NOTES.md +++ b/BASELINE_NOTES.md @@ -6,6 +6,58 @@ This file is designed to track changes to the integrated test baselines. Any developer who updates the baseline ID in the .integrated_tests.yaml file is expected to create an entry in this file with the pull request number, date, and their justification for rebaselining. These notes should be in reverse-chronological order, and use the following time format: (YYYY-MM-DD). +PR #3450 (2024-12-08) +===================== +Added test for explicit runge kutta sprinslider. + +PR #3480 (2024-12-06) +===================== +Add "logLevel" parameter under /Problem/Outputs in baseline files + +PR #3361 (2024-12-03) +===================== +Revert default gravity treatment to old version. Make the way introduced in #3337 optional. + +PR #3361 (2024-12-03) +===================== +Baseline diffs after reimplementation of wave equation acoustic gradient for velocity and density parameters: new field "partialGradient2" and "pressureForward" field replacing "pressureDoubleDerivative". + +PR #3393 (2024-12-02) +===================== +Fix netToGross bug. + +PR #3381 (2024-12-01) +===================== +A few baseline diffs for order FaceElementSubRegion::m_toFacesRelation map. Not sure why this was changed by this PR, but the previous order seems incorrect for a couple of cases. + +PR #2957 (2024-11-27) +===================== +Added ExternalDataRepository. + +PR #3448 (2024-11-21) +===================== +Switched the FaceElementSubRegion::m_toFacesRelation and FaceElementSubRegion::m_2dElemToElems back to array2d instead of ArrayOfArray. This results in a reordering m_toFacesRelation back to the "correct" assumed order of "original face first". This fixes a bug that failed to remove the CellStencil entry when a FaceElement splits two cells. + +PR #2637 (2024-11-21) +===================== +Added numberOfTargetProcesses. + +PR #3439 (2024-11-20) +===================== +EDFM bugfixes: derivatives sign, frac/cell element volume, fix apertures inconsistency in test cases. + +PR ##3440 (2024-11-18) +===================== +Added Lagrange multiplier with bubble functions stabilization (sli only) and possibility to specify a slip. + +PR #3339 (2024-11-14) +===================== +Hypre improvements, rebaseline is due to field value change (amgNumFunctions). + +PR #3434 (2024-11-09) +===================== +Bugfix: Fixed output of ArrayOfArray objects to restart files. + PR #3374 (2024-11-09) ==================== Bugfix for gravity treatment in flux for thermal. diff --git a/host-configs/apple/darwin-clang.cmake b/host-configs/apple/darwin-clang.cmake deleted file mode 100644 index cdf690c0e5a..00000000000 --- a/host-configs/apple/darwin-clang.cmake +++ /dev/null @@ -1,38 +0,0 @@ -site_name(HOST_NAME) -set(CONFIG_NAME "${HOST_NAME}-darwin-x86_64-clang@apple-mp" CACHE PATH "") -message("CONFIG_NAME = ${CONFIG_NAME}") - -set(CMAKE_C_COMPILER "/usr/bin/clang" CACHE PATH "") -set(CMAKE_CXX_COMPILER "/usr/bin/clang++" CACHE PATH "") -set(ENABLE_FORTRAN OFF CACHE BOOL "" FORCE) - -set(ENABLE_MPI ON CACHE PATH "") -set(MPI_C_COMPILER "/usr/local/bin/mpicc" CACHE PATH "") -set(MPI_CXX_COMPILER "/usr/local/bin/mpicxx" CACHE PATH "") -set(MPIEXEC "/usr/local/bin/mpirun" CACHE PATH "") - -set(ENABLE_GTEST_DEATH_TESTS ON CACHE BOOL "" FORCE) - -set(ENABLE_PVTPackage ON CACHE BOOL "" FORCE) - -set(ENABLE_CUDA "OFF" CACHE PATH "" FORCE) -set(ENABLE_OPENMP "OFF" CACHE PATH "" FORCE) - -set(ENABLE_CALIPER "OFF" CACHE PATH "" FORCE ) - -#set(GEOS_BUILD_OBJ_LIBS ON CACHE BOOL "" FORCE) - -set( BLAS_LIBRARIES /usr/local/opt/openblas/lib/libblas.dylib CACHE PATH "" FORCE ) -set( LAPACK_LIBRARIES /usr/local/opt/openblas/lib/liblapack.dylib CACHE PATH "" FORCE ) - -set(ENABLE_DOXYGEN OFF CACHE BOOL "" FORCE) - -#set( DOXYGEN_EXECUTABLE /usr/local/bin/doxygen CACHE PATH "" FORCE ) -#set( SPHINX_EXECUTABLE /usr/local/bin/sphinx-build CACHE PATH "" FORCE ) - -set(GEOS_TPL_DIR "/usr/local/GEOSX/GEOS_TPL" CACHE PATH "" FORCE ) -if(NOT ( EXISTS "${GEOS_TPL_DIR}" AND IS_DIRECTORY "${GEOS_TPL_DIR}" ) ) - set(GEOS_TPL_DIR "${CMAKE_SOURCE_DIR}/../../thirdPartyLibs/install-darwin-clang-release" CACHE PATH "" FORCE ) -endif() - -include(${CMAKE_CURRENT_LIST_DIR}/tpls.cmake) diff --git a/host-configs/apple/macOS_base.cmake b/host-configs/apple/macOS_base.cmake index 836e2b15936..ec74d15b9c1 100644 --- a/host-configs/apple/macOS_base.cmake +++ b/host-configs/apple/macOS_base.cmake @@ -29,7 +29,7 @@ set(ENABLE_DOXYGEN ON CACHE BOOL "" FORCE) set(ENABLE_SPHINX ON CACHE BOOL "" FORCE) set(ENABLE_MATHPRESSO ON CACHE BOOL "" FORCE ) -set(GEOS_BUILD_SHARED_LIBS ON CACHE BOOL "" FORCE) +set(GEOS_BUILD_SHARED_LIBS OFF CACHE BOOL "" FORCE) diff --git a/inputFiles/inducedSeismicity/SpringSliderExplicit_base.xml b/inputFiles/inducedSeismicity/SpringSliderExplicit_base.xml new file mode 100644 index 00000000000..a0c0381fb23 --- /dev/null +++ b/inputFiles/inducedSeismicity/SpringSliderExplicit_base.xml @@ -0,0 +1,167 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/inputFiles/inducedSeismicity/SpringSliderExplicit_smoke.xml b/inputFiles/inducedSeismicity/SpringSliderExplicit_smoke.xml new file mode 100644 index 00000000000..2de09b79a03 --- /dev/null +++ b/inputFiles/inducedSeismicity/SpringSliderExplicit_smoke.xml @@ -0,0 +1,32 @@ + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/inputFiles/inducedSeismicity/SpringSlider_base.xml b/inputFiles/inducedSeismicity/SpringSlider_base.xml index 9f141031607..5f6aefc94ad 100644 --- a/inputFiles/inducedSeismicity/SpringSlider_base.xml +++ b/inputFiles/inducedSeismicity/SpringSlider_base.xml @@ -123,7 +123,7 @@ initialCondition="1" objectPath="ElementRegions/Fault/FractureSubRegion" component="0" - scale="0." + scale="0.70710678118e-6" setNames="{all}"/> diff --git a/inputFiles/inducedSeismicity/inducedSeismicity.ats b/inputFiles/inducedSeismicity/inducedSeismicity.ats index 08b031177f0..813bdf08b8b 100644 --- a/inputFiles/inducedSeismicity/inducedSeismicity.ats +++ b/inputFiles/inducedSeismicity/inducedSeismicity.ats @@ -28,6 +28,13 @@ decks = [ partitions=((1, 1, 1), ), restart_step=0, check_step=3262, - restartcheck_params=RestartcheckParameters(atol=1e-4, rtol=1e-3)) + restartcheck_params=RestartcheckParameters(atol=1e-4, rtol=1e-3)), + TestDeck( + name="SpringSliderExplicit_smoke", + description="Spring slider 0D system", + partitions=((1, 1, 1), ), + restart_step=0, + check_step=532, + restartcheck_params=RestartcheckParameters(atol=1e-4, rtol=1e-3)) ] generate_geos_tests(decks) diff --git a/inputFiles/lagrangianContactMechanics/LagrangeContactBubbleStab_FixedSlip_base.xml b/inputFiles/lagrangianContactMechanics/LagrangeContactBubbleStab_FixedSlip_base.xml new file mode 100644 index 00000000000..91a143df5b2 --- /dev/null +++ b/inputFiles/lagrangianContactMechanics/LagrangeContactBubbleStab_FixedSlip_base.xml @@ -0,0 +1,132 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/inputFiles/lagrangianContactMechanics/LagrangeContactBubbleStab_FixedSlip_smoke.xml b/inputFiles/lagrangianContactMechanics/LagrangeContactBubbleStab_FixedSlip_smoke.xml new file mode 100644 index 00000000000..8258d2cc4a3 --- /dev/null +++ b/inputFiles/lagrangianContactMechanics/LagrangeContactBubbleStab_FixedSlip_smoke.xml @@ -0,0 +1,94 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/inputFiles/lagrangianContactMechanics/LagrangeContactBubbleStab_singleFracCompression_base.xml b/inputFiles/lagrangianContactMechanics/LagrangeContactBubbleStab_singleFracCompression_base.xml new file mode 100644 index 00000000000..854136ed032 --- /dev/null +++ b/inputFiles/lagrangianContactMechanics/LagrangeContactBubbleStab_singleFracCompression_base.xml @@ -0,0 +1,137 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/inputFiles/lagrangianContactMechanics/LagrangeContactBubbleStab_singleFracCompression_smoke.xml b/inputFiles/lagrangianContactMechanics/LagrangeContactBubbleStab_singleFracCompression_smoke.xml new file mode 100644 index 00000000000..bb51f950d38 --- /dev/null +++ b/inputFiles/lagrangianContactMechanics/LagrangeContactBubbleStab_singleFracCompression_smoke.xml @@ -0,0 +1,66 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/inputFiles/lagrangianContactMechanics/contactMechanics.ats b/inputFiles/lagrangianContactMechanics/contactMechanics.ats index bc4a2e43d0e..6f35259f76c 100644 --- a/inputFiles/lagrangianContactMechanics/contactMechanics.ats +++ b/inputFiles/lagrangianContactMechanics/contactMechanics.ats @@ -1,9 +1,19 @@ -from geos.ats.test_builder import TestDeck, RestartcheckParameters, generate_geos_tests +from geos.ats.test_builder import TestDeck, RestartcheckParameters, CurveCheckParameters, generate_geos_tests restartcheck_params = {} restartcheck_params["atol"] = 2.0E-4 restartcheck_params["rtol"] = 1.0E-7 + +curvecheck_params = {} +curvecheck_params["filename"] = "traction.hdf5" +curvecheck_params["tolerance"] = [1e-1] +curvecheck_params["script_instructions"] = [[ + "./scripts/fixedFaultSlip.py", "curve_check_solution", + "traction" +]] +curvecheck_params["curves"] = "traction" + decks = [ TestDeck( name="ContactMechanics_SimpleCubes_smoke", @@ -90,7 +100,15 @@ decks = [ partitions=((1, 1, 1), ), restart_step=1, check_step=2, - restartcheck_params=RestartcheckParameters(**restartcheck_params)) + restartcheck_params=RestartcheckParameters(**restartcheck_params)), + TestDeck( + name="LagrangeContactBubbleStab_FixedSlip_smoke", + description="Lagrange multiplier with bubble stab and fixed jump on the fault. " + "Fault with imposed slip", + partitions=((1, 1, 1), (2, 2, 1)), + restart_step=1, + check_step=2, + restartcheck_params=RestartcheckParameters(**restartcheck_params)) ] generate_geos_tests(decks) diff --git a/inputFiles/lagrangianContactMechanics/dataTables/gaussianSlip.csv b/inputFiles/lagrangianContactMechanics/dataTables/gaussianSlip.csv new file mode 100644 index 00000000000..9d62405dcb4 --- /dev/null +++ b/inputFiles/lagrangianContactMechanics/dataTables/gaussianSlip.csv @@ -0,0 +1,10000 @@ +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000003 +0.000003 +0.000003 +0.000003 +0.000003 +0.000003 +0.000003 +0.000003 +0.000003 +0.000003 +0.000003 +0.000003 +0.000003 +0.000003 +0.000003 +0.000003 +0.000003 +0.000004 +0.000004 +0.000004 +0.000004 +0.000004 +0.000004 +0.000004 +0.000004 +0.000004 +0.000004 +0.000004 +0.000004 +0.000004 +0.000005 +0.000005 +0.000005 +0.000005 +0.000005 +0.000005 +0.000005 +0.000005 +0.000005 +0.000005 +0.000006 +0.000006 +0.000006 +0.000006 +0.000006 +0.000006 +0.000006 +0.000006 +0.000006 +0.000007 +0.000007 +0.000007 +0.000007 +0.000007 +0.000007 +0.000007 +0.000008 +0.000008 +0.000008 +0.000008 +0.000008 +0.000008 +0.000008 +0.000009 +0.000009 +0.000009 +0.000009 +0.000009 +0.000010 +0.000010 +0.000010 +0.000010 +0.000010 +0.000010 +0.000011 +0.000011 +0.000011 +0.000011 +0.000011 +0.000012 +0.000012 +0.000012 +0.000012 +0.000013 +0.000013 +0.000013 +0.000013 +0.000014 +0.000014 +0.000014 +0.000014 +0.000015 +0.000015 +0.000015 +0.000016 +0.000016 +0.000016 +0.000016 +0.000017 +0.000017 +0.000017 +0.000018 +0.000018 +0.000018 +0.000019 +0.000019 +0.000019 +0.000020 +0.000020 +0.000021 +0.000021 +0.000021 +0.000022 +0.000022 +0.000023 +0.000023 +0.000023 +0.000024 +0.000024 +0.000025 +0.000025 +0.000026 +0.000026 +0.000027 +0.000027 +0.000028 +0.000028 +0.000029 +0.000029 +0.000030 +0.000030 +0.000031 +0.000031 +0.000032 +0.000033 +0.000033 +0.000034 +0.000034 +0.000035 +0.000036 +0.000036 +0.000037 +0.000038 +0.000038 +0.000039 +0.000040 +0.000040 +0.000041 +0.000042 +0.000043 +0.000043 +0.000044 +0.000045 +0.000046 +0.000047 +0.000048 +0.000048 +0.000049 +0.000050 +0.000051 +0.000052 +0.000053 +0.000054 +0.000055 +0.000056 +0.000057 +0.000058 +0.000059 +0.000060 +0.000061 +0.000062 +0.000063 +0.000064 +0.000065 +0.000067 +0.000068 +0.000069 +0.000070 +0.000071 +0.000073 +0.000074 +0.000075 +0.000077 +0.000078 +0.000079 +0.000081 +0.000082 +0.000084 +0.000085 +0.000087 +0.000088 +0.000090 +0.000091 +0.000093 +0.000094 +0.000096 +0.000098 +0.000099 +0.000101 +0.000103 +0.000105 +0.000107 +0.000108 +0.000110 +0.000112 +0.000114 +0.000116 +0.000118 +0.000120 +0.000122 +0.000124 +0.000126 +0.000129 +0.000131 +0.000133 +0.000135 +0.000138 +0.000140 +0.000142 +0.000145 +0.000147 +0.000150 +0.000152 +0.000155 +0.000158 +0.000160 +0.000163 +0.000166 +0.000169 +0.000172 +0.000174 +0.000177 +0.000180 +0.000183 +0.000187 +0.000190 +0.000193 +0.000196 +0.000199 +0.000203 +0.000206 +0.000210 +0.000213 +0.000217 +0.000220 +0.000224 +0.000228 +0.000232 +0.000235 +0.000239 +0.000243 +0.000247 +0.000252 +0.000256 +0.000260 +0.000264 +0.000269 +0.000273 +0.000278 +0.000282 +0.000287 +0.000292 +0.000296 +0.000301 +0.000306 +0.000311 +0.000316 +0.000321 +0.000327 +0.000332 +0.000338 +0.000343 +0.000349 +0.000354 +0.000360 +0.000366 +0.000372 +0.000378 +0.000384 +0.000390 +0.000397 +0.000403 +0.000410 +0.000416 +0.000423 +0.000430 +0.000437 +0.000444 +0.000451 +0.000458 +0.000465 +0.000473 +0.000481 +0.000488 +0.000496 +0.000504 +0.000512 +0.000520 +0.000529 +0.000537 +0.000545 +0.000554 +0.000563 +0.000572 +0.000581 +0.000590 +0.000599 +0.000609 +0.000619 +0.000628 +0.000638 +0.000648 +0.000659 +0.000669 +0.000679 +0.000690 +0.000701 +0.000712 +0.000723 +0.000734 +0.000746 +0.000757 +0.000769 +0.000781 +0.000793 +0.000806 +0.000818 +0.000831 +0.000844 +0.000857 +0.000870 +0.000884 +0.000897 +0.000911 +0.000925 +0.000939 +0.000954 +0.000968 +0.000983 +0.000998 +0.001014 +0.001029 +0.001045 +0.001061 +0.001077 +0.001094 +0.001110 +0.001127 +0.001144 +0.001162 +0.001179 +0.001197 +0.001215 +0.001234 +0.001252 +0.001271 +0.001290 +0.001310 +0.001330 +0.001350 +0.001370 +0.001390 +0.001411 +0.001432 +0.001454 +0.001476 +0.001498 +0.001520 +0.001543 +0.001566 +0.001589 +0.001613 +0.001637 +0.001661 +0.001686 +0.001711 +0.001736 +0.001761 +0.001788 +0.001814 +0.001841 +0.001868 +0.001895 +0.001923 +0.001951 +0.001980 +0.002009 +0.002038 +0.002068 +0.002098 +0.002129 +0.002160 +0.002191 +0.002223 +0.002256 +0.002288 +0.002322 +0.002355 +0.002389 +0.002424 +0.002459 +0.002494 +0.002530 +0.002567 +0.002604 +0.002641 +0.002679 +0.002717 +0.002756 +0.002796 +0.002836 +0.002876 +0.002917 +0.002959 +0.003001 +0.003044 +0.003087 +0.003131 +0.003175 +0.003220 +0.003266 +0.003312 +0.003359 +0.003406 +0.003454 +0.003503 +0.003552 +0.003602 +0.003652 +0.003704 +0.003756 +0.003808 +0.003861 +0.003915 +0.003970 +0.004025 +0.004081 +0.004138 +0.004195 +0.004254 +0.004313 +0.004372 +0.004433 +0.004494 +0.004556 +0.004619 +0.004682 +0.004747 +0.004812 +0.004878 +0.004945 +0.005013 +0.005081 +0.005151 +0.005221 +0.005292 +0.005364 +0.005437 +0.005511 +0.005586 +0.005662 +0.005739 +0.005816 +0.005895 +0.005975 +0.006055 +0.006137 +0.006220 +0.006303 +0.006388 +0.006474 +0.006560 +0.006648 +0.006737 +0.006827 +0.006918 +0.007011 +0.007104 +0.007198 +0.007294 +0.007391 +0.007489 +0.007588 +0.007688 +0.007790 +0.007893 +0.007997 +0.008102 +0.008209 +0.008317 +0.008426 +0.008536 +0.008648 +0.008761 +0.008876 +0.008992 +0.009109 +0.009227 +0.009348 +0.009469 +0.009592 +0.009716 +0.009842 +0.009969 +0.010098 +0.010229 +0.010360 +0.010494 +0.010629 +0.010765 +0.010904 +0.011043 +0.011185 +0.011328 +0.011473 +0.011619 +0.011767 +0.011917 +0.012068 +0.012222 +0.012377 +0.012534 +0.012692 +0.012853 +0.013015 +0.013179 +0.013345 +0.013513 +0.013683 +0.013855 +0.014029 +0.014204 +0.014382 +0.014562 +0.014744 +0.014927 +0.015113 +0.015301 +0.015491 +0.015684 +0.015878 +0.016074 +0.016273 +0.016474 +0.016677 +0.016883 +0.017091 +0.017301 +0.017513 +0.017728 +0.017945 +0.018165 +0.018387 +0.018611 +0.018838 +0.019067 +0.019299 +0.019533 +0.019770 +0.020010 +0.020252 +0.020497 +0.020744 +0.020995 +0.021247 +0.021503 +0.021761 +0.022022 +0.022286 +0.022553 +0.022823 +0.023095 +0.023371 +0.023649 +0.023930 +0.024215 +0.024502 +0.024793 +0.025086 +0.025383 +0.025682 +0.025985 +0.026291 +0.026601 +0.026913 +0.027229 +0.027548 +0.027871 +0.028197 +0.028526 +0.028859 +0.029195 +0.029534 +0.029878 +0.030224 +0.030575 +0.030929 +0.031286 +0.031647 +0.032012 +0.032381 +0.032753 +0.033130 +0.033510 +0.033894 +0.034282 +0.034673 +0.035069 +0.035469 +0.035873 +0.036281 +0.036693 +0.037109 +0.037529 +0.037954 +0.038382 +0.038815 +0.039253 +0.039694 +0.040141 +0.040591 +0.041046 +0.041506 +0.041970 +0.042438 +0.042912 +0.043389 +0.043872 +0.044359 +0.044851 +0.045348 +0.045850 +0.046357 +0.046868 +0.047384 +0.047906 +0.048432 +0.048964 +0.049501 +0.050043 +0.050590 +0.051142 +0.051700 +0.052262 +0.052831 +0.053404 +0.053983 +0.054568 +0.055158 +0.055754 +0.056355 +0.056962 +0.057575 +0.058193 +0.058818 +0.059448 +0.060084 +0.060726 +0.061374 +0.062027 +0.062687 +0.063353 +0.064026 +0.064704 +0.065389 +0.066080 +0.066777 +0.067480 +0.068191 +0.068907 +0.069630 +0.070360 +0.071096 +0.071839 +0.072589 +0.073345 +0.074108 +0.074878 +0.075655 +0.076439 +0.077230 +0.078028 +0.078833 +0.079646 +0.080465 +0.081292 +0.082126 +0.082967 +0.083816 +0.084672 +0.085536 +0.086407 +0.087286 +0.088173 +0.089067 +0.089969 +0.090879 +0.091797 +0.092723 +0.093656 +0.094598 +0.095548 +0.096506 +0.097472 +0.098446 +0.099429 +0.100420 +0.101420 +0.102428 +0.103444 +0.104469 +0.105503 +0.106545 +0.107596 +0.108656 +0.109725 +0.110803 +0.111889 +0.112985 +0.114090 +0.115204 +0.116327 +0.117459 +0.118601 +0.119752 +0.120912 +0.122082 +0.123261 +0.124450 +0.125649 +0.126858 +0.128076 +0.129304 +0.130542 +0.131789 +0.133047 +0.134315 +0.135593 +0.136881 +0.138180 +0.139488 +0.140808 +0.142137 +0.143477 +0.144828 +0.146189 +0.147561 +0.148943 +0.150336 +0.151740 +0.153155 +0.154581 +0.156018 +0.157467 +0.158926 +0.160396 +0.161878 +0.163371 +0.164875 +0.166391 +0.167919 +0.169458 +0.171008 +0.172570 +0.174144 +0.175730 +0.177328 +0.178938 +0.180559 +0.182193 +0.183839 +0.185497 +0.187167 +0.188850 +0.190545 +0.192252 +0.193972 +0.195704 +0.197449 +0.199207 +0.200978 +0.202761 +0.204557 +0.206366 +0.208188 +0.210023 +0.211872 +0.213733 +0.215608 +0.217495 +0.219397 +0.221311 +0.223240 +0.225181 +0.227137 +0.229106 +0.231089 +0.233085 +0.235095 +0.237120 +0.239158 +0.241210 +0.243277 +0.245357 +0.247452 +0.249561 +0.251684 +0.253822 +0.255974 +0.258141 +0.260322 +0.262518 +0.264729 +0.266954 +0.269195 +0.271450 +0.273720 +0.276005 +0.278305 +0.280620 +0.282951 +0.285296 +0.287657 +0.290033 +0.292425 +0.294832 +0.297254 +0.299693 +0.302146 +0.304616 +0.307101 +0.309602 +0.312119 +0.314652 +0.317201 +0.319765 +0.322346 +0.324943 +0.327556 +0.330186 +0.332832 +0.335494 +0.338172 +0.340867 +0.343578 +0.346306 +0.349051 +0.351812 +0.354590 +0.357385 +0.360197 +0.363025 +0.365870 +0.368733 +0.371612 +0.374508 +0.377422 +0.380353 +0.383301 +0.386266 +0.389248 +0.392248 +0.395265 +0.398300 +0.401352 +0.404422 +0.407509 +0.410614 +0.413737 +0.416877 +0.420036 +0.423212 +0.426405 +0.429617 +0.432847 +0.436094 +0.439360 +0.442643 +0.445945 +0.449265 +0.452603 +0.455959 +0.459334 +0.462727 +0.466138 +0.469567 +0.473015 +0.476481 +0.479966 +0.483469 +0.486991 +0.490531 +0.494090 +0.497668 +0.501264 +0.504879 +0.508513 +0.512165 +0.515836 +0.519526 +0.523235 +0.526962 +0.530709 +0.534474 +0.538259 +0.542062 +0.545884 +0.549726 +0.553586 +0.557465 +0.561364 +0.565281 +0.569218 +0.573174 +0.577148 +0.581143 +0.585156 +0.589188 +0.593240 +0.597311 +0.601401 +0.605510 +0.609639 +0.613787 +0.617954 +0.622140 +0.626346 +0.630571 +0.634816 +0.639080 +0.643363 +0.647665 +0.651987 +0.656328 +0.660689 +0.665069 +0.669468 +0.673886 +0.678324 +0.682781 +0.687258 +0.691754 +0.696269 +0.700804 +0.705358 +0.709931 +0.714524 +0.719136 +0.723767 +0.728418 +0.733088 +0.737777 +0.742485 +0.747213 +0.751960 +0.756726 +0.761511 +0.766315 +0.771139 +0.775982 +0.780844 +0.785725 +0.790625 +0.795544 +0.800482 +0.805439 +0.810415 +0.815410 +0.820424 +0.825457 +0.830509 +0.835580 +0.840669 +0.845777 +0.850904 +0.856050 +0.861214 +0.866397 +0.871598 +0.876818 +0.882057 +0.887314 +0.892589 +0.897883 +0.903195 +0.908526 +0.913875 +0.919242 +0.924627 +0.930030 +0.935451 +0.940890 +0.946347 +0.951822 +0.957315 +0.962826 +0.968354 +0.973900 +0.979464 +0.985045 +0.990644 +0.996260 +1.001893 +1.007544 +1.013212 +1.018897 +1.024599 +1.030319 +1.036055 +1.041808 +1.047578 +1.053364 +1.059167 +1.064987 +1.070823 +1.076676 +1.082545 +1.088430 +1.094332 +1.100249 +1.106183 +1.112132 +1.118098 +1.124079 +1.130075 +1.136087 +1.142115 +1.148158 +1.154217 +1.160290 +1.166379 +1.172483 +1.178601 +1.184735 +1.190883 +1.197045 +1.203223 +1.209414 +1.215620 +1.221840 +1.228074 +1.234322 +1.240584 +1.246860 +1.253149 +1.259452 +1.265768 +1.272097 +1.278440 +1.284796 +1.291164 +1.297546 +1.303940 +1.310347 +1.316766 +1.323197 +1.329641 +1.336097 +1.342564 +1.349044 +1.355535 +1.362037 +1.368551 +1.375077 +1.381613 +1.388161 +1.394719 +1.401288 +1.407868 +1.414458 +1.421058 +1.427669 +1.434289 +1.440919 +1.447560 +1.454209 +1.460868 +1.467537 +1.474214 +1.480901 +1.487596 +1.494300 +1.501013 +1.507734 +1.514463 +1.521200 +1.527945 +1.534697 +1.541458 +1.548225 +1.555000 +1.561782 +1.568571 +1.575366 +1.582169 +1.588977 +1.595792 +1.602613 +1.609439 +1.616272 +1.623110 +1.629953 +1.636801 +1.643655 +1.650513 +1.657376 +1.664244 +1.671115 +1.677991 +1.684871 +1.691755 +1.698642 +1.705532 +1.712426 +1.719323 +1.726222 +1.733124 +1.740029 +1.746936 +1.753845 +1.760755 +1.767668 +1.774582 +1.781497 +1.788413 +1.795330 +1.802248 +1.809167 +1.816085 +1.823004 +1.829923 +1.836841 +1.843759 +1.850676 +1.857592 +1.864508 +1.871421 +1.878334 +1.885244 +1.892153 +1.899059 +1.905964 +1.912865 +1.919764 +1.926660 +1.933553 +1.940442 +1.947328 +1.954210 +1.961087 +1.967961 +1.974830 +1.981695 +1.988554 +1.995409 +2.002258 +2.009101 +2.015939 +2.022771 +2.029597 +2.036416 +2.043229 +2.050034 +2.056833 +2.063624 +2.070408 +2.077185 +2.083953 +2.090713 +2.097465 +2.104208 +2.110942 +2.117667 +2.124383 +2.131089 +2.137786 +2.144472 +2.151149 +2.157815 +2.164470 +2.171115 +2.177748 +2.184370 +2.190981 +2.197580 +2.204166 +2.210741 +2.217303 +2.223853 +2.230389 +2.236913 +2.243423 +2.249919 +2.256402 +2.262871 +2.269325 +2.275765 +2.282190 +2.288600 +2.294996 +2.301375 +2.307739 +2.314087 +2.320419 +2.326735 +2.333034 +2.339317 +2.345582 +2.351831 +2.358061 +2.364274 +2.370470 +2.376647 +2.382805 +2.388946 +2.395067 +2.401169 +2.407252 +2.413316 +2.419360 +2.425384 +2.431387 +2.437371 +2.443334 +2.449276 +2.455197 +2.461096 +2.466974 +2.472831 +2.478665 +2.484478 +2.490268 +2.496035 +2.501780 +2.507501 +2.513200 +2.518874 +2.524525 +2.530153 +2.535756 +2.541335 +2.546889 +2.552418 +2.557923 +2.563402 +2.568856 +2.574284 +2.579687 +2.585063 +2.590413 +2.595737 +2.601034 +2.606304 +2.611547 +2.616763 +2.621951 +2.627112 +2.632245 +2.637349 +2.642426 +2.647473 +2.652493 +2.657483 +2.662444 +2.667376 +2.672278 +2.677150 +2.681993 +2.686806 +2.691588 +2.696340 +2.701061 +2.705751 +2.710411 +2.715039 +2.719635 +2.724200 +2.728734 +2.733235 +2.737704 +2.742141 +2.746545 +2.750917 +2.755255 +2.759561 +2.763833 +2.768072 +2.772278 +2.776449 +2.780587 +2.784691 +2.788760 +2.792795 +2.796795 +2.800761 +2.804692 +2.808587 +2.812447 +2.816272 +2.820062 +2.823815 +2.827533 +2.831215 +2.834860 +2.838469 +2.842042 +2.845578 +2.849077 +2.852539 +2.855964 +2.859352 +2.862703 +2.866016 +2.869291 +2.872529 +2.875729 +2.878890 +2.882014 +2.885099 +2.888146 +2.891154 +2.894123 +2.897053 +2.899945 +2.902798 +2.905611 +2.908385 +2.911119 +2.913814 +2.916470 +2.919085 +2.921661 +2.924196 +2.926692 +2.929147 +2.931562 +2.933936 +2.936270 +2.938564 +2.940816 +2.943028 +2.945199 +2.947329 +2.949418 +2.951465 +2.953472 +2.955436 +2.957360 +2.959242 +2.961082 +2.962881 +2.964638 +2.966353 +2.968026 +2.969657 +2.971246 +2.972793 +2.974298 +2.975760 +2.977180 +2.978558 +2.979893 +2.981186 +2.982436 +2.983644 +2.984809 +2.985931 +2.987010 +2.988047 +2.989041 +2.989992 +2.990900 +2.991765 +2.992587 +2.993366 +2.994101 +2.994794 +2.995444 +2.996050 +2.996613 +2.997133 +2.997610 +2.998043 +2.998434 +2.998780 +2.999084 +2.999344 +2.999561 +2.999734 +2.999864 +2.999951 +2.999995 +2.999995 +2.999951 +2.999864 +2.999734 +2.999561 +2.999344 +2.999084 +2.998780 +2.998434 +2.998043 +2.997610 +2.997133 +2.996613 +2.996050 +2.995444 +2.994794 +2.994101 +2.993366 +2.992587 +2.991765 +2.990900 +2.989992 +2.989041 +2.988047 +2.987010 +2.985931 +2.984809 +2.983644 +2.982436 +2.981186 +2.979893 +2.978558 +2.977180 +2.975760 +2.974298 +2.972793 +2.971246 +2.969657 +2.968026 +2.966353 +2.964638 +2.962881 +2.961082 +2.959242 +2.957360 +2.955436 +2.953472 +2.951465 +2.949418 +2.947329 +2.945199 +2.943028 +2.940816 +2.938564 +2.936270 +2.933936 +2.931562 +2.929147 +2.926692 +2.924196 +2.921661 +2.919085 +2.916470 +2.913814 +2.911119 +2.908385 +2.905611 +2.902798 +2.899945 +2.897053 +2.894123 +2.891154 +2.888146 +2.885099 +2.882014 +2.878890 +2.875729 +2.872529 +2.869291 +2.866016 +2.862703 +2.859352 +2.855964 +2.852539 +2.849077 +2.845578 +2.842042 +2.838469 +2.834860 +2.831215 +2.827533 +2.823815 +2.820062 +2.816272 +2.812447 +2.808587 +2.804692 +2.800761 +2.796795 +2.792795 +2.788760 +2.784691 +2.780587 +2.776449 +2.772278 +2.768072 +2.763833 +2.759561 +2.755255 +2.750917 +2.746545 +2.742141 +2.737704 +2.733235 +2.728734 +2.724200 +2.719635 +2.715039 +2.710411 +2.705751 +2.701061 +2.696340 +2.691588 +2.686806 +2.681993 +2.677150 +2.672278 +2.667376 +2.662444 +2.657483 +2.652493 +2.647473 +2.642426 +2.637349 +2.632245 +2.627112 +2.621951 +2.616763 +2.611547 +2.606304 +2.601034 +2.595737 +2.590413 +2.585063 +2.579687 +2.574284 +2.568856 +2.563402 +2.557923 +2.552418 +2.546889 +2.541335 +2.535756 +2.530153 +2.524525 +2.518874 +2.513200 +2.507501 +2.501780 +2.496035 +2.490268 +2.484478 +2.478665 +2.472831 +2.466974 +2.461096 +2.455197 +2.449276 +2.443334 +2.437371 +2.431387 +2.425384 +2.419360 +2.413316 +2.407252 +2.401169 +2.395067 +2.388946 +2.382805 +2.376647 +2.370470 +2.364274 +2.358061 +2.351831 +2.345582 +2.339317 +2.333034 +2.326735 +2.320419 +2.314087 +2.307739 +2.301375 +2.294996 +2.288600 +2.282190 +2.275765 +2.269325 +2.262871 +2.256402 +2.249919 +2.243423 +2.236913 +2.230389 +2.223853 +2.217303 +2.210741 +2.204166 +2.197580 +2.190981 +2.184370 +2.177748 +2.171115 +2.164470 +2.157815 +2.151149 +2.144472 +2.137786 +2.131089 +2.124383 +2.117667 +2.110942 +2.104208 +2.097465 +2.090713 +2.083953 +2.077185 +2.070408 +2.063624 +2.056833 +2.050034 +2.043229 +2.036416 +2.029597 +2.022771 +2.015939 +2.009101 +2.002258 +1.995409 +1.988554 +1.981695 +1.974830 +1.967961 +1.961087 +1.954210 +1.947328 +1.940442 +1.933553 +1.926660 +1.919764 +1.912865 +1.905964 +1.899059 +1.892153 +1.885244 +1.878334 +1.871421 +1.864508 +1.857592 +1.850676 +1.843759 +1.836841 +1.829923 +1.823004 +1.816085 +1.809167 +1.802248 +1.795330 +1.788413 +1.781497 +1.774582 +1.767668 +1.760755 +1.753845 +1.746936 +1.740029 +1.733124 +1.726222 +1.719323 +1.712426 +1.705532 +1.698642 +1.691755 +1.684871 +1.677991 +1.671115 +1.664244 +1.657376 +1.650513 +1.643655 +1.636801 +1.629953 +1.623110 +1.616272 +1.609439 +1.602613 +1.595792 +1.588977 +1.582169 +1.575366 +1.568571 +1.561782 +1.555000 +1.548225 +1.541458 +1.534697 +1.527945 +1.521200 +1.514463 +1.507734 +1.501013 +1.494300 +1.487596 +1.480901 +1.474214 +1.467537 +1.460868 +1.454209 +1.447560 +1.440919 +1.434289 +1.427669 +1.421058 +1.414458 +1.407868 +1.401288 +1.394719 +1.388161 +1.381613 +1.375077 +1.368551 +1.362037 +1.355535 +1.349044 +1.342564 +1.336097 +1.329641 +1.323197 +1.316766 +1.310347 +1.303940 +1.297546 +1.291164 +1.284796 +1.278440 +1.272097 +1.265768 +1.259452 +1.253149 +1.246860 +1.240584 +1.234322 +1.228074 +1.221840 +1.215620 +1.209414 +1.203223 +1.197045 +1.190883 +1.184735 +1.178601 +1.172483 +1.166379 +1.160290 +1.154217 +1.148158 +1.142115 +1.136087 +1.130075 +1.124079 +1.118098 +1.112132 +1.106183 +1.100249 +1.094332 +1.088430 +1.082545 +1.076676 +1.070823 +1.064987 +1.059167 +1.053364 +1.047578 +1.041808 +1.036055 +1.030319 +1.024599 +1.018897 +1.013212 +1.007544 +1.001893 +0.996260 +0.990644 +0.985045 +0.979464 +0.973900 +0.968354 +0.962826 +0.957315 +0.951822 +0.946347 +0.940890 +0.935451 +0.930030 +0.924627 +0.919242 +0.913875 +0.908526 +0.903195 +0.897883 +0.892589 +0.887314 +0.882057 +0.876818 +0.871598 +0.866397 +0.861214 +0.856050 +0.850904 +0.845777 +0.840669 +0.835580 +0.830509 +0.825457 +0.820424 +0.815410 +0.810415 +0.805439 +0.800482 +0.795544 +0.790625 +0.785725 +0.780844 +0.775982 +0.771139 +0.766315 +0.761511 +0.756726 +0.751960 +0.747213 +0.742485 +0.737777 +0.733088 +0.728418 +0.723767 +0.719136 +0.714524 +0.709931 +0.705358 +0.700804 +0.696269 +0.691754 +0.687258 +0.682781 +0.678324 +0.673886 +0.669468 +0.665069 +0.660689 +0.656328 +0.651987 +0.647665 +0.643363 +0.639080 +0.634816 +0.630571 +0.626346 +0.622140 +0.617954 +0.613787 +0.609639 +0.605510 +0.601401 +0.597311 +0.593240 +0.589188 +0.585156 +0.581143 +0.577148 +0.573174 +0.569218 +0.565281 +0.561364 +0.557465 +0.553586 +0.549726 +0.545884 +0.542062 +0.538259 +0.534474 +0.530709 +0.526962 +0.523235 +0.519526 +0.515836 +0.512165 +0.508513 +0.504879 +0.501264 +0.497668 +0.494090 +0.490531 +0.486991 +0.483469 +0.479966 +0.476481 +0.473015 +0.469567 +0.466138 +0.462727 +0.459334 +0.455959 +0.452603 +0.449265 +0.445945 +0.442643 +0.439360 +0.436094 +0.432847 +0.429617 +0.426405 +0.423212 +0.420036 +0.416877 +0.413737 +0.410614 +0.407509 +0.404422 +0.401352 +0.398300 +0.395265 +0.392248 +0.389248 +0.386266 +0.383301 +0.380353 +0.377422 +0.374508 +0.371612 +0.368733 +0.365870 +0.363025 +0.360197 +0.357385 +0.354590 +0.351812 +0.349051 +0.346306 +0.343578 +0.340867 +0.338172 +0.335494 +0.332832 +0.330186 +0.327556 +0.324943 +0.322346 +0.319765 +0.317201 +0.314652 +0.312119 +0.309602 +0.307101 +0.304616 +0.302146 +0.299693 +0.297254 +0.294832 +0.292425 +0.290033 +0.287657 +0.285296 +0.282951 +0.280620 +0.278305 +0.276005 +0.273720 +0.271450 +0.269195 +0.266954 +0.264729 +0.262518 +0.260322 +0.258141 +0.255974 +0.253822 +0.251684 +0.249561 +0.247452 +0.245357 +0.243277 +0.241210 +0.239158 +0.237120 +0.235095 +0.233085 +0.231089 +0.229106 +0.227137 +0.225181 +0.223240 +0.221311 +0.219397 +0.217495 +0.215608 +0.213733 +0.211872 +0.210023 +0.208188 +0.206366 +0.204557 +0.202761 +0.200978 +0.199207 +0.197449 +0.195704 +0.193972 +0.192252 +0.190545 +0.188850 +0.187167 +0.185497 +0.183839 +0.182193 +0.180559 +0.178938 +0.177328 +0.175730 +0.174144 +0.172570 +0.171008 +0.169458 +0.167919 +0.166391 +0.164875 +0.163371 +0.161878 +0.160396 +0.158926 +0.157467 +0.156018 +0.154581 +0.153155 +0.151740 +0.150336 +0.148943 +0.147561 +0.146189 +0.144828 +0.143477 +0.142137 +0.140808 +0.139488 +0.138180 +0.136881 +0.135593 +0.134315 +0.133047 +0.131789 +0.130542 +0.129304 +0.128076 +0.126858 +0.125649 +0.124450 +0.123261 +0.122082 +0.120912 +0.119752 +0.118601 +0.117459 +0.116327 +0.115204 +0.114090 +0.112985 +0.111889 +0.110803 +0.109725 +0.108656 +0.107596 +0.106545 +0.105503 +0.104469 +0.103444 +0.102428 +0.101420 +0.100420 +0.099429 +0.098446 +0.097472 +0.096506 +0.095548 +0.094598 +0.093656 +0.092723 +0.091797 +0.090879 +0.089969 +0.089067 +0.088173 +0.087286 +0.086407 +0.085536 +0.084672 +0.083816 +0.082967 +0.082126 +0.081292 +0.080465 +0.079646 +0.078833 +0.078028 +0.077230 +0.076439 +0.075655 +0.074878 +0.074108 +0.073345 +0.072589 +0.071839 +0.071096 +0.070360 +0.069630 +0.068907 +0.068191 +0.067480 +0.066777 +0.066080 +0.065389 +0.064704 +0.064026 +0.063353 +0.062687 +0.062027 +0.061374 +0.060726 +0.060084 +0.059448 +0.058818 +0.058193 +0.057575 +0.056962 +0.056355 +0.055754 +0.055158 +0.054568 +0.053983 +0.053404 +0.052831 +0.052262 +0.051700 +0.051142 +0.050590 +0.050043 +0.049501 +0.048964 +0.048432 +0.047906 +0.047384 +0.046868 +0.046357 +0.045850 +0.045348 +0.044851 +0.044359 +0.043872 +0.043389 +0.042912 +0.042438 +0.041970 +0.041506 +0.041046 +0.040591 +0.040141 +0.039694 +0.039253 +0.038815 +0.038382 +0.037954 +0.037529 +0.037109 +0.036693 +0.036281 +0.035873 +0.035469 +0.035069 +0.034673 +0.034282 +0.033894 +0.033510 +0.033130 +0.032753 +0.032381 +0.032012 +0.031647 +0.031286 +0.030929 +0.030575 +0.030224 +0.029878 +0.029534 +0.029195 +0.028859 +0.028526 +0.028197 +0.027871 +0.027548 +0.027229 +0.026913 +0.026601 +0.026291 +0.025985 +0.025682 +0.025383 +0.025086 +0.024793 +0.024502 +0.024215 +0.023930 +0.023649 +0.023371 +0.023095 +0.022823 +0.022553 +0.022286 +0.022022 +0.021761 +0.021503 +0.021247 +0.020995 +0.020744 +0.020497 +0.020252 +0.020010 +0.019770 +0.019533 +0.019299 +0.019067 +0.018838 +0.018611 +0.018387 +0.018165 +0.017945 +0.017728 +0.017513 +0.017301 +0.017091 +0.016883 +0.016677 +0.016474 +0.016273 +0.016074 +0.015878 +0.015684 +0.015491 +0.015301 +0.015113 +0.014927 +0.014744 +0.014562 +0.014382 +0.014204 +0.014029 +0.013855 +0.013683 +0.013513 +0.013345 +0.013179 +0.013015 +0.012853 +0.012692 +0.012534 +0.012377 +0.012222 +0.012068 +0.011917 +0.011767 +0.011619 +0.011473 +0.011328 +0.011185 +0.011043 +0.010904 +0.010765 +0.010629 +0.010494 +0.010360 +0.010229 +0.010098 +0.009969 +0.009842 +0.009716 +0.009592 +0.009469 +0.009348 +0.009227 +0.009109 +0.008992 +0.008876 +0.008761 +0.008648 +0.008536 +0.008426 +0.008317 +0.008209 +0.008102 +0.007997 +0.007893 +0.007790 +0.007688 +0.007588 +0.007489 +0.007391 +0.007294 +0.007198 +0.007104 +0.007011 +0.006918 +0.006827 +0.006737 +0.006648 +0.006560 +0.006474 +0.006388 +0.006303 +0.006220 +0.006137 +0.006055 +0.005975 +0.005895 +0.005816 +0.005739 +0.005662 +0.005586 +0.005511 +0.005437 +0.005364 +0.005292 +0.005221 +0.005151 +0.005081 +0.005013 +0.004945 +0.004878 +0.004812 +0.004747 +0.004682 +0.004619 +0.004556 +0.004494 +0.004433 +0.004372 +0.004313 +0.004254 +0.004195 +0.004138 +0.004081 +0.004025 +0.003970 +0.003915 +0.003861 +0.003808 +0.003756 +0.003704 +0.003652 +0.003602 +0.003552 +0.003503 +0.003454 +0.003406 +0.003359 +0.003312 +0.003266 +0.003220 +0.003175 +0.003131 +0.003087 +0.003044 +0.003001 +0.002959 +0.002917 +0.002876 +0.002836 +0.002796 +0.002756 +0.002717 +0.002679 +0.002641 +0.002604 +0.002567 +0.002530 +0.002494 +0.002459 +0.002424 +0.002389 +0.002355 +0.002322 +0.002288 +0.002256 +0.002223 +0.002191 +0.002160 +0.002129 +0.002098 +0.002068 +0.002038 +0.002009 +0.001980 +0.001951 +0.001923 +0.001895 +0.001868 +0.001841 +0.001814 +0.001788 +0.001761 +0.001736 +0.001711 +0.001686 +0.001661 +0.001637 +0.001613 +0.001589 +0.001566 +0.001543 +0.001520 +0.001498 +0.001476 +0.001454 +0.001432 +0.001411 +0.001390 +0.001370 +0.001350 +0.001330 +0.001310 +0.001290 +0.001271 +0.001252 +0.001234 +0.001215 +0.001197 +0.001179 +0.001162 +0.001144 +0.001127 +0.001110 +0.001094 +0.001077 +0.001061 +0.001045 +0.001029 +0.001014 +0.000998 +0.000983 +0.000968 +0.000954 +0.000939 +0.000925 +0.000911 +0.000897 +0.000884 +0.000870 +0.000857 +0.000844 +0.000831 +0.000818 +0.000806 +0.000793 +0.000781 +0.000769 +0.000757 +0.000746 +0.000734 +0.000723 +0.000712 +0.000701 +0.000690 +0.000679 +0.000669 +0.000659 +0.000648 +0.000638 +0.000628 +0.000619 +0.000609 +0.000599 +0.000590 +0.000581 +0.000572 +0.000563 +0.000554 +0.000545 +0.000537 +0.000529 +0.000520 +0.000512 +0.000504 +0.000496 +0.000488 +0.000481 +0.000473 +0.000465 +0.000458 +0.000451 +0.000444 +0.000437 +0.000430 +0.000423 +0.000416 +0.000410 +0.000403 +0.000397 +0.000390 +0.000384 +0.000378 +0.000372 +0.000366 +0.000360 +0.000354 +0.000349 +0.000343 +0.000338 +0.000332 +0.000327 +0.000321 +0.000316 +0.000311 +0.000306 +0.000301 +0.000296 +0.000292 +0.000287 +0.000282 +0.000278 +0.000273 +0.000269 +0.000264 +0.000260 +0.000256 +0.000252 +0.000247 +0.000243 +0.000239 +0.000235 +0.000232 +0.000228 +0.000224 +0.000220 +0.000217 +0.000213 +0.000210 +0.000206 +0.000203 +0.000199 +0.000196 +0.000193 +0.000190 +0.000187 +0.000183 +0.000180 +0.000177 +0.000174 +0.000172 +0.000169 +0.000166 +0.000163 +0.000160 +0.000158 +0.000155 +0.000152 +0.000150 +0.000147 +0.000145 +0.000142 +0.000140 +0.000138 +0.000135 +0.000133 +0.000131 +0.000129 +0.000126 +0.000124 +0.000122 +0.000120 +0.000118 +0.000116 +0.000114 +0.000112 +0.000110 +0.000108 +0.000107 +0.000105 +0.000103 +0.000101 +0.000099 +0.000098 +0.000096 +0.000094 +0.000093 +0.000091 +0.000090 +0.000088 +0.000087 +0.000085 +0.000084 +0.000082 +0.000081 +0.000079 +0.000078 +0.000077 +0.000075 +0.000074 +0.000073 +0.000071 +0.000070 +0.000069 +0.000068 +0.000067 +0.000065 +0.000064 +0.000063 +0.000062 +0.000061 +0.000060 +0.000059 +0.000058 +0.000057 +0.000056 +0.000055 +0.000054 +0.000053 +0.000052 +0.000051 +0.000050 +0.000049 +0.000048 +0.000048 +0.000047 +0.000046 +0.000045 +0.000044 +0.000043 +0.000043 +0.000042 +0.000041 +0.000040 +0.000040 +0.000039 +0.000038 +0.000038 +0.000037 +0.000036 +0.000036 +0.000035 +0.000034 +0.000034 +0.000033 +0.000033 +0.000032 +0.000031 +0.000031 +0.000030 +0.000030 +0.000029 +0.000029 +0.000028 +0.000028 +0.000027 +0.000027 +0.000026 +0.000026 +0.000025 +0.000025 +0.000024 +0.000024 +0.000023 +0.000023 +0.000023 +0.000022 +0.000022 +0.000021 +0.000021 +0.000021 +0.000020 +0.000020 +0.000019 +0.000019 +0.000019 +0.000018 +0.000018 +0.000018 +0.000017 +0.000017 +0.000017 +0.000016 +0.000016 +0.000016 +0.000016 +0.000015 +0.000015 +0.000015 +0.000014 +0.000014 +0.000014 +0.000014 +0.000013 +0.000013 +0.000013 +0.000013 +0.000012 +0.000012 +0.000012 +0.000012 +0.000011 +0.000011 +0.000011 +0.000011 +0.000011 +0.000010 +0.000010 +0.000010 +0.000010 +0.000010 +0.000010 +0.000009 +0.000009 +0.000009 +0.000009 +0.000009 +0.000008 +0.000008 +0.000008 +0.000008 +0.000008 +0.000008 +0.000008 +0.000007 +0.000007 +0.000007 +0.000007 +0.000007 +0.000007 +0.000007 +0.000006 +0.000006 +0.000006 +0.000006 +0.000006 +0.000006 +0.000006 +0.000006 +0.000006 +0.000005 +0.000005 +0.000005 +0.000005 +0.000005 +0.000005 +0.000005 +0.000005 +0.000005 +0.000005 +0.000004 +0.000004 +0.000004 +0.000004 +0.000004 +0.000004 +0.000004 +0.000004 +0.000004 +0.000004 +0.000004 +0.000004 +0.000004 +0.000003 +0.000003 +0.000003 +0.000003 +0.000003 +0.000003 +0.000003 +0.000003 +0.000003 +0.000003 +0.000003 +0.000003 +0.000003 +0.000003 +0.000003 +0.000003 +0.000003 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000002 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000001 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 diff --git a/inputFiles/lagrangianContactMechanics/dataTables/singularCrackSlip.csv b/inputFiles/lagrangianContactMechanics/dataTables/singularCrackSlip.csv new file mode 100644 index 00000000000..edf811e7742 --- /dev/null +++ b/inputFiles/lagrangianContactMechanics/dataTables/singularCrackSlip.csv @@ -0,0 +1,10000 @@ +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.128977 +0.225371 +0.291349 +0.344835 +0.390990 +0.432169 +0.469683 +0.504350 +0.536722 +0.567193 +0.596053 +0.623527 +0.649790 +0.674984 +0.699225 +0.722608 +0.745213 +0.767111 +0.788359 +0.809010 +0.829106 +0.848689 +0.867793 +0.886448 +0.904683 +0.922522 +0.939988 +0.957101 +0.973881 +0.990343 +1.006504 +1.022377 +1.037977 +1.053314 +1.068401 +1.083248 +1.097864 +1.112259 +1.126442 +1.140419 +1.154199 +1.167789 +1.181194 +1.194422 +1.207478 +1.220368 +1.233097 +1.245670 +1.258091 +1.270365 +1.282496 +1.294488 +1.306346 +1.318072 +1.329670 +1.341143 +1.352496 +1.363729 +1.374848 +1.385854 +1.396749 +1.407538 +1.418221 +1.428802 +1.439282 +1.449664 +1.459950 +1.470142 +1.480242 +1.490251 +1.500172 +1.510006 +1.519756 +1.529422 +1.539006 +1.548509 +1.557934 +1.567281 +1.576553 +1.585749 +1.594872 +1.603923 +1.612903 +1.621814 +1.630655 +1.639429 +1.648137 +1.656779 +1.665357 +1.673872 +1.682324 +1.690714 +1.699044 +1.707315 +1.715526 +1.723680 +1.731776 +1.739816 +1.747800 +1.755730 +1.763605 +1.771427 +1.779196 +1.786914 +1.794580 +1.802195 +1.809760 +1.817276 +1.824744 +1.832163 +1.839534 +1.846858 +1.854136 +1.861368 +1.868555 +1.875696 +1.882794 +1.889847 +1.896857 +1.903824 +1.910749 +1.917632 +1.924473 +1.931273 +1.938033 +1.944752 +1.951432 +1.958072 +1.964673 +1.971235 +1.977760 +1.984246 +1.990695 +1.997107 +2.003482 +2.009821 +2.016123 +2.022390 +2.028622 +2.034818 +2.040980 +2.047107 +2.053200 +2.059259 +2.065285 +2.071277 +2.077237 +2.083164 +2.089058 +2.094921 +2.100751 +2.106550 +2.112318 +2.118055 +2.123760 +2.129436 +2.135080 +2.140695 +2.146280 +2.151836 +2.157361 +2.162858 +2.168326 +2.173765 +2.179176 +2.184558 +2.189913 +2.195239 +2.200538 +2.205809 +2.211053 +2.216270 +2.221460 +2.226623 +2.231760 +2.236870 +2.241954 +2.247013 +2.252045 +2.257052 +2.262033 +2.266989 +2.271920 +2.276826 +2.281707 +2.286564 +2.291396 +2.296204 +2.300987 +2.305747 +2.310482 +2.315194 +2.319882 +2.324547 +2.329189 +2.333807 +2.338402 +2.342975 +2.347525 +2.352052 +2.356556 +2.361038 +2.365498 +2.369936 +2.374352 +2.378746 +2.383118 +2.387468 +2.391797 +2.396105 +2.400391 +2.404656 +2.408901 +2.413124 +2.417326 +2.421508 +2.425669 +2.429809 +2.433929 +2.438029 +2.442108 +2.446168 +2.450207 +2.454227 +2.458227 +2.462207 +2.466167 +2.470108 +2.474029 +2.477932 +2.481814 +2.485678 +2.489523 +2.493349 +2.497155 +2.500943 +2.504713 +2.508463 +2.512195 +2.515909 +2.519604 +2.523281 +2.526940 +2.530581 +2.534203 +2.537808 +2.541394 +2.544963 +2.548514 +2.552047 +2.555563 +2.559061 +2.562542 +2.566005 +2.569451 +2.572880 +2.576292 +2.579686 +2.583063 +2.586424 +2.589767 +2.593094 +2.596404 +2.599697 +2.602973 +2.606233 +2.609476 +2.612703 +2.615913 +2.619107 +2.622285 +2.625447 +2.628592 +2.631721 +2.634834 +2.637931 +2.641013 +2.644078 +2.647127 +2.650161 +2.653179 +2.656181 +2.659168 +2.662139 +2.665094 +2.668034 +2.670959 +2.673868 +2.676762 +2.679641 +2.682505 +2.685353 +2.688186 +2.691004 +2.693807 +2.696595 +2.699369 +2.702127 +2.704870 +2.707599 +2.710313 +2.713012 +2.715697 +2.718367 +2.721022 +2.723663 +2.726289 +2.728901 +2.731499 +2.734082 +2.736651 +2.739205 +2.741746 +2.744272 +2.746783 +2.749281 +2.751765 +2.754235 +2.756690 +2.759132 +2.761560 +2.763973 +2.766373 +2.768759 +2.771132 +2.773490 +2.775835 +2.778166 +2.780484 +2.782788 +2.785078 +2.787355 +2.789618 +2.791868 +2.794104 +2.796327 +2.798536 +2.800732 +2.802915 +2.805085 +2.807241 +2.809384 +2.811514 +2.813630 +2.815734 +2.817824 +2.819901 +2.821966 +2.824017 +2.826055 +2.828080 +2.830092 +2.832092 +2.834078 +2.836052 +2.838013 +2.839960 +2.841896 +2.843818 +2.845728 +2.847625 +2.849509 +2.851381 +2.853240 +2.855086 +2.856920 +2.858741 +2.860550 +2.862346 +2.864130 +2.865901 +2.867660 +2.869407 +2.871141 +2.872862 +2.874572 +2.876269 +2.877953 +2.879626 +2.881286 +2.882934 +2.884570 +2.886193 +2.887804 +2.889404 +2.890991 +2.892565 +2.894128 +2.895679 +2.897218 +2.898744 +2.900259 +2.901762 +2.903252 +2.904731 +2.906198 +2.907652 +2.909095 +2.910526 +2.911945 +2.913353 +2.914748 +2.916132 +2.917503 +2.918863 +2.920212 +2.921548 +2.922873 +2.924186 +2.925487 +2.926777 +2.928055 +2.929321 +2.930576 +2.931819 +2.933050 +2.934270 +2.935478 +2.936675 +2.937860 +2.939033 +2.940195 +2.941345 +2.942484 +2.943612 +2.944728 +2.945832 +2.946925 +2.948007 +2.949077 +2.950136 +2.951183 +2.952219 +2.953244 +2.954257 +2.955259 +2.956250 +2.957229 +2.958197 +2.959153 +2.960098 +2.961032 +2.961955 +2.962867 +2.963767 +2.964656 +2.965533 +2.966400 +2.967255 +2.968099 +2.968932 +2.969754 +2.970564 +2.971363 +2.972152 +2.972929 +2.973694 +2.974449 +2.975193 +2.975925 +2.976647 +2.977357 +2.978056 +2.978744 +2.979421 +2.980087 +2.980742 +2.981386 +2.982019 +2.982640 +2.983251 +2.983851 +2.984439 +2.985017 +2.985584 +2.986139 +2.986684 +2.987218 +2.987740 +2.988252 +2.988753 +2.989243 +2.989721 +2.990189 +2.990646 +2.991092 +2.991527 +2.991951 +2.992364 +2.992766 +2.993158 +2.993538 +2.993908 +2.994266 +2.994614 +2.994950 +2.995276 +2.995591 +2.995895 +2.996188 +2.996471 +2.996742 +2.997003 +2.997252 +2.997491 +2.997719 +2.997936 +2.998142 +2.998337 +2.998522 +2.998695 +2.998858 +2.999010 +2.999151 +2.999281 +2.999401 +2.999509 +2.999607 +2.999693 +2.999769 +2.999834 +2.999889 +2.999932 +2.999964 +2.999986 +2.999997 +2.999997 +2.999986 +2.999964 +2.999932 +2.999889 +2.999834 +2.999769 +2.999693 +2.999607 +2.999509 +2.999401 +2.999281 +2.999151 +2.999010 +2.998858 +2.998695 +2.998522 +2.998337 +2.998142 +2.997936 +2.997719 +2.997491 +2.997252 +2.997003 +2.996742 +2.996471 +2.996188 +2.995895 +2.995591 +2.995276 +2.994950 +2.994614 +2.994266 +2.993908 +2.993538 +2.993158 +2.992766 +2.992364 +2.991951 +2.991527 +2.991092 +2.990646 +2.990189 +2.989721 +2.989243 +2.988753 +2.988252 +2.987740 +2.987218 +2.986684 +2.986139 +2.985584 +2.985017 +2.984439 +2.983851 +2.983251 +2.982640 +2.982019 +2.981386 +2.980742 +2.980087 +2.979421 +2.978744 +2.978056 +2.977357 +2.976647 +2.975925 +2.975193 +2.974449 +2.973694 +2.972929 +2.972152 +2.971363 +2.970564 +2.969754 +2.968932 +2.968099 +2.967255 +2.966400 +2.965533 +2.964656 +2.963767 +2.962867 +2.961955 +2.961032 +2.960098 +2.959153 +2.958197 +2.957229 +2.956250 +2.955259 +2.954257 +2.953244 +2.952219 +2.951183 +2.950136 +2.949077 +2.948007 +2.946925 +2.945832 +2.944728 +2.943612 +2.942484 +2.941345 +2.940195 +2.939033 +2.937860 +2.936675 +2.935478 +2.934270 +2.933050 +2.931819 +2.930576 +2.929321 +2.928055 +2.926777 +2.925487 +2.924186 +2.922873 +2.921548 +2.920212 +2.918863 +2.917503 +2.916132 +2.914748 +2.913353 +2.911945 +2.910526 +2.909095 +2.907652 +2.906198 +2.904731 +2.903252 +2.901762 +2.900259 +2.898744 +2.897218 +2.895679 +2.894128 +2.892565 +2.890991 +2.889404 +2.887804 +2.886193 +2.884570 +2.882934 +2.881286 +2.879626 +2.877953 +2.876269 +2.874572 +2.872862 +2.871141 +2.869407 +2.867660 +2.865901 +2.864130 +2.862346 +2.860550 +2.858741 +2.856920 +2.855086 +2.853240 +2.851381 +2.849509 +2.847625 +2.845728 +2.843818 +2.841896 +2.839960 +2.838013 +2.836052 +2.834078 +2.832092 +2.830092 +2.828080 +2.826055 +2.824017 +2.821966 +2.819901 +2.817824 +2.815734 +2.813630 +2.811514 +2.809384 +2.807241 +2.805085 +2.802915 +2.800732 +2.798536 +2.796327 +2.794104 +2.791868 +2.789618 +2.787355 +2.785078 +2.782788 +2.780484 +2.778166 +2.775835 +2.773490 +2.771132 +2.768759 +2.766373 +2.763973 +2.761560 +2.759132 +2.756690 +2.754235 +2.751765 +2.749281 +2.746783 +2.744272 +2.741746 +2.739205 +2.736651 +2.734082 +2.731499 +2.728901 +2.726289 +2.723663 +2.721022 +2.718367 +2.715697 +2.713012 +2.710313 +2.707599 +2.704870 +2.702127 +2.699369 +2.696595 +2.693807 +2.691004 +2.688186 +2.685353 +2.682505 +2.679641 +2.676762 +2.673868 +2.670959 +2.668034 +2.665094 +2.662139 +2.659168 +2.656181 +2.653179 +2.650161 +2.647127 +2.644078 +2.641013 +2.637931 +2.634834 +2.631721 +2.628592 +2.625447 +2.622285 +2.619107 +2.615913 +2.612703 +2.609476 +2.606233 +2.602973 +2.599697 +2.596404 +2.593094 +2.589767 +2.586424 +2.583063 +2.579686 +2.576292 +2.572880 +2.569451 +2.566005 +2.562542 +2.559061 +2.555563 +2.552047 +2.548514 +2.544963 +2.541394 +2.537808 +2.534203 +2.530581 +2.526940 +2.523281 +2.519604 +2.515909 +2.512195 +2.508463 +2.504713 +2.500943 +2.497155 +2.493349 +2.489523 +2.485678 +2.481814 +2.477932 +2.474029 +2.470108 +2.466167 +2.462207 +2.458227 +2.454227 +2.450207 +2.446168 +2.442108 +2.438029 +2.433929 +2.429809 +2.425669 +2.421508 +2.417326 +2.413124 +2.408901 +2.404656 +2.400391 +2.396105 +2.391797 +2.387468 +2.383118 +2.378746 +2.374352 +2.369936 +2.365498 +2.361038 +2.356556 +2.352052 +2.347525 +2.342975 +2.338402 +2.333807 +2.329189 +2.324547 +2.319882 +2.315194 +2.310482 +2.305747 +2.300987 +2.296204 +2.291396 +2.286564 +2.281707 +2.276826 +2.271920 +2.266989 +2.262033 +2.257052 +2.252045 +2.247013 +2.241954 +2.236870 +2.231760 +2.226623 +2.221460 +2.216270 +2.211053 +2.205809 +2.200538 +2.195239 +2.189913 +2.184558 +2.179176 +2.173765 +2.168326 +2.162858 +2.157361 +2.151836 +2.146280 +2.140695 +2.135080 +2.129436 +2.123760 +2.118055 +2.112318 +2.106550 +2.100751 +2.094921 +2.089058 +2.083164 +2.077237 +2.071277 +2.065285 +2.059259 +2.053200 +2.047107 +2.040980 +2.034818 +2.028622 +2.022390 +2.016123 +2.009821 +2.003482 +1.997107 +1.990695 +1.984246 +1.977760 +1.971235 +1.964673 +1.958072 +1.951432 +1.944752 +1.938033 +1.931273 +1.924473 +1.917632 +1.910749 +1.903824 +1.896857 +1.889847 +1.882794 +1.875696 +1.868555 +1.861368 +1.854136 +1.846858 +1.839534 +1.832163 +1.824744 +1.817276 +1.809760 +1.802195 +1.794580 +1.786914 +1.779196 +1.771427 +1.763605 +1.755730 +1.747800 +1.739816 +1.731776 +1.723680 +1.715526 +1.707315 +1.699044 +1.690714 +1.682324 +1.673872 +1.665357 +1.656779 +1.648137 +1.639429 +1.630655 +1.621814 +1.612903 +1.603923 +1.594872 +1.585749 +1.576553 +1.567281 +1.557934 +1.548509 +1.539006 +1.529422 +1.519756 +1.510006 +1.500172 +1.490251 +1.480242 +1.470142 +1.459950 +1.449664 +1.439282 +1.428802 +1.418221 +1.407538 +1.396749 +1.385854 +1.374848 +1.363729 +1.352496 +1.341143 +1.329670 +1.318072 +1.306346 +1.294488 +1.282496 +1.270365 +1.258091 +1.245670 +1.233097 +1.220368 +1.207478 +1.194422 +1.181194 +1.167789 +1.154199 +1.140419 +1.126442 +1.112259 +1.097864 +1.083248 +1.068401 +1.053314 +1.037977 +1.022377 +1.006504 +0.990343 +0.973881 +0.957101 +0.939988 +0.922522 +0.904683 +0.886448 +0.867793 +0.848689 +0.829106 +0.809010 +0.788359 +0.767111 +0.745213 +0.722608 +0.699225 +0.674984 +0.649790 +0.623527 +0.596053 +0.567193 +0.536722 +0.504350 +0.469683 +0.432169 +0.390990 +0.344835 +0.291349 +0.225371 +0.128977 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 +0.000000 diff --git a/inputFiles/lagrangianContactMechanics/dataTables/x.csv b/inputFiles/lagrangianContactMechanics/dataTables/x.csv new file mode 100644 index 00000000000..aef9f0ca8b1 --- /dev/null +++ b/inputFiles/lagrangianContactMechanics/dataTables/x.csv @@ -0,0 +1,10000 @@ +-19.010000 +-19.006198 +-19.002395 +-18.998593 +-18.994790 +-18.990988 +-18.987186 +-18.983383 +-18.979581 +-18.975779 +-18.971976 +-18.968174 +-18.964371 +-18.960569 +-18.956767 +-18.952964 +-18.949162 +-18.945360 +-18.941557 +-18.937755 +-18.933952 +-18.930150 +-18.926348 +-18.922545 +-18.918743 +-18.914940 +-18.911138 +-18.907336 +-18.903533 +-18.899731 +-18.895929 +-18.892126 +-18.888324 +-18.884521 +-18.880719 +-18.876917 +-18.873114 +-18.869312 +-18.865510 +-18.861707 +-18.857905 +-18.854102 +-18.850300 +-18.846498 +-18.842695 +-18.838893 +-18.835091 +-18.831288 +-18.827486 +-18.823683 +-18.819881 +-18.816079 +-18.812276 +-18.808474 +-18.804671 +-18.800869 +-18.797067 +-18.793264 +-18.789462 +-18.785660 +-18.781857 +-18.778055 +-18.774252 +-18.770450 +-18.766648 +-18.762845 +-18.759043 +-18.755241 +-18.751438 +-18.747636 +-18.743833 +-18.740031 +-18.736229 +-18.732426 +-18.728624 +-18.724821 +-18.721019 +-18.717217 +-18.713414 +-18.709612 +-18.705810 +-18.702007 +-18.698205 +-18.694402 +-18.690600 +-18.686798 +-18.682995 +-18.679193 +-18.675391 +-18.671588 +-18.667786 +-18.663983 +-18.660181 +-18.656379 +-18.652576 +-18.648774 +-18.644971 +-18.641169 +-18.637367 +-18.633564 +-18.629762 +-18.625960 +-18.622157 +-18.618355 +-18.614552 +-18.610750 +-18.606948 +-18.603145 +-18.599343 +-18.595541 +-18.591738 +-18.587936 +-18.584133 +-18.580331 +-18.576529 +-18.572726 +-18.568924 +-18.565122 +-18.561319 +-18.557517 +-18.553714 +-18.549912 +-18.546110 +-18.542307 +-18.538505 +-18.534702 +-18.530900 +-18.527098 +-18.523295 +-18.519493 +-18.515691 +-18.511888 +-18.508086 +-18.504283 +-18.500481 +-18.496679 +-18.492876 +-18.489074 +-18.485272 +-18.481469 +-18.477667 +-18.473864 +-18.470062 +-18.466260 +-18.462457 +-18.458655 +-18.454852 +-18.451050 +-18.447248 +-18.443445 +-18.439643 +-18.435841 +-18.432038 +-18.428236 +-18.424433 +-18.420631 +-18.416829 +-18.413026 +-18.409224 +-18.405422 +-18.401619 +-18.397817 +-18.394014 +-18.390212 +-18.386410 +-18.382607 +-18.378805 +-18.375003 +-18.371200 +-18.367398 +-18.363595 +-18.359793 +-18.355991 +-18.352188 +-18.348386 +-18.344583 +-18.340781 +-18.336979 +-18.333176 +-18.329374 +-18.325572 +-18.321769 +-18.317967 +-18.314164 +-18.310362 +-18.306560 +-18.302757 +-18.298955 +-18.295153 +-18.291350 +-18.287548 +-18.283745 +-18.279943 +-18.276141 +-18.272338 +-18.268536 +-18.264733 +-18.260931 +-18.257129 +-18.253326 +-18.249524 +-18.245722 +-18.241919 +-18.238117 +-18.234314 +-18.230512 +-18.226710 +-18.222907 +-18.219105 +-18.215303 +-18.211500 +-18.207698 +-18.203895 +-18.200093 +-18.196291 +-18.192488 +-18.188686 +-18.184883 +-18.181081 +-18.177279 +-18.173476 +-18.169674 +-18.165872 +-18.162069 +-18.158267 +-18.154464 +-18.150662 +-18.146860 +-18.143057 +-18.139255 +-18.135453 +-18.131650 +-18.127848 +-18.124045 +-18.120243 +-18.116441 +-18.112638 +-18.108836 +-18.105034 +-18.101231 +-18.097429 +-18.093626 +-18.089824 +-18.086022 +-18.082219 +-18.078417 +-18.074614 +-18.070812 +-18.067010 +-18.063207 +-18.059405 +-18.055603 +-18.051800 +-18.047998 +-18.044195 +-18.040393 +-18.036591 +-18.032788 +-18.028986 +-18.025184 +-18.021381 +-18.017579 +-18.013776 +-18.009974 +-18.006172 +-18.002369 +-17.998567 +-17.994764 +-17.990962 +-17.987160 +-17.983357 +-17.979555 +-17.975753 +-17.971950 +-17.968148 +-17.964345 +-17.960543 +-17.956741 +-17.952938 +-17.949136 +-17.945334 +-17.941531 +-17.937729 +-17.933926 +-17.930124 +-17.926322 +-17.922519 +-17.918717 +-17.914914 +-17.911112 +-17.907310 +-17.903507 +-17.899705 +-17.895903 +-17.892100 +-17.888298 +-17.884495 +-17.880693 +-17.876891 +-17.873088 +-17.869286 +-17.865484 +-17.861681 +-17.857879 +-17.854076 +-17.850274 +-17.846472 +-17.842669 +-17.838867 +-17.835065 +-17.831262 +-17.827460 +-17.823657 +-17.819855 +-17.816053 +-17.812250 +-17.808448 +-17.804645 +-17.800843 +-17.797041 +-17.793238 +-17.789436 +-17.785634 +-17.781831 +-17.778029 +-17.774226 +-17.770424 +-17.766622 +-17.762819 +-17.759017 +-17.755215 +-17.751412 +-17.747610 +-17.743807 +-17.740005 +-17.736203 +-17.732400 +-17.728598 +-17.724795 +-17.720993 +-17.717191 +-17.713388 +-17.709586 +-17.705784 +-17.701981 +-17.698179 +-17.694376 +-17.690574 +-17.686772 +-17.682969 +-17.679167 +-17.675365 +-17.671562 +-17.667760 +-17.663957 +-17.660155 +-17.656353 +-17.652550 +-17.648748 +-17.644945 +-17.641143 +-17.637341 +-17.633538 +-17.629736 +-17.625934 +-17.622131 +-17.618329 +-17.614526 +-17.610724 +-17.606922 +-17.603119 +-17.599317 +-17.595515 +-17.591712 +-17.587910 +-17.584107 +-17.580305 +-17.576503 +-17.572700 +-17.568898 +-17.565096 +-17.561293 +-17.557491 +-17.553688 +-17.549886 +-17.546084 +-17.542281 +-17.538479 +-17.534676 +-17.530874 +-17.527072 +-17.523269 +-17.519467 +-17.515665 +-17.511862 +-17.508060 +-17.504257 +-17.500455 +-17.496653 +-17.492850 +-17.489048 +-17.485246 +-17.481443 +-17.477641 +-17.473838 +-17.470036 +-17.466234 +-17.462431 +-17.458629 +-17.454826 +-17.451024 +-17.447222 +-17.443419 +-17.439617 +-17.435815 +-17.432012 +-17.428210 +-17.424407 +-17.420605 +-17.416803 +-17.413000 +-17.409198 +-17.405396 +-17.401593 +-17.397791 +-17.393988 +-17.390186 +-17.386384 +-17.382581 +-17.378779 +-17.374976 +-17.371174 +-17.367372 +-17.363569 +-17.359767 +-17.355965 +-17.352162 +-17.348360 +-17.344557 +-17.340755 +-17.336953 +-17.333150 +-17.329348 +-17.325546 +-17.321743 +-17.317941 +-17.314138 +-17.310336 +-17.306534 +-17.302731 +-17.298929 +-17.295127 +-17.291324 +-17.287522 +-17.283719 +-17.279917 +-17.276115 +-17.272312 +-17.268510 +-17.264707 +-17.260905 +-17.257103 +-17.253300 +-17.249498 +-17.245696 +-17.241893 +-17.238091 +-17.234288 +-17.230486 +-17.226684 +-17.222881 +-17.219079 +-17.215277 +-17.211474 +-17.207672 +-17.203869 +-17.200067 +-17.196265 +-17.192462 +-17.188660 +-17.184857 +-17.181055 +-17.177253 +-17.173450 +-17.169648 +-17.165846 +-17.162043 +-17.158241 +-17.154438 +-17.150636 +-17.146834 +-17.143031 +-17.139229 +-17.135427 +-17.131624 +-17.127822 +-17.124019 +-17.120217 +-17.116415 +-17.112612 +-17.108810 +-17.105008 +-17.101205 +-17.097403 +-17.093600 +-17.089798 +-17.085996 +-17.082193 +-17.078391 +-17.074588 +-17.070786 +-17.066984 +-17.063181 +-17.059379 +-17.055577 +-17.051774 +-17.047972 +-17.044169 +-17.040367 +-17.036565 +-17.032762 +-17.028960 +-17.025158 +-17.021355 +-17.017553 +-17.013750 +-17.009948 +-17.006146 +-17.002343 +-16.998541 +-16.994738 +-16.990936 +-16.987134 +-16.983331 +-16.979529 +-16.975727 +-16.971924 +-16.968122 +-16.964319 +-16.960517 +-16.956715 +-16.952912 +-16.949110 +-16.945308 +-16.941505 +-16.937703 +-16.933900 +-16.930098 +-16.926296 +-16.922493 +-16.918691 +-16.914888 +-16.911086 +-16.907284 +-16.903481 +-16.899679 +-16.895877 +-16.892074 +-16.888272 +-16.884469 +-16.880667 +-16.876865 +-16.873062 +-16.869260 +-16.865458 +-16.861655 +-16.857853 +-16.854050 +-16.850248 +-16.846446 +-16.842643 +-16.838841 +-16.835039 +-16.831236 +-16.827434 +-16.823631 +-16.819829 +-16.816027 +-16.812224 +-16.808422 +-16.804619 +-16.800817 +-16.797015 +-16.793212 +-16.789410 +-16.785608 +-16.781805 +-16.778003 +-16.774200 +-16.770398 +-16.766596 +-16.762793 +-16.758991 +-16.755189 +-16.751386 +-16.747584 +-16.743781 +-16.739979 +-16.736177 +-16.732374 +-16.728572 +-16.724769 +-16.720967 +-16.717165 +-16.713362 +-16.709560 +-16.705758 +-16.701955 +-16.698153 +-16.694350 +-16.690548 +-16.686746 +-16.682943 +-16.679141 +-16.675339 +-16.671536 +-16.667734 +-16.663931 +-16.660129 +-16.656327 +-16.652524 +-16.648722 +-16.644919 +-16.641117 +-16.637315 +-16.633512 +-16.629710 +-16.625908 +-16.622105 +-16.618303 +-16.614500 +-16.610698 +-16.606896 +-16.603093 +-16.599291 +-16.595489 +-16.591686 +-16.587884 +-16.584081 +-16.580279 +-16.576477 +-16.572674 +-16.568872 +-16.565070 +-16.561267 +-16.557465 +-16.553662 +-16.549860 +-16.546058 +-16.542255 +-16.538453 +-16.534650 +-16.530848 +-16.527046 +-16.523243 +-16.519441 +-16.515639 +-16.511836 +-16.508034 +-16.504231 +-16.500429 +-16.496627 +-16.492824 +-16.489022 +-16.485220 +-16.481417 +-16.477615 +-16.473812 +-16.470010 +-16.466208 +-16.462405 +-16.458603 +-16.454800 +-16.450998 +-16.447196 +-16.443393 +-16.439591 +-16.435789 +-16.431986 +-16.428184 +-16.424381 +-16.420579 +-16.416777 +-16.412974 +-16.409172 +-16.405370 +-16.401567 +-16.397765 +-16.393962 +-16.390160 +-16.386358 +-16.382555 +-16.378753 +-16.374950 +-16.371148 +-16.367346 +-16.363543 +-16.359741 +-16.355939 +-16.352136 +-16.348334 +-16.344531 +-16.340729 +-16.336927 +-16.333124 +-16.329322 +-16.325520 +-16.321717 +-16.317915 +-16.314112 +-16.310310 +-16.306508 +-16.302705 +-16.298903 +-16.295101 +-16.291298 +-16.287496 +-16.283693 +-16.279891 +-16.276089 +-16.272286 +-16.268484 +-16.264681 +-16.260879 +-16.257077 +-16.253274 +-16.249472 +-16.245670 +-16.241867 +-16.238065 +-16.234262 +-16.230460 +-16.226658 +-16.222855 +-16.219053 +-16.215251 +-16.211448 +-16.207646 +-16.203843 +-16.200041 +-16.196239 +-16.192436 +-16.188634 +-16.184831 +-16.181029 +-16.177227 +-16.173424 +-16.169622 +-16.165820 +-16.162017 +-16.158215 +-16.154412 +-16.150610 +-16.146808 +-16.143005 +-16.139203 +-16.135401 +-16.131598 +-16.127796 +-16.123993 +-16.120191 +-16.116389 +-16.112586 +-16.108784 +-16.104981 +-16.101179 +-16.097377 +-16.093574 +-16.089772 +-16.085970 +-16.082167 +-16.078365 +-16.074562 +-16.070760 +-16.066958 +-16.063155 +-16.059353 +-16.055551 +-16.051748 +-16.047946 +-16.044143 +-16.040341 +-16.036539 +-16.032736 +-16.028934 +-16.025132 +-16.021329 +-16.017527 +-16.013724 +-16.009922 +-16.006120 +-16.002317 +-15.998515 +-15.994712 +-15.990910 +-15.987108 +-15.983305 +-15.979503 +-15.975701 +-15.971898 +-15.968096 +-15.964293 +-15.960491 +-15.956689 +-15.952886 +-15.949084 +-15.945282 +-15.941479 +-15.937677 +-15.933874 +-15.930072 +-15.926270 +-15.922467 +-15.918665 +-15.914862 +-15.911060 +-15.907258 +-15.903455 +-15.899653 +-15.895851 +-15.892048 +-15.888246 +-15.884443 +-15.880641 +-15.876839 +-15.873036 +-15.869234 +-15.865432 +-15.861629 +-15.857827 +-15.854024 +-15.850222 +-15.846420 +-15.842617 +-15.838815 +-15.835013 +-15.831210 +-15.827408 +-15.823605 +-15.819803 +-15.816001 +-15.812198 +-15.808396 +-15.804593 +-15.800791 +-15.796989 +-15.793186 +-15.789384 +-15.785582 +-15.781779 +-15.777977 +-15.774174 +-15.770372 +-15.766570 +-15.762767 +-15.758965 +-15.755163 +-15.751360 +-15.747558 +-15.743755 +-15.739953 +-15.736151 +-15.732348 +-15.728546 +-15.724743 +-15.720941 +-15.717139 +-15.713336 +-15.709534 +-15.705732 +-15.701929 +-15.698127 +-15.694324 +-15.690522 +-15.686720 +-15.682917 +-15.679115 +-15.675313 +-15.671510 +-15.667708 +-15.663905 +-15.660103 +-15.656301 +-15.652498 +-15.648696 +-15.644893 +-15.641091 +-15.637289 +-15.633486 +-15.629684 +-15.625882 +-15.622079 +-15.618277 +-15.614474 +-15.610672 +-15.606870 +-15.603067 +-15.599265 +-15.595463 +-15.591660 +-15.587858 +-15.584055 +-15.580253 +-15.576451 +-15.572648 +-15.568846 +-15.565044 +-15.561241 +-15.557439 +-15.553636 +-15.549834 +-15.546032 +-15.542229 +-15.538427 +-15.534624 +-15.530822 +-15.527020 +-15.523217 +-15.519415 +-15.515613 +-15.511810 +-15.508008 +-15.504205 +-15.500403 +-15.496601 +-15.492798 +-15.488996 +-15.485194 +-15.481391 +-15.477589 +-15.473786 +-15.469984 +-15.466182 +-15.462379 +-15.458577 +-15.454774 +-15.450972 +-15.447170 +-15.443367 +-15.439565 +-15.435763 +-15.431960 +-15.428158 +-15.424355 +-15.420553 +-15.416751 +-15.412948 +-15.409146 +-15.405344 +-15.401541 +-15.397739 +-15.393936 +-15.390134 +-15.386332 +-15.382529 +-15.378727 +-15.374924 +-15.371122 +-15.367320 +-15.363517 +-15.359715 +-15.355913 +-15.352110 +-15.348308 +-15.344505 +-15.340703 +-15.336901 +-15.333098 +-15.329296 +-15.325494 +-15.321691 +-15.317889 +-15.314086 +-15.310284 +-15.306482 +-15.302679 +-15.298877 +-15.295075 +-15.291272 +-15.287470 +-15.283667 +-15.279865 +-15.276063 +-15.272260 +-15.268458 +-15.264655 +-15.260853 +-15.257051 +-15.253248 +-15.249446 +-15.245644 +-15.241841 +-15.238039 +-15.234236 +-15.230434 +-15.226632 +-15.222829 +-15.219027 +-15.215225 +-15.211422 +-15.207620 +-15.203817 +-15.200015 +-15.196213 +-15.192410 +-15.188608 +-15.184805 +-15.181003 +-15.177201 +-15.173398 +-15.169596 +-15.165794 +-15.161991 +-15.158189 +-15.154386 +-15.150584 +-15.146782 +-15.142979 +-15.139177 +-15.135375 +-15.131572 +-15.127770 +-15.123967 +-15.120165 +-15.116363 +-15.112560 +-15.108758 +-15.104955 +-15.101153 +-15.097351 +-15.093548 +-15.089746 +-15.085944 +-15.082141 +-15.078339 +-15.074536 +-15.070734 +-15.066932 +-15.063129 +-15.059327 +-15.055525 +-15.051722 +-15.047920 +-15.044117 +-15.040315 +-15.036513 +-15.032710 +-15.028908 +-15.025106 +-15.021303 +-15.017501 +-15.013698 +-15.009896 +-15.006094 +-15.002291 +-14.998489 +-14.994686 +-14.990884 +-14.987082 +-14.983279 +-14.979477 +-14.975675 +-14.971872 +-14.968070 +-14.964267 +-14.960465 +-14.956663 +-14.952860 +-14.949058 +-14.945256 +-14.941453 +-14.937651 +-14.933848 +-14.930046 +-14.926244 +-14.922441 +-14.918639 +-14.914836 +-14.911034 +-14.907232 +-14.903429 +-14.899627 +-14.895825 +-14.892022 +-14.888220 +-14.884417 +-14.880615 +-14.876813 +-14.873010 +-14.869208 +-14.865406 +-14.861603 +-14.857801 +-14.853998 +-14.850196 +-14.846394 +-14.842591 +-14.838789 +-14.834986 +-14.831184 +-14.827382 +-14.823579 +-14.819777 +-14.815975 +-14.812172 +-14.808370 +-14.804567 +-14.800765 +-14.796963 +-14.793160 +-14.789358 +-14.785556 +-14.781753 +-14.777951 +-14.774148 +-14.770346 +-14.766544 +-14.762741 +-14.758939 +-14.755137 +-14.751334 +-14.747532 +-14.743729 +-14.739927 +-14.736125 +-14.732322 +-14.728520 +-14.724717 +-14.720915 +-14.717113 +-14.713310 +-14.709508 +-14.705706 +-14.701903 +-14.698101 +-14.694298 +-14.690496 +-14.686694 +-14.682891 +-14.679089 +-14.675287 +-14.671484 +-14.667682 +-14.663879 +-14.660077 +-14.656275 +-14.652472 +-14.648670 +-14.644867 +-14.641065 +-14.637263 +-14.633460 +-14.629658 +-14.625856 +-14.622053 +-14.618251 +-14.614448 +-14.610646 +-14.606844 +-14.603041 +-14.599239 +-14.595437 +-14.591634 +-14.587832 +-14.584029 +-14.580227 +-14.576425 +-14.572622 +-14.568820 +-14.565018 +-14.561215 +-14.557413 +-14.553610 +-14.549808 +-14.546006 +-14.542203 +-14.538401 +-14.534598 +-14.530796 +-14.526994 +-14.523191 +-14.519389 +-14.515587 +-14.511784 +-14.507982 +-14.504179 +-14.500377 +-14.496575 +-14.492772 +-14.488970 +-14.485168 +-14.481365 +-14.477563 +-14.473760 +-14.469958 +-14.466156 +-14.462353 +-14.458551 +-14.454748 +-14.450946 +-14.447144 +-14.443341 +-14.439539 +-14.435737 +-14.431934 +-14.428132 +-14.424329 +-14.420527 +-14.416725 +-14.412922 +-14.409120 +-14.405318 +-14.401515 +-14.397713 +-14.393910 +-14.390108 +-14.386306 +-14.382503 +-14.378701 +-14.374898 +-14.371096 +-14.367294 +-14.363491 +-14.359689 +-14.355887 +-14.352084 +-14.348282 +-14.344479 +-14.340677 +-14.336875 +-14.333072 +-14.329270 +-14.325468 +-14.321665 +-14.317863 +-14.314060 +-14.310258 +-14.306456 +-14.302653 +-14.298851 +-14.295049 +-14.291246 +-14.287444 +-14.283641 +-14.279839 +-14.276037 +-14.272234 +-14.268432 +-14.264629 +-14.260827 +-14.257025 +-14.253222 +-14.249420 +-14.245618 +-14.241815 +-14.238013 +-14.234210 +-14.230408 +-14.226606 +-14.222803 +-14.219001 +-14.215199 +-14.211396 +-14.207594 +-14.203791 +-14.199989 +-14.196187 +-14.192384 +-14.188582 +-14.184779 +-14.180977 +-14.177175 +-14.173372 +-14.169570 +-14.165768 +-14.161965 +-14.158163 +-14.154360 +-14.150558 +-14.146756 +-14.142953 +-14.139151 +-14.135349 +-14.131546 +-14.127744 +-14.123941 +-14.120139 +-14.116337 +-14.112534 +-14.108732 +-14.104929 +-14.101127 +-14.097325 +-14.093522 +-14.089720 +-14.085918 +-14.082115 +-14.078313 +-14.074510 +-14.070708 +-14.066906 +-14.063103 +-14.059301 +-14.055499 +-14.051696 +-14.047894 +-14.044091 +-14.040289 +-14.036487 +-14.032684 +-14.028882 +-14.025080 +-14.021277 +-14.017475 +-14.013672 +-14.009870 +-14.006068 +-14.002265 +-13.998463 +-13.994660 +-13.990858 +-13.987056 +-13.983253 +-13.979451 +-13.975649 +-13.971846 +-13.968044 +-13.964241 +-13.960439 +-13.956637 +-13.952834 +-13.949032 +-13.945230 +-13.941427 +-13.937625 +-13.933822 +-13.930020 +-13.926218 +-13.922415 +-13.918613 +-13.914810 +-13.911008 +-13.907206 +-13.903403 +-13.899601 +-13.895799 +-13.891996 +-13.888194 +-13.884391 +-13.880589 +-13.876787 +-13.872984 +-13.869182 +-13.865380 +-13.861577 +-13.857775 +-13.853972 +-13.850170 +-13.846368 +-13.842565 +-13.838763 +-13.834960 +-13.831158 +-13.827356 +-13.823553 +-13.819751 +-13.815949 +-13.812146 +-13.808344 +-13.804541 +-13.800739 +-13.796937 +-13.793134 +-13.789332 +-13.785530 +-13.781727 +-13.777925 +-13.774122 +-13.770320 +-13.766518 +-13.762715 +-13.758913 +-13.755111 +-13.751308 +-13.747506 +-13.743703 +-13.739901 +-13.736099 +-13.732296 +-13.728494 +-13.724691 +-13.720889 +-13.717087 +-13.713284 +-13.709482 +-13.705680 +-13.701877 +-13.698075 +-13.694272 +-13.690470 +-13.686668 +-13.682865 +-13.679063 +-13.675261 +-13.671458 +-13.667656 +-13.663853 +-13.660051 +-13.656249 +-13.652446 +-13.648644 +-13.644841 +-13.641039 +-13.637237 +-13.633434 +-13.629632 +-13.625830 +-13.622027 +-13.618225 +-13.614422 +-13.610620 +-13.606818 +-13.603015 +-13.599213 +-13.595411 +-13.591608 +-13.587806 +-13.584003 +-13.580201 +-13.576399 +-13.572596 +-13.568794 +-13.564991 +-13.561189 +-13.557387 +-13.553584 +-13.549782 +-13.545980 +-13.542177 +-13.538375 +-13.534572 +-13.530770 +-13.526968 +-13.523165 +-13.519363 +-13.515561 +-13.511758 +-13.507956 +-13.504153 +-13.500351 +-13.496549 +-13.492746 +-13.488944 +-13.485142 +-13.481339 +-13.477537 +-13.473734 +-13.469932 +-13.466130 +-13.462327 +-13.458525 +-13.454722 +-13.450920 +-13.447118 +-13.443315 +-13.439513 +-13.435711 +-13.431908 +-13.428106 +-13.424303 +-13.420501 +-13.416699 +-13.412896 +-13.409094 +-13.405292 +-13.401489 +-13.397687 +-13.393884 +-13.390082 +-13.386280 +-13.382477 +-13.378675 +-13.374872 +-13.371070 +-13.367268 +-13.363465 +-13.359663 +-13.355861 +-13.352058 +-13.348256 +-13.344453 +-13.340651 +-13.336849 +-13.333046 +-13.329244 +-13.325442 +-13.321639 +-13.317837 +-13.314034 +-13.310232 +-13.306430 +-13.302627 +-13.298825 +-13.295023 +-13.291220 +-13.287418 +-13.283615 +-13.279813 +-13.276011 +-13.272208 +-13.268406 +-13.264603 +-13.260801 +-13.256999 +-13.253196 +-13.249394 +-13.245592 +-13.241789 +-13.237987 +-13.234184 +-13.230382 +-13.226580 +-13.222777 +-13.218975 +-13.215173 +-13.211370 +-13.207568 +-13.203765 +-13.199963 +-13.196161 +-13.192358 +-13.188556 +-13.184753 +-13.180951 +-13.177149 +-13.173346 +-13.169544 +-13.165742 +-13.161939 +-13.158137 +-13.154334 +-13.150532 +-13.146730 +-13.142927 +-13.139125 +-13.135323 +-13.131520 +-13.127718 +-13.123915 +-13.120113 +-13.116311 +-13.112508 +-13.108706 +-13.104903 +-13.101101 +-13.097299 +-13.093496 +-13.089694 +-13.085892 +-13.082089 +-13.078287 +-13.074484 +-13.070682 +-13.066880 +-13.063077 +-13.059275 +-13.055473 +-13.051670 +-13.047868 +-13.044065 +-13.040263 +-13.036461 +-13.032658 +-13.028856 +-13.025054 +-13.021251 +-13.017449 +-13.013646 +-13.009844 +-13.006042 +-13.002239 +-12.998437 +-12.994634 +-12.990832 +-12.987030 +-12.983227 +-12.979425 +-12.975623 +-12.971820 +-12.968018 +-12.964215 +-12.960413 +-12.956611 +-12.952808 +-12.949006 +-12.945204 +-12.941401 +-12.937599 +-12.933796 +-12.929994 +-12.926192 +-12.922389 +-12.918587 +-12.914784 +-12.910982 +-12.907180 +-12.903377 +-12.899575 +-12.895773 +-12.891970 +-12.888168 +-12.884365 +-12.880563 +-12.876761 +-12.872958 +-12.869156 +-12.865354 +-12.861551 +-12.857749 +-12.853946 +-12.850144 +-12.846342 +-12.842539 +-12.838737 +-12.834934 +-12.831132 +-12.827330 +-12.823527 +-12.819725 +-12.815923 +-12.812120 +-12.808318 +-12.804515 +-12.800713 +-12.796911 +-12.793108 +-12.789306 +-12.785504 +-12.781701 +-12.777899 +-12.774096 +-12.770294 +-12.766492 +-12.762689 +-12.758887 +-12.755085 +-12.751282 +-12.747480 +-12.743677 +-12.739875 +-12.736073 +-12.732270 +-12.728468 +-12.724665 +-12.720863 +-12.717061 +-12.713258 +-12.709456 +-12.705654 +-12.701851 +-12.698049 +-12.694246 +-12.690444 +-12.686642 +-12.682839 +-12.679037 +-12.675235 +-12.671432 +-12.667630 +-12.663827 +-12.660025 +-12.656223 +-12.652420 +-12.648618 +-12.644815 +-12.641013 +-12.637211 +-12.633408 +-12.629606 +-12.625804 +-12.622001 +-12.618199 +-12.614396 +-12.610594 +-12.606792 +-12.602989 +-12.599187 +-12.595385 +-12.591582 +-12.587780 +-12.583977 +-12.580175 +-12.576373 +-12.572570 +-12.568768 +-12.564965 +-12.561163 +-12.557361 +-12.553558 +-12.549756 +-12.545954 +-12.542151 +-12.538349 +-12.534546 +-12.530744 +-12.526942 +-12.523139 +-12.519337 +-12.515535 +-12.511732 +-12.507930 +-12.504127 +-12.500325 +-12.496523 +-12.492720 +-12.488918 +-12.485116 +-12.481313 +-12.477511 +-12.473708 +-12.469906 +-12.466104 +-12.462301 +-12.458499 +-12.454696 +-12.450894 +-12.447092 +-12.443289 +-12.439487 +-12.435685 +-12.431882 +-12.428080 +-12.424277 +-12.420475 +-12.416673 +-12.412870 +-12.409068 +-12.405266 +-12.401463 +-12.397661 +-12.393858 +-12.390056 +-12.386254 +-12.382451 +-12.378649 +-12.374846 +-12.371044 +-12.367242 +-12.363439 +-12.359637 +-12.355835 +-12.352032 +-12.348230 +-12.344427 +-12.340625 +-12.336823 +-12.333020 +-12.329218 +-12.325416 +-12.321613 +-12.317811 +-12.314008 +-12.310206 +-12.306404 +-12.302601 +-12.298799 +-12.294996 +-12.291194 +-12.287392 +-12.283589 +-12.279787 +-12.275985 +-12.272182 +-12.268380 +-12.264577 +-12.260775 +-12.256973 +-12.253170 +-12.249368 +-12.245566 +-12.241763 +-12.237961 +-12.234158 +-12.230356 +-12.226554 +-12.222751 +-12.218949 +-12.215147 +-12.211344 +-12.207542 +-12.203739 +-12.199937 +-12.196135 +-12.192332 +-12.188530 +-12.184727 +-12.180925 +-12.177123 +-12.173320 +-12.169518 +-12.165716 +-12.161913 +-12.158111 +-12.154308 +-12.150506 +-12.146704 +-12.142901 +-12.139099 +-12.135297 +-12.131494 +-12.127692 +-12.123889 +-12.120087 +-12.116285 +-12.112482 +-12.108680 +-12.104877 +-12.101075 +-12.097273 +-12.093470 +-12.089668 +-12.085866 +-12.082063 +-12.078261 +-12.074458 +-12.070656 +-12.066854 +-12.063051 +-12.059249 +-12.055447 +-12.051644 +-12.047842 +-12.044039 +-12.040237 +-12.036435 +-12.032632 +-12.028830 +-12.025028 +-12.021225 +-12.017423 +-12.013620 +-12.009818 +-12.006016 +-12.002213 +-11.998411 +-11.994608 +-11.990806 +-11.987004 +-11.983201 +-11.979399 +-11.975597 +-11.971794 +-11.967992 +-11.964189 +-11.960387 +-11.956585 +-11.952782 +-11.948980 +-11.945178 +-11.941375 +-11.937573 +-11.933770 +-11.929968 +-11.926166 +-11.922363 +-11.918561 +-11.914758 +-11.910956 +-11.907154 +-11.903351 +-11.899549 +-11.895747 +-11.891944 +-11.888142 +-11.884339 +-11.880537 +-11.876735 +-11.872932 +-11.869130 +-11.865328 +-11.861525 +-11.857723 +-11.853920 +-11.850118 +-11.846316 +-11.842513 +-11.838711 +-11.834908 +-11.831106 +-11.827304 +-11.823501 +-11.819699 +-11.815897 +-11.812094 +-11.808292 +-11.804489 +-11.800687 +-11.796885 +-11.793082 +-11.789280 +-11.785478 +-11.781675 +-11.777873 +-11.774070 +-11.770268 +-11.766466 +-11.762663 +-11.758861 +-11.755059 +-11.751256 +-11.747454 +-11.743651 +-11.739849 +-11.736047 +-11.732244 +-11.728442 +-11.724639 +-11.720837 +-11.717035 +-11.713232 +-11.709430 +-11.705628 +-11.701825 +-11.698023 +-11.694220 +-11.690418 +-11.686616 +-11.682813 +-11.679011 +-11.675209 +-11.671406 +-11.667604 +-11.663801 +-11.659999 +-11.656197 +-11.652394 +-11.648592 +-11.644789 +-11.640987 +-11.637185 +-11.633382 +-11.629580 +-11.625778 +-11.621975 +-11.618173 +-11.614370 +-11.610568 +-11.606766 +-11.602963 +-11.599161 +-11.595359 +-11.591556 +-11.587754 +-11.583951 +-11.580149 +-11.576347 +-11.572544 +-11.568742 +-11.564939 +-11.561137 +-11.557335 +-11.553532 +-11.549730 +-11.545928 +-11.542125 +-11.538323 +-11.534520 +-11.530718 +-11.526916 +-11.523113 +-11.519311 +-11.515509 +-11.511706 +-11.507904 +-11.504101 +-11.500299 +-11.496497 +-11.492694 +-11.488892 +-11.485090 +-11.481287 +-11.477485 +-11.473682 +-11.469880 +-11.466078 +-11.462275 +-11.458473 +-11.454670 +-11.450868 +-11.447066 +-11.443263 +-11.439461 +-11.435659 +-11.431856 +-11.428054 +-11.424251 +-11.420449 +-11.416647 +-11.412844 +-11.409042 +-11.405240 +-11.401437 +-11.397635 +-11.393832 +-11.390030 +-11.386228 +-11.382425 +-11.378623 +-11.374820 +-11.371018 +-11.367216 +-11.363413 +-11.359611 +-11.355809 +-11.352006 +-11.348204 +-11.344401 +-11.340599 +-11.336797 +-11.332994 +-11.329192 +-11.325390 +-11.321587 +-11.317785 +-11.313982 +-11.310180 +-11.306378 +-11.302575 +-11.298773 +-11.294970 +-11.291168 +-11.287366 +-11.283563 +-11.279761 +-11.275959 +-11.272156 +-11.268354 +-11.264551 +-11.260749 +-11.256947 +-11.253144 +-11.249342 +-11.245540 +-11.241737 +-11.237935 +-11.234132 +-11.230330 +-11.226528 +-11.222725 +-11.218923 +-11.215121 +-11.211318 +-11.207516 +-11.203713 +-11.199911 +-11.196109 +-11.192306 +-11.188504 +-11.184701 +-11.180899 +-11.177097 +-11.173294 +-11.169492 +-11.165690 +-11.161887 +-11.158085 +-11.154282 +-11.150480 +-11.146678 +-11.142875 +-11.139073 +-11.135271 +-11.131468 +-11.127666 +-11.123863 +-11.120061 +-11.116259 +-11.112456 +-11.108654 +-11.104851 +-11.101049 +-11.097247 +-11.093444 +-11.089642 +-11.085840 +-11.082037 +-11.078235 +-11.074432 +-11.070630 +-11.066828 +-11.063025 +-11.059223 +-11.055421 +-11.051618 +-11.047816 +-11.044013 +-11.040211 +-11.036409 +-11.032606 +-11.028804 +-11.025002 +-11.021199 +-11.017397 +-11.013594 +-11.009792 +-11.005990 +-11.002187 +-10.998385 +-10.994582 +-10.990780 +-10.986978 +-10.983175 +-10.979373 +-10.975571 +-10.971768 +-10.967966 +-10.964163 +-10.960361 +-10.956559 +-10.952756 +-10.948954 +-10.945152 +-10.941349 +-10.937547 +-10.933744 +-10.929942 +-10.926140 +-10.922337 +-10.918535 +-10.914732 +-10.910930 +-10.907128 +-10.903325 +-10.899523 +-10.895721 +-10.891918 +-10.888116 +-10.884313 +-10.880511 +-10.876709 +-10.872906 +-10.869104 +-10.865302 +-10.861499 +-10.857697 +-10.853894 +-10.850092 +-10.846290 +-10.842487 +-10.838685 +-10.834882 +-10.831080 +-10.827278 +-10.823475 +-10.819673 +-10.815871 +-10.812068 +-10.808266 +-10.804463 +-10.800661 +-10.796859 +-10.793056 +-10.789254 +-10.785452 +-10.781649 +-10.777847 +-10.774044 +-10.770242 +-10.766440 +-10.762637 +-10.758835 +-10.755033 +-10.751230 +-10.747428 +-10.743625 +-10.739823 +-10.736021 +-10.732218 +-10.728416 +-10.724613 +-10.720811 +-10.717009 +-10.713206 +-10.709404 +-10.705602 +-10.701799 +-10.697997 +-10.694194 +-10.690392 +-10.686590 +-10.682787 +-10.678985 +-10.675183 +-10.671380 +-10.667578 +-10.663775 +-10.659973 +-10.656171 +-10.652368 +-10.648566 +-10.644763 +-10.640961 +-10.637159 +-10.633356 +-10.629554 +-10.625752 +-10.621949 +-10.618147 +-10.614344 +-10.610542 +-10.606740 +-10.602937 +-10.599135 +-10.595333 +-10.591530 +-10.587728 +-10.583925 +-10.580123 +-10.576321 +-10.572518 +-10.568716 +-10.564913 +-10.561111 +-10.557309 +-10.553506 +-10.549704 +-10.545902 +-10.542099 +-10.538297 +-10.534494 +-10.530692 +-10.526890 +-10.523087 +-10.519285 +-10.515483 +-10.511680 +-10.507878 +-10.504075 +-10.500273 +-10.496471 +-10.492668 +-10.488866 +-10.485064 +-10.481261 +-10.477459 +-10.473656 +-10.469854 +-10.466052 +-10.462249 +-10.458447 +-10.454644 +-10.450842 +-10.447040 +-10.443237 +-10.439435 +-10.435633 +-10.431830 +-10.428028 +-10.424225 +-10.420423 +-10.416621 +-10.412818 +-10.409016 +-10.405214 +-10.401411 +-10.397609 +-10.393806 +-10.390004 +-10.386202 +-10.382399 +-10.378597 +-10.374794 +-10.370992 +-10.367190 +-10.363387 +-10.359585 +-10.355783 +-10.351980 +-10.348178 +-10.344375 +-10.340573 +-10.336771 +-10.332968 +-10.329166 +-10.325364 +-10.321561 +-10.317759 +-10.313956 +-10.310154 +-10.306352 +-10.302549 +-10.298747 +-10.294944 +-10.291142 +-10.287340 +-10.283537 +-10.279735 +-10.275933 +-10.272130 +-10.268328 +-10.264525 +-10.260723 +-10.256921 +-10.253118 +-10.249316 +-10.245514 +-10.241711 +-10.237909 +-10.234106 +-10.230304 +-10.226502 +-10.222699 +-10.218897 +-10.215095 +-10.211292 +-10.207490 +-10.203687 +-10.199885 +-10.196083 +-10.192280 +-10.188478 +-10.184675 +-10.180873 +-10.177071 +-10.173268 +-10.169466 +-10.165664 +-10.161861 +-10.158059 +-10.154256 +-10.150454 +-10.146652 +-10.142849 +-10.139047 +-10.135245 +-10.131442 +-10.127640 +-10.123837 +-10.120035 +-10.116233 +-10.112430 +-10.108628 +-10.104825 +-10.101023 +-10.097221 +-10.093418 +-10.089616 +-10.085814 +-10.082011 +-10.078209 +-10.074406 +-10.070604 +-10.066802 +-10.062999 +-10.059197 +-10.055395 +-10.051592 +-10.047790 +-10.043987 +-10.040185 +-10.036383 +-10.032580 +-10.028778 +-10.024975 +-10.021173 +-10.017371 +-10.013568 +-10.009766 +-10.005964 +-10.002161 +-9.998359 +-9.994556 +-9.990754 +-9.986952 +-9.983149 +-9.979347 +-9.975545 +-9.971742 +-9.967940 +-9.964137 +-9.960335 +-9.956533 +-9.952730 +-9.948928 +-9.945126 +-9.941323 +-9.937521 +-9.933718 +-9.929916 +-9.926114 +-9.922311 +-9.918509 +-9.914706 +-9.910904 +-9.907102 +-9.903299 +-9.899497 +-9.895695 +-9.891892 +-9.888090 +-9.884287 +-9.880485 +-9.876683 +-9.872880 +-9.869078 +-9.865276 +-9.861473 +-9.857671 +-9.853868 +-9.850066 +-9.846264 +-9.842461 +-9.838659 +-9.834856 +-9.831054 +-9.827252 +-9.823449 +-9.819647 +-9.815845 +-9.812042 +-9.808240 +-9.804437 +-9.800635 +-9.796833 +-9.793030 +-9.789228 +-9.785426 +-9.781623 +-9.777821 +-9.774018 +-9.770216 +-9.766414 +-9.762611 +-9.758809 +-9.755007 +-9.751204 +-9.747402 +-9.743599 +-9.739797 +-9.735995 +-9.732192 +-9.728390 +-9.724587 +-9.720785 +-9.716983 +-9.713180 +-9.709378 +-9.705576 +-9.701773 +-9.697971 +-9.694168 +-9.690366 +-9.686564 +-9.682761 +-9.678959 +-9.675157 +-9.671354 +-9.667552 +-9.663749 +-9.659947 +-9.656145 +-9.652342 +-9.648540 +-9.644737 +-9.640935 +-9.637133 +-9.633330 +-9.629528 +-9.625726 +-9.621923 +-9.618121 +-9.614318 +-9.610516 +-9.606714 +-9.602911 +-9.599109 +-9.595307 +-9.591504 +-9.587702 +-9.583899 +-9.580097 +-9.576295 +-9.572492 +-9.568690 +-9.564887 +-9.561085 +-9.557283 +-9.553480 +-9.549678 +-9.545876 +-9.542073 +-9.538271 +-9.534468 +-9.530666 +-9.526864 +-9.523061 +-9.519259 +-9.515457 +-9.511654 +-9.507852 +-9.504049 +-9.500247 +-9.496445 +-9.492642 +-9.488840 +-9.485038 +-9.481235 +-9.477433 +-9.473630 +-9.469828 +-9.466026 +-9.462223 +-9.458421 +-9.454618 +-9.450816 +-9.447014 +-9.443211 +-9.439409 +-9.435607 +-9.431804 +-9.428002 +-9.424199 +-9.420397 +-9.416595 +-9.412792 +-9.408990 +-9.405188 +-9.401385 +-9.397583 +-9.393780 +-9.389978 +-9.386176 +-9.382373 +-9.378571 +-9.374768 +-9.370966 +-9.367164 +-9.363361 +-9.359559 +-9.355757 +-9.351954 +-9.348152 +-9.344349 +-9.340547 +-9.336745 +-9.332942 +-9.329140 +-9.325338 +-9.321535 +-9.317733 +-9.313930 +-9.310128 +-9.306326 +-9.302523 +-9.298721 +-9.294918 +-9.291116 +-9.287314 +-9.283511 +-9.279709 +-9.275907 +-9.272104 +-9.268302 +-9.264499 +-9.260697 +-9.256895 +-9.253092 +-9.249290 +-9.245488 +-9.241685 +-9.237883 +-9.234080 +-9.230278 +-9.226476 +-9.222673 +-9.218871 +-9.215069 +-9.211266 +-9.207464 +-9.203661 +-9.199859 +-9.196057 +-9.192254 +-9.188452 +-9.184649 +-9.180847 +-9.177045 +-9.173242 +-9.169440 +-9.165638 +-9.161835 +-9.158033 +-9.154230 +-9.150428 +-9.146626 +-9.142823 +-9.139021 +-9.135219 +-9.131416 +-9.127614 +-9.123811 +-9.120009 +-9.116207 +-9.112404 +-9.108602 +-9.104799 +-9.100997 +-9.097195 +-9.093392 +-9.089590 +-9.085788 +-9.081985 +-9.078183 +-9.074380 +-9.070578 +-9.066776 +-9.062973 +-9.059171 +-9.055369 +-9.051566 +-9.047764 +-9.043961 +-9.040159 +-9.036357 +-9.032554 +-9.028752 +-9.024949 +-9.021147 +-9.017345 +-9.013542 +-9.009740 +-9.005938 +-9.002135 +-8.998333 +-8.994530 +-8.990728 +-8.986926 +-8.983123 +-8.979321 +-8.975519 +-8.971716 +-8.967914 +-8.964111 +-8.960309 +-8.956507 +-8.952704 +-8.948902 +-8.945100 +-8.941297 +-8.937495 +-8.933692 +-8.929890 +-8.926088 +-8.922285 +-8.918483 +-8.914680 +-8.910878 +-8.907076 +-8.903273 +-8.899471 +-8.895669 +-8.891866 +-8.888064 +-8.884261 +-8.880459 +-8.876657 +-8.872854 +-8.869052 +-8.865250 +-8.861447 +-8.857645 +-8.853842 +-8.850040 +-8.846238 +-8.842435 +-8.838633 +-8.834830 +-8.831028 +-8.827226 +-8.823423 +-8.819621 +-8.815819 +-8.812016 +-8.808214 +-8.804411 +-8.800609 +-8.796807 +-8.793004 +-8.789202 +-8.785400 +-8.781597 +-8.777795 +-8.773992 +-8.770190 +-8.766388 +-8.762585 +-8.758783 +-8.754980 +-8.751178 +-8.747376 +-8.743573 +-8.739771 +-8.735969 +-8.732166 +-8.728364 +-8.724561 +-8.720759 +-8.716957 +-8.713154 +-8.709352 +-8.705550 +-8.701747 +-8.697945 +-8.694142 +-8.690340 +-8.686538 +-8.682735 +-8.678933 +-8.675131 +-8.671328 +-8.667526 +-8.663723 +-8.659921 +-8.656119 +-8.652316 +-8.648514 +-8.644711 +-8.640909 +-8.637107 +-8.633304 +-8.629502 +-8.625700 +-8.621897 +-8.618095 +-8.614292 +-8.610490 +-8.606688 +-8.602885 +-8.599083 +-8.595281 +-8.591478 +-8.587676 +-8.583873 +-8.580071 +-8.576269 +-8.572466 +-8.568664 +-8.564861 +-8.561059 +-8.557257 +-8.553454 +-8.549652 +-8.545850 +-8.542047 +-8.538245 +-8.534442 +-8.530640 +-8.526838 +-8.523035 +-8.519233 +-8.515431 +-8.511628 +-8.507826 +-8.504023 +-8.500221 +-8.496419 +-8.492616 +-8.488814 +-8.485012 +-8.481209 +-8.477407 +-8.473604 +-8.469802 +-8.466000 +-8.462197 +-8.458395 +-8.454592 +-8.450790 +-8.446988 +-8.443185 +-8.439383 +-8.435581 +-8.431778 +-8.427976 +-8.424173 +-8.420371 +-8.416569 +-8.412766 +-8.408964 +-8.405162 +-8.401359 +-8.397557 +-8.393754 +-8.389952 +-8.386150 +-8.382347 +-8.378545 +-8.374742 +-8.370940 +-8.367138 +-8.363335 +-8.359533 +-8.355731 +-8.351928 +-8.348126 +-8.344323 +-8.340521 +-8.336719 +-8.332916 +-8.329114 +-8.325312 +-8.321509 +-8.317707 +-8.313904 +-8.310102 +-8.306300 +-8.302497 +-8.298695 +-8.294892 +-8.291090 +-8.287288 +-8.283485 +-8.279683 +-8.275881 +-8.272078 +-8.268276 +-8.264473 +-8.260671 +-8.256869 +-8.253066 +-8.249264 +-8.245462 +-8.241659 +-8.237857 +-8.234054 +-8.230252 +-8.226450 +-8.222647 +-8.218845 +-8.215043 +-8.211240 +-8.207438 +-8.203635 +-8.199833 +-8.196031 +-8.192228 +-8.188426 +-8.184623 +-8.180821 +-8.177019 +-8.173216 +-8.169414 +-8.165612 +-8.161809 +-8.158007 +-8.154204 +-8.150402 +-8.146600 +-8.142797 +-8.138995 +-8.135193 +-8.131390 +-8.127588 +-8.123785 +-8.119983 +-8.116181 +-8.112378 +-8.108576 +-8.104773 +-8.100971 +-8.097169 +-8.093366 +-8.089564 +-8.085762 +-8.081959 +-8.078157 +-8.074354 +-8.070552 +-8.066750 +-8.062947 +-8.059145 +-8.055343 +-8.051540 +-8.047738 +-8.043935 +-8.040133 +-8.036331 +-8.032528 +-8.028726 +-8.024923 +-8.021121 +-8.017319 +-8.013516 +-8.009714 +-8.005912 +-8.002109 +-7.998307 +-7.994504 +-7.990702 +-7.986900 +-7.983097 +-7.979295 +-7.975493 +-7.971690 +-7.967888 +-7.964085 +-7.960283 +-7.956481 +-7.952678 +-7.948876 +-7.945074 +-7.941271 +-7.937469 +-7.933666 +-7.929864 +-7.926062 +-7.922259 +-7.918457 +-7.914654 +-7.910852 +-7.907050 +-7.903247 +-7.899445 +-7.895643 +-7.891840 +-7.888038 +-7.884235 +-7.880433 +-7.876631 +-7.872828 +-7.869026 +-7.865224 +-7.861421 +-7.857619 +-7.853816 +-7.850014 +-7.846212 +-7.842409 +-7.838607 +-7.834804 +-7.831002 +-7.827200 +-7.823397 +-7.819595 +-7.815793 +-7.811990 +-7.808188 +-7.804385 +-7.800583 +-7.796781 +-7.792978 +-7.789176 +-7.785374 +-7.781571 +-7.777769 +-7.773966 +-7.770164 +-7.766362 +-7.762559 +-7.758757 +-7.754954 +-7.751152 +-7.747350 +-7.743547 +-7.739745 +-7.735943 +-7.732140 +-7.728338 +-7.724535 +-7.720733 +-7.716931 +-7.713128 +-7.709326 +-7.705524 +-7.701721 +-7.697919 +-7.694116 +-7.690314 +-7.686512 +-7.682709 +-7.678907 +-7.675105 +-7.671302 +-7.667500 +-7.663697 +-7.659895 +-7.656093 +-7.652290 +-7.648488 +-7.644685 +-7.640883 +-7.637081 +-7.633278 +-7.629476 +-7.625674 +-7.621871 +-7.618069 +-7.614266 +-7.610464 +-7.606662 +-7.602859 +-7.599057 +-7.595255 +-7.591452 +-7.587650 +-7.583847 +-7.580045 +-7.576243 +-7.572440 +-7.568638 +-7.564835 +-7.561033 +-7.557231 +-7.553428 +-7.549626 +-7.545824 +-7.542021 +-7.538219 +-7.534416 +-7.530614 +-7.526812 +-7.523009 +-7.519207 +-7.515405 +-7.511602 +-7.507800 +-7.503997 +-7.500195 +-7.496393 +-7.492590 +-7.488788 +-7.484985 +-7.481183 +-7.477381 +-7.473578 +-7.469776 +-7.465974 +-7.462171 +-7.458369 +-7.454566 +-7.450764 +-7.446962 +-7.443159 +-7.439357 +-7.435555 +-7.431752 +-7.427950 +-7.424147 +-7.420345 +-7.416543 +-7.412740 +-7.408938 +-7.405136 +-7.401333 +-7.397531 +-7.393728 +-7.389926 +-7.386124 +-7.382321 +-7.378519 +-7.374716 +-7.370914 +-7.367112 +-7.363309 +-7.359507 +-7.355705 +-7.351902 +-7.348100 +-7.344297 +-7.340495 +-7.336693 +-7.332890 +-7.329088 +-7.325286 +-7.321483 +-7.317681 +-7.313878 +-7.310076 +-7.306274 +-7.302471 +-7.298669 +-7.294866 +-7.291064 +-7.287262 +-7.283459 +-7.279657 +-7.275855 +-7.272052 +-7.268250 +-7.264447 +-7.260645 +-7.256843 +-7.253040 +-7.249238 +-7.245436 +-7.241633 +-7.237831 +-7.234028 +-7.230226 +-7.226424 +-7.222621 +-7.218819 +-7.215017 +-7.211214 +-7.207412 +-7.203609 +-7.199807 +-7.196005 +-7.192202 +-7.188400 +-7.184597 +-7.180795 +-7.176993 +-7.173190 +-7.169388 +-7.165586 +-7.161783 +-7.157981 +-7.154178 +-7.150376 +-7.146574 +-7.142771 +-7.138969 +-7.135167 +-7.131364 +-7.127562 +-7.123759 +-7.119957 +-7.116155 +-7.112352 +-7.108550 +-7.104747 +-7.100945 +-7.097143 +-7.093340 +-7.089538 +-7.085736 +-7.081933 +-7.078131 +-7.074328 +-7.070526 +-7.066724 +-7.062921 +-7.059119 +-7.055317 +-7.051514 +-7.047712 +-7.043909 +-7.040107 +-7.036305 +-7.032502 +-7.028700 +-7.024897 +-7.021095 +-7.017293 +-7.013490 +-7.009688 +-7.005886 +-7.002083 +-6.998281 +-6.994478 +-6.990676 +-6.986874 +-6.983071 +-6.979269 +-6.975467 +-6.971664 +-6.967862 +-6.964059 +-6.960257 +-6.956455 +-6.952652 +-6.948850 +-6.945048 +-6.941245 +-6.937443 +-6.933640 +-6.929838 +-6.926036 +-6.922233 +-6.918431 +-6.914628 +-6.910826 +-6.907024 +-6.903221 +-6.899419 +-6.895617 +-6.891814 +-6.888012 +-6.884209 +-6.880407 +-6.876605 +-6.872802 +-6.869000 +-6.865198 +-6.861395 +-6.857593 +-6.853790 +-6.849988 +-6.846186 +-6.842383 +-6.838581 +-6.834778 +-6.830976 +-6.827174 +-6.823371 +-6.819569 +-6.815767 +-6.811964 +-6.808162 +-6.804359 +-6.800557 +-6.796755 +-6.792952 +-6.789150 +-6.785348 +-6.781545 +-6.777743 +-6.773940 +-6.770138 +-6.766336 +-6.762533 +-6.758731 +-6.754928 +-6.751126 +-6.747324 +-6.743521 +-6.739719 +-6.735917 +-6.732114 +-6.728312 +-6.724509 +-6.720707 +-6.716905 +-6.713102 +-6.709300 +-6.705498 +-6.701695 +-6.697893 +-6.694090 +-6.690288 +-6.686486 +-6.682683 +-6.678881 +-6.675079 +-6.671276 +-6.667474 +-6.663671 +-6.659869 +-6.656067 +-6.652264 +-6.648462 +-6.644659 +-6.640857 +-6.637055 +-6.633252 +-6.629450 +-6.625648 +-6.621845 +-6.618043 +-6.614240 +-6.610438 +-6.606636 +-6.602833 +-6.599031 +-6.595229 +-6.591426 +-6.587624 +-6.583821 +-6.580019 +-6.576217 +-6.572414 +-6.568612 +-6.564809 +-6.561007 +-6.557205 +-6.553402 +-6.549600 +-6.545798 +-6.541995 +-6.538193 +-6.534390 +-6.530588 +-6.526786 +-6.522983 +-6.519181 +-6.515379 +-6.511576 +-6.507774 +-6.503971 +-6.500169 +-6.496367 +-6.492564 +-6.488762 +-6.484959 +-6.481157 +-6.477355 +-6.473552 +-6.469750 +-6.465948 +-6.462145 +-6.458343 +-6.454540 +-6.450738 +-6.446936 +-6.443133 +-6.439331 +-6.435529 +-6.431726 +-6.427924 +-6.424121 +-6.420319 +-6.416517 +-6.412714 +-6.408912 +-6.405110 +-6.401307 +-6.397505 +-6.393702 +-6.389900 +-6.386098 +-6.382295 +-6.378493 +-6.374690 +-6.370888 +-6.367086 +-6.363283 +-6.359481 +-6.355679 +-6.351876 +-6.348074 +-6.344271 +-6.340469 +-6.336667 +-6.332864 +-6.329062 +-6.325260 +-6.321457 +-6.317655 +-6.313852 +-6.310050 +-6.306248 +-6.302445 +-6.298643 +-6.294840 +-6.291038 +-6.287236 +-6.283433 +-6.279631 +-6.275829 +-6.272026 +-6.268224 +-6.264421 +-6.260619 +-6.256817 +-6.253014 +-6.249212 +-6.245410 +-6.241607 +-6.237805 +-6.234002 +-6.230200 +-6.226398 +-6.222595 +-6.218793 +-6.214990 +-6.211188 +-6.207386 +-6.203583 +-6.199781 +-6.195979 +-6.192176 +-6.188374 +-6.184571 +-6.180769 +-6.176967 +-6.173164 +-6.169362 +-6.165560 +-6.161757 +-6.157955 +-6.154152 +-6.150350 +-6.146548 +-6.142745 +-6.138943 +-6.135141 +-6.131338 +-6.127536 +-6.123733 +-6.119931 +-6.116129 +-6.112326 +-6.108524 +-6.104721 +-6.100919 +-6.097117 +-6.093314 +-6.089512 +-6.085710 +-6.081907 +-6.078105 +-6.074302 +-6.070500 +-6.066698 +-6.062895 +-6.059093 +-6.055291 +-6.051488 +-6.047686 +-6.043883 +-6.040081 +-6.036279 +-6.032476 +-6.028674 +-6.024871 +-6.021069 +-6.017267 +-6.013464 +-6.009662 +-6.005860 +-6.002057 +-5.998255 +-5.994452 +-5.990650 +-5.986848 +-5.983045 +-5.979243 +-5.975441 +-5.971638 +-5.967836 +-5.964033 +-5.960231 +-5.956429 +-5.952626 +-5.948824 +-5.945022 +-5.941219 +-5.937417 +-5.933614 +-5.929812 +-5.926010 +-5.922207 +-5.918405 +-5.914602 +-5.910800 +-5.906998 +-5.903195 +-5.899393 +-5.895591 +-5.891788 +-5.887986 +-5.884183 +-5.880381 +-5.876579 +-5.872776 +-5.868974 +-5.865172 +-5.861369 +-5.857567 +-5.853764 +-5.849962 +-5.846160 +-5.842357 +-5.838555 +-5.834752 +-5.830950 +-5.827148 +-5.823345 +-5.819543 +-5.815741 +-5.811938 +-5.808136 +-5.804333 +-5.800531 +-5.796729 +-5.792926 +-5.789124 +-5.785322 +-5.781519 +-5.777717 +-5.773914 +-5.770112 +-5.766310 +-5.762507 +-5.758705 +-5.754902 +-5.751100 +-5.747298 +-5.743495 +-5.739693 +-5.735891 +-5.732088 +-5.728286 +-5.724483 +-5.720681 +-5.716879 +-5.713076 +-5.709274 +-5.705472 +-5.701669 +-5.697867 +-5.694064 +-5.690262 +-5.686460 +-5.682657 +-5.678855 +-5.675053 +-5.671250 +-5.667448 +-5.663645 +-5.659843 +-5.656041 +-5.652238 +-5.648436 +-5.644633 +-5.640831 +-5.637029 +-5.633226 +-5.629424 +-5.625622 +-5.621819 +-5.618017 +-5.614214 +-5.610412 +-5.606610 +-5.602807 +-5.599005 +-5.595203 +-5.591400 +-5.587598 +-5.583795 +-5.579993 +-5.576191 +-5.572388 +-5.568586 +-5.564783 +-5.560981 +-5.557179 +-5.553376 +-5.549574 +-5.545772 +-5.541969 +-5.538167 +-5.534364 +-5.530562 +-5.526760 +-5.522957 +-5.519155 +-5.515353 +-5.511550 +-5.507748 +-5.503945 +-5.500143 +-5.496341 +-5.492538 +-5.488736 +-5.484933 +-5.481131 +-5.477329 +-5.473526 +-5.469724 +-5.465922 +-5.462119 +-5.458317 +-5.454514 +-5.450712 +-5.446910 +-5.443107 +-5.439305 +-5.435503 +-5.431700 +-5.427898 +-5.424095 +-5.420293 +-5.416491 +-5.412688 +-5.408886 +-5.405084 +-5.401281 +-5.397479 +-5.393676 +-5.389874 +-5.386072 +-5.382269 +-5.378467 +-5.374664 +-5.370862 +-5.367060 +-5.363257 +-5.359455 +-5.355653 +-5.351850 +-5.348048 +-5.344245 +-5.340443 +-5.336641 +-5.332838 +-5.329036 +-5.325234 +-5.321431 +-5.317629 +-5.313826 +-5.310024 +-5.306222 +-5.302419 +-5.298617 +-5.294814 +-5.291012 +-5.287210 +-5.283407 +-5.279605 +-5.275803 +-5.272000 +-5.268198 +-5.264395 +-5.260593 +-5.256791 +-5.252988 +-5.249186 +-5.245384 +-5.241581 +-5.237779 +-5.233976 +-5.230174 +-5.226372 +-5.222569 +-5.218767 +-5.214964 +-5.211162 +-5.207360 +-5.203557 +-5.199755 +-5.195953 +-5.192150 +-5.188348 +-5.184545 +-5.180743 +-5.176941 +-5.173138 +-5.169336 +-5.165534 +-5.161731 +-5.157929 +-5.154126 +-5.150324 +-5.146522 +-5.142719 +-5.138917 +-5.135115 +-5.131312 +-5.127510 +-5.123707 +-5.119905 +-5.116103 +-5.112300 +-5.108498 +-5.104695 +-5.100893 +-5.097091 +-5.093288 +-5.089486 +-5.085684 +-5.081881 +-5.078079 +-5.074276 +-5.070474 +-5.066672 +-5.062869 +-5.059067 +-5.055265 +-5.051462 +-5.047660 +-5.043857 +-5.040055 +-5.036253 +-5.032450 +-5.028648 +-5.024845 +-5.021043 +-5.017241 +-5.013438 +-5.009636 +-5.005834 +-5.002031 +-4.998229 +-4.994426 +-4.990624 +-4.986822 +-4.983019 +-4.979217 +-4.975415 +-4.971612 +-4.967810 +-4.964007 +-4.960205 +-4.956403 +-4.952600 +-4.948798 +-4.944995 +-4.941193 +-4.937391 +-4.933588 +-4.929786 +-4.925984 +-4.922181 +-4.918379 +-4.914576 +-4.910774 +-4.906972 +-4.903169 +-4.899367 +-4.895565 +-4.891762 +-4.887960 +-4.884157 +-4.880355 +-4.876553 +-4.872750 +-4.868948 +-4.865146 +-4.861343 +-4.857541 +-4.853738 +-4.849936 +-4.846134 +-4.842331 +-4.838529 +-4.834726 +-4.830924 +-4.827122 +-4.823319 +-4.819517 +-4.815715 +-4.811912 +-4.808110 +-4.804307 +-4.800505 +-4.796703 +-4.792900 +-4.789098 +-4.785296 +-4.781493 +-4.777691 +-4.773888 +-4.770086 +-4.766284 +-4.762481 +-4.758679 +-4.754876 +-4.751074 +-4.747272 +-4.743469 +-4.739667 +-4.735865 +-4.732062 +-4.728260 +-4.724457 +-4.720655 +-4.716853 +-4.713050 +-4.709248 +-4.705446 +-4.701643 +-4.697841 +-4.694038 +-4.690236 +-4.686434 +-4.682631 +-4.678829 +-4.675027 +-4.671224 +-4.667422 +-4.663619 +-4.659817 +-4.656015 +-4.652212 +-4.648410 +-4.644607 +-4.640805 +-4.637003 +-4.633200 +-4.629398 +-4.625596 +-4.621793 +-4.617991 +-4.614188 +-4.610386 +-4.606584 +-4.602781 +-4.598979 +-4.595177 +-4.591374 +-4.587572 +-4.583769 +-4.579967 +-4.576165 +-4.572362 +-4.568560 +-4.564757 +-4.560955 +-4.557153 +-4.553350 +-4.549548 +-4.545746 +-4.541943 +-4.538141 +-4.534338 +-4.530536 +-4.526734 +-4.522931 +-4.519129 +-4.515327 +-4.511524 +-4.507722 +-4.503919 +-4.500117 +-4.496315 +-4.492512 +-4.488710 +-4.484907 +-4.481105 +-4.477303 +-4.473500 +-4.469698 +-4.465896 +-4.462093 +-4.458291 +-4.454488 +-4.450686 +-4.446884 +-4.443081 +-4.439279 +-4.435477 +-4.431674 +-4.427872 +-4.424069 +-4.420267 +-4.416465 +-4.412662 +-4.408860 +-4.405058 +-4.401255 +-4.397453 +-4.393650 +-4.389848 +-4.386046 +-4.382243 +-4.378441 +-4.374638 +-4.370836 +-4.367034 +-4.363231 +-4.359429 +-4.355627 +-4.351824 +-4.348022 +-4.344219 +-4.340417 +-4.336615 +-4.332812 +-4.329010 +-4.325208 +-4.321405 +-4.317603 +-4.313800 +-4.309998 +-4.306196 +-4.302393 +-4.298591 +-4.294788 +-4.290986 +-4.287184 +-4.283381 +-4.279579 +-4.275777 +-4.271974 +-4.268172 +-4.264369 +-4.260567 +-4.256765 +-4.252962 +-4.249160 +-4.245358 +-4.241555 +-4.237753 +-4.233950 +-4.230148 +-4.226346 +-4.222543 +-4.218741 +-4.214938 +-4.211136 +-4.207334 +-4.203531 +-4.199729 +-4.195927 +-4.192124 +-4.188322 +-4.184519 +-4.180717 +-4.176915 +-4.173112 +-4.169310 +-4.165508 +-4.161705 +-4.157903 +-4.154100 +-4.150298 +-4.146496 +-4.142693 +-4.138891 +-4.135089 +-4.131286 +-4.127484 +-4.123681 +-4.119879 +-4.116077 +-4.112274 +-4.108472 +-4.104669 +-4.100867 +-4.097065 +-4.093262 +-4.089460 +-4.085658 +-4.081855 +-4.078053 +-4.074250 +-4.070448 +-4.066646 +-4.062843 +-4.059041 +-4.055239 +-4.051436 +-4.047634 +-4.043831 +-4.040029 +-4.036227 +-4.032424 +-4.028622 +-4.024819 +-4.021017 +-4.017215 +-4.013412 +-4.009610 +-4.005808 +-4.002005 +-3.998203 +-3.994400 +-3.990598 +-3.986796 +-3.982993 +-3.979191 +-3.975389 +-3.971586 +-3.967784 +-3.963981 +-3.960179 +-3.956377 +-3.952574 +-3.948772 +-3.944969 +-3.941167 +-3.937365 +-3.933562 +-3.929760 +-3.925958 +-3.922155 +-3.918353 +-3.914550 +-3.910748 +-3.906946 +-3.903143 +-3.899341 +-3.895539 +-3.891736 +-3.887934 +-3.884131 +-3.880329 +-3.876527 +-3.872724 +-3.868922 +-3.865120 +-3.861317 +-3.857515 +-3.853712 +-3.849910 +-3.846108 +-3.842305 +-3.838503 +-3.834700 +-3.830898 +-3.827096 +-3.823293 +-3.819491 +-3.815689 +-3.811886 +-3.808084 +-3.804281 +-3.800479 +-3.796677 +-3.792874 +-3.789072 +-3.785270 +-3.781467 +-3.777665 +-3.773862 +-3.770060 +-3.766258 +-3.762455 +-3.758653 +-3.754850 +-3.751048 +-3.747246 +-3.743443 +-3.739641 +-3.735839 +-3.732036 +-3.728234 +-3.724431 +-3.720629 +-3.716827 +-3.713024 +-3.709222 +-3.705420 +-3.701617 +-3.697815 +-3.694012 +-3.690210 +-3.686408 +-3.682605 +-3.678803 +-3.675001 +-3.671198 +-3.667396 +-3.663593 +-3.659791 +-3.655989 +-3.652186 +-3.648384 +-3.644581 +-3.640779 +-3.636977 +-3.633174 +-3.629372 +-3.625570 +-3.621767 +-3.617965 +-3.614162 +-3.610360 +-3.606558 +-3.602755 +-3.598953 +-3.595151 +-3.591348 +-3.587546 +-3.583743 +-3.579941 +-3.576139 +-3.572336 +-3.568534 +-3.564731 +-3.560929 +-3.557127 +-3.553324 +-3.549522 +-3.545720 +-3.541917 +-3.538115 +-3.534312 +-3.530510 +-3.526708 +-3.522905 +-3.519103 +-3.515301 +-3.511498 +-3.507696 +-3.503893 +-3.500091 +-3.496289 +-3.492486 +-3.488684 +-3.484881 +-3.481079 +-3.477277 +-3.473474 +-3.469672 +-3.465870 +-3.462067 +-3.458265 +-3.454462 +-3.450660 +-3.446858 +-3.443055 +-3.439253 +-3.435451 +-3.431648 +-3.427846 +-3.424043 +-3.420241 +-3.416439 +-3.412636 +-3.408834 +-3.405032 +-3.401229 +-3.397427 +-3.393624 +-3.389822 +-3.386020 +-3.382217 +-3.378415 +-3.374612 +-3.370810 +-3.367008 +-3.363205 +-3.359403 +-3.355601 +-3.351798 +-3.347996 +-3.344193 +-3.340391 +-3.336589 +-3.332786 +-3.328984 +-3.325182 +-3.321379 +-3.317577 +-3.313774 +-3.309972 +-3.306170 +-3.302367 +-3.298565 +-3.294762 +-3.290960 +-3.287158 +-3.283355 +-3.279553 +-3.275751 +-3.271948 +-3.268146 +-3.264343 +-3.260541 +-3.256739 +-3.252936 +-3.249134 +-3.245332 +-3.241529 +-3.237727 +-3.233924 +-3.230122 +-3.226320 +-3.222517 +-3.218715 +-3.214912 +-3.211110 +-3.207308 +-3.203505 +-3.199703 +-3.195901 +-3.192098 +-3.188296 +-3.184493 +-3.180691 +-3.176889 +-3.173086 +-3.169284 +-3.165482 +-3.161679 +-3.157877 +-3.154074 +-3.150272 +-3.146470 +-3.142667 +-3.138865 +-3.135063 +-3.131260 +-3.127458 +-3.123655 +-3.119853 +-3.116051 +-3.112248 +-3.108446 +-3.104643 +-3.100841 +-3.097039 +-3.093236 +-3.089434 +-3.085632 +-3.081829 +-3.078027 +-3.074224 +-3.070422 +-3.066620 +-3.062817 +-3.059015 +-3.055213 +-3.051410 +-3.047608 +-3.043805 +-3.040003 +-3.036201 +-3.032398 +-3.028596 +-3.024793 +-3.020991 +-3.017189 +-3.013386 +-3.009584 +-3.005782 +-3.001979 +-2.998177 +-2.994374 +-2.990572 +-2.986770 +-2.982967 +-2.979165 +-2.975363 +-2.971560 +-2.967758 +-2.963955 +-2.960153 +-2.956351 +-2.952548 +-2.948746 +-2.944943 +-2.941141 +-2.937339 +-2.933536 +-2.929734 +-2.925932 +-2.922129 +-2.918327 +-2.914524 +-2.910722 +-2.906920 +-2.903117 +-2.899315 +-2.895513 +-2.891710 +-2.887908 +-2.884105 +-2.880303 +-2.876501 +-2.872698 +-2.868896 +-2.865094 +-2.861291 +-2.857489 +-2.853686 +-2.849884 +-2.846082 +-2.842279 +-2.838477 +-2.834674 +-2.830872 +-2.827070 +-2.823267 +-2.819465 +-2.815663 +-2.811860 +-2.808058 +-2.804255 +-2.800453 +-2.796651 +-2.792848 +-2.789046 +-2.785244 +-2.781441 +-2.777639 +-2.773836 +-2.770034 +-2.766232 +-2.762429 +-2.758627 +-2.754824 +-2.751022 +-2.747220 +-2.743417 +-2.739615 +-2.735813 +-2.732010 +-2.728208 +-2.724405 +-2.720603 +-2.716801 +-2.712998 +-2.709196 +-2.705394 +-2.701591 +-2.697789 +-2.693986 +-2.690184 +-2.686382 +-2.682579 +-2.678777 +-2.674974 +-2.671172 +-2.667370 +-2.663567 +-2.659765 +-2.655963 +-2.652160 +-2.648358 +-2.644555 +-2.640753 +-2.636951 +-2.633148 +-2.629346 +-2.625544 +-2.621741 +-2.617939 +-2.614136 +-2.610334 +-2.606532 +-2.602729 +-2.598927 +-2.595125 +-2.591322 +-2.587520 +-2.583717 +-2.579915 +-2.576113 +-2.572310 +-2.568508 +-2.564705 +-2.560903 +-2.557101 +-2.553298 +-2.549496 +-2.545694 +-2.541891 +-2.538089 +-2.534286 +-2.530484 +-2.526682 +-2.522879 +-2.519077 +-2.515275 +-2.511472 +-2.507670 +-2.503867 +-2.500065 +-2.496263 +-2.492460 +-2.488658 +-2.484855 +-2.481053 +-2.477251 +-2.473448 +-2.469646 +-2.465844 +-2.462041 +-2.458239 +-2.454436 +-2.450634 +-2.446832 +-2.443029 +-2.439227 +-2.435425 +-2.431622 +-2.427820 +-2.424017 +-2.420215 +-2.416413 +-2.412610 +-2.408808 +-2.405006 +-2.401203 +-2.397401 +-2.393598 +-2.389796 +-2.385994 +-2.382191 +-2.378389 +-2.374586 +-2.370784 +-2.366982 +-2.363179 +-2.359377 +-2.355575 +-2.351772 +-2.347970 +-2.344167 +-2.340365 +-2.336563 +-2.332760 +-2.328958 +-2.325156 +-2.321353 +-2.317551 +-2.313748 +-2.309946 +-2.306144 +-2.302341 +-2.298539 +-2.294736 +-2.290934 +-2.287132 +-2.283329 +-2.279527 +-2.275725 +-2.271922 +-2.268120 +-2.264317 +-2.260515 +-2.256713 +-2.252910 +-2.249108 +-2.245306 +-2.241503 +-2.237701 +-2.233898 +-2.230096 +-2.226294 +-2.222491 +-2.218689 +-2.214886 +-2.211084 +-2.207282 +-2.203479 +-2.199677 +-2.195875 +-2.192072 +-2.188270 +-2.184467 +-2.180665 +-2.176863 +-2.173060 +-2.169258 +-2.165456 +-2.161653 +-2.157851 +-2.154048 +-2.150246 +-2.146444 +-2.142641 +-2.138839 +-2.135037 +-2.131234 +-2.127432 +-2.123629 +-2.119827 +-2.116025 +-2.112222 +-2.108420 +-2.104617 +-2.100815 +-2.097013 +-2.093210 +-2.089408 +-2.085606 +-2.081803 +-2.078001 +-2.074198 +-2.070396 +-2.066594 +-2.062791 +-2.058989 +-2.055187 +-2.051384 +-2.047582 +-2.043779 +-2.039977 +-2.036175 +-2.032372 +-2.028570 +-2.024767 +-2.020965 +-2.017163 +-2.013360 +-2.009558 +-2.005756 +-2.001953 +-1.998151 +-1.994348 +-1.990546 +-1.986744 +-1.982941 +-1.979139 +-1.975337 +-1.971534 +-1.967732 +-1.963929 +-1.960127 +-1.956325 +-1.952522 +-1.948720 +-1.944917 +-1.941115 +-1.937313 +-1.933510 +-1.929708 +-1.925906 +-1.922103 +-1.918301 +-1.914498 +-1.910696 +-1.906894 +-1.903091 +-1.899289 +-1.895487 +-1.891684 +-1.887882 +-1.884079 +-1.880277 +-1.876475 +-1.872672 +-1.868870 +-1.865068 +-1.861265 +-1.857463 +-1.853660 +-1.849858 +-1.846056 +-1.842253 +-1.838451 +-1.834648 +-1.830846 +-1.827044 +-1.823241 +-1.819439 +-1.815637 +-1.811834 +-1.808032 +-1.804229 +-1.800427 +-1.796625 +-1.792822 +-1.789020 +-1.785218 +-1.781415 +-1.777613 +-1.773810 +-1.770008 +-1.766206 +-1.762403 +-1.758601 +-1.754798 +-1.750996 +-1.747194 +-1.743391 +-1.739589 +-1.735787 +-1.731984 +-1.728182 +-1.724379 +-1.720577 +-1.716775 +-1.712972 +-1.709170 +-1.705368 +-1.701565 +-1.697763 +-1.693960 +-1.690158 +-1.686356 +-1.682553 +-1.678751 +-1.674948 +-1.671146 +-1.667344 +-1.663541 +-1.659739 +-1.655937 +-1.652134 +-1.648332 +-1.644529 +-1.640727 +-1.636925 +-1.633122 +-1.629320 +-1.625518 +-1.621715 +-1.617913 +-1.614110 +-1.610308 +-1.606506 +-1.602703 +-1.598901 +-1.595099 +-1.591296 +-1.587494 +-1.583691 +-1.579889 +-1.576087 +-1.572284 +-1.568482 +-1.564679 +-1.560877 +-1.557075 +-1.553272 +-1.549470 +-1.545668 +-1.541865 +-1.538063 +-1.534260 +-1.530458 +-1.526656 +-1.522853 +-1.519051 +-1.515249 +-1.511446 +-1.507644 +-1.503841 +-1.500039 +-1.496237 +-1.492434 +-1.488632 +-1.484829 +-1.481027 +-1.477225 +-1.473422 +-1.469620 +-1.465818 +-1.462015 +-1.458213 +-1.454410 +-1.450608 +-1.446806 +-1.443003 +-1.439201 +-1.435399 +-1.431596 +-1.427794 +-1.423991 +-1.420189 +-1.416387 +-1.412584 +-1.408782 +-1.404979 +-1.401177 +-1.397375 +-1.393572 +-1.389770 +-1.385968 +-1.382165 +-1.378363 +-1.374560 +-1.370758 +-1.366956 +-1.363153 +-1.359351 +-1.355549 +-1.351746 +-1.347944 +-1.344141 +-1.340339 +-1.336537 +-1.332734 +-1.328932 +-1.325130 +-1.321327 +-1.317525 +-1.313722 +-1.309920 +-1.306118 +-1.302315 +-1.298513 +-1.294710 +-1.290908 +-1.287106 +-1.283303 +-1.279501 +-1.275699 +-1.271896 +-1.268094 +-1.264291 +-1.260489 +-1.256687 +-1.252884 +-1.249082 +-1.245280 +-1.241477 +-1.237675 +-1.233872 +-1.230070 +-1.226268 +-1.222465 +-1.218663 +-1.214860 +-1.211058 +-1.207256 +-1.203453 +-1.199651 +-1.195849 +-1.192046 +-1.188244 +-1.184441 +-1.180639 +-1.176837 +-1.173034 +-1.169232 +-1.165430 +-1.161627 +-1.157825 +-1.154022 +-1.150220 +-1.146418 +-1.142615 +-1.138813 +-1.135011 +-1.131208 +-1.127406 +-1.123603 +-1.119801 +-1.115999 +-1.112196 +-1.108394 +-1.104591 +-1.100789 +-1.096987 +-1.093184 +-1.089382 +-1.085580 +-1.081777 +-1.077975 +-1.074172 +-1.070370 +-1.066568 +-1.062765 +-1.058963 +-1.055161 +-1.051358 +-1.047556 +-1.043753 +-1.039951 +-1.036149 +-1.032346 +-1.028544 +-1.024741 +-1.020939 +-1.017137 +-1.013334 +-1.009532 +-1.005730 +-1.001927 +-0.998125 +-0.994322 +-0.990520 +-0.986718 +-0.982915 +-0.979113 +-0.975311 +-0.971508 +-0.967706 +-0.963903 +-0.960101 +-0.956299 +-0.952496 +-0.948694 +-0.944891 +-0.941089 +-0.937287 +-0.933484 +-0.929682 +-0.925880 +-0.922077 +-0.918275 +-0.914472 +-0.910670 +-0.906868 +-0.903065 +-0.899263 +-0.895461 +-0.891658 +-0.887856 +-0.884053 +-0.880251 +-0.876449 +-0.872646 +-0.868844 +-0.865042 +-0.861239 +-0.857437 +-0.853634 +-0.849832 +-0.846030 +-0.842227 +-0.838425 +-0.834622 +-0.830820 +-0.827018 +-0.823215 +-0.819413 +-0.815611 +-0.811808 +-0.808006 +-0.804203 +-0.800401 +-0.796599 +-0.792796 +-0.788994 +-0.785192 +-0.781389 +-0.777587 +-0.773784 +-0.769982 +-0.766180 +-0.762377 +-0.758575 +-0.754772 +-0.750970 +-0.747168 +-0.743365 +-0.739563 +-0.735761 +-0.731958 +-0.728156 +-0.724353 +-0.720551 +-0.716749 +-0.712946 +-0.709144 +-0.705342 +-0.701539 +-0.697737 +-0.693934 +-0.690132 +-0.686330 +-0.682527 +-0.678725 +-0.674922 +-0.671120 +-0.667318 +-0.663515 +-0.659713 +-0.655911 +-0.652108 +-0.648306 +-0.644503 +-0.640701 +-0.636899 +-0.633096 +-0.629294 +-0.625492 +-0.621689 +-0.617887 +-0.614084 +-0.610282 +-0.606480 +-0.602677 +-0.598875 +-0.595073 +-0.591270 +-0.587468 +-0.583665 +-0.579863 +-0.576061 +-0.572258 +-0.568456 +-0.564653 +-0.560851 +-0.557049 +-0.553246 +-0.549444 +-0.545642 +-0.541839 +-0.538037 +-0.534234 +-0.530432 +-0.526630 +-0.522827 +-0.519025 +-0.515223 +-0.511420 +-0.507618 +-0.503815 +-0.500013 +-0.496211 +-0.492408 +-0.488606 +-0.484803 +-0.481001 +-0.477199 +-0.473396 +-0.469594 +-0.465792 +-0.461989 +-0.458187 +-0.454384 +-0.450582 +-0.446780 +-0.442977 +-0.439175 +-0.435373 +-0.431570 +-0.427768 +-0.423965 +-0.420163 +-0.416361 +-0.412558 +-0.408756 +-0.404953 +-0.401151 +-0.397349 +-0.393546 +-0.389744 +-0.385942 +-0.382139 +-0.378337 +-0.374534 +-0.370732 +-0.366930 +-0.363127 +-0.359325 +-0.355523 +-0.351720 +-0.347918 +-0.344115 +-0.340313 +-0.336511 +-0.332708 +-0.328906 +-0.325104 +-0.321301 +-0.317499 +-0.313696 +-0.309894 +-0.306092 +-0.302289 +-0.298487 +-0.294684 +-0.290882 +-0.287080 +-0.283277 +-0.279475 +-0.275673 +-0.271870 +-0.268068 +-0.264265 +-0.260463 +-0.256661 +-0.252858 +-0.249056 +-0.245254 +-0.241451 +-0.237649 +-0.233846 +-0.230044 +-0.226242 +-0.222439 +-0.218637 +-0.214834 +-0.211032 +-0.207230 +-0.203427 +-0.199625 +-0.195823 +-0.192020 +-0.188218 +-0.184415 +-0.180613 +-0.176811 +-0.173008 +-0.169206 +-0.165404 +-0.161601 +-0.157799 +-0.153996 +-0.150194 +-0.146392 +-0.142589 +-0.138787 +-0.134984 +-0.131182 +-0.127380 +-0.123577 +-0.119775 +-0.115973 +-0.112170 +-0.108368 +-0.104565 +-0.100763 +-0.096961 +-0.093158 +-0.089356 +-0.085554 +-0.081751 +-0.077949 +-0.074146 +-0.070344 +-0.066542 +-0.062739 +-0.058937 +-0.055135 +-0.051332 +-0.047530 +-0.043727 +-0.039925 +-0.036123 +-0.032320 +-0.028518 +-0.024715 +-0.020913 +-0.017111 +-0.013308 +-0.009506 +-0.005704 +-0.001901 +0.001901 +0.005704 +0.009506 +0.013308 +0.017111 +0.020913 +0.024715 +0.028518 +0.032320 +0.036123 +0.039925 +0.043727 +0.047530 +0.051332 +0.055135 +0.058937 +0.062739 +0.066542 +0.070344 +0.074146 +0.077949 +0.081751 +0.085554 +0.089356 +0.093158 +0.096961 +0.100763 +0.104565 +0.108368 +0.112170 +0.115973 +0.119775 +0.123577 +0.127380 +0.131182 +0.134984 +0.138787 +0.142589 +0.146392 +0.150194 +0.153996 +0.157799 +0.161601 +0.165404 +0.169206 +0.173008 +0.176811 +0.180613 +0.184415 +0.188218 +0.192020 +0.195823 +0.199625 +0.203427 +0.207230 +0.211032 +0.214834 +0.218637 +0.222439 +0.226242 +0.230044 +0.233846 +0.237649 +0.241451 +0.245254 +0.249056 +0.252858 +0.256661 +0.260463 +0.264265 +0.268068 +0.271870 +0.275673 +0.279475 +0.283277 +0.287080 +0.290882 +0.294684 +0.298487 +0.302289 +0.306092 +0.309894 +0.313696 +0.317499 +0.321301 +0.325104 +0.328906 +0.332708 +0.336511 +0.340313 +0.344115 +0.347918 +0.351720 +0.355523 +0.359325 +0.363127 +0.366930 +0.370732 +0.374534 +0.378337 +0.382139 +0.385942 +0.389744 +0.393546 +0.397349 +0.401151 +0.404953 +0.408756 +0.412558 +0.416361 +0.420163 +0.423965 +0.427768 +0.431570 +0.435373 +0.439175 +0.442977 +0.446780 +0.450582 +0.454384 +0.458187 +0.461989 +0.465792 +0.469594 +0.473396 +0.477199 +0.481001 +0.484803 +0.488606 +0.492408 +0.496211 +0.500013 +0.503815 +0.507618 +0.511420 +0.515223 +0.519025 +0.522827 +0.526630 +0.530432 +0.534234 +0.538037 +0.541839 +0.545642 +0.549444 +0.553246 +0.557049 +0.560851 +0.564653 +0.568456 +0.572258 +0.576061 +0.579863 +0.583665 +0.587468 +0.591270 +0.595073 +0.598875 +0.602677 +0.606480 +0.610282 +0.614084 +0.617887 +0.621689 +0.625492 +0.629294 +0.633096 +0.636899 +0.640701 +0.644503 +0.648306 +0.652108 +0.655911 +0.659713 +0.663515 +0.667318 +0.671120 +0.674922 +0.678725 +0.682527 +0.686330 +0.690132 +0.693934 +0.697737 +0.701539 +0.705342 +0.709144 +0.712946 +0.716749 +0.720551 +0.724353 +0.728156 +0.731958 +0.735761 +0.739563 +0.743365 +0.747168 +0.750970 +0.754772 +0.758575 +0.762377 +0.766180 +0.769982 +0.773784 +0.777587 +0.781389 +0.785192 +0.788994 +0.792796 +0.796599 +0.800401 +0.804203 +0.808006 +0.811808 +0.815611 +0.819413 +0.823215 +0.827018 +0.830820 +0.834622 +0.838425 +0.842227 +0.846030 +0.849832 +0.853634 +0.857437 +0.861239 +0.865042 +0.868844 +0.872646 +0.876449 +0.880251 +0.884053 +0.887856 +0.891658 +0.895461 +0.899263 +0.903065 +0.906868 +0.910670 +0.914472 +0.918275 +0.922077 +0.925880 +0.929682 +0.933484 +0.937287 +0.941089 +0.944891 +0.948694 +0.952496 +0.956299 +0.960101 +0.963903 +0.967706 +0.971508 +0.975311 +0.979113 +0.982915 +0.986718 +0.990520 +0.994322 +0.998125 +1.001927 +1.005730 +1.009532 +1.013334 +1.017137 +1.020939 +1.024741 +1.028544 +1.032346 +1.036149 +1.039951 +1.043753 +1.047556 +1.051358 +1.055161 +1.058963 +1.062765 +1.066568 +1.070370 +1.074172 +1.077975 +1.081777 +1.085580 +1.089382 +1.093184 +1.096987 +1.100789 +1.104591 +1.108394 +1.112196 +1.115999 +1.119801 +1.123603 +1.127406 +1.131208 +1.135011 +1.138813 +1.142615 +1.146418 +1.150220 +1.154022 +1.157825 +1.161627 +1.165430 +1.169232 +1.173034 +1.176837 +1.180639 +1.184441 +1.188244 +1.192046 +1.195849 +1.199651 +1.203453 +1.207256 +1.211058 +1.214860 +1.218663 +1.222465 +1.226268 +1.230070 +1.233872 +1.237675 +1.241477 +1.245280 +1.249082 +1.252884 +1.256687 +1.260489 +1.264291 +1.268094 +1.271896 +1.275699 +1.279501 +1.283303 +1.287106 +1.290908 +1.294710 +1.298513 +1.302315 +1.306118 +1.309920 +1.313722 +1.317525 +1.321327 +1.325130 +1.328932 +1.332734 +1.336537 +1.340339 +1.344141 +1.347944 +1.351746 +1.355549 +1.359351 +1.363153 +1.366956 +1.370758 +1.374560 +1.378363 +1.382165 +1.385968 +1.389770 +1.393572 +1.397375 +1.401177 +1.404979 +1.408782 +1.412584 +1.416387 +1.420189 +1.423991 +1.427794 +1.431596 +1.435399 +1.439201 +1.443003 +1.446806 +1.450608 +1.454410 +1.458213 +1.462015 +1.465818 +1.469620 +1.473422 +1.477225 +1.481027 +1.484829 +1.488632 +1.492434 +1.496237 +1.500039 +1.503841 +1.507644 +1.511446 +1.515249 +1.519051 +1.522853 +1.526656 +1.530458 +1.534260 +1.538063 +1.541865 +1.545668 +1.549470 +1.553272 +1.557075 +1.560877 +1.564679 +1.568482 +1.572284 +1.576087 +1.579889 +1.583691 +1.587494 +1.591296 +1.595099 +1.598901 +1.602703 +1.606506 +1.610308 +1.614110 +1.617913 +1.621715 +1.625518 +1.629320 +1.633122 +1.636925 +1.640727 +1.644529 +1.648332 +1.652134 +1.655937 +1.659739 +1.663541 +1.667344 +1.671146 +1.674948 +1.678751 +1.682553 +1.686356 +1.690158 +1.693960 +1.697763 +1.701565 +1.705368 +1.709170 +1.712972 +1.716775 +1.720577 +1.724379 +1.728182 +1.731984 +1.735787 +1.739589 +1.743391 +1.747194 +1.750996 +1.754798 +1.758601 +1.762403 +1.766206 +1.770008 +1.773810 +1.777613 +1.781415 +1.785218 +1.789020 +1.792822 +1.796625 +1.800427 +1.804229 +1.808032 +1.811834 +1.815637 +1.819439 +1.823241 +1.827044 +1.830846 +1.834648 +1.838451 +1.842253 +1.846056 +1.849858 +1.853660 +1.857463 +1.861265 +1.865068 +1.868870 +1.872672 +1.876475 +1.880277 +1.884079 +1.887882 +1.891684 +1.895487 +1.899289 +1.903091 +1.906894 +1.910696 +1.914498 +1.918301 +1.922103 +1.925906 +1.929708 +1.933510 +1.937313 +1.941115 +1.944917 +1.948720 +1.952522 +1.956325 +1.960127 +1.963929 +1.967732 +1.971534 +1.975337 +1.979139 +1.982941 +1.986744 +1.990546 +1.994348 +1.998151 +2.001953 +2.005756 +2.009558 +2.013360 +2.017163 +2.020965 +2.024767 +2.028570 +2.032372 +2.036175 +2.039977 +2.043779 +2.047582 +2.051384 +2.055187 +2.058989 +2.062791 +2.066594 +2.070396 +2.074198 +2.078001 +2.081803 +2.085606 +2.089408 +2.093210 +2.097013 +2.100815 +2.104617 +2.108420 +2.112222 +2.116025 +2.119827 +2.123629 +2.127432 +2.131234 +2.135037 +2.138839 +2.142641 +2.146444 +2.150246 +2.154048 +2.157851 +2.161653 +2.165456 +2.169258 +2.173060 +2.176863 +2.180665 +2.184467 +2.188270 +2.192072 +2.195875 +2.199677 +2.203479 +2.207282 +2.211084 +2.214886 +2.218689 +2.222491 +2.226294 +2.230096 +2.233898 +2.237701 +2.241503 +2.245306 +2.249108 +2.252910 +2.256713 +2.260515 +2.264317 +2.268120 +2.271922 +2.275725 +2.279527 +2.283329 +2.287132 +2.290934 +2.294736 +2.298539 +2.302341 +2.306144 +2.309946 +2.313748 +2.317551 +2.321353 +2.325156 +2.328958 +2.332760 +2.336563 +2.340365 +2.344167 +2.347970 +2.351772 +2.355575 +2.359377 +2.363179 +2.366982 +2.370784 +2.374586 +2.378389 +2.382191 +2.385994 +2.389796 +2.393598 +2.397401 +2.401203 +2.405006 +2.408808 +2.412610 +2.416413 +2.420215 +2.424017 +2.427820 +2.431622 +2.435425 +2.439227 +2.443029 +2.446832 +2.450634 +2.454436 +2.458239 +2.462041 +2.465844 +2.469646 +2.473448 +2.477251 +2.481053 +2.484855 +2.488658 +2.492460 +2.496263 +2.500065 +2.503867 +2.507670 +2.511472 +2.515275 +2.519077 +2.522879 +2.526682 +2.530484 +2.534286 +2.538089 +2.541891 +2.545694 +2.549496 +2.553298 +2.557101 +2.560903 +2.564705 +2.568508 +2.572310 +2.576113 +2.579915 +2.583717 +2.587520 +2.591322 +2.595125 +2.598927 +2.602729 +2.606532 +2.610334 +2.614136 +2.617939 +2.621741 +2.625544 +2.629346 +2.633148 +2.636951 +2.640753 +2.644555 +2.648358 +2.652160 +2.655963 +2.659765 +2.663567 +2.667370 +2.671172 +2.674974 +2.678777 +2.682579 +2.686382 +2.690184 +2.693986 +2.697789 +2.701591 +2.705394 +2.709196 +2.712998 +2.716801 +2.720603 +2.724405 +2.728208 +2.732010 +2.735813 +2.739615 +2.743417 +2.747220 +2.751022 +2.754824 +2.758627 +2.762429 +2.766232 +2.770034 +2.773836 +2.777639 +2.781441 +2.785244 +2.789046 +2.792848 +2.796651 +2.800453 +2.804255 +2.808058 +2.811860 +2.815663 +2.819465 +2.823267 +2.827070 +2.830872 +2.834674 +2.838477 +2.842279 +2.846082 +2.849884 +2.853686 +2.857489 +2.861291 +2.865094 +2.868896 +2.872698 +2.876501 +2.880303 +2.884105 +2.887908 +2.891710 +2.895513 +2.899315 +2.903117 +2.906920 +2.910722 +2.914524 +2.918327 +2.922129 +2.925932 +2.929734 +2.933536 +2.937339 +2.941141 +2.944943 +2.948746 +2.952548 +2.956351 +2.960153 +2.963955 +2.967758 +2.971560 +2.975363 +2.979165 +2.982967 +2.986770 +2.990572 +2.994374 +2.998177 +3.001979 +3.005782 +3.009584 +3.013386 +3.017189 +3.020991 +3.024793 +3.028596 +3.032398 +3.036201 +3.040003 +3.043805 +3.047608 +3.051410 +3.055213 +3.059015 +3.062817 +3.066620 +3.070422 +3.074224 +3.078027 +3.081829 +3.085632 +3.089434 +3.093236 +3.097039 +3.100841 +3.104643 +3.108446 +3.112248 +3.116051 +3.119853 +3.123655 +3.127458 +3.131260 +3.135063 +3.138865 +3.142667 +3.146470 +3.150272 +3.154074 +3.157877 +3.161679 +3.165482 +3.169284 +3.173086 +3.176889 +3.180691 +3.184493 +3.188296 +3.192098 +3.195901 +3.199703 +3.203505 +3.207308 +3.211110 +3.214912 +3.218715 +3.222517 +3.226320 +3.230122 +3.233924 +3.237727 +3.241529 +3.245332 +3.249134 +3.252936 +3.256739 +3.260541 +3.264343 +3.268146 +3.271948 +3.275751 +3.279553 +3.283355 +3.287158 +3.290960 +3.294762 +3.298565 +3.302367 +3.306170 +3.309972 +3.313774 +3.317577 +3.321379 +3.325182 +3.328984 +3.332786 +3.336589 +3.340391 +3.344193 +3.347996 +3.351798 +3.355601 +3.359403 +3.363205 +3.367008 +3.370810 +3.374612 +3.378415 +3.382217 +3.386020 +3.389822 +3.393624 +3.397427 +3.401229 +3.405032 +3.408834 +3.412636 +3.416439 +3.420241 +3.424043 +3.427846 +3.431648 +3.435451 +3.439253 +3.443055 +3.446858 +3.450660 +3.454462 +3.458265 +3.462067 +3.465870 +3.469672 +3.473474 +3.477277 +3.481079 +3.484881 +3.488684 +3.492486 +3.496289 +3.500091 +3.503893 +3.507696 +3.511498 +3.515301 +3.519103 +3.522905 +3.526708 +3.530510 +3.534312 +3.538115 +3.541917 +3.545720 +3.549522 +3.553324 +3.557127 +3.560929 +3.564731 +3.568534 +3.572336 +3.576139 +3.579941 +3.583743 +3.587546 +3.591348 +3.595151 +3.598953 +3.602755 +3.606558 +3.610360 +3.614162 +3.617965 +3.621767 +3.625570 +3.629372 +3.633174 +3.636977 +3.640779 +3.644581 +3.648384 +3.652186 +3.655989 +3.659791 +3.663593 +3.667396 +3.671198 +3.675001 +3.678803 +3.682605 +3.686408 +3.690210 +3.694012 +3.697815 +3.701617 +3.705420 +3.709222 +3.713024 +3.716827 +3.720629 +3.724431 +3.728234 +3.732036 +3.735839 +3.739641 +3.743443 +3.747246 +3.751048 +3.754850 +3.758653 +3.762455 +3.766258 +3.770060 +3.773862 +3.777665 +3.781467 +3.785270 +3.789072 +3.792874 +3.796677 +3.800479 +3.804281 +3.808084 +3.811886 +3.815689 +3.819491 +3.823293 +3.827096 +3.830898 +3.834700 +3.838503 +3.842305 +3.846108 +3.849910 +3.853712 +3.857515 +3.861317 +3.865120 +3.868922 +3.872724 +3.876527 +3.880329 +3.884131 +3.887934 +3.891736 +3.895539 +3.899341 +3.903143 +3.906946 +3.910748 +3.914550 +3.918353 +3.922155 +3.925958 +3.929760 +3.933562 +3.937365 +3.941167 +3.944969 +3.948772 +3.952574 +3.956377 +3.960179 +3.963981 +3.967784 +3.971586 +3.975389 +3.979191 +3.982993 +3.986796 +3.990598 +3.994400 +3.998203 +4.002005 +4.005808 +4.009610 +4.013412 +4.017215 +4.021017 +4.024819 +4.028622 +4.032424 +4.036227 +4.040029 +4.043831 +4.047634 +4.051436 +4.055239 +4.059041 +4.062843 +4.066646 +4.070448 +4.074250 +4.078053 +4.081855 +4.085658 +4.089460 +4.093262 +4.097065 +4.100867 +4.104669 +4.108472 +4.112274 +4.116077 +4.119879 +4.123681 +4.127484 +4.131286 +4.135089 +4.138891 +4.142693 +4.146496 +4.150298 +4.154100 +4.157903 +4.161705 +4.165508 +4.169310 +4.173112 +4.176915 +4.180717 +4.184519 +4.188322 +4.192124 +4.195927 +4.199729 +4.203531 +4.207334 +4.211136 +4.214938 +4.218741 +4.222543 +4.226346 +4.230148 +4.233950 +4.237753 +4.241555 +4.245358 +4.249160 +4.252962 +4.256765 +4.260567 +4.264369 +4.268172 +4.271974 +4.275777 +4.279579 +4.283381 +4.287184 +4.290986 +4.294788 +4.298591 +4.302393 +4.306196 +4.309998 +4.313800 +4.317603 +4.321405 +4.325208 +4.329010 +4.332812 +4.336615 +4.340417 +4.344219 +4.348022 +4.351824 +4.355627 +4.359429 +4.363231 +4.367034 +4.370836 +4.374638 +4.378441 +4.382243 +4.386046 +4.389848 +4.393650 +4.397453 +4.401255 +4.405058 +4.408860 +4.412662 +4.416465 +4.420267 +4.424069 +4.427872 +4.431674 +4.435477 +4.439279 +4.443081 +4.446884 +4.450686 +4.454488 +4.458291 +4.462093 +4.465896 +4.469698 +4.473500 +4.477303 +4.481105 +4.484907 +4.488710 +4.492512 +4.496315 +4.500117 +4.503919 +4.507722 +4.511524 +4.515327 +4.519129 +4.522931 +4.526734 +4.530536 +4.534338 +4.538141 +4.541943 +4.545746 +4.549548 +4.553350 +4.557153 +4.560955 +4.564757 +4.568560 +4.572362 +4.576165 +4.579967 +4.583769 +4.587572 +4.591374 +4.595177 +4.598979 +4.602781 +4.606584 +4.610386 +4.614188 +4.617991 +4.621793 +4.625596 +4.629398 +4.633200 +4.637003 +4.640805 +4.644607 +4.648410 +4.652212 +4.656015 +4.659817 +4.663619 +4.667422 +4.671224 +4.675027 +4.678829 +4.682631 +4.686434 +4.690236 +4.694038 +4.697841 +4.701643 +4.705446 +4.709248 +4.713050 +4.716853 +4.720655 +4.724457 +4.728260 +4.732062 +4.735865 +4.739667 +4.743469 +4.747272 +4.751074 +4.754876 +4.758679 +4.762481 +4.766284 +4.770086 +4.773888 +4.777691 +4.781493 +4.785296 +4.789098 +4.792900 +4.796703 +4.800505 +4.804307 +4.808110 +4.811912 +4.815715 +4.819517 +4.823319 +4.827122 +4.830924 +4.834726 +4.838529 +4.842331 +4.846134 +4.849936 +4.853738 +4.857541 +4.861343 +4.865146 +4.868948 +4.872750 +4.876553 +4.880355 +4.884157 +4.887960 +4.891762 +4.895565 +4.899367 +4.903169 +4.906972 +4.910774 +4.914576 +4.918379 +4.922181 +4.925984 +4.929786 +4.933588 +4.937391 +4.941193 +4.944995 +4.948798 +4.952600 +4.956403 +4.960205 +4.964007 +4.967810 +4.971612 +4.975415 +4.979217 +4.983019 +4.986822 +4.990624 +4.994426 +4.998229 +5.002031 +5.005834 +5.009636 +5.013438 +5.017241 +5.021043 +5.024845 +5.028648 +5.032450 +5.036253 +5.040055 +5.043857 +5.047660 +5.051462 +5.055265 +5.059067 +5.062869 +5.066672 +5.070474 +5.074276 +5.078079 +5.081881 +5.085684 +5.089486 +5.093288 +5.097091 +5.100893 +5.104695 +5.108498 +5.112300 +5.116103 +5.119905 +5.123707 +5.127510 +5.131312 +5.135115 +5.138917 +5.142719 +5.146522 +5.150324 +5.154126 +5.157929 +5.161731 +5.165534 +5.169336 +5.173138 +5.176941 +5.180743 +5.184545 +5.188348 +5.192150 +5.195953 +5.199755 +5.203557 +5.207360 +5.211162 +5.214964 +5.218767 +5.222569 +5.226372 +5.230174 +5.233976 +5.237779 +5.241581 +5.245384 +5.249186 +5.252988 +5.256791 +5.260593 +5.264395 +5.268198 +5.272000 +5.275803 +5.279605 +5.283407 +5.287210 +5.291012 +5.294814 +5.298617 +5.302419 +5.306222 +5.310024 +5.313826 +5.317629 +5.321431 +5.325234 +5.329036 +5.332838 +5.336641 +5.340443 +5.344245 +5.348048 +5.351850 +5.355653 +5.359455 +5.363257 +5.367060 +5.370862 +5.374664 +5.378467 +5.382269 +5.386072 +5.389874 +5.393676 +5.397479 +5.401281 +5.405084 +5.408886 +5.412688 +5.416491 +5.420293 +5.424095 +5.427898 +5.431700 +5.435503 +5.439305 +5.443107 +5.446910 +5.450712 +5.454514 +5.458317 +5.462119 +5.465922 +5.469724 +5.473526 +5.477329 +5.481131 +5.484933 +5.488736 +5.492538 +5.496341 +5.500143 +5.503945 +5.507748 +5.511550 +5.515353 +5.519155 +5.522957 +5.526760 +5.530562 +5.534364 +5.538167 +5.541969 +5.545772 +5.549574 +5.553376 +5.557179 +5.560981 +5.564783 +5.568586 +5.572388 +5.576191 +5.579993 +5.583795 +5.587598 +5.591400 +5.595203 +5.599005 +5.602807 +5.606610 +5.610412 +5.614214 +5.618017 +5.621819 +5.625622 +5.629424 +5.633226 +5.637029 +5.640831 +5.644633 +5.648436 +5.652238 +5.656041 +5.659843 +5.663645 +5.667448 +5.671250 +5.675053 +5.678855 +5.682657 +5.686460 +5.690262 +5.694064 +5.697867 +5.701669 +5.705472 +5.709274 +5.713076 +5.716879 +5.720681 +5.724483 +5.728286 +5.732088 +5.735891 +5.739693 +5.743495 +5.747298 +5.751100 +5.754902 +5.758705 +5.762507 +5.766310 +5.770112 +5.773914 +5.777717 +5.781519 +5.785322 +5.789124 +5.792926 +5.796729 +5.800531 +5.804333 +5.808136 +5.811938 +5.815741 +5.819543 +5.823345 +5.827148 +5.830950 +5.834752 +5.838555 +5.842357 +5.846160 +5.849962 +5.853764 +5.857567 +5.861369 +5.865172 +5.868974 +5.872776 +5.876579 +5.880381 +5.884183 +5.887986 +5.891788 +5.895591 +5.899393 +5.903195 +5.906998 +5.910800 +5.914602 +5.918405 +5.922207 +5.926010 +5.929812 +5.933614 +5.937417 +5.941219 +5.945022 +5.948824 +5.952626 +5.956429 +5.960231 +5.964033 +5.967836 +5.971638 +5.975441 +5.979243 +5.983045 +5.986848 +5.990650 +5.994452 +5.998255 +6.002057 +6.005860 +6.009662 +6.013464 +6.017267 +6.021069 +6.024871 +6.028674 +6.032476 +6.036279 +6.040081 +6.043883 +6.047686 +6.051488 +6.055291 +6.059093 +6.062895 +6.066698 +6.070500 +6.074302 +6.078105 +6.081907 +6.085710 +6.089512 +6.093314 +6.097117 +6.100919 +6.104721 +6.108524 +6.112326 +6.116129 +6.119931 +6.123733 +6.127536 +6.131338 +6.135141 +6.138943 +6.142745 +6.146548 +6.150350 +6.154152 +6.157955 +6.161757 +6.165560 +6.169362 +6.173164 +6.176967 +6.180769 +6.184571 +6.188374 +6.192176 +6.195979 +6.199781 +6.203583 +6.207386 +6.211188 +6.214990 +6.218793 +6.222595 +6.226398 +6.230200 +6.234002 +6.237805 +6.241607 +6.245410 +6.249212 +6.253014 +6.256817 +6.260619 +6.264421 +6.268224 +6.272026 +6.275829 +6.279631 +6.283433 +6.287236 +6.291038 +6.294840 +6.298643 +6.302445 +6.306248 +6.310050 +6.313852 +6.317655 +6.321457 +6.325260 +6.329062 +6.332864 +6.336667 +6.340469 +6.344271 +6.348074 +6.351876 +6.355679 +6.359481 +6.363283 +6.367086 +6.370888 +6.374690 +6.378493 +6.382295 +6.386098 +6.389900 +6.393702 +6.397505 +6.401307 +6.405110 +6.408912 +6.412714 +6.416517 +6.420319 +6.424121 +6.427924 +6.431726 +6.435529 +6.439331 +6.443133 +6.446936 +6.450738 +6.454540 +6.458343 +6.462145 +6.465948 +6.469750 +6.473552 +6.477355 +6.481157 +6.484959 +6.488762 +6.492564 +6.496367 +6.500169 +6.503971 +6.507774 +6.511576 +6.515379 +6.519181 +6.522983 +6.526786 +6.530588 +6.534390 +6.538193 +6.541995 +6.545798 +6.549600 +6.553402 +6.557205 +6.561007 +6.564809 +6.568612 +6.572414 +6.576217 +6.580019 +6.583821 +6.587624 +6.591426 +6.595229 +6.599031 +6.602833 +6.606636 +6.610438 +6.614240 +6.618043 +6.621845 +6.625648 +6.629450 +6.633252 +6.637055 +6.640857 +6.644659 +6.648462 +6.652264 +6.656067 +6.659869 +6.663671 +6.667474 +6.671276 +6.675079 +6.678881 +6.682683 +6.686486 +6.690288 +6.694090 +6.697893 +6.701695 +6.705498 +6.709300 +6.713102 +6.716905 +6.720707 +6.724509 +6.728312 +6.732114 +6.735917 +6.739719 +6.743521 +6.747324 +6.751126 +6.754928 +6.758731 +6.762533 +6.766336 +6.770138 +6.773940 +6.777743 +6.781545 +6.785348 +6.789150 +6.792952 +6.796755 +6.800557 +6.804359 +6.808162 +6.811964 +6.815767 +6.819569 +6.823371 +6.827174 +6.830976 +6.834778 +6.838581 +6.842383 +6.846186 +6.849988 +6.853790 +6.857593 +6.861395 +6.865198 +6.869000 +6.872802 +6.876605 +6.880407 +6.884209 +6.888012 +6.891814 +6.895617 +6.899419 +6.903221 +6.907024 +6.910826 +6.914628 +6.918431 +6.922233 +6.926036 +6.929838 +6.933640 +6.937443 +6.941245 +6.945048 +6.948850 +6.952652 +6.956455 +6.960257 +6.964059 +6.967862 +6.971664 +6.975467 +6.979269 +6.983071 +6.986874 +6.990676 +6.994478 +6.998281 +7.002083 +7.005886 +7.009688 +7.013490 +7.017293 +7.021095 +7.024897 +7.028700 +7.032502 +7.036305 +7.040107 +7.043909 +7.047712 +7.051514 +7.055317 +7.059119 +7.062921 +7.066724 +7.070526 +7.074328 +7.078131 +7.081933 +7.085736 +7.089538 +7.093340 +7.097143 +7.100945 +7.104747 +7.108550 +7.112352 +7.116155 +7.119957 +7.123759 +7.127562 +7.131364 +7.135167 +7.138969 +7.142771 +7.146574 +7.150376 +7.154178 +7.157981 +7.161783 +7.165586 +7.169388 +7.173190 +7.176993 +7.180795 +7.184597 +7.188400 +7.192202 +7.196005 +7.199807 +7.203609 +7.207412 +7.211214 +7.215017 +7.218819 +7.222621 +7.226424 +7.230226 +7.234028 +7.237831 +7.241633 +7.245436 +7.249238 +7.253040 +7.256843 +7.260645 +7.264447 +7.268250 +7.272052 +7.275855 +7.279657 +7.283459 +7.287262 +7.291064 +7.294866 +7.298669 +7.302471 +7.306274 +7.310076 +7.313878 +7.317681 +7.321483 +7.325286 +7.329088 +7.332890 +7.336693 +7.340495 +7.344297 +7.348100 +7.351902 +7.355705 +7.359507 +7.363309 +7.367112 +7.370914 +7.374716 +7.378519 +7.382321 +7.386124 +7.389926 +7.393728 +7.397531 +7.401333 +7.405136 +7.408938 +7.412740 +7.416543 +7.420345 +7.424147 +7.427950 +7.431752 +7.435555 +7.439357 +7.443159 +7.446962 +7.450764 +7.454566 +7.458369 +7.462171 +7.465974 +7.469776 +7.473578 +7.477381 +7.481183 +7.484985 +7.488788 +7.492590 +7.496393 +7.500195 +7.503997 +7.507800 +7.511602 +7.515405 +7.519207 +7.523009 +7.526812 +7.530614 +7.534416 +7.538219 +7.542021 +7.545824 +7.549626 +7.553428 +7.557231 +7.561033 +7.564835 +7.568638 +7.572440 +7.576243 +7.580045 +7.583847 +7.587650 +7.591452 +7.595255 +7.599057 +7.602859 +7.606662 +7.610464 +7.614266 +7.618069 +7.621871 +7.625674 +7.629476 +7.633278 +7.637081 +7.640883 +7.644685 +7.648488 +7.652290 +7.656093 +7.659895 +7.663697 +7.667500 +7.671302 +7.675105 +7.678907 +7.682709 +7.686512 +7.690314 +7.694116 +7.697919 +7.701721 +7.705524 +7.709326 +7.713128 +7.716931 +7.720733 +7.724535 +7.728338 +7.732140 +7.735943 +7.739745 +7.743547 +7.747350 +7.751152 +7.754954 +7.758757 +7.762559 +7.766362 +7.770164 +7.773966 +7.777769 +7.781571 +7.785374 +7.789176 +7.792978 +7.796781 +7.800583 +7.804385 +7.808188 +7.811990 +7.815793 +7.819595 +7.823397 +7.827200 +7.831002 +7.834804 +7.838607 +7.842409 +7.846212 +7.850014 +7.853816 +7.857619 +7.861421 +7.865224 +7.869026 +7.872828 +7.876631 +7.880433 +7.884235 +7.888038 +7.891840 +7.895643 +7.899445 +7.903247 +7.907050 +7.910852 +7.914654 +7.918457 +7.922259 +7.926062 +7.929864 +7.933666 +7.937469 +7.941271 +7.945074 +7.948876 +7.952678 +7.956481 +7.960283 +7.964085 +7.967888 +7.971690 +7.975493 +7.979295 +7.983097 +7.986900 +7.990702 +7.994504 +7.998307 +8.002109 +8.005912 +8.009714 +8.013516 +8.017319 +8.021121 +8.024923 +8.028726 +8.032528 +8.036331 +8.040133 +8.043935 +8.047738 +8.051540 +8.055343 +8.059145 +8.062947 +8.066750 +8.070552 +8.074354 +8.078157 +8.081959 +8.085762 +8.089564 +8.093366 +8.097169 +8.100971 +8.104773 +8.108576 +8.112378 +8.116181 +8.119983 +8.123785 +8.127588 +8.131390 +8.135193 +8.138995 +8.142797 +8.146600 +8.150402 +8.154204 +8.158007 +8.161809 +8.165612 +8.169414 +8.173216 +8.177019 +8.180821 +8.184623 +8.188426 +8.192228 +8.196031 +8.199833 +8.203635 +8.207438 +8.211240 +8.215043 +8.218845 +8.222647 +8.226450 +8.230252 +8.234054 +8.237857 +8.241659 +8.245462 +8.249264 +8.253066 +8.256869 +8.260671 +8.264473 +8.268276 +8.272078 +8.275881 +8.279683 +8.283485 +8.287288 +8.291090 +8.294892 +8.298695 +8.302497 +8.306300 +8.310102 +8.313904 +8.317707 +8.321509 +8.325312 +8.329114 +8.332916 +8.336719 +8.340521 +8.344323 +8.348126 +8.351928 +8.355731 +8.359533 +8.363335 +8.367138 +8.370940 +8.374742 +8.378545 +8.382347 +8.386150 +8.389952 +8.393754 +8.397557 +8.401359 +8.405162 +8.408964 +8.412766 +8.416569 +8.420371 +8.424173 +8.427976 +8.431778 +8.435581 +8.439383 +8.443185 +8.446988 +8.450790 +8.454592 +8.458395 +8.462197 +8.466000 +8.469802 +8.473604 +8.477407 +8.481209 +8.485012 +8.488814 +8.492616 +8.496419 +8.500221 +8.504023 +8.507826 +8.511628 +8.515431 +8.519233 +8.523035 +8.526838 +8.530640 +8.534442 +8.538245 +8.542047 +8.545850 +8.549652 +8.553454 +8.557257 +8.561059 +8.564861 +8.568664 +8.572466 +8.576269 +8.580071 +8.583873 +8.587676 +8.591478 +8.595281 +8.599083 +8.602885 +8.606688 +8.610490 +8.614292 +8.618095 +8.621897 +8.625700 +8.629502 +8.633304 +8.637107 +8.640909 +8.644711 +8.648514 +8.652316 +8.656119 +8.659921 +8.663723 +8.667526 +8.671328 +8.675131 +8.678933 +8.682735 +8.686538 +8.690340 +8.694142 +8.697945 +8.701747 +8.705550 +8.709352 +8.713154 +8.716957 +8.720759 +8.724561 +8.728364 +8.732166 +8.735969 +8.739771 +8.743573 +8.747376 +8.751178 +8.754980 +8.758783 +8.762585 +8.766388 +8.770190 +8.773992 +8.777795 +8.781597 +8.785400 +8.789202 +8.793004 +8.796807 +8.800609 +8.804411 +8.808214 +8.812016 +8.815819 +8.819621 +8.823423 +8.827226 +8.831028 +8.834830 +8.838633 +8.842435 +8.846238 +8.850040 +8.853842 +8.857645 +8.861447 +8.865250 +8.869052 +8.872854 +8.876657 +8.880459 +8.884261 +8.888064 +8.891866 +8.895669 +8.899471 +8.903273 +8.907076 +8.910878 +8.914680 +8.918483 +8.922285 +8.926088 +8.929890 +8.933692 +8.937495 +8.941297 +8.945100 +8.948902 +8.952704 +8.956507 +8.960309 +8.964111 +8.967914 +8.971716 +8.975519 +8.979321 +8.983123 +8.986926 +8.990728 +8.994530 +8.998333 +9.002135 +9.005938 +9.009740 +9.013542 +9.017345 +9.021147 +9.024949 +9.028752 +9.032554 +9.036357 +9.040159 +9.043961 +9.047764 +9.051566 +9.055369 +9.059171 +9.062973 +9.066776 +9.070578 +9.074380 +9.078183 +9.081985 +9.085788 +9.089590 +9.093392 +9.097195 +9.100997 +9.104799 +9.108602 +9.112404 +9.116207 +9.120009 +9.123811 +9.127614 +9.131416 +9.135219 +9.139021 +9.142823 +9.146626 +9.150428 +9.154230 +9.158033 +9.161835 +9.165638 +9.169440 +9.173242 +9.177045 +9.180847 +9.184649 +9.188452 +9.192254 +9.196057 +9.199859 +9.203661 +9.207464 +9.211266 +9.215069 +9.218871 +9.222673 +9.226476 +9.230278 +9.234080 +9.237883 +9.241685 +9.245488 +9.249290 +9.253092 +9.256895 +9.260697 +9.264499 +9.268302 +9.272104 +9.275907 +9.279709 +9.283511 +9.287314 +9.291116 +9.294918 +9.298721 +9.302523 +9.306326 +9.310128 +9.313930 +9.317733 +9.321535 +9.325338 +9.329140 +9.332942 +9.336745 +9.340547 +9.344349 +9.348152 +9.351954 +9.355757 +9.359559 +9.363361 +9.367164 +9.370966 +9.374768 +9.378571 +9.382373 +9.386176 +9.389978 +9.393780 +9.397583 +9.401385 +9.405188 +9.408990 +9.412792 +9.416595 +9.420397 +9.424199 +9.428002 +9.431804 +9.435607 +9.439409 +9.443211 +9.447014 +9.450816 +9.454618 +9.458421 +9.462223 +9.466026 +9.469828 +9.473630 +9.477433 +9.481235 +9.485038 +9.488840 +9.492642 +9.496445 +9.500247 +9.504049 +9.507852 +9.511654 +9.515457 +9.519259 +9.523061 +9.526864 +9.530666 +9.534468 +9.538271 +9.542073 +9.545876 +9.549678 +9.553480 +9.557283 +9.561085 +9.564887 +9.568690 +9.572492 +9.576295 +9.580097 +9.583899 +9.587702 +9.591504 +9.595307 +9.599109 +9.602911 +9.606714 +9.610516 +9.614318 +9.618121 +9.621923 +9.625726 +9.629528 +9.633330 +9.637133 +9.640935 +9.644737 +9.648540 +9.652342 +9.656145 +9.659947 +9.663749 +9.667552 +9.671354 +9.675157 +9.678959 +9.682761 +9.686564 +9.690366 +9.694168 +9.697971 +9.701773 +9.705576 +9.709378 +9.713180 +9.716983 +9.720785 +9.724587 +9.728390 +9.732192 +9.735995 +9.739797 +9.743599 +9.747402 +9.751204 +9.755007 +9.758809 +9.762611 +9.766414 +9.770216 +9.774018 +9.777821 +9.781623 +9.785426 +9.789228 +9.793030 +9.796833 +9.800635 +9.804437 +9.808240 +9.812042 +9.815845 +9.819647 +9.823449 +9.827252 +9.831054 +9.834856 +9.838659 +9.842461 +9.846264 +9.850066 +9.853868 +9.857671 +9.861473 +9.865276 +9.869078 +9.872880 +9.876683 +9.880485 +9.884287 +9.888090 +9.891892 +9.895695 +9.899497 +9.903299 +9.907102 +9.910904 +9.914706 +9.918509 +9.922311 +9.926114 +9.929916 +9.933718 +9.937521 +9.941323 +9.945126 +9.948928 +9.952730 +9.956533 +9.960335 +9.964137 +9.967940 +9.971742 +9.975545 +9.979347 +9.983149 +9.986952 +9.990754 +9.994556 +9.998359 +10.002161 +10.005964 +10.009766 +10.013568 +10.017371 +10.021173 +10.024975 +10.028778 +10.032580 +10.036383 +10.040185 +10.043987 +10.047790 +10.051592 +10.055395 +10.059197 +10.062999 +10.066802 +10.070604 +10.074406 +10.078209 +10.082011 +10.085814 +10.089616 +10.093418 +10.097221 +10.101023 +10.104825 +10.108628 +10.112430 +10.116233 +10.120035 +10.123837 +10.127640 +10.131442 +10.135245 +10.139047 +10.142849 +10.146652 +10.150454 +10.154256 +10.158059 +10.161861 +10.165664 +10.169466 +10.173268 +10.177071 +10.180873 +10.184675 +10.188478 +10.192280 +10.196083 +10.199885 +10.203687 +10.207490 +10.211292 +10.215095 +10.218897 +10.222699 +10.226502 +10.230304 +10.234106 +10.237909 +10.241711 +10.245514 +10.249316 +10.253118 +10.256921 +10.260723 +10.264525 +10.268328 +10.272130 +10.275933 +10.279735 +10.283537 +10.287340 +10.291142 +10.294944 +10.298747 +10.302549 +10.306352 +10.310154 +10.313956 +10.317759 +10.321561 +10.325364 +10.329166 +10.332968 +10.336771 +10.340573 +10.344375 +10.348178 +10.351980 +10.355783 +10.359585 +10.363387 +10.367190 +10.370992 +10.374794 +10.378597 +10.382399 +10.386202 +10.390004 +10.393806 +10.397609 +10.401411 +10.405214 +10.409016 +10.412818 +10.416621 +10.420423 +10.424225 +10.428028 +10.431830 +10.435633 +10.439435 +10.443237 +10.447040 +10.450842 +10.454644 +10.458447 +10.462249 +10.466052 +10.469854 +10.473656 +10.477459 +10.481261 +10.485064 +10.488866 +10.492668 +10.496471 +10.500273 +10.504075 +10.507878 +10.511680 +10.515483 +10.519285 +10.523087 +10.526890 +10.530692 +10.534494 +10.538297 +10.542099 +10.545902 +10.549704 +10.553506 +10.557309 +10.561111 +10.564913 +10.568716 +10.572518 +10.576321 +10.580123 +10.583925 +10.587728 +10.591530 +10.595333 +10.599135 +10.602937 +10.606740 +10.610542 +10.614344 +10.618147 +10.621949 +10.625752 +10.629554 +10.633356 +10.637159 +10.640961 +10.644763 +10.648566 +10.652368 +10.656171 +10.659973 +10.663775 +10.667578 +10.671380 +10.675183 +10.678985 +10.682787 +10.686590 +10.690392 +10.694194 +10.697997 +10.701799 +10.705602 +10.709404 +10.713206 +10.717009 +10.720811 +10.724613 +10.728416 +10.732218 +10.736021 +10.739823 +10.743625 +10.747428 +10.751230 +10.755033 +10.758835 +10.762637 +10.766440 +10.770242 +10.774044 +10.777847 +10.781649 +10.785452 +10.789254 +10.793056 +10.796859 +10.800661 +10.804463 +10.808266 +10.812068 +10.815871 +10.819673 +10.823475 +10.827278 +10.831080 +10.834882 +10.838685 +10.842487 +10.846290 +10.850092 +10.853894 +10.857697 +10.861499 +10.865302 +10.869104 +10.872906 +10.876709 +10.880511 +10.884313 +10.888116 +10.891918 +10.895721 +10.899523 +10.903325 +10.907128 +10.910930 +10.914732 +10.918535 +10.922337 +10.926140 +10.929942 +10.933744 +10.937547 +10.941349 +10.945152 +10.948954 +10.952756 +10.956559 +10.960361 +10.964163 +10.967966 +10.971768 +10.975571 +10.979373 +10.983175 +10.986978 +10.990780 +10.994582 +10.998385 +11.002187 +11.005990 +11.009792 +11.013594 +11.017397 +11.021199 +11.025002 +11.028804 +11.032606 +11.036409 +11.040211 +11.044013 +11.047816 +11.051618 +11.055421 +11.059223 +11.063025 +11.066828 +11.070630 +11.074432 +11.078235 +11.082037 +11.085840 +11.089642 +11.093444 +11.097247 +11.101049 +11.104851 +11.108654 +11.112456 +11.116259 +11.120061 +11.123863 +11.127666 +11.131468 +11.135271 +11.139073 +11.142875 +11.146678 +11.150480 +11.154282 +11.158085 +11.161887 +11.165690 +11.169492 +11.173294 +11.177097 +11.180899 +11.184701 +11.188504 +11.192306 +11.196109 +11.199911 +11.203713 +11.207516 +11.211318 +11.215121 +11.218923 +11.222725 +11.226528 +11.230330 +11.234132 +11.237935 +11.241737 +11.245540 +11.249342 +11.253144 +11.256947 +11.260749 +11.264551 +11.268354 +11.272156 +11.275959 +11.279761 +11.283563 +11.287366 +11.291168 +11.294970 +11.298773 +11.302575 +11.306378 +11.310180 +11.313982 +11.317785 +11.321587 +11.325390 +11.329192 +11.332994 +11.336797 +11.340599 +11.344401 +11.348204 +11.352006 +11.355809 +11.359611 +11.363413 +11.367216 +11.371018 +11.374820 +11.378623 +11.382425 +11.386228 +11.390030 +11.393832 +11.397635 +11.401437 +11.405240 +11.409042 +11.412844 +11.416647 +11.420449 +11.424251 +11.428054 +11.431856 +11.435659 +11.439461 +11.443263 +11.447066 +11.450868 +11.454670 +11.458473 +11.462275 +11.466078 +11.469880 +11.473682 +11.477485 +11.481287 +11.485090 +11.488892 +11.492694 +11.496497 +11.500299 +11.504101 +11.507904 +11.511706 +11.515509 +11.519311 +11.523113 +11.526916 +11.530718 +11.534520 +11.538323 +11.542125 +11.545928 +11.549730 +11.553532 +11.557335 +11.561137 +11.564939 +11.568742 +11.572544 +11.576347 +11.580149 +11.583951 +11.587754 +11.591556 +11.595359 +11.599161 +11.602963 +11.606766 +11.610568 +11.614370 +11.618173 +11.621975 +11.625778 +11.629580 +11.633382 +11.637185 +11.640987 +11.644789 +11.648592 +11.652394 +11.656197 +11.659999 +11.663801 +11.667604 +11.671406 +11.675209 +11.679011 +11.682813 +11.686616 +11.690418 +11.694220 +11.698023 +11.701825 +11.705628 +11.709430 +11.713232 +11.717035 +11.720837 +11.724639 +11.728442 +11.732244 +11.736047 +11.739849 +11.743651 +11.747454 +11.751256 +11.755059 +11.758861 +11.762663 +11.766466 +11.770268 +11.774070 +11.777873 +11.781675 +11.785478 +11.789280 +11.793082 +11.796885 +11.800687 +11.804489 +11.808292 +11.812094 +11.815897 +11.819699 +11.823501 +11.827304 +11.831106 +11.834908 +11.838711 +11.842513 +11.846316 +11.850118 +11.853920 +11.857723 +11.861525 +11.865328 +11.869130 +11.872932 +11.876735 +11.880537 +11.884339 +11.888142 +11.891944 +11.895747 +11.899549 +11.903351 +11.907154 +11.910956 +11.914758 +11.918561 +11.922363 +11.926166 +11.929968 +11.933770 +11.937573 +11.941375 +11.945178 +11.948980 +11.952782 +11.956585 +11.960387 +11.964189 +11.967992 +11.971794 +11.975597 +11.979399 +11.983201 +11.987004 +11.990806 +11.994608 +11.998411 +12.002213 +12.006016 +12.009818 +12.013620 +12.017423 +12.021225 +12.025028 +12.028830 +12.032632 +12.036435 +12.040237 +12.044039 +12.047842 +12.051644 +12.055447 +12.059249 +12.063051 +12.066854 +12.070656 +12.074458 +12.078261 +12.082063 +12.085866 +12.089668 +12.093470 +12.097273 +12.101075 +12.104877 +12.108680 +12.112482 +12.116285 +12.120087 +12.123889 +12.127692 +12.131494 +12.135297 +12.139099 +12.142901 +12.146704 +12.150506 +12.154308 +12.158111 +12.161913 +12.165716 +12.169518 +12.173320 +12.177123 +12.180925 +12.184727 +12.188530 +12.192332 +12.196135 +12.199937 +12.203739 +12.207542 +12.211344 +12.215147 +12.218949 +12.222751 +12.226554 +12.230356 +12.234158 +12.237961 +12.241763 +12.245566 +12.249368 +12.253170 +12.256973 +12.260775 +12.264577 +12.268380 +12.272182 +12.275985 +12.279787 +12.283589 +12.287392 +12.291194 +12.294996 +12.298799 +12.302601 +12.306404 +12.310206 +12.314008 +12.317811 +12.321613 +12.325416 +12.329218 +12.333020 +12.336823 +12.340625 +12.344427 +12.348230 +12.352032 +12.355835 +12.359637 +12.363439 +12.367242 +12.371044 +12.374846 +12.378649 +12.382451 +12.386254 +12.390056 +12.393858 +12.397661 +12.401463 +12.405266 +12.409068 +12.412870 +12.416673 +12.420475 +12.424277 +12.428080 +12.431882 +12.435685 +12.439487 +12.443289 +12.447092 +12.450894 +12.454696 +12.458499 +12.462301 +12.466104 +12.469906 +12.473708 +12.477511 +12.481313 +12.485116 +12.488918 +12.492720 +12.496523 +12.500325 +12.504127 +12.507930 +12.511732 +12.515535 +12.519337 +12.523139 +12.526942 +12.530744 +12.534546 +12.538349 +12.542151 +12.545954 +12.549756 +12.553558 +12.557361 +12.561163 +12.564965 +12.568768 +12.572570 +12.576373 +12.580175 +12.583977 +12.587780 +12.591582 +12.595385 +12.599187 +12.602989 +12.606792 +12.610594 +12.614396 +12.618199 +12.622001 +12.625804 +12.629606 +12.633408 +12.637211 +12.641013 +12.644815 +12.648618 +12.652420 +12.656223 +12.660025 +12.663827 +12.667630 +12.671432 +12.675235 +12.679037 +12.682839 +12.686642 +12.690444 +12.694246 +12.698049 +12.701851 +12.705654 +12.709456 +12.713258 +12.717061 +12.720863 +12.724665 +12.728468 +12.732270 +12.736073 +12.739875 +12.743677 +12.747480 +12.751282 +12.755085 +12.758887 +12.762689 +12.766492 +12.770294 +12.774096 +12.777899 +12.781701 +12.785504 +12.789306 +12.793108 +12.796911 +12.800713 +12.804515 +12.808318 +12.812120 +12.815923 +12.819725 +12.823527 +12.827330 +12.831132 +12.834934 +12.838737 +12.842539 +12.846342 +12.850144 +12.853946 +12.857749 +12.861551 +12.865354 +12.869156 +12.872958 +12.876761 +12.880563 +12.884365 +12.888168 +12.891970 +12.895773 +12.899575 +12.903377 +12.907180 +12.910982 +12.914784 +12.918587 +12.922389 +12.926192 +12.929994 +12.933796 +12.937599 +12.941401 +12.945204 +12.949006 +12.952808 +12.956611 +12.960413 +12.964215 +12.968018 +12.971820 +12.975623 +12.979425 +12.983227 +12.987030 +12.990832 +12.994634 +12.998437 +13.002239 +13.006042 +13.009844 +13.013646 +13.017449 +13.021251 +13.025054 +13.028856 +13.032658 +13.036461 +13.040263 +13.044065 +13.047868 +13.051670 +13.055473 +13.059275 +13.063077 +13.066880 +13.070682 +13.074484 +13.078287 +13.082089 +13.085892 +13.089694 +13.093496 +13.097299 +13.101101 +13.104903 +13.108706 +13.112508 +13.116311 +13.120113 +13.123915 +13.127718 +13.131520 +13.135323 +13.139125 +13.142927 +13.146730 +13.150532 +13.154334 +13.158137 +13.161939 +13.165742 +13.169544 +13.173346 +13.177149 +13.180951 +13.184753 +13.188556 +13.192358 +13.196161 +13.199963 +13.203765 +13.207568 +13.211370 +13.215173 +13.218975 +13.222777 +13.226580 +13.230382 +13.234184 +13.237987 +13.241789 +13.245592 +13.249394 +13.253196 +13.256999 +13.260801 +13.264603 +13.268406 +13.272208 +13.276011 +13.279813 +13.283615 +13.287418 +13.291220 +13.295023 +13.298825 +13.302627 +13.306430 +13.310232 +13.314034 +13.317837 +13.321639 +13.325442 +13.329244 +13.333046 +13.336849 +13.340651 +13.344453 +13.348256 +13.352058 +13.355861 +13.359663 +13.363465 +13.367268 +13.371070 +13.374872 +13.378675 +13.382477 +13.386280 +13.390082 +13.393884 +13.397687 +13.401489 +13.405292 +13.409094 +13.412896 +13.416699 +13.420501 +13.424303 +13.428106 +13.431908 +13.435711 +13.439513 +13.443315 +13.447118 +13.450920 +13.454722 +13.458525 +13.462327 +13.466130 +13.469932 +13.473734 +13.477537 +13.481339 +13.485142 +13.488944 +13.492746 +13.496549 +13.500351 +13.504153 +13.507956 +13.511758 +13.515561 +13.519363 +13.523165 +13.526968 +13.530770 +13.534572 +13.538375 +13.542177 +13.545980 +13.549782 +13.553584 +13.557387 +13.561189 +13.564991 +13.568794 +13.572596 +13.576399 +13.580201 +13.584003 +13.587806 +13.591608 +13.595411 +13.599213 +13.603015 +13.606818 +13.610620 +13.614422 +13.618225 +13.622027 +13.625830 +13.629632 +13.633434 +13.637237 +13.641039 +13.644841 +13.648644 +13.652446 +13.656249 +13.660051 +13.663853 +13.667656 +13.671458 +13.675261 +13.679063 +13.682865 +13.686668 +13.690470 +13.694272 +13.698075 +13.701877 +13.705680 +13.709482 +13.713284 +13.717087 +13.720889 +13.724691 +13.728494 +13.732296 +13.736099 +13.739901 +13.743703 +13.747506 +13.751308 +13.755111 +13.758913 +13.762715 +13.766518 +13.770320 +13.774122 +13.777925 +13.781727 +13.785530 +13.789332 +13.793134 +13.796937 +13.800739 +13.804541 +13.808344 +13.812146 +13.815949 +13.819751 +13.823553 +13.827356 +13.831158 +13.834960 +13.838763 +13.842565 +13.846368 +13.850170 +13.853972 +13.857775 +13.861577 +13.865380 +13.869182 +13.872984 +13.876787 +13.880589 +13.884391 +13.888194 +13.891996 +13.895799 +13.899601 +13.903403 +13.907206 +13.911008 +13.914810 +13.918613 +13.922415 +13.926218 +13.930020 +13.933822 +13.937625 +13.941427 +13.945230 +13.949032 +13.952834 +13.956637 +13.960439 +13.964241 +13.968044 +13.971846 +13.975649 +13.979451 +13.983253 +13.987056 +13.990858 +13.994660 +13.998463 +14.002265 +14.006068 +14.009870 +14.013672 +14.017475 +14.021277 +14.025080 +14.028882 +14.032684 +14.036487 +14.040289 +14.044091 +14.047894 +14.051696 +14.055499 +14.059301 +14.063103 +14.066906 +14.070708 +14.074510 +14.078313 +14.082115 +14.085918 +14.089720 +14.093522 +14.097325 +14.101127 +14.104929 +14.108732 +14.112534 +14.116337 +14.120139 +14.123941 +14.127744 +14.131546 +14.135349 +14.139151 +14.142953 +14.146756 +14.150558 +14.154360 +14.158163 +14.161965 +14.165768 +14.169570 +14.173372 +14.177175 +14.180977 +14.184779 +14.188582 +14.192384 +14.196187 +14.199989 +14.203791 +14.207594 +14.211396 +14.215199 +14.219001 +14.222803 +14.226606 +14.230408 +14.234210 +14.238013 +14.241815 +14.245618 +14.249420 +14.253222 +14.257025 +14.260827 +14.264629 +14.268432 +14.272234 +14.276037 +14.279839 +14.283641 +14.287444 +14.291246 +14.295049 +14.298851 +14.302653 +14.306456 +14.310258 +14.314060 +14.317863 +14.321665 +14.325468 +14.329270 +14.333072 +14.336875 +14.340677 +14.344479 +14.348282 +14.352084 +14.355887 +14.359689 +14.363491 +14.367294 +14.371096 +14.374898 +14.378701 +14.382503 +14.386306 +14.390108 +14.393910 +14.397713 +14.401515 +14.405318 +14.409120 +14.412922 +14.416725 +14.420527 +14.424329 +14.428132 +14.431934 +14.435737 +14.439539 +14.443341 +14.447144 +14.450946 +14.454748 +14.458551 +14.462353 +14.466156 +14.469958 +14.473760 +14.477563 +14.481365 +14.485168 +14.488970 +14.492772 +14.496575 +14.500377 +14.504179 +14.507982 +14.511784 +14.515587 +14.519389 +14.523191 +14.526994 +14.530796 +14.534598 +14.538401 +14.542203 +14.546006 +14.549808 +14.553610 +14.557413 +14.561215 +14.565018 +14.568820 +14.572622 +14.576425 +14.580227 +14.584029 +14.587832 +14.591634 +14.595437 +14.599239 +14.603041 +14.606844 +14.610646 +14.614448 +14.618251 +14.622053 +14.625856 +14.629658 +14.633460 +14.637263 +14.641065 +14.644867 +14.648670 +14.652472 +14.656275 +14.660077 +14.663879 +14.667682 +14.671484 +14.675287 +14.679089 +14.682891 +14.686694 +14.690496 +14.694298 +14.698101 +14.701903 +14.705706 +14.709508 +14.713310 +14.717113 +14.720915 +14.724717 +14.728520 +14.732322 +14.736125 +14.739927 +14.743729 +14.747532 +14.751334 +14.755137 +14.758939 +14.762741 +14.766544 +14.770346 +14.774148 +14.777951 +14.781753 +14.785556 +14.789358 +14.793160 +14.796963 +14.800765 +14.804567 +14.808370 +14.812172 +14.815975 +14.819777 +14.823579 +14.827382 +14.831184 +14.834986 +14.838789 +14.842591 +14.846394 +14.850196 +14.853998 +14.857801 +14.861603 +14.865406 +14.869208 +14.873010 +14.876813 +14.880615 +14.884417 +14.888220 +14.892022 +14.895825 +14.899627 +14.903429 +14.907232 +14.911034 +14.914836 +14.918639 +14.922441 +14.926244 +14.930046 +14.933848 +14.937651 +14.941453 +14.945256 +14.949058 +14.952860 +14.956663 +14.960465 +14.964267 +14.968070 +14.971872 +14.975675 +14.979477 +14.983279 +14.987082 +14.990884 +14.994686 +14.998489 +15.002291 +15.006094 +15.009896 +15.013698 +15.017501 +15.021303 +15.025106 +15.028908 +15.032710 +15.036513 +15.040315 +15.044117 +15.047920 +15.051722 +15.055525 +15.059327 +15.063129 +15.066932 +15.070734 +15.074536 +15.078339 +15.082141 +15.085944 +15.089746 +15.093548 +15.097351 +15.101153 +15.104955 +15.108758 +15.112560 +15.116363 +15.120165 +15.123967 +15.127770 +15.131572 +15.135375 +15.139177 +15.142979 +15.146782 +15.150584 +15.154386 +15.158189 +15.161991 +15.165794 +15.169596 +15.173398 +15.177201 +15.181003 +15.184805 +15.188608 +15.192410 +15.196213 +15.200015 +15.203817 +15.207620 +15.211422 +15.215225 +15.219027 +15.222829 +15.226632 +15.230434 +15.234236 +15.238039 +15.241841 +15.245644 +15.249446 +15.253248 +15.257051 +15.260853 +15.264655 +15.268458 +15.272260 +15.276063 +15.279865 +15.283667 +15.287470 +15.291272 +15.295075 +15.298877 +15.302679 +15.306482 +15.310284 +15.314086 +15.317889 +15.321691 +15.325494 +15.329296 +15.333098 +15.336901 +15.340703 +15.344505 +15.348308 +15.352110 +15.355913 +15.359715 +15.363517 +15.367320 +15.371122 +15.374924 +15.378727 +15.382529 +15.386332 +15.390134 +15.393936 +15.397739 +15.401541 +15.405344 +15.409146 +15.412948 +15.416751 +15.420553 +15.424355 +15.428158 +15.431960 +15.435763 +15.439565 +15.443367 +15.447170 +15.450972 +15.454774 +15.458577 +15.462379 +15.466182 +15.469984 +15.473786 +15.477589 +15.481391 +15.485194 +15.488996 +15.492798 +15.496601 +15.500403 +15.504205 +15.508008 +15.511810 +15.515613 +15.519415 +15.523217 +15.527020 +15.530822 +15.534624 +15.538427 +15.542229 +15.546032 +15.549834 +15.553636 +15.557439 +15.561241 +15.565044 +15.568846 +15.572648 +15.576451 +15.580253 +15.584055 +15.587858 +15.591660 +15.595463 +15.599265 +15.603067 +15.606870 +15.610672 +15.614474 +15.618277 +15.622079 +15.625882 +15.629684 +15.633486 +15.637289 +15.641091 +15.644893 +15.648696 +15.652498 +15.656301 +15.660103 +15.663905 +15.667708 +15.671510 +15.675313 +15.679115 +15.682917 +15.686720 +15.690522 +15.694324 +15.698127 +15.701929 +15.705732 +15.709534 +15.713336 +15.717139 +15.720941 +15.724743 +15.728546 +15.732348 +15.736151 +15.739953 +15.743755 +15.747558 +15.751360 +15.755163 +15.758965 +15.762767 +15.766570 +15.770372 +15.774174 +15.777977 +15.781779 +15.785582 +15.789384 +15.793186 +15.796989 +15.800791 +15.804593 +15.808396 +15.812198 +15.816001 +15.819803 +15.823605 +15.827408 +15.831210 +15.835013 +15.838815 +15.842617 +15.846420 +15.850222 +15.854024 +15.857827 +15.861629 +15.865432 +15.869234 +15.873036 +15.876839 +15.880641 +15.884443 +15.888246 +15.892048 +15.895851 +15.899653 +15.903455 +15.907258 +15.911060 +15.914862 +15.918665 +15.922467 +15.926270 +15.930072 +15.933874 +15.937677 +15.941479 +15.945282 +15.949084 +15.952886 +15.956689 +15.960491 +15.964293 +15.968096 +15.971898 +15.975701 +15.979503 +15.983305 +15.987108 +15.990910 +15.994712 +15.998515 +16.002317 +16.006120 +16.009922 +16.013724 +16.017527 +16.021329 +16.025132 +16.028934 +16.032736 +16.036539 +16.040341 +16.044143 +16.047946 +16.051748 +16.055551 +16.059353 +16.063155 +16.066958 +16.070760 +16.074562 +16.078365 +16.082167 +16.085970 +16.089772 +16.093574 +16.097377 +16.101179 +16.104981 +16.108784 +16.112586 +16.116389 +16.120191 +16.123993 +16.127796 +16.131598 +16.135401 +16.139203 +16.143005 +16.146808 +16.150610 +16.154412 +16.158215 +16.162017 +16.165820 +16.169622 +16.173424 +16.177227 +16.181029 +16.184831 +16.188634 +16.192436 +16.196239 +16.200041 +16.203843 +16.207646 +16.211448 +16.215251 +16.219053 +16.222855 +16.226658 +16.230460 +16.234262 +16.238065 +16.241867 +16.245670 +16.249472 +16.253274 +16.257077 +16.260879 +16.264681 +16.268484 +16.272286 +16.276089 +16.279891 +16.283693 +16.287496 +16.291298 +16.295101 +16.298903 +16.302705 +16.306508 +16.310310 +16.314112 +16.317915 +16.321717 +16.325520 +16.329322 +16.333124 +16.336927 +16.340729 +16.344531 +16.348334 +16.352136 +16.355939 +16.359741 +16.363543 +16.367346 +16.371148 +16.374950 +16.378753 +16.382555 +16.386358 +16.390160 +16.393962 +16.397765 +16.401567 +16.405370 +16.409172 +16.412974 +16.416777 +16.420579 +16.424381 +16.428184 +16.431986 +16.435789 +16.439591 +16.443393 +16.447196 +16.450998 +16.454800 +16.458603 +16.462405 +16.466208 +16.470010 +16.473812 +16.477615 +16.481417 +16.485220 +16.489022 +16.492824 +16.496627 +16.500429 +16.504231 +16.508034 +16.511836 +16.515639 +16.519441 +16.523243 +16.527046 +16.530848 +16.534650 +16.538453 +16.542255 +16.546058 +16.549860 +16.553662 +16.557465 +16.561267 +16.565070 +16.568872 +16.572674 +16.576477 +16.580279 +16.584081 +16.587884 +16.591686 +16.595489 +16.599291 +16.603093 +16.606896 +16.610698 +16.614500 +16.618303 +16.622105 +16.625908 +16.629710 +16.633512 +16.637315 +16.641117 +16.644919 +16.648722 +16.652524 +16.656327 +16.660129 +16.663931 +16.667734 +16.671536 +16.675339 +16.679141 +16.682943 +16.686746 +16.690548 +16.694350 +16.698153 +16.701955 +16.705758 +16.709560 +16.713362 +16.717165 +16.720967 +16.724769 +16.728572 +16.732374 +16.736177 +16.739979 +16.743781 +16.747584 +16.751386 +16.755189 +16.758991 +16.762793 +16.766596 +16.770398 +16.774200 +16.778003 +16.781805 +16.785608 +16.789410 +16.793212 +16.797015 +16.800817 +16.804619 +16.808422 +16.812224 +16.816027 +16.819829 +16.823631 +16.827434 +16.831236 +16.835039 +16.838841 +16.842643 +16.846446 +16.850248 +16.854050 +16.857853 +16.861655 +16.865458 +16.869260 +16.873062 +16.876865 +16.880667 +16.884469 +16.888272 +16.892074 +16.895877 +16.899679 +16.903481 +16.907284 +16.911086 +16.914888 +16.918691 +16.922493 +16.926296 +16.930098 +16.933900 +16.937703 +16.941505 +16.945308 +16.949110 +16.952912 +16.956715 +16.960517 +16.964319 +16.968122 +16.971924 +16.975727 +16.979529 +16.983331 +16.987134 +16.990936 +16.994738 +16.998541 +17.002343 +17.006146 +17.009948 +17.013750 +17.017553 +17.021355 +17.025158 +17.028960 +17.032762 +17.036565 +17.040367 +17.044169 +17.047972 +17.051774 +17.055577 +17.059379 +17.063181 +17.066984 +17.070786 +17.074588 +17.078391 +17.082193 +17.085996 +17.089798 +17.093600 +17.097403 +17.101205 +17.105008 +17.108810 +17.112612 +17.116415 +17.120217 +17.124019 +17.127822 +17.131624 +17.135427 +17.139229 +17.143031 +17.146834 +17.150636 +17.154438 +17.158241 +17.162043 +17.165846 +17.169648 +17.173450 +17.177253 +17.181055 +17.184857 +17.188660 +17.192462 +17.196265 +17.200067 +17.203869 +17.207672 +17.211474 +17.215277 +17.219079 +17.222881 +17.226684 +17.230486 +17.234288 +17.238091 +17.241893 +17.245696 +17.249498 +17.253300 +17.257103 +17.260905 +17.264707 +17.268510 +17.272312 +17.276115 +17.279917 +17.283719 +17.287522 +17.291324 +17.295127 +17.298929 +17.302731 +17.306534 +17.310336 +17.314138 +17.317941 +17.321743 +17.325546 +17.329348 +17.333150 +17.336953 +17.340755 +17.344557 +17.348360 +17.352162 +17.355965 +17.359767 +17.363569 +17.367372 +17.371174 +17.374976 +17.378779 +17.382581 +17.386384 +17.390186 +17.393988 +17.397791 +17.401593 +17.405396 +17.409198 +17.413000 +17.416803 +17.420605 +17.424407 +17.428210 +17.432012 +17.435815 +17.439617 +17.443419 +17.447222 +17.451024 +17.454826 +17.458629 +17.462431 +17.466234 +17.470036 +17.473838 +17.477641 +17.481443 +17.485246 +17.489048 +17.492850 +17.496653 +17.500455 +17.504257 +17.508060 +17.511862 +17.515665 +17.519467 +17.523269 +17.527072 +17.530874 +17.534676 +17.538479 +17.542281 +17.546084 +17.549886 +17.553688 +17.557491 +17.561293 +17.565096 +17.568898 +17.572700 +17.576503 +17.580305 +17.584107 +17.587910 +17.591712 +17.595515 +17.599317 +17.603119 +17.606922 +17.610724 +17.614526 +17.618329 +17.622131 +17.625934 +17.629736 +17.633538 +17.637341 +17.641143 +17.644945 +17.648748 +17.652550 +17.656353 +17.660155 +17.663957 +17.667760 +17.671562 +17.675365 +17.679167 +17.682969 +17.686772 +17.690574 +17.694376 +17.698179 +17.701981 +17.705784 +17.709586 +17.713388 +17.717191 +17.720993 +17.724795 +17.728598 +17.732400 +17.736203 +17.740005 +17.743807 +17.747610 +17.751412 +17.755215 +17.759017 +17.762819 +17.766622 +17.770424 +17.774226 +17.778029 +17.781831 +17.785634 +17.789436 +17.793238 +17.797041 +17.800843 +17.804645 +17.808448 +17.812250 +17.816053 +17.819855 +17.823657 +17.827460 +17.831262 +17.835065 +17.838867 +17.842669 +17.846472 +17.850274 +17.854076 +17.857879 +17.861681 +17.865484 +17.869286 +17.873088 +17.876891 +17.880693 +17.884495 +17.888298 +17.892100 +17.895903 +17.899705 +17.903507 +17.907310 +17.911112 +17.914914 +17.918717 +17.922519 +17.926322 +17.930124 +17.933926 +17.937729 +17.941531 +17.945334 +17.949136 +17.952938 +17.956741 +17.960543 +17.964345 +17.968148 +17.971950 +17.975753 +17.979555 +17.983357 +17.987160 +17.990962 +17.994764 +17.998567 +18.002369 +18.006172 +18.009974 +18.013776 +18.017579 +18.021381 +18.025184 +18.028986 +18.032788 +18.036591 +18.040393 +18.044195 +18.047998 +18.051800 +18.055603 +18.059405 +18.063207 +18.067010 +18.070812 +18.074614 +18.078417 +18.082219 +18.086022 +18.089824 +18.093626 +18.097429 +18.101231 +18.105034 +18.108836 +18.112638 +18.116441 +18.120243 +18.124045 +18.127848 +18.131650 +18.135453 +18.139255 +18.143057 +18.146860 +18.150662 +18.154464 +18.158267 +18.162069 +18.165872 +18.169674 +18.173476 +18.177279 +18.181081 +18.184883 +18.188686 +18.192488 +18.196291 +18.200093 +18.203895 +18.207698 +18.211500 +18.215303 +18.219105 +18.222907 +18.226710 +18.230512 +18.234314 +18.238117 +18.241919 +18.245722 +18.249524 +18.253326 +18.257129 +18.260931 +18.264733 +18.268536 +18.272338 +18.276141 +18.279943 +18.283745 +18.287548 +18.291350 +18.295153 +18.298955 +18.302757 +18.306560 +18.310362 +18.314164 +18.317967 +18.321769 +18.325572 +18.329374 +18.333176 +18.336979 +18.340781 +18.344583 +18.348386 +18.352188 +18.355991 +18.359793 +18.363595 +18.367398 +18.371200 +18.375003 +18.378805 +18.382607 +18.386410 +18.390212 +18.394014 +18.397817 +18.401619 +18.405422 +18.409224 +18.413026 +18.416829 +18.420631 +18.424433 +18.428236 +18.432038 +18.435841 +18.439643 +18.443445 +18.447248 +18.451050 +18.454852 +18.458655 +18.462457 +18.466260 +18.470062 +18.473864 +18.477667 +18.481469 +18.485272 +18.489074 +18.492876 +18.496679 +18.500481 +18.504283 +18.508086 +18.511888 +18.515691 +18.519493 +18.523295 +18.527098 +18.530900 +18.534702 +18.538505 +18.542307 +18.546110 +18.549912 +18.553714 +18.557517 +18.561319 +18.565122 +18.568924 +18.572726 +18.576529 +18.580331 +18.584133 +18.587936 +18.591738 +18.595541 +18.599343 +18.603145 +18.606948 +18.610750 +18.614552 +18.618355 +18.622157 +18.625960 +18.629762 +18.633564 +18.637367 +18.641169 +18.644971 +18.648774 +18.652576 +18.656379 +18.660181 +18.663983 +18.667786 +18.671588 +18.675391 +18.679193 +18.682995 +18.686798 +18.690600 +18.694402 +18.698205 +18.702007 +18.705810 +18.709612 +18.713414 +18.717217 +18.721019 +18.724821 +18.728624 +18.732426 +18.736229 +18.740031 +18.743833 +18.747636 +18.751438 +18.755241 +18.759043 +18.762845 +18.766648 +18.770450 +18.774252 +18.778055 +18.781857 +18.785660 +18.789462 +18.793264 +18.797067 +18.800869 +18.804671 +18.808474 +18.812276 +18.816079 +18.819881 +18.823683 +18.827486 +18.831288 +18.835091 +18.838893 +18.842695 +18.846498 +18.850300 +18.854102 +18.857905 +18.861707 +18.865510 +18.869312 +18.873114 +18.876917 +18.880719 +18.884521 +18.888324 +18.892126 +18.895929 +18.899731 +18.903533 +18.907336 +18.911138 +18.914940 +18.918743 +18.922545 +18.926348 +18.930150 +18.933952 +18.937755 +18.941557 +18.945360 +18.949162 +18.952964 +18.956767 +18.960569 +18.964371 +18.968174 +18.971976 +18.975779 +18.979581 +18.983383 +18.987186 +18.990988 +18.994790 +18.998593 +19.002395 +19.006198 +19.010000 diff --git a/inputFiles/lagrangianContactMechanics/dataTables/y.csv b/inputFiles/lagrangianContactMechanics/dataTables/y.csv new file mode 100644 index 00000000000..1d65b3e555f --- /dev/null +++ b/inputFiles/lagrangianContactMechanics/dataTables/y.csv @@ -0,0 +1 @@ +0.00 \ No newline at end of file diff --git a/inputFiles/lagrangianContactMechanics/dataTables/z.csv b/inputFiles/lagrangianContactMechanics/dataTables/z.csv new file mode 100644 index 00000000000..1d65b3e555f --- /dev/null +++ b/inputFiles/lagrangianContactMechanics/dataTables/z.csv @@ -0,0 +1 @@ +0.00 \ No newline at end of file diff --git a/inputFiles/lagrangianContactMechanics/scripts/fixedFaultSlip.py b/inputFiles/lagrangianContactMechanics/scripts/fixedFaultSlip.py new file mode 100644 index 00000000000..64cbb7e5575 --- /dev/null +++ b/inputFiles/lagrangianContactMechanics/scripts/fixedFaultSlip.py @@ -0,0 +1,213 @@ +import numpy as np +import os +import sys +import xml.etree.ElementTree as ElementTree +import matplotlib +import matplotlib.pyplot as plt +import argparse + +class SingularCrackSlip: + + def __init__(self, mechanicalParameters, length ): + K = mechanicalParameters["bulkModulus"] + G = mechanicalParameters["shearModulus"] + poisson_ratio= (3 * K - 2 * G) / (2 * (3 * K + G)) + + mu_star = G /( 1 - poisson_ratio) + self.tau_0 = 0.0 + self.tau_r = -1.0 + + self.scaling = 2*(self.tau_0 - self.tau_r)/mu_star + self.halfLength = length + + def computeSlip(self, x): + return self.scaling * np.sqrt(self.halfLength**2 - x**2) + + def computeTraction(self, x): + if x < -self.halfLength or x > self.halfLength: + return self.tau_0 + (self.tau_0-self.tau_r) * ( np.abs(x)/np.sqrt(x**2 - self.halfLength**2) - 1 ) + else: + return self.tau_r +class GaussianSlip: + + def __init__(self, peakStrength, length ): + self.scaling = peakStrength + self.halfLength = length + + def computeSlip(self, x): + denom = 1 / (self.halfLength/2) + return self.scaling*np.exp(-0.5*((x)/denom)**2) + +def getMechanicalParametersFromXML(xmlFilePath): + tree = ElementTree.parse(xmlFilePath) + + param = tree.find('Constitutive/ElasticIsotropic') + + mechanicalParameters = dict.fromkeys(["bulkModulus", "shearModulus"]) + mechanicalParameters["bulkModulus"] = float(param.get("defaultBulkModulus")) + mechanicalParameters["shearModulus"] = float(param.get("defaultShearModulus")) + return mechanicalParameters + +def getFractureLengthFromXML(xmlFilePath): + tree = ElementTree.parse(xmlFilePath) + + rectangle = tree.find('Geometry/Box') + xmin = rectangle.get("xMin") + xmax = rectangle.get("xMax") + xmin = [float(i) for i in xmin[1:-1].split(",")] + xmax = [float(i) for i in xmax[1:-1].split(",")] + length = ( xmax[0] - xmin[0] ) / 2 + origin = 0.0 + + return length, origin + +def curve_check_solution(**kwargs): + #-------- Extract info from XML + xmlFilePath = f'./LagrangeContactBubbleStab_FixedSlip_base.xml' + + mechanicalParameters = getMechanicalParametersFromXML(xmlFilePath) + + # Get length of the fracture + xmlFilePath = f'./LagrangeContactBubbleStab_FixedSlip_smoke.xml' + totalHalfLength, originShift = getFractureLengthFromXML(xmlFilePath) + halfLength = 2.0 + + x = kwargs['traction elementCenter'] + x_geos = x[0, :, 0] + + return analytical_solution(x, mechanicalParameters, totalHalfLength, halfLength) + +def analytical_solution(x, mechanicalParameters, totalHalfLength, halfLength): + + singularCrackSlipSolution = SingularCrackSlip(mechanicalParameters, halfLength) + x = np.linspace(-totalHalfLength, totalHalfLength, 10000, endpoint=True) + traction_analytical = np.zeros(len(x)) + i = 0 + for xCell in x: + traction_analytical[i] = singularCrackSlipSolution.computeTraction(xCell) + i += 1 + return traction_analytical + +def plot_traction_solution(inputFileDirectory, outputDirectory): + # Read HDF5 + import hdf5_wrapper + hdf5File1Path = f'outputDirectory/traction.hdf5' + + # Read HDF5 + data = hdf5_wrapper.hdf5_wrapper(hdf5File1Path).get_copy() + traction = data['traction'] + traction = np.asarray(traction) + traction_geos = traction[0, :, 1] + x = data['traction elementCenter'] + x_geos = x[0, :, 0] + + #-------- Extract info from XML + xmlFilePath = f'{inputFileDirectory}/lagrangianContactMechanics/LagrangeContactBubbleStab_FixedSlip_base.xml' + + mechanicalParameters = getMechanicalParametersFromXML(xmlFilePath) + + # Get length of the fracture + xmlFilePath = f'{inputFileDirectory}lagrangianContactMechanics/LagrangeContactBubbleStab_FixedSlip_smoke.xml' + totalHalfLength, originShift = getFractureLengthFromXML(xmlFilePath) + halfLength = 2.0 + + traction_analytical = analytical_solution(x, mechanicalParameters, totalHalfLength, halfLength) + + fsize = 30 + msize = 15 + lw = 2 + fig, ax = plt.subplots(1, figsize=(16, 12)) + cmap = plt.get_cmap("tab10") + + # Plot analytical (continuous line) and numerical (markers) aperture solution + ax.plot(x, traction_analytical, color='r', label='Traction analytical', lw=lw) + ax.plot(x_geos, traction_geos, color='k', label='geos', marker="o", lw=lw) + + ax.set_xlabel('Fault coordinate [m]', size=fsize, weight="bold") + ax.set_ylabel('Shear traction', size=fsize, weight="bold") + ax.legend(bbox_to_anchor=(0.75, 0.9), loc='center', borderaxespad=0., fontsize=fsize) + ax.xaxis.set_tick_params(labelsize=fsize) + ax.yaxis.set_tick_params(labelsize=fsize) + plt.savefig("traction.png") + +def output_tables(x, slip, name): + # Save x to x.csv with one value per row + np.savetxt('x.csv', x, fmt='%f') + + # Save aperture_analytical to jump.csv with one value per row + np.savetxt(f'{name}.csv', slip, fmt='%f') + + +def generate_tables(inputFileDirectory): + #-------- Extract info from XML + xmlFilePath = f'{inputFileDirectory}/lagrangianContactMechanics/LagrangeContactBubbleStab_FixedSlip_base.xml' + + mechanicalParameters = getMechanicalParametersFromXML(xmlFilePath) + appliedPressure = 1.0 + + # Get length of the fracture + xmlFilePath = f'{inputFileDirectory}/lagrangianContactMechanics/LagrangeContactBubbleStab_FixedSlip_smoke.xml' + totalHalfLength, originShift = getFractureLengthFromXML(xmlFilePath) + halfLength = 2.0 + + # Initialize Sneddon's analytical solution + singularCrackSlipSolution = SingularCrackSlip(mechanicalParameters, halfLength ) + peakStrength = 3.0 + gaussianSlipSolution = GaussianSlip( peakStrength, halfLength) + + # Plot analytical (continuous line) and numerical (markers) aperture solution + x = np.linspace(-totalHalfLength, totalHalfLength, 10000, endpoint=True) + singularCrackSlip = np.zeros(len(x)) + gaussianSlip = np.zeros(len(x)) + i = 0 + for xCell in x: + if xCell > -halfLength and xCell < halfLength: + singularCrackSlip[i] = singularCrackSlipSolution.computeSlip(xCell) + gaussianSlip[i] = gaussianSlipSolution.computeSlip(xCell) + i += 1 + + fsize = 24 + msize = 15 + lw = 6 + fig, ax = plt.subplots(1, figsize=(16, 12)) + cmap = plt.get_cmap("tab10") + + ax.plot(x, singularCrackSlip , color='k', label='Analytical Solution', lw=lw) + ax.grid() + ax.set_xlabel('Fault coordinate [m]', size=fsize, weight="bold") + ax.set_ylabel('slip [m]', size=fsize, weight="bold") + ax.legend(bbox_to_anchor=(0.7, 1), loc='center', borderaxespad=0., fontsize=fsize) + ax.xaxis.set_tick_params(labelsize=fsize) + ax.yaxis.set_tick_params(labelsize=fsize) + plt.savefig("singularCrackSlip.png") + + fig, ax = plt.subplots(1, figsize=(16, 12)) + cmap = plt.get_cmap("tab10") + + ax.plot(x, gaussianSlip , color='k', label='Analytical Solution', lw=lw) + ax.grid() + ax.set_xlabel('Fault coordinate [m]', size=fsize, weight="bold") + ax.set_ylabel('slip [m]', size=fsize, weight="bold") + ax.legend(bbox_to_anchor=(0.75, 0.9), loc='center', borderaxespad=0., fontsize=fsize) + ax.xaxis.set_tick_params(labelsize=fsize) + ax.yaxis.set_tick_params(labelsize=fsize) + plt.savefig("gaussianSlip.png") + + output_tables(x, singularCrackSlip, "singularCrackSlip") + output_tables(x, gaussianSlip, "gaussianSlip") + +if __name__ == "__main__": + + parser = argparse.ArgumentParser() + parser.add_argument('-a', '--action', type=str, choices=['generate_tables', 'plotTractions'], required=True, help='Action to perform: generate_tables or plotTractions') + parser.add_argument('-i', '--input-files-path', type=str, required=True, help='Path to the inputFilesFolder') + parser.add_argument('-o', '--output-dir', type=str, help='Directory containing the output files') + + args = parser.parse_args() + + if args.action == 'generate_tables': + print("Generating tables...") + generate_tables(os.path.normpath(args.input_files_path)) + elif args.action == 'plotTractions': + print("Plotting tractions...") + plot_traction_solution(os.path.normpath(args.input_files_path), os.path.normpath(args.output_dir)) diff --git a/inputFiles/poromechanicsFractures/ExponentialDecayPermeability_conformingFracture_base.xml b/inputFiles/poromechanicsFractures/ExponentialDecayPermeability_conformingFracture_base.xml index 133e70876ff..d21f7f7fb80 100644 --- a/inputFiles/poromechanicsFractures/ExponentialDecayPermeability_conformingFracture_base.xml +++ b/inputFiles/poromechanicsFractures/ExponentialDecayPermeability_conformingFracture_base.xml @@ -89,7 +89,7 @@ name="Fracture" faceBlock="FractureSubRegion" materialList="{ water, fractureFilling, fractureContact, rock, hApertureModel}" - defaultAperture="1e-3"/> + defaultAperture="1.0e-3"/> @@ -265,7 +265,7 @@ + values="{ 1.0e-6, 1.0e-3 }"/> + defaultAperture="1.0e-3"/> @@ -131,7 +131,7 @@ + values="{ 1.0e-6, 1.0e-3 }"/> diff --git a/inputFiles/poromechanicsFractures/SlipPermeability_embeddedFrac.xml b/inputFiles/poromechanicsFractures/SlipPermeability_embeddedFrac.xml old mode 100755 new mode 100644 index 27a00a1005d..b0426e12899 --- a/inputFiles/poromechanicsFractures/SlipPermeability_embeddedFrac.xml +++ b/inputFiles/poromechanicsFractures/SlipPermeability_embeddedFrac.xml @@ -173,7 +173,7 @@ faceBlock="embeddedSurfaceSubRegion" subRegionType="embeddedElement" materialList="{ water, fractureFilling, fractureContact, hApertureModel }" - defaultAperture="1e-3"/> + defaultAperture="1.0e-3"/> @@ -249,7 +249,7 @@ + values="{ 1.0e-6, 1.0e-3 }"/> diff --git a/inputFiles/poromechanicsFractures/SlipPermeability_pEDFM_base.xml b/inputFiles/poromechanicsFractures/SlipPermeability_pEDFM_base.xml old mode 100755 new mode 100644 index 0d8af6099a1..089a856d6a7 --- a/inputFiles/poromechanicsFractures/SlipPermeability_pEDFM_base.xml +++ b/inputFiles/poromechanicsFractures/SlipPermeability_pEDFM_base.xml @@ -65,7 +65,7 @@ faceBlock="embeddedSurfaceSubRegion" subRegionType="embeddedElement" materialList="{ water, fractureFilling, fractureContact, hApertureModel}" - defaultAperture="1e-3"/> + defaultAperture="1.0e-3"/> @@ -132,7 +132,7 @@ + values="{ 1.0e-6, 1.0e-3 }"/> diff --git a/inputFiles/poromechanicsFractures/WillisRichardsPermeability_efem-edfm_base.xml b/inputFiles/poromechanicsFractures/WillisRichardsPermeability_efem-edfm_base.xml old mode 100755 new mode 100644 index 5227b229979..03f827efd1d --- a/inputFiles/poromechanicsFractures/WillisRichardsPermeability_efem-edfm_base.xml +++ b/inputFiles/poromechanicsFractures/WillisRichardsPermeability_efem-edfm_base.xml @@ -68,7 +68,7 @@ faceBlock="embeddedSurfaceSubRegion" subRegionType="embeddedElement" materialList="{ water, fractureFilling, fractureContact, hApertureModel }" - defaultAperture="1e-3"/> + defaultAperture="1.0e-3"/> @@ -135,7 +135,7 @@ + values="{ 1.0e-6, 1.0e-3 }"/> diff --git a/inputFiles/singlePhaseFlow/FieldCaseTutorial3_composite_smoke.xml b/inputFiles/singlePhaseFlow/FieldCaseTutorial3_composite_smoke.xml new file mode 100644 index 00000000000..9312ecaae37 --- /dev/null +++ b/inputFiles/singlePhaseFlow/FieldCaseTutorial3_composite_smoke.xml @@ -0,0 +1,47 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/inputFiles/singlePhaseFlow/synthetic.vtpc b/inputFiles/singlePhaseFlow/synthetic.vtpc new file mode 100644 index 00000000000..6fa5973442a --- /dev/null +++ b/inputFiles/singlePhaseFlow/synthetic.vtpc @@ -0,0 +1,17 @@ + + + + + + + + + + + + + + PD94bWwgdmVyc2lvbj0iMS4wIj8+CjxSb290IHR5cGU9InZ0a0RhdGFBc3NlbWJseSIgdmVyc2lvbj0iMS4wIiBpZD0iMCIgdnRrX3R5cGU9IjM4IiB2dGtfY2F0ZWdvcnk9Inhmb3JtZWRfaGllcmFyY2h5IiBsYWJlbD0iZGF0YSI+CiAgPE1lc2ggaWQ9IjEiIGxhYmVsPSJTeW50aGV0aWNNZXNoIj4KICAgIDxSZWdpb24xIGlkPSIyIiBsYWJlbD0iUmVnaW9uMSIgbnVtYmVyX29mX3BhcnRpdGlvbnM9IjEiPgogICAgICA8ZGF0YXNldCBpZD0iMCIgLz4KICAgIDwvUmVnaW9uMT4KICAgIDxSZWdpb24yIGlkPSIzIiBsYWJlbD0iUmVnaW9uMiIgbnVtYmVyX29mX3BhcnRpdGlvbnM9IjEiPgogICAgICA8ZGF0YXNldCBpZD0iMSIgLz4KICAgIDwvUmVnaW9uMj4KICAgIDxSZWdpb24zIGlkPSI0IiBsYWJlbD0iUmVnaW9uMyIgbnVtYmVyX29mX3BhcnRpdGlvbnM9IjEiPgogICAgICA8ZGF0YXNldCBpZD0iMiIgLz4KICAgIDwvUmVnaW9uMz4KICA8L01lc2g+CjwvUm9vdD4K + + + diff --git a/inputFiles/singlePhaseFlow/synthetic/synthetic_0_0.vtu b/inputFiles/singlePhaseFlow/synthetic/synthetic_0_0.vtu new file mode 100644 index 00000000000..f3c0c2da30a --- /dev/null +++ b/inputFiles/singlePhaseFlow/synthetic/synthetic_0_0.vtu @@ -0,0 +1,23 @@ + + + + + + + + + + + + + + + + + + + + + _BgAAAACAAACMFQAAOAAAADgAAAA4AAAAOAAAADgAAAAfAAAAeJztwwENAAAMw6DOv+kLOSSsmqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqo+fzgPIAF4nO3DAQ0AAAzDoM6/6Qs5JKyaqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqj5/OA8gAXic7cMBDQAADMOgzr/pCzkkrJqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqPn84DyABeJztwwENAAAMw6DOv+kLOSSsmqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqo+fzgPIAF4nO3DAQ0AAAzDoM6/6Qs5JKyaqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqj5/OA8gAXic7cNBDQAADAOhq3/TU7EfJKyaqqqqqqqvDyxKBWQ=CAAAAACAAAD4IwAAXVMAADN6AABOegAAgGwAAMpuAABfegAAQHoAAGwiAAA=eJx0nHlcTt339zNkKgoJIZkaSEoJJS1DaRKVkiJSaEApEYUkzfM8a57neW43zzRJSMrYpAhFqOecvr/72teRxx/net3v177X2Wftvddae386h4GB7p99BUz/wj30v/9ug3/yv//93f5vTvxjHZqampJ0m2En6TnJH83gI4MEN4qdwfWm7aTO4DHvCW6XOYPH/SDt5M7ghszERb1wBhfkIv+7dKb9hcTFu4zGZ/fQPQ+df5YM0T0PHS8aonseOv6/50+dwTMH6Z6Hjv/PL7kz+FbS/snCGfzSdH9KZ3CHYYJ7lc3gsdN+rJjBa8j2FlUz+P/8WzPT/mziV7duBjeY9nvDDH6cnfhVaJrBhbjI3ycz+K0lxG9g88z+T49TywzeOpf4dW2dwSnj+N+/v8eRjlPGkY5TxpGOU8aRjlPGkY5TxpGOU8aRjlPGkY5TxpGOU8aRjlPGkd4+/TjScco40nHKONJxyjjScco40veffhzpOGUc6fj0LxF//hlnCP7POEPwf8YZgv8zzhD8n3GG4P+MMwT/Z5wh+D/jDGn/rzjzmvOlhrlbOYwfjPgYbI3v+0A5jc9coxH89/A1vzyHOUefdrSrcgbUsnl+OCaSReMl7RFOKWY1ILvizHWlpwUz+NWnUivPmMXRuLzM6PK+e4XwiP+009EDmPNI1vmvcG6GV8tMhpIEMb+xeX1LgUUz5F9Z6pqZj+2POdu07tIugsuLQgTDbbAfXs8ifr/GwMv/+/2Pf7A4xHS4JBpuNx60mxrF7Tk5LB+GuJfDcRmOyqPekTRuXJHQzXewEdwYOk2ubomgcTuFal6nY41gbb5rYpNWMY1nqJbefBtVDlH7WrmXSmPuKaexYuB8JrD3bFmw8RvmHQ88om8bh4NJ3uGBzQj7uSxhYHzBhUx4/K361L70cBr/odMhJW3aAm4716XY78TtiwO+tO82KYZu480i50IxN3jqsMbLrBqMoeeNSRjdOK5uavcdaoH59UaZiRBM4+mr/sdjmDcvfzqF58/TdxYjxQWBsO3N/37/4+Gad27z+laBzIftZ7iyMD95vDSz8/UTmNJNmnzdmUHjB/MuHJfZVwfm6acfSV/E7YM2O9Wt560D9r6RQi1TROO75udC/KFSmDD1uapahfv5VNz/pvTTKrgT0DD1zQy37+9duuDnsSewcd1zHT5zbJ/L2OiN164n8Pog9H9Yh9uXhAb/kkoshQTLsYjBQ5hvsTtwfs5EAIxxvpPV1cD8ZvLivUIZ2RA38S2msCSZxlVqT7LLnaiDvh3ZqWmr02lcRqNyDZtuPrx5tSPjpAm2M+/WVZZ0zXroKvGVuaydR+OL7ENzVCIQ7KwYQS2c2P62rPxByfmtMGj9WU1IPRHP89qkjsEfLRB5VMogYWk+jR/LPHnlrHMlpEY++HXmUxKNf0j21Twi+hgEJGO9cp/j+w5FPPzzntsfflrMcjexxu2lGLS3ps0qg2K+oNZTe7H9CQn5nxXWlVCi6iU0th3bGdPc1Ga2JB+EdWTWtLr70jiaHHL7wZ0EZiEt+SPZfjTO8imo6GVeEnCwf+bK98b++a2XMCgokAfV999YbK7MofGN5U0aj7b7weHNixbn/Mb3DbUYvGxlmAip0RIvXjBj/4swnrAdiU2Ak8k3ndcEYzv6+1tWalk8hpuXbdjDXeJpXMDmM3f7aB20XL3BfdMcx5+cpZEZj9zSwJxjaJZNC+YaS4lf5UaYeM3EedvTk8YjmJTNbig0QvvctUEhgTjefrAM25xBxNsFR6Z6rTScabzIwKhuV1A5yEY8XfE9Arf32emYWhudDno2aNJkNY57i+xWHfIwbQb/IM9+h1L8XF0nliyviG+GQ4e8JLLEvGh84aHfdwUJLqfBUWi5Htvn/czPxMJE9PPLpQGNYynYzsJMlryj+RBZ08HMuQuv3/s6dbttDtbCjRdXG7744vuqzCqe4DLIBcXlcmf/DOF+js/xX6U1lAWmiiKr4+XwfY/sDBLmNPaA667yK6PFsH3+iJ7dDpat4BFTYzvZgsfxUEaf4wWmbLind2Rgq7YHjQeLh0WNhUZBeJ0qn9UjbJ+/Wa6mdrkbHNPcPKHgGEXj7NJLrnJcroF3cnvlnjlgO+z1RyU3ebvBRGdw6Me5OD5vPX/I4a5GFDQWrmRcn+NK43Es1nHndXLhQEJ4euNNnF/+SOwbGv2ZDHr9hTKTetiOa2to3Nm4Khg6fvviiEQRjXdyqoNiZTMYmKl/K5VNo/HVxW8XHXBrhd6Yngfir3A+Wl30Pz4vnmX/+Q3Y/mSsTOThOzUQeOhkf5QS3fxJtBS6frIOmt9yfDK6i+972Fs2M8cDwXs4+MRtHPvnurb/uxdro2DTvhwpuzd4PjS1fS8yNnsCcUKnL71nwXYmxEf8+T+WQiiD9s/5/pjHc75UU/OqhPUK3DE5Kdh+dpbLxBerVtDTX/P97S3cz+j/46cyNp/sMXan8YODca5BOa1QHzF4TXELnm96Cc3fv40XQfRV945JuvWyPorn0x+fckjfqrU/8xvuf7aA1orCSgSeyoNeSwdx3TIx6HVTf6IYbgU0vlnej+sr7ozlZ2Pup0OfhG+M/go8LhohR5f3riuGkt9uKP8Irt+6pZgmO29VglPD48A/Vbg/NuyXjbLO18CSXonYXQ24ve66JphH1BUb18hpfLyK77vvtFoqs04lSG4/2aGthNfFsRs6ceHuRXC6Ra4+sgDPw8f1SqyiKBL6lWKZHJKxnROzFwRWXa2Ed+J3lGr6nWj800P/x6xXakDf+9PJ56ZhNG5sG7dym0k9RPPr1iR+wO0N/4/vLnY45FOHn+tNfnrvaWK+sSqeUv+cWILnuYfk7YrjbvDw/37/417KI0M9Z6uhNm7LYX5/3M/rPc8FeK0QVLsP6Cr8xPHQZkB5OH2iCf6UHU56fgD7X3RZYqn+vnooPLtWVOIOHsfDKXx3knVboP/3mOU9VzzfWHZ8LpDVaoHRWv+SexV4ftoabogUZXwMGXCrI+IxttPC8vTH/M40iAh6YKHI7UjjPxKXpZSIPYaFMe9d377F/ul9kJ5czPcYFLk27ShoxP6p5pzXGuQZDUc9XgiumIf9PCZjvGD+lzRwzoyIYniH298Net8gH10OoZkePk8UsH9sj19M7BQphJu/t4qk+mM7lvNOhKvbF0HwdcNrLfNwnfbCJ1VzS7EDBNiWPHE4iNdLwEcZ6byzjyBT0mf9T8VozDMkxhVsmyG8vK7PcDuuMy2L+v11LJth73GDdXOP4fFtuVrszmnoAnZ839gV03H/03T/9IsuegzCmjF3wqRwvIr8/H69ikIL1IqjiZ3PcH8kGXYU8QQjsDfL3iT9Gtuxl1je+cgwGTq38zxUEsB2lsUJKT93agFtyfWiSS54npTH/o/vYQ7dt6UU2+kyduC+qpQNCU/MRLgb8Doy67nvdDo5C+p5XjeraGI/T9V6HBq9XwGNK7xMmU8EYf+IbJ783FxBzKvZGzjMsZ8z+tUUEj/Wg5oie65ELK4za7UickZXN4Czt37T1mLcXviy1nyPe6FgHORp7qOA47b6+dOgdK0Mlvu9fZC3Dte3pXdMPSVfPQGt3lE+25d2NP785J5+tfYnsPKUwta9jOU03vdS2WHukXxA/kwj90Zx/XaG4+q311xNYPmz2WhkFa6v2oI3uJzteQITW0NZTLfhOvN+r8gbhespMNSxqmUwDe8XZqsZGPBxxcBv5mMZs4zxc7E0ztKU6qwFWKkvsWoHXnc854wWWIjmw05lP5WL7LifFu+Nxq6N1wPbCzW+Lm2c3wM3Dm4ozcoEJhezyI3GuL6yyTfd8pDYr7oovPjNW4bve/x9X/jYc1tYd7r0y6xF+HkZjj56y++TCCy52nX7xfF90arhN9rtObBPLO6CvhOez6kFv43COluBTYLtotYVXFdHyXZauna1QvZ6YHx9Gde9f15o7VI8lwivciT9Dr60oXGR41vnbJyDgJ/x+4OMOPxci2bZqi5pJMbr+h3Ru+9wvbrj/glR9xgHGNj9UybWHI/799qGT0ln80HOePG855wPcT/LOjSYhqug13T2qT8fcL1aOei4qKeyCrZujqxedgzHyY260W+LZcvBvmbD8Qp3XI+5iF+v6AorgeAN9iJCMtiO+/ZXe24+jYU0q4vfGB3wuHNxs253rrKH55yw3GI1nj87mKcu8FwPAv5ZOyRif+F1J6oaIz3LtwXuHPpuFS2G+7PZajXL4TgbcJw+78H+LC/uaDZf2wDZS3+4XTiB9+OWYl91fUWCwZnhzHaG9Q64/S1uwa8VtVDKfcZRcxced62GmwtUu8vgEceR3GXb8XOZeZ2sORX5BA7Wr4848xvPT0UfDtmS9bXga3lA87MAfl7x5tqWns3VULjhT6bNejx/7Czmyr0eaoQw14x5865jfzZ3D02lv6qFw45K9c832dPN5zHFL0rpoDX17NIfWey3nK+nLRpZq8A6J5htn3Y2jd8o+57REt4ERVmvrhZX4HiSXrXn9o+9iRDHUB6U2Iz9pvi2x/HaVBXohCytYP2F44Oin+MzS/FCWOQff1hwDNt/ENTx6fTzWoitv3ph7C628yN81dVbAxUQN2vJ72Ip7P+GNfYOSDQdZjM65S/zCaBxW6bzCg/Lc6BJl0NUZz4+79p8fO/2V1yJ0N8er3bcDa+jJY5GNnIF+fDBMU88jwnHPe2OEoUn+c3AKceT1kl3LnFhDVPqsHEWrNokKX+DFffnAJ9h/XKJFtir6x50VxXbt10WtKHYMwBUXzQKDNTg512unRVqdqYCjqe8ulnchOPJ4qUHNkbXtUJJd4/jhU84zquz/I8HvolUVFmEx2uE50yLIX8IFC9YU6g0iOezWlp3p/1wLWxX3CXzlQXPE00B59omlgKI0FAxTj+N/Xzz2VavwyvCwS53wzyz23j+uDaNn99ongbRTL6jN8Zwftyz9GFs9LdGuL5MpQHCcP8fGiwzajIug6g3f4R6rXGckf3N3CNDzFu7Lyq/+zpx3nwvfLfvp0ED7BCFwpxT2A7rtzOf2I/Vg2TT5G7lWbi9+J8vJ9a2NkGpYf6h2X24XuJf1WF9//QTWKd7ds2LK7ifQi5uPZbbWqA8aFmpQC/25+WPZdXL+VqAV8mbT24B9ufx4p6Aj7kV4DBYeMdHGY/Xm6EBHeaFJcDyXUPRehNep8rNDkKWd8ugWf67pLQM7k/s8UyDtRr1IHuh5MbBcJy/LoW8X3SdqwXsnE64LtLH/r+uIT3pNtkKF4ZFdjMI3Mfz8LDSrv1z2qDEPsLA8i4eR5mBY98lv7dAkoyjpvct3E8HAxsmM+174HDjf7//cYZ//TvtSeX/6QJ/c+Jf4Ovo7meRD2bwq1qyad/Y7GbwGr8JJLPAcQa/pzL1udbNeQbfx3y063mB6wwelsXdqCbvPoMzzf/4Q3alxwz+wL49a331X5x4rv8f/6cdgv/zvgT/Zz8J/s/nIvg//UDwf/qN4H/72Zk8H2aaOS4r5xAX1/IZPJLUB5bO5ALzGPC5Oh0vmE8am8mlyHP4QDSDtywiLutm8rxVxOW/83w6/mQNcZEumcE/cBKX/+pMOj65gbgoF83gbFsYsI5Ax7fxEhetghn84DYGnMfp+CkB4mKQN4MbC5GX3BncToS43MiZwUN3ExfL7Bk8R4y4WGfN4AsliIt95gy+nrTjmjGDmwgSF+/0Gbyaj7gEps3gO6WJC6TO4M/2EBeF5BncgvTPf+e0dHwjOS668TN4AytxMY6dwY3JeWgZPYOzjZE6UeQMXthH6nXhM3hpDp0+Rcet4kk9MGgGf5FN6k1+M7hgOXlfrxmcK4ROF6PjzdN27P4/7e/N4DDNjWZw35BQvsBPJZDT2oNq3+L1bmx3/UKweBhUM5qs1nmB+ahaitWxdenw0Tvbsa/DgcYnei06hdjzoGjHoc9Md3A8SY+NU1+kWAb7Ht8d/lTvRuP3qjz0a/M84P6mcz/Cb2BuNba564lWAvQPjXKwxeF4lXZpd9r7okJYUqfFNyqF22tc1JNm2pMFHJeZ5M8uw3zJG+J5A8JA/Ow7hcY5OB5e4SYu69Jg4GGzRb0i5kPrRy+vcC6F136LTtucx1zdi835y5x8kI6IFW4xwvzJ0s7IVOly+GZ6Z/JjHebPRWu9OXQfwNk7E88if2LOScafGzFwZUG/jZs35ktFicvPbAjui69sKMM8NZXov04A+A/1iwT3Y/7ojq6mvmw8XHw8vGHxJ3vML/zZbm5bBiZrWVvnG+Dx8jV/lfGM0R1OabR0DehgHre4YMmHA0Q9Jf/C2mO2LY0XXh3wniD293t3ZjAd3Inj/HLbyqbwVRngO7ho4c4FOO/w7yQuyknw2VmFYRkj5p0lh0/xNRTBRLKNU+1czK2WpipcaUBwYM6LQTdmzJsfNVZ88/KAUp2ACcttmJsxsBYuiiuAE+l8+712Yf5anLgwZgH3nZH4B3S8xks5veRWBFTxf0jW3I75bP2X+wWTEKRzfb4Udf8hjaccEb0o0+0L5asLes2dMCcS5txZ2wshI0JZe+wL9ttOlLryxFAU/HpwZkPFlAuNcy5ru1i+DcHRq7wSavMwXzyQyVMdkQXJKadb//zGdtplAoNQcglI1xe6KZzF/bymsXMivSsXah6Hb5+jiTl7h6+TiWY5HB05XXmrGtvXSDWZt6zeGpRqTz2+/wbzNctquu1OEnG1oajv4GL8XOfzzd8puqbDde/rKZF5uP3V/1sXqRq/OZi08H05As3PGF4OBM5204OC8ri9evazBK3NcWDr25xXo4Tb60foy/KP5sDYyJajtxXw+m3udWpgXF4CXBNVzxTi8Tq95XI6o7u0DD5wLiuRPIXtaGvnhR6vKIfekB8Hgq9inpX9gzM79ib8GnY/4HgDc8+nMfofukLhajJPeJk85r2Lmdf0roiBZ587vu1UsKFxreqzExtUEeRpCUj81MPt25+MpDr8yIevi0Mvu23C/ff+ubZ2e08ZfPXQvx532JbGf79m3cZ2xxF0Ltt+ZZHG/I96lcN64WhIs5cZyLuE7SsnFPZ3BZdDRtJFnRiE/ZCTbSO3htcSAk9MbFXNxtw8ttnrQkg+/FYcOxRBN0+q+H99ie1KhrJFo923DHG8zSjr9Z81qxhuqio1p6zAfA9P6WLF0WyIeyUs7hyA7fzQycji/O4ETBfW+N3KwbyStaa7YaMPPDuRqWGQi7nHqaL1xknxcDxA6Y3LHRyX8rvvLkuoLIaBy19Khn5jP1hppmxVbkqHiozwLOVe/FzRJ3KjOp8UQosQa0BwFN08J+sQpkyQCAibvSYJcxG1xWeKefLhqXPS1LApzjuep9J5+pxjQfSrbHVzgRONj8rzXkEBAXDmwhenBfn4vtUHD23MWpMMrMKbi94uxv1XG2afl7KtDLYw7JaUSMV+O2X6jXeljBeUHVbzSnLAXKQ1+ajqz3J423Ti0ooCbCeq3v2YYqEJyB9YpiRPF89nmWl/VNhVDqoJjzz3h+Ln+sav5DTWXwwGR9rztjzF3M/5a6GBKwJXS/9gz53YTsDJuwtYbQrgmnym5/u9mPe7yK3iFc+G8KHafBMrvE4dHL+x83oEwKmYdfN047F9TQMLk8l9GRB1UoBNOAOPV6Shmsu7pekQWuk973YiXRzYxMl1QTkFDHMf2XDR8fGm7VYDceWw88BKpYP7sf8XPRLx9Oq1gGC+fsNJCcz9Hjw/xB9YBghGlg6E4v6nVK14sNw3FzYUCBpcXovX6VTBBx5H71QIjee+PnYVr8cqHjuuJTdzwchVbi3LZWxHa2ucQM6qcJinJrQvNAj7QdA4zH7XyQRg8WBcFp+P+9/D5CYUooWA+ckO48gQnE95DFfdKpUIgLiH6pz8YZgPr6j2YY8PB5+PoY93rcf5kfHu88vzxTOh2wE8nxrg/mzrGvlQYBMJO3RDt7bIYX5rrch5wWYESX2y5mIVuD/hKgGxlctdQK/6iODB27h9lbraUsvIIgjnt7wjy473WTsFHidr3PMGl4Z9bzxu4fbCI2FxvqZZIOitXvZRGbePUw4QGU3PgsShQDZ5c9y+PnyM/cfTLHgkFLT6XAbuzxLughg7plzQrnzZcbkec8YCifT32RHg7n/x5Z8mzDU2Wv24f+oB2PEa/zYpwpzXSI69vDMHmD9oyXp24vV7QG5HY5eHB4iEWZxf/gq3j0ve/9jPIBME9oYcHRHA4/jVObb6kCOCOu/VmSJceF5J3dvNdln4PnTbXk55fQ6P1/v3eZ4J18uBO/u9r4825pFkvntZAOdT5/A1teH7fu68wlXTHQttFf12761x3GiMCHh1b7wI7owwx8wpxO2lBgyl7i/NgOGHz0VdWzD/Hu48zKmSBBbjukqedPar74bm/ZJJgbVn/QqNt+P+LHsuKS47EgXjUj+adF5j/9iFMTxRW1kOz/ijciu58DhyCsx10dpqByE/WWqrVmEe6Gg635qlBKrWSu+Njcfjq2fLpvu5Jhva+bfFZVbi5/I3r7k7VVAKygPbpRfNw/zE8Na8prhC8JRihwZfbOf65VY2nbNlwK8gtkX4BX6uZ+//LOnYHgpJ1SdGhyJw+waFUyKvVvpDRo527alVeLx2cEfdHTVJAA+j1CnvCVyf1O0RD0gpCYMQdeHrDK3Y/ma/5yHuxoWwOMDn0o0deD4wvV26FzkkwsHnnTKq961pvPRuzoh1QxlY7N6RrtaH7exavfHtaWd74NhlJexOt+8wE5bTMZwqg4dDr4JcIzGvCexmt8kohe79PN7BdOuUi41v0eLuHNjfZGcksAXzWh6zRw7l+SD4Pd1xbidd/NffwRU9nAurkkB60zfcvk6YQ2vALgbGnGzl5HsxF6ttW7C9ogQcd0jd6x/CPNG8paciOAWauJ8frWrH9h3d/VhCB9Nm8PS1DbsbfmfC+uviZVMvsZ1hrlP6WqWREH1m8ROhOTiv7T5jsLvuRR78cOsJf0C3rpOGAkUGq4ogc11FA8cgnp88FY85hp/nw1T7MYPV7NjOUMQl3+LOIsirV928mh/358Pv5NbdRJ35KiLSzu4Ntm9R4WkZq47Ayp9PuZvueXXq07hF12SC++T+zMWH8X0Xas3+LuwbAm/fb1qwiW58EXnO0JsP4WLbiUoL8y7mvXm/06Ig9eKzYOExunqVx2/u0iYE3+w1Lux6iPPL7PdLXcYkEQw/9lda2oL7z60n6GUmnQDHdEyL7q2ns285egT886Bf94HA4d14/vR2V8Zaz3UC1Q/Brls5cPtVXbuz755KB4Wh1ivzbuN5a7SSuBjEQTZjiKkCnR+GxHZPiKzIBg191uFDXJg/nhdtWNOaC8f1fto82Ijz0WRyT/4+rgq48nmp6f3XuP1563a7ls/6M3jFt/syH/SjwOPMJ6V1r/DzihpM8q61KQEfj4DTFg543T0/fjrudnkY7FfZrP/gO+7/bRUe9u5IH8g7cyRMbRW2/zR9v6+cvw+sSfi01vYg9nNQ4bvDHpmI8OcdgVJebGdfhWzjih++sPj6b1GXbZh73CrQaDFOBONX+74YVOP9lBKb4NSnbaHgeOb90RWF2H5o9ZNUnYFyuBheEZipgfkB/vnzHDNNZ/Afv1foPw2NgGQ1957QBXgc9Z8ZBZ9dVQZhwolGm9ywf7o/cdy4x5oJhcHNX0XY8POyeTIGX+QoBC/Yi0qScZx3WLD2s45QHNwo95R6U4T9+WXPdSHRWqKOSrt55OJpHA8NGs1b9v68OYNv3r9XGTVlQJKysUhcPu6/5HXJ/gy9DLia+fxF5QMcb6M6xArkXuTDEQnFFS/vYH+y3jrqWrWkHBpf5SP9h3j9WtkdF7B5YQfsfeIHoqwxv8URtL4mqwyWd52cayWI71uYb/gtzyIGXpvPPikrgedhbnWs3bkdFSCeG6q5Xhv7Z+7HmmSPzRfhbqCsI7cu3fxUORwxfKQUPLSqKjhv4bymmKl586pnORxnZ3jZTBcni3yTI/Q6y4Hp9CI7o3bcz99nNzhqTZiB/ePamKKnmLff2v1Hf04qDHsaP2WNx/PnwMIiFn+fUrjRd+xGziJs3445fX6+eDSkpG1lFs/F82GPcEZWmVIZaIzJ3VRfi8e3FjZEG6Z5wPmYlkUv6PiQ1N38yPI8SBI+qNdNd36ytNDrTJixObSbNzsofMf8wCnLql7+cFge7MfuFIXnW5/pthbx90lwzrz761cR7H+JdTES+SNF8KD9/MTsU5jPLTFyjXieAJJ/uH5IdmA/8B/pr62TewDq73JmtWti+2EJr9Ui9VyhNUQ6kW8ZthPXdFtP0zcNIs/lD2xYRZcvnr962nQ+B5LP+eRmj+P5JhxTbZ/fnAZeN3JNw/iw3+Q/dBVrbq2APcnMHvZpmBsZ+umril0En8sKBRVxmJc4usLErjLYb9uZoCWH/fNEmrm3OqUYRlfKONYo/x//+72n/845/36/iY5PvP3HuSjB5/T84xyV4H6D/zh3/fv9BTp+//s/znUJXjL0j3Nggu96+49z47/fg6DjPoP/OJcmeNbgP86xCd5McovoGZzyPgUdn36fRid+Bv/f+y6JM7gsyeWTZ3DKexl0/PRX8pw2bQb/3/sx6TN4bj/BXTJmcMr7HXT8Kdn+ftYMXj39Pk32TPtkf8xyZnDKeyJ0POAPwfXzZnAn+r/HoOMWpG71t+7z9/smdFxr+u+gi2Zwxen3dYpncMl/6VZ/v7dCx9+Q+sjfuhjB//d+z0zOSvbzb93t7/df6LgE+bx/63oEb5t+H2gm1yf99rduSLeuKXooHafooXScoofScYoeSscpeigdp+ihdJyih9Jxih5KF3/+f/yfdhj+0qPp+D/7yfCXHk3H/+kHhr/0aDr+t59HPpQnNRwOo+pEBBeplWoSGi2h6kQEl2pSupc2mk3ViQi+0m7BseCvyXBuMZ1ORPBPgwViyU88qDoRwbkbmkY/HC+j6kQEvxH8aal/Tz5Is3zFOhHBY5Ff/rdnGVQ9iOBrdD0eicTEUPUjgpetI36JfRZFJyL4DlIHHM2h6kRkXijerZDAEkrVicj1y/ns41pyc0evExH89tx75YwrbKg6ERkf7maqlSiVU3Uigg+Q6+5pIezNotOJSP9/JvrDnk7ViQiex0KesSKqTkRwsWdHleUNC6g6EZlH+tnc9zO7U3Uigi9ViVooZVdG1YkI/pbV+Y1wcDxVJyK4ZckKQ8aSdHjFQqcTEXxuoPhOrfEsqk5EcFL+YviYR9WJCP4g5cbRZIcoqk5E8LVxdoE+73yoOhHBB41sL91XLaPqRAR/tLfHYeBJHFUnInjmR8JvizKpOhHBbavVYrnaiqk6EcHN9+z9KpqEqHoQwSuaNi+82+0LqpMjWD8iuEH2x/E/VbFUnYjg1jt5vz0NKIKTMXQ6EVlvRF2qG+oNhC/ydDoROV5SCp17r2SAkjOdTkTmcbeG2ruVYVSdiOAffYOYgi+mUHUiMp6neEo/q7Wm6kSknaf+r7U0y6k6EcFNPYNZ9+nmUnUiglsZ2K1Jv59N1Yno1gVFJyLroi/HvU3EEFUnIniNmHdC858Cqk5EcNeHvjlt69KoOhHBr2j36X37GU7ViQjerrf7BZu1M1UnIrjq5FfeIR9zqk5ErkfxBSfL68upOhHB1dR9L1Srl1J1IoIfn3vbhIWxiKoTkeuUcfb2z74BVJ2IjD+PuMKGBBKIeR6CdSJyHd0QvLvpjiP4GtHpROQ6HVUsFugpo+pEBFe5uE7c+EYRVSci+O/niVtKY8qpehDBQ5sda8/r3qHqRwRXGNXqFHmfQNWJCL7Kbvb8pA15VJ2IjNux+x7/XhcFa4TpdCKCK03BaPq6dKpORPAXXVlsKbVlVJ2I4L4beWxi3iKqTkTwBQMbPtfsLaDqRAS/rjP7ZaJvBFUnIvjsSqWnyQezqToRwXMcPHIUrWKoOhHpT3Jdz82i6kQE/+X2XuphcyLcMqDTiQg+pscz5CRbSNWJCD7vt8ZozQlE1YnIOGnePbzFOo+qE5HzLV7midsbT6h7JYp1IjIeXu/l+MNZRtWJCF5aLyWn9vQasG+k04kIvvn2A5cto+VUnYjgjV19DkLbHlJ1IrJeajjTv0whgqoTkfP5iQ5XQqMfVSciuLHznJHXK+OpOhGZB4OyPz5rT6fqRGQdfn3DnxeqiKoTkfEN2bjMasui6kQE11j4xajpQy5VDyJ4cka8yZrJbKp+RHAPRemJ1DcWVJ2ItKN5VedrXDlVJyLrh3l65eKvXKk6EdmfiPafnV9TqDoRGcdKmYcKpHJhooFOJyLj1Z8vJW+FUqk6EVmv/kzsi3pQQtWJyLr6dar4hXf5VJ2I4FfHu1hlziGYG0enBxH8SaudKbt8AFU/IrjJn7XZ18VLqDoRWT9Ecnv9aP9LJyL44U32zhFHi6k6EcF3HTs7bFniQ9WJCN50xTa7IqeMqhMRvOOqyqv5z6OoOhHBO/dLJ7D9QFSdiIzPe86e1A/OoOpEBO9rvdiwWCuDqhMR/J31wv75YhlUnYjg22ZJnzKfm0bViQgeKKzNszi7mKoTEXx46mbPJeVyqk5EcLmC7H6J3WlUnYjgnrfLhPSi/9KDSDuVFfW9n/yoehDBQzhuX6wk6gSKrkTmzbRr7Wq77kO9J50eRPAW+6L9ddfLqfoRGYfJfbF+HFUnIv3GW2cUzFVI1YnIOvZ942EGoSiqTkTwx7u8C+5OZlF1ItJvtfn2xh/yqDoRwZd1p22yHswF8/t0OhGZ37ecO6/pX0TVicjnKtyxUmNFOVUPIuvGge8sXovsqPoRwbcvXv3lF0MEVSci81fUYBCLTDpVJyLjv+abubNPhFB1IoILn0xw030cQ9WJyDq86vKpj4c9qDoRwWd5g6WjTSlVJyLX3Yvrp+Y+RFSdiODRDCnItiOfqhORdZrJ+cy4tBKqTkSuU8ajld37Y6k6EcHTN918u14+n6oTkfX2Cf+5LTVOVJ2IjFc9TUJiU2VUnYjgtwZON8g62FN1IoLrtTyMGjELoepEZDxf/uz7qFAaVSciePXnFWVDgQlUnYjg+26Fl2YfTKHqRATnmBhtXtRYSNWJCF7grj4cHRBG1YkI3qDlxxJalkvVgwju7aL3WXtzzgxeNG9Xrcjyv3QigkdZqTQcFyyGWVZ0OhFZtztt87hikETVicg6XKbel887iqoTETwh53z9pssJVJ2I4PwfBNtsrkZRdSIyv69X3l5L1JkUnYiMD2sN1lTeDqDqRGS9feXY87pvf+lEZH/MSmebJpRSdSIyD5LnUWcSqDoRwT87vY28n1tE1YnI8foq/fLmMx+qTkTWA6zX/OQhkKoTEfzI20uiVUP5VJ2I4LuPrTG+N5IELgfpdCKybsl68DT3WRlVJyL4ueO1cvdzsqk6EcFHyfOWlwVUnYjgYgO1jA0T6VSdiOA/d+fwXrudQtWJyDhf9Q89iOCtKf/QjwiOVpa+ZH5ZRNWJyLr02JyUmpXhVJ2I9NvrlsTylBKqTkTwsxziEjZtiKoTEVxeYE/yWDui6kQEv9R4Q/pPHKLqQWQeV3rRaRbpS9WPCM74OkLZ72Q+VSci+I/5IlZzH5ZSdSKCZ3D/Qw8i48y/9COCCy0zk/dBxbDoFp1ORPDLxvfXzrnjRdWJSD8Lv3ewmvpLJyJ43ZdvNTsHY2E3J51ORPp/6eh8xfECqk5E8Nzd/9CJCD7l9Q+diJz/H6uTJQ9mUXUiMp5nI/ajsVlUnYhcXxccnQwME6g6ETkPfXnXxHrZUXUigsv+5Cg+uaicqhOR8yROcZ6rsAvk5tPpRGQcE65/uKm1kKoTEbynRyb/yo4Kqh5E1kvmS9i7eS5S9SNy3Q0N35DiekTVici41+LAJpRxl6oTkfXD8aMJg6NmVJ2IzJvfU5i2d5ZTdSKynzq6s+Rdc0Eum04nInjYStayR/0hVJ2I5M48lptMiqg6EcFF7a5qjKZ7wGQbnU5EcImXmk6jSmVUnYjgNgVzXPICk6g6EcEtdJb/uV1ZTtWJCB735sA6t1slVJ2IzJvnDFaeD8mDokA6nYjgyl8ybVwgCngy6HQicrzEavMEIvMheP0GrBMRfPaVazoqKuVUnYh8rgWe9WbhZVSdiOBDqg/9om7lUHUicr0c27h1Z3IaKO2n04kIvuDW3pvSkjlUnYjgveGnEtiJ+UDRgwjOpVZtz6p/iaofEXx/m9Ov7e6eVJ2ItB/wUcKkPIKmE31e4R9gpoTPOU/r5RzeEumJcn9zvu5Zi/mE98cB9VFPpD67fj7XAP5uldTyD1I8Ml7IRsVDezwPc9nZ9515I73QjlobqdUOmEuIqu5dPNsbvexyr+bXwLzkwaZrYTreyDSLx7V1G+aeUeNPKqq90XpVzfVxf/B3tCb0Gu9d2uqDOOf+WC73BPOmsaUuVi4+yMz24my1MMxLfx4pmRz2QRVbLpRdNsbcWiP+a/lRX7SJsTF/lyTmT91EVP3ifJGb6eVWHWbMM3KS1bZN+qJ7Cqd2Fj3D3/sqPa1kyH7UD90Wi9nLGY55ekvUi3defuhE/No+Rz3Mb5feeCrY4of0mD4U8Qpgrtg58bNqjj/alxciZ/0Of2fMdg6DfM1Wf9T0OVriigHmXArWnA1S/sjNsGbd0PBjGp+6b2Dw5oQ/el56bXmzCeYmxrGWDur+6ElYilnjGP6+WVRCn5eDkj8yW7t+4LIF5glXAuM7wB+9auvjF5qF+bNLysJV3P7oztJbASX2jTRebbtcIny2P3JJLFm0dhnmLmXsf+I7/NDq8/P2bwnB31u7pD6uGhPlh3oSpNOS+TBPrvdJ6rzihzRe9Hs45NbTuKZreDK/sB9qfj3V7C6NuWHbaT+V777o3c4lBY868HfeziumrurI8kXKV/d0+F7CXOvB69lcJr5okMvMVONnLY0b/A5fZ7/dFzGuVFzX6oS5ss0nR9WPPmhUv2ZlHyfmhWOcHhWPfNBPW/9x+wz83bmBh65n5570QVEPfu6LlMbc5HPn0kOLfRDDLIsp7pfVNC4Q3CEcXe6N9reLpDAaY77sfNuI/E1vxNYo90SIEXMx+bCvJ7Z5o6dm756EBuLv4B2+YbrtZbcX0pPf3QmCmL/m/nRy3MMLDaRGRzNXV9J4YsaIIzrshXJ3br44rom5EKuVm8K4J7K4tSh47Av+/p50zeSRtHhPdMybn/JdvvsTulNTmp5IbK76+YWcmNu4teYcW+KJuNbI+C/IKqdxnTh1o0zkgQLnNat/lcX87vIvppKmHujmQhnu0v++10D2P+lXzAJuD1QdFCWgbYZ5fPndts3P3dFww5Edjxdhzh6rwZTo7I66Iy4en3iEaPyRrCBLFrijdy95pzpFMK/zMPTNHnBDgloXHuR74u8ThmXeenFL1Q09mrt7yXBBCY0zq2yQHC9zRTVNg0073hTT+IGYFV3mRH7POjdcrrkAc/TFue9EuAsyOJfOLr+9iMbTvuypGGFzQQpZ+5Raj+PvJXp7tv8odXJGh7pCHZBJAY0fOizfpDLPGS3pa9Ts9syn8ZsqC5vVHzohNZ/5L4bS8micsSogMmahEzq5USskqhF/p/GSU2O0orcjiogZvJ/9PofG97zbopLJ7Yh2izr01fzKpvF3W+YzJpU7oKuTGxqsl2D+ZULoYbGBA7L7fjIqZF0WjQcO9PibbXRAd1Mn+bj58Hcj28bvJCkP26NlUQPLLu3MoPGKh3M7hxrtkQzvtWdnxdJp3NIpYd6nEns0LNNeznMwjcbN18ttE6+2R2aX1ebJ+6bQuOPa/RX67+zRcd3I1rHkJBrvWHjB4BqHA2J/sJG94HECjYeKOzNf13NAP2YlFMX9iqNx7geJqqFNDuj8WKDgkt34O5mihWfkRWUcUePgfkNO62ga1xtn3tr21BGJybwy6O2KpPFfyWoq8aaE/0+yCCpLR9D4074jai2czki+x+xrQFEYjTtsUlt9m6jH/OeuffbodiiNR0QvtZnt6YJehZ0p0XIKonGh8ssfJk+4ojfJ2gvuRvvT+OtrAwxCa9yQyZH2Nc/KfWh832abc+Zv3FBVm7eP8CtPGteqX+R29oQ7Wloy6+izLvwdUfaclurRbHd0gmtZ4/JeBxq/cT/Q9BlRtx8pPcU4VfiAxtOXCBR0GnkgYNMVra25TeMX721eEVvlgViDi4WEpQxpvD38WOELNk/UkjwkTOP2FRDlJzvN5+XM3kPamZr633dAH5WvnrajtNNzHu2+RPtPQWun73tJI6WJ1k+C9yfdn+7nTakdx2jPRfCyzSnTzzWh1udL8wPBX7a9ciX9oCBvso7mN4LHFrNN+03xrNwimp8JfqL/4rSfXdndEG1cCJ5q0vmeHJcOVZ/ntHEk+LE84wfkOD658+IbbdwJLr4lcRU57tZLY4Vo84Tg6g+9VMl5Yn4k/jJtXhF8j8gjZXJeaRYdukKbhwS/vUidj5yH8SJdO2nzluDzE9LlyHl7Ztm2Uto8J/gSbpbpeT53Rd8q2rogOF8p4/S6cDRPfEpbRwSftfmXPrmOHvaELKStO4KzKY6Vk+su861PJW2dEtzeg3d6nTraKD6nrWuCC9mmT6/rn429bLQ4QPDsc7um4wB3JDM/LW6Q983snI4by2stYmhxhuAig1cDyDhjJareRItLBB8++2U6Lu081zhAi2MED7g9Mh3Hhuv32dDiHsEzVHaeIOPeUFvRI1qcJPhuoZ8xZJx8a3uzixZXCS7v+j6KjKt6avJatDhMcK67xi1kHJ57e4czLW4TfMGKx4/JuG20vEuFFucJXqxvNEHG+ZXpOqtpeYHgwrKfKsm8MP47vYqWRwi+6az6AJlHPgigZlreIXgE+/grMu+kHedcSstTBN/CtPoAmafytp+xJfPaf+soiPthF5nXHiglMzz/Lw8S7Qu4nfzJPAgM35RoeZPg0rdkWcm82c7XLUjLswTndLdkJvPs25zDgmRe/s9+D2tCO5mXux594aHlcaK91DnBODKPO+k80KDlfdK+lYAZmfflNBgDaXUCwdHGUGOyTqgWXa9LqysIbr6SK4+sK+6wTTLQ/r6N+F3oXjD9dzI651pDaHULwRl/KciSdUt1wZtLtDqH4Dxvqt3JOufuWc1YWl1EcOabAs5kXfTw/dvntDqK4ImvNp0i66iJ13YtZN313/OmmIbzk3WX4ur3zbQ6jWh/wK3qG1mn8fLWpNLqOoLnDo18Juu62QsZZ/G8xNzkyoAIWQd2v7HYT6sbCW57+u0ysm7sl17+k6wz/7vv3F7Xc2SdGbJTbDWtLiXav4AVnmRdOs6cz0nWsf+1T1j63ImsY7O1Oq/T6l6i/c9Ga06y7pVg9n5Gq5MJ7iKZNYesk+vrzxfS6mpy/Y7dXE3W1Y6Miq20OpzgiwtX+ZN1ePRCIS+ybv/vvru1jqWQdbuSjl06rc4n2o93iCSTdb5mEEjS9gUEzw95qEbuC9Zs+8pE20cQ/Hif5/Q+4gVDbCBt30H2X/j29L7DNm+JAG2fQvB3faHT+5SF2pKD5L7mv/5UsjdO72v28tTfoO2DiPY6AnO9yX2QhKIdG23fRHCJm4nT+6Z1Jk85yX3Wf3YWnlOb3mftXJWwn7YvI9rrz1Kb3pcJbfWRp+3jyDzysUiO3Mc1D5wqJvd9/9lJHo6Y3vcl9dnjfSLRXjaXeXqfWPdooRhtX0nw9dkC0/vKOx8z8T6U4A22rQbkPnTO/FK8byXnucDW6X2ro/aqAto+l4xjScknyH1u59dEvC8mOH/Dhul98ci3GLyPJtfZuqpich99eUKIjbbvJvM1j58zue/OYvPA+3Ty775+qU/v0xdOnsL7eoL/8nea3te75ZbicwCCOwghY/Ic4FxhKj43IP35488e8twglT8XnzMQXKxr9/Q5wzGlPnwuQXCv3NTpcwnZXOHpc4z//Mw0v3r6HIOJORKfexDtJ3/ETJ97GFV/f1FT2wB5VStWbectBy4hlrZZeX7orGJNEdreCF1sIp7WWWUwSyfG2r3XD31kVsg7d7QRjMortZ/vK4eS5tQRt09+SIBfR+lnQCO4HivxvptWBn4T9yvPLPBHo+4aL1f71oD6Fh73Cp9yYI8SC8g85IPWvuv1/d1QA3Xb8t57riHyvt5jPzE9HyShfTim7UoNdJ4Oujy5pAIuXtkpIMTrg+K55jXr3siBsj/6Ot7ydiCSpLQt8LsD6h7X/7m3Mhs81yrUN447w8kl9oaVSQ7IdFOBy+bwbLiT6fuT3eEBRLltnqX6yAEV95853Ha9Br69yVdsOmYPd7RT1v7m90FWW8ZL1tnXgFNU3ycjHVd4nMQgtk3MB4n2q0s489ZA8QUf7YFNLhCzfOMhix/eaNnQqUPcujWg4DAZ/Hq7J/gcvn3bdYMPOibfIKoPpaBxWTV1aHY5GDjMvjq41g1tHN03uHpbKYi9UWFbkFgGqUlbc1WXuCE+Vq8v1e2lkMDZOKZdWQam6Z6bOR64IdaL72pPOpSC/Yay3pEjZbD2+ZMDc465IZ9z+qbJtzNgYk7sA6OOfHh/ofR+Zbs9crt9GjYZZEKFZ5PkaY4CCOA4GsYzYY/GFliNy/hlAHihrVwJBZBpxpGm3GmPDod0qI+8b4Zds0r+cGUZgzaT4JuWPX7o5eAhJYG0Zggfn18bGn0DxDT2FN+/74ekOK/l8WY0w8A81J5ufAGuTlybM/+eH7IcP73t8fcSgD0hd83E7kLZjtUFY/2uaOf8p/q37UtAwsD/iuwKQ1Bd59Tc+cgVWXfwN7gfLoU/XKdyLcWugvpY9rLK9W5o760v7QlH24BVo6XLpD0PUmtPXHwQ54kSc+b9zGJvgwtlTIq3j+bDSiUmZsXfnmiju6DCTo42qHpafLVSIg/YPSMN48Y80cIBl8cnTrdB6JVCd2ePm3B9w9r2Jd6eKFW3pe0pTxtUrNEvSbtjBN3iThqzej2RdRHXpcPn2kCa0XJggfVFiPXI7cxy9UQ3ZRny/Z9eAKahW0GmDeXg3P1225dNnohzwJnJaZE57D47T2LhogoYMTKLnuzwQMUBHkaNr3RAfr5a1/h2og7hkOWR5/NE8w8Vsvx8rA186z5sP6FRDpmHAgLaBDxRr2La3dYEA1huyLrY81sZGLPyvXJm90S153sWn9dtAwE37w3FL6zhaNHFi/wOnkjWLk0/QbkNcu2S+HpEHYDZWnyJabgnathv8/ahfyHskYm95CmdAM9sxxf35jqjizuySw8MFIDyWMtlNtF4cD89L/vuUWcUrGHnIx5bCPKnVTO5muNg5euXA3+QM5KOX6Qrb9EAN9jmL9iYgkAjpX8+h48f4vaoTfCZ2wDJGuknWHwQPNpWcnafph/SZ1sReHNbAxisYli1TxIBz8lLhoVX/ZBnXxIDRJTBaPvL+KSaYjgdd9bX5qc7ChYfGmBmLofN4Y9WDn4tBiWBJxY7pT3QgzXpaqaPy+CNQLebXEkJaAj46d5b7YFelzcaBxy+DMeW7pc3NUmCi6+PXV64zBPNOnNs8xllS2ho3yg6+2EiWM+Nup9V6IEsovRMv927Db9CQ4dq85NBpvNOn0mNB1plyWq27HwLqMvtstr13B3e6FxUndTzRYUm0QWzb7VASkSIVhmzI/xW0eMVlvBF8aJ77wcFt4CEfEhjynwP0F59psNtzAdtebylzvF3HfTV3RT/llAOz49q9s9u8EWPq1XtMyTroYOhahUXMe5LZ7v9uv7FF90SOdnlXVgHbrHXdB6uqgBnoTTXtihfpH5uhaLUznA4kaz89ZtBGSxovXEuOdgZiY7HW3heCoPMrBWmF3vLQLkt7JfDH2fUL59g5f45FASSdWaLqpXBo7c8k1uuu6Bl+6Ku/bjlDifFr53Y/y0VYvJXlHNEuaMlas0H1zB7Qbh9b6FSRRpI7uu7sFXRHb1/nLCF5647dDw/odU8Nx1UeOsOekS6o8cxG6r96xuhMJQ/KPCOLUwM34zyWOmPLnxsWr5+aRNoRojtiax3BV0Ft54mIo+PDDuaMKQ1gqL4+FCjgivoPZcVNmbxR1/TeYdLr1QB06W8ghj3CJh/ee8ZixIv5PXAQ3Z0ThXEn+W5JrAnAtJVZD83XvNCl8z3H3E8UAWCRXr+lyPDYErBtPduqBfi/Y5is4NaoHH+e5OughRYYfhom/YPH5STdXoNU0wLbN1UcMfaKwk+BdQf0Xzrg3o3iG91JfKy6WvnuVsGk+HbmZDoz84+KM1m1n6+2y1wZOTEnx3KyZAs/FpiXMwX7Th97kRdYS3Y3fw4qr3FG0y5v7xRnEfUbxw/lHSe1ULvSvOQjZPuUGrttvbHSl+0/l5BRAB3Hdgn/1gfeMkLDogwW3+V9UUGQipLznG2QKamGreHuDE8Yud9/KHHF4X5bFU3X9oCO6tHsu5cs4JFjKtL5475ou3n7t5s2WgIi/Xq0Jo4HxCIFnUUX+GJGq0ZnOW/JECWYNsuvZ85IDLBc21c2wF9OmtWdFQiERrdisTefM2GBOORxQInHJC8J8uavGdJEKpet2SyOAe+IEnuZ2wO6OsrtjMFRH4X6vxg97sVQcTxCrPKCE/06+F7K+W0eDhoFbDbWTwHWDt+378V6YC2m6/qzHArAnO7/eFu50ugTFLvo52KC7q+fXN8zqJiGOPWevTQvRg4G87c6opwQbpTKQsqjxRDP+uf53pPSuBVSU5gbL0LstrJeoX7aAuMv5s8ioovwbaiY3eD3XzRRMvD7ayyLRAsE1M0mH8LtsSfiJjy9UVdbF5iXe5NsH2Zp8TOZTlg9rFhzqXD/ujp4NnEFbpNkDNi+TjjTQ4sdOlKiNnnj/hThFiXEPPwB3ryA35ng/IR3cQ6Yh6GuvYpbf7eCjcaFjzu4YkCQacK8zoRL1ScmGViurUNRrTWZlsuj4b0NTu/f+ryRAeuBRR7DreC7nHZY7NYYiCoWUJRlkiKro4B1ZZEfb5L+ZOd0gQCld4fRoioz2e/flR/3r4VtttYLftZlQhG6DX7/TneqF9299rXeq2wPHSj/8iGBFias0005TCx3/kx7/5mn1aQlEqV6e6Oh0h2Zb/Efi90vNAmZWdIBrgKisuy6WXCxdnBb9mf26PwgYomS8lM4OypKPObmwUuo1c1YNQevVGxqz6nngHl7xpDDPdkwWNGPbFnzfYowiJtfbRkEcgvmRcxvicD/pSyujtzuSD+BSI9GcuKYf8RhvEtbJmwoUBzgDmOGJe1lXerRwtBRud0APu2TDD5EOS++rMzui5nqzHqkwkGD9+G8mzKhMrvW6LaZzug0PA0vwjhYmhfu+qc5Fg6nHMYHrMqdkEWpwpiCzPTYczRxPuSazHUdCwu3lNhj2x3bzYvIJ6ryPBFrMnTYtDPKXzESzyXusYgc15LOkQeSRFs8ymB2VbL7Jmq7JGWjyfbQ90MEO/7rn+qrAje7nZUFGy1R6pXpYW3Z3nA+I/PYVknC6F9NesCfQt39LmN44Y3hze897T14hguhFmnwhO3b3VHWw/d/1XY4QHrXn3t1ztYBKlBzgvf33BHnV7a4QEPiqByltc5vSsxoPl61Yd6eRe0hFVIN/JaMZw36pCc/TgGlGy+/1r9wQXVnvnyh2OsCC66DSpL/YkF8wr5hDs+LuiwhCHz0JVWUFIJHo2TiYVhX0Y3TjFvNBcVHLY81Aryw6VBfYtjQLRb2n/IyxtdrZSWOanfCimLFgteiYgGk+sudzIOeSPBLVe/HzvfCqt+eS/3XhsFPb9ElK4reyMVf+VHt4l8bdWtwLM/mVi/p/lWvCDytbVS94iZRRGslc8eX9mfA9XNGzr9pF2QzCzZ8dephcDd2brb1i8X1JcmdGtUO6OkqkLRy6eKoFZFoaq3KxtsN3y93Sfoguq/iUhv06yC0xMnIT2+BF6eU7VgTvdClkZbO932V0GCnpM2q3spdLR63lEL9kL+hnHlvB8qIf44Y13s1xIomQxj3HTaC7EwxPOZedRAvW2gu6xjPhgK2w87gA9KUeQW3xdVA0bdp51Fk/KgaY+xxfGjPuil1nG7rI81kPJw9/3JM/kQEji05u1tH7T/4I6JgURXaPbJLS41K4IOI+6YQ3XuaHIlL0uqkxtIye+UGM4pBJZBldQ1he5ofzDfWEquI6z8Irx3c3IhRNftNXo73wMtkzBj6PNohTR249Z9e6NhAZv/oOBnL7Scp7pT1bUVhjfqBlwMjoFwpW+P9Me9UN7bfXxTxL7Jf6kAt8arGOBhTvdbTeyb6tQ3VjrejIBInvQsJy8EVwtvn9660Bldq3i8SzMkEnbnHZaf/wWB7uTWz3tcnNCCc233rveFg5XUlLQfQxks1GcXrpNxRjltilVpNREA36448+qUwV2GgrvXPjihI/GFup9FWiDwhbOBmKY/tN/WXeVf4Ivat52RfLGpBTxW5BbvbfSGVbb7oOKZL/IyDtxcqtQCJvuzjg/d8wY+gTuhEna+6MhvaF6xswUOXuSbxWzhAcehrs2+1Bd1VDFc5VfMg1+MFVF+h7Mg+pSyYu9TR/RBzkYy+0QuuK8SWb74ShYkHIHILRqOyIt3Afuc7Fx4Fs0swpiQCblt/A7R9o7o5SfP4nZiX/c0W/NeSGMY/Np3ye7rPA9Uv4xtm3FLGcw7uMukZCoEGsyrbeLXeCDpzcWSz/jKIfpj3JW0PWGge2Td7y5ND9RVfnDJqcZcEI8xHTDbkg3rxPaI8nk7Ij7V8sZtYc1QKHasOvgSgvbdQScYiXoy+0jqLNvIZnDXkFBMyS2FN45ZG+d6+CFn4T+7GVqaweG83kVXdgQyqkdHrqr5oS1qMnILif1+iMaLBL45pWB9o6yUVdEPxb8pem+9PxbsI7PaOecEEPV4gNmklCPKcr/0iW9zLHwqkjhwQTsEjLZW5nQddUTnovhZ5uVFQ3hqmEmIUxAschYxWV/hiDyWylXn2EVDj4ehXMLqMHDea8LZ3eaISrbm3rhBxNU/5ZajjY7RIPMxNPJ9rAti4t+fvPt6NJztc60eulkCie+CNmS9cESFwQxKW9XIv4Pkcx53KgaPzBu/JV0d0fLwxQNpm2LhW/mW5bbyJSCgzsA8S9ERhX46sJB3Qw5sfK/TbJiZA+4XD4m2tzgg57TqOTZ5OdB+R66BQzYXbtY+2nN9mSNKzWHx8xvLhti7BQv1rHPhp/wmokpzQGrC3CxCI61Q4eWT2NWcDrfmfwvYKemFms7HMJbUtoLY1qDePCKfcCrs6OB/6IWO5fF2rKlpBYvvZ29a3UmHdYJBByXtvdA+2VeFW/tb4a1bSeH12gy4HS598KWsF1IPNv019LsGJs+5qRT65cGgFNSscfBBi5nk3X/tjYQ5a4cMBTZeBvl1By9x5Dgh67ZrDQnhUXCOr2Xc6PkN8Ih9c+wsjxOSqlGYE7MlEn6fies5deUuXJDqfx1Q4oTUdV0rFq5tgjezHx6eaM+FAr85ambb/RHPQ8ULZ/2bIEJ1Vpx0Yi686hfa7yvljzSCxbwQVwtsU10gf3NlBbwP8KsY7fJFGw/ZFdZ/bYYvD1I9RFrKYdfPe3uOb/ZDeyPsDskT6+53IKuoj3c57Gc3XpjZ6YvyAgWf+jogKHr243Dsl3g4PaXC/kaQyCMlK0LCifVvmPB22bmWODh4eR9H5m0iLs1jbbj/GQFn3NaiiqwE6N7R8uH9LXcU1ejG8fpqOGRxcMxddwDBnF6b4ctWzuhm+ezXjiWPYH6mogKPJgIb7mUrvYCI5zW710rKh8GitO8KWn2lYGIpFXSKyQXxXuIS434ZBtJ6v3iswhA0nP1Y87rKGVkZaTO5ZxsC1xrd7bXE/3ff9tOrkOWeqKxsJfOJ+blwNcw4hWusEMa5PF3nizqiseyd1+/vzYHJ2M8LPWYXgXjOSqHelw7olbvISIUxUV/uSJOc/asA2jqYAwS/OiCvjKevvY+3Qdbexf1rBkpg/5/tG89HeaKmI4IW5jtroOfg0yP9QkS91/qBRX3KGxkz821IUKkBe5NNdo5EvbCnV41XnN0H2Yc83yCSUwNvarW5GF8Uw+/MsXirUz6owjzlppNcLrxs2JcuubsATv3SjlBTdUS50iwf12nmgIFj0ZOKoXy4fCtg6Ge/A4p4cMH1l0k2uF77+UIquABuBt0y2OzqgFb93OopEl0DJnPaBM6gIujesoT/J5F39Cp2ubEVlsJQcN9RrqJw4FbhTle55oY+S/PxF5iXwstj9jpNeZHwJNov2OuQGxJb0jLgn1kC56bcv383jAAxw3HzqSJXtOvyUv3GljzolGE4ouuYAe2qi+fuWuOERss2CRtW5EGs+RzuJJ1MYJDV57Be7oTcvlzslxnJBQ3t4KjGwAzw7pNHntGO6P81XKbxUChcHJ6kSCmV1L1EligmKilLcRKyJVuRtC+UlMR7c+mmLBnrjJkxaFF2WbLNYBgOpuEy9pAkVwkhS5aU7Z2v59P5nd855/88fy9LmVMby0H8X+W9KfXJoPGK7W7eFImVafv4WsE1oDcu8lWbnQWSYxP7P2nTkV6sGPjVtgY8HG/GTa7MhOyQ+KGCLXTcwPBZ8yCjBg7Kbqv4TnoNrt1PU/qs6agll1ftq1UD54jcwFmLDCjtSVy6tYKOs9pBeECFBxISsiq73fNhOFfYPE7AIZX/DT2YJvPgYxAxbGVuPvx3Yd1SRCQNDXh1ziw9How5E/XizxXAP0eNC/cJ+MS0bqCyKZAHDfoPlcJSC6Cp33NsIYiGQTNb7y0MIcx+788wSSqEiTrXapIXGUXjvN6vfYhwpf1Z+MKFQgiz79D33E1GXaFXfk7vEMRmJlRTCgtgZGLQ5MM1Mv7aSZbyDUWIvrGu9uW1AvBa7t8XsI+MxONFX4IFPEfhBSpSehAu7Hiy4aJCBIbqm468iygF/S8zZvbfET6/Gio0ygtHpbvLChr8UtgWP96cF4KQTVG9P9cZjuKkNdtzltgw/uaJeYkg3yfTH+Y2nglH3561HXxOK3BObv3LV5ENyb6N3K9xVOQy+n8v5Ah43o2v3mVQAvUfjln5sAQvxr1oV8GHVlBRsc/5Yl0Cesy0xNErVPzqX6ATcF3wn/8gvKyOK4Qs5sjB5jESCk+kpr4Q8FzblZLEWH4B2G8mYKJ4KIq+m05dRa6Gv3vfx0RMMGFzi7fQ50vRONk6dMb3YDVIxunb5SELjLslXHR3RKPrfUgykKmGsmuv57z4TMi3rDAiiEej+Qm3g95QBqYuZjL0FA4oWZxzkZCPwIVex4qqLiaYubco2P9ZCMIWtj9UmSR0GyI2Un38od3BWVR3pgSIlmc1RZ8L8tpeSlyzKwgWTie5rUstAcu9AY1nbSgIw1P6x52CYWl+27hILBt2Wq/PnTaj4PuSqbJDSQiLx+2ab3elgfTHe6NLhmRsWoq7omBcC7pVIUr7/ErgW3z67k0ldNxZ/A/YXK2FurXbfM29iuHF5C9tSgMdy3Zv4EX5VYPS2Adb8y150Btfk/TMLhofKGmnBnZVg6VHS5bVyVzwOyES95YRjfXXo7JzZqohh/VcdcEgDxznH/y8kRWNojJRLqE7IuDCRpFI64J0aAjqHhH6TMbw05sW7lZEQvZ3uzir3NegHr3ZR7SWjNc7VLYnj4TAtgLPpqbpDGgtsAl8pEhBjUzboho5CgyJXx/wbk6HVRMX21mRZDylqLyhzrsYgnvPnQ3KrIKmIs2A+8OhKOthGsC6UwK6Bn7lSolV8LQx4mbq3TDsPrt8w/dLMXT05hfnra+GQ1dtNYqUwrBrYSl1/kUrmMVwsx1YbDDZ/VxusZ2KuX2VfB9yK3gYCg8fHCmB8dtpKZJTVKT1ysrm/K8VUv2bf9oVs+Gfw+qkQRWBR/R5ElClFgr7haJy2Syw6lIsSEyhI0PuNN1BthaUpXhvDPOLYKm35smVBDpKNP9i2jcKuL1CozNmkgW+rRTvpht0DPYIJSgQ+BBupRgzYBsKnVLOvhebGLh5o7nGq2N8MLGQl5YPJ8Ne5y/2I98YaHXnUFhYYz2sYOUsHD5GAauAUqlHbAaOv/T/DnEtIF8S3K6sxQG2T1uVwyIdr295P/UktAXm3VbPyCuXA1/MmN30ZwyuPq97QNGtBWJGjicd2cqBA9fUHD86xOBRdoNmWBYXrImGt8ZkSsHVfqhdZT8VDzhbs52MuZCccuL00gQb5iofiFcNRON2FcJ+TgAXLnLrdkjas+Hz9mNe5yWpqHHG9vpcWQsYyZmSCXMcmL6z+e3vAsG+vSKLjY68gOz368WSmUnwr30218Y7Aos0TZvdOxNgRv6gTm7bK1B8w9C/phuB5zw6vPsHXsKay+ZPqyeSoBimD5liOLb9YD2+m/sM5vdQen5pJILmbbPodaKRmKlVXMq7UwtlUg5viYssCF/bECPRLphD8OOTX8urYMz76MbqrDIgLIkeT6ml4PqQjTsbr1fB4Th7r3vSHPC5tuGpWQgF1z3KH/waXAVKK0UnG36WQo79ai4rgYK3enNP6flywHviEq1ILRc+a/cZuI5G4P9ETm4anBDMnXRHaoCbA1Hhq3YY6kbiglZFZkBgOby5MtdrKZsLjdcI6sTnkVgmHKu24hIH/Ix8fvQIfHHv2Z9L6t0ROPs6VoWvVA7UgY5mxalSuMDjyfQ5R2KDyK7a00fLIeWAztOjk2VQ/cl449KdSExpTP8UZM6HoXX+IeJTcaByclbBf5SBazarDxS218Nbp7/cjsvGwbh3o3IMh4GGrhMGF9T5wGTjmIkWHYxCXww29DGw+9BOoa9r+DBj/nR39vIzKG6sOOfUxsCjFzisJJtmIExNpZots+CPiSGt8AEGPkwS1aDINYPWt3fU3GYWaHfa2Hitj8W1jYwTyhrN8MGtZ5KwnQWG6b77V62MxfKfDndHiU1wT8Zb/Yh/JYQRqz7XWcViYvbjVCKzCdDLqXw5tBJMXfNlyg7G4r055SSGaxOoMWedtOYrQXA/BGmTWAw4MTbhHZcNuzL3yI0pVUNtDLHSZDEErXWmjhVlZAKx6ZGDneBPv2x2+p50lISm3q8XtmpmQ8yvet6T6ir4sytrv94aErqvGfM+ufwGrB5bSDuqkoHygfJelB+COpefOd93yQYNEe6DlNIoeHImS/i3EAn9m0SX88g5AOK3My3+DQGFjUx6f38IytwObr+bzQPG2g5ximslCKu2FjxNpOH0hs/CPa48CAmxkdxTUwlCnvd/6nrSUFj1ko+5IN9vpqndS7GvBPGbVxf6bWjIGs3QP9TWBI6Hv/NWGbLglHGf6XmNWHRx9NwbeVmQl2kO//w1T4Y8g4vWV7eQkRF0a0khDcFeIiBdXTwcdDs+ib01FuT1LvFQpiDfFRYvX34XT4GQ8+tWS18nY8QPlx+aQa2gP29Eft5XDPln29oJYjR89lZ5Sda6FbibHH8PTxYD/3j4g5n7NJwT9w10vyLwFJLSkbbZIohviQqWtqahc6rapZ/EVuj8dlm653Ax5I7HV1lyaSgpusIu3JcJ3ccIm3VtEOSybm80p5BQwZwgvHhT4FF+M/KhVxG0qu9TiydI2EiXMhRbwQK12X2rqzgI+/7r+ljLJaHeNze1mu9MCOQMR7kMV8DS1A1bSQ4J98hYD34ZrQNXE2EPqn8F6NQ9qZQ5ycD9vzWNW17Uweu2J7v8jAW80Uz1mtzJwCGL6b+rahA+Gm/YpOhRCV1dGTKDzmQM7EmtqBXwh61IyppegWcTSavkt2iTUbHtzNa7Zgh2OvQc6q1KUDLSS+CuJOOxrkfhw1uZ8Ikzc+SZgD/3vRTjjrmTsMzKVH+loP/1mf4fPg3mgcguezGeoP/Zvl5px20s6I9Wd00QKYDc+pAynUYS1mwSnT5syoNWL6fkgXIyOFU4+G07S8N/B58TD/rxYD5eS1dsfwR4qu2WGX5Iw4z3QmyVcsH+/CwhcJEMW/NfaTvk0LDDVDtpnRgTzDl/Og+E54FK8ynVwzdI+Gri2qXbywJf+mTiltpZBVnPFq10ogXzdI+ZrcjMhFPupycs4qrAyeXRNivBXVDzxrJV7bMh6IRldPxuDuBe8UcGqwQ+MkmsLRbOgmJat35SHAeScxOCpTRJ+JfU4FZyTiaED7/V/11dBra8CHonkPCP0VTXCloArJQXGrtJjofSmzH5qzwpGHBe1Nm34zFcSXbk8x0SYGRmluDvR8ENwdr0nhEfMBNeffFtznNQmZ20VKyn4NC50Tnlj+XQmZUWVSOcAfeOFMgFvI9EYv/t7fcFdY9s1UG77lSQFPY3Ygvqj8t8xqkxFdDVRt4exEoDnYIEjrxjFJ4wyxN2GmmF+gC1xB9aCEec/z7x25iKpSlv7CwnW8GzNMRfXLcCNCU8sh/qUbHzdy3ZekcbLKBRg1VyBeS/4KR9HI3G1NmLObOfOfDrEjPUYmM6/OFnvXpxbyQmWBgWSbCiIZ0W6JV5lwy+9MBzYWfI6FD8WCeskAb/B6iyCDd4nAyXdzzUfxzHzUqRkVWEUhIVFdm8RUnDXklISbJHg5AZZ96dc3dl7733/jh7c0glO0R+RkNS6Xf/fh7fx32/936/P6/38+lQEyzqWouHW+Jd2zgeLDJsY1jJqMFBk+pBnf3XCSDw7G3JiDcWkTDV3zUk44BOXH72lUUMzDVN5qcyY9FB2/jvSRZUGP/hhuvxagGbMPM0T0sConq43axWpgK3B+b3sHQLNFaK7nVOI6CIdLvSJ45U+MinWNW0i6DO6bDuGRUCGr/chm7IUsED8x9ODt8C58rpjCzLCChGI7v+t8kInJVV3uy3z4KKomF3x3g8YtDcp6UvMgKVY8wfmi5lg6DbZsjEKh4NFueL4Yd94OrtrdfvuCnwyfDw6ec1OMTlJSRikegPu5stScczKZAy4Sh+Ih6HGsh3awQEPcGAR2TPXi8KBLirLgut45BqjOwT7/B68CN7+7aKIeD1aPC8UByJDsk3sBhO24LZjn+n+lg9cF74hnsrikfMSWHIvP8pJCgphog+rIeJna7zZVM4JFc2VrWc9ARCPUz5hYMboLixNf/7Ag6llthW13KPgMfzBOunF0JBj27xbeg/PGrN2RXiYRwBk7/Npwru+MCZodjxCcFYRNzdjY2RGwGSgvVUzLo/HFxx5JrtwqMzJ51vqFa1Q/FegZULfK2gBh6FDV9j0bpwgkTPmQ6wnPqhaLW3FVZ9Xa1itQio+GqQo+lrR2j0iWZr8M4D95v1Koc58Sh2qrm5T2cEQrefq6dQa2H/5QDsUhYeiVMdr7nmdEK0UMc1dVwdiChQ5CT14pBgcObVttROqDgwLmSSVg98xFa+9BtxqK5FRzRVoxNWBC4bOMrUw/UBjIr0gThkZiGyfnpfF1jnORuJ7KHVTUtrbxI2Dh1na65oud0CERUSHlcuOgL/VoGBRjsWJTzKHJOdR/Bv7wiJn9sVpIcaUxxdsUhOcJAuM6oauMSdxCJHMsDPVGHT5Uk4ujU8/+vEvWpYo1Nh2vDLAqd1t/yD1uFoUCYujJlUBa/+sijPz2XARkTNZg1jOHI3SRFILuiHqocPIuzmaX35z94y4RoZdWlf78rz6AeNwqMnLKbrYWms0OKFGhmxmwSLVL/vBwzrJ2fb+noQz+u64K5DRt9yk2q5BPthwIx4z9WvAQb9hb2fnSWji0c80mZKh8Hc32snMjgTHF1Z7jL3xqHSk07Hg/HDUH840V5lMh00K2Vn5vcT0QjDZmBO3zD4BT0rvk9Ih+b9G5MHY+PQD7YQf6awYQhRMTk3upMJ8vllhT3CRKRUwmsxxJkIDLnF/zV3PIeGGnOe6rUolH66ZjvOMhEC7j0zupH5EM7rsUWOfohCVf7G+WGsKQARNZLWGY5wQvPew1MSUSg+5mDVjSEK5F58Ilzk3AhrmU0PrcdwqKSUatH0bwgMBA+4XljDw5j1E7WDXCQk27i6Ps4yDEIPuu/uMkQDv+GOoTwDCQ1dO4llaKGCc0Bzk4VDATBJaZK7YmNRSnHU1utaKvB+hAfuY3mQmbVzbCM1Fh1ZtXo0+h8VZMRlOfiS8sB6zL2HrB6L4gsjz+H+w8O2x+FPn7lbwM76k62sARbh++xkHjyPgwKv0gNxMi3gWPcuNngrBnGy3tFkrYqFD1W3bprjWqD359JfohwWcSqGe+LPEYGH911XRk4LDNlmNDq1xyDNhzFDJ25ToUlSVID+dSxsYx5yDdoSECx7//WSpoJZ1rKQWTwe2tyyJBobCMjkJ/tc0k0qqK993pm1jwHXhost9v4E1P3qlSzPSSo8F6uZn/wWBcfmCnJvjhFQwWfvJ37NVNjk9tr/jDMXDn0WWMkjxiKP55Ncyv+lA6/r4W9PN+uA62nhg1NOEYjHuMLN+FQGrMxrWzcP1cIvO4OXWiYRaN1+X5yvYSaIdBfYKjjUQdUnxQitxXBE97W6JCZ0GN7MpU0ddGuB910WVaUiROSVrog5VTwMv1AQd+tYC5xdLJzIGIpDvkczj7i9GIYsvVdxxXQUwOzlf+UlT0QuHw6dvF6SBkbThNiLUAe+KSn7gzYi0PuafHwgYwrY24XKYqqx0P5GJjThXBS6yznvGRqVCLMles0DohGgFOlytWogCvEzH9N49iAFpAUH0/c8CQPzK7tLrP8i0WBp1mj/h1pwv+DUL3W4FZpYIyePF0WgMTmu33NVw1DhLELf00IBXYZ4jwwUh8bVs1N4y4ZhJmiY+vhsK7BJYWvjeuLQXp3KL86vhkGg7aa/M08rnPMhXl89TkSeASm5kzf7YN/7xMz/eiiQNX5Cy+o/ErIP8P0z9LEXPgd/lpEUb4WBd36DyYiETMqJofve9oLi+ZtsvikU+O2mwlDXSELtEuVHZPT6oCTDcXLpTCuseUxPxa+RkI9/V5fsVBmU1Tl5qjKUwOFgby/5uTAUYEBULiOWAxf7JZ5Q9SII4HY/94cBg9bZ1s72rZZD0erFSKuzJcDQ+CQFeDGoZjd544h+GzhlpeT7dWSA9IvZJfN1PNJRMFM/m9tGu0dGXCeW00GNe5SlXCoWNfLR/TyKaQN9lpXLL6WzwCM0lP0mfyyqOhzRX6bWBo8OtLNkXk6HntbpwKQ5PIpS+xAaKzIEeQnxR3V7qyFVIySmkY2MwM9VVnJuECRYU9/K5tYA03tVsceSZNRUKNL5ZngQ3ko1HaMuVsPHFL7HXVJk1BLBlp1+dwSiDiefcOwqA9t089kreDz6R8djLm4+Al+V59Ybv5bDI8LqDAsJjzKVKiISLoyAmML22dsM5fDV6cCM1RAe/V75bVee1AM1B/9a2+iVglnF+buzJ0noxXOiJdm9B7BPrIxTYksgJnJscZyNhLauGjM8WeuBwJcmJrahJZCW4vLwiy4JUfBhVtw3GoB1OmmsxbUZckMxgX2nolBT1LcNTmIDUGXYoip0ESzNnbVKMI1Cif8YM5e5yqGf0fL6BB8RhpM3x6JXwtA9u9Cp+aFykG8/shaZRgAlnMtYETsGWXhMqk4ulsNc/EAe/X0yLLfmx45yY5DymOG9iqvlYCdbddNgBwePq0aVo76FIUt30pBZcD8oD9Z5rlMQZKyfeGd+mYxqYz5KHxPph/OaMs/2/0ZgV4j76nSOjN7bmgz4n+oHpweiX2u8EDi5V4WdlCajv/1lZOm4fngnk6LvatIC3XRuI7xXyOhI+6kql2fV4Dou0p/HXw08Qxd+1DwOR817IxMYz1XDFjY2ppO+BrAMN15saoUjD8b0PybPWiEj8ld58W4xdAk8Mu3SxaPpydwKfFMrWLnzP//NVgxnjoXHMAXj0QjzWvu0ajXkq9Ya6KpXgU7MnNi4bjgKcHEYkCG3wo/Ml9THbNVQVM3uNmeHR1TTg+KW+q1QNfoBPx1WDfVvBEw3LuLRy4DNeCZvKqxea14s52wF1w/3jf6JEBBjoQG3kkMveJryrqnFNcPemRI/XBQJsS3q7FOQHAJ+9nsPXlJq4Nd+wSN/mMkoqIjsIRdEhUXRrLEKe2eI2b9ewXmQgNwWGXmeqpeB9LVy+z/LJXC/sMfQcSAMKcgOEAMXyqBtoWLsQn0paG2LOxnOhyE2fYZIo6pSCDxUrK3fUApTFqanLFvDUFLZVn3dfSqcHnbMxNF4xvDZq5NeugTkmeJ9wFuRCuWhS/QbtbWQLV5yXzmbgKzvMJ4Ou4mFpgVn/tsHW2FnW9FqLReLXrmTt2YZeyClqof6RwLB48ADYpqDRLQcVKa253kPkJ4dKqtMbIYjnW2NoxwkpLDzPYaqVA+rfmcNYiya4dLHuctf/CLRPxMORju5Ovhwi9VZUqQZPHX3ncfORyAujlFJp391INSU8dE3qwlkXZsOXTaPRBSVS5erprEQiOfU2xPrRMtRt3w6EhY1he5rnFUrh0sl+vy9H2g5s67vavA1DAXpcYU20jg56nPQ2qmLRWB773UXhcbJeeOs6/tmqCDU3VWk21kJ3CMznMrmsejdWMPvgC4q3EetDdyDVTBodSE5MSQWzRuf7V7Pp4IX/Q1w5q6CKLmQceeGWKTXxfxmQSUHNuYTpzZIFKD3FLLfv4tBO5TW83rvcuDmOdvDn1ko8LfQzEjvLQYV9AxIeCnkAX6k703FPQp8GJR4ufcVBkl9+c9HMIoKSWVN5xs4q+FnZ+Pmp1+xSLCZ17ItPw9IdLMTf6Za4Hip07KYCwbxmg97uws1gWsb+ULBZiWwfnypkGYWjRreCjXEljVBy5BfS8aeSpj4uU7QaYhGEy45PlUczTBlum535kclDHAeL9L5E40EeufXfqz0QWxQZ/p4SCJU+sSgUREyUrij1MSk2Q9GcuFdbqIpUClP52x9iYzEYn5ttff0QVXHTE2SVgrQ1dVzJPORUTjhuzHJsRl+r45qH/hWAUa47ZdKSjFIfWVNLfBkDhwu/qLpW0OAzb0eorFM4Wh8So37/Nlc2Ino7GuLIkEdXV1QUQsG9fWtUd++qYAlC5OZ2qQ3EM4TPJV3BYPYf+fXVJ2pBMVnxUmReWRweuksy/MEgzb1POnOWVbC64LaAqxCAqRl6b8n0OpZGxa0uIdQAClOV+/Svy8Aaxo1MglhEH1+sKzSg0JIc2uQ1BfOh5vbc7PmjBiUnB1bruZVBIPKdlF4vkJQSnwyvr4YhspNyQfUgobgpaxoxdwGgtcH6G27KkmoXoteXdtmCMpUYowvExFctOCJkR8nIdO8z5tM/rkw7TMZ13maVn+X4fW7RRiEnvceVa/po/FnSXqwIoLZqPJXDFxkFFNinu13rw+Wq6RaHngjwK6whHz5TkIuXSUn2az6oPFdx3+HmBHQH8ytZ6GdLxNKj1kIF0DyfCZ2NbgOtGNY79JJYRDz5lfGfJ5C+P5evnuXWAuNKpsPplkxSM/vQJUfZxHY9KeoaBrWwRiTpHT2Rhji1jxar3K2CM5WDHx70FkGNsQBh6//hSHbG4sY7rwCkHpx9qiMaBkE42Wu/DpC68uZa1dEu4og9HU0uZOWJ8Ya6XVaM2HoAu+xo0yu1SDenZ9QdqEezpXwR562C0ejU0nhC8o1cOdjNr2+cz1IJAXy7PSFo0+369XrK6qB7G/vF79ZD5fVcSqBYeFIqUry1JRaAaxPyW76cJfDcXOhEiEJDFLcQ3RIly4GeeMrgeGO+XD/AOeYw7swZG1/vI/4phROGwQvROOLYdLV/upqSxg6cK3sIX9rL+Rf3L50RiQAOqf1m0Jp/eJ3FDoVZNgLqeHmsv117nBMH/dOM5CE1GKfRNnN9sLl0ttXDZicgWHfQhKeQkId7Fu/z14agIEOuZ6I3xlQ/1Pr+gMTMvp6/HPFu9oByG7IywmLyYC6Y+OkAVMyqon917U/YQDUnFmUFXmz4P65+ZBIMzKadlM70Co6CPsjp4wyTbIgqqlhekaXjDyKTu0N/1EER4dbTywG1ALjONeL+o9hqEo2UKLqZw8kqKa5qNgmwKv08oV8IxKKGl7d4vbtAbzw3QAbnUS485hgHX+IhIzeEw4NhfdAcst+ge3q15Dmdb9SQICExIyTwuhkWmFWeBX74BaNk5mrOOyF8Oi8xqW0DSoFRIXedQvy1MPZya+9uuM4VHQRS9/aRwGLlyX5Fax1gMO6mfdQcehr9u41O7EeaOjRKQs51gxljIpjR+aJaK7Z8Nm/iVbwnNabuhSSC7rLauvE13j0osrdgl2lDdIZlJw6fmTDUTGuiyUzeFTcLbirrNEGRzWoOcQ9eRDFYpApu4BHnZsETh+hHhg2ERCuMHsDZQfFtAlTRPQherKjd6oJ7m4rq4eu5UGlGYeQ7odopBo0kPqfaxMQ9xbF8HwpgM3bN5q3Y6IRa9LLVdJCI5x79wq1hOaDfs7HgIYL0Wg07XQas3w7qOqPVIz8K4V3O0ekX5NiUXQV4zxLRTtwsE0rdvuXwfd+3VGxzVi0z6ouX+xROyS0b6g4nSwH39nEOJe6WOQu3JsccLMXniwWvTfyo0AfD8Hskx8JySSSnN8a9EKy7j61pzSPuMV1o2czgFZ/Ao+n5o1WOPi7VILi0QR2m+qGz6TwqOjF/c+4rxTwPd1RpGvZBE1sCoPP1nDoWfdzbWZR2n7NaOk9ld0IdLgdyhYnHg2HqXmrCNPqrB+w+NOhGSzcRv3Os+ORYfiniPq2Vrh2IDbvhXwqDOytKwgLw6MtIzUm56NtIPM0Lcn6fiqY3CEfD+vGI1/1SxU7q62QXHn6UclwGqipGCqxZOHRKXoUQtmg/c6xVFsRbBK8m5MIGMjBo4kelpy1hnZYfTKezhZWCk90teIifsaiodcvYi+8a4Gm1yY3mDgq4XkrS3SMCG1+9npSn1nQ/Krit8nlmAqYdeLwuNSJRQb7mSNdaJ6ZORxfPLtSDp8Ti3f//MUiacMwrDi2Av7w+mhqthWAphLa8ryMQT1x2+knwitgvQarFDWTB6rKO9fyAIPSuqbpbK1oe075uFGmTD7c7UhnYw7FIGuqFkbakOaxZY/yjoRVAsH+6Vg4wiLV/fqckjQ/FROeuJuWVgkHlQeSrQMICHufeeHyC5qPsxhyaZ6ugl7XYUZnIQIK7sQZKBhRwcn1w6tT01UgGB0nq+JKQOjxqM13pWFo8Fj2zVVIhwsHmZOMi4ioFItj27w3DEeDjzArRWRAzKb0HhV7IqozsfNplB4GitEn0VN9meB2lOLzoYWIes46/dh3hQrzNi+vC9M46sLOzno8loDmGDnNyugi4fV0mylDEgXWxCNl+79h0ZH73NlLQ1jg3nnVUVxMgQXrS/QrZCyyeOIckOXVC7salTMsl0rgFZroNyaQELPvbLfXSC/oaafuGXtXAhm6fVspDSQkp/SSUuraCx/HYpceniyFb5CkfAJLQiEmHc/np/FwYuOR/fQyBRzGL5OZjLCIhhjxiqIjoJjZz1FzsxROOqtqqH7GoxL/wPV6+RHoknjAv8ZWBgc9+OKPduIR9tC98tNcIxDyR1qyVrsM0n5xcNUyxiIbrJrTTjYVzozf31up5gtc4x49F9piUbVzdMgmjZNDuw9I7d3/AgSSu3d5hAlodvKF8s/4HpAXoL/IEVgMny7/N2R3goTihvnWFxl6YTZ8b1fEdhE8H74UeM+chLoK2oPpzalwaHLs/HarB9RWb2z9vk9Ai2MDOYXLLfCcA4ANi4UB2b4h5bM4dGtcc+iTIgUYBLk0LhoT4Oz8jVtaj3Bo5BjjaQxtngM3t5lv8MTBgeZ8vQHaPE8FXEm7eJsCw1ILp+d9saAZyIq764dDB7kaTQ3E2sGr+bPp7pMW6BN+LdUaHos4WI5KC4y1Qd0agXT7LwIftd9lNbqxyDE3Z/ypXDussQonmywgqLYbKj5Py58BUf88VykC+Auesj773Ble3h9nf3AKi4pnvt7tq2qDpznojcbzFvB0EnRJU4hFOlocLNSzVLjKFHnBhoVWh0StjCcUAhqTFXXEWlIB+9jbn92lEN4e07M2NyegAy9UhCtuUKF4GLlaPyiGyHNUectA2pzT2bUpkBuBvyvLa+lBPTi77x3y/xeFLoUZpr/vaoRIY2n+O9g6UM11+JktHI1M7JbvyxCaYE/94zEXyXqgxzwjtWZHI6lzNWUvT9uDyJfTTLK/m+CjlvMtyhE8bf9inGQy78O78bydY0xNMBItI/DpNB653DtIb1HuCTORno3nTjdBCsuJ2KgvOCQ5ablZbDwCt9vjnsaeTgGbQpc3Col4xJsgE1RtPQLfHAQuvOFLgz+B124ejsYjNZXQPHnZETDyQuqZ/akwG6AkZd+HR637/RaLu9thQIU5q14gC6Z7ieyVdARkr0rY5Q9sh3VSmPbx99lAFLFtONMfi2Ily+/2uLeDutggnezeLHgh4J4kTIlFQsFH0gQFu4Du13tplYFMWHrd/XcpMQ4pBjLYYu90wRY5SeHEvyxY1uAbHemMQ2S1bl6GnU6Qfs1fN3M/G1QNog+Jh8Yh/k9eVD1yOiR6OOWkHWiABwp2vFdiIpBQX/k7Bs1MCJiIJ6g8rocgK5knfV/C0cT6h//8LDNh5fXXQfqQBhAtJdtbzYWjAzVGCYaVJaC4pEu31x+B81KEMTcKQ5j8PNHwcyXQMKkuwiyMwP6Q+ee2zjCUF3oq7PypUngqtWQZxUXjxtebmpVNYSi+bOeq6scSYOJTjJm+2Qysed9L+JrDUMTi/q3zY6Xw5tEUx5nAZgjML4+52h6GuEIX2fWutsCZrA/njjM0QDsuaPl6NRadw3d/Uwlvga/IvNrleD080mwTl/qMRQcdv72RTWwBgy3bAFvWBpDcULWY+YFFkc9jnwtXUkF8z9k6LBsFwucEJHF5saj+lMDt/A0qPF5Zn/3T3gKY6wI/XivHot6ZLOrmJBXinr4PjzOgwCelTHVmy1h03XRp79brIfBPWPMd5K4Gu+EkNcMEmlde6NvaTR0C10MYNemLVeArtZH2Dk9C9NGZEuWjQ3BzR1ehx64KcnrOyxvok9DVEyZDj/lCwGifx/3v+hTgE3333toChwIPmmco5QWBOP/zg2K1LdDt+fn7qCsO7ecLnpAdwcBbrssrHfsp0HgsK7uAB4d6s8d5C+W6wO2BU694bw4ck9A4IFUSh3z9fHM1p6lw5Fh/V611ECx/PCWWfIfmj81PdYpWqPBIF59Z9F8kMNo1NUpoxaK75Sf0H9ZS4ctK7x3cSCjkvTIzM0yLRcWTB7otLEfgAvGtMzauFNgnDn7XxuGRYsWjdQ6LcKATFbv7PSsUvvzXOerMhkPTmTxThJVAEDbZmDkvEgkVS4P7H77AoVXGtYJ29RBobjEwyDYJAoqGetPObRzSfPT5JZ/KMLw/6fa4y6ERvNrv0BkXENEpbMiv7xbD8OLH2k0NySZg2VgwjXYnIvZs1p4EuWG4milDl6jYBJfc+PZsVhLRBE/dBL5iCE44cGQ66FWCj8rJfb9fkJBK6OvcMv00CLnL8KzxWjo8SXF61XM4Er19PskRZJoKPeycRXe7U+GbpW/Y1YhIxHwKP49W0+DHHd4DLD9S4Vz4nTuJbyPQYShRfhs4BFrf1Ef5NspB7NSKnEIVCY0FzCQvFAxBgPxU2X33cqgV3L9DDCEhkWOC2MD8ISi55vWDwbICSsbcVG+FkhCBqUVo3KEeav6T35nXroNr+92MDBIikY7lEfvBiHrokxl5HRFZCw/GspiZSyJRmBifgOzNBhBavMe5zVQHecf8aoPEoxDr/hPVExNDIO5QFKxlVwHpi/mftLRIKJgv+6oYYQB2josp9JfVwud6upR0Gv9nffur2/h9AN4V1Szo7dTATT2xORcjMjrUoMiS/G8A/jbKGZ3aXwfne2dEwgzJaEaz52WEbi/cTtr73YwTB7at9e/u+JPQm3eNL6UzeuGpaPew7ToB0nmur45kk1Ayt1dR4tNBSElRc6E+qIXaM2yvszTIyCg721h2qRN8yNm8XsYFkMlCKYvyjkP3cdac2ac7Ib1w5U2oZDOsvL38W/UXAR0kanV9qu4AD3o6f2pkEzx5I/Tsay4B8eT2fGFu7gBndZWKzpBmYJ9h4vxWREC7HwX3lvc1w6kXYp/GcMkQvBs3HuhL8/1/J58LmiG4c2GxwnRPKuj099kfPIhF3XE2ijt6CJwOmzyeFE+CruQWFjYWLCLT5x/S6hgCZqu3WXtel8B++cMxPx6Q0OAOvboa7V5b9eH5vpQXg9jDjBeNsSR0m309OmZkCNxWN+gWJotg/sr3zEUDEnrnG6E/Q5uTd+LcjmORJaDK7291jjYnlJGtgvOUbvBslxrJnMBC0i2hgJYcIpI6FM/V9K0biLiZw8IfY+GO1N1vn9qJ6LT7cefD2G6QuMZbOE1HAOvUjJ2WcCKaJn8KY/XoBLvRQRWG3yWgB90jbZJxqAw7E+fzqwNW8ZgnAZdLwfHqrtbgOAEZWLT0FTF2gvYpqUlHwxIw+qHcvTRFQI+7+ScNnIZAj9X8t/Z5Gn9G05Ne9JHQkLFrq2/QEAj6d3+rjagE56oT/cE0b+UOyoq4ldkDC/ulXOV9aB4xOertfJp2Lpx9OX+qB/ijajeGzBvBzIZ4AtHmUCvS07b1eC8wlULzy1dNkN8d527/mIT2KLLf+TWOhwa6G/2PHCkgItfrx2FM4407o2uFQzGwHlLBTKdGAWm96+s1VVjEcWcG80grGpzfSQiO5hXAfKsuljiIRTf7+j4wG4ZD3j4f0a6afDhOQ74dWv5ILEWC0rsaQOlHTeYkUmHnTd2FXKEIpEjnd9pCogZW6Vv+hEunQ+nn0JPereHopk3+DHagGkrHElJDxFKhT/Ri2uW4cOTJmPfxJY3r2snNenq1ARAjTS3YsCGgeykYrDeGCnnJqRn/YoKBkamSQ4uegPb91NNuPd0L8la6U+sqNeDSz2Q970RC+5Sf5+m69IKO59xiXmg1GDE+bvSNISHNk2cKWGJ7gSB3VWHjeQ3cBp4fbCkk9KJn9sTb3z2wh87XPSauGjKY1T52mpDQaw25fOacVNjfrf3LUqcBrjzsiOR/GInmFS9cwdSlge6RgTHhrQZwb3lF5l+NQFP/HIc/4Eoh/rSI6pkhCjCyjz4JaQlDGW4tBjbzpbCTGvN54mwr+KRc33+5IwwVSZ/TjGAohdvqlWNWQq1wzKGZJ4u2r+98YvjvK/0DKLlnTf90qwqexImbL4vjkQoxTyRDvAt6a3lv9XflQQLvLpNiVhyqb6Tz4vuOA5zO5kvD9RY45rEcxuaBRVubX+utnKPBRVn3jvxICzSLB8WL9mMR4Qvj4MD4MLxl9NKlQS+06py94PkiDlkQQwqk/hsGVkMjtijpJvDEGzwZuhWHjv+n5vSUhQruCodqHXibYXIl4dAmRxyyD3lBn2dBhdGSIvmEmxRYZnG8fteSgDIIOJtNFyoo879K2kOTCgv11eIlWQIqnih7HxdMBd4/fp/PKdM8+MRJFc0DBLRW2HnDMI4KWZOCV21p3wlHWH1vLceiwQh9k6ZHVFg+y9VGDsfANNPhma+aBMSXKcIQRaCC9NC36943I+CJpM+DjyuxKGPbm4eDMR5EvSpNfFlSoLSF6SG/VzTq8SPY/Ct4DdKkvzFzTangp0LItB6NRjonOG6SPpNgxGxJX2cxGbI3r5gL6cQgPdK9ZatKPEg/En6iXBUEp9lcKtNuY9Gu6tL4sj8OUpZK+IjJ4VAh/VWXP5CWYx5TtmmXsFBsz/6cszEYulJrKPUFtHtEWAkjGkfDsX1KSfnaETBYNhZYNoBF2CpcO6WACqVmDdgg+UYwxD+Rp9bFIn16T2d2Gv8oR3dYStg1wurvVdMUq1iURhd0W6mNCseNAhml7ZuAqC22vzAqFl3VGr7B8ocKZtGBhGKpJmBcXjwwLR6LsAZHNxQeRUBwftIwT3E6CCqTqCdo3l2Q+CfJ1TIEKiJ+/BzST4caS90b5mY4lPdAXzzleRhMPHE6mXqLxtUnpK8bSODQQ7tXGf+kSuBrw7VHcVYNoLxVbpZF48yDrjI48+4SGIoMstvTUg/P7es3/Gk8SflR03XOohS2cRkzMTYNsC/xfmAS7bz3Qs3kGLUYPmjNq2uE0bzDyXDw9kAYcnj+64F0aC+4UY8K10SEg6AdW2PiGxLiZdcWfEaugLECb+qLkFQ4Hxdn+U0Tg47rWNikJVRA6/M57cEn6VBwZN9X2asYRByM3dDvKocbpEMU8t9UkPsgx1/HhkGmX2sxZY3dkG1pkNntkgoMMSqVPFlERFecUOlc0A13RyriHmamw5+MlD/d8UTUfkHGl/5KN7iwe7zovJoGsbdaLr6zIKKPxxMaDqt1w02Oq21SZzOgXiFLXvo2EflJS0x86OyDvl8vzjzQbwI2S4w34iUjh5EyzrqePmhbE+DW0G2EYC/jsHg+Mrr6V0n32IV+YPz2MoedrQkWHLIKIy6QUYo5O3eqeClQPK2lCE9b4AHWWreGlgM7S9un28zKwPivjti/iy3gUsrHPTcUhmJkgtPp1kvhvK+PFuvbFjAt4nglSOuLkuOPZ4v58TB+cp7t1dMG8AuNtnh0Mxr9cmdzPHI8EcoctvaK4uvBL5JO3XclClUGDk/fFkgCNVbDrmza839/vtW4mReF9AqIJKb7w+DyJzXeywsB7/oFjJwdEUVb1vtIWg3DcTrtCvuvzTAb7FPs5ExE1ckuj1kxw5DGdM2NXhNBzuhrBXSUiObfjqc6y5ZCcIeh5vIqgpO1u2ETtP+Vkr/x8atfANxuux+Wh1JhRHraWTgGhz5ilw4dvTkEK5Nqh05JV8L+97ybdl9IaGLiVmWe/xBYboXvnW2vgOdcn/0ia0joVtXhtYlTqXA7oIgWYGR4ZGKSiE2NRDFH9PdlXE0FnppoAcOnCQBe5rknYiORkt1qrMJ6MjDsCZ35JvwG/pOR83spE4Uqil4RDD90g6HN4YWpeSJYipWzM1UTkVzrJ/vakDpoyxZIkj3cBDM/61dDOCPRlnQ285muOjBOftRpcaER+mNxw/sVIpFbpE2rsG09VFhzuOktNcIu3QOBC+RIdKfyJ9teTSrsz+ovO6icB3wuSsmteAL6pd4TvGZE852Gzy+qCPmQLpeW0OBMQGl77H5XiFPhmt8CuD7MB3VHZPCin4Aq+9v2sc8NwelbjCrXJ7JpvGkX6KRKQp6H+kneO0OgedfO683+LPAPhrLTR0joJGurvgDnMJTtyuUbemWDvYFk15stItIJCrn8qHkI0kpd6kxcs+A45wwPizMJOY79yvZvrIerX2/pR/9qgMUhZ/uRARqfD77fUV0sA0qhOuc/4Vba//Y/6zofhhS1rAMJ8+WQJDjPy0k7/wYceFZuDPoUyVxVY9EKl74KuGBlW+G1EXqpoYxHJl80xzjyWsHkbZ334y0KfIxWFfntiUcpk8eua5W3wj/jD/Kf4h9A8ysL/4YXeHROaV5i3bYVfOVCckouuMO17alpJg08aleVLXOMzIXMr/U808rVcNHr2PGIfAxSNzVakTuaA1Wphu9SJqtAu/Pw4uCecHRb6LdUQGE2zE4UBq0sVULQNy+J1pPh6FnClSyM7gDc0a43FmVqhbhHjDEkUzL69ydpPch+ABSex2XI4Cnw+fH+z5Y0ns9rHbp2Cw3Am80Lt80pFNAObZmIoT3vdKbe78qzPKDf4cut/1ANFTjeU15eGIS7X2mwczoXmPocevxZa0A/xDbcnYJB5E09dtJEGmwHiBV5XEJwyGmPwn+TEYi3rW2lRzyNxu2Cv8Tym2HwGf/HVclIJB2NZV9ba4O1sruVh9ZaYFMqsCPYJhYlVvWK2Txuhy4njE3qXgqc0FRKZm2IRdxiMxucxygQKOCb25aEAf/iQYUXxjg04D33PjGzBZg0Hd4uM4cB0+Lle99+Y5GXxhvhR9aVEHJxvk1JsRgylM2SbEIxSP7i/Rk/5SqQiaI8iv1SBNGCTZHCkxi054+z8GpNJejZBZVUq5VA2k/mJ3Y5GOTHf1DzrBYWyuybmpYdWiCBsW4hMQ+L7PeFYz974YA0YPfuQUYq6GOuUumDsEg9ts+gqwwLIp7sOo/V08FAp0CxLwGL3mYouTJ/jYLqosMKBZup0OnV7rk5ikX/2Z+ciwiiws8hhqd0s1jw67NpfMBG48BNOQFLz17wfe5iledRBJ37bf0mcSSk1FXgcs+Vdo/Mo1z7VZpABy0r78oQkKk/yWPUhwoiZlLT2i6NgFzj2s4LEFBkq9KAC5kK4T3vN0/zNcFWUTvp4Hwsko80vOoeQoXrE3evJ7q0wL3HG/cDWAio88W8e2R3NUSbuFumZRWCCfOzOx34cJSlIyogpl4NLRP1DpFxxXAw/cb2Z71wJNNf+rOIs5p2L9Q/njpdCL/G8np6FcNRKrY4fkIcC4qMxwp5WrHw4uDXeL8iLDojtVAtoFcD9T89Lwd2FMEp+U7t2bfhKOT9xieG1VzQmRPpZC+pgaaSctEHRAzKkVKLVtzqgd6FcZJobzmcOufovmxIQpfytKWA3AOpBu0Lt/jKAYXfEXp4nISEjVDO/J5eoCO5eyaulcFxlZROOwsSssb+ubrvYS+sydyXENAoBwFmKrtgBAmddpujNFf3gkN36pd93eW0+4TpiyghIedsS/NcrV4Ia7yfqn68AqRzsbMRPiQkmv+F8ehoM1x+nOtZKNEAA6kuLzMCY9BkLfnkgiQCHo83uOqr9XB+r7rWxakY9EJMidT3GIGqhdHasmIDaF8sPy4tgEWuXstceroZkOou6B1GDYQMvcHPlKsRqL/cx+j3v0xIOtwirWriC/nimIXSvHDEP9/hHUHXAg/PXr2CxdeClXLET5MQLJLI8004FolAcVXyOXt2LRhU8D0tvIBF5zIkzxHrEfjEudgmLtTAhvycoIYRFh2T6d3HuzsEVQINr8bNKZDmaOWdxE1Csr/+pdN1DYGdb4ywTiIF+KIrf2XZkFBb6TZjkX4OwI1YC5kjj2FvgthCzzYGlbp7Ze2aZEHQ5h5dP6ITtETQNDIqHH16wdjY5zsEPh2SMQm0/GQaXvtCqichlSteHiKNQ3D35mODLM5WUPv6U4TBjYR+68iZDTKkgrec8XH3hEpwclXVZSmPROeqK9ZfLyVDvzaGxYutCnbu+s7aXIpC0ccm4qZ7k4CeZwbbcKkSmg5sDtj7RiHqa1/Dg1L+gCUuFmb9rYNf8aPoewoO3R79pip86ymwdzZ+cnpQB3Mu/+q6ZnFopN/Om5etBrrH1MPIgq3gquQWQ6wIRxBwu7G5oBo4skqXDtVQoFTEEE8KDkeW0RoHugNpebGrSXeR7w34H92+cXiRxo0eWGl5gRIQYy3cPvWFDMdVv9M5dYehtloQW+gsBvM83lQVpQQIzzhw7BuND5+Mdk+c/TsEuSdfLWVSidCkvOHBxEtC9+cWmQQ/lECXfVubXGs83Bnq3DxG48zJwVnrtxIZkByqMbP+DEGTB5PvslEE4oj2vWDtMghb/Lyqx68gKHj3RXhDk4w6vu13ebczACq3mqYybBFsnPLM2TAko4rOvhUhoUEY/9ChTKJD0PPfLUqQHhl97lFX8/mNgxc547e9d6oh1Tw6lccdi8Y4f1hYn4uF+5h98ffkqkH2Z098sjYWycpP7ml7SIAI3ftErHANqM3Px/wVxiIHuztnTqYNwC0lXTNtdgSkGs1P7rT98tisL6J4tQGSFqx6qFsVwH9s8f39mCjEPfJWgO16I/BYqWRnna4A44y+62J9UWjqrqm7I2oE/kiTu1sclUDvGJjCdSQa0R0ia5fvbYKscQtHIdMKqGpnuOWuHY1iLYuiVngLINUv8cZOWzVMZucMakvT9pGGhZKReT7EqGyIfw6ogbcoU5dXF4PmbsWmlvhUgTNnNMPvZyXgUyUlqEub58LPZ+be1FWBnAJnJ71JKQx4tj67dygcic0VmpKoldA1J1zasVsCmLj5/DtlGPRX0v9LoiOCwIQD39/8pgCTqpDfM0EsCmuT1Or72wzbcQesZdhaYcEOFYQnxyC1qoa3Rz06gFvhn2IYJRuU6zzBx4uA8Jp/sti7OkBPjhQrQ9v/Oz4GP65VElDQj/Vzotc7YK/uYsQJl1xIS3fucbMgIGW5+OP9JpmQgqfKGDmEQkiOjvaRBRoPlJQKvNLJAl01LYV25yiwfGX8pAEbju7YrlwM3coAzikrLVneaHj8Zkvg/d4IdIz+H8mjhwwTbF8tJ3FZEH+PGKjCGYNY4rHvuy6TYb3zo7lwQg5sPbRy6ZGNQcM/osUfLMdBjuhdU9KrLPgTv7DK/S4G1QQUSdqkd4AZIepRaqQbuF85jw+LJ6A+MyXuI5yd4OViO/ylzBn0R62GFD8T0HXPLG+xySEoW3Sbvs5JAQZeo2L3KyR0VMGIfKaJlj/2OxPcpS1Av/H6UqYLCRW+vqcstTwEQXHPpxKyWsBS/ZPqIRkSevCEzO6VVAPBkfWsVzcRVKUQEib/haMJ1UGdGuNaiAik3t5TgED75n9k6fsRKOtU3ndSQC0kzq2NxZ1rgd6xo9uZLyKQ4GvnBeNPTWA0qcTTsy8R/P56XDk0FY2gMDRwZV8zuPVgUjPUU6Ba6fX6ny2ad+uLpGt0NUPrq6+p23/ige+nt4Gbdwy6GdHsZPxnGIbkTc9JUeohMmLyqPrZOFR8pfBcKyMVLiZXH2hqqYMEX71JlaNx6OTFRLPKM1S4dJxW8ap6sG6IZZtoIyA603KP4cROmDVwD+/qb4bDgdiVb9fikONu6/PIiE6Qp79nc3a9CVSOF1UGKsehl/f6w6YkO2FnKL/Peh8C9ptX4jp3CKjVIcpVnj8eHpm3u/y9mAPX5iy2vT2ikeJPQSeW4/FwnyL0VftZFtRxXng84xqNSmQrPT8lJ8DKbSnWmpoMeDA9wWPJGo3QJdMiH4dEGHY9rL74LwvaD82efjkehUp+Mq5sJiUDI0MLo0FoJiTYXW90uRaFdMkiQlKr1cDOJSKXsv0GzCXJdMwZ4ei+bETJUY0a2Fv0vVPbiATvPl6SPDsUjvSNGo21KmpAxzQ86YjFG9gX4nvF5UAEcuSt4CJxtEG0dMLtu4WVUEe30iCC8MhfC9N8wKgNCtg0VgbCq2DZFosP2MSjyw/8di1mWoGVf39jiW8VsP9c5e5JwKP/PmauMh2qBfIhGb4lLhII2ZQ2+qlGoDeSTldnuKph/M4ftnXOcjgw/z7fTCkc3XvBW+Mm+xDCXDqXdBtr4e/vfSMrx/FIseTXtaem3ZCyX84U398EMlq/2xQfEdHS8R15v4Uu+HYiWW+ttwmot8Rtv4oQUTejps2pyzTvPihQfPtIExz+QrLivkNEZzc3LDuGOyAiw9xWdiQbdnsqz/E2EBC3y+Fa269d4Jp38uXf5EbwixvPPHaaiIwVOGdsjEegpvVYyW2HPPhsMfktIxGP7iWeP/edvhVS2c/aJL8qhQzbAt2GXzi02qCt/r2eAm0vV3jOh5RAzzcWZ78OHKqoaqNPl6L5izSzhi6+BNT2aH6RFcAjRy23QN+3w8Canlmz9KMOfK4+0KO9HC2H7XLNjg0DwWFuxHi0HoI/vtSIfBmHvB/8sAkxb4P9rcacAywNwB3itKWyhUfc3+mX1adaoSXXXrQ2sR5GLslvqMbj0RCbbqJ3JQUMg+5N3mfNgr0n2lgoLTjEWUb0HZVrBfIcJ/bPkyyQZ9awkzuGR9vru9uEjxQ4Jy7V5ieZA1Mh/E8sp3Doqro/nr5pGHhu7qXPLm+AhVvvNYdL41Dy9hE2w9JhuFf0eJcDWw93gwsZJPri0OrA437e6GGQ3GAZ073ZAO4jh4waDhFR/y2m5UntfrB7euWG0G4O7NqJa+PlyAhXsM5ycaYPtJ+NbU8/zIWYcoas0aNkNFQ6PXt9oQ9Il8+SLt/NBj/f+02XhcnI+JCbG7trH0gGOV96058Dxv0ifwR2aLmkLScgfSwRrP0IjTq7lfBHzJupbiUKZQ7+ys/8WAuBw7iXjMnOkEp4Gi1dHIHGFrABcy/q4JNEhbHuPx/YYue4VHUgEnUoHcCPP6fNX2KM7+Bhf5gZdFlsfhqB5j1ctz6Wl8JYd3w/EOvg4n/WrxVbw9CRKxK+w3plILLqoFCKr4fVgDyrPUNh6OX74DtvPEpBu/vQ0RL3evjNQ1YwQmHo1Z9mt02GVvCX1dbSV6aAbFb52JMdHKI/YcLnRfND1gbb4nIzCkhvaulL5uCQ4LEQ1oJcCiR16W4bfmmBnh93ZoRrcaihX7/m1Il+UF9dfxKuWwd7dx9ct5IiI86bZ3m4A/qhbfPeFb+NOpA6/455QJ2MsPuQ68jfPnjk6lg5a1sPlJf+bz+dJKNHVCXRsbR+4P1uP6Q0UwvPU7n3ndMio0z0n17oNQrojR1anBWhgA3PF8lL7jjEPqsTfZCtDXQ26CK+1AUDntdUIrwRj/zUcj+/8m0DaQkmlvbvgTB0sKZolD0WVam4fzN82AbuJ0jeqAcDe+iShGd28chmi7n4eWcbDJCHE2bdXoHyedbR7iux6FOY5d+MgTR4P5dWqt9XCNF1hVZP5yOQ16ujuhOb6bBtJJ93sbEY3l+V2NJ3iEAywrqV3x+ngf53m7jNL8Vg/ZdaUXgwEmlGih6Oc68AS0fH7HdeLTC5FGDeqoBB8zeukXkuV8LUW88YMY8WCK36xRzjg0H/rJ2EnK9XQor8NZbNmRZ4evm1edBLDLphdWrt1WYF5MgMG4zzt8DRGJMDnPcwqH/TZ39Idi9Mhkg7cWfmwJ2emXaDXBLCdwYnNwv2Qpmz6Cur+7lgl//R2N6OhHKma6zKr/VCVFjVvSO22dAe5fOB1ZeEHnYVyid/6oHKwapFc/lsmHYWpxu/TkJ20q4iYmN90DzX8/JHpStwsChW5h0ho/7Pu117HveBbhonyRtjD8j9tOGvnyT04+DYry8LiRCZ/N380WYyUO6R+H9XR6GBHhL7fodamNkTc6nrVA3YKlFPHnCJQL+jCY9P/qqFzFKD6Zdp1eCYrP0ttDkC5YtbyATu1ALkOb4SSa2Bqvt/cHooAj20quRPzR0G7BFTzsxDzWAcLNzO8DEOyXNIG+Wm1MGTaJ/FqWc1EPsrheRDE6OEq67P0x9TYaiB4/e6VwkMMpkJ/QYCWmYlHOxwocJJps4X30eLoNGhekf9EgFtYWy39iVQwUcirbIDFUOGcw/m40QsKv49keuSmgfyrasvpM+9AcmBoABxNwzC5L+vcruWB+/D5v6rl0gC9avCz74GYtC4TpPVFK0f3C66e+TD42FK48zHnTkMOlygBnYmQ2Aa/Yjt+dVCcNB/H6M5R0J1EwWtteeH4DvnDusHzQIYPBMVdoCejFJHmTxuug/BKYoIj/zbfLjlY77i20nrl2dVWU/RANzniRd/VZYNlZgxPnEab68l765KlQ3AUlp1ciQxFw4GP6Bnp51HOheG6V+i8Tnhyl3RmByY29tx5aEJGZ0YqfcsvjgEkYxCoXGXaR5ZVlL86h8JyYl5Z/9VHYK9J3P7ZjDNIJFL2ue7RULfbqNtbY8hGNXbrmjmRTD9j77Sp4OEuLQnvwy4UuD5qcux4iZ1sPbeQZwYg0Pf8auEszAEWWbWpgGJeWDXb8wd9IOEjAUR9/nkNgjTsn1f5JELWUt73tmLx6Ko+wP+g+390FtAmAjLzYVos4K7e26SEe/HB/x15f2g25wifrOVxs96DFsJ2mTUyHWGVzC3Dt5EUd5yCbVC0AlFh0CxSJS2Y3rkx9l+OMjdcTv8SxMIWQxeTzxPRmcepXg8D+mHj1xeGmx5TeDwyW42/DIZyR0+3XA2uh/qnm0uC0U2w61jJ0u2NchI3jxImXp3BKQI5yv7x6vgpcEetz14PDr6xfSH6zMKvLPl21CneW4hg0OEEwGHKENVjb47FHCpXGx4yN0KF+x9vmt+xyHHpz4J2W4vIddXsr3mTBXgH5FyT2TTPPSdjWX9JSfoSXqefeRwFRSrse0zZ8ejMYVZwu3gp4BvPGfTbUPjnwWBGs8Z2t6sa9wfQ24DlRm5n0FSj6HUMcMTLxqLdGYcLgfytEH7UFm73qIjiPMlHqhvxaNb3/4ZjFDL4V5ZUgyfdAo4rTt+FeHAII6NpfF0nnK4GlzqOtKdAp+VTh5g/BKGWCxnRndpPNS6/C8yfSYRvO/ozNqthKG/bkovfZuosP9Ics1oUDPcfUifQyDHovzBIj1tIhW+tMTqSiw1gYvQBxarpVh00OVH/UAMFa707PM/394MjfWJROfvsYhRFmd2oCkdOCtdJPbJ5cLd3H93Gf0jkJqZkV3ZoUxY+Cf7H8NcLkwoaPfI/A1Hdb3rEN+bDhbvHZ35PfIhyEdJF+cdgR4s+dcaSNNyvITpY6F0EkxcmZNyEKZxTjF6N3YpGgyT6szz9VOAyqbyM2UIi0bLb/iI74mBi/3DfxUkE6FCtMIe14pFXTupvrjmLuCabc/uS0mAwXlt2YZ9RBT98iJu1LALtJNWr6ZtvQZ5bya9Zkoc2vv6fNT9yi7oXNIwDGkigc3sy1cXGIgoPcp+odKsCyZV4wrxuUlQVhai8L09Dj0a4ybKaw5Aq3zbpEiSExiZ/+YSNCWjtKIDNzum+sGPwXJ1V8MehhP68ph1aXMYlxvH7TMM6yMTraoFAXBGcc9xJTkimgpZTjfRGqbVf3XZIjIYso1Nyw6/IaK/BZY/zgTVgWoD1+MzNO/Oy57UZeKIRC17PnHrnB4Gtw52fIdIDdxx1P4bM0BEO1/oJhYVhkExKMbMRqwaTh92uLJRSkSXN2fNqgyG4c8lTJHL72pIXHYx9AohIl+Zf4sNj4ehvy36g/zlajiqMb6RZEZEKst7cgzx3aDYNKvwOSQTpKrbrx6JJKKq6fVx/HY3kLwHTL/PZsDfyzvlFV1EVOBy5uRPwR746HnmUhtXOvD3vsZXThLRmJ0zr81YGrAcDbQM/hYH/YdTRAgzESjmejl2pjcF7Jja9FbqCNC+kSAq0R+JevmCgsXb0mAy9MQCo+kbEElWTvqxFIG+YUlfDM8OQ+cRlpyYbgSuKcYplZ207/G+/TfIeRhm+hab0zYQSNAXDj3Wp70X393kLTUMrq+OWgurILBQdQtmbiOiKHrz8NZHKVBY1x+36ECB6YdP4n/8iURrh5KUuX+mgkCyzduRyxQ4NUWfJH05ErEwUetnVIaBqbb4fDWGxl8HYpi/5hERJzNZVZnWL+OuM3tPu5RD0cY5Pm1av7oGal1+CA5DtsnU0583yoH83dxXbZ6Iruf1hl6deQZzZbo3+YWqoaH8UOmedzjEVcRxblE5EI6efFgxYloNvla/Xk4H45C214mEc/IjcPr26ZP2SxUgTYye2uzEowjmH21yJiPQcBN76TO1ErKUmZJ9aB5ESu6ZZeUfgY1nob8dxishX3/rosgOHvFqbIgL/60De8vBrj3QAOlbuT2TZpGo6PLIiPvROkj/WXi0BtMAGl/F0n1GI9DfRyWWj967g/rj43PTZ8sgOiHpQ+4WDnV/a77+it0eMHGaBwgqpTBzJDpxP80vYlriGvKEXoBZ3WuO14alQPz2Qt+rFYfaanR+sg3XwupS3PutR41QWi3Bjs+JQM+0t522HIZhW7xHW7GvDKSiw85fNyGiRH+72rrcTDiN9eSJcssHH3Yrd9aucPSQ1HjzkWc5lJ2xkt4r0AQVH6cmj/8JQ9KrOnRCQ2Xw953Y2pvPTTC18ODDsf9LNvN4KL+3jydKllKRKLtQCFkiKZclRSFCZSkRCqVkSSQpwlhmzGrJTvZ93+bM2GUnISpbIkmyZKme+f6ef89rXvdcc+5zPp/3+4/5HILe3H4n5nuvFyx4k1b8v+VDLR/24+0rJPSC4xPvmQuM89//GHemMg9SVZ9H+lJI6Mu5sDvzNpVAm7s++UDoKbjcSnvJ9jEMvc/OrnUfqwQ7tkYCUTIYXpM+X/EWxSB6e0h7845KKNn2qFViLRjaHqoITxWGoVGZvFybDyUwP2aoG9ldD9wflFgE94eiV+yBSb18jXBb4ZrT4F86qOnFZEs1R6PmVK5XwZGNIGWza6GVrwGKvZzkNQXwqPLubhd++W54l/rHZbErGyzfBDgHG1GQhNG1VJf0bth8Ppkm/jkLBFLEBS6qU9Cu6pXvh950Q+1jjchpxr55KN5Vnz9FQV18fx7o7+4D5xO+I0OTFNg7ZutYsIuImIq2JII0GHle0ydxyyEWpL49TxpOISBLprzx7/x98MZyR9qT34yczFFUv/WdgLzc/n3J1+yD4bf4ZPebCTDN7yi3L56AHBV/pdbkk8HkiK4cxgXBvp9axBqbKOR49teL/TUEGBAvir1+GoGbaeZwEQ8WzZU/nFXbQYYLZ2+EBHVRgSR+W+QZJgq5FoSv7btJgEuygk5+D6nQeUdVY4coFp05UZD9YX8fHB0JnerpyYXTUhiVN1sERDjumvZYrQ/sX75qupGbC8WWoXswOQSUo2kQElTXCVL/Eq/oyzLOldzh+p8GDF7ac12FiaULAgui2Nv+FkPwb8PABlMKevKpxfp2RCdMnI+eQpIl8LtLSGiIwQNxwWx0+plu8LU5A8VCaVCwdds0icEnv87sq8T0d8GpdFs+QmcKJMZOZWcw+GrPyR/fss0bYXj4yvq7BzRIqr6hWbQUjTTHr/Tg9zaCS5j0By0WGrwsr7suhKKRjwTTCItnI6BjJSVsrDSol5k+9poNj7SVd9+DpQZ489de2YLhCzxmp22/ZEUjBT8tHvNqOnTXXFW5XIWF0sFGZNSEQ1frh+Rd/9FBOLlI8qcgARJk7DPG13AI/VGW3Iylw1XfW3bFrAS45ao9aJePQwcGhfBUwQaoUByzNkrHgvbEVCL/nmjEmZR9U26NDnobVTxKEg/hW9wr86GfOLRxW8DH5zkdfk2lPW3sdIF0amUPisOhKOkdBqd5ekCmISxo854r8DBn9qnxUlBsjdovk6oUuB9FPvNdshy29v2MT5jHoInFWxUXJlNBPPuC2p5tFcDHVHZY4CEGbaS+x369mAKmdgtuM9cr4LR84Y9rAoxekzbJOC7QA6o1e2LaXj6FgT4hqf69FKQkmqLYR+sG3dcFLCZ9L0Bx517BaiUKwoe/cWGhd4Od7SmzGXdvaBZxnM5jrGNNhFOQcA94rUpOTkQGwVyEXZ/pHgp6F66yZXKYDqOZ1/JM+POB51xgyCUTHLL+fVzDc50Goi8kG0V3FgL+2t6+QjUcUvPnGj5aQIPZraCgXSgfSosrHg1vxyHxg9Y7Xx+gw5cvh3yP46ugqxiEJA1xyKA8pph1L6M/kou7q/MqQeUE9yavPg5JY3AjFzF0CLdWab5jUAW8f52Ofk/BIV2lg31ST+gwJ3OH3/BEJejE8XTeIeFQneZ5+8WUXkiU6XgTbV8JE7Bzo2iWiLR07RTVWnuhSZWTfVd8BXieFhi+E09EsFgsnNnbCxHTVh/W0ith7aD+gH8IETF7SPswEXrhiNK/BQXzCmCuguszrCR0jWVqY2Y8AWrSZcyyDfOgvHj1/ZB3BLovNXVB0iQeyivHb9dX58OP8faIFZFI1GktsaRgEQfpB5ZsVhn3cewT08we+0gU4f8l0jA4EViMXo4lcBdAEEE3jmAUgW7tiRo6cbwZbvktYh7y0UE701dx7DwBfcIUhV5OaYaa5BFeuEyH16EO7K2xBPQsVPC+bGszcKpvJYT20uBA61shmzICeq+bt2a30QhKEic50tezYTbS5POwMx4t9KS9/v2vEVq+jrKHNebChU9amrP38UhR9IBq6ctGOJSV6yWHyYFxF7+p/QfwSMWRxR/X2QfAXnoh83oNeHd07JHwwyMXjrEV660+WA049PvhoVog+0h5GTM8hSYtf3bhfR+c/aGum4WrheWZ/n1/7uDRV5vKSQ0OBAEmkWcCFmqh1FlbpLAwColxsxQHY6gw7+/JFPupDjjuJCi9vByFZOUTOkS1qbD351dh/h+1UFlBPMMvFIUGqZutPHn1kOu9rKb2pQ60zg6sECsj0YrLJp3O0gLyNzj8/2mnAVtFc9GbTwRUqHjtYqJxCySaa9Ru2abAs84m0UfcRNSVI7g1/LwF8uf08R3iaUCoIepNqRDRiN3yIePSFpiVPKdSr5ECYiOkQ2rXiAiFb6oOExvhD+XbcYe6PNh+W3qFLIpHc/iDx7omEGifcIeZ38EQ+aewS+wBFjknVvsW3ENgef3ro7++L8Bv2nldVRCLmEp9bxcrZANn4Gi978Z9uDHfLjb8KhTpZ/VR+s8j8Ph4Zd7BCQNFznu/pGzHom+/ZDjTeTvBYOLIRMsMY59S2LBHZSmIDXdAqofUCSO5gooGDD+t0lvedu0cBQ1+E3tK+FUCu6amdmkmxkNfaRLL9MFQNG9Y7pi1WQw1GZVtSvqxoAnW+1q+hCBl4dijV7R64Ef8ubNCnA0wbnT6JnaZjOZseDpuEUshIed4SuF1BNX/mmp36IaiJP/ciwIKZXDiZudYSjOC/JFceR2vUJRXVNfsqVoKgdYh5srTCOJGRA+ePxaKdv1RpwlbvYa+/L1uxmIITgRdTq36EIHSPhRr73sZBzu+DeoES9KgbrRlYN4iEhkq/FLEXksAVZ3N9K46BC4LXtJ5sRGod+RyqPxiLDxlM0haIiOoO2LWeNg/Ejm57jb/9LMJfqtLfTvytAZuFnvGvBAkoOcD1UU/A5uAV3fh5JJODUQIZRxq68SjjvezFVMVTbB8T+edhlc1OG1s2c3/wqMT652mH7W6YDnN0lJ3NR6iz+al/GP0lCCTjuTxyi4oVTq5p+9kIjT5PcSOMTzFO+3vfmW9LlARptuPHUqCad+sS0qMdV1exxzunl5QEDCYbJuLhr3aT+4OYoiIxDb7bzajF7wGY7de7SaBmPrN8/hxIrp6PUJD7EMvBLeHfH3DSYYrKvrn7DyIqPlbR8nWrn5o17zfMKpbA9QyL+P5/Xi0mGBWfNrlFYzW+rAluL2BqvMBU+LqOLTzQZ+1csxzCI4SpKK1dDB7+jqsPAKHWnu3cX3ZHQyl3wmfjf6mwSG27QlXjXBoodljM9y+CV4c6kq47VoNY4PypwUq8EhH/DptkZGHu/LGlMYv5cBnJiX+6VdEtJyipGab3gszUSLbD0dlw1iYfFLlFBHxmlV81KL3wofYaG/LvVmwT9lx//dMIhobf62Sx0eD23Hnj05qvQGR5GfTRBIWLYuEMYe8ogHbLf2U5TdvYBu/X7T6Fywy6jwuu9OYBgR2oWPIOwu0b8lTwuuw6HT2fur+KhqMp81ftlXKgnPl3id3sONQAc+tDoO1ZriQ8NJn7mIxrKhMbb8wSED/Ym8+WfvWDKU9C6jNluH3qQubdl0EdMzmfazLSjPIPD907qwrgs2u78c3BggIv/fDQQ/5FjDVjRlUKUJQcPb5Ee0/BKRr+qDamJGr99tfyN4pRZCxmDTsychV3qxNv098CNJm7lpxNpfCTGbqZHZDFIJk2vg5ScZ6squGSlIJeDwV3mM5GIWqD5340qLYD/t/lPEv7c0DumzcoGBPNGo6aaeefbUfrLovfaWY50LPHq/oJ7HRqP+8grXfcjPMsX5WcdpBA8my1CdXGHMuXLWue8rw1Wdux0ksOxLB4FOO+MP6MHRJyT90opvRc51u70kJr2Fn+a1Lcocw6JHFgTjjwregYLRb+kc6DZY+sg5q5pHRRbjA9YC1EUKcyulMA7XQvDJo41oVjTqTDkTsTmgA6RLlDkpLLcT3UFhlXRnzBNuPLwq2w9hp5oOk3jyYSF2g6H4kofCl+sv1tW1wf2WE0rmaC/yXdvu/TCehcV/ZTLHVNhg+b0s53JcDC2vXE/UZvhnpZSXp5dIAKUxnSvRZa6H7kJr3/vPRSFCwULKP1A5JvDcOOXblwRdlbokkUTJykx576KjUDo67JgP/4ApARpLe+myOhLbzLi9G7WqA9p64J1veafDTzDwF/xeHRHZdWut81ABtGZ4sLtg02Lx/M1fBkMFpN2eGQtMagOewUKzrvgwY29AI+f4gGj0qeOcGJk2gPHTTbVWgAZrj6C6fsvCIuU0m0eJoPwgZsqtcpeXDkTMqsmqfo5GVmX3e7ZIcoOeGtNhVBcKOr3vjOCEUyd3ycdpWmwc64uMFYdnPGOcxl/x0PQSxm4rY6XnkwqRm1MGg0hAY642/4C8Wiv6tmAfjDyF4mZ15m/MjBRQS0u6xN0chQkbd+EEaFWiihRIm5SToUeJq8PWMQpU+IaaFjF7A2uU9rI8ngUuVp3wYoxdqsu2w1Hoa6Dt7H7lNdwaJTAeCyB7GfVcl5L84jEAyQFSqmYcAd6er+K+3RKHsxr9mi2f6QPGJ9MNn2YVw4wTCdSUSkMT2qC7f6RzwFYufU1rxhpTvCu83VEPR025pCV3nAvjlGbKwhEFwtPt0fPhACOJIUXS44p0P7MkZx07uQQDvJW8fnglBzhfP695R7IPqv/3WQd4psITjO06sJKDlIe7STxf6oK790e3vPUkwHt4x6xRCQEpfpos43ftAr+CwvczHZOhKchp4eYKAmkna8cv3+oB/2DPIZioRAh+FFHKqE1DPUWuadWM56EzgzQTFIoFFm+VZ5cEwpHRyQ8TDtwt+0CTFdJ8iYPmVbP7f/3FYI3mT3a93wdV9F2xFNhGYj437/2Tkc1VEsbPGSieMkhX9LuMY91X4bZidCQUJZaaem5rsgnfh+do/fyL4PRzZnmXO6NP1iJ9R8kXQdGrnULwVBYYN8fi2+hD0WXW/9kZ4EVSH63a1qRLggNSrGSNaCJpiPugqebQYPpI2xISNyKDT1WC+9DYEvfjbxnLqWiHYOw+ca88jAP/0hcu5jSHo+MPbcdkRjRCcyPLwSDwCVZlscsJhPAr230UW/ZYFiX4SNhLYevAPf4cIpFA0k5GUH3wiB2x56p+c8qGCQHzJ33MWoSjVONOOciYLGvTK/+54RYWB+jej7XWhKODvzG3zQDq4l/d6j94gA3dIxJ1b8TgUze5j8d6yF3yE+UPefngN56PjxZ96kZDG/p8XE8x7YSmTRd9/OhZmyVlN4gEk5L/tg+md4F4QzWYQYmMciEoom6yLkVBay6c8lzuMPhD6FPrtBILOxRLTR36h6FBR5rmEirdw5aiB5bWnGYAdaGZ6WkhGvJZGu3O13oJ2ysErXIPpYDRSQErxIaM4G9anDxLewrzuO4+JU2lw4OC8jEY6GV0T/7rlL/MWzpPKxFz50sCFk5+bep+MxqrOMnc+6QC+Gw8aj/2rhCsldtyjf8ioNfV8STtPB8wzf3kjEVsFfRcHl2rfk1Ga6sle//W30BE0b7W7uhJuKJCH0jvIKGxbS5Lz7Q6YkXSLviFRDZBRdvf3CmMdskbELPvA8I/otbayEpAQGrhfZk9A22McB9ZN+8Cg9C37ZlwxXDTyKZ90J6D2ao+1XcF9kJVkEjS9vwTe+NnbG+4ioNwygaVTCc+gxbNu3/2IN/DCjXfnZjrDj7Ylresn1YBZoiCmhZE/5s/zOQprw1F4bODqsZxaQHeqq1nZGsBR+r74EYcI9PrplZaAlBLA2kQFsFbTQHo8YsV9RyjyTT+7vOFYAhF898wxBjQ47td2OoKRP7l6GdUaX4sh3z7r7AkqDX4YE+XqJ0OQILNMk0xKJyQsHrjD0lEHV1OmannOU9COZ3L9MWc7IeKZWPIF8zpo3HEk7KwKBaWQl9g8fnVCx4em77uN60Gxdy1IhXFf1keCmGKnOoEl7mPqO2UqxD9RcMk2pqC/PmxBP1aLwUm86XrkwxSw6k20Z2VwpqbjxHfW1BI4WJzL7eyZChZL7wOjGPNv2K3evzlUDIhj9FF2XRqknhGQvT4egix5vysk6LRB71CRfebcXVAkOdzcsiKhtRusp2yrW6Hz5Tg7sdoNxD6q/3PcQUKCNouTr08Vw/ODGK6jAcnQGfxQK6UzBIVNBfCoXy2Gjma0e+xuIsxbx4pU9DDmKQi8eserFegqk4bkPeXQ4bEu4jBMRLlGbZwFg63AK6vIdeZbORyz95AKOkhCLc6RMusrrfBKgF1Yqq0MZI9itzvIkNDb5/eE3P2K4B6HYZnUQwT3BNW00lEI6kh32kRCxfCHqHoDcxpBljHFiIeRA5dt5/HXVurh6Im77E0CtSCfcDQjYzYSTbzZeD0hWwfx39vev1kvhC8OtW38VRHIIvbYTrx2LaQyF1IwF4og5qU1chKLQLL3b72dYfgVDBZpNEoXQofQLvxPswiE8WttcWRphz/kIlmXiQR4PCzDjOsmIbVIZYdHDD86o/rknufjGPgZLv38AcOPonESi7OLDI46F2EgNU6Ax1likoO9BPTE/fbdnistwLKUL9tIJ4Ieq+NTc14iEqPdbyYW9MB+o0IZpTMvQP9IpRwEkpEip0uj91QPtBZ7ZO1MfQXNLcK/ltQZ9/ej79zdsh64NiDVP52OgR6c2JW5J2T0rSGs2H+gB1w0Ppp8LMACyhjkiTMhI5Nzu7sdDjVBa4v+aVuJCmB7mNpzOBCPXgrnRAepNEFCZ48nVakSmNaV1NqIeCSp022xNNYIBlL0L99VGHy0sZh51AKPIvdQAxOt6uBn/caTH2MxUNpW0/HmfQSSvvtIyUikDn65lbxg+hoPk9w/LGYKI9Dyt9RPLC618Fk/m3h/dxz8uph86bBGBJIJ9vUsym2DpdFbpyfnY8GoHTP7M46EjnXMV1GTe8Eof425tbYUPu+9Uyk0T0S3lzfyn93rhT0jx+06i0thlvpR3voKCXHfYwuQ8e6Fq4/lLzb0l8AXYwe7RiChPQkSB995NIFF3b5wcnYFVJ6XkIlpYHDIWsGS4mwR9EunpskwfCs2lLSR1xyC1Cc+qJv8LQTbg2kPutJLYTpuky+X0UftLjedoiOLwCjZ3yuX4WE+A0YvbBl9FG57Q47s2wsHA7QqPIPLIJg8ZC+vRkLxs0nsvhal4HHTurdYswYKhR/mN58IRfa43AK2eyWQImyoY8BcC6frEw+Ub4SgZ6cwGa5nSiAJzxx+Q6gG0g3tv47/DEHnHfgKuQxrIDFDyDrsTgpkGx/dcA8NR3Q9v3n6gxoY7pp2mudNA6XN9sVrieFo3YLl2a/QavCdxlRFRqbCif4dH3bwhCOdSRTnL9cMwlK8Z4MmXkGVcY9Q+wUCGqUpRV4sbwY86Xw49mEolHQqKvRnMvi8IvVXml4dWGOHf6UvlIGg2N6xb20RSC3c5PbzcQTxLGez3rPRAQTOjKu4YVGQF9u1UobHltZYjn9ZpIGoVUWdLBcWOR0OyjcYaIWl+iSmdnUGJ4Rt+f89QEIZF5fnvT62wt9//3S84qgwS5o8+USAhGomW+PjxdtA4GfxvUWGzwZe4n934AIJJZOlS/fbtcK1/kLfU5cQjE2w1/F1ENEZ1lObd3CtkLjEoX2viArRH4VEV+eIyKea58/pTHuoqufsdD9ZCH/Vbec/HItGrg9fbBFPtcE20tfOq4FU+LqtKqfRnITiBudqShYzwFDHZdvhnGpIVBZ3e2wThvIuPhvuqGP0K2G/W1BrDVRKvi1RuxeG5rtf7uMs6IPypKu+fidqQX2z6ItVOR7lJdUt3CT2AVXrBnXmeQ00fjvMozyLRxdJEltsFMb7TTBkCZNAcMspW1qHORQ9sJLcfTe/BMx4hTiigxGkt3/j/8sais5pbn/XOF0M1fS7yoJ2DF4yYA2xYfRLxFOz/vCBStiJKeLX218Izo+YWAsEMKh6ALd/565KkGsyPF+uXQg7fuW07CwOQwEnNxdVIqkwxoNX9ZyuAIcalwQb0yg0wnWA9xETFSqpKXoGaZVgJW6dPf0zEgVwOvGV1tVD+QbLd9RZAQq848+HGiLRnP4d/pYuKvTMMS8Q5ythGl/N9ss/Cqk5XEp6IYyBP9f3yvDXpYPvnxdSBCYcCv6nF15mEwnV7ge4xwXewITE6pB8FxZRD84FDza3A3vDcFfxx3KodS4w1jtNRk77yr/GaL6FLWesh1t9OfBNHZBIekxGhw4eFwpva4fGII6LmoINsK7JnVqiQUYUeWabNNlkiD3G/oZpbwZkvqsMMGGc/yyJthQZrRS4KI+/XdmfBk0v45j5RcNR7pfnbBFDKVCu/UavcTMdAkuKA099wqANuYaYF7QOeKPGVV7K3gBGP2g/3vNQ0NSCiMM9u16QJnM0jDJ86huuMfbKHRLS/hQoM6zZC/YJUrMcGbXA0cyz4PmGhJLqY6ojlXpB+/0z+ZylGjj4w1X5Ty0Jwetjwqk7CiGAQ99nLK0Y3E5/iX/I6KmT838yntAK4Y1SF/Ukw2dfhIf5lVNDEA8t74vg0wJgKvCpmQwuAXODNA/L/hB0KG4gpIjaAQJB4xYRr+hwv+vXPQPGnAtBD7IM/3RDeIPRepk2FTY2HilTxSkol3v0MoWzB6L5xA9f/0cFrpQuTcXDFBTx09Cf5JAJ5scOfepJroEGJ7sfkb9CUXT4V1ZPYjdgB/2XPyzWQ0yll1DhGQp6z2NMcF7vhv0XcIQqm3owX6Q/mjhCQeeUNW3cErtBJOq9/Y3JOrj1cfIS+TQFpdbNGvAb5gKVKvE4/FwisNPPhUofDUV2Q2N9mKEc4OvGWL09Hw8qvMXRbOqhyKjXXECO8VzhiKc5e1+9BM/Gl+cKAiMRe7nIWzOuerCUKojyr/OD0JbHGaFGkWjnK90jt+byoL10atTybBKEjEfoxS6HoEfldq62jrkQurqEPXUnGYrIy2S/I6GIjI1L7urLgxxSYt7G1RRwGLIQ51oLQVI4fVujbX1gd3M7IelvEZhZPHhbdISImOjmNtlSfdCkVDIS+qoYWJcFr1Z3E5BY/YrzR5Y+2D207qzH4K+eRebJkUNEZKPTHfNLoQ+MtiyunTMsgcWvFIuKGgK6zN9QjGHrA8/UF+k5zSUgOPfraMNeIjJzFzoSMtYLAYM1F91ulMDv8nnT825ERHcvuXH1Sy/Mps680MczuHL7jKmPNREduzvDcZO7B1Lm+z+E5RCgF3d6sZ2XgvhEJEbMp7rBQZltsC+fDGKVZ537pSnImC5y6G9UN8g91lKBUgKU5d2Q7TxLQduD8athOXXwl5fl2tjUSyh2/7OixRmJ7myuSew3TgPDsbgTDyLTAeWc6hrRw6DLPIQ6GdY08HdQNjdXfQM6Q62y03YYlP+ch0W9pRRc95jfeyDRAF9zjC44XQlFt12O+Wk9TQWfh879d/+kwr6+h+rGsYzP76TmHHcphXDBhHfnbGqBwKO6lMzwX9n8YA/TpWo4OPHk2YmnOWAf1CRmaRqONJ3eY+pW+6BSubxZbrIQXndkE7cr4lHxz1Fe0fctkM73/JzvKTpEn3UJrmPs24JD49fXbAyeFE0xn0+iw71XBbokHBEteZv3Oagz+HPU7myrCh2qaNGpm0VEFGys8UPcgbF+jiMy6lIyeD/nPX24i4iUqoSXgxl9JF2W7uHnlwQ+4OX8ktFHLjLept0e3fBhp14A95NKOJ5F613XoaCAm20bUSJdEN6/sPIsohbWlW+NsDJ8to9mbNB4pAvGC2VHbvvXAZ/v5Q4TxvrIk57+DKYG+KlLVzK9VwUiEhvpL9ZxqP2Tyr34UTpwfvYJTMdUAovb91n7jziUIVVuuk2pAY7ObxwXdKuErB2B2nmC0ch5gVDiMIBgYbXspQEHghuv7WHCAcvgLr5/vftpIKsgRlG9ToVcZt83DtFY1GGLfayuRwONwtvZ744iCObYc/d0BRbRs9hCBDA0kLz7eSad0YPHTwTVdX/FIim3yldfq4sgcKDc9s/NdLC3FQtIbghBywqLUk0MXiql9KZy8KRClkJsTSWDl55/PBMWe7oZcH9+1uRMx0FxWPQ3QVMCCmUJsdnYaoIedxmERhLAg1XF1VOCgO6bZ7g3tTWB6CYbyXQ9FoLdd4Q0biOgV3YhY4LUXtj52mTmjSkNYsZ5bzwrICL1IKQlFhkPSGyjH2XjQIBrRYNpXyRyPJ8VM/CyCfoGDv7VVkmAfgGTEIluPGK90KiOraqEMZas56rMCE463ajT3INBFg4XLznqVQH/pyAeeSMENdu6nMosMch9YvJus2MlJPj7Wjl6MLhm8eqD1IkwFLG+Y5+OQQc0Y5z+cHG/BPzQRw2neTJSle9YjZLugG3TSWs3F57Ar0N/bK98JqM9jUJvaAkdEAdqdeqm/jCrxm76nY2CJvRz3ZnlaeB9azc7x3IcKG7JmBEysKh85/50DAcNjN4VX3vmkQgJz+XuKUZgkR17I/UpFcHO3ddjyqzi4Zh/usWuq1h0BVfCPeVIg29qReXCMwngcHVwdzmjT8PK/rXlTFVDn3cYwSu5Aq61hWHEDMKRIrfFp/LwaphTDRH+7V0O6uahnpkHwhFMskZufW6Cyf2ZCf5sCKTGzHJd9hFQxPgzXw+WZqh43M77WZEKv3n5sjulCcj06wWTwMvNoNiUj9u/ToVOwqOyNVsC+vlkYeVwVhOw2PJxqllQQaKQb12fwTmbF3JcLLanwOwVM2PzKjrUWx42EjkTjnasikXeSEgGS9ctClWhAegyU+5BzuEoYr/Kpgc2CdRmL94o/UkHRKXqVM6GI3xAcNtpBi99iZx25lSog9K3OG9DBi81Dyg8PaZXDraeGpdZXKNBWXfL9uh4KDJI/P7834MysOt4klsWFw3GYi2PnSNCEX/0j2Nygv3g4Ta3yqpYCEeefOIf+xmNIi7TH7oa90PdjpuGdpqFQFv4emZHRjTK+9gyXbb4FtzE/9mG69OAU8TvKFMbGX3U5Fh7f7EDlGYjrp89TQOuV37b/zLOg9jRxTTh5GaY/ztWyZ6XDjX+E34/YwhoZVVqVVe+GZoUTz9208yAing286v6BPR8ksO4ibHvn/1Lh4zqq4AzOvl9en4USnLxecF1GcGQE03t2WYleO0qundnFxYJ6Yg+SnxMhZC2bf+aL9dA8utl9ec6UUix2uC+OFDBT+jspJZ7NXCHXU+uEYhi5OT5tRerVNDrMfbyjasGVr5LxX6xUWiU6Nt39RAVXt2/JOw2Ug8XRchvx7dHoUzibsyFeSpkFLvMz1TWg5BhbI49PgrRqcc13gS1wL8adPOrcxL8CLg57qdGRLPToeFd/C3A5Tq5opyfBL/J+J3nFgjIZM4+B8OZBAN5XhvKf2pArf3sNwnpCFSqckX6+p5G+Hz1GdnqXA5ETWZe86uPRt+yqHN2So1Q/KFPumRXHsg47Y2LG45GkalyLP9GG+CsWIQq0soDxYhQLdPYaHTJ7dHkXfce0PKtIugLF8Bm2gSfbQsZ4dKMdZJwPXDrcGdu6lgezLv4P55OJ6NUjR2jpuu9IPAu0vzRJBb2lijr1CoR0fyf0h/DjN6n/H0/IRVNgOM7TX68FCeiCL+wy0b4LuBGRl+vsNRB5ynBe+nXKMjIIybnUVoXbEy5fe9QqoXHbMfdnBjrp4tzq3+eSoLwwLhH2jx10G7YbtvLHYH239UVrnZ+DeJ8dbceXayDz1qKLkUML256J+z63bILmplrfZif1YCH5j3PP1cpKGTdHmc7RwGPwkNBA840GJx9wJWxKwrxqZJ+27pTQCR3ZkfNCoJTbUlHVo9GoZZMcenpm32gHNwV0sKP4LGuGMJcJaCb35+177Hqg+TvDRMZDI/YqY9u028R0PmmNfXXMn2g+iHW8TzDzxx71utPthBQ4dmZ3DLtPlBR7F+tbkNwzLHsDZFIQGu7rM7mPY+Gqn7JqIaHcZB9i0nXwxaL0rgSL3J3RwPyPznayk6BYxKT8WcssMh+ZVROtpkITCn7Cho9Y4DnnwAmejwKVaY8OpFuRgBp+dkLR5eI8G7Z8JqzGOM8i+d4DSS3A8lCOTLpfTT8mxBNx0qRUUgci9bwbDuIjB0y/42w4M1GYccYktF8Hct6u9hbyFpsi78RRIBdEZJq95zJyBzX4LWW3AusY2KBVdwpMMZ14GTeNyLqb+LzOXi/F576Rws9P5gCQm6FmuqmJBQjzz15XKQfHj7Y0Eq4mgXbfQu6uL9HI2abnUynpPph+Dj5xpRnDig+DU5ZHY9GdZ3/9j855w352xz/vXWtgvFJG832DzjEKmLENVbcC93WU3rpxUnAbVqgvdlKRGWTjjx72nrB8PPL3IY1Rs7JTrRkxBJRx+6IB2IM3iv0WKCv3U0CY2OpJeEHRFRUftZheFsRZLIkPBwVT4OvQraGmfUh6AHpt0HK50KQ2cBfkp5M/59XMjO8QLHumHZTZBUEXtuwfz1IhQ9enYvsLzCoqVI0oS+6BUyt1I++cXoOHY9f73isRUTf1NdVZBtbYGDvgObYnVAojpL4+MuOiKoWnl0xb8fDgejxhdiMAqi/1McyqYxF51h2hHxiaYVtM6FYbakXcIQ2S3aJJKKPJ7gXvTfrYVFnWkz1IR16bJs0+r5HIhUYqU5Prwe+uN8lnks0cHNIF48siUSNnzmm43nrIbDqdW+IOR3sD2arO16JRFhNHsXs1W6QkasViNweB+7GMfh8CQpqaYUnwind4Cyyt7303WuIiBzYy8zwCLrxypVs2254JO4paiIdA75ekaddz1PQb8zYnfSvEfDAS/nvp/5SWAxprXz1Dovgn/HEAX4MlNZzKFv3lkGT0dkbvxke6nxXMvjhVAg40LfNvJ4qBXdOpY0FcRwqjE4Zou0PAkvPD8yXwssgVXnaLM0ah06atRVxcfZBV7VZj/RNGhxqVhsx4yAidKUPTRxm3KMcil/UFILZwMonUrMExK64V0zR8gUQZtoDWb1Lodn99gVtTxxCl+NEyXsD4Aybl6mHQhk4FJ7ZE5mCQznb+MMxej6Q/23UhXytFOS0BGmnu3GofMebryxUMmge6XiapYeD53uPGFhcZ/SC79LPfhoJFoXu8708TARtri72otdRSDv3luH25m7AtO/7Lv68CH5Xq/iXKFIQV0EPJNZ0w5KsfEXR1ULQ07MbU1WhoMjpGSXBAz0wVHGzd6G/ELhilM+mHKAgnwGXxzYG3cB7wKOmbqoQard7jXwwoKCzB//5i25Wwc3O7hM6jgiKk0xO5iIM4nLW0fgcXQjvaD4cB/USgPnyWssdWggSi3BKTXheAKYB7vGyFolwQ/dU6n6Gt/LbnEy3d++FhS25jo1uMqzfCr/1R5+ELgh58BzRrYJSr9Z/L7wZvenDvOV5HYO+fNy88aO9ChopS1IR71PhtKi/9oF0DBJxd3nPK1kNBk/njF/Ep8MleSabZ8MYNLRsffNocDfc33PREpNQAj67e6/UAwW1Wf3i8tBl/C7fEZ7NzWJ4pL24r/Qi4/dus6X9q+uGzpMsH44VF0Pb2N7HGcoU1P2+p2fAqgBSFwP7+1yTIbZkjevpuxCkcTdLE6vcBzOzXTvYFdMgT+cM6WcJATXeNNNqwOUCQ3KEDjH63INkcN1cKBSFf6dfXbyRB8vnu7tqJKjgTTVpWmdwy3ifUsTPxBzgZJpyLgioh7y3pb+0dEJRsknlxezmLrhy4kW0lT8VkjysXQ0YvcDMyWqQL98NduXxO+3VqVC19Wr5kREFNW8c1YdT3bBxdePvnev1sOdWwD11Qwq6XBiUKDvcDEeK5ZtesSRAXky6og6NgNqePRcbxTRD5M9ZaT+fWHBynDi+GkZASRE+Z6JvM/rDrnjGQLsO8JPYHd28WPQlzT3AtAnBtbIoQ+YvtXC8wv2vjBWWwUsVW8RGRn8UpqxllNXBXCfHkQxLLCL7uVNO4ltgZpUTL22WCQLOnKK1jPzJ/X6bXSu8HqRa1PfdN6mG9a0aZYeUSLRQ/Psq91o9PHDUSRIProLjAWpyA3ORiD//ktG9nGZgynhu7ByXCo6rNZkKyQQ0+jYjw/NCM/hmOxxRsUiD6U9bCKwI6LCxKuHuxWZIzzo8VVyaAhyDByOu2xBQzclzMYEOzfC7aIGun5QAv8/vOvLBjYAyziSd+cjZCxHGqYMxEzQoXr75w+kPCbEkrHnuGU4FW9pnjL1FGDSu1qzLe2KQ9+Ndwm2fs6BJMkk57GQhjHNMLfZSQpHb02aLka/ZsFbI+jxzrRCSVt63htqHor3qeW4bElmgmb6yKna/CN4dVJx3bAhFNpXb9vy2SgSOOpV8a/F6iLBKNj52PQJxb9lTliSSob9q9M387now/fgjxislHL1NPmIw65kM9y8fuBRjWAdECRMn6afhiNc4bo157jXsLVL3GBWnQprr38sL5RGoX25dvPFYPDgPmbQe16yHhXQrDX2ZSLTiQZa5s5QNUWJdeTvaiiAseCuOfisU8aif7dE1bYbGPu18y2e5QLQSsVO1IyBsgO/eF9XNMBbyA4aqc+Hjg8DJ1hwC2pcV237kVTNQBawad3PnQ1ZbulnKK0bu3ern4VbogbkuuTq+8Sr4oOtteXk7BZm89E5NcO0BbgLLSSpfNSjuSXkk10lGW0mz2dvVe8DgZ5Cc+mo1vB4X5n+1QUYFNIX8ax498LWjUj1SugYwZ9W2320io3XFb8Q0wWaoNvbr+p6fB3yqSS6tGgTkf/FOK4dCHzyFE2cHTUhgP7LncXYdARU7pTcd6WyAgFechw3vIzhw/MKlkshoJGCEV9c41QhyVZcCRxIQ7NpXTZwci0bXq+Tltr9pANlDzDWZbDSIj29XrXOPRvumrXgtnhHhw3KafVMdgkeSZrszlqPQn0sh6h+0G+DQQLoUuZMCu8uGSi4di0ZvmZKbGgbpcEw357uMPhn85V2dBUZw6MGfr71/7jSAovG0VPUSHlaen2/VPheN2t/IeSpkNcDtE2Nvc+/mgEbHfYqFRzTi+/BJudCrASoCTJ863KuCh7y1bEbGjPn1SKIq/nRYcal3bsSXg7SWhdiNGBwyajD7UShAB7WzjR2jX8vBU/FW20VTHBrIsheplaDDrSQvGfy3MvCT2c/9+RoOVWqoFqb50kGrs7RY06QCpgbTPviTccj1eJwJV3QjbD0bt9vvVwjhZ1iH+oXwSMpx4pPpr0bw9Si0EpEqhI2NH5vlDnhkhnmZ8GCuEeb2rxrcPVIEVwXWfOEmHjk83RcQZtAK/yrTLWNlfCDLP+92Si0RHZH/M0oeaIHkNLn+KmYfuKRYqrjrPhEps6nKORIaIWgZI6vytAAceqjcoSJ4tF9vbbfYsTTAexs+FPAug4SxzDK8OaN3DpuwpVakwh72xIUbKaUgYzXVSw7EoK2J12xvz6RDzp+Lzq7tpVA7kse5cyEMvfNyVvFZaoEdc17tYRnO4KxVd0UgkIhkWVPudJu2QvjFJEnBcSewkDGP5aYTkUKXMsuQTTfE1d88/bzpGeCyHkqMM3iD2xP3kROXBvHpciFf1kogXvIzMe04Bp1qNjOjV+eDZ8zRvRmFdKA1DrnZjIcgrkbhWjWDPBgz+CF/6xwdDrY4MbvtDEXUZ+p/NPO7IDCxJKP8RA4QxG5/kWF4xM4MXIvRiT6oEjGqazlWCk4JFZy/qgnoUwjvdLJNH7QTdKQq4kvhXglnh4k1Ad3rqFC0/9oFN1vFWn4Z58KqH8bCypyCanc67NrNmP84YdzBdi0XBD+xljFdoKCSpPM3Up/2wlnFio8V3FXQyltqcUKZhIqFMBwHHveCxZj8lsjJSjC2c9m3TZOEVI7oblWk9cLt/Np8EzuGn4p8Mt37hYjY1zTPW+lngunMJM3sHA3CCk4V/d0IRVLnz/NayWUARWPOpvwJDbyGax3Ox4Wh/p9x3T/rM6Dsw8488i8EfnyZsmOuYaio6+cFdvkEMLjtSRexzIGgEoWLuukRKDDqt1eSaRKcDY8c0vmdA2zFZp31rBHonsgmpt6wFeZudb/q3tcAGB+jW/X1RPS3deSQemgrbFws+y6Mp4PO/VbVjGkiMnGLTl0dQDBi8OVmwfVq2PjNb6LviEVMLwK1Eu4iqOPibR6yqQbNqqEnVocYXlNDy/V/iUDJi7O7iKkSOmLCPusfx6K2Flvqdcbcdwap+y6pVYKKJvyY98UiMydsyteuXtjdIHptfaEIngQ88TRicPId5c/p8196YfAoLLkqFsFAFmJWtyKi4JThG3vkusB/Wv/CfuViMGYtTphjvK/GKJAM5e8CuZIJPYGbRVDd9zsjyIyCDE0PNUSR38I7FtfLR8OzIa4riyqYQkYyDg1FvcffQu9tPa6XuBwIX30sOu1GRkkGfHNMmmVQKb7/WHc5EXZoRz308Q1Fs1dY7xwrKgWtlQO1bop4sMzzV3x2KRS9lns7YbpeBvnPHtjRLEnQFnn4WwEtFM0MbPA85yyFr3m86T8scXDOiKrFw+CZ/EPiKlHOHYDXdz3uPIzg+Hpkz7HfZKTwsbCJp6ID/E7xlE2I0kB12TY+fR8F3fva7q5AYuT8bQfySh0O2tZz/QqTyIgn1+7CQmwPrB4wCrnZRYQHlorUE3FkxLL+WvL0jR54cNxi9L43AaTMl+c4P5CRdDDe9+nqW+CViWkeb0CgjqDL6S0ZrVRnejvvzITpv6TZU1UI3BW7BbbvDkPX3Bxr03OzGOek9rL2AgI97YUTF9NCkXBrL/E+uRHUWKQNohg9WWwSPkEVwyOv7K8d6EQjfD2i7DXZEgvV7XMhd4eikWiK18ydZ41QutBgX79EBouni33K+/Ao3oF5QtOmEWwFCrJzBBKB68njFo3fjHz+dP079jEdpOW4mzu3M/bn0hW6JhGHBHi0lDQ/0mGI+wyOWR4BC4+yN+kTDikEM/GRsXQoNtJTygxF4KmQK/s2A4f2ut8/jIrpcOZrKfe7C1TwYcs62UDFodkibeE2jj5YePUzvWO+EM7fyzz1neEjiVzf1Tw5O0FEIqhCyYsGv05uRaUdo6DEqGtFH4L6wE1RVXmbby1gfo3OZO0ioER7y5r5y32w3Vnw8wytFk5ncA1rehPQfTnFdF3zPthI/WN9N7sOjjC5f9hxn4DYntzpsdtVDxaeVUuLriVge3nxxox+JFrebtPuPFgPc8uocmO5BOqCuuJeD0Qiyzhzy5uxhcBPYfe5lV8ECr7tFw8wvEDonXSuu2gRHK9eE2DCF8O70fzFbIbnRm75NmPFsOCnoa7y+1g6HK4jOV0qwCIZiqucwkM83LQfOXMsPg0cPtOLEWCRqrK1RKkMHjT5bzyRfZsCUhqPr23oY5FzfO3IYVQPW0b31q37i4HletKyT1Mkys7dvlt0oBz4Zj9dSsqKAUWlWy7NQmFI3PQxYbtmBXA4/Dj4auQ1hOO/BM4YhyHru9gilavljL64QhJtfA37dIZ4rnwNRek/VrWJC31Q03LePsCgGh6nPBvTBTwyJ5cT7715Cy3Ou14+MkCwo8tA60IWGeWB5nP3ybdQj3GIu5FNBTPZ2QW3BgbnZJ959VqqH7QazX7Lu1XDUo3Djevj0ehJb9wV7iQalA3Hb7t/uhIspYvsl9aw6HHh9nt72OngWx56mA9VgNHXGj+qLg6p7wuupeYHQh6L+zWV8CyoKrO+k+uPQ+IGIbwnix6DXZKkjqF0FnR6RAbN9uHQ2iGSVHJjJRQuNbIhkTo4aj1Jk+LBIKmDL5cv7KyCbE/dU6Kq9bBuc+FHpCoG0UUCPucwcp9nV3IVzqYWatq8te2cMWgwt+i7C7YOZF/LbJlT6WBdF4Kx2ohApsEN16a96iGe5C4zxViPkbTr/IOPRJUznpuNOaVgdLr9Bc6pDnYRTgq+MwhFhd60F6tHSyGYXyL7yUodqO5PsnSVCEU7pEYy592aYIL3HdORrDz4HoRidiM86smScPi5owlOCs/ldSfmw7fpX7fgER4dYBWNMCvtAsOMJzP2GyWwNejN/ZfhTa81Vk+6zXZBS0vx8opCCZzebH9xgZG3d0u6/+HFGN40Y/Ho92gJjOgX4JkvM9bf8/Aux1TDfj1VvdIYHDzg92N7LhiO1lI6MbsaGBwWYKqncRgL1sZciqQkDFooXQ22flAN/7b5vbV7gYE9+c4231jCUU3RC+fPLxl5nrONM2quGI5rDFgVMvr9l1qPzN6aNrCu8bOU1KcBsw5P3Ms0Eiq/XDKgIt0O1Bm7CT1fBn+mrdvrTZPQ5F8pU66BNvhe+iOhupoGGmYRZ66UkJCcxM6h5pEIYE2g65yjVgNpRWHBYRCL/lpqFHDfCgP97w5T0cNVUBfvcE10Nw51WXj7cA5HATDlsP+OrIKJQRO8QjkW6WVsFKng7OFsE9MDCzFHMNTN4D8kHY2OznT7Y428gXolUOPgKTe40bQ5gPuAQ+2j24R8yhzgddORfWeHvUA5MH/9wpFotPNcEmHMth+ynTQzvOQbwNjG7Mt0RDS6M7Snvkm6HyQv7U49zNEA3sLL0vdHoxFTZOtuonU/HC3z4jrZS4fuFoOdFXgGh8sm/wnwpIFspfVqVEEktMnM1J0exqKTkSGfTVVpEL69pV3hTDRESb0LCM3Fok5mUfaOQzT4a7I9UhcTCc6BhtqHKFiE8aSv7MfTQGbX4uy2+Ghg8nHojFzAIgud6e3PYv/7/0LANtbXNFD39tFu/IhHYanPRfOGmuBi0+0v14EGApeTA7w4CMhr/deq0koTHFrpLL+YSINtYj7108IEtFEhw/HdrwnO/siceKbM4JwrekoP2/BIZfTjyAnlHhBY/Xrf92MdOMlcZhX9R0aRVQW8E7+7wdI+rHI4sA58iKbi7BIU1GEeWPHrfTa83aG9yd2VApWybb5ljqGoQN5BL8Q5F8INf2UYCaXC3bWSh5Piocg9Mz/77IkgcON4NOJJyoGqgMSwOUsciuOutuQNxYFN50mqm2gdpBjH1rI+x6Ihh2UTPbUIUJUcOshhWwf39GplQj9jkWBCdtuTU02w912pQ4tKHWDu12W8oeBR4ZAs7e2+JpDVmrPh+lYHba4jg6O+eHStq+BLy2gjxEetO24I1gGzZvYtY3NGD+5/NzpSioWl7x3LFWt1UHDVdvxVPBZpiAexKtj1QeiroxFqbWTgWkwLqjAloMyX6qfG7/aBXu+8ueBUHOzh/fYGp01A1FghwW9W0fB5c/OXcBSCRdK1964OWLSpZmP24j2DP+7cYcndjSB4d8pauxcW/T557YB8bB+M0dVvc7umgvCwtUrUJzziLArXbhduYfQ6t+v6+xeQRAtCzksMHwxctHL5TIXbb06YBxgwvOdSwF1pTBS6ld5cFDdIg8dlJ13USlNh4H522h1hHOodYQblvzRY+gQ64/op0LaLWVpcA4dkN38fUlOiw93eFyc4plJBXgSTWGiHQ2Zqxu4jD6igLiL499npEiiajnhy7GwU4uNLTEj174CEfPKZH6PJwBImxC/POA8pT4OebOl1wPv43jtuHEkwPPPoy/FvZDSCo5WJCdPB6HdC+hyUgs6C9dp+MxzqJ6Rc1zOiwzaLOTUadxmEOmtrOXrhUPWv8ZioPbXA8+nZGbeFUtDMutEZwRSB2H888LSwqoGvUgfYzarK4N2RBPYT0eHofpK1TN5KNfzevMK6bbQUhscEW2+ahaPKfVpqDds7IPOGvmG6fDL8yRTvf9RDRuGk+dnG423QM/xJiGWlCBT/XWx2MSIhbH1h7vGHbVDHdveo7aUiEGzce2LLm4RmvB5XiIe3gfKV4vEUkWJ48S3unE0ICakpXV8q2JUDDXwNC2cwxTB40Mb1jU0o2qU0Sriy1AiOy0Leut3FwN8MF//cxqNfuVYZVbRGkHQqbjm7VQQ5s7X1MVp4tC5V3J3u1AXXnrTPX+UuAKFdSS/MGLmKXWxI7u3uBJXD/ct31vNAoUn2yzlDCtJltrnA6tIFJ3V4fkF/LhRs7P/syPh8HoFtj/NWG2wsNFID1YtBckN79kc7CclY2X63c2oHawoN1yBdDEEtDj4ZrGRE2PdcVfFwO8gpOmzwSZYA34dTrMWjJPRRrYyfMNgHeZBAf9HzGKx279B57MK4F9tPtPkdD4Zfut/GfWl0YF/dqn11CYeUYiY2rmW0QViMbirzdDGUa9idlKCQ0O0t/c22/HDwO7Ck8TfgKchRY6r2zmKRhz+m5b/nCGVc/N/zKe0H6v57DouFamFoSh9wJR/c8zuODvpWOno/uvBIUevd/+Zp6/n/793/r037v3kOeu75nG/QDzaZMSZ+nHRIfJWEac6NRsasx6JJfP2wwjd9N0yAce6Ij0y11qOR8PijuXNy/UA+r+fAwsjRdJuKLpb30ajy39cUT6Z+uNJknX8+nQ4vt8Suxgvj0VHt2M2ozPuwT8Hii3rlK3jrfNXjFEc0ony/8dhqxBcWJ0NvXa8Ihv8Di5r0VnicFJt3ONXvG8eNUmiobBUN2YqMkNxFpKyyS6WUnfItlWQTh4NzOMvee+/Nc469V8OqzIysJArpd37/PtdzfT7Pee77/b5f7+tcn6WNN7l1dXiUX1z/yN/pJdxlD8qu1A8DwrSqzNYYHlXgY1Nu9HmBEDPIsZm+hYB3TRlWFDwK3udyuErnFSx/fH00JIEKH7OQauwIHv1iqtTrEh+An4pHJORehYJU0qjjw9FwxCz8++Q13z5w276WFipJgGtsFWInxUgowyz4i8T3d2BreHuvTkYt5GZftCRdxqPjKRdcuFrewbBmyoaeXR3sz7VxyFWnn4dWUmLL6g32hJOrF4TqQNI/esaGiEdHsZq1w1EJwGHw1frKbipULDnHFE9hEWVSK/adli+cfpnPrLm7HiI+MMxov8Sja56VEnuPVkACOlEWg6kCQcuqXZI1QShNVz+NFNEEBXG7143SKsDPW2yrbSgCYaQF39/qbYIGybXg0NRy4DBaCXy9m4C0fskI4e6UgW3Dc/yVZzTQYs7QEJ/HoAOW8S8O1pTBV0OpsudUGpz32/uZhTMILTQSzXCppRCjt3yrsoUGX3+u/2FMxCCt1cHC3qAXYPDN1u3acS8Yiyn77rOAR24e+nd+X6XC006lU+hjHnCXWv9gL8ch5dHax6cdqMD1MnDhD1sulITqP2nqw6HbdluiuRY+IB5Tmiu8XQNneGYowr549DDaNJQr4zWsRxX/HLpfC5k6y/MnB/Do1meofS8/AFUm114LvKPBWtJFTveOcNQq06ijyNMJH6XzRhwEk2HnA62gZJCM9p2JOLvlVwvKwow7AW+fgGppj33/agjSNGf8RDxYC5cErKrccB7g9zG2lyUtBIk67JJi4CbAaP/MELyvguOT0xrt4jhEWxBTzbHHw+XOZjvdgCpIYlO1/+uHQ8F9/7FZNqSDmcjERn1xJbDPqE8TBYPQ7+nXgaKlGSBXc9N/6EkVOM2mTgp8xSBs4bCrrnY/xEo8mL7jkwFjz9+HuQcQ0N9P9y6Ev+gHxw/TJrYfMmDJuNdcS5KArPabmBDsMqH7FQsp+HUllMn6nvEvxiA5M9wwUaUO5O4VzGQeawCqb3b2ScdQ9FFFV8v8TS0E7VS+cxFtgG/QRRn4HoL8XTVjz9LrntMgHy8p0gBxHa4OjPS6Vz92DPaQ6oMDF6fsbCML4ajqqTLHFhKyPJA+LW/fB+OF/LuYpwpBOHoaH29OQpj9S6+473fAPiaRJNLdUnAlPpfpCSCj103f5K1/t4MWr5+66HAJcHWpMrMYk1Ggp5npCd8OkPsvfXAnrQQOVF2n1FLIyLqade0qaxVsqqv82+YthNw73hr9rcHIu9W1J8q1CoovLU9HbxXCTcf0kbtsWLQmym/biqmEg83uQb17i0DXSwapegWjLEkRF8e2KkCBLwwmzhWC4txdbLsSFknp/ek7r14FOTUxzd2VRRDh+Z+v83wwSohLH34kXwffnq2XXK6rgA+LF6q2bUIR/zmvszcv1sJgLa7Fr7cCBE46s0g2hKBc6/tTRZO1sMK7+81SezmsfrI4+kYmFO2qybjkI1QLvZCpoF1ZDiN+jsqshSFo7x+/VscDvXD+qssNrs/VIMKpvrSbn4KMtm4qcWz0gNaCiZpNXhW4DKgewwtTUCGrG5FfKwf+iDuFaD1KgwlmGew+MQzalk8Yfu6YA2cd8iqff8yAvVFHPsWcwqCSy9pF0kFZoPbJUpc7LB02H9n8K3fBoLEBfoN65Sq4YjSefP2DH8RFnTjgOx2MxhxpfDlRlXCY8QAD40AgML8YItRiglHARuAucl8sTAh/bpob9IVrGvc2ZWtDkGkRYaXzVxt8sVU92iJGAy/OwzU89H7wOhTBVKDeDg1CAq5VU1To5owdKvlJQprfxnHfsvpgQFjikfN1GigmOHhZDxHR4s03qxM67cBEKT7yroUIP00lAsZ+k9DA3rYjvz71ws4rUzGslBfsm9aobtYho+4pnX8fHtbAWZPUzcJTFeBdYqA9rRCCPP61W7ma10DO66EjpCOVsOeB5MjKuRBUKpgyOitUDuFMXYtZ9PfOM72p/nQ5CPWWrMzzlhfD5dcPFqYbS4FzdTVwghWDuCK4RMdWisAXF1gkLVkKE2w9ApzTgUhWp6NNbLUYjvEH+xQ0lsBSkMF7LA8G6Ycu2e+4t0HPxYNOdqIIhBI9p9s8SSjulD6+vY3eP6HH+JiJOAggsCqxd4ai/6Q6PkyI18Etceqf29RgIFx36v1pGYqUOU/jMTL1ENqu2s28GQg2AR7UmsNhiEXN68beM3Vg5xZ1t2EwHGbX+ENK7oYi6U75Zv7sFvjKMxR+34UKLKL4J5s3iWg4fm0P63YLCM0a63K3UWF3tZ2ObyAR/XpcPej6qgXePvncdeA3FWzf7HbtlCaiwq01jt1/W2B09lsiVpIKn2QOTUpgiEhP6y5nybtO+P71iPq19nyw7Je5vsJIQS7+IiXGGp2wM1sr4P8+F1wdsi6cnSejiOEbYVW0Tvh8ibj2mSMPdCkX2BW4KEj/hI1Mdkc/jIZtR/N8TYKXRUGLBZ4RqPHIjeLxvn6o7v1Z+kw3EYb3RFBPvIhACh4XFBr+9UNKz3ZK1NdEiLPXtPM8GYGSss9K9S/2w/BxgwYnrgRQuLlSGXM5ApHjLFQfCw+AQ9rRSH3LZCj3P3Hz/VQ4chu00+FR6QTdV+rqSt8LIFv2K3PBNzLCEreVe3c6YEn3GamyMR+c9qLdH7vJ6B9yvvGxrA1yp97GXe0thd+OiUYMSSQkZnfN/kBJG3CMk0pUWEuhp//YZ9MEEhK8eLalm7cdznNYmLMplsKDPj8zwxES2qNfScyk6+J1oP0KI5SAUuCyCDNdF1jHcy6fxKlQs3VjSuMiFVpq/+wnJ+MQH0ga7BpD8AhjuYhbRZBip0g+44RDY7kqE9do1cBLzYqe7Y4C7NXnNl19WJRT54F5mlsNEltCYcI7sZAV0Xb2UyMWSU/P/eo+Xg31829evhqOApzhl73qT7DoQW92gOh0E/gOq34avBsOqy+bl205CahI3TBj62wzFE395/s6mwBPCM5WQ9oE5L5otbv1chfkF67JnPQqgoRObrc5eQqKdngy9ud4F5g7qEsz3S+G4w6Z50SlKSgtmO1o8OdOYOHhHnEaKYJ1RueFI8coqLlx4cQNrmbwcTpjfW4UQdpCZPuAAgGFGvseJxR1QnFoKlMzuRi+0qp+XOKgoFah9rGSTQTZt4+3v71HBBKTiaKkNw7NTsR8PDPfB/c/BjmzSBXAZ7C0u2lERGV/LWJ4j/eD6e5mT7fufDBPyfJ/MEVATDDT9t/tAQhpd2yjpFbBs2aeoGRSOHq48beRbD4A91af2Bo0VAPb5N2pXnI4sjrGpXxRcQAYMY/a3qhXA+FqEOleWzhqU7bWfBncCgx3kwJPZ5bD4nbRN74ZIlIYuj7wcYjuFysHqYcf14HJuNIH2VI6F3U6cJ+bLQGscmy4VRxdr8qCjQz3MKiwj4tJ0L0U9CQylAPKa4Gp9AvuCx6DHjxNklC61Q2OXpesVPYkw6CcX2yhKQUx3999S168BJKOH5XO06yEJ/u47yBhDOpg1kvQ1imFC2U0zdeulbCPGSwkvTDIMfzlGaunJRCerkZlulgFEC1m++kCBn0/E54d6esI3x7Xzh67VQtfvWe/mRwKR9nDT/dfn7CCoLyupPyUGsiQlWFSEwtHwxgl8029AbCVdyoffpMMU8++fEtLC0d9Ku2iIpb0+5wVCrr4IQXM5fgej4aGo2O/HQNSJ0thIJ2f1epsPZxI2eTgqMQgw8KHFln+3VAnfilrjpAINfPuVQVmFPTz6/lr5LAUEPGUYh0wo0Jk1e41GelglJF26r8d8yx4maUxRTAogWM/i3/c9cSgjQlFc6nubMi54KJtM033XeJRsWIVDNrlbJeR+zEbNPV7Cs3HS8D6yBKTiTIGrYy0vD97Iwu8BPyVua2LgX3nXNJDHwwKVQufyNClga39SO9Jlnr4F1Hv9tMFj4zEBGLDfGgg4Op/vk+2DjJ2wUJwDB7lRF89pCsbDoWC8i07cfFwVfXJyWl7HJrbw13zb28/yOs9sPZIKoEhyVXNH4eISCQlWWrkUT98bufSBtF62N5QH+PXJSCWL3+7nR6HwVOPnXdlOAp81HjJganFoZ0f/PZD9cHAah6n0XKIAKfXGc+2buDQ3qulEwV/A+FPQ9KW+joZ9usbjTidxKOJ9GeY99h+sNdtlJ5zQXCktGL55WYECjxaI8eY1Q/n3Z14Wui5wAcz1auIIpDpPH22cvRDkuKXOLa0UhA6E3/GgomI1gL3Ce/73Ac8vMRTDVKlwJUU8kT/GRH55+FDMON9wDadTxXYXQbHrtlP1lgTUVyHG1vjRAt45eSjNEE8zKQoZeFfEdEqLWjDizEY2AXYJXL5GkCmX7vOhhmPFN5d+f0zn+7nqWdUSwkOICdTcZlSQvdnUQW5H/R1G8h62Ejfn0P5mhxLX791pdZtiP6cuvQjxjOhDsDo9ufOQ/pzwm6W7v70rQskX+2UDO1KASN0FWb1KUjc9IMXlbsWsp7y+ozV5AH++R3jgqwQJK46+fow6ocIbhcvRQyCxaOVp/HECDRyM4hp/k0deKTYeYbbU2FwwpixmBSKFFhHtExojXDGkXWx6kgCTHiTZtmvRCAlb7yJXXAHlMk9G18KzAHZZBGPsBgySnE+fvrxng7wItdfx0vnwq6z408yLchI7VqmxBV/GmC1NJX/tGDALzr3gl8cHmXdeYF1odcAMUh6+HRhQPKskXnALB51Z9YU7UoqAK+wD9yZMbawMPY7uAkFIkgKLn8RWwh/7nAWN91zhPuvlJ4fpAWiEe8w6texArA8JSXmqfoGHl9M/cJUH4iEhmN7Z9NbwSvr+H5m2VIw/Pftm+8fImq133eP81oraFYLvbpxvRR40x0UmauJ6KzXa+pMjC8Ep1fJLoo3wCdkwhrujEe7dX9Seb/T57KE2c1iDRugkbLWn2hGoJ3LuzaXib6wIz52sEHeBvpizn5Yo+/nyQEvA/r+e5frf4pKNAD7aJE4O30/116sZef3TBB/Nhv1UKkB1pTefXtKwqBfPgnva4MaIbrB2NHrOxUecAa2uPFFIKYQ9DxIuBGOk/gHRejrIrX9aa97wpH5tcMpzr+7YVTDXUPPjj53CEKhp4woyHQlfyF6fw/s8bRR5k4shM6Y/e4Xb1EQxp05+bd5D4zwHSw9xkLfr/v+p8c1CpLlbln1IHaDgOdK4/76QhjkRG4JdP/h+qRk0MndCymHNeWVmYpgejh73ouTgrZX9jKqstfBx16567jGTPjrVviy+0YoOipW4c5aVAGnhnmpvuYVMBD0cEeVLRjxTh+0stathM5pI6KkSCUUM7/wItyj5wv96W7J2ArQPNJjZi1QCYqst2ak/gWhVbHONw4uxeCfcebAu+4yqIv0u268HYhyCp1sf2iXQIZkW8dttzIoKOn9oSONQUWTKzwYoRJ48SBXjh1bDvKOV/MV6Tw/8TKZ9sStHV433ljqsigB3roX2sWHyUi1obfUMT8fHuJn5ycKXGBBsqbBqDcQbU4cbQ140Qxj+yTnbrxC4H7VSO7tGwK6KFua5PG3CVLYhcc0rBEUMfX8GxCmz+WgMvlnIY1QZ4KNuVuVCD1GtNXnAhFIoMosNeRtM/QGL3TKbSHIUbabE/Gi+1u16heluUK4azj0gUckF6Ryqt/mNQciSjIToyxrIaiHaXPnG+eC6hBxIr4uEPEecucteFgIH9a/aJraZYPaZZpUJ72fzS9paL2ORkBzDCMk+FNA+wj2o68qDt3bbH3ofZgK7QbXfg/uj4Tgn8d3SYbjkO0R0xD2jULoEAxK4SrNhGCroLtVLYH0WDfIxyxeCKl+RU+jpjMhbTvGrpr+3oeN23f/i0BwZdcDvLk1AW5zrvIOKuJQHqaoSbO5EBYERB1LbIpB6HW+o0FjIHqgY1A1Jl4FBz3o4NiKoPhcnqzWaDDCFoyV/3lQDS2oNP9bTiEUXqfcUidh0WzVvxM8dG748q1EqSWgCCZWEr7c9sWi7/b50jQDG2jVb58UnymGC1qXJMYEwxF7T4twwctqmFSQZfbiKgH2kSsxO0lYpGnd3FP0tgYElH+0mguUgP9WtORDrRDUdO8CaSapC8okF7E/O9+AbY5l6zktCpoup1l5iXYBo8vtSQdJTwgUv6RgeY6Cwo/Wp7yz7IJrLF+vink/gS8N3wW2VSiIc25TzeVOG/jw3vguG1AMJmxnkvPtSUj3mPjJa5VtoPbyMU4tvRhmvuKFXZJJ6O2Ws9iBuErY+8YuW/9lOoj++dKVGhyMqr4fPHMysAqkKO0Z9y+nA4Z/hrx6GIt+rFhfeL/aBtjCxzN40RpYcuEtsWgioXKWgePlou0wlhRqfty5GkzFJwwdp0hIta+D2K7dDvUPV/Nt6Lmt92Jm46kNEkrsJh31bG8DEyU/0xHDahjQmDuam0tCOq+CFLU/BUBGnfNt9rkiqKzxnes7j0cMvN+OvAnGgNVm5J2b3EXwwPuPyx8+PGr0D5PQmMDCTuCb4kL6/nqa+duxaRwaPvrDCzvmBw4qifUUiyJ4Wp2v9+Y+HoXy8wi9n6Hn912rdkuplWD7ceL7BblQtM7IlPdFjAormuE22CIqsJ5bHZhKwqFzXtVUu0tUWP9e8MxUnwamwQqP4gtx6PB6Y7qCF5We203bFxep8LT0Z9LPMRxK61mpyaPPqYyvh7RG5Etgc5VpwYYQgUz27poxKOgH0uRtrveHS+FGQKX9ZHEESsdNmfOG9QPFsetEzKUSuObPWfD1VwSy8y1MuTrUD03zDEHV70vg4CHnW4HWEaiiwdL+jlwseCjeWn0nWAR+36z20aZD0MpU/3spswS4d+b5liumCOa8yvVZd4egfTrRY8HkWKgjDbiUsxVDbnmH4YnOEHRR7MG5GskEoHAcEvgTVQheHd22OvwhqOJPkllRTCzcysTkdvGXAOHf1fSu9hAkQ64q9paIhmxGj9og+2KwfGwffdcpFN2JJjDW/4uE8LAk6dzLJaDugalSrAtFqsbauKGsXqhGmxWiKhmgh1qljwWSUVdAcWzGQC9s6Jzp4NfLhHtHWVcbbpHR7+cRC4Ffe+HW9YR/6QzZYLhs47XvChkJayMfk7ReCP61yyLzQhZgtjZn4kLI6OMi5eStsl74dljM4pJDDjz0/32kwZWMDJtlPA669cLgfZHsI1YZUNOqyetaR0Yk4n+nTnxrAhz3sOsF0xCIxpWyCXARkIGmpSqprwl+NJ8aDQzyhZZS4WhLFgJ6P+hq2hbWBJ1pw0anEjHwrMTLYt+nCNQj3TP5nL8f0qVGZRGdq1+GN3eoLRDQebkj148v98Ezwa5/HWk1cLssxjFbm4gYZLhHi3fR8wvlz6Vp01rgMHhSpCBARHIZKXMZ7CmwWHTTuZ41FnzXbsYIPQhGE997H5CKkiCLIb+xvCoWDgcI3/BfDkYhZU28V3+SgI1c/EO6NwU4gp7/MsWFofldwkkBWflwpVJ/5plgPXycYboWS58LAZzZp4NZ+kCZ3VgvrKseqEqnrj/dQ0Yf0jQFc2X64IBj1kP9xHrIy211V0Uk9HOreMlMoR9eMdkIdUTUA9GWOUyggICmT7WZJ13sh2T3JmNunzqIfJ//OyqJgDoiCAeknftg/5rTq2efM6GC6YmggQ4J1Yf4SZur9UFcVGDQN/0sEDr8iWCWQUKF+0Va9K70gWpb4vJdxQxY2fZe56H7T2Ve4ZkWtj6wuPu4JvV+Jqy8DXevYaDXi5nIaq1Lz/MhJawDc0lgVPP8lH1TIDJzP6v6/kAhdD+2+RFtlgQ2/eT6WLr/b6eX2yYezYeF3JMyGHquMcI3hHwaCkRW5ObA7bluOHwDxygTRdf9t/vel4wp6IRLXMLfwG7wO7/vwu+JWnh0wPxgIZ0fPnI9PiKq3QOT4q4NjvQ8tZKVkrj3BgVZzCnvnfJsgT7lYcGIdSdIi5e+HSJHREiudEBVswUip366jVHfwKefR6X/7iOiWeewIFOheji9l1vAZF8DeDMKTm2yhKHNb/9J+9Hv99/C0thKIQ3sm6vf7TYJQy1or9p+zmpocs0yeEyhQqE0b3KNNRbpsjS9/TVSBT7rG4vMR2nQUFkY+U0Di8gflGQajlTBe4ej5YvxVDg/ZnFvvDsYPeymifvYJIHW9o/jZ3WqIV2Bi0mGA4v4OW7/bVhLgLn5xzEHvaog9Mf+jYJKLLqOjfLl3k4AvslIxdc+1XDldIH4hTIsui8otv8BeyxcDvdJyqHP+WtK3oUPV0JQW6CmcEZuDIDKs5FXcgVww0c+uXlvKErX+GeSXxcPRbeCr/V4FoBAzzhLEISgv8xMo33mUbC0mMCGf1MIxoc3uc6khSJmGdZZ61NRMCD84o9waBEw+LSP5pWEov2ODYHP+Ilgf/2/yv6VWNib3uE7tQeHnlfPSg6WEoB5gsuwXyARClO1DB9z4dCJ7SLVwMUyiM7heWGwjsCqJtxETTwI3dnjfu70p1Kg7CcTzgpTYcomp/VUCQZlVuY68YRGghHZ+PDj/hQ4//2sfNZoKHI2V99VIUeBVa+z8TLPkuHl9vm7RKUwlKgsaLH4vAEWDbYPepEzoZk4XailG44OsKrtuaHSAB3MD8YeamTAGexpbeqpcOTDuTokndkAO0zJrnMt6WDgMm5v/CIcsSixeTyX7AEV8W86HxszwK5OJnFIj4Lqu/JbalEfaFaVYol1RbBr+nckXw4R+dyJvK3ahkD8SkPPQ+cCaLESubB2F4cqwq1ow1MI/m3Yv6pcz4OQarf7FGc6Rz0ovMd5nAo/t+wD71kVgJOnaeTzKBy6vdk+eDGpE4oPsZMVlWvgxXrq3H52Cprpn7vrdrcT3pov1udcrIb5r97qr3+SUYWM0opmMAKpOd/3nth8GL+6zX1EFodecno+8vreC8W+WaLEN6Uw8pXMlH2OjG64HS3d1VMC+uM8QwF3UuG98K+tMWMMspyc/ZurXArtja5144bpsFU2LrbmikGPTnlLF10sATfBRo1GnXQ4/u6VfIE4Bo3heitoms1gO/hFIDauDEwxSR/YbxPQcp3hzbfyzfD68vuA27HlkNnuMNlAz93PWZ4rtPxsgg91D7+b5JXB9eFH9WPHCUgj61nbm5xOKCuauDrpHQ4XNLwnDQ9QEK2bgSnJLh9OdC/kxWjnQyM3637y+0C087LNOzaxAMwyjwtkPMwHjKpnbBs9rxn4+be5iBTAvanEgJ4mep5j5Ttu0RqIKu01HvUdtYenqxGe2jsUSMf/WePnDUcpYhp/XrS+AaXPa8winSRQ9ETUpCY6t4Tgv8W/fgm0O0nBI24R0Djzc71mDI8MyxXuNhsOAGF6b6+CLYIz/HvYp+PDUfaUgOSXowOQMP1G0C0PwTmxS5furoajUVFHr2PSA3C+MjjUj5cKB4qZWNU/haNLjy+xzFKawUJlQ3b0ajksGf+wESUQUJ1lmdxHHip0yphxu1HKYObCIM82EYfmy9OHR74ieNdjurHgWg4+7FrtrE50Xtr/17a/GYFb5b8CPvr93xU+G3vRAodEDRc0L4Yi6OIoLh8XLYfCZwbtYnI45BCvX7q80QR5qaKDn58XgD33mTvDJwgoLe9VzX3RZmDmv96xopAPYm/itJw06HVRPXHBTLcZnjy0OKj6qADe7qNUVNwjoM03L08sCBaCadTwLcGGAkhl1CnMoPv5Md2Y+BH+JpD7HT15VxGBTu0RM2efCGSaxOIwPtMIezeG2IZj6fq4/67U6m4EcjHcHJBJa4Qo9rQ1+YsIjkba7nsnFYEszdlU9Ej94DDYE0IRzADrzLPixjMR6O/8zWmt2mhgTTrsMXmyFJarOD/3a4WixeWAhg0CER4kazqw7SSBnFQ/DCyFIWWBxz201ijIs1ApUHqUDB8/GWeSAkPRgsv5nbcmTfDs/DbB0wuBhad6WGZuBPp9+8DWO45W2Jpay+Y8VgNahsxLMiQiOvrMg2V0qRYaqrPiztenQlVVAue3C3SO+nDghHt2D9Qu3oyv600HnqrD3qsXKMjwa/D+Aul+yG/YCPuDq4Wjg+r3yIiAuto9zzwf6YNNblGhsbu1MMHszl/2nIhGNl/fFtDrA/LCumyLchlkS5MGv4aQUJyJ6wwrhu4z/vvufKLnUG415fNNx0hISHVFbMakCK6IlF7xl6iAP8/Mj+XR+eHjWhT10/lioPXIbNxvK4cr3fnOZ1fo83fFK/gHnSMz9H0za9YrYEKQyffSXCD6Is8gP8zTB5byXtmSXGVQP1LCkPadhD7f8e2KUu8DlrgXNusXS+H83n+PWhNIqMDfxC3sZBEkbXz+6rG3ErKPcD580hGI3gq9P/VeohHkczTHqp2KIdSlWPHI+3B0uSxC1bCrAc7/6hK9O1cMzhXWdz+E0n34kfBgX1MD/M7bUPFYLQJMv1uZESYc1Uj+C7Q43AfllNdWl76VwC+jLVnCGgnF64mEHanoA42H+i+MqKVgsWheJ1FHRMKxzB8u0n24QqkD75ddBuZcj++L5BLRMb/tl85Pi6Dl0fFnusfL4cUetS/PBgJRR1iXqvTLQjjmcPGoQmo5DBybOO1A941ys7KXfwb7INX4jd+2QQm8XPMv/POaznvCqwEmYgGwHimTa0W//9Y+VZtNVTzaP3tS1zkwES4nMQDlUwFwzijoRb/Aoodax3MSDyWC581C9fvl+ZAlrKS8NweLjBkwOraXk+G/b1ipn78LgCK7M89UHIxEynhZf+1OAoa+3ZGPRwuBjyVXyUsFi1Ywp0PTzHuh7MKaocJYAKTOLCrrfiWjyAm8/3wAnZ9zzbwvQhBwHFYcLy0goySzrYphi15YyzhxVWgzDM5kSpwyGSUjK1u+47FZyaB3ZX2S/0ARLDD2tA8FBCOy5GbZudxeYPVX0X5lWgXxCtL7lP3JaJdmYtQxci+o7Tf+bqJWCZ86uy3j48noPYhcKzwfBZbTPhVx9VhYGA50MioIRZlRn+6p57XBHiTLf1unHnYzjKlMxJCQUpuuh1BGG4w+/WytIVUHiqXq0gqRJNSWPPW9caoPWu5Nc7LUUEF/+0vLh/tEJH9I26HHug3G05fW/bhq4aNiyY9UZxL6Y2Z+PWmhDUK0uRMJgrXQdbbUoZ5KQoIhfJd9H/XCEhuL9i+FSuhnuunL84GMBI03Hpz+RQVFYuQXDv8oqH53KDNUHo+sDpgRj4vSwGaaP/PsTTLwo7rrMbfxCD9iLtltR4N1TMJtg3tRcP/0h5+uQXjU7XqG2beSCicGG4yYL1KAKlzmbMKGRy7j3HNXqytBa7dMpfF5GkyP6qVIxQQjTrl7iiKnK+HKD0VKJP13nRjjFfisFYyu/mvfbOivgNnWQL0MFRrIFTz9WCkQjOaG0v86a1aBWMzw7uokGlRLuGqYLAQjdov/suO2ksG0lOifeLACWl+GWr+wCUbH9nkuC20nws/y7syTZhUwfim/e14Ni97emVv0UcoGu2/K9xQP4yD8y5z0sBEG/XQyucd6KhOSdnG0P/2Bgzw1+MPfiEFLn5bLhXizAPGeM1uJCwSc9562bSwG/VZbSKsPTIVSvMfxYf1iOCinhPceCEIpMkcOavxNBvW9Z5srThSDjsn5D13WwSieq3DmIjkVbse/Kpi0LgJ3qeS5F91BSMverjB3KxZoMTz1XzQyoY7Gdd+mKAStjRf58PAlwLL2HENMaTpYCWoyr58KQWagLvUlJgHOVPjEHzicBcKj2KPVk1jUNs75jP9IBsRnUZ2ejQbDIqtDRAhrEJLFkFqF6f7wpOXOyYC7VJAZxRUu0P3hT8NAjaZBH+Te+fuvw4gK3vms0wsYej7iYrcV/pMIulkee7AyGTCRXHf/ymUsGlVOTWyvTYQNUeWihEg8qLB2bQhbYNHSSYUtffEkCL83vLvBOhjITMRoNQksMjFZIvfnJQMhNJWj1RAPtSdq1c+8C0aR0qIj9hl9oOK6nhz7pApa5Nd2e34hIld7Zf8Nvz5w+OPKB/LVoJQnNdQrTEKZy/msZfQ8xcd3bzSijwpKB1lOWiaRkNbLcRs7lz7Ab0WLH9pbBeGvDLzFNUiozoeDo/1aH4xEYHim16vg19sPk+5kEpreUVvLU6fzxNep4yvx5fBq/liBTSkOpc6mj5JVqMBxgDkgpq4CHnWsukTm49ChsOSAVCcqBDImafVElkGGzsadG+9xqEB7UlOnswkYMhh5T43lQfZR30kCEwH9J9WavVetH940qSs9zq2CN0w7b11iCUjVxeaDwqcmsH4XLH4BkwPmCssH7dkI6DJUPX2Q2ASr6Qd9lV8WwNyMXEblZATS9mTkn8QRYDD086RVCz0/Dn31MOfHoSefhNkevQsHkYYncVqxWRBsHqT24T4O2V/kmvGPqAbPyybz2cEVcH7eR72tBIusmAU+Sf7LhM2+3C+feGvAQqNJRyscg8LaTPtlzmaB7ZXedCaBaojaP8QhFohB7j8tGixYcoAfm1q+klsN3rztfh9kMYjlgVvk+XMIbAr/lRxjfgOcxCxQnApDh/Ofrx59Xw8/9/Nd2QQvSFE2fZ7iE4b6lom/KXsRVA4KOTLkOMEqr7P6rtww9KzshWPn12YQD2g/MFNOg3a2PqupJgKiOVMjfgi3gCPHE5MVXxpQxgx6ctcJSEtUl91mTwtszrZv6u9vgC3TrTH3cQIi8bqd+TzbDDZbFrw/iW/gdIhA64VOAjJZiO0/KYLA4LOUhUExDQxviliHfgpDj9jDNiQYeuB2m9uPTO1qoC6QOtwMKYgBE6911b0H7thl+1o6V4FJRzOv0xUKKpZ75Jkc0gMTbO906hKrId5yY5emGgWl34wXminugXNhpLe43hq473k4fo8iBR2mlDx/d6kASgy0RPc7pYPZztQl72Y6Pzfaft9pzIOx+3vqlY5mwmjBVUzgWCC6yyrUe1o1D94/7CEemU2DxmXCa6eFQCQoWBArb1kAac+7VuXcM2E546ONSGMgcv4lOsZYlguiFvqVGykpEPTukeepzUC0V+43QXkyG1pRspWDTwqQPyzqmFyg545jwqlRM93wPDNjtZePPmddtLXtjCloUOYNOWO8G6bdI7w59uQBS9guox76utZhJQcBwx64XC6pwaqRDymr44Jh2hTk9SkEgpp7YNsnLWTlWR4UYKW/42UpSPbTQNXwOzp/ygx9H3QvhVBPMkMqdwTyvNXbmNbUCBPzfI9aDMog2UhT56VGBOKLW5l/nNoItnHbP+pulsP8pI3GD8kIVNS8v8JHqBfO25zIMvGnwnjiQ7e2/RSEfyO56mbVC8ONJ8Qr7KgQ3hg1eeQjGf3RNmLBafTCidknn/u2qOCiWmAz+oOMBiwPvgvx7wVSTQNBtZ0KQo93CrSLyYj5xvJVYQwNpjbvcoqEFwLeeePf7UQ8ehededH8Og1+bZnHXKgvgPe9nSWY53j0++Feo257GtxwMCtPf5sPh74VDMsF49H1i22vcP6VwDl5Jf7daibEHSZ1fnUPRqf1b07hxiugUXLPN2pGBpxlFB3POxWM+M+6ZEJtBaReuqLsR8mCsheH9BQ5glGr0IFj6zsdcLAv21ouqg40X30Mm+4mo3vDe7M6ejpgKeDvr1dxtdDJrKbFXk3nlqeel3B6neD5+l63VHMt8P1MdWdYIqMaNk73yt89cF6tSLx0hQrN/xSWuIQpaFyS4fQ2Ry8UdcjG3+jIh1cGu4steClo0YmliteqDTq+JJs+UakGg/NNlPtP6Vyac2XX0+g2kB7ns+44UwMplCUVMp6ElpWs7r073wY+DlzRgvtrIDF1rprhFgkdEkx4zHmiDFhsvsRQvydAYdYVsc4+DDoq+GO/yIsyMHDgjd2sSoKD97dYU9YwSOdJbd7wu1IouRI9o+CRBNfq4yRciRh0aSUXO6lZDXGGre5199LBFT87l+OPRQdO75PY+FoFSQnbB55GpIL26x28nhYWGVTwfN5dVw3BP5VGVnanQVGngc6ZHiwqftdXbTBYAUaXXFyPsaaDjNv72pLjweh7JJfMf66FMFa0eEHIgn5e3VpGDJ1Xt0o/y7V403UaUiW8crYcYt/gPivTApFuk2/6+ikixM+MYLl3V0JZxu7pGBYc8rya7JG6RoSQrEunKn5WAsuHa+r7PoQh/8Dc4qNfwoF47fWWCrUSzC9mV4MRDq2fPCepHlIAU8rbuFzjMqi5rliTRQ1E708e2JA93As5f3TZNLVp8PCfzjKOh4JYVnbtiT3pDO33l28cF6bCp9gP8Y0M4Ugn1JxiXfIYpp4N3LJ+S4VCoaaZG6fDUbIRCquNLYWNc+qttzRpkOB5u4E9js4n5L9fg+0aQfM/Fi/D+4WwOf3mtTJjBBJ6tWw95tEIdbiZj9oxRRDvr8fXxxGBHuYtn7OZq4XfWLsKxU9USHXDrGjIh6Ly3PDdRy/XgtnV0bfMFfTzFJ4j6jaHINoZDGUyvhawCV8l62yp4KEWfC9sVyjSeCaj8upaLXBIk19US9BAyXG862hHCFJZZVVZP94KsseyOlg/B8FJhgvrnfFE5F7edX8iuBUOnjI49ygcC+wnN/gsZ4jo2793Hv0PWyHTTDXESBoPa2jWidRJRNrEf7XdaTTQeihJTSkohcQxpeY95XjUfEYxt5REA5DxffDgRQmEvie0qGfj0S8vuVHk1QpPP0uoVLT6Q+mxQ3dOjRGRkZ2e81v1AZBQ1/eo4YmAvXe3dWTKw9FY/Pp9ssUAyGuaH+mxwIFHb9BwcUQ4Eqf5CRzSaoFmwRKPoF+FsDac1xq6n4hwNgxdrsUtcEVY+m1/ayGw5ldEpJsS0c3Yrfr+uRZYzWYyjFktAHu2FUH9t0SU4adm1KjXCunc1bX3D9aCA9tsnn09EY11337sutkCJfu+qx/dXwvia07zrwKIKClY9jjtZSsca0bT7PI1IJktUBo/REQMI5+uZXvX0n0waHTjdzI4ZCuYpayEoL2Bgs+tJOognKZbGrM7BVqzD4xrPwhFhdV8y2kFfXBUsqvYt6EYrKR3EUK6iKgtbnrtDiMVqEdfH5SbyQGZsYru7/44lORsR36ShGB/eLuBd2E2FP44M/b0Cg7xDZ1jKS1OAb54le6qu2XwpHu4N1IoGNnJ1m3xPEwCPZVR+2yWUqgs5F3HH8aiasfblW8jS4FCpTjwCaSAZsLHy84xGGRg9/Gtm0EvcJCsoyXc0uDnhaccETNkFGqi0Iih6+Jnr+vJF1J0H5AMaTel6+IsZ+rWF/5e2N1/4OzKu1SI85Z+UnWIgsIXBEMibREIfCEbSUulwZbkrFAKHw7Z3cmg2hxDMCahYWr6NA2GsuW6t9rCEBhJDT09gcD/4ddLg19S4JyO+lhUTxjKr3BveqSGICJ77XCxdgY8J+SYvfwThhz/CukN1ZeCskXgg/GRVGjiLJk4nI1BxvD0aWVjPzjbs+8vs8sDh0KvvDpsBHpaJxknRO6Hk+Z57gYoF37dUaflTUeg6gQN7zL1UhhndJPl6UsAloufFU+6Y9DmXK1xMWsrlN+LM7hKKIL9SkRcCp6IPv2TOZfqSF/P2y7+WF0Et2UZ43YNENHbEa1TAoqtEDTJqr8eXwzpqdR33flEJIJUIl3+64TOrR/5P9LqQHDOa+LnJhk9qfjzC5tNg/iOOW6vWi+ISLZy86zCI8OARS8BYxpdv2OENhM/OH9Y0+yBGx71WvC7PjlN9xH1kosF8a5QwjsevmCKR7Vqu8Q+SXWCzDTtlpJIDZwpLpGNHCejOHFP35L+DniXc/1MxO1q+BMpeFqnhoyazHOiddKagck79kvtZjWotWDSiXTuvSd+K3jnRzMoaEn8eD1UDWGa+A1SPwHpvf1wGbfUDKceNY5EJNSAj2BJkmwvAU1M2PAF9zTDO8XQnutLdH4e7DN/V0VA0x/ah/dd6oY9Ymd4Z8eKYfhyokuPCQX9/FaqOFNZCqJPbdjKjmdCe0oXe2sGBl0wSzg2YVYGB2+x0qqd0+FEx2uevXMYxDHs/rRfqAEOhZh78HzwBv7oQI3bHOFol/tltuePGmHnF3ZH5C0NgvRb/Lz+0n24x9RzqqoRTk5mWUdcoYHX0kJ63MUI5LZLOiD8eyOEW7F7MFXT4PF3wydHLCNQ9PVbF117WkDtFDsT59M86JQg1hPsici690rktG4raPpew7Jez4WoT6zcg3VEtLgbH8Gl0grJijV6Vnz5kOdi0va0iIh8pXJxUssNMB/LF5hH55Fny6Tq1PRwVJHR1PxJlwxqN6/NPz7kDPiZ8cTJV2GonAXfIjxKhpU6kaEXB3wgRuj0vOvNMLTe5sBwbo4AVF2hrd/B7sAtdnvY+wAOhcT9foZn6QPri0GSmIvl0KU6cf/xHjLKukiTiPzaAHtbcuLTrlTCzcmPwcox4WhgRPG1REEDiNjE5B5zqIL9GpbrL1zD0YGPlMKbxg3QbZmzP1m5GrLEjzB9VAhHK+IlvieP9MPW55LeF/9oIHK5TfrANgE5bVQlq7L1wwj/nSJeGxqd093Z1A8SUWgEF8MTpX4wCj1zISGaBipNtsIemQR0Cf7uxe5rg6lpsycP7uQDx7iNS6ISCS1JBHxkd2kDAyPzYm+bfMDXcOyYviEhoRNcOItLbfCeScel9WkByM7wbVWZkVB/BE9LVnM/9JlfcrK0LQCtPHMFTkwEEtu4Pf/4ehuUHun0EXqaCxM66ImUJQnNcz/w9i1oBZ/ZwIFKKIZEqevuB/8RUafi3kf5Iy0wwzlm9lS0AHxSj2V3/0dE6nZ6aXtutcKS/Zux9RcF0Fs+dRFHJSIVFY9vWap94Fhs0ntTrgRkVZb23swmofNFfw8IsPXB3Ml/usn7S6Azw/99FyMZ2f41npyZ6QXsyNuLbVeLgc/Nzm5VnoweaLF9vXalAXyO3GcR984GtR/dNuOi4UjuWActMawU9AftMfXmFbA49KCsjoJB3EPZP1R5y2DvPV9j5v2VILiN5zjbTV8njw8sirfC1Rcvf/O8LQQrl/fWdelEFMG/K6ZzvhX0Sig9v7JqoPxjRK/BaRK65cxu4t7dCiOPx3Wu0PXrWt2/on2YhBJtA8zOLLRCceFzm8us1ZB25a6QJD2nTziXpJbq1MDtPS9/MdBS4MDPIJ0PoiGoIFDnetS5GjDgDr/2vDkdHN5eMdjDE4LsWxR5Mo8nAXdDorrdVBGMhbvaO5/Dor5CPKeyTRL46ebVDq4Ug8CibIYBBxY1TSV6HJRIhrxrfj+aJCohIya3zrgmGG2mTxWWrZZBier50BvLCRApRHsZJRmEdrpc/qi/KYZW77PnvCLqQVz8UY7W30DE1ZZkdiavCMr6dc9ena6HLGmOeLORQHo+Jbf9oXQA9nXFZV1iHQzveq5PSyKjeFNnLvmoRIhcIj6IflUJsbvvxjs5YhF/RCHTvvVe4Ppm9iFQowKeflTPmBUio36/g/1DfH3wQOXMhI0svYOG8afvz5LQZqBS787BfjjwbKzYwTYduDfV2D8yEdH93QvlDrf6oKr3MIfejwoIE768yviOhP7rv7aTF41gOWfk8/0HucB+VzogSxWHOD8b8Lny06Bk04h3Wc8GhPKDO/IM8Ij/6ui3d78aIaArSr1RvAGYzxPlbtpEIFLj+9Pf+1LgoFHSoXMVuTBUM3XPjCsYMXeyDCx3J8I/FtRiOZoNBnL/BZkZYZEyewvjT/dekL7gd/1OFwUG7S67PaXnEa1WpxmBtX7QtCnqkqDr7kxE3hpRIQLximHVXzTQ+3bItgsXFQn2Ejt7y2zJ6PyN8Kw3wb1wVORUXGdvDPCLNde35pDRKn91V9N8HPSMtCnpXSeDxx5FhhiXENR1eeig7aNY6J0uqJYjRMEDPqHnhkMh6OkDLemq2GhgGR7/lrZMBvsUvylhg1AU+z5+Wl62AJwKSOj0Eg2uiXbavG4JRBV/hiQk2fJBx7a47u3ZBuDIc+Y5R6/vEL/OcgShFQQWbFkeGGUDzw5tnHmRiFqujT8+5dQKlrr+va8mM8Fn3zPfHfr8fUk0yjJoaoW7LYZTTamZcHncW8VhHwl9uxZ9hECk+7ajgNLokwwQGKgYzaQ/Z6lGMcswsg9ctcIly+IQcB2M+SHzl4hIT066VRb2AU3Z4LqrPAJq5n96Jh1EpFRiZ3G6uw/apbS52YMQHHSXP7gYRkSpGcvBxpvNsIUTkOc4kAZoh9PCepA+N7lzfh/p7YCXT2j2oVbxUMtIfSVOr4tNnlzGedVWkOjsOPn9PBG2vu3MfygmIrI1w0dDPyqM+jsf1T7XAFvRIqzfJ3Fo/sTDmYm/VDh5utvJT7gBXC97cM2q4NGo+BEnnaFa4KpR0vVeQKARXOGCFw9FbQ2qeb/4W+E9SxKbT0AJvI6wGjkVS0SDqRsORwZbIC1JeWr9UilMb+DLLJ8Rkdy5ceaTjJXgcrOlJRdbDud/GfPT5ILRJc+SPT9OV4Cs+GdV9pRyiPEgfi9FQWipAzMrwtwKT/6LUBTZLgWndwIrV0OIaM/WvFhOcBMUPTzxoWLxMfyX0LbO+T4C6QoTeI8dbgImm0j1qThbqLV4M8/zNgKpOGYzDl0phsGMi/8esqSDYZX0yPBqIPodYqD/NKIImNge6o0EZYC6JoP9+0+B6Mq4X4GycRHQPearbXsaBF1hyPXsDUQylvXG+r6l8C5GQE1AoQGckiZeiBIw6JZ9402YrYXPy8vxB6KL4FTJo1EvuVBk9Gdq08KkDioIfHNhM4UQfDbak98jFD0bstVK1u+Fx2JbLVza3pDxn4nArVkySgoUaDnUVQ+H6y2Fq+fD4Pf5zzaN7mGoTvKe/mulelitLupLNyeA6hgpRpw3DFnrp34+FJkAiW+OuDLy1YNW08pq2DQW6cWlCr8Sa4F/aN91IwwV2Fyf9h/7Q0Bmp2NW1Z+3wE8lvz/t2wjYTpQ2zEvQ+1OKwiPOXAfL381S+FkLIU3LdZejZig67Edw4TuQB7CU1sGCLYCk4rQ7f1cCUcZ3vXQJlAMSGZyGBmKFwK6jeGKTB4NaOm+/nvmeDcvRyVSduwWgWpwrs6GAQfFFUl+pX2hwtTc7iScoGzQGDQXXv+LRoOP1F/fXaMBp/qjiuHEucF/H9LUt4xGFvXFTCU+D4ekoJtDJhRM3PkheSccj7Cr1Tc3vGhAzo80ttiF4dfyNuCw5BMWFut50HKuBJiNsEftlKlh9vq7mEhCC5ouYh+631sCz6+6f2HKrYX1e/NXyqxAUmHop6sdEDSwMt0g/bqoCAmbJlhsTgkYbTpxRjy4G/r+5acwumSBwlP3OEjMG5cFpVh5qEZzny8y1I2eBmvLh6t+fA1HNytL62f2NEHa6SyO5jwS195yTk2rp3Jie6CP5sQ9I/duzVDofhpWS5BY8iGg9SGH/Vnc1GPCONIVPVYPlwORa2RAWSbqzvLzyuwqqZFg+SMpVw74Qu7glYywycPI9//NMG8SvI0qHehqskTttJK6TkNmdS83efm1w7q7REuFxOlC5uP/W+pLQ1i/RXNOVHhCeO1TZllYJZ0TmFd1FKOhB19atyV99ED5pN2LATYOFKRsPIRX6eaTX9vYyNYDzpDG5IxdBiYirxd1NPGra6HAtHMWDVV/MOstCHWy/Ivkee4lDBWsULQX5TmB4tsNjPVcCUvP/dT+bIiN1UqeVv2wnZNEwD5uai0FufyeT7SQZjZs/5e2O7QRCdoXmHccSmGyaPB7HSkHeexad+rdbAG/8kuPt8RQY/a69mw1DRN2SSm8/NFRDlMil27MJZNAfd7/f2I9FGYZeFxQLa6DzAsG+ooYE+57JBu+xC0GEAeNREYNG+IxVCLeVQ/D9dBl35lI4IvRVeDvq1gCgpu43FyPAhy/4trZYCGq4qX7t3Nk2iNTwunMvAsGJwHv79PRJ6IrlxtSj8lbolxkj2BYgUIh9EfKW+f/fMT36bfSrFUqMHX9kClDB7TPjyb/iJFRNM0s+UdMKH1/ERFeVp4F3/1liAAudM2daRxWPRcOlxbzn44Z+ELaxQxD5j66jh2EyjgZJ0JSJqsN0siDPuCXyNj8W9S7/xnmp9YFf6Olnd2cqgWO1ZORwBgmxKYkbZtA58Lqun+oRgyqgo7/bIgMZPXJNN3doxIBu/NW7XvhysMhhXwjjxqPXUxdO91+iQm6UjxqPXjb47lu4Pl+IQ9YvmU4P1tNA7G7bk+qYKKBpBc2ZtOHRPx2hb+09jVBgF5qePhACC+NT40M3ItDsl8siX+wbYeoIu+WFDhzkx5TSZJgiUOnO37XTmrkgP8dJOsKSDyy4b4oLLBh0/cAAnzzQQEvG278piwrTFYeOn3Gk6zQTM3gilZ43B7/+pDhRof3kadXuUjzKqFnm3Fy0ggmGL/Vv+ZOgzXbhkaAYPUcUny8U++AIDHdcJe9xpUCHXvXTp/T8deiSjdppYhv0t42yC9gGgdHoxZ3OEBIKVnpy8NTudpA0uW1qwxkMDnGnVv/2kBDlt2Ff+4lIAMZX2qv8AfBSdoap/k8o4ooE5deJDRB90KXO7EIF/Nc18DTXKRxd6zxiukunDbyK0+XeWuBg0em8vtQDElKuxahh1hqgrzbpvPzdcsC6S/4Izw5HBR+lEhkVigD3kbt8E18EnPnYZc2uQBRxOMXmxYFGuOhwdiVIuwKKXKk6uLpwpMWS7/9rpAvSE3V71GpKgLuAS6BEj4LEv0SZ+th1A+O4CqMZXUeMOKev98woyLg8a2SCqRvOGz/eYGkrhcw/N/Zk3aL8/3/GpgCnBmixFvDVy8+FyQZ93C3tcDTaY838k78Bwi719JY+zoed14f99+0LR7fZN/YObxeDk/Pf4zYyhVB/I2RdnB+D/E3Vd+oTWkFLCKm+l88Ho9KIV1NrRHSoiFzY3kXv5/M8Uvb6uVC4WtTw6RAJMUQct4x3aYGkFWaebJFSoJw16A6QIiKhsgDvifoWsJcRCAq6WQK4ll2T+y2JyKQswqbhVAdkO7u0lLxKANsGu+FZezJK7PxguGjRAdG9Aad6nJMAvnQ+anlHRsn2ARKK6+2AZqx+8D5OAht1KJsxJKPNaLMevocNYMS5QcQiBHvObWrIQzhaTWHt4RFtAFBU+ut1g67HqhHnPK5wVC/P2JhFboD8fX5fBd2o8Dc1QcHdJhwpc1VGX+mi/a+DM4+G8n//cKFSCEURWSpLIiItCrcolL0QZV+zRamPZCfMWGcsM/Z9y77vvGfs+06IhEiISGUpv/n+/n3OnPM8z7zv+/W6rnPmDESrtpn07CNgCLhYIzCEQxJNpWIL+U3wUV9BI+5WNAhIMtZ2/odHsfe+iX1dbIL/cnZY/8zh4HwwR6hmKh5Fvb9wW9ulCcSezlAftAoH8pRrh48GHjmZ85rX32mGGZvw9Ui5SDiQUnv3wzwe7dB/NaeKaIPodPZjf3+Vw8NHqTiiXBRSYxAtMrrTCJecWQ5ePFkCb+4Q0+S5whCK+VXF/aMBJHtmOHVOF0PcGemG1oVQtO6h94+zvgmeVFqcsvpMAj2PtpANHzzy+147AlwD8JCZkb6gNxeOuNIRz3yORjeinvBsHB+AUvbQ8eQLBTCsLO7DshONSEdwzHowAMefHzIU7iwE9aJ9qYjMaFRzi/f4Sac6YDOQ6JzNqIPeZjX937IhaFggWmrMlggk33Wyxu1yuFSkJlktFIa6qQw99tr74KHliEeodhmYTRx3+XWFiGiUijWY5vvg8FQ39MeUQs7jHMMFISLq8+y7o8zRD1kmgZqvFMqg+TCdgBMzER39cYRovdsDLE1S9TiVKtB9tGq9o0lEVO3/QsNNKXsxKLRl2FkJUyGOPJKUvdBtfOf+Tq8XhLgMrs5sVcHbnEL2DV0i4j1rhJnQ7IC0FafwFjEyHMXxjbaaR6Orzlepwn+0w9t8Lb6QIDJg7d9qxApGI1P+pfvf/7TDy1+OpJ/UZLg29JIkLxKN+rRu1M4/aYH7EcZPT54qg1E9+lR8cQSKD6o68JuuBSrYSuMmYkvh6L9ov+T/IhD9jSL58vhamF48e2aY9R3c0QmQc6kJRsaKmackZOug/nmqSGWEJ+ixvNZU4AlB87amb6j566B/v6nT9CAGmnYZA3WYQtDT2U+mRP5+iIixr5eSKIUerZh9K0o/thyRKtsuyIQu2W/tlgfKoLKl9PC0ExYd0nIwffAmGzAC5/21TSn++/e7k913DAoM8p8aL8+G0Vj+1SyJMhj+pHRxbRqDrMUU6BpuZIGgeYP2dGsJ5Ddb5ZYrYtEPeYVY4qN+0PNe6x66XgyPpvxbFih9feyfw1q+Uj+EuJLCJ64Uwcn1YHHD7wSkk3D6nPhWDDzoMqrpZ0IgtbBgeowUisasiogdhkNQ4Keo7kzh35W9a9wV4Xhk/vm2iqDGECwtC7Ekf60D8b1Qj910PJpyWM4h1XaCyJdNv2TDXGBKFgcbSQKFM9c0Cr4NAKeME+fLsXhoG7slKvowCgmldx6c02qCxAXvmNBnWOjJ13rBIIlHHKRsUrbuAPgccneeaM0FuuS1cWM3Sl6t0Wddk2qAr4Yq9UemGqA0PEfjum0ouhMwKnfqYz3QTg3dkt+ph1XWcRdb4VC09IMq8up6G8i4tXGUhCTDzpzNOYJXFPrH7m3nz9EOojQq38LEUoGRr57Tj+I17QPzvGT7ekivjEow/4qFsQZ9QshcCIJ0BxUZv3roe7xwLLQwHHpcWFh0NkLQ7IT+O2mxevj2fPv6CfEICsdq/lSuDUHpy4vPjqbWg/hxKSn1pGhgWUp6unPof/seKvrscTv4lP62NBoigY0+2wdSSxQKmPO5+lm1HTyFmVmOv6B4m2rBlZEGSg7HKI49dW+H73JvXGLPkuC2J4nu+1QU6hgIstiVaYdEzCrVqTIE3+cuz1GVR6Gzo01Dtct94JxjzXezKQ/YZDKn2wWJKHfajDH6bD/o3792wWQmH2RHPz36wEhEkcZn97wP9cIrqqdj0/9VwsV8c7svlD7qH2xQUVbvBeGrueSjHRXAqaZ+PIqyj1GgXXVrtghm7B5uT8eR4efqOd6/DYGot/6Tr0p1EQS0frBPP0iGIUmi4M/GQJQ4qHttMbUYOuUdzb31yfCXof/mI3IgOlL+un5tuBmaPgo8vONeBjrX5I7HqEegRQwrrDv0w2pfppOWTCmwOVzy/dRJQPRhmqIpmpR5JnkYFrCXAY9e+6vQBQIS8iEetGOqh+VrJ6clJqrByvIiNT4zBGk/cQ8aNB0EmsxpskpKLVxnqvUz0YxETwgHmx4MJcOojKiSQUMleK64fUrsCEY2rtf4FtSSoWMocfBkaRVISYm0hh8NQYJZvLXpxFo4JcXzYYhcBD4D1Bd+VgajF8k2jX1aeGjsWOg2m8qEwTMLLkmW4Ygn0ba6VbcDmMkbl6r1KLlKNJO1s45Gajeaov0oOfY334dlUKMCjvTnf8JRcsyPzb2seKUVZoyavqqvVsCS/I3Z+d5INNrhOb/0uRXuVIU1stJUwZY/MdGwLRKlky585WdtA/7TqcweX8shl471+bHlSMR3vGKtyKINeguUVyS+VIDUcKt8wrkoJLp2ItTt+XsIbXW30ZGtgUHJHzNH3mJQtkqiUu1kBszmWRwfraVwgk1cwEoFFmX9vZFjcYPS+8GCuTIFlaCVKiPsSB2Fmg9tSj0+j+CyRCY+8VwR7MXknVYYDEMes1o/Ll9BMP/unNd35gIQmlZ5Ff0lDJV4M3cnQQsseps9uUxbDrutDQdHEiKQVro8tP9qhDLyBLeYQDGUDqaz5MVSPPfFbp6fdiNUHR33bRYqgm4h0TSzS2FogHTF4uzr1/Al0LpOTKAUyEUldt0zODRaRU/vuGEOr1XGHIvWS2DgPB/pKT8eZV2XF4090QGCxTUkOZ5skGSnknkuHY0sHacYPdwzgY/x25ZjXAUwzTUkh3tjkQvnlSFXjQzIQZ4uvmqVcES7sFNvEYue7zVthxQ2Ap2rlHJyUwGoz6VrGjwLQ+Vzu3v8dZaQ9H7JekkdARPhP7E3vHgUkMVwiX4kAxr1FdYjS8qhWbuMT7waixqRjKc3eyYQNwyfsDysglHdM6kiqViUc5fxY4j+EJTwGQwWoxgocLLW9YjGI2ejhUBLxxbQmhOIrkqphhP/ZjMsUAS63+jg3MfeApcf44xaGaqBTfNCToF3BEo8xt71qaYfsNKESCVKz6Yl842vvCSg2PdqDZqUPfI/ILutw14FVd4nBty7CIg6qfKe02wFzKam/CjMjgIbGjbum3xYVMu25HhypB/KrvUG3bevhBHWRttuDQJi2qgt0un3g0rpA0/uDNSCqX7zXXNjHCqkWk0Lf+wJx5Qb+Wq3a+FspQhNN8Xf+6A6JUAjFowjHLzUt+LglH70bHJ2KJo1eS1j+CAeDtQ+oI/4Gw/MM7p6b86FosiN4GSbM32gGX9gnfdAFcimPVFZ1iCibsOuQpmGXjAl2fykF6gCBbmEonRK/og+rA0+8LkX3OzPnzQ5UwkVJv9dntAmIibOk7Hn199CTzvHBPZuFUhLP8m70oBDepP3JP9K+cHH/PvBj29WgR/mOnurNQ6txj70czDyATyPqm4p5fuU/b0qve+DQ3VvrZHI92SoUFfQ4ausAMnnau8G6oKRmfIDFsfbphAasb1ReNgH6OuOZBaI4JFDMXPDSFoinEgu5ij5XQHLlmMpwQEhKH5oz+f3LKW/vKgntY8iGCv8GlloFoX0Dtiz3W8agIXl9/xx/Y3AW37oSVNmFCoRmeQOMBuCWuH+A1FWZDDAbeppYvFIS8HsOvepQRBvtQ1L+kICoSYPx9itSNTabrfJWdkC5+Qi//gRymCB2NH0dDMCWdRxuMpH9kM5l5ZtuG8J9G6d8/ySSkDbpw5fON3SDyKnfV7ROpSA7Wd+E6wlAUGfSzA9FwGS5RcZjvBjYYR4n6vLLwxlxJiYENIHoZC9i3gJSkDPt/79p84IJMxusvjAZRC4aJiev75UAn8y2zNCL0Sig5JzFa832+AUXSGr5ckauN7PLNHqE4Wqsh6+dhTugXObX4l4JTKI17zIu0vhyeQzXborRj2greNQEzhAgsoR5aOfbhHRxbySCqHyHvC6JfCGS5wMjyc5D/QrE5FfQcZfe4VwAGbWx/xjpcDFW738+304ihW6m/lJHQfsrD6SGl0lwKT/XeNNYDhym1B2ULqJgXKLbXm+L6Xgxpz1YpYLhx5uXC05TMm3pMFIt3mjakjjOEy8TMk3W//8ZD7VNlDZwmvHJVZB6Rf51QbmKGSq3tl44z0OmKmN67J68+HgCYeCcrdwVPWR1PLZEQdi4gFd4sx5oMd2MOayXzgatFw3yxuJgHSpd0mmxnlgxH3noLFEONJaWnre0VoHg6JyQ/N/Q+FeQQd26XUI+nd2im/mRy2wvh4VEt+rgdZDSwKYtWCEE5ZzEJJtgzICkegoXwMPNt0FOGkpfoHGqr1RO/zl/mlqGUSCSx+s7uscjUZJmS9FY3VrIV2Twye1yQ227qz+WggLRtUP+V8+WaqBgh9e337zvgPv8lqunyrB6JpIjpb5djMw/mVT+XeiBl63jlby2EQgCfNT3c/dOkDEySLqURoZfgRUxY95RKOnn2zPrmV3wOk/ca/ctchwqoz4ozgmGh27yP6fCb4D2qsr3yRskGDyrUX8ueBolH5dW0s5hpI/NvMzbxOKoXL9BidnAgE1Nd/bb3qQCVK8Y8+OeSF4bgJpqTgs+sPX4papFAq6Prd4554UgIboJ4JPXzgS8rs+5NkcCPu6zMPavvlwPOCO7jAfDl0d1o349x8WLrFa1FqZFUJCKaaugQ6HZmh+MVfeywGh/gN0H90ocz5eM5Bei0FxOxkFU0xZwFhyGEeTVAyqGsYh+Q+xqJDOoMboZAbMH7VcfmpVDDInnvZr/cWijdhog62WTHiR4ily0qYSTCU9WfJtsOi/Z7kzOT+ygFkvV/RsayXk/buMLT2BRVS3dN15XuLB6Ossj1pnGXybsZ4xNA1H8iy3r1+i7gCrJ6PjIRQe9n/ZdapGIho98pHgfCzQARGLBu1HmnJgxeeCsc39aPRxrY3/zqsOWBeSueV1LxeSzquefuMajfZSP7+8HNgBrHW4ZwqQAy6EvMN/3kUjvlrOU7MX0qDakxiHO90E+qVuO8sNQehTdqSrumc9sHySCT4nkQ9kRzz96bUQVKYyT/2zehBuaAwVnZcvhZLYPkn5lAhE5qv+JRndDnmWgQ7EtXr4786HhhPfo9DWsRhp3dR2MC+tc5c4Ww8J4nji8lYU8pJkmP3j1Ay3Gf5mSU83gHS5x3mzIxGIy9RaaTSxGZJyXRXyShvB1+5XhIBgBKK7ibg+KzbDufD8T5PYRiB0rFDHfcWjrZiFgr2rZXDo0tsbbp2l8GbotmWCIAY5arywV6Ovh0eJ398r3E2Fwc5Rgy9pIejbRfk4wf46uFkRoi04ngaYRmXXn24hiG+Gkc3+7iDInN+ulpsnwbxnVXdLWCRa48DQqXaS4D+n4Ypy+nzotef76n4Kh8Q5qOiszpGBP2A0YJcjD2wWs01e6uAQ6VM615FEMujmbRT6mVF64C31VHwRDv1SeFF10YlMmQOxVTWnBIh4kGP3IQyHjHTyPnO1k+F+/LxXOEsiOJ8w2zPvw6EXc4PeoS5lMJ+ua7q/XwJ0Nz7Pe9zCIBk1TVqL9yTg2WO56XmH4jVBU15W++Ho8XI+YwexCzKsIotOdCXDRICJcB4ltye0+ruzMF1Qy+RgHKKQADZXaspQHAE58ydP5GcGAcvHnydxhsXgLvdtR2s7HAWGnvm3ZfoOYhZ2Sh01iuGXQGgY22McUngV3VKp3wWhDNBKGCRC9OHbN6rfEVDe0LRr+ZMgWNrknMAmFcHWDT7fr3/DEVXMrfRg+n7QvnE48axoEgSatxff5KB4ujYnefFSP6xfM8UEQTx01SRLvTlERLF5iV/kE0rg0e8fX/rsCmBG6ss59vFA9DjA29n1USUIBx67qOiC4N4h9uaj+lhk/Ypcn52dD5EdZHSdtgGyeh6ZEncDEVNBkACuuBJa0m8kM9iRQPxDsc1PfyzaT/DRS2qogB32/hJHDxKUBFSrCbFi0XUuaq6h65WQraXP/HaOBAFqviKBKljkE2frdfliJJQweZjM38JC3OXTElKC4eiC2PrVAa5+WLOxl/GYSIFPH2n8do8T0ZuRL3mNVX0Ubw+9kLCbDAN4oX9fJInoYLob59TzfvjDeivxsHIjnMyIvLPRQUBZr3+ILST1g9F2HL/lTANU/mje140ioE8ChBsEcjZEm44O/eJIgmdyBYK1kxj0b0Nd+tMFH0gJ9PzSfL8UfE2WmEX8caj4+syLhZd9cPTn8maSeiW4Kpm5nlcgIsG9uE7O732Qkets1U15v4S0JUUuisdFnbxdOAZZEBhO4rlulAyvbJ0UVO9i0aPTdDkfKLw6ZPme85JxLowutsyHU3i1e8ftwqW3jfC20wTntJgH6ezKWLm7YegrIw+T4dIgvOU7ce3DZCmUte/88lSOQFd32Xj+m7SGEvc89QO9VZCv9cs+jgOPun3XlW4mNgJrFItXRHQOzNP6mVkZhCEenqCymuYy4OiWMNp9UQ6ZJh8lErQwaLIscdNQewgGSr2ti95Gw7X+KNv3CXj0e/9x4O7VIfB7/W5I/TcRTj4619TSjUfLfzr9sLxD4Cnx5RjLhWiYdvfn+vYNj4zza8pSKmpA+7jGxBJ9Etxkqn8XfjkYtb55ohyvWAPzbm0C+39jgW/v9zua1SDE3nHOVfF7C8xOhs5ZH0iD7ZNjF3+ciUQ94wzex9tb4Injdo3zzRQQmztjgNmPQAtVz84nxrWARupB1wuu6XAduDkiPkUghfKUBH/iACjxPLZBNKXg+V9SSt+/KJSp5LRjKNgLlWlvQm6/JUHL4buDoRT+fPDSw0a6rwcM8GN3dCl5c0Js74OEKhF1bVBnyifHw67qUPgcSxOgtWPSd+lD0b1sZT3N9iYA1ooTe8sxIK3ojbsYhEdXgr6OLrR3QBiPi1rtmC9Yl3A61+ZFI/vuCJcqXhJgtR+EdIXVQyQ2o/t4QjhK4lxX/KFIAikjeH/3ZQNw81u8fV0VjlIuXeWX0nkGAYGKyslVCJivcRTePUPxlOdvfk+2OQOzrGr6vWcIrt9iMmFepuRY+9nOT6lvYOE6d0tZEwKj20G/N7pxiD9rXNHQmQTcZxJkNwfr4HyLm4bNh3B0gI73eoe9P7jVVK08eVwEJt32IiNKONTONJxZoNgE33tz3L3uI+CajnQYFcajEueR/wLb0iGuwED7LkMTlOamjkiwU3rqgcPF8zsZ4C0mrvDUgwxCf2lXsvKwqLIyr14Qkwlhl4p2bh5rgsFodbNRdyxqXuTcv88cApnImP1hWAX4+inbb82Go8LbLL89T4fD9a/mOwctKiHnaj13RRGFD4eoPy8q4iDu9839Ic8KSLeRveODoXh6psbHYNlwWByWxqaWloPLS9RGyA1HacOfi7y5m4BTqfpAWwoZrsRfdDNjxKMjLQpXvCrIEIRemecVk0HUyVvXm0zpkbNERRm/JoiNnLJdnGsE3ZRT9TJ6eCTuo6Dusd4EtAVfvnK3uUHo4g/f+Gw8arPr7/XUa4Z7Y5aOLztdQexfSLbHFh7F9rs4ND6uhOVnt1+3DRXB7AN9TaanWORda1voxdANnpMyGmoqCCZEtHP7hgnI56hvFSmoCYY4nDRMi+IhyevvHZIhHh0+rvpJdicNxGNFELsrGV6FfODetwpCrI1b2c4NA/AvVeJBqIUd0G9uLc4URaGRFzWO3BeHgFg3E1jHUgctfhe2/k3j0XRY4O32tP9A003n4sjXDDgX/HnWcxyHnppLaAlPvQQzsZuHJryywAE/YhazjkNf3szKZfBaQk/H3b0Vx2xYVvNk5D2PRy/8syevfCuDcyLVVTd0yaAwLFabbYhBW3l8mTSBmSAzzH9QSLoA5gOm/CU8sEjPtq7IcyMLRE5+IjKeyIcNpd1kFwpfGU/qe96vyIL7NOnLa4mFUIhtOHfvPBaxvREWGT9NhiKWvwwZzO/hk36tQKsaxU93YPv6azLoX1ZfWfn6Hjg5Vk5iInBIKsHnh0LZIJjaFgp3CSNI+pXRfj0vAlXZFD0zXiyHEmPt1cmGGDgblzaLqcGga/FTMzV61XDhkzOVElUj8L1iv2ZjEYRKJkXiuycRyMlt1XsQS8DZxkiA3zYczYc+q+rRJUF5UAPvsksJBP15PjHZFI50f05NdN8kwVcDz/LNqFKwHleW0CgIR2yC97XfNFbDV7oWoX2TBhjln9MKTwxCJ5TPekh97ASfzeVusmgJvO4Y4Xh7j4AU/Aft/hzrglOSLFx0FF59dWb1s4shAWELUnHUDl2gurSp7XCtBOyaGG0/hxLQ7sc/N3yvtEKZH0echnMZFD/MO7N+PxINii0vPR9uAUOuvkbnV6Vw9SkDlx1tJMIlJn51rSWDAG94a3RrDpC8q3P5WnFojEHxTPnJJijUNVpHtTnwbMGSruEwHolZZv+5JNsMVC+HCj+yVYP+9MDorVk8svmmkPwkpRm0VpvvYBSqgVwdiv13MQK5/sf8QlKoGYa/xfEaHamBRcWu2LlBPFrZMEg6V0KCqkn1H6y7JRB/lvzkwCEcyizdPXiUhgw/lX5Z8FGec0/L2N0IcMgZ4/vHYrgBuvdquR3MC6C6/nOkzFAoEmY4MmBC8YLMVm1i5ngsJN66e739f16QKtUdQOoDpwNx/WFBGZDc8lK8W4KIGk6sFyw/xQLZ+VfBO+8wuLFrmGjCgEMT05N9RznKgerohuJiVyNsyOz67DtgkEuKUI/WVcq85Uzc3YsqgVVl45ceZjgUY9RuzajkD/wGGn/vPsNDW67v9wMPcCha4U8eW3APzLItJ9NTfOrN4w75VHkiennw5AN6ml6gSnt0ZCKKDB9ek9ybtSieOxeVylY+CIJyzBmLYSRw8AswSXxP4XPpFr/GkUE40K4DY1IkyJ2wZN63o/S112Ixay8JUji2lCcPl8Dgt9qQW+w4FJ/FKD3/qBQ+H+56PyvuDqmRkfP8vwJR4hVBcdb5EuBarXYcHHkHGRI9bRxzgYhOfdEn+UwJfFreUDkh6QWHyddZyzsD0W2xmOKO3grI45wbdZEoB9NmVWETTizSusmowaZUBfec48x2OiuAr9jgSMMgFpEXIkM7bKtAtNkSE7RcDoQfhgOyX7Bo3R3TfdgYC49u7DR8x5Mg7l1H9BXK91yAK6u/010J99eu4jJrG2D2L4cgVyQWIaP/ZBmVKuFFf/JD0Yp6+P6810DoERY9EbY8nH2lCpKMvmqeH6uHmSb9ask2LOJ1j2L/SNsPC/C2x0qkCdiztYZDzhLR9D/dEf3CPlDhtmcMpMyvUwzmw4kbRLTy0usMPU0/vD8SVfy9lAzP7G8t+fEQ0T8GV3KPSD9sS7KVpmYGAzL4tXyMhoi+JLaGZv7KhcaVBIH9dksgdZRcV5TEIAfWX7d3MvJBtidN4qSDHaWP/k7PUTi2mHVB3OC/d9BaMeUN0iSodSeWr1H8YpZOJXmfkj9GYgExgpph0PjuRHUv5XxZuDRf/GQagIX9A6z/ehqA3+Om0/ivaPTAXdXATmkA7Ma/bAr8bYADra/8+InRqPvwRK7sRj/c23ofcWa6HlJTZxdS+AloXqKCzYJjALZC6HuDuuphPaMPP/wlGg2ZHorWrUoDU4Wsy399k0Fn8weTuk8Q8jvNqJ+2lwLzeX91PfmSgZ7Rjq9INhi5Cku6TcaUQTpFPG5nvoX6mqhlw7sYlPDSDasQUQr1jSu6dwzsQLD0Tb8iFQY5p9i/Vfo4COa0fXIkXYoHt3KePWYSgWwxfFZ986VgqtZoQ6z0AykT1Se6LJT8/3plCf+7DMqZ1QazMWXwVvaRLZMZBklNjLVV9pdDWvAN46M85bBnYH0vuRiDQsFiZH+3BRyFdcbvh1VBe7nRPfKFSPTCSbau9E0reL2+P+asUQXVJw6dv+ARiRhPhm4UK7WC/pmra+aq1ZCWWxFh+yQSfVytnP12vhxOnhktpoouBVrzqPN0LzDIskY1Na67FTA3eRwXT1cDSd5G2qUqEhlJJ7GpBrXCc4IAjlWgBkpKMhVx2EhkQHkE8kI/0IsV6R/xTQWdHXOexOsExGkZ0F1NMwApSbZbgo+SYa6Y8Oj+MUpu11EpK1LOZdlaenODJxUqZNMqDi1QzpfgXUEJHnjdxOf4arMR6notvpNDcajjseme9kNX+JEXlyDJ0wj3/SX/hLXjEJmx3mWqqgb2P2z0s8RHQ3Pjp9gvosFIWvLx/Xtb3SCq8NqOTJUK1uzF1innicieFrcQVN8J1l51ogt7UdDD1SVqcI0yJ//mvYx3OsGd6HmnMpAI/157/KLVIaB7x2rcCir7QMFL2WyAIw1yKkwk+a8RUeoH20tX5ftgzAr7MPJGKhx+tTc184CITn3c9Jt/UQ3WJpvz2lv58O5lb6/dyyDkM8UkN07J/Vdjn1rKxnKhem6NfkIvCDmus/u70NRAk1J4DXVzLhT+uS3J0BqE5jW/vrwfUAXBineL7oznwfuk0o/pm1j0ta9OI1S6AwwmijtzezEUvpbmvfU4GrlS0cYkLrQDTIjSVy68g+8VAZE5vNEosUV27f29DrDbK+k4beMLhplcGp8MotFclASH2WQPsE+NPL9O3QS+y1MmaWpE5Go1uMmu1wPLHdpsShxN4DOqLoeXIqJ4wbkXcmm1MJvlaWwxRQKaA1/z/BuC0U2pdI41szqYIgbKMHKSwcTwynXi9RB0RqJtbTO1luIDR6V+a5KhQIIrVYfyeZXJVSWsMMXXbO2TyoxyQSF15Yj+AywiBjynUvfKBhMxXibbuvewfCP9edwKBnWGK5x7P1QLEpH9Pxy1SWDFaC+S9jEYsaoIY914EDxx/zUcOoNgsVAkTLGX4nHaap2R3gj4Pruf1D9KggmqA323LoWjfxn5hOD4Znis+/dJYlApGNstcrrxR6C5cJ+vM5TzpY6X53PysYC/P6mMz1DON1nov5X0G++hvzb+Z5N9HkhPzJtK+GPQz8bb1oPHiqE/zbazz9oXlKVStxMbApEodYsQ1ekiWO+u2nCV8IFvlt+lezsCEb3ZqohtaCs09NUri25FwOyzd5eagyNR3e9A65cvyWD3UCndxK8UGi/BnC8Oh0R8LZT2S2pAS3DHyVKQBPfqbVsthIORNTH2e5MwGd6bbY141RSDmo7O/F8DHLrvZ/955zMJUH3g0YLjxbB0lVo+SwCHRt9ZG/r8aQQq3aSEflQC6gdH5qfjwpB/v22l8AkEsUvPqXLpSmDo2o11nZowZLv6+MTtuWY4OeQl5KldDiHD+pxU+hFo5S4Dz6HLLZD4Qfu35sEKCF1nbHgcHoGaJo/GnVd4BTfD36IRKgQybF5GXF9xSNamhMbmVyss/vRyPMybC6EmVva5I5Eo8Kk93ZfwVrjzc/rcf5dz4UvKxTO+oZGoVJRJ/ZpFJmhMrFE9rcyDYw5vV40wWNQnfr7q7N4gOHL8oIWX8WBoMLlXKxiBNoueSVZzDcFwQaoPT2MSBP+cx1us4dHpJ9QPaSWGQAtPNSUhFA8/jouTavvwyKwszuJQcQ/kb941/hHiB1R6LsK3lYnI1yeg+aptHhzyqj++OkuChQ3r7M7zGPRsWj/bjJwLzFfHIxNvkiGZjqYoVhqDMi+LSk549sP15h9Duk9tQH98stqmmoD+M+cv/f6gH6Q/Bnip+5hDISPfzfBlAvJ6q36KOa4aAq4fk0jhqAGTQy3uvzBByGZe+XQ55XzdPtFUxZ6pgagattCblPPdveJaOMBZA73cax/mR2rgxcdgRe7hIDRnVEIn+roJ3tcshcgm1YPDkIXWmhoe0doO+Y/VNUHD7Dazr1cDaP5rSWz0waOZ3B0DxnPZwEl9kD4JFcGMuii/9yEsEpLyJyqnpMM2R7UT24NU2LrmuOArEITWdkMSfp2nzNsXnhhj+2rgi54Ml/8QhJ7zBD78u1QDhgx9+d63KBxb0BCgrRqM8nwebPbHNMGVa8tzXp8pOb/6MY/pGR75K8q9EXzYBKH//Zzc5koBBidlE5DEI/uvJ8tCIrsgQnmy/zw3CV4Y3aRtTCagEAWvz5FhmbDHnaGEzyqCgLMq051vsajiY/xx1650wHTxSGhGFYFocuXbutNB6O5SRVrJ4x4I82Hveb0ZB0qTCfoelFwipH8wvpDeA8536V8P/SNCevT0FyNFImIRPzBycawHaNvQnzf4OFgM4rnDT8m3Gx+rty4uVYD99EeON7IlIDVFXJMXxKIpo+TzceUdEMEcZlxejGCVPuo/hZRodNtR5VjG117IiJhxe/o0BZIzK2t1tIlosoubi+b8IJDi7ju58lbDXHXGC/J4JPr0M5AnlcJRF248D9kQKYcKYSPCRQpHdTa7HlCaaoFjsCInUkYG6m+MLU3HI9GjdfU/DC4tEHOM+Z59BhkCGIwnV1oiEOvi+H6lOAnO6/c26rq6Qq6AyK3bOeFIp/Ic7QaBBK0GklK6Wm7ge3HzwsmNcPT6z4gCK8WPsmr/PP9zh0zZ9xc1VhQ/Kg3kTdna7ISPtFG0e40k4LE9G9CoRUDHz/Me8id2Urx415/zDwmeYf0+BZ0joCeYjBavBxmQcJVF/j9BBHqDElXcS1hU3+B627c6EzS1dt1NDiNgzqzdCXPAIjWJH0gnpg28OG7RMtSUwJWKtZHFu1GIzzJ595JcG2j5hk+GDJbADpeshcfRKGRxT+w7xqQNso9Kq5JTS4FuPa6ziTsKFbZoPqlUGwIN/pyEW3WVcK749NKhLDxaQjLm0eJDoJq6ruFeXgEBJCN41o9HMqd8B8uzGmEq8o6PkEAZzDqUb26YhaGwUi5crEY8CBH7DsovUM7lob3gGd5Q9MaTM2bhSgJY3UuV9SHVQOb9M7/NF0LQvWZdzDWuOEhmpZFXXqsBOnNt2nmnULR/ucdjfisRvIQKj9w0qoGW9vHjvS9CkHWIWeeKaQYw3fXZe+3VCKprrGs9M1jEHqa1IP+iEuSNGRTkOD0huCw4UNoai3LsOPN1OIdAQE9o86B9JThJCXtf28Qjn3rup+qU3N86cfTc6clckLAxw8nvB6LWQ3Ns9dUl8Gch6bpvTh70fm7DrH8MRArJzuZ8Z8Ogkon32rxVFehLa9w+Sw5HXDTo9+dvIcDbpiSq+wjBctDijNlIOLpsRF+m3oqBqjc7XUdJVcDF9m/yxSkcojlX3pa5nAWzIbv/vlL8UiNf9tZTFizaf7s67CCbA7ZLJF3rAhIEiIkMPanHIEzR/Q011Aehj+kDFFXJYJyRe5TtKhHNd6r/0JUpA90WaYM/mY3wW4pe/9wlDNo7EKM0yRoKxB7CuZGQRhC8up9YMhiOnjU3HVX51Q+jCXetWF4jwMv7FAfwEFCCz9lvjwbzIeTJYf/TB0iQUaS9zfE7EOmQhn2fk/Jhp6fCwNwZAd2OxKGvfwIR/pnQ3PGYQQgr+29WNj4GaM8trPZ9jkASv081VcUNwlkjW9vDcwkgOx4f7/YxAoXYD5hunqLwk+PTOKpgBBJn/r1SEsOgg+3HLbj2B+FruvhVvsQK+MI79pp4PgIpvpjcocJmwUT70etdCa6guKtK/CqKRc9vXWCPDEmH00eddU3DiFCVonpw63IQKrWYYTcOywUqVzQgc5AE7NZ23IfvYZDuvdl+fbEY2M6mScucrISFfwePj2yFomc5zxTaRAkwhvUM7rGvgvKta+8PeoUh+UIAnbvRcEyoywxztxKeuRxHyo1hiLOhQPyYdRssen6+yOZWBtmjy7k3L0Sh4IerS1pMbYA9yN5rvVsGF4uDMUWLkeiOeZ4m9wgRsu0ursXvkSDmnTYYHg9DKcO2usLyUaA6RzUtxkqGuXP5izZU4aiLJkyfA1sCvm8qDcZwDqD995Fe1mggai9757o20w4bGO6Hp85XgYPVXDE9VzT6KW1z//LuAARqXjsRlBQIS9QbNXWiUejA2M7XPolB2A7mT317KQAYOsMehpVHokYxCeGAonZws1qWqVeqhoOnKseZ96PQdUII0d+tG14lTR0sMMkD/Scypc7/CCggcmThJWMH/Jq9d2XiWjU8MD+96XwrGsU9mt5Ok30PGz8fGwU+yoD9tZQskh8G1V3jNJ+16oDPkwZ9so+rwfiOMai9iEbEoKY/e1conDzWGJJ8vQYkakeY6DWjkWTqjdO3tTtgOFKDkKdVBel/Pi1OWkYjKRuGyxLEDjDarhCspuz794cG4+lh0ejMO5VbTdH9sLWXuXOC4sXU8pvBRyj9pXP5yEswfAWz8hefvjcvgrOPqJU9F3HIq8bWfvSpNzwWe/e+GFcEETnN9pvhOORzx/Hs+L0KuNSsHqOzUA49e4fmnD5j0MnfPS66FuUQv/lboIm3Ah78YR26hMGgEvrt3U/visAjJobO6BEGokNijhwmU87FlVqRaqcITtg5nBg3D4f9fea5Ugp/RkrZmnBzdYC5xa+WoE8uwHi3ST9LIRq9MChaO4PtgJPxUdTZIa4g4Twvei4gGt3DJy3EVSTAR6O5L1SXyDCs6CJ8rjkEObp38DcrJ8KBHi/WymIy4KzFPV4khqDQviycYlYPfDtHtcNpFAUFAnv3Ryk963bi2RF2nh6wm72BsagjAF3OyiG7y0S0bMky6szdAzx+k12LtRGwKmKicJdyHV/HWd07Vwv3Yx6oRSIycG+dr6leCEYzD7uFiWdqwaeByXoshwx7fLv3y2yCUUmaiAg1awvUJsQa7ByvBb7R6mFxjwjkgD/APJU3ACpLTPkV+e9gbyJJzGAkCnEl2anPpA3A1RdbO85FrnAoZSqhfTEKWb6TeeNf6weLipuVOc1RIDljaBRugkM81fbt79S8oHRG4EJnFR6i9XsvqibhUACDVPf52UE4fWCn3aYPAVVDTPJznQjU19w0EHRoCGrnXGoXxEj///vbErYI5MTcynervBhkpmZU797EQPKJVFm1pkD0iKFpTL+Cwuc7BWwXAMGlwdUaBlocOmvwNgz9IIFyVrwVsbERvgeoVLJJ4NAfpy06dQ4y1GhBuKMuAi8jC4v7mjj0teDK6Rc5g5DxJjn/R1kK6P5Hl61BikAzO3NrCfskOIK7GS5WVgMdQaEfL0rjkEeUwpUzhmRIs/ldkyVSC8yTX5zXvXHInVhqduUgGa6O8XpMV9fC018639RkcCjdkonBlKkFcvGFM4mV2fCt+hbvqGsEujZ8OvhncTPoO2auljdnAW0264Mz1yLQz+MVR3gYW0B6XmfVKD8TDicwSa28iUDH6Fw5I/+SwGe4sq+G0jP/652CWzj05lhyWYw9GQacDDQ1NbPh3hLLR5kQHIp+LqFS4RkE7LaVAf1XGuD23KBZ+W44Wo/ZM6191wVselssjpU18E6tIexHDAEVp7xLCjnRBU5FAqwb/LUgIm0sq2JKQPkHLp5k4ekCc+8LjSGiNRDneOL3iWcE1IZ1vuX2rAvC860VHEm1sHyz/XlDMAGNuvKdYFathCH3XPuawGzYiruRGqCDRf1FBTR5LFWU3vXFb3dnwcsHvwsdqrBoMEm8CvOvEupiMjAZ2TmQTWumIZ2PRSVeRd1p77MhbEkosBBXB98tcB+bKXttV3h3QVwlC56KCfhlxNeBFqfim3U5LPJonRb36i+G0ACzzhbdcHhZePHU7+ZA5D2umHRIKwvyoz9n6WyVAdXx+qQbgEVMMa+jCLWRML5BfKlnVwxZouwHk1nC0dvXDB2efHgY4I+XSOwuBnd5DqMIu3BEVVJvnqbXAhMuVOLDMrGQctXp33phBHqVLBglxdUC0V1bBXi5BDj89jZ5zi8CTVdxUBf9bAbHyBNNzn4x8KPMaLnMMgKZT74Ynv1eC3Nrp2Noc3Kh+kuUR85qMDognH1U+E4FRF8Pzvd1yYNueg4L908YZLx7fvOiXzlEpN/WmHmTD6Jkb+83kRi0ES/nxHtsAB7F37P2pEmHv1/ySpoOEtB7w0fHGTLLQEln+cRcYwFgGEw/nlTGIGe/tbLQO6FQ71wYW9XQABQIDZ3vC0fUp8t+nvJthgxtSRxOoQqwWrSHvpyMQCKDQfOTY/2QlL87dNY/HS7s8Rz6pkJAdEGw5IofhPF+J6MrCcnwnEfYjXYtAq1O0mldWuoB3szRkh881UB/B18noEFEJ4In+5Nf98DoZattGnIVHJhx3zkARBQidfvZPfZqCMebpTJR5s207MP1JbkgNJXNIeDoXgUDe9/ruYXq4CEp9+mb71jkKkiHQfQ1IMLLPh1VUguhIzQ6w51BiF6hzG7haS1kXbY+nmqbDznN/Xf5I4KRm9kR9+3TkSBINdzIYl4Bv1iYWvyFwlGm6rSxGhkPNTJy6fVl5fBxU8Z/VTcclWn77Ec51UCnr1V/D3c+lNc3b6UdCkZeVNMF3c3d8NvXO/58TA2kUSktjbAS0QWZjpAz3d3gEfmB1SylGjQzLBlp2IhormrueURsFdBP+F28RJnH6TPbN3r/YtGxU5VOdRWVcHiCypU3sRi6V/zdPCg+/p6Ij4nRofBKnJ67+W4RpBYvqkhPYJF85Q+FAxQfD7pU2TEy3wBMbnybwet4ZBShUfPd0xXke2TsHukkww08K8PLNhzK7+a4pKg5BMX7Sk7s642gXsqdb5mGR945AwHaAkPQth90b/sGAoNnn/52fMaj/yZ3n9s8tQXSRYxUrGc8zOosaMWw4JHOrNixRCEXkMNe65J0iYVDGhepro3ikLyFe7iYcDUoK3qoPKAphohxLvxdlSA0nDvQb/6+GkpO9JQx9xeCa+WhkAR8EPL4T+64MF8nVEg8YEw6WwHj3a1rlrPRaGjpPb9PcCd83uY9eU6lArA2bitHOCneFGl/I/RWJ5jOVphaHa2EZfLIOa61aPTglwFBQbQVZvVSPQhXU6DzRSizrnIkeiZG/Jszg+CVcNaXklcNMP+ZJTDeIRw1lu49+/F9kMIz437moVVQ75kcmyobgaoHW/lkFym9E1LDv5ZTCWSbbwqKqhHIBq+W063lA7Qbjj//Xc4HqO4/WuiLQ/9Gqsv7fXzhfi+zysyBQrinEUimfolDbGL76eXZeXDpcPrVq83lcG/HR+MiBwY9HUu1fcFcAGNGoo3N9BWw7RNolb0eiJp3twp/Og8Azz/D/lDyC9h80N1NdzcaWfyoq2oS64HtBxUZg++qARNOPi4jTkT9EcUixdvdYKedG6c2VQXHHy/Y9l4gIpvSf+Zz5yuhb7b0ZsoVPCy9xW3flMeia7nMfxJjEQT4FxDdU1JB90Hf5W+3wxHdBRfpFyIIyieYnjXUp4Icrf20wUwYwj2hk2J5h4CXOnlM9VI63H5zyLhUJBz9nZe+aPqqFUqMrRehsR4uszUmnHobiTSN8hTDZ1tBx+BzEHdxPTz30h0abItEV0ISzFawraD0bsFWb6cOpnvEGVWxkWj3h5k8jXc/5Oz66eHYXCEwWfCDcBUB6VL/LJhQpVzv0R4/K/aKMhfHNOeWCKimKMMv/k0//JuMQhd8fWGql/fsXiMB7Qk4lIplDsBhqiQou5kFUxddLI7PRaHkTUHzuWd1EKtkmKZRkw+pb1o/md4KQeiv8LLXfB38LLovcQOfC47ytEls2BBkYlesMvx6ABIqGOuvdmaBtvoCt70chd9wYdXjWwPgc6V8xZkvFe7dGjgneSsKEd4RffxZM6Bmh/pozQYJwhTPTmL3sChR/BexqnYAuB9d9eNii4VQi42yqIooFL/92ealCYUnrur6NJeUwMq0QGwCpUdYVet69yj31fTukVzhbgSeBv9GLsp9WdikeLPaK6BmNH/6SE8jmIuxp6WyY9G3IsKRJnIFCOqctI8taACPvoCvB09j0cgIrRBbYDKsew9hVVASbA3dvdRE6YsnZ2WUDGmGII1BIvfRlzKQ+fNXr/BMBApWsZ9nL2mFVHKNSv7TMsia4JD6nBGJcv46OxvRt0H8/ELlNCPFd9S+s2zMR6KUl2VDLfTdcLJN7YPaRBbg2q0U/YYJyCHs7u4YWzeIINHPfrQZ0GkbmKg/Tun9/IenlATKgDafSfGFKRkmPmhd2r2AQf5RV7OeupVCRNxt2mlOMphz+DIX/w1E/j125WtPyqA2xDBIc4cEudV919QkMEhFmMuv9xqCRXodqsnQRjCVTu99sRqGZoTCvow4IOCoFpI76dAAv5984D/CFY4Guy00lXwb4YLIQNyh6UZgnhWhGbsfhqi5S1dP6lWAdeU1ick/JPjms8F3dgmDHLDzLofPItDJPvD2+VA9mEYEijt3hKHt6NWsaymt8LHMUqFJPgXOGscXHIyNRHj9p2lrexi4bDjIfrAYwdiyUq3QSRzaK0Hpx6/6g/+rxcNWOgjmjsULCajgEMmES5JOvQ1WmFVG/JQT4Aox8SrDyShEHzMku73RCqjz7ArPm1RQXWIovzsUiaolaG7LVw2CUS4kF1dHA+ctVTrf9Aj05+HCUtXoIARZHFNUw8eA16WqtKu2EYgXb8gj8a0PfhEN7rWTwsHv84lr1y4SUbO4EHH6cj9UKsutpw3i4F7sz95b1ERkLDfZvLzUD5xzJlVWrxLAyuhN+D9xAroyJ9QuJzQAONWuNDbaBLhs8YBzozsaLVHdzyvlfw+yVIkPhlm9YNPoncR3ih+lFTcfuJ7ZD1Vw2m78XyoYfo9jaQkhoJn1WpaWjH5YICl+6z6RAVGJ/rtqoQSUhx8NY33ZD6syW9+eRabDTv+hreJWAroEvYJHcyMh6gX5ndN6HVyL1Hn44VQ4ctzVy3wdGQ1Jiq9P7yrVwV6Idu9aThgKcV7I0BEkAFenYlKqfT18lrBYovYJQ89z/1OrOzkIwBz8SNgmA5JWSPuknUjkKBg6k354EFgtn+QWf04DTqYneodPRyH/gb89XPxVYKczc7p6ggQqJjPz6iQsSn+c0ZcyXwnS1vkXJpXI0Iq+70snY5FIRPd6p1YHHKCNvR7olAxmz85s6ltEo26rLkm35A4I2pMF5tpEcIo+np8cGY04Pf1reZ5Ew269iE/PZi6ofGhvtK4OQ6ZtHV4yEURol+iIEYA8MKJpkefgCUNcsXnKXV6U933wjcD9JB9ss/Q7ZArDkKbqcxE9uX7YbvhySsuXDDdwDKZBPwloLr9Ru0crBySLPRuKfBBEipwq7KvCICMjM/YCoWxIpPntwyBGyXsv/PfL1Fh0kDP+W11XG3h8FH01VI8gW9ormdE6Cn0Z8+vy/t4GT7iyIjX1EDytyCe+9IxC9woXMt4eHARXL+naa+4I6iPeKwmei0IKoxHKfoENILhKzWKtGQ21zYqun5JCkVa01sH5Ow3wdcXK0+BVDDC21TvSOoUiHSnt0LvWRMD9TTt4X4cIxwMmXhZeCkNH/R2/OlPmwf9WqJ+RNhmsf2kwaFLmgeiy5v/Nph8mk2cu9pEp7/tN/N5ULyVnsl0GrTTfwx52kabZhAS/m2wenfXGoP+anj1879UDv3jnDj3LD4aXA5scdXJEFBV97uGn7R5w/P7qg+BsECj8ZBIf0SSi032+XaW4fmhrC7zSkJ0Mru9W9PoyCGjqjpG5smU/pL+R9ckyTYWXrxOGTIYIaOnt4XB77X5gIBx1iMpLguI/G1n8cwQ0SP3VJCktG9ZZPixWCvkC1YgNbcgcBr24hO27s5QNcm5LCoRMF3jtkqDIM4hB1ZnS5qOvo0Hr+vHlR9kNsBvzK/17MSXH5F6XCvvGQHbbnhtetwHuWR76QfgUiggKPFlyJCJYq1bv8wo3AoOUm0jlyTDE2RL4wWqjHIaNHCQliCTIubLLtdKAQQXC0erZ7K1wxP39+In993DVw6J3/WYk2ttSedKX3gniGotTu/51oBlaVSF0kYAsRTBtVH87oaxRUYyTws9asoOPTHQpfLV6/UnMgRRwnzsTYNGWDxePfbjKWhaMhsYjCeytyVCuoM6o5V8GjHwaXqt9waj8b/oPiYBGoH9U5EvGInB59vEfRjUMZbGrzjrzIDjd83o7/RFlrp5zz97uDUMFyjIP6+q64AeZbqrOMRVcSe2KDSUEZO7LrdCHKYKE+I+q//tfgWI1/+ZhUiAiHk29Lc1TBF/fi01cTSDBSqqo7m57IKpR/7Sx5FYIR4jB/yKVSJDWolJmMBSIFO5PDvcXdEJLTpTNFYTAjLq/xf8yAek/uf/voncFKKm8ICao50CaEdfH2zsYRJsuennxSgWsjYfrrFS8h1tftI7XfMCg6PFAkUX/IvgTl2tNuErhw4wQmm3K80iJ+xRyKRTDoJUk4XhvFZzT+THO2hiI5OKfJtK8bAfcXUO34vu1wHWFu/zyWBS6eOLpAyvldpCJq9O9Q/GGel+LkNnaKPRenz3zSVQ7lHNcduCTrwH2vgmVd6tR6HTDisf222owzbMtTfxcAvEEZg8vlyDUeIWL4ZpzMqS33NT5HFQKwdVnyBa/g9FOU8Q5PdVewKSyh9GxksHuHkXBdYloTFHOrvp/vwNzWO410AuBDwdPX/H5EIjy3phgtbko+7K2EiiQS4a0RiR38DIRfVDqGuqm8GQNYaMW95UE9PLGdSMUnvTyHprVKCoFmsPBj+IPB8NuiFWxFS0G/R9kkjMEeJwUl3c81e8bxivKyIgkq5TsKBlJJTeSrBTfREYhu2whMpPN4cxQ9s7e+zmHY29SmRFChYSG0u/8/n1e53U+z+t+rvu63lf59a5NTEMlqHY7LoZyxkM138z+Rv1IVPZTyuEOaw3wVgmcovQVwEbjSb+eC1EohDn4sf6NXmBmnakRO1EDq/07fktfiejCJ2vQ7uiBhyvvbCsmq8GFg+ezaQ0RBdHJE02P9gKXY02SHGM1rPtWirW+I6ID5+6H+XzrgUSjkgJMag0o7XhfMuiind9ILmFyKIfXfyRf9iwmgrbr14aK4Qh09ohNC8ZwCNq8nKx0TSgwJc90YjmUgAYsGC8v0M7T2wyYbYcosI+gLn6Ddq5a7HzySWY6DIg/4Ln4OQQiHYbLpe1jUHeqr+JYWjrsa9djVxl5DPt78VnWDjEoXv9KDMs9KuAbo1caXpcAoZfr03gFFl2KHtraKCXD8OvPJhlKNeCd8LZJmD4B5Y1kfX0a2A27kr+M+KMzIMhgweorFxEJUptX04e6ocPRpP7BWiaMUn77bgAR/RtIrf9+KxFu7nF8GfqmFnr5HOwabTGox5BoG7oyBHNCQ2GShGygv3/7RLQhHg1+S9K8tzsEDUlhR0wkCqE4vHB8UhyPWgJWFbBfXgB7jT1ew6AU8tZN95u0xqG8Xwsc28eH4cvuH5/+pHwQl4ozCp3DISuftWKMUCnshvsqrakWwZcXN4I6OiPQ/nRmuq/0SWCUdL/wyN9a+NBZtfdNYxzyq6F/F/COBHL6qpgO+XqYibIc92KNR6Nil2TBnAj57gH/NV+rA21Ps+J6j3h0WP1QytOxPgh+ekjulXEGNF5rPcR5g4QWzjGOEoP7wHRi9G9QTSbEZrnrzauSULKgR164XR+4qChnG/xJB5mGA3u1lUko9ofHsR6fIpjpP+k8v1YB0k95Gn/uiURibudffVVMA1hw31W3DYALnQVm/VyxqC9R48a+4CFwmA2Z7cNRAHspp48kTUAWgv7Kw354EIwVczlJfAaHCpJUSVvxqO7ZCdYU3mJodx44g+OqgviGI0/H1yKQvdvFSTWZYXgfxrYce4UC7zkPzsg14VDDFcMc11kyXD3JxLV3rhHKPOvp1MUS0Ovf+hKKMiMQ0nhmXmenCd6ye3MzjSaiwX28KbFnqBB3CvNS2CwLWk+eqmvAYJEZ6WbVFL83bLTOnVjkzwAjqQDD3skE1GSV8dIBXwnzJld3oqmvIOykBTfj1UgkObQ8dWJtEGzS/u33lmkFJgNGe53TRHRELE/4V3sWBH6f8lWZswEus2BxB95o5PSh3aYZVwgK256dlJ8F4Kt2q19QIxLZ9nzM2Gzrhd1/rbWx91og2v366uwREtJ/HtJwyqAAaje6z3+l5sPjd/v3/QiKRAICp/QWK4dhA8tX8NQbC3seZhb/K8AiHP/EQ+MNMqBH6z0S9NlwUplu47lcAqq6XNV8K4YMirJTjesoC7LnV8eKlzGoX+yz0Q8qGQpmvae5JXIgy99D4+7hBLQSrpS7LlAH62ahOtEylfBwZ1tqRT0a2XxKuvrh2iBs+Ck+qy/OA2U574+f1ogo/K/2BWOXQcjrjXvFQV8AV1Plfb27iYib28/89oMoCJ3c/XyBlwy6H3h+r7IkoEMRomOzliMwk3A4ZiwlBYpJeO7wmER0a4KwhMMGguNdm/pT6uWgHwwiajkJyMqykdh1jApqoidZ3sY2wtFxnpaEZ1h0PtTp62wwFSI/EMe2Shph36+Sf/R9WJTG8Te/l90aarObWbuWWoDM0Pn78elEhJwYjVr3EuE43a2C9/ytoNV06qJzTDzSKnKa4K3FAVfLQ2NFsVawe/Jl4ugRDCrb51a35YWH0gKucIViCqR+oROQ+hGP5BbU3s8fHYbFx0bvfzE4wbS1eVL7NxwyFJk+Gnh5GHhvP0z9IWMPqTd9Xi1m4JCDhUpSBk23C07WHc2KfvDBObTOphGHzmQxG282UmHyeHZL12oBLDBlF8b/wCLmj8RToSrdUEz0z/IcrYOY9QvKd78RkC9Pj1FRQTfs4Aey8+rr4OVZd9GbUkQUfEnOzdehGwIZRY0GUurhiLuaZz8jERUWxpkwfUiApr0Go1et/MG7QTmmyAuDwm1kL0vPdEHGxn+255LqYNenpmeqjoDmYo4Itl7shsbvC8x9THXwYLxQr3CVgNiX/Rz/OQxDlZr5+69ZFHiVTfAwUMMhTtZv5gp6VHhg8LVR8ncD0M17im3kYBHV+5zWi74u+LvcMp771Q5Eo8o6Q0oIqI+uhafMoBsK09wXPEIewX/lHvtP/iEgQ9GogdPM3XCe/nhZ2wl/iDvkVrU4TEDXMWOPwp51Q7VSwBCLoT8Elp50LzpKRCalk1/ipobgtpxI4z+BVjA31Z+54IJHydspRWU2PZDCsD7OE94E7led6L5HEZH356TzHLlJsC84Yh8HcgSjagWIS4hDFsKTFRp1teBdaG4d86MO2kD8AA9bNBo+QshQcaoDxnaqd39kNVRVUfdJuESjN4rnL1mJD0FcT8/uWSkKiE4/6BQcJKBgrLD66p8MuN8YemlPUxgcT9pjjQai0dgC989O80F4SNCgn0hIhlnU0OE9QUSJpQ4M2ypD0P9ySECLJwZy18p61HIJiOvvw7lwSzII3fzr4/SyDoondkrGuzGoM3zWO+t7KNxzD3lq2Y1g7ZTcKnqYgNq5UjTuEwIgzFVEffscGeYPbRWOvU5Azv++Neo4dgC+TuEt/dUSkOYtLqSK4JGM09y3J+IdIMjVJDIw/xoqWll0XH7ikFFhqb7hWgTM3ReXvZXbCCOo1EfrVAJyWvlVFrA0DA5jxa5X1vAAfCxPWXWwiI1qZF/EOgIfl2717i1PhARru9ljB2n+Q/oQwMY+DCHHl82EGBGI8TgdnKLHIxVL0VtH44kQRG0+9WU3GcI2zh+7ZhuPNCs9tF+J2EEU+76pz745YK2HmO+cSER3mysNk9EwJP4oC4gfyoI8/sWRGBwW+bUWDD32RpChWLSU0uQGTFv1tnzCGHRzPd7OtqEHtPOKHq6FNIJSYvmcWDkR5VKaj3Op9ECx214GNwiBff6vJi18iKhKm8MQ09wNLbnRIZ5Kz0Dtv1zhT+eJqCNKVuv7WjdI+PHvem35wUGxXvHSm0R0y4y4fYChB5z5lg0sPkRBokxQsa8ZEV3Vwp2LJLXD9Zkl7sO/KaD0KS55AYtDm/fy9WadqkCJaIXrKWgAS9CTjYmORCNbtqc00qrAdF7k2CNKI+T/C32yJzUS8ejmaB1QoEJ63cQm5kQUwNjPbw/xWLR28aHSXicq/Lky+eSieShk71nEBTZi0Z++f1W/xsmA8XFe314ggyZHOytWKAHh7ILbd7PIkOUtZCxlQIEzKqxOQTsYtI+Y5EWx7gY1czzbOQot7/YGZWfuJyK1G3Hnz68OAQ8Pwg60v4a7P6RMX+rgUcPZtSuKe4fhsW4xwVWlGIR8X7Y2COFRbKBiq9Z/XaC7NLc4nvsCnprs1FyzJaAe4zutbSFdECil8ajuDhF+RZceLg0hoAL5YI5zQQjGru5xt7uIgCvl9m+QxKCkvEcnvuYjCKbb8+epfQvkajKVNmti0FKIFm/k3iEYZyWT32mWA8f1kRUNdiLSGagW1Pw9CLfimG1jJcqAaqPp6sNHRGFimKIxDztIHG8MjlxJALJF8sNAQZp++M6MXrtMBYl+/oDoowT4jFRxxUlY1KsfGO9PVwkX35u9nlUtBwZGw7BB/kh0UsPTkoG1AnqFvM9NJJVDWkIkK2E5AlHU7zqYRBfARccfvy2zmoB/6izTU69IdEZSQKM2KA+cKgqePMI1QTHnJaWgL5FI/5kPOdcxDxawS78rc5rB//Hz7ksbkShfYev1vTOl8NNKTNzNnQKCumI2nR0RSJncpK3Z1wn9wbVNuw9L4czr2rZQDgLK7vPrHUjrhA108dxd6TK4PnCveHUTjyoub4nVjZAhNqo5jo2K4Mjzb/a3jiWggdGPpQdLKRBkcZhqiC2H/XNys51NCWivq136Oe024Pf7bO0eVQnm2qfCdVcSUasKYgxFrbDsofc9aqIS8r/qe7uGJaJVszwDHpMROLLQMVCsTYa81XvYIFIi+jfnKvF7FsG5j84lmMR0eHuQdSraBYPChIX5Dtwiw9jiF94V/XTY0llw+NOMQb65ZsaaymR4J6rR90QoE/TaP9EPlGLQ2Twm/KR0O0SJt5D9rzXDiMTtVqPrOHR4x/PTr2YqZGePbTDbN8NMJhDpfmHRQHY9X8YQFWLnBtHxwCaQs4o/7nAAh0rJFd+juHKBIp5v+iMiDO5Mse1JMIhCf04wWcV4d4L52Lxkzrss6L+1v/DUOB5tCQ8XumUPwr7u2T+uZynQ++PZSEUcEWnsWwpnZysHKa5Z+6KNZEie4qckd9He/SZTiL3oCLipHUi5uVIB2ne9ril/TETiY95H+v+2Q/JfQ63l58Ww5Om+PDiOQ61eo7zHDcug39c7/CflFRwx+8xi0xKBfP9W9EXRdcFW+e9L5gJlQBnzNNqWIyCvQlUOB41kWFP8lWJyvgXmbuXfD7KLQ0WjojkOHyxBa/LQ8fdC5eB0IvdX1plElEKnZndopA8knbCbzzuqIXnmzdECPRL6/uM/uc2IYdg7/qRllwsPQkw3Woz34ZDS9Tyh2A/x8J+evdHTBQQ68ok3qqsw6DhmqcfwwCBcSzR0iBItBH7l5x8EBUloerRLQqW0EioGKbr7rGtBk9++/rxuJFKJqbxdnd4PYVUh/hsBZAjcPLzmaUxC8j7zF2s5SJCoI+qs0UKBR289h/erx6Mwh1TnnFoiSPl53pS0o0Cd8aoxm2k8ami0HEtpSIL1SSJjSyQFVphvnOGOiUMnk4P3PcaWgIrT+/txI5aww/SeZWcoAj2kHwp6m58Cl5/NPRDmw8PVZGlHKlMcKtnZsU+XToWkQfFY4i4WAt6JZnY8iEV63O+8/KtegNSVA5MkjlZIFcyX5RuOQw1xW/EssjVAn9ZDxp1ohcwznKyjWlFoX8VqlFXTEEQczPZomEeAPVBy9VgFHmEVtr6I4IcgiEn+kDQjGbYt74ql7CegUBkX0xbbXqg/qR/N6hIFtrzKnP3bRKTAvWrLfqgf3uul3pRnQ6Bx5df+LkMSwov9PODxYARI7R1rnGuVoK/5tuZIZCJScHsde962H7iuNH51tmiBijKvY7q0eXLMStxd2o/gg2nG7p2GcLB+QuHUzI9H51Qay44yd8D1NUk/bRYKFB+cDzD7iEOXv8kGMErEQznRQOvtjzKITMgvNCNjkEzpWryOdx30St2VDv+RBPetGgPmvKLRQK+tVUd7HeQc3n7YHZUKZZRZTE1GNOJ+WueoMlgHs9KVR/b8JsCv9hpNgbxodJjMv1flTiF8kT4x7uVbB6o7nJmp+pHIQO2nb9+nHuDeFibXeFaC9dtbMteoRHTO9daBqFwy+LGK8DUJ14NLtybPnb8YdOnAz6lfl8iwtGI4rW5WD/UTo20zJRj0feVl9jVXEqzECn/VcWiAZ0tsiuES8SilIN6rlpcAOnHCjp98GyAx+LYxa088ctXQ/OfzjABxgsc49XvqwSLNKguK49ETXkKxlz0VXDN01sPG8iH3lltZXj0W4RXyOIQmqcB9VV/7a0g+nNs2OviNFYdm7DI8tfE4+BX5+9qV8HKgIz5wpfBiUNu7FctdFyJUftxDDGwtg8P75tQLnePRp8yE1MhrND0HYvlbCsthx+Vz/KQv7V1c2F4ISxGh7kCownZfOox93LPxJygeHd9/xmOgdxCmtJYatqrSAKtE8JagcUKVobkuO01X9yxSngqOtMB5vc6ULpqussiM95WPDMN4aWUlnUQzkA+kqob8wKFAR49uy7pBmNlJfBHA+Aq82XLb3nnReKbwqyzz2VTw82iLCvyeAj4/Ixkf0fT/oSW8yeVdDbwyMrPSHW8BNwciUSIpCtG7n1kWSmmE8XdfBoSSXGHd5DIu0DQWWb4trp1qHAZuazlpnE8tNPhkkIqTsehos6tg5uVuiL5cxKoaXwAG1jPp9WsEZICRfniQhdYvbK/oefjnQYEpnf/OCAFV1Hrq6SV2AyF6SCL8ax6ocLj7SQsS0aCJgbs8pRNKHQ5+PkHXChMbL/Y/YiagF38vHCr70wsHp6Y173JVgvpdNQpJhIRYpA2VLjD0QdL5hnNms5UwfeV6xi1xEspMKvfJmKkDKvPas84jGfDks+DnhdJo1HXluI8EYx30LSwG3n2SCZffsBriLkQjh9uKMXcdu+GLLg/ZRb8JPnFW0OkwEVGk82NtT/5uEKfkxK2JN8OZIZlPbycJaOL9n+a334vh7gGlcuz7anje7O0zORmBTHq3ztuQS+DXnu+tvdQqUJnpfqk/EIFObUezyzC0w6XGGfyRvlx4Y1T+jCyFQ2GcLHRONgPgU2oopuhUCbsvHV5kXiMhj5IP6HvSAGhJz+hclKuCVtaLvNGXSSjwZPahccYB2KEa62B3KmFTlDOuzICEFIc4HrhkIuhUL3jgdLoBjKumb4iqY1DNvNcK26MX8O6+tLXGXDWUVE38F74Qh6Jabf4NmxDhTVpACL9MNey/czM01zMe2Xu77twTTIJZ2aZT4r+q4EjKwUeUqjhkM66/uKg3AGLvUU+KUDVIdDMK3NEmIZ7bF+el1nAwvcrDZf6mAD6b9XFUsmLQaSfKP6weEfQk8pu2nxbA8MTz1S3veKT/xTjFmIvWc1/Gn90aqwMDIFu5/sIhK7bqrDcPmiCCekvByAJB7atTx8qnYpEnM86bSagJxLPtruv0tUCT3PY/hvJYtOdKMtdGbxM4iZYrTPW2QNUEHL0nFIcUlSWPZUATXAk62KgymQ9Z9JdX/lJj0eMLebrDY1TYny/1hj6kDmTckjZPMuPQT+E7sumW3WBa+vrXYaHXwDoW/dGTnoiWtdRj6yNL4Fzzxaf1dTXw0E4LlzgcgQoM5OQFp7sgbygh78t/BZBgXqigQuu/Esdm15an+iFPjotj7CfN//8Zi7AYkdAx8+nnHb59YFZ4d7+PYhU8v+nUEAskpCx5dtrIvg/exey6+UlVApF6XdBVmYSEZS9xcDIMw6lnO/lSh3whwXu0jo8bjzSflqb7swyDirUO6y2GEPhFfJ3pwIxH5/ZlBU5NDoHwI677QfmBMBLS2FruikfFkZbuW2LtgOTVNVQf1sM1odsYoas49HmGs8v88ABUIx3X4x4UOGervpB3i4T6qNFXS4SKwcvd20CE1gOwPPkpP1YjkEf558UwyxLgZtKkdxWg5Yh4YtqxNxEoRKpOufDLEOxT8TY4k/AI1p1PPfpyA4+mTOQbw7nr4CL18HS+gwvk3pwwdYBo1P2J3f75Ui9IdPJWvDJ+DTHU/CrxEyR0oUvBof9uLfzFvLGk6DpCrG+Hq9NkFHpUZ3LaygAHS0H9JI6KZrCZXxmoEcKgt7ciSr7WYeEuT0YGZbUJLvlM5nAqYtBcBASc1hkARczXlyViruCXIT3TRNOndmLTz5a1CmgRCJ9XuZIN0RcFD/3gjkT+0gbmpxVew0EXy8AlDzKoXsssqT4diV7QHXYzuN8Jn9gDipIFMgHDeXx2oxuPtE7iOCOonXBl30FBv+0MuLiyVBvHQkBDG2GUXd9KKN4O47RrpIBJ4ynRlUuR6LiCdn6g6iAIewrN8LKTwSep18dpk4jS8zLejOwdhD0o6H26MBkGnHroJ0+SkJeaurGuXAEculEdPU7FQuPpxNkb4bT/eaqzOHX2NUQfntbW5cbCg1ejPCFSkajy4zWdvIwmyM27yJGp0gQ4U1kN6wNxqM3cWDpfqxgGde/iSI5YoNZutKl+jkBPDquKzcQWw8/rmplH9hBhqdr/ndBCBMpSpPvVHjwADw/J6946Sobb48KKeFWaf6616F12GoA/Z8f4g3IQSAZVvc7VICHO1WvI06UPvj+uKtstoOk/Sf5IwxUSIneKXRnV7YOlH5Z0bJs5sNtCZyt5gYT+WAb/tC/uh7iRH1Xa61UgIrfYIUnjljHVcpkElj7oT6bnIpILIDflOrZQgoR6fYn0EcWp0Des+EE2qw6+Mrbejbsai04zDey1/NQB2LF8H6pEPpxk9zpQ+ASP8gMi54ycemH+6IvEvGc58LHwT7XrTyLyH00Kdd0dhhnlzJSXAkXAub5mRhbGIszceclFJQrItrUvS+dTIIB7/W2sXQLq609+wzvWBtm9jyhq435wj2FNzP0mFjX1WcoJT3bDOxuFNMcCCvwHZUEu14josVXhpoBRD/imnw6P2dsKc3bfUp6FEpGM87VUx8NkqPE4/t/cqQZo/rLUNZxI82HWnAJW0SFodE7n2UgoBf7ErCr2UQIqty6f6dwegj+Ch6bteqsBv8I8IKuER06z0zI1v4Ygx7f7v6WFGjDdctGbl8UjcQNvfXaRYRi76J6QrFMD5id+WJu8waG45H/2KzbtUM83dXBatAFMvFzyhF1xKE/40vbY4VI49Ts6VjS/ErCsOTE83RFoLKT51BLNh0df0nUGXk8DvrOW5hd/4tASP3N+Kf0ArR9uPKkNJMA47qoJF41LM9Otz0Z1DsOl2OD7Tj9TQJ6kez4uDIuCXAviRpqHIVTJQj7rWBp8O7sbu07Eoj8XBw7GsEXAMXHCq68DLdAoUiWGlUlA21gw17o3BAedRoMan+aA40PdCQVnAsJlYSfjRSNB5O+hMPW9LcC7NH50z4kE9OSF4aWNXgTlMfnOI/EUoH8YbUq4j0GggmtjVW8H4Rrip4T9gXDhpHWWwx0cwn8/o0Zv3AH/LdEvTcVlg4dvk4YSLx6lMTFP3RTrg2spcIVFLxtGvssH88mQUPf11Qq6+j7wV75vIkLMhsZLnu6+/881vpe/YxKHwd8pSXOErhau8Bkxz69iUd3ipLnPIxzUXeFw5vlXBGVyYf1HBTFI9GxlF8WlG4bu5TkfuUMBG2WDQU0WIjozb3n4wP1y2NOTpXGlgQJet52ES2g95VgQ7l2HYiHcE0j95p5UDPC4c1b8diQy+nz6S594PlDaOPPtQoshyKdBpp4SiSSvzjM/sOuFoAH3e7zfyiBHhbzI+IOI3sh7L+t79MLMPMfL8Ply6L+s4Aw7RGRJmT3c9qMHbqod+nf+bTkM7GH/vtpDRBaEyUTRjR4Qcul7kFhaBoy/DxcndRFR/pGuEnnyIAS9Yd12XWsCvgZm7SInIgqVTl47FTkI08F0Ej6LTVDlJ/zZvISIliLNnSYZe8Bn1XJda281nIlNx9mZE9HpxQT8K5kc0A6+4NOqlAF7vyu4RtB40vnHeBs5NRcKeM4zm52nnScZ5L2WiEKhxqeng4K6YQLftifuWQw4F1ae8DtCREUrMRqi2t3g+jhC6qPvM1h70qZ+5wdtX35Wrc9bZsEcU1j3MK3XB1+weJSiEo3aSsWnX/VkgPz2HffCL03w8+gAK2We1l+4XcN1DGrAd0r2xOJOBhwLyviyxyQKNTg0dxc+64WHb4pGs4VfQtmi6ROVvSS0qpNpltXfC3wF/B++BSYBaw6stPKQkPFVc9y5Z60wjvm78Ue6BRq6xh8qmCQiH3KNU390K+iMDsixRKRCVrY8ttsiEdX7m5r+XB8CbFuFk/PFfCjSNR0s08CjLp10U8lxWm7SjRF6r+SC7xf6cLfHeHSlr3f7V1gSjO+4XD79rAnSeqWP3kuKQzdS7m9qxfdA5Qh1c4ejGjgPb+0avSKiW3Z5SmHiBLiIuSBqfacScnIDcOwd8SjkhMwju0AsjGrU4e+9rgCr52oTk1cwqCfUM76F0g+41bds/AyusPRviO3xHVoff0wfJKSGBxtFG5jwqgLpX6dz4vZhUKljpOay6DDY//Os83WtBtPHN0bvDuHQm0Z88bMqKjzQvnjClbERgjdtFRU3sOhLaWlatAcVqrFReg71TfDmzZ3zhRQs+rppfVJ/iQoHi7CqbnGNQJDsayrgxqEG5sActxQySH9l5L5dmgH1oWbDBlsY1L8QKceg2grOt8PVYnYzgP7kNn5LLBF5GTwXLhQhg0H8A0N2xmywlpx8PJeKQQUiVc1SD8iQYKXed0QyB8bjIorIvRh0QLNi7cxnBAo93P3rCZnA4HU+ku8xBiXKXXfUMqqG9mPe1PXCJjBn0zVY+xSJcmylVj6YD8MZ8dyiGs8yGPgg0dprikMWVEyBiAzt3Kv3ukBFGWADhhvcm3Ao3e8vNc+zG/SPtJMvvc2BiZ1vK7/ZiOiVm7f3kHA77E1FBAbNJiid1UULqjh00iZw7yGxNkjkcXX/8q0Y9qsEz+EHExHBNlfgzHINsN9W3mvuUQc+IdIczzKi0KqImNG3JQqYHZQlMxNrwEn2GK/TpwQ0lSbb+7O/FSKs0qbrME0wp/DOgRmTiPS/erIQt/rg+Z0faBTVQ09UrZMTjesOYfQMwgebgPetYwyCDFBXLPFqEY5DzanLWz1infDx5BQ5mbbvV3IZMgqy8Ugo8Hev9Pl2sG2g8l28Uwb++29KqN3AoQk5t2yVuErQTDGtZZgmQLGL8d6PqpFIern43/S9EXil8fEJYzkZWGurma7EJ6KYWDpR9q5e+NdBqt4qRHAh9WWQwFESmsQdlww69ABm2Jtu+dyLBVP81W2yeCJSD5EtOyXbDRnsMXKixARwsJxP7VwmIIi96uteNQTyU0X/tSq+gn3WLYLprXik9PW9+njQEBwjyoiIy6fBsPjQzU/SBMTWajYT+R5BjmW5llZdFXSaM1pFOWBQ12M4GfOlBo7ZJqmrJNXC0QVVglxWFOJiPNBQzF4DAXLaX95y1cGhW/qEGaUoFC9x6YnY5UJwSU7MiHUmAJuq8Fmr/2jcGLEPd6TqNZj8+ZkboPgCTE6nufny0uZgL6GEXRqE+Jajtrf6X4P4nnMDP+SJaM9dt+WKpFKgLGHSom0L4QLD30YOcgSyL8T0xe4bgoHDLXkZQqVQtsxDKWElIoUea3uepi6wILJ37K2pBi1PdY76bAJqvTOVtlLRC7V9QltVlQTYqHCdyj9EQtcmON1Gsuvh3Vj6gdfGpRCrEGkTJxyDOCwXLJtp82FnnXrHkVsInaupv4+dIaBD3DXTAg5keFmkKSLIRQD+dH43/UEMYiLQCX3MoQLvojq/PxWBs5pTfOknLHoKDm+y/w3CIOHp+SqVJPhNwoI8J+2e49TvpeG0HA/qnVzmKQMrc/t1lxMEtL/+M0+eD+27celnD0qVwoIi3+85ZQJ6t0UR3f96CKLsNW1DNEoh7CinI+9bPGIT1ErJnaaAwMfGYwFpNL/qnFuYm0lATwe9fdMsM2EAZ5czO0mGGZ1h7oLsaOQcmti08ScdjjwjKSg3k+GxS6NrjEoMOjjKa3IhvwzeCXAOuLfUwZ/SexK5lAh0LrpH6m1WLwyNTt6niGRB3OCS2/xBEhJdTOH8OVgBHr9EAoto/eMKR/uTCvZIhJYZ2S2Eq6AxPpUKN2uAU2GhR9Y9EvHa0N8dKSTDK4VDgRcF6kDx5fp/rnsS0IkHhplSD6iAy2nfF/2pEEyenMqPr8Giw+nLDfoGg0DZilmRZGmEzHannY0FIvo82US9hxmEkAHJzHMnGiHGPeSFfi4R/SyUXceYtULSjnWKsHEFnL/x7bbo5UR06BiPZxZjK7jf/D6+kF0Otjdu52fsJqDmAwGyjHdbYcXuhvhfhUp4sB6do30xEb14dHrP4xODwJt/PUO8HsFcjX/gMCsJDRetWerPDYD1uUcWK/cRPHmfanL/NG0O89dFgu61wvUOvIncVRo/pN6T0LuSiB4/7adu0LhW7TtzBsu3BrB0LNZs+JWA2hXRBVa2Nnh6kNi4qJwDLULqNVebE9HZEr32DzwDkNFPxj19hAUiJzb4CM1//vQdjJbyGYBDAe0YXdYEKE5PVLNQJyFcenzYtkA/8IUslNPP1cHkWqJM+3+0nL0YdV8vrQ2CWuj8RZiaYTnBzUBJAouuLU2llrtQAD37zlDFmgHG6uNF7XG0+0gqG7eI1sNCk7DNWGgeCPz8LDn7PhppKYcWSJrWQ98yZaLrWQFg17x+Pf4ZjVixN0L4aDydoNhQEbaFwKnRV/dJWhQyXJ4e/H2MAhcOryUd/ZsC7X3HGi4ZJqC6LyYKyjAI9x/WBypMFsM/Sf5zj7eIaFAe8YWZloFcQVvQ5GAuKFRYHkpqiUD6HDbzWjLd8Ppg7aVx6zLwPeWCaVgioL8H4oN7zryAXsN7Sd8fN0KW5Scz2I5DHaaYvCttXSDtcDtp4UUt9BAqd37mE9Cc1un9921qINCYsa/O3xW2mTOZD1tFoaNm1D/t020gZ53oxDpLAIe+FZ9WIyyaH7SdiB5vA4M9fvYih7EQ6ZUwU2yIRboRQ14tslSwM9bA6EUmwEmtJpt2LBZNf+OkUzpHAWG8h8E0zZ9V7vx8ftkyAUFgzLhJSgmYu2yW5sTVg883apk7jVdZHLw+vF8qgtsCjgsfpBug1d4xibIZgeQpjqc8FShA2ugzSKblczlKELz1IAHdtgt9BlNkUFTw0h8zIsNzd1GCknAC0jk7PrP+vgv81x99uW5VBuiE7m5XNQFxf0ud4OXtBp3k2pSTWaVw/M3vhwETNP/vd/vyqbaL1ne0FHcsS6GqY2X8UiYBPbrgMmVQXwqjK/8uZv6oh195fDxfaPMnNcrl/UopgI3eIYpRCgJtaUEVBtr+upzglNm/0QaDQnS89YMtUGKSoNH2AIsiL0n6X+Gi5ff3qDvjgXWQ84PJ+2tmFKJH2cSy9CxgqLW37KSrg9ffppGZWDRKc8hc/znbA29qT3VO1RRBnauq7CCFiO7sE2zbtz0IOrXB1/98Q9CR+zNn+wQRCSbJD4zFZ4F4pOvvY6U4MMdOLfGeiUYFpqX3o0+UwpPf/u+8viDgsf8bvNkZgc4foVbfqhkG9nKuPVKkGjj7uEzwvxwsujNZZpIa1QRTfDf6LSeqwTDuulXkdix65Wj9NGwOwYJF3vETrI3wDet+aM0FgwJuC0oa85IBt0e6Jb2yEWymgmUPETHIrUepM3ebCqIG6WGN1VlQnFfXunYChzZf5Yj2jbbBoXCvzV8CjbQeenoqUB+LNlanKoYuUSBfZ++o9UI21F7VfPPdntbLZG5tDd5tBsHp50wFb6sBJ8wbyhMchziDeO0sJkqB633Ese7/moGudOgtP+1dSpn2Sd/HlEKH6t93H7Wb4ODGx+4wWg6K87GdXCWUgGQ+3Y1PB5sh5cW3JCpNb1Z8X7hGuvtA/nx2inReKnRvXHLO0yUhTqMB75+C/eDwNHFE5146/FtKlv9L8w1Kot7TxAtd4Cr36IYmWyu8OiKOO3WbgIx2ppZMRcqhxE/94MUXhXDSiJxW0hOBksK9Teff1ENAnfPl615O0LzNVqKmGoOqj+E/fK5qgPPD088CaFVK+7BrsEB3DLo79upLQ24H8HFXBTNO10BPwZ72Un08muejTOrIZsNnMXHhlVXaO6xUqIluRKH3bA6xP7pofZ8aK6I7FwMrY+1yDSQ82rxn+OXS2z5gEYp8NUeugHwrjvviN0ho725ekO7nZBi1ar+GqsggMXJrrOJSHLK1HbnzM4kCnFtcmrabmSApdbXrfnECavxe9mpikQIHLeSYjWQy4LCpo8H8QgIKvJ+cx+DVBmx3Ayd7jzRBsSmLYioTFmnNxVoKS7SB8eKH36M/mmDsVVsR/3AiYrfgPaO/RLvnTyZdhd8IXO/Imaob49GiY58U684LUH1ulnDbGQdfPrZo+LbEoZH/sp8rBPUDr4h4hntMPSQZfftYaExCZWc0H3a96YYjeKZ5Qs1DaH99a/W4OhGxFn7ZW1RXA4eXPF/6m+NgSYO/Zj0qCh2gUxLmIg7Bz1deB59N5MGfa0si9XsJqOwDjpX3UjfEePy54U/zpRvFa/MTqwQkMdV78GtVP1wrrb/pdo8CdW6On9dp/aXmUK3U0cJBmGxVc8NsN8Kx0I8Ph8KJ6G3Wjzc6doPQeCInXfRoEzx50GRlN0xEwXvPeNNPDELzpORv49VG4NxVvudznYjmBTJmfUQQkB7HRMSdrgFGsYY/l97EI2mj+gADvTbYGN/fcya4BgZ1/rkRviSiOu7DIUUUCrAECDpmHCsBHgZinENPAtr758BV4oFc+EC9x87GTAFPKdjoNopCx9tWbZ8s58Br6XH2m+ezoKYs4F3JvShkbaVi0dObB6LFSafMYjMh7aL4N+n3kciOdfSLn2gemL6Ujyxcpunr5oMFffoodK038Z7d7WwwjJ+KXpPIghe+jA4vFqJQpYmXo8SjDliSUL6c6vkCPCoTIhrF8Ig/S00mjr4fHuz+Mr5B8gdLTZffAwYk5C/2bFdB4wUk1nzmkdIqBvbfVuEX1+MQDqud1N9BAO1Z29/XNErgcffu6OGUeASKjnduCHUCZ/m9pEs0/zx2P6V4fwYeBRgUlt6eaAK5o+93FnZToO+9AOHz6Th0Qr2vz0OiAh4Q0rYOjyF4+1/t4furEchIRprzP+lysFZ/5n2qFMGX3/5dLr0RyPubV5dcfT88POxSpnGqFbgbdYx6aO9b2v3KcC2qESzUauNaj6dB0YujEX43Y9GeIrcbm2KNMPP1Vk46LgM2Wl+oYzhikejYcZ6oiAYQZP310qwpDfYupf75VxSD1Jg8qi6798MAi5q8cWEpmC0a6oTTdJvTC2Sl331Qf+/YC/nzpVBT5N01ReOWiKYL7+0D+uD0t38eP4+UwiWNyTETVRJqE81yXLduAjbRgxXyt9PAK/pvA/9ULHIekFHx2t8NZud1hnajaTySHOcvPUhA897xwo/VuuC9uPheg6s1QL4+eVLDlIBI8SpRQUkNYJ9RIDKNLwHYEErnq4tBG2rTV7prO8B5sxhnoICH3Msv6FRN8chn2NyD8m4Q7C/t01zTI4Ns6XJKjg4REY8pBJd/7AA9S8dPg+4kqBQ2WTnng0fI7qxYr282zB599tp3MAGMOs7zNL+LQu8GREJf9zRDYxh9gs0UgoCCi9cM+uLQZLO+ittqMzh3rqUWGSAwsU3y+z4fh8xXXBkXx4cgQfvC/cWuOlBdVb8754lH5+WJrll7h6G+OnXPw5Va6GIg/Td4Eo9OF9hXtIk1w/HO0/R0VghUHwgOTVnEofV37PX8Fp3g3mmlarDQDNXznQqBXXi0zT+qfPAmAa7OalaS8kuh4e5RXdvGeNS8EWN8oTgTTksXDj+j3Ys9kw3/4Hk0ajJ9VFNNm2+D54OXvRKVsMjn/P7QkRgk48hw+uxyPdy1JOdL3qmAPROvfN/rxiDZcXe16dp2SCeBsrgQgo1XgYnpBTgkYDg+uPmWAh/CezKNCqvB+Fdcyc54AspYPVRodKEN1ivkWy89KKX5pTbm0lQiMmdkrz15B4E5d0J+w5lkOKOQ7WDBikG2+85Q7mCpwH3p3Wp6RzUcskjKSXmPReyR0tu1JVSg37ygxFtbRdNFsyDLKhZJqbWyUANrodGgTsXGmgxi0m1K5WtRyHZ8WTXPnwxxJa8OWVwvBZ9kYzPraQxiuKWpI1XdD8LVb8nB22EQsSb2dpW2F8whLB4HffsBmQ94j+EDgIJ1ePySpufgtql81+1+eHoltzk0KwD+S149rUfLx2a/hmeilmR4PbTnvJtxGew/oZWF68ag6d0avM5EHRTUs9z0yauAEf24BsfiaLT3x8rwqTd1kBayemKyoxIKlV2bFwuikUwVQ5f92X74sHVr5k5zDlx15Sv4d5uE/nl4zb5hG4RRnpjAi4r5IKEbc4rCS0KqcwF34UYvrL9N9/rMWgtEI/W5ua9ExMuTUYd/3Qv+j/+UiP6ogX381g5mbCRUebcxpJqnGxxY2dmnrNNhc2+SkwaNA//bUyC3XFkJr+xUn5XMhgMLaeBdnl4kUiSeq1vvT4I1OuWYs9EFsLN6/Mu353GIoVxpgjWyG87Z4Y61+1XBkwPzT0X5iOicWPHuWwEqFDTh43BGFBhQkbKcC8Wio7bNe8W/k+GZmP2RGu5QyLwqlHpMPgGlYpvyiR874dzm7Z45j2h4qnhAtkmQgLZgp+CFQzckbAiFZ7qlQd4co/YHRiKy+/d2ww5P68W/tbt7/5KA8DPR/+h+AjJVzyfRifTDuySLze4eEizQMbMZ0ebGdZlCLynXDxH77eRSGPDgY/7B+YIRzfe0NY+IEfuBff5ho5YbEQJNyiRTaO97MbWVVyWkFlq77514Yo2FJGebnt31KDTEnrpzu7oWmpMtmIzOt8DlqYDkcJZodHquJX+buRFcn5swrXjGg+tE+H/a/2IQzq9GacGa5j89F5N2RLHAze6wx40Yg7rCmd/c1W6As/sS6WNaY2Bu21K9J5zGP6Jk7nbog9A2Z70/xWXwxC0tvkKBhEba/5AKCvsgJ/qMyEWxMsjzM9T0vU5CjCtqLNkSXeCoEbPPYqwchE1tWt7rEJDAHyqOsK8L+CNrVP++oe2pKemBmRwBiSWI/7leag+CHy3L/eirIHTk+sPDAokIuGQytYURiNo+H/LnqIXRmQ8ahJF4tBOue7UikQwbrmtSr3jI8MCaq15rFYMk68ska0PIkOh2Rac8mAwlbStSlDkMKp5+Yh9gTOshlXb/imm5wyC98+FuGwY1Y0NrdZ9SQdLvG5bNDwumNq/Uq7uwSDbpMFUzlgra0fXVj2QxsPnUskP5DRZxPCp9GFxDBYHNrPnwegI0RSvtyf6ORYZC5pFHaXxi/un+9sQoFoz/vh3/QdvTteP9P8ZNRmCvaQZ13iYPLh00MPUkJqKWMPtp7rheSDzIupZOLQDn/1DaI3ravrAoXv76OROOp3lOdf1oga6TX4xfP4pGr73exoT96odoL7xI9f548J388J6Fttfdo1GOj836ITDtyDXFYQyMVj3xZqLpJNTN8GeITA04V5gvBMmGA5NFCpeAVhS6INPKL5tYDU3PBuIitgNgKcKf+GpvFNreTNm2pNiC1nr0YN1bWm8+dInD/iTN9zwYfPiyekDSwV3/bW4dZPxuouvOJSJs0+bb/C4qsPq53/q8QwYFVePq0j04VNXqadlELAUjlcrHdM1pMN/3iF6WxvktXf/Eja6RYW4Eu6BNjgDVRSNt/RoMElF6yPlgTy90DC9sbQfWg2q9V5TfABHtxqp3stF4jPXFe2uhcwVAPqX+LXc0Hn0/d282b6kd3DHCqXObddD58ewNrl4cSj5OHKY69wF3XquU59MEWKbspidfoXHOSeoXZ9c8EOe65DJwohXoPm0erF+PRD05l0futfXD7897ZpNLmyEy/bX2A9p7TSnRPVzBDwP+O+tErEgZ7BG9UnZsCYvaLQuf9Sj3wf3Ig9ppa6WQoqE0x0nTf9b3sqgm+UE4R519fxlLAlbDi5MVu0REqOR68TiyE9g26AK8/quEf/4/w/oW8Ei+tPPizpVeuL78UV9zvRFM+PBikku0/vhv/VaaagdghK5eeHS+EUIbuNP7mfBoYXZJ/eT3TgiWf+p+uqwSWE7xWJEkCCijPyKyJaUFAhs4SSIV2dBSITxlZRaP+hmZrabDB8BapVBsmkCB1YpuXQcgoes7J9+Xl5SCZJ0Iw4eZOhA89p/TVRSBuMdd09IoNWCNFfc+0h8POIEQj7vxUUgY+7YXVVbDTfpsq7sNjeC47xmm61AUssgnSubU14BrdndmZH8jsDWy3XeKjkJ/hX5EyrF3wHHFYtfLpgmgm6m3u7SIQzpR/aIsqx1AjRP8NEDL/X0SRuXCgXj0XHVQ7bd6M9wlVmjd+C8N6LXb2Vrd4lCat3xycUE5NGt6y95gqIa9axZJH8Yj0B+9hUkOnS5IGexLYn5BhgQ+jRTifQKK+h0190p1CMzIZ8seUtOg46lb980sAtob5LlcL1MCr98JtxecawJTjZ2zju8i0MPOwJ8S73PgzVxinWpKPnhbmIvVPIhClsuFOfeq8kDGlnKMDvJg9ua1P6wzkaiC8aud2hYeGMVLBz+ZV0Bv39/tWZoOrXcYXnEpDYAM10jL0tcwYExVkgY9EmLoMFh0ix0AbpE/6fcXomH0wadlfRUaZ2Ke1EyZt8KVIU2LCqYq+FwcacynnIhOTd1wfdHQCrlne9WeHSiHonZmm7HgRLQlybB/uQvBnRSMs/GBVpg+iiScLTDouM/iDve1dtB4aLRnQ94V7PcvjyWY4JC5X6JU78dWoDhZx6cQWkBY4nTAjdREpEwhjchJtYLQ9G1K7MJLsLXcDC7jSURliu6qa3S9EOvM+b58Nh+kmc5qrA4SUcCLV710dxohVvlFtw/KB/5BbNn9s7HoS0x2BF1fJ3zTy/9gxlEOFgP+HsYcBPQnf07qo1IpeODY/mb8qYXzf7NeTrZHoEv5XgeGnbug1++Efuv9SuCq46uNfkxAXEefmrGODcKLVHmHjKIyeFHj7OGqT0Qr87Efn2LbAasnpr6/uAS0Zitb7mBw6LHFwqVcm1p4t7tXCOuVDX+vn/rDOheFsJUadfRp7RDpp0uv3VkK9/9cvif5AocWz65a7IvqBQlDHS0BnWr4IBGZwEZHQl7JTHzlqBZkL8sWko7GAQP9yyZWzmjEu6LWcPQvBcYvltKbUMnAtXWBIrWdgGbd0dUlzjZotuapdJGMgeP1Xcoj5ETk7BbH29aQBLqcEg3l9Q1Q7JPecDAmDkmkX91cJvdD+QcNvqJbSbAUVbQTQPMTv77p1/zrCHQPiFwmP0XAPMDB99IXg87c7NP5JzoA7Mmbd4aKU0C9+0xKkD4Jzbbv1Z4XbAfN87WHt2+RwP7CoxmrKzjE6s8aGlPQDbFC+YNtobXwoms+8YoUEU24bSsWC3fDwK/NQcGTtWBq95ZHcI6AHqhrkgSOZEBjjBAxtL0ZBOpedFfJxyC9xdZHkid74MiLXx6xZ+tAz8W76aUDEeV8ylCOaeuG17V9wgLhqTDj13WI4yIRSc7civaf6IBI4un3ASMpkK5F9Xjtjkd2d3Ttbg1Xggvffqt9Yvmg3yDds2oUifg7ZwQV7w3CjegLgbtJzXDAedvxxDgRpS6c24kSHQS7MjkbXdp9LGJbe9yYSChKrPXOjEw+OHz8JKshnE7rg8s2/SgSsTxX+7qHoxf4z0YMMvnmAFUjy+zCGBEdI5MGDKUHYDuf/HPoHwWk8b9Umm+Q0Ha4mmE8EwI+0aTypK0qiJmY77hbHI9aY5XK2w8WgsoC/TNfbBqU5U2PcJtHInujhF4ls3b4PepHmDzWAgr3RAQ1HXDo2fSnxPYKBKboSFtMZyqkCkYI193AIAkJTY8YlT7ATIYsCuwpBo1d/Uo3mv/LDv4Vod7vg6WLh7ofKr2G5WfL0wyXSajieolKL10fyL2mGg0zlMJEidxDNzESuuXtPmzvgiBevujTSFsZnAq3i3U+jkGul2+0jSW1A2eYnfvJa1XQpqIz8QyPQx+ov87ATCWw3xlcK7QvBbWKdSKPaSS68eajgc5yHdiEc7Nc7K0CkoXMxqPqaIThKSiQe14PJTbf+cueV0HNqWnZfo4YxDbwfnS5twE0GXO/eKbQfDh9dO7huxgUcmJz/nYwghPstd0nb1bBImeDJ/tpDGJusLFWjmuHH0ViqmGoDMIiFj5kxuDQ7MK67exoDQR6mE13Pi+E6tmQPw9IUajLJsAGe4kMN9UFqjxPhwKj65QqoQSDZr91Jz8cpULI64jK67cpINDF1uLAiEO1E6llib3J4Bjqt7rvAa0XHx9i6VGPQ5J618rrq5KhVGLE951mLdgfrkgb1IpDeIFX9zQ8u4GpMo93hEoBYzMF2TY2IpKr3v5nLzQIj+s43Ho/NYL/XnEWFxYSMnsiPNwV3Qj0w8K5vBRazzL/q89wKxYZenj9u8bXBu7P96l53ymHwx4px5Q6EtHvwL6iFqNq8EmvNftc5QiPtb1VTi5Fov4c5ZlfOxS4K3O7zT69ErAHvt033UpAwkSvE+vdtcD94JFlz3YlxOU/R+FHo5FRHS+d15U6sJD0yPsYVQXeHUHfDIyiUTPOUPW7fQWkHL1HPp9LgVijm75ff0WgfMHv65S5Prj5sfTicc8E6NoI23lM8wFcSD4oV5RDp+PpmF+qFMgtFPJlnoxAif3eLe97BoHN87zCUiUOhHD9G4/NiWjGNbGLO6UR0oRLbI9HU+AAhfZL01iUbnU0LYzGw0rvgprfVCaBzWHNhpc0Hrb1aLR6QuPbM1gtTZtzCP4ytF6zovHt06ajJyVy6uFFerHJ4LV0eLfVZUIWjkFCy3t06i+/BK9JGQXKUi0cHU3YT/wYi/QIxiMuKi3Ab7WeHlRPAoUMrRQQiEcqfSqHrrp2gLDbxpMSVwQ+h/5bn5TAI7qubccd3V5Iqt6tS9ZqgZYhzv8caX3wROF4olAwBRxvTd/i+4tA4+sps+DkBLQtxP1oKq4N3nxqd5W+gwOxgsHMAAEs+i/KfDw8tgo25+Y7LpxOhb/nLFu2iJFIFm+w203LKfJJ9mrD8kBwMm7efEvLqTiJmVESuRQs6r4u3nhSBUIoLquqJQKVvccMeEwMwrWDfLG6lnXAehm3Oa5JRIJ3HzSZDHbAFX4+sZHHFRCG0oWknPDou/FDPaa/XaCoKKwaeTcHXHSCjXV7CKhT++3TkJCHMMgyxT+TUwzZg8G7JhyJaLz76zez3h7wO/Vr0uB6FQTg8ZHxdUQU3f7Nf16tD4o5l5S0ip9D+XPxcuHzJPTA6jKjY40feBRRlcOMS8DttEd+WksCCjp/umR6rA9K6b5eTSothB+hPZ7HaL6XwazpJDHeCdIJA60SHVnAlF3R2MhLQJF3H71GgkkwXhFyaonGwwy1N3F5VXHIYyfDlyKTCxQV739KV1tgoqOP76h2FFpUjt6iWxwC+qKMHTVaTzJxEq86bY5HEwla7186dEI4v5Iq/98y+CZ02YVpCI8MN7pUKs2rIDo20VJc2RGcv93/bv88Eu1/JVzwRywHLtjreEcm4gHfPBVk+TIKmZxd3Gb+kg3qyo3jsm9JMCt275NtWRT6bfrKgTU2FUjRmiXNLA3wysr+2YJuLEqk3r1xt7wDNg7IKLCz5sBA/1bLvBEeZUQJuV3R7IDpLiPW7qu5kJMlcKCYFY+yJhzaVwxr4HxorcxH3Ra4XlWVTzWJQtzNiWTx8+1AzWiPfIKhQBvtwldu4NBv//81cd7xWH/vH8/IHhUpiaRkJUoDhWOFFEKpqEiSUlkNZe/t3rcRopCMkJV52dm7UBpGoWiLhr63z+P3u0/+fD7O47yv97Xe1zn36yELPRsCdF+NPzfvkw/i6eS+UutEADaVexNK9Y7IuslgU+PLUrRoZmdxT4IEehZ1y38FlCODCot4q9Y8pPnIpfOtYBRo6ztoTr7wQSvVN99om7+LqC3Pn7FmE4GQrO8U2taCFtdVbb2cXYpOWl64aZRHg9RmRbndx+vRwc93rfNf1CH/59P38tVI8PfYgpeDVz1qdnQ2dztfh0afuqV6W5CgX3L+aUtJPbLX94r85nQV8Vputzb1IYHDNrnABHI9ClTlHhqe90c3sjJOBZwlQecR852xfH2oqAfV1QhVIZG1/B7zfGTgPL+RRTsAUHS/tN38kk585pp2MaPPl7MNS87GNiGWVGPLzp809Ol3GvtANAW2HSkx1tDoRms+zmV/33QPzW8MO/r+x1Leiimr8XSjGsmHGmI/76Kq0B2fC9fHQfvd8qLFkG4kpOI61UXOQKOZIiWlBXQQ2l+okcTfjg6Iuo/+msxG0R+NlJ7300H4s6JAi0UN4r/EziP+pQSdVQo8pCIfC2oOMtZPWHPRLaNNs5KVVJRdbr1ORzAcLOg/9k50diHpC3t7XnUBiuIQpXkqx0EFVb5waLYXuaQ+bXix4T7y7VGybtciw/abBawsT1tRivnrg1sZc6NObvbPvbp0kFvbbXA6qxbtF+fNNSivQ1z7hY0eLBJgn8DZ6hvbapHgKUVf4mgd2h307INyBgEK1j2LUZZuQc3ptYfWUmjoTH7+ulVGjPOX3MPSO+caUcLCOgueUk8E4rElRx6T4VQ3TTv0DYMLH/3dleuB2iWlhbpWUiA8UW9DEmsLAhktrjpKPOqq1AiyVaFB5lCE4fLmdpR67PRfbpECxFXdT/UTiYNj74onFuq6kZm9vUjOAKAH9xxHrBhzmtyWJzlerd3I1MRyYt0lQNzZ75VMT9OhN1UKtWl3opvhPwsORz9AnXekyxaPxkHSl+zeI0/bkYJDQUqFbCGaufMwh1UsDmpqViuIieeiKD69nj/lZWhs3+Wwz7zhcCJm+cntJpnoOE9QtUcDEb1Wcqk6rh0BOU0ridMC9xBiDSEtNFYijgTW7MHTkZC+dl3jU+48VPlJ2THFqBK9a86edPocBtMnfDRv6TShy+d+tOXvq0TkqNvBLFYUcLE+GaqYzPh+5fza5Wxai46Jfsqwo9OBd+tAX1AHoBGVUfvkjHRkedEpdNGWADLo0B9iWjEKenZtyDPzBprQeH7qVUo4fJB7ukLFtA1lBhD9dYsZ51AOY5XtfnTY6+6UuT2lFZmZzaVo+FQg3dUNdtJb6JB23vdDxtEeVBO2Prvicz6yPDDvvs+HBns2tX3knU9HyVnZjrfWZSBe9/Z669wIeFPtEFaulYm6bG98mgrKRPUflKdS9SPAraDWM8wrHc16LfDqKt9HrgJ00yfPImBMIt/JaqEL8coUrQ7fHYEkWuw4Jzcz5sAGVYmO+HaURXP2aDtTjEh1E/tNueJAmHXvo9btnehgnZvNXv1gtIf/+NwmRryslntmnLnSiTi8MmX0HSJRDVpLvHUsDubZUpKUerpRd4HkdreVlWgsWLRG8SgdLq7peiec040M0cLUvsMViLRe6GlcCB1SE/dYfxvuRrRtfebPv5ajihNFG2MN6UA4pXqgfNND1Gez8dAH3zKUUbfe9shQGMypPpAKHspFDfPKbyuhFI1at0admAsDRcuygvGT3WjhLMeKt0aFKPsVbejkczoYP1YUy7pTjWJ0WOYyemrQ9UmF/G35MSBiltMtFlSK2L++EmWroKPBI4HWfS4RYKu1dut31xp0+obw8dRJQCknvYbea8ZC2na6rMxMB+p31/7rwl+LHrFXG5DM4qCfJdjzO38PuifBqzNfUInCg91dsn7R4KrEnndmik3INs9gzqekGA3yEU2/GjDq6+DFCu7XgJbvvaGtbFOAMkLL3eQvE0BQ9J7WDG8PktfmdTvrWoF289s5Ti7SoI7bfOzaoTakWuEulhpcix4+RgMnfOkQPDw3VzfQijJGTcQ2aTPyM8goRozRN77OjxTPbe9Fowsq7ZlTRcixaRs5/DEFvlyoo69RaUE6kXIcO/iT0GWLa0MVh2kg/8NiUHyyB23zsfliUVGHeLUWv+Yco8IYi6ev1GI82uDj9Nif6olokzUiGdUxsPfC591fg3pR98CovYd2MdqnHakezEOB7yuDNvfw9KGdqaG/aOseIS7picMvBcnwg+tx2mLqE3R2ql/zungdClj/40ThdyqU9Osf+sKYg1lvXlOWkglBhnaeZeZR0VBVFtKpv60eabzhPHq1txJtDU+b27WOBKbrB4/kPG9HFw0O+LxbXorKL3l5RjL6eVZ+VPHlqh7Ge317xSFegK5cf/mK7REVlqmlKZW/qUdyeQuWq2/dQ4dC2Llak0jQLL9qIZLtPqL4fdokJFqI/t5Z3tfKHwGRQ12yb+xbUeQhr+OyErVoVfiyh0XLGXN7hbuxeVwrWi8q3OtNqEXl3O8mr0jRwY9PRWTHsXr0YO6g//qhWrRVgvPrZ1USFBU+n9q8LxnN3mXJcuqoRUmWN76+T42G6Nw3Ux2l9Sg5cmJ6z2wE2nGYi1/AlwQsFKtfU2aM8218wd2PR8lIN0PjXohtJMTqeExuPVKCaA/UJ5K1y9DULm/d6+/C4albbI5MQiu6cUXS3zS5FO1fPRB9aRMdQJNtnfG1OLS92nxW7cojRL4jsGZSJhZOrCEKeNF60PammxKtJudRbpqtzgdWGphWs+blEFPR4stSeepaB7Rheqj/hAtjTlhY7dx6pAdF6U/nJKnUo+OJ20m9vjTY6GHXryfahd5G9PWqESuRTMu7Pp7DcVAuseJ+WGgRavRy5O0wO49YZ8z0x7XCYY0ub81WtnzUuvBA57FQOuLdKuO6pGeIejwgYpnUhKiB3t/dVEtQbptOsj6dAgkZ6RMWFwHlz6435x5izL/HZsxixQjwTW31xqfQg77OjmgNXHqIbE7tynibTYVNT5bv0L8KiJV/bdCYXglqFhkZiJEigE2NqK3qvi6kyWPiL6Z7B+3Q2HBp4GAclKx+fn7SogU5sciqjSyvRa/57jbynKNBB//Kwq23uxC7RCr5KKM/OI368RgxzsVr3iw7QuvKRVTHO161P2+jXi5+pXM/wsDfQK2+V6ID0X9WHdXIvYsUj5jNSmyLg/BGt19NnYmoU/Lq17WJJeibEIvtbsY58ceabo8bn2vRy/Yfbs9P1KHiWbLd+A4idH2XjAyVaEQlIzqdhr0BqPS+bbJYMBkyzW6uuFDdivSkaji7UsoRarF607ubDk/JhZ4cx5PR65Lonz9ZylB5z0qe2IRomEmzluPuz0N+w4ZSl48VoZ/w57blqzCINf1dfvJ8D1qnc6pvLLkW5WrtDt1wkgYC0jlKq/7cQamHt4zUEWNQzNnFGSiOgr7lPqPfGmvR+biHgZNbSlAZ4bzPMSEihBvoNUsdaEQ94iHLV03lo4YDf+6W3SPDKI+VzzR/Cqq6tEE9d0s9cu599RKco0HaPMtXXwPQ7xGJ3++ns1Eq9+Mf3nOxUPEk7P6Fuhb0kTfUJKcwD1lt+W0+dp8GSnuTbsfc60EcVb3Ea4mRyFgrpfvsWyoIvWnbsXOiEz1v5M51XlaAGl4EHiAfiQOL/gt1JYz65ZE8WxffWIY2p6yWrGHU7zY7sSa7qAJEH7pq/100FR3W7LAzrA2D+XMyCiTjTiRqLvjULKAa8U2Ltl62igMIYVkWKliOWv9S2v1byOj+g6DCy+2RoK1gea2NpRXpCNqwNq2oRXYc8/cFOmmgZvB87XWxHmT2y/uuYEoo6vvuMFEyQYNrOQdCtF0BzTp6Log41KHTj7z1KjYQgKB65mp1chPaYTnSEbstAB2Xv16mF0eBmlw1js3JPUhA+Mrl3zyFKGoDVdbjKxWia9aKiVW0I3rXm0y2TXXox0G7i2Or4qDnwPHFtMEG9O3iFeGz+9PRNo+xiQPmZFh8ITR8fE8d4nlyve21cyV6OMbdWehAhNTgb3NuI1no3H2K5bdPlejB/fKbkfHhYFtzwCpopBslDGbONO0rRw8m12jO6NFBus63ZtgvDv2tKAq5zV2Aitf5kgWlY2Fx+lvpPt1e1LCGq/wgqRTVVVHjPSgUsGnM+9vysx6d4/jOIpBXjp6Jes3I5JPA87WMiPz+VpQT5W4R1vYImdvrtIt+p8Gg7NuvohNP0OuDdbWxQuWI7dKG/EJJBhc7XWRf34rmj7RrHtmciiaOC/p5qNGBxpvsnLW2AYl4ppgdfVaNRNneq/I0kYCzWIyndbQHvdOK3N5YGI9YJCvzV5ylQmVrIvnojzpke/zhKQvXO0hNT6v5+2cinD94cce8SxYSbGtxlcnMQNNX8jh6CsLhcLHbgTn7RCSqubf8gVgd2uzwZ8HpdAxsLvj2pS44D43MXy10TKpG2muqe59OMOrozFlx3Qu+yHPV1Q9TVoC6xsm/j2QSgc36RmAy43u3yKe7vVQzHt3uKC/YsYIMu15WP7Pp60GX279NByeEoJgjH1ePBlGh1eaYLnG8BfGKDmZE5FSjKK/N+zmraHDr/vZbg03tyE/2l17OcDpSsu+Wd2fM1b8y7u+88iEV2apV6U8+zEMR91cp/9kfBUP9G9u2Sd1DZZfpsrM7qpGS7YmyA8ciQcyLs+jh1TJk80JK0yOGwSU7Ki5MR4Dd8pmvR8cZ8TikWWtwtxwp+AVUqAuHg9V3i8d/JxuRmWpOfr5kMXJXOqwmt4YCDxTNo5fJ1KL+jVQw/ViA3skbLjy9Q4C3fmfcDGy7EVFMbU58vApRHpY3bBiig8uzqILftp1o2f/9NRne1E6XJMAXHcen3HNPmLzz+ktl46dRkNkV8mu2sIfJWR25jBu/xkIHGnOUEG5kcl8xv1VyjO9gRVXnHh3DNibv3tNf7BtHgtd7ndncT+Lnmj2NSxczpIDcnvP2TgW1TK51g8Pl/cUwmBj2+hyf1c3kX/quia18QQK/272dllXYzgih97SrMSTgG5Cs92KcN5n2NzWRT58gQs1l1/E/L2hMfm7XI9Mq9VA416lKX69azeQrjjz5eXhNKLD/cN51R66dyU14Nd66aFGhVMKHXUAX29N0BOKO7aOCPnrc97mmgcnVnzVmxt4kwDqCyDydt57JJ7mfTdg4x8C7Cy4lq861MnmbmvTLglgKdM+2vhvOx37mi7W1OjRFAjK7ko+JWBeTBywGZffqMc53MVppl78+ZnLyuS3ytZwhYP/O4PDdW71MXqh2S/qgDhFIt9gm6+bx/odiJ15ejQ8Dr4fcrC5OaUwudGhL3SfrEGgLio63v4zfd1XDfoMVhpHw+xvV2/xOOJMLX1onntMfBS7Frn/f+HUw+WeBT/eM3GiwOrdGIuPNAyaP2lP2JHEmiOGH7OWa3NieRbe47zKpFNA9fqP1XnY+k1uGnOG7qxgEPlI/dQYO4riwHX40/iA0DG44OY1PcLQw+bFnff0pOhRQebpeLpCO84q7Y2cxa300nCLcSbTSBLy+XN45aHsUXBhn8zXQL2JynhS77xr1QWAv9VZ/n3Mzkyuybfd22EyGYJZAnY9+2M/6Hfn+MuPRwJO45cr8PZz/Hxd/v5ttjQHFzrG5MnW8vqj99Y/KChIsaGm0BFOxn639VsbSVQjwNTpTTWEd5q+duspKrtNgvC+5uvASzoc/JkUyObtIcFRBfu8dFWzn2soGB66doXA4d9UXt1/Yb7WZVQUbdcig9CqufNNhfyY/09ISsLI5FvgNqO+tlHFdi+9q46luJkIRofmciwt+r59G7irau2lw7+sVnxuKcUzOsaH9/UxmBKx/qulxNwznfwtXLX98LgHs6s9RGjhx/q/XsfBRqifAofHlnoIZ+H0jrp8Wvb2GBgSXGPHNs7iu+yZ28HPfjga2zBVcv6Jw/rwPSjks50gBKt2vXGlVJZObk3b3XxgJB1JVqC47ZymTN33jX/NEMxTaClRXKjlj/zQ2cH6JXPq/cOwn51fw9jF54rWP+T8DiUAhkxeNf2M/q+1yeLNOmgInulmMK09hO6+uXNlweZgEewZqIyRf3WHy3NP7GiOSw+Gr+ukfRC3cx/wukL8XhxPArUTVdwcP9s/o1uca2X9IYBUxdEpTA/dP35AEKn0rHRycvrd+VsR+0E0b3KTlRITmmIoLmddwfwv/UVA5WhQJ8lembLe64P1Pty88Fe2iQtVl85t2VFxHgiV71244yuhvxymfHF/h/VMvmG6+GEkEV8e0H70suO+9XOSdiUsNhjQTwX75v7gvDbrF23qzhIO5AnehkXIdk6se/KJwi4UAN7JE9VxI2P+rDk89stMlwlTZ41Gx99iehsw+2nvHUIgyM31TpIP9oLzquuGrogjo1q73sJnFduZLLVbuayBDeOmDZ4MmOA9PLdfQnT8XAZS0D39jDLD9Yv7lnulxRHhIOO1+TgDn4Zhpqe2tZDKYFRtGfPTFdWf42fvRYx06lH9YrfzmA65rWW22YSVpAsQu05on2uF+aPx3TyIvHxWGRirWCwpjO0WnRutK86jgk9qxSu8FFdtTN7gqdlM0sIx/CN7BgdfzaAVszXILht0rCH1/J2KY3JpP75JXWgykle4YKM7B9lx/89IxwZ0Ez1JZm1iPYftpXg9W0RYoEFldOWR5IoPJOd+HCbi0hsKW1eS/Q0fxc6dk6u7pt0bCQm7I/np1zCc+6KwNiibDs5P2cs3uuD8oLFfOlP1Fhm5Jmkf6nTAmJwlx+uYYhIPYCvaFx7+xf9w23vcO5CNBT4kIDwd3LpNnbPVuXtsRAscuP7DZ9wbnyYvyymIDeTpjkLfX+TuF+5Ve9LJr10djoeVigv/OGBzHve82LQvYSYFj8b6dP7qwH3Jndlz0LAmBQ8ZGv3wn8XdBwnrtuxuBMXBJqknZsxfX+8fbw89WFxCB45325mPl2M/mrTdMz0hEwMku8PJ5UsDkRiFkJ+nIEPiy88vtq//kbYwjK2/jbcY5Qvzi64N5eB8zrQPrIkeCYUSgslGYrxiv56NuWZgJgZmrV/ySJrCdorZN4we8AyGpgBL13gjn885Tru5Exvcu8MWc30fV60x+ZCtr1MEiAvDt/HQq6C32w+WHrMv570UDZ1tQl7ct9puRJty7GUqEreEbFIfKcb+yKtvQFTJKAfOJYzOWt2uYXOhElW3fsnDY0oDWOwpivz1OXqme18qoR10dDtFoHK8bq7k+Z5eTwKdJ1VbHEefVgyx6usReKrheMDtS54bt2bVl4sLpWsY5NK9OZtYN5w/JIr+7+Xg0yKckum1xw/0/fCO37ej2SPjQsXarZ0sdk/9NNU2QpRCAU/e1FN0S98PvZU8uqTPmnEELUSmPjFAmF0xuVh68xphDlLW4uyk4z5PUz/GSWmjghtwMlqnhOIo7D584zOhvFrNwm2c3Xn/f9vWvH1xUOH5Mu1doL+Y2gVwB2z8RYHyhM6AlC/shJa59rIQzCKb3zu+48h5z6bh7K9/1RIHUZNYy1hns/2u+ToJtTtFwcfFRHCps/Gf/QcPSiFCQNfzqEZKF/TYo0E/jjA4CC+NlKkplmMv1b2MRu0gHAba4RJ0wPEfRY9S6yiJjQTfV/+lcHM6f80ExYXseEIBlOtcqYAjn+avI9ofHLtDhO0n//KGbeJ/C+gq2O9URUJgvokpahvMqI7GTRN8aAT+Sncbf9eDv9d3Bt33JjHm1z9Cpe1YhiclD/amvG8iBoFqZZXJWANvPK3TazL2XCvGnHNo+/fBk8tWyuuzRu6Ph0dmoU+efJzL5WHfrkFNNJHCt/3bk3D2cbzwvTeRDeahw2LfHoq6ijsmn/q6bkDWPgpH9y1U9svB3SjjM+YThFyIkrpI283XF6z0vEB7UBwZBexNNYP0nPCc8VB/onNYkgfX4lnm7FJy3xY67SXvcAqHdqH9mRxr2887Rn6egm/FdfpXW2N1zl8lLor703BAKh5B5qSr59ThPOFOGyiMfxkDNj2SNY3J4H+lDsxosx8mgMpzmHH4a5+E9VZ7ynYNBcLm+oq9TAe9jYqdzTAuRIMx/p585F56LqG8+H9rJHQNmViv3l+rg/K/5zc4R6kOGrR0duXeIWUweVCLWZi8WCt/mJYQqDXB/eONvozE6Hgu73gT8LZ3Bz4195HOJ4k2Bib8/P2jvwXGRl+kdb9tPh7Btrqbeu7E/3+yeDNZkfEciSP6B7vU4//uCBHb/FiPCg6xyt9FwnG9tVmWJsxFkeLBrnV99Gp4TVp4vW2cYT4Q5x6FHVFvcV/12VIvYGTD8cNM6xU8F+4HvummCYg0BTjie0l9TjfvJu1T1/faXaOC70tjg7VVsp7Lrnta0lAiQ2ndRXDEG5/m68PV0U5FA+BIUMFMzgvNKHSkbWP2hQvf1jY3eHTjPZZrnI4O+Ms6/kjkvvJK9mPzJhX1Pv0tFgvY6k/zUEfzddPs4xVamTYHE0vS+ECl8zjKbpfqsjQ6BJxGtK78NY/8kqTzLqLgaCKzsE7lnSrE9W3To2yS9KMDD25lzL6KcyWMEzq097BYBN3UN3a2P4ngVXHvvSOelwdXVNq98nB8x+aI4sZLlYQhQsu1zM59VMfmlzeIZXuPhYPFRr035n3PWlfbfRWPsZEhffUEtB1GYfOfufdwdATGgMOD+Y/wk9rNBsdpo8bVAsHvkfz1XB8crzrxnTzQ7CV6PuOcOK0Qx+fqd4UVxywmgc7X+0po6HEdv654zx0rJMOyU3qz0Hb/XfteFASNDGuwIP/fK4Z961JAb/pg1GACqJ54i0UVs/8+MlC3eh0jwZCGw+8gCzivxJiOO4hAS6JqOHDwxj+uxS5xEYXtFhdo8k90B+4lM3hn95NdG6wiYcR9bmBDHeSvJJzYVr8qYT3L4w0T5sP1XdNLVF0NjYMVN5TxVPhzf2nrV+xn3YsAprLwehvC8IZ916xFVJwzeLt+lHp+N1+/85HTFJpkIKymCFNnX2A8yj3JqJQfJMPN9w2K2PF6/S+/bx5QvjPpVm+d8ZIbrXcNh10mV0xTYiRqdTrrg/HzZts7Q6Aoddg7LL3oL4n6YyzMv++ERI09eB45queD41vxwFfLOJsNEccdLbRW8z+HX1rZmBBLQjl/uuvQK94Fiuzu5pbeiYcBjJHV5Mu4z31O+SqnmkEFhQmcnOOK4pK2tFzHuC4McxyYVO1H8XTN0vi7YfY4GUq9kn9T/we/rcd3+TKAfY67r7OobeYz9s/uKtvWrEhpYne3axn+8jsnPeXRXsUvEwCmdLSIvpZKZXCmGfeFwdCgcELv90sAQ21lZZMHhfyYMfpQHPTP9Z96oGlK2zH5LhOeP1c8ER+J8GLGcokXXRoE67aLDFUVcv1N7Ury+9MSCb1KLnLs55qqXgg4duEAG9uHvKy/tw/YTzoxdTkgiAViEb85uwfwwrVM/e4YI1d+HB3iqg5hcmHeerz6QAJs4uo9Z/NPPN530Dom2IcGp8bYirZ/4exRVq+WlEEMBX+PW/Z9WY/97ZvKcrvsYC3GcRL6gTTiOPtN0bluRWPi0xpdTRhj3jXXavfWndKOgaePQb5tW7J9L7dI7T74nQOKQgp2tNj6PJ53RYNf3jQSnPYk75rpwXHLv6a91LwyFZrl918aEcXxb6RPSJW9JcJzPdLVdDz5fE2U/C5qdjwZzlp6f0/vwfD66zGJ3ZkoMFPEbXlT+gOu6mbyrc3ImEj6rupO2hWP/zPYp6LUJkGCHvy/H7ke4zxts2UvU5aYAxSh+hx4rnqPYNrJBW3AUJPsfFOwlJjC509tScwe+aEiW3hsYcRX3AdOfufZ/7EjQOnma/XgOfu4n7pDtnmMUiBCy/eS7HvdJJYuOSGudSDj6y9R52Sh+7vUPihxi/gRImc5+MbkT112ObEFuYgIZWsSShob3YPuFrzjHDvESQOiQjO7Be2VM3vH6t3Z8YTikFXv7KUf8M//73c7pnybAGlt2JbZ/znHixsG3Q4ajgahgl5SRiP1s8XnAYOR3CNRdPqVv9M9c+uqkZgNQaRDXGFMVa+PM5O5/DWyuHSVCdGCSj7g6rus7usbj5A46SF85Yph2qAT7QTbWOP59EGwKMoaTxrhPbj+lpWbjFAC71ga2lv7AdffiWpb8LUESBHVlS77RwP4f8dimNn6KBtO+XdwOn7CdtuW3LSVj6KA6NGchsAnnSfbmPvH65zSYN/itPbYujckNP/ne7PgUAUedmh1WKeE8zyB7vI3+QgDPNec3OQzjeglPOFthZESGd6xCCtsvVTC5+YMPzzYdi4SUppqO6TfYD6NtrN/7wqgg0b3ylnYO5kUSSZr1+TTQID1dYSSPn+t0xNlQaTMFlt94/1mlE693/J4ddd6CCO/j/FUufMN5Ito1fNAhkgaTC0KqX4Zx/T6qYl8pxMM4h74pUnp8GO8/omSce042EvRfiyWZKOB+Vf1zb7Dgn3BABYJ07jYcr9gMy4sHp8Mgm93FjaaJ8/nKn3B2UnMsGFcIclkcw3llV7Bv8QgtEC6rz2/f5o3vr8LXWnDfsopg9KXfjuyl+J7kSFNh+hmTYNhql3pjPAG/77O7F4OQRzTU6/OrFOzBdlpKbdnJ+YYCs9WBY9pS/8xvq7t6areSoLhiFV/izUwmv7v64k8P9XCYzpXqllXA+ROU8zPZFVFhr0a/tuIfXC9CAicSCavIMLkR3WvTw7xlR7ZwqwYFThleSMiuwP7kOywfYllKhKaj7XXdqq5MbuPv8dWJnwBuUOPPa/bP7xefJUfb+mOh6C/f85P8JCaX7hNP7AqIhXC2L2WTb3HfXnDe/VhYighP2X7bVcj9c46IErtUf4kAwd5pJ9WE8L2xcWPhYDZLDBTe1r/y8hhef8Jp++8bZVT4NLzoslwZ77+++HTrg5cE4EgD+nk2fF+0/dL8ik73AAjao6uolIXjontXd2GCTIKBl1ImZYZ12E7SfNpsDwFCYz7XtLDguuso+eCumEUF80pxL/DC/X/tddmHW+woEOky2KVlhvPqVmodd98lInTWD3631sP7z2+XbSOrR4DHXKinjCBe/+O5fOvMUcZ5dv/a64PxuA9QGvfl1KpFAI/F0Mjdf+431N9YuLj8CYVK0fhRwn3c97bsDTVqEI2AjALygCYBz1elb0u9JxrIECT5wt39LM7DFoX0VNcxKrheWTO+UxevJ854acVzEUHnj4XXTgLOk8U9ATTSBQLsL/p5uvwutmeVz5Vvroy4rG3cFXXmLPY/P6fwzWj5MFh38gCBsAvfS8Q7ch97rBIEGa/cP0QO4vntu6J5zq9NZLAS9qi6G4LjnhA59kj6XTRcbK53jtqF/dMuEDPB200H+86Ju04pt5h8W1uJVYUmEepJ14SNZ3ActfmX9dzaSYc068gVBoK4rhe/nRR1oISC6033Lw9bcX3dSvYPPypOgMINF/elVeF7PDU1dn6/2VA46EqsuvQe++f8uQeBGzoDYHR1bMD2f34vy6V7dMoHMM6/GavUqkSCmdy/jLc11S8G1pt6+Js9LsTvpXs6M+x+AJy0jlrhOYL3P5BjnohaSMC6Jnm2KRTvLxdutcHrVyikC0y47tLG569TfIZXMlQY553OlO4XXf/c40mczuVKpIL7IbNou2R8Tkn4LTimoBsB2/Kl0x974/XFg/0ii9FUUO1Vqat4gPPkpaSa+Ew3BUJqG26ceZCO1w+pq+hSwsFuLlPygzqOlzaL48U/shRoU83b/rcV54/AeP45zXEanFnUtvXhx+vtzcUsYnwDQfXKh7EADjxvSCcGOMK3WBC8K3tDrQv/Tvd91JJt/84wIJTf5pIXwHFX9DiZE9kSBnonLdKl39OZ3Gv7ukNruaJgRkzSy9gwm8mfaJmOnNoXBq/SHxJW/HPfaC5isanZhA4OFj+iQw7iewxzpOp6ICkM+Cq4y9zl8T3SxH6uhs1i4TAX4ar1lR33n216tRcDpykQpZ5ifdMI+6FGD+W9TadDooiil94afK/1RV71wdWQCLh8bZfxHT38HW+SnBa/KUSGXaxXWU2T8fsW75JaS75GhZXCXztVEnAdOZL+xIk5U0H0jEfy0ZMBTG72WkGmen0ANC/rjvO6ivsbbfrPvYPcoSA8/Cy3O62OyfetqOyUlCfCyMmv2mftcVyORgv7pVoSgF01Vs7ICdc7MjTa2GQdBflWkzyVn3Df7i5TqTIeCgC1GG/1oTo8DwhrV1E/bKDCHIse0u/F/u8+8+7qH24ijHeJKZfX4/uK1fOTr0TKQiHrmUR9fs9VJr/upb1VLDsG1ujueftOGPv509WLv88ERoBk78Zv727g/mmyI+ElL+N7PV66qnIjC/abftOa7CMLJHgnWTvj/QX3zzh9QdGEF2QY2F8mfPaf39lXa1ILP3wjwpvzh1lW6j1kcgGCVuCrrlDQ3a0wV7Mb78+f8IQkv5EGDnn6Xw12/PO7/57moxuUqNBOnVqwH8XfWaB9C7zXFQkDv6JO/27B66U2KRTPVkcAx4K5c+Q7MpMLPnV+mtARBBW700+OR6cyuW7dZJ/0yjB48EhImmsB9738CqcnJHsKJCQ7BWvN4HqExV0X7mpQgaz0J8nlEvbDfM2Uj3wJCUYOxWz+FY/96eo0Jq3rFQuyzTRO+Vycn5tju89O5VJAXStzdIc1jkv1zCePl+x0aKE1Koe14HshfZ3u5+0cYVDmnCO1QhXnz/M3Bm8bbSOhNNfmspcNrgt7w/e/1l0kwIrETuHFGtxXN20YXnt5MBQa92wMzw/E+RbaHrZmU3kAvBXcLCI6jO9VHrEYDqSeiYZjwcEJ2wH7c9TQLTzlaxjkHTfQ0DTG+ZkeVO+b70kBiTZPy4vfcJ9k2X2bGzH6/2f76ubib9gP1K0TQS+dafBV+ALVtQ774RSEf5qcoEPFmAdXeiSuI6u9SuU9/RFgPCDkQL6O1+9uj7GxXUOE7P45o6AveP+MokWaH8MPeYPUM71TOI4/12c/TV76//Now/yzPNyXUtX8yvK+0uFF+PfbL3hwXnX5F3dFXAsAd5O3C8um8fsqJBl4Sp+JgGepoRmFYpjn/5yyFa+lwur9n8/cSMB+aJWnBvu7kOCVzc3AdRJ4/WNX2a63LbEgolkvyvIbP7f8hRFfYVEMeDnJu18uw/WVPVPfEShDBvUT9nIG07j/FI+GZcw8jwHfKtaEgWg8r653Ujvf3RYA4l1qf6Kb8XPDMsYDNwRRYO/Kn/VT0XgOORS8+qeJNwEibIM4BKWx3/KvhrGtHqTBkwHOXAlFXC9f9Ta3zf8JAG3Zcv+tbXh9ZJZpR/4XEtxl7RGRkcTnrO2r1YyM1oWB9mxAu1U63udVlt8t2jUiTCcQvQ0bcVxkBXmL3Zb+/wDnzIWywH9+Z5Sj61yMIINd/C4Ty6OxTP45P2Geaz4EjvJFHddS8WHyxYWV6862h8A+vuKHxuPYb0f49919qBEFPyv5Pt0twH7rX3v8XiUlBkJSCTseiuXh9eqpA26/goCgaOxgSPnnHsDIlWr4OhhMfS5NvyPjPBxqOWvXo0GG3wfeP1rhjO1nObMuheBEgiL2v7EnEnGeGCl5Sl39HQjjvq/Ot9/F+0iKh59sf0wEKZM/Uz12AUz+07co8MQvAmyeu9hVJoLvCU8bNWxmF4kC+TexnKbJ/9wbLBg9jd9IB+XmwDZjDtw3XnPe/1hqHA30aSnxtCwcl+e7lqUclKFCZ0s+0fqfPn+OrfWIvkEYcJF9L3cE4O+mU4uf1onTVHjkpBjvc/o+k78XHHq4hisQCFWrN5v04nyT2Wggp7ubAuN1Rr9U+nFf0nHy7SXl0cHu4KJJ4V2cD2F3ClqGDULBe9Jt9eq72P6G50+P7d9MAu3iEvFWDWyP9jbX8cfKJCCEWwwHjuL89FXf0/3Jhwg8Emds4k/+c343PeQmN02Ge22r+r6fxvXYYLzcdN87EijxSr/P+uec2yId0vZXlAb0v3tuyB3E849B6lj69GAwRImJWV7ox3ERqRkRX2MRBp8Eax+G++HzfjVNXlFVKhKU9DU/bPXHfS89QGDsrkkMeO/sezmwFZ+bduRfNzhnEwyK3S9G7itHMDm3l5N3Bksk+Hbud0r6if0zUXOzoqqGDI86NnPs/UdnksNz/X7JnWCYskwlr//nXCyB5PpPK0RBmYhTKi8Zf0e4HmjPrf8RBIcsWh7cP4Hvr84ryb38pRcMc0MrAjxOYb8lHd1XMVRMgX4pa3/vyjomv7RK8MIaxnl5iIWj3i0bP1fORLKw4Hgs7Eh6J/DqJd7HrDbzhFgtAXw+F5ztS8H5c+FGw46PhrGQX/P+/rQOfq/bZ1Al+SwFRAurNthtwvu32TjfTtoUAovf4s/XhuP1n/YoPE4rjIFlIsJ9jkl4jppwfL81cyQMdkfVRtzSxvugA4VKA2yBIGdvcmdrHq7fhcQsdM82Ch5/M3szZYXzLfV8BVXJOBYCEqXHdsXh37kEtBwkdZLD4VhKnFZXBX5ftddhsp5yjP5sJV/B14jr0fiMpHrJPAkeH15l46CC55DrLvebLCcJIGWp2cN61x77uWff6ZQCApRdVS7incd9wITGfd+vMQo2iOk0d487MvktVY+aVW3RcLD51l95H5znLN1FHEKMflth2JD+wgv3pbNNdbkcqnTgP8m38cwt7M/N3y7dsVxOgxd5V9PrcnF+XqnK4BT3I8AJT82WWEV8zy8N/XVT4VHQ7EbhJn7AdjaMdKwUX0+F7HlBQkIn9g9v3YMiYWsyzAS1mAx9wXl+1PRvZXQCCe7vmM2fl8P75Fml/Rlg5I9g9BfFWyk4LhWfLxDye+lg/t60jnwH77/xbEeIYVwI3JRTSFD3wfOPhYkPq9ypAOiK4Lr2wRP7f7N0rd73ZRTg/zT4kDMc2zM3tChRkxcOFAcxYs0PHMflB4oUrrtHw4edr//wBv1zXo5TP1m0lwS2WXP9kdV43tOUOaE/9YIIloLjL9/L4T7wybG8y8WbBMpBHljPHFaP/BV60JKe+TEvesbUMzP41od+u5b0zHJai1jPzOBddXsPLumZdyudcmLqmRlcqkZCZEnPPDs/psrUMzP4R//WkiU9M/f8D6xnZnDZUrOMJT0zi5CQA1PPzOAB872uS3pmtm+NWM/M4Grjh/7TMwuGbO5m6pkZ/IPXlrglPbNYSXYDU8/M4GORqtQlPfNYcutbpp6ZwddEOpgs6ZmfXFBPYOqZGTwoROX3kp55ZaHzbqaemcGPzv38T8+sR2vCemYGF4vx+k/P/ND74gBTz8zgD2oPZS3pmcP2DS8w9cwMfoRl++SSnlnMKqGUqWdmcD/ipldLemZKN/ckU8/M4D8lJP7TM7uvncV6ZgbPt4/5T8/crMmVztQzM/i5PDWFJT3zVKIP1jMzeEvco//0zEmtX94x9cwMnsW559WSnrnU+gA7U8/M4C/vvIElPfNA1JoEpp6ZwQ1kXx5Y0jNnuxr6MvXMS/F947x+Sc/MI2O+bPT/9cwMTn+nkb6kZw6xj5Ni6pkZHA2ONC/pmd+wf8V6ZgafD9b8T8+8u6OonalnZvAGgSneJT2z8w8DrGdm8P7Zmv/0zHz25RNMPTODn7ecHFjSMw/V1csz9cwMPnlbvXRJz6z6VTGJqWdmcNfmhUtLeuYM7yp/pp6ZwTmPnP9Pz+xic9SAqWdmcJu1l3yW9MwrKquxnnkp7qGRgUt6ZrcpZxemnpnB0zMTppb0zE9MhX4s6Zn/B6+zWjF4nEx7dzzX7/d+Rka0JEVDRSqRFU2cjCgqDRklUdIiaSAje4/XJtl77z2PvTKjUkahJUlRCPm+Hp/H7+f57r+ux/24n+e+znWu+5wby5Yx/3nXgCVX5HRZKQU3fZhp8qB3wLL/h89XdwQFy5Fwy0XWw3uFCJxeEFxUYMPAP8dqK3Is2pfwkZNPd6XJUzAqOuBolFzDEp7eH3aTa78X7mT5/st67sUSvovVL2e7ChXn5W+Wipx1WcIlbW64rm0IwuPeit/1pOuW8LtD+3grGsh4+c2YuZVVyxL+sn3X/mMKDIzbd8fZVjJkCW/yfzn6PdEXPz9Z+TiW+f//j19b83vVs3QSlj+yo9dyNi/hO7z5n0rVkDB37Lzd6gTivBXW0xvDNjAw9nDSVtHx+iV8oaZlDXdYAO7tP8U159+5hBfIHj27x5yG+2vUy6X4ypbwqd2pPbf7fXCodP1xds7CJTz42MsNjUpeKCWkzid1l+Ansyz0l18mA3+72s2s4Xm5hH/buCX7rxsZ1Y8sLmrNEzzbbHAbEtpJw4znQdplV4g4Od7r1lm+peAKp2v+2wajlnAZLbla3wgfNPxrM0NWblzCT9nSp/N9SGjsft9ZdgXBjwffnFLqAgWR3GSspNi2hPeUldCDJYLxt5JEy09Jggd3G1FR5VtkfDuUZpH4uGIJL9MzqRjK80PDOyKmElbE/rvft78WbKcjW06EvQm9iYjz5F5B4Yt0FLrfPmE+SOxfN8klesePjN+e2c12sdQu4WflAsZDoj1wsiX3lfhi8RKef/y1iSOLDyZ9K8k9IV29hD/yWSdpz0JCs0sjalYUgv9Oybt5Jqpk5FX8PbTpGxEP9kSGfTP3wnXLDD7kqRA8oPhyjcE8XzR3nH14eZyIc+1ATNnRWioqk0/0vjlN6DDkr776zA1fdPdNZgnSIOK/6bPdPj6EjA/5Qx/cWEXokMvJ4qp9BBVVs8T8fjwl6k7/2uXcYpVglIo+LP1hrGsJX/0j7K3UThK+CVs2SzZpJfhM73zOw0vHj+TlW1bzE3FuefuwujCDjvolVvxqffQl/JOgKF+QSACe5g3zkOUg1qvvuSmZbO2Bhd2xPYsfA5fwv3/K7zrEBGId66We/DQintN3WsxDH1Dw4dekelZ9Iv7RlW18jFka9uuq9F0wTFjCF9gdV1o1e6GR4eJi70Xiu1FOEQnqzX54e/rF8ZrDBB42wLnRPYCKzZ3XxRseEP4w0cabtHuOit/cVB7HR3kv4TkzHx3TNHzwqEr2bPE8wU9vU4KjGy8Fe3jSVnJwpy/hJqu76ze2emLqQoHR0Q+ETlbYSRZoiAej+6UPqotfCb+SfHbNzmYoCK/bDLrsDyTyyKbVsOiyn4ZZft1t0+0EDxEfW+/ZFXii9rH380+/4BJ+sHTHV1u3QLSvkZa16yLq3TfGund9NhnFecRE9UsIno9s9dEx3eqLx7aOOTk1Zi/hU1P3bu3080S9jtTwR//R7YtfF3jqwui4RujOe+0MYh8Dp/JNfv0eeOLugUZ+3vwlfJU5567Z7574ZVWIS/hHIs779NqPJx3dMHjz2cBvJwg9X/5y4TG5JgB75V67/Dhos4S3RA/5aeeRsIhv3tj9E8HDWeHznCvjApCxqbrd8SrBW6fIcNwTLzJqRjju6y0h/OqokGiH5xANW+PvT1wIq1zC/XYbmb5c5oOJn3GL+WqCNz36kSMZzVQU+DnMKRhA5MtC5dyv1BIKNso8uapiTujqRPCu+K1H6PjlaYputTURj/SA123jKuY9qNq0a9ya0E9QklR7g0EAdipceSRmTfj/wJoIkyEZP9yh9kbSrql6CZfXcnq+m0bC/s87RIIvEH5Y9tHW+rCmH27RV9z5MMFrCf/OUS315rE79o7fXNFBI3Sec4qbl9LEQHuXSo1lh4g8pjwzvHSW6W9f4wbDVygQ65Xrcuenueg4fV7r5bojBP6x8o+rzAQJF78muzYlEzyYpXYMFXC6Y+p7Q7l73wh8WaPxus+d/ni1IYeN9TvBv+Kk9tqWWwHok+oYCjkEz93cLdqFvl74uu/KI89kgre9RXqhnAHueHkP236pIgJf5X6dZdOdYFTyPxKu4l21hH85YNZZ5BeE4XpVr/6EEPrJF5/yOpBCQoZOuL5rL6Hz9L6mTP3bwbhjfPzWqSfEPm1bQpdHVfjijy0ShyjLCF3p9A4HB0v4omjll0+fO4n7OotrrDvimTf+rbTpHt8bvoS3KhYO1lLdUB69zlxfRcQvefqzzoMuOpI5XrdMTNsRedTNYQtQCMCWsMGrN989X8Ib7f+8uVXphxlGRy7eiCP01uP3bY/XCjoeziLpVpcS+gk3PvR59zl/FBTQP/QwmbinGgdvX9L8RcbRhs3nnt4n1qfasKfVuLnjcx3+NZsniD7h8KNdHaNKFHRJvD9nEknoNuwaC+WAtRuO6zmOy8YQPB+QmLqCHXT8q5re0NEZu4RTdSY6bNf54ImsF+XimwmdXPGQKPPLDEThhBFF/T3EPudWzimyGFCxp/DEXR9jQodnM0ZK979xR5/emZdte4l9zusc1FcGCv4ZUXM+x0X0RfPkNWf2cwfiIymV44UqhP43NeUu93KiIgv7cFYUOXkJjz1xqPnaJi98avmEv0yD8AeLzfzHhkaCcMKpeLHwO/HdmgwBC5ojDV9UmXw/doDIy1Yt15GW48GYepflrKMCweezV6peSsx7RKBJ0ONBDaF/wVnXA/ObyHgvaf3DIR9CbwciB8PGfanYmPzepSaG6BMWLq3brPmMjEf0Gfn0q4SvWras32iiQcFJtruRznIED0YVdqGSlSTsynl2fEPFf/zk4OzxaxYM9KTEan56RMSpaCTcFhPpi1rHioUlAwmdWz4uDz4j4Ib6lm3jlf2ErloNV2jqLdBR63J7nWMrofPOz7H+7pMUtLl4u98hwmEJ9/ng0fN7hx8uSIlkR/cT9+aaL5nsRcdoeJAW0+O5I2sJD2iWctoY4In0MA2+qbcEPwvnqUmlj9zQ0EU007SQiIcn7rnUNgca1jEsM+N8S5bwvtImwbPWviguGvrg0kUiX3G/I8yDeRjYlVzwwelu7hL+PTWnjCXTE8dlT2Ulvi5fwkdOpiQ6jPhguOL9FmlnQld/ckvzhtmpqMD4dDgNaEv487cpXK2ugeiyXn1mxIjguaZJZTj/sRu+HqbYpKsQ+arjGzgQwE5B/WDtzLd7/Zfw0CH9vJDlJDRI+2C5oZrIY6NZ9zX9QiqaMH41SP0mznUqzb3nhCYDd2/V+WD2n3oMO/JrPPmNKw7aLoDgPyJ+45RoMcdTFHy9U65Ld5bQ1arkUM58TwrK2Y6dMpwh6nG1tjqdbZCO7iccD7geJy/hfH9r/26/5IvJnalzH7cQuh3dojv67CAZh8JqvQV5ifg3Nagr/fMKRIP605kHeYn8mmxSSUuIC8TNM8L12Ev0G1UrDuXRVbyx9537kWepxHpwGLO6HEFG58PnabvfEzw8lTet2vaGiv13/BdTxYn1WrpzE5G/aNid/4g7V4eod4exM1fkjGmoWP/ptpEVoc/u4wzNE/eC8anmShan1YQfngNF8bFcT3RZsW5E2YrIb+BMNL9jKhXZgnIHj8kR+zx4qGWiQ6JgqE1Lh8Ug4QN7v6tlF9oHoDKfUMzyiP/429rIHQfTqKimKqGA5kRe+C+MbtR66Y1SuRH7TQSJe61mT/7qjhvMvKd6NNUsEOedW6V7zc2Zjppuot39xQQ/B0tfGQ4WMPuWLe7SKw2ql3AOi/FK9q2BWDR3Q3BgR8QSThrLnj4b4IXyYecHNDSJOC1qujhdTL0xr6bs9Zn/9Bvkim0XUj+RMTpt4pqHH6GHmuJLzwKq/DF9p9SNe5JE/W5KjXP+1RmEux6t2/vgHIG/Oxd3+uRtKvL8OsZncZSIv+NQi2VoOAXPGJeJpjYR+BaVdvXU78x5kMz7ekWF+xJu+LiLt8aNhKmbuA3O/8fPkyKVPQMuU/BHuFa+8l/iPlKqXeWwN5CGJavSNCfWE/z3b1Azrf4RhF8OKaxyFyHyuONtC+9VgSDkv3NyxS5+wjcas5zrrqj64/gTjoXLzQQ/95p99ht9Y8az7pnp1WPEPD5vc4dN/akf/n1zff+fdiIvzXMrhR7keGFFznObYX4iv3hLYlfBJwo+WVTaaNJJzNekwaa1OjcD8GOz/vzoUaI/f9WnezAxMhAnX165Iz1G1HXnk9L2L9/98CNLOmWfD8HPry071VpWUdB1WoJTIZfw+WK2n2RVbhpqn1fYr8ZK9FFqi1+qWjz8cU++xdoucugSvv4s+zkz3gCs33zd3fcR4QNXN1deXzCh4LIrz9kN0ojvYsJGGbthGv7gujzxdDPhk87R4f6XVPzwsNWsxbIh4ruOfhc5N7mQcOEfuf/LfqLuwldGZDwPpWJihETv2wNE/NvBM7CXh9nf+sSra8cVLeHx1ftUn+X4oJ5GoLO0LxHPlFx3WvcoCb0elEmx/WeOCy18GeH5lsnzLrbIhOcEz6IQdKJ/3hP1pUSPn/hPX1rov6sW6QwsiuOuDLp8dwm3HVe8/PgiGX+fjHu65TBR1/M3TUaorcFolzZzMuZUwRL+W1VS+9k3d1y2lb3aSIvwycleyqHLt1xRjfXki8Jpou72WXJI2K+moKXA5PYPigT/fNtmD41cYaB0YsYKswkizpwk4wvbAoPRxnWf7ioRQielms5ba94x8H1dnOqwUMwSfudRsl3rhC8e8uW9wSdF6PyvaMingF8kXC3AvtPsLVEvRZlRZSdOUNGcv1JSxqJ0CX8ddb9XRN8P6w/cbhv9QPAQOyX0+6U3Hfdt+2J/LI3AV0UWKNVkMZDymWvtCXHiu4vcKzWlRGn4OI/ll1zbf96p3sj73zxPxhNku/23pwidwKz+KTM/BiY7jR/+9ZaoX8pgC9+6FQE42f9Bqvgssf/MwLLMG7uZ9dJXFX56L+FXRT4H/FYv+KAzy+Nn3C1EvsJfqt7VHvXGEg97a4YSoWeemW/slIYg/Fh3mOu8PqErq+8nWC8y3NB8t+v+fY7E+9X3PdEr7PV80blk4jZ7IfFO4rLvSZzpaQ9UYu23Gwn9z1x/g+YKDwOQpcp4f/YBIk4LRzF5zg80tBRWGzm2g6gLb+eErioJCtqPuK56/iRxCZcmxcw+POyDOauNOnfvJfTzYGw08j7Q8ZIlp4rkAlEvsfu4npP4qLhd1CWuRY3Aae81+JsVabjXghGaWkrwec3rpOeFQjJ2TrZWdxy8v4SvHDw+eWsls/+x83Tj0SH0XNX7aqSlOwgFVlzoM1pJWcLrzFJC212D8CslvOTLJ8K3X1MzS/h3kPEyl7pp6R4invqFGosaCxLuFHY1PrSOeDfOsFn/JpUlEIvLfO8N6BPrpX4Xz9kW0fFpQKX1cmlif5knnS0pAyQU12gJu8lGvBep+NmtbXvgimTn35JSyURexDIcZj9SKdh17dWZIs3qJbyRujtuvJOElyaFqppYiLpjMS18KJlMx4O6jo7oQPh/9cThLDETGu4aGmlX1iF0db/mFfdLCzLGC1KnL6kR+5de2d1KPeyLfM8f2+1aTaynOUU2f7/ojbWUbps3zwgfaOfyTa865IuvGsf6Y//zvtFJ1beyWvDC58GyI6Qkwvfm7bW1agWZ65dxvVYiEf3VRO+g08daKuqXyT56cJ3QYcWiV8z9YTrqbwj8uF+VWF8TL3jsGRcZux/4O+wnETr5rfeXQblNwpCDLVdLYol4VD70Td1n5iV5lWeQ6XWCf6X8MLsAcW+UOMBBJckT7xK6c7wGxXLu2Mzz57vfG6J/E1UNTJ8ToWJM01x5rCeR95uk2PydnwMwgLvUwl+e4KdX4cFHno5gfPdDL/5WpP0SfmchWq9UiYxvbkas1/pO5LGOhdxpvz8Y469IrtNYTdT1SmtrITOaF0rxRE5mNhP15TKi4ntxCwmL9lgqxZQT73jOZzhXOo974VUFr3KLbwQ/yy+9dxNuc8Vs50FXGUvCT1g7pNvEXakou9/gcLmAxxIutJraFO0ciD1Wf111inOW8IPvzid6J7liSEnGGrt+Yv9LW2WeQxMFb8lWjdd7Efs7t27a4TDnhdZBfQ/ljxHzV1gIv1WCnBtukhnt6Gsn1jtVTKZxPadjQYZskEkEMacYiOwf2qvqizrbLOKLHYn1ggPWAv8C6JgwmlpTmkLoRPTo8a3fO2iYJvXniWlK/BIucMhUVpXmg2nLtm4fO0zka28U5c7CbhpyJz+XXWwm9KP369sNpREG7ki0NXFaSazft8ztauBT5rw55fbRlYPoNx6rZdzCqSC8b+j45FB73hJelD3Mdny/N+p7e3CJryLyrvB0MsevyRt5fssl7vwWvIRvcDihvZHLH9Uq9j3V0kwl9p9O6bty1BsN7/CR1/znvXGM//uOhtPB+Eu7kOSpTbxjJNo8sToZ7o19U94lD8SJd6To1g/Vopt8EHftgUl2wn/G6+Cu2ygNL1ZmX35yguBBztIv41N8MP6kVjupbSDetfx3qiQ/8vTF8OEB7Sg14h7/+U1C+Mk6Klrv9mU7E0Gc95vH143Ux3RUl5Fplwsl6sjK2iNk0106OtesDr1o5LqEH3hzQ6xisys+4MBnDo8IfxtY6Zakze2Fw0wD74ipXsItmqfat4mTcZMRRfX6NSIvs9b7XaIvkFBhkSJx4hZR7zxsa0TqL/kjh+p+3rIJwrd3B98o1+p1xZWLxkd6q4l+YGLNHcaYMB2nMRXUu/7z3tth+HiBm4zXJVfIltQQ7xV7DcoHBYqY9cstX5PV+WgJN25u3bspNRDffXn18TM/wfOY+MycqZsvZuhl//5sS/jnzq3e73mY93Xe7otl21kI3mYthlN0Zymo+mRm3PEX4Z9r1wgLhfZRUURgiP+6PVGnQpJ+OWNTZPy0bJR9rVrmEq725pPrYLsXasQ//FOpQOy/UfgURXw7AzWP+U1qyBL4231GF4Wl6Hjo44G5a0PEPStfJOwW1+6HL9/9NJ5vItZLXrYuGK/wxW29Nyz9PlOXcFMT3p7QVnecJrsajwREE+fKLu7audYbPbr3inHNEr53JPxCE+UaDSvzWT2VvxP1SBveeTtWkY7dn09HWlkQPCjEcDqLF1Dwa/pmsblnBJ/B0/92qToEYRZnDJd4OqHPCsVws6/pNAxXiB2WvUTkxcRB/dEAezByyrLLeTcR70JhLXv7XnB4480n+qJrDhL6mdRw+lJ31Q/vy/y+53CZqAvpBY8FoTsk1Ds+IfCvkvBV5zFWQcs3Xnif75pPlhuht5BTHkIiJa4oa2u+QfAt8a6ytjqiO9o0AH26zoTJIMEn/8QF78hJb1zz20dRSYvQ57Kz1k+z7Gh4Tn1I984U4ZMHBptXANP/qY7djflTBA/qRz09Bu4yUELfnnG/muCBn6dg4svHYIyqe8oT70fUUSXtbWlnty+eoNSbUW2I9UPeYZeubiBjemX1SfdfxP5/LkoEOzN5UG40u9b1lcjjeotHryKYPMtGi8y+ziB8iWvIqShjMhj7SJ/C+lb8R5805w7fx65Y1SHzd9kocV53t1/2O0190fDoq4ScTQRuppFzdUsVHTNtTl+3DSV4yO3+4+liRUHTJxvchbYS632aRDo/NQWhC/tuIZZ54rstac9W5uQF4skfZx5YFhH11Tjk2+q2i4qSjNV7NUYJ/1EUT0/6/i4QVRU5wnoCiH5VYqj8ZkeLKy7UuSwENBDf3RHv5CbsTkNTtcd1XwOIPsRlKGPutCMJ92oacK7eSfAmWOPGtv4Nc/4aE0rfKknUS0cte+vMgiuqK250lWgh1rPVSrRm/aKg1SeG4K5txJzlp+5x8oSQN65WDmjViyf2mWF3cWA8JqO8gaGTZh2Rl97bx/KtX9CwYsfGO0VuBA9rL2ip3PGloj/jxtkLF4OWcPh9cZprxhP3//xwSVnOaQnXtT8leP2FJ9akXs/WGiF4+7nmYHymoj+Gl7f8jM0meDPOdE4sowXih+xKhcxNGUs4Tx/0WM+5Y+iV1eaaNGKffJf3DM33HugjfufbZyqhw/rr+qadisx5U1Mwb81dIv60jj8RpFsUjMhqIBs+J3Rys15sx6N5N3xz8fWtF7HEPsPHbl15UUzGgvQ13zpNXJdwzqRnboZzJJx22t5VJEC8Ew6Hm4qxC/hjUPAY55kIIu/bR9/1PNsejIw4nlYtDsI37n+SmCzUCsDw3JNbY5KJvJiXfY7U3kXH6ENJ5Ev/8fmZR+SL6hreWLfw6V6rK3Fvelo+AUNjOi7P+v7cyThpCT9/2TBzA5cbHpkJ33m6i9BbcI65uKoCDX2tzefluglfGrj2oYuSEYwK5o/P5MT+Z47OV2l9q+GF6y+s2bA+loh/o6204XFRCm5U3SHcrEjE46Y/9rFYmoIVda5v3YYIfZ788rJ9womMP7xJl58Z/ae+zH7f3zNKxTU7z738bUzUY9/ZV6ePfqagRPCXb8n/mXNd12e2LAoysKvjlP0ebaL/Ed4WGjf6xgMf9/29eLubyIvaW3XhDee90bKCkePjTMz7etN1+w7u8ENW40M/JFwI35uUY/0YezoQHWKbBnokiLlJNstG48ZlD7wRcGUwSdp3CX8W4uWQwOKHjzk+3A7/S/DzmT+lrLySium2nVxH/vN7Jo7FiqkFUcw4txVQN/9nLjZn3fXKeK8/TuWGxfJQiXvkz8iuP5un3fHmbuv0JEPi/Sq2pnxgTs0DHZbpuD68QvC2POFlSW8+DUuWbXRzLKtewpVX3rm7gTkvi3w8UGOdSnz3q4tlbrZBEKp/Fl09OEDsE51523BTFQnVKwVuvIwk9BPlNiX/QzMIy7IHkkdViHORFUTKqddpqCRQJ2wiQux/WOHw83ART1QKunSryodYT1lOzY/JCcSPq426zcOJPmrqnZlEYr83ynws8bU/RuwzIhom1cPmhlaV5tESGUT9bpj7qhZ31R83mvAOfdUj9PbapJAupRWEoBnwUT6E+DlXU4/TdpUIH1Q50KXcXkqc9xZ51267PTRsumZYxltH1CPT9o4UzFAwIOmokZkc0Yc458g0XvhCQqVlgl2ssdeW8KMNCsaR2SRMPNeaxzND+MDe2t0pznX+OMjp2dAxYr6Es26Tq+RrCUCV85OL4k6EzhlBfpzrmH67QWo2oc+B8CUHEeMMjoPBaP2LY4epPcFnO79g9IXlDBzv35NYnU7oc3PnU84tziTU/13VEiRJvPPjSqHqrz7+aOvVx00eI+I06jNfu2UzHePkTpBC2wh+5A4b5vFfoqLn4lWd3l+Ezk+81q4ICKWgmMvJ7Jk9xD4yp9sXepj6WUMb2mcfSeTlcNRhUlZXMMIuoWpq1H9+Xqzq6KkZ4ol79go8P+xE9D+NQl0se664olemls2YHcG/XEyP+u9lNHzzUjab04eIh6SWsaMywwc9DhqTK6eJPCon/5S2eRCAR0O2/+NxJ+IcUZAzyjtCQcPDya/8Koh+D3eXH//aR8bPN/8OfNtD+AAa5bVbOVKQwciazbnVBnu5v9oGNuTCj4uFf5KNSehIyYncY9cGdctj3ztwxEGPzCWr5jAK+j17pfbeqw0eNIg9OPWgHIR0eDdzFFPQ89H1g93vm+B3lkT+ea1SuBktMCz/LgA3r4iJtv/RBJdqB+u9dVNAln4/JEgpENVW6wmkb+2Eeyen22WXJ4OgvlTPTHgg3geZsMPindDiqHbubnsxqEpuOGJfHoibvMwkpF7XwY7nIUrS/rFAT7lcqyjih7slQ1OEreoh+x2jQeRmLrR+n6sJueWHUc5P9ZvKm+HvoNyGi92VIEvyjo8ypWCXQeov4/Q6mK5r50ibKoc3yTdoAmv9cNNspn6mbBMoO+sf4efPg5iN0rmzHGSU0Zw/cWBtOwx2lnBWjGVBbF536/l9NPzZFqeW9rUDzlT+Wy+xmAOhMxsWlbLJ6NY1ynAsbobNtseGB/iewx+3lx9/ZlOQ9qKmdGItc/5XKT2TyZ8B3n/Orz29wQdzElYMvyltgckYPr+dP7Pg5s9yIZtjVDQ0CtPVXNYJei4VV/hWIZzw+zrTlUpGLjFh9rj71aA9cmlsZDAcRtu/gVcZc35flONe9H0BJRraMQW1hbDW31SxLZCKM6e3mzH6G0DXYktfOm8U6EdxRIuNM+u6hSPq+j7m/P/XaWGlZBEUnSv4+OCCD/Z/eJIlxNoJ/vXPs9fEh4LZAbm/+UNkzHl3nfdYTxNc/nBn8vHfJLi7YbnX9XwKcnsfualt3AFsC+SHUY+LIO9wuX2PERX9WldztpY3gEP1aOhqrIT2LwvykwMkfN9zf7ODbAPce5cfvu9XKoQlp1+frSGhtreznU93E+wU4Vc1myqGuY6RT3GRTN6GjhW6C7SC1/tqNuN0BMeM11Yz4TRc5K3doxLfAa/WrGRcDUwGhyNku8o5CqLehbs7FutBa/BSWUk5M54Lpg3LdEnIIzksf1irGtYJymmff1kJoVMRoRJ13rinujP8nmU7xO7umzWvZ0CXwCWZ1mYaXrsdn+Mv3QVntDu+V+nmgDHLT2MynYRtUTdbG5IqgYUCHDsH4sD/1F4P/8+eyC+9+e9d8ReQXZJksD85AbbK1zwrNqAhTey490GRDihu5UuoT0B4xLJqp/05GhoEiDj+2VgL2ijA8mmeDp6ZZ9mZDTg+FNzvur0B4cKP5GzDoVyQEppgeRfmhbSfu9dLyXbBtJGej2NgOfzb+vF3DI2E86q/SjcLdoHFPROxaOUY0L4uTdpZT8LsoB92UqpdEL7LLGEPVxFsSDO5oJ1Gwo5NKXV2ajUQztMfVi4aB6IW7wZ+uAVgCn5g62ioBS1bt6POgxnQpuD9XaErEH1IW6YlrNvgtkY5dfeGEjh0kGUTQ4GO07eCx80vtgJr2hG7p5x5cNrhVfatQ3R8sF5m7RXeZ6Cta7S1bxDBdE8cZabUE2crCi6KqyGsHaOcqeUtAdMNZVsybnlh/l3GObO6F3Cnxvdo5XMGPOrf/imjnob3XONYNnrFQewjCcHBu9ng3eo0KKbrgaVFbcOWAzUw17vO4ZlkFZTV/9vwjekbpy1FdM3utEGNsq317ahEkIfv77nv0XEop0B393gLyCTqCD6tKgM7x8UT4EDDl8mV6354M6By2I+67Gc8XMHlRR2vPdHF2lFM3aYTTs1XGPDKF8Pn5XIsCiEUtLc0/nuH2Re1sYXY/WGlw1aRIMbCexJubWH1IvNWQlvB+bkGEkLeCkXS2KQnnt5z92EU02fDucIE9pfnwvyg5O2muADUbtz8idW3GTaMZ+3Y9CkP+HvLW1QnqThq1APSmk3gU2otvWo0C0pebr+69SgVP1t77YRkpl8NfLgaNxALhze+bXMMJeHpPhYGXznTJ1UFvR4mpEDwgrFQwxjT552POoj/aQd+vypuHol8OB87nHZ9Hx0ddfMe5wsxfd44RKupIQmiVRPC94n6IVe371RHQBv0hdVndRtWwNMap33VFXSUE3z0KT2sHsYDl7/RYeRCfcLD/Zl/SXjVaQPHiWWN8F3I9ZyLGxm4JG2SLJ0o6NKx7tGNLbWwfOerXsV35aB4P2lOQSEIW9me6zIMaiFA951A/fsieB7F/dNkLBAjZwZiFI9XQ1TkVIC/QhmsvcwlWHTZH/+RJbITwjogyHJ4NHNlORzk86kouUDDUrOavuiYJiA5nPp31CoQNK0iJaY5aPiC30fys2QUqMYfgTwZGrDD7IcCFw9k1Y6L9S0IhvuKIntuL5bCe7FXpf0WnmgV9Gbs6r5K4HY/5PLlKg32ainHnWDxRvqT00KBuSWA3m+qDh4MAbF+4ZJKkgcWZf01i1rXBZd5l12vIJFBtjaEPGtLxm38RamjKR1QkWNo/ZOTBGZucvSmEhq+Fa7drJlbCh/2KPm0pRdB8hTl1M5hD7x/2FKkQLQF6J3qzuwJVbDlmKqp8CwNN+5SnZ5qKgPFMNkjeg+z4Tlf2NFHAp5409kvd+/tJvhg6XDtdlgVCMsrm6QPULHh4RobOnQAi7zZj+C78SBlYpSStZ2O7M0TIys8Q2Fjq0SGskI+vFS/cn21jSd6/VwX0S7bBl+kNbtSDErh+I67EhKcfpigvV72u04VnCKhqU96PFTkZ8yyuvthZ8NFiU3GCPS4mfsFfBmQej4s/uVlH/Tx9tyyl3lvvj//XmDvySoQqehkrHlNQkn+EmORM52gc5vtfqVfFSgVX84VeUBF+TPnqiyKg8FoHcuhpPBM+DF0QiMy2wunZJ4OcY2UgFitHmtqcQWcGS/w/9jpgU1rizlUbBoggKR3nt+pCkp/GUS0G1OQf3CVg4I3Ge42a6gNnwgGDjVJ640vfTB4ZOiB1lgjOJu9GEqOjIZJk9U6rCepqJsknZDwuwP6r4XIj8vmwsR5VY8wGV+8il65WWL1ULsycmJkvgzW6S0TTDxJZvaNKyX2VXWAfg1Ho2tBFjhTH531OkDD0Jnd674z750czbWP2xIywIxvYdLGjo5mltdLeRW7YL/ZA3H6uirYdFa+5xMnGflkw6vlDjSCN2b2qzH7B8dD+nHW66g4sKOU4rSlGtTTf/Hb7CHDuO/+p72V/th/9PYJ03cNEP5g2PXq4TJ4qfLrmjWzv/o8+spa70EnVAr1aY0mlUNHHJvmoCIVB+XE7Ll2lYLm3Rpb9/ZE6Jgk/Sza5InvMvZ5Fpq0wD6dXLEv96PAIdlioYaph4PyY3d2LCsEgyOvTDpMq0AqkmpPz3PHgKKymdA1nTA9HyEp+yYGSn4MWJv9ouKWXVY7ev2bIZsnqVvDJxRMu1dl/roagI8SJ+K2TddD/c0nJjYl8eBznyPkggwFi82H5UpCq+Bbh+PnT3eqgDE2K7Cd1R9XnHt1dWqmGXR22HUZpqUBFU9oTDbRkL2GZRmMMO93mfEKI+b9KxN+Tj6PWdeRGb6B+ecaIIjlvu7p8Sw4U3rvs4MHBUs5g8dI35vhqFbGOp4HxfB3/lNeTw0Ntyfu8Px7ogFo22/Qr+4uhNajb/N+u1LQVm/1pdbGNsgg1+Gxx1Xg6/mq+/UbOmZyG3/Q+NgG/d/c3A27cuD5kSLVOGkGclooVKW9bQe25m9069xMWOfE2xyzQEflnROrOyIDoVXqoaTam1g4OKnj7PjADy9sUWw9fOEFyMdkmzc4JgP375IbvsvJ+PJ48sern6th6872d57fUiHA/VvgNWZ/a89fo9q+qhCMHcV8pk6nQNGs2oObz9yxP8jfZ4dfEAQeKFYae1IAjuHXVf35mfvzKhcLRndBS035W/qdFEg8u8prQZiM42btYU2XO8FgaoWWLmcu2BbcdDxVT0XL74xTidptUNTK38hrEADzHstpLNsYqLzvnNqUVTuQn0uU+q5+DmMO2wc33QtEv+G66WoLMqi4a+yIu1cCgTENO6iZvvjh0YqVdkz/3yyzspviGQXs4vd8GoUZaBDO3abdEwtxjEyt966xIPIzd82BdR4Yu9i/YdX7Rti6/PaVD9KFELJTa7qxiIrHPc/0sMy9AFaT7Jt8wYVwi1srMqWHjl2XTprw/qkCvpC5w3sOFcCEyPKCfub8eG/5wdOq0p2gwTel082D0FDXl7p1yhcDy3jSc6qaoVvmQ6J7aTb4VudUqzB90velSEgZ8/64YFlnFfQqF3QEUt5Oinigiu7P+7vfxwFjv8t072OEvTofqhpXeaCI7O2McZcO0ChbVX1+qAru0H0mLJyZeljIj/4n3AF2JbX10scqYOfdlLyIL3TkWBHVXWZUCPebHfq8A4tg/5tNZ16UuqNel946Xu4W+P53y/EsReZ9ofnmsoo0HcfeW+f+yu2EhMd1ESlVYXA+Y3ev4HkffCj6b+O1xy3g9/vT6i+zuRA8r+4/7OyDbhb8Gzk540FYdo9eY08xaAea3L2R747ld89yjD1MhGYN69Wqifkw5nfT5FmMOzYJvpr0826C/VfZSrIvl8FEb7jpkV00NHUKiVfo7IQqq7Xbu0LzITxPIcP+GQUp9BQ5+cogkJt6ZJ5WkwpiEus1QsX88FJv/IlT21rhzrNDNL9PVcA9eXNqag8Du/kDps4WVIH8uh/uIfNZsF+aZSD1oj8eFeKv3/GvAa7L6OU26TF1CF6PKvZQsXIhNmD3mQ7wbpdpFHlZDHc9PqyQtKHjjRr+dV+YeS8XuGRisbkSfE+c+v1tOwOdPyi8fMORDOF2x3UX1crhncVTR/0XTP85sAtsNzfD+pHNFdU68WC5k3v+vSsNXck/K5qZviR6/NKgwXaEoeAio9Y7NBx23UlutOwEjk1znsPqAWD04xY/z1MqXm+KKl+WkgRPKhUXRWMpwGNoGGt7zR1N4sTuKhzPgKdW4QH5tCq4eGLalUXaHXeqtB3STs0F/4hth/m2InO/Zvrv726oXnnIXtMQwYengtLsVgGGYm8DrI188XgOl0thYxq8Euh1O1lRDC/3lCdIXXdHDZM3dqxcVTCR2PP4nXcYJC+fCpbZ6o919/dv/W3VCeOxwW4a59LByFj+fW88FbE+5vwcJQjW7tk1ceYT8ztWs3KrN/thoNr7gwHZdZCyqFy+IJwFhS+nGd8vkNH8o5nw7tWBIOaUlZbjlw1NjqO9kg1+aDYjr1uw6wVEjJxJkQwthYMl/lSyAXMusznVqXOqEeJun1KTZ/IWpbff3f88FRfZb5on3K6DkAOjbkkrCsGOtbZz3UYyzq9P60gW6ISSLK/bYicKwLLqwR31EzR0325rMqHXDowjU1W8Gghhl60lW3sD8ViyyT8T91oIfMO/etAjB9h8BCw3PCfh8mUKTncrOmH/w6Cgf6mRsEPivMm/NxRUNl7ppXCkAPIK/MztvkXDoJRr1Eofd1xfIoNx0gWQLvldc/1rKtz7MND9+LU7fuk8Nys8Vgsv/zx5lSqXAiuEAlUW5km45umtU/HlLTBWdtOZuyMP7Mxhce1BMtplDZheZOuCraIf2I4uVEHqoj23QwwFz2eI/25n9us3JwXXmj8uhda/+38uPPXEgaCetU9TWkDfiX/junN5cGvDlOF8IB3TvDoM5zZ2wKDEsMD+AT+wvVHm78rBwB0Z/Ys3CstBpZkeLfmgDDSGj5/q+O6N/tZD6mGfOkFqlD1BlD8bXosnqfPSKXjVaNj+XxSzz/9S0/91IhJsXe0i0yVJ+MAle5cQ3wuIdHfg5NJBkC/zKXsUHYCyGbQbuzO6gD/yyIyFYyhEvFohVsvsQz4qReRBDMLKEBnlMrsi0DtcO/LJzw/L5jmPkloqIWt+Kvh1UBWkbKl4Ouvli0HFwV16D6thh+YbbYm11dAqe/MYaTYQnwSvL2jKewGyJc4aszKJcOKfwPnJrQx8xmpn837mBcwXR19TvRAJSst4bTNlGRhPb82+fLAaeg/KK4vlVkLgq2+/IkoDUDzVT+7H2SYoft3P9cYoBQLeCjQ+NKNhnzB33cktbTDLzi1fIUkDu79rLAoOU3DFuonhw0Mv4Jn/TIt7WymItt3ncdzIwFIa10YFfxqsOVhoqPGlHEpudo360X1RrtWxwJA5V4/Drt+XQvzhwXJ2ro9MnYj+0bzla94Of5+Vl6acLYKzy1fte6XHwNPijF+Pe+qh669rWJdDGPTdGajdeo+CP5xYzqTTO+Ct0ZUgN7sw0DM9cmfBiI4phfl5Il87of/9j2d8egicTyN82Qso6G+4wKfP1wXHvoVas6wqAwdW6gczSwpau/ZUtDPzcmlvFXl8ugSez+msOs+sx+bOOaN2wzLofsM7zFbjAwnXr/t87fbGNpXOqyyD9VBW4lToh5Xg4iR4pyWKgjNmo+PcIllgvz7x6deVz+HmZ8Muy73Me19um+VNegXsNuhYU3yuAJpYV2zitfHBMZGmobrYDghvLFLc1lcKt4fZHdcgGXV4rHLGg8pB0kawrzs0GR4pt3422+aD2kOVDst+1IL4brXFD/qVYCd4uxjXM/Xz6F/Njw3e4CNs8/zcHAluevMmZIYFYOIhra47FR3Q8O+nGO+NVLDemHo2SoB5L28Z1sor6ICcfUqPDZjzaVKIvRRVjo59BsukXvUkgm0r+6fmzakwyfZRpJ7ZN7qe1ZUM72qCH2/cJH6teg7rTpwZe9hAww3sdtdu8uaB+tONJbtjSmDoZMR+JWN3TG3aO+m5vQys7q7eUPOiCq6JnOK7bOqNlgO2LGfNW2DCPOIh51QlrHn/jqyuT8eNFM1Sce1sqHXoMPbZFg8X5gr0L3C4o5Lo/SM9Q50QmNi+yiC/BB6USZ5dE+yFHFbmJ17xdkJbp7v4zPdiqPWZZWt3ZPbt/LdaP1/JhS2fpd23JRfAfqs/5bxi7pgsrXSNxbwWqowcXnem+sPRQ46bq56RsHFR5ZLf6xfwPvjl9xKVQNBWVc03PsNAFR0J3kWzevA9EL1rel0JdOlovl6+l4K6ORI8k6x1cDfQOuqMWwmsDG/4M7GPjCfyJ5K1DrSDcFPZVKlFOmS3r9F+JElGm8Nz/4rvNID7wzHJizl0+D1QQjqn4I9CZ/Y4X1veBddOrc+Pfx0PvnO60R7lTB+r/vk2grsd3m6Ymk4QKAaXfqOdB9pISGtxhMjMNlguDS1JHIXAf5DVs8WYimvDforrcOWCW0Q0v2tfDpyIYR+31nPHS8ddfT+Id0C9ka3Lq2tRoJt5nqqoy5yPVn3Oj1Wqh4o822UXh1Og4etF+jltCm74JdXQe7cLTibeS/o3TwESzhYotwag0M27P0uzosAlWSV7vbAnxN1y2zmT6Y0CEeFhB6Rb4by96GnLjmewbfejzro2bzyt5kC/uaoD1l7MCtmbkQxWqnvSZdQZKKVhyxt+pxEu9dzj0mErgUqRDH+RLioK+HhNBl+qBIt30veUOaLh8JMglfc9vripQqA0NKYMao8bzx0xDwdnxTKLiGFvvGduIzbuz+zz4/e1xQtXgRNcTFBhzok9vQ9CdZO64N1FN+f3h/Ohv5r9abImGXecFey0uxwJPgNXphrNK6Bc5mjKIz9vdH0x8KpdPA1GTu+KXJ2eDaytl0dpdu545XxD643wHDBIxH5lchpsOnRwvnebO45vlxDOud8OfNPsQfv2IJyd0Vr9nMzA7Cv72VWCGsCJms3yxIk579AtZaDTF61bXqjNyXeC0LHmlidiIfCR/+WRYSca7kiMLXQ6WwkCfzkMNg16g0ro2neB332xVvZdaOzJLrjMebxG7H0imI8EGvvk+CMPRDgZFiKopyp3iIflQrzpk79RzH7j6Hcx1rGkRuhral7jp4VQMBZt8u2YLz5IlNP4eDgVtL4vPnAWj4Os/Ms97+vdMeTqacFN7NWgMHX14WbNYsi7M/SZjzsQH0b+1BvYlwUn9ZwPto+Xg96EQvMWA3ess79omGFaCEWujz7I11YAK7VAUHTSAxdP6kqmHYmECcu7nfOZRWDoSE5RLvbCfybCz2tOhcKxIsUj+2Ki4Jenl/VjNx8cuFcyx2dTDwODlO0pfAHw8sa2SglDCg5kzoiKdTPvFzzrXlUYA1HX+5dv4iPj5Z76+dvGHRDQucHokCfC5pyRiJszdPyu5H0t0KcUeuAXv59aPuT0FmYflvXGk9/Wt3B4NgP7aSfdaUommOeeiggTJWPyPbaihjMFIPVY/mXdWBZsxYbl24SY88Itr7pbu9uAetJumeNCAWTZf3CnpTFQS0PUUf98NQQ1VH6mrwsHHbfHKtrvA/Exz7e694NdYA7mjgebY8Hs468ndyyYcVrTMxxDGyApYKO0IH8xGHDOcVYJ+uA7x/U3ZCS6QIHj9sXNyfnw+MXiosUVP0y9KwbH1teAMFd3upNVATxZs+IaBzUIx9N8euzvdYCK+dT+q+Qq2GK/+q8Qkx/N6onoP8cygHQxf3ekUsH//g6R2uqOp9k643Zn+4J0dbKU1JpKuNfWZbygHIAZ5K3JN563gVa6wBnNvWngtCNFq5PKQGOx+S77hlwYO+J2jmu4CoaWTfBs5PHAdUbTbd29XZCQHPo7k1wB9rTBvlemZPzttIKL8ZLZp3Y32rvJpcK5Ku9TH4L9kdZd16G1vAOgfLWEv3coLPo8Y7RfYaD2X7vVpNUd8LQ1dlxgKAh+C3sPJVVSsOKb/NRkQwO8p4UNFhyIh5d7V1ytoVKRW8T66lGGG6zV0L3G3ZQGT/nZyAmTAfhHwfyc8IciyDmeRjpX5AtqPmVsJrWeqPWMda9tdCskCHYp857Khr7l5+z3BzJwejzay7qsGcpu2DjnT5TCmpCq6fq7zHnkmlPsXEc11FT6qsx5e8CAneJk/rcg7Cztj7KaqIbvseyqWeLZcMZ5w91kiyD8+qwsYtSoA94Z+Hl0fI+F+3lKoLDLBx8klJs17uqAssw13+60xsHRfoGiFQ0k3CfF0s9YXQ0/bCoOfpZKhLH9rP4iAYHYPKXdUdnUBUFMhRgXZEG6sPQJZPYPIXcEq8NtX4DO3ctfSn5FwN4Bz200Egndst785PVvBTOX83yKXOnAPctGEfpJQYfYPVmtxxACk7Z1LfMohdJabbn1RX54indiKuNeE8CHxd9+16pgR0HKuyB1Ml7YU9v2KagdRkapW0cvlELwjWrNjHsM/Pj23OZVMp0gMhjU5pwZBz76vsv/dpBxa4ygmaZEB3Rliu8dK8iBr4nS4YXMPvD9DvY/Yvpd0Bo6VzAQzMy/oZ902GV/fCw0auuv0QJPN/9+VS2RCA9+JvG5X/fCzLhw77F/rXDd8u1gdlQx8LW8vR5XycAnY1cn5I91QnWMiYGERhJkm0WwsEYyfc8sQ0A+ywvScIXH75JCSCrwmOudCUDzyMYHf4QqoOPu2i7O/hw4vbWVyprkgxyd+0qLi2ugytmONasvARZSWfZYmJKw50n8wti2GlgZYT2Va0wHilvjm8q9JFzmxL09lrULjthyXHP46w76Ynq8Smup+Mfn1vr171rBn1JXY34sD6gVG4e7ihl4+RtdZt+CG2TfezE3FJANngru5/FzIE6NmVRkdnbBK6VyRf4bPqCifD5T+QYZCx3g98/qFmgV9W3I4wiEV52+XUOKVFRi1da4/cALDj+4/cnapBRqbcOt+/oCUFTJeFs9lzdYyDbuVtpeDeTahZUvWQLRMUSM0iLiBetU+X2VEsKhetXKruYfAVi//Ntz2/Q2Jp/dwlaROfAm5+ftgH/eOLNb+UDYz1pQSDrpN3MqHAYdjSKTzpKxxLVSSiuuCc66ZiiZKGTB5oGBOf8WGhpse7c/3YmZx1u6x5NrSsCWsXZGqTYA50+uvL21IxhsVZ9u0lhRDdrxJPVTqb74rrshukmyC/RbdF2Lc4qAZ0yG/NeFgv17VfwdNaPhE/tGJ3X9OFgjmr6s8YI3/tgwXzclHQ3/Dvd7cq5JBdSap+oXeaH4dIBgKE8FfPbSy35FLgbLMhavbnFfFC8M2y4q+wIq9TZGGhtng2pUYuXt9QzMKA16qnukA4Znv9oeuJcLLsJ/KmyBiocUGsLObOkEtYeld4+VVMHGvwL+Vn9paLtdj41nnAarfnz1tZXyAvbLbmx7HvihZ1M3x2J7B9hKCRqal1WAnh2ryTUvOk48Hixqc0wE1eozHGvGq2D+iKOs56IH5ryk3+8WagKuu6NOXDq5IBeRvpvDgIZ/ily49/C1wGnZ8df4vgC8Hntf8aTS8eJjjRpu7hoQNVAw7G8vhZ3KbDeMXgdhXeIjk9tSoVASqPHm5GWEv3JiSiJ7fXEq51Dqud0vAB/+8G7sQxAon9EIkWKg8s9/y2+k14PTXOONMWoeuKrI86alUTBzk+04e0gxCEwp2D0rTAfbXzN9GWu9sOCjy8GKoBY4yw+j1R0esGqk8+Hzt3T8w0v6sVyvC2aFL+mcWRcNNtlPOsGaglutDsVxenfAar14rpWjBXBPt1HrbAkd+xUz+Z7pv4DG/ND14RejIPCUUaW6GhX7Ekv9FbpaYeRPw/1dtDjIPzJQY1fA9PPG1Y+O9bbD4VF7i55LqcCv9/qZugwN3/8QWgzz8oaTXgcy7fXygC3ZYnJ7QQBe7YuVPWpZC0fn6jXuU2KBO2OUevYoGQ/EKxv2LjTAX6n2v8m87vBMWsDIqJOK/ammuPNtF1S+e60ic6QabBzTWJQcyeiTR2bVcy+GoUbuuawyhGWzs/5uR7zQdP3iHu0tLSBlHHuLVBQPy3is0izi6MhVs61mT10dSF/v5zvqwOwTNsR+OShLQcq44tty5rlyo6/842b2Dx0QVPcli4Hda4s8hY53gtPIo021JAqc3yx47OvbQMxz7rlq4twEQwnRqiuDimFTQoBuUgkNZSpEPm/Njodam3LdFDYvMDk7ESIw64lbryr1P9FqAXnW8Cq+URL0P3on/ruehL+OmmalX++CFaGlcSEfc2B4q0fzajkK0quyKiV0GkBY4ZiJkX88KEZyZBw0D8TJg+vcNh5vhCB+U/rm3zHAZl5RHlPgjVJvDZQV38WAEW2WVWGyFPx/Sf2RTvXCRwFvT8up1sKLVwE6lQLVUBx+XVN9lIQalvJ8J743AGdO0bkvi6EQcn1lWrwfFRXJE9HX02rA5Z2kuZldBrwIu6nA5kdC41sp40I57aDH117idKYUgl6qBEm+pOLMWVH1oYlOkLbhzfZLSYGqI4zm3+eZ88JsvIt4cjlYue1sP05GMBYZv5i61RfTZ09n1p7qgtt1NgO0uqz//d16eYgfPrRT696jWAfrPcbXe3zyhN6aG89215FR2WLLDcrHdvjeqHT/QEQcXOyd5B1j9s/l+VqnXNc0Q3Dk/BqDT7nwV+eAb80BOr4zXBPoHt8Om/gmrojvqQaps4Y8PkkMjFRY/vYSqQhOSD9v5dhSDad9/hxT0PDCp6Z1N/1P1QP3Y/dIF+lqyMWUMhY3po/573dpm+uENwtaIhdt6KBRsi5FmYuKzykPk3/K5wIc2fiEpTISJEWat1Zs8EC9l5sbWzIq4fHmbB78mQAlTSlyk8z+LSNTSINh1An0PWVFh31TYS0bu+preW9MTpTLg5oGCNc9f2lGrRoUdZzKSfFU/HA6U2n+WwuoBBrLKjqlwvAlqaIvmxnY07l2xRWXTrgmSslp0c+HR1h57vMx5rSlafl5WWEL/JzJrt2SVwI+LG+i//Ez0Cc87ttTUiN4qBfL32BJAPFbfv4XR8iovdnHZawnCTxVdN4ZGRSB/T4Rw7/6nthIKxQ6/sUNmhw5hTsvJECyQuDa08x7TUmx3dNDqx1cNPnkjZ+7gW5enQ1HNwM3t5APiX9thXGb09PJJRUwcFM2eegnAxXp0Z5lNyohMpD1isqFYKg/IDgt4eGHRi+X1+0IaYVNXtNJxtM5IPP9+RxnCQWPvPvRm7SiEdwnbOP/3MmG37Q49wPUQHzm+6CyK6AdWqQjOq17mb6xTuLF33wGxl9rWO6y6gUEs7M9z+DKguHIzQ6vNAJw3fL3u15JNYHwtPeKG7xUEIpWm+jTJ2F27KEYD6sWoOq+7qxbVg7BN/M0Uw96IRv3+UyZ5S/g070Zg4+OVfDafM2GSqRg7QW70waqXSC82Sonx70CljvyWcxSKfie4lr0XDAa6lF91bpt1bDhp0bIG4o3FtNzbv+QKYOagk3r3hnHwRPK3cvdGj6YkGwhoBjO7O/rNZK8+qOZ97vLFp9jXqhpovRjm34atN0o0UkXR3hdULz+6mUPjK2eUK870wmH3iLpU2kVKKOpGJcGGSM1Sfp/o1rBJOiqLO1ODNTuElwzYU/D0vCdIyzUDuBYJrpYHJoFp87P1xe9pqNja8SXa6GNQFNvPJaplwEl9Vt2dqaR8fHV++1jgm3w8Kti5t4ABLOfifL3ZbyxaW7gdYpjB2T82np05mMBFPj2nG0ZJOFgtO3jXt5a0FFzzVgflQ9bD8xb7nhLwicNDnC1uhMmNdO8qyoLgXfcje1NLBWtdrA4OU63wKvw1LFv0rHApys7aHeagW7m7E8tH9dBs+31stynCXBUK1vY5w8ZRR/O0cJHg8HDo76KsTPvf7+nV2fhi7MTl64o3OyA+22yDVqdRdAvsb1J7rQ33g+v6o51rYPogAOr1o7kQghp94aWCTJO5ZYkqhrEAutI2gOexXD4nPhEXDzOC482qIqfX90Me0+9WObL9AHq5s5i3yN0jBR5NO6iUA6jVd88pU2rwbyLe31bsi/OF3W/5Rwthf/r4Dzcqf7fPx6RbCqjJIUKWWVUSDchSVqSkMiIMsvIKCt7HGfae2fvzevY2zlKmSmjfMgsDRm/8/39A+/3dT3PfT/vx+O6zvXW8xD01DrTDOKO7JECD0ORYSOv9De2OFjuzxLmP1IDzaGls2cwYaiJPWVJcB3B6c53dC9Hg0DziEWnlWwkyvYI9GOhzSez5IepMrsYaDh8iSJ+gYRY/jtJ3nMtEexPEzoe7daBxAWd3qROGq866cR10Dzx+gbM3/mEYMLopvquMxatJa12N+2rB37bCkqPVxn8LGol8aWFoE+pVpsP9BsgY3dKXY9YDClFy4b850KRP/PhZOF1Wj+WTacprFTB7h8ucZ6IYMR4rf6j5dt0WHdKqGGn5eziFOJ4tTkYlWpk+j+YqYEPCTdSv4ZVQZjU0I6iejA6ZJCZf+tcFUhuXDaOfFUJUgLk2m+8QWimQKr/iCfNH8LMK63i0iHwuqLSpGQUiqaIViuXtEKRxna34a9aiCyNIdUVRyNvDcECyUNkcJJKOKQ71gh/LB7eTVKORLbSZ8LbHvZDGXE+4nJDPvBUSmpxNJKQzAemxBza78WfMvpIKCmQxq1+nOdViSi1xPZ3YnwHSM1MnBnjaoS+rYoEnU4c6nkZQnm70gHWDy9NVgQXgtvJTYtmKTw6Qt1RGKRvhfdyckKZTrQ8RW9xhJyKRjf4I2e0vAaA1QDUZExo81Bq0Ca3REI9jec1RlP6wYBY20N/MgYOvTX/bEXzkfhp541L221wkpFTuimdCDo+v8f2eAajgc1Nv7jiPlBXKfIYY2yGNmcJC/EaHOKOmV8MeTIAox4a8o73GmB4Ar3ToZDQ6sDl98fD+yBT6JQbGFbAy6BHqcIRJJS71PNqY6gXnufuqq5cbgGTh4ufVPhJqGr7Pf8RgSDgUChRMhlB8GZFoYYtNQop7Hd49WixCxxJJhT6T1mg2mda1RhJQPEeLoliRl1Aaug1+Hi1EZJZNXrzDhFQS6FFg5dKNyiujvP//NMIg0Oqi9FeOBS1fNVwbjoVTK71SXvYlcLjF2cLJwNp+9U1oWxxpAtWbrwcXcKUQsr58W3TD3j0GqO9tuhMgcEPpcn9uSWQ5NXrEZwThejFT3z5LU7rYWxSe5JODYwsywYsukaiMMePc/qxLXDBO6VB6GQm3Do5hk7zRaN0P8PEi7/aYf05x9aFK2Tg5h1vpxyOQLZthurJxUNAbJ2CC+/J0KRrZaN/CIO65FwRukgF/tQB8w9FDUCumN6820pA58YPfImsKoKQGB5ZB0IBMDsgMtfSG5QMzPmX57OANejAh1iaF4Z6yzjGnwtG3sqP1n487gF5/Y66UekmCPkz/fXHKyKSCtNm67ahAknNafeecgnUnFtv1aqJRq5Cv5a9zGMhkqeZSbIyG2pknjoo/g5D4nzssf/73uNl5ZYXP5cDoLVUcWpwhoC+nK9ZHBfoBQuHAs+vJZlwJp+e32eeNp/y7JKlSoOgMiCMNjnwYPf3/Y+qZRq33LEYPFU+APKUcuui8BK4VJxmy/SLhOzTDpwVN6dAotuJ+vOfK8D6leNLLWMSCjwdOMgZWw/d/wzEdnZrYPWvP46qGYrcHr23PjHYB846l2fMSbWgnMdx6etbEmp/feJBTA0ZfqW7nR04WARBSQ7ae4Oi0MLasV3HtV7QVRZiWMFnwdaSxMnRsQi0JBw+ucvaDn7Tj2Sa+3KgX11f4+nfSCQXHU888d8QPHnuSofXqoGSnJk7SYFYtFnnXfIygQJJRU8uCNg1/D/n314gIpXrT1jN0nqBvezCMUaJfHj+c+q45i8cYjdzFG2Xp0C17JPz9J+aoGOv7+HNRByqoiIGjXfdoFwwzcjZVgXcS39sfaYJyCGKczylvQ62Tq3fHhtpAK5H3mHk3hBknObbIixWCqwVXM3vsxBcaA1tvnAnEM2NF4wbh6UB+7Cw8kIrAnOZpLQMbAgiV6o0/JltB8rqUodxTxrMW7IdP3UHh6Q2igyGq2JontjMmcxWAjz2pkpkmXD0tPHVdHAWFU4F3Xl1+049CJ3HvjswjEfyxR6sXo/fQEP+rADFtRGKvIa5dRQwiCdhzCA2sRV61z7b3TvXCEab/6UzU6PRmt3dBI3bbVBlkqJVTyiHSS4HsYmAYOSZduq/njYK9HJusl+VywD7ve6pDvlElGb016LlOAWOTdjz9Io1gNI2V0C+fhSqXPRPWac0Q/TNxqtf75SCEhhwhJWGo4AZTe7r9KXA4RTTrmlQD37XhKcHTQORgfqcU4lkCzCsy2w+sCmH4hiO7210GKTVP/pEAmjcuOCwBHbhICnsLBnjhUXM38KpKntqYKowvHCmMgYWWTV+1coEIy5XzwCpK91gOW2xM/2Bxm/rH/8S3+OQttLlECp/Dzyy/vrjgkIYXFwXMmjjx6EfEruM/kadwMdFyLMgNIAt9iIrs0gUOqQRMvPbuwC25KMqcv0DQT7LaMatNRCpxj6xMlIZAKOtPa+eu2UDpyBLDYdANIp4smCd2ozg890wwaPWLVBYeEKRPSISzWmVJZ80pMC5pDU14zkMLAq4D+Q8jkYyfzPrvhn2QyExkYPKWg8qKt6+jhg8Oi7vUv/naz84dKjsvGj2BdMzJ3+WcMegJ4fislcKBoAktf0xjebd8YVt91ZtCahgQPNzoUs70BEcNUYEkiC5k/McAyUKiXKdl9yupYLMMEfRabtM4NqKzWyYxqM160mf/SF9IPHC2BPD1QK5XnevugYTEIFZ6kBkFBVE6b96XqXdl/XcKeHLGgTU8dc3fnqmC45l8X6rdKsGdgGRLxUkLIo9OGXB0N4FAu2j1emTVRBwQlFP2CEStU4dGXtSPwiP9cYnZ6VaYP5kIdGbjohMX+3znz07CBMOQS6fRhuBTyCvcJwuBv0Uv/QtKKMPrr8Pit+jHQQCRUIFExUEpO7baXfl6AD8tjN99GoLA179QlhrcQLy6E0A8mgXiEa1KAZnlQFvwem8Fp8QNHqPX8D+LAEyb2QW6a4ngc8FZVPDSxFI+ixm1dW6H+4npmlced4Ivy8tFE+VEJD0gQknv4p2eCoTzltcHQMGJ/K9W9VxKPCXUa+kfw9sKqV3274vgzvvblb0KOPQCd9152pSO9B/frLDvt0A0y/reuhscCjva2Tj/XUK/L1wKK6eMQ0000TICuYYZCVp5PPBvQfIHkV5kXdiYe+uzQ8xtyD06Wfg1xcP2mFUS0jrwGY+ZH5Cwxl7QlH8Ie8MdKYdknxHAx5GV0JnmGfTzIEoJOZe/ragkAI/hwUH5DPfwN7699+KPhFRVIHHgKhWJ8w0FHrEZtRC2C7db0MHPHp2MhWtO3VCSt3QN2oGGWS0boQqHo5Gyptb58w8e0Cb0fKXajsCE08H38gQIjLpP7xhb9cJqttvqacOhQO/j2L/r5RopNh5V3ofjas5P32JiZrBg1Q978xT3jDU4i2XAgtBUFwu8sxk1Q8kjv9ei2HCIPqJOO6cPzWQP6WyG3OnCWYq62ruC4Wgn8ad4sdpvJ69wV/0CiHQEQvGf5yKQH3rDC7LwgPgFsNRPfGVDIqPVBu+HSYgV+xigXs1FerNLzXPhDZDhL+lhA5tbk+r3oh4JkYFtrmAUTqbYiCYz77m4CaiAudGjWttVDjILk59FF4Bh+gvbed9xaMX3/mLz0xTIDkRz7NBKoaYOyrvVG7gUGs/9cGxhF4Yce64T0lphPCJl0dv7qHxkssl2YDmChBTy/YKu98IsqpP5KAkEKU3Rt/GHqSCSIfgA1xbNRADDpaw3yQips6V1FO3emB1ad9At3AeiLkJOMu6EZHrBidMlvbB3RIyn0h0Ceg0V3exK2PRE9vYmBHFPlCcyVgJsaqARu2fLgvxeIRhCxPIplBAtrSB4RIVB0rSPF/2jhORZLJt1jGRXrDnnBxZu1EC0S+v7rmzQUQSZ1jYPmy3w1qAbdmJo9WQmK7Rye6EQ+8nmHNvfCTDviWeJK6UCJBzcccbK2LQ+yVBryt3yVB0r/PBzYckKMzkmerSikIP/zTWndMfgia/Pawp7oWQtVKrcoWIQ8ymMlbzp2tBlPHAKfb9tfDuHTnbezMY/ePWqxALaYNOH1vxDKMiGKi6KmXmg0WqIR6i32vroPPtbVW+7wQ48ZBZ1pQagjh9hGzcWQbAXSXmPQdtX0jNXAWNB6JRLy/FYramE2j6294iWA1H9s50Bg7iEThX6mq2UuGu6oBzT0AJbGVTzTY/41Ey0S5PkLEFzr6jS5B90QhLL6p5eYUx6A73fws+hU0gpoPz979WBHtrihuwtuGoef5S3uzaAKzfaXECfA7M3lxjJX+jeX18u75UTR4US51vLUR1cKS7ff5cWhAawWqfpkR1gccRw+C4ZjzsZAe/U75GQB8cxIi5NN7lgEQrepr35ZLWDuz6ByLZReFtqnsXZHKjoWEJGsdxOp3N5CKgvFpxHNmZDIKpGwrervXwKGumvMUzCumrbWwZTyZA14EDH9wzsGB59u3lCVIY6kt3eywg1QMpuYe1DSXKwN4ReJ03I1G7O9N+ze9k4Lq1fDRuB0HQ1/5VOiEMCnFj6o+PzQdfNadfZIUkyNVJlb01E4joJzU4Dps2g768uKXoVAXcxgUekVsPRx2t/LOS1j1w/iaFe+1KOnz692U/B4mISPlWSQHmQ8C78TCZR40MR/oWDmqvB6HiIq2Y/IBOUFG+1GHQiYB71tSmk4xHB/mrU5/TdUPC0ZD0QzgE8zg/B/tSAsrPM7vn/JQK6Rv8LZxLDbDyoMrI5AoWES7/fkfaHgLb8/Ve9C1lwHIzsLcBj0Unrp9Z3xYbhHL2muS13XTo15eKcowloLl9L9jrMFRYTq3bF34cwaFfc+VqFhh02p+3QyaNAh8fa9k82Ka91zFpjO0eBgVhMvQxvzrgk62jeX5ZGhgdDmSV1sMjb84hsmT2IGi8Xqso9qmCr0lg3kyOQGOXQtehahAS9+owHlivhrXipX0FiQTk7rB+xJWzBXp4zqXcFskBF8vCJX/9IDTw0GGW6k2FY99uPzTtRVDcKpqsjSGgo/7vpH/gu+D1425uW7dKELaenNh1JSCmkxu7jln9sKIc9DBDGgsXj68+NH2AQWofU7OVB3uB+Y2Y5gWuGuC0rPUeu01CzXbNVkKumXCzoPBHllkxnHsb/piRHIxEmEbrgl/0Q00Vr/XPL1VwwD6wZvElFmn9Xfys+LcVtvcKrGnIZEEG/7kKXVIIOmEV28iQTwH8u+1Swdoc2Lsp91xjlYjM5VmuhHDXQ1132zeOzDyIvIzfaDoViljMTcnH2msgaTb7RFF+LvywKLxlXhmMRmXqmd7UDMFh4fIlrGcqpByzFO1gxSC2gzMM8ukD8LHryOi0diXAyY/TPKFEJOdETLD92QP7pyUEJWur4T9dg6NLh/FIJ/12v15TD0yOej5RU6uBEPH7cd0l0ahEKd27pbYLAuYNc4zcWoCjOHbwBM37OtLw0QGr6fDmWklOgQABqlM/SzDphiDlmC3vZbVWGH1snPF4uhx6xu8+veQXjSSTtjTb/nRB8x1xzuwOP2jbZagwySKgRcYaiUP+zdBstcJC59ECDfwKJwfcaPfl2cHEDu8hMDJfCIr/i4H5MzKkUWsaP1uuzA4Pd0MhW6tDOWczlGWls/kei0ap+c3ffm90ANvaS6bR10T4RI7Lc7uOR0z0JTw+oh3wUjGg0pq7FGLvyXUs5+DQVm/E7K+nQxAabxiZ+hNBG59HwjN7mi8QfNb4fQdhO5GjqkS2CRSWMqtW9AmIuOP4Wc4lGcbObkzxuxXCcRP+E95iYahS7ZFNCSYHzvlJ/i2tKoepQyyJqvNB6O2Iju9p0R7AnPUTS0krhB6Gdwn5fnikMObPxXyiFEQMu2PHJGvg9RvMn0CnQJSd3PTspxIZ7M7v3+FPqoZ0V8WpI6pRqH6x7PmiMxUUCPaWetupUCy58Ms/l4DqyVp9zUqdQGcY+iBcvhyM9PnOXQ3Ao0vDXXI+Ft2w/sXKlGkNB/UXLY828RKRY7Pl1qW1LnD67sAhYJMGX8R4r6/wRqGik7dZmiZ7ILD2evJ+Gj9Tqyd6zy/Q8lH5NSGU1g42p+RsdIIi4JzOsRXJPVFobqaPt3OV5qHmowUstmR4XhH39002Hj1P9PVN2k8FFnneWaoLzacQ5+7VuzhkaeN3TMofA++0+45p69bAH1xrSVRREFqJb67POtAO++L+1SjqkGk5/bOqZMKhqCT1QmMdCpB7Nflcolsgk1OjXDGbhPC9e+TJMoOw96WD572LQZD3QEE9aI2ArDYUFxevEuA2n15mq0IDZA5c//IoKgLpp7ON32gfAt3Zn5I/LCpp/OJjpNkfhb5msKUNplBAqKHa4NnJFljsSRONHsEjwn06l4dXybArsJ4QqRcBVx0E/arXQ1CU4wOcbmEn6A5JRARU1MNgZ4SwxzIe8a9tmwR3UqGLo+6BZnY8jGB8JNXW8ehEcYjhPlUKjGFdzxL++kBaa5VodT0JsVk/3zwvQwWm7o7MQu8yGHcqfzcmSEThXm+ebqFGELA6qaI/ngnNX/emGEmHo/379TaKlykgzT83LGzVAn/jw/7i2oiI76HrC7WvfbCzrMc4EVoGOzklERe+k5CM73KvcGIHSFV4WuYJk+FboeKHEH48Yh+wTDlE7YQQenkFidRamBAx35PVg0VNHw7d3yrugjkJKnucegM8Xefn2EiicabarSOd5D64w9C5rJ9ZCljOC0eWXAjoR9leDzrZNlBMztknPo6gdUluPEAQi44+bL+I0++FM+aE0PUoMuiyI+3v3tHom4BZUdrNZmAoTJ1DPAisXxWMczBHIIXk0md000Mw3+byIToED6UlI+x2UtGoUPdrUxA3Ba4ddjU86JEHAqFKSxtHIpHgqornUY0eYLGqVBMRr4N+/mXXpUwiYmENN3Cmeccz2eEL+ydqwWZb4fnxKQIaiJMyGJavgYUvJ29zWJbCI9uAyHyjYCRlyvaiaWMQqqzFY0aOkiHuwd3njBQSmn6y54aCKRXu8PWoU7dzwN3/2Nf0fXh0zcv0MvM5CiwSvxkXNDdDsvrqamUHCS3qso4L5HXBr4YkGw/+NEDqmUW84QQUR1K4VZ3QDuT3zzcvL9fD39T3N4dLolBS+YncNgEKSHE53C/92QheP/3UWc1D0CUzE6O+bCqUXKJ8ZrDzgfvJv3Te3SGgGsd8jmeOCHwHnjXEJmfC5Rgv7lL5SPReIw8TwZIGTsEi6WceVoHiG43Qj1KhaC6g9Jvro0FYP9V0lZEpFQyiD8527pIQd/MlIY6RNrhnnMX97U0N1Ct7z/hRsOhtZOnXeGwu1Op6i3o+Q6CbaacZtRqErob+MXENqoL4kfBmMaEcwEWF9m39C0LDxMcC3UmV4KRp9dTjQDlY7LdxbgoPQn5FxzBef6jAyStdob1QBmLDBME3dYFIiUhKNBaigEblizx9XCE84ddjcH8djGzlknwkdgag7GYF2mSqgADhvozSURqfpF00sxKlQPymdtMp3hJw2UhSTablL3LHeUWfngJP5spv6CqUQfvnjF+aYliU+OaodTB0wH88oyEve5ohgGxVEsSBQdPSDIGNSW2QmU45LW7XCCzlyk+pmVikruTyibzdCreZU/gaokgwiqUmqx7FoptuoUs3WGh3v0tQs4/mNQeK08LObkejYNyJp7i+Hni54XeMzyABhNCrl7U0ntd+WMpdM98Hwac2dfpmEEgw3PYqWyehsaCES5OUVpA9k3LQ+NFbSHI9DCa0vaBfwLrt2gzBgmCJ/X5aflf+hgXvC8Kh7MB9ctdovYExShX5kdsIpAxi5awgbX4yIiSHsmie+DYhRHU2BqQyby6ZPcQjezeRNy/G8MDwu+bLubAWEExR53hxPhL1ps03PbAchBPixp7PspOAm/Au8KEXFvl6nGLCCJYA5kVub5hKOajORdUNxAWiL6/XrFm8+oFS4L3g4dMCM7OjwMgZgzgtYgWO3O8G+lqty4Znm0BRO/b92E8COnb97AWJpgFgP1AyrC1ZAstTLx77u0aioihBmOGggC5o/o4iV8Gfhm628QYSCsN8IT2UaoLoJ3sXBOWb4MP15RFx7XA0uJ9H9FdYN8jeLzFrVa6EZLNd1/VUHOoBUdaeZ3ngKxfgpbpcDG2rWiInzILQXlVeL+XmHqi0cl7y42kBNhGj18v38ehmKF3MY8534PE7w8havRDkrVh0OMuxSCd0v3ZsTxvM35fK31eC4FHT/HnlnUAUrvXHFvONABh4uTl/LAyow4ZLLb7ByEbL9fy5oVbgCj/yubypGZKy5mo9H4cjbHbxHI6lDTgN2ExyPBvgfNa0oHhGELpbP5byaAYLk7W4Wp/hWqhyP4t2vCORxs212LPaseA+5CNWrVoHLxySPz/dF4HUFA7YXOjvhT+X8056PKyDbRHfB1gbPJJWZ8dNZw6BrNdKneoJBBbf1jI3KzAoJ/ZZ6zOzbPBIKyNFc+VAI0c92OylcV37JVvNnXZYOEmHj/mYCWGqN5OfWwaiq/ZLMq9sBqAmBeMlJVYI0gwftkMnCcjz890TeOt+mL69t+3AbAO8PfYgin6bhOJcrhuQTduhkbNbws+/FoYS566y8IahT4P+d6Z5+uHHuXAjm2dVoBOmwsQyT0KsP+zq9JhLYbnXrHjtWgu8xZka8WcHIim1yU+XusuBkh84+E69BP41d9ZuTwaizyqmX+WH+iD89CHf4t0iwPYKfUhPCUbddp/QO50OSBzFQo5SKezsff426XsU2rH1vyH+YAhUL7pmfNybB3nnd1KiFnGoau74QYMBKihWZR75108GBn7lIFFKFOKJVWV4yNUKl7VvSk8UkeHtoGcSs380wm0sCyZt90OUSBzXbEoufHWfmH98OgZtX5VnD9yLB5fqJmelKSL0nLp9MOZWJJo1eD5z9+MQJMs5zh9nbgSckw7H0CIG3bKvNr/R1QEXk9kLCu7lQo3CAcV9yniUW1HMqq7WAVWwir8rlAU9m7IrBxnwSMuF++eF/xCoCeeLay41wrejx5ua5APRt/0jii84KeBsJO3kplIIhGs3Q3e+kNCp8ntq7SM9EDotPGXWRoa0jyLb/9hJ6KYSg9UPngGgpxiGxGTHwhQ+VRh/jog0T/V6/Bc1AJblLPn+E4mQ2vZNT98Xj/bH3bvVdrYHPt94tc4aUQNHS1HyMC4EPYoSsm+d6oPXVnpcO6drwKjdt41oTtujHIduPvshYOD6oZXojwX+5ZEpu84gdI3fa/31B3/Yo+nlLcxZBfXlAsL4NAx6p2f//osIBa748W6UldeCpG7SzaeVJNTF4q1RUEyFiOcGFp+GG0DDQWRt5G4kUsS/9dwb1QP0v/KNrvemQr2wMcvQf3ik7HjauyR5CD4YNrljlxtAOWAtbk4Bh/b3JjaYq/UDaY8pr35+HthLTTpw9hPQKZY7s/z0veD/c4vV3b8J8BXr2+rHCSj8MpkvZ4QCC35HZ86k18L7AxrwuIWIhIRPqvDktsPahypmqb3NoBob/dUgDIdG9st+hUcIrveMPrZ6QgBn5YPHRvUiURIH9zfDuA7g+Wn5upBQCnucefBmAYHoXqhPwB9JCryu1zshQfNoHSdfIasDYWizf2v0gEIj3IpoFAhtI8KWa73Q07IwdO1svClTEwVEzj28vewYDJnqXfXhTHg0fOnsz2Yaj7L0x1xI1kuHOuasPjpXDCq49b0dV1cLeuQBTq7gFgjaDLpvxh6KBIxN3L9G03g+xTs140EZqEaVftBpjES2aQy2s7R+HNvrdnyQFcGNY5wluZZBSOa57qGAE70QL5ogIjwdCKEpRiM7TwmIW/+0VdKPHni1aDJ2P552x/OY3/LRcpvBsy+r5fdCqttd1i/zlTAavTdFzIqEFLsLfF6akuFcmMBrr3gy/AtX3ld5Phi5j8aYyE0OgZ99+Fjh1TKI45/Fzk5jEO5w4osF2yGokx4zMpoogjJUJhVF8/ea3EXDqOhomJWQFWODPJCLarDzr4lEKlOvFceXWuEfwyjvx6f1wH8m3rbTKgL5Sye5lEo3g9aBL6Z7nhTAf1dbxafevUGPCucmPRcokLlZpOP7BsHSXQ2V/elEtGXCWjU30AmWRsTPQql4WEgZWRMTD0LPP8SHOaX0Atdha5Ya5Tgoyq85zcJCQKWiAWfncluB6W/u3eTparB1fnOIuAeLej7/u5h6j8YVD+fulMmmwbTXmMpfMxIa1bUKrvndAVGLXGUy6iHgY+D0tvkZHqXksDAbnKJAjIJn1AiR1lcPjlqcqCWgyV8Hgs5cH4Bten7TsqoykBB959uvGIMW9WNyMY6dIL3yKKyNvhluvmcL+VyMR8vK40/si1tAqqn6ioxtLkRcMfh2VzMcjTjq6LmwlMJexcM8w6ppQOSRquPeCETFHp2yNzuqYGRhi6iWnAJTAtq1lReCUUPudYEEQh/wTP7Vm+UthvKJJ4MVJSSk4JITUl/WB2R6/jfpJ/zAK0/uzv/+l5JjFN9jKegHy6YNU/MUMvTqnv7SyRWNakTeRh4qwkJR6vL1H/3pQIcKigSbI9HPXKq0WX4XMEjL2l1oygODMvGXQbei0WFuSrvEASq8kVFwjlaqhDoTZ5mJF0TUdPJ7zOgcFSQ2cc/IwWVwFFuZ87ISj4JFtfu2aBx437SxSdu8BYw1frxpaaH1QL18mHxmD5i5zSo+LcyFpxY8DN3/RSPv9N7jH6azgXMSCcRcTQfHf0WpHdeD0bHis61a6RXg/WBv4anRfHDpHjCX1g1C+zRLW1bGq6Aj5NCxsyWFwFXA3pLORbuPL3YX6nKH4H2m99PD043g+cNss24yHFnU750LqW+B6k+5fu2juVB+8MdXjFY0+vFkn7L+l1YQyjm7TR/aDCkiGDllSSwSqDnSg/9QBS6nB80ZX9XBf9HNOUUrQajM+tffb486YJ9ji1udSAqofuTyeUXjw6CPKdQbomT4e0c8R2C9GUIUh6bfQxSqNZZUUioqh4mdK68/niEAZ890wiVJ2nOK7nlmdbdA11ucSLhlE4xopex9ZRSNwr1lzciD3SDD9r0C01kK9ywGm82diMiBeGcmPp4K3cJKF7bZyyBHfPToNZpfVKpVKSVOdoG1AmY2ybEUFEdOt0xTCGgh/vKXvxe7YPWp1v7LY7kwYHBpFnedgMaXzn/N7euCAeGt/gusOXD0muduyQWa1zgSxNe+9YHgpwgX0RPZcMZzDWNDxCEDMb2ejIBKyL/GWrZ4MAZKWTBR+YzBiOtvsZSTEwU+Wj/HRBnnQ9PVVp1LjFj0wknEp5zma/LZmacxhxqgdzJrokeGiHTltKPOhPfAvPhnS9W3BSBnwNe59zMRfcZXWpxyG4L0Of80qzUfOCjEIrmdgUPLMeXH3+9S4e65Fy2fPWphzmqBji4Jj+ajmK1fJCDIWxpmMD5eDEFz5Y+P4WlzW237527EEHz552Q3FdoC9/iVNvuccEi/8BYn63AF3FAqkm7krYE3X7Li8KeDkGJBZbP/HgqsWbDzpbJkw9Xnr7S7ffAoIoTl/VxYF+xkl72LZisDwfBih8urWBTTX/hETbMXegU5C9XdUqF1ff/Ck9skVPVdg8fdogfw4ro19VNFsLw2xdmdGYpifz+pOsTeDfdemUnfWfeHwjVVuQc7OBT3p1l/iHbHRxPS5qdx6XCAxZv1kEIMuuVw2/DKJBUGPerCdaULQfuOXrgsBwG5qx2awYXSfHN2LO4JTyGcUepz2wYSWtLh2Z7wG4Rcrfvlc5wtEH5HvUTiPB69KtRbTMUOgPbxKczL/ZlQtaQmPlYZiER4Ax82iw7A51GCsTepGsZOJJzvOkNE3LIa2udp/HzO4WN6fHMKGF03EXZLxSLhV3zq1tFDcNIT1+65mwkXZ4IjvCxxKGLhfoFQRwswN9Ty/aBPBMztZI/GN9GIEvZRY72+E7ZOYfCXNytA/3LPzB4CjcNPg9U7GtcVYS3e849kgbffUdXMYZonLoXLf6rrBJ/SDo+X0xXgbrNhvnKEgMwwgtORC22AufG9BTuEA2tDI19zBhzyf5ecFZM8AP7DE6x9Z8hwZj789xGBGJQeik5Mf8PBmqzFyzGzQije+pCj+yISCac9EQjZxoLi5izTcH8gjDEWLaqPR6Kps27E+xGtcK50i74piNaHB/mstXpCUenJsDtKYu1gdtddOfJpC1yfIgTP7GBRTt85/+qudmB0vrxNvugLpltd+99l4tB3uHWJ6XIXaNj8CwnSroE+fnyDlgsB6VeymOmNUuHac4syglgdDPomqImoY5HCyR9MM/GD0Pf0b3qVfSUsDrv8CxnFol686LJwFBUYjxyalT1TC5+ZM80JbgR05tCNgShsNzT+Xsm3cKmHtSX6nlY1IjKxzeVTKhqABrpB+uKBZphitMhxko9BxzOOksLPtkOh/2Ysp3UpbBy1caJK4tCVuwqRG5WDkOMZ2zrwkeanqy0EeT8iYmKf+jjGQIEfsgklFO5UmDvM6vrpFBFFvonfM3CCCis8mtIYqUS4xqqS+MCdiNpcBrIoT33hr4pEEotnM4gqLiVSD0QjImtt4taLNuA61Rp0OygVpoNI7vK74chmcTlraKsaljZ+MMxklMNGOseE1EAwouYZld106QY78vmfk0PNYBm3eWvPPSL6+XLklkpyP6hJrtzdjkkFPOch/WG+SNRk+vuNwPMhEHIyWRWwiIWMVmb7JTyNGxd+BhyjG4JEDsvzipkJwPi8deBnDBb5mB10NpPtA1M7w9REsyo4GPAw9SmVgFrps6uIWWSwIODa+JVL4K79MdG7DIHI2qAu/2FrK7TBZ0midClcfxB0YeEQFv11aEkyrq2FFjs9Pt45X3BHHWyJSyHIIfy8RPjbLgijlvb9DK+HsuE5gm8GAT1xOkAVf1gAP0bT4vY64aGITnblj0cQUmJI3G3b6oGhJLFr9P8QnHdLGljVDUEJ1ywdvWQJwJ0nsM+tuhwm3Ym+B2cjUCeFLKPJhYc5xK9I7q0E6Mk2x92IRGJ90T23HrZAXBHTyDOeItAyrazalohGRY+7vsmllMF1ouVbNqcm+PpL47wKWxDarD01cu/jINyIybk58awUJk1UwzQ3SMgif3Ryv/UgpNukXCHwlgP7WbJgkFgMooqqptqwUsHrsvvI8/p6GP+a5OpI45/LA9TbwW39MEr0c5YWi4bW0GbDdpkYxJBwm/zP0g9GZRqSbvyIBTb6qNK0dQxaCss+vixGBvn9dGO7H8qg+4s6k/n9KBQsP9vwa4P2/Cd6Ky8tc4Hz0dVYhVPRqIlHjHvJngLD1ha5EpergJu9MfzoeQLS5JlLv3I6BRhF/Z5EeZCB7P5rNVovDEUkNhSo7dL6pRMvHZPzBqZ2A5fkVwNR2UFpxuQ9bZCokuCf+zQQUvfap7JdiEI6ujru2nGtMNYwZJN6MAosbP0/8C2Forx97/pN+UpBsyGLb+xoCYy/Fp7NrglE6zOTltPRA8DWf+6Hv1wc6Mgcf9ovEoMk7H+rs1MQNOz+OztFrIUCy56dqi+RSLBjgq7oNhVu4PV503H54Lz786CdKG1PP8PjPyQ/aEtreNVc8Ra8yvkEdPmiUezGnEHR8xZ4fsZWBPjqYPRc5Ow+Wg6E14KSTAcH4GNtRdPf96Xw+P5TsQBeIgqiE9ZusqPCL/qdI2/KmoBNeCX3ZicB+U0Pn9UW7YHp1/vunZ/CgVZbY+dUJRFtvN6ZCu3ohvspb4hfXpLB+HLBcYPgSKSxo1Ghq9cCohSM3M2Oagi2Oaz3mD0arYSzTk55tcIF/Ut4zNUM2K57OSvLjEWV0ZMpEXgiTOPCB06/q4aM7+eSv5IjEB2GaTlTqgdeqymcr/Ivg0Mjlcd9abz3RjayaGmAAl/v3u9OUmuCXcMeies1GHRGArEYoR6I0L+lXa5ZDlWPRY9b/CUiNqFrL7UC+2D1TTmljDsdtMb3/zrLSUTWriYGSixkWLsZs4j9kgREbzmGefcoFEdqM6K3pEAVq8lraMHDqO+ePTwhJJSpq69+K6oBbshp/wxqzgGz9fcPNcbDkCWlLMb3WRf8kdNvve1Ehv2Teqs+VgR0g/ELY9jjAaDj8a7bqsmFnCpnvusleLSp/8uwK7YNvLp7Cq4rZ8Dq6aq2sqsY1I+v/UhV7wOG8puCKysFwIsDNUFdApobx92sNiwFpw0n0QX5SugqyjJ/wRyEfjMa5ylUlIOJ/qNk44IKOPVHQvi4fBCKVn6lp6XbBBfQVsVmfz2tD3AXM16Fo/I/4y3eq51QVK5pLKGYDqVrvaecHXHodSIzZTS6BfwKx0q0af2Zb5UlJkQIRYctZBLt7/VBereirD99EwiUO/mbtZDQI+NhO0PJLGB22TPJLV8G//5eba3mD0GLZqsv0m0pMKbhYq0cQwZzcnrnKomE8l3jup/8roJBU+u56ftkGHd72tH6IhjNWZfF4EUpcM5Rd9fRqRFOmNAFei6QUKlKKsuV7D6gU6NbSjpeAYOe6qh8NBJdbFSN8tHFw9WxaLffgklgcyvv6DfnQORpL6N7RfMVmDy+xqL8H4JPJf/xSz+KRt+rlewHcinQsvQhdiOvDKiGY1IsmiTEmKDZVqbbBvuV7OhH0nxB5pND/85rLLJ+JcYoJUcBCUUhRxOHAGCQs6vElBFQpt63kMgL7RD6+cFxyZy38Oe3t9rZizgUPs9jUP4nB+ZTZGZ5t+PgaLvhbw6lYFSjFuQxf5QEw42zfCkTzWDsoZg4aBCBIpMbjfeFh8Hss5cHeORb4Pe9tyf7PoYhGwOr9uw4Krycdd2J+Y0D9D1ZRcOZxs+HC98rhQ3BrFITUlgvgaIkpn/l7jjE9N/rL2Lkdvh+/xO2GV8E32pXr/EX4xCb2dMPr+ny4YQM9c+liDLwPRvPW/YpCDn1f226KpQFRpVZJ03EasG1MG0zjjEEJW3sq4ix6IAQ6385HEdyoWdR4d8jJiyqqCIImYhTIT04cKV+F8HMM7boQO1AZP9S/2rnIAXiMBQnxetVINN5yKX5WiS6OviXfsi1B27mmpwm/yBCXKjJTRjDo8cm2LspGArcDayCeVwdfFQ6XRDjTLsLd5QfFI6+gr2a3jIxLmXQ9jr0PjfNR+Sf3bvqVRUATzKmSZzH6kC2mNK+049BXPdtSl3GqUCduK58KzGZtk8UleKcSMTn5PTrZ9MQnBb9LJKwSoYjzIbJDaLhiJfTfHHwzBCMYPFNjdwlEDV268Wve1h0k6p7+PtcBYTYKsdvSZJh2GDkOlt3EBo+9vedViYVKtIesdRdKwe7nwGCi/FYpL9rMNy3Pw18b69OJ0Q0wEIwvzehKRS5xeUZp/skQrUJtgmwjfB71455nCkcad99F9mbkwSS2iHvOR+9Bruzb4eUF8NQSorC7SttXbBg1Iw7fD0femN2WngTAhFFZu0/TvtW+NeL88x2iwIlDvx4Ls1P/eLZ//4y64POotJHVowIAgj2R34NklCo2EXw7qeAiq558KmLFfDN7O19Yg0esY7CgcuiVDh567CtcXgWXHYXesfgQqT5V1rsjko7MGcGnotprYT/AxOhFcd4nBSXdzzV/xfHM0KZUWSESCSrFKFylBlFhKgQERLfFFnZe13Xvdfee+893/fa87qECklKNJRkpfK7v//v437en/fnnNfr+bxBOKOgqhqPBG3OsLFrEwGTNOHORSyGF1/keEhtsWigqDZckQ2Bb9DkHN+lDojkG7oivxqN9AmXHG9zTIDEf579dFbFoPfo19JiDRYVrcGQB7EUGM5/uvEgkARMuGDXy9WhSPo74Uia2iBUabI+/upQD321NXyr/QTE5EG7Xm3gD8PjbnG35argM7HMwU0pDs1b/g2gv9cG+yLKvmp8aAGOFuWGOvtIdOPa8PKb6V64opyoE7ZaBZRsUl+KHw4J4dLSbrBPUM/BoRFk2QA0GOK38mYs0pcQmX/UhgXWuRTuPisiuDhOfnnZFYNeesxi6ibH4KhqUyYXqQMkQ7Qzpc/ikOFp9dlTsm3wRHxGIUW/HVi+7Hu43z0SBX4+cED2ejAo1mnxcl3DwOL6xpWTdHHorMyCUbd7J5xlevl1uLYZinPdR4k20Ugg6LfYC1ES1Jqa38DKJIDNVe5vIv8w6IoipvS+0QAYSEzITFyqhyUWtY+h0gQk6pXbU4j64LrCIaORu9nwu/Ni34WDeCSsLCsVV54FfHI6Mw8W2yGAUi766XkwyuGzV59nHQJc3trcNZYi+Ei3svefMx45nx5OIfSNQ8b4P5eSxwXAvLxsG5+JQaVTz+qTg8fAGolPnn2ZDZGhT0v8XfDI+iz33lZ9CZzuUY90DG0Atetin/m+hKKYWv1G345+kP8U+y6cifod5RujlfziUVzo7MVHP+oh6bhopH04CYL/aw19yhOGtEUET5Kj++GWvdzpDINOcL2sJ50chUdRQoI86jlEENA5FfCFpRqwEiXKbVIYtMeukOmp0wLcofgDgE2H7vRfoTMCESgkoZqu9lofaM9gknbr2oEu0Ztl348QNGXG63z3bR8w8o8JMgvXQtKpejk+LTyiEQ/af6piBGh+hPu3OmZB5my6IYErEXke34l7UUQGe8oh5n+TbfBMJm1qVwiLMASN9OOSZCiiWHnw4eLh6nx0kKV6KHqIhm8UTiaCzch6utmzXBhpOYy9aBWNksidlN5DE6C68V5ZXSUJGG6c1blKwiLNu7eyCU7toEaXqXdLux4c/rz11z4ZhbxzY6d+PqJApY70zo0LdUBm5ZLZHsQjTGdP1M1uItywvzTFfrwBrITzbRXsMOjB54mMIeIwWEkUuFo4RcLQdL/IoywsMohy/DdXMggZB6xEjW1fwKx00fqBTQIamTzXJjXTC4Zpw6dWDzcAHe2+ZwnOOBS/oM+Zw0SElf2DC0ZORLg4zvbdzCQW/Qv5deio8hAw7U0/nttAwD95UH/IKAF5uex5BTC0QOaDh/53qfttc0h1aokjAvW9cRMIZyHDLM3v02k+zSAookFOPJOIUO5ql4tFJ8ydZHcH10YgzLvk5ClHI+kXIVx54oNwfuaE1F5nHrQf4y7s345EcviCEyaxaTDKSCPxLTIFPpq3PTm/GIncSV89UgNG4N79NeYaXACQKJlavhMEhPWBEPf0PshgVLG+mYIDucPONCJseMR31bcsSIsC0QE2ziW3EMjcF91b2odDoENXXNE5Bl6lDq47XxEYhGids/LB/f/+nVP5e2CJ1/vWf4wk8BBZKC2bjkXpKQHuycZj0COSHPd3fxWw6R+8gXoTEIOM8PPaTgQ78xeA3r4ezM3ej35qjEGEc7PWPnpjcIcQeq79XAVsr+hf5zpEQJGG3CfElHPAVVTZNP5hC/Rc0H9DvhqBaiqzDG7zDMNHFlJz4HQidIf8/PXsYDzSzguWqHnaB5pszHQn0gLhI2tZyxnZePT2yosSvM8w/OCNYJ041QnOxe0PJRAebZXyRrrNDMN0RVpE+E4OXONiyhhaSkAf5A14lc+Nw7AcWeF6VzrcwC4f7NTFIfu/gW4COGqeSKUP8QYh2Cx95PXkQzx6TvuF2fZ0L7Bj5wu9/FuB4UvPEyZmHNo8o87YwomF54dflWucqQG3wDGTUd5YdLYnud9nOxce5As4xK52Quqh5GtCFeFofOCe1Z3cDNCjmIp/pcuDQ/4MKne9qXn4fLKPUFkB/Md/3/EbLISB3fLChu8hiOWdoB9HcjUcrucpk9kuguXH9Dh51lCUIzRIzxsxBg8ImAyx6A4YnGNidPZLQConb4f8kRmEGZ+tboWifFg5LS52s5eA3pnnffF1I4MZbQ6LS3EJiHJ/J7uLJqJMB7aw+fku0GRx7X8mkAGB15b/e3EdiyYeXu5fW2oF9nkFrbdLteChejk0QyoSlUhx/3F36gXxBqM/dHOlcDHAkuXbXAwaVT712PXmIIiffKbHK94Ex4ZaP6/VE9CxFyXTUpZdcL27SyTHjwTFNz8y/tiKQ7StrH07MX2wy4rjuhhfCS+fhP8+9QOH/B5z2avFUEC/pRZzOKkBFGjlpz1S8egy69g1Pup8lg12KtYrFkCK6jLlqRcefd76+9omLw0czSyhn7YG/sQl3JArjkTM4oZpL9SHQLTQevLGcRzkN+nLN+sloPkIsz1KNhno32pzFtQRoZaOEFvcGYdM5Gb56dcbwaU/sz06vA3y7Tnmi/jDke7mXyMW7WTw8zzJ9k6mAdqK3j282RKFTgR7Z8Rrd0IMru5UB7kEuKo9FcbdolHzhm1GqOoY1L30+Bq7godRuPjCRIGAfhT7JmqVDoDYZHNOn3gZfDQxvFB3h4B4NmQXQ1spwMr7OVCxoAgwMXPYLgU8CtBocf2XMgi2LUvm9/NJMOgcRrvwh4DKC81G9+WNwh5tz/PA383g/6nn5P6UeOQpiRLkq0dAiPOJOlMGEYQOYoZ+Kicip1P7rhytocCz1oDTfVFEeH1MyUXIB48YH1/Xln45DuYeNe3Fek1wz//B9IYIBhXvEhm4QkdAVC5RYfVXPZTf+nYy9AAevX9xu01qLw+uLuLzvJuJsPcxbUxZORxxdqsojKW1wkPC/o6rrxCYMO1VOe9FIHrPKw1zRhRQYffvzB5JBH/Zq1/Y2HHo14ZrVlZRP7gUCjw/uxwCUgJTsWpOWDQSLvWEXpgMvAF/bNb6G0DuopC8plAisp60TnfgLoPNd8qavkXtYPXuwnO/xFA088Pw+0m5cSg5nG7w8gYJFjEBKEgVi+wC8vjuZoxB3+bKkfwjedB1Fitt0hqPNtPZm/YrDoMGZ8HfGLc2qDoUOmU3FIMmR0+E2km2wC1UWDZmngeqvsZ+RhoRyNz8tSnTUB0EmQQqd7plgVnJnGrHD+pzuQKvd251Q4ZKnPD8ag4wVi5wLpyMRwy1jpZ83UNQN+qUxIopAF7hqs0/qQmor8mqET9ZA5pch0RTdZrBLHXnU+ntULSd+ObLMvWedSyk//w82QQ+UjuVvdKJSD39NJZZfQAqhObER0IqqZxSeuLdBgbFWfQpaoeNw7u0vv315GC4cBLnJPwTg7CqK0y7WxQQC7bl2U/Nq4X2VOP+SRz6a6Ex++3mADgHPZ87eAwLy4XNseWXIlFZs/zfH2W90JrXJWhHroALKSt+hB9YZCJQEXDWtA+kvi7PdwlUw7DQjG7xYBySjPbGWs6OAY9kWxUG0iD8amcAnAtBOQz/DhI3WuH83ATb6PcGWB8U+1EoGIkOHK9e0PhNBFvL3Y+2GdnAwHlY9RpLHGJRH1lQrBsHffK8RLlhE/yNq8uTPBKF6NNS+2VZy2Hg44yFQ2AdxMzdb3nnH4psuNjor/7oh++811+bGDRS96xY6M5nPPrwqD/6iAkFnl+cj9imb4KNHvy/W9tx6L9g/vtrCaPw7fDn/CifNuh2T9Oircaj2kBF2yHhCtAv1zbZo2uC1YE1rzrzULTw5WAe64MxiKU5eoI0ng/XCl4xJ+UlIA67D0L/XUKQif3xOjIoC34FyJx+IxGD4q+0P2a2G4CLq7M43oZciHJZshxTI6D2+WH9qcEaeOskK9R+htqbQ6GOX8JDUfqNpkNnVCjAPiKwVXU2HgYlCSEOQEAFJcYieRZ98N7gpcelnHpI1zt07NVFDNJTCHIc4a6F4I3PJ/xjSXCifpGgmR+Kzs+WXVA2pebJ6r8RrGAn/Gp+v3upFI8+XjpJ1/GhF2zbUn3mg9Lg34ir+41kHHILC1ie0hsGIa9PxcPSWfCscJlhczYBPQvBBpkdnACRn5R/Y7ptYNYgnC/fhkU3zRQEbp8ogpQ9q5Xrfm2Qfu64s054GLpI9sylOdILaowbp4cbgqFBbUPik0ccMg2UlWp8Vw2rzPg91xfJwGmcQqJVCEWcJy3oOF3HoXmz/vKDgRboCxrUfVAXj5KSDzyP7CuFnegXP7REiXDm7pTkk9pQpGXtKCn6agTCnfpNtTgQJEgFmu/aEpCZ0/s16bQhqBd/RAqCKpj8XXHNvAaPxG9Ku3x3GAQPK86bsy2tYFxZoXdxNQ69c+Ly7aWvgqb3S2lYSyLE+PErEWxD0dEQj4tXLargSQDmyuoeFmQ9SwfzLoSi0/u/+JdY90D8nUbWQdpWWC6ai/1lHI9q6F4ftufvBlMO3xlnar//uMYtrGuDRfLRpV4txxoBO0wK5WtqhM8PzCt9k8LQbDf2mXboMDy6p8w+FUSCuegPF89MJyBl19AJ4Z/d8CFc53R9GIJXjo7npOox6Fzzqqy7yxi0by5JrjG1wp+j9euHJfDI6K2b9PkjfVQPiiOL92eAIf6ZNTY/FkU7RanW7pFB5ETruyyHCOAJG8NziSWiSOnIndyNQQgk2HeyMaTD6Tsm4h7v4tCJlxfJ+PgxyH+KfxP1vAlalHT9Ppbj0cOXP+3dz/eBvKB58lfLRGBYN+3XO03NSXstHv20Adg9dM2P7zoRHsbI7WJuEdAJ7Us/v9q1gGk3aS+tswUkptVpMg0ikKMJmWd5dRjS6Fr+uOmlQQZ9i9ATkUQUHiQ27VQUCp8/Zj+gnwsExveCmtYNUeiWTYCUoXI/6HVwx8YyUb3ywdbQ0fV4pHpvtN2EawDeSYTM3yoqA+P2Y/eSPsUjXJS2K+fcEAjQKUQsr3WAdLqOVxX1vSosNHyN9BEIsTKY7GjXgOGzp3ONITEo5/VeWx/jMEzlHftmWNAErI5XV3kWsWjd57yR6XY/fNJTjBL0z4R8liwm70ksCtek9PNzjoBHkZVNxusO6HrNJPRXMhEpP5+n82QbB3JE6W2XCw2QSPemODMWh7DHb5L0gsYhWIW4lmObDcLj0lfXqiLR35njnl0rffDKQOYZPrUD6F7GJ3Ddj0cjOLyGFC0RgFnNe9Y+G6SGTtv6zocjpYGhHctIClz+gd0+4kWietLsmtZGPJpT7BHgv9ULMpM1YYt3OuECo7Kw1z0symKzis3VHQd1qf1hSeEBoHrr1eFTBli07Msmb8RBgc6NfZyP2EtgaoA38lMlFmlfVFKvO94Brox3ElR/pUPhojh2pSkYYSp8E8Tb22G6XE5IPJIILe3WR5zwUSi4K8alvmsc2qJPK7MfQuDFdaDvsEg8qm3xvVdxuQ0Kk8dLfSxK4UFW0rs+UiT6Y/SYm31xCDhciua357AwyLo2+cmUgM6XcpRMe3VA73+nqo+G1sOGdsrzKtVg9Krvq23JeSKMnlX7LW+ZBA12Xbon6oMR08Pztf1TY3A8yvlL1YdWKK2oopiORqIb/1xOfhimQEvVnQNdLJ3Qqi/6MMsHi14f7u3sremFHM79PpeeNkA/nWmKhCR1bluZsWf6AsDk6sHg86eawP1K53FJgTgkZnDbcpeBAs0J2O9D2FYgn9U5x1dFQKcvjRb7fRuC24EZZ1viY2Fue4DxKm8Metw8f44PmwiH6GZdxu+VwOX+QHHhs9GI3/jn7z5OMtA2jf2SGqFyuiDP8Z7+CGSW+k8/aWgUZFi5csP5MMD17+bVabMo9IFeKjZ4cAyemA/qS/I1g4u3OPNtxnjEaHM6Wc+JAlYbZ97FbLTAGaM8loIveGT84G2fXHIf2Hem+Zz5lg/kN3oHiD1xyMA+dnhorRsGfl7Zb3G/Bn6plL9KS45BCQX7wvpvj8C7V2edfFda4EWI4pnXJxJRKzv7X5OADvhXVaX+mKcWHvB0CMbQR6OwibI/jtoUiFw7oNGGJ8FonazdMyUCsmzZEdpd7wYnRgftLqqfpiquGziJU7koV7RL9eAYEN9tY47qtQDl9CuxQMV4BB1fHfNCqsAkp01je8sftAQfCvZcCkVlh/z8dot6gfFzyzuMShOMPqXNkbbFIcuxf7t/lruAuaXFZ2G1BMRWBmlzCMFI3eiqzWufEWjX8PDXFSFBSPeA6lZEPCq7svfomGE7/Fg6W2sWHwxaS/9mSIJR6JSEWwsmsQ9m1VxC1wZLYTypXVKV6q3Po8kfpuVb4I/sQtWEXRVIjTisc1D9ujGS/v4Afz/YjpD8L3ogsO4zod11wyNF92/4NP9mqM3mn2l3q4PooN9+O5vhCHnnFGwF9UBSJ8u9pNhY+BrvwN+dGY8+YCRwDYo9sGOTe1W/sg6K7y8XPAqMQzaa4aeFzQbh691MY17uavBHlyo89wjI6+d7pWcjFNh8WfKKNioMVkN+qw/xxCGyrPh4knEStDOo640dIsIV0Z1e8m4UelRHHsioGwXc1OV6g5w6sI7oeY6BRJTbx1vkZtIHpl65TJKGpUB+GPiah7qPQd8JwfiROhj2GeYmt7WAzGD7dNK7UOSGI1cm745Ch8a9nFsl5eB3E97L/Y1HQmI0HssrA/A1NSDC2CQPmNdvc37lx6FrE8VvTop3Awx95Y/sLQUldgaRPzVRSNDxQQv3+wZwfB19iI4xCD7bsesxO4ShyrzAbb9/Y3D+w0Pu69AE+z+S+X7Z4JBMlZGaGPcoJFo8NbW3IsG78zQrjakEdHJSxbRAqxvCMfgF9LsBfF/TjRbkYdGdAO7zxvJUvj2OOR97rwAqpDCXLqglojs71iUrxxFcSuG5s0ghwtwtn9/csTFoH13BEXO1TiDKj/sYchOhw4BlP19CNLrddWjWIqIdzldInT0zWgXuWxGjc9S92w7W6nxjWgEaAblVhbY5UKVlcHQUE4rO3v9VzaFIAdNhvYFHVZ2g3/99JduDOv90WkVVNykQi9wV2Vip/ELwLG34FY/OZQkk5T2hwPVf2bo372aB8co/gQtrcYg5/atrv00h7BPKlmI7UQanQH3/ekgYOsW/Iu/qWQr7tY85S5WWgisT81xuXSjSfuvr5ehAhLGipuD5s23ATz57I/19OHqXKUZ+d4EE7/HyMuatzbAouboZ9S4Y+UqDZPHSILwVtSc+SiFB0t4Xxc03eFTuUlVnyD4KpfuK1ZWonvVySV2yf4h6aj62i6ZDI7BIfKrKLlIJ7X/fuD+m5oBXg1UgSWoUcgLO4G77VYJK4hslhe8EhF9MGPXxaocL+bpig8npkD9xWTP2WhRqs1CS1qPOrdJWqPdH1mZIn9r/+EpOFCLrz5RsPKbAqqT09+5kqndfYzbm9Q5DuBqevf92hqD/9+PmjbcIeJU+O2W/xKPr5VMHHhKGYNHRBVewkwsKMx8OqMhiUbomTcDJkG6QlaXb5/K1BsowRcNNXVh0xNB0cT5qHCJZnNy+mjVCzsBqYnNuPJWfbUyvFoeA9nxkcXdOG+wIyLJ/+RaJMnc7fyoP9kPjaRUv760iCOn1ndXaR0AufhdPKFRQYJt4QCC3gAgU3a19g9cjUV2RM8Oxt2R41fSg8c9oB9wNvLKuqpKImmZvfzjtNwL/3Zdo4h2Pg28/o2k6NAhoYcHMqZbbFyTeJJg/5WmDd0zmKQ0Gceijpf1TNp4JkD9ibF7sXwfPaFX1q6jnZ11kXnz+jwTLxyzzyZIpoNbXYzQ+GYV6bnOsG0mOw71clDnGXgcFyvq0cSI4FD2py/If3Tgs5I//qTzZCWwdOavvC8LRU4mQg/3rWdD49SAn5xvqfE4Mn3U9EImaKOF2B1/3QrT9hb1r9CQw7nfaTXPDobIXg2aEC8Pw5M2fSJ04IvSd5a5inUxAkv1X1E4fIMOqhEWLe2USmBltrpzdJqDxrun4/iPjYMU43teQ3QGyJBMaXjwO6UnM586PjoHmTJLZ4wwicLNFTzooJKArwQsDpY1dMGQ1s/DbjAT9CpF3HGUx6HdfPq7jaxBMtgiKnZOtg4tmapcVDlF9kHsq5bY3BRxPawzZf8kDoVF5C2n1KBTGxC08rjEOSyOR0WV/idApPlWseQ+HnAfChsPXBuBIddIN+eNNcGeYYN1FxCGPwp73aQON0BKP/cIjmgcm62scqlthqPPnosy4Qy+om380687sAGXK8rdHV3GI2UFbZFynGzCa5K3uhQIQTGKz+VSFRcJle4/kCIOw78HNaCFvqu9Xd0fcmYtF/kPrZx7FZUHCvq0sjE8dPMXVvtKli0RpPZzMfPZjsBWOsX+XVQeyulIH38uHICWVMpFXnFTfngv/+1QtBVJl1h7JUvMk5ftwhFFtFuhrZubTMRXBnf791l0tESjRSfTE928EeEC8JqbE1AHPUm+ZryxHo6+yOiPuGUMwfZ0ode9lDZwfdfLQdElASpjJpWofMtxObdGRCq+Eb2TmpGWlRDR2upZklT8Anxk8q3MHE6FW6eguJBJQae+/MxkPCeDvvey89bEK1MhSkpLcMeha0rhNHW4Y9mdYj8WtFwNj4pixw48E5J3pU33GIBuOK89dtJvIgCba+We3aiPQHJNPy6oPBW4pccq8KmmFq7ol241e8Yimv+6tA5l6Tn0+DwPzGpBlt9TK2sMjZ5VoSe2vFLgnyL8oQooFH0431+U5HOIof96YEDIAckFObkHUnObTtlvIkApBdv/K7Y5qjkHch4UOij2CU7F2r5upfkEat264Od4DHcILwuXPiYDLO+P9ei4e6dpPTu+U9gONWsvx0FuF0MnOfe7y+Wg0rZDUKVg5BjrOLFrNUv4w86zlfdM1POJ++XNE91wuZP60emux3g6bkyEteWoRyP0RbeeRz4NQ+JLSwMTQCgLCFtsfjRLQfMxXnPT+ITh3Wu+3olAztKS9etAjl4Dc6/+T8+Lqg08xYqfs3dpBSuLG0mY/Dn1/dN4wuXkYBM27tB2PEqCL9Y64/3YCGt7RjmRY7QfOaoy/2bVkMNwb0Sml8tvCfV4Fxq5esHPCsd6ZQfDUd3jPi+qJxideyr7e7IP8/D2ZzBupIIM5fMTkZDzSuCrZ71ZYDh/41ww/9VWCgbJZg3x4KDpEeal/NYr6vjMHXwQv1gI50OCty1sM8vrz9K70oQqQf9Lu1lrfCo+tvh9/ZR+KlFdtZs9e7wElBx+Zc+KJ8FVs2oJYTc3z3c3If5EjgC9vPdb0sQzcNfNFyCQM0lXw5JoKJAO/Ks1az8cCwFza2sgIJSAH5ktHakLIMLNzLPnQUjNE57KvDPxHQJwH5G/trx6Fw+4KO4HYTtCq4OFrkcaihbmRxdjIUViJYdRu7n9B5e0MLgdIQBcNchx/d0RD6oMjWwtFNdD8KdV6DROG6LJ+fr52gurvB4WLLkgXA3v9mkGzdAKycpl7JCY8Ae+Dz6cW2fjBqIeRx8IUFonkTrSb1Q9A6pxoeiGbL8zimyorP+NQoogH9zkrBEHO6uv3RVqBPjPJ+PUQldt3jJVMY/rBXkzP7+92M1xHeg9tqb25HfSC7vxWIzTXblxg+dAJQl3pn7fvhKNx7qZcLVMyiOacg4ifpWDnEpzlFUVA0p2zp6p/DQL9o9lKE696yDtN0+sZFItO+FB0uPRJ8BG9tRx5nQ3/dcmSaHFRqN5tXSjYcwT+FA5zEB9nwjXFX7OM/7DohcSzM0/rumD7W4pE7nwVWAUHDIlJRKOtuzj5DolxcB75Kpb7tRJOJZUP3zDDobO0gymfTw9DyTGLXxNbrXAohctxuT8BHY3J+ZAung0MAyuyZbKNIHM69TWvUTDaHR4q3+9HBENe9mfn/F+AlCAh/b4CBu0T1tn9TpcMroE3/V0uJ0ImxwZXvHM06g57dtjHawB+raz9OiBdCKuyBtEP7xDQvQGsZvd6BETCBXOT9Vo4ULa/YxATiQxqYrSqgvvhyL84OYxmM/wLVzjrcCIOnRrpivX5NAqD5KrDBiUt0E3naXkvNgSJq40bex8YAX5NRhbB4zg4adMrBpdxiLFwL4IlYgDUae4ZJnjXw708A26+DRy6OvHthDr1Hs7/MYqnWWiD52HjSyHPccifGOotZz0GL8feFnO+y4Qvffu/SDVh0d2OSIOWPArMjXG4iHBUwEq0/+rfdzGoL2B0tG6VyhP7PycTz7cC04dbNnEFoSj47rqlV9oIYBMNfCWJ9XBkJyXy/gIBDT5u2h4lY+CGxsZ6tG0VPJDjzRXJjEXzUUq9jb/JcP9HKpPduRIQDNh/c8KA6r/tQ09iZsbA+li35gP6cojoFPzdOYhDo+FE9rsfe0H18xXDXVkEzM5KFEIRtdf47K3b5cigOI0XmViMANeIhZ/FYljEVVRio+E6CJ1d914qdnWAgJuVxxs/Kv9fkztR6d0M90iTkWxUDheZTftnyhmB8OWHSyY4KZDJINumeL0Y/hwTf3WziYAie2a/7Ij2wrdc9rAkfRwojazoTx3CoYawP3Rtyv0Qennj35dH1D5tST1IeROPyOJ096yax4GOp4l8/r8MqHimWf7QKB41NWud9L9GgV/YvzZ3jtbD+n+FvBhlHOLTGX76H24U5sTS8Y+3IuDL48brOVqJyJj5qbJTFwJOs4N7dj/r4fz12DWXhEikeIf2+l3XYbBke21Bm9gIF2vsROzXExBlPj7kge8QcLjWNnG864SSSMuH954lIDfBp9y/fo3CXuJMeXNTNaQH/Bfx3+N4dEEk/TCHWgn0bk640+flQ6b/UgEdSxjyDxOTE3tCBKOc0fOSt0jgkiBBQyOCQQ6xPdsMYWNwPTinXj67Cco6BzVv2SegNbcR3EulcYiSf3JENjcR3v6j8V5QiUNpu4ZmTc1Uvj1RXq4xEwNZTS5bHRxRaO7Q0ouYtRHYsep+81qnEd5mGpx4GBuLfMwjiMbeY2A+96H4XEEqWA6qK4ulJqAT/jPOzldaQFted84kvRF86vGsfC8iUGaSZ6Z9FQUKfwWs4ywxMJfOQegxi0fZV6/sa/05Bpdmfz3er0YCD8ZjvCg+Hgl6K80QcBT4m0+jD3sVQHPyD96oEk/dx4skUQcsnPryDzf/FIH73WEDknEsOq3Zg9f09we3c2/88VUkqBW0wVH04xDn2yPtlhWtoM6rK1Rd6A/GjSqf2bwi0Xv3mx+jq1pg/xVrh032aHggYLtxbD4CjekmSyQkDsKdr9m9rpatYGnjntLOiUc/jB3qPk2Mg5dzDKvf8TB4OOi6n+lEFDoj6u/pROoBt/y2uxc6msD6RdHruKF4NJMbvTm4MgaKWf4dDxnaYIJLPzf6SQjSGlziqNkbgLaDXN1PtxLgxmeseH4AlZN31zUfn66C9tb7rKr4TuC/v28wzCgU/circNcY6QYmnfu63Y5tMNvDfMveKg7xGvdkvKwaA3EbOsZmQSIMKj/ntmrFo9JrDwZ3r/TDt5ua9TVKDSAT7TEzPhiP/my9nr7tNwg9Eo/ui+RUQt87r+c+cgQUd2jqhvXJXpCwPKdVdrQBEjp32DkUwtCdD9YW5PtkIK+XFX453g4H3bE++DkCmnd8Jt7ytxdC72BppJWJ0KDluDciHIbejdYtW5FGQEyTFoWKEoHTLstIOI2ARok37rKPjMF9iv04nW8dfInqHX8rkYB+lvp/X2Ajw8/jfqzVjiGgceGNrJYpNd/0OSt5x0fgob4NVQyqoKnCZCO3EIdMShkm+T3GYbhu0aDxYiNEP1I+uCAeimJuZEu37PYDOf+6xgKe2vvFQW3cVD8NSPqnSPpOgoMe3BxMJtQcO/h9srA2DkV3Xr//xWMIeNPiZ0m0NaDbL6HroRiHbnJdPKU8EQKBt6f/hNt0QrXBv7/oPTVnXhy6anq7D8accvfFh5BAUF9fOy0iHp204TasezUIJEYOmbLb9TCrXCbT9188el+jP//62ARQOnMiuAOJYK+Kt3rZh0VMPf2ZHp+HYcKR3KXykQglroNPks8mIkN22q+8l9vgaX4E4+iHVsgrYpUzLA1BPpqvkxlme2FKnvvWrZskULC2kOGRxCLCsNHCH4Ux0OgZ+PZzPgcea34qvV4WgwoVPrK5BA6CsWDhejc2HKxs1V8636LyZ/zlMxaC3fCB0Z2hb7EE1lv5KRn2GHT6WcoFE54hOHFFrKRlMRdkgoPMa4OpfirwxK+ovQbm+ox59QJyQWAnfVLlRShqW+pmttifBVnO907mbDVBGC1LsPLdSETT9YLhSw8FKlW3qnTYK8D46WHvzop4NMkIauVBZNCmHWc0x3SCT4OswNZtAnrbRpkLvpgOEwdTbUPKSGBCCXtRci4KvT/pTzceMwSbp2RjRpmz4JJg1E2azQgUdbeazC7cCyH3eh/rctRCQtJDsRjq9yWF6TNQloYg6rn/FUvhIlA9dv3vmhsBjRjFKlh+H4VrUUSZZo08yK3V/iwqn4DkTQ9p2Q2NgPT0/ZaggTbgZqrkdxwloEcbPTcum43DL6X6kYLhTrBvWJkuPIZFWe6tFrk/+2FXZM9R4lc5cGyz3mtgJKCtj5eeFxaNgOSy4vdzPp3w4YEd5kkHDh0wK/vlWzkA3we5ki/EkIDHlXdDWIbK4dpfrZgku+Gm/vPgoB8YsLP1G4gqpvoXrS37RdcRePXBIjpEqAW2Z0TMdKoJyLTNusZxeAhqa29efrvmBcd38OWZBQmobubr8JAMCQaMrYqdvnVCP90vl9c8cegH+wXfq1ZjAL9U7tw50gDZey9lZlPiEc+l3hXfjR4IUV7hf2VXBuN2jCL+d+PQ0pW6nBiJfmC+4WjafjQPdL3fLpv44REXeUBLSqoL2nI075b8yITZfK2ziVxYlOpIxRu3cXi1JEa8ZlcBSeR/lWffhCIB98P2D7PJ4Ggyw67EUwsXanzdCCpU/6IZnSGrRUHI2UN+TJNE0LRrtu4YC0USnPfZcu+OgufnYfq2D/lw5ouE92OnRDRA8Wsx+T0ENrtPrjZ4xoK3tNPm/qoEpBLU3XnkJQmU1a8uOgrWgPJPMxqLkjik2METE7FEgaK7L6v3r2VBmov6FlrEoX/bmAsbj3rhLFfLW9nxRlhzOLT7fSwaueoIacwxUfflHT0/3gsHNjf7eOu5E1HPmsnqRNM4lBpq1u872QwnDOKXw+/EI9/hXN6zd0jw+MhpOX79ACin2dfgnhyDfkomVgkY9oORuKa04PUIOP5GoYiLJhbBvQoIZxiCopSDnvKxFcBwcELWNjUY9RhlGvcujMHuqxX61mQS2LGVmRoV4JHkmn9qOGUALKVF8oZdMmHb/PT5nzgC4jvsyN9xdwyy6tY3Hmd0wkjHvTZ6x2hECHc5Gn2zEegFSEssF7FAOnd2aX5/OBK1Y886SKwEce/bDaEfmkFmI4IkEx2KNP7LeeUROQiL9iK/8f2d0H5HTpRhl4DG7ZvlplbIYBfecLG8xAeuPvW5oJZFQHqm9Trc58fg06hRzx9MK5AJZyY8ZhKQ4LxO0DFfEgR/T3sWqV0PFe8qqw7EB6OCPWcyB8sovMo6yN5M3wyRUvR70V9wSNXik1bSzXFIOpL+JlgaAXfiEQNjQRwSfqRxNoa7BBhzkq8eXX0BZ20vBL7XCEOykQy35MQRSC4eXHvg2QQ+NsF9R+JiUNwkv1CaGxk47uyRFA0QMCWr2Lpw45CtfP9qOvV+9lnV15WNNUOhQ6Dzrcw41B4/937qRzcMBqV0e60lgPF+s/3bmnHIoSHlZpNUL6gUB8gjbQRNd1MqQs7g0LFI9pbgLS8qhzcMlBzNgRIL9T9PY+MQ3wWFXQ5iNax67m3Pm9XA68Q0t1ivUKTY9LmhUW0MvFdXku411wLhzluNM1TP/bJg/GP2Lhlos8avTz9qgFsWonL61HsWNSA9nt4dgzIVq89FLNVQcAb/U3OVgLrwUe1EjXH4dtjWjH6nGlQEOa+8E8Whwc9NrY7SvTB8uG1m9FwmJG5eSDbmxaHpOeJ17Ceqh7PaPpu3J4LyocRtD+4IpPSf/VyN6jj085jIfm4rBGWlA73lJVj0+9vCdwGLLvBNm2Y698sbtn5kXmc7gEWjTxsHX5p1QdXlOJNshWyImPdbM9YJRtVFd9mjMRSoy3h9+EdWKrQSHU6YTOCRnn4S/bfsMbjLXXKdTpgEjhubNqMDcWiF4YHgCcFheCVKhzNMzoKysSvSjhdD0DCZcf5LWSvgv4mnKTZXg6V/dKbqk0i0ppB/Tu9GLyxg8H9nMKXw47YIg94NHCq8zM7JGtIHM+w9M+8P1YKLzYYqs1I8UsPar8k9bQfyL8OyF5GN4KI0IBDtEIUWP1jyhbB0gZSG29Fs2jLoeNXO6jMeh+qE2SNvMI5CcWLrza+7RVAlpOZ2tBWL/H041SwnRiDOw0n1lXInHPiY0DypG43S/2wX4P0pcEzD2OZXTx5oCft9tHqJR4F2ra1CL/rgR3CIiyZPO7wX1BWSOYlFngr1EdOzZBCXOMCqptgER/aSDBXOJKKVclZyIpW7HuZYk1R1ENSVFzV7P09AUpg7uXLJA2DYt4T5TZMDUu1HWNlk8ehWs5C55Js+OHzg2MuivTKwfcxYYeUUixSvFmg+vjwAvupn1uNO1MLj3QAhHhoc2uGVXtk6Mg53q7cn2ffqIS4nGh0zwqL5j6fZRo8mwolhfe+M3xhgPE7mmfkUjV6P/QjoNR0BZROBHxZTtUBUrBq4aJ6IRKsfDrP0jsFXg8gsBslyOCDBW2RgH4W2+AmxaUU9wLZpIjN3sApwLrP+vyhR6Faire/Rsn6wqqztIdDGwmLIdI73GrUXmE40mT7uB/cPqUPNJQhGHpT9apnDovj1KgbX7jG4sSB/5TdPDTDKXbx/mhaH3LOuB00EE0FHSDjI+EkJ2LvTiUaHRSB1wULjocFxUN4ik+2pfbHGffect2E04n4jor3sOga/Tcz7Hp4vBqkoUxxtbQLyDr8vwXmYCPumg3ZoDhfAaouFI01aLIqQEqw4XtgDnBm/rC5xNIOto9uS1L449NkdYdiLBqCnOUb9v5RciPyl0TY3FIzEbxnMXjrbBQeSswNwbFig1a78d20kGDXxL/1xuNAIrQJRc3cNSoDtReXkGn84OjT6ZTegZRCGU03eXL1fBVVMkxcm/+GQxhOpdK2kQTh4epij7mUUOJ8qf0d3NAENMDX732AZBjHuUW53xwyY1Z8nrI0TUOWr4E++hmNQif3yld6qDcbdCxNYDuDQ3oEp1UssxZAgq+lhoYoFzWiD4dxnYahRNnimqoQC2MWcQCmRNnjfOy4VUEidn6Utx9GxPlg/eUD4GTUPGfRyn54fiUFmsinfnohQgDaVjtmDxx9UEpOOGVTjkFbM8KGLqmS4UPdz4jwpBjo/P36Vuk1AwoWh2QyvOyH8aHLsO7IvUHhfH44lRaNhnkzirUoMCF7PUHvCFgsWPwqqN49ikBu3r/LAh1y41mKUt2UcBbJf6fJfcEQg150dwhQNGV4b/2Oa2aoCdVcnAWww1SPcWy/+SaLAuV2VD/cuE0H818WqzwbxKE3ogcGnTh8A3FNpHVF/8GhxiU59GIeeTrUX/4zphUXHg9thu6ngfD/5Ts1IOFrSU9O7Pd8F/1X6FuzPbYCPD8NphSEaeV3o3HoLIyBQo/j3lnYuqEiKu5gPExC7zzOrlEAS6KKZ0v8m6+D8LfyDly5xKInbz+5JzDBwxL4/KRXSDhEzCr0HsgmIX8pOU0RkDBKm43k/7zaCa2n7TM4sAaWamwiPfeiFL1fJNRaTeeA0rSx+sQyHFOWYTmV3DsHV+EFfnkvUnqrJe/mVg4CIwQ6lWoeovPgoq66EyuGT58xfjuVHo4CgcylPf46DdspycqprOVxwF9S/rBaHnnCGSh2+GADqTo0brw52wOi3dcPDT+OQYPVMwhUL6ryRbrNfjYyCjMkenlfWsUia6ROOvi0Sjql0MX19RAJrNoY+kV4MConzPBnyYQwy51MaCSYZ0GTbtLzhhkd7lREWz0hE0LDdp6Yvmw+HBNxtOH9gUF1O8qpQRw+YCmVO89UUQWrQ+perk/HI0tSp7+9EJdB8ey62Qr0fxl2CUFRxKDp476/3VW0KjF5SmnqDqkDPL3Bk4xge+azLuqhYjUKMespqb3Y7NK7qvGy2S0RFjuIn8On9wCeu1lXi1wZtymwmTRqRaGQqzkn2STf0oezZWPkSKGnzSKldxSJUJ8N0mX0EsJq3lg6q14Aq/xufmRYCMv+LsuruDUCTv66/Zm84xC1RR/w5Aa2uee8PnBkE0TzV8fDGFOCvPTLwMQ6PJtftZlQZBsDWRmbXJ6oSLqvtxRVtRaHotGSv38rj4Plu3CzKrgDeqxkQ77z4P5+czeaUG4D7/hHt33fToMzuVKrmNxzCvJn6QxSggNLC9J82QjvwV5ZiftQTUGhM74yh6zC4DJWX/RzOh5KXXwP4mBKR0+RCUe4TIhDLInXS6jqhwc7HXepyFJIxWpgOg2FIrmYKZ/CPg49cNuXmuiEo4fBCafTBCTC6EDK3ZdgCuVVlVT+msSjzQ1ZuwZ8xuPUl8UdNQwYEqioUGUvgUMhjOt8MiQnQrCdtq1K5UdUuzmBtEotOvengsbCm8vOjM7GMVk3gqcsoZkrN+TMOelVqiSOg9TaSdK60FQpL3MJiqL/X6fP7pz9fDx5eDTp4jQ5gqDCSybkdhhSvpa4sH++ChvKPLB8uN4BYuiJ99mwcelP24E1cIxm4Jo9cUv1aD27it7Suz+DQuUWlxQkcEfpK3du9aDNAdFKg5984Bu1dKX6vHp4CAet76x1UnjkW7VG/vhuEgk/PmKecHIW64+3X9lWlg5FWhkkUlcccaZMr+Fz74Db/UhBsuAOr16J18Bk8mmbs58RNjYFRhqjqycBkYPJL4BU+loCudqytR5wbAc/ffoT2OQQWrPEKTdR+0XnTzvd2tRVoxHZ8KBbZwBxAJ7kSGYnGLyX5jA1GQ+dH3O+yVQJMQNaatiIGRcj/mslxRPAgUIwtIKMImC+7ciyMxSDHTZOzEzuDEHk58Xp6GrWPKoe37Wap58k7Y08bSoGxz0G6ztRcPRj7wdirJR41MPzpOO7SDcoxHTQpdVWw32+Zp/MTFtWc/3DV7D4JphrPdH6vJMFJRe04RuM4lB9+StVvnQjMN690k0RKIFr/7krbEap/aXOpoUkySO7tYYI9PaDTaW3+rFoimm50Sbkz3AunGnN2aVErZHZdGdUtwiElTfdTWzpNUHbN1i24uAUem1+QfeoVjn4P0Hvvxw5A2Z+TIpqCpUA+9ErY3pTKCQcLOI+874FWto4OuzMtkBVY4qxGDEaVj1gUiw7FQM9vi1INjk4IbXXOqaDOZ+iHloAjY+OQo0hDf6ClFsIe/sA73IpH7+9n6bMkEyGfcWPk0UwzcPsEbFYUYFDRqkH2ddk6KL05RAz5RYS0p4n4NNkwtDnrzKRyZwSyredefrFIA0H9EprCURxK5Cl++iiKAr8KfOXmuRMA3/6pSXowDnH4/u2LoW0Bszb7CdHwDtD/olC0UxyBdq8sxrDgasDZ2vdnjXs5RPLle0f7hqKMu8+QTiQFNArv/XXLjYC/br+D8t/hURfjicjDYWR4sFfiYGecDAviw0EjlxLRqSGNoCn1YagRuHk1+FUNZB2TUfuiGI/+cjtZmUTkgnLCk3X4nAzFyYt6idciUOfAd4UmgzEYYd9keWxdDPVDsZ2hlwlItjlb/NhKE3gd9Yh66pEM818sP/PQRyAriZqD9+S6wJ35+dGYKqo3xWW8c9yMQx0hZWZMtMOQNNjAgROphFNVHRFe3QT04G+C/iRTPxQQVGxLlhPh2puQkckODGIo+PV6WXsMODdYpwz4UkFUvXMaruFR0uYp3uaf7SD3myV33iUWshlruXKEqRyr5HxH88AIRH8cW18LRKBoa3xcbJ6AblR+DPG0HIabV9WaB9d8YFytinWS+twNm/o9S2cKGPFtvuf3xEDQZ4Ho6eeh6L5/mbU6UGAyu8iSIaEZvr36VB9pS0B3Hid5mX4fg39DxklnrCpgnAPhZH8SEMvsWT0bzh6IKBkarkn1A5KtqeH1gjhUFrwRMvw5BETkXE9hgjPAckBxSvR1JBJYUjl0sJQMf/YZabSaJcGLTXlxgikO6U3pVnMxEoGv3JWx1ygOdHzqzCZnYtF6gIaTBksfLPwW/fm0PRs8FuXeqHRgUcLP+hddXK0g+vbUv+IhIjgovo58Ix2MCMIqbir3+kFiqflchByVN14Rm5PFcGjmNc+jx7+zoLNOumj7E3X/rImeTFbB6GYfPeW+eSpQFGTEHZOyoPD5lV7d0SjkcOjTtWFbCvwTN9RJFM+FF7+VFU5/i0dudy35xUkUyJK5x8u8PxfeZuAZs2ewKNTJrEweDcKlB9+mvSSr4EX4kbCp6Hj0SVf1PCP9MOSZnxfakaPmVYBT4PVMHIpWcWvS6h0FV7E1++f/IUieVdN3qSKgnhs+lNDeEegbMiH76YcAw/P1BB5qL/8MnSVmrw5CpYFmoaxTLhx9SPr4XC8BLf6XZcj1sA9OjVbm2toUwVta3YKAbRzKOfr+2mxmHETgqyP32bWBBGOrF0teLFo9qE4TfG0UruskHVFbbYFfz5YnnO8nog4JMZmpjBHYehiRwVxWBJthfirSbAmoYDM8Vym+AY56Z549k1cFfot+tS404Wj66G6lJf8YnH9v0dIeUAi6RJFXM0KJaL1EfN/BE12wW3v3Y3ZdHLQr2v5k24lBK4rCMpjtGjg6wnbjbqw/cJR9rTXzCUUjxjOVDzBDMJzivl7LngwO5t60xroE9N7xZfEpzwYo0l5f73BHkCrIe727LQxZKY18Fb8/AmKWb1LKdptAL/54gZV/PKpTDpD/9o4I8ax/dS1GmyH0hV/BzYRItL26r/zBvglQm341TIwnwhumVCdsWBzaOnPgP9maUTiW/dzX/Y8nPPhAOXvaPhG1Xfz6/NLrftD3KMkND28Bw4vMqe0rwcgUsyvJotUPuHNq+h3HG0C3/vGxXrUQpE33xC9Ghsot5zOEnAnNQOWe7/us4hCPSJwm9tIQvOgXj7dXrYWBa3DwLAaHwopYNr56ZgHF/6OFXnIVlDgdYE1+HIk2+zbe/c7ogrFt1KWbRAQm/PVmu2tYZBNMyYwzJkO3cdAtNy0iKLkYhsma4JFoqu1nlDAGBzol2pwYcCB0+ClejjGe6rN8fz3/DIIHd25E4GIdZP/ZfHX5RgLa56xMwVL5ikY+5g37ciQ4+j9P/KOeiIS5m/QMDo+DzwFlGyezOpA8r1lxMzMWGeWW7xM+3gvf5Usrv7Hngsu+oeBe1VikstN/TP/VOHjb8Hz1bi6F2aSflb4nY1AQizlFbGQQ9ld2C+NXG2DF6m9m3w08MlThG0lmHgPx5aWkzRwi/DU6yZL+gYDOONv/Wj7eDcEtE/xN3c2g10WmU8/Botduk38Vn7aCGq3P2wInEuxUqUcFPYxEXyh213wsuuHf5cV5+XYinIu7fPTyGywKupo/dNOvGywXDhS1U+oA8yZSkJ5C5SKlkSWdv6NwW6Vg0jWJBH65M3wJW9Tcq+nNCfL2hdcrzLAqUwCPYoWNlKm8bUNzqXD2dz8kW2jZaJCJ8F5RchYjSkBXlWgZBWLIQKJPzfuCRZB2qyr9LZWvMM37tErOtYGj27NNdh8Ez8xsmPI+hKJjBgTjtzQjcLdjotdMIAGsLVifZL0nIFGrTqxz2whI3nviczu5HqKju1swN6n/898o/SqVS09BDd3tTzngxYNne3gTh7xlo90v3RwAWjmZaqdLtQDt6Y/J5gSkGSRVaCk2AcuOU7FL+zAQOczXPdyDRa3HbOLZmCngVvLE2EfHG1R8NN/pdhBQ87fvKV6YHpB24Kw30aiBRqHtM/eZqJypu7Mq1EyBG3U20wuvG6k9yORlvxSLogipl01LBmA8ZCWwObMSVpPp1+FoPHpk+fHOI7UeuPsdq++JSwcFh76hEq94NGph+GDtbxg4tPhJtxEKwUeoItMsLRzF9AVltvnGgOlFh4fehaXge++iq0h7MHKNPfpCgX8QXh/f0efJbINDXQZ+aXME9PFDiDXtRRJEJVjnieiWg2qGlbteSRR69WgnOuDRELgI7HeeQmUQ/N/fHJ1PGCTztsoz9UQRLNFUyrUqE8HchN5z6mUYel8oz5dFjIaCRzc9d4M6Iec75um1Oxgk6ZuhRKByfrn2b9ZSmw54d1lI9EIjDkkVPHEy9CWCJb2BEHdfB1yfz69l9MUg4f7XrRLUOd8cGD8xdb8S7Lz+O1ymFo9K8s2O3WuqhYaAbg8yVw1w3HAKG+4LRZ6ChcSwu93wx8zk4fLPLIiNfbKkS+0Fa1Fesn3lKPArK/ZuNrRAl/XtVS+rBPRcl1XBiJ4MaRY3mojny2Fq2XWK142aP5UGy/7ZoxB4++mJVOsSaBE+dIDVIRFxM/D0LQ6PA1nZ2e7RIQJczLnixnWbuu9vF+/MiY7AX+Efcl8yq8DjcMept1TOYXumEPbg1CD4JHG3T5KLYFT0eafuPA4F+ZUtpSsTwF6mWZohtQBUj7vx0UjEoGcEj41x6twKvL/3gbO8FnyWrzMtBoegiYUrHZ83quHwxPah3OdEIAicap1KDkWlHb28ydgRMOWZLACRGlDkmtkcu5eIjvvJ3Bj92weKa5orr2VJkG7rOVTpikUGQXoZJ1ibIfl8DKf+jRr40Fxy+vCvcJQqMZ5/mTIEdrGHjANLSbAyuS9/gZuADB3EeS3ZuuDin8z0duYOuMb+UWnqdwzqyGyv3qsiQ6dbkZCVLRH4Lwfz+swGIy/OnMnd1B5oXjLvCnUhgdfO/BXP5jiUpR8Tb64zDndTOncSPGKh2azu06crOLTxyR/z8RQF4tqT1kqLsoFPw7p7leqVSkz0zg90RkG1ptJ4ocgX3PabGqwfIaA+/LMdJpFx4P79/sI1kVaQ5IuOeReEQ9Pif7GdJ8mgfJqedriOBJqhzLKF1Hsw8ML6xCyPQu83Jsv/KA1QoYO12P0UhnpGlF6N8eWBb6Ia7eWrVJ78TFQ/2x+O2uWyPycZYqFwXjgy8lwHJJKvb1aUxiJ5MeUplU4KhDIVytzHNoKk2nO5of91dN7hVL//H0epRBKhVFRKFCJklHpRMiqFUIqQVZlJtqzscba999573Y7NwXGMBhFpWOFjVcjvfH//nuvM+37dz+fj8b6u93V+YtFZg14N2/MtUKTiWHtxuBoeUmVURAkRaLfZvpiKmmq4HHns11ZQBmBtjd+qd/qjiyYtjka/+kDgiGWmLlMpmNkVCBS/jkLFFsEPbf5RgZUnCGRccdChGPCEtR2PsDOMh7d9qUBTia0okIqGKNX/Fh71h6PDFpv7VoYpUHfO9d+B+XR4MZSSIXgiGC0IvwqmxA7A2eHqJpneNJDiPKvx8F4k8qwf9BmvHQDsWBDz1SQf0M4RxAq8wSIb+003Hv9YiN+PvMdm6yBoJjuCIhmG+Fzq8d4MNfAhmtglM44BtTPpGoZLQehUEwdrrnsPXHzuVOXAVwipdz6/7g8kIe/amGkWW/r83LXFpU7Re7Pnc3DLXBh6Iqg3ZdbQAQUVtGlRSg04ejx6e1Kbzs/PIynnWnJgYsUfin40QvrJP1tDLwMRV9QlfQ+mLgjxPHNqM7QethZlyLfk6PPgxhHPZ0GBQKKixTdsPVAWB2xfsOERTfaNMb6VAr/HEjtqSTlQME/RvPkOj571POgO6+mE4Ch9/oHGdDhsGmy6Te+XL2/Ja85pFCgp8+9LTSaD8ePtL58rieh5ne2u7uwBMMk7kvUxoQyeYrY++QziUGLlV/nflp0Q96HwbEplHsg/OPXQv4aA3I6ZcM2oDYBaWabD234Ep2RVbxGsiMjDO/njUh4V4tYvv9ltRIYzIjMm/v4kdJ+jcF5OcABCdEb3JTuRIW6FYSg7A49GhiVS2i5Xw9Wo6Pjzv5JA2NCLmpwQhOoXaictl2gwlnSoPzGuFpyKPzffZMSgr9pb0j9MB6BMn/mkpWw6SLrtaeRPD0AMR0aRZWE3SOVq+r5pyIMn7QMqbOw45JWS/jsllALk0/JTZ/9VgASbqzdpPwnZ7GHeL/KpC0SvKk29DEyCCZe5Wj8GPNL6LuQZJFEHveOxF9blMuHyO1V3FdsQVHDN4ciHohbQERasaKWUQsC3wpzWx1ikZ9WQqSRH98ckZsfHvrWwPmTh+FUNi7jFE8p53pPhyj2xrW2uJqiMXuGTOOSPHvnwfRaUocLV10xG8jewIJP08haeiYBYIzkOmSk3Adn5EmGMzslnGC/s2f87DFlPCAZ/NU0Dj9xPXvLbVbD4pEniklowYqmX7ja3cYFD9xSPHZVHMFaPM37ehUHHjB6G2iVWwITiQH0W/XXBy2wFH8MC0UHbEt65n5nQMcS8+E27AmhMEk5CLEHoGOd0BsF3AHjPTbNV0rlic/hw0TNuLOrech8R8C6GkVebOMXpdBikvDZiKw5A4pcPRtqL9IJ1xfY5PgUEB7fe7qXci0IHHx/3mPPoh9jdYkpVcUHQFeROkIuOQD/fjac8kauE7raknwai9fAg6tGrC5WByF8rY9CFZwAi86QzI2eagfbrDbvachjyPPeh4KEsDaIEjP/97ayCKvjGJmCMR8X331qmuLQDbvl1hFkjGVbue/cmmuPRV5Env983UyEnO8dAWzwZfI24xDikSEhcSoTcZkqFzd6XbBOMlVClOvd2bp6EWP7rY/3eT4GMzMpR1Z5ccPXcUYdvRHSzyoy0hiGDoVfdviKXFBismS6uzMKghJgEqTrGQShD30/hb2RCD8XVn303DlEMzhnGUl2g47FDhOueCmjv3crXLMOg69qvHZXsu2DEPvDwjjQJRnGzTntOEdCcUWiyoV0rcKi9sbx5OgaSJ454sX7DomqH7z6uKt0Q6fvK4rp9M2w0Mk3VvSKgvoYT1YvTfbC/neHM+LFEyOE9ap+/RUDftVsWbgW0wmUdaWOd3mrQGLLYeJ+LQZw8F9+151DBeINfJeG0H/zi/PV7xRGL7FPSQzgWusF0T9En0lQJrHebxOc/JSHGlsuRuMUOwHwJueK7GgKVDp83jIMICH+0YftvMA2iszrHlDeSwTmeWZPBBIt+BN7jO7xMgZDO3O3It9nQePDofHSvP6o/Mnlz4OAgFJ91iX15MB6WaVxVswQM4iYUHeb1w0KZsZ/gnbfV8PsF1ZSCi0Ckbf7wM0CFquXusIvpZSAXpK39L5aAhK+HVg6c74a3ElEmvsdwcEJK1kOhlICW6r3WyVe6wLf2iGUDmQzxegFqbMpEFNRv4fbAswaK8keH+2qKwfngPmFMlh9ifGvp/HqRCicalUKc2EtgczkyA768Q0+CPhywPjAAi65YfObHEPA8bZ/s10VEX8aV9i/c7YbYtd2mLGpk+I5NVa76iEXu5bpZF/n7oVLMp3ptqg7cLX61P6bzNvGZhaWLMBlk5CaYqAnNcGVff6OKMgal23Tck/iXAZY3dAYjb9QBaa1c6NWLIHQ/K2kjeoMKgxGuOXpPGkEo03a0i76/nzsCl9ve90Nj01lXyv00OHgQftmJ4hBG+nW+OEsUFH3WDuFPz4XWH2MGaSrByFqIcKo2gQpdi2/Uqz+4QB3jwKO3eBLS4qValM8jUHHYexZHrgemeVuTnfoI9CV85TSuox0cZ2+cy252Bi2RY+6b2XgE5xiDMR2d4N9f2To4FQL8GvW6sx/wiKsiSm8nsAdCPCwfN7HWgd5Y8YOTMwR0b4jnw126/2gqlexEzyKQIM+ZKwVh0CWdl46rfgPw9SRpo+oYgtCC45IimwSkdE2v/uTebKBGOH4fI9DX88ZT46yCQIS5dXbdKtMLzibLB3RJ5UD4o7iXTvzhKDycxhqyGAqOTzLuRjlWwVdFP8OLuZHIY+GX8j+6r7KtUyf7pKpgWVXi0XBnAPLdFv24bNMOCx9c7fC/auDeMI1n6gEeXWVyyPvxiM7J/5nn33lcA9W4LTaMCh5dnggTrNybBbJvlwueTb4GLvfcK0rBQSjVV9qzYLwbbnno81z7VQ9725pfHlYgoWf86zd0hlohVZfzy/zLTNhcNyt/YoNBUefOsdBudAMyGVWu1GkGXnxrmRUbCSmq1Qsx/CADm1cNL2dLNXh7hN9tzcegH26ZqgIFAzDvM8/tQu8jnYc5yUwVBETrCuoWrqXBnRnDGcuBPIhoYVaxfoBDdek+0l5UMijXx7cmrCG4fUVivKQ7DIm8cMZkN9Lg1FrWqkYp3Ud95Tq72uhegzM48bN+AHo48S+nrcrgtRLj7uV4Arr87de4r1Y/aH9IeYwKm2E6sfAX25ModGxJpzZetBMYCMmRct+boRvHwcsZHoacfy/8ot1sBBWG07FnD7oC52frj8THYSjQYpFyL7wH9lakMUxiXeEgf1VO2kEiapOb0MKaUEGMzTzoZhoCwSecJe3fScj4K2PtUE0/aCazU76xl0GJIebrH4dwpEd7fui6Khk+1fjvuadcD//mfDZ9tTEo4t0/46kRBPxW5WV/3PKhU118gb8kArnw9NUoXqZC4bRB17cUMlycUUp3DCGiq09k92HbB8Cr8qj7185G0FS+IKyTg0MfTzj/lDXvhD9PXqr//VcGwtlRfUc7CCgwyPLj0UIa7OG1kpWXT4Wkgzee22XhUNmRvVKVH9ohU54Y7xZKgEfhZJ/9mEj0Vqx6TE/fF7ILFHOLRIvA+LtJ08/WUBS23froUywFTA/fXi0yaIbtsLDAl4P+aMyEZzs2JB0iza6altilAU9uhInrdBDyERWoUTBqAGc1rBYtIAw6Vz3KY/z90dPKTlvDV1SIeE5OE+QJBZpgStD9JhKa3OZVcmyuh5ra59oXA2ugn/mg78TTUMQib/lraK4LdE9nfMvzpM//gfM8GAMcer8WxNj0rR1CKo/5L4lngW6SboFOdhBCh1V8Y406QVfdY5pPMReUePhZqStYNKKXsn5EpB1yz43mLtbVwmCSj89dGgatrvdVOzohGP9tVHHFHYH7qN7Gxc1gpDaoaZ/q1APntfYVtNY0Qx/7pNivRBI6MVyI/62ABWKTNOLoyoOAbOsk408RSKX02FplIg6y/Z/9lT+SCOpdvqulkhHIh73a33iMCjKi3zlra6rgfi+guyIkxPHMkqJ8Jgpehzz7c1jOHVbi0hSzhsIQV5GhvaJ+DzQnt//gOeYPX54fGr66hkXMv70yU89XQdlvp/A4xXq4FpWjfp/TH522v9925Uk7DO3WkR5Eb+Fu/7QEOR6LsrcY250nfMFnLvLIvF8NKAT2Ct+TDUP1vaQVba1WcE6aOOKsUwXYy6HJ9ZLvUOfrtvUTc80g1M/+T8uwDE6ls1wVEQ1Dp3wX04Zw/YDdG8zCS/fFO5U9nbG6eNTVp3UkcZ0CDKwBprv808HwhUjbzl8M+sY+aa3jnwcoV/zfT6EaqOGMOGx0g85dmud+KS/QoLEhaKbsB/28lM2OWj8IR9IsrQ59ozRQz0qN20pAoCs7MZS9E4y+fv3FadxL73GK1rPLmEyQVJ2NNsJj0I1VRY7Bw1R4F0jctRyXCOX8p5w7TkWhH9GtzPWaJMhW/JXad6kSOAukWu6sB6FdYiF3OOlct3Da6k97eDEwrU7kND4KQVl734/sYhuAKGOdkGfizSBxYt+uACMccu3v8clvoMKX+3FP702UgIFGVYoSHxGVm3w4J/akH3QJK4zZqWngblmuK3M3CvG/3H4jINUJv756fKJ9dYaWh0vzVpEEVGi3csafaQDQ7whrCzF6v/cz8q5/JaKhhJwP51ZaQLkoFf+mhAwbm6HNznFY9OpmQqPYARrYPzj53SrbHWLLtjp96X00YqfNxyneDi0uaV4HBYIgmnfse9BVPJJqEs36ltcOW7Qw4YsULzB7abbqnopDEZcqpsv4abAzp2TyYKoRJIlo/LpiBHo0ODYcO9oGSXvm5rCZ5WBsFjXFso5DxhkXav1f9MHiR/fXRpJ4eKfe+crDJQpdGhhombvUC1GbWfX87NXQsadG+C+RgMLjDlwvQ0lQbS+053M1gm2u1c6elRBkKronf4PcBfIT58X2x8YD34UR7g9iGCQqzS9K1e2A+mKP7EMdJXAj6yUP8wECeu+TH8vnSf/cA0ctcU7V8Fp0n9oXbhIq7M2UYCrpgbNZZquSxuWQhmykvPJJiKnXeGX0QA+IzBCYxA1qIZCr5slNfhyS4N56su/xALz/6zTE+z4LarxRdJkDEUXJjE3y0Tl2954H1JtuGNhfe7I/3w2DxHyiyvxZemDkbhXTvfEKCFVTxoUn+KOCmPKpqyfouUH7XsL0Mwakn+s4uWMJaNXOYX65txX+kfUzCvZXAeuzwH2zd3BI0v2Z8J+GXviLahQsGZIhP6pyttWOiGwtae63HzeAq5XDTfHNJviqNfRFIi0Uqb94Y55t1A7zCo3BzFOhcJ/xICYoNhitD3LSXCppEH5Gvt41qxns5+5iZtRw6EjehctnURAI2c8du+xXAGmJl7EhezFIYGpm7usuD8iKwxrvMS8AW7LBvnkSBjFddOv+FVUEfPVpJwasK2GU7bc79Aeg6vLd98819MBBt44+jFkhcDBmG2lQsEjwSCel0IoKHFyfqzLP10CwTEr1MeNw1Diu++Tkgx4484IS9neIDDsjZ7l7UkgI8yT57OJNCtSc7JFjZ0ZQJzEnfKOKiCZPeNHqTXqAR7rXwtcjFk6Y43qmgkhImHtt40B5GnDvU91zPSMfuN6uWLheDkZLXYFFryt6oLxJy8bUhQzCexzKXvXgUTJj0DBrexcst41dOS9TDN//e+TJWEZEdzPZbkmqdMD1A9F390Q0w1iTeOxxFgJ6mX+w/OObAfBXESupe5oHtdkLWN4wDHqG5rjNJwagbUBqg/9VPMy68uxbKfRH2v6mOW7BXaBmVbFkHlsClbkxjvEMWES9sa79904H1Nzgmko9lAr6qxn103ahiNB+R9DiBhU0a6rOf0lthl0R3ba/3hBQ85TEuKVVN4Q/Dg655lcB//mxqf4cxCA+k/S7mrVU8JbYsF1nqQSye+ywpQUJnVkftDpBjod2z5Iy69V8CDI/gJSy/RC/W2vNb9V2ECa9n7pyKgb+e6Z21lIfj9ajQg1dDbqhJnyvOwNjA1Sw7C0YjiKgPL68L2KdzjBwLfhKbl4lsPVdybnWhkEONAXV5NZ2YEvMLiBLpIE9C9OTwFsYRC39J/foM90vXvDu2JSSoGx2Y0FsiYCcojRWlPXbgXfS4n2/VxF8up5bX22AR987P6vyJnbAUOr6wZ+BCIwUjjhzxOOQaGoL9wAnBQjxuy4lCFdCEIy9cnDHoU/nPE+dsa8DqxQb9eMXY+Dt/kF5P3qu/nj5Ac2rN0PBpYnrzdJVMHtj0+vnYADa28lbVPiZ3iu/Z649JsRC3Aec0jB7IIpem+TFeFEgTqf71ENeMpxgCubfUcMigej9VB16rj6prbw8iS+G2wOWeHm6H1Gfal65L9sOb+QntMEuHXy3ChlOhWNRz6EGx1f0Hhk0k2+reF8JsUnSsmUhGHR0zDW9vqAIOgUHNzdelUDLhj9s1QaghUaK3n3nLlBgdks/oVMNlBeDVxKs6Dl/KCzI7kAnHHC9MHeWvRy0W8X/OPOFoQUDHdFn12mwlvItR5e/Dq44CTxdv45BLr7JI24X+wBnaMxrPVsMbFPZPhMLGDThdY+iUEKB4AT7C1nazfBv7/byxjO6r7l6aue69UGwYuS2DF8SfFOZbpF5FYU8ioTMnx3thalx1zzenGaAitl9qfMhaPL64rUjygMQoPUufH9nKXhe6w7iuoNBVa9zum3O9IA19ubGp9cNsDE8+22dg4hwd68wyeZRQXxb/c4xrSA4N92gLpgYjoQeflB+/aQb4k+vpT4cy4AK2crMxEUsyjqxpKF+shYSj5qbAlMlLNGiFnm6g1E7LUn0qwkGIiZJ/hb0nEzq0CQl/Y1Aixl+TU+506ERly0q+6MYLqmPx+wXDUbf/tiONT7PhQdOrVLe9SlwvvaxZ9jTQHTyVU1zdAt9HyXGxfHuRNiTec/Xid539k9l48OhF8SHHZQb23OAb1r1acPTKNRcp3xwfrIcfnLYk97oYOFL81vdPW8CkSNO5mmuKhUMY5DxrK83MFn1fTSyxyNa05maZ+KlkGW5/UElIwx2QO+G/XAAOtLGqLmwG8HBQCdn47YyqJRkEQomhSMbeeZka9E4mM1R2mUxEAh+XVxPRk6Eoa4H5iEZxgOQvNfMaPZ6ApSQItw3ZvCIMH87jOtsF0zfvvL1J7EZrHv3U11CAlC+r6eM2QQFjmXbVC/vKYDFNrlN05tR6JfkufeXp1vAP4vtxYNLjXDoPhPvlWQsCtXNlrl8bBDKyXJvkXcq5ONu7rHewqIv1ZmdKlKNoMPKM/TlSxYc2fPl/FHJMFR4+03RWUI/tH5ucCxLSoGq1ZZnertIiIfkaEk0GoA/BvHGDBVRsLJyiTJ8n4hOjyp+aqQ4Q56L/L6RiBqQGL6PJ1MxyPI/ju9P6DzT/226K7S7GLg50uNl+jEojHm4Hs/TCdGWa91uR8rAONz1WkcpBnFpEtqpPBQIQPssvJVq4F3p0tr/7r/+eg/bda+nE95PW/XtOUOGKWVZo7+MGESw0cc5XO0FocbBJsndziCBkTGc1YpC5fobalyNA7DuYDFqHE6GxC/5tFAqFuXn3nJ1ONkM91QfNLUMFYEIx40YaYVItD922erxfTLccCQ5jJiTgfG5w6MlqTDE6l/5qHWzGMo062ymJfMh67OA/qmuAOSMz2xPKMiGDZma5pqSKgitcDgjyRCEPp5O1/l6YBBUR5mYqvK9IH8/s856OgZ1kXp6/npWw6WLWbsznxRBd+Shsqz/XV9l7d1RbmiBBpEwEd1/TRCqmM9vrh6BONa7ZBhPDkKM3wEWCr3Hw2WKRP/4YpFObrrZ9d3tYC1rOmoimwXBEfPPHrpEoo8Napc4Vikw8PU2B8fDMrg+pZ8vn4VBjngHRz2WATjFfRa7eq4Bav/pin98hEMBogWdroLN8PNrn/ZsMQKF3138i6cj0QtyQ/rU6S4gv+9MvfcsCpKFA7X0rcPRW/XPDgk4GijL7czGnqNzWkmm+EMzLBo0J7kNEtrAzDj9qFcmGc4vi7142oND/p9IjrVMLWBod/qTTBeCJqNzPGgPFiXPiTwX2EPvfeWZUnwQGUL3VRCf34hC983cXMQIFNiI/Ji9X9wH9jwhW9qb4NGtT038texU4DVkujXhWQH2l295D1yLQlsjCX8P+fdA3NfGYLPOZDhXsnGG4zoO4S6MJOhyloCjfOj7lU9k0Dg1s8v7cCCSeiRvJGJJAcm2L1pc+FqQsfyDPTEWjOxPm1+aGW6D2nPcj5LLqoGoAixDBCza9Pih3VHQDr8qlU56ehHhz/eFxncqOJRTFT5Vi2mGkUnFz5fEqmF+f4di03AkinHuyqgZ6ICP9nYFfEezILaixNw9EocOsVd4kb/Rf++7KaqDFQHco+LP9FfSPYWkstvrejsQM+Tk8oixwNJ/k/U/QX90u4WxLdLEG/T+CZ4v0k6D87KbGqW7wlHJnxDTyxfawSxNbsLvZxlYuoj1Xl+MQCxHvCYvCcTCtCjGz/ROFFSo/dNpXwhEB3QozBx6LZBd9HwwmD0b4nkZN3a8I1Bmn5pqQEo2fFvLJfKeqIZsp4vVSkO+KD1VpMWUTIH3DZ/vlzEXA8PSqPamJx4FHlx5+tSuFxRz3R0epxRA1kOZfZFAQIRIPu/R7VYwq2XIVEwohGxpv9ei93GI/b3kxWbpLig80DjBsvoGbr8XvP7aiIjOtE0mlW8i4LvGl3WrtwTMYsLLJyuD6b25grPsaoLTH6+YMj8oAbVmzIW/RwMRh1fzX2WxeqhkEvOoLWyGoUEhmsHnEPSq1CrOXKMPZh+kJVPEK+C+k2Bg6A0c0n5uVL99tAZIinX1YxoIQvp9WF8n+aFJR8fF0mS6P/vFJOd714M1622uZnYM4r4chLUooAElQbbC4VYpfOmU9jmWj0P75noiHLNo0Cn8GSyOlkP5h+9/1KWCUOWsmW6GAxXeu29eE4EK+GZyLf/sLSLqGPj30/X4AFQFDFR/XMEAQ5BxcykBhxKSG27K0s+RQ7u5l8BGNbBV/uynKOHRPYy6yOsHKRDxdCpD91wEtAvIOercCkFlChbz8cdaQNFUuwsz2QSb078I7TsYdP55z2+FzGioNVPFM6w0wwWeWvtfCWHohnHPs8O6VXDqYmCBzoFGOOib4FNrGoRE5PZFDHFEg7dp5gs3CTJEDn7Kk3YIRNryNzNoco3A26is6JDVCLpfbZblc/3Q+hQxiIOMIJdv/YSudBp8vNRwglgegeROnREtutsHZ8r0La3o+/NKW2/U9yYJ/XuVqK+dFwwPnfmOGZ5MAqf4e6OJ9BzGswn86F5oBXXKFw0Gh0bgzNwb3HAbh/J1ZJ0KHlHhTAI/e+LeUhi4nlzF/IuE/r78sz35ogcqxOtmO1ezIKpz+uHoKhZ9NKg39mDuA/2Xtr/nyKUwaSes8EqWhOSy+8JmOTDwuGc+gjyTAjs3L9F8lIJQSpiOR/KbTOCr4T7Hs5IIRR0T/Cz0dYhnxR2ty8qAywdl+RsLEDxhvdbSkxuEtsVTrtmbDkBz4Vw0jr0EDtvwnRCWJqIu7FTLEb8eWOGTKvzwGQtZlwiiyrcJ6LxuWPe9qS4Qt5a4drKvHJaEvrJuSIWiNql/vxi2G4BZpewsn1kt3LJxYWBVCkPfOSMjI4UooHrm7Ae0EwfR4trEHw7haPaFaGfHvlY4EChcNj5fDNMDOsz98ZGIyWsoRuhpF1Qscu0+t1oAayFMH3YOEZDfLr3fQ+btUM9XYGBxnQxB+F2Rf+n8Ix/nO3Hsdz9kjuuujBU3w0Mwu0IuDUd20/k9N/r64VFHmdmuYwQ4zWn9B/hIKMFW1GTnbiMkabnzSJ5uAt+MkWFO3yCk/ljw9L2DFOipiGTzJ+aDYjNv8Mwyvd/fHK4Vp9JgckjXsMWiAh43HVicpPsgi+6Vr2JzPeA1sObbh0+HsE6L7ZtaRCR9MDxD7FovrFiIlR17VgnbSzXS5GchqGhUILn7IBlcoh8V8W36wgmO9ydTr2EQJibpWe7XXjiMIq6mGZaBXNcZw//YCajlqfi3uOUumFMiEBh0cbAtH2uovAuPjIYfn8LeaoWWqyKp8m0Z0Gxtfpm9IBT98tqyUMXg4fh8k13ApTq4JynvLqcagfb1v5S6vaeFzkUmjK5bRIhcFxJs34tFGlr7YtR+9oFA5IFHvBrpwPG2QI24Oxw9+PDm0CuHPghdeiQSHd0I9pEF3jJ0z4rJeyFZJN0LWMof3tpXjTBV6bdz0c8fKe4+bupnT4XsQx3NncW5wM4lbuzEQ0Bc3vxFX6EHuOTIX0v35gFTr77kPeMwlHDl3NjaTDsMEX9RlH77wz0XFk0RswgUhin397vfAo3lDyfcJ2NBzdlNoCOY/v0FXJx4vlBB/RnxaZZPMlz1NVRxcA5Fr5g/5K85dcCVTb2fB7vJcHRca1+FFAHdyGm/p8TXCnac8bivdC/YzPm3lSYZiWp8LL5E5NIgRUX38IPkRuhQOpQuk4RD52e9Pj3taYQJMnYPy59EePTq85fOsDD0m9+tQNapFaSJ3ykMscnwRqE7mT8Ggx7sSES87a2BSBR44To1C4zeuWjEpAajLKL1pLd9C6wUxbxQM8uCmb+rEfLKWLSwtvh26zQFUg+Lbb73TAAuimKXUDUByT81R1MSfdD4Yr6Q8XUaYEgrBv0eRMSQOt6WpEGBJ2VaTAX2FRAQ9ceB4VAU4m2RTJNZpEKZ4CppB1MKLM3iZRnCBDS0RybTbKkNxs7OnyUqNsBV6cCdxfN49MOCuEdkvg9OcM3pqkdUwlHCt00zurfOZl8Vxn/qhoUBvUPPbSvgeIebBG2ZgBiFpqPHogZAYpWyYfwVwfSewuqMMDy6tOnAve7TAmT8EY/L+DSgOF+SYBmJRPXVl3u6aTT4os85TPjuC5shm8UWxjiUu5huNF3WC+nahuy5/nVASe0SHv1EQJ0rD2tOZVFBn79HI2m9FnpK0thNjxPRByHtY5rH++CS/BJW508lxLfjJSQDo1AJbq+z8NV+YOZ7qbggmgUKqvqdEkZYJNj9d392Pp1v2Z5cvcQYByUP+Xc6baOQlJaVk/JWE+jY8brxXokDgxT90yYJ4cgtwXqvbBndrwN793nsL4Uw3SPExW4skpc0KcHt7oD5NAPzCts6oJ3Poq8PDmkdn7FfFs4BoWnlZo5nJYDfpgkdbAtET65a1nMZpUInMT2XUd0TVPC513Ing9HbuUWfK28G4GY52enVvyowffeeWfMwEemc0ndMXu+G0o1JI08bHFwjqNax2+GQU6HMhavx3WC3Ldt3Mr4J3iakZV35RUCyArh45aUe2F/GZPDAtRiKNRttX1Lp+WP/6Jh5DxXqaxI9ev1zwSgPI+2hRUK7KNid/OQ2QDnGwvf5GmGkd9xj9BIGcdQG5pSdaIP6dspU0P4muELbaeEoDkdaHlM2vTED4C0UE3TapQ5GN5dn2Znpz6+ZNHqUTZ/Dq2qTepw4yOBMpF4RICJf0YvppR004D2tUMuFiYIRmd3s5xZC0LcfQq1FP2jQfVKhH/VnQGX/pXRX7zB06XO71x7zd3BitIeJdDgC4ntelUx3ByFvooYsTXUAOPfmeFVzNwF7ZlyadjsefUsPuH+Uzg/Ur97hImwIxq4M/3j6v3nr1Da8HNkNsyGxBPzZZmC9sKqSZYpDyh8EFm3sydCVeOF9rksqkB48iBU+HYEkohUKFbsCwcuGvUnhaR08HDgV5+8RiP79YfmUu6sMEliv2Rg2JkGmWPUzybOBSE7qMFeaJg0qNkIJ23zNUGJG0ut+gEetXizZmsEBEOD+JvDhSAX8pyrDGboWiCKAv8Jr1yBk5zGp7B0LAPPZEKGypAhktf1aQ6e4E15mSVrcZs2D73btj17V4pF+SYdKsVQr+Ip4CHrJlYPnn0LtvMJIlOOUbj/BVgrxt5hpXt/KgL8reyxyOQAJrgzfi6rugR/vuMQwLs3wY8Rx7nApETmlkni/r3fCTx2VPknfWvh87/elSwlYVKy1W/PizVZ4HXjuAuc+MvzxjK3Dvw5DHI4LlUYJ/aDw68x5Z/YiuLst56DWR0DKeRUyN8c74E+3Q5YFexXcXrnCGtuAQZei1hiT2qkgUvnxQM5MOnSwfIwNf0FCyHlLqVmhDLDUMfP9djnws9DR0ftnAFrLzu0qps/J0AG35+H2ZRB712Upn5eIxKsdO84H9MD02fvCNh7JcFS+y+jDHzxqUJzaWds/CKz7+3/dJpChVD+vesYBg65eFhxlWqHALYnzeYTdmeC8mqj5fR8RNRlcGDnEFAPO1vHSvL4FUP7K4U4BKQz93JgpU+7rg86vlerYADIo5K/usuokoAc+YYq7RluhPIfyxtKnGNTctdZ4CBhUPfXOwIqvDVg/Sac1f2uGma21musfg1Dpj4X/OIJawe1c8IUerSAQnLGKbD+LQ6bXGQbb1loBWyVrXKDvCYMxfjVWljj0+X1ytmxPB/zlGnQdCskEnON31XAfAvr5bM5d060J4jcCGDT+hILBTNmHCtFw9NR06JbRBg1yS40CwpnLIfr8zkYake77zqDzUmsAcp5earCvyoDFXjZbkVk8+l6TtuS0gKDNSlXuw10yCKTY1+4LCUHiCUeoLh0IljI0y+4WEcDDZRV7JDUEdeW/avluTIY32W68tXSuCN/9BYV5YhAXlanjxYozFA3V1YzmY6BDXKJIGmFQK6trmKYqFdqLBieKf6TDRu3xyWsi/oilQUfa6k0v7FwjTnirZ8LQsoz+3k945BxvIqcTSQWjXYSsYLovFH2aw5vuIaLVA+xbwZP0XtiZWNirXAvcHS2ODVgcevbXcmB9vBdeP2K2uNqLoIrY3CbxNgqxip/bmFjshQG3mIDkfQiIprkH5J7Tfdb1XcuWMA0cfretjteQoRy3oiW9jkPy9oXbn/dTQcnK6R7qrIEKqxvrS68ISCBdxEVgtR3OpxDkVw8jGBoNWrxD9wLbEaf3w40IBr9Kr2dW0h+v8J+xd/ND3n4TQmu7KoFsxTnn8l81CP36WD83EIiKhWJHqkKocD7hJqFQvxGqOFfXZe9g0b2pyO+mHV2Q6mJ4+oEnAnbqjYjnLUQUdIp0dZOjASbPT/ZQjGthXB0X6NIYiGIYSiWGgxrBVkd5PKejBtqtueVx0v5INLbdn4We+/6XPA1P0L1+TVTK/FJaEGJh/nghLL0L0u/nPzUeKoE10/ynp18SUP7JnN5XLb3gaZeefEomH4azi3+k1BFRhtTM8emXFJDX3nX7SFET3Pnw+zePfjD6cnuk+0ByMEzFfdB/hK+DCv366ZjuSIRdiPLX+zMAQVXXvRWic4E3a9EuTYiA5C772J7jawepxsn/rpVVwimBy8HVGZHowiefSYxsPQQNHBKZKsLA2zhMDAtHKOI+93sbb1IF73VfFcq+JYPh21W1Zf0gJJ1e0WtzngqD7zudVg1iwbMBo7Zug0EbHKrF9k5dsGB61NZ2tgl8nk6KKvhg0XzS+NUzJ3rhgdvf3ySdGjBP/Lkl8SwKGZ2xfDJ8rB2itK42nb9fCT7P038oKOKRo+bXL/RIARz3KIY9IgHeSf3dytcJQSoD3a7MF8qhaJPUHa/dCMb/LZUWiQYimcOfs8wjeqF939Oh/477wPO7x9nXTtNz4L5Yx1tLCmhwcK9aLJX9v3e7tND7lLVDSHKGAu1n5s+EFmSBEz1cmA9HonSWa3O7Fmvgoll5vXBxJZhO5IzetPdDff1MYrJ8NPA47n1M3LIcoih2yUqMdH8ncWE/7+qEA9NKxeEelSBEIGLtcQTUjLOLdDHqhQ8/eSJ26FwggpqFaWfwaK2n7NFFkX7AB2lPJ+bXAP5LHFd9Zjhae1UQkm3WA6PFIoGeZXVQtCdUNrmUhGQY7xA0hVpBwmd66KaXB2wlGh8RNMGg2imHxT9r3dD+QGffZgwedu9yqhM9EoK8HTTeifEMgNby+Oo53mbwOWR7SE6WgHY5tSyRZZtAWI1f6EI4GUoiRgy9V4PRztDF8d3tTTCqMZIZcoIM5ppLnq2qAai7Ntzc0bkTOvs+fWh60QCKyR1+ZnQOedIWdqworxzsdAL3Zb2vgAYhyjaXSiA6KfxY985IJ7Rx+0uwBiDwksnXPCeEQUYppV5MBV0w42rRpOFBho8OVperJ3GoKtk15XdXPxx8rMn2ORsDPISh/nxRInq+f8lo8n4v5Kl1ik4XNYJi7sV3l0Wx6NVXtqkAgwFg8iR9kh4tgJkM+WnhXiy6zBilaFFCP+eflP7UfIoGhnke410oArnmyOiqLfeDNm3XnFR/FWyPrHxS4sOhkpVrhjSuHrhfX3CM+KgKnrf4Ohc4kNCH43nf9EZ74e1nTMt3qAOJyawxGp2j7ExNIr0i+4Ft+3SUUEsjfKRH85IOCV1TDN3PiOuDa6+P9qfKF0M8yYCvNcMf8WX8F8J3mwLXWz/9rRSrAu/uCYOYpxhk8F02wG28En4QfEjXBSsgx92wBrMTiIyeLATiRvrBPeKhfC5bOWQJesctmEehN5EOBTHQBzHJdwS06T1+k3HV6BAXFoWo+IZ0H+6H5gdMDD4+dXCxw7zuuzcR2XdjbQIKqKDwV/2O5b5mQNUXhBjiSMjnXb6QfDkNJj62V0vk5YCpisjmVZ9gpLUUdvTOSAfYNDVdNlFthK6B6JMqTvT9VWNL+zbeDgqRDRLXk/PAWaZavP2bP+pauXY9ybENMm5+f6bmlQH+rlHpa704dFHPncrtRYWfglHf39SGAdVurth26B26eFF10uZoP/ybiVqVdKsBVZzSC1tTAsoxf3bAq7QcOK8kvk3jzQQzDSFa48tAtChzRy3+ZB3c9GVgNDxcDyN/XCyL7ELQ/AIrx3VpIrQyFvQnbTXDuztc5mP5fojK0HTYKmcAHJJ62vt86fyZTnaCiziU+NdW+NdzKtx2uby5aNsEu+QPtn4rJKLqmifz1+m9lWAck85BJYNHu5f6A6UItMPzd/TxUSrsNz3V+722CP4K2WIf349Cy6PVZpZD/fD12YWT434VoH9gK9DqEAaxvBZ8e/ViL9jKeXT1V5Cgjl3rSbIYFp0dVd8bMdsMn7etkhO+RkH82aqxntoQtPBOfXOkPxEmjkvuqEEVHNktNJzKFIr8+sbDtpIH4A0lR8nmeCXUHI3s80/Foy8j0axTqZ2wh6U0fZqZDMGOrkfsYvFIo54okCnWAouJK3KctGawGBiZyZl+h9SZp6wlC4shaHel54+EEjC4vGt1LNYXveZ4l3LoB31fQvNxbGvNwBXL/XJibzDa7WJyXOAGDVw/svWbMxXA3uzRJDZ3PHLbeh99W4UClllzLrOPa6A49vFETz8RTTXvXYy/TgM4nhZEY2yGTlW2cq6LkUh4leNJ+SEqNHqW68p2NEN9gtTDK9JRaDoyBs9E6gaaXZKa0zsEcT3zzuEbGKShk/FX4AURKKQu9du3m0Cs1qD9PoXO29fXhNz+lYOVQjH+F0sJbNpy8Ye+DkSUGaZHq24+8F6i6xnT42Y4aa0U+F0/DBmSGsf23uyA0rka1lOGGHAlEq5/QVj0t//dL7NqKpwkztsXihaBWJxjv8FBIvKSLwt/4jtA90zPR5YRFUDWrBtzPhCOEj+fV8DSz0VWkMaH/WbZcDOc4c0uExySTO5idH2aAoPW0kpK+aWgxynd3CITgv4FYjwtkgZgl4eni8pUJngHWfWP0XNJ9PYjk6OFrRBOI92g2tbC1RYH6zRRHEqtCB7Zau4Aqbu/crkvpcKbQr9x7av+iO3P0d+uOU1AZemWSIsoArx8/TU5k3B0SOliBN/zHshwfb3kvKcQjm1vx0/S8Gg166dywnAXmHtrs0zrlkGUG2VddZKITOL/CTEmBMK1G6nVruJYoL0ads0c90f9f3pOabn1QlDtSP/h+w3wTuOBXvFdPBIZNDxdItoLGw+C2UbnQ0DpU/yIo20Iqu5pvb90ggqqQTXTQfrlUC8+aJIXF4x+mJR8Zl/uBNzm2g27lDIQiFs/v68uAukSlvL/KnQBuXp2obWiFrSOLJ5u+otHy9/vBx7Z3QkUh9KmL8fIEPbZRe+/dwT0KF1sx3KsBEZ/JZacnK4HyT3Ph9saAlDfaaVGxDsIUcPd85phNcBwka9f8D0GPfvY5Pv9Xx/cSzr+OJGet6E7V1JNcVGId/HpdZPRSgj4ubzLw74UGIgD0adFgpBgSZj6s/5eUHhoy3xaOQ1ensz6g9yjkIJUIs8PyW74k5n7Xb2yEVRisC++qeJRhFhkz+zxVBjpy1ESOloOEBvd827HD7lEmqnr/+sFmp9eb+6PYqAcsr7CTH8fPTP3T/enwsAx/PzF5qfNIOql8xAbFokU9BpaSYfp81PRHRm8SIQDmvsPN3/Fo5fCtPV8XAdkW/2+EZhVA7lDzYz8AeFIWOZlWiA9l78NQ98m/byfNqo+rXkhEo3N+8ku3B+A5n3ExEpqFazDBYkhLgJ6u1hk/tJkAGoySO2fdKugoerBS80NHFJ4YR2pbNMLH3eZnY00LYE389MX/Usj0A2tVU01ll6Icdn/QuN3CcQciz+5NzEE1dno1dUdHIQO3SspdCwEU+65C/yPMShfR3Sk0bUHLEeQQpNTMzDIPeJdpuLRngVisO1POm8bN50weNgEKcyru9tvkpDIbqQXpEmBj2ste8vEykAzpTvuUB8R5XXpHR4SGAB5vOfL2sg8sNnrVSQ3hEM5ZjYo5WITmK5lPKqdyIAuho+VofzhyG7fUgxJbAAcfR1r++j+tWlTeyGaRkQ3uLWb9a1bIYW2Db9exsM7u4UAG7FI5J442pVNoZ+7tddVNwCBg8OfclVfArrhe8mxzBTBf4ubLN5Xw0Cw8cRZ5RsRqHMjHx49pMKNflcPrT9l8LWSRX6DhkUckaKrTsqdsDvp8lZakjvc4hMy+4jHIWylb/3bI/1w+02iLkk1B+JGPszxlRCQgVrPAHUpEJikFvkv9hVC8NObswwqQSio5eHi/FAnNK+MrttkNYBgri7+8mg40uCivFM6mgr3DkdWppJTISCDan6CLwSp7z0w1mtAhWErJSKPtSuouq9f2T1IRBOvP72WZe8DwZ6H5beulsMLkv7S09Ao9FlBT275YQIUjpXWlV6thejnuRwtln7o3Y3yVUbnCHjxe6eBO64WNm9WNcc4+iFNTKfNexcaSD14p/WwLBlOD5+5vHgBj24zTx//E9MCrKYhRZFp5aD358PV04ZYpHE+a9icPQtCZ+5x7r/ZBN68Z3crGgah9V//bQRad0BTcBzn6PNq8PVIdEUiBGTY9nyQ5ESF023No5/fRMKv362v2WKIyGbKTUjqZj+UDJ6/I/g7Bdy2TrZo0Xnv4mHn0q7T3cCk+GH3gdE8yBmbZNJ2IKCRRLZpge50yN9bX0hKioNTJ802fZX9EdVDoPzfmwE4xMgdusnlQuf6D7a7eYjIOtMh4EI+Da5/Sje7+qkeKJ17P7GxY5E0mgtnXKeC9oa1+EXFCrCrs7lE2IVFqmd5TGePtoH2v+fYzVgEHM2tJnevYlFjup3TXZFqWKjnF2bg8wdsZdy5d31BSPlYgXvljy4Ikfg2VXW2/v/vm8sQxyHxoHtKe3VpUPf+hXsszht6mPXZ3a3wiKnl6M3PjmSYfvrF0yTfH8qqWJl2+4Sg/hfc7f9do0HmG35Lz+U0GA/ZWBsoi0CSL+ve3CrtgppnmJdvLRthyOk/KdZSIpIw4B0/u06DZrzjYFk3nVe3hZ6d+RGOhiWzL2jsH4TJNs0bih9SIc86JFwbMOjAZwV+plfN8HxH9+df7nJwVWLSNA6MRJuze2k/AnJh/cj4VqJZOdgLrEcfSAxE/wX8N33LtAseHDiOP9BUAwGUpb894UR0UGFL/blRN1zBtvxx3YkCmnRoa6IaEakTL+of4CeDMSv3upNTMRDFFi6K0/PhTIFhotE1HJz4wc1b2/0atjf/GV9pj0DPo8XIk+/qQUO+3P50GwJ9EQ9ZXvNQxCl6Kr5FgQqityjcty7HQParaNnfAlEoosBW6KFIAvguDoV5f0iGgvPiyRk3AtD9FC1qOZUKu2yOeDpn1kHxnrapBBkMSl2a6a4RRsAqwaj98Xg+MFlMYDvLwtHu0YLa6sOD8F1tt+GTkkzo8ZR7Pv4TgzjjVCsyaFQ4UcXkci6uAZbTT6c8vktCRw+cCKmkz62buj8HY20DbDtLPbK9RURkR3JjIN3rOep9XLfk/SHX5mE4ysGg0GqhCQGeLtgScCUZLyeC8lp6gPpNInptttJ2b9cAXHUo8+/l8odMt/cq/53AoOMym0/GCDTYe2dvyPHhWmCsFzrZJuqPdASsQ0dpA8DHKVl7i54P5CETtd/H/NFPahg6pkgB/0tuqnmNsdDLKqq/hyMKMV56wN5H967jb09+TNHLgjM9WjE5zzBoAv++7r+AASgNGphOPkyG0kO36pK4iIgrZIX3+bcecOE1vPnVAMHsOYNmb0EcMqjZ8rv0GsH9zpFsmaUgSFRTf9Vs8w75X9+6zi3fCSqXPGOiT5XCzQgNRUW6/8bsGO7iUGmDSn9Bx2rRetA7RQnJpnv694NqyxhEAfbOtO89W3UQd9F336FFet6G6wscFugB+/2dmBd2TjCjHjMkHExC2C/2vq4bGWDUnPoOr0+CcQwOn9QQhMJ1RI+89aDAq3TTchWZZuDVJen8HMCjs3opJRpdDVBuZSg2ZZcJB+Rud4kH+yF3zHOnAG4qCG7eGcL5FcNM6fCVis0Q5IDedDRP00De9wjLK89iuN71LbQxOBx5R+toT9a0QJ6634T7RCG87hWqvueORTrZ5yV75dvhTmKUFGZPIhQFZEhU07lR6L+at4+VqVD8XEdaezUXbK4Tc+3ORKFUvyP2dSd6gXvIWr6P7mUsj+5v6HbjEANH6ULDUDT8t3oLoukcyN7SEnp8JBDdl7tTVRPWDMkjF+aDXuSDnZeq55XdGJS3nfZImacfcr6KRPHRfZN1WD180ISIDqcpBZINWkG7DnfkijTdR3iruJY3sOhYjvUJQlYd2Pw4WbTbvAK+MPobezSGoP35vKymf6lQFcY+S1XOBjl9pe4bpXjEk6qofesHBe4VSe/7OFMOyQ8FcZZ6USiHmHTeYbAdyo42rsSElcMFi/bB7XI8+t1zqZfTqwPe2wl0UvZVwB9eA4aeY3g0IlEQrk6fm8+TjYJkRmfoXCD3B5yOQMn92T+KLHpBg5Gj5By9l6OfG/lK0uetyrZ84+zRQagpO8V0Qb8BSHNF93jHMWiG619LGvsglKu/2m1xqgkyvzzmH3uEQX0Jb50pa72w63OGZSdfPrxcSjjOaRSF9pjYtruReqDUdfa6p3AWLLe4LxguRaLhrU7JeqY2OBCwbyYjLxkaZoJXVHH0+alt1I7h6oOtP0WKQkNkmAlpj378JgrNmaKfigXdYHlOj7nXrwa4iy+LBBPwSEs1tzfjMhYChMejBb6Ugdb1ZZPHjRGIlDv2Q4CdChp3O1asl1JhQG7MuMiYgPrTX+29rzkAz47cfXDUoxLOomob24dE9OaYqFSgaxuIpWttYvxTYMJhj960MRZBkL7EI90BoKUrMedv1ADp7tzWEyIeLX49+GNHJBL+ZsWYuurVgjX7jzsY80i0z/cPjqrXBxLmbeeMnmSAon9EzrcXdP9NFUhxlqKBcQDPOVurHNCLPsVkn49H7bjlZ67bBXB8au/Pv4lY0OOyM7Sn9/t/HgddWWyoUD6ZfUrmRRb4CbzglqPzTMGTmW+VQ93gW+h5dDExGyRfaKxm/odD73tjnqhldoCwcbnX6s9CIOerSUWOYRHrvOuXs9WtMMxi+FtrpBKeKY675u/BIK9x6dqKv90guJ95ITOgEYrvHvL8q0pCvlWzzxVCemFZ1OCMyYVG6A6alXwVFIV2+u9xN823w8McV4bZqlxwfV729mErHvlaOfjdyO+GAJkHu5kt3EBJabFQZ42AAt7ZyiQa/e9/S2V4uwNeg/kLizq/3EC08ALjR3taDqi9aclmigw3Fy+/sPQIROOTA0uf1gdAuNApx+h2PmToWDyvbwpBGp9fvG2n+8aAZvsuClshfLAZXQjgCUFWF3Yz6Hb3wMNCCr9NaA4sGnjMsPSS0BVqwjlyO91rfr5YqDhVCarCt3/wPcQjJUUvslUsFey0+W7M95Gh9nroM+tWIvogwCQ9U98P6yafPgxdqIU5oR9uBfeiEMauY2LFvwfSfxzwvB1fAYLVq2NqBwkIXYvn1HXMBtKsqvgltlrQaXkMcjxBqLDt9aY7Zwuw83kH6rnWgYsuU8gejWDEwXi8+Oh8HGj8UojVMm8CVHbcmu9PKKpOYR3M9EuDBd4XvMsGFTBz7OXjbw7BSC3fJGg6gs5XJodIoQZJMB1zbOsvNwEFCVtJ7ZurhwuNKhxNlaUgyi10/LtGKMJ3WnWyqvaAkcPow5LWd/CA/CadkEVC/wcQPijheJwcl3c81e/7x5OIkiIUUWRUyMoWXUIyQxlFVlP23kr2PhvJyN57z9ux9zFClE+khBIqqdDvfH//vx/n/T73fV2v5/P16CvtPGabAq0q/hWBn0tgYkjrpHtqAmLWwVlqb/aBykHsydtB3vDte6ySXgcRrTsU8e+yd4Jsk4GxEy4LnKz3dHOWsYgrVsZ29iiC7TaZLjeRAogvWYUIUiS67i9tzuzSC4Pj2XyfunNhss5G//h+IhKVlowLrhmFkDk9lBrmDf8F1J+e9sIj709RXpG+vTAn5qYa9q4cDFea1g27MOhZp+SNCeU+yDzebfP7ZhaMX5atX1XHocYmix3xzgGwvmI5OdX/CnyMfvwpXSOh2CN3lIefNIHI38xVU4dMuKxV/iNTNBRlh16rX7o8DFcyzvWmWFbDJDOnPWExFp0/cUubwDIGaYodxgWJfiD2YOSW5UUcWsU+KhK50QzY2/HMa/zFoOr5QePCejiiBN/iqnekwM9c+p+npCqgY1lvRmwHiz4f5TthoT8GPovqD/IP1sF3subhlYx4ZKclYaDmTgFNqST6pzgy6FVsNcw04RDTixO+4RwjYMm9UtzythR0NId3sLdJyM7f1z7qGBkWPP96ZDWnQOoH1xh4hEFZXq77yX6D0Opp+8m4tBGcSujxGXyJSPCphGhnQQvcNcjDOXaTgYXUr+IgGIs6MCpKD8+MQbUz6/y3zVpYsQlmdffBITGhvxyCD+NB3+ruL3+fatiyqGf8iAtBOml3L/5oGYFaDtHfRQkVcFeOL9RtjYj8sy5saRjEwP01nRkt5UowCukcvb6WgGzCT3s624zB7QL+w1qPGsCxfECH7ykWvbx53Umavx7mM/mnHhbUAaNy9WbEt0j0y3OzRilsFL77NiS2G7fAK+OnS09PERFG8PnHjbYe6PA6p3fNrQQ27hoNrynhUWiNkunJ1EEYc6MN2CO1Q8XrouXaawnIVZY+V/fQGAT/WVUdaqyCjnGRB8EMBMS2HYGL2O6H19c7jxc754JlA+/NBi/qPIhnzr4XoIA0w7pmTWsx7Fm3FeV+IqK1d/Fv79gMA1/79xu7s23QJH4g9hgJhyQbhvc9demH/BCrlHvGGXCjvfdxpyQJiUTvTFY+6IaQi6phocx5cDrHs5e2LBb5c7wk7G4NwF9bjlE9HILJvIyBmr8k1MhSsH0XQ4GhIJW73VAHRqy6bMZ1JCReWHdyXDEAphON2t2LUoGDrrzuZgoGeZEYbHvfjwJ383fJoJR60BO2iDC0IKAY8zsJcQ0VkFhHMWbCtcPeXFZE6NxzRDOLzdO0HYVM8nEh23/V8KK6oHFgF4t6z9yto/RToFdkhblIrAaaj2UNX8gnIIGXFPOIphFonvEV11Vsh3LhMfEmRRwSnn2RHOI/DIdHzxIWAslgzG174jMDHoWnmRqpSWNhZ8G7ZPgDGeRlMwLH+RJQe3l+Gxt/P7DsX3IoESGDqXZPyBNlDJrgc1fCKwxDyaekWqPMF7CnbGXgJU1CJaVwJmSUDEO+dNbBcu0w/wbp3JJKQL30w92OGYMQLXOs4eO9IsBWPFUrUcGhb2yPFf8dGQX7bU69rZ9PISyq6n0N9Tv9F3rdRQ5SoEK58fvcKQQNiq1dSRtExCHk9t+hBx7AIKqrbsNcDtzv3IW4fmIQjX/Wn5O11P8prrFLOlEATnGhcZ7hsWhqNvO7bk4KzOgObdodaQC262uRPNKxCLW4i2tyj0Kgymt+Jh4SVNWYn/76jogkGAZ9Naa7oUUumGtaphKm3C/WaE3hkMLp4/mhnGPQTXs9z3KmCB41pU4bfceg2+IND1zNquHww358lFYVHMu6Di8CI1C1+euenw4t8LXPWyb8QSHctDoS1swQi170f3vkZDgCfwLvqzXyt4Iff1DTfatYpHq4/eW7tSF4730xjy+7AUhLAgwKCYlonPm5n+abOjhKeXqDo4UIX7QMr9t8ikStqcIn42W7gP1MKPHpNAaOq9uAwD4s4mj52JwhSIFHN1Tq/iWSgfmbrTjpBAHVO/QedFvtAyOZrd47BQgsU26uiPUT0IDkaFvJ1Ahsq0f+nA9shn8mpoXPzBPRD6Hc2SLzTqhtGpsRFWgF3Fzm7dp6DDI6xb/MV9gLr1RYdWkHq+FjZEnE9DEcEpR0l7puNAgvq0L3ZzwJgxrKveGZQxjUiRG2cJDqB9WKXc9KyXrw/LN7RWk0DrV/zhH5G4CBjI7xeKHkHHCw06DvGYxHswl/H6wlUoDTT+ie3koVDMyo6de0kVCyzJrew9NjoOJHuKwdEgK3W6rJTYFx6OZ5Clvb8WRQHxp+gSVUguFayzV9g1jktRxsL3btOWSLJZJoxwjgNOmVjGWPQY8KfKyqUkdBJfKyaq0bGXye0NVre2PQVauP3xePdgHDaqvWXAcCWj1Ot1UcDjG2OVpnuXeCT52clWs3Ap19z20LqHsXQqSTDWdDENNT2XtEGUH/L1n1xJY4JMybrtcdMwTZq2P374eUwEjjoze1rlhkeFVK/tmLZDDeGUR4cjWMVd7UkYyLRSyHabj/S+2HP+GaPdlGtdA6liZnpE5CMcdeLKz1jwDbrZEVnY0C8Lde35vjxaCF7nua6VEIWMYzRj8/bIVTc2ZkzvvxiP6HvObz7k5IL+OMna5FUCRDZhVPjEXexoL/bb4vBYhwurJsR4ar9P5zB45HoGgBB+mKLArwD5st6uU2gu+rfr+qWRxSlRgOlqR/BnXNqmIt6ZVQcbnEz52aezPEgzomZTVw8L6GO833AmAzDU6un4lATF8SbP4THgUn6Zs1WTZVMP/7r39bBQ5Jd7JrpWe1wVHidrYSTzpcvUIcYKyIQJgkk9O9gwiAjSb06Y0KCL7D3/gPG49OX9P5Jpc3BBZ/T5AkHtWDl8jNj3eoOeyP7SQHvm4BOZsMetmCRDjwgHnm35VYxCD6eebnQCdEmZxSfmwZDinXU1ykbWJQ++/Z70XLFDh37N1jtoVCeGbxkIabORSF2fc+FvcZgJ+XuFZ2nzXCXzuDTVZKAqpcIEO9VwfIKxp0JQVmAunUabPiyWhk7z6xHjYzChMT9xiPCJIh21T5ykQAAXFqLD/RniXDkdxrHx+M5oBW/dg9owkMMtMZsP4y3wHFht2+FudfwfYkD4u3QDyqdt6426pLAR4LNU/F8+1wiuXC7Vh9Isqupvf5WBIJs81fn588ng82h2NSDrBhUFPJOU7K0BiILkm5hc8haJfimfJyxKEWzG15MdYu+LJmw1L8pxL80P6GH3441N9T/zImrA++juc2NzvmApuCrh7fCB4tcfxqiAt8BQ96z+SXNZIh3/i5VKtRNJLQ7TCO0PYA13rDB5KVrUAJZx/VOYBFLzY8zVOFxmFmPlUTvSiHY9MxprTdWJT2S89cgnccEre/it6Nr4DvKY1vrn/BoM8H01+v9HTBwJwT97/0QrBY68Qr3sEiyuufSPHFCERHccnWybfAwcNZEn948Gj8GCtfDGkI3AZuPGGNx8LVoe+37Khz3vMi+M3ZpDE4OZNiqcfoA/WNx+yu9GOR1+2+tJSr/aDcIdOfa9YEC4SG3/QcJEQzh7V8yFwB+xLpfiYZISAXl3NYH4pAg1GMdEULfSBZuWXy3wAZrD6E8zk1E9HEatG30sPNsMS9dyduvhVKpQTPPuOOQZst3u6PrlCAsPiYJgCTBQGkWAZnzkS04+NW7UBLAbnk0y6Fu41UPufd1siJRvSu3kjXrgDMJYzWlY63g2e7FRfXuxC0fMdJ+VTtMNgls+jKhJeCElfWjd2oKPS9UCph4sIYlOoTvU/MNcFNUtJL/pVo9Az3eDqtZhia34/4XGqvgYZze3M7T0nIM0d1cn/oMGj3z17ep0qAGIcLJ7fDSUi6vlLjYcUQmDk/rw9KSobJWaeU6qehqFSL/vSEwxB0yK3K2beQoafmWsFrNhJKn8kvGUygQP9m5qcCXwSGTGyvok1wKH4aSjVFBqFpaUflpUsViIWtiVsyJSKJHzTkL88b4PZU7nfXrnowLj2u4t4dhXbX6Y7fMuqHNMID/hT5SPhsJpmWbERA10qO2wr9GgDZUlP2dwJ5YDnelabOhUdSXx3fKWwPwBF+IEuKNkO0wNb7nTgi2lB+uyjH3QvZAevjpv1kOE++zPWuhYCMO0WF318fhbLrQVqxX6h8WS6bzbbBoSb8gYtu6lTO6l+35rxLBjFuMcwFhjj0uuls80DwMKjhjnjV/W6EO3lWFr8RHqn26Mt/2BmDgbtpnqpebfD+/uVun6Q4ZHLVgFXg6whofuBhCLYlQ+Ol8vlfq1hkpGx8t+zyKOj8+vbzwMV20D+6rGS2mICejijkdXzsBm/NXoHPLvUQ/HApnT4Zi4TqiOX9Sx2ge0770LOeFHCIuj/f6h2FBPL/utmeocAhQWuWvuVm8JGPutPARUA1RswtVRu9gLlWVe+YmAP6B+Tc5S2IiMbV2/LO2T7wpz/8TJELgeBM+uueTjziZ9T3NGnqAALbu/0C9BjIG5I/0lCTgGid/h6+9aof1uT6Kwr2kWD/2tvz58VIiINoStq4PgS/duyDGqLIkMohX36mDY+u7n8/j/3TDk+dU8+q2FUCZ61lY+UlDGr7JmosJj0CZeNC03zfEby5VJv6y42Etl7K/sc/6w4v3j+7SuflDnnfMC00bFgk/Ms3msazH55mlLnM0L4Cg6vzLwh7WOSnmkUWzg+CJLOyU1UvyGDbHkRjrB+LrAL37O/N9YKMEf0NkbBqcFrCMGuX4pH5kro9/nI6kLvbXG81FQJNrOvVRZ4Y9Hh1lGVoigJ8d9huXjraDvd1NDgvH8Oi1Bbsxu0LFLjENvqM6W8rnP70eJ7tAAaVk3I2KqAP2L20NKtZCkGA7rQkXxARHRx+8utvyTD87EmYmykuhIUhCDHiikfem0VVBU2D0H6pYHV1phlk7BxYGbQS0bnRehl2+xfw+v6B62HPX4LPvZdcSi9i0bHSJX/ajxR4b7pf11j9FQy+/OIkfhmLlA5H1tvolcJDx/ANbmMESoMJueLsEQgUC/L3M3YDZ8nVN3HOmUAp+e+BMuBRT14vg+zlHviV9Xr29GI8HDhpQfC9REAXqjaan6REgHMAb0iAjAcY7PinLqhhkBqtM9GjYwgkOz+wzWW1wvL6cMHrbSKqrzN2yf0wBFOHDv10M2uGvg+D/IYR1O/X9dm7X0EBZ4VS/rj0XIjt0lEf2ItBtzsP/BOr64TyTl7nh1bVYPdD0/XsUjRaP//It4+9AxR0XCNYaVrB8bWaE/YM1UM8cSoT1PP8cUew79zdWtD+zStbKY5BJR+8P1Y/o4Bbx+aNQywt0NC38O5IDQlpn7WUPylDgRzjSyRbUjPskxyx7z1BQi1/SnW6UkYhhlGE8887Mvi5NGyiHQKagNywgd/lMEMToecelwoCG1YsPAci0DVWD+lo+25I0Po0csq7FS7aLN8cAhxy45X3tlgYhVfn44ZZ39ZCJClcpESDgMQj2na9I3sg5ZIAJkAwHX4Q8bir73FI4FSJfDP3OCTV8/8KMWmFQVJx9ATVx4LW+g1bgnxA9Od0wLZjOzD0xzM2L2PQKhPHsx3dEfg5dXzsIT2C06aXzc4kJqKZfQMv3cJ6QY5+VGT4eyVwS0YbtJbjUcIFh+PLEz1QbLy/6HNqC7StM3iFqeLRsUuBnP4jORDzsPqYt1IuuAXhbmEnI1E/13unPM5+mEj4MlJpWQ/PPgT87aTm20iDli6xawA2YEhTh9p3NoKCu0yOEtFj4RHeI1zt8BOvSfkYkAk3BSZPGJ0JQ+aeikzMxvWQ/LK2vYzKN/f4yD7F01FIsf6zXC12ABhcGwM8nVuhzcWc8/MnHDo1j19Z6x8GBg2Lg9ZL1N5zltaL1B6NQtuDi6QpnfAlLWHO/1YeuG+V3Ak3xqGdw/muBzNHoIn7+qtAav7/9rz1XV2NhP6bvCDKQN1H/4D9sc5n62Hfk0OPhPeHojIHOzVOjmB4ljdHp8dWCzpGxy+4h8Wiq7OMmaEy/UCKZkyQfFALqeR7mcuaeMR2y08l/SyCm2VV7w5R59Zt6+MB9olINOYPora4bhARin+LDSgDlZ4bO+MNGDTexlVRrDoKL/0F9z0IS4DyY/0NFpYEZMmbdeElvguOm9mKLRu1gn0iz9Pb0Vi01jFOMCnoAX+PKaHmo/HQtbFuYfUEj+Y1HBw8wwdASl2OJ7y4HrL7QnbivuHRW7Kc07RjBzzjPXT6xHI5HHF22s1wDkPLL1Rfy2SNQlClH/ORpRb425Bc78fwv5wU0ONx6YOOwkG92PwCYJdQVsEdikIsVgP7H1X3wOMc7r/bdW3giK0+NWpHQNyLXkfz/XtgTeB4jF52ANT8pmWu5ccj9Vbpl4evdkOovFJ9EyYPtotSq/c4cWhzamKv+Cy1Vz55E77lXgOfn4hspcxj0fbngA8b7D1Ax7T6O3OiHN6F7+8Xp41FOs2CZ/gwCEjvMgfSxivhuDbhD0NwCPJfPUO/L5zKO4/itxxNVdDbXVzsv4JD7vtNb+TeGwGT5ozoBhsMTCJuSwIbAVlLOBD3iseABiPMZ8vTBuEuxtmqBmHIrebaPH6mH6YrbmdVniuCMs+L2hxUb7x8PsCcn5gI4x/PWhbgI2E9Sez5tegQZPtpOtejlAISUVIBT05UQJDLq3TxVBJibTErCmzuBmFXmryYU61Qq3OZm80Sg2QoM3dW5XtBPxqFpzUQQPifv4OJOR6lXkli9VnuBRe5a2PhsxhI6ns8kDmDQ8J1bF9oNgtBX/iuwM7PZMh89yTle3oEqm9798KVej4ci8Y/aL81wkuff/R/bLAoNmGG/atkH2hDOIPqYDnY78g+P+lEREzje3hB+0FYtj0VLvWsAq4t0p1t50tEtw3vd/k96YZ1moFzrEZNYKfmtv44Pwa5666VOER5gavym3hcSyFcbO6YoKXmxtmmp6eiHIdgwwT/JYyxFChRDwI+CsYiS/VOr6GtUXhii3q2GarA404+h25YFCqMZV16fpECA75/1+X6asFO3WbPmZmIzJI/PjCn9kN+ZppM/+YS4K/eDHdpjEHrCkLw3/NA2Dunly8inAhrN7ynl+ri0AHnfSFm1PuVqFI6WMNWB+sDYkZLflhkcJzgoaw+ANX0b86wlpZAz+dHESLpRJQnko2Sf43A1opPTmBREPgeVu66ehOHPK7JH5VeGAMj+4k6hsYaWK89AdeTY5BhZfAJDuYuqLnKd1Z5qh1e8vPrSytgUYTvD8qiAYIx8/YGvulauN/V1qS7GIde+GwdIXENQfxgYGz27VoQxzlJXTpAREadqnX73wzBPinhbN1jCG7bx/wnlZKA6sNDPmL7xiA3i079mW0TiN5Tk/ulhUOYIAUdYY5xeOU56ZomXwjG5xusmbIwSOppV9FnOwqYPfcK8m8oBdXQTZ78VTx6mWd7TOjLGEgx5J78ZU+Gmg/8NUFUPzRdNZ65SjsApbZ+4dGHYuBkPmGd9joRNeRpy8hNjcJS8U48jlQIZJFDiqKPQxFpwS/r4p1+SOSepDy4VQYdVUzRH6mebLb5Q79sjOoPSm8SeI2qwLWOm1QVnYheEZkiahlGwdqzxrLUvRb+88SmNv4gIhZ/WZngTgr89/b0MZUpKqe2MB6n5wlIE9fY0kEYAdlh2TP+cfkgtBrFEuQehZTZIXLSZgjibnTzpKSWQ7h1wuNWCxzK5Csx1Y5qhGrpWZZdniq4KC5/gCAWjbAx7HmhyWQQ+rMu2DFeBmYPmBKbw+PQolyOX6bWCNjkYKW64gtg9aAjL6siCXFreDyQpW2Hi4b1hGD2TJDqXRW7KxWLWKaDxizuDYDB4y3J2rAK+Kg5G6D7Cot+OGT+TKfrh69ZewuXKbVAZ3Bh/4sJIvrcvnBsX3keMGessl0cKIMTee75dYKR6A5l4dLI9CgY+if+o3tDBuWzDskudwjofWDVj6huCmguX444uBML09dODSB7EtKwfRqzb2cU1h6yHd+m9txfn6Nal6uovCacTHcVS4YhQ/vQdAoZZKVbrabqY1GGq9T8O59WWLWyzPo6VwIcbGcbVV9EIm52Ovf/jMcgKXWtY4upEsLc66SUFOIRpxPZXVl8FEh5wX/YtIqgTzpz6LIYAa0Q7r/q9RqD0Smn2a86OdBmIXGXswuD1gPqb/Ax9MGF+xEB9E/r4er9gdGbagTEdIOz6HFxL5TmVqfJG2fDWqWVt1QrHuXslWsybXRBQXiIdqwEGX7j7/ksK+FRwW8ed7r93dCAoT8idygOLALjN/c9xqKH+Pfeij8QwJ0mNd60Rji3fX/I8UICsrD5G/qoshesH3/PFnvmBxxt9r2sPXiEVXwVgU5RoCWpCD0UTgI+S6llldM4ZEePK7gYMwbqMSL7PPrboSXPcPBFNwZF/VXlOa82BkWfuQr/cyaD44GM2zeXEhBOj2frs0wkKHT7Mvj510NF2ISPe2QUun33wtjf5/Xww9b6y33vXNj+gH/1TCIKPYhkqeVwoEBMeGfRKlMJCAnKpFRTfeCvhSEmR3wMniTud7vzLQs8z93SPPINi2yhhqVMtweq8zgE/1hlASHvk+FXEQIiGDz+FWbdCo2mmsz8ts/gW7dNdVlFJLpMm2EY49cHu62VGnWjuXAl179VRQWLstSECrVkRsAOJ9thIFcPQxL/pMKCElHE7a5pOaFx8J3as7uyjIe3ob9EtVmxCJ4I1J44Pgyy9Ph67Ul3YKbk1ielJSKTM+ot/sZd8OuK6PCtVQIYlwR+vjGCQ5f4t+WPfB+E2s4h0kG+VBiLqHx/Q5Sah64ja1/N+oH26YHdLcEM6Ct7pxE4RUCnh3k3V2xTQIUYqavOUwGPBeueHBKIRZ/IRe+qc7tA/N3yenhVEeTZyx2umcehaI8ahuvLFIjmiVTxnyCDwnpMDzInoe7SkWiNum743b35YkCxEi4p+wnV9+PRvY1fOa/kh0DGdQdJ4apgXfbis7lrJPS2cDdb89AoEPq/esc214NLjuDWGZMY5PJck42lrhnED1XYfCeUgvlD3pqgqzHIf8EwjX6vBzYDNxt7rBqhaC5ezG8MhwIPBA04lQ4DT/TMNVrnWjh79mJAWh8GLRmo6reGkIFDiVPixiAOtB5t7/vNHImys7BH+EXT4FTjOwXz/U1wnkHGP781BvHHBNK4v+0HmmOWdlPfG0D3DWvEc8VQ9CXE3Th5fBiMN5lKUqjeQUe5k2gfnIjO9p+8dZvKF/+pGRz9pzygsLa1LCQS0LG14N7+rQ44jHTyuHURNC/xpw7IYFCKXRCT92AGFB1JGRoWIgHuVhV5nisaSZ/8SbumOQw31j/lFP5pBb0WPVql5ET0LOaPzc33Q5B23KPGlIEMg/lnC2dcSUj5h1nJX2Xq+QcdYeUXq6D2ocyDURIkZLKmqOBxZAzmpy+GcqhWQOLHVanHBwioq1N4sbFhAI7wdtbI/KoFXUaTo2VLJJS+dCXi/M0RONUqUX7+Xixg6S12tO0SEZNgR7DHSRKMqtS+8I1ogO29wL+n7kSiC18lVJ4VNsHJ8+9icJX1oMUUw/36UAzK/+sprk7tOWuee6nRpxrhzfbFZTuFWFQgabhY82oMroaupsvsULn8KzuxzxqLLqje/JVvMgBNOTrLsseeQv3XXylXTPHoxpuWkYilLpBonDijlZsK4atPjGMoWKRNH9zaYN8DR8qQzbH4VCC1h4gyUfsj90xGOI/ZANyxLnLXaqiAXYOPMecFCGi+czHtscEgVB3VU7ISJ0JO4Ms9Mj0GjUhG3s+UGgDOGZ/rTwzIoDTiuHMghYiKOxVPRR7ohZRqD1KIRDNUiy383s4ioC25nyUSPj3AcFR4QR81Q8GTzs6WuwTqXnQUDjWNgEL73EhnTyXIeb54u8lCQNrYgND6n4OwMWEhPZxXDrU8jCtcVJ7+cHqcd76gCwqHzTMT6hBIKzAEyO7iULPMlG39QCFIV06wB/9uB8H2iq/btRFI4AbL6tQbKvf5LtDStDbDt67mS9+FiKiQ9miQ56tOUHN1NLjTXw7eZcS/qZxRiIKz/I/BigLnM5re9lzOhCbW3YoTD4noB9eZO/P5g9Dw06DT0yULxoOMouep/q/or+Q4+XQURCwVu9u1K+CpWKAFtheLsO6CMnamDVBgNqnYno9Ax3tex+VVFOoV9/08PUOGRvcSV0PbcNDdQJz8sxiU80CGQttOgaI7AdOyL6qh8s/lgvSnOJTA3VHEwtoISd3Cz0tKm+Gz9DHHu/dC0Le7kS0tIj1w5stWWuRQJfDuO3M7OzsBnRModvVcRxAQYGn/sjUfnO7oHv8jE4Kc20+b0rNTQN4wYCfyShgkGJpmDz2JQQURP+48Uu2F+at1T7nSkuFNB9fhVa0oBPPWHF+dR+E76w15P+d20LshNxFgSESzK/U6owyJsF7jbRCrFQBlphiuxrgo9OSxdqac3BhYv3csY7dogYcKagYsVVjk3T8qkW/VCk6RbnqGPGSQIZXLHhqORdMlUVXnP1F7zU1lF874Snh54FrfEDse3WKN+CXiQ4HYCyNsUpcq4V0f5RqFes56x5e+di2NQmHUrHdFTx5Y6iyzl/rh0dXO+x45VO6+/pdzwDEqDSYyltMCp0PRys1x8oJtMygcoojofciGe46affZBMUiVu2ks9dMo/Jfz4bOXVyO0KzPqMKgTkMmcAsuiFwWKPQRK/m6SwKjot5JyGxG5ltT0PaHth2M3E9aWTpLhsYnidTsaEvpj5ltg9JgCAj/492LD2sDrbtVXeclQJGfUU8nZPwCNLt9Jd94XwLMI33bGIwRENAj7bEX1+WOkCn0l7WZInze8Wc5HQG+k6PfjI0agr7PyK11uLgRfaXxf8CgRBXW0CWiL9UJ6/8Lcw/QSkMwa7HTwxyAHsvfP05ojEGU/5e+a5w0FMRXpTdwkxKmw7roWPwbCH4KDKAZVQFz1zNbgxqLCOx3WpqOj0ACJDHEp7RB+o7VPWg+Lzqg/aU15PQrOh01sU+mzoKIzI/0gHR459P+X/NSZAjTsokal5ZUw6qYxTOtHRP6ye05HY8kQyJcU7d+ZDT+WoHTkeyTilCkRD3IfA8bZWx+QVjOoPfXpvbaFQ231O4I0c2PAXnr8vv1YHVxhBX+1OzgkVcMzPjHfBTPBHZGZOe1Q72AuqTaMRd2+s4plGQNQfII+CAJb4R1F0v1GKwltpOs3jangYXlxWjOWgoO4qFOm2pnx6FJGTTKPLXWuNORpb2vVggBNUiZgYlG2dMHSQSpPW5vflYff8ob1c1NjpqsEVElr0rIIY3BCMjLMRgoBo+WHZX42HHqbbJj5e2UUxNefJ/5DCHZF6yRUGrAoqUlJserLKLR9aEH/XMphR/FINg8nBrm8wvVWXfGDY3mL3p51kdB+V8aAmRKHGOq2Onhoqb+TN8sUqd4OOZ/2RBdSiWhtcYlsbDAKx43V0n1n06FVpft0txEO9bqyGwvz9wBxpqD77ddECBvfmztAnZObH88LalI5Qm9suXLsYzWo/QzxCQhPROwUlsTy6V54f8nLxDakHHg6lrwTqDximrtymNiXCaUmEvyfytrhjvbSzCVKFNL2aPbN4hkANaGIOduFWgB7X7UdphjEdL1Y7s0KHrgVWEqc/NuA1+vPyKV98chzxfr9uesDIP5tdqlmEkGsbJqivDkRZf/Y2QotbAGr5W+v/WLIcN9GOnVbNBLNyLUYnRgiQ9LV6yM3OCshruh9ltavWDR79ozwWap/0pzYd1xFtx0s/qSzH6fyyPtNz0GgG4fNvWm/SflGuCiakPHJIw595OLs83/ZC7fUi3RLN17CxkOxLxNUL7KF7Dm77HqwefXi9evFJsh5f5vH0DAKLTb7xZox9UDvqN3YTmUJvPX4ETe3h0cm49ibzgytwKfJe/LUKwSbG8y4VZ1YFHlI+WnNFoLVe/GZT7aLgHt1/PBHz3BEfDiFD+AZgXo5iluV6ivwNRN1MnyRiPSq8nNlDFrhQaZsi+SJLJDEvIhc74tE0wenrP87UA8k38NJqTtk2DfsK5GiG4V89x50cL/tBK4PaTqXQ5uhM6Gm7O4tHKr7tf353HAfZLbpJh4iVkLBZ5ctOBWKjjg5VbuebYen4jpBc8uNwPjzHG2LdSwa3rAKFFvPgMp946/N1tpgxKprf6J5OOoQiWFn3uyFIGVZ1TtzjTB08BlNkRERpR0VYSGxkkHC8F1jt0YtfGVLe6v9iOrnSd9Gk6V6IfF96GRFLRkuWpjY1MXjUE5pbR0/ngy2Z/dSt6l9yF4u2fmGUgxSV7NmsOnqgsguaTORK41Qoh5xt+47DrXjZ5h/FiIozv2UyGxXD96sl4PGOuLRPebBFtasXmiqDmWb06Hunw4dVlQXizZditNU9MaglbdiEZW3Q94/vMUrqucLHRef+O3zCjQYhUJiwlvh9GkCYsZGo2OvNfbkqT3xivs1dpYrNZDp2/1ffDUBrXc4Ljiv9cG1+/dlH19sAOEikUSHv0QktUtXf/9SB3x8YGx4b7MdmmUrrrmei0PNsb0Oh437wbhnORDxtIKWPp31/QdY1IV/elgrswe8bq96iF0sAJ/Pp8MtmhIQS3jLW4ntdogMS3Tk6yYDJ0OcyauNOCTpFvfVxqQcfkYfcUb3miAuXP66O28EGnH8fKJVvh6MFD5sPKpv//8eZzsfiUbkzZqytoeAO3beZkY5EnRt/b+H2mDR34eVES5sY1BWFfTv691s4GUnvPX4ikdzV3/7n9jMg087BFW5k+VA//qcTPq+ELQq8gaELeKA7nKBgS8mHOYesMqN/ElASV2zzFK8FODXWMsLL82FE+dCxUV/EZGbVFDtl6JOsGHo1M8XxMKHTxsH+U4koA2d5xIrmd0go5Kyb+l9JohVx8pFU/2h/aLWVanoYbCBhwOJ4+2QVqWZUR2biLpqFYSrubvB95Hyt4XuJihb+6nqQo9D7vW8bDwHB0C79vCHMf8WEBMV9UrxSEBVSa5qJyi9wGjSGhxD9VUv89+JwjxE9DOVZkGnsANCl/zKJ8VqIaSq++F0GBblDBXa51V2wGRjBe23u6WQLTjeuZYTj7KKbbPXatrhcfeWUswNLCQ+tVqWpPo81KZ/vUfshbJog/d1d2uBS6LHt8w7Cn1xZ5fAyFBgIeVf/K+D1ZAfXfBDKZ2I3B+9O0e+QO3FTCcMFkqaAdvANC93KB71XP7tLxxXBJ6Gk3tXZKuB7rySo+ujEHTK+kKcmusw1Omda5VXaIc3fHs2aqMElAdB+iEX+sD4XJYbaxACnrY0XXEq7w4ocqfdTxsGy0GH2PjUVjhb3yh5vJiELtl5H1Qo7gRdYUshVst2cITWewY3MYj9CpMC0XEMmGK32qyLW0BbxNw7RwSPaGMFiidaRkFAfcDyeVU5KO0dPmBYQUAWMQLpsjnUOTfWE+geqoCR+7aPTl7BoY5PIxeTTo7BS4XjZ1SO1oDN+m2Hnz/w6LZjFVaYZRxkF7byN6jzm3I+/OD9p3HIKn8ni96sHXp2jnPEh2VC9o3BLYmhBIQ30Eh5pN8DdZnT9pwi2dDgMLW99xGHCkrpZoIwY2B1OPAZHlMIg2wlTTWEBHThYD+v3Mc+OOiY/9V+oAqGDj19YKxCQMZBYabXgylgp/7fqafPyaBzLVTGjMpTPZ5D6i59o9AlHllCJ5ALgnW7dzUw1P7OFY697NAPF+rMnz+XK4Mb3+T3cjzj0Zf2M5T9Twdg4PZ91tjoV8D25M1LtcEE9F5n/uV10zGwccBtCXQ3w1WpOtN7jfFI0cE1KEhqFFQ5TLIWm4qh3OzKkdMUIvqzYBxeRVsKPkIeFyOKvcA/MPkRl2oEYsroQ5s2rVCZv/G0QrgN3vhW1WVUxqLnGWYyLbsU2FkfPzizkQuUp0OqXedJyOmsTarmh35o/kfDePzfM+DiyCp90IJBWttwePtvH/C6ChEpN4qAZ+N3yr99JOSsxPeIu7sXNj9dP5SZkwL7hPNXoiswSCClP8TGtAaa3WS37cpL4CsNo9dAcQS6scA49+DHGIyvP3MrH68Aaf6j4SsGVO47n+JRqaHy9ZLGP+GZKjBjYTDYHo9HP11tYz7/osBU/a1NhudZYFlXMlb6hoA8u2K1y3vaQf9+YgvjoXQI28xqmBCLQ5FX7k2lio3Bf+fHCzBrZOhY3KGNGMWjvXpm7y/S49Dq3bi5k4ZgxNRSNOstFv2JOxR271sC9L6UYGyJxUJFqfrT6ykx6Pqs8V5tNgWOGnoP/2Frh3e4hQObFUQ0yF+av01PgTp+2fHH5xHsuQu8WbqdiE7tttU7645Avu+ywMxaJtQWfVAUM8GjLP202FtWJCjXUwspf5MFdG+Lz7GOxSGnmyxnBphGwetn9YfzjjlAd3RHefUwHs2WHf6kNjUCVyqsL09V1EJeqNyks1si2pU80zFv3gfZK6FlZtG1sBukMMgcQ733ykT8V9FeoFdgeOv5rQYOaEprenfg0UsRztya7GIwJf63kl7TCMH3a5UKnSLQkoMROffaMLxNlLAXOpgHfo6yJg+tSSiAyG5yKrADHnNU619yfAEa/daTOc0YtLNQe2fxXwcoTRp7nZ8kwRmKyt8ZBgw65+G5cD6kF9bL2J9/l6mF0kNmKfnsRPTB7bXdKv0IdLGx2+grkYBSRthfGIRBl0RLGydth2FIlfJHk9oHhUNenw4RJiGJ5lvdXbm9oGAS8YJ8KwtOmzM2xzAQ0bzWGpc5AwXyeEcbpeNrYNwuZeUPFwkduRza4dXdBneOOCoG2NTAlNjTU9KYODQn6LcbSySD89zIzxzfKmjmfsNIrMMgxrCk3P+ahqFXfNqwsbcOZNMC5B32sMgjhClJi+4ZZCYcmZFtJ0MOQd7DIzUefSaGaN6k8oWQb1B6lbYJvtjlD5lvEdGOKbd5zpsxuCHHSKcYFw8VdjnHnjng0BHOuNq7mh3gMxbzGmcSCuQJ9sZh5ViUcfH2j1HjMZD0VFP77zARHu3RupE08OjEkWTm2wmDcCuSt1GD2qPHDtDzTrDjkOhX4xjLA8MQFHo3780XBHNyfHzr7XjE8fiy3f6zPUBrPyfFKNsK36Sf3bKkesh5xZ4zZEIuzDoJ0gXr1AELpuix2FQkijAP03rXNgDO0/qC44zZoBelfMKkFo8YM3op/m5dIL9GMujAl0PLQoHm6TEcGrxQ3H6nZgDEPL2VVo61wD4a+9d/KCSkmquRjS95AVVXeh7VDTeD8I7MpffvI9F/9H9P/KDmHcTzxWoI1UBkzu4nXmrvsGrySC19Ngq/xeo+08tWgSur+1wyEFG/1iOtgoPD8O0CV9s9tXa4OpqocD6IhMLGlMJGDlFggrNaULOkEtzULyxlaCSiw4unjywUjcKtw0GqF5LwMOMu68IZjkdj5Zf63f6RgQn/XVwDGuGw214HdhuDiPzxM5NpXdBprG+un5UC++P6pU1JGMS3xZj8ndrvtv9ZXmt+mQaWzq9vrYUR0L2/QlEer5uhqOWJPD8bEU7ffZCRfToSBe/hVgQzeqEtKjNLv8QNLjK62jicJ6L9pLH9EDoE61mNz7tCImG6YuqtYyoJrX5hIV22HYOxo1IeZ3ypPet+S7bObTx6d/Gf2tCrDjD69jeQz7oSGmkPiVdbYZBax9KXgGgycBdjyVXuJHj/kNXV7VccCk7NY++OGwUzx82SWcEiWFFUqnVcwKFMg+SncYLD0EIYOW1BkwW6uY4uDJJYdE5y94ap3yC4Ww1OpwSSIfra6kOVNzj0oY2HNcV+AI4Uz9jue0z124PNnUvqOCTvKsHvXVUPPjaFt1uY2+BSXnfBhEsUisZIP/kiQvUoN7q0/eQy+KCtEcD8GYNGHa9+iKZykNPLLC2wigxp++lC1N9ikMxvBQ6X0FF44fY+/XnTK1j76jkp3oJHicVrGDWefrDykLnm8KoRWI6/0DjWSECPWxp+nG6qgaZQ8Tns6WqwSkq1SHkfgYz6z9QGPRoEg4wpvDVfFFgc586nEU5EP76E2a4YtYDBxGVdDbNc+EUslThEG4G+sOwOyyx2QRfv/YvMlpVgIjU10XSU6gN6RdaSU31wH10YPCDkBTmJIQ/VZ6hcZt2NX89FcFOtg4fpTDBE8k04fuqORtve7RN3DQvhlbDmWG57PpBix33qsyLQI4cLVUvebTC8dF36TWMj6H4uNMiLjEPCq9ettQzJ4CPPRCf1ugmGCw/03sHEI4/4oOpnBzHQmvw7Qng0D048p9CJB8UgedoHLqvenqDsymbFiKd6goBG2+9pDPp1VqPu2XofVIwTx+77B4JXtBd2fhyHxCdfnr54qx9+K7+1Gn9GAKuXtfpHFDAoajOa5EA3Clyg99bfLwJOATmvNCAa3Qw/Eyzx/AVEqU4cs3VG8Hdelv5tWCwSZX9UPzvaBZ8Y1KRoAomg8Wp/1VudBERSsYg+Y98HrSNFwyGLOYBtzrLh84pH5Zd0bpoF9MPIi7Qkf/YqYI48ZrrQg0HNhm4SmSs9MBqsuTQ3nQk5I2Ya7bMJCLuPm07oSgvMHWTwH5JtgUf9SYNbGzFIl3DWkDeqG/gfHe4Qd2gE2yuWAoLf4pGWLuGWitAIJMcdrSC9rIDjvybaizNISP39gqQz9fkWwWaFed8yMDE6I/77XyT6lPglZIG5C06dHn+2jdoh623PKaE0HNKkk1v8G9oC5nXszG+O18PRjdPhU8ciEb1j9BUx5nq4MN5n9zWhGFSdpjm9NyNRb3L1tWbBEQjqkSkbJeSBgWri+BwZh/CuJkGtHGNAVxW2zikdDzi5ZR2iPQ4JFrucxppRc36qEZes2go2Q1xngs4lolnF8yNnKwYhxeKmVS4bFlwDXZnePSCiaLGYwVNuPTAp0JAQI5gPLaU7YV9SsYirBJ2ii+4G3UVMjupXBCe5fEJkGaneW1SZI8nfBd9YcFj7iUIYmj3rF5OSgE7IfhnQleiBEb+KrdcGtfAi4/LCJj8BXSZ1173tGwOv+Ru0Y5dTYTuU6+d9swj0IM+cLpKvCQrkuSntDs9BvXSTcconHF3U108g3CADRe/PcRlNMuQtFux32ohEWT1PLPQ7R2G8f00zv7EZvv74F9xMzaVMRTYZS+5+YH+CnY86SfU0RTtHASrXZl6zuOcHj8IfoejHZhwt4KrC+lypPwo1X4yS+JnTDdMbkz+x5+vg0L0E30wKHgknnMyJZ+gE15gbUmPPi+HEYvJdl0EsUt+SjfghRvUZG56tsHUytAku2ahPEdH0wQYOiB+hethtrWFGBKoHaHOsVQlIv/CvXW1DD/gt27YlSbfDkJlxkbYCFrH+jnr3NJzqFQ4foy8daIe72a4C5oeJiK9qeLJAqA7U9M+GdDWGgGmG188e+VA0YnFUPyO5ErgO30uynG6GXamT/Gs6IcgppjXczn4UDsRttbeUpYOCCu/GTeo9ip3skfYZHoLGM+yXy46XQ/m58YHtNQL6yWpUSBSjQJbprnqc+UsgnCk2nXeJQFzPWJ75vR8Ahoc/W2kWaiHLaor+QgERPQnPGs+71gt9b2Rx+uRWKLC9GRBUgUcJJ7kvVAZ0Ad+yI/fBI61QX4FrPvQ5BC3RicUXs/XB24YM7UZPMpxm/+d9+QYWaT5fefKhlgBeh5RoHmlXQuxr542/OtHo1dbr88XHB6BQ37UvZqoA0hVlToleJiKvPMsex5tDcFjjTK5paSlEC5554WhLQiduzdtpNnRAFVitniQ2A/tSBFGbOp9t3+1Wvod0wrc3Rpq3aUuoPmV94ZoPBkX3yp9NofrGAZ7y2pWyCMBSuIo90xKR3hZTb/HZcRBRP5m/qd0EdCdJV6o+YZD0Mr0we+AIVCoy3BUcbYA/Byu5nviSEPr57UNqfS/wN8264t5VQyrH7VY2FSIiVHxJxSV1QraGdfIsTR3QLPYKZRyMQix50lZv9dsgovASB/8gHiwvdXvSW8UhzA+ZwkMfUmHyiX7Pse5SaMi1aNIvjkHDjm8//KTO843e6W60kQiyVbc+nWsjIDuC6nDpDAK9Kj42bAUZZBremwkIJiBC9Ke1/aytYH+kQ7Q1uB126zMV5NijUMhsQSYvYRQkKvY5HZUogE4u9tdnNwloouq9vbnLIJScbqj7cQULIVFXounZCNS9qzCVDBiAS58r2n1yK6BRhTe+opmIFCvFxTBy0bA4Zeyj4tIK3aoew/WcGJTVxzDwoqwcNod47+m11sPgn7gCIncE8sgVJXJfHQL9gvCrZZutoLzC+vyfMBHVbWq0lGt3QXCbSmK8YCLw0Fco7VljUZNGId2Pgn54cO0nOW03B7TO1eHEGvCI/d2U6NftURj+7GfgK1INl1d7FoGCQXrOx6Kuq41ChFS+wp1cMtDxnicdnMSi4++XFfa/HIAGwX0fma5mQ22n4Fn7eRI6dfjRkRUffxjsNVDh464CXqekSs+ueGSm6RJb9pUC6iLunSXEJliztmFjtSMgsoi5x4/kMmj+PTmmeKIaiF6v+wqlI9DQinj/GokCAvzE17utafDRzyrsQiEeXVYRz1dURbBpP8Wsf6wdziku9lnKxCMdWpr2gb1BiDgUyoJ6yZCbKz1E45yI/nTtFQqp98O6ogFF4n4lbFofzMllI6EQQQlTolUXfLHl//qAthku7CshXZnDocuWrOJFsv2wSbRzZdEthg9CJ/g+a1P9qsx5/wFXao9uPcH3ntr3fRerdT9Q76vDUtm252cPhM1E10X9iwDfsBRW9DQaVUnVnCrHD0NYNxpWVqymcrBEVNOchKq5vw33ZA3D1RlN/JkABPPYnQqxbBJaq9OtYgwcBKWDJfzWueXw9eJzozQFIqq8ncURv68fNPSTT57Hp8DjMpXTHIN4xFm+G2P8rw1mH9hZ8jhUgQ0bS8OQRTQ6xsYz7aFNhlKfh7y6gtkQtPir8hm1L8/5W0bcMveE2YltNjruekiN4l/rW8KgJHdpDuzkKPBI1SgKU/niEaO7v/cxAV1naj0y09QHOlvMaPJjM6DGMEYcJxGFsaSfH5wbg8r9tgMS30thn/GLl2UO0eh+Tvz5HXwfXPrl48L7rB1uYR9wl5bjUO4cJ5eYZgukCadrG668onLJESyaqXtXrO/gLtkDgpSHqVwbreBxYmutuxKLRKfPVT143Q8N9CLt+5Oa4F3rkOw8Nhp9uaMVcSa7CS5o/GN/JIIgwWKQcXkmGrWSEz14/lGAjdwpeYiat8vaH1LiH+HR/RtYBeXiEUj6jZ3dV9ECiaJ+yyqBiSjjmDzTiS/ZwFN5+IdjbjPoH8g+GkEfhUwZakKiTMegyaH2hemTGmjFfEz4TxmDyqzcv15cHQZhj1g1abpqiG5argyqC0Vle1pkBkwP8A6Hhwl9LYdp+aFePep7F08Ge9Lf6YK4XfScRS4f5vh4G68wxqBzvAcEf8RlwY4X+9sE/0igG+wn6fiFoO1+Xq9XhsNA2Dx+tOVwDcy6adpuOhNQHTPveWaLUSh+fOG7mG8MpBYsHfUPIaK1o7xJ/v/1gG3ictb13RJI0RO7dzWBgJbT5Z/wS43ChblS81aveoicU06Zniei38O4fP7zA3Ahwh+OiDTCvYenEjIiiWhy8p9wzFov8FYA176XDfDvYoTkSFIMEoH75pOH6qFDdcHhPF0DXJHqUZim5htBSGcjxrkLTuP7d/h/tYGBffDMmQ0csvy83tm74QtYiTveasnpsJZoGbyrkoAkPij376lGwiQji4nt2RZgPrtly8ASh4w+vfC7uVYDzcxvnnP01QKj5t+PFjsR6Law2dZ73WxgCFEW7N6sgnu/P6kNOEWh34blH3h2uyDKgMksopIM3Vv+c9wlWCTLR27TujUAuY3/kM8+BOUCBUuvSaEo4Ug+by6tNyC4KPFthwRBB+X2YcgY9NJwjLJ5B4GxoNC2JM9LuJlKSN1WiUZ6q3nFWRVUTp00HzroSgC7lHK5xRt41BC+ZcaAzYHDxm9MLi3iYT/zs8sB98JRWCE9PkRgHOIIRfQxZmWQoCF09uQ6BvnMiFG45TvhvJdonc+oG5Akf6iIMuDQdKbDvwaqt9BPKS3G+pBgRcvF2JR6zhy78rWvqjOh2SfbT2EjH4wyHgcf6gxFLB/TVkZZSSCZzEQeG0QwvK17zywqDv0RC1XF9oxCYvhXpTnlGnD2j5ZZxRPQox1+4fWNIejmPztht0CG8E/mKXo5JBSsUfDRSX4M9nLtPsYGN0GJTZlGsg0WvVOJVVzPGIN/IZtO/XoNcKtaq5zsh0GayueidLUooJT4n3XKyXporPewK9ohoYCA132ltUOw6eAperYkEgwiJhnpy8NR10M9hfLFUTCfnOSarAqHlh72NSUXAtolHf/spdEFbPUj3xiZiqE6LG2k6nMsSriWz5mcOwjHRas5+tpbYPWN/6GmDTy6iNeVmamkzvkXTYOAUQRqdaac/zpi0X/JauSkhgHA/fYz1GqMBMQjGhv/h4BiE9R++K4OAK+cy7nFV8/gEz0NjcP//DZ6IcpWsR0yKXd9SIml8JilpNmlLAapfBlTKFtrh9iB/ZfvqpVDpY7yeAcxCuWfM00y4RuC65edxj4He4DbCZtoWRsSuvNDU17QpRBoilrxXlZkqNwrSikdDkGO6TYs9PtTIL6y2qSKOR/6Sj7F1t6PRe7pQyZ/+8kQtCNnvzJcDeGKeXW36WMR5z7mQPPvUeA1cftFNY6aqz4lF2xYqP1Ld+UgeXYE1FxTdxmmyPDvBKdYrxwJWT57bx+qOgpvDlDwjUzV8N+JxEI2EhHFa4mRM5hHQcwn18lmvAqmQ7Q2csYJyEVPh9aO2mc+nPeYkJEgQ/nkLt+uIgYJhaje5bk1BPJSS4eSbxIgqy39UqdNIqL/9OrGO6NeeECxvnWlLBtEGHAyXlTeSVUl+l6VoIB2J+H1Tk0qVJ+ioUPSMchpGsS/XOgBZ4VrrJLO1N66dZOphoOATvVijFcbeqE8iULPxYQg+oqdqJ8IET2wj8Ucse2CfQa31wxOVYOe1zkJmfEQdHettHr8IQUwAVg/fzYyrFRlhEywJSKjKdEkxWYKwKv+vZsxeDgS12ka9pKEHu5Hsrpv+8HcXrexX5bK8Sp5BtNYEpJyJPwaLKSAbhudFZY/D1SPGqkV1JCouZ1aN03tISa/M5/cq/AE1YNXHPj/r2Izj4bybeN4UVoUIRJJKlRaECHbFalQJEtF/EhECyGJ7GTsZreE7Lvs+3bP2NeZIdkJoUQllCW88/4/5zxz7vu6vt/P55znyQ9BOnIzyyFCbSBPDBENa0CAZIxy/mNyjuMJr5bh0HroxnUyDLkrwMH0dOH3tzgUqWxT/9auFWZ+e4olClOBTfT2vGwMCeXT9Lwn7OhA2jDo1KtPAa4wzgt1iIAKZBeftJ51hLiwl1Ta6yr4XKIfqsaBQyUCTj2febvg4vLF5GsC8fC6JMbDy4GIToiNrfNKd4K0mkcTG18JIIvhuXQ/MrL9sSl9o9cJVswV9D/PUiHWdVdhyX4cujarHYOZaQXUOfpZKTgfLvNHFaqOEBDXHyn3g09q4cZGMO5HTgG8v/XSpzIvFKlTspWkd9LgTJ4APntXHQSB6eLlS2+Rvvz6ztXNCtBBp8d10qLgcID209ecwaj5eIGpe28VRCcdecRdmw1X9uvx62/5Iu4/tij2dyMMcEV1CoWXQUyurwLekIBeYVYf73/kDUKCkacE9RDoxpU+vJUYigTGKzUiE7qAzfxvrAKBCsISh907cyLRzZ2pGvVOnUAriPdcLKsDlbzoFbcsMgojvEh0X3kFegT5JjW3AngkYsLtModFu++cleL7xYD7GU+69Cpq4Vrg+ECHMREZ24yxbfwuAaWHBd4F+Doo6PcPYOMKRAu6NKvYWwgOVIk/0qorg/UbEs+vVQQi1aHd9ntrGLBxy4RtEF8O2dxboS5i/ih0JML87zUmr3+rKBSkR0EaS+9w5iwG7R9t4X5ztBv+211YUq8dC+qnD5zds0lAXUZcO4/H0eHl+ff6mvgk2PzCb6ZeSkZb+4J5B5m+cPim/Ma2rBrw6KXyvGEQ0e/J8JZlbzrYz9PeFBxPBVMj4UPUXub8jNLabfnzwT7ysI98wAfoSsyZgFMY5Ht9l1zfkxY4Lh8qZxqeBOKyP3JuvcKh6F8jhMu7vZnetclDlkwDCSOx/0pYQ9Cvtb0ZTj2tcFsuWFqeswKoE3O5ySY4NOdp/xfJtoOYFL+baXg2fDB/f9ohhoz896mYipPaoKPoQJRNRhqMfuo4IHSQhG78Sp3rNaJBNPfX6/fGaoFjiyVlVAuPDJ7sSD3xmgbLZdLtPNlFsL/yaZpnBh4pSr09tZLOgDTjVP7N/dkQcTy1fI1GQPdukJuSmPM5YDBBnzKtgiClnC+nmXMyaykpszaHwId685KNKgKLcJ0V0/oARPY6F/4oqQaeGL7eSJ1A4PrI9NedJD902vfo7gMVDLCpcYl6P0QFF5MFseNhBOS8Rzj04sVOWLAluh+JYfLbQTaW4vNkdKHiUnfnWhcI9mKqSwRqwIeHJWExJhL9tcy5m+tDh7vrelqjO+tBcvbhnAtPJGoxn2yvSqdDoJfDQ7PLCOS66VdmJzHoh/Cv4KOvusHVY8zh/3tduPa+Z1Oauddz2bYOch1gIH4P5+gRAu/xTg+/j5LQ/p7WZjHvKIjSDf3Wc6gUdCannytCGBLBjHx8mNcGx8sX1B3sEZy/xB5Q5hWOUo5xeFyvZ0BF0oQPr0YNNMt9r83cxKF7UqeLzG+6QFsrfSmclck739988UmMQPXPH7HrjLSBF6boeEZCAURsmx3hkCGggD6zuJcxXSCB37Aoz6iGlX0y4+sTJBSdp/ypI6kbXsS16VG+IdjtHlky4IFFT3EpeXvC62GvofQFqmAdtDpzfZC9ikVKLZKR/uMlkLVfMKwugwKO/laxGkcCUaT0dceHMrVQTj70azi8GNw/uGyWFYSiVukKhU6JRli7k/jpYUIF/Lh49110LB45bDfirQ5qgqIXgyajBAQFX9JGkp7ikU+6f5eTTAKoBStbix5OhBTLTymX/wUjNd4LIw0vqkH3if63DWbvV937uGP6PwzCWfxH+JlCgys9+EPXXN3g/ud0HytVIsJPcnzyE2DAb+O2/WUelaC9yTERE4RHHL7SF+cDuuEvvhT/PSEPNrSaSjZZCOi6pTFWsYDJvfH2/ddG04HN7fOh35Fh6KAQXE33wILASOz85xUX2FZYLZSPCUWCk/UquYYtcMjNMuh7BxXafrXMZ/YQ0MMMmQ3baAq4a1NLjqUhuD9zaVpbPgydVH99g2HDgGWNpYGphXeQOsF/duBRBHp7pIV2tYHZX/q1En4XS4EScv1lpV8Q4tYK1fuY3Qmcck1dP7dKwd3Wwmd5Bo+4QwrdZe63wUuehier0bWAH8vaUShLRiGOLOGVpEZI/fUrQuB8LqyuP1SrHMKho7xyjk04BpRjbdT6GgqAU/8ZX00aAS0W7vTbXdACMvS5z3O+1XB5fZHlw1cc2lGNb7slQocXiv5TnvE+8PhVQ+3SLmYfufFfH0vtgHHxrlJvMpP/zYWaf0bhUWloeqCWIQM4H56h3hSpg6dC1q7F3VjUcDNjrEmxGUbWFyzz8EXw/Tu3vK8SEV3IseXfE9YBf7O5pB4xMmGOy912x/dgFGsQdInvXCPolc6zDRvmgfB+vQ7JF2/RoMPXNPmiFhjT/pv87FshFIkVdVYdIiFpvxNa/FxUWDavLpiYz4Lq+FvTdqLhaDnTQvy2JAJFSb+JF7Ip4J51X/+fcxAqyZJ/0OjYCPd279A2u4eAMfAqSlo3CHUsnU8N/N0K/EVS7SXUEAgLzlkUnySh038F70RnM2DLx01V9DcFrqldRjtCCEjdqq/Usy0IUm8allVtVMPC3TJJXiksynnwt2G/JR0ahyW0Mq/WwkwEm3p7HgGpFPo3FJJ8wPHo3+IsfQpUPplaifMPQuctXgh/ItChul1K4kxjFQSfwXl2dZLRz0f79ly/0A249Z2Bu2oocILdjPfULwK6cWKvcbobBW5VXFG8MUkGVHUm+NIuLGr89c/+/3tq6/nF8XY4Myd1LuqdccUhTC/putwUFfxHlwiM1gSIVqLTb3tFINX/1NU7zzbCxpyof5pVCnD+SnkrbopDsvkprothjbA9Tib8g1Q6VH24xsO6iEVN4a8vGJl3Q363YMH9YabvnLLmP86cE6fdfdWqHe2QQLj0hdOrFiwnJmYfMPlN5dbAiGcXAi4bTxtflUqYqv1ixfYtCA1ctPz68QaCOadUqz6FLLgb+qqCtyEYJdxSwd8RboZ7clzfplywME5319JoxKMlQSnblCcM6MsT+ymojoB4/84pjhkCamvcnJu2bYYt8sXzJWfKQeWBJIpQIyARrjinpuUmIEyo9q5tZ/qI4GhKCw6PwoJG6u33tUHP9WqCNncxnOqz92mWJCDZ9aXOBbEOEHy3F3fBoxB+nk+OOV9OQJNHBoRb7WgwXiva+bDCF4KOa5Y8wkail8JTv3ktOkA+0kArklELBZnnDKyvRyLFclbOXMdS4Pb9W7vwxwkOrDd+x+oHoqvv1V+5rXVDpzTjN8ErBq6Kl974boZHEW9mGyt6GTAfYFNwT80BChd2dhunEhG75cQNzZhusN28/X01oBa2zqvrrFpj0ROJYsdtit2wSyjxUIVSBSSL8QjYnopAfcprqa9K2uCQoIn/Pw8mR3HIDHA8IKP1o2e09Z0K4IqBgWbx/jpYP6bc78GHQTdUi+AtOwPMS39Gt2flwzXOYc9LvGGoXvIjT8hEKxSIvvh3NTkDNLt08YXlTA+KrqR+dGoHgdj6uuW8CiZnaWeerSWjro06weovTaB0DbPW2oxg9uC9WrclAtKoKE71MHaBw/MHs47gX0NQlIGVAGcEIh3fNsuxxIAjVsTuXXcRPLDg+ZecgUXbgkVt2U5+gPtHWTwep8aDvaitHcUKgwI//ijpu9UI3EUYq+Vm5nNZxrA48TCE/j0IUNdphNnQyj9ZWWXgJST5Z4yKR6tPWCys6lpAejw36dUsAdQvFSiNXSahyipRMZXaFiBbrPz5nVYH2RupZptGeKQVOWcXvE6HifN2XRVPquH2wTDjaSCjrNafnO+VaKCHG+v9UkaAc4Vj7IMieKQztc2x6ks3XDoW8VlXJAUqj1gVLT/Boxb0cCH+ZRfMSGlgLVjzQIf19qfMN5HoLi1/McmyFUocKpNeHUHgbzdk+1A/DFV828/6oboZdH2+OH3vYvb1KqaNox6HhkgLB9ZCWsBX0veMbmgBEByJnE+3E5Didm1QHqgA8w22hvGfVChdXBEcUgpG3w6cui+2SgOewdGCr0zeSE2ZMJZ8GIlkBQeEZisagXfJrO0ULwKra+313Rgs2pLJ+n09Ph3s8AqUEQYFzt9f6tbzC0R9bdtujbi0QI4N7lFcexW0vvy65F1EQA3VYxaSmS2Q0SS+FCtRAxXORXwaR5h+7R4n0vk3Hm7uz3WRQZVQ8r7khcQLDNr3T6fwQnY9rKwM5XWJvAXLbN6yp9E4xD7J0+SS1wB6kzja3kkq8HHkTp7RwSOKtP3+1Vo60MqfVD+YoIB0zYUlUiMRsRZM5Xb7dEBZotH0GnsM3Lb+MdM5TkAXEhoYnZMdcOupe9SNyBiwFj81a1WJR2bv5VKEqrqBaH+2mSvaCRyWUp1DivAoZm5HrC6Tb4+4igLucy4cNtybJfGdhJ4827k7ipsOXk0e/xm4I5gxvJytzvQIeecIOYvlRujOR/luPQlwbfEyxY4Ti9YSXx1ZcWiDRjk3LWf9SnhnFtuXYkZGVnE5XUNODHjs8VP39Eg1SDkU4cx2EZHPF0t5ixt0eIi7t8ficRzoXgyZ38PsEZm20nMnWOjgs90y78dcNHSX3SO8sSGhpB0NSVP360FC/3EPVt0VHog7fnnwKxydu6n45pBEGwRZFg89JhcCkefCdetPRCR8ixXLI8UAY5LMidiJPKgI4ZTbMU1Cmrrcq5yiH8CXN8uoVZG576XDL7pNMEj0g9M7vfetcKKjbMSPJRv6qdb/HX5DQNnT4c0n2DpgwWWy3ZVEhAGTcycrf5MR+4bTIMfBl6DZmDtdY1ADVNUV/CU2HFJ6f+HU+Eg79PtLUeNvU4F+LSxsz3cyekAR0j5jVAufejjo60/Lgd5MJmbkh6Jbmh/ljvMwz8fksKCzERUYj0rypDOZecVXyKKT2A13L+u+nmT2wJjJzp+073i02MFhF7qnE9wJcpkijQkg8INu12EUiWzbq8RXPCkQsE3m+W4sBSYfDGf2FkWg2up3QX9o7vA0SfWc/GweSNhM6n/XDUdrnqd/dsfXw326zzB+P7Nnn3GlFDPz85C2lM/UoxbYOGiSc4n2Hm7r8V2m1hCQeJp0vuQoA3bm1qvlO8fBG4V61crnWHSeJ124d6Ab4j+VDQ/LUuEGZipR+wsGCVTEJSXp0sDgLBed+1M+bIa1nrwrgEXGnvnOYwZEMLKR7wmhl4Iz2zNRrjvhyCDqu+BfAwq8N5vYg7sUDMbiLyZLViKQXWUwKwulCTwNKMYconjwq2/deW+AgP6EqnGHSWWA0H1vhaoYH5D/Gr1pmeePNCuanhhmdUKL4Z0PTqVUsL/ZLpxWTUSD7mPQ6dYE66T8qtPsCeDviJOaryKgK3sLbxWrp8Cfa1wXB8pKwSgpr+0XNgg1FdrQCHaVkN1pur9OvABeO7Ny/jMJQJpuAjdG97cAjtUvcOFTJUBHwebfHCIisTiZQ209nDJh5+MOSASOzr1ee8g4tJqStxkx3QrfmmSWbnJSgeSo5ftvMAgN/XeRtWZbNxQeflomHZAHz1JWLjucJqKNhaVLY750+PDHtJ6WmglalVpxhYoR6Dvb2thnxQJwW741f1OqEk48cd+tLIZB5B0dirXM/Az8odfj+ScI/COb5RZPBCDe2cbYvS+64f56Ye5/G1ngwXtG87YRAa2pyKU0FLfCVqNfw9PkYjh9p2PX2xoSeni4omC5NwSiWcQa6nZkw+ffVaay7Fj0rNv6SFo0Aw7pbsastqYCIUB9B/4xHuk1mZ+YcWZA7M08Gza+aniLj9jM0ychnWD+aNnqRjh5J9rsCmc+/JQV7f0ggUUsbSJVqQPBIPJO/oelSAEIbtINrRb9kNZ2yXrn1BZgHLqmG8fkoMqHOt+SpwmIp3l/B5tWJmQd7RVP6imEJ7d+9IocC0SehVXJpZT38PL5FqVvNYjJsdEvA31C0JklTf7Sby0AhzLdbyplgLu9imLmTiLax54aZH24GNij9ih0hFbDJYMHlXpXMeiM1g6LXiY/S62kh3U3J8NZC0uBLLEwdDnhjWNrMh3cDjiuFtiWg+v+3xbJoSTExsP9+snfLsjjF/g0caQOOEQbw7ABBLQdwvBh77uA3d1tSnSjBNSabDNfekaiNymcXKNMPzrfl903tUaBCYGCnK60AJT+C9OqsMiAJRGV7IJdFJAUp2g3n/NDspsm9w6uVcGV7Yq1WVdioUxxe4+mRQgqulqcvi7cBTcmB2K6cTXQmbE9NsiJjAwPaRXk0ejARdymLfMwA9IY9Qa7jpCQ9/BdVnnOJnj4CidAtUwHrZUScwlrpjCuiQQfRgzQfHTs3B/3JNDNjz3QgiEif/2GBy4qLqAaKPXq+hkqtBtUyLWMMHnDKquKN5sE27Y79Pow8/D8g+5TJmNhaOVLRnQkSzeUC+j/h+8rhHxOoRZFAh5d/BF15R5fN2CvtV9qYBTAY+8MzJ8MHNImVr4PtU+FHYUbjI5t1cDS65NCZXrKOcp3jvxEKsjl/njk/acMDnuKrBj4hqKbI38yzLtoIJTlfnIquQw4Arpbfs74oRUOQemCbgy0ike+dhQogB71NQ41NSzSUghpZKmrBBObmY+VBTWQ1N1Wop8YjK7trRLk3EEDmz25l0rD80E5p57nT0IkOiir6XvnWhfcPFf+dyYyE872lbz3eoRByrav35Tc6oTVeDvtamsy/LIp353pEoo+djadrznZBC36YlduiziDwUYoq5k6Ad071rTOltEB1w8dGOgnFoO4lr+K6jsSWt2QoCuGM/e8RVJi8JAjROxL0ds7iEU/j5M5BDwY8DbK0hrP4Q9/2Y7L5seGIbdVFgMTYSwsYt43+KYnwpD8Fsvk2wgkzB5NHFZwhPPCqoztEWmQcPngfuHDOMRQ4R36+YACgp7e/XYLdWCocGNScCsCjd8UPhhs0wQ3P7WJejdVQ4+WZY5PPNOv8/lWgs5Sgb/vYBX/XDZUq45mb+KwaH0kVCvYrhuepT3Pk7gaCwqZ41V846FIS68KOy3UDsS0ij27G6shOfeppJIAER08zjcXg22Aq9cG/OvSqFBLpmrK7cGif/0DJfk/SqBfJQ/1ZNbCvMCF3R4bvugN55vNZ4oUyF2V+cvFmQY77S+hh3mByHjJokf5FXNu94yHm1t5QKJBwYyzLR7xlbmMf27uBFGqR8jt8RrQtRvNo2UHopXtf5pIWx2gVnDvygyuDEaUp5SH7CPRfIy0l3dfJ9RX4C05exKB53RImxeTSwkb1i/38XTDgP9fiZPpMcCSe/Ny6Vs8iiR1/GvWaYXpIhl37jeh8KnM90F5KRHJp8YdN/Jvh/SXw794CAVw1n379M8GZr/zejfkPWuDeDlh3m+/E8H9Q21PURsGHfxd9Hmwkek7IQt/h9qT4fTb+SlPDRLqo0zc9N7XAirz3maXZt7Dv6hdkZPFRLTlZVFw0egDpAw+N2D3Dgf3r/nSZAUM+uZz7fTViDg4M6qnxatDgUCqMcW3PwRdX5BD84e7gWZmMG9NrwMpd8Rj8ZuA1F63TXKU0oH3BKv2vFkezG+/NlAUSEbGWjYa5H4G7PFx4h2WJAGvNlHmn3444n7uu3SXmwG8B72+mu16D4F8PG47jzB9ZDnH8HQgGTojMhyeDidAZdXrANanYSjv8Y66kJJmaP/0FvNvNhMk6Qo2/SQisr5kmnvwQBvcdL+vR3xeC2Ql9ZGzWUSkpVIlokenw87glRTWtgpY2b2v4UUYGQkdvR1grE+Fpq0M0hIfFaJruaoTi7Bo0k/r5ud9mbB65edetiIEzQ/+XJ00CES1hoLFLH+yIENDrrdXmcn/asu/qkcxSNE6xUBjrAiutkx6Lv0pB6HVlXBPDwyKpdVmXw/uAhZPDdWQmSzo74tuyksmoVrhStp7sXYoyqiZ9lRm5obxpvTDDhx6pUHRSaXVAuuEYvUy8R00fj2oGpQdhLyHvIysdQKhbI29SdmsAu59Cm+KkAtHRZs7paLnasH9pMR6cF41iKw/uSf09S2KmBAwZe+thm99Qb/mfasg3rNZtKwzBJkltj2J3UUFk2hsdb9OLfj9Fl1gaGHRLz72uQNvGGBHl7yYXpULTttVeX3ukNBrO9eeJ4nNQKKf37zyXySklKqO8DLw6Dm9KDW8A8Hi8/L0Ko4CuNXTJlVnFYr017m+m36hwaPDBZtue5KA91AWp/QfMqLpZMvsdqNDzs8Ld9ZtSSDNRZ0ytCGi5qVP2YFMzlG48kzig08dPF7lbaLUEpClIbk8l8mZdI1yhxMPakDUlbZxNpeAhHqLL31K6QJlnOK17O8IKkoEbj58hUWPh2XWKxzoYJ8uUtUumAipvwXbDz7FovnECmyjbyHEfNdMz6ZFgnVSUyjprB9S83hH2fhChyd3TpVq5+eCK0Gk7tZpHLprF7s8GtsJ1hfGNsZPkOEDH/231B1mLx8OkT9/ugRmR1qPsZbHQqDnerr/DAZ1PLyxv1WhB4ZyGIWJ21Pg6OH5b+MmOPSPdf+e/9jaIYqPunHKrBymMuZfZFqR0L9/Z57vz+kAWe5zuaaZScz/qTSAqw9HQh5O3L19dLiTr7M30g4D5r2ObSBEQur9JW52u0rgLzkCi8MWg4fXV5FlLT80NLXpb11OhbM6Hzk/JFdD+dr6p1/jWCQXqTO1yvTW2plsL1a2JHA+JBlz8DMBvTDUOKEe2Qy/Tvq9G66vhFRrx1FlfizKXPVoO4trh/j8ghPfZZ1BmYU9aWKChDSorGxTS82QVly9gyFWAS/ulhHK6ESUTRHtK7jSDQLqRTfupvrCrvOrhycxQWjA95F5SXY74BTkpoxPUsApnBY/PUhG1KNqF2V5aNCo9U57W3MspMoVtbzwj0SppTuddvylAncPR8tAJRUIg+vV9y5FIL2ePf7Gb4uh5dQUjam9YOoetp0lA4PWPSXTZHmLwVNQOXDjcx14fh0psghletAuHi9h0yLo4IjgVuSlgJEwZf4HkzOVjyQF5z1igFQ0f2OyRQksO4b/eiZDRDY7ELswBwNydW/7Rs0UQcJV1exTG2HIym+ZsWpDh/Rrtg8k+R1h50317cv7ItHHl1pV0kt0MC5geJkFB4JK4z31t1eI6L0oxz93BgnWy8JtzTRD4GXFQpDhyXA04Xj5dZt9M2hY3f5xVKEYNK9z8PP6B6KmZy9yfsvQ4GSPFWuMJgme6rJOacVHoo6779tjHrRAXrrroalJf9jl6/5Z5CsR3VEtXnuaQ4OvuIgn9E0qnHrxX2OqTyTCRQ53ZKzR4VJR+4MjzLlKEJG9fdqZiIKsPcZkQlvhU0Rb1pcTeNj8/NJ1qYmELiw36J482AOi6y4JoX758HluNHmgPgJ5Wp8ZvlkbCZqpi33tRlXg1lF9tsUoDHE23J8RMKWBKCsuSKiiGEQejqpMNJLQUfy9O20fqKD931MMWf4DrH291yUxi0V4HcucQUYp/DXf9YJf+R1QNCg26raBCHdAqPNYQhOsvHpE4RErhWghF39ufzw6olNyfJqrA/6FHlO+NkgFFWuXIhmmd3/dnxpjcLIZAnGhzeVJ/lDdfypzUYKI+imXzUuZnGZe7bB5/0sWFIptGBs/xaNRg5dGY3sZMPJW+IMWXwF4h56jVncQkcYfto3EvA6wQCzcYyIxEFH9JnrIgox+en7cumvRDn6bDP9+pRogrAatG5fjUKG++UnucwWgVpZytWerFL4aoi93TmDQCXh0Lt+3G9DF+PbESArIsZIVFVfwaMxV6cKxuHcw/YNrISvaERJ+lUq8DA5FChrnDxaoYOGI5NS2sVIELXvfn14XCURhg8+P3PvSCk+rwr9PPcwB/b/knNZIPLKpYQS5zBOAkX/NxFWQCil0+tWHL5nzs+B4JT8MQb8V9T5reh3Q9XEtAgdDUauJ+NwH2QamPypFX32fBmJBbRJnu8KRrI+VGVE4FUb+psh+Ol4JZPry+SS1IPQvVcFA7+or2K3Ovlptg+CJiPBqiVQEuv0gbNq4kA7h7pfvvpLOBJWLSZbY9kA0HqEiQcPRwa+Ss3G3pSeYn5f1lxMhoY81YjNfRklwQajlxaszFGjTY9hLoCCU8ktckvy2EaZfG7WeOhwAq94Wzjy8BFTz5eroHXorLDIjr9UpCcyxlwJMfpCQM5dSt+toOmSeFJqr1QoEGY6Ul0IagSjyC7K8xpULTfGWP2qzCyCaa7JP6A0GldjHZyT20MFpsPfDgkcClP4u2j/D9DXxg5XjTTktoHPw7tWZc/nAy2d+AwmQEPkN+VFjfTfousWxboggCA749NHvJxa9VTs7a6DLgLGX82IXzN+AqI78Tr8lLMo9O0012EYGNvlhSZvZKvB+w5C8bBGM1ljml7TetcBqcOvvNu5oSEyyFp7oIyC0GY+xr/CHF8rYriPHo+EJqUnfETCIjaMyx+otAzxzb5cpRSVB/h+zw9/lSYjHevuD2fMU0Ch5+XBYAg/vPh48efhNKNqIE/Nh6WuHhu2/LfdQKiGZ6hHk+oWM3OLcPBhVXdAoctIw+loVkF7f0Fpm9kjk9eeGt4yb4ca3idSS0EzIL3LZGuANQw1L3yqePu+GGVm+nfyLVKh77/y1WYuA2NjH6iU5WiCK3aPPti8PMuor7HE1GNR0hMu6ytqFeV+fyn6qUqC+SfxMDl8EihH2edF0jwwmgwKCDr4OoBS/yRLGG47SBf+15qc0AUyVHMhzpYCjtXnQwXN4JKOq+bbaj1lNCewlgzdeA9X46aj9PwIaO69QWxbWCjLcYgel76TCnJj/bbZuEtJNwLAduEiFEQVZ9WRfZ0hpOlLSpRiB5E9vshxizklGvUIuWbka9mTtIBxk3juGvm3OP4bpp79UYpwXSoFNUJsvYoaEPs2duUirq4e9Pl79RHIqxOotGh4txSHF8+beF2Q64Yq2n47rZCFIJ9vGaMRGIufFA2ZRDW0gK/Rc69RtCnjpPpEb8iMjBVY+J7aNLuiN8xIecUZg1Gq61/JZCPrk7O2Q8KMWXnDqDH2byYeDzlXxlCdBKMuDJfm9mSPIBKCgO6aJkNK1/LnwPA7tfcl1RkKvGI73/DHufUqGkdbihVAqBo1EftCfHqQA553Iap5jVdB0Uyzy81EsYrwMcosvaQSttEc5odLvQPK1133lTTxyOFk0vn2RBtxmA9tJouVg9PlB1nWmT4kFru7OGnkL2zYepJmrlYCzgYupkSMWGZuUpebUMD3O8VOeTHgR6BfG+lfeiUT2qqwc5S7N4LWxWhH2BIFvb73p+RdMnr8VZ3zDtROWnu75J9AXA9qLAhtX95LRtHxDz+F+GnCmWbaJNuRCQ9q20TpmvwhbXsqlcNLh1i/jIOvSGrhVu7a0vsLsTb8PxHp2Bmy1uLb96yyFHbcPWC2PRaDIO1Yqz9zaIFlYmIs/ORPOONkb+isyz3lwRNHcrAkOld0Xd+HOhufDpR6354IRv6l19FudBqCfZf9cvqcYzOQui5Qx9zFKUu2Ty0gT4DHx+j6Easi78M3Y9iMOfRO6xzcRRgIpk/wLSxtUoF2wFtW9Ho46x0xsrqR2w/LItYvrCWlg9aMrSigCh5wNaUc1DnaB/IGI/iu3k8HrzSSPgEkwCh3ufiMWQYNLfZNWDM5CwD2YSruCjURfY6jds5QSOEcarpJnpcD9NIbL7LlAdELuF6vYcwQbO7ZPf9MLh84zf1cSvoWg7ddvD5ho0OCnfMLuRj5HpkdkRkt5RCKWM3wtCZt0WNvKoJ0VRHB5JMmiZyYMRcvKbnMI6YCrElLEfIsUUNuF5k72klB/ksf6sioN7LaBC/qSCRLbes1My/1Qm4mditu9cmjdSdgWNlTC5A7+1ID5QOTXN3l+SZICrCZeahVrBTCT5uh1PC0CBXxbsfNNp0GTXz6x4146uEZqDisRyEhE71BB351u2Lc+t0PWBAvd3dfTzvpg0Qe5LuNxbDLcM8MlNBJfw9n0gHUROgbhTSredf17DxxJGs8lcZ5wltRwK0k2AO3G7Mir9U+AoUOFmnvSSyA/Vf7USZYQhNZeXD+2XgqZJZ8rueITwWKC/YkOk3NmVlqyrmVSYE5vL15Z0QsWMnCEzd4Q1L43eShbuQH8WbSfqt1+BxXDXz7rxmLRqLqyibFfOyweFPur+a4QpIbwr91PhaH5FN7LDYEM+Bsk1cp9EcGE+hfdx/x4lBOAzVr8yoDad7KnrgkUglpi2VCpPRHdLanf1lbeDYn0ekybdjHYTgzVt9P8UKkjb9o9fxq0lTkPaNvkQP974cRGGzKaC4vWnWjohFrZeqPinDTwSGgPzo6KRKrzZzjunaBBgUk2j2liFXzqxY3fbo1AHTvHeiafUwG3i1p8xjUVVtb23GbPDEV0lsdB928Vgn+m3or0hXyYPexq8u84BlmJcRF/S9Kgb0bZwhPS4Po0TvUzOxEdrx69Tc2uhu6vTZLxLElQEnhKTHAPBnVHDWhFGTWA7JXxP546NWC277fdt9kgFHXUQkGY3Aijg8Eyh05Uwwfj5lOT3RhkOBSkU9NQD6f/4ZffMb2py3qmTToHg+zKMD1PMxlwe/WKo70YBUTCy8Io20lMPox9/ce3E7a4/H2KuirgbcY5RYdkIlL+/O5hdjmdeV+ZTYI6FdAvdOUz+wgBXUijeWV4toJaYKiNFKkSfnhT2W/exaKADRk41NsGgg6BKtF7MgDr8+ss5rUfwuM2W6sU24E9ZNM0N4sINtgpButDAurdzf9LeqUGpqSunigOKwbzo/qLn89i0EH3iLd7a6pA0tdDcu9WEWjof3r2R/gtkro1tPydkQ9XMswirDKKIbup/0xYvC8KYnnSUvamE+73z/jG1pTCnErf6ZQ3kaj3sfkSH64Q9ItiYdSlBHgoFfKeIhjU+qg9JY23Fq7ufrPNRzUPuj26Do3mh6J+UDo0o9AAhxuNPDl2VoBc3sl7DQshSKSA5Fdk1AJONiqq8S+CYOhAW1TlAQIyrzn/Sim7GZIU9lZe+04FN95aS5IDAR2cqrZZT6CA5vHZtE21cij2FpfWEAxFHmqpZZ1PO2DykdU/snsmWHwZP3iqjYg6xF0tb/fVgej4g4frnkkgLjUicWQuDL22jz/eqNUBWp8CDkulOcLZ89/8oi5GImuXzNO3xHNBpHZGARNRAs/O7AqeDsCgj//wZ4nCGBB12Dby8SeChL12xnWFfqjIJvYix3oVvKtZGq0dooIm+3JTplkIqll9TCTHBEMoT1f9o+VySPkcylF6CIvOlO/XqWfy/X0v7tZtx4OBgPXo7GjyRa4dW6S+J1T4c/Vd3a5LVcDpycq5WI1FaYs/D8r2d0IOdr42WLAIZLp+5V9KikT4kEeZHsJ0OFHUFVDKGwU//bt6tsL8UNyH23clZ5oggWPBtms8C3KE3T5x/MKjj8stXwVpqdDXw6FaVkiFO6lZZxlfA1H/9lASpzIDjp4SSDz7Ng7en48tmS8kIiJftSRusAtYCrML5RbKQG+krGRfBxnVHUhyPRocB7HrvYyzLMkwdnLurNBqCMrMy1zUG84Ac76Q+/O7q8A629GBd9APvVxNJkxfaIPtj65bRG+rgcYnUdf4wwgo2Stkmk2PDnaiQcJ2fB/AgSv0CoZ5/h6RMj2Rks1gLhP+xmVfPvgXjbFSDCNQ8lQEd589Fbq0fvRnZ5CgycJtX04+s5dndDzH17rh5uzndH33avjrIYsdfxCGhiK5T4R51cJ1jp+Cw/gasHWlkRi1oWjSdL+hqD8djnHv4nEqqAPWpnFbygAZpWyvXPKVZ4CMUzWpsKIWBDRqPFKZ/FMQwnccK9QKottvZfr0lUIoZ1HkVB4euWb6el9zSIQSkTmJvK8f4OlvqWyP5mBEnAvt2a3fATqxPK8TH0ZDuHW5utdjEjroRU1R+tMFw6rHMqWYnPLB0CF6TyQZ9bpHm7Nb0qCqbcJL8DcFLNYm3mT0kJBpFJaoZNgICYL7ZQ9/L4TrbEYW59oiUI1K5GGdwQaQim2LOpfF7KOKMGHGbRzKE387P5dNh1cTaYNbpDLgVIPaZ+l4RP6ZdVOpjQKz/b7yCfUUGOScXN/1KQwpZX/D2d9vgj9R6kJnOpPhXQCPGSGXgHAP4zK5yhtADxNhc7SSChoMdmyzEg7960puC3bthnf3jlwok6wDiYtNrBtnCQhcC1v2rTVA1byTy4qrN7w3Ddkx0haOXorHqd60zoLjksV9yUzfbFN7tYd9E4Mu7kWXVxV7QKPXWp/rfhk8VugvTlzCIVx6h7LYhR6g7r1bK6hRBrj65Yff9+OQ1phU5K/KZvC0+qgyElkGM41ZNQQyEQU7L7bPH6LBF/cgUlxkNaxMOhIEo8joiGSYUs2hJohbL+Gr+5EPgVX3d318TkAypg4Zj/+RwN81d+MSTxkUVEhcftThh6z+JXy0OdcA274aNC+olsOt+e703h84NEhxK0hTbQbuNq6vGRxpQAghDhoyvXiAd+gRI7YT9Pmfe9dTMqC4P+bpse94xFtsvVs0pwNsXiugopwKiE9keAeUEpCi3J+JhPoOKD42E5uGqYUcuZzEIqsIFFLR++TWORoc8XFWYh0thp26Y5cT6ojo/rvRQ7/j68DYvqpThb0GUrPYk1u/BKMkdcuNFp5EaNBINRfbToUdRg53bT8Fo+d3rGqf0qmw2fTI9NQ0cz/Ex1fcv2PRIaFduKrMTlj8IWsht5gKT2pDjV/4kdBUP+5d52YapG/esE61ywT+ea95hYxAZKrSwasY2w3iu1Pv2MQRwFpglpX9Bx4ddD5+lRclgEpmds2B5XcgFCJvPsIZgkJkDxYanugGr+LV9G87KPAoRfPn678ERIzZ/+/6Fh26Xi/I8AokQb9W87EbomR0RZnXuLa+GUJ9ApXHmP1o99WM49czIvLPIjyJn6LBrJBxBdtPP/jl8Lk4x4mM8vqrZsm/GuD3ASFnv5Io0KQNOTc54lHLIct7mCYEYUaVt2/PVAL1E43z9Lgf6rS+a9V3vwgE4s/w5UyGw1aD2v3fQRikc8w1pd2KBtONCZotudVAEw669WqGiNqo4/I5D1pgyWH4aumZEpgMkSc5YbDo6WATbTamBbT3Pd+59y8VfLSeZdoeJSGDwovOjt7d0DxnQ+jnKoe49xPynxUJiGGVVokRq4KPFpM37I8R4cQ2WZWjvcHo6ljt08Hz7eDpdm4lMzQR7rlb/9IeCUWErnNcevwtEPjXTTm4IBbcVsb3vL0ehpxttK8+/tsBdXG+/bvUi0DzaKW1/RoB3Xi8w2FAuw2Ung0V/SdTDCa5kbSf/GS0W4FWKPM+EKobmrSuLSWDmELA0SeF/ujlfNLbphQyLJ19kJJ9JB2sdvEpPKL5oqy1bxpXnjUB9fqgqW1iAXQpBrqrVzDnhJ2B7SVTYd+34oZv+DKQOL+wtK+T2VNe+eZHPtOAXoFnTeP/AM9b2/nyLcNRuJ/OQ3ueDvAOyAtWr6uFsMo7aRcPkNG7BcKRDwbtcF+6X2ZHBYJrfCPyGmwEdMlO64LLFTpsLbzIfXaWAhhIak6XjkT9uxxvEGNIMC+krf37cTKwcOxwvirFPLfAXy55AVlADX981PFKDVjwbdvuPYpBwqJHBS6eo4NBg2Xi4NUcEAl4rH/iGgFVtAXU+99ngOqd3am/6ihg/iMHKrSJKPeqjjJ7eQc8jrnFk65LgXJPw6Cp62RUmZat6b1GB0Hehweed1OgqcGvwo+N+XvM5sRpLgbICTLC2ctr4N1ex9bDg6Ho0/ud9+Qj2uGXi+9SGYoFbO10hjMPAZlkvep24m2Bbsrb0qp/NXD4u6E6VQSLFnXPDHz9ngQC/3lJD4dWwdvCQG5lnmDUNLK6P3uzGS4ZJ7XXTpTDJe+bqYO1BFS5qxN7jxgD4cflk1Kdy4Adv3XjQl0oGhn7Y2MvxAB/+rMJyQeV4L882LxnhYS4C5SeFSU3geKbiKD+mUxIvZhTwXIAiw5o5F0yxlDghZtAZ/xYOuSMrA0YMj3RmCZkE3K4CXp6NuV2RgVBt94rzR333iLHz3rBKsdpgJtO4nSSqYUdjtd3vd2DReut1c91j0QCi87g9vYX0bCjPAlfXxKGSPYZzi0sLXBaX49f14gA9vMtPrt7iai2p7jv/985R700D3IQSAWd839WJWmhSNfure74mQp4YdRtKWKfBN0PXiYIpQYhXUHV4UqTDlC5bDxi+w9Bm2dw4rYrkegqt6v5XGUrXEI2RP+mSrheJWjIOkJCD+qT+VcpdPiyd86vZbgEvM/3876MICEzS3UMd3AjrPe9WfUVdoGeM6Z24Z9wSOPyzEqqajeoBJ+1t7lHhfNFai9WlILQMygQxjPnpLYviCE+QYWKcpKLvBMRfSPWKRx90QFHbryaFpzIAWndvoxEAxJSGOA/YLtMZfLzYM/XsUKQ7m34ZuEfgfzeChxMwxChP/Yi7V8NFdIuvo+YUw1Bn25hzLsfdcBYEiO1drQS1DyXDGcSSYhz+zx3yuVOAN2H+9IUKHBZzllu0y0SnW8rnMiRqweNr6Kz3vWZ8P3yRY3VGzik+3WcxuqVDU9xkRXlDnmQ2LEmKpCLQcUbUeOFynRImbxwaTCmHD6O0H92dROR49PquNa6QhDo16CLjRfCpLqOzDs7DKrJxoqKLHaC98nMuyfvFsN6ye2w360k5FicrW/R0gBtRL/AlZgEoLz6oRHmhEfNUCA+yOz3xVv5Klrs8cBb+vuj12Mssp3tO/tAqQNSih4tyfFUwU6vMzJSqkRUEvllSvFuJrTfEb7+WpkMtBS2bWrygajhvw/Wh7Z1QibrMO0O4zW4/KAQtSRIyEJ8ir+SrxteNf7ME25/CZjh76fymHtkSLXztimmg0XElXe/sXVw7ftsQLEpERW0tQtacOFh4tRW959hCgSd3NQr4QpFAXp9zve/M3mMP/JlWW8FfOg9+ifg/++B6NVPdA+3wZClsItCOjOv1GuafT3ISCJoQHYgpwFqElxcJW/kgJd26lW5u3hUMxHed3i+CfT5rO3IY2/gyM59VY1MnoQBKzmPnma46v9mSlrNA9Tch8OrTuJQzmpQ/1snKvTbhX9+EV8NegHh6l7iAYj1R7vLzXYG5Dfff22vVQZuwes8rmVYtPMCx4JASiU8FhQ6aLErGZzLOEqUA4KRzYOiwvS9zDmPXk4Se5MBtL3duWP6eJR0XW+tarQNpEYkZ9UT34Eu7lH3bA4Bfcm3epWjmQMtLLz/CQulQF25lyj1PQbN3dvKmlmuBJG4DOXkZ5ngsjDOFlwRjCKiDRRWY7qgbaeR8F/eSLCuUhOe0yei3WjzxAGgA8+Z4fVedgpQjR7RLB6QUW6Q/6SuVye8NE9puHWECvMX/9sXExeJXrxJUrYv7gaHqLOKjUJUKG+r2TV72h8pT5vYJbVWwJ/TuIml/goYztQMlKjzQ9bKH2UtZjrB6P27hSAzZwhvqdBQNCMjYsjrU8JKPcA+FJ37wKAKtC9OPXg+j0M77hY+NC9sh6fUa2fq7OLhykFbO68xMhLM1Vsat6uE25UGkrXFrjC69eZN6qtgtHuWVmNrUwWLVo7P7lcGwTBX6Y82gRD0njIdv6mJwBk/Au0JqTAkurH14E04GuJUyzjhVw+9PMm3j3Xh4cbbbkKYFw4VcinwGvm0QQW3KM+feArYXgi6HWhIQmJ/S04a+lJh2zwlMSEAB2NeXv3pQhFIRfbH6faUQkg8Ya4aY0iC5yHvy4xuYpCihJuHyOVGSKz+u2hTkws36rV8/i1j0Zp+T9B/Eq4wHWyY/x+9GHhBmPY1IhxFiW370/6iCUw/PLZbPfUOphMtGxt2YVFOSNLXYFEGDAm+ViYoIUiR2N6UyEZGmoGvX7KepUODwQmvfgcEy5o/8selSajK+pmpIV89fF2Or77olQAry6J8vl9CUZiw35mWM63wz8t31tKjEDrcjttWtoegz1ILavsudcM+tiwXO0SFkH/lO1PY8AgrafjXdasZpvkNOeU/p4NkZ63Sj3ACSj0mmuo9QIDzlY84j8sVgPCoxikzcjgaptXKyPP2gFeZqm9dTSlk+jMWU49HoM5yi3jWYz3Q+PWV9os/ZbD+2GvbCdcw5BCv7Kmr3gXfBJZ+T5Ny4JLip5KtcgLKPM13ofZ+JIgPpa+rfK2GhrdCzjsjw1D0LuXhwesZcLc4p++LSypUr7zzc34RiE4e89vPtr0R8r5dr3MgVILH9q3QhdUIxMr9/jV5qhW2z5tU1MTUgaKylrfIFAk9L7jcK93VAFtNSy9Hf5eAbe/lolRpHOIpL3m/25MG+3RmNUuPvAfbL/Z3WJkeF7VZfYDftwt8JjmzAklxwCuQ6eQvh0fFEbubBlEDvDLRviE8UQ1b3ZoBh+XD0NXTLg54Hwa4L++XOGJXAmoumrG3jpHQpYrGyQU3Org98Lp5yogKGAmWBpWicHTKI3vvb8keaNu9vx57gArVErcbjwEOHVDK2aebSQLTScWnypOFsG93qOs11nA0/ndn/g6DFPim+e3P93IHYAkR0PtYF4QmOpeWjop2wmQkvTJTKhXCNk/wBr9i5ttq9McfTgiyzf5eahdIgM3K3E/yaeEoaXDqfmAGHS7M/3f/4SoC/yyLu/xSoWivLXyRd+6C7/2vMine7tCcuDa6sElAgf0VUVoVcWBSfjxpB1sxXKA8XvR5HYJsbp5+mrpAh/z6N52SLP7wPaFfIkGbjDB6iyO19vWAz6bXKHvkwPUklvl2Jxx6TAzzC+OhwQ3+wVglH2aOBS0GNZeTUTPXk126tp1Aua4/eL29AuTGiuz+3ApDU4cerVOu9kD4++Zo9oPvAJurEuSzikOafiWKxa50kD7WN8bzJgtUj+WF2P8koZsOrxnCg0xf7pplF54ugJctjmVHtvBI3LTkFFtUEpRWBeIP6FXAIWHbme3ngpFSw3+J2j+6wOnz1fYpZh47qz2yeRwdieqfvE6wHekAz9hBry42DOwTGA8WjmXyFWEaZ41vgXcChaabz7wBO2LOmnsCi/brnSthX2uGo5fJnGtf8HBaqvboGX4cmjixO1J4igKL9Jt7zkcgYHvoyZNsgUURF5ZyWN50w/nP5Bw7XC2cv/xHdaIeh+gNLK52Rnlw7keM2tDxLLii227y6RgGRaRYpNa6dMDMsu9AJCYRPPpPJvn/IKEcyXC1+Nst0Ndl2HQtJgc8xSt2hkTj0ZHXNf9lD8WDGj4uKLEUB8eebKoKpAeivEc+l8cnmTzvhqEMu9XBao1d2AX+CNTbGf6q9FQPHJtWkJo3DQFmAIrZDmJRaQi2ZZArB+SX6IfEezPAfunOuQV+P6SJOdsfKdIDclt/dzc8zoahDtKWvBge9f9rVYm71whTekkDadwhMDqQZW20F4tOqyvnBvaT4PQphz0St2oAn2I3avvPF3WK18/jcA3geMr09+JyCjy7qXIWL49HeJyQSrJ0G3BWXvR7/vkDfKxvcT31kIh4uLXFj2JpYOgfpSA1QgWevaSMe2Yk9OPVULkeSyfMen85+fRyObwcCfVJYvq+3aV/BuHM/aodb6jK4qWAqobF/Tg+HMLG//IzyeqC68l+Bod8veFKvV6GsyQeNXxlSBG+dAPf6sbkeEENZC+c2+XB5B/JYLr42M4k4Ja1Of/OGcFc/4t0pbhglCX9ODfVMQf+lNXqczwoA+/P8aniGRh086j58zihLBBl3FnYl1oFS9VIz4QtED2263JJ16VBuK5sTcu1OriTGVA1vUZGGcYHMLjwJvgyfG9ShzMGxJ66BjtH4pDExLaICK0e0Kdk2DyfDYDn385yTKzgUMmSec4oc08PC0n2xpzPgCYz45iM7EhU0H5FnmDVDVe0uyYXhJj5QyxKIN0goMUTg0Ur22hw2M+yKZxYB8dl2JqEWcnIIOMAbm26Beaw2w0fPs0HFeG97PpmeIS7F+XSNNsF+TZP2LbtcAJLs6xr+6vI6LimuILRqW7oLPb48zwRA7+293TIdRAQYu0pS3aPh+vcs5mWlxC8LY97tfglBIU5b13gf0eHQA7L5Gq+OMivlms5EolH6hmPsafC2yF+n23572kqXOO+s2BNI6GXDLL/LVEsJG8jxSY3l8Ob/4ZOZ+aHIGU/9nMBr+kQsOTAq9qUD1d6z/wuXSAiN9vvdDK9A2qTfRTQuQRQdFneQ79JREeK1kY7/ekgVTpZldVeBPSLOVHoNwl9/WXjopBSDjLkkQwkXQOh8emvhn2DkNLPmD07+HqAFl/jgF4UwTP+0xht1XBU9U3HEdabobXiUUlGQxnEEXaVpffi0JPLbvVTQbUQ+d/tlI/DVBh+kZZJPBmGsgxPBnpV0mH07sNE1VUnEBbPU/vXy/SFvQlLnzdbwMJOwvrVUgHEcf/037WdiNYMt26saTXB/wBTrzy3eJwNl3cgFV4Ux42IlBUyMpKRnbRkdDIqkiSrRBQKhUpLyM/e3n4oe++9133P3rtBVkaFqGQWfu/f+9e995zz+X5O7Kxij2A6BRI2m8+dccWjOp19D0UtO0A+uTrguUAqZIpfe+x+mYRMDjy0934zAHNjQmJ9OW/BSKh0dP0UHlEFO34FewyA+tyNL/8iS6BSLW+wYCwKaag8txaLaIHghk0/vc0c8NgpvX7ECYuWGB1MSOpdQF/P3CNL3wj/RpAm92kyGuq0ID8u6YflyOx3UpGB0HCZKck7F496/7vkch11wFXLPccJrRTQ1i578U7XH33Q2LDiGO8DCXybzPngEjDbNe6aCyKhtO9ALlrugOR45y6WyDiwF5QXOxVHQgkGZvJ32avB5na6Ss3ncHhozYQnq/ghd6u8s39226Ez++D3hcpk0F2f4xuZIKA9Kv3LWsf6QTO7pv1rVD7s8MQzvJclIK6paJH2rVaQFO4UfaxeCNE/FLX3xPshBelpBy6TPtC3vbm0plAANlLMFgxrRFRYeTmlYqcPrvSWF6kZJEPkjnqxFgaHHPxcJId2sECfFBuf5E8FO5mDxw1/BaNQgeQrj818wcRKz/e/ICp0v8ES3d8GI+dv2EcJ4V0Qjmxtf96ohL8moy5aUkTkPlM/FLDbC06GB7WszmSDgbM5l9JTMiKLTqm8KB2Am7jStYXZLLihHMJWOeKHepRjQp8t9EFTuYLYoVUqfHZaLh98SERHfXR+Mj7tBlH72Rtpqv4wyrtl8ziEjNjNi85fTRmA7f5YbMnFV/Aig7tvqQmD3C/OtgnodsJJEW4P2KyBtewJkt4CEYUtpDSZ/dcMe7g/x1ZFpYGKl8I8n1EwEtqxWY0+Owj6ERitMasSUOk0edGwiUWvv4g91xxG8M+d+sitkAIumWW1Jp7hKNlM8kFkaic0Xd6XQDxdCsIgmFWcgkN2yv6HNxpDYMh4aXJ5OQ2cxkZPptBFIL5TCTfLNAZhzo7pBosSAa76K1oVbmDRcF+1ktmlPnhlaC542tQfXK5cylu7QkYePEqauKQBkJ3a/wqXHAyrQ1G/jcZxKECmtXbPvWZ44Xrjl6xSErgRHeXDh3HoVUYVlX6wE5odH/3OfpIMo4O1PvqJBFT5U8olLrIZDPEGr6qO1IMu5v2tISE8eiGwPuTV3Q9f5FXOzwrmg7SM6SU5IhbFhJEmJmu6QNI3nYvbogw6lqeM5PQIyC98yhl7sB30vHzmjHVo/zDCuT8tjoBq9OflZh4+B98/HGwtXQhsYj+e2MuJRd7zfAw7fwbgi73HqSsiSYANG7/f5o5DrRL7lraUEMxfD63K9i+EeUuGjhnTSPRAF3l+0mgHCaaxG6K/imBns3e7P4aILPk5HBNiokB2cPNQ+d5CaL5o8yo+NRw54+0kkjtz4TthTPnjGhUqGm+PnksKQsd4wksaFNtB65CSxY3hBsD8TBUXJhBQ03MbBQ2DFCjz1m50v4kDyb++mvWMoYhTcN2ZMtsHC0/8zIXEELTpOFOcbDCIL9/zcYxKP5h2lw/cHE8By47bEZokDPKmb3RImOgDhd/xHxQFqkB1kxrfXItBh/5qHUTkt/D6uZ3HhW4sCPgIO8W8C0d5cjY/S792gLTX6qpAcyFMJNwiJdPmPVur+clGZCF8erc8OytHhscb251uukFIAcb2Y1QHQXVR5bLsAhVSEoQVZ0Wx6KCl+2DhDILIkgj7kD1UYLZXswwyj0ITFzdy9rcOwLDXaZd9y1Qwtl9/oJWJQyfvXz0kMjEA61GJ3g9/UiEWU/eabRqLKvEu8+VBA6A/p56qMk4F8mLka2IRFhlxZXTNXWqCMuO96/0mBAiko/8qL4JDOBvKvngRChxSVFCLIj8DFU/Web+UCLQwezxDLZIIswNWleL4AigvHIq33xuJCEviZI7HnaAQNxc1JV8EyWo3cmbxQeiCfJBaeUsPSLbXyb99RoEL8mc5kpzxaHU+WLL6fCMk1ilcnFYtBIMRwRP77LDIR0jBdzR1AHj1NivGV4tgqD1Nxb8Ri3TnLB4FLLVBUYW6fOjhXIgSEjqw5BmJboqa7mN//hSOyH3H0tHqdXcvnclFFiyambCZV+jqBUu19iPcWbXwwO6iIoM/CT3EHzK3XuqGblbCnmJ2KrSsNF5bCwtE7qGBZ/c1p8PFw08+806UQGJe5TOmsWDkMBAwL3okA2KYniqmeheBmuDHC8+owaiyVfKloXYXnP3NoTa6QYGxd2kNgg5EFPP9/rLmcjXItDxZtPlUBUKCL7qob0LRRt6Gb5dQJxw9o21u+ZoKtlYHzqiyY5FA5HShBkMJeFNjB+7vT4cJE6F+QaMgdLbKhVnnRRMEBa+cGD5O68+HGvRGD7GoR9GCwsjcChQWixs4nUJIe8d300OCgJI3J696HugC7/lVA3rafSk+PHIxZ8no8ajDu/pPsfBqstrt2lwdHJZ9EHy3MxxFiRQXO1q2gcWxNo9Wp3SoDTW+l98UiX5w8vY3sZVDu5He3tIIAtiKFXxo1w5GH3cqTT+xtcHwXuOhkkQEZJJ1SHGKH+LZad0rF9sMXQrXylsYisE4nLL94gMO/XxqQ2fp0QNudOfapGcqwFuFHxXohaFKswhLibwuiGIIvuQYWAjtpc5v2h39kKHB7LDG3RZYKeg3WbTIAw6ZJjnFbBwy/+T309qWCtWUkz+Hb+WAJhNxI4nghzrDbVbfSA7A3eGTVauNFbA82u/tJBSCHiWxcRGpbbDLcZKs+bAeHrp9M5QAIsIzzYbemRqA/Vqre/9G1INo/b4N5pRgJCjm9OLElyao5xM3329RCjeODkouvqDxfFGVNQm6IUmqkrLiFwl3zhmLaxkQENt79+P88y0AcVIEnaRMaJHOdze5jUN0vHuv7iH0gber3cVF2nz/a3F3Z76ARxxoO+Lk9T5Q97XLuThVCqY3crh1JclIUrmpLN8yECJT+ZoUzShwayyIQ8sBg1zSHbefdbSC6+uv/ob36kG8vgTmP4ahW48+n70g3QoyFQFlMSepcKmF41yVGAFNa18Nb6X10+bEkN6DvQgEUu3uSnRjkB4dNy9ffju4KpfOPUgrgSHCFR9eDhxyyvb8Lm7aDQ/4Vp6COwWISkzrdcIE1LJRfrnftgtqylbOrd+l8Qm3ZV5gh0NW7PN9Am5xEBt3JX7AuwxCbGWQNmc4+vttUTmbxsPXOxIOy5w1wLh32FfcnIS+GL/Fv7Tqh7Bzh/sI3DlwepJuqaM0DPGcVS85HtkH3FDN4iaSCCGOxGvtsyRkKxf8YS8tT+Xjr78hRTbA+ZycwCo7Air6fb53i7MJUM93cavxItCavajY0IpFjxwXrGukO4FbiFjD4kmF9wvsnNgrUehl/XadUF0fGLSVPJm7XQGjjP4XGNfxKCjddUDDoxE0Jk87BvNmQzh+Qe2ZBs0TfPaZfy2hwM8I35+YP1SQbwiOMJHAIIL+qxM8pkGAMxCTZHqUCnxaqjS6Y9Cij6CzoVk/vEQbJFd/Aujst2O7P45H/FOlbkLaSeBYefoAVsQXekUCLY/tCUMqnEr6BqG1QP3GzrJiVAo3U48Q7qeHoR76neNvVLrhmGyspPzlNFDyCawrfR2OVr8a0Y1HFMJlxeQM7vVieBmj9pnVIgi98ppI8+KleW9G4k2TESocYCzYbP5MQCzp4W1vvTugheL1AoOo8JDlUd3eLTxyvPO6zpVEAc+U5vnhbgTri0uavIQQ5PHP5+tJzgEY/EtHXGmrgAfpd+n2MxMQxwuHrZnRXnAgMdyLyMoCrByOgWhLy99Qfa99N3vgylkhmOwtgvgLAUL3C8jI1SeZLzO/Fyx2pS29FSiwy36YQdKLjOorlErHi2j9GWMeHI+lwPdz9Gx7tPDo2d+uc2KnkkD+bHpy/9sCOJBM7RKdDkBhd025Tiv2wdK/rAf/DArBjHQ/V8/ZD0XlH/tVtDUAef4DW56hiRAUmDAV7RaOZN/EDXjTPBwrKnwNvhaBpGgNWzQtf/l/8J+r6O+HMx3KB7kqKkGmHtO0PYdD1vS37G5I98GXOb2HKyGF0Jl4eNv6PhE5XfnIbUNqg0sKN/zVdWvgVitH7FGfSJR7uv75RR8El14Ii6+/q4C/bb7tZpdpXBLdXRudHICnU5krR10DIPkSi8M15gD0iv3DTCTNN6Q/eYv+liiH+YXN2P4oAhoQHht+6oOB98fkI3gt8oE1hrGGcCIKGf/NFd2v3w3S6re+G/+rAe53iOgeSEa7WV4kS1qfe75mFaVEZkNHBd8Mb1QwwoidyLoi2gKYoxcGrFYRcN/P3JHzwqPPq6fK3hu0QOjuy16Z9Dqoa7vSL2Ueibo8eRia/9J8pvLzm0NKxSBg2haxaUxC+dKJl7SjeyDTs807+nIxlDx8x9jxBo+clh/8Cg3sgb6ku6VCJ2qBW0eaaEgiI+eC+bTfdD1AOP8Wx03KBpJIoSg/LTdtm/7Qt/3rBrly1h865STooJa382aT0Xfp4xj22n6wdSj/b9CyAUTOP6qw7SSgsHM2voUP2oDIdDFqYY0C8q+OYuJ5iYhMrfkRsq8MPuzxDyMdzYfyJNywfZgfYuTn1g+06wTVpPmsUokcmL8gJlR3FosCXNLWWLqTgYqv2fa6ng3vGJzt2flD0YFfm+mhMX1wSPfQ+27AwPUHbw/uK8SjDw+KGXi+UCCi/Ijd1NlioNfKaLp4PghhM9EL05B+YEYJl9s98WAucmzynyIRdX++fk+J1lcZmXJC7LkxIHEt50r5fjzCfFzX2IzoBw9/3YvKmQj26MnRfaHlyILHGScpGueVZ9x6/hbUQTXO7Z4fLS/khXPD1dy7oFQj4KMBzdN4PA8kdl4kIc/oa6kWzDVQvPUs5UcIFQ4ZGwmeGA1Ej/nMJcytX4Mwy2jwgb56qH7zY+KQbCSqZRZliHneBPTEvpFrkAZ1ihRvOb4ApCb7PtzKvwX6Bg13naTzgBzXH12E8EjVNVVzQIDmVzOepOSdLHCvOdiI6SWg4+Ulc+evdMM+VTcDpfQy4LEZaj4phUEVhyYvxbq1Q7zw/Ln5nFr4IKQcKtFARJRoUaIL7b0/SigGtpNVEDhn+ZZVjYh4Tp0LPcueBFx2SaRDWgWgW3l1KjQ1GMXU1jDtwzdCQHa40AF5Kox5sK1ExWORTcPJLx/FBsHiX9sWJaUMVDWe7i4NYpD/fnoezrpWSK0+8nudpxRydfrnHfMISJwlx9ufqQ2MdvVS6ZXKIPCY+R3DGgJSdCMWvNkphTfHhE8011eAqtj+kpClIPRDnEdXVr8fOFxu8fa/qQGhxN8VIkcIqGz3tcORp33wkIkTGydWCi7MxprP6sLR+/f61kp10eBtMm6lPVwJWXveprWYRyCF4qNjwvcbabyuO/hvmgq5o5n3PwZi0YTvhRUztVb4VdKymhpSC2D3x+ixCB4x6/yZYurugLgvUUpbz0pBjeVnV3woEb2XX5vXKPwPRDtzWThqMwFble+Ky6LluEynVf3RGhAPtVq9W5AE138UflGvCUZp2zvvTv5rgRTJt1wTVhTIyqK9KzYCTXR0jw2tt0BQ7vN8Vwkq8O6WZtATQxHCJb/nWu8F9Q+bqS2+BOi+YBAzZxKO/uBjQgr39sNZvuzj9Z9zQWniU/KpbgLSFKq1VTHpBJOK+qPPo8rg4IngNVwuEdnMSn13Mk2CxLfJWImdMrjF3hNiERuIdtTaikfY2oEipZawo1IHEyk7HqyvCUik5NuH+9ONcH3LSehlaw1opZ0r5nmGQayb0oK4pDiobu7i8v2YBm56sxbhlWGIVR3X4OjWD9nNGSkqtDrK7KE7Oejuh+5cFfxmZ5YKudRPL4K9qRAe/1/BWHEgeiWnbZDWWANnduoTfuoWQrw0J2v5iTAUNPdDkjO1C7yupYOHSy68CT7AF0njz9+G2KA5jT5QuT8dNtCZAjvbZTvvVUjI52fQ09TjnTDw4FnaXXMSGBy1DqBvJ6GcM5sbv/T64foX+W/N1fngt2nwpKINh3L8P34QhEq4LtQ05E/b3yvyOxnwF0NQlOICzsG/F+ZxSmEkgzhYufJjxGiMiC7wMNYd/94P3pzead1lePB8UEtH70JA9jb9w1vyXaDe7klWx6VA7AL5H5MIGb2POTzNy90IzgYzmUH30iHGdyAlZycKMZn3ZYtw9MEL997DJ7oxsFnzd3/7CywaoacvXzHthN6Hoi2GulFQc32TC9dNQutpM8tWkxRIFCF39L4NBP3x9vM63wOQyZ0aVmaHHhhNi0wXGi6Awr67/ssHcSg5ns1WKXgAVCVafkT/LQQuxk/UeVMMshA/GGDR3gLMp0J5X8jVQnTypHFJKAaxN1glmF2JA3IFuhVbQoW7oxkBicIhqPrstsvz5g4IFfvzbfELBv49+eJrqEhADB2fuqJn2iAwKJpOq4gKIyc3ViYF8Ehq49+2+qUB2D4lXsneTIJFM9bVy/VY9IQo0iHwqQlqBzMq6GQawPOoMI5lJgopuJcWrL5sAG1jxq5W8wbYMdLdSSRHoK7aA7KlUlXg5sFCrPlBAUmCXJ5OXwj65UV388P1NmjpHadOW1WAm/LQW//fNA8fuVfxSW0AltVL8LPDxRBFb1pSVY5HFsZRXKF32sBMLtNaxSQdlOVHXlSKEpBx3saa/1weJArqGWA+10LBcrLKAY8glMvy+rnIYA/4dha9u2FXB+Xzacv5XXj07rwuo8vpPDC7N1JYqJ4J41xU2yTvIGSbF8i3stQD+22f3Wqi7emJVuX+xEwS2gnbPSznUASp44TSXr0UiF8u/1V6IwgVF0qpH1uIg0vjsWkBmyQQvPi5iflnGHIaE1Hsj64HtgNeFX+Fc2CSeNUwIywUhZ/UVpb1aoYjmitr28JP4Oov9amlHRwSnFy5zR/YC7+lTUQVNwsg/ets+zFxHHI5A40tV1vhzn7JkQ+qcaBm4p5onYBFO+019GLR6eDfN7+PGJQLi0a8CRNHQpAC/reEC/cAJKXxt96l1sEivaH+AyECOjONzx4oyQHGEfxyy2AE8EsnB4jUBCEZjQGRHyMUODc9HN1bkQdjjhOxFU8xSNN+91DN6WaY1eCcdXetgARrFQ2xveHotvGrY1TWMhgzHs4xzX8L1ukbwcfpA9BGCup1E2yCZJmyZpnZMvCVxN7mZsKhR70aqhURzVBVfPtD6UwDLXc23KhRWLT8y2iv3lQLoNGyboN9hSA7senwYQyH8sMi9EP/1MHQrdNHi4OjQJ8v1v4rfSiK+a248HKCCkeF7IJqecuAn7qLecyNRYwxxJ2FI/1gGa8lrBpQD9eWrZv5JYnolYjtBra1CvLHDreXXC4BhtcPNpfPBKGv3QLfZwSrwUJTM5j/UREUGtew3ZIPRR+/fZELnesD/xb7OY/5Bsh7M/Ex9ggRFVkVuXDmu8Pvz3Kyg78Cod/PiP/1BgaltV48rOmbCc07raen7RvAl/ksZylTAJJac0/fPk3jYFHN0ybJKvhQ68Zyk4xBIxnrtrcu9UOa+lsdYj8BhFrfasrVYVFU3kZF1aFuSL4iLnXKPBNk3pWO0pWSkL2bFbphXQoa7/kuK39PBgz7AwHUEYQ07nraOy6/hK9SZW6+MrXQLLAWoZwYiU5FfGZWv5QOEzEHY4R7I+E0iflMFHsI0p+Lslw50gfvd1/JtO26Qs/gwmf752SkXx/VUNrRCOOYA+spArGQ/EuHk6MFi+BD8Ccx2v7C8E9CZHg1HyaMnX/8DSCjXjJn53DIANDn7rP/5BUIg8v77XLocKiV/ceEuG0fDEjbfikMzgCh4uyVEy8J6FBA+dKjwVawVPc7mSpRBDOtAw78OVj0WWuT3YTQBfEiaMmsuBLeHCiKYtElo4dunY1Mie3wspBJ2l42EXQw7wrWaJ75a1uPKGTcDwzZDFKanykQqdm86uOLQ0EOjJYeCoMQxyA8YclYBY4VBup3x7FoT9JlrpsSfXADGo92i1fDXz7/qCFnPDJxN4zYc7AFHsx02eYuV8KZAopC92Pa/m6C73VUbIPMMvd/I6+SQf3TUuwVJzwaL02Kes/TCry3IHv5dyLsNT1+hZGNgIKWnmfE0fafQquscYe1AhjpvVWZRPMusljtjOKpQXijYP+VN6ceLBqmJXWPYZHi19gCTdNGyNj4utV3rw76q4UNftZEoSBuxeAzDt3wKt2RVVUcwZUVNbZ6LhxK+njfYOVcGxxQLXucyJ0J+DDOZF1xLGrVy8HNDnZC7beS0THvfDhU2dzKvD8U7Q3QayRhq2HXJfmHeFUDRH+eI1qkhqLbnr2nDI6mgq9CLv8tDwTO9Au+5E8haO42/45nqBeIZcj+WHSoB0se+SbWxjCkGB3krqXWAiHbDpc88KWw+b2T5wYOj3ipGwwnfufCEZtwoV3aHL3FjjdqxwYhRQ1G95vX++HZ9T8XX8zVw69Ur1tLlYHodVWGEqLNo+rihk89CQsC/Ve7p9lJ6NC7UELqSDuoEI2FUpaiIC33w2iFOhF90e6Krv7VA3Rsg3cyVJPhAPPPV+c8iOjO9xKFf3m10MRk1drtWg5bv1Fvf30YmsnNazSkeYIt41RTTUoUXOA+HiOoSEZ92e4S68p98OQsiwKrTTXIHxe/OWxMRgo3ngUnnGqEu5Vlepc2amHzNWcC20Mssm810WakcW+cj8j7mq8MWF/el5YywiBj5+5YqOoFJ2R/XFMEA2tiWbICiSQk//VTbftWEvgEvLR+GVEBH/BS7XMhoWjX9bbms4R+wD/qV5p6SQVP9Pu9dmA4cleYpXLMdsBdU7nU83fyoIQUuO/vXjw6V8yqt1++HSb7AyxDCuOBcu/A9Vz+IBStyMpDnKQC/ZB/RqkIFToxHy6MsWPR9NDUKUX/RtCz5w2cHqyG/7YnZG89xyJqI9OkmFkeyOZaDzd4R8OxjOqU8qwgxFYlp7dV1wNlcd8H8t81wE9dP4UQISIKvyb3s/tOI2yJ56g+Hq4HsogLI8kXi7wzTosYcHTCPSvnqljDElD05Rx5mULLO2l5bl8dP3i9ofDCsOgZfOz4kNEXGoH2bmUIttPqHmhnznNI0APGTMIkfSwIaHNoTV8lvxPSD5+K88aVwMwF2x+MVgRUl55BVBntB6n3rbo/PWuBCWMWXkWHRdiJpvST3BSYMR90GCmvhVHFPfGi0mFIoqLCr2KhDxTGOL9VyiAQCmkjj3ngEdW1Nu+JTxksNzxSDlqjgr4dI4fx5WA0GdfGPvE+CxxNZd2FIQH0uicY5y18EfPHpMLrTl1Q+Cm9L6YzFx5FyAyln8UjN07ZSi1qO+QnJ1RRWLNguprzMtcAETEocKWfmXYFhzvsBCFSMXBOj6xKG2FRYIvLdy7af+41N+yvSQiEJVvHhu1kIhLdIkY6stHm0bn/LKa6Hg653s4bciWijCzzasY/PfDShYI5rZkGxp+uen5NJyPMYb07LwopYE1vx7SR/hyEvpsJ3NHCILfhSNfi0UZonfPNcZ4tByW/p5ocChikIwXrdP49YN6qPGgsFwuYHLy1zvlw1DA1+Y4jrAeczSu+v31dBUuFB5h048lIQupRq49DM+QIDHYoe5TB70qHLakVHJJMvYgP+tYEYnGv7+ZbhcKa100zx0wcWsvYE3DuWAU4Zp2u/h1fDhlrm7dYK4MRh/Dap0y6djDV9LVPb0+GUp/5nj00b09yWVtzYEqGxSqZHnxCGhzszoxXVg9Fj3RtAoZta8H4hKmuamwWqHyz2Rc/HIbaJP8p5FZ0wdpakTlHTQMsqk+6zT4ko5JWJ65Wxj7ISBCNM2YuBkWpioSNrkC0cEPthkRcJywvXI/jovFKCH89I/g3EbkajNMrLGXCy69D1vH8iZC4+UmkxzoY1Qivz0v6dsPL6L43HfQVMJtzbXfuKgmRn3I0spVR4M6fjU9uyhXA9IZVKvMKBi2fUQ01YaiFIQ+uoDzHWsg68yyf0z8Mxc8xzP9MaQZjm/+uP3uAgwsVlVpnZrFoQVl++yN9F+Trl2Dm+UkgYp22ulRAQCuWf3xF3rUDn1boF5duCujtM92do50fPbBwtnc1AgxePB3scSqB/4L4yE70GESNVpK7ptMGadL8KjX8pcBS1zVf+A+PEsgT0/LZXSDbqoxxa8eAiEsmgf0+Gb35Wf/x6kYzVCsf4hnB5sHR+WKzLns8OlTF1hli3wrTzaZe/LIZULiv69egBh716c29mTDvhcm4wbXqBzVw2PppzaliHJqetUqT9E8EuopzZqtDtfB16evAtHIYKlKqDW1yTIZLmtOn0qAO/rom0K/HhKL1cBbGf5e7oFdmNP3732fAO4HjMf9OQPKCR2PsLEMh6d/pkS7VcsjklT3mex6D7Jt+ru/1bIcJGQ5nwhoOlqNUWxlFcGjn2t7gn+4dcBo4vP7yVoDsvfwBfWUiSrZTKZxiouWFyj9VzvZouJbP4muRiUcL9oeHN04OQIbRwZAW+ULYWHl2YtqN5o3t9RcieXug3Wvtt9j9Krid1nib6Enj1bHb99iuNkJ0fQezz7symNK82YNtDUIXmLPKKXS90BhWeKyUkQpPces1wjI45HMnd1eV0ARlDoqvFiaLgHxw7HKDPg5dY727zUTjzCsVBe6Go1RwPWdK5+NLQsrO7Afvl7UD8+77Dfe+MnhIL6kYsUBEy9TFlk7aPTFbaoIRfxJhzNzx9c0BPGqX0c6p4muGYBc9E8ZS2n79RX3dtheHdAzvGn543ASmAYozxw3jwLYzEPPbAIc+Ty/oN8h3g4Ha/kGjLSrIYb1HDlNJaHJ3Umr64ABcOGik5HQyB36wDGuQ1CORuJXI0iClGUbC7HWEOaiwsq8j+NW+APSiYnlYW7gMJl6lrws+q4SiM+0Qv+WL3tsqRj8XagHfvupjbUfL4ESU5rhIEwYNW7XJXGjuB8f1qLlP2/WQZBDP+Q0Xhh47f7m49K4FfCTwuOz1dJgsnMp41oNHPT8Mq0s9qsHmPHMt2wIFHJqcOq9YhqLz7xcO+MhGwj0Bl1MSd7ygYQ4YGotDUOq9j3ScuoOQey6BZdMmA9x5ylxCN7GI5zjDHvXwJjixms00XhgNt7jOhbJG+aGVRE6/OLEeeMYm2fd5Ew+x4e5G2lQiWoy6l/bnbjd456v8+L6DgEfyCLbchIQkvxByz3d2wEmJlVRXgUTQngytXfYlIuHnZ2wtRPogLG3SaPl6BQyeMF7mGscjEqFuOp/GYW0N/cWIunwo+pa3KGFPRF/lVuMTXNPBvnJjQTOvDnTo1iQpLCHo8c2iJ5u2acB18Wjntc564DKULuG4G4KcgutZs2O7YNHVIEXsMYLdqv/sZ/XJSPr2YWHMeBGI/eigWlGyAblKntZwCkI5Idpxzf59oBM8x+qlRoWK3nzn4cgw9PSEAmVrJAYIKVE+2uv1MNpje3ZhTygi26Up9pbioPl35q8HPxpAT+r6c6JYKLqcJH2apEWBzK6hMsDUQc5G3zX9gii0aHa8bvtEIhh+1ViySSmG9V0+Vhf+QKR74Ij1E+k2mKpa98E8yoRtSrP8gVshiCH16hEbjwHQeciLuXwuA7JUjbjfWeFRQ8aX6jwyghs+slkNngRwtGBsN+KKQqX4HZb6nBpYvML4bvdhBWTtX5hYHA1C57IohNRJBNWSLi6UL/5QtKR6x3E6Es00qS+eVu6Apu7BiZgmBJfDN3lqNEhI4Lh8DyalHaZIgsL/BMrhDIdSkm4IFv0PAvpNSQ==KgAAAACAAABgLAAAiiUAAHQmAACnJgAAOicAADYnAABAJwAAeicAAIQnAAB1JwAAfCcAAI8nAACaJwAApCcAAH4nAAC8JwAA2ScAAM8nAAD3JwAAuycAAPcnAADeJwAA5CcAAN4nAAD6JwAA+CcAAM0nAAAGKAAA3ScAAOQnAADiJwAA5ScAANwnAACmJwAA1CcAAKEnAABpJwAATScAAOsmAACAJAAAzx8AAB0gAAA7CwAAeJx1nXfYz9X7wClZ2ZuMDw8pFA18S9EyskJSpNIyC5WyGggpM/OrSHYiZTSoJCWSrFRERNt+KkXW77p+79fLdT3393o+/9zX+Zx1n/ucc59z7vVefk6W///9VDaBpUsncE65BFbNmcDrsifwYtILKH9NiQS+WDKB51yQwO0VEtiweAL38f/AUgl8pnwCJ1HvIvJPU34xeNxE+YvKJDAH5R9MJbAs9ZaCz8vUf5H+P6H8A+C5n3K5KyXwx/MTuBf4E7A/4x9eLIHn0k5r8HgM2IR2x9NvMfAtSP19/D8VPOdSvhLjP0q6CONtR/nOtD+G/L7gXS4tgQsqJjA7eN1B/Wr0cyXlS5EvfaSX9OlLfzfxf13wKkZ+Y8aTl/FsoZ180O9y8PuK/puUytjOUdp/FTw2UW4b7eej/svAownI8hvp3sChtHM77Q+knQZFErib9AP0Ox36rGE+a9N/OvUbQ98VWemQ8c2jnYYXJnBdngSWZNwNyG/EPPxAezn5/yH6OZBK4LhcCRwPHAvcRvkt54EvcCawOfjXZ/w/0k99+m1L/suMfy3tXcw4elLuBeg2D3q/Rju7ya9P/t3UKwn+eaHjpkIJXMX6OE76Xcr/AH3n5U3g68DL6W8k+OcAv+9I16T94vRXi/wviiawFfPTAXyblc6I/1H6L5otgb0KJvAU+PRgfPkY3/nUdz8NYD63kx7C+HaBz6RUAt337nf5QUfad9/LB9z/FemvPfXWAPPnT2Bn+p9bOIG3Mo995FfQpyDje411Mw84Anzb0W9X+r2XfgpB/2nw7W7AJcBslK+aL4HVod9M+psIfvVofxn9zQO/j+hnAvN9FXA/sDb9X8d8PMs+GgJsw/jm0O8R6FIYeDX9DRVC55OpBM6n/gT2yzv0U4X/P2J/5Ie+t0Dftxhf7gIJfJTx/EH7XzGukuC/OwFZjlLubsptAY/GzPPtrMdd0Os/8Mf99PMT0HWwmvaPUf4H8MzDeIuSv5V5yk0/1cE/jf6HgM931KsMntfRz2/UG0l7f1FuPes3D+3lZF+/xHo4wni22R903cr/HeGPjenf9dAffDuwfmYx31OAvZiv5yhfj/42U+9y1sMU8D4H+mwF9gJuYBxdwbso624P+2Mi+F4JfrmpJ5/+3X1CfknKZweP+6GXfOI1YE76fYr8W2nXc01+NZP25StPk478pQ/1y1Jvp+cwdN7L+fQu+Z5Pnlc9wb8j7S6ivUcYj+vF9VMjrJ92tJ/uPcpzlvza4D2F/n7NwXgY/8zcCXyb+vfDXwqz/5owLx8z/3VI/8j6O839cwewIfAr1klF8PmH9h9lHqaD32DweYHxvsD99Cbwexa6tGQcX7NeyoJfdc6bHPCHNOizh/52QPdXqH8V7a2lf+fbc8n14Pwfhh7lwKsodGwDLEj+OeyDQqTP0N4B+OGbwEfhI4XJnwPs4/2P/ptCj1ykl3ovpPwf9N+A/Bnk72Y9/Ar+U8FL/nAGPGZBv97QYzDtTmK+vK/XIf8f8tfTX3XmsT379WPG1Y50E/BfRXu9qL8SPFsxv1P4/xDz1pJ2l5Nfnf4mM97a0KlVKoH5z03gcM/58B5az//PM56O4HUp63cX+OWh/c/BZxHpR+j/ddr5mf6/on/3/Rr6+5Hyb1N/PuV/Ib8M+cPhv0VZt19Cl9/oZ4b3WPDz3eU7bB79t6S998j/nPLfkm7qfY3+vwWugg4rvF/Sr/cEz4MHWE/O0wPkO0+F4PcXgs8m/l9Euhp8oBr0LkX+bZyvJ2n3v7T7F/eza6HfQvjNddSbKf9i/f4N3lUo/wR4P8743M/u73gfnU39m0nX8v0D/jdQX/4zknIPyx/BuynQ/dKX/j0PzgX/RrTTiPU9xHXLPHxPv2fI3wg/uc33GfB88o9C/9P0M9x3Pvg1BH/vi6XYH7+AX3/qrwP2Az5IP7mpN432C9PetYxHvnAO6Yn0P535fRe+UBf4DnAZ7bs+v4cOrs8LWS+e7+LhOe/5/jL8rC/rrA74Z6edI7Q/j/pt6GcI7Z8kPR2ofCE9lcAK8CXPmXi+5KT8S8DzaecN8PR90o187w9HSPue8F7ZjXPW98Urnn/Qawjt/UF56Sfdagb6fSU/4f+F0PNTxtePdBbae4hx1VCexL12OP//Ah17eY+k/fbkx/uL7+3Haf8Y45tK/yco7/03HXwGUW84ad+huyjne9T9eQXt/0t+f9pvD7+4C3gncBHlNoJ/Y8o3or1fSBci33e573Tf5/1YD20Z71ruUx+RPgT+7t83ab91Wsa0+Zb/kfUd30/1GKfvqDLst7ms/7LeR8hPcT5+xziyw8+r0X5W3l3HwDsL6d3U9356h/Mdzs8m5P8JlA5/kP8F/d5L/U/KZMxXPuM6uQN+r3ymUrhPe9+uT3oU9F/mOQT+/cBjNenPgJ8C32d9nySdFTwuBo9/Ugn0fee77mLWv++77IEv7aW+/Kk5dOkEHS4kvy4wyh+UO7wMzOt7T/kK9FkL/hWo34ByhcCnNveL4fDbOdSvzPovDn++Cbw8P0673ml/BXQdBmwh3szjTsq/yf+ed55vY6Bvd/CuSzu7mT/f79up5zve93tcH8rxdqUS+Jf3A9bB36TzU24J7Y8F33uh817mqxX4NOXeei33/EWcn61p93bgQfbZMNrrwrkwkHbP9T1XNiNeo9My4vU99H+PcXdnfF3AYzDjV56mnO0I6WnKMxlvfeBkxvMl5QeCz1/eyxj3QMbXiPlpCBzMe+Ex8JK/ngrvMO8/OeEn9ZSrMI4nmN/D4HMAuB/YPJXARyi/kvTOMD++Gwt4P6bd6ZQvpVwpk3P8X8opd1cOvxz6j/DdSr3K8Mse5K/gPpqfdi5hf9UjfYh6OaHLHuVr1JdfyD+UE8k/fB+tId93ku8j5QfKDaK8uxT0XAr/Lk26G/hN5X7h+3SK8jnyfR/ngi57WP+95fOst+GUO0a5MZngp5yjF/W/oN/72cfrSC9QP0W6Bngrx1R+6frz3u36q0j7BeBn6zj3dpMeQ331B+oN1CPcR33l2d4nvGfMJP2z/B981zFP3zL+95m/Zr4vKJ8dPO9nXp6HD/jOnUs7V6u34h2YDTiD/qJ8y3twKeWP0PU4cCbtet+awfxcBF5dqF8A+sj//gb+Bn6ve8+GrsqH0qivfOhn8OsBXdUzzKJ/7/+byW/l+w36qr/bE/R46u/kf+oX7mQ/ql+oQ//dwOs595/vpaDfU6+3AvoVhG6eYy/RTnfOz5ysz+zAHMAXla8H+adyz9zwmy7M/8+MIy94fEE59TNfQTfpp36mKvULUb43/SwGf9en94ua/J+X/rvmzohH7H+R9wLo2Vw5QiqBfTlXirIO+pA+RXnnqzTtq38dx/rxXHle+Zx6AvUPjLc46YmkS4B/Mcb1A3g+RXoh44z6QfWCN8B/pzM/s4AzgL2Cvsj3me815bvqqz0/I//vSvmirnvS7cDvHsbbAXg9+6s49buwH3zHx/d7CdrzXeM7x/dNFd+X4OW6vxH6H6beCP6/lvFsVv7DfWYQ944W4HGF8nHmrR39Rv1WfdJ9mK93qNcf+qtfWAb9Oqovp/ww5Rm+n8jfQ/ou6qvHe4XxTKH9uay72cA5wD9SCVwHfdcD23O+taSdBrR/GeP7lfQtjOMF5mMYfGwC87g58G/5tfy7IePrST31rlEfOwp6t4YPtQRWZXylfQ8yv+r5N0PP06ynU8CTwA8Yj+ev5+5A4PhUAt+m/Z6U/wT6X854PPemUD6ef3cyL+Vp55hyVMo/z/+XUi6+/1rQXjnfXfSvvmUe6/Mf2n2O+SjF+pA/pkM3+aT8sUl4l/pO7UX/VWi/qnJKoHJK9QZLMtEfKA8Tf8cj//C9tj6858T/CPNalvIzWR+Xsv+VBygn2EJ95QfaL6gPu1t9BvR6GnxzUL8feDSDPsp1PnU9sk8+o1zUv6tP0/5jNHRX7jeG9Er6n+37m3Xem/2nfE795PW0r55S/eQy8D6uHIFxflwmY/9R/mj/x8G/AO1vp9xU6Pct8zNWfEg3TCVwM/UPQJ9BykPJl//L988HL/l/ZcpPpf+5jKNYkJ8rNz+m/oH2C6Uy9tfdcwv+oNzzSWA/oPJO+W1P0vLhT4HP0H8N8P4K+r/N+lNeEu0HlJ8Ugd9F+chw6D/G9y9QeU0W6o/Svon+vY/IPzoxv+3gux1JLw/2DY5T/bXj8/3ruzdFP75/W3tfpFwV9Ubqb3kfKj+7hvehdnbeP4qwrn1n+L7QPuTsuRnsnOqF+XEc4q99j3Y9V0Bn7XtaaQ+TSqD6UuV36h9XwldWwv/vYX2mab9Ce0MZt/qT97kXtAW/5aSbUu6zsD6ifO0E+Cs3vS7YOU3U3or/PwPvO1nf5YI9Tlb6eUn9HOPpqn6V9CHG9zX7YSuwBOWme58Cv0K+1+SnjD8f872TdTAU/rAEPOX/6kd8ny0nHfXf5elHPXi0J9PObA/lfoSfHQJv7W20r7mVcTUD3g79m2eib/Ce+yHr33e9+q8nGc8/lBvPuvkAur4PnE8531tRvqJ9o+8r31W+s/LR3yvKtYFdyH8L+vdgfUb5ezfSvocqgc90+r+L+tq35iStnav2rerTlL+rbztD+/fSnuee9mfyB+WLyhWVM1ZMUY/84uCpPd/76gNYV95f23r/DvaRfaGDdpLaRz6s3pB+y5P/sfpT3p2LfGfzfm5CfgvWs/vH/fQi7Z8gfRLoebuG8TzOuP9Wr0r7x3zfsS6167oG/Cqyvz0/b+D/D2lnNvT2/SBfr6RdIfnzua/8wH5YQNr71NXUry2/ot7vzL/vxhvp/xT1doCvet1XqBf1u0ugxyTot4i074Ne0MN3o+9I34++S33nxvep90rvw/F+Kf8eC53l4/Lv31hP6r/Uh9WDHqPD+aa+SP1QQf6fCv6dwGNpmB/vFXtptzH8oDbrrz/t/Em6D+2M0u4LfNtwjs6nvvYJs4Md40epBDbnPjEGOg3z/km6s+8u6nUhXQs834J+j4bz9XnWv++BKuFdoD3DBuWawKi/ivJB5YJPMN5uQb7/P/azjPtK36fOA/Wr0P7P/N+QcSuPflF7MOeFfO0bb01AltGUe1m6AF+DH85Tzwi8kv6jfXuUt2t/oN2BdghFoe8t9Psa5e4C5tV+kvWrXFo5tfLpC6Gb+933lO+na2j/J+WHjGsk9aO81nkqRv5+9m86/W5WXqx9feBP3t/cD54nnjOnWEfabzSnfG3aKcI4fgWOI1+7UPXk2odWp9+DlFdOpH2j/E/9qfpU9acDkU88DV94CnoPUL4KP9hE/9uo15D2vZ+qf/Seqj16bfBXb9OWct9A37Lwu0X0W5/92Ir1o3xkBveiVsAXwG8L/deAvj9Ad+dZ+6B5lNM+SHsh77Mv0t/H4FeT9eP5onzvL+q53pQrKU9S3nSQctoHvMp4lUNoH1AmE/+ahsF+SXsl7Ze0Vx1MPfVd+snoH6M/jfzbd+9bQO2ttL/SHutV36fUj3pu9Q8vUe9G0pNJ/0z/ykt2pBI4Cfrngb6Z3ctn0b/yaN+Fbd0PtKP+7DD9rNbeKfjLHKe+/jT6z8ykfHn6uQ74LfhP4N40QftM8r/QP4j62sts8T6hvMr7AvlVacf7cWPW907OpfHQYZT3b8b3KP1+p5yJ+esAX9ReaDv1f2B80W4xK/im6Q8U9o92pO4jz1fP1by+IymvvEX5i/Zg2of+4npk3aTR/k7lF0G/oByocyqBDzKekuyr84FpjE++pD3j89SrBH2+018Ges+h/wvpfz3jf853d9jn5Vmf2mfNh96bqX8R9XeSP4j6+6i/kfVT3nOLcSpf0j9OPUM5yukf1xO8lPsqB1b+21r5Afl3q1divMdoV38j/Y98/31Gfi7q3cP8rqD9DYxvuXak7h/vH0H/oN6hjvop3i871LtT/0Pke8rbq2nPHOTvq/UH9D4NnU+Tf6X6fvKrgsfDjHMt6XX0/x/gpakEzlE+wjn4G/PzKvl30n9V/TOor5wi+nM5P9JX+aFyuyjP0z54P+PXTlj74KvUR0JX9Tja35/g/FJ/qz5X+5WJ5LcPfhlj6V95r3LgkaRvBI/o3+A9YjbtV6TeVcxLXfkn9eN6UD/VmbTykbPyENqbDn76S+mHVAh+pP+U78u99Os70/dlXf1T1c/SXzbyq3D+XUO7V+uPRv/KB5UDKCf0/d+Gdk9rzw+9WlC/kPpc4B20VwQ8p9LeUu3CgQcpr//kpfop0Y/+U5+wfv9k/fZFjpCH9bGX9k/R3hbwVh5yOfgUUI5AuYIVM/7/ZemM5dUPKVdQzqB8oRX0rcy6+5R73oWks2q/UTxju/Zj/7ezH3NSbyvrIVsqgb5/L+V88h3s+zczu9RctD9FfZZ2WdrpQT/tVtqAV7Rfaa39jvcN5kf7f9eP8iPXkevH8Ub9W1fyq8hXKTeZ9o56HrFfXwcuCPIQz3P9QUaCr+d71Pd4/s0I90fvT9H/eDvndwXoUpZ1OJvyA9XHMm9DmZ851K/geUK7F9BfY/2BSG/Qf0q/PuannPJO1kEx7UHJd36up/3or+H+cD+4P7QP9/zVH9pzWP/qLdBvEnY2Z4ATobf+4fqF/y7/I1//Eu9n3te8n5XlvlEQuh5hPxQN6+8V37eOD/xvIF+7tCnyYeZX/bp+8erZ1a/7vslOf75zfN9UYl/OYt8vBL+HoO+X5CtfVN6ofLG5fqv6daUS6Pu9Ku19Bv0P0u408j2f4vt2duBf8hf5m/xLe0PtD7VHXEh/T2oPDX6/Mo4V0Ev9q/pW9a/rqa/d5A794Sm3yfgFwV/IddmA+r7f9RtRjqn8MvrtqH9ZwTiqqv8O9pO+v7VDuZP29ukvx/1Df8L92uFRfwD4b2R/P6Z+GHz2Gl8Aum0n/z325wbG05n+VpEupvwK/LT/j/7n2ucV9n0O3A4cxvzPTcBZO/5ov6+9v34AeYCnlLPrH6feXnowT+/qD0q++2my9jL61zLOu6HzMmA6/et3pr2F/mf6r+i3skm/IfC/Tb+WTO4fxm9QXlCPcurvjU/wk/qm8L7owH4tR346fLwq6VbMfw/1B8CGyns4Fz5iHTSDn9VhfXgu59M+iHFO8B4X7OG156tFff0B9Q98Q7vGFJD1oP2h9ohDlfewHlcBVwJHMr40zqvM/MCben9V70L/P9H/CPib9vIv0X5B8vXX9JzWn7MZ+0/9iHLNKO+8ivtJH+2IwK8neNwO/V9lXm4mrX9EY+g2SHmFeif63wn/nco6mAJswXiUnyk3U0+s/GyS+iHyt0GvX/TvZX70A84FvR8wPgXj7cd4HqFf5VtjtT+lX/0rN5LWvkG7hgO0r31DDcr/h3Y2ki7D+Mvpl0b+W4xjof4rpD1XqqQoz/hug+4byU9xT6ka4lvMoB/tbNyfLdWvaxemno/848jVlU+XIH8Z411H+y9IR/k4+Gh3rlwp2p93Z9+mMe9bwKcB8zOHdp+gnSy0/w3tOf+bwMt14PxfhnxZP97ov6vdzULa0/4mPZwPMU6J58M14L8Y+nVn/q+n/kjWd2/KDWH/LFf+z//ZKPcN6QOMx/U+KNgRaR8xi/2hHdlW8Pqb9F2sjzfgizVJN6Ad7WLXQS/9e+9Xfhj0D+od1L9pf3eV9vzMl/Z3ym98pyvP9b3eSL8y+MYXjOdd+r+C9TCa/zur1yc/2jdo16B9vvv390zuU+qbWnn+gZ/6O98n2nVp56WcO9p/KF8+zXj3UF+5SpS3NKffceSfId0l2Cd01P4JvLRP8N5ZkHztLUtrn4l8rBPzsCGVwPy0r/xc+0Pl58rTtU/RLuUy+tE+Zbv+WdBnAv1UVd/KeTSYdb+b+dyk/T/4GudrMPW9z0X7jgLuM/jnbOWjyn2Dv5jvmx703x3ofVC+Jx9soTyV9Rn5mXxuCPgXYXzKjZQjaf/k/T/ab+h/pL/tXP7XH1f/W/0vFrFO9cPQ/0K/tnWsh+jfdgn1fOdUC++dUfAD43h0Z70Yz0O7OfW76kkGGj9NvzftZch3/9dgXxegX+2IFlPe9eI6eph15HoqT758I+p/1J+uRT6k/tTz6jbXV7CzdX03CH5tU+C/nfRP1v8j2DtpHyG/lf/Kj9MZv/JZ5bGeL7ug337y99Jufc9N+vO+7T18GOW9j29l3OdSbxj4F/GcoL5yqCh/+pG0foLRPzDGFzM+kHJp3xUPQQfjXfi+0D9Vv1T9SHw/38l6yE67i+n/YeMRBXsS9a3K37Q3OBPsEdqnEqh+cb3+L+qVWD++X2r6bib/E/jLYdq9AHr6zv2C8c+APveA19n7Ie3sg39rz1kbfur94wHW3Ymg/9tKfhv2p/e8eL/T3lS7H/U82p9u0n+ddbKL9vdpZwK96wA/18/d+x79ZoGPntHfxf0BPvrr67/fDvx+0c4olcA95G+E/q6Pmxi/8pWF6kGY/1vAozlQ+5z+pFuxjtqH88k4JzuUf+mPQf5q7XW1x9LeBPp57iqfU16nfE5+pH76feVtjE/92TLaU4+m/qyl+wx6RX2a9xPvJd5TnP/oH6lf5CXBPkg7FO1P5pCvfW0e+onyHe/V1cEz3q+vp/0d/N9Ifyf2T17ScZ7npBJYK+A3TTkN+KmPUD9xCeXUT+h/kRV8tH/Q/+I7+SN4xPh8+rfp1yZ/eoZ84xlE+7UdzG9mcac+p/4Q1uVg4CjgI+QXRb5RBGicgUm057twJ3Twvei8aM94NfTxPa99o/6DWcFLP0L9Bz+gvxHs/wfZ5y9Q/3n626X/A+2v8P3MeHYD1YO6//W/2A40Ppx+GB8G+cX94NmN+dA/WL9g7Yk3sD9ugj7qCXuB71Pa82r3Sn/Gn9U+5j3jNtGv/quPgX8P+tXeSHsk7eN9X2un5vu6lvaj0LM27Vajnvr9adQrAV7Gd7g62J/4bo7vafWL6hW9B6hfVB6lP2zdEB9nbCbyae+nrp+bqWf8PdeR8UhnADvDj9fpD0H7ixnHaOoVp58SrDvvMfH+ol5Be0P94Zcy/8YVM56Y8cbaMl/6j+g30s54M+Qr/zZ+kvZu3h+MT6H/xLCwXj2v1Kdp/zuM+u5r93lhoPs7Db6rv9xPnjPwz6zaT0HHEdSrSL76LPVb6rvGQl/leerrov5jL/ffp+H7A4BL1GPQr3F7p9C/56H6PfV66vnV7xvvRPsU7VW0T9GfpCn0NP6efvjaq2vH3j7Ysxvfcr/2Mfanf432G5T7l/xVjH9g9ox4RfuZCYx7Ae2rTz9O+9v062Z8xmsyPtMJ9sPT7KPd0Ds9xMczLp7rubfvlBDv0HiID4Gf9k3aNek3fda+iXa9912nHMH3m/Y91FN+cBT+dxHvzfzGAaC/+xh/ZdZnb+pVoL1V6qn09yCtfbtxzS6h3iD6P6I+C/y0pz5K/SHQU/mMcvV/oI/y9T3aITMfnksdvU+kMrbv/cp+bD/S56ydAvklWZ/n8f9p1uV48s9jPM/RfzbK/U76V/p9mPIp/r+A8f9O+5czH9onr2X9GFe3OvjF+Lqu/we144Terv9V5BcGdvddBFQfZZz0GB/9Dc6FmqzvSdDzW8b5BPz9AujSj3Q+9of+Wdo76af1FPzta/pPo998lK8E/r4/9R9Wv6V8PAfrYjXtlqH/x6HnbuorV1XOqnw1xmvXXlL7yCivUI4xM8Tv8h7yG/vI+8cj0GuzfpLe/xi/8TqN32k8z4vAJ8ZvNR5wZfVP4JufdjorH9QOgPRq0h8AG0O/ceoNwFd/ev0pjGtVPvB741sZT3ox8B3y+4D/7aSj/8Fixq+9nnoG+cMu7Xw5z/XDiP4Xng/as2vnXgh8oz+Dfg7aMWgvpf2U/N9zoRT7Srm0cmrl08Y3KwS98lPeOGebmL8ntOs2PhL4b+X+eAnjfJH99mYqgcYX28I85AAv56GY/huM+zDj0P67H+XHeZ/Sz5D9/Rj75w747rv0UyS8h/UjivED/O6A3xvwewSej/oldDA+iPEbGN889bnQJZ35PQ/6vEp+O+AYyk3l3teF9lzv7oOftcOnvHysFunV0GWo/mKUH6v8jPWhfqqZfj2kfR9F+xHl1PpH/JmA/+Efys89v7vRzlbq12N/XMn/z4Cn8VqNv6g98jbfZdD5OetTz/i/Z+M/yl9KZcRX/fNG/a+1R6C/NOZ7O/hPZl4mAf8LvJr+9T9xf+p/4v3N+I3e64zf+Dl4zGXefuVedIZ99BrtaJ/rPWAJ/FV5lf5Uxn+L8SMPe45RfzXtVte/R74Ensfpr5HxIyhvfIRo35tX/QDjN06/8flj/P5lobzykunAGpSbK/8D/+/pzziwxn+twL6WPw9jv58I8YsbsC7vA3/PWe3O/D6J9mjaoUV5hXKMnbTj+1a/Cv0sngr2EcYxjd9LWEZ9/UoaU1+9eSX+107JOG/ax8S4PfpJGv9nMOe2cv4o319EvXzec1h/f2bin2T/01MJ1F5BuZpyNuVr2hNrX6y9cQP4teer33HQ/81zdiX1Y3ytf8Df764Yv147Uv27/B7Nvb4fldOyvo1nd4J67jvj291M/+9SPgfzZnws5dfGT1COrfxa/zD9wp42nh71tQd8A6i9oPaBxiUwToHx0e8n/yHwG8W41MOtob/4vRq/YzNOf3T4x0Tf+eDh+2sQ9NunfFk/Y/DPBb7axUd7+fh9oUOktaf0PNka5BjGx/Q89nxWn+X57D7RrkQ7k7XGXwV/7aO8/zp/6geWMC71A920Z1V+Bf5daV/5nPd37UuVx6azfowfbNzgiZTXH+pG8g/oF6B80nsZ96P72J+dSBdkfKugt+d7T9aL53unYHcVz8O8nGdjmcd01ter5Lv+9a9yH0g/16Xx+uP6NH5H9P80frrfR9oG/m9Kb+1flVdCf+Xv6leMd2b8M/nfl8GfTP8y5Zz6l93KvbQ95S7QDoF0K/Jb0u4Z8qdBhx3gpx7Se47xStUvPQ591S+5P9QfxPiI6g+M96adSzX1Wr7PqDeC+dK/8RbGNx5+47l6kPQG6hv/QTvTc8Bb+8kB7IcrWXc3GWdGf1ftx/i/E+uxH3iPoN3LwC8L//+XtPYd2vto56F9R1f4k/pF9Y3qF+eDh3Zn8bzuxXgPktb+a4B+HtC/OfLbRsodud8VYz1nZXz7ocu55FcFnyrybeVkqQTq16T+XH268Ynkb8ZDMV5KVsYnPTy/pZd2ML53Ylzwit6PfL8xD/ohZ6H/E/xfBLoYf0n/pwOM/zDjP0j6NvKNP2PcGeW1xp+5okRGPH2n+T6rRb9NgOvVX5CfWdwxv4/g++NP2o/2PMb1NK5wjO/p9w3qMh6/b9BG+R18V/sC93kf+lduuZ72on9+jM/nuVeC8pVYL77L5Ofy76/5X7lICf0gg/zX93KUT58EnyGUb0u/PY2fp96F9V+G9Cz9eVjXviPj9w/8vp5yddfzx8H+MMaRfRL8fG+ql1NPly18/8H7/1D5MPmd4Q+dgAWBH5HvvBcI66E9+zjGG1IfWlL7HuipXYN+zvIfzyX1JlGf8i37dQT9nKL/LH5fgXb702423yPMj/Txnb7G80I5Bfe2TcAK9KN/t985WgV8kP7PsB6MhzOL9m+g3Bqg/lP6+0Y9jN8N8XtA+t9fTH78fobrZgH57jfjK7kfRzP+kqzLa6CjdvjGh3Z9KR9QXqB84HfGm8tzh/S5tKP+X/8x7QDU/xtv8TvwvUE5K+tbezPtz94L9meun/HGfQ3+8urHP6Fdz68LWB/tSHtvi/ErhgS+H+UP+pU9B//Uv0z5ZYxXGuUryn8/oX310MZrmM1981rj9LEO9Y9+NpXA/ZQ3fuxh0vvgX8b7fNj7MePrwHkzGbo+Av6HKO98OD9f87/zE+Uaxv3zfhPjSafINz6pfinWtz3lI9GvWLsp40Mr3zwRvqOgfFn//6Pg/Y52oKz/qK+M/FV7Mv0S9FPQP8H408abls7zKZfZdwPX0L9xNY2zWZl58fsbF/v+pn3lRZuhn/bX8d5vfNvoL6MfTbNUApuT77viMeBL1Pf7s77rfef7vlc/d6nxXpjHLxmf/kXx+1bqY7R/UF6jHYT2D8/qP8b/+nmUo78e5D/p+cl86t/9IOthCfeAxcbnC/57vpP1z8wJvunst9Gce9rB/Q091gb762rwU9838hW/+6c9oe9G9anRD1f9oXEhjBNhnDLPC78LcYp9ftp4fdofM/7ZlK9L+yehz0MJOPv93AX04/dz8zJu4+DkIz2N+VlK/a9ptw1wpfoh2lnEvCjHlX9G/bTyEfXU8bvIT0NH/bL8nmPUu6iP74t9lv7HMb6IcU+Mg9IIqP9Fa+bf76fqb278OuU1ym/uU/9o/G3ta8HX90A5+If+UfpFdU0lUP8o7cWNN2A8Ar9/GuPrV+E95j1cf8eZrIPDpOeTb3xU46Ley//GR32U+VlK/uTw/RflMd28z4LnM4zDODnGZY7x3bVLqgPUXkk7Jf1JjjPeGN/N7wZP4v/4/WC/yzFXeYNyDPrXfvgS6KMdsfbDfk9L+epw91XFjPU9HzwvbKcm/EC5ZVnytS+M8W/1C5P/SU/5pfI39dfa7+uXHP2VjcvruWy8XuMfjwY/47YYJ28F9Uvov6nfK/nfqF/hf88HzwvPB+0iS6vfY70a328A873MOFzg00H/Cs6jRZwT/Unr/9OIdFPOWe3OsqbAF3z0i/5L/ZfyNv2ZoGt38CzG/B1ST8F8/Uu7fr9lPPxhHPBl5lN+pf+Z8hPvo+qDtcdWzh3jNMbvRulnrf1tC+pX1G6S/F3QP/JL8fI7RrPDunadu75PMi7tWKL9yv8BAuaHxnicdZ152M9F9/hvuyTc9uXGR7ZsUYhIkl3I2hMRZSdbWYqEsm8Jt/DIFqEka0giyl5uWbNHSZsSkpDvdf3er5frMr/H559zzWdmzpw5M3Nm5izzrpQz7v/9TgEP547g8nwRLJgngicKRLBQ/giWKBLBiuS/QvlXqd/53gjelRDBZuQvTh3BcuC7eFcEq90TwUukl1D+XfD/nT6CffNG8J1YBOcli+B90J+Jeq0KRnAY9a8DL+SgH9IXH8Gx5E9IE8Gt0H0Ieg8Df6P/s2l/T7oIDskVwZeoNw06KmeIYCrwp6L+e/T/ckb6d3cEbwCbQd9p6P2GesvAO5z+jYdfI1NF8E/Sk6nfm/ZnQF9X2jtPfgbwV2Xc5lHuMPm9SH8C/c6P9wtFMC38/4Z+VwXfvdCZnXEpTX5m/r8Zi2Cf7BG8xP+lwF+C/Ergq8O4H4OOFM436MsJP9PSXkbov5/8h8mvCN4/4d9G5lVj+L6OdAnaa818eAa4nPaXMf8z0N5F4EfQe5hydUnXJ/2E6wV6bmSK4LbMEXye+XgC/i4CbzX415r0PfQvC2nHJx38ywX+dOT/RH/KQc8g+PcI+Z2p57xKT/+uUb4Y828m9SZT7hvS95BfDzyPxSJYmv6cZh6+mzKCB6HnHvpfNUsE7+b/AtR/hvErAB3Fae9v2nsqAnGZKdcLuvpC/2Xq/Qze8tTbQv4y+PYX8G34kUT5RMeVdrsrl2inNuvtAPKhGHhSMn6ToGsEfJkGPQsol0D6BOW6gX8D9c9Q73vo6QU9eyk3n/aHIYeWMY/3M1+usd6P0+/XGIcL4G9Cu8rpt6Cnyr3/u/91IxBXgvk1EvwvMY7LSNeA3hmsm2bMgwz8/0gsgouTR7BQCuiinXXgL0H7g6HrLugaCvwG+stQbwHlq9PfjcF6dn1XZ/xywV/3mbTQ6T7Tgf//gT+/QMdm+Of6WQyeYZS7Dj2vUL4GeFw/j9K/stRzXSfFIvg79JVGLixmXLcx3m+C717w1yJ9ifbjCkfgU/g7B1gOPvfNGsFW1FsDXQMZv5XQ8Srz+hD782FgbfK7Qf8M8BT3PEH/ZkBfVvh5jfKTqL+b+TGW/MbgSc34zWW+zgf2cZ2SPwr+ZIX+FOSvZH5Upv2Rri/aX8L43YDecbR/CL48Ar5Qnipnc4N/Eum59OdF6l0lfyvpCtBbg/H5ify28PMC43pf2gg6X/tD3wj6MZT6WxjfjOR3Af4APdmoP5zxfIj2L9OfxtBbIVsEB8Kfl6mXkfwzyOvvgZ+Svwj+9UNur4auGtTbBr/K0O5j9Pcd9vsiyN9UyA3lT3g+DPc3zyPJ4OtJ1sVC5F9N+tsJOoYxv6pQfwx4a0BPXtpPAxwBveXIHwPfF8G31NB5kvX5HPJiO/w5hHx5g/rZoeNBzx/ut6QLZrm93fs955Kfg/Sj8P0z4HXwt6L9KfBtMrA79H7M+G6nXj3nNfxPBj9H0n53+jef9ttCbwPwPQQ/spO/nfw/4K9ytHiwP+5kXNwn3R/3gE95W4v2Pd/3Ylyuss43g78M/Y+HP5mAP9NeD/o3hHo/Mz5PA/uCfyPrzXkXzsdTnKtPAn9GDu2Ej0+53ih/jPntOkoifzn57rf/gd+r6f+Dnkvg52X4Fw9dyWn3JuPQBv6toX466PGc/wD1xzE/ZtDv6cD4WATd79wH98O/lOQ/zbjNgP418Dkr45+L+eX5pBL/Z2N8vE+NB44DVofet6G/v/IO+v+CH52hrzJ0VCBdF76+QPme7ivg20N6KOM5BPy9qf89dCZDfuzzXIkcORmDfvi1jnoDqNee+RXu/+77X1GuNfTVgX8N4dcV+DMTeu+mXFrHMd/t/TmV+/Z+LYI/yr2y4F9A+k/onwj9z+W+vT/2Yz3z6lPgJ8DBtL+a+ZDEuH0DnAo/d7F/7QTuho7c4A/Hz3H7gP6von/j6c8v3nfIL0n5p8GbnfLloG8t+/VM6lfwnEz79SjfEbwD4cNGyi1kfbkulQMlWD+HHXfo6ET/v4pFcBLy5Rj1diBPGoG/Ge0/Q7vVwNOK/v0BXW0pd5VySeTPAe9l+DuXdEb63576F6DnF/mCfBjN/vId7fam3AucHy5Qfzn8S+89j3Jr4ONn0PMi9J0j/b77secP9w/oWMP6+gG5kYgcLQ7e3ziXTgFW4nxahnYWgj87+MLzY2XyS5O/Gzq8X7/MfD9O+/1IN6R8GcqvBbZjHKbSj8vgf43yz6qPof1E1sda4BT3H9pvAJ4kYFP1bPDvY8blMnAi+I8xPj1JD1CfRD31a943R4Hf/fg72p9G/sPUT4Du88CczN8DwPqewz0/Ik8W0a94+DcOvFUYz5vM+yzkj4X+NOTnpf4Y1k9f1tde5y/0bUc+ev9L6XmZ/JHAogX+N91vMF7K7yfhn/er3eor4N+HrKuP2CcuQO+v4GuBPGxA/34Hb2X6l8R89J5ek3bcD923ZyL/KlHf/dvzbILri/rzwX8X6abwuxztrCLtfcV7zMus9zj424L+PANcwTh0p7134e9c+PKRej7SQ2lvMPz+2fsO9d3/kvP/W/THffAE7W5lnJYiT894vyfteL0AvxZB/y/qx+BnK+CXtL8w0Lepj+sDfz2/56Af6mkv0X5l5M0Az2vk1wZ/a+q/7T1ZfaP6bOZFBfDf0vciR5Og5wT5/zC/Z1P/fffz4P6fkfH33Oh50fOk+o/e1Avlb0HKtwD/59T7hPGvT7762U3wQz1tHvCrV3uV/3dEIG476eHwJw/tzKadyfSvgOvDeyDpQ/TvBPVniZ/8C+Sfof1h0NMF+l8mvx3z40Hm0V7q36S9fMivcqwL9fKOfxHwb1CPQT3vLy9C32L61Z5ymZkvV8lPgP7vwf8eeMLztfecleB3XaYG/0vQk4l89aJF1RMhr9SThvomz6GeP6dAXzz0uH83An9Xxl8+nIKOfLEIKt/S0d7zyJsutNeD/DjtPKQrgj8b+0F2YA7gVdopQbt5qa9+ZwvjHdpXrkDHacZf+X4nPVoN6nle+5d0MeTDAfBfRT5/DX3XKL+T/JKMQwL711XXT3Ae9Zz6Pf2vBb/aMx6vgGcu7atfVZ+qfnUM/deeMgvYBfr70b72kzTKNfVN8KcU+GtT/x3yv6H97fRP+X2Oc9JG6CnH+a0qsAZ8akH/zvJ/K+T7XNr9C6j8maS+hrTy527oUy+hnkL9xBjOu/3AP4r1vpX2l1M/HnozgCeR9DbouwjMirx+XvsbfElL/0srL8FTDXmdRnsD5Y4zPuq3pwNnAtVvK79X0a8Jwf3f80oT+vEG/w+J3U7XIugZ4jmXck9QrxDtJKN8HfgzJgJx/6Wc+2Md+PuU9x767X1kK/zRfjYaPm2hH9rTcvF/TPsIdLl/XKR+R/qzlvovQd8W5F895uFC6OgOfvUB91FPfcEe0jlIn6fcd8C+0JENfjwOf3ZT/hL5p1nvd9Jz9kDePgVdE5lHjejPTPBeJK3erSv83U997+XHuefs0j4Dvf/QXgr+b1/wf9drlfx2vJlct95/Gb+D8C8f/e1EvvbXPq4v0h/S3qP0fxryIR76foe+CtC3iP4eR/6UIn809CQy/htZP+lo/w/wNSU9iPWYHDquc35KAT2fMT/KUK8R++kx9YS5b6ezk/sy7S+i/96LwvtSCuRJSmDyQP+nfHDdzQns44cCvwDtF/oHVAWPfA75mzJoT3rUfxel/f3g/Q+wGO0/p32O+iuh7zT181L/Jv83BE6mvP4QR8B7DXyzoF99bzv61189jPcv9oODwEnMy9bUzxror9Vnq7/ej1z/Grq2IT8fZ//4Hnqct85j56/nO891nvM936k/CO1P6hPSMn8H0i/1uC2073DeLMO6P0z+ROrPVf/KulS+7aO+9r/QfqH/xKvg3UP+Sfihnr8v/V9B/lfUb836KEH/+3suhb6PPG8zP9NAbzHWm/418lv+Ox5HqD8aOsbGIrhbea4dhfS/0DeMdEno83ycyfXK/8s8fzIfXC+upwLk/wW+etAzEjy1GP+t0N+Q+Tde/R74akLXNvp7Wn0O+LULtQe/9iLtRN6LvQ97X36A8n+zXmsxT9bwv/qX66yHk/y/kvZmQX9hxqMosKb9Z/6sh95m9KcS/bsL+stq3wS/9hztN68jf9/2fsp8b055/Soakq9fxQ7aqwn905G7zr/VzIsnkNdVKZeG8VxI/9xv3Yfdd+exvr+j33fB36PQsV3/F/i6gnWyHPgEeA6BPz90HaN+HviTknzX93Xyx9C/icCP4XdN7aDUzxDIf/2klP/e+77V7qs+gvrXWb83yG8BnMn4FHb/B4/z8xz1vV/8oF6CejH1f/xfAv4+Q/m91K9Ie9qrusHvs/B/B+W1o6SFjl9jEfRe7TknvF/3Z931A24Cfx7yf+X/drS/CfnSRv0C8127lvoy9WSrGe+2rMsd2iuYX9m4X7XgXnXO+x78CP2T2tGPDPTf8cnJurgRjI/+RfoVXfF8Sft3084I6i1RvpOfQvuD+jTaG03/x7FeNkFXW/Ut6qfJn8o5qBD9HAn9jk895JD6EMfJ9Z2d9ar/1DXaVz+T0vGCPvU1/RmfSfrfkV8APMupXwc+/Oh9k/o/Mm7aZSYwH7TXNKd8Ff0T3S9Jp9HuDb3aI7Q/aNepClwHHXmRH/vg21r3KfbpF2L0F/mi/fgn5mdGxrsNac9nW5Wv5BeFvs2ub+hQjqqnSUt76m9aQn8qzoPlGdeC0NOW/HnwfyTrahRwJ/3Tr0W7gHYC7QPuT+5Lnn/dn7JRf4tyC3onUn6q9mfwamfZ5H5M/Y0Jt9Nh+563lB/6A2m/2et+rH1ZPwz4e8s+7rqmnPby2qzbv7SLs995XioALKkdgfH/kn7+4Hk30D/2hL43mRfbtO8if+THY9pd9G9Vv+R+Dz3uO5egtwr5ng+qgs/zgeeFD1g/7wNPBfvoo7Tr+Uj/wgehfwH0PKT/If1+yvHxfpRwO93d1F9q9yRf/chN8DSi/rOUP0D5zYyf93Hv54P091DesD73MR93gXc187sk7V3zXoy8+wj8dchvT39X6geGfDyiPpX6/6V992vnVzx0O88Saf9f9f/8vwI8aWk/BfRUD87Tnp9rs35qAfPr3wXd3ge0++TTrxP6k4G/AHz6gPp7yS8OnpWUc7/vQ/urwL8E/OnJ1//F+6D3RO+FIxiPh6l3nnGZpR+C/jvUv0G9OurzwF+a9JVATzGX/Dnkn5XvwBj4w/mjvmcV+ern0rGu1M+pr/sTvqRi3ymKPF9COe11NRnPxqyLFuAP/c8rU15/vibI7Zvgawyd+hOG8Q/6GVRk/G7dn4J7lPppz+0f8P987T/Qmxt6ZtPeLbs59FVFXt06JyBvlMehfsP1Pgg+eG7XTqBdwP1rKfXnUX8f/ThK/ij484T6DejrSP/0949Bv3rs/OCLZ9wSoL8L6abgb8C6+Bb8niOH0/+i2Pdqg/caeHvC/6+Nf3Afo5/1waf/mvum+6j+a+4f5aHnuOdNxke/SvUKx6Fvvfo1/XDJ14+yKPSpv9I/fHigv5oW+HVNgY/6d42D/g7IDfVQxoecDvSeLcGr/nOl9i3a7QAd2tGNb+jK/8Y5zCI/9A96KfAT0h6qnbQsae2lRfUP5lzQlPR71M+L/iMBeJr7wmTkV3rwlQT/k4zLVGBhyicAlaPK1cHgzca8+wq+/YfxWUD/8wX+PeobjnDe6IX83wVdzj/X6V387zo+5vzi/PEI/Q39Z/Sr+JJ8/dX1r3gRfneH/h5A7RN/Qv9O6NhH+7nop3732i/0x9cPPxG+TQEmQscu8MVYf+7Db8KPo/Rf+XtJ+ek9HPqVl+pDlafGJzzi+QD6CjPeU6iv/esLz1+kp8Qi2BX+dAN6vvC8oX6lHfWfpd5P0OP5XrmonFQ+6j8wy/3P+yX91z/MeaOfmOfRUuQnkq+83Ub+VPj+Bfua/I+HrqnMD+V96D+1nP0hD+tqFelklK9Gf7J6zpVO6M/O+Gi31U9f/3z9BV4NzsfTpFN9G/N6HPBp6NfuLZ+1hxeA/saUN26hCWnjGcYqP6HvJv1JE8T3qX9Uf6/+8Rz5m5A/P5GeQ3njHr13hfGPZ5C7p4HnjNOhP+c5t+hPkkL9PPg7BnEjns+Nv3oOPB+T35L+VTS+MvDXVn/fh/raDfboH6D9mvY3B/FAg4zbQr/h+vDcHZ7HE5Ff6ZgXzVlfO/R/YvyzMH/7kr4AHZvg92bw5GMc5tGfkuQPYNy1Y7aATvUD64xvIf8L0k94Pw3uczuY345PvmCcHJ8wvvMC/dD/JzGITy2uHQ/+q19Rr6KeZSXtG/8QxmEaf/JikO/9QX+yNuSrr1MO5Gf8UiM/8kH3M9BVjPYf1Y8augrpd0Y7/1KvtPsG8/sc9T1fqjfVD9I4vAX6bfD/faTH6n+gfZJ06F8xx3VNP/TzTgT/AM41W5Rf0NcCfKOYj71od4PxFOAx3rMq+EoF8RnV4a9+zI7rEPo/PgJxCfRD/72SjI/no3toZ7t2fvDs4nz4dSyCY6EjI+331S/Fe6n++EF8jP7h+osbH1NNewL0uL/3IK3f+UDaDf3PczGfve/Vox99oM94wnq034py3n+2eb7kf/1U9U9NZDzuZZ4VAGon70X/Txt3Qv8zQP9e8GcG36+BfVb/iVy0qx+F/hPxrO9MQOPUGwX2Z/0x9dOcn//2+tZrnvn2+pvp32zk2u/UV79bA/r7sL5df12NL47ArfhM/Yn0H1oDfYv163O/ZnyOkN+S+f4eePOrzzF+FrxxlFtA/S3edymvP3o66H+D9ZcGPrwFnfrzqQ8K/TfU27tOk1Fe/1L3L/299J/UH0z/ry6sH8/9L3tuIu39xfuK9xf9x40HMT4kOfzSX1W/rLHKAeBv4PH8rh98Gu8X4Df+ybip8H2DTfyvP5B+QrZfn7T6TPWdQ8HfCP7nZTw8dzQl7f3Ge83P1PN+kxic6ycbXww/9Md4nXPmUOAP2u8YL+M79e/Zxv6jf5b+WBUor/1f+15n2jdeeynjpz+m/pmeR/TPXA9/1MdNd1wC+9da4yK1B4F/PvQUoP3PwbMtFsEFQfyNfj3G33i/9V6bxDnC++0K+Oe9c7v+k/C3WeB/r92zifYr6FuoXwbtHiZ/Iv35h//Pu//Tvz7kJ9LuO95HyFfPq9xWjjdnfHexrpdA107S3q/U++XyfEm/doA/s3YH2vfdkd3Uf9i4XO9N4CuifyX7j3Yd7T3DOW9PgK+NWYfzjEMA73bSW7k/bAPOYT4epb0b0FOd/h8l3/teJf5/nPFoz3rSPuI9wfdSvB80o/6z1F8HX5OAdVkfh+jPAWBd92v4lg3+ql9+ivR541Vo9yPae5D+L4Nf3Ug/wHl0lPpn9q0H4fdPzlPoywT+f8Hb1bjsWAR9r8D4CP2JjY9Yp30O2BL8B8BvXJxxcp4PU7q/cF/Qb0M/Dv03KlLPOJ89yk/G4wr5l+G/9tt/SasHakba8R+N/ErHvj0Y+jNyHvlb/xbPPzHaB/9e6Btt/CH5xk1Vp3/q5dXT68fVRX99xmcZdJQh7X6xLuCrclj+VuA8shr+/aIcBb9686usa/Xnxj/+yf+daeci6Ym04/sOxvdcJW18z0b608v4TNKpKK/fsnEoi+nXAu2j2t9J1zJeGfr0C6rLutBfSD+h0N9Pe6/23Xash4KUX017V/S/sTz9PgP/lwbx4+vB/xb1N9K/SvqNU74QfDjI+If7m/EIT2pHuUP8pPePMF5AfYr2aO2C2gm1D75Jfe0fj4JfO4jvF/wJf40LDuOF9XcfbFyW8UbMv9D+8THtFdM+x/7XkHHqCX79DXz/IIH6n1P/Bv3KTdq4SN+D8nw6jfop6Fcy9udx3kPuYLfUX2gX+epVntPuxPxIQ3sD9K8xrgvYjXPBLuAztN/EeGrjBemP73Spp5gAXdPBr7xSTk1hXZ6Fj7530Au69Pc23tT4U98Bqsv8zwmeHMBh+mXQvn4Xvr+Szf2ZdTGWcfuL+Vg2FsGLcbQD9B5jPMS79jeIIzJ+qBn4n2Bd5wR+Cn79p343Tpv/9aPy/YBjxnWRngY/jJ85Aj+Nn6lC/XW0PwjoOzv6byxk/jflHnIG+DLtbYbeXsiRnsAi1Dce1/jcl9RX0Y9H0K97/1fPrn27uPbGPLf3x3tuKf0X2R9GME+6+X4F5dW7GI/dF/zuT+5H7k8nGZ9M9K8n9Xcyn/SfLcS8yMk+eBA57btzn0NfS8+/7ku+nwL+7tTXPyyd8W7wqzzz9TXmwQbwGF9iXMle6hlfMhy+lDdeHnp/IL8m/e9Jf3yHR38I9SnaT7SnGL833vh+6v9IuSzu74zvVPbNCqTV73TXL4by6j17I19rw/eDnmeMd6Gc92Hvx9rJvB8fNS6a8je0zxq/r3+I91b1IdA3nPqNaWeWcUqxCNaC79Xh80Oknwf/OvqtHO0NX8fRv6bUG8O82UTae5vz/R3HHzzPgd/4HMfD+Mo99N/xykM5zyur7tBf4xBuvf+jXpH6p+j3atZHSfC7rn7VnkA/tU/eyc/jHfDq3x7Gy2sP76g+ivlu/HEexic19Vzntm986Gn+zwmdlWhPPwfvd8Yhn2Q+NkT+XWF8jAM0/m9XYA/WPqweNLSfaR8Zqt2UetolwvfLmsCvBsa96qdNvvr9I+y/6vnV7+sfdMvvjPYTaK8g6dfh81LjKuy/dmzjyQP/wPGMR3/k/ifGVRkfq38t9Pzhvku+/gc74U837Vr0T31dEfj5AuV8L60h/buHfiw1fpX29HfpQb0T+veoT+c8UFW9P/O1F/kDKT8MvMqBntC3k3lRj3ExjmYh7ddAHvhuVRf45DrNw37qfdL7pfGp16GnGO2mIf8K+MP4JeOWHuD+4PzS/uw8c3518F1D6M8Kfe2o/wD5s4FlGc/K9FP9nP6x6unUzxmXa1yyccqP077vIbWBTt9J0k+lNPOrm3ZO4Mf6TzA+bWhnnv5Y8G+q8WSU70d796uf0h7teZ12a8GvDuTP1q9Qf134o15ZPbPztTL13a8q0O5y/v8VaLyd8XfzqW/8Xf7st9Or36X2hor0W73XEuPHKPey/o3w23i7daTVX16AjizOZ/BkJr8bsAzrJcn3J5GPZb3f6WeoflV9PPzXHpgsuB87jh9QzvFTHhSnv8e130F/PuOToX+z+ijK78J+mQX5qH1nA/Qvp33vteWg3/uu8upJ6PmH/C+0fzJf93p/Yh0pB++BHt93Mk6hF/j2MJ9vwFf9zLR3zgJ/L+NSfP/R9zUD+7z6cf2gO1NfORTKH/W33akf7s/DtEfrTw/9y+G/dl/twPrV+77il5QvCJ//8X4B/eqH1QsbH6N+eB78eJ/6xik8AP50yJ/i9Gsh/ZhjnA7n6/Pw7Tjp12g/l/pE+vmY9nbSc7Rv8H9b+JqV9o0HNN5tN3w2PlB7gPpW9bDq7/WrM77HeD7fLwznv/vkYNKfgv9OfJ6rPQ++5UR+d4OedvD/PHycqf8l9XyfTznl+3zpmP8Pc95ZAb7a1KtA/30fc5fvTjE+7pPu58rNAdD/MPifpd419X9A71H6c6vfV9+vfj8r5U/Bx58ZH/VbxwM5I1+HgH+w8xv+GsftetC/+j76oZ/1v+BRP/46//tOovb3EtQvTD98H7sp8mk89UM/oJHkv0v/MsOnd/Vj1c8D+Ab0+M7JL7Rv/Kxxszv086W88T3G9Rjnc5bx8f3jDKy/0L8pjIc3Tl7/pBdo97L+cfC3E+NzmPLxyNWDvlcF3ubQl0U9BenfGH/3a99hOUp/l0FfZfiXWnlH/xrRvvfyNvB3Q3CP157q+03h+3vaqzbS7nPah5gH2ne9x26jH95ftW++Qnntm9o7a7GeywG/5JxWi3acV84z55fvq/2X/md3fdOe90zvF95bvGd4v9gPXv2wfN9cfyzt6eotB9CO79frv/IZcEPgzxLG04XvR/ruSg/1bsYDwD/j34x76+D6Y/2E57P7wOc5zfdDfDekI3h8P8R3t31vW/tu6SB+3/dFjeP3fZ541y+wKvLxb+Wa+kjtPdBXgXR4vttpnAn7i/uC+8El0u6/TyO/fbc0fH8jCfz6t56j3Hjae5Bzy07gH4xXkVgEfT/Fd1PeAJ/vp6h/1Z6h/nUj9Y3rGuf7FcYJATt5nmFdNgMWVI5Ct3oe3yPTv0V74D7zqae90PuX965vkC+LjP+8w7glgUe/Dv28Bnl/9X2vCNx6dz98jz/JfPAdYJ5ton3fhzxNf/QTzAr95dG36cecmvOw/luZmdeXkG/z7Q/4KvteN/PkJvz+i3ng+0++++Q7UL7P5r1C/wjfr+nM/PS9gB+hw3NUUfdX5FEu6MppPIx+/r4LYzwA7S9UflKuKXzRv0b//43I32LaJ5C/vv/q+zyu+176M/seEmn9F8PvSxiv5bsBxnH5fsAu3x9Ezj7MfMtpOfIrc+7Svq29W3uIdhLtIp4zVni/VY8LfTm0vwT6QOPmj0O/8bd+x+DJPLeXM97Qe5n29Hjls35l8NvxkP++y7yeenWhu5/2Zdptyf8N9H+5w/sWk0n7zkV4nvWc+wn1fa/P/Vq7s+/3+d6E70/4HkV96NOOpf9t+L2JAvDd9+XVR1cwPpd088C//Yz+b7Sf0fepWCeNaM/z2+vaT2jnSfrhfus+rJ+b9kPP9ca16l+rf31D1tuXzLN3oeN+xtf3Moz70h6q/fNbxuMQcAT1Wrn/gl++h+OxMAK34jtPsl6NZ38VuvPTj1Df5PvfPwbzrBPjV4b5kA78pUkXdX1y3skBXu2dzenfU4E8Vj5Ph7+dGT/vHd5D1lNOfy/t4/qf648ext8Y920cTvi+XBra8505z2eeyzyn1YFe/QeNU1cvbrz6d3fw/zhL2v3Q/VE9pfuj3w3poP2M8V5Cfd9rfIx21df7Xk7xYP34/QPjtGuoH6Xf4fpMYr6eYX9T3+h+H8ZHGxdtfLj72wHvucxj97kD2l29H9GP/MZ/Ui4989b3i2v7fQzmRTLoTA68Rjn1/5+DV/3/cvCrz1a/rb/wLf02/xv/8rrxrPDHdx3SG79s/Aj81R6URTs0dPh+Vi344nsqvrPSCby5mb8plWucP86qf4Ae7f2hv5J2ce3k9QP7+D/aS3zXwPrg9/0n/Rt8B8p4tVPU6w39k+Gr8nEI6+tOcXR+t0A5qr5E+al9w31Se7j6y2vMX/VmyZiP6veNnzJuyjgq41P7MD9nUq93oB+Mo33351CfVIr+fw0/9MuJA7/n1pLwxzgF4xNC+7V2a+/HYXzXW4E/ru8j3StdgX4k9PfWD7wU60d9pt8JSc/5ze+FlGG9lAbeb5r6xtd43/QdDt/fmExaOVUUepRX2lc+Y/y0r2hvMa6iJfN+P/n6O2nf7UP7+mk00f7KudD3IFKSPqp9G3zea1+C3q/ZX/ex/g6T7/vA36pvpb3Qvu/57hx06TdU3fc1yFf/qN5xKnR63/S98ZXQtQI4SL4xf/XD9p28svQ/9JvxvZdW8Nf4FueLerYaxpfTfhPjR4C/q6f2vk6/1GeqvzQefh/1/O6R8WvFwO+73qko73vf+ifpl7QRqL/DF5Q3bm+C/vf0V/7L953ky3/fywrjw+pB35d3sG9UMQ6J9bgb/udg/Rgv8//pd6jv+UH/usLg189O/7o47QX6x+snQDr8vlZ/5oPf2crAvfUB6h1jPvt9p5yB/9MX1Nf/SftwJ/J9b+QV1sdjvpfreQC+Hdd/GP6o5wvjKdpQ33d19L/cBx/8/qHxBsblbqH/G/zuIXiGwI8ptK9/ld9h87tr+lf5fQq/S6GftN+nWIK8y83+WQiov10YX67eMTfyL/T31C7WV/1B8J7+Y+pLyff7Nb+xT/odG9/veN7zh3ZX6EoOHR9zrqsF/w/Q/kPU97sTrrM6nvto3/cHV/G/ctT3Bz3v7wd/QfB+S77jd4N66k/9nqX+pH7P8SB4XB+DqfcTdLc0HoR6+l38Gpzf9MNQv6e80F9K/6iOEYh7hfa+JX8C9Pu+te9Z+771C77fDX7fX/M9tqL0J3wf+UfSvpNckHQ11uVZ4L36UegvAtQO7Pf/fA+9B/+vDfzX8vj+FOX1pzeeson2PPGSf177Ev1bCJ4JxreQVl6E/pN+f2kb++0Sx0W7QyyCdVg/H1K/Nv0sSX5h1tsW7x/Bep4cgbh80HVRfwj6Z/yS7xH4nlA/xt84+i/oj++B/M18+Ixzx61zE+NTm/5tgs6ltKc91/dXJ0HvaeReBu+XtK/eYDrj8zntFPZ9XvK9n37tOwbg9/3QgUD1gS9Cl+ddzxVVwGd80/3Iv9/B77nP78MZH6l9Q79R4yWvUD8Z/bvOfBxIfqjfM35Z/wX9Gfw+ot8P+NzzCfmdfR+E9n3n2+8/Lgvm73rqN6X98rYPnre03zFflYu+n7rC+Gnmp++LNWA+zw70T+E7Z/qj5GRe/QbsE8Q/uN+5Dybj/OB+OJ5xTQuddwNj1O/Meauh+wx0v4Z8+Yj894GLgb7PUJj5eYb6hUhnAL/v4mShf77jOIP+659u3Jb6W+O3wu8tfacfAOWPBvoJ4/MqhPKW+g0YD+OE9cdZSn74zpTxg7n1o6E/W/RfDvyf9Ke5SP99/0A/vtD/a6p6s8C/bgvru20Q915ff4jgvSPfP6pBed8/Un/nuxnh9zc+pNx0+qsdWvuz8XVH1Vs6jtDveyjGc/udYPu/gPnXH7nVlfXu94Lj6K/v5BYGX2vq7wdvQdJ+x7gj8k39ruM+Ixj/v5H/PyBfUrM+1A/5XcYz9NNz1tPq96h/FbrP0o8E6MoHX/3edHnmV0fa11/E+37oX2k8cgvKaSf2/XX9ZX0XPy/0pQZfG+U/fPf7MsaXhPY57XL9jT9QP+V78UH8hfGsg+FTOdLa//3eaBGg7xE3gD792X3XT7923/fTH7w//7ue/f7rDeSNdlK/4/4O+I0H1X+4g3YU3zdB76f/hPH+2qty6FcMPA+ftPfXYN70hH7lZG3a9buqGeHHCe0RtH8Eupcgn1Mwn96g/iPUN36odQTixhvfpr+j+zflS8ciqN5Hv4hQ/+P3tbIE9wS/r9We+XqSfWkjsLh+bLQffh/vNfj3f01odkV4nHWdd/TP1f/AP1ZW2fGx3/YMycweWR8ysgqFIispu+xkFskeJSurIrJDkWyJ7D1SyAqpr/U75/d+PDrHPaf3P89zX/fe530+n3c/x303j435/9/tzFHYIGMUTo1EYeMkUbguUxQ2JV0/SxSei4KYqtmjcBP1E+WKwl0ZovAW+T/Qzuw8UbgwURQOA98dymXKEYUfgW8/6WJZo3BF7ijs/GQUZqBcI/KbZIvCa/DXHvw74GtpzijMAz3VyX8CPF9RPwv03wFPdsoNoJ1dlB8N3pF8LwL/G9NF4Utpo/A0sADybAfeS6SbAJuB7yTt16Cdx5HP18ozTRSOSx6FE6HvG/hrlZjy8NmSdCXqT0T+BZHvWdrfiHy3Un40cBuwGvKpCF0zoHMa3xPSv2v5Xga5fAYdxcD/DPwP5fsQ6B9P/lfkXyW/MO21oFxsyih8mCIKl0P/XOi4h1z2PQ4exu8C5DMhWRSmp9701FHYhvxytJ8ZeWWAjjLwN5T8ZdAzGfqS0P+5KJ+b+h8hj0J54Z/xuzd9FJ6EjkvQP430VtLnaO83+qstsCr0bIXfkeA/lBA6KNcf/hNA3wzaTw5dSaAjZSQKm9BeJ/IrwN/P4Hub9jrTTg3GxxXk9xzlV5KuDN53ofcT8E6Ez29o7wpy+5X5sxY8x5BDR+Q5/7Eo3Ev5DsyHUuQXAu9l8kuApwL91RJ5NCR/l+Od8doymD8tSPcmPxH4dwIfB/8y5HuIcZeced+G8fUe8ijB92cZv4mh5xbyTcf4XEO9yfD/DvknkVcz+B1JOhXzpzzyPQ+/H1KvBPK/Rf7b8LcdPrpQ/j34aQi/H/I9N3hSPBGFY6CvUdIonAn+stQ/GonCY8DHoa868lwA34/BR2HwD6HdZHy/7jhAfkug/yZ894mCmM6Um4tc5wFnA7+ifg/GeyXoSky90tBfk/y/kMsy5HSM/k1LuzPdR4CTwbeC+veonxB604E/K/W/h89/aP9r5FMFebei3C76vzT4O/E9OfXnkn5N+cSPwhPAlsB5jKtGtkc7zqOf4G8Y+Sdo733KPQR/T9bf5ci1Cv1/k/66TP0s0JUbOluTH4/15wzz/CjyyUg75VhXygOfBRZErqkoH4G+TuBtzfp3j3ZnMJ5eRH7vI98D7H8Hgb8AH1B+EvzMgJ6nGefZwR/n+AP2plwP5NeG9pcjhyXOH+jtA98dkfsOxklD2r9PvSHgfxX5/UX9i+BvQ70WpOPD32+sP2epN4h+WwF9c8Gbifq/Ip/L1J8A/4eh+yfoOQO+u8zbu3yvivxeA/9Y2r/L+NhKO9/RT0dJZyf9OXI4RftfgPcB7d92XaL9+uD33HiCcV0lEoULwf8P8Dry2Y18b7H+9AJfT77HY36WQz7/g64r4O2PHOuSP4f6e6FvEvQ/gXxupIrCa8CG0LOf+fMO+A8zvpaAfyrfj8JfDuj/Ffrqkf+S6z/y2kB6M+WLZ3+0/G36Zzjl36Hf+wI70H4+8ivDX1H4S0M55/O5SBQ63xMjx7vIpx/1KgO3AauwfzRh327A9wbMr23QXxB650D/u6TTId+0QM8/N5BvEeSZEzqvuZ9Bb2vwl4LOmZRLD/1HaU/+36dcDuSZJPWjdGV0nQf/ML5Xov4l0vfIv8T55Q3qfcz3Ysj/Tda7bsC3gPnhfy/0/I7cDsHfh9TfxnzYTP4F6H4R/p5GbsWA05hPbyP/V8F/hPqedzPSfnfSx+BvEeXa0c4A6PkN/oY4/6BvledhyiVjXD0N/sKUz+/6AJ5xkSj8mPqn+Z6M8km8H8DPcfCnJt0V/pJQvh/5zcEXi3wGxovCmpTLxP55gfxUtPOPcoL+w9D/Auv7SecpcnqN+kfAe5l0Z++tpG8wLxJRfy3rayL7kXQL4BvI9VPWn9LQtyACXtrvCn3VWY+m0J77fxz5daHvEHSdQE6bKB/L+pkcmBGYCzoa0y8x0NHVfYb8DLT/Dv3SFzgbOi8gV89znvPSQ+dQ9pUarKNbTEPvLOpdJn0jEoWrkU8MeNxPPoC+Kch3HXhLen6Aj1+Rz2HmY1faPRjctzaxPiyiHz9QDuSPg7+HtF+H/NdZ30tD/33oDtf/KdQf5vpB+bzI13vLMPgZQr77nPviGsrvo9wLzI9RrAtzqfcC/FSnfHzo6eE9BHr+BH8m0o3g6x545pN+H/oSw5/nkOTU74vc4ug/9Q7uh78g90TgW0t/5aJ/dkL/FcofZr2dSXsNoXs17ZYgHUv9P0gnpH4L90H4Pwh9fwAvAyvQP63hXzlvBNZyvoG/MnLw/l8A/FWY156zwvPVYuqvQw5p4asp+P9C3jmRz0LoKQg/39PuOPC9SPslmR/vg/9T+w3+b9FOGvBUg95p3tvh/wf1Be6v1DtJ/kro/oB5PxP5fQe966j3mPcG6Hkd/lJS7nPoGE17x6E/vvst4yY++e5/uxnP7judGD/jqL8AeSyEvwLQfwp5xULXFeDP0DcIevZwv0kAHx1JD6bcUvqzHOOyM3hGIJ850HuEdmfB7xny1yC/E+oFwd8aevvSbkX4bY880pPfEPxb0EN4D+kMvuHeO8Gj/nY8dLoeuD58R7ou8lR/tgu6DyLPt5Hvt+SfVf8Hn/OR73LaLWa/gudd8G9k3PwNPYWA1agfD7w1qNec8+YntNOZ/bkIchsNfXugz/61P+3fS66v4NvDuXMp6Zzg6UN59czPgWcE7TsePqIdx0V7+GsM/59C/1b4ukH/H0Uu/5C/OQpislA/DeN5OPm3Av3vPOpfoZ3alKsIfVfhax379GbSBxhPOfj+NPvec4zHIbTfALwH4L+q6zf4r3G/TANfDan/GfzZf7mhK7vrJ+Vzk98J2AN+hlH/AePxPvAC60sN+q8J9E1G/uqrlpNuRbu7oPdZ+qc542MafE8BTgVOoL56fttZCP9P0v5G8Ffz/Ef5cuSrn1nI+tCY+iUovxK8DyhXHbgbep3Xznvne3X5ob7z1PNHac+X0PMe5dwv6pK/3PuN+nbGfz7kk4P1rTR4FntPU3+qXpZ2D1Dve84f6oPVD6cK9MP9gdoVFpCvvaEc48lzc3ieXs153vU7W4IodL7v5f6UEP7mUX8D6S/p79J83816dIv+q0b9qsCUzL8pjF/1es/AX33kPFD9F+N2KOmN9HsD12/P59Q/Qf1BlN9Cugf8jYPvOuDJzHzuwDyOo70PKZ/H+zvps+CtoB4auapneZFyKehH73+JobMedP/I/PT867hTj+35Ny/4rkeicAPtfAv96ovyUl690VLtC4zHPPD1JfOoC/SXhy7PZ/Khfqgi+WNoZznp/tB7l/X1c8q7D9+Qf/q7KeXbMj4mQF9f5Dc06O/HoG8k4+odvu8Aet7/gfWzBeNLvWAf6KmCfGupN/d8Bp032X/eJX8s6ZfVw3gvhu+f6Y/a9GO3wC76t/cz8peqn6DdJsD6tK++/Sn1gPCtPl77Z2ifcD/Unmq7j1NuJfjVR6if0D6tfkL97l3wqudVv/sN7f9C/ZfQB2ifHYjcLyHvJxkPzejfzfTvfPUT4H9D/QHrU0rgtGD/KOp9kvaKkD7C+uF+9Snlj9HONsbfeea149N1dwv98zFye8LxDb5DlH+W9WELfJznvDQb+Xlu70e/tab+BejzvOT66nlqDfjfR/7joPsP5DMtGF8r+B6eX7W/rFX/5r2T/PXQvR16/1S+9I/9eYr69vcN0oVI53H/4fvv4EtO+6Geowz8V/H+yTpwhnrq4R0fjgvHif1dnfY934xw3wPPLsbNbu1bjL/nKbdM+yXwG2Bp5KR9cyjtqi/QvtmU7+7vXVlPT2mnYz113Xf9nMn4y0a6Cng9z46BvwGMr+mUG0Tac8VF9ufCyCcH3y9Rvwnj8T6wPPT8ox5Xe5vrGHh6wk83vmcjvQv8cxkf6p8XgKcA+dc99wATMa48xzTVvkL9Jz2nkp5He5nVj5DOCT3uzwNJH4afzZT/CPkn4HufSBQ2A/8cxtcrlNf+3ge6tL/nYvy1BM9l1gvXCfXXvaGvLPzdB89d2tNv4zL11I8/zPho/WKUT0x9z2fqMz0nul41877COtOc9E3wrud7T9r1njdQ/QzzYSftt4pEYRz586HnE8cV8srmPZNxtRP4C9/3gCdLcK7XT6gj+NPp1wQ/2/QjQP51vP/C/xrw/KN9H/qvw98p0huor30sL3i0k6nP3M35YRPtnkN+xZH/CugvDh7tRBOZv66v2/X3AO8++OvHfD1FOz/RztuRKNzvOUm7JPX20v4Z/TPg+4L2Z/hLz/6aAXhTvxjwX8YO7D6TBjoT085M+KtMe085/+GvEecp7e512Y+0x3vfKAXej5FPFfAlgP448I7wPEK6Buvlbv3qaG8F+H9kXOWiX0eSTqs+A/rVz7oPqZ9NBv/NkEtT9anez6iv3qQa9dWfjKHdFqxfq2i/tOd96sen/i/U24w8tF9NBE4I7Fltmd9tgI1oLyX5twL/CP0lPqOdGO+r5FeEjqTQV4FxkQo5Vyf9JnLQ70D7pPZK7ZOlWO+q0S/f0W5b5N0beZxlH8riedLxSXoTeL/Wjwr85aBbvdQa1qsczh/afcg8GkB6Iv1XAHxHvS8jj+H6MbB+jwG2od5bjM8PPB9GorAvcBnjvzLrgX44uxj/Kyin/r6Q9j/XEfjPCD+ZgJmBfcB/hX7vS7/vZZy9AD/TaLcreFPwfT7t/0r5y8ALwGTB+S8e8nB9cr3qptzUFyKPeMjH9bEeeOsDL5J/ArpmQI/3j0P6b8Hv/5BPZ8pvgn/nU1eg8835lQ16bkFfSe5fhWivIOMuP3zO5rzaEvpKg9dz8ZusP+pv1zOevE90g/5XwT+a+XaUdq+STgBduZBPb+ZJVuSaB/60b54D9qGedk79m2oyjl7xfgC/2hV3Qo9+rd+CfyV01aHcNvB2Uf8HXvfB5Nq71DPSn4Ph4xjpXfDhudfz7r/+fvRvL/Ad1M5AO0XAX4v15iXy40hvJ10WvBUdN9TLq/0e/Oo91PcVIn8w9HwWjK+W0L/L/Yd2SgEzk7+UflNvtS/QZzm/tZNqn8ulfYH+u67/J+2nYv/R76Wq9qzA/0V/yh3AnfqHwm8bxk14f0wR7N/VaMd93P27nfYK4GX9dfRTYfz/jZxSk/46EoVjWe86UD4TeL6inQ6Ur833TKyz+0i73utnGvqX5qOcftn6a6eGn/bUKwP/nbkvXkD+1cBfn374g/IbnO+092ugx54LvMN8jgX/KsrvAn9v8M1yvwVvK/1DwLueclXhw/tLcvDp960fuP7f81i/1NuF+ryq1H8WvN6PDtL/4XjQLqh9aC3jeRDr8GrSQxif2jtP0L520DOMH9cl16NPgA+1z4OvGHIZRToL+L1f5tG+BCxP/g3GV3btevBTLwJf3uf046P9Qe7vgX1cfaz+efoXNNfvlvk+HPnrb248h3Ee/anfEX46ATsDd+ov5Lzy3Af9HzB/MyPXPKQvWt77C+WNl/C+pH+s68PuwP/X9UH/K++X+l/Vp34Eut6g/G+UX0z+LNb7OcDZwEnU+5h0KcofoJ1l+v/rfwKfC6j3BfLTHtWPctqppkGPegP7UXk00/6kPgmovvQB9OgvNhB56jc2i/rLGfc/ux6RrkL5kZTXX+eeen3mj+fjGdTXL/cLxk9o90kFvuy0v4v6ceSXg7++tDeZ9b2p84ryWchPQvl57tvIsxf4Q38p/aiGM7+me1/XL5Dy3xgvAT79stUnag/3/OC5wXPEIvAX5T5TDLiT9X8l/ew5/CLQ+2U+8B9nPumnGvqnhv5/3p/0A/yd9bu3dh3Pu/A5i++r9ZNnvVVfrZ68hXEkgf34qvd/yi8Bfz7k38n12XsTcAP5W4N4IOOD4pgfr2nvp5001L/o+KC9U7TTie8rgEk5/+2nfnfOt96PU7H+tQfehd8l+v8w/kZR7y/qpQS//nFfQr/3pUaRKDSeQ79n42DuU+846YvAGPgdy3jazXh5lfLqefNBXy3W65+pV5t0PNqvTFq9SgQ+9M/rSLtPg/cj+NpH/3q+c932Hqd9uRrpxtp9KRfGDxk3NCCIH3oRep5Ezr9Tfzb41Gep32pPf6ejfgXSbxlfqN6AfOfFpuC84/mmN/OlZiQKj+tvr/2P81Y19AMTGCelwDtPfw7pop1q0Kt/qX6l+plepP0Drlf2r/6T9IN2s5KUX0v59eoDA/u8do4CtG98w26+PwCf/iP606pnVL+Yh/4dTv2XKdeTdHPk2I10av2pqK8ebbP9z721EeN5Oe1rH/ScEca7/c34rcn5RP35Kv3pqKffpXrLKYH8u9CO8k8S8Cv/VfS3gf9Y6K3NOIkDpib/MfK7gHc561c/1q+U2q+1J4B/FfKZiFzcf0fA73TG7zzt6+DvxPhTf/YX+pEM0JUeuBz6btF+E/2tkMe4YP103TxMvuun+1Qf5LkM/HfVD7Ev3aO89zDtd/pTFP6P+E39j/SDDv2fW1MvfyQKR1PuIvUPQY9+mUeAnv/C+AXngXE+4+G3Nd/bQN8Z/bO8t5Lv/SyW9W2PdgXWB/2N9C9qG+jHU+svDD7tFp5bjWMzfk1/c+M4U1DP+JsdlO/JOKzDPFH/pX7d9X8D8lS/npr9MT9QPzDlb9x2BuiJg4916rMdP67TfHf9jEd/xACzQE/j/7gfqM/PDn3qPdSD6K9l/+t3ZByjcbbG13agXzbSn+2NKyB/MvgWUX+qcdnkp6H/NunHRXn9ufSH009WPznjfwZzntLuqD1yC+1Mpd5t/Q6pX9/zIPwbT7uB89wo0hfo9+asC7k5H+ZCPi+Dv5dxAeAvSj897/4In38jnycY35dYjzowzjoZzw+9N1nfN0BHA+jQXlAQuRr/aTzoBOjx/vsG8hmrnzH8bQL/d8D70HuGcqlZP5MDM9F+TcppH52tX4L3cO3ojmfwjaL8Rui7z7htRvv3SF81bjrg737A3wbS5T0nup/Dn/oF9QoJoEv9wjnkrf12KTAB7dcK9IXqD6+BPwnrxzrmXVLSdZkPq5FHuP/8yPyPQ47GYRl/NQP+PnP9hK45+jfBxwT1/pR/l/w3ab9SDHyqP1P/qJ8QdO3wfgA9BZHPGe248uv9zfs1fGcFZgMm107JehnGKRpfsZT51hb4DevkccZZGJcqv9qH/gRvBu97zBP30yL605HWPlUcfvLSX/mA+YFtjVOlXeMLntefj/Vngv57yO0Tyvs+wf1g3wr9mysy/tJoJwOqH82pfxEwB/AM+I4wnrS/HyV9Gjq+Cvw39YPQ/6GMcbHe/71fk17Mevol/K3WDm38OPIvAyzLed44HP2RLnOOThj4J40J9Lvqe9XvjoTe+fDxKvJJR/2XtJfAr3G4+tlpD4ih37QXVKC+dhvv5x3B1532Q/8n/Z4ys377/sLa4P7p+wv6LxrfoB+j/ov2817yK5P/O+1rD3a9vwc92oeLcT6tx7g3DnCZ8QHQpR9z6L8c+nPJp/4P+jVr9/A9B/2bD7MvFAUeAWqf8Xygv9PrwXkhKfP8R+gYw37v+zPXyD/JuL7K+CqA/K+pP6b/ytNOV/djxs9i+JrDPFFOxvXqj61/dgHWt3ng1z9Kf6kkyPcW/PwFvA1MSftrgnjAVaT1ozZ+zncRjJ8znu42+Z+RVu9sfLP3uTXQ/wz5yegf42mNrw39pdOBPy1pz+fa+RLoLwOeSpRfCn7fa+ih35/7vfMReeinvo7xq3/6d+ozoD/Uf7puLaBc6H++xfgH6P+B9EHK1YZe9WPqy9SPvQJ/L0O/fqY3oUd/OPVyK8hXP/cB+Rn1t9QPCPkcg37tnYvUB4Ff/+t6wfzT/9pzt3EF2iF9P8T3jdqrz3DfC+6P2mU+8l5AfhhfUMvzj348zEft/r31l4X+isyvSvpRUX6U5zv91Zi3J6G7D/2nf0AD/YfVjyGPvNQvBt6VtHea/HPwl4x99Kx6XO/HznvoP6d+hXY8Z6lv9jw2nvo1oMv4mJzUz0//eN82nsF4B+/f5ynvvHmB/tpP/YKkPTcMoH4j+NO/KXyHR/+mvsilDt/jMb++DPTHufQL0/4C/mWs16sDO10s4+grzmNfM6/itIODPzyvntYfjfzFrN89oasR+8cw3weDrv3GlZNvfF1n49fhoyvtXfP9FOhPq3+y/rWRKPTcds73GbTz69/nfYrxOQY61jIeRtB+CvD1oV3vx+/AV19gL6D6K/XTvkNUC3zqpwvTH/q7ap9MD70toU89q/7v2h+0/2qf1Q6s/bci/XqCeVsreP/J/eOCcS7uW+DvDv3GrRvHbvy6/qT6DepHqP+g8c+eu8PzeLi+6GdUnvb1G/xUPUXgr34A/Cn0i4D+N70Padc0Lku/NvDn1/+Ocpeg61X6/y3lrT8M+5n6bOe1+6P75QTtkaxL7v+LAjtqK+rVcv103dO+xbhcxPxbCCxOfnXG+yD24fbgex361O94j/H+Ekv+NfXzwOzQ1zR4r2QS9fSr8f2STYz3zfplAi8xPpow/oxfMp7J+KXd3PtmUq4s+bHI4yzjYz/j4jzppNAxnXLu53H6g3p+pJ0Y+M2sPxPjMyt0GX/fzfsS+Gqx/n0OnV8ij8LgG0H/f0672kceGO8FVO8Q+jek4z4UvjtonIzvLxZi3A2nn3xPZzL7YS/kov9eRsbHc/pXgnev4x/8PyR6FJ/vPPr+hvoW71fHnN/INwH0+K6L79xpn/rNuJ5IFGpPiqOc98EIdHkvPI18zoLf938+0r9f///AP2cM/VGE9sJ4AuMMXF+Vt/HNxoEa/+n+1p72PR9sD85/+lGbPxX8vZm/bZgX7zPe3F/2kn8mGOfaX/owLu6rdzCOAn5mk7868GPUf7Ev46ZDBDzakaG/K/02j3LHmf/p6D/j/5LCn/dA9b/GvZSE3ryUH6r/oeOF+qE/2suUX6bdP4jf0++7DfX0+x4NfRnVqwB3Io+BpL0XP6RfmsHv84F+rRHl1a+li0RhGL+kn8L30K++Qz2Ieo8lyEO/cd9BqUn72se9n9Q1/iSw539BvSzwdQE+XtI+zbp5lnl/Hqi/4+3g/Sz16erPMzNeXBfa+t4Z8vE9AO8F3hO8HxSHf+/Vq41/096nXzry6Oo+jfyGwb9xLGE8yh3OP+o9wvcFPF96riyLvDxfjoEe32MsD9+vMX7yw59x42E8+WPEGx+lvRegs7L+TL6PiHycdwNYP4zPKwN9rm816T/9bUYjh8TG70DvU57/aV9/OP2NjjO+CvjObBA/v4fyP0DXVvBrn1yO/GJZl5aR7gGdRWlffwv9MXyfyPcBfBdgL/V8H0B/L9+h1Q8sM/SF9gTtDMOgN7v9SrmmtPMN/fcT4/+O/i/eA2lff+vpjGvfNdN+P4r2SjFOSqpfhd8NtOu7Z/pn66+t/2+7wA9Y/9+0nB/uQkcd5LEe+mtp16Z/F5KfIHh/9VPgaPqjD+VD/f0p1jvXhy2cW3xX8b5+oNC3h34ZrX7V/Rn6+iF/z8Hh+bep8WXI03N9Dd9fRE7taDf0f/b9stzgcd3w/bIH9Md2+LpP+lvtedRvQH39cPW/9b2OUuDVD2ek73B5/6Z8F/D5jk4YT3id/sro/Q+6jBM3vtJ4cfWR6if101Y/mY30Vcpnpdzv0Ncuw6P0NyN/JvW1c5clPYX2rkbAYzwp9cL1yvjQaUkf5cd40S9ZF7bAV0nm3yHa/a93OasxfmPYF4yfMZ5mEPgn0X586J9Mehb1c+hPCl/Gh2yHP++9+iPrr9za8xntFQ/mbWrqe27z/up91vurdtv+3p/AM9H3IchvTL72bv25b6o3pp2J0PeK7/0g35nBOzMrqK99tzfzyvP4ad+HIF+7nnY+7Xvhe4O+Q7gL+n2P6TztpWS/870mzy2+21aLfuyuPRn+H4cO9V1PI3/f7zV+xvcEfD9A/5verNv64fi+wi+eD/Tno77vtPam3WbU8zyx2PWXfN//XRuc3/QXSQu/xod3d/8mnV17NO1vYn3TX0z/Mf3JfH/B+FDjQk8E8aGeN72fe+5UP1WK8TuafS4r82yd8Rn6BUOn/jbG53j/L81341rUXzk+jyhX5D5H+5v+iep/aedP8rXr+t6sfphbwd+Q9eZnxs9V4x6pn5590Ti9bvD7PflnGR/6l50n/S54tLOMNd7Z9TawT14Bf3g+nwDeHHx/I7An6f+Wj3Ze4/uPkSisw/x9NfATfah9kXGdB2icofEF+p3uA38s9DxB/XLMx718f8d7HfLN5D2G9JvU0790j+OL9p4DOr6991fhe7vg/n8D/u8G50DjFYtCX2mg8ZeuJ78gf99d9T1W+1/95njW/TqcL5L5/iXjR31ZVfAUDs4Pk2jX9/09Rzge60DvmcA+q11YO7FxZL5Prf+Xfl+7gvcKnX/az26AT/uZ+iT1SxOYv+t93yvwa/3XzxX+/T+PM9Dr/3osJl+/SP0kM8Gn/pGjkKv+J75Dpf9Jbu8l1E/C+rTDdzrAb3yLcRLGt/geku8jqc9+AXnkYVwc8b2mwN73t/Ez+nOQ3530z9xn6qrvJX2K+r6f43s5643Tov/C9+F9F34q9OtvN4/2loFX/7vyxo9AZz/fYzF+GHqGUK4j550b5Pt/EP4/hPZj/x/iRccL/er5ogLzcyfnguvAtkDPf76r7HvKT5Ku7fqlPTuMUzaejP6ZgJ/HRmA98vvq/wOsAb2Lyf+e8ZOJebrZ8RTEP3re9/zf3f1NuzPQOKv/ReDnP97X0P/4Avui8yycX9rPK/l+if6vyNe4rP96B9Z4cNdt48V9v9D4hu6UN76hIfnZab8t7Q6Dr/j611NfO732ed8v+zjwn9rA/ud+G8ZfuU77vofnH+OufU/F93fC9wbUs1z3/RntL7TzJOVKe5/Tf4j2k1LP97n1U3oLvreox4D/7cRLqx/23aaHzE/1oeOhW72o699Q9t1naP8U8tlL+29Qz/tYH+hNAv+boEe/TM/7+mf6LnYJ5NcMPL5vWg55/cX3h4yf7Z7jyd+n/Zr0JO+vyNd3jeTf+HHfZf0K/P4P0knoH0B+FuSUVf9Zxxtp49KMV/N87HrekfwR4Pd9X/9foqz6AePjfF/R+zLf08GX9kntlu7n2i87IV/vZxmD9wm8r83gPDAd2J/+9n04/aX60X+ep7X3Go/p/uW7eO5f4fszq4GtKD9EfRLrSgzla1JO/cQ9oO8Pq59Yj97pCvLZwfdr2gONAyZtHFoV2r/D+TgLeN4GzzLa3wp/3v/VB3j/X8N6/JNxW55X4D8h8nS9Uc+vf5fvW3k/0T9c/1Pf3Xe9+Ro8x7QHMB/9fxz/L0d9rPaRXvSjdpGM7A8N/8O/1fdCjJcuRnvGU+tf7nkhJXQUgI5s8O//JdUC/1zoaAwdvh9h/Lrx7L4fMSbQR7iP+z7i68jPOMDL0L8Eufn/Da7jYfys99mT6n+cF96P6F/tYivVM9G+8Q3GNXh/nsL6URA4Hfg85XqBPz7yG6t/BLAi8jJ+1ne4XD9cT0L/cP3CnyB/lf77nEP02x+M/GPhS3vITNrJSvsVoCeM3/L+rX7/O9+L9BxD/xVy/VUv6T5GffWCxt2G79Wo/1bvXZJ1yvud/xfju80dgMlZ/2LhW79e/XzdN9Xv/GhcGvSdBn8Yv3WA8aDe0vub48t7Wxv692vwtyQ/9B9QX6ke83v4nO/7A6yLxYFjg/XPe9FTyHsW7fn+r/6VxwP/Ss/Hi6BnFvmhnnEu54cL0Ov9rofneeShP/gI32uHf/0mSrA+yP8d8mdpF/cdBfD6/0pVaS/0k59B/jX4WQEe/WG+oJz+4/p96Qem/5fxlL4HZpyl799cYrxcgc/bwKzUV3+aHrzqUQvSL6E/iHqi30j/Sdp9Zz943H+0T2ZiHGqn1P7gu9r6GYbva0/ie6so+Pe9PP8HLYz/MO7D/zczrtx48kzGg8B/f+1Oxo+ozzHenvwwPsr/oShC+/oRhe3VDvQ+lZBHPOprVz1Pff0xtK9G1O+BV/lpf/Pdb++dvn/uO+A9+e776vXY/4Yz34Zy7vRdmPLgfw383q9jgQeC+7bx9negIxVyq238Mvn+H1bHYH1boN4jEoW5GJ/dyA/9tV1vrtJ/6gfVC6onXEl7xn25b7iPuH+05tzku9rSp59uZf2qWD/fY79sGuz/pYJ3pP59Pyr+o+1Jh/q58cF9zHX4bCQKw3dFtAN5/53sfRP6F2vXYn4VZb/x/OZ7QoOof0u9tPoI5NuBdBffR+acm570BOg1vkA7f2HSxhd0Z3y10A9Xv0P6Nw38qT9Rn6L+ZD/96/sTvkfh+xPGL2gnKwMe/wfrIN9X6e8AVF+7mPpLqbcXefj/IHn8PxxgbuAS/YHB4/+Z+H8nDeFvMPx4r8rqeQ/86ju7MO79H6qEkSjU/ug5d0gU/OufGGu/ADMA/X8m3xWaCh3G3S8O7kPek/R/zQv+Fcjfd/TU3xqfOlT9EXIwPkL9svpO/4/S99fUf6rPVM9ZDDzG7+/wfmrcGXRto/3wvRnfoSlG/4zXv550KP/nfJ+BfO9D3n+MPz3s/cP4B+gcTPoZ/ZbcD6CzNeMhhfdE7jeZoGs055NBzKu6nD/yUD99sD+5X7k/pWP8GB9qvOhp4/k8X4LP+7z3d+MzjMewPf9f0/uc8d/e87QPvRm8f+B7dvpPGA/UGTn4/66+m5ZPvYb+VY4n2s+IvObR7nza/Z3xNZT6+k/rT63/tHGT+t2F/nr+74n/kzTKe63zn/rKTf2A+gLjNXwvw/cztAP5vrvxZsaj+b67+g71H/6fivoP8fu+Tfgerf7O+j8Pp52fkNMM6FitfZjyMbRnfItxLca5nIP/8P/u/B8854//q6bfq/6wUyjvvHUeZ3N+wIfvig4m7Xuj3l/bgTfUY1VGPt3tn2BeeP7WP3or/bARWNT4ucA/xHt3Tvq5ceA39m98AvVDfyvX+3m039H/I6aecWTGj3me9pzt/PK8rf+h67R+iA3pT9+XfZHv49Rnkj+Qevm1zxqnB31rOZ88zblIu5z2feONjD/yfyCMP8rI+vV2DHxT3v9X6Ufa/dj9+XXwqy/Zon8L/VNC/Tn8+V6E70hof/uWeq7/4fsLvvfnO4Clg/cAMwf6AfUF6gf0J/FepL1EfU4YL28cfU3Gg/GIf6jHBxqf6PpWlPYfUN717nHG3SrGT4T1PRXy+T/lvIHGeJx1nXfYz9X7wB8rPGTv8fjYihDZO7KKyMrKVjZZRWZIRlZWJZuk8GRlZI8yQkZWMp9vtgYR8buu3/v1cl3e19Xnn/s673POvc6+7/ucTyR11P//sqUNYOZUAeyTI4AJgZkiASyRNYDTcgUwb/YAto4J4MAsARyUO4AjMgVwWOYA/poxgHUpX43yOUgXI78D9DpArwvwheQB7Av+98H7MfXrw0+enAEcmZLv4LsNvSjyP6f+FT4vpv5flH8xQQBPgn8T9Rejlz3IN5HyValfHP6GIs9Ryhen/k3y49D3JeD4bAGcRPl3aJ+G5PeEj1r5AjgOfPvRT3PoXcsLvfQBPAifScm/A55c6GcNdL95KoD34a8s5V4DHgNPFPLWAF92vv+JXhfSP6qQXxM9X0KuLvB/BLnyJg5gHmAK8VD/PPV3w8dg+GuG3LvAOwn2NsBf7aQB3Ih8+5IE8Drls6HfVdEBjAV2of5a+HsNvuLQ12Dw3YC/npTPTfsvRf7PyZ8FHIuersP3KPrzhhQBHJMmgI2Rvz381Efu5NDvnCeA2xxP9IMK0H0a/aZHvjngPYA8LXM9WU88EfRyF9g4AFEzkDcN7dAX/JlJv0T94sh1GD1Ujx/Ah8CR6D8R42oA9EdQrz36iab/Hn86gJORfwzla0QCOEy+oed8Mgz9HESv1ZnfqpIeRfn84K0HLAgfJcFfPcuT+ZY3/wH44vN9N+UT0D8XwF8s8vSAr3norxv10qLv1NDvTfvYL5ail42kh1BvDfo8mu1JfmOhPwx8d+C3Gfkdwd8A/ho579Geaci/TLsVAv9fpHdS/kDCAP4IvEf/vA+91OCbS/pt+P4B/rbA3/vI/xpyDqX8AeTNRn4c8n6E/raBPxH40pK+jb6PIW858KaA7/HUPwg/74E/L/XPka6TIYB3wNMXPLOhlyhRAHein8SkXZ8KU/5r6JSi3Nfo9xr5OcF/AbotGP91mL+PwndDypUB3w7oXWae+5v63ZEvJ/Uy8/1v9J0K/D+D71okgEng7wL5fegfS9FLDuBB8L4L/wWdf6jfGHp1yZ8L3Wbku5+4QrmspDdRvjL8ZyCdHXkzgWcL/C1hfisPXylJD6f8evgqAb8VmAffpn2KI197yqWh3GXwT2Xe38+6uA84i/zw+v1DaB1fSXnX14TQeQe5e5C/EbgIOM92RJ4ZyHMW/uvD/w3wtiF/IvraR/2bpC+hnwzIm5d67hec93ZFAngI/PHo/wnQywzwpaV9ajM/V2KcfgbeaOo3YF54gFxNSDeH37epnxH6q8j/nvy/0H8/6N8m3Rf994SfavC9Gvq7yXd8jOL7afTg+NjJ+lue9WEE+CvAz/l4AXyOeW8T6SXgG057zoZ+feqdYXyfQr8PofuQ/GeQ7zzpFJRvTbnF6C8/9efzvQnlT0BvKnxvQw8x6QJof87L9/72b/huiX7SIu9q0ulJj2adGoK8M6BXA3xxlC9A/8gP7A+/uSj3L3JdAt94+Hjo+sz+5ifgQvp3QvTTFTwF4Dup/QD6lRhv1YCVgS/bf+l32ZIF8FnoNwRfFeStCkxJ/XnQKcv4S833bXxPz/gag7yTaJfJ4N0M/w8CEDWN/I2042/uj5DvXb6PB993pL8C/m0/Ar/zd3fwLo4E8BPkOMP614X+/Zb7E+g2hf+L6MX5fyDfp4B/iOcb+ChAffdXtZ1P+O75rzb6Hw5/p8kvQPkC9Av3nYPIvwkd968rAxD1PXIPgs+Z1D9IvuvjKtJbyF/PfiS36zV4mqCfougnD+NoAOU+ID9C/SPopQTyFQR/EegudJ2lH/9G/fXo9yX2LRtIR9DvZfpVTehfg79PwO/89xx8LqA/VoIf94XN0bP7Rc8Pv6JPz+3H0Xdn8ktDbwn9oxH56aHfi/pZ7dekz0C/DfRPAyejh5zgWwvfa4CHkP/1SABXoJdb7F9KsB68Qv4j6I3yvAR/laAzBbonyc9P+cHw5/zbkHznYeff2nyvDb1zlO+DftLBX1vSf8L/W7TvZfQ9n3ZaBv+Vwb+X9SeOfdwj5slM6PMF+HHf5DySif5/l/5RHf3UAK5FvoKe62mvPNDtTnqj53Lkc33uDH73k92BXdHrJeqnpX488Oag/nTwnaa/d3A+5bvray3kKcc42gMez8fH0PdL0N8MrIm+XyBdGXmTws8fpEuRvgnfv/F9Lnw0Qb8zKZcGfoa4z6N9j8HfCcZXS+qPpf4i8VLvNPNfeP/gvuEZyuVGvvC8Xxv5p9OfEqC/f8hvzzzUEv0WAX80cAn0ne9dB2aSLg//lcE/Ej7HU875IY78/wEL0D5z6d+xpHO6LqDHhPBXhPYpaztS7gDwW/Yjn5HuCd1B9I9p4FuEfo6hh8LQPUi6hOcx0tup77r9IjCGdlyHHitpN6TeMuWH/3XQ74wczUjfhc8MfB9MvU/pH21ov7G0zxjgJGBRyue038H/J3y/hH6vo/fuzBsTSdeLBLCT53XShZErMfI7X8WRv5byzl+z3U9S7yP3x/Azkfq5+T4TPIPoX1WpvwC+yyDPUs9zpLUbrKHdWsFfAfZzI9DbQ+cX9J/HfRb1RoPvdfS7hvZcDdRus4j8VvDtfPgMfCWE/7XwNd3xQf19rs/a56AfB3yE/prDT3zgV+AZT/482i2aebks7d8cOic5z7RCfvdXPdHPX9D/gXZ7G/yp4X8T+ZuQ0/3z5kgAT1FeO+u/foe/ffBVjfHxBetJUfJtvzbwW5rvaULnkffQSxvG8wPKjSM/bN+4Bx+/sd4N9RwCn9uQ4xz9ozx8HkZPk9FP2P6u3f0o7VcbPKvoTwvJT0H+FegehW5f+FsI/46LP4BdKXcB/vOwvs9Eziykb1G+F/hzQ/dLyh2mvvvPV+DTfaj7z6eQOx7w3cRPyvU9873n2qyuL9oLoaddrQN8aV8bTP5wzxnU20/7Hkff26E3APz74T8V+feh3xu4HPxv05+WI2dv0mnB1xa6V9F3LeBNYEfy18F/Dfg/D59ZwDMSvvLSPlcZH2vYV9Wm/ij6WzT9Jwf5e9DjKPrvy8iRHviO5xftSBHo8z0r8Dj5BeH/efQzjfZrQdp9Vlf4zgd/05CnKOkT7D9OUe846d7Qr40eipEuDL749J/vSU8Cr+eG5uRfQr9vwncP8Ayh/c4wfz2k/cowf/2Ofpeit+/Q23Xw7EEfy8BfyH5I+zRH/megtwS+EsPnr9A/QvnTyJEAvbh/+AK8Yx2f0NsFvgvo7VvPL6R7ka/9Tb/W7JA9TvraiaVfk/q5WY/bMI/nIl0S/tdSvzv1poM3A/y/hD5vMs/10L4UCWAX6icmbT9PRv8aRnntwfpB/6F9M6KXCeTvge92tN+HjMdvqdeJfvoO9RO7Pnou164PLMH8OwH7V4R0IehkoL9mAtbh++P5BbwV0e8u12f0M5n8y9D7gu/6EbWbFEK/FSifCf1fAm968v9G/42grz/pAXj0M+Uh/3nqnyf9J/gPMH+UhK8O4H/Zcwb8ZaN8NfBeAF8Xyu8Cdkauh/AzOhLAtNTP6r6J+u0or19VPR0g/7Gflf5V3HmZdkpP+95nXP8CvkXU24m8pcmvSP/+m/42Rn86dDfQT/QTpQH/q+QXQn792+20g1LvO/qj+rpGerj+RPhqqD2X9nX/sw587oPc/8Tnez3kKU/9E6RTavcO+RHWQs/9VzbkyoeeXoG/dzk3DQRqH9T/mpX6+sfnab+KPJn/c9Yn8y3fPuSHTOz8Rv0j2A/0n7i/WED5a7RfXcq3sx+F7Gv62XYDXwut/6777gOWkx+r3Yb86dA7SzvE0W+mAS8BMzN+9C+8j5xR4JmBnndTfpt2f+A58J9CH6mQz/NUKedf1qXm1IsmXUq9Uj4j7b0B+TaQnow+91J+O/3/MPn5mdf6US6v8xz8xEN/S/leiHqHGB/aoyOsoweQv6D7p5D/6VX0Mh/4HviHwt8j1p+p5Gek/g3HEd/X0H6e7+ppB4HvE/B5gO/H0ffHrA/dQ/414zOM14iFH/dnDZyP6X/uzzojr+eafPDjeb4y+4/1tN9A9HgGfgpSXrtOKvAcgz/jB5znnddfhf5m8C1h3U8K3oYxT9a76vkP/OOgNwP69pOF5Jcm/zm+HwJvZvCl9jzCeWED+ppHepnrD+0ZBT7P72PJ/xj6paH7rPOHfhXoddFOwnf3d8nI185Xmu9dje8Bv+tUXuhcBs865h/3X4k8f6Hf+OxrDvF9IPX1/x9H3mv0m2jWq5dov7nw1we57C+jGD879Nfx/RD86t8YRP5++M9AOj/4r2qX0p+nHQ75E/A9HfWPeJ4Av/FiBymnn2mG9nvPJfqxKR8f/Rmv9njfpp0P/N3ct8PnAvSsvfZd8vUztIT/gdQ/ynmnI3zNhv+JlH+a8ZwceJLxfAb5/wd+z4WeE92/bYcv5239iHPRVzLav6P+duTNSf0O1C/pfhs8XdHfp9D7zfgMYITyRUPxdtfZ3/wI/zdZjz5jHrmOHhpFgNAv4z4XvehfdT8ymO9h+/Y08JZCnsPQc31Mwbz+Ed+7h+ydi+HnEfPnQ+0w6EH/Rn/Pr67zpOcz/r6n3DzSe9z/oS/Pkz9R7gD8F2D+K4h8v9MPXL9SMh5r6de0POM7GnzNtLvpR4Leh+ivv3ZZyrVB/gj94ynmOfcnz9B/v0R/86j/EP0lgj/tNingoxxy54W/NMZzQvdKSB8JyPe8f9f4FtpvivEtyKWd8y32Lx/h//4MPPprv3MepX5r5J3lOQD+XR9c113vo6B/lfbQj/ILUP9JR8r/4r4fOTcgfyn0+wrjejX9qzh6+gT6t8DzKfU9r26lvUfTPk9DPzv890Ge7K7H4MuO/MZ9rAXGo57xH8eQrzP1+5FOjfyNmC+WQj8t/eE68uVA31tcF0nn076OXMYrGs84gP51lnI5+P4b/B2FfjfkeQc8I+BzP/p7BL3M6O0M+KqDvxTzrfYj7Unaj1xvXIeMZzaOtab2APReEXgd/vqij2zgvWg98H+EPoujvwmk36J8U+aljui5Gen14JljfAly1kePg4Ce71qSP8Q4WuOCPZ+Rfw95tSdPJR0HnGN7Ip/ruXE0y8Bv/Mws+N4G3zvo7/nR40/UP+v5S/sJ/Wc3+fqXPgRmiwQwifEBzPN52SfecD1Dn+uAk+jXJcD/LOtRAeR6g/lCv439yn3rG9ol6D8jyZ9NvvuHq+hvCPn57X+0yzr4fxm61dFbPPB8HvMk3ikxIfz075Xgn8L3DurHuFHSCaD7AXS0S95k3z6fdpoDnOY4Yr0qA4zm+zXqbyFt/JP+atfnnvR//RDheKn76Pt/xveF5mftEcbf24+Nv3/IvBlHvzpKujr4d1Le+BTP01Opn4R5LzGwl/ZY9P075bU//cB3zymeV+uhxxXQaUD/+JnvJ4C5aTfji9VfvEgAnYedf413+gg+vvccYLwgel1Nfy4Kfc+vX8O3+8m22t2dX6k/he+ex4zfXkk6E+NMu0UX5HgXvo5TrqfrC+1VDrqnwJ8Ofvq5PycdRzttjwRwuvZQ+mMTxrfj5AzlXiL9QHun8Uzo7wXSxsUOg8/LofntT/hoBV3nt/D4cFyc0E4JfuNv3J+egr+54P+d9APSr0PnCP22NvV+JP9F9KNf9h/0uZN0ffRZF757eL5h/dkM/2H/oPO8ft4txqOwjzAe3Tj01ux/VzKOt9DfZwJXai8zfg78b6Of1qyP0Y4f+vdG9kfGX2eJIB/1jL/OyPmoBOt0Qcp1JP8k83dXvtfQHoR+O9NunYDl0Lfr1Td8106mXawK9fXLfoe+qpLv/Zd87s/A1xn5j6H/5eDdz/q+D2i8aU3kKiT/ofjMRrTHPeN3mN+0hxlPGb4/EUv+a/CnvUT7yQvk70cfF2inOvT3YuhX/4l+kzrenyBfe+1I51PwJkc/aZHvPv0nlvneuK2f9R/B93bXOfB1p//1AGaAf+M4jQczPmwN+IwP8zzk+eh34/8YP87vzuvDwe/8rn9Hv85o8vXvFNGeyXfjmLrD/3n6+wzjzNDvBOMRXV+o53xWmPr34bcR31tBLwf6/Yr0W95To/wVz3P6O0mXc91ifqnP+DK+QnuK9hP9M59rvzK+EH15rskFfu//eR/Q+1P9kLcS6RXab9mvDWd+f9/4Qcp/xfx03fgW5Dlp/BL+LPfX65kPLob2x2Odj4xjjQRwJPRGAU9TfyX5rq+1oKdd2fV2OvI3Bm859NkI/j3fe66vanwV+J0vnUc7w/fP0HnRuGXmkS3eLzB+2/hA6n8LH73ht7fzAXT3Qncj/H9r/AflliL/LcoZd228dRT0vV/ajfnoO/YHxqd7n+mM8VPgcx5KBf3MzAcLod+Seq+Tn4L2tV0aAW2v543r0F9tPBh6+Bj8s4xPZZ7zPt5t+sdW0m+Cxzi4FvCVmO9jjdPR30X+D55bvF9pfALlT8HPl3yPcfyQ7z5F/28z5D8M3qSUn4K8S2nfQqyf7YyPJ12IfOP9vG9TQDsI+C8wPyYg3/1rdsb/Tdb5eewrpkUCuBDYAr6LwNdW74tqZ0fvTZG7DGnjx0az/jxNP9KOuxI9fGPcF/wlZHydov4d8P7g+AP/P+C5y7iZD557pGfBf3i/9jf6So5+rsJfU+810P8buj9kfYs2jgD9bkV/Vein9by/ghz1mL9fYF1MTDscQM9DjYNm3dD/qz9Y/6/2uZiQnU77XAz196CXvcDX0F8F5x34P+H9ZvQVQ39yfjI+fAb0C8G/94GyMb7u6YeF3lbPd8gZi36zeH8dWEP/eySANWmPRHxP7v0+41egu4jyT+vnhj/3h+4H3R/2CMXX/OK5hnYaAj736/qXFpN/XPsRep8Mf1+zvvehnPbDdeQbZ/OV8SHQ1/6+V7uY9/PJN17tcRwb/SfW9Rv8w+mPw2hf96faFbSjfQ/92+C/rNzaT6G3h/JZwNPJeQ76ZWg3+3Nj+tsq0mMC8NgvsNj5gXzjl41XNn75DmnjKo17+hw+51Nf+6jx2r2gP4n+1Yf2vwfM5DkI+esynmrRL43PXAcd4zaMawnHb7yFXLFA4zikMxX5pgDbo68jyOn9HO/1uN8YCv/G73UEdmU+MZ6vEfzUigTwCukM7u/A15F228l47YI8xpU5DtTz0/Qf/Xqjqa9/T/viPucJ7wOCZwH0d9IfN9FPXyf9nOcl5FEfi9DTdvRr3H9f2sH4/yS0v+8LaI/VT+j7ApMZj973/oZx1Yn6nrcmOn6R1/tyXeCvfSiO0vhJ46OMFzYuqgh03kTuZawbC0h39RwF/uLADMwnGUP+vLzgMw41P/zrP+0Gff2n+qcPwJ92k76U076ofdr9cmb0p31av6bxkJ5H9G+6bjgvpzZ+h3ILvK9He16A/l30536wiffHwVOa/qN/Mrnxpt5nQD77i/0nvuceyj9n/Bzfq9OOXUL+ef3y3hPQPx++X3zC+PFIAI1HH6b/3zh6/Y2U3wF992/u5zow71Sin26EP+O3HFe5oOc+Mg3zw17qn6B/HQf6PkYm40aoZ5zJIPSTkv217f88ae/LeL8lWeiei/dbwu8XTAqNN+3PS7xXajvQf2d5vkK/E0j3ln/2HyPgvxby6X/y/OQ7CeH3EXqzH3kb2Jz9X0Xoa1833u9EKN7Z+4LdtaMj92zqGxdoPKDxF0XI198xFbn1e6yCP/2D+gX1P+kfnATd+MAH8NkU/npRPx98NuF7Wc9/0F/FvNuW+ec0/Wwn6X+9n0/6M/Ccpn5N43Q9Z5NfCr7C9kvvx7wFX9qFtN+0Id/4x718d/00/nFzAKLe0y4CPu+Ruv6mgH/X4dTQe0C5IaTno6+56N99n3E3xme7/oXvL5fyPIa8vk+gHft1/Rfe3zDegvIL2IfkRD7j/ufCp/cB7sHPVvr/FuAY4wvA73nTuKDH9wBJ9wjFTRhHoX+mEuPhhPevtYN6/wX82l+WQ9/4EeOOY/luPKjxn8tZ16YzTpaQHk//Xkj5xsg7QzsY+WWYd7x3mTR0/7Iu9N3HeB5YSP3sxvuC3/cWeqH/zNTvZryD9xsjAfR9kt58T4k9YTPj2/3aVMqH71e7z/mL+tppp0A/BfR996Gk93SAk9HrU9SrA75+tH9W2stzZir2v8Uop39cf7j+8RTwN4j9byv9wZ73kGdqaN9aCLyut3mMr4PPWjme5M/4Z/3KB6Dv+S+F7xnB/0bWk2b2B+b7acDpQM8L4fc6fMfjsPe02N/cQX/6Ib3/5Hsivi+SNfS+yHD0k4727oQeXiK9yPcLjAuC/6eg3wR99Xedgs/r2oe1k4T8SeH724nQd0/4vB2Kn9cua/y89lnvZSznex3bwfsN3v+j3EHwdaK+/gTnuyjq249bUU87Vi741o7l/Gl9588J4B9vfCDlvjRuk/YZRf5lyo8k/Qj8Zz1/kV82dL/V84t23zzQ1/67nrT3o70HsBX6PeBnjvHk6OMn+l8xxodxoEWBLSm3E3w30f8S+OvneYl+351+5jsq3v/VHmWcm/Ft+hsTMN630+9Ogq8Q/dPzrefZ8P1D35e5Al39o0vIN35hFfqL1Y9qfDrzz9foKcb3N9DfP76DRHnvmRifmN9zAnzMAn8S6IfvVd/X/kH75oI/72kZR+Z9Le+rFwaf/vNnac9e8NcUfC3085D/J/sm75W9EbpvltR77dTP5H0C6nt/1nuzJaCn/fMi++Xt6G007fUF9b2X8RT0ryHPAOjGA/+fzEvG8xq/q/0+D3r3PRXjCqaid+3X2rO1X1dB/qqsu4mh+4vjXPsj9JzPnb/dHxr37z7R/aH+Uf0D+0P+0XjM37vA0wp9tVQ/oftb3lvx/lZu+Mtu3AVyGX94GL08B50jpM+Bz3sztm9Z4+W9vw8/H2ufI50a/ssb1016E/ie9X0E5C8ejjNGP/3hvx90D4X238a3Gdf2F3wZ31aH9dz3OhuQHol+Unp/CfzGQRv/3Bb77Qvai2gf4+NjjDfVThd6Z2cM/U0/7VjSuxy/6Cs5foYi9LdzyNPA++T6C5H/G+RzfjT+13myk35O8C+Gz2Sk22inYz+uHSj8XtIK8F2E/wmU24s+fZ/E+3kXXM/A77nN85rnuT76yxnvxgUnJX1Vfwnz+VTgN567kO8T/QPaSbznCP45yKc++6LnFtoXmDe+cX5FT863zq/Oq8brOr+uIJ3K/TGwBfTj03+iQvekvR+tPcd48nJ8174zHX7t540pbz+vht7qsP+qRDqV/j/jaEP7CfcPvvPguuM65PozmnnB+ON98GMcchvqtyb9u/fkqe9+3X2x+2T3x+3Ab7z0KfCc1X7NvOs5YmcoDqai7UW9VPqPkC8J9ccBBxpXSn4Jvt+ivTqCfzX7B/eNeaCnH0j/zxe05zjkGgn9l903Ud7zzRe03wXGr/frwu9vNYVen+xPpi1X2/fh6P/PMu8UAKZy/KOfC8yvrZh/CiBvDu2X8NtWOyL5c433gv495DgH/8ZPGS+lPUz7V/h9H/e77p86MW7XA33v2Hsrnmu1S2in0D5xHvy+y3jCeBbjmGmPtPAVjofRvhkPOto3F2ivIf918KWjXHn6h/GDxpMYP/g36ZqMxxpA/ZGFqf8v60kf5qHbyN/jP9YH57Eaxn+SNt5nBPzc9P64cdvGOcLfLeRzHvI+iPPT1/D/X/c+jIP0PS3f13K/bJyvfCf+j/XtW/1L8OF9e+/Xp9EfgH7ak3b/+B78+n5DLPAZ34civxGwMTC39/zoP//Y3+AnxjhWxo1x/fVJjyF/Ke3ak3Glv1X/qv4p/VKrwN8EOTegl/XaDUl3Qn/XjKcH3gAWJt/4Md81XeE51vuWtFsU/d52tP3egK+zxr3qD6X+Rb6/4fu1fI9jflZfy/lej/q5wH+D/us70N5DMf5kPu0aj3GQxvur5O9HrsfxDtp/aN9ylNf+/jvto5/LeyM5yf8FPrcizwT4mwisAPwaev1o99G0S/h9zpXuH4Cer4wPMj5Q+6/2YOMDjZ8zbs44Ot8/8d6B8VUT9SdGAqh/44hx4iH/xnnvt5Ov/077le99et7wvqL3F46y72pOP0/O/JUK/vKS3kY79GB85vP9CdKeOxx3nj98V8x3EnxvzHfGBpCf2Lh5+EzK+PJdQP2OvtebiXLv0n7t0Ud7+Jjr/SPmgxj65/OkM6Kv5sjV3/M/9FbQfhH4fewPMw4Leq/SXvoTHsBfXfVLfe+F9Q2dzwYyn3ku1z65Fj36vpRxJMlC70zNYX8TCx99Sbu/cT4aj/6OUG+o9zuYz0bYX+CvFvwNpn52+PPeRUPwez/EuFLPWUUjAWwKPe2za7VPg/886czkR1O/nfZB2msa89th9GM8dC7630zmF/f1CcDvun8P/L7j4/uf7m+NH3R/a/yg9p6F8JmL8aD9pzLrwlfgLQif71C/eci+edL7cdAvSrv9RbvNgJ8K8NOc8an9uBL9/bFdifmwj/2G+h8Yp+t+0vhY43nBnwe8ntM8n3m/KL3xGJQ/Z3vYXv/xrpjvdyZFX58DXd+iad/wfVLvmf6LfkrS733Hzvcam7mf930mvlcivRk+qtMvagJbAXtT/qr6Rj+e830fvCNp7WzeS4nzfglyNYDPLcBXKKc/yPdY9RMVI/0l/Ibff7sfGn8DKJ81EkDfH29JfgL6WSbo6q83/lO7uHGgxn+633f/73lgk/GT3r/z/ZvQPk6/90TPfZRbA0zH+PBeUBXwTwD/AuwRvhPoO6e+D+h5fXpofOufL0353vqLnDfRz3vIVwu6Jd2/U8572d7TPgm/ZZHnFdr38XuNlF8Mft9z931336Pw/0HyMT8VMK6R9A7wG287H/70R76HXOH7aWVD99QGUN73dX0/c6TvK0bBP/wNd99L+4ffl/Fdv6+Q7zx69x3mrp4zwJ+C9mmNXClJG5+8Hv6WU953OYb6/wieN/juewNLfR/XeL5IAPXvniSdRv8s7Wn87z7yL4PnGOk6yk//Scf8e1I/chR0Gd8/gv8N8Pu+UBHyWyOf7zTNJv8n171Qe7UL3S98ivxk+iXZj3QF3zW+++6L78AYpx9+T8Z7et7PC7/bXNn3CKBvvKbxm8ZzPvB+qu+PI7/xDye9X8n8X59x0pB+cJD88ehHv4D9uxftH36/5Kb2N+a7LbTP8/pljGczHpp4noPUP8x+5rhxasZn0M+uRwI4CPzen/B9RO9R6D/z/QDnmTLI8Qf9Jxq5fect/L5bfvgzLncc/N33fQLtH8YHkt6kfR85/f8e4/V9n9j3uXyX603K+z5XZ9rbONJw/KjvIPruQfi9Jt8XN07Id8aNE1oG/eeMU0R/p+DvM9rLuB/jgD4F/w7664fMu2F7uu99lYEP3wNLRDvofy4Mfv3Q+p8nhPxblaC7ifq2/5fGJXvPhPzD4P2V9DjKj6P/Gp/mucq4NM9bvn/qvTrv2/n+6UHPQ+Trp64O/77bqx03DnmzQV//kH6zPyin/2xFKB7KOCnj6+u7/jsvGwcEf/3QfwPyD4bezzJeyfgl45nmuF6S7zvJvo98HPraDytSvorxaPrXKZ/WOCLK+/6Ocd95KOd985Lkl2fd8n6H9z283+H7b2W1L3peNz6MfO3E/k+H9mHPF9oTu3meId//rYug/77uZ+H7U+/H6Hczfg54nv7lvZXjwD7I5/tIvgtpPITxD/4vwzLqec9/Hfw9JP9hJIDTkSeJ/kD4Tcs5yP+Z8P8lTtO/HN+Nwa/93fcumqLX8P9/DQNfY+oPpr/5npjvIXo/3fewvtX/zPnnXuhd+7bwN4z51v+JCv8/lO8v6A/WP+z78ovoN8bfLSb9RySA3gs3zsL74Vmo77sxvqP3JfTOh/4/JSP1isB3Sd+fQK5i6OUA6Q20fw3mS88tOegvnl88P3hu9/+MPL9rl/Gdzqn6Z7XvGv+F/MY/r0H/o1yP6f+u08aPeD+yE3hWU3409Lyf6L0378F5/62Y9hT4cT6uGPI3Gjfqe4v6I30f23exL5P2fWz3dyXA4361GvwZ/9ffuCK+34GfwtpHQ3GDvj9Umvl2FuOkMu2aD/23g57xCq4TC+kfTcHrueZmaH33/Q7tKtpZtK/4ftYV3zMIva98IRSfYbyG8RlJ2X8mAb5PP2yvPYnvHzDPfgisSvtHIZ/3jn5BnkgkgOsYv/WoF36fK8p3O6jn+4LOD7n9/wnfMQCv7y84vzuvO883Ab/v6n7AOPL/ybKE/EPGEfm/VMYP+b+Lh6AzinbbQPs6/vV7ht+P0m5+XT+Q/wdKe/8P+c8j7xXnR/jXL+B5wf9BO0398vodkecm8tygfgb0dxW+/V+fBPDv++i+i+7/KPk+ej7qr9EvD52z2ofpHymRqxLngxa2n/sa7TiRAEaDZzf0dnuvDD58P+0N0hW9Z+x7KMZVeX7zXhz5i8h3/+a+zX2c/1ekXzqG78a5Gt/aLeR/+JhyRylXivq+S5gIeX3ndjH9rovnJvJ9f3MF+LwfOYj9e2vfH6L8RqDvffluvPGpPeDD+17jwe9+xn4f/v+xapxfjv7HPbOz7G/uQuc8/dv4zuJ81z7sep5T+wz9ORFy9QCv/snwuwPGj+s/8f9Z/F8W/6fltvd5yA/H13cEn/cZjKv2fqX3G4zn3wo9/TvG9x9kf1QUeAh4zDgwxvdd5PPebw7mV8eT/0dWn/XC8VWb8XWI9Hba6ZHvr8K38b7G/8bBr/4J/RKTSOufCL/PGb4v0A++0zOOU9NfO0Lf86T3Ez1nuj700Z4O/1XgaxzQ+4/ee/QdVu8/NgbfLc918LfL8xP0/d/U8dgT9Y/8DN7RvucIfs/n2ie0v2mP+wD64feufUcwqfdtAxBVFz43RAJYj/xr2Ec+AU9K7zGAf4v7l9D7GL7vo//Q9ztmeo8MOuH9s+viRejHZ95NqP+cecb4vLB9Svtifug3gv4p6B+i3nfwvxR6zY2XA7/3s32fwfiT6sirv8X7LD3Ru/dapgKNGy9L+qL3iGi/T+H3M+AnwGUR+NWuDB79Ifo/GhqviHwZtL97nyLk324X8nMnIt//7ynhe2DUv858cAN4ynso1C8Hf/9479R73cwP/p+E77P4nnEn5PN+pu/W+479kJB/Lg3y+f9j+ucu0F4V6Kf+34n/b+L5zbho3zN8k/btyD49D/pcSvoR+ZOMF4au9yC9/7ja8xryatfz/a4d1NdOMQR+dsB/bfDu8ZxIvnFgvjsrnTB+/5fBeMcC4BlHO9xhvvN+a17a0XuulTwngi8/dNeiv7nwr981mvVTf6z3Xb3/2hZ5vP+q/Ckorx6U/z77w7Lo/Zb3D8hPa9y99zyAJdUX+NpAtx7rg/FtO+gXh9Bjc/r/O4zHrcg70/lJeXxfXbsd42IgeHaSrz3Zc1BK9PQy+f8H7IxginicdZ11tJbF88AveenufOlQ8pKK0iF9EVBJFUVCQLqRFuEinSqItCAdCoJICCqltAJKirSINPo75/d8Pt9zeM7x/WfOPrs7OzM7W7Mz+9ZLFvX/vzrA3AkD2CJHAGtlDWCK3AHsmS2A8fMF8DvSPbIH8HTmAL5N/QVJA3iY9KrkAbyTM4Bfxg9gNPXj8gcwSYEAjswVwHORAH5MueXk16X9nyi3DrpSkV8ldQB/jw7gR/AxJG8AW8cL4EbwXKSdXnkCOBR+etHuU8gjJ+3cJb8A9VfIF/jzIs8z1N8FnbWpvzlVADcBx6YL4LuU2w3eBJTvSvtzC8IXeLvA12zqLYOPash9Id8zUv4Z5FwySwD7kp+a9qJp71faK0u9G+CdDn8PqX+IdupR/yD1nyX/NLAreLJD7zDK/4HckoBnAvK/gv68yfeT6GlX+H+YJIBVEwVwBvr1Bu2vpH9S0M+5oaMzfHWl3mDSa1IEcAX8paM/3gC2h94L4I8B/1L4eoP88ZEANgD/v3xviJxHwX9S6h+ErpiMAUwmf+R3AP/34OlIeh75lZBfMsbTIejPDD970wRwH/AR+a9TPy34SiOHCOMnmvaWUn4/6V/h/2nqvUz/JKb+APibTvlX4bsgcAf6l53251B+HuULR+AX/KeAX1J+D+23SBvAIuhFYeAP4G+BXCugT7ehLx38/EW6MnJqT7s9wZ8DukqRvoi+fUD/dGJ+uQ6+2VmfLL8mPXzAVw3wxULPAvhaBpxBuQ7g3wD+5MD1wEW0V5r5ZRvt5aF/D9k/6N9I6Hqa783o35N8P0n7C5Hv79A3jn7NEAlgefNJtyVdh3IbwTcLfeycOICdgGOY59ZRfwrj6k/k/xT9twb+iiMPx0F78Jahf19wngBmp/wN0hmh6y/qnSJ/M/UTIb+EwBXIoTlyGsR4TA29WzMFsDLpdfC7AbzL0bfe5MfxfQTtR4G/FHpwlvpDaK8A6Uv2H/Tvon6e0Pp3mHQRxlUh5NQD+ZWBnp3QE0s6i/M76+L39M9p0hPB1wt9a0i/PUoZwMXo53zaLwq+A7Q/kHRu+MlGuWPkryB/iPMFfEZD3wu0nytBAK/Bfy/mt6HIL0L53cDM4KlG+Wy0N9L5kvbyIb+C6F1h4DD4G4P8XgxA1Ie01xx8q0gPQm5zqXcM2B06qgAHAdPR/h7SGcH3GelfoLsr9L2O3F2Xm9AfR9HfEqRPAFdD92/Ap5l/EtCvOYAtke992s1M+WzQN4l0BvR/RwCifs76ZL0PmH/HQncT1uu50H8eulMg/8bw2wb5HWC8l4HOoeCfCX3TmW9rgv8Q89nbkQCmp9+fo/xc51Hy46g/3nkbuIf5IS/03FZvqB8F/a1p70P4mgYdW9H/LtBfknLLwZsW/c7G95/A+wJwM/xPZf5zHzgaPUwP/amRbzbnReb3VLRTiP3OUPSuKOnZ0J+Q+epb4Cz6cw10DAPGwNdA2h0K/RuQzyTkc8n9P+V3kx9FvvuI9CH+lmV5kk/5KwSeHaQvUm4G/FVE7q+A/xrQ/ddk+P2TcbiE9Dr092PoSwPeadB/DTo/yhDAc9AxFD28B/6KjlfoW0u5n0lnYV9ZNwBR08F7ifFZBH2LRj8XuU6QXgJ/r9HOUtJx4KkKfTVoL9b9P/K5CL6SlB+LnrSAfvfns+iP72i3CfiSUf8X8qvAXzvkV4ry3ckPn9M+Qr7Joasw+CajfzvI78t317+Z4LuAvkej52Whqyj8nWK+/8FzDPxlBP9w9P5X20UPJkN3WvhPAX2doGca+dHUH41eNmJ8PU/+DOofp94d6F8Pfa5nq7I/Wf4gcswJ3TcoN5l67heLMD/MQk9mAp9hfhlOvRbwdycSwPbUPwW9p4EngbtoJx90JSM9EXwnkd8b0LsD+VyB7zj6Zz77ol2e/+BnuvMz+lqK/ptBOjf0h/vDfjoOH56bH3m+hr4v0K/5yHEU9V+lfBHqX2O8d6UfG/P9PPLZC38lqB8fuA3+7jIv/s68mIX8vcjnFvy8Rz+5v5gC/prQmxX51YKPQ9C9h/kkO98/ZDwXoX3Px0c959N+D/j3XPW5+1vKn2d816b9f8n/mPo/Uf867Tej3UroR37ro2/t+b6e+XoD/Ht+8NzgOeI38hfQfj/4uw5f3Wh/Bfm74WMa5YaiH4fJT8n3teDvQfnt6N9j5LON9Hjku5b6e+H7TeqnpH+aUW5S6PwXC33VAxD1F+3ncl8Dv3XA/zPfe0DHFvAdIb83+fmgowD4X0Wu3ZHjBuR73XkQfqZCZ4TvaSMBTMe4qkI/HfQcTf4k9NdzTnn0uB/4PoC+otA9C/4rgOdrxwf49lO+BP17x/UBeZyinT7031Dm433IOyP70Jeo/zX43gOP9qoS4PH8P4nvr0BHXeT7NfP/VGB9zgMNoL8E8jkKv85Xzk/O9zfA/xz8/wj+QeyHEzL/JwJ+Dv3pXF/Bdxl5nUXPm3r+ptxLpMdAz+uMu2SkD1LO9bsZ9PRHHhHo1X50mXLK93fbgb5Xob8tsAvzYT3qXQDfdvjvRnuHSB8gfZz2z1BeO2gP6I4H/+9Q/jvw76W8dsawfbEM9Oag/vgARN0G/5vQ3Qp8w0g/gL9ujJ8M8LWBcl3Qx7yMpwSes2j/AXR/o/1MuwX9lwM+CkLfu9R/ETqrQ99M5k/77Tx43Y+NAt9ixxt4okL2Be0K2hnKUM5x+iXl2/D9IOlH8H3dfSR0LEEfxlC+I/TsgZ7kyOkW7V6Fr7B9Lh1ycR+4ifLZwJ+U8r9KD/JYxPgfwby2Az4Wsp+7TX3PpR1ov6/rB/l1qFeHtOtgAfo/J/Q1pF5H+PqV/MTw8TTfE5F+C3wx2qMjAWznPgb9cb1x/XE9Gq29me/aw7SXSe89xndz+Psc/W2PvD5BHvOB84D3yS8Gfbe1d4D/Kej9kf3HWuTYCD1YCT0tSH9N/hngFuTalvXAeby250Dan8137evymRr5/IU86rmPp9wt8n9gf7cPuIr5+B33AXz/Cvgp33vTf9pv1oDf/dVO5NsO/l0nw+tjImBL8E1HfoPRz2HMH4OhqztwqPZA8EXA05n2j9F+C+hKzfc/gJWRXyfqe9/lPVhZ+DwFXIRct8Hvn9TvBv5B2n1p90fy04TuHTrT3xfhV7v1Iva/teBDO/Yy7bvo19vgqa99m/ZnaeenXEfoSMx6+yJ8OZ9Xga94rP+P6adHwJvw+z38zvN+iu//Ot6hrzT9kYv8ovB/Gf3tRDspodfzoPuVyuCpz/fZ8Jed9Gna7065n2l/LOnTtD8Aej9FDtpnH4DnCu1pn41lvDcGDgRuRv9cH98Dr+vklND+9STfS9LeCO9B6f/k6H8U+lwD+oq4P4sEUDvbEtovTDsHgM6/i+F/Ne2X0e5H/SzUv6u9x3NR6Dw1kv5+mnIrkUsf6B/AeHN+GU25qtB7k/7NTPs/kG7m+R16RlBfu9J82mlFfnf0piblktJ+Wfrjqusu6U3wn4B56XXq72a9fR/++yGfo+Tfh37vd4cjjz3egyHnAq5/1C8LPwPI/xg+ytO/V6jfC/pjaC8n+F+j3jLyx0HfbObzmZSLRzo/+R3Zz16BzwOs1xO9Tw7dx85CPpUiAUzL/JIG6Hqxnvqe1z2/e56/BL619L/njxzItxf5xal/HPnMA3o/on6r1/fgU/2eDr/vkF/P+UL/Ae0KyC058Bz52i+b0s7byPmC50fa+wW6NoXOD5+Tnkj9OrQ/MxLAmrTv/Y7zifNHffYPk9lX/QieeNTPh7z2e//IOUj78xfQrz3E/aH3s44/x9376FtVyqeBPv0WCoT0+1/4j3YepXzW0P2K8tWOlAz5fsp31+nP4NP1OcJ+ZRB0Habfn/L+HfzaFbeDby/4ziKfgdQ7Q3oW+E+hH+9D9zT6Zxr4y0Pv357X6NfnmT+83/Re8x3qbfB+hP77Db5aANXbCrTb3/0d+N6C3sms25OAf7HOtYa/D5D/Ncp/Bf8j6d804NvH99KU6wR0v69fSE3wDte+S/3fKHeLcm/A/2b0zfu3OeoHclJvwvbl+ODvDn7PV563PF9lg79SnovBl0n7P3KZBqwAXBOyD2sXXkla+/Bc+n8G/dAU/Nr55tF+fudf5DDa+pRfnPtJepN6vww9v7EOngE+pLz21fD8qH3zEvmNaSev/jL0r/un6uR7/9Ib/Mp/hffufFf+6ZnPMwC1W1dkfHxLva3Ioy3j8BB4PFdn8z6B8vrXaI8M+39orwyv3/qXTIP/0ehHRfcHlNcfqTf4Pb/s009HvJ5PIwGsjzyq0/77jMfejFP9sFqBv53ypf2m3sNSvx7zyVztXOjTFuQ7Cvq9N0mnnQj90Z8hnfcArKMrkW9j5ucY9xPozwXk09P1CbqvQVcp8rW/dqfdbMjpCvk/wp/35Y7jy7RXgPyV4odO1+EHnDfuAe8DL4N/MPykZh7vTNrzfkX4q027t6BvHfqnvSmOdrvCn+ur647rzWPwRdC/q9CdBnrSRQJ4WPuTegTUX6kR+FvSv7XR+6v0Vxvqe77yXKW/kOer6/B9jv3Vz0DH8ybmoxzwccJ7QPrD/a/73s6h/W8uYA76S/vbMuiLAe9b0PMr/ByEv9r0b2vnL+dH6k9F/h/rX6GfAe0VI/8Z/WZofyflc4D/Ct/z811/zeLsu0sASwLzkT+G+qkiT9bvpx8D/XUb+rUv5qL8X+Dbwr52K/A7yseE1pt8yCuW8XnI+ch9EPz+4vyp/Ri6sjtvgH8h8izoeQ78N2lP/x/vQd3Xev85DX12ns2DHuak/6rA30Pvg0lPQP8XML8dYn7TL0M/s03oZyK+H+Y8oP24BvRFoD8aeQxDP8Z7HnFfrH+Z/n3w9RV4WkdRD/oLw88/4gdfWfI7sH5mAWai/9qH/Affhv8B7gfpn7YJn6RHOls7f9I/5+m3cfBXEv5f4/tQYFPy75Hv/uof9NR9lvurR5T/MxLAM9pXqH+K+aM3sA/0toT/XPA7Wf0B3zHyp0C/ftBTab8b/HuPUki/Rsr9Cz0FyX/eeUI/QORTXL/PyJPl4kO/9wPOy87Tzs/hc+FV1i/9c4+A3/sC/W0K618KPvWjFXgGQc+ULE/yJ79DkL/9mZV2alDe/u3N+BpHfl3Gy7fgOQs9bT0/0L796flUv4W/qac/3378P+Jot6P7O/24GG9VqXec/m+PfPZDf13KH2a8/Aw9LdGPNIz3npSfQ/+NJV+7Q1r2ed4bxVHee4nd4L0Pf++T34Lvp9GfraS1u2uHHw3eZcj3HutlfPi+T7oeeP7he2Pw/Qmd1aB/InRtA75Kexf170FeR8h/Fv70D9Xe8wi826hfnPp/MF9dpVwd+t84gAn0z1fMk5uBXeif57X//Iedsjr5x+j/q/C7Af4aeJ+j3Zh87cPNwXcEuC4AUbOQr/fL3ZDndvgqD32vhfwD9Rcc5r49dL7yXBUDffqvpWPfoB+b/mtVQuu/637TSAAbsd+Jwk7cmLT3s2norz+QXzfo0r90N+NnjPeU4E0PnaWhZ4L+r9CxH/lkYr4ZSb8VZ7zHgsf9zRD9VN2nQEcH5JMPvNNo9wP9L9G/7xiXcaQPIH/XS+2srqeun9ddT7WvUU77wTO0r31jtXZW6L9DvbzQ1Zf63p81Zj/eBBgbuh8aCP5b1IvV/gX+DI4340a0c9PuWOSahvxyxrNQP877Iej/nHKeQ/V7N36hEnQn138Y+gZT/lXoPBZaP/uBx/XTOAr9G/Rr8BzXiPyF4P+S7+PBcwD6W1H/lHZt7/egdzIwP+VegM669j/7liQhP7Ks4Fcvk6E/Yf10X5caeldBn/u7yfTnZu/fyc/p/aL2R895+hUCZ1JeO0cD6C9I/efI1y8sv/Y3+PN86LnQc2Ju53/mjUx8f0y6Kf28EHzGZR1xv09910PXR9fLfJ6/ocv99ivaacB3m/mlN+XvII94+p/QnvdE3g/p33KX9aAH9XKwj24TCeDzfM9Cu5PAZ7zVFOQ3EHl7n+P919PMT38yzz5L+gHlp/Dd+SkT+LKSr/1zL/nHyXd+OKH/iPFs+iEgn0/Qt2jkOgJ5j6T8PM6bHxongn1jBfjdr0WB1314RfDXIP9bvj8PfQmRj3Z/x6V2Vu9XJpDvva/3wPrXeT+Xwvg+0t7PzWB/vBR4H6h9crb+5tD3kPYyeD6HX/0uJiCPrdbX/5jyT+vvz/ipS3o4en+E8mmhvxf19Gsa63mC/GjknpN6u6CjjPFN+r1RfzL6p//n3/prUe4t6n+DfOLBz2j0/Az6nZVy8fQDAk8tvn9Me8aBZiE9T38I0t9TT/9l/ZabI78X3D94/gNu1H8Ofp4CPq9/PXA8eL+kva6Um0l97UfZKVcROdTVDz10fnceGcX4b8T4mMY8PYb94ofIfzDz9nz6qQPlWoFnG/Id5v6f9ETaK+n4oHwL/f/hx/iohNq/SW9A7jmZH7zneMd5A/6Nz10N/mPk/wD+P7zf0y5IPe3Dn8L/FtaveaTzI5+qrD9nwK//4VDq36H8AehtQno140O7e2XaTeA5DPyzmZdSMC/ddL+D/M/QH0doLzd8FA+df/pTz3OQ558v0fempPXzvwO+iSF7jPaaeODPRvveV+bwngf69uo/g1zqaSeivXcyPsl3NeabXpEAGr+iXS/sb1eEehtdbyh3Rj9y9Mv4knfAuwz+lqOvE9Hjz42HdpwDk1DPOII78J8W+rUrGf9z3PuAUHyqcalxzO+ZkN8A9nGZSW/RDwy8++DXONxE1H8f+Y5GLuH4xyPwVQS98z4gF/TnQH+zA3MCBzl/OC5oX3vOcfTTfVFj7wnhb1YkgKkd90D9DPUv/Nr7YOBN70fpzxLU877ceWoe+I3XOwad34H/e/i/yv7nCvAa0PGZh/KrkXND8YB/BXTVo33n8Sbwf4356DLj07jGnODXL0n7jfHSxud0pP1vKGcckfFDzcj33G98zWLqx6E3c8GrnWAQ/dXa/T/1nG8e0v9VkV8G73X0A4CPWswPb+hXSH4t+M/mvUHI/9342aWuT85zxjlRLxb69EPXft6GfP3u68Dner7rf18cfOWNAzBuD/rf1n5P+3PA7/lO/xL9SvQz0T9Tu2ZK6m1HDz4i/yPWnQPGN5P2/nC69xrAdvoT0X4N1q/ngN1ovzZ8eF+s/ntPanyS/qD6ZYbjI85Ad2byt1Bvnedv6K1G+9WBM+nPN6g3GLyNPC8ZP0l545e8z/P+bhT7Tc/V2mm1z+pv7HlyNXhSUT8L+74x9FNK5rEM4AnHAxo/5/4qjvVkIO2/Qrsvw18X8G3VLxSoPa0q9Ljvch/Wg/am0t5w6J3LPLCO9FbjhmgvHvgToB/1WS8XUu8W9EzX38p7XPB9rV0GPuJBT3fgBfLfpL7n87TQMQ+671O/Ev2rf9Qf+lPBt+97/EQ6BjxHoKcs6UrATdRfjbyexe6lX9cF9KE/+hfeH5aC/vehb6v+/rTvve8/wIPI/zPgUmBn+KzBfL+IeWQJsCTyuUd/nEdOhUh/5n0g7Tfxfhq9q0b956j3jf4M2oWcL6k/TP8D+NRekwq9rowe5IHuNvr/hvx5jYNJjz5dQ54lHZchfwzjmu7zPRzfpH2ri/OO8Q3wmQC87qOS0y/nXF/hp2XIbzYe+v0TdCRBHpUoP4pyp2l/FO2fIP8l8F9H7t5Dec/xIBLAMYx/7eSuh66D8Sn/iPqJvMf1/I988gEf6E8AvZ7bS4T4lc+6rm/uO4ybhT7vd4yHNb5bO7X3L8vRW/fPxq0WoL7rj/dqJZCv90neL3nfpH/6u9iPs6An3m97772UeiORV3/OC4mR1yD2g9rRT1PuK9/9oLx26JiQPToc79wFvPqnDvF8GgngZeNs4U//w4r6Z6v/lPN9h3LOe/r70V/TWN/0v9UfV//bc/C3Sv8h1q+cxlfoDwFe41+Mp5sHvzmQz6ekG7r+IueBtO87L4Ph3/dQboK/K/nGv66m/34Apme+9PyeMxQf6j7B/UFb5JLbeynyS4K/KOXeBerfPzT0Pkgu+PCdkA8pfwL5HgdeAv4I/kLQ5/nJ85Tnp1Hwn1A/SOMPQ+cL1x3tsdphb0JPH/A/0F+L+sm8/0Xe7UhPR7/065/h+kR7C0i/Bd/uu+cYt0p7XZi/z7LOnAcmpR/3I4/V2A8uMz73g6cc/dYMfFeZn2sif+On1oXiCwZSvyd6cZJ2EjO+o5DPberVhP9z1K/l+yb0Q0HkZTzTKtLG57iPnR+Kz0nLvPki81Yr5U39b5nf+jLOnFcaox/a22K161L/Lvg/gJ6ppD2XvQX+epRvBmyLvFyfKjDefSfhGf3HvL/zPj1kvzF+dIjxC5RrTjtTaX8b+uL92HrkHQ2+BewnFgLXef6jXGvw+R7AOPp9KemjzlfA/iH7qXb79LRvnIfxHb4r1gp+6tJeBfD/Qv5s6MlDOg3lz9PfHfVbA+YB/0HoKaH/KGnjfIuy/9a+o71H+04s+tHQ+Grm3xHwp7/HSuOH9Evwfpnzd1VgNWAN8tdBr++WrQZqV/H9gDvQ81j/NdrXz3ET/D6m3AXk9w779i7wnRQ9z+V+EHzKoy/49A/9Cf06CJzBeC6gnzH9oV/sKr7rH9vD+CjaSc33GkDtB2eRv3YE7QcnmJcWOs/TD+fI99zjPZX2aN9H815+G+lPfE8D+RQjfdt3lownRQ7/6O8Dnu9YP7/SXgL9xl2G3+MYHgX+SAA9Z3ak/QLMi8ZZdKF/jO9uiD7eNd5SP2zWhwbkG//QH312H2J8h/vcScjXeBjf1ThB/XC8tfcL9ZDPHO+RoX8+9atQznfw3N9sB1+E9u8Bh0D/9+xLlutP4fwVCWBN+n828pkFXAZ/+n1776z/t/fRZ+FrOfm+H/MP+jOB8fYIOgYjf+OltqP3C71PNv4a+fnuUTT1fP/oNvkr9X9CHt5jOf8bt+q9UD/fJQFuoH/3QH8F+xf6lxtvRr7+TbvINz7KuKit8FON/vM+/iRyWBDybzN+Ngny7AedNd0vk9+H9v5GbsMZ3/uMv2YdvQ7cDX7v/fMj//f4vhN8DWnP/g3fT95AH64Ax0NPwwjljJcF7xbk6XsItahXjHnlPeAXyPHTAES1J52J+W8V/ZeMfneeDc+v2mt8H097jv7kedRT6NVfLiH0LWX89IH/RshrA2n37QW8d9AfzfOV8TbaW7VH0p7+hRU8B2vHdV1hPzBJOcGP93cZtE9rf0b+X7lvC/kvzsz8ZHv6tRl/735Sfxfth8Zr36We8eXF0euyrG8pPB/Bn/bzRtDVEv6KIo+wf9gi/SlpvyXjZxH8z6N/e4Jfu4H7xe3UO0E6/N6n77P5fqT+vfUp5/1TPvpvI/R5DvP8VSpkr0sIjA/UrteU+uvBn5J6fyK/VvD1Ef3QhXLJKPcK9f8F7vK8xPydPrT/cz/YST8l6Sb9BXLQf+Fs6L1i36l1fa1ofAd4rhsPi36NQx/2RwLoeSh1yH9AvwHn378or13EOPKwfcT3EZIhJ99H8L2E0vBbBhgDrAN9bzF+vgG6H3Wf1Rh6p9Dui/A52fhF9K0psDmwEfIyntA4w7xA/fe0N7cEv+8Ta38Ov1+qnIfR//mQj++iZdaPwvjh0H2K7w35vpD+i9KjHXAw+Z347rrnOuj65/2e+0zv+Q5QX79F/RgrI4885Psu0BSKtzWOH/l+A71jKbeN9CTfF3L+oH3fI9NPNHnoPdFepMt7/87+xffi/qL/G3u/Cv7a0DWBfo1A33vI1zhE4w9zu96STki+/iMP1R/ytQ9UDO2vra9/awPyd0Cf84jvunWHb+8HdiCPJOCvDR7vn7Snhvefzpv61+hPkwT8Y6GvH/uHx+Cp5PnC+A3tw64z0NkcfLGsB42BiY1/orx2f+O7D4LP+G7v1+TH+7VTvn8MvcPBZzzZFfD63sBu4zf1r6G++4vvodt9hvsL3+szvsb3Ywsin4/056I912P9SJLqF2ZcOPL0HuBZ+O1Nff2H3Odrv9If0/1aNvo/L+vNHMbfmpD/y4/aDaHT875xXsY/+26udg79VSqzX3MfF96/ac+qxbgaz3hbRr7jy/jGAkDfX/M9fPcv+uPof1MrAP97h3Kyfiauz+7H6C/9hL2/zEJ+Sr77zn0V8E/Rnod8wu9Hp2c/Gp/8Pb6fCD7jLY2/1J77GPrus2757rXvYe+AXu9ltVuE7RkD1B/S2uNT6Z/hfZt0g8/xtZ50A/dVtP93KD7Wd0Wmht4Xcf51vnX+1T9/MfJIhVyNp7sVCWCc8ztwXMjfyPO78Z+e230/U/8H/R70g2hC+S3IdwzQ+6/O1Pe+2f2/8aPu/40bLwe8w/fW0O/4SMx3z7V/Oz/Rbji+shbtD/ZcDr4l7o9Yn973Psv4EdL/i79kv1DDuD/a0T8pHFflOjSG9nKhd+6L06LP6q9xCcYj3HHeQj8+QC76TTnO9Z/y/tv7bu+/k0JfVua7ba5P0HfI93/B5/mtB3AQ7V9Anp6DPP9EGecKXZtJr/LcCH79vdWLA9DXDnpr+p4D8igG9P26ndr3wR9+PyDsz7kA+XWmfPi+1Xj4k/TvNNj5m/a26/cE/cZXPaYd46yMr2qm3Vk/Ot9Horz3lQvI/yTkz7cn85P0ZIKvQvqPef9CfxrfNMf9H/meL43fKEt546l9Ty0aupeT7/tP+tf7DpTxPe6HDpB2XjwPnlPkuw6H19/z7Mf3okdXqaf/5+fU099U/4LXkUdF8GlXCdtb0oD3IfXeZrzEkr9O/0f0eifz0TLwaS8qRHpjyH5k/JfxXov0j0L+2tvyh+To/0E8C/36hbif1R7YGvz+f0sp7+sob7zFQf2QSN9wnWb938s8sw/oexu+x+j7jL7X6Dt0vaBXO6H2waruj+kX7VLaqbRPGd+1JhLAeuBfSPkazBfGd7cn/xXj3/UHge418Pe9/lX6lUCn/+Pj+d3/e6jqPRrQ/eZv5Fej/QW0v5t0ZvZrmYBrGRf+f0Ic8+NY/fehR//+19iPGd9kvJPxTVnpz+y+a2k8J/gyMv9d+o910HjJHcbF6P8Hfd776j/l+d37X8+z2hHcZ2k/8P89+jEvaa/RPjMVej+GznLG75D/X++GzKd/fDe6Eu2ecj6m/nH0Oi31vwD/S77/g3y3hPbB2jOjGd/D4XMj43wV82dRxod+5xeR05SQ/c75yn2w9jvjw/W7Suo+1fMB9IT9H3JEAvgL9HmPeR15en8Zvj/STyA/+nOD87zr2CueX40nov8uabekH323aA71s2MnqJbgyfr6Z67zvYZQnJvxQDn4rh11FfKpgF5kBcZCZ1/w+450Vu2BfPf/CTZAd2XamWp8JO2E7T2byfd8o/+p60f4/ectlPf/VEZEAqj/0lz416/lpHEW+oeBz3iOA/qhUd73WXyPxfdZ3qb98HoZvh/VL9P/BzButztwTgCi2iCfX0n/7b7L//2h/aukqyMf320wTiAj9YwX2Eg935/zPbox9K/rmfsB9wsjyT8KXy8ar0y5B74/TX3XM+PxfZ9X/2X9liuAV/9l362/SH/p7/Uu8jnH+PZ9YN8FLu17Y/q9ML+0oj/vGD/H+PUc67tK7rcaM+/oV/7I8yXlwueHdejJMOovgX7ftfWdW/9vZhX6uxC6Ehq/rp803/UTkk/9g+aD33tb73G9v13AfU1d2s3KfOD/w/XgPNgT2AuYgfy1rIv94M84n3W+P0F76vfKkH6fRL67kaP+Svr5qr+bQnqs/vpeku92a/fw/e521Hsd6H2q96jGHfaATt+jSYeeFUL/9JPZAJ/6x/i/XIlZV/xfriNA5xfnFfXf+eWUfprazSh/hvrez2i3/Bf90Z9Gvx3f3/c9/vWU9z2tibSvPSHG+EbvO427ZBysp7zvs8WCfyfyPg39fbS30p/PqIfI3/fRI/D5DHxu9v9HtIeAX3uNdt7FtKc+6/8mfv0vpiMX/TD0vzhrfJfjyXtw+u939OIi8KzrBOW1Kz/neyYh+7LvJ71Mu76f5HtKDZBrYv3FqO87BWH96Yn81aPwu1U/0x/GJx8En/9P+KvvkpGv304b4xGhz/iRC8jJ+bk+5X1fK3zfqH/GLfqhEvKtD931gBv1/w6tn8ON14sE0PfRfA/tX+jz/xk3G5dOfh/4SAL+cvrfMy9V169d/y7aT0S7q8Dv+8SdSMu/65Xrk/E3zvuuA9ox++v/YNy87wTQ/ozQ+9nb3X9B/wjXbdd5YGn4TBjSi/A805z9onaSb8nXTjKN+f0w/VdYfzL4039ztPNoJIBHyP+a765bvjc8h3zvw31/Uz8Q768LsH4tZpwc9D1t6uvf7b2Hft76d88Cn/5t+rv95vs8ofsd7Wza13w/x3jFguxvfT/H9w1eZh/gOwfDqO976L6XvhM9m0n/1Te+C/7D/+eyHXr938xp6OuskD/mMvK/oP+MN9Iv331N2H/d/3Pyf56MBzUOdAX8ZNauDhyC/hSDv6y+I6EdGfylQ/Y54xiMX9A/yn2b+7kzlN+FfLzH8n8vvL/ard8ReCeCZ6jvW8GP78beQK+Oav+k3yYA44AvgC+GdAf3HdrHwF8KuR53f8/+Zy31G0K/9rOwP8ht8tNq74ef+r6Pw7j8gnGwCZgJ/TN+4qbro3EqrjfaW6BT/yL9jVZTvxvt+n8f98G/mn2V77Q7/72K/vqexnHfLdEvQfsJ7fek3Tf1J/AcwnjWPrVU+27ofZb/rRvQ6fqhvcd+KUN/af/Rn8n7PO/x/kC+vus6gPq+y3vX8Q2+CP2QmHQ7yv/XuxeJIwFMC3++1+b/3K4hPY71byzwRebjGsjzJuWNc3a/f1O/MeiJYZxeAc8I+A3H9y+Brq7kl4Nu/X70A9L/ZyP0J4WOCPrne1t/gr8c8vgZul4jX3vKZfK1t2hf8X0f/wfyN99vgF7jf/Qncj+4F3qrgq867SQD6n+tf+R26QOf/pGHGK/eSxdgfj9B/Xzs97VLZgN6b+u7EN7nes/rvqg07emX6f8l7YgEsDb93dn1jO++X3Mh5BcWA17vR8ojL999CfufHtcfgHrZoc/3Z4exHk1l3fA9sY7Ip4l+TtRfij48Bb3Gxz2L3ix2naO+75Hpl+c9nfGVns/7+7536Lxu/H9Wz5PQ7/+veL52f/Udac/Xl0gfRU/6Qm888HRgvOgP/gd6vpl8///Z93mNZzJ+6XPGwzHyZzBP+P6r/mf6ndWGT/3P/D947dBh+3My5NGSfmkMLO/7H9Tz/aZ74PP9psek30M+xbyPQJ7ez/puuO9sbSM/HH+uH7n+LsYLFgvZBfx/Nfcl7keMIzH+2Xj/4eDzPdUXjXdFng3ppwbAZ5GP/jXeI10Gj/41vlfq+6W+Z7qT9hexL/bd0PB7ov8HPIyKrnicdZ119FXF97A/dEp3XlI6pZHukJIGAQkpkVRKQUKQUFpQpFG6EQFFulUalEaUlBYp8bfWe56HtTzr/d5/9pozM7um9+w9d2KyqP/3e54xgK3SBbBa1gAeTxvA8lkCGCN9AJ9mD+D7cQOYjfzomSiXLYDxKV+b/O/jBbB9zgBuSBHAeckD2IN0CfiZFjuAf8NX0yQBLAidguDPRvoQ+N+D3i+kP4Lft+CrFfSvga8G9CskDuDMzAHcCN1l4MuPPpKCJ3OGAEaDfhX4+SwSwHjUX8/3DcjzM/jyxA9gXmA+4HvU65gavqh/ju/rqF+C/Lboqxz5aaDfL04Ak9PO8ZFzG+37HH2fRo55wMLUX5YmgNf5foX0XepvixXAOi8FsC763kB+DvjpQL1V6Ck//O8nvyzl06HfBLRPFvI/Rb4i0PuO9Azk+oJ+eAD8tcE3EP0cAe9h4GboDyU/G/IVhd5x2n8c+lrA9yeU/xk6OUhfo3xd+GpE/+hIe2ejfnv7M/mVqV8P/dQHToL/u9EC+Cffv6YfrIPfetRvn/6//B+KBLAx/DSg/z9A/mQ5Arge+R7QD94DnoK/BeDvhbyrqTeP9ikdA/6iB7AQ9OdCNxN8n+X7IOinhP+aMQPYMyl8Qncb8CjtfRr81YHdka98qgDWAN9rKQO4EPqxqB8HOIbx0A/8bZCvJ/qOTr3+5MehvRIDv4b/N9BDF/Q+Tj2TPw79bEwYwE3AMughC/Rywvda+mNc6n9Ce7Wwf1FuCPTKk78aeTcmCuBS9HGW/viU+aQW89oUvl+CfhLk+he+6qKnNZSrRftNR74m1KsK/T60x1j4zkl/KIR+rsPfS8jxO+kDyLMQugcjAWzN92bg30W9uJR7Dv0xtE9p8t+iXkHKVYX/+3zfBP6S6O8q6Qj125FujBzjST9jXqmEXp6Svgv9A+DrxPj4EH0lpD3XMr5mMK7ast7cot7fwBXotyD1r8J/dtotTYIAZqP8YvAfYH6oxffT8PE9/a8t8pdBnrvgf490AuSdqZ6pPxb8K+m3N8GfjHqzgTuptxq9uz5Uh//erAupqX8QfspSPzX9by3tet5+hn5nMF57UP9d9JEe/D9QPgXlN1IuJekv4a8vfFXk+zhgEeQ/S719yJGU/reA/DropRHzVBX4fYo8x8jvirw70N8UxuVs5rlppNfBfzvo2k5ToXcR/M7nrk+9kMf16Rr1qyHPVcolZfwloP+doB2XwEcC6pd33JMuBswF/ynQ2yjwxnBeABamX24AT2vgWPh/GX7nUn8+8v0SCeD7tN+rlL9N/kv034rOG9A7jbz1aJ9nyFOM7/HZf7R0fwC+erTPHb7vRF+9aM+hfG9D+cvIH4dx2w+YhvntIvReg78V7gf4vhD+5qK/Me4P0ENd8E9y3PE9PuWvwc879Pca4G3IfD6c+gPQ90fUewc6R2j/GOTPQ7//UC8n+WXdd5Af130z6QvoIzH8HITfyaR/ga8F1ItG+bTUHxoJ4HngVsovQv/fo7djpDdTrxvtb//YQjn7xyvQG4g+VgGbM7+uC42n+9D9GnkzkR+X9SgD6euMl8uOZ8rfQY+VwHcCPgcg1yzgGvLX0P5rwXuH/JzI8x3852VcpoL/3KQXgL8G3+3fl+jvLcDbHD7/AT6D3560bzPqdfR8Qn5D9Ov54hjlXqUdypMfi/k3JnAz9GuAf6PnQ8c7fG2gfgH01tlzI/ReQT/2r+j028/5/jf400MvP+M6A+kF0KkG3jeo/w5ybnd+R97f4MPzWTfKXWL9meD6QvtEg369KPDD91fkt4TPmey3fuZ7AtIlqN8Kvb1nPdKr0dc56MZBnvHwm5by9+C7Pvm74aMb8hVjPTlJ/i7KDyf/HPJFZx5ZzXmpC/hHUO8Z+ujvfAR/o+FnLOVyRQJ4Dfnv0x5b2B+dodw+2qM+/Tc2+ybPkfXQj+tZU8bDN+AvDf87WV8e0v7HGR9F4W81/Wcwel0I3cfgT0a93cidhPRN6NyHvvvhHfD3M/23KHpZAt4e7ofhdxz4vmMdyYKex1Dvb/Qzl3bojz4uQj8K+R7xvQ7t4nzZjvYdjP4agP87+JkOHc9NnqM8P71NOhly3UV/x0kvhc4x5L9Hf2xK+85mfpwAX+uh9yb5+yifF31Mdb0D30L6RWX4TeE4o31c92yPC/Tf38A3F/p1GFcjgF+ANzftFwu+WtIfzrkOIm9u6PyNHIvgrzn7tU7ApcB/4W8x7dsOvItIN4G/Lsh7HL4zUO535LwP/13g+1PSnoNrAN3XuM9xf9Oe9Uj7TIJIAC+QnwA9dId+bNLpKOe5NU7o/DqJ/InOVyn/y29/9NQa/d6i3gy+v4/88cnvzvce8LEN/WVFP3uofwV6+ZF3I/Vrkf+M+nNoz02M2/z0+7/Id/ztQ96ytPN+0q3I38q8cAw8e0hXgr/3oXsB/a4Bzwr6R2b0Vh35SjGe1jE/fEz9usizx/2q44m0+6Te7m+RryP8XoXfXXyvCH9XoBeP7xeZB/bS/jvh6xH09iDHj9TXHtfQeQF6j+FjNu1ziXpp4LM9/Fxg33stEsCq8HEPet+hn6+A8+i/1aHv/NGJfdlx2t95ZAr0v6Heevh4mfrh/Zz7vMbuF5FDPVRA32+oR/rNFdr9k5B9N7n2A+onBd9I6A+Ef/dZ35Oe4fgHXwb024h0I/TjuWkY9G5rB6P9bmv/Rq66rAfTIshFe+wGz1jt6fQ/7Xkv7HzI04b8Iei3M/y3otwV9JeY+v9C7yp890L+R/A7GP4P2Q9JN4b/G8xT/5B+DJ0u1C9A+ifsFXHg7zr8RZGfjPJl0K/9wf6RFPz2j/Lwv576dSif2/2XdlPwLqL835RLh75GoNcEfP+N+g0pXxz6X9PPPX/UQu5+tH8EaDs1pf4Q5eP7JvQ4ivwfoLuH/OHQq629Gv61W7dEf1ehfx697AVPT9pXu6jz9hL0cVD7HHhTRwJYmfyW9INDrsfAnuSXg49XmFe9N5pIein10/L9sec85qOY0GtD+d3IGU17O/wX0l5F/ZK0V0bkv8i4PgSex8AN6C98Pi+Bfr+C/rfkx4FP+3Vy9DMevvLCR2/qxXN8kx/RHoW+bb/+jgvqf8v3KOcvvlcGXzLyf4d+PPh76P0W5eMj/yjSF0J2zePap5ArBe2/kvKpwLcZ/O/SnjU9Z0N/tec15EyFfJu137Je7gB/fPr/A9dPvucFjna9hM/09NvLzhfQLw0/SZDLeyTtpNpHCzi/UW459ZdDvwf0jlH+F/bj3lc2Yj6/wbq0l/Rhz43Qe53yjfn+EPzaa9y3vqE9m/Jl6I/aS4eRf5d87WO5wZfa+Yb0CMZLPupNZX1YSf/RvnQS+aeH7HmLaY8lwCPgG4aeikK/BvUWg0f793L0NYn8Eshj+46B34HavcE7D9gdff6NfgvBl/OP/K1Gz8dY7xOhn9ehP5r8P9m/LAbPfu4fGrjOBiCqJuvrAPibD/+ee+dD/y/S2ge1F2offOq5DfwTkLsS+ano/+W0Q5P2HHoJ/V6Evu2YFfppKZ8eWIT8/vC/3PMoUPtkJe2jtFdL6s2iXJNIAPN6/+l9Nvw3on4J8FWmnvooB331qX7Vdxf4j05/KIf+BsHPYehVYb96gnb+kf3Rx+hPe1s57/2xr2qPKw7/C8DXhnpn4O9j2mcscAzwuecVoHbf7Jynbd/qyPca5QY4v0UCuIF+nRX6M9Sn9kvkGs3+bTTpbtox+Z4WubqQ9v4rEd8XodczwMLoMQPrWy3gTe1I2rmQtxdwLvjnMX4+hN941KtCP1lN/iHKa1eNCV7tre3J9955pusJ+hjMefkqMCX94SHyVSJdGTgG/Wv/WRMJ4EL4cR/oPief+1PwraA9EtP+zZBvMOXikv8c/tPRHh+Bdx3ydIPuN/TPLfTLicw3x0PnQc+Hnhcrwt8G6teH3lzwlKb9b8Gfdviw/f1d+HvMvN4aGMX4nEa9nOCvBb5CpDvB11XkS8X+ehX0HT/tHT/giwcfnv/PAL2X9/y/AH3GjQQwAd9beE4A/xjq5QS/9jv3X96LVKHcNeprb82j3QP9NoK/sN0xG+WaUV9/nMOUexf6P1E/lv2a/JGkr6G/peAr5H6FetvR/ybWy43a+YATkS95SL+eIz0/zmRc3iR/C/mu/6+il9x8L8t82IHy3jdlo196H+X908AARGUi/Rg5q3j/T/98Av6nyN8B/t+B/zLIXxm+OpOuSPmT6FV7nfa5O9TfmOb/L08SxrvrWkXmCe3ZFZBrFfmJaZdP4e8P8N3gu35EP6Pf4uBfzr5hGVD/pm2ULxAJ4H7w5GH+qE39OsDy8Pc17f+M+eI58Ahy6UfxG/yt9DwEvaHUj898XpZ6c9HXeOofJu242O05hXz9FbKTn4f2cJ9fhfoxKa8f2En0k5j+VIR+Uw8YHz0tQd7PqD/X9kJ/3p95T+39mf4DsZjvpiH/Peaz3cg/Fr2NARYCTwvaNyf4lkHnOXImAZ9213HeGzL+antfzbrYAL3dpD9tCu3/i9G/nK9mw98E7YnI0xq8ieDvO/j5k+87wTeC/M+ovwD+JoO/MeX70R6z4K+M9mHSWSj/L+X0Y3kK/1vA/yvlm1P/a/DH8f6W/IHeL1P/Ee29kn7QxHWD/r8X+vrvJKa+94XeL3mv5HjLS/4E6A8gnZf6TyIB1B+mO+2pn4z+Tz9xPoiR+r/lPyY/jfMl9TyXbQRfEehp989DuUfopyD923voQqRzIf8O+m8b6NxnXCSkfU/Qv44wj//EfFqH/pMQul31CyR9m/5wkvKb9CskXRP5EjNePAeFzz8HwFeY+t5XeT+VA32E/RvSkb+Q9koB/uvg177d2POn5z/wnI4EUH+qiaF+2op8z/Oe8+8yPpOhP+8NjoA3DWnvD56F/J8853u+1z9Lv6x20O1Cfcez+w73IZUpF7b/vOU+H/1on9cer31+Dekj8Kc9Kxt8zqF+Mv2fvK/QDwv+09M+u+HvAnw1DPn35QD/MMq/rH3U/T3tth387leyuO9VfvDtdr1n/1qafr8BeAc8rsdn0Ocy5KgP/crgX0r5UvB3C/zVoHcFWJjvZ+BvCv1hMnAq8JT+xtqXSMeCzjboq48B6PMKcl53/039z+HzC++hkEO77jDvPymfBfzHwe++zHP8M+8v9X8Guu/W36w43zt6vwifFSMBzED+FPdNfI/j+Qx844Gd4U/9uf7rv6g/4+Hs/6VfQ38RxxHrv/d++qt675ca+W+x73+dejHQYxr4GUb+Debpm/Qn5/Gwf9hD6usn9pj1Rz/v/qT1m80AvO7+GHwV4G8Z/cVzvOf3UegvHuels8xv54H6P6wD/yDk0164Dv5fh59P9YNGr9XQVyb2LZmBheEnNfJ4f/BMuwx8ZdO/CrrJaZ+T3ndBJwl4GiCX8+acHP/F/zX67Ub52/C/jP3Or4xj7XXDXS9pv0rAnq63+m3B95jQeUT/xorg836gLeul+/Ne8O15xXF4i/oPkP8H+PkNeZpB7z3Kz4Ovh+C5QP3eyPs95X9FD/Whr93fe4DfgEeRQ//kJ0D9uvRPLqx/O3wOR86a0PPepR50X2f9Tk3+Iu2t5DeiffXvGw3+JpRrrP1XPWPPLA8sB+yjvyP4/vGeGryZ9ZekPW6yPtzR/gD+PNCfpX+B5zjkfZf+PBDoecb9x2P6vf4p0Rhv0fWTpd3eYvzkIm38QCroL44EMIf+v4xv903/aOdEzlqUD9/XuI43Rv6uyHuVdrHfFYZ+WviqDp6X0OtR90fodzzybIGfHtC74vjVLsD32vSfCZR/lfpF4X8r4zsv43In7XoNPbtOdIevXPCtvWcH9b8Bv3EJV51Hka+h/uvke68/FvnGoZfx+g0gRw3ql2D+6wQfe9FXbvgrxfg2fuZ11hP9eUprTwKf91SN4P9V6m3ynhp9e5/yJfQnQGcOfO4k/13G7RHgL8Cn0NlJvZzM+9GodxL6r3teIP2G9l3Sa+jPnitH0s89X85nfsnjvgl5R6LfrORrXxmMHmOA/xD8LQZqh9T+WI/yqbxnCp1jLpEeSv+4pB8W+h6KfNuNF2P8pYF/722q6r+CfpbC/w7my+3ASdA7qn8N/EXpTwu99MgX9odVP23dfzAvDaPcR/D1CuUn8r05dEqAvy/yTaJdLuoHTHtNQD9J6P9h//2T3tMYtwGdcPzGWOaP4qxzY0gXjQTwBvXcrz1yXSGdi/L6aeSkP9SGv0/c/8NPA+P4SGcn/zxwqfZL5NUfO1pIX/pnu16lp94Nyt8G1tafFH6q0Y7nqLeL/pKf+n3ZJ5Qn3/hC7bDal1KQfxR95mfeuAidIt7P0/6ZPf/C92X6Ty70NYLxmz0UjzpDfzLoP/JeBzq5Q+X1PzB+tRP1S1JeO2Bm+mdl2qO58wLtWUx/VOM39CsgvZXyZ+B7FXr7l/lxF/T1r48OHf1sfwB/Wu9X0EdV+vtV+BuC/tNDbx1y6n/g+T8K/K3B+xr92/1EBeB8+I9Pfcd5TeOZnF/g5xr6jmVccCSAveHPfZDxtSfh3/jaKOP/3I9Qfy/0Gmj/hW590hnB7/mpLfPGl+BZRn5G/d/Ir+F+Tvsnac9/jpPoyB9uz8G0TzT4TMn6NBbYnH7+I3x4/56cet6/50cf7uurA9PTP9z3u590f9k4tL80/iAl9PTzqER5/bftZ/Yr4znqcH8whXXTOM2f0H9V5NT/V39g/X+N55yNnrUXGt+ZwP6n3zf8uT6cob7xn52o733PTeafO/DTB7y1aL/q1EvAuHT9/Mr7I+jtAl8Mvm+kvvcP3jckJj0FPO6PnJ+cr5yfXJ8zeL9mfAD8pgy1h+21kP4wB3kbUm4J8FvaSXux9vXC8N+Z8VMs5N/3E+UnGp+HPJ6Lvb/3fPw9cn3ufS31K0GnPviNK3Q/ewb96X+/GXkWu96jH+ObE5FvnLPxzQmYN41/jc0+Q/tvV8p7f7TN8Wx8E/uuf7Sjk14pf8h9lfnNfaD7P/1GvC9vyvxyy/ON8dLw0xb5R8K//jiNqb/XOE3nG/3jwbPc/RP0M8HXJOp1Ql/ToVfafSd8u/78Dn3jb/U/3ui+EPrPAhD1HXSn6QcGfe2pxtsbf6//R9hvzHFg/7iKPlJSz3PkD+i/NN+jqH8CfnPDfzPkaQ5sAUwBP9rfB7AO9qN9tL97fvXcqt+m57/93j8bt+v+Cn0ZP9kIPoeE7MO/QF87hH6yxuc4vxnXVIt8/e/ehL73YcaZLfL+F/w5kbc05drQPto9N5HWP1X7Zz76l+ey8HmtDPN7DuBR5vdD4Ont/Yv7U/j3fJkU/pxfnW+dX4tC/3rI/9Bz3iT6YXH99cifAH79Tx5Q/mP40P9EvzX70Y/Gp5EekPq/8uoPnAr+MiHn5EgA8wI70X+a6IcLvq36e3p/Rn4WYB3o53T+An96+tNlvr/p/TPrx3n7FXgins/YFxqnP4d0W+/bQ+fCarTzYPCH/Ukb6u9Ife9zfZ/Cdyn2UL8Y8+Uh6veCP/0vR4biKoy3iKJ9PJdkJX++9jvoxGM+j0P6VeY330upQr/0Hu8x/dP7vI6OD+rdJ90M/vSHVm71oPwbmV83AL8FHteOy7z6LXqMGP9H/T76g7E+ac984Y+Bfi/QLpdIp6T+dPSxDH7Xw99y0q6nf0H3G+AO8sP+XSvZf+jn5fydHXr6Pxgf5P22/qz6t/r+zhL0+Qn4m9C+8+gf47QP0B7DjTuE3k7w6WenX11F5CwC7Arc4X7d/Qt6O0s/tN/fhX/vbd2/vwz9fZEAxqLdsiFPHfhtCv+H0O9r2vVC8e/GBb4DXuMFl5N/jvRo6i3yPR3yw/4pD5FDP5WqyKvfsn7M+i/rXx4b/A3g833gQ+p/7rs6lBvgfpP+OIR9WGrS2t9998X7rnzQGxehPvi2g6+z52nqp6E/lASmBTagfE7vd40DCe0fK8J3M88H+muT/6H3dXy/7X7G+1vw9/SegPQs+CvI/igPsACwIPlZXV88f4A3g+cf/SVCfiuuz+29X6KdpwOTUs71x/edvN/dBp3k9O8x8N+IeeRP1z/o90cP5+2v4PP+tyb9wftO9ee90lyg9ybeL3nf8SPt5n2I98RrAxB1BD6ND5mh/xz0niFvU/hcqn0Cuuq3lf540B8B/eHAMayH3ietZ1/n+wW+Z+D7BcZBZgWv58TMxpkZ/8x8Eo6/0/6o315p7VTwNwB/yPPAefChXV//MP3CamqnoP2MS/Edgnjg1z/2XdrPeUT68qP/t3Y8zxUJ4f8w+liL3r4FTnN/At7P9PuAD/WTCv5L8934vYzkez/uvfgY8hP7jhPz+mjo6kenv88q5p1jyLXSeGz96IHhe73Ojg++G1d3O+QfmQk6Z+BrofpC/s3Md2Po1y0pN0R/J+ONwe95wP2/fM/Sv8r9q+d//QND8WqdIgFMB33vn72P1s+mSQCiOhqPDb1+tG8h6hkXb5y88fHeh3hPMs77ffQ3Qv9b53vkS0s6N/Wmu36iF+2AN6mvf+Bu9Pcbaf23hlIvHP+Wmv2q+2r32e6vc8GP91dn0Es75Hf+0J/mD8aV8Xsfgd9zlecsz1f6R+oXWYt8/SO9hzceaaj6oHyE8WX8zyLS7o/0DypH/ZLGLYTsR/qvakfSfvQR9ROT/yH5O6jfjv1iT+bftsY5a38w/iYSQOMevD91/vCdIeNH2ujfRn52+NEv+gT0O/K9N/pwHD6mXD7wev65Dh/aV70P3UI5+/PvtGMW+vPnzBtLmUdKwOeXzNdfACezHnwAPd9LO48+3L/5flrZAETVc1wahwKf4fdcPH9/4vtP1NMvW38Q40m+YD83E/glsLt+UPqXAm85L+nfCv2t0Fln/CT19etd4bhGn9tD8WvGrRnH9hj5DtBvfMclLbC775NQrwb6e2KcHvz5HqH2P+2Bedxf8b2F71uQb/x6DeZd78+3gu8N77+0F/LduHHH/3Hy9Z/qhx6M701Bfinjc/SbRK4TAXjxHpnvky1Gfv07j+o/RL7+nc9Yr6KxLwu/B7Hf92WcH0l7vunLfPEMOuXBr394f8qfBa/7usnk+/6Z7575Dtpe5WC8OH7KMN98hbw/o7f2kQA673h+1W7q/b/2VO2oB7A7FJe+cf/e01Hfd3GM8zW+d6L3Y9DvC17f4VvG/K2fdn3o5UV/3ZDPe7gOnjegb3yz/cL+YjxQBfYnecFTzng82rc+5Y/Dp+8AuT/N4/mK/Bneoxhf6HsZjO9t4F9oPAlp4/d9t22w76PQv5pQ3/ux4+DXfrTd8U9+TPj7l3nxH6Dv/mg/SkL/qcK8+Y72V/Tf032X8fHQTQbUX1q/zVm0wyj4MD7ZuOSZ0Dc+2XOd7zr43kM/+H+J/VACYELgWepno3xf+nU/oO+ruX/u53qBnjogX9g+oL+39pNd0GtB/Z2kH5Kvvc97ianQ9X7iHnr1nalqvr/l+wD0U99V850131ebDH/Gm+emfZow/lNBdwp8uO61Q77l9J9lwN7gOU++734Ugd9S0PP9j+q03ybt68wjtbVXgneQ/kbaS9GD55ZffOfM+G/f//BeHHxh//Hd9M9dwC2h9zlKef6gfB7v7bx/9F2ASADD9iftaFfgRz/bxNovwO+7gtqn4/n+D/BEKJ7cONhm1PNdBu0wG0jPBxrH4XsGg6DfGL2/DJ2fKZ+XfN8jWcN3321u7f0388YgYELjH+k/3i91ZZ7NFwngH/pPgdf9j/uhbZTLjv3VuHbtrsZPZPRdIOZB75lO079+p72L8n08dCZ63vA+OLS+GM8em/FYC70NCL3TVQn6deC3ImnvBz13/Qn+8PnL97HC+++Z6Lc/+jBO2vPmJ9C7A/742l+047j+o/dnQO8xPA/dYr44i1wfoLcbzA97oHfYeVR/FfJvovdt1NcfS7+MRf/DvtDU/TvzVh/4yE/a/Yfv57peu377fu4H4NsI3EB7f2T/hq7xFsZJn4f/M/Yb+D5L2vjAKr63hB5iG29J/jTjfcBbAP3GhN+CyFMA2B74i+sj+kwGdH/hfmM+9K/p94KeMmnfRD+96R9dnb8jAVzuvTz6MT4pNe2sP00yoP42pai/G/qJ6Nf6mXp+0p7v+wB39INFv9XIN+76E+xYdWlf7Wva1R5BX/taLO8DgDGBvq/b1X6FPuog7xPHj/7ttIv35c6rk1hfJgOnAKd636L/RiSANzkP9yK9nPUrPvTfJH82/Lcy/oTyYX8V4+dWa/8l/y30p/1L+3he46mQz/cjfTeyKuUreD/guCV/BfmnXT9C99quJ95v6x+iP4jx1KVp//D7Jb6X6flvKvtC/Ur1N43hPEd/8N2ewtyveV8xiX1zT+0kxvWD3/h249p70H+Mb28G3mLaFx3H6O8g+I2PNF7S8a2/cjrf6/AcSNrzxSTqGSfQD/1+4L2Vfv/g873e3L7fizzDkcPzn/7a+m/rj6//tv76c9w/+G4B5Y1/MO6hEmnvXzqF/JfKe0/N+MzgvtX513sQyv+l3y16L0B79IP+JMprv/EdeO03ZcUX6uf6wWdHP8Z7XGa+8L3tHPBf1vmH8fhUfzzWA/14N3gfhnyfaYeF343Q60B+N/Tb1Lg4+LwN/Rd+q9CbTTn9WMcZrxcJ4B706fu6+j/6vqX/m7GScvnQb0Habzxy+B5rW+Rpw/enoThv3z+dC95Zni/hJyP8foBcB40rQv5V0B0FrALeg+T/r3vniciXh/a5BB3tiIm9X2T8HQK/9wkbfCcF/kfCVzvSlzwHgS/8LqH22tX6LaLHaNrZ0MMH1GvKd+PzfqR9fQetsv76pH2/rnIU+Pg+mbT7Wf9vQ/u4cQMFfD+WdXUx5cPvn/jenHb9sL3/pPqEX98RqYL+XX9KG4+KHJvR7wTyC4Ev7E+bn/VQP/aw/7r2X+16xidpD7Y/v62/vv6tzi/6RbIujAJug/+7+lUAF0F/HfL6/pX2gHB8dRfoTSC9zfUf/X/M+BkFbB6Kn/bdTt/RDb/f2df9K3An7ef7Mp3p39eo15W059Ec9M8dofgF31fcDv/aD7bDxwe+nwY+79u9B9tP/VOh9xV8h3ua8ytp54nw+8iTjTfju/OdfvuJ0JfvqrTmHO37Kt8az2CcoPMp+o1Pe2c1vtH/UQF/+P8S/B8F/8ehU8i/0Pd59S/UPqPfvX74vifnvjUz+ML717fhTzvGZdppKfz7/x+9A/Di/sz///B9wprg32G8DPi173+hXyx6WwX+VvoX+b8ApJfpT4v8ScHbFjp9wKP/5WPXN/eJxm9CVz+YCPX1f9nC+Poy9P5ZBfD7XobvaCyzfzne2Bd4b2t81xLyjY+f4b035XKTf934cu3yIT/jBvDl/uAY/Op/7Xv+vg+3X/8V9Js+5Jenf0AH9GTcg37p4f8buEz5C44T33OAjv7J5/R7AJ/+yZ6rPGe9iOMDj++xjKC9l7k/AJ/vBugXGn6PXP++V4BFgdpn61B+m/6R4LkcQQ7416/JeUj7pevCBfgvFFoffM/jCfzMobzvS4Xf743tfTr0FvE9JvX7wE8C+B/B/NkHvVaHfnLqdyTdAfiM/tgC/uqCb6XxMOA5xfgoz/rqvPZSaL6rDd7ZzPulSP9Iv9QPVP9i/UT1Lz6IPrQvaG/w/OH+0HXUOB/3hzMd96H4EseL/4/g/Yn3Jtq3siHPfPgzLtL3zY8y/x0BGl9TnnKur9oXtDdoX2iNXvzftrbg6Qoe/Wf0B9F/Zij8+38/ffi+Wrnh93fwe6/Xznh36GsP9VzbD361ly7mvPkZUHuj+wffufH/0NKF7Kf3jWtWL+yH+5Cv3ewb+N0K/54/j7K/mwod44iP0j7Gb2aivvGJTXxfW7s8/ObzHTLqa+/V/ts//X/lqkT/W8r+JRx/31t/RvD3RF7903x/1f2z+2n/f0H7ifcvJX2PHPnD9zl/MG7Uv+/C+/8Waxkf3l+1gV/9nLxHbU2+/z/lvHuC+e8U+Gc678HPBfrLPvTbDfnqU38o/AwLrQfal4xncr2YynzzKfAb5ocf4M+4ZN/l8J7Z+8NEtE9r8j3HeH4pzPdx4NMfPC78F2V+fEU/EOBB97G+j+R9gfYB8L/m+ZH8NJEAXgEWY/54k/Ye5Pmc/YPvNy2H7xVA329qSn/wXWXfWfZ9ZfcN+n+F48P9v0n/hzJ83uign4vvTVD/JvrZi7zbgfv0nwTPq7RXBt819D4Q/fh/GP4/RhLoXIT/XODxf+HC/xdXCf3cRY+T2E/NAf8D+p/xW0nBk1N/IPK1q2tn138wrv67jCv/XzAn+tnN+NgDnEO/s//6rqrvrBqf9TH1fbdVf6z79IMmtO8T9JmZeTEjMA/1jcd+G72dgo77133wv590au14vh9Af/pffi5pmF+Pgtf7EeOLxlJ+L9Bzfm3y3zNeA334TqLx3ffYF0wynoR+cCqC3PA/hPR69HU3tD/1/xXcp47SH4T64X2h9vcX/YK0/wdXh7RxzUvovwVZT4xvdn8a9vN3fzo29L5OWfqPcY7GA1jvD9rT/WFt4ylJa2caSHvOo3xG4B/ocWzIXqCffwfkn+A7K8ijv1wf/dS9v6ee8X3G+92Dn7GMu++Ny/QeUPsM43Ev8+SHxlfSH36lf78M3jaU7+n7Fc6z8NtSf2za5x7693+1Bvm+DvW1l/VlntDvU/+7U+B3Xc6oXZr6L97n1q6nPdb3bajXQrqUKwn+Cd4feu6h/X1forX3k8Yf+N6L9g3o+/+y7qO8n/H/TH6Cj/D4C7/v7ThxfJxhPe9KO/Sgnz/X34X656nXgvlgfGh+mA895wnnB+MfjHvwfySMfzBuw/se4zn0Bwz7xfqu3ij61wP6zU7tXszD2rc20Z9uUn8k6+Qt6v/qfoz8S+xjT5Pv/tf9rvvfuPQP78+1n3iPHj0SQOPD/V/F8P8tGo/h/0VGh4+EofXhBnRdJ1wfBjmuobfEfTD94wbtuYp2Nh7M+/a36T/d/Z9NYFLot6X/ej7xf6D8/6cYjKu02t+1Bzg/+b878PnUeHv7M/oxnkH/8TXGT8L/58AHwFLw5/9rG+cXju/73P+/he+awF/JN97EOG/vE6cY/w49/+eyCe3r+3W/0r9OA/WHOhfy19H+dRp+E4K/F3i2RgJYEn2sQA9r0VdF8LpvvUV950ffI9hPezg/+h7nQOj7fxW+9zud+dH/+Qj/H0M0/WKg6zu0xWkf33NqBvS9Q+MkM4JXv3/feTng/8+g7xXw5TuQvs8wjP7axDh09NAcvJdC/D6C/h7t8OD3ntt3WLeAX/9V313Sj9342BfvT8L35kgA9YdY57kE+DL9bQH1/f+mY0D/v8n+8CvrgX71vr+nf31Z9Dpd/0raobfv/4f8Z/SnqQJ/3keG31fwfvL/AGyedZN4nHWdd/TP1f/AP/aeEZlvu+yZIlvI/NgzFFIJ2XuEbBkJfW2ZScYnOyt7RiQrRMgo2Yn4nfN7PR6d43VO73+e577uvc91930+n/f9IEPU//+GZQvg5vQBnJsrgLtSB/BGJIBfpwrgRcrnSUf5TAE8SbnNOQOYPm4AE6cJYDTpFZkD+JD6v2YJYCbwVANPefgpCp8vkI6h/AtxAtghcQDLkd4PnpvU+yYrfFP/K/DfSRvA8cANzwewJfXXJg3gkSQBnE96xgsBzAy+ztDZhlwrkf/l5wJYCfoL4wWwBPq9jT7OQC8aPHspvz/Vs/ymyBHA4sDC0O+FPp7CVy3on0C/JTIG8Bz5U7IHMC/0GkA/E3J2h/62FAH8Hfx5wHOI+impf5jydZMHcA7yZab8AeoPgk6D3AH8C/7XUD8r+YvJLwj+fcB3wfca9FNT/kfgJvidSDtkpT3LgH8a9TNFApgT/WSj/APy34D/xLR3CmAS4Nvgq5gogK9T/0PS+xkfe9BncfpBFvrpXfI3Qv8K8rVGHwttX/kBjqF+M/Iv8P1b6g1BruToJ3EC+AYmBaaE38HQbwOeYvBRF/mbJgvgUmAJ8p+SPxO9t4VeD/Lzk5+E/paQ9s8I3THIXwX6Ryk3j3KnwZcBfPWR9z3k60e6J3zfAF8W8HwK/QXg3w3e/4HvCuWPkJ6BHK3Q41PadyvzVgzt1zplAI+T34l6+eHnLdr7PPSvw08p6OdE/uPkOy6b8/0x88G3pK/DzzjotUeeCuhnGuNtJnS/oP5O8H5P/cn2T+TdAT+bwbeF/PXUS4s8p5AvM/ldqV8G/X1I+U3wFxd51zP/LAT/Iuo9AN8u+I/FvBsHPQ9Hzy9QLjb47oCnKXS7w98axtsP9OunsQI4xX5GvbPweQo+7sJfF75PRB8J0Ocw+JtL/WPgsx0G034HqJ8afFnAc4j5aw71W1N/APVfjARwO3zvJ38S8vYDX230MB1+7sJ/T+SvBL/jkHs4ePrD30XGbUe+z6f8VPhw3mkMHeej9ug5Ketpk9jwz/x6mPz6AYhqRL2R4FsB/vTULw6cA54etHcy9NcbfCcYXz+RPgbervC3HPg9+M/SvxuTboD+X0H+j5gv01HvNv1lIfr8FH2PJP8l+PkF+vfJjwP+6sAqtO/oAETdgY/kwFfB7/i6RHsWBt8T0g/I/4rv9+CjJfUrkb8Zvn4C/3Lac6HrOviywt8K5G9M/Ul87wGdl5HvEf2mDHjbOp7pX10Zj8538+FvAvj/Av9Avh9x/JMuACwPvn3Q6QG/eegv2SIBLAe9luA/yXx2zPnW9gDfm/C/FjxvAi+D7zz0NiDXCfJX0k/2wP8Y8M5Fr2fgLxffD1P+b+T5Dfr5wZcVevvhMzv8N6O//wIcRv92/OQH3zDwz4TPr6h/Id2zdH4BtoJObuaPM/TruuDfTf1R1G9FvV7QS+R6yfdl8O/+2PWxIPudAsC70OtBfkf08wb894ZeF/R3k3Qn8jO7nqC/QtD7Gjzuv/aS/xv0FtMuV0gPZHz0pf5Z8vdBrw75L6CXjMBCyJGK8buKdAxwJbAC8k0GX3f09BZ4o91/kL8Nuc4iR1bq54K/WpSvgx4yQH858/E9+M9Jegfl78QP4C7wLWad/wY+MpIeR/0anBfGQGcDfJ+l/o8JA/gG9R+wP77COryXdHrqL0aeD5AjvH4n4fsmvkcBM9L+7uvc57m/24x8iWjPhMAyyJuAchfg93+sO9OA3enf9aE/Cbo5+L7K+Q/5v2K8nKP840gAf2Ud2sm57DrzzzzKez4sCXwP/fRDrkfwtwr9P+L7354n4Lcz+H+lf39Ce6yh/mbKeY5ZiX7cvyTgewvk6Q//tksi6I1Hb+1pn23050ec40uzH7hI+T3IVR94BHzr4S8BfGdh/GQGev6MR3584E74zAB/7s/juN7yfT3tk4L2jg8sTDnn/4rIv4l6v6DfWdBPDb8taa/OyJ9M/UL/LPl53OeCbz74h1CuM/12JfTtz53Q+yX4ewX6Lan/A/gGQr8ZeD6E373wc9dzNnj6o89+wGj6Q33wFaT+q9T3nLmU+WMN9CtTri9yHKR+esZVjdA50PPfBPQ3h/qD4f+i6y/5s8Fbhvyp4G/F/uo+6dX0t47I34p6+5C3OPyqn6no4zrt8zzwNeTrDb/x0U8f0gsoVzUAUbXhPxo9LYX/KdBLBB8VkHsqcjQl/3/IuZN2vgVfQ8Gb13OU5zjvv8j/GDyFIwGsA7yMPq7B9xXSF+DjGPW3wd9Q8NREvkrQbUF/e0Q5zx97SX9GuXzw5fy7g3GZHrpX0WMn9PuY+e495EoEPwvJj0P5KcwbR5mnltOevdBXU8/B9IeO1L/uOVa+KB+b+ik8P5FfIxLAd0i3hJ8lyHcTOj3htw38J6Fefubz88ifD3rPU68z+6Pv4GsueN+Hj+7QG0b9k3z/0vMD7bOP9nmO8udoj07Ae8C0jOfngGmAt7x3g77n6CHg8/4xQrkm8Ps2+T3Av495PTlyfQv+Zug3B/ymo/4U6PwN/6nIHw7eNsDGyD+D/fV0+LA/riBd2Pq0l+NvLv11AfuTd2135IpP+9kea6hnO3Wk/gHwn/deBznawl9z8DaKBPBt8N6yHah/jXq1wPM68id3X8L3cuCrRf4pzh/9SH+EvheTjse5din7+3XgKer++z/OpynhPyH7tR7OB9CLQf5+jLftfK/HeI5B3h7w3xI6I0h/5/6QcZ+SfeVY6Hmf3pTvN8FXhP5RGv7dn7svd5/+Nfzepb89pp3/IJ0A/AfhJwvt+5XzBPjbw18svjdD3g3o6WPo1yW/OHhvo8++zE89gRfhMxXyr/A8QPkC8H8Ifu4g/wTkeRf9vgP9t6l/B7wnqb8Y/gezb7nK/DiQ9EnwrUKeCHSyAWdB/3fwLwBvR+QsGwlgeff30B8LbET9t9x/OC8iZ1rqd0R/g6h3j/RVyo+G3zHAnvTvXfS/IozPwsAp8OM5tzv0C6HvXdCpSf3ByLURelvQ6x3yM7i/QF8/eE+Gfq+Qnwk87zqewbee9nqTfreWdDz4q0N/GQDdtt5XkF4G/s3gX0H6NfAnZHwvAl8vxnkM6WPIqx3sJfC+jD5cD10fXS+Xu18l/SH1LlPuDdbPjeDX3rAa/g6S3kF7/Mg4WoIcxZz/6W9/otez9MeekQDugu/10L8NPx1on1bgW+a5Hfrfk25Nv1nCvJICOMT7fuTPyf7H8Zqc/vu+9zXgSw3fOd2/UL4Z5V5Dbu8L//A+hnpPkasL/eec98HAeeizFvq9Bn73R6mA7o8yoh/v7+sBq0N/GPrJwHf34doDptFfpgUg6gFp731c//MiV0/aqT74PR8v8n4a+BX58ZBnq3Yjvt9Cf9sYDw/ha7T33eRXhN4O9Ldb+wf8D6S/tIJu+P63CvPeQfCvBl97yvdhPqlEOg794xTyrmXcbqUdUlA+mvJ/Mu/k5nt86tcgfzztNcFzLv19K/jH0m+Gur5GAngbedfQL/7R7oz83cE/Arl2o7cIeIcCk0AvMfAz+NiLfrUbuH//hv7k/j0PcucEZmA/uxo+6yDvSPQwGjgdfG3Atw6+tQdr/y2rnRp50iNHR/jfov2R7yPQVynyU6L3tsAOtNc7lPsN/G2Rcx56vOB5hf53DXgVmE/7l/YQ+pP7rtzwPw3+yoI3t/sH8j9C34/R3xNgJfjbHoCoh9Q7yvmgsvM5+loK/eHQ2w5/bZGvF/mF0NN3yHeedEXwpyV9F/xL6V/fRQK4l/RT+N/H/JiJcb6c9n0Y2p8eUL/a98nfSLou+BpSLjX8b+Je53P4b6p9Ff5vsq+cAv9L0dtJ0g/hz/EWm/wvSH9JOjHp5rRHWebPCPz3Ad/nwHERysH/RNrB/hkX/pPyPQl0ylN+OvK3Rp9pGM8x2lNJD3T+Rt7G6EH/g4LoZybjbgx0JlB/EvqZCPR+7mX4T8b3Weg9Belb0BsB/79R/t/+Av697qeAdxlnO+CjM/iWMw+sAH6I/J4HnJ9bgN/zwTjonwJ+Af9dkP8Q+kwB/20od9rzGOOpIHRf1s8D/NqtclPPefYG7Zee/AHeP3tv6vqE3vsxLo/B3yHwd/D8hFwX3aeRn9j7CvKb6fcBnxuoX4Jy9ekPr5Ge4f0P+juh/RV+U6Pf/LRPUdrjS+gvht/t1O9G/bjen7Jepgc+ZZ3oQH560hu9/wJPA/rPVPSSifJPkUf7dS7m457QzUM6G/1rpOsjfNaG/6I5npXb9SA+eJYi3372dweAB4Eztf/TfnkZR09J63+SAf0m0c5FO3lP34zvV6A3l3z143nqRfYZP+vvoH2X9nGcroLue/TvEvSHVNqjGVeDqL88AFGZ0EM/z7XwMwV9H4fPhehns+MP+by/9D7T+8sann+QZxV4m5P/PPP9JsqlIx2H/NJ8741eLrmvBk95yuejPb+nXA3S+g9oh+5EPf07+tA/5iF3X9K/et5wPob/C9B/QH3Pr/3R0xuh8+tj+G/ivpTvNfUf0v5K/c9oH9e/tbR3f89VjKNY4GlCuzcDrqQ/JKW8+4cFyDEc/K+Av4P3YfDdzvVd/xXG02TKfwD9VbTPcfTfif75E+lG0GmmfUH9aIegfi76dw7qd2L+b4J8+x0P1K/J98roU38W/Vu0F40A/7gARJXgHBuf9TI/42Sy87r3e/AxnvqX4Pd/6CM26Qe0327SL9EfDsJnbOrPBd819hEnhfS3z5hXtW+3hZ/l4Cvluo9cO6jnfqYQ7baVtPuJjMg3H352hfZnpZBnIunR+hdFAviE+u433H+4H6ngeYi09ttK9n/w16L/1AbWBL4Pv71pb89Jnovqor8D2teBY+CvIPp5HIB/73Wrk/4N+qmR68WQ34P6Wk1+Leov5vtn1B/GfPAxcCjQ+6ci4P2ve5yq7us4976pHyZyTCZ/tfZNYB76l/dW3lelAJaDv34h/9h2lkM/H8LvLPRblf5XifqLoO/93mfu98HXCDkaOr/rh+H+kPXuJvn6E8aivvtz9+WHvK+lHSowb2nXSUe98fD/gf4Z6tV5QP8I/SaR+0vv48FfmPGlX0wR0ico/wvz1R7a8xP6Z0Hbn/l3J7AbfFYBf/g+bDN0/kSObPD7D+kN8H2J9u3J/DeE+pOho792Ns8/pPNCty/1jwUgagF0u5Kepj8w7f8XsArfvW/XH2CO906kE8Dn6+h3AvyXB66hfDX4+ytkX95OuaSk/3Bcc87byPhupH0L/vXz+Bj6xcCvHaot5VqCvyXz6y326a1Ip6Z+XupXRe5L1G/o/gx/hg/Yv+kPUlh5KJ9E/0H0kxD6dz1/QmcN7dMK+U7AT3PGX3fvMcCbBzo3kO+WfkW0b3bwe+92HPrev11yvoe/XMi5AvlG0e7ug8P7X+f/MtTbme5Z/DXZf99nnFeDf8e5+xv3M/pnnSBdHLlzeA9E/lL4096g/aEQ+tf+YPss0Z+EdFzqe+880ftE5PEeemgkgG+E7K83Sesf/br2cf3kjF/Q/kM7fQkfFcC7Gb0eBn4LTEj9DujPc/Vjz3fkvwr98XwfDn39Xb9jfv+Jfdc6+vlu6j+C3p/UW0t/mwl/KYDlgPrtDNbflPUgNXhTARvTP8L+LPq59If+UvrFPvTyO/hnw/9M+DNuYgf9IRXlRzEfX4LOfNrtKPRGoh/9M71HqkH/0o9+Emn97JeQXkL97OD/mXbwvrkEeBtSr5B2Mug0Qt4GwIZA149x3u/o5wW+eaF962nKeY73/K69Xb9o/aT1j/6bevP1O9fPhfYpy75Wu6t2WNef76kfy3ULvmfpx0L/HE87es72fK3duQh4bnsPBr8V6G/aU7W3fuX9N3zMAo4F30PS3dBPO8cX/NXT/xm+PyD9Mvnp4O+gcTnkDwB/PObfkuIL0e/k/gG5vKdpQ/kf9ANyfwZ/xlO53zKeQDtSNPW1H3n+buL5h3ERn/z26L8IcBTt0AX8yxgfXaH/LfjPgWcl69Yc5sXWfF+N/EWRKxN81ERvEcbHC/Dt/Yf35J4fjIszHq4F4/c+6a30t9z0w26k9Seux/ylvUw7jPFhA+A/J/x/qz8m+knJfuwC/Sox6Z89b8H/Zdphj+dO8s/onwzdM8pHfj7qD0P+iZT7gXRp5DqKXAOBJ8i/Tn3Pz+W1C4Bf/9e50I2iP9f2Ppb0sdB8UY72y4D+MgFTsQ5UdZ/p/Z12CPj6g/Zz/7zGe0HKXXF/Qf3UlIuiXEnoa0eIoVw/7VL0i6lU81x9yv5GuRSktU8aR6N98jLy6D9fj/2h+8V74P/NuEX4yBMJYF7qadd6XTuu/rnsV17ke1n60Xj6XzvvV6l/y/sP0qXh9wL8pCH/NPUra59BTznJdx5/G/wdoK8fmPuPcuz/O7MO6//bG/zXGW+5vYci/wb48zN+3iG/p/Yz9GK72Y7taA/bz/bRDha2HzvfOP84HxV2f4h8fam3E7766P8Ov430ywBe9j6SfuO5/RLQ87x2Le1cDxgHxos2h/86lN/i/I++f9Z/n31vN9Kf0r9n0j8qo7dl3s8zPt2PeD8bo38A8qeBD/3vKqCPXMZP0b+15/alfCnyu0F/BeUqa/8GX3bmn97MO7lIn0R/Yf/Oq9CPA57bIf8e/X2Swn9P/ae1ixknYXwM+k4JvTHan40fdP6AX+ORjtH+KUlP04+CdLT3x8idArptwHPc8cX3CPwXhV5W+DU+KFo/FvRgfNBp+I0mfZH+2A069Rh31fR/dn6Fv+3g127UFliE/MesVyUYh3fhKx/4vT8aDhzNePb+6AbfPe9cB08l4ynp/72o9zbpI/DxRL95zxPIo/9DHfSuX4X7Yfe/+s81plxq9KD/2QHPP7RDDfL70n9vwk8D+CvBftB46Cjw2n766a9E/mz6o4Hfe8hz3v9oX6Bca+PYIwH03qc581U8vg9gfL8Cvzkp1x980/X/Yj+xhX6yFTga/oqx3x9v/yN9CHp90PcdxvFA0kn1X0Qu/YtiIccI7fzMpxOYnz4B9oW+8ZXGVepPP9H7c+NN9IsPwL/n/02huArjLIyvyIi8+qPOIt97mBj642r6+V3gY+SqQv114B+BHjZQ3/b7hPzwfXm6kP2nb8gesw997DKuF1gBPN7vu/9w3+H9/lToG6+1En1Whv5K2r8ffKxl3OxEv64nzUPrivEU7u/C/m3u945qd/T+CzxlPc9A/xzlipE2viep70cAkwBHeF/E+KsVCeBIxzHy6a+m/5r+bHegnw69TQxAVDPw7oLfffpVUt44t4T6S6HfD2ivBsj/HPXbOb+Q7/nN89zrzBvbqWe7LkP+xXxfB574nn+Q7x/nW/k1XpC09jHtYdrHekQCGAv9GV8RG1gduoOB0e7PjUeivvEL+oOG4yGLMR++DCwOvKIfLfiOo89S+hUif0Hmh13or4RxSODfR7+dx7q2jPQ++nFp2j8d/LegnvHBtaF/Ffr6Fy2g/kXGdxXaqaHjHX3eAH825DaOP67nEOOVoO95W3+IWdTv5nxsfDp4fkJfXcifTXoS9E+G9td/At1fG9d1mXlrRCSAxnf5/ojvjfj+yGT08xz8ZhQvfEWBJ5r8pMj3K/XHeD9C/mn9l/XLRb/GF44BbzP063reiPZvCt4hyH/f+EruDVYDbwC9P/D8uES7AuuTcfKeX7UDa/9tQX/4lnqTaf8yrA/vwd/v4Pfce5r+1wL+vkO+09Dzfsc4kTPMd52Qc4D7GvR0y/UVOAH5/6Y9tBdrP67iuI8EsCn0jffVj9n4Zv3m34due+TQfz5sP/WeIRPrwyTjVqH3DuNwGvW1C/wIv9nA8yL19yP/IurvgN+z6Gc+/bMXsKf9Ff693/Be4zD8DAef/oX6yxnvo39hN/grYnvqVwt/aeG3H3CG6x3ynaW/VQG+Ap4qxg9yXinH+eURMBv5t2j3evp7wX8B/YGg5zk1fD/VCv7fJL8Q9fuB33vj0+QPZ70zzl+70zDkO4j8yZFDe6L+ndobtS9WQL4eyLUemAD8+ld5T+17MN5X/8n4yh0J4D7WJ8fPX/SP5qQfkr4Gf8YVuX/rRX40+rG9bD/bczr0WtCffJeqObAk8taj/jnKGw9YCX70u17B958dt/B3VX9h6m+C39bUr4ue4lPuE/D9TnqS7/+Q1g5enf65gvE/B77nAY2Ti8d8tIRxuRhY3Pj/0L1H2J/+uPYh46L0KwLmDN1XLqJeEecH6J0Lzd/GN2of1y6uf4f2cdcj7zt8P8P1aqTvbVAvOXJcdf0Ab2fKaU8wrnBvAKJSk25EWvtx2P4aPr+4f63kOxzUc/9qnN8b8GccYHXS+sctop72xOvIr/+9fvc/M1/of/+WfnfA7Hw/Tzt8xH1iO2Bb4Bzoua66nwivr025F4phfksL9Nz5PPwviQRQO15V7Y3IU913VXxPgfy1pPNRLuxPrN2lC/rSHmP8n/H0X9Ief6En4+sfaS/3XoR+kEa/QPs3/LcGdkN/BZGnEbCN9h3oFQSfdhXtLdp3PC8dA98p6G5kvFRg/6D/mP5k5Wx/+PPeMhNy+J5aC9rTc90w5C0Hf/Novxz0j3W034fox/gt47aMp9S/xPi3VMYNQPcL8hPQn43z8l2zxchbmvlhCPRXktaPRvuf98azjAeIwD/0dpD2PQnfj5jE/JcLPc5EjwXA53kwH3rXT9bz4ufUP+49AXA/dJ+nvO8l+X7S166/0MlPeePbjXfPAN0h3kd4X2F8sfHwfPc9MOMxW6Pfg+jvXeg4vocj7xbkMJ7T+E39P/OG3o/Svu57D02Q71XjSKHv/bT30V/At/5lzUPxDVec5+gH+kFGk28//xX6CShfCuh+Z63nF9azxsAGwK2u+74vRfpF0uWRpyv4vD+qiBy+v9BQuxjljVMwPmGC91/Az4A50a/3GWPh/6nrgOf7UHzUUsoZJ+X+sDD812G9dH9YHH72o+/4xiGQzgY9170ZpHPrP05/0M8q7F/l+Wap7xvQjzzf3Od7Efh/yXh5/dEcx9At6r2o8Z/072LUz4E8Pxofw/yk38Qm5qf00Hd9dz4YQ/0mxvdSrxz050FP+++7rnPw04V2GQn+P4yf1S8dueb4vgbyZYbeINJbwOf7QL6TZ5xYPcqPcL8Wsp/r71aJ8f06cAPr+x36a3n6zwba/az+M9Sfrf0DehXA34n0Wur5rkAC1hf3CeG4jpuUc3/o+z6+M7EL/M5jF+g/vjt43HdovA+CP/3ifQfKdz4ueC9NvcT6eVBuAvpwHmkYmk/6Qz8KfPo3jnF+0+9d/xvXacqH/Ye+AI4H/1Tkt9+shS/7j3HTT8D7RD2F/KF/sn9Szngu/S70t/C+SD/DQfA/ju/3vE8n3/vHoejRdVr/Xf3fC/LdODrj57Zzr1Cae4CnjP+9IXu5+wTP1563jRf1fb1V7uPRv/sH/Wr1s9W/1veofKfqJ9In0Pdu8E7UL9n3TxifXWnvDvS/36G7R38o+PPdukNpnpVvhX4/fO8Kn6PQzwb2A80YNzWoN4P898FfUT9x36fQPw+9aj82DsH4zjnQ9VwyFn70d9Je2IW0ceolqF9O/y7aw3cAjiJ/a8obp+N7sSmMH2D/+LXvsaFP+7fvfTq/6e+qH4P3EfrP1CcdH/5K6vdJ/ZrMN8WgnwP8Cby/Zn/4nOe3jM/mJ6L8z+4v9QcFv/ZX73nzkDb+ZqP3tPQfzyOdyP8efR1RP6G4ueXw4/tbman/kXYP+Pod/Xv/oV+e8WXGXWnv0/7nPnqJ/huMT8+NyUl7fvwvvyHP3z1D+1/3w9fhP5X2NOi1o9xD0toTfHfCdyi03+oPon+I/iI9tQ+yfvUGzgL+Q7nKvu9E/YW+NwF+3+/y3KQdSvuT7yWlRJ7ngVl9R4x28z3a3p6/7F/0R+0w3rtpf6kCfd8X+5H0i/pfMq5ysT9/BP7JtMMW7sOiWSfc79Wi/Vv7fg/tmwF+3V/VDfkD6U/u+zANmF8aAnOAtz35V5HvqO0EPv0d9rJ+xjDuVwO/pf8UCcUPFA2tr5fQv+8ffq5/s34utFdH+mc4nuII3+PAX13Ph6R9n9T7yhnuP5BvO3L3hq9tpAe5v2b87qG88XutkU/7qu2u/a08/c/1W/9z34HQfnuC/cMg+u0y2tM4w56M1yO0Qxfyp0J/sfZevvtugf6RA5DD/Zj7szLofxHr03joP6F99SeeCb/3gBuMR9O/m35XLGSHjUBf/3v97ovBn/7x+p/rv/cSfPn+SUwUckQC6Dvun5Nf1vgbvq8i7ftwfULxiP1Iv09+bvhzHQ7HVxdivtmM/IPh40XqH0Xvvr/sft37E99DM57Y99J8b/cN423RR3XSvvd7Ff0chb+4wD+Q1/5lv3KfeB79V/G+Hb593yq2+aH3CHz/UP9F/fvPgCe56xjwOv2/POfay9rb0Z/78zP6z0LvOvKVZD6bwjyXg7T/55CDfvkq84z/g/AF8mif8L7Lfb73CfvJ993zv8nPAj/laL8Wxt8zHlwHnU++ZH52XqnO/B1+/994du0bvqunPd/7L+8HfQ+vpO/Res9oPBH18pH2HX3fz49hvB7l+ybfQ4Ofj2mXt/TH0n/U9/CZ9z5hfkkGnj20v/Y/7X6n4P9H42/11yTf+wPfH35K+/veTGH4SQV9z4W+O+h9l/dbB2j32p5/0NcB4x9ZF8v5/glwEvzrj1va9wNor/Lwt5D20W/1nH4h1IsFfv/fwv+7GAX+M56ffBfL+zvkW+w6hN6qos/O0De+27ju8P5yA+MiBeOiCHCh/n/MJxU4B3ifNBt5e8H/AGBV6MToP8x8UwR+WzA/fgJ97xu8f3B+83157Ttr+b6F8r5DvoL+lJ3vh+hvTdCHfu7GZfp/Lsrn+0b+P4DvHLof019du7L+7AuQR7u4dnLt42l8n4nvvvM+BOj77trbtb93C90HhudH/x/CedL4p2ra740z0z6tf0QkgMbp+47sMvSnv/It32My3pH6+ufpr6d/3gLGyyjv7ZjvfN/5XAD+fYe2DmnfozV+2Htd73m93/2MeXEUdH9mviygHzz6KKy/tX6v+ueA9xvqfwNfi8Hv+epV8IxFLs9X5z2X0v/D/wczivGTknEzn3RG42PAH+O8HVrf0vLd/xsaRPqE95fMv1O957Z9tTuE7ou8R9JfIS7zlX5UzvueHz5Hv9fAt4r6s+nfGyl/zPc4oN/B+APq+f7ORt9zgR/9Arw39z5de67vpm0lrb1P+5735rbfdOMcwNNKfwvWpUvAo57Xqf8e9R/Sju7vwvbTapT3fl3/hbXIUU07L/iLM/59d+Idyvn+RPh94eza2dD/NfjXD06/N+9zfQ8mme/+6T9I/nnG6z7oh+NrfC95sfeV4DFe2fufQ8CXfK9SexD68v7bOHLvv30f1XdRfc/W91FL6XfsukvaOCvnN+e1C6F94AX6Z/jeZSz6O0y5bcjn+6m/RgK4mvnXd8x9z61KKC7MODH9gI0Pc/9nnKP7P++7tofeXzGOOaFxKd5P8117Whf02IJ9UXXmYf/nJ7H2AP2P9bOivPeH/p+B6+JD1ynGj+OjFXq/BHR8JNF/A7n1I71pPBn4C6HXNZ6HaAfjAvx/L98nMz5du63+hvoj+h7nS8ij34rnH/1ZSoNf//sN7B/0v69I/ZWUL4G+1vk+FPyk8d6Kcr5/c5B1y32f+8DmlNN+pN0ok3YI6IfPdb7fkYX6rk++97mE/uc65ftQd72/gs4B8Bt/WxA+PU97fg7fb1U1roL2KQB/1yjneXuQ94neoxtvir42k/+mcfu+W6efM3yG/x/B9x99D/IF/5eK/lsVPrZC1/dBNyPPfej4Puga5NUfMglp908f0p+9t+4OndzGryO/97jJPTd5f+L5Gfw9KP8m+tffYJZ+FpEA+n7zNvTlODFOpYT3eszP+o/6Dqz9QbvMEeqtC9lntE/qf6Id0/63MXSeMI6nIu3vef9T5GiCfowT9P7d94u2wrfvY7nv9v9+3HfvhH6zUDx2+H8IPP88yfAsn/K3H/r+b5b/o3Ub/K/Q3/yflfD/q3wN3+/DRzL9DBnfxtMYXzPBOGvyY6EP49aigepnBueajsYD6T/nOxAh/xH9Sbw/LITcrk8JoT8A/rNBrwzjIAp6NdDPNfg3bm+p8T/gP0Z970tf81wG1F92HbA47eE71K7b04xfAd829J8fffoudVf4eax/BekjzveRAPq+Zn7t48bvkl+H/PD75tod3/L9LuaPy9BbZTw54+9N/R6oN535w/sI7cPahfMgbyLy9dfyHXffGTSOXv1775DLd4V8xw38vvvsO9A/Qm+v+zOgfvj6j/ru73Dwhd//HYs8o/VPZv4z/tH3iPzfDt8r8v4/N+Pfd/d8j0//Iudf32V2Hnb+9X2WkvDl/sb3Wdw/Ov/6Tqz2w/XeT4PH+PLpvjuDPKfo9zdJlwLf28zvD4wn9P0v5MsGHf+Xxf9p8f9ZxjAu/X9N/+/F+D/jVnzfYST590g/ZTzUho9/SHv/rH1Pe572PeM33gO/cTVFgL6PMJT5zf/1iw/0//78v9NcwJy0n/dE/n+C/k/6eS2j/3gf6j3pbPjzvnQr+Hqh94zI3ZD6E+TH/02l/A7v10Ptrx3Z88Ns5tf0+m8zP27S38v4JPL36t+Hfr7n/HGY75Uj4DU+hP70F/T7ec4kvwfzR0L6Qfj/e13fvFd1nXN9S4retVvFMc5U+w79zf9360J6nvZjyleCXjzo+P+l7s89txajXdyfr4F+XvBtQS/zaZ9q/t+q+gPqn1eLtHFa9uta4ItL/sfwdTX0Xkde9DpHP2fkPuv7Teh7C3g6GJ8DHv02CgDzA/VvCL+X4DsK9WmH99nvDyG/NONwNvL5vwu3wTcLOYw/1T6rP8pl+E2MfJ47amZ+Vh7955VH+Uqne1Y+7w9agr8N5edTP7v2NNrR/uP/b2Wnf2al/TMC29POqVgf+tu+AfjX/3sw49J7h/bw4f2D78c9B781Kad/yyX6j/tx379tCf+eV0pDx/OM77jfp/0m007heBHjr9OF4rCdfxchv3HbvaHv+xDJ6C/GiZ90/jMOCr71Ow3bVzyfGdfgO9ja3/4k33fO/B/pw/rpMD53A3+h/lD3b7T/XuSZTLu1Z3ynA+8e+PR/yH3HyPc9tNtrL9M+ZvyB/kW+0+d72o7fEfDt/DKAfP836wT8hv8/S78F/cBf0l7q+k//rQBchP7nGF9Au/ziOSf0/8++F+++IBfwKPL0Qf++b+b90UnjHaHjeuA7Ob6Ps895Xz9G9xeRAP6X33QN8I9nvjYOZEIoHuQS/Vp/Jv93w/nY+4Dt4AvbO3wvJTrkJ+H7evrX+P+AvvfWFHqOT8ej4zMGekXRn3HM/p/VYd9Pd/8CPv1jPgZfF+ivIX80eHyP3P/7dX2PJz3vx8k3/sF3pz6lvdKizwrgfRc6i/T/8n6Kec93OS8g3/8BI3qC7XicdZ110JbF14BfUqS746EbBASklG7pkg4BEaU7JKVVQgUB6QZBupQOQUAaJCUEFAT5iYi+oN/Md1+XM94zPP+c2Xt3T22fPWef6ymj/v/3JG0AN2UJ4MGsAXwhXgD/yBTA4ekCuCxbAIslCmDq5AFMQ/3lOQJYKk0A380QwJ+BH2UM4Fngfur1I39rzgAuha/dkQBmpvyH2QPYjPIJyH8LPnPCXz/4ze935Hmd8r/FCeD/gLHjBvAC8r8BvV+AF+BnfuYALuT7edJr4GcI+HukD+AB9LCVcvuAh2MHsALy7zcN/eaZ/ot/APKMzRXAquD9le+HSRcAX9UARH0FH0vJn4T+aqWCT/hujTxvo/8PSS+Fj7nQiaJ9CyYI4GT420F6Bvivo8+vkwbwWcIAbgLfTvC1AF6B70ORAC5KHMB3KX+D/raa9t0F/0XgswRwPPkZwDOI9B/ooTz6i/lCABui9xqkyyH/d/A1CbwP0NMJ2udd8t+Av6N8T6x+yE9HvzkBnmOUi/A9Dd8/gr8h5K+HH/U3Gfrqr1+KAG6kfifyKyP3VuQaTL/fRnof/BWGXizarzT94zva4WXHD+XWkp8aepVp34rwd4Jx9AX1+1I+OXw1A9826HXje0nKJ0aupfA/lXnlEPwXpHw9yh1Gf+Xpb5X43hf51J96ewc51N878Pc/0vb3vODLTf5C+J5vPv0pP3hzI88L8FOPdBHqx0S+ntCpQfvWQV91ge9T7k/4b8d46gbdv6FXAP6m8L0BeLtArwT8raV/HKXeYeb7KvA3CLkSRwL4M/BF+v8N9FUHvh6Bpyr0y9L+++G/FOkFtifpA7TDDvjdCZ1o+H0LvIWgN5T8bkkCuIF+24vxn4byR6i/j/QB8C+A/xHkF0Q/j5B7BPrNTL+1v5aC/gLap/qLAVyOfGORJz35K0gvAy4Fvkx+KuhXB+9h6FwCJqe/3IK/1nxPRP2d1B9L/cLI1871h/o3qFeZ8ueQ/3va9zf00ykA/66fhZE/JuNsMOWiI/BF/SbwNw96u+hfjaE3kvLXqb8U/OWo35h61eG7EfJtpl2zud+An5fBfxO+PmId2E5/qASdu+B/QvosdHqDbyH194M3H/3nfeb/YZQ/iHwtgW/B5xX4y0K9iOsP+r4N3ZmUjws/KyMB7Ex/mAre/qSzUr4X+htCvbrgTUL/bAb95sD9yDWI/CvgiY2+lkNnDu2fK1YAJ4J/V8wAZgBPUeaDRfSvuqQPUv8s/Ewm3RY9nkR/e5D/R+RoQ//cTL3y8J2O9nuM/j6ifxxmfB0CrmOe30L+Wdp7C3J+nyyArSIBXE29H8D7FDgH/qqF9p+fg+eWekNe56u7zJc/oN9C1P/d+Rc4Cj23In8O+O+j56GOX9LDKLeBeu5vnP+6Qr8LeD6jPW+wX8rH9/jo5zL6KcH30sB7tE9j8OeGvvNFCeBf5DuevgK6330X/U1hfOzhe1roxKY/zKDfpABvbej9Bf8XGX93aLeWrAOvuc9D/njgf4f6HdC/60189HYcel2gt5y0+y73Ye6/LqC/i8DuwArUqwrdgdSvhbzxqD8P/rLCV1zK14f/+pS/DPwe+iXBV4jvG5BjWSSA7p8ngv8C/Dyj3iPyU9GeqYFpgLFon7jgT0n5i9A/Rn4q+D7P92GkJ8P/bui6jygOPvcTGV1f4Hs0el9F+5+B/zfBWxg599A/59L+Q6g3Cf0/Rc6H7G8awMfHtpPrNfjzUL44fOdC3rmu757P6Hfu//rAz16+Z6T+A/jrhD6rMa6qez5BvvmkFwLdp7k/87y38Dnnw0XwN4ByCZHrPny4/iyFP9ed2/DXnPopwf8TsAb181G/Pnif0Q79yS/j/KJ+wX8B/ncz7rsCfyH/GPy8Av43qL8rEsDHnn/4Phu+ZkLvN8o1Ru468NWFevORLw/1W1G/NPTa0387gO9l8OUgPx31N5M/E/wToDcLfVTieznWwft8b+v8Sf24fO+A3lLD58T4AXwJvJlo/+2UywP+I6TvI8cq9HsT/A0pNxW9nqJ/peN7S+rl5nseYErkrQn+qZQfDP7pfM/v+s/69wH56VjP2iLHLuQ8hX4j6L8Z3ytAT/vJHPp9bMZxe/TyFvwtYfwsY/ysAMaFr97gfwjetXz/Cv48X3cD78es5wfJP4n+PCfvpB3GwN+P7GcGwX8Z2rka+WmpV4z8v6g/A/mjHd98/9V9QiSAF6HflO+9wPsA+Cn6juX+BTnWkF+c8XQO+Cr6yEX/i3L9AP83fG8Lfwf5vpP+MRZ9veV8Rv227l/Id75uQvoT6i+Ev2y0n+eBtUDPCwPBP4/+05J9UkvkuAl8xnhIQPla2iFovwnI25vvc+D3PPxVJD2YtO3j/GR/tH/aX92v1ad9WsPPdvg/S3o2+a/y3X16VfAvRe4mwOSU60E7hPuf9hn74THSLwCvUi8F+nX/sILyDYCVXD/B+yry5SedQ3sM++ebjN8c7KNigSc/7fIA+GkkgIuBjThvnESuUuzDx8gn9CqDLwZ0p1P/Fb7/RvvlA08D+zf49iN/fuqPAv8p6mk/OI4+rtIPPd95nnM/Wpz8RPS/yewTrjo/23+1X0B3LfJ0hv8rqZELGAs9T6L8PPSThPR80r3hP4P7H+TICcwAnvnIs4Z0Z/UFvrfhNwI/1ajv+NYuuFW7JOko9HuS8XUQeABYh/57CfoJqfcT6Y+000DvCvSbMl+5v60EOe3quymnfSAJ7ZEdul2ZLz0vL6d/fuU8QHulA89o6KVnXdCuOQ354qCfOPB7xn0J+jnB9x/gb637d/f75D9w340eXMcrU281MJF2ZujHjRHA6QGIukD+RfpXhPVtM/3iEPRf1C6G/bk6+FtRfzH8vBAJYDr4LUe/uIuc6xi3nrN72d+h/wfj/RL465EerL2RcVEG/e9mPHYgv7znWb7vov5x6BUinYb1q4R2X/gt67gnfR25c7g/of3Lw8dd8LVBv43Qh3Ysz6FPqP86+FLT3y6hl9y0v/bAf+2DtG9Z8HcFr3pOAJ+ryE9Ju0WAZ+H3I+3D8JcZ/Z2j/gzvj6CbmXL3yPd+ag/fK6K3FKTjIE9H9J6SeS4OeDsgXy3474+e7bd9qN/Y9dh5NLSPfo/6tbxfo773Hp97voPuBvT/J+nvwavdOXy+WQ69Hd5fQedfOy7fi5JOQvkM4F8KvmqMh5TUjwl/eWjP1ozDLvC7xfHD+KsHHAOfX6K/F9FratbHyswz49Ff+Lx1Av4WUL8n/A+D/2LQP0P51uAfCVxH/nzavzTfMwDLAWu4/0Te6+BP7fxE/mb4rer5inHo/UFv5E5B/hrm44aRAD7l+0bWt3nUS+n9KePfe8MbzDf/g34pvp+Cz+6ki6K/P0l/5z0D43sF/e99+L1H/hT4uQ/96aRXuu8B30jwp2X/nh5YDf20Qv8TvL8CDgHulR5yXwIeZD5Opb0KfEdIe2/QMhLAC+BbBr0RtN8R5HuH/lNKu7X2LsrXA997ofne/dNR+lcN9/fUz8f4OuF9EO3RDH7jop/F1M9MvYPaB+CvWOh+YSx8vQn9lfSf4czPw4BpyF+Pvh6hv5dIl3M9Av9y+E8Ov+5PvJ/X7qcdUPtfdvpHcfrhZfYDbb2f5bxWEbgUumfoP40YH02A2+1P6KcMdLWv9IW/H90/M/+8RDsXBuamfnb08Yl2M77vYH4og3xnoev9ZHXgT45b6FVifLRHvsvo7zDpNvDZnPbPAv1MwATIvxU+nBe8V/Se0fmhIfr0fDuF+sOpnxl+/iJ/BnQ+Jr+I6zfrVBXgSPCfDcC/9pmJ9LvltM9W1tWN2sGYh1Mgn+eia/D1RySAT4DuQ/THeEB/mQf+9eDrRPvvgN+06DML+t0InTHgeUj91eQfdB+MHi66HtJ/EiKv9y19wZOf+ifhM6n+KdRPTr9dzPy1Hjq/Uv8x+Puit37QjwF/FdFfBWAV74fA3wf6K8FznPqFpU/5q4zzprRvaehX126DHh/SX1rDT0XkOeV9OnJGwZ9+M5XoL09Ij6V9v4e/5sh9nX6aFvpNSG8E7xfUv0b9o/S3wfC5gPWtBfX/h1zX+Z6JftAGPKWZt3LQDt8wfz2kPddD90XkHQ+/xaD/B/W9N9uMnr1PG8/8MQ44AHzR6OMb+zt83uF8EBO9DoRe+Hy9G36SoLfPwbfE+2H4G4q8T9HTe6RjUb4N+m0MHu0v/+hPhd70s5jF/UvySAAzMW6iSB8FXzftH+ijkvfj8LGQ8t3Ry2PohO35lRnPVYBLkesO/asy5asA8yJfbfSzn/56n3E5HrgUeQ7R//tQbzp493u+gO/48JsM/XifMNH7bPjNQnoA7ZSV8hWpf4bvB0k/g+8nwL+AqeFvMvyNRv416LUfevgCfA3AFw39OaSnk+4Jv+3Bmw/5bsK3/gND2d/dAn9K+l8p/d/AU5D8OrTbJvpvDfS4FbnjQW84fP4OvmjGx3f09+KOR8ax+5dY9LcCrP/Rtid8JGS81qV8AeRND3/On9ngJ5Z+bazPO9DrTmBp6BUG3wT4naJ9yXtc+B/g/gz5NpPf8zn2kWmk28C/54ru7udC54ucyKP/oPer3g8lRu+ZIwFMgB6bw18n5NL/pwvpA8jnvXMq8P2ofZL+sYz2iMU+4CD6uQDfI8F7F7oZqB8T+uvdj0Onqf4k1G9Lf6vP9/20s/fYfah/GhgTqD/iX/o9wH8VvldHv96L6gc5DHrej7a0PvTigKdtJIB5vV+l/ibK6Wc40PMt8GvgXfT7KeNjX8hPU/vTRPpvfujVZT1ZTftfRd5V1NuHPE8pPxj+3oDv95GrB+13j3Ldobeadryh/wztWZJ23kj6LnJ679JWvyG+e/+SlnpngN4jZib/DPLrbzGV8VuL/qG93v2n9vyvyN9BejT85tHOinwryc9H/TfRZxfoD0LvA4Gut57/knkvQbphyB/yNvgn054NqF8X+iPJv027vEf7PyC/LO3zE+VmALUj52S+f8C6mIP5cyzyeu+6FH7Sg6+M/nnef7kf1e5K/1mEvrMi10LSxSOUR/8vwtci+tnv4JvK/Oy67P16QcpNYj7ZAJ8TaB/3N9uZn64hbxzK6d+7h/6R23sz8PeDv3G052XnW/04aN/YtGtc4GrwfOv9D/LWQ39FoX8J/eq/MJn0GPRwkvbz/qkn9b3PrgZ/idF/d+2l1JuF/vUP6o/+vX/SPyiK+pX5HkG+4sg7gf6g3XWR99Teg7vea+/wPET+JOaTN8BXk3Qz9F88ZD8Ir7/b6G/6PekHpf9TcfLdV3wbCWAh6q+F3kjacRVwBPkR5OoD3+noL7XQT1X61zTkvsn8pH+Y5+Oj6K8C5d5GnpLg135Shv52GP61i9WB77B9bE0AogY7r7kPh/556L+Nvh+Tv5F0RvjVT7wmsAX07ff2d/0p9J/Iw3h4Qj8eAZxFP7ukPQh+9oI3A/p9C3zxoTuU9j0Mf+433K+9B/R+70Pym4Jf/7PTof3hZcp5T+36kF0/B+Sbr7+A/ZH6L1EvOfnXPUeC1/uvrvCnHf2R9l/qLXS+tb041/1Cegvn7PHgm8C4HMw4/RZ4GjpLtJ/AX/h8cZx5p6H+9Oi5N/znpf/lAbpOjtLObzyGfjXuw71fhn59+skS/ckcP9SPhl/vyeuT773XdvCmpvxR/d9Iv4YeS1F+L/3rAeePW8jTEXl7gn8961YM6q0jfR/+xzOeOzOO3X9u0Y6lv2NoP+D9vf5p+g8eIf9T+NMeWigSwMXwpX20G+25BbiX9p6NPKvdn8D3KtK3Q+vtaO/L+R4f+vdZF+cCq8LHGfqH979fi492GIm8W/TfhZ9x0BlKegXl/yBdQv+anP+trz+h/oX6EXwBX72sT/97Cf7uRSEX6UPQnwB/xgPkpb+Mpr1cH++gz2+gOws96/+wnvqVXHf1f6V99Dcprb0Q+Yyf+Af+58HX36QLeB8E/hzkj+C781Ac6J00/sjxBf+jsD/s5Xsh+LF/O948F3lOWg//FT3XadeC/22RALqeuL6sJZ2X/cEc6BkfZTyJ/jfqszt6Lkk6L+1Znf1occeTcUbU/9f/Br7TUU7/m2XwO9S4EPh4Cfkawk9Z+ExE+Un0l3jeH0A3Lut9LuT7wLgUxv1M7fbkjzIeCH71E8xCuc7U7wjcD98VvJ9ifrnNvP468B/m4TzwU599R27S2ZAjKetpMmBl9LkT+qko1wJ9aHc/Af/27/3wnxE9fkm54sz7C5lHeyHHZsrtAv/v6HMJcHiO/+Ib6b0p5b2nLe59Bvzrx/eP/gf6ZSf6bznr7aVdPU843+1DPuPvjH8yjsz4p+P0R+PFbvLd+M83KP8let0BbMz4ymv8HnS9n5iBfNvY/3Tiexn41r49Bvwd6F8zWJ8i8Gv81Cj4+5r6D+CvNvkN9G+D/0/1P0NfbwOXMP/spf5l4y49fxlPiP6MZ8gLP+5bm5BfDP296f7FfQP4Z7HfSGlcAumb6C0f9X6H78/cT+inR/oZ9EeDPxX5X6Bf9zMJWR8+pX0+I/8Y+I3/O6b/sfft7lPon7PcX6Bf7W7a4bS/3dFe5P0T+T3QZ0HyX4sEMAlwOPyG78fjUr4D+X/RHsfhay58xYf+GcZnb9o1I/WqQl//6Y7e7+iHR/1yjOdJ3oNAfyLjz/tF/aiGgVf/KeM/XoNuI/Qwm/qpGH9vIfenjJ+lIfz6a3hvWZD8+Mjn+lZFv3j4ML4tfP5cCz+z8auYRf6X3iNTfyL94xv2Tz2hd1N7DetPAfKL6gdBf1hL+3if+yXybES/+2iXhOjhMeNc/xHXb9ftvSH5ukO3PbAB8+FZ9D9Sf03arxH9RD+Rh9DLAt42jMPkjI8V8D+XdWUWcDr49iGvdo7dIXtHcvRXBrzTkeeG/vvI+RX0b+pvAP/t9Z9xHo8EsDb5P/Dd+NFBtN809+foZQJwIlD7Vhf4/937GObbGd6H0S4TgX97voAP7z+99/Qe9Cz13b+6X/W+V/9X/a/0u8pOPf2vWqG33NRroX8i9KsAB1PvmPF9nj+ZT7OSr1/cj+C/hrwfUm4f6UIh/+Sp1NNOpH3I+4gB3hvpJ4W8L+tPwzjx/DmRctplp0KnD3js38Ynn0Ju1+Xb6G8g+UOAi71HJX8D/W8d0POi8fFN6M/GcU6mv+9Avtb0F+MTVhtfqx69XzC+2H0XfBivMY/8TsDY6CcH/WOV7xPA3wrmh+fFdRp/ll77GvQOu07p56dfFOlt8DOc+pm1SzwnPkq/KO8X9I/KgH5d/y7rxwCeEdS/T/kZtH8G0u6jjE8yLj1s3zVuYjlQf9gCyGO8tvHbk+DD+O3xtGd43joC/+0Zd0Wo1w7830Ff/8A28KX92Pvn4uD9G/gr5ZzfF4L/c+b5BaQf0M7lWO+qGf9A+hf65xL0r59lIcrpf7Qduk3Rn+87uA84rv83cmgX2oP+frX9qF/W+GTyO5Gv3S1sjzuvvdd3Buy/vm/Cd/3b5MM4o4ysp2uRewP1u8JnT+p3hB/tbRPRc0z0uga8oxgna9G/cRt1oReO38gFvQLw21n/ZNLR8DUKWBP816kfjvtqHjrf3aJ/XnS+IP01/CVl3upu/Jr3hPTPW/T7lsxf3zEffEj9ipT/Fbpvo68m1K/peYR6NUhnh9/CtK92ihzo6Sz1TxiPDJ9FgTf116L+QOPUjL+ifg3jv4DN9Kum/Yr5zoV+/vDl+vuH8bDo51XGzwzaJ6/34doF1QNyhNeHQaF1oq5+UdDLpD+R94u01/PuOcLxvd5XGH+ZivJfosdj9NdmxpHwPRXtPIP11/gx7T7jQvcg2puzILfvEvlOUWraZxryXCPt/eZb9J93Kd8LfjqiN/2f9Z/Tb64Baf3ntlI/Efw6nyR1/tT/lXYrjv7rGw+N3PEp99Ry7qcoZxyQ60Ni6Hlu129MfwjPXytC8aEJjI8Dr3HJw8nPQr7xyW2R131xeL/8SuheuLbvGKAv7ze1q44N2SPO+O4M5c5D94r7Neab9ZEAbtZO4Psd8P8tfL9DPe0H3jvr52scme2XD3zGZxqvOQj8C9mvN0F+421aUj5s330S8mf8WH8sxsEo5vtMjI/6If3bHuq/MPJ/wLjo7/kN+T6nnvGnxp0+9n6BcsYL+36F9gv3t4/47v3CdeTX/3sy3/X/9v2O3PQH7c/HSPfT/zD0fon+SL5jkgH9VCQ/UygO6CP2L4ONa2C9115Qme/pn2O/3k77hO/vmyLPt7TrIeBh45Ggb3yecXkr9HcD/1TyfZfAdwo6POf8cB78xjfmpL5xP9o5jAcaGYCo+sZHQqeG6zP19adx/+v7EC3Qq+dL55XY6N9z8wjjM6jv+Xk67dGF/BmkSxsfYbyUcVrec0G/rf7q3k8hV2fPl6wHP4J/Kf19EXj0v1hCfzOu3fifttT3HaTw+0fGHxp3WIK08YfD9ffUrmS8GPn7kO8X45LlMxJA/cbK8b2mdiv46wr/xgM7T6XRf1P/YfiraZwf+GNTPrXxg9DRvy4N+6KUwNRA40WLQr8WeI23PK59w/eLgMuATZDDd7zikfZ9r3aud6xnL7AOJGKecv/1IuP1H8+ZjOe04F0Mfx/AXzfk/g7oveV29GN8kfNnX+bTW9rlyPedpyzw/ZL7Nb7voX18FyC+8Zj0vyLop5f32fCRjH7QSPuF+oCu9+Tej+fkftpzh+eRgeRvpz+2oL7+TsO0r9KOvuMz3vOo/rvQf8L3lI53yleLgl4oPsz93Ur9vqjXAHwT1Q/7Zf0BaxhHiX5OwL/xFfo7rvccSP069IvqlLsGXeMWnJf1szwAf77fZXumor7vd7Uyfp92Mk7L+Kwh1DdO2Xu7O0Dtob77ZRzfNOd3+qvnSt8R9P2TwrTvNu6lipD2/u09+Gunvz581kM/j+i/59BTd+axaPgrD/9XnBeQY4P2W8ZVOfhMQPo77e2uX75z4b0b8o2mnPb8GtjjklFuBfbh2dB/k7T717vgb0F+S+1K9O9XkWc24yom/aWN/j+hd5+0PxeLBND3AArwXT+INrSv8YXGkbqfK01+MvI7GN+unyr0D3k/rR8r+H1fpDrf9WvzfNpH+4LvRdAeH5Bfi/adzrmpCeUXoB/9U8sGIKoTdD2PnYwE0HjJCPWNo9xC+y32HMb30+DriPwpjT8AJqIdXtX/B/3oX/EKdLKAfxP5k8nXTvUqchSlv+/n+xnKrdZ/g/OMcUvnWJ9GUf8x/eMp8JHvyYJntPHr+tMg77fAGHzPCf3BfB/qOYn6R8hfR/l25F9l3PTXL5v0Y/jNwnjS7vSF400/PP07aeey2rnQ90bouy/qYXwP9HvQv7QHen494XzvuY98/bT0z8rKvLoLfEd9v8X5BX3MQt++q9vP+wfk1i/H9z4zgn8S81q06wnl340E0Hhm7abGOXej/X3/dB77ir8YJ6Xhx/5nv/N+0/63F/l9JyH8PsIK8j8z7s54Ge1fyLNJv3fknkl+CepV1s4GH3fgsznjJQZ6bkZ6pusM/PpuTlr9tdBfSdKNKF8JeBH84fd3jMeq5n0V9cNxKaty/Rd/Re257qvJ93w1Evyes5ag/5HI04V16BTlqlB/Kv15mnGQzjP6o6NX7f7eA2j/b6A/J/o7bpy27ytR/2PPxZ77oO/84z2y98fFqO+63jm03rvO+36W597wedh7+T3uQ6nn/bz7leLQbQn+xJ6fjPcBn+ug8YXej92hvO9ReD//Ou3vvVz9kP95+D2VU/r1QO918ncbH6H9Huh7tsbV1c7+X35dD+dTfgz4Znq/y3zXNeRXkzsSwK+ZL2dTPopyF8FfNHQ/kgU+vd//xf0m+UPA/xR992H92IdeVvq+kPfLxmGR1g5/kbTxreuQ3zhX41vTkr+NcXCadmiK/pMzHjvBX1LSt8j/nfHVmX5dnnnuA+jo96C/g/14APR3wmda9OE7n0koX5b6vh9zDvlSGD9M+dm0Y23yB0UCmIH+lQ++8gONf/o+NL873zu/J6d9vOfQPzM99H9G/hvo8TJwFuXC80IS0iOg90kA/n0nIwn7y52M/yraB5l/fDenNvR9P9P1cQ5yXWb+/YR95StA398qSf2O7HffBPpO0B/at5DDd++839+g/MgT9msuAx3fdX1bv0L9qH0/hf4WDd6r2ll9H475U/94/eWNb1/Md/2YfR9olfFjtJ/xjcY7uo7EQL45lJ+pH6nvy4BPO7vvGVSkfAHGv++Mj2MfZHzNONrN960SMY4zwU9F2tf3OdIAbWff+bC/+57SKdL7ff8PPWiPMX7P/xdw3+M+yP3PRfT2IvT6IW9C9P8jeOsF4N93nb4ET/j9VN/3+wf5uiPPKt/3oZ8NAL/7Xf0i7pP2/xN8V9Q4Rd8TO6A9DXt0J+cR7fXgdz7Iil7cpzs/HKK+dsKy7M9bwu+f2gNJ699hfLv+KAvR5yeeV6Dvuy2+45KP+cV23Up//go4Rbsd9V9hPqnPOEkKP74LkId6fdBzD+bnxcj7hXFZ8PUQuvWonxC8vuPUHnmSwod2t4zAo7Sv+3ftr7Npf+1s08gvSH5pvu8Tj+8nw6//K+H/TNzTT5d66ZHD9y98h+IR+rRdC8DfVu8nkKst80sboO97LKB9ksK/5++Wniee41dwD/47ey9n3Aj0H1L/COP/KND48ivU176hXnyfrxH8nSetP73+9Rn0P4C+9jDtZQWp/xv49W/4Fny+p9SV8gv1A9HfhnQ7z/Pg1z7aQPsn+5MxwDXAc8jv+0H643YD35mQ/cJ3230v3PeRfDfvIfkzkXcgfI9nvBdg3jBO3vXAOHvj+YzzK+/4pn58xv1PjIfyyP8Mup94vxKaf+uSbuh6AP91wT/CuHz6ofEhA/RvpP4vkQAaT268iP6o/j/FFfjx/ykykp8JmAG4iHJZmT+MQwvHn9k+2T2fwcdnQNfdfeT7DpJ+vvp3+i6E59ARxuuhf/8fx3s279fWM+67Aseh/w3ku97E8/4IOsZzSGcT+vJ98Q3I97dxScCw/2sz1m/9cHewf58QCaD2Fd8N8v9p/gTPm8wnnwO18/m+SFrkaeR8Sv007O/C61s4vmUY85PvP90gfQv6vqevH6Djx/f111PP/7EogL0qHvqtSv9vxzw8g/HfD/5ioRff3daO15X6n7mfBf9V5BhH+d7gvYT+Y4Bff/KO3v8h71z0/FrofXrt9CmhY3xmCsaFdvnE+unoj4c+fD9+Jvs07wd9H+yw79ZAz3dm/V+I/pEAtgLvMuSPhh/PV9Hw4/wfF/1H6TfG/DMR+nnpb8mod5L+6Hsy2oe0m+gPbxyY5z7fw7igvzjpg9RPxvdR4PF9rpd9LwH+i5GuzvipS/k/0Xdj+Ezje4f6l+g/TbmH0Pf9c9899x307JQb5//ikG/c3Czk0y58GHzah39B/753aPyq8d6+H5/F+x7t1vBzSX8X/UNDcX7G95Wg315lX3IN2Bz+nunXA55mpD1XlIU/3+F3P/m+/Qt6vlesPecE9LX/a/f3HsB3UowPPheKT/A9Lb/rX2F+U+pn834PfbSIBHBvaP/Tg/a+xPkmBvztYHxH+z9WpCtS/wx0W1E/uXGU7u/1C4TuC8br077+b0b4/b3ptHfd0PowVb9U4A7jy4G+69OY+cX3fIzHM07vB/3T0I/rvPdrrvcj+R72/+vk/QD68n9D4tPf/f8Q9xuZ3YcxP7r/cL+mX+qH9D/j9/qx3teh/AD9xNF3Gt9X008OPH2B+l+8j35f184O/76j7HtYvrO8Xv8b/Zep53sm/n9aAvSl/5Nxpln1P9Zeqb3JfRb5FSjvvZr2Re/XLrDeVtD/C/1W8T0g9U7+EN9fgU4M8sP/+3AN/k8b18A88Dfj/Ff988jXjzE7/OrHtRf53kR+zxFFoHPA+/KQv5bvr2t/1+7u/4Npfy/MfPMSsAgwD/rR/qnd03lP+2cd6C2C/tv0P98H7Q//2q3uQV97lv/P5346/P5LYv104Wcy/HREf7Xd11PuNfDndX/o/89Q7g75RSIBfMH/leL7VL63pn74f+V8RzoZ9BKyn1qDnOH3rXxvx/+32am/s37onqu8l9JfG3lL024vMy9OAa40/hK8g4GZjS9DjgWU9x3Mg/obQ0/75Db7nedl8DelPW3ncPuWNu6D77Xg9x34f969jPc9p9mvlKEfjPM9JcoNY9zsBv895q9T9I8EjFffvZkG//Pp/77f573556H9dfj/IR55TvE+NHS+1g6h/eFX+P+G/DTgaww//r/GHeTx/zr+hn4O40Npjz+hnwb9D6U9fb/JOMZ96L+J+oROU8o1Rf4t6NV3iFfCv/GKBwMQ1RY8+rl8pp+G77eRfxW+vT956v1K6D2Aisbr0V6LyW9M+rxy0i7Gy+nP4P9XXWP/W8z533sw35eA3r//Y6Q/EvL97LvZwJ+Ao6Hn+xK+Y/UT+jvtfIa8g6BXA/560L/PeX9O+yUBz2nnR/L72v6ec+g/jrfe6PkI9KbQflfg1/f236P/Kr/v8/guTwP40H9zJPrLiP7Kcn77Xnst+d5jPPT+1Thyxk9t6Ot/p3+w79XpV/ezcZT6x1NfO9xZ9JdV+xXfu4L3nveNyHfG+xv4Cf8/XnvjAiinX73/r6L/2Sz4+9jzIvhfIx3+H5lNxul5PvP9Hs8jEfj33TJgRaD91/fwD8D/377X4ftuoXEXAf928Pt/NLmQJ6fvedL/wu9Z+55tCeo7L9UkPwH034G/G+T7f4HD2d88Id/36qZ5X+17NOD3fUv3wb5zGRd+rxuXQL91X9SH9te/wvuFw65/lKtAvfK+O8I64PsknteMq+qMPL7PNQ55tENEmK/1I3oFeVYgn+86P4N+R/169XvQDsn47MZ8Znyg8YLGB+4Bfx3pw+cn2mdC54FM+i2Av7vvF/qOOePJ/4uNCfS853kwlf4Z5Nfgu/fDryJnPNbnq/CdG9gePo0v+ga6xhkZX+S7/suA4ff9/V+1GLRfLKDv/+2mvVt7HoM//8fJ86Hnwsl893w4HPnWIU+UdnDvg+GrAPwPIu15Ovz/Pd5X+j8+ubwPpFxW8Gu/jx2Kj95KO/j+mvFN2hfD99e+/75b/1Hj2bTPh94tqeP7f45b8CcC3xzvD7x/dD/kedY4O/qH74d0AmZj/vIdkWSsC7eNh2K/+4N+A7Sv71z7rrX+VNPoX+n4nhp+rkSgA+zve6nwv9d4Usr3116Kvvz/u03Ik813G9yvI98a0r7fGw0+7am14E/9ZkGOQ6Qn698O3dh83wV/uxkv0fRP59PUvv/ovhQ5M/s/OfoxMr5+BxYCn+9Z9w2tD3HQv/7Hvnulf73+9nOhp33V/4n2fVH/Lzrc/zJRXv/lNKH70pKsN4/gz/OG9k/tofmgr/3f+2HvAVqjf/+fzP2g/qK+h+i7gf5fbxXk8P1A/e28/9Bf1/Ov+27/9/VL74HBN0d7M/Q2Qj8x9d9hvR0OfvfB7n8dz45v/Twd3/8HPtNkYnicdZ139M/V/8A/RvbeI7ztPVP2XiF7fLKy90h2UQnZyoxKpMgKIbIyK3vPkGwim6j4+p3zez0ezvE6p/c/z3Nf997nuvt5n8/7rpo26v9/5TMEsE2mAMbOEsDDMQOYIVYA3yN9gvxiLwbwVfA84vtbOQM4hu+lsgawZCSAG0j3iBvARC8EsBfp5LkC2DAp5cHbgHR78NyLF8C7wKzxA3glM/iRa0gO5KBeFfD3otx4vudPH8BM2QNYE/5rZwzga8BqyJclXQBz8X0c6UHgTZcwgMmQ7xh8Zqf8auQZid5XkR4C/mLUy4ocu0jngt/96H8a+mkN/5WR73P4bwS9L8DzPekc6Kt3igBuRf/zyM9JOgfwAt+X0X6DwZ8JumeQozf8d04SwKnw24V0Odoje6oA/gOexuCtRP5ovjeB72/Q7x34eJv8VeghI987oP+foTuA9qxLuYHgPwG+XyiXn/oHKR8LuY6j377I14n8reQ/QN7TlNuE/rORP4LvzcCfGjlzkd8NPipnC+Ax4NFEAfyJfrSQ8sfg/zLjsTIwO+U2Qn9vggCuA64FDiN/MXTzw18L+GsKf+PSBPAmsGzqADZGD5VD/Cfke1P00Yz2+Zn2+4xy8aC/AX7HAn8E1owEsBjlZ9KetcFzAP0fIl0MffWD/xfJf4n8F+CzCngbwN9c+HsL/MOov9z5i/E2GjgKOAh9PYbfuNC5z/h+CJ0rjKs8wLzAuPTDhPY/6scH7yrol6H8n/A1G7x3aJ9T6DsOeCLoIRX94wfwzoNeBsbxCdLrkwXwBcrdRJ4Z6K8l3yfBx2LwX4a/YehvPvgaAm+hz5jU+whYGHqDnY+onwz+JyN/Jeino1wm8JWnHTcj/7P5AD38Tvm94HmD+WZp4gDeYDylBZ9620O9rfC/j/5ZB/n/4PtkytUEfyzSFeBnEfj+Rf/xkPeH2AGMS7o4evyD8VgJvt6nXAnwNQLfWOjVgY8T1E9Ge7UFFkBvZ2mfsH7Ww29l+DsHvd+BO9UX9Eqg733AU/B1CfwN4X84369Arx75lZF3XiSAS8D7lXho/8WuX8iXhfw04HtK/aTwkRH5jyBXNPnfg68lemhBvxtLO56gH5ygfPIYARwC3RnA19FPSvRSjnE/Hv21hn6R5AE8Bh+FSX9C/3J+OU2+88x18E9BnrzgHQ39pvS/wnECmI7v3UmvJv0r+ukO3tngmY589ShfBPmj2MfVofxi1v9vgTfAext+B8Ffc9IJSJ9QDuh34fsyyt0j/zH8xEFfrnuvIN+H1NtL+b7oKzfl/qRfrERfCeBvNPVLo++t0I3p+kq999hPdY4EsCX5B8B/iPzDwE/oHyXg9z7rXnngDOp/afvSf2qB/xz8XybdhPLf8b0efI0H/2n0lxV8eZGvBvWzUi8N8nUmfyr6OOC6A50LpOtCZyv1+/E9G3gGo78mtHt/+x3p7PBTnf6Tn/o1SPdkfJWDTn74Hcf+YCn4bzOfuG89xXzQEv0Xh78/4OsD6LwL/eXkx0Bf8aj3K+nJjM9JwDKsb0eRZyfr8RLadzLzwRXyL9PeV4CXgL8xfy2nfdLBXxfSyeFjFvhTUS8l8CL9+j79w/1qc9LOV7OQLxv5Xam30Pkefn8nvQb9pYG/H6jfnvqeXzzXDIfvaqRzwf8R6Lvvch+2FhhBvo8o/xN4b8DHCNo/GfreQb/YBXwT/eaHP/e/T0L737rkr3Q/TL2P6N+nGN8XwHsCffeF/5Xse/9Fvnfg8wn6Gc+47UW/rEW6Gf2nOOePcfC3m/Q+8C9kPDjvtwW/++N69NdMyDGS73PA7/7Vcek8fZ1yR2jP5bST560k5OcB7zX4ywQf7clPSv5S6i+Fv+TI7/p9B/q1KPcE+RKg35nIOQL9FqP+efRblnXjpPsA8p1ftsPXZuBw+N2M/EXdrwEfAK8FIKo1/MyHv/uky0DPc7fn8ILQP8a4bovefkWeNeg5O/NPDqDr2k/037fAvwn4AvXOwP/LyFeNftkO+oWofwH5vqf8LfS8inRhxu9CxtXH1C/G/BiPeXE4/Heg3lj00wu+SkQCGNN+7voE/YuU95zd2/mdcROb78WYn85RXv21Iv8o6drgTwv9OcifG30Uhs+azLu90fubwAbop3XKAE503UM/MRjfP0JvEu3ivL2c+ikYt53Q28/gqwq/xZFfe8S34B+K/H20z6C3NsBt0F/E+MvA97/Yz66mfzWF7iD4Gw0/v6GfjOijNPXnQH8W8mpvmev5H32ehn5r6l+lXG/wDkL+GuDdg3zDGJ8XSLtfd/++ifT71JtHv4uJXrtAZxv1J9DvYtNu40hXof7b4CsKniGkPVe+D/87IwHMjZ72w//L6P8M+BaS3xx91NXeBp7+6Pt39N8IuaKBm6HbAnxlqTcDOm3JH09+H9Jj3ddTrjH4dzK/9QXmYp4rYj71ZyLfb/D3C+03CPp/U24TcC3t2Jn8f/jufrkS+X8y7yZFXx3hsxf9ty/l51F/D3x4Pi1M/lX0uRO5G1LuAvTdV2qneEg7TNB+Jd/Um0H/WEG/KAneHdohSedkfquK/t6l/2h/ase5tin0C7l/Rb8l4f8tvntOmwz+V+A/Pvw4jhw/tch3fH+iHdvzEPi1H5R2PwT9eMg/knolwT+D/DvMz0uYN/8mvzz5mcC/BbxtgeOQ/xT6aYleRkCnAni6Uv8KcgxAD/fAXwv+BvP9MfVTkf8RfHmOdF5fTH+qz37mdfrtbubPHtRfxn6oC/qJZn6bT/+syXh/FRgN7BYJYAz4z67dn3RH+NinfNBvCZ+lKX87AFGFXBf43ov2jQG/c5HnF+q30v4JvAJMT35u7Q/Q/wD6T8ifBJ1c9M92pPOQHo382sdXIa928cPId4vx8TPpM6wneWn/fLRrPPrFMdrxZ/dHjJs59hv4+4b8D6hfkPwx0L9v/yY/B+n48N0LuJf2LcX8HZ+09gT370mASYHa/+qhj4fws8h9Kvrt4f6PfPdv07y/If86+Yuh6/joQv9NB+yk/Rz+PW9Nc7+L/B9BPxfts511uwr8Ok5/JL829VuQbg99z1uev6bSDz1/XYT/RPDxMekt7rO1NyN3Mb5HtB+zv+kO/dGkF9BfKyF3Meh+Szuepvxj+D2N3qpQbhn8fwK+SvB7EH4qUd/7H+97nt3/QOcY4z0P/SI3cCD1OgEXQP+0+wfqT0PetuA/Z7vBn+eSZOgjfD752nsJ9qntgavAF0X5P5GnO3xMyfl8ubjInx3+UqLfich3GTw9ka8pfM3xfBQJ4Ouue+DXPq09Wvv0eNKd4KcA+tCecQh8nm9mQWcYac83WeF/pveL7lfBP5t9z7DQ+cLzxgPqfQq+VdB5F/mP0D960i5bmK9uI98A8jezr8wI3hTg8/6tKXQ7wt9W8s9D7x/0kJP0UPsB9dpCbwtyJaJ/TPTeiPqvoMd/wN+K/pGAdSAD5RZqXwd/P+dV+H1J+wzt/BdwLuPpsveB4K8H/Ak9nIP+IvA9BF8q6LRwf0C9v/heBvz/aF9FH95DZyF9xfsx5HffvBw87p9fgv4b8NPB+wj5of2vgec87TfA+1fwPQV/PMr/S/uE79O8Z9tJ/fr0jyrgXQu+TfBTlfWiIrAC0PVyMPppB73N4F9J+3u+3k35x/Dp+bo6+yfP8+3A35H2P+j+HL42oId74Jvj+uM5MWSfbkz9UqSPkp8SecPnIc9JtaH/D/0yAfUyM99kRH/7WHezQWc58/3r4KuGfF2g4zy+F/5LItdF8D9CjtTo8yvnX/T1bByh3zKcZ3ICD1D+bfjXHhwbfrTnaB++7v4Tuo+cbz2Pei9PvQbkZ4Wfgd67QCcf/WEF/E8H//+Qt737Jer3QD8V0HMS0m+g3x3w1ZX6+ag3GDgi3fN0wvjLwl8s9PEIPXzs/T373V9pt2jOA96nRpArC/UKan/Qnsn++yfgeuRoT7na8FUYvR31HAz+U8AXkO+r0PyTFX5KgG87/Ghni8F6mo/8HMxvY5DvGvboZJ63WG9egl569+3kV0Wfno/rBCBqA3wPJ7+06yr81PdcpX8K+t5CvVeh4/3hy8iZgvyKzo/wcQp8OShvu/5KveLw/4B2m4MekmZ+Xt4u7Ncr069qM74nQO8i43cP3wdD90/w6/cw13M6eDvQvyfCV2z4egn5s5OuRXtEMy5eB06hvapDfzX9Z5n9ifYtAv5Y8PPM/kz/HgW+6vAfQc/d4W8l81Vs/WjYH3nO7Mj32dpF+Z6X+s3oL82BrwPfoX0b0t8bIHcb+B/vORx89Vz3KVcH/quw/pxGD1HOy9DvTf1O6H8teLpTfz/t3o52fsJ4eQqeGOCPCYwFvE796bTT5/B7G314v1Kd/pXF8z/9aADjqyJ0D3g/A97awIzwnYH6J9wnIl824C5gUvg+yfgriHyd4Ts/6Rvuz71fot4P0DsE/a9onzW0Swn9t+hHHeg/M9FzA/B2o31zu/7wvTD6eg96u6Afvj/RP6wG69JU6u2g3pvI25fv9+FrFvy3ptwk8mOSvyVkR81J+VbIk4Ly9q8kpM9T/zLnx1XaG8B3Qf+yUHslZX3YyPgaDaxP+SGUf+y5F3z73J+jj+Ho6XfyX/O+jPp90G9W6KYn3/N53dA53fP5TfTeAvpLwTeR/M3w+5r32fBzADxLKO+8rZ+O87r3T8/Od3z3fJea+S0/8noP1YX8JYyXdNqTGS/v61/ifg7+88HHYfjVf+pH8m0v/ae8f/HeZTv788K071X4TwfeQ+B9l/6ifUC7QAXK7/M+lfHWkfHXCbjLe2r9ibQPwM8K9FsR/r/RTwt6v1G/DPlp4X8P+FpGAlgffry/vOh5y/0d82Yl7Ez6C+r/oT3sL/BpJ+uU7Xl6OyifmPw+4Pe8VRw818kvRz3vZwswzj8lHY/2icN6Udz+qZ0S/BfQ1znPAfA5mfk1P3otg9xVXPeovx7+3oO/msgRD/lqeL8K3Z7AhdA5SL7+d56Lj4jf8xB4e7l/A/9I7SK04yL1Dp+/8d39T0vqJ6E9P+N7FfpDPspXAb/7Tf0vMiOn9pFSlB9F/lzw7Yf/h8z/ib0vob7nza9Y30p7znU+Qe/pOLe0cjySzg5/H0N/N/me4/R/eZV23Qy+dtB5A3mTk77h+Yj5RPvCItbzDJTPy3x8nLTj23F9U/sI+XFILyH9mX6g4NevSL8T7Rn1bV/v/dFLKfrDYspX1r8a+DLzxW7yZ7L/ise+Szt/0kgAvw7AMz/a5tA5Dl890G8c+ssLwM7wN0a/7ND92yztk/A1Fvg7/H1N/nbk3ax9kfqr4W8j+i8CnZ2Ue0k/Zvhr6P0LsBbyZ2H9SUv6b/In0z/7s671BfYDtqB8He329hf0l0v7AHo7Ax+1yHf8NvfeE7kWIMd25pcifPd8NQ25D6KfEbSHdsTsfPf8fZLxo31qCfPdcOT0fOy+xH2K5+Oe8D/VdQF+soM/J/O793O36P+jwKN9YA/1jsOvevuI+bgK5coxT9+kfBHW4+SkP4Hebuqn1N4Dve8cB/Cn33Bx4CnWR/2KH9IuC+F/OnS6uv/z/ozvp71vIV97g37R2iO0P7yH/vSXiIbP0uS7r/d+Yiz4khrfAf04yJ2ZdAvqt0Jv8+lP88B3lfraTbSjXIBP7Sf63+h38wmwmvdB0E1Ivz8D9D55CelE8LWU9Cfwd4b2GUi/OEt6Ivreh37WwWdK8Fa1vzAvOD6/o5+ORN7w/aH3hlegfxn8gwIQ1R09rKF/lHBcuC5Qfgl4PA/1JP9X7VHw43idD98tkcPx6z75U/2Z9QuEvw9ZX+pqD/V8Sft5v9GGet5zDIwEsB383sv4fPmvwX+c+XQx7dINaP88avwFcKP7GeNX9CMENkDvKeBPu6/22UPSh7/57ifgLwnlT3gfynx0HvgYuCG0vqjnh+hhC/p9RPlO0KvgfI18u1nf1tNPXqG+9oTknDtzAxuxH/H+Vn2dQI/q0/F+iXZPq/2adtxE/XX663m/Dt3j1G+MfAO0T6LH/vSvV+G/G/wPJ12A+tU8V4C3kvEztNNXji/SxUP6u+55HXiA9XQi8uj3or/LY8rdhD/9MtXHbuaPM8h/if591LgJ7ZXwUwB+G4HfeJlvvJ9EXv2gEqCHaPcT4B2IHl33M0O/Ovhya1/XPg2/VeGvPLAcUL8n7R3aQcqhT+0hZ6HbCbkqOr6h/4Z+1wGIau3+FfnyQM99gOcO548d1E/q+T3kv/UHfOqvrj/7U+/bmD8H0I9bMU+nonwS8A8Fj3aUR/C/wvtb7bvaM4wTgp73f9oVvf8bCt10+g+H4r/O639DflHnYerX8L4RvKOwF3eH3mP2N7kpX8F1APydoN8R2Bm4jnLe327WTopeHtL/JyFfM77r36//90PkeQC8D3T9Tcv62Yz17xZ8P4DfOa57xouG9o/tnB+hVxR97Ee+FvC9F77C/o3Gb+4E6gdvPGch6LsujUfeBfD5iP3SbfjITfqi/pCUL4K+XCdcH87TPkPRw1nSs7wfYtx4b+h64v3hCPfb0PtQfy7aI6JfBPLYX3eDf4J+ZchX0zhd6mv3iaO/IPxo/1mBPLMiATypHZHy+sedCPnHLfT+XP/9UBxZHMppT9TvrJjnPOOToH9Re63nVPhLQL117kOB3k8Y92E8gOfg4saPQV/7kvam76D/I9+NEzUu1Hsu40nbu78BXz/yKwYgqjL5+hF2JP0N7Tncey3S96Fj/GFbzgHaQYw/LAVf8ZHrsP7N0C/Juu49VtFIABN4PwDeu9DVP3uZ8XvQj2Z+vkI/XuG6Qnn9T8P359UZLy8DiwOrw6/+VfpV5dH/2P0ladc756lo+nde1sNH2j3p39qhEsOX58LJ4NO/xP2f9olz6NP4ptXwdTnkJ7ANvJ/BTyq+z6e+8XSpSc8grR+285N+7xnhS3/4WfDvfYd+6WXh5yb9w/i6frSj4+i8/nek+1B/T8ifrjLzddjv7Gf3D5TXv/EH8OjnmAf840i3Mk6T+u3R2zj4No7R+/st9LsL7ruZHy/AR3Pk13+yi/5vyL+d8juAP7I/W0H9ePTbaL73CPnjf8O6NB+4ADgb/px3J/zH/DsL/ZUEb2nGRw3oj0H+ZOBz/Gr/2E27uU9xf5LCfoe+mqB3/ab089K/v4PrF+1hPxsEvpOew+C3Af3b++4o8K6IBHAe8rXRfwQYthcu0S5D+nPk0P94GnqZApxq/JrzNvTfRd6S2j3QTyzkMh4uCfp4k3QD8keQ1s+rJvUfo3/vvzxver407bnT8uZ7X5YyAl324w31z6F/aX9z/30J+i3pD62ALbxHRT8zaL+bzNMHgPqbGG/ZHqg99RPqez88APrd4X828hT0/QnShfRL9b0E7S/679LubcGfh3nhsvc/pHt7nkD+44ybvshXXfsn8r0VCWBR5NP/eRX89YYP438eZH9ert3emyPfa+DbDr6VAYg6BL0d3pvQvttIv80+7rJx0Ma/GofuPTL0c9JPvVcznjYH8t0FfwH6fUbw6392g/XIdwluAhdQPz3rfgO+NwSOME4K+vorfY2+WkQCuAZ6t4BrgYup1ygAUd8h72j9V2lv9x2FtHPA11vI39D7SeT723UgFF9Rzn0DMBv8qt8K0NXuaTx9ZuqnoHxc6vej/81ivolB/fnMv3vh7wHt5vsA+gfWor7+e6OMY9Y/JBJAz6Oeb3/Tzm+8M/NzUvpVMfrbI+g7vrZD9yf4n+R6qP8V+UUYH9r/Wgfg2frp/tD9rfYB40vrQW+t5wfWvfHgn057un5ewr6sH5rvB9VA3ljQy25con6+xt/SfvPQ3xDG/xLyyzLu9Xf6l/3dHe0byJsfWIz+mRq6CZBLP/F+8KV/uPF3lbTPGz8LP76X4fsZvqdxVDsz4+mR9hr47wF/xvPrjx8bPMb37/c+Ef18Db/6t42k3DLvW93vIYfxWcYzhvfL2i1b8V376gL029O4cPB5P10N/tfR/vo16ufo/Xb2UNzlAOgaf5kdfVWnXUpRXvtlFvRnHHpm/QmgU5p+NTcUR5HV/SftutfzReh8cw39ZEbOL9DHFugnB+8V8J5l3KSkPffCR2r6RRbfD9KeAn7PccPB24b6Q5lf9JtazvjpT7kIev0wfA43nhb5/uV7RfAYvz4mdK/X1X5EvvepB7THsp54v9rY+37SN6BblPYvyrzUiHYcBv+xKGf7/864PKM9Az5G0Z/yuz4a32ocG/Q/lm/0nCoSQPdHTyhfn/2R7xm5b3/f+Hvaw338x8Y/A5f53g/6iUv7ZIVeYuT0faOrxo9BfyZ4Pefq/6efvuc27XM5mM//Nh4HmBZ9/532+e+vUv8E48f41mx8zwwfKcC/h/p3+X4WfjuQX4fz62zw9ddfgHzHo/cKDelHIyn/N/qq4r7c+03a3/2p8SvuUwfDT1f6W3rG8SXabzflB+qfQnsOdByin+O+r6IfO/k14L8r39fwfbz24kgAjUc7Ar5qfI+m/gb4r4Bc8ejvY+G/P/LPp17Y/h6+94g2jkv/S+YX3y3QL8b3Cy5pP4HeZdJdtfegr676D4BH/4GF6OcvvnvPUZ317SJyGZfUHD6NT8qifwP42sHHHfjzvtb720+1YyHfD9qnKfcq+PdQvzf4fWfjGvXiQz85fA2jnyQk/Q3lhpFOwjy3nP56zzgW8P4Dfc9zGei/eci3fxgv4LtCnl/fBnp+9Ty7w/gi9N+I9Fr6f3rw7yNdEH1Ewb/3nfrDdtWOTPvMQZ7p0PN9M987M27VuKAZ4Ps2grzU1w/hMN8LgP/b0Pylf+Gf+g+B7wvy9Y96QHos46MS+l8JvZu0Xz3KG+9pnFwb+NB/Qb90/dT1X+iA/m7TbufI/w76JWgX/SrC/ha+V/F5aB51vn2T786LU+Avhf6y5C9yfoFv/QOcny/CTzh+cy/pFejhL/Ccov8t4j4l7F+7jvZti/zhd4L2ot9j0PdeLXzfdoq09lnttTuo/4T2S4/cvkvn+Tkcv2DcgvFHJZDLe+Lw/bDxtMbXDqe+8bXT2A9PAU4F/g3e3zx/RwJ4HDk2wP9xxt1G8o33+5T2Ma5d/2vj3bUPZyA/J3o0jqQR+eXRT2LfsaC/+h6P9h73jdqB9PO4R/740Dzj+vM/8t1nnYIP91kZSFc23lj8yDcb+ccg93TwpNMfyHk15NdYA3zGbWmX3Ruyz3qvkEZ/Oc/H6Ec/FNvX9+V8fy85/Bsn67hfEHr/x7h73//xPaBwfH8K6BUh7buOJ+Err/M3/ct48Um+I+D9KOVfRH+zwOs87vz9Nvrz/nE3+O4ify7mH+PD4hgfpr8s9Utq13J+0R/J9Zfv4fct/mteNH6ng/fb5IffH0ppvA369b3SXvSfvbT/U2Bd9iMrwVeY+bSo64f+dr6firzGsd0mvU07TwCiMntuVe/6+SHfetIfwkf7SABPs95ep1++A37fyTCecrX+KtDNSPscpD19p9HxsTv0PoD+zoOhexL5KlL+mPYvxyvl6vj+Cd/P8z029H3/7ap2FOcZ2mk+8iUxHjD0Xp3xp6dC9iXXa+NZv2NeWgY03tX7Le+1vOfyPaZK6KsXeuilXyD5+h14r5vW+Gv0ZfzcZfs1eBJT/yz7Y98RCb8f4vtYVUP3p76TdYT+cBjYiP3FROh3p//o/ygd8b9E+eLAPdqbaJ9SrE/amcP2Ze0h+p/p76V9pBrjYjHyfwr9VaS/dP8AnkX6c1Nf+4zrVHh90r8vnu9kM85e01+Z9i/gO336R/m+J+fVLODfQb1CIf/YsB/RGfenyFFWv3XjtX1fivru+z0H5CTf9yHyIo/vRMQk/1Po2n7heS4c79EdfjyfG//4GXLqp/tNaH3Jid7/0I7l+0/Gn/oem+dZ8FcMwLN503nU+/NtjLfZQO2B2v+8H/HewPuEHo4P75Mo5/7zIPz1pN3nwrfvpfs+uu95+r7n1FB8h+fBCpEAGqdqfGpV6OZAP74D/wF8TIbvsr7vwvjfDD77zU/6sfgOCPnGG48h/avxSfoHMl58z8BzS3Hvz6m/FLpVgVs93zEe/ue+yvmI9hvie9jklwf2gc4W+NYfWTxDyDf+1X29+3zjX4/pd2L8P/gm0D5he6XxBL5POhb9Gz+ywHFEe4fjfyuB/yz9o4zzkXEt8PsO/Bm3dtV7a9Lfgd94CM/nxkFVhF5D+ttN/f/JX498W2m/2Yy/B8xX2x1fofuOwcj3Lu3re5Xb4Mfz7S3jE43ror7r4bvQ/5d53TiFr+wPofdpNvj+CfAf6N3h/KVf2w3f84Ou712spJ7+be7/tSfqHxh+LzoTevHd56nMLyN9pwH8xn8PZFxuRf4tlH+NdcZ7r0nGR3mvRv175Ot/uor2ML7Ld496kp8VPo96vkeeLaH3h9w/uG/w/Ubfp7Xf7aGe/c/333zfzjiUDJTzPQPvm3vrv208COuZfjVhfxvtW+773Ae6/zvOuW0I/ex13w9E/s58L498hZCjAPnJ6N/9ab9OpE9EApgKeVai9zTw29T33JDH91PsP76fYvzlpFD8pe8/em8wBDk/Q2/HqH+C79Oh04R63YB9jBf1/Aa+DNr3oVuS9vJ81MT4F8ZTfO+t2K+2N45Z+04o3qIx9RdxLvWc6v7b/w9YS/80fm8daf2nTqJ3/cqj4cNz9RTk9l0A/YF8H973xPWH8r3xIshvXLHxxMYb34O+66Pr4i/w7/pYHLnGRgJo3LzvH++C/130pyWkr5EeQ/2l6Mn7DP070kFfP8+w/7/2WO2zq6CvffY6+vL/CIyj837Hdx2LAStz/jC+Pi/9cyj185H+nbTxOd/Dv/E5xutoH7mrfxpQ+4jxYb4rYpyM+0X90nvSPt5H19P+RP1b4NUf0vcQDzOvlyV/mn6KyPcv+poMP2nIT0v7XUIfW3wXmfXmT+ob312e+sZ5e/6ZQLoB9IcjX2b9XeCvTwCibgK9h9f/siv9Xz9M/S+rUq4m+poI/tvgT0ja+33Hh/5xmeDP9wxu0d/07/N9y8fkH3L+Ad9q8p3fJ0aoJz/kJ6B8Occn/B1GvpnYQUbBz270lQt4F7rGU62mfY5TfxnwGv2vLvneP7jurEau76E/G35Kwrd+KP5fkfsf77sOoH/3P4noH/tYn/cCteN6PvKexHPSXNLG0WWB/mPfa/D9Juyu+i8lIq1/Xwr64yD4Ks9+oRTl03M+zKB/ENDzg/tH7Yrd4U/7h/5R2vHD9vtHrAev8T2mdmz94+m3BcjXjl6efO303ktov/d+wnc5NtIusUnno32+pN+so53mkPb/F/QL1x9cf/FJ4Pc9zkOe1+DD8fOC77og/2TPq7Sb79lX1E+b+r5vr/7UW9gOuhp+CxinF7rf/IDvw4BjgP2R5yl0fWegjvYW/buh7/nJeCn/T+GA41P/K+3k0H8RfF0YVxlIH9Jfkv7ofbrnFf27m5F+GX2cRJ+X4H88+zH//2kD+PbTfqMpXwr8OYBJIgHMCz8z2B/6Lk5p33ekP8WFThvSjxlf55DDd40cZ/oHnocv75t8v973At03u192P72d/BneL+gvD/8F0Y/71tPgWUL+dvsr/b0y7b7W+APy3W8YN57ZeAbob0budNCvhn6T0r6T3b9T3/9h+Jjyvr9/in2t7/DXp1wp6Pselv9/0cv3K/Sn9v7X+wv4X+C7COBxnvB+LSPtux79pmO+a0z98HvSxrsXjFAevMaV+P5zcspn0P+e/FfA+y70U2BfWRl6n+Ya5VIz/tMCM/mOEP3vHvqICV+d0Yv3J94368foO3UToPMzad9nuwWejcaJMf8673rv4Py7mf1FK2D4/STvRaL53lA+kX8X/cX4puX0J+MHfL+1M7Au5d6j/ut83+X+nXR1/daQ7wvStvNf4J9q3AP4WlIuj/GdjIs1jg/g9JB98jx85XX+09/N+23PrfqPoB/tcr6/8ew9Du2j4Cuqv7v+JBHkoD9MRf6GlNe+fpe07wU1YR9TH/6PkH9Vf2fw+36F743+FhrH3eDPd9997935zPc3DzO+jDdfo30S/l2/9IuuF1q/YtD/fKdWv57b0DPuzfdCjHszvjgx54Yv6Vfa27Sz+f9Jl0gPIj8j9IfRP/w/Lu9HjM/wf8nSUD4ZMAv5vgtWm3Lh98E2Qn8j+ca76me/jXH1FLgaPRyiH14i/QC809CX8V7N6B/GQzYnbXxoY+j5/z/hfVhBxw/1n1LvEONnPuPtOOtjOfrXOugnhp9MkQB6P7EGPCOhb1yr8a5Hmb9uIucR1oVbpPWPm+z9OfTjIN+X6Lcy+jVu2zhu47f9/5DwvdVQ5FN+/dS/NY4CecL/N+L9gPUz/Mf+1/v1HMYb0/4J4WMR4+fZ/6+gn5jI4ftXvmeoP9wT8Pv/aO9xrnwfaJzm585T4O8Ift9/Tqz/P+PG/63xHaik0NuGvhNr5wAmMj6P/uH/XsWiv67I+jz/8v1i+uf5vwO/b4LXea4gfITvx/SHWQ1929/4ix8jATT+rL3nMfRuf/wM/lIz7lqTng6fvj+9CfwR2td36PVHMm7I+xL/P3Mf9At5biPdGXpx9c+iX/h/KL08Tyqf49W4eOgspv95PxgHPFmRr5/xF6S99/Cexf9fSkt97amew/sbP0m+cQbGwfs+9bfuG9Fff/dhxv/6/wLMkx0Yx8b7fgA/RY3r13/V98eYb6b7jglQP7wxyDkOfmoir+//ar84SL7/z+j/WyaHfjfjkNCvdp6PmJceMQ+1Mx7fe23gHOR9SLoi7XsB+9xEvvsexGHot/H/ff/jfxj3BiCqqu8het9O/Wj49l3xV7yXp/4txm9p2m8m7dEkEkD9C33X8yD60d/QuCnvsztDfwr5vq+i32v4/SvXZ9fl/sw3rs/2/x20o/3f8bDN9/nA7zg3vsr/0/P95eHgixgfTH33t94Da3/sSPvqP9GB9F3y/V+rD1l/jQ/cBh++T/kOdMLxlpko35F0ceY3z98dSLcHlmR8+D8nxvcZ/2d8n/F+nflu3JL/o+j71PM471zT7kS5pe4/sR+0Jj/8XoH+efGpF45v1p+hTCSAvl/j+zb+H7X/Tz3G+wj9dz1X66ft+Q38+sd7j6ffiv7x3vtUJR2+/xkBf0+on8j1g/4xxPnW+Fzk9v78rP6R0K0MHc/n2m99l9P3n32fU/8e3x/ISrvp5xP2v/s8dM/hvU2OF5/n8yr1b/suHOPauMI6wKXMJ3kpt8/5Czn1LzgSik/Uv6A47TPUuCDku699yn0F9Hw/xPdEWkHPOK3WpBN6voCu51vtxJvA3xL669mfRKEn3+XxfrCJ8R6ew8F/FPzDtB/Bl/ej/u+YcqWB/9X6V0DX/z+cBT93tW/pf0A93zvxfZMUyNuN/OSko6Hvee9r8jtAdxTrR1bmgwjzQGvgAe93sC/0h88v8d/QLvW9cePwlZB5bL9xtNTrTz85jHwvwscA5oMP4NN383bSv/8P9cuJe3icdZ13/M/V98A/RlmVvddbRtl7RKnMskdW+WSGbNmbyCYrJDMzZPsghPgoJFsyQohsUTLi93j8Xs9nj4fX4/F9/3Me93XvPfecc89d555z3wXTRf3/7/OsAVyePoC7swfwTKYAtswWwLGUr5QzgJtIn6B+1SwBrJ0rgAnJf8D3v8FX9cUAnqW9uNT/k3LTcwSwAfl3yI9D/eciAbxLft20tEO5CdBbIEMA22QM4B7S/anfMVkAOwGrxg9gGtqJ91wAD0DXmwkDeI52CoLvAfivg3ca/D9IEcBczwewOfnLgeefDeDC5AF8j3RX8peQXgQsQbvF4O895Pse3+OSHkv+MNJ1yO8NvZ1I30J+v2YO4B7kuI/+XUv9ZMDPqP8J5V9CLrHoS0u+L4H/m8i1NvXeTxXAe/Tv40QBLE/+I9K3oL8K9DWlPzZC34xIAFsFIOoX9YT0HfpjPOWLkp8Dvn8B/6rU8IU+dk8TwHXQvwd9mIQe7CKdHzw/gb8CfFeDzm3IYxP8PwN/5yi3mvxXqN9B/YTOHuTHkm4I3pzAV6EvFf0ykXJ7wd8X+W5JGcCfkfsY8l+l35ZRPwb61oLnS/LPkl8a2Ir68aEvZ4IAruL7efh4AfleIh0BX2Pwl0Z+GfnelfKlIgHsjf6NoN0c4L9qfeqV5PsM8B2nfGfwfYU+paDfkgPHQNdS8GUF/oAeXKL9JdSvD77FpOuQn5FxWfmFABZPHMCR0JcYvL2AR+AvI/WH0f8N1H/yl9JeSuo9g7y7Q/df1F9J/cfUu0z+T9T/l/otkNPHlM8Kn43Rp3XAycivJfRfY16qAf6bpHOjf18zr61Az6/Rzn364w3auwK+0vD5DvhaQd9v5LeBjvjQ3wN5t6ae+pUc+mcxvy5ifMahXHn0vwDfh0HPKup3B38a6HNcXYSeC8jbfpvnOhhaD78h/yT010N+W5DPBsad+tiB8dif/CfQWzoSwBLgawL9GSi/jvwcyOMw+IqQXwN5fIL+jUY/UoA/F/RF0T+FSLdOEsB2wBTAA9A3A/nNdx0kfzh4trEebgH2TBrAetTPjnzz0V5a6n3q+sR8uxf4EvKtQvmx1P+SfquEfC+BJz/yyMS4nk/93eRnRi5b6U/nuenQ9ybpjuhHHdLjnL9obxXfd0LPC5RfSvsZGf+3aHeF+ynk0gQ4jnHyL/1bMQIe4J/w2YD8P6k3Bz1PzfiLhq9dtLOJ+oWgrxb070af5kCX87jzd13yY9R76k+Cjiq0Pwn++9Iv2cCfAXyFyJ9NO/3Rv+58X0a/zKR8EvB8Af4LtD+LtPp3nvpXae8P9QD6O6Jv44Fr0IO0lCuOvPsyLvoD14D/NvR0pR33GZuRf+G4AVzpvEL5xrS/EHndo15q5wH6Jz/ll9FP4Xm+rPxS7wF4BlG/pesS5U9S/zvaf4w+ZEI+6ZF/Jeq/Rf3pfD9CvXbwfwG5nQdOQl79wOf4yohc85F2nNVG75NBl+thH/A/JD0eeragx+WgQ7kmhf+H9JvyDactdxr9Ksp8FF4/GlH+GfetkQBWoL23yU/ofgv6hpE/Dfzd6P8s8QJYEXgdeT5EnybTv4f4/hv4voH/dfCRhv3SPc9X7m+AS2k/gfr9TACXg+8K621b8ptQbwZ8H6T+Hfj9lvyMpO+R/wb9sxX9TYocioCnC/x7LikN/SnRky/BV9D1AfrykE4O/p7QPx2+F1HvV/Bnpb049F8t2tmN/j2ArgPg/wmYBvxJke9E8C6ifCHKbYA/z2sJ4P8fypdAPrmgI0uo/2uzvnajn/cgD/XE82kv0p+DbyB6UIb2lzGfLIbPPuCfS/nXqV8dOkZB72Tar8U+oiHyaeM6w/jLAcwO3Il+FGTctgAeoZ1fyK9Df7aIBHAT9B3zfIZ8N6N3j6CrDfXX015J8LxOOg74OiGfw9D9Cump0P+Y+SA98q3I/HIZ+Zx3fqW8/beY/k3CfFUGvSsLfBk+xkP/p8Az1F8B/W3pz57Mw1WQUxvKjaL9hKSzQX836KlFfdfFQuRfRH6jAhD1Av28AnzdyL8Mv0PR98bI42/4r0S769GLY9T33H2d9t+A/humqTdH+wjtHwDPceT3LOV+43s6+qkF+Q2Rx7vA5zzvQ291zs+92b+9A77G0H8Hum4D3c9cyvI0na577Wj/AfULMb/3RK+KkI523aD9otRbyXhZDf6b8H2Z/mpFOyvhby7yvIOcXqZ8Kfc75P9D+Z3g0T5SGXl3pnw79Coz/buT/o0F7gK+S/n36O/jjK+J0H08EkDP54nhrw/pbtCTnO9R8PU99C6mf7oy777HuGgMTEw7xeF7H3ylhq4mzK+PwHeb70co3wb+Pyb9Iu2tR09WUv9F0rG014r1oLLrG/UHuu7Q3lHP89B7EDiQ8Z4Q+Wq3S4VepATGQE8i8H9I+4/Qj6zgn0O5rcDvmceGa9/wfIp87kUC6PrRlP5IQ/1ilGtNejP5rstxqJcY/NeY1yPk94S+JJQbDL7m0L+L/r5D/9dmPNUBDnVdoP0xyN/9SHPS++mfMfRHQ+r9AP7K9O8B6LtA/g3S34P/Lcqfo/9q0B+DoX8D9bpB/xjk8RH475PuQ39sAc9Z6mu3046XnfxfQvYR7SJnwKt95BLj7Qb4DzKPON8676UnfUo7E/pVlXZbUL8n5bVTLWB/mIt639KPJ+B3Ivq4GHiE72vpjyPMX3mYP8vQP/Hg5xf0YTjp4ch/DvT8gbwvA6do50S/akHPKej+E/zbkI/2tILwqR3uGPnaj7QbnSVf+1F43jyLHLrSfl6+l5Fv8juA333nk0gA3Y9mBH8Xxr12iI+A2nd2wV8i2kvkOZ78nIznT9CDa8hhOvg9t2an/jH0Ixv0NUGu7vPD+/sK8DcaPj6Az9dpv6fzJd/30d9nXX8yPU33D+BPxPj8Fv06R/8Xgq43gbNofxR8uG4UoZ9asr6cgL9WlLtIOjvplNC7Bz0co/3f8QVe9wPaVebBzyvwd4v6mSh/lP7q7L6UceD+MgL+rsjhIbAJ8vBepx5ycb3yfqc49OeFHu37T6C/F/UfQd9Q8O+jfnn6twLwde+BkM9ntFcGfpqDbx75L5POTP9cof1Yym+gf6Zqh6X8FOgoQr52javwGRd+PP/1p77nQM9/8bVz0O5HpC/C37P0V3zgcvKL0f75OAFMp90VeY4A/0vQsxF+BkL/fvK1t+cF72LKH/R8wbipDH3a04ZAXz3wraFebto/SXvK5zD0KSflU8b9Nv1bjfz89H+05zHqu99wf9Ge9mdSrynfH4D/Y9bVytpPmU9+hP6F4CtA/hTa+xY85ei/+fDzkPK3kU869o9HGB/PQGcD1zHph74OpDeA/x7pr2jf8/Ri5o8+8LcJeg96v0N++DzjOScz9LYD32nwFwHfIPAVon31Wf0uRv0PwK/90HPZEvirQ/2t1B9C+SHwNwn9+RV8acAzkPrpmN+qQX8p0rWdL5h/tPuH7wMirK/16Ncz1N9P+du0m9r7FL6vpn3Hf0/mM8f9DtL54C8F9LwHnzXp/zjs+/9ADy4Bf6B+LfA/R7ujobsZ+R9oP0CuJ5Hfd9Dh/Lqd9rzXbgb9N8B/Hn2P530B+SdYf9Jg9xpDujJ4fwxAVG/wNoVO7dGdwD+d7+WRYxna897zivtOxyP8fMp+p7b2ZtpNS/0ezGs1KD9Y/wXkcwD5vAH+eeR7/3SD713QgwzUGw//L6EXS5D7Bcp/BT32y/vmI79Lrv+k50JfI885jD/t79rbtb9PhL+kpJejP7vB4/y3D/460r/jwL+a9vPQ/g/ea4BvAeW7Mr66ADsDz8J/Q9b3WGB+19tIAFew3i9y/SV9yfttzz9A7aYNkdcpxtsG6HYe+cb9OfTe4vs52n8R+r5n/RqhHiMf9f999n1NgNHAVsjH+5BV1HsZ/M3pn5Sev/n+GuU8L3ieagY/u50/qO/+ML3jl/52f3gAvHfJPwAfiZFTXtIrafeQ+yLwH2U8pqN8BcZpau//kI/+EPpHrADfNuixXwaB/wr9uZv2a8PHHr6no3/L6a/BvFoRPHcp90foXOL+2/v6i+jbBeD7yHVNaH2vCv3asV3fM/A9bP+fhXyrMX9MZHz/DfQ8rj2sHO1qL5vi/pT5OT7wE/j8RP8b6Na+o73nb+ishdxqAt9HPo7v3e7Hye9EvZ+9z4W/EdD5K/QNAE9n6nk+V58qgKcd+XvB0x6608LfIPY3w4CDgbnJdz/ivZ7nJe/3HHeuQ/XJv017w6ifgXaXsB/6mXRv9KA6/A7QHuX5iP4aSD+eAP+70DMCu+4h7dvA7uRnZTxmAS51HUZ/tf9p7/McO0j7q/YP6OgN9P6/C+t1E+geBP7Psj5d/iB49KeryfidSf0ByMv9Tnr02fWpKePIdemQ9hvadd6/HwlgFP23g+R97zfAl0n8yOs6sCXt1ya/APvSi9QfyfntMO1odz0M3xWRZ3r1G32aiPzzU/4S+LqyvpbDTlmd9jaCrwcwBjie+rc8n9L/7em//SH/nSjkk4j6ZWm3N/KrTf5s+rMG/XaG9PMhPV5DefV3AHQPph/tf+0r+n9tRW76f01zvWZeqY+cxpJeGrqfdx5x3jgM/sPo13fo11Rgffpvk/fJ4JnG9zvgD4+nX7UzIZ/ZtKudzPNVafVceyKwIPymp/7r8JOTdhMwfy4ivwxy+wI9eNZ7QPh8jvVsB/j/Yr1bEwlgcupVho9y0LWQ+nXBl8/zE/27kPHxKvxpH5iAnFxnM9C/29GzBcjhy9B56hBwP3QNQ77O76dpvwjldtG+/lSj+K6flevLAMaT618f+Cpt/yHfbp6f4MPx2Zb9WAz5+fj+O/hH0x8XQvNZOfqnGf25gnJlGMfXoGcO5a+i3wm0r0JnDPT3ofwO5LEPOrTr7iAdQ7n+yKcr/Z0UPdhG2n3UDPqvEe31hc+GyEf7airkEk26iuc3/SmoVxa82/QfJv0n+ML+iXHhewh6GKVfKfLzfsD1szDteV/Qgfre72xh/+D9Tnz9XVM/zd8o6JhDvuf4JeDxPD/C+Q197kH6KvUPsR7PA/6gHiL/P8A/BD5OkY7yXOH6j3x/1A8E/p5Ah37RCdXjnE+3eyjUfmPtaNqLQnaBQeBLgH56nvc+yvunM6TrQc9U8LUlPY79cdivbAv9XQP+/qA/1lgP+Whf3EO/eE/7tvOYfm6uL9AzF/x79Vt2HFDf80Nb5p/cjL9EjD/9LR7yPX4kgPW97ybdDr28y/ftpL1/+IJ2+8L3WvpnLfRnAI/rqutsNeh/gfoDkP9q+ElMPf33lO8W8pXzBsZz+Pwxkvp3mV86MU7asw48plwL7e/QnQ69qor8XkY+b8DPEM931C8NvhHINXz/UtP7c/ovD/U20v+ZmF8nMT5n6UeGfHZSfyd0VqB/S2rvp16peE/j20h7eaF/eiSAadif2f9LA/Cf/+p5YEbkqV9FBeYV/SsWQf9S8sujF6eQcxT05UYul4AJwK9/2VzXW8o3gt9T4F8L/mGU+4r1oZ38GJ+hvwvlte+F16/fkZfrWEXWv320W4l0D/07wVeJ8gvJjwV/D9rXf3qc53vyWzMveY/tPYz32dfo1/P6O+v/QP/9Tfn39L+EHuefu6SNxzA+Q/+XKuCv7L0T5U4i35XMf99CT3yg8+OP7Cv3Aa9TvxDtuz6XpT/L005R9Fd/Of3nxiNn/eeus//U3vU78CXoD9+LZCL9jvYv+vMq/aydKIX+ntB3HToOk3+DdH7y6zqe+V5Av1/w5oGvK97nQL/727AfTAvaz+T9NPUmk288wkP3Z9Q3PqIYckio3xv98pz2avA/An8z8BuX0Fn/Eu2L3rdrL4O/VoznKXz/kHRH6Byrvxt0dowE0H2qfifeHx5hvqlM/iL691vOFfq//+n9H/JtAN/Pk56NfA+z7jSh3l7mmWzgbw1dbdyXII8s4CtA/grkcCzkz5qLdD/tzN67QN+r3qtQfyFyvE3/DEZui6nXF+j9Tjfwhv0vfgf/MtofRn44/um/8yHjtDnyrY889Hf3/jd8nx1Ff8YBVtF/jfb78b1uhO/I1/iMQuDfwD7ngnYC4xvg7xnjv8hPCP6wv91d5pGU3j9TfxvlRtN/vZDHXNbvfOjRLua7x97XG5/FPHAUmBj623nfpF8sfC7zHpT+8N7zV8rXp1xL6MlPf+YET03XJ899+lPRn/dJH0O+G6iXnHRb5HSF9aEC4+iy9i3XV/R/oHhYX+fD31/Q29r7V+dL+mMd+ZlI1yQ/DvLrA75+wLKU+ygSQO+vGsJ/R/BVo/8agW8o+qe92fuuU/RfY/eH3gcgn8LwlRb5ZKV/34L/3eAtSvmejm/9X6nXCDo9t1Shff35tDM90g4F/raMq8nIYxpyiEf+featD6k/HXyfQ8879LfyTQ7+ZfTPd+q35yr9Asl3X+e5YKh2HdovRb1+1PsGPg+Sn834EOS2jvmhA/kbqRdlPAH0PiK/O/QNBzYkvzn85PO753/PX/RL2J7j+vcAPvqiz/rFJUPe+lHkAeZCDhUZT8a5VSHfc2A96G5N/7/u/ph84ykLUl//iYPgiYTi28bR358C36ZeLWAM8+9C5LqedH34HwBfjcHbBPoPgH+m9mHodH4zvq0M4/sCfLXz3A1/i/Qvgp7G1P8e/dEuX438N8FXwfguzw2UK8v37Z4rWb+O0i+Z0e8L2onov8TIrxD72Jfo35LwVQW6s9Hev9DzDOuG97vh+EP3P8ZZ96Oc8dVrjf8jv57xF5Gn+dOvIxzv8yL9Mwu5eA546H2241d/FeplJh1J+zT93k9/Tjol+rCS7+uoP4L+XI5eGR/yE/PdGdJj9OPVToIcryGfbcyf8/VbUr/Qnw9C8bj/6h9Jen0ofiQR7SWDv7do9wT8DNDfCD6K8v0F8C1inmkdCWBx9KUp/OgX5P7oOPjjuz+BjoKUL4B8dhlvB97J5NcJ3a/No5z3a/qfjtb+A37vha4YXxaKX1wAvv3I9Sb12kLvQfLv0H4d6HE+buP9OvI1XsT4kffpP98N8F7la+hwf5+M/JLQOZdyLamv/eomePvrJwqejMY3QWdd+uMD6HmF/q7i/af7XeYP59/i6MNYxz3tN0dfezJPjINfz72eD6tQrgDtbwbvDuSp/4L+DPov6L8cP+THrH+39/8/Qrf3/jP1XzDuNBLALxiPxgf1Yb/hua4RdHzu/Ay9d4CjKWe82XHmxV6h+5xB0Kd/5irK/8J8o3+mfq+LjE8Av36wLdz/ez7k+3TgJvDp91Heewjkd8/4Fr6rT/p7fER+TeTm+p8U/Qv7U3h+9v5ee9tV+P2WdDzaz8u4y4Bcv6b9esg/H+U9v+rPpJ/Mbuo/Zl15lXVWe8dr7IvX0f4l8r+j/hr6Owl4wvd53bEPJoCuN7GTJYK+CcjHcVVDPw34Pw/9G6h/Un+KSAC9H6ysXU75w29m8LkffkT+s+D/l/7tzznTedT503gw48TO0L7xYnUZN0+A3r95v1zc9zvgbwJ0ltD/ifyelA/Hh35D2vXgL+8ZfG8B+hMyfsrSj6PgX/+x2u6v+a4/WR7y9eM7TL7zbdi+9TfpOcinL+OzFO33Ib2efO8Xwv7V3i9kRJ/WMo8tI78X9b8GXyxy+Nlzm/Yq3ydBTy+SngC9O5C7/j1fME8WQf+0R2if0F5xXDuc9lz0Yylp3x1pSno87czme3Po018tN/JsQDuvGZ9Ce9Wpr7/Ih5EA/ul8TP4r7EeMU9KvxXvIq8CxnnfY/00GFme86h+gPsejvb+g9zno7Y9eNFf/vIeHP+OIjxkvT3n9HKLBf1m/evDMMD6F9oobVwn+7yh3Hf34ErpPAwfQfnzkv9pzd2h92Qo9vuvieWUd7WgHvkz5EnzXP7+Y8YP60XpfhHxWgW8t/aH9NannT/0r9Oum/nrklY5++dhzcxT0wJ/2TeNatHNq3+yhXU3/O8rHgt/5yLjy8PtP95i3t2kf9x4a/MZTGl/ZA2h8pfEWxl+E/YuyMy9u9v0a5okHxrm5/6S9cHzNQf0noct766ER+CD9IuXuUu5l2m/BePfc6Tk0OfXHsl7prxi+P0gOPzmMD/acAD7v3+oa70P9mca/I+9ZtJdNP0Pwp0e/i4B/TPKn6UsGvdq3bG8l+L0/NX7P+9NilL8Jfx/oHwTsYvw++Iehb2mNY3V/yPwSA13rgevAfwJ6HlKvMO3n9z4/tD64LsT6Pgn94zwdnp+bgv8T6NWPVP/J1cy3zxu/Zpyn7/voj0v+i9D3fCSAuUP3Yi+Tfux+BH33Hro66TI5n05XA94Er/dDnoeMV5rg/Tr0p9duD9/30Z818LvYuF/w9gffRuq7H55Iub6Uc79svIt+K0Pg03iYNMZdey5DP+/DXxbxUi81MCn1vS/2/ngg0PvjJPqrw08J+Cvh+0OkHR+OF8fHNfTH9wtu+j6N5dHvXrTjOcLzw+pQ3MJc8Pp+gvoWzTyYk/7/lvyuzFs34WsPcjoWsr9rd9dvQPv7debH3tBdl/qboT9HSN+GMr6M7/oD/Y5HfgPkM8/7W+OJ1U/oGMo40664GTgyAFGlKR/N+vM79BRgv95NOwryd/89ivQX3o9D1/vw/Z/9DzmnJX2D9mKgey30uV/3/ZX28LOLck0ZV/uRn+c74/EmaF+Efv2A4tN++L0n34GaS/tn0RfjADIg7xj6O5l2U+jIwHp12v0z/atfbG7S+hf+wnz7M3AAeOJR/xDjz/cRckNfNPSXop5xWZfd/ygf45c9n/muBfXLISff4zgKn66PzdDvrcihM/AR5QfT3sdA4/vnQOf10HsF3psb/9+J7820L0HvdtK+39VduwywJnjqQE8a+uUJ7fsO3lHwndOPz/0D8kgN/iV8f8t4Wt9hpF4s5a6Cvyjta0/VvmocvfbVW5SfSXoe6Ty0vx29WE9/3deOiP5lJ/915oGrjC/va4ynuQM9+ikfon4VyhehH94mrX+865brUnj9Ml7M+x/fy9Ae+Arrf3r6wfvs1dDzpf60fDeepQ7yXg1/Z42zIO07FMYXGodunKH7z06U912v24w/4yer0X576kVD93/+S8rTdxR871D/Uv1y0Wf3BdmRz2r47sU48T5qT2g/GAOegvqD0T/6lzhuHCf6mySk3ysgjyfMN/OpPwH530FO0dDn+6vh9+vC9lP9j9JSX/8j/ZF896M9cvP9j/buD50PkE8s/Ht/N837CuMXyDd+wfdPVoHvKHgSGN+NfKKht7p+e8Bk6LXxxd3pT+Okw/484fOb753+Buzme16U0x7n+2W+x1iM/pkR8u//i3a9H9JvKQZ6T0On/ktbtUcCzwG3ON9T3/dgjMMtQTv27zvIZzfy9X3CesgjBrzrgP2gbzP19SvzPVLj65fDr/7L4fdDfb/Vd1t9X20O+cYH+g5wH757P2p8qfFh+0mfoZz+3/p9f4x+6v9dAf3SzjXT91iRxxXab4bcstBOYe3HoXdH0qEHvj8ym3npJt+nsH6vpf/1I5wKXGK8Ju3rz2b89V7mK++5GtJ+I2AD4AT3j5Tfy7w8OxJA7ecl4E//40Te60P/u+jnYu1MyG8v+afAexLYEX7HwY/vm4bj1ryH8H282pR3X/YrMAv6+J3vtNFfsbTvfBJ+3yYl8tX+9Qdp7V8NwF+c+ekxsBXyvoX8wvv7S6wP7vN7gN+4q+3QcYvyX5FeEKEe8jM+QP8097mbXL/Jz4FcV2oHIT2c/ATM38PIT0l76WmvsHY14Dbjl5BfePw+CsB/7yHVoHwq6Tc+h7T2Av1kZiIv7QkdfLcEWN97fvqjq/Z55ynofMbzK/2R2nsr8tM5v1PPd3d8x+0f0vqPJud7cdrXf7SG+wLnG+8Jfd/KeYnv7wK3gq+bcRuUz6RdmLT7B/cNi5DnYtr/X3753pNWov18vo9A+hT4p6EPU30HFPgh/en7U3HBN4l835+aZDw1+OZDxzf6r3i/Q33v/fRj0X5bnu/ab2siT+NxtasYr2u8qvfR+vc2g45a4Ne/bhjt62enf11l6n8NneNdj31fjfGxwH0d8tjhOzXMV+1IR0g3hP8qjNcO5F9gfs0GfQdZNw4AC1B+Pfmp4Puk8oFe/QGnQG8N8vW/TO39KHzNMr7NODPS95GPdsFM5OtvHY6XN45+oHZy6KlKu6OBrci/Bz/e04T9jwsi1+Xu54xHRf6eT6prf4IfzysVXddD8T/joaMO9oKfgKmNX6Zd38fXfuN7lL6Pfwv+fBcy/F5kV+bN3MizC+mWxvlBj++uNSLt+znGv/ruz+PQe5/6vegfoL+A/gG+/7qTco8oZ/8URn7eoxYBbqY94/X1d/Xd3ALgGYSc1mhPpp1Z6Pcc5NpdOzrpxuD5S3s9+KPcD9PfXzGflATvdPZB+tHWpVp96PwCufRD/t+jF4X0LwAWBL/vaC5wfkS++tuUQ35FoW8w5byfM97A8aDd3P1NRurnDO1f9YczrtY42xjOU8bXdiG/M9D7GP1F+qFPhemHcswTo8mvgv5WBb4N9P1yz1vu03vQL89DfxfkXxW5pKUdz+NTAxB1gvrG+xrfOxX73BPgFORoPKb+V7475Ds7vi+h3Dc7vuDf/7eYCH2+f+h65Pozwng+9QLo+XUQ+73ztLMRPfW88rP3PPqjQHdl8Cem/Tz6j/n+J3qgvVE75MiQPTKd549IANWPFMx/9vs12rmPftj/2m+NF73vvRb0+/6994ue9/Rv1N+tued8+PN96/LUfxX5/Ey5GPh3XzzOeCjw+/7jY+aTrOyzhiHfqtQbTP5q33+h3of070Lo8159AfgfGP/GePa9wRPISf32/T7fWzrk+yHkT9eeoV8k7WxG/sP1twW//ydRifbtP+/J9aM/R/0uyC0jeIZEAvi2/v3sB1JRb6fvUZD2fqUX7c6nPd+behTyv/E9jQL0n/HmxfWXA09c6JsKvvD/EhzS/oJ88wA3Yn+a6vucof9PGYz+ryB/N/PTQO+FmD82k+/9QYrQPYL3B3ehT//69vLj+5zwm0E5u1+D/izUz0z+DepnBX8b+KlI+61JGx+clPJNKO/5w/nd+C7julpRz/iukbTvu41NqG8cr3q3Dn6W8f1r4Cz4832wRfCRAvkpb//HZqrxdMb5+v4Q9QpCh/HFsfp3ktbeqn11qft142G1W0NfNOWbeG9C/kzo893Xj5BrPv0vyHd+dV495TyOfLOmffq7+/TB1O/n+/rAVYx/72fnoW+Nyff/VdxP+n8IR6g3wXhz2vH9Kd+bas/3DkD9Q1MhJ+PjUmm/Z35Ljpxbke//a8xAb763n0m3Rx59+X4a/r3P9P2zopQvBrwKH9pZS4XuD56Arxn5JY2/A79+LOnIN77VuNak9J/xrVcZN78ht7vsP94xPhj56VcRxf7a9y17IJepzBPdSGu/Co937wtzeX+AXr0NPAY9r4Hf+GDveX8M2dfzG/8N/W3130K+KchfQvkizNeH6V/PV02p5znL89Ue5GHcWTge7UfjXbRP8b208RXOh/p1uB6BPy1yqwRMD/yU/HnaB8H7Jekp4PP9Rd9dzOA5iPbzQu91yreGj9nk+78angv8v40syG8+afdZ7qv+gb5sofijNMY1oj/6f7o/1j/L/fGz7PfiAXvT/+Wll/Z/934WfJ3Jn8986fujvkfq+6MltXehf2Og1/+r64Z++H80vhPr+7D6r9wI+bH8Tv1XSK+AjpKk3f/chs6k2LdGQddY4AbGu3aCKeDVPnACebmu6ifSLxJA7XPuO/3/utq+HwfezxlfPUhn1A6GPDaC1/dIjO8sB3134MN7nGr6Z7Ju3QG6z3N/F36Pbi764/szt8g/bfyI92Dk6z8+ELr0fz5uefrb865+w8YbnIOus8CRwHngb+f/P9G/XwHzIn/jrrxX8J7B+4XPocd7Wv/HsKTvQ/G9Ot/9nwb/n+Ej5q2UfO9Kejr1f4Tej4xLpZzx174b9nckgP5PV3Ho056bn+8j9V8nP1fIf+tJ6H1h/XucT/Xv0f/d/ZH7Iu8HNnufxnmhIHq0g/nN96u8H/de3HWuv/Yz6N4G/1/SX8+S3w78A5ifCkD/T54v3Bf7ngHt6N/0IfLpgd4NIn0H/TgTsr/4PzzR0O/7B7570JX52PcPtOd8bTwxMAn1R1PvAfh/Zf7JRPuDjJ+BPuOUjE8qS/vnkfdp5rPrtHPR8y3lHDee14ZTPi3413pegf4OtH+UfpmM/meH/sJ870L534wfMj6DdFQkAL4z5nuTvt8zHDyJvYdQP5HHS0Df3RgBfs+hSTx/GkdvfKT2KPjuAx3LkK/3dzP0owDmhI7UtJuP/dkW2m8OHuNvq2s3hJ7t8DONfO/3/J/FKr6Pwfjbw/zcmP6ajHxHsm4Y398J/fb/A/+Erv/1PxDh/0s0/rcp9M8I7Vf7Q89//m36l0G/+mx8nvYJ7RLaKaLp32vILwV8bXJ91f8c/fed0VLQ4f1VDe3DwLrAT+BH+8YK40WALxrvhf695rtd0PkD7Q8O+RXpZ9SdfM+Vb3pvA52eL32PJxzfuJT+MX5sHvTENR6E/k2mfyT4fecrAv7w/7Vob9W+avzBbs9HwLGUe5f1vjVyHwI//g/uLvr/G8ZPLOl67n+ZN4y7Nw7f+NVY9NO4qnXo57/amY13hZ841PN9wUfslxKzjhkH9N97J/BvHPAu8Pr+je8OhN9f6wb9PVhvPLd5jlut/RD8eX0/AzqdX/Vv014ffl/b90l9l9R3SvW31b9C/7nUxk+5nvJduawIQFQT6EiLvmejX7T/DtSOgbxOA983Lg/8SUiPA34FP54ffA/f/5/Vf9L/n80Cf8YRht+vm49+5WAcLyC923t645fgz3484v4UfTSe0HhD/eS/AV9V6KtGuRm+XwO9+tEY52Z8m/8v6X7XOEH/X9L7Vv03fK9fPw7/fzMJeu27s/7/5lLwe68Rvu/4DPzauTroZ4P8KnHumUb/DWecGS/gflM7ZGH49f+un+d7E+BW6iUJ+dd5b+w9svfHv7Ff0Q93ved8xyn0XwvFe0wCv+/R+T+O3nOVQH+q004K0jfp3znU19/Pe+5nMz1N737vxdGnl73HoX830f6r0Lea9owfqIa9Yivn4ur6CUNPNPPDcvRsEfP/NeM5wR8L396vFKQ93z9d5D4jNJ/6/2N3odt3cvS3DcdbG29nfF0N9CMLfM1jvNRHfrP1rwjF/3RHPuF3a8L+Hr9Qv7j+C8hf+9E9341DL/8m7f7A/73cS7oS/RhX+xnySQuchHw7kd+Y9SR76N7mTeg/qV+qfkq+a/I/4q8+Z5wah9Xbd4XR59fgz/cYfVfb+8w50NMe+VZAPr4TkwPo/yoVRK8aRAJ4hO/+3+Qqvm+Ar9q+U4Z+uJ7/y/eK3vdT3/d//N8d34n1fVj/H8H/Q9APyfgC39ty3Aw1Dpr2/B89///B/4M4Cd35jHckPZRy7p//D3M8ofN4nHWddbSWRfewj9LddahHQSWlJCQkVBrpbgQkpDsU6RDxCCLdqRKCKKHSiEh3c0gVUFAaRPyt9d3X9a7FvT6ff/aae2Z2Te/Ze54R0VH/79cuEsBcWQP4Z84ATkoewLwpA5gqQQAbUS4mQwBzZg9grUwBPPlcAGOTBPAcsEHcAB4gPzHpJQkD2DpLAOeCbxv0C5BfFBhLuWbUbwqckCKAxeEvJd+TA2fzfSHydqJ84mwBnA7/nyB/dKoAVkJPo6jfmfrLwdsbfiZSbjj4iiQLYHPKX4f/4TkCeI/yqzMHsE/GAM4h/y76vYK+4lLu7+cDuBM9DQD/ePh/SDoGfNnBdwM+lyHfFPDb/iPg5xD0slK/NXJ3I/8j8G0kf94LAcyF3OVeDOBa2q+Y7QJ8BnrFEwdwLPXy0k++IH8t/O6Fn8bwkQD+96DP7yn3cpoAFqR8LvprNHRyk05O/grkPwfecehvPvykRt+N+L6B72mpn5b8StRfEi+Ap+EvE+2TkvLPUS4b+qmWKIAJ4wcwMbAf+Rvpf7WQrwLydUb/r4N/QSSA12iPvrRHE+rnRv6lyHEU/irBf3H602r4HET9ZPB3KWkAk5A+C/3s6QP4J/Bl9JMFfmbTPpehm4bxcAD5FqH/8vCREHlOwN+n8N2B7+npf63ht/szASzKOCwGvAB9+7f9uQ/wDfhPng78tMvraQOYGPqbkLsjfOel3GP0kxp9pAR2op1+h365OMgD/4efDeBJ0pfpj2tJT0JPX8Jfevg7Srv/i57Gw0cz5xdgQug2QT8vI/8/4L8Lf2+Bfxv4p9JvptOOncCzJABRv0E/Fv38BJ6htEdC0q9A72P0PCx1ABvSD1uQXk29QtBtR/nJ6PV5+kdy5CwO/9spvwT+atA/qgOTsk5No34byl8Hf2f6Z0XknwcfVcnv7TygfpCnLfItAM6jf8xxXXNdBFaEv+7otzZ6PQiMQzsOhL8h8NWU7yuQNxH4yjAvvIucy+B3Mfznonx/5wn4z4be/2YcToXfR8iZlfnqQ/BG0Y8Kwsca5N9G+hr0qiBfM8bfWL6noH+vIf8B47Es46gcsBf8FSR9CzlH0/5FaL/6jIc+0H+L9F3KrUZ/t6GfjnQT2mc38qeA3m/0v1dIPw++f8CfDr2uBn8N5N9FOdfZi8B0fF+KPnOTPgj+rfAzjXaZzDjaAX/P0F+bsC4Oh78cjN9Z1PuO9rVd7oC/UQCiWvG9CfA7+HP/sIX+NRf+3gP/XPLfA3986OWi/hLSwymXnu8n0M8T8K2D7mnK/Qh/Xfh+F/qzgMNsH/TzDbANfOwFngZ/WeqVodxW+PiMcVGA/Bj602bqf0H9heRfQZ7D1J9J+l/KF6K/ZKf/7aN/d6R/tSC9jvb+kn67gfGVDnmzgf8N6hUmHQ/+q6CfX8j/kHpvk98bfuqRfxR6NZhPmqH/+8h7D/gp80t96I2m/ibapSR4H1C/C/jO8n0N6ULIXyS0nz9Kubz0n6Pwe4FypdDzGOrfpr87L30IPzHUTwS9Xsh/GD7TIO8I6sUHb2no1aJ+G9ajzMCp0DsAnaHgSwS+u8jxDvU7k/8++bXgY5jzK/R/IP9Dxms8+m9X2n0D/WYk+4Ab6PcH5GsM/zPBe5r2Lwv9y8B55B+m/iznXcdxJIC74f8wco6nXBnm85aOb/Q1mfZZAN0I/B93X0e7JkF/w6mfBPwTgOXAM4Py++CrAHxtR08F4N994Yr/2B9ecn8IvAg8AZ7F0CuT/f9f/y7zZjzkeMD6Vg/+96OXvMh9gHQ10l+hn47QW4CcC+m/4f1tWI52tPcq5oGa9I/XyK9Jv9xP+ivWw53o5yryxYNuZfiZCn8/8720+znSXWm/gpyvatDuNYEn6bc5wTeX+q9EApjA/SX0v0P+89RbQflNtEc9+E9Efn30k5n5NyV8VYKf1OCfAv0D4G+D/nvQz/PTfyY7/uHnNPRfAq/r4ELwtSX/N/Q9nfRn1M8J/dn0i7isq7fpH22gv5VxexP6+6k/Hnqey9d4fgidzzfDf1zyl1IvCfkVaI+/XYci8E/+BvZb+dHbKtKr6e+Z4bskcD/yFEWfreHnOdpnIt9zQmcL+U88L6DPX+h/aWm/j+lP5eF/Cfn94fsS/fgWes5M/mPwO68l83xBuazw1QV5XgNfZvITM36awl9R9N0JfF+BbxHpQ9QfBb8NAhB1B3if/O7otx7tsxz838DHBerXZjxmBNYCfkV5z/ees8Pn6/Xoby1wHfAb6v2Jvv8kvRR+jiH/UvCVgN5cynWIBHAr8lRwP0S5rtB3/tpIueWki3negX4evn9Ke5wnvyf9aQmwO/B19HOM/fwr2n0CENUR+p/AT2XwPYKPGuh/OfVm0M6tkaMw9SPM34Pp30tJH1Fe9JUbvp+gn5vorzh4M3ieJF0Z/vOCdyLjPD74n9cehl6cv6pDZyDz23Dk2UQ/rEP515HXc8159BA+38yh/jPIo10uCv4uQdfz6JvAH7R/oP8a8FWQ8vtC59eS7rvgbzb04rlfQQ/O587f2+HP83RX9HuO9tlFf55Cuht62EF6I+1TEDwbyS9C+4yGnwp8P+/5Bf4+pf5OvpcA1qF+Jeh/y/pamXQX5B/LfD4aOAr4Ovy5vrgv2ak9MWSv1H45gna9R9rz0zvUSxiyv9YIQNRw5LzqPls7csj+ew881ajfnnn/LPPOfPpnGdp/JvLMAE4H7qe+9oPE8KUdQfuB+/cc0HX/7n6+CPyepH4L+FxI/gXyT1B/resH5RaBvwr52iMeOf5IlyF/lfTcn4bmO+fB4dQ/wXjyfPcJ6YTkJwZvDuofgd5nnj/Q57faGUg3orz2/huuV+ArRP86QbscB54E5kA/0e4H4DsR39MD7T9l4aso+tee3w36h9HDVmBh6LeG79OM32aMA+308TmPRrAzTomiPP33R8qVdT+FfInAr33sT/Srfewm/L0J3R+ROz/8lweOY37x/D+W9GbwbKC/RsB3m+/V4edL5O+Nns6YD38Z+P4zfPaB7nTwleS79pm4ykX730L+M5TXjl6LfO0JDdQT9NuApz7rxjq+r6Z+D/jvg3zz2R/tBR7mHNWW/lYyEsCZpF+En4boLTf4jniOg34c5MoI/R3IH4fyX0GnJ+WyQH815Xex/3xOOwTp7+mvJ5D/d+T6ET7fQz9x6VfXWIeSg2cA428Y7f0vengCzAf+kp4Pqec8Wp/6S8F7BlgI+f9nL4ffEaxbI4HuHx5HwQf0vkcPvzn/YNfs5z6I9Gr0V5h+nY78zej9MDBHxqf5itXOAf1M1EsK/f6U+5r6ucjfitx7IgFMC39foJ+m4JtPOfVfHbyx1HsWfO4/7pB+i3p9odsP/BfB3xJ9audMCv6ayLON/hKf/PXUX0z/T0O/nYf+58PPRO1OwG7w6zxxif3Y395v0F8WIO9B8uuC72vorES+Sei/IvyoT8f3evp7CmA912/aN2z/yYWetAOdhZ8zwJF83wEcz/rcCrnzcv7/FT13pV5613X601boLUefbeB/FPJ8i/z/oLeL7nO8fye/A3Q7AjsBr6KHx8h3hHbcjZ47UL8s9qcf4TsuUPtTX+/PkXch6V3wuxb+piPfTOh4/+l5JnfovNMK+ve063tvwvwwDD49F++LBPAnYDT8jQBvDvAlAU8x13fSndGb42MB/Xkk88oI0pNId6N/VKFeXuTdAr2qpAe6v6W+50/Po3Xor9+RPxp5j1G/DfULU6863yPIk4X+oJ3vUiSAy8jfQ70P+V4N2B76HRk/XdHDZ6zXI5BvB/gPo++PtO/DR37yl3m/hv4+hU710P1BT+lQ/7D9GT7jkD6GPKdIF4Vf7RBXaN8e4H8deuPAP430avC+D3/JKd9aOyb9Ow58j2E9fACezMxf+Rhfn1PuR/s7+LeAvwx8jyP/HOUbwvcE6M1BHxkYH6+RP5j+vZH0ZOSPgh/t+WmgN1k7Duk23mN7v4O8CcHzsfYc6Bclvyjp48AhjI9u5B+kvRwf6cjvDL4joXN1BsrHwt/XfL/PfJhdfPT/VfQ77ah57J+s35eZdzqQjqHcHOR1XphN2vlhBfquBWxNe1Ujfxry1oa/B+Q3dr1wf4/+9YPR/2UA+pkJnvbo4TX4/xP5XAdvuJ+j3Er2E3lJ1wJPsUgAvT/XTrULmBq+KnI+zI4+9vL9HfCcJN2c/NvQmaD/gnZe6K0kPRV9xHI+qEg7TyBdQ/s25T/Xrm5/IX2MtPYd7T3adzIx3pLRHvqT6EdSnflpC/UeIs9a+LtAf7wOvbbw+Rfy2G8K/Ef/8Vy0m/R18svCzxD4X4Wcu8C7H/6Le98O/UruT+FP+7H24lTQcX19y/kNPO6r40I/qffL4O2kvdvzFv29DP2oIuvHH9D/AvwtoK/fwN/03zHg1y9F+/R15LxIe3tub066t/5LoftI7yn1/2sYOo84T5Sl/9zQvwR83an/Ivqxf32rvQd6S6k/gP3MGdqxMuNsO/R3gF//uuvQLwI923cTejgHHdt5EfS6ktZelQ55YphXNpLfAD1Og3/H7072l/rB6P/yPfjaUO8J5Zu4D2V83wWmoN1TAn+jvnaMr21X9PMF+Doi1xja8Tj8lkRfz6KXNOxH01G+uP468D2DdG7yd8BXY+ptpB8uAd8R8jfzfRFwN/yWY1z2pfzy0P1YLubLaqQfUt/9mf6Fi7QHgFf/Qu8tSyFvK/L7ke4M/i3AP8C7xnsKxm80cA39rb/2VcbbXvYHk0l3Rz8lOP/+xL4xC/Ktp337sR4WZv1q7n0+9HN7vkOOU/QT++lF9FGbesnh7z78zUY/+cj3HPc2/fN32u0EfNwj/Sb89YJuIs+38OP9xDjSS/UTQH+NI9QH3xvwnYZyntdOw5/3CSn5nh35T6H38tTrRvoh/N/wvA4fs+FrE/naCz/Rr4X2z8j40F+0CPOo5/e11P8I/N773oWPqfD70HMUcveHnv6m+8C/D/mvwX8j9x3o3XtP7xG8/6yK/qoAKwMPUq4f9EaS7og+00HP89lQ5HhLPzH4m0F/mQ7cTf4r9JOS4L2mXy70pml/Yj5Yyfzg/rl9zqfr36P+evioS/5Oxl1K5NJfYxP4f4VeX75rpy6kHyz47oA/wvdV1B8FP5moHwd+v6F/vQb+xeA9Br496N/zYl6g/tCX6B+xzP/7oduP+vfQX2vwp/Renvy/KN8QubVP30dfQ+CvAPPKbvYlr9KfMmqvgW/tep9BR/ue+y/9Nt/U3oN8c9lfNWcdGEi5ktQ/EAlgCuR9T/sO46eX9gbwPWF++4b8g96fIPcb4Ncfsw7yeS5+lXHg/ewNxstV+ol23/fJb0m9/eCdr78K+L923+q+3Ptu6hdCn4Oh6z4nyvMV+T8wr2sf6Uv9ZOCNpr/tgY+e5D/UHgL/2ZEnD/ophn5qQHci+OLrb0T+AeMaPG/SX+KALxXtV5Zx/AB8f4XOu7MjAVwNfwmROz7wE/AeQM7GrC9NgUPh7x542sGnfurF3SdD7wHlM4O3F3r6Fvnrep8IzI4cGSg3Bf2Xp/8nIa3/w33W1XzQPRuAqPXw85j+PRQ9naHcyhef5lc5xmd4Wh7PUS/Dj3EGzs/HIgF8RPoq9Xobv4BcFWkPz3eOr/3Ikxs+noFP/TFu0l/1k/6Dcbgc/LHse3+jf/0KfEl7DPQvwGdN2nEa/N4i/Qh6C+FjrP6PzJ/xqJ+V+VP7sveKc6kXvl/8jvJXgLvA5370Cfwv0u8LuI76Y2mPfuAvAR+34L8W8tZjHqkL1N9iD/R+Bm8v+LhJ/njm37jgrU/9C7S3+6/80B+Nnq4Cx9K/j4NP+7Drj/6xtUP+sfrLNoO/XfC1gfGtHToB6ezQc53ZqH2B/MTgm8p6lI90S9p/AnLmB88F7Zl8176+CXm0r/9D/3M8hONPtEtm0f6AfKlyPs3fz57zoOv9eSbw56fceudf2v8N/VHA3476mZG/uecz6g9xfYkEcAZ0T+mHSv184Nd/wHgQ40NqaR8k/YL+jOCtg/zuVxKS3wU6o6nfh/F8Vr8OYH/wen723Ky/r+fnfLRfbuCbjC/vybV/Krd6aIh+XqA/30DuHJzHvL8eG/J70K9Z/4eu0KnvfET/yk+5md5TUm47/fiq52vwfkk/y0C9j9FPNOnBnteR43X7F/x7f5WX9WEp9Rcif7T68B5K/2b0e5r6p4BJ9b9l/ogBZnC9cv6kXf/VH49+eAf82jN6Uk57h3bQKaxb+gOWQv+V4VN/Of0B7Lf604X9LYoip/7T2p+cd95F3i3o7zHtk1K7M/UWk+/9+bvgdd72/nwA/XUgcBDwsvYx5m/9WN8nfZD8Rux/knquhp73Y+F7vzr6C5O/Hbzd0NtB+lFp8H/j/QjpGuhjsvcvyO05JJX2BeTUX/aC99nu8+HX++GqQO+JvR8uSP11QurHUn8A7e/5phT913njsP6O8H8V/lPRv0qAtzH8Gz+xGeh9axvSntdT6l+K/K2Qu5Dy6c9J+V/Bsw96b4Lvbe/jlYP0efjrif7zgWcF9VOgn7bsm90fNKNdWwMHGBdG/hDw1NS/jP70Evxpp9E+kwn6dbUHhfxFH9JvHgBzGUdEuXvGB+mPRz3j/VKAPzP6Hwafk5BP/7QNEb6jV+9LTsOvfrM5jP9FfzmY37wv680+/LJxBsit30sH+J1O+e/1n4Uv7QKJaf/O1Ffv5fSvgr5xI8aLROif1eD/MXor7/kCPmIp7/rkejSW8vpvNULf3pM2Jv0J/JVGnhTgHwb+nP/Rf9oleFqeJMZLRQL4CvXjIt+r6Ocx9DdTfizl88B3Cer9RFp9GN85RD8z8BjfuchzhvfB9Ofkrg+0/xjKdaGc9/Mvk6896XXmCeML3DcONu4G/mLJ134/h/xy8DkX/PvAvxd4DD2X0P+L9osB3zX0XJP6Zey34DVePy/jMxPfL6O/ZvqZUn8L9evAn/4LMcj7suc95vn0wGKU/0D/RfC4f5gN/aohf6AJ3n9BPwPnG8eP40Y7wmb95vTDp9wg8Htf5P3RZPTVnnI99BvQ3974RuSbDd41yD2G8snBr1/RVP2yjB90nab/ue9KDD73ZcbrGb/nfW8T5KwCvx9R/jnwXzF+kHqzPV9Qf7r+6s6TnlvBUw/8Eear1fSvK8Df4X+7/oLU10/R/ddR5ouk4HEdc/1aFvW0nOF4xXLQmwm/+qG9D/1L2kehv8A4S+hUIV+/gZ7Kp/8MfDlPL/UeivpnvMc1zkB/V+TzvDmReeE2aefpQvojsU/yHt/7++raq6CTADiUdpwOvS+pt4T+PxH+qlL/IvmlvPf0fEH+J5RP4L6HfP3qviZfv7oW9F/1epl840kuen9vvIP+w8hbzXgYxvso5NUeqP3P+boRdP/Qjk775mJ/kAD8/zCfFA2tDx+SzmwcEe17wPMw+F+g/Afg70T6Ucjeo33H+MsfQ/FFJeH/JvgraA8wHsb1ibR+vDHg0X/3O77rfx4efyX1S9DfhPL6T9kPWpBOr98J/Osf3wD59ZPXPz4P46sv82gD1u+k4DO+oDr3XMYZGF8wmvEzgXb6GGh82xPts/C9FT6czychbxb9IrUj0D7N4Ed/6y88PyDffOQbwzy4g/yfwZ8FeZvCz+/6GcDHQOb975h/y6LveOg7B/LE4XtS1qsc3s/D7xjyRyKH8aI14edQJIDtKaedrx/63Ui5Cuj5lPGD4NFOU5rvSZDf+B/jfowDagesDH9ZyS8M/WzocwHy67eUjLT+TNpnyrrfQ7539UelffYwv02iPz2kfAn0p5/qRcZvv5A9LY9+GOh9vfFLzKtFvAdhfn2sHQH+/ib/K/So/WGT/hGh+y3jUWtTb4njXLsR+vV+MBHf9ScYSroXfJwA3zjwXIR/7YfeX3mfpZz63yeBT/3vF7s+sT9xX3Kb8eb+JJfvG4B3HvwZf36OdE/j5mw/6Dg+u1N+JnKdpf3sL/Yf+1MP+BtG2jgy3wNwXpyifUn/XspfgM482rcJ+E+5/4X+C4y3d5H/JvK7n3e8OH4cT0ug1we9GO82ke8x4O+CfkvTT7uSLkf5iu6f4W8k5ZKSb/zBOf014CMaOqeYV1fQ730P5jjlXgVvK+27fM8Pf9/q/+h7WpEAFtE/V/9L9K5/m/Ea8UgX0S+c+ovB3z4AUauAA2gX/ccyG6+k/6DxV54Tab/WwKaeL9zfIe807abo7RT54XdTjCcthD5+gd42vusHtp3x+T39YxzQd0eMJ7kIX+8xb1w2Pgl93mL++pN0avjYSP82PrkD34/b/40/ha/5xvHA7yueW9j/7qP9s5L+FPy+x1UHvpcjn/d42utbwl8y4Cj9LemfGZh/0wMfep5lvPQO7XPd31aDz5bIqV/sJeOlSRsvvkD/DP170XsW2us246Ow4xu89psaxgUBw/GTxqHmRL/t0etZ43SAt72PAK9xEelo5+7UL2B8FPuA0uj/uvHLnle85/TcrH2Z9awb88IZ6l/WX8T3eUivQy7tByVpj8vMA/rn6a9XnvZ7DZiKcu5bw/6kl2i/Wtpb9Bvyfg/6R93/or871PfdC+2RzfVXD93P/UZ9/abtF/pTz6d99cvTT+8m8uqfV1V/MdcB+2EkgOeBBZkPdsBPauOH9bvyXphxtJLyrufuo13n3T8f09+RfO+nj4Hf8RzteEHOFeAfSf5z2l88Xxk/qf2Eeh94Hwj+cQGI6g9cSf5t/bSBncCXDD5dh/UrMW67tPFplH+Xfr2Q8ru1gzM/akcYC17vdbbA30j1ol8T+jtLuaaON/A34HsD2td3IbKiL+Mjm0Df+CLjihKif+OLUpH/NnxMQK6ljl/tICG/CN8nmkX/mw8/7RifHyPfefqbcdub6T/6P9i/RrBO2c/sX78HIKoKMC98jYO+66/ntHOh9df9ovvI9ZEAup+8QLsap9WKennIv8l+xnE+z3dP4N/74rLgTcL+vTjye/6vDt++s/MZ8hlfMpP20Q6RHHwDwT8Legfgo5LnZ8/D4P0BOXy/4AD5xkkYF2E8o3EP/4t3oHwv8vWbNw7Rd7S0/4zAnrqEecb3RIuAtzLz1XDgYvSTD/kO6R8MnQG+HwH+7OSPovw3yDGU/puP/edA6k2jvRKi/0bGv1D/IPzHR//6E6bUP83zD/QPMf8P9P0T38kkX3uWdLRz/aB/gfM39O8D93ofCz/60xRGnqOUe8/4c/Ld7/xlfAft6b2m7/YNhD/j9Y3fH039DuR30J8fPOP0ywT6HkhG7bjIp/3/c9adL4HFoZ8P+fWL1a9rMvWf930J5z/3Qe5jjO9m/5ARPMuZb3w/LCHzySrmkSOsf330t2f/mZD+d4209nTvl/R3Nl7N+JtfjR+wPzs+oZ8Gfjp5bwH+Lej3uu/JsX95SLn51Nfftguwa8j/1veHfK9wPPz0JP82crUwvpH0Ad9vo/8MBUbBr/vPo57HjQvh+1b0/wL6vYd+FzJ+81Pe/V1e/e6MRwRPUfhvAt97kb8l+vV9Af0JPyC/IPy/A3+xlDuEnL4/l4L5pzzr8HzqdzJ+OWQfMg5S+90s1qudrvuk3d99oB+29iD6+STnP+TS7zcWeq8gn++y1AVPIsqXg/8Xofuy/jyUH0n91rSn/q7zSZ+Hvuf27J53Q+f3U+ilAPPySdJjyD+of2ckgPqJrkI/xodrh3/TdQ+YEX70X5tBf/d9J/2j+wH7A9VXW/Bfof4t9LON+gVI34f+PMrp/7iQ9nqefncF6D6tEPhdF10nfT/B9058/+R/76Gg32u09yXGwQzPGfBfyHsr/Xb0X9HeqX0GvboPXWf8OPpIAp1t8LUF+Rzv2pMGGh8kffiuQ35H6Hn/t4j2/gn8bwPPef/pe0fg+y60/0/OuPfdGO+5vN+KZl7LAjxkHIDvaED/EOfCcugxC/x9w7y0Gfy+R+39uu8SGYfpe0Xe4+RCnr8o9yLpGpEAavduSHnvM72/LIX8EfJdH40/HAGev+D3d+TrQn33K9oF3MckIT8d/VP/v3i+k0P+SviNQi//Mp+NJV//G/fjqUL+N58izyD95uE3AeXD70v4jpf3++noTxvgL5vrcCh+wbgF34k2fiEH/FaiH1cE+v5W7tD9kfHFFb1/ZV5aClwCfJbyxr8aP30J+sZP+35BW+flkL/ln9rnSJ+F/hLku8n4beV73c6H6Pe//F69T9Mf7EPw+n53PPdz2k+8r0COovDv/WEXvj/0XRfvD5lPJ9N+P9Cfbng+830V8K8wPk47hPE7rk+eV6gffu8z/D7xfOprN9KOpP1IfyLfY/O93Rj925H/HnxOd7+pfxb9w/cHZtJ/BiG/89kI8PrOmP5/37q+QP9553X9W5HP/02IAc/kSAB9/9p9tPtn35tqDv0pyF0vpL+4nlep9zz5tcH/wP0c8BFwFvnut0rbnvoTsT4sBK/+jGXgfyDtc4VzVxtga+Bm45Pot2uMJ0TP+oMuY77tw/wzjvreu3rfflG/KL7vhB/9i35xXjVODnkitPdO11X40u/T+yTvl/6iv3u/VIzx/RN69j25O+BviXwnGf/NSfeKBND7GP1xrntfA/9poaPf0WnS+iG7/3a99R1Q99+V9A/wniYUL5mb9GjkHK3/EO2xD36nov8pwFnIlwe6eyhvnLz3P1eZD95XD65D9A/9T79yvw5fr9K/KoTOa/GNy/AeQr9n9yPgM76lFPLpz+v7dKUjAZyjf47vsYA3BfQHwf9g4EBgP+9xQ+dfz8Oef43vecdzBfK8rb1Efw7oagcyvryA7yOQ7zzi/LELerHMM+H32xpoH6Se71dWDL0/5ntjvj9WBP5dDwdHAtje+xHatxXyGQc5Er7ror9c6KsSdM/B7yz90xg3vltqnKTxkep/G+P+X+ZD9b9e/zzfgdb+A79R7C/+Qj8rgfqv+S6577b4Do7vt2RGPz/Qz7yPjdZf2fgB99XU/9b7ZNhYRL0jpL1/fxb8TUk3Jf0z/PXwfVDqD/CcTHnft6qEXakH88+7kQBWZLxGPBcgxwbbGX61T8cFZqEdb0J3Tag/2Y96QH8a88cXwHHwP8r4cPj2HSzfv8pGu/kebGL9XEh/zX7Ud430U//V/Rv86zenH53+cxORx/1AXfhPFglgUebzJ4yzs/Dr+H3H/1MBdgAan7WX9k9Cepn+E/Djvr8FeG+Sdv//iPqum2PA4/p5Dn1WBM6B3xLwN8X/FSGdjnXG9yX0Z12U42l+87g/Nz4GvnuH4l/O0n98ry6WtP8/tNL7GuA2xmdp8puG/M4n0t7FSN8zXh14FzjY87PvG1He/y/Ip38p+Z7rqgC/hN8e1NNf3riBe7TP+9TXb2EK37WP6n9fx3WY7yuA05BH+7X+kr7vXN/1Gn5878L7U+/l07rv1w+K8RM+l4TfQ1pNe0RzrjjPeLTdt2lvRS/6C+gn4HnGd45mMw5836g642+A7yPQzt9Tfw94fZdO++s++Pf+cIDvD0Bff+C+9N9MzO/heMDWAYhKaNwX371nSUK96cAj1K9Kuat8vwYsz/7Wfcgfxn87TuDX90i7GP/LuL3A+tFb/zPq2T6fQN/1cTD60T9ssvf83nP57g98tNBu4P0A/DYEFqdf6T8fE7qf8r7K+ynf899Cu5Ui7bv/zyKv7xeE49n8P7I5+qsaX61/u/Gl1M/P/LQyQnnSdemfztNZfV8O+m9T3/chHkD/MfoJnx9/Q0/uh8vDl/vi877Hxnf3L7aT7XOCfnEM/Q2jvdcZj03+JKD/JzUk9H5PE8/N8JsReu4HSiB3Xdo5NfJlo77+C+nAo//Cl/qv+H4G+vwD+WrTnnWAzaC/Fn1VY/ympH5G0o5f42cXU78Y+LUjhO9fR4XuYU/Cv36Nxj83NL6K+s6zrjPOr95LpaKe79K7/nj+PgT0/O17Tb73/TnQ98Dj+P4Z7dUQmIR+qF+p575KwDV87w8/xmd6/q/Kd8//Q9GncSrDwvFOjFv/H1D/VP1V+zNeo+l/yWmH37Vj6heBPn1fyvv/zsblgCcL9Iyj9R1V7y+8z/D+wjivVkDjwRqSHxOaT2LB6/sH6vM1/aRoV+MXfW8wte8jgN/3B/WD8v/k3Ie5/7rl+AGP89Cr1J/J+puC/EHu90hPR68D0av//5cc/Ged74G7qfc9+bfpNzHGNTmu0P948vWb6hOK3zpCf7jDuDpMWnvWf51b2qNv97P+H1RTxtMz8Bd+L8n3QPy/ky+MmyLt/xvUMb4N+6p+wuWini6/jvZtSbv4/13G4XRlfOi3EPaH1f9ppn5p3gtQXn9u35/Vr7ux50vo+f5FDeA29hf606k3/ex8f6Q2+t2q/Uv7nucB9tX/AtfSTufAmxZ50lP+OrA0+CuSPzTkT9sGOY3v8f9o/D+4LtQPx/t7DngZ+Y9R/752XeT3vZGstIv3ilmc/3wfgn45jnGg3d/4ft9XOh16Z8n424H07zXQ9Z2vpKH7mfqh86/3M+H3AH1X0f8nKE95///vLOU7ad/x3UT4qg2frof6Y+qfqb/mSvSlv5r+EL4v6P9TXvZ+23gV39/w/Vj4i4Z/3+M9RH3vn2NYn7yH9v7Z9/GNrynneg+9//rfoXvQf8u4BfBu9/9BqO+40R8o/D6d/1tmXL//Z2Z8f0341I5Xj3z/5ysben9Reyf8v0Z+E6DvqRt/7X1QRerp71DKdxrgtw7y1QIOop8ug25a5l3veaahZ+ffJvrbQHci/PXXHkC+9wL6m+o/7fzj/0/4P3P+f4DvQZyLBNB9ivs//3/TuLaLof/j9L1wx7/zgeN/LfRnkD9FeyZ8nKN/PfB/i0Pncf1js8FvbvJ9n7c7fI2Cn2Hej6m/0PtDKaD/EvyF/z81OvXT8s/1fpV2O8Z61IR841X1V/W9IuOtarovor/6Tmh66FfT/1R/avgzPky7fnf7r++lUX82fPnO1Rz3WdTPgN79v9F84PkZ/Wh3810A3+fz/yvGk9ZPPeyffpH+9ivlPSd0ht4E8heTb3zJOeA48hOQn4l6h8hPgzx9Q/8fO4ly+ovqR/oj8ulPqv3Td/eMz/CdgX/8f7+QH8Fk6IfvE71ndD/n/9sYf3JKOwXlnE/aQfcM5VzvSno/DZ4G/t8U/OVD7l3g8/0i92npsYveYZ/TBNiQ+r5f6LuF2gt9v7Ac/b8mfLyrn4rnL2AdoP+L4ft2DaF/F5gU/7ltnGPaGbcE3UPoow94uugfwveU3pfAn/Om86Xzqe/fP/K+GTiE+eEg4/MN9j392fccJ20c2Rvaq2gP36U9Tv348DUW/rX/fEa+8bubqGfcboTx6f+Xn6XeNPTWl/w4tHcF8G1kfh3r/k7/a88Rvs9F+XXoORfyFWb+8p6hbej/99KAp7jxlJ474cN3tvS3GM73n+kf7ss+gr9l+p0bjwG/VeDP/x2PJT+h52vPV96fozfvITKTfz4UL6dd6ID+5ei3UiSA2jPf0n+D8dAW/P5f6gv6A6AX/cjfcnwj5/8B0IOUFnicdZ119JbF1rB/lHR3PzRICUh3lwIiIQICItIgSEm3cEAFREoJaQmlO+UAIt0lKdIKCAIi8a713dflWtzfOs8/e809M7tmT+3ZM0+HxFH/73c9TgC7JwrgH1kDWDV1ACvkCGDXTAH8OmcAY8UMYPn0AXw9QwBbUr9S8gDW43vDZAHsmC2Al9MGcFq6AO4G/ybo3SW9OXsAz1P+Nul71MtLumbGANYiXSluACdQrir5e7MEsHCEevBThXJ3qb8Ber3gYxT5J6n3AP3s4XtS6r0BXIC8P0QLYDH0VYT699B3/lgBPJIkgB2gVz1NAPtkDuAa9PgP/FYjfzb6/wR+R6L/qfDVED7nIn8O2q8M35sHIKoGdNrBf1XsIoK+NsRHvqwv4/0OfktkeBn/JsrXRN7NpFPRvi/gdxH1RyLHBfKPYJ+pEwZwGvrMA39Xke816s1FHxmgvyUlfAGnpwpgBfi/Qr0uyN2F+p8jbw/4GkH5RNEDeI30ptgB3Et97bAd/BegfUcj90jg0UgAc0P/Oenn6HMs+E8hdw/s4liCAP4HuRsFIOqR7U66DfwUAH852qUt5YqCPw30DiH3CeSNi33Nh05svuej3Hj4zQ++fMAX0FmC/rSrGNid9qad5Sa9E3x1qL8DPa5Gf2uBNdFHPPhrAD+vgu9t6K6nfk7a5yD8/8J4sJv2uQ3fr6KnWcj7C/i7wl9f6l+kfDLotad/lMdOJ0D/ffRbgvqvwecF8LwJf03ANxd8can/C/mJGT8HMT4UThHAx/CXEbwH0dvf4BuD/fcj/zHy/Un+GvK7oI/x8L8D/ZaNwA/0t9DvZqDPStC/j3yp4Pt12vky8leDrxnIXRt+PqF8UvJzIn8G6kdon6fQOwSczDh6mHQh7GImsDR44kG/AnJfhM8C0J0F/nHQXwndGcCryPd70gA2o14b6D6h/iz0cg876E3/fI/2m4DcpyIBtN8WBt+P4L8Dn2Ph51Pwf0/9QfBTnfyCtN9k5FpO/eHg740cC8jfxPdj6H8s+K5SLiH8FAHPVfhvib0kJn9lSD+/gn8h+LfC73fo/yb0LtMur5GfgvotAhCVlnb9g/S8dC/Llzvjy/K1iQTwZ/QRi/xe8BkH+ufIPwu9h9SfinydoPcX8Gv4vW6/or9VgV5F0jOhMw7ofLId/DlpnzzMN0eYf/oBK8PPeux2HXAx5c+hrxOUz8X368De6GUgfLajfA/ot4Kf6Mw3MYHD6Oc/UK4//f0hekqJPacG33Hs4UfXG6SLI19q5qXZ6D8j+GOQXwj+ZkLPdVhJ9HaA8acX/HaH7gXSy8hfBbwMv5OgNxT875D+yXUQeJKjp1V8b0u5v8Afk+83+d6ddFHXW7RLQvQylv69DX0lQ57SyBMFHtfLJxgXkjB+Hyd9nvIr0FcEOjP4fhv+0kPX9u1FO3anPS4g/xzk/C/8vEM/u429JEauAqSTQece69Eo+EsD/ry0323w76J+U/D/Cj8f8D0H9MrTPguo/y7rpeHYSSPoHYJ+T8aXL8G3knFgHP3TeTMxdM+j99jIr32F1/faVyboRYDP0fM78Bebeo+olwf8C9H/ZfjZAmwOjILfVug9ZSSAvTK/zP9J0gPJ/xg6H8J/dux6nv2M+eUo/CdAP0mR8zT8xgRPG+p1BB6hXDP47wq7R/keA9gAvqphz3OROz16OkF+f+wiPfPUd9B/hfaOgr+O1I8gp/NVL+2O8hWwvxjw1wv7/xq592N/ycBTBbs5BJ4KpGuDvyn9w3nVefay6wf0NJrviSj3I/otESOA2YGTsdf15P9M+QHUXxmAqC60bzT0sph+HZ10Puq7P1mCfvZjL/PgvwTtUR383ShXB/4fo59cwHKsxxbRPpXRWybyHYfXA3OBrzz6Xk97ub4fTzoO/A4HbzTKn4DfKPT/l/xRfyPtsZV22/pKAC85X4N/KfXbg+8I8n3AeDEaWBP8T9DvDebbJ+ipC/J/DL6N4P8v9A6AfzzyHIxHPdrldepPwR47ob86+gVor7nIvwQ6k8AXCz3vYvwoAD31op7UT1b4SxgJYErw7CX/LP0rEXjP2M7kv4PcU6n/H+hsBs8C7K4i/cB1fCvKrYKtRsjXlPQ25OuIvHfQx0TgGfR/HP7LQ+8CeFZSfyz0fyI/M/hqwP9z2m+262zShZBnAvpPCJ472NMj6BdF/oLYZUP4Kwb9WPD3J3ofQfot7GsU9X6ifDPwfw9/X8FXUvsLeOYgzzfYz3TyM8Gv66sZ0JtOvXzgGw6fPzO+DoRuY+z8fCSAE7HHduB/Bzzxyb9K/cvkJwJ/dvL1V+i/0J8RD/6TwX859FsB6P6lAPzv0P5Jd0M/FZgPHsL3Mtr3C/In0O+PIa/6XIV+9iN3CuRIDXxKfmPqxXbfxvwQC/5yY89/I8dO7HwO9Q7B3+/M628jx8chfejP6Up/6wD/Kei/+bG35PqhoH8Yfk8BxwPjUL46411e/THQ7ez6jPXC50D9ddfgsxr6dn01hO/vw8cN9HcNeB2YHfxLXP8jx030fw/9lkQ/ecH/A3psz/iVAvqpqN+Zcj2hP5j2/Rr5BpFOHQlgc+wpFnKPgf9XSG+Hv5rg/Rm8i21/8L1JuyRBny+gd9p64Kuhf4a0+pmEHOpnGvgd92bBh+PeVNr3C9ZfReDjXfiYQftmQy/54PsL7Ggp+psO3o3g3Uy5Y7TPRPBtht+RIT/VavRXDbnWki4FvpaMN71o13joYxP0p5H/DbAB81yZSAC7wX826heBTmXyXT/qd79FedePfdl/3iS/lPtn+B9K/7yPXCngqyowCv24PrxNvS/172OfPwC/I/8k+isAvWj6M8H3N/zHZlxKDv6RjAPl4Fe/wVeU178/hPY9jN0cJH+9eKCfCL0mAV4AjgO/9pgSvWmnA6j/Ifi0n0noW/spST393jeBi9HDKvhLQH37+2zSy6i/l3Qv+HkdPvbAb4Rx61X0URr+toI/Gum60J+IfqoxX19AjpnMVyXI3099/So94S+z+3PsPwbyvE3/dPxpwXj0TDyRAHYGv+PpA+yxQGh+cn/4OvU8T3B/2Jn0E+j3RQ7710rsLjVyj8Oe51I/B/uCrMDT8ON+4rHnGdRvAN6H1J8J/qHUm0G6H/Lpt//YeScA//rvc7mehe90fJ+IPJehq18u7K8rrN+Tcuego/+/FePfYe2e9tlA/bnU/wX8t+A7P/23diSATcD3jf4Y5B8JPyPAf47yx8nfR38dxrg3GnuoDp/7sL9E+r3Bc4L6nzM+ncf+ErJ+aAy/n+g/187Bc4n6C9HLb+CtTrk2yN+HdDzgu+BNj/xbSN+mXfahP9c3Sel3rtu+Zf2yWv8yck+m3APo6n+ogFyH3D9TPmckgB+7fiM/HfLEBE8T+FnA91Wew0K/Mvz/TLuVky75K9FfS/DoFxiH/Buxf88HPS/0fHCB/hXoNoNOSvidzvjgOXI27NHz476Ud95z/CsE39Gh9wqwPvYzDv7PQT8r9Puhr43YcWnolwGWBR71XBn5isBfYeA2/ef4C7K5jkGuA+Rvgu8F8Os+IRnj3zjk+QP+9qHfJfDn+c7s0DmP5zsDwFcC/Aspt97zHcazL4Dpwe/6IBv2GB/+EwBjQMf5xXNK5xnPJ5uQ/wJYCP3uVH+ku1Cvtecc0H+L+ek4ej3MeLDS+Qg8A6n/gfMl9paSdfUG5GrB93bI35/6bckvAf0N0B8cXh/Bbwboj6BfxmSd8Zn7TP2nAYj6jXrpXb/TP5aRPgVMSTnnw9Hgy+86hfHsAfLWQy/FyW9GOiP4L4HvOO1emnqr4H8o8tVHvgXAVJEAzqe9FwKjk+9+rgP8jQL2gN5w7PNP8Fci/6jjCfquwHre8+MlwD7UH0r5eJTvHYCotz1/YLx2HP8A/saR/4v7EuS5D74htP8z7H4AduV5i+PLM/gPxwG4fw77O9XPCPSbkvmmE3Tvki5JeeftPKSdz/VfbEauKsh5EljG9Sv2cIBySUn/Dd5XjD+A/9iks4A/PC59BZ/F4F872AZsgryZqb8De0vA+qcx490A9LoIfhqAdzJ81MI+30Xe951X4aM+7ROd703Qt+fJs0ivYd6pyfju+jyL/i/qp4D+dvIX047hc4NWtP8m8tWPemmFvOqnLvUuuW+B3mL9z+D3nMRzkWjIV4/vdYFb0M970Cus3xy9JHYcQf/NqVeRcl3ILx4JYFfaoQ56+gX5akDnPvZ02PM37OgOfGo3CZAvbD87Kf8WdCuGzkM9P+1D2vPTGsjfkHp1gJ8gx1/Yx03jiah/i/Rw6GfUrwGf7pPKo7+O5I8Cr+0TH3myIafruWiuT8H/EXrZ6PkV+RkZn6bCT1bmyfboOQb5rrdch7nu0n/g+D7E+ZH8waH4pR76KUm/i309DUDUb8BaQPeRmVxPoo/FnmOh30no5XPjXyjv+r4kfJ+F7plIABPAX1/99ZTz/N798k7G97V8Xw3e0tDfSjnP+9d7vkp+HOzN+WEB8A3w7GQ8Xc04k4b0M8oVMH4C/srq56f+t+j1DO2dH330RL5atKf9owbpHdRbhj2Uod4W44XA38j9DfI5b2ZFvl/Id/3/A3AK/CRkvEkMHM769Z7tz7g3NxLASrFeztfvuNw4HPD/iB1sQL+zwH+F+v91H8v6xjiYUaQLg7+1fhvnRcvRv7Mw3tyCb8+z07geg6+12g/fP0J+zysbUG6pflH0+xXyNTX+jPHob/DUDdnFU/B9o/8evKehPx88/cjfw/fm+gWoP8v9I/VPwUdG6C7CfipS/iz1UwCb0v6TqbcYux+KXl2f9mVd2Zt84zEeg78y33fIB3x1pn4V6DuvjnH+QL5UpHOR3k+5jJ6fG3cQiqMyfio/+zHPh/OR3gMfScC/LBLAba7vkH8ffH9J+Urg+SA0vuiHc5xZTv03yZ8B/k+A+v9uwa9+5dLYn/7lY+Rv4Ht17Ccb8sekfYyvNd42Jfy1D63XisF/avJ/Qi7PpbqAz/OqGo6vtOMi6Hak/S4wfg5Cr6OB7cHbm/7fC9gO/PXgpwzft1P+DeqvJd94sQ7wYzyZ8WOVkC81fLmf2Ir+XW+e4fsD5v9TlC+KXksb/026GnQcj2M6bwIdn8+i7yQR5ACP68+NjF9T6BfG2/bSP0/9ldQvRH3nn5zkZ0E/S5AjifE6pNWT8Qv6qZeRHwu82/Q/uP9j/6lfRT+L/hX9Fvor9GfUNb6e752g+xHtZ3z6c+2HdnoOvl3gz8D3zNCvQv5k8K2C3hTlJj0Cuicp/x/s41vyZxjfSrn46NP48jmkN9O+rqMmYI+tod+T9roHf8lZf2w3voD8A9Q7CryE/fRHvhPgcx9fzPgO7KIcfFQEXqCc69aOyoO8X6K/u9jrH8A7wFLuyx0/oNOL9IfgM+6rkfHh0DP+67MARL2Ofh4gR3vyFzJvxQeWpb8dRO8j+W4cRxPy49F/V6PPcZQ3zmKN57voMQN0vwffdvJLh/xd25GvNfWM/6jq+gh530R//aFblvI5KH8D/RivsJZ63cGTSf8r643ZyPEP9LdRfwHtoX/2OfYyF3rGi7ck/SrtkBL8p+lPI8HTVr8040d87H2P/nv4qwU+4wpueA9Afwt49rI/MO5uD2nj775Bvx+BZxrp7yMB1D8bHj8SGJ9AfnPWbz+Btzn8D0FvPYBD6T8X073M/2LoGS9xDD3p10/reYL7ZOxrDvrprz/H+FbwrWL+io9cq0kfBH8P1oXGt420PvldQn5Jz2H0Ty6i332LXVxEv4Wpvwj9pDKOFXrp0NM97PEMeIvxvS743bc3RQ9Z4M94796kp8Cf6y/9dzPR527yPzcOH/xn4GsYdGMgh/c/WoE/yvN2zwdp/07kj+P7d8izxvUU36PBRy3qRdG/WyNfZeOGoGP8WTXsxXHDcUR/wCT0bXyM8R3ed6kNf2Ndv+sfDsVHGRc1DDyFtCfyV5DvOc4q6C8iHQ+8+pMLwX/4vOMy5dx/P2C995jvRz2/xX7GM566bxjH+Fgb/uqBfyB8P6LcUOh5/8l7VpMp532oD7Hv+NCNB/yZ+r2o35P6H8BXb9qvPvSik38hEsDK1P9a/6zrBfB1+x/xzW1pv6rI97txH3yfh37P6S9hvae/VX+252cX0Vdy+FoMv+3Rf23G33j6CZQP+3BdshE+V1M/EfmXqP8P9OegB+PxElP+Gd8/g78x3tdD/x0p/67xvfDnvDoffe9FnrXQD/vT9LMNQd70zF/6tQu7n/D+DvqNDv+/AY0PuQS+TxknjnvO7fkU9Qfw3Tg94/P0Axmnct11QCi+QP+Z8T3TwZOd/p8N+Bf1P1VfUdBHXuMxjH/9jXQc78+A3/3DB8bvY/fLgcXB/xB/cm9gJfzMZzzPxD7KIP9SYHzjb6A/HX0mpj29P1WZ/Hbw7zlZQvCkpf+Xwc4bMV5coZzrn+bwmwu+dkKvbMj/tIV89zdvYT8lKJcEfvrCf3rSObAL7eRL75GSX9v7DfCTy/sXnrcgj3EmabQv/fkR8j0PpX1eo1/uZf72fmk+yldj/DfetoXrHeSrZP9D/iGU+xB+ynoeT7kb6Ds5/Hueugh6KeHvKPzXQN4d5OfynEH/P+Wzka9/ahL4E2HXHaiXmPQs9BwT/mYDw/FO7v89vzmGfHc8/3TdHNq3jof/KZ7rwp/3mt6hfT8l3/iQh/SPaPqPoD8U/Xqv6yHl03mfh/XfMuAd/Yz0K+NSHxnfTn3Po3Ogz5Z8f4Icu+CnNnpLhL38Bv91vf9F+9q/PH9upr/H9TTl24C/Nf1N/1k++qHxrzm8lwBez1mvoN/Y0F1LOePo7KcxkK8S7dsDvHvRb0XK1wfOhL+u3q/wPNh9I+UWUf//u/9APePbDtOvlqLXSoz38+AjHJ80i/HyU/0HyPcedG+Afwf5L2gf41hWGr9uXK3nkNCrAL6ntN+HjE9tge2AZcnPA74E4D8LnlbkL8f/sRdYy3L6w5AvOunGxmHR/s8ZT/IZp2mcKvorCL/fk/89+KZ6XuL+Cv1fB18d+PvE9jX+EnzeP5jL+NPUe7fM53s8v4Gu58oLjRMiP5P7cfKfYM+lwN8He6qJ/La39xOnUV6/hOdt+isi1G9I/nVgXfLjk65p/KX9HHnc964Cuh92H3wPek+NfwDfAeRbj77yeL4NP1+TThE6n94RgH/Pp33X4BR238f4TuBj8DVBX54r6f+VXhbwlYW/JIwvafjuvNUUfq6Cvxj8Z8IOrvF9CvgH0f6uUwaQzhyKq3H94HpiGPqpZ7w5+WeZ58+jX/dnD+AvK/JkoP31CxrP+Zn7VvLrUd5+Zz+0/xVnvL/F97WMB8ZLrqP+Y+97er8S/krC11b42EJ5/SiNvTfHuD+Kcn8YH0i+/SY+44f9pxH78Ybuy+mfB0LxCxWNEwnFM1Rm3rmPXnx/YrztR/sa57sAvo3vvcX3s8g9E7yHkF+/8DfA676jYH91PCW/K/kdsL8mzFcZkCcO9lcjEsAz1J8P3THo9yPyt1LeuBfjYIx/cd85wvgO6unfXU6/ugr9BsZLGB/m/hJ81/UnUH8O48JK9L6Z+vobPK/1HHce+vY89xD46oD/V9LlQufthdBnX/T3D+n8rofQQ17ofA//Q5HrNb6PQB79Nx2wm1WkO2qn8Pcj9pkUOj+RvuR4R/tNdZ1CuTzwf5FxLQXl0sGn/XAl9DxHkv4q7HM+/Br/WFz/PXaqP1E/nf45/Y2vkd6Dfot4bgAcrf+P/tUT6H3qGvA7znu7rIOmRAKo31a70s60r3ukf3U/jTw/kp+H8S43cBj86qfYD937xsljD4eR5xl6ng2/9pec6G8O7bXTfSv93/VtevSdjPYerZ1hP7nYT7o+Ws36tyv4+8Gn85L7l8Hat+fTlAu/j/Ia410+oPdXViCf9/G8n7cTPZUFX0XXA8ij3/ZX7xtCfzXlK5Hv/dKRrLvOGv9AedvH9wDOgN/3AurBf0HaMzb4bhmPTjqC/YyiH+wLxWEbbzgceqs8n0a/+q1bAH9jfCniOX8Aoqb77g189WD89j2f+N7PC/nJspI+QL734WeRbz9dQ3s8Jn8h9tGZeWsf9LqQ/hv+PffwfudF7dZ4fvA9gL73kNuhv8PoLaH+S/T5XiSAMZH7KfVWkv8f8j9lXDY+qT725PnaBPr7ROdX7GwQ/OcBfyzqnw/Fw3xMvvH5DTyvdP3L/Ou9z+/Jb0Q7hf1K38FXdeRvj70MQQ+7gX2g57pstfMH+lwKHu/rPURu92ne50tOec8vHMeOIN8N6ITXx7Vo/0yMJ84Le4DxKX+S/Cr4527Cz2Hw74Ge92U+139Kehf2voR2XAS8iL5Og999S+FML+OPUC4tciaFXnL0/6dxqe7nKTctZM/adznaUfv23r337bvoh/f+JfoO+y9SgM/3CHy/xvcKZlF+M+vqFtBpSro27TURvT7Cfosj93Xo12S8zI8eCwDX0Y5T6S+HmNc8P5ipPxB+jLPM6D1e8r2f6HrsiOdl8NEN+lfgtwX4KmE/U42fof2mkL5L/THgz+m+lv7WRz8i6VqeJ8H/GN/H8f09+FsD3n7ox3sh4fO569Tvzffi+uuRR/9U+F2l34C+u7QC/RpPZbxVHc/vkc977kWMKwV/fej5LtWbofgU/Vq+X6S/Sz+X8Rbzoe+7ODupr39d/+kN8ER3fUX9P8n3HZjN2hf0fSfiHOm9EeRlPj9BuxbB/rJQvyzj7QLseAP6932WOb63YHwFdhgX+znpfa2QHEnBH47v8n54efrfFOjptyuJHPrzItRf4fsw6GVv6P2TS96zY7x/FIE+9byfHNNxGpgKO1ntvQr0lcT7WdQ3rrUAeD1/dD2sHy0u/C+H//HotRjweui9oqWMx8YHPKM9jJ/prN/ZuGPS3dGn9z08Tz4Cn97/mAL/d/gePr92/7UC2CC0H+sd8tv6ftVy6vv+xMe0ZwLkSUr79GC9+jv1q7Ke9X0S3yfzXbIhoffJDkLPdeUE5OkXio83Hj68vvB9snX02y7Q3Q2/PV0HGver/RkfifwnoXMO+q53W9EexsWG3zfwfDI3/Pkeoe/PGQf+lPK+g/Qt+l0M3+nov0tI3/U9Bc9jqO844Psw+t/cD7bEXveB33VrCeRcQn3XsVOg14B0ato1M7At9uK6w/2q55jh84TWfC+qf5b2eTW0D3P/dQ36R5Df+1V/+J4G5avRb/ZDfwXtUND1H+kd1K8L/0mpX5z5ryhwIny3oL+2pb+1Iu1+7S/vQ8HvBfT5CvrOgH04rn2D/hNRfgr2mha+Lxs/5vwfOn/tS3t7DhuT+kXBF1t9huL/ZvveGuVWI/9blF/N+mU3fAxDfscb/Uv6m/Qv7aR93oUv7z/bviv47n0P/ejZ4M991FHk2WU8M/WNx3Kf7zrZe7wN4HsRfCwE1mf8WEl77fecgHQd2uEZdvEV+F3/rQH/DuaDT6jfzTgA5PqB9Wlp7O82eGcir+uPhNBxHeL6w/ODF8Ao8HmO0Ab5vQ/87/oQfk/6Lpnn2sh3xfcX9F+RfwQ8vm/ZkO/6SdpQvjH8z4Qt77mF77d5XtAf6DlCZuMt0Kf31bzHdg/9+p7rPPcf0DW+twH9YQDt2oi095e8H+g7QL7/cxE9b6K9ZsOP7+xV932qUPz2QNqpK/z4/pfxtCfIX0997/d4P6in62/vrxiPgx0YR3cI/L2ZL3sBfQ/D/Ut3+uNEvj9E/r+Nx6P/TvUdL+TzPs0b8OU66030kBP6xk0V8v487f++70tgl4eAc7HPauBZCH7vRXuOvZv2y+i9L9plWij+6T566QO/71Fe/XhvdKH+bfTg/VHfn92CfAvgy3do34bvhr4LiJ06D+WlvPE/rcDXiPr6jfQjNfY9qND+yn3VV56TIv9W7OMaevaenPfjvJdeFb16P/0I9Q+7fqVeFe/HUK6c8UTgO0X5QdQ/z3hQknHyOHq1/51nfTYC+KX+RfBdAb/vrCajnf8hHfaP6xd/5vtV6K0R8v9Cf7C9y7veQd9ZjXOj/n/VH3TWwE915M9AvWr6g2jnjtQ/Dz7v63iPx33oQPd1pD3H3u/7Gugj7Pev5/0Cvq/iexvkGk/9XN5/oJz3BL2feJd+35BxsRbtZFyI668RjGOuw1x/uV5ZB9/Lwe/6xXf1fE+vEv3nff2nfJ8HbA6f08Fv+x8A709Az+98/9h35HPDxxLq+/7aAL43p9w/xgeRv4D27RSK37DfFIROudD90hPel3R8QQ73adPQaxzm5+n6N6BTEP24v8mnf8v7leA3/sNz0D3Ik1a/AXz6DrHvD6dD3rzUc54q7foqAFFLKZco9H7veOBo+z3wMPJNJv8k9Q8hRzf48N143/f1vV/f9zXOuKvxO9if8fdHsH/PIcaSth94Lpo+dC7q+n8R+jGe41v0dA3+fZfWe3vh92m9T/aCcuH9s/edPA+qETo/P6DfkfKfov/HyJeZ/pcJuBDo+f5S6if3voz3z0kXCsW/zjNOyP0C9fVH+A7eY9K+V9Oafq6/1PdsvJ9nPFHEeDvaswHrgzzof6z3BOxf4HtCfzc+3vXzNvgP3/+NH/Ivfghd76nZv7zfV5R6V2iniO9z0l6vh/wgzanved1p6LjO9/xuBXwNwj5r+p4K+SuR5wvjEfTnYd/heO+nyGv8YH6+LyW9AzkTU38d7XOT7y3Qb2zKe37ieYnvor9BfgXatR147C/2j5usLzx3Lxc6j38Nut9Sfh9p/XfT0Ode4MdA71lk1J/qeAe/9SMBDO+vbA/vvxQMxVeG41WuwrdxK+H8LMZvQ899b1z4L8X6qTRwK/rzfqD7Ft917K3fBf4S6s8Er+dsjcBfDPn8fwLfz26BfabxfTTviZFubhw+7R1+P2MXfK5gft9LO/+snwl8r3v/HP6Mbz1jfBj52Snv+aXnmTfQS1zqXSP9k+tz2vsgcDvfN4Lf9yD9fwLn297wk5v++gy8dUjbn71P5Psg3g/thP5Wo/++jNupSC+Gru+PlMHu1KP3zXf4rgT8FQa2pP9dJH8DdrSc+sbDXECeO8hzGn26HjZ+y/Nx/5fG8X2X957A730q4+mNJzJu4TvoGb/g+yCDqB/2b/t+ne/W+Y6d9wsuU9+45vD9e9+1zOf9VPL/fd/Sc+dIAL1fcsf4LeN3Kee8VAr6caH7PvUjtJ/+713oI3x+eh08x31/iPQH0Pd/li5glwNZd4X3/8+Yt54AUzKf+R5d+L19z5cWYx9PGE8fA31ntTb0J0F/BfU9n/vB8xXs42v6re/IOr5s1n/Gd/8vwP8HCPtnbkUC6P2fFsZfgc996ibvEzK+dgv5mXyffRPzQ17mhTvASdCpBN0XtFd18D8IvY/r+Kl8f/o+M/bo+Zr/P6W/diT2Y39xfeT7D3GxD8+lPKfy/wmMj5igPN63cvylfgbsoRlyTUG/3g/uSHsan+X/adnfL4OnG3QmQ7+t8Sj2H8qN9T0c5N0A3fD9/sy0SwZgScbJ6tQrQnsVBm7B3pyf57PfnQx0fbqU9vD/R3y/33fz/P+RV/9H/FXDrC/za7+eF+rfsXzfnHkqLuUb6h9AP/7PTDheaEjo/dyBpFOEzk9LQdf56wTyF4X/k+QXBXo+0Q9+EkMvE/iMH5npvEE6I/Wrgr8j+cZbus/uBP7FofOS333HBDtpbfw29pgP+77o+yeMJ22o19d72vCThf4YD5iG8ct7ZmmZT0sAL1Pfc+0N8P82evLd98G0z2fMH3GpV4vxYAzyGq/x3Lgp8Bq/4f0K487ug8/4szj0/ye0b3zSvofouY7nPH9hR8Og3x2+50C3P/xUMX4dfIlD/7PSgfyEtE8CoP9bdQ44F3qpkD8t6cbwfxfoe+e+Z3MI+3R8cH1QFL5dH+QBn/ffPJ/z/X7fu/Rcz/fMff/Sd0k8b41pnIbrG+zpCvX073R2fw5fzm/+v5XzQxXqlwM2Q8++D+57Ub7ztRH+m4b8j68in+80dsO+3U+G/eM9yR9Off9HzvOSo77fYVw2etU/+MR7B9hrV/rHGO8XGg9P/nvY51L03g/+q2O/9bCPt4C+D/Uz/FVzneS7OvrX+O49AOP+E1L/rO99UL6ZcbDkV2Nc301++P34/Yzn7dDPD4zz18jvRvv4jpNxzL7f5P0s/fD+34Tvs2xHP8fQ1wr41x83gv65jv7hO9S+Pz0Hu2mHnNqP93ej8d13oaKTvqW/AHz2m6ekN8GH/b9uqP87HoT/H2wm44Dn78aH+n8x3rMvH3p/6hH4HIe7eD6EXT3Qn039atT3veBBEdK032D7Le01w/hq/Fstkb8h+shLuhHpJNDzvMTzE9vR+zm3GW/1+9wiPRh7Gsn44/9BDvZ+n/GLtF9W6I4i7f9nhuNZawNPhM7HPO/wnNZz+Zzo9y583yX/BPnei/N+k++1Jnb/Dr+dvC8Nn8bve6/ee/ZH4c/79b6P5Xsul0lnB/9I19d8D/9/0vsB+PedVc/j3W+/B7+5XPcjz6D/4X9uDh/6oYdgD1nwf+rP2Em5JPDnPfVR0J2DfPqT9oBff5P+pWTgH0v+AeLX1oE/qfHhxiWF/l+gO/z7bql+6LTIexx9LdcfR7nYxleyXvX8+AT9szz9ZiHyhe2iJe2zlPnxFdfzlDN+1/ga94cNQ/e3zmMv54AHwL+F+sPgx/Nx7dBztvnozfv3rmMyeH6EfdZh3r0UCWBs9P+hcfXw+RH4fB+yp+c/xnWRdp9he1YE2t76E/+kv96mfkza7wzjzzbmD8ePpoxHvtPVg/RO33kg7T2TJNhlKeBc+NNf6P+n+c65/6Pm/6d9Z7yw/8tEuhzl4rFuyQS+G8yHFTw3CMC//8vl/3R5nvc19pPEd0WAno/tpnz4f4J9v+xN3++k/WJRr27ovQPfQfDdG/03/t+f/cPzG98XKYfe1jkORgKoP7k4/HvO2lI9eH/UOFPgMqD/5/AG7T8Y+65FOgd0MoN/tf2G777/a7y4ceTGjfv/L94XWILeHCebe7+QdEH0cir0/y93sMeU1P+D9FXHKeo1g15u6J3L8TI+8UvP9498L8D/LfV/TP3/0vaMd+pnDGn14/+h+P8xZUP/H6P+EkBP/d3zfSrGp920yzHSZ/QHY18bmEezA7XXmJS/z/jzPnL4/8iHQ/E2hb3vQP5p6ldBT1NYD9n/23ue4f4Vut6rNK6mPfoNx9fcgO5w37sH7+e073P6TRro+p5gLOiUAt6h3mbaqzF4jXcsB5/eh+pAfn/Gix3g6Ufa9489v/TctrNxa75/hjzGLxq/rH9ga+j+yiP48R6L/590EDgZmNb3JdB7f9rP/zfwfw+m0z6F3efTnrPdP9OexnsZDzYb/ryfWMv4KtrJ98v9f5G9oXeC/D/Xcb6/BD/eB23iehc6vvfre8DG1xsXYTxE+P8D+sGv/883gPRKz7vgy3M8/2fiW+T/EnvJi97cH35DvvfDbSffMXgPfutQPxflfe/O/9fMBT3P91uhvxfw6/u6VWg/32P3fd3/A9r0drl4nHWddfSWRdOAf5R0l/QD0iApIC3dSDcCorSAhEhLd4ugdLcSonRJCQjSCgiIKCACYpAC7znffV2ew30+n3/m7L27szOzsz0zz7j4Uf/3mwCMnyCAj9IGcFMAopqlC2DT1AGMGwlg9+QBvJchgL1SBDBx5gCmSxrAvC8EcECsAK4Af6c0AYxN/VnpA7gjSwAP871spgCeTxbAjVkDOBa6bpI/i/Ljsgfw53gB3AC+07SXifq/pAzgF7TbKRXfoX8fdF+iXu04ASyZLYAVwd8+YQDHkK4NXScDELUMuW2D76rQ1xK89aC/KnRkJ39Y9ADOpd5W0rfgs1XiAP5KfupIAGND30PwK5d60KF8ppA/nPabQnc05JUzbgB7wdcS8t8jPy31H0J3RvIrgu+jFwO4g/TFjAH8HPkPpv530LdWPYL+ztSvSH8cBv8d2u+eKID70N+9wDPgzwL+3pR/Qv314J+OfnZMQnn0awDlZtD+m6QbQkdu6p9CnhdoZyRyqEp70am3B75K0F4d8psg1yfIuT/y+Z12MjJeMgEjwLPk70R/ZwIPor+/Q88U6GsRCWB+9GQm/V8JendR/lfoyvdSAJdRvgVyeAk8H1E/Cfi78f1ryi8ifz94C8N/y6zPt/+M+aMN84bzSSLo2BQzgJuBW4CraCc5eH9Hv+agD4tp5y7lypB+E7l1oP8WIs8ElIvDeDpEueX032P6JUeMAD6h/mXqH6R+WvSoGfIbh3xHI78m8PU+sBrzSQ3g/tgBnAC+7tECWBS+k0DHj5EATqXeDvSqCrA79f+gf/6CjhbAk8gtI+UuwGcZ5HgN/vPRH2sYV0UZHwXIH4XeVgdWA26jnSP0xzDorAL9R6hfgPn1FeBh5JkX/mJT7y/KlwDfcuRXGfq/pL3YyPld+nsP8hhP/jH0sSv43qF8Keh6G7n0IN2T8ldIb0ROMal/gn45BexN/Q30fwR6dyG/TKSTIOde4MsAfRmo14zxkYlyl+AnLvSsRf+Wkz5M/ivgOU26A3TdYp7pSPoN8kdT/zXoyAdf88GfF7pTIudC1F8ZCWDj0LoWHXk2h+6/aLcv+d34Pp/257Buvkz72eivLsj7U/RpA/mXKT/X+Yvxthn9WUR7ye1/6IsJvn3QNww6RqDfs12vkEdW+iEn+YXQ+6P073rKt3efBPya9sYjx+Lsp2pC1/uOT+iZjT5MA3aFj9nQXxB6HoPP/dfL6P9k+MlDv8cHPooEcAx0j4Q+13HX75do7yr411C/O/KNAf0PqF+W8fgt9J+EvgmkWwQgKh7yKQBf34NXOSq/hq4f4JmBfBcDG6F/W9GDptBRBPn8yLqRBvx1yVc+9ZBPbvD/Sbl65CcjPYX2tjP/70D/11LPcRULPSyIvC5A/2uUS0B7kyiXn/1aM+bxU7TTOBLACtQbgr7NgP6hpKcg//zI9zvSu5DfZeoPoN674O9H+eHkp0Zea9zHwN9m0jup1w76U9D+JvJ3gW8s420W+WPgfwPyKY5ctgGjkf8G+VvYn3Si/Xisdy3gZyD64fr7Cv3REzr2oU+Voeci+IdAf2X4XQc+90FPKH+I8nnJ3408f6J+ceSYCnn1pv/WATcD36V+b+AC4Lu09wn0ux4MRt9cL1wfZiHvCPJJBJ/1yM9N+jzzRs8IfJP/D+01ob3ywJfsX+Q1ELgJ+AP0pmI+dZ6+B3R+dv/dBbynoEd9SoP8CiG3pND3PvljmC9Se45yXEP/WfK3UH8Z9Kxzfmd874TeAfCbGHlWQC7q5w3wqJ/v0m4U9XuQrgL+o+ybOwJ3AYfA91baK+G8gv7Uh78UzrvIZSR0VKO92tTLTL1n8N+e/llJ+YHQ25/yT0j3pb++5PuARM/zU512e3nedj6Av+vUmwKdReCrO/IryXhcB+wPeueh9ZT/03006YHgm894TQofx5gfWoJ/LHxvpXxq8DwlPxb6E9N1hvn+HvyXZ/1tSDu/wH9n8j+F34+RRxrg1+S3Yrz9e/4g7TlkLumh1BsFnf3Jbwtd+fj+JulGpN3/9EIu7n/cD7WCvg8yPF/P9TYd81tqYHJgUfpVfXMeqw+d36A/taFnFHp9n/xs5A/2HOt8Tn48+DtH/W7QVw66H1L/LeT+Kv3bjvxz4PsBvZlOfxYiXRD9y8H4rhkJ4HvwUYv0cvgbjVxGQG9H8nPCV25gecZ7PcodZF1d5b4G/buAHp0k3ZT85sAh1K9O/3eAr/egdzf8ZaY/k0BPNeRUjPyS8OP87jodB/k2o577t2ful6m/H/nvAw5nPSwNfe3przPg8b6sKP3j+HYdGgj+L6BnPvQ3gu5fqL8DfG+5/kJfO9JtSP/l/hl6egB/Jr8957XcyPFt0uWgbyryPwJ/05D/xcjz39Nk/P/zS9L+cvI7w+8d0n+S/wL8pYKuXsh3COvJfeBgYF/yPffMcz8FPs8/b6MPH1CuLHyOpf3W6N9WYArk3hw4CnxvQl9v0nvIb8n3PvC7jP5aTvsX4Pcr2lvOOKmCfqlPs6DvrPcNyGEO+Fbzvbf3AuArS/0YlPsC/fjQ+Yt87yW9p/R+Mi31iiLPWq5n0P8J9XdTPwX8rgLPGuqPptxd8pNDf17w5oLfkfSH+5Pq4N1Pu8eVL/jrgj8R6dLk740E8Hfmk++AX8H3Z/RPWdcl+n0p+tOO+j3YLyRG/r8x/zV2v8m8NZl0N+jNRv2h8PkGfK7ne3Pkmw16ayGXG/DRGPpmip9x1hi4APk3ha8ljKtlwMLQ4bo2B/rqwP8z6KrFfFATWJbxnQR6wvfvC5F3Yto/QLnp8FUM/MfJr0/9c7T/Avdrp8nvTr0n0HOO+tnJ/5n1qRVwh+dS6MlEv0WAGYFNkG9f5JsOOjYij1zU/5H9xnVga2A074+on4Rxsx3+l5Hfj3lhPN+TcX7YhFyS0O59Ifiqwd/XtBeP/MHwtw36l5Lfnn3DLfLnMT4qM148921ETpNp33vGHY4j+nlnJIAFkFcJ+r04MB7lS6Jfw0knQf92wn8UfJ8h/z3HCfl9lRtwFfTfZDzMg7585L8KXX2RTzfyfwF/QtqrhnyKkN+V+qfp1xjgX8X+sgT03KLci74vub6Afzn4mkKH+88k1Hf/mZH2F1G/OeWbwN9XtF8beQ0h/0faGcb4rhSAqKvgmQScSr77Nfdv7ucmej9Lfhva3Un9B8jvOO15btvsOQ76rpK+gpx+oZ3HwCnQt5X6++G/jud35sN/wFOa/E+Rz+/Q85bzM/qxm/SX5OdBzm3J/5b20jgugIehsyr53h9t5v7IeyTvjzqDvw71B8FXbOrvJj897V9Dv57Az1zwlXC/RToR+KPRH8egYwjzdS7kXgx8beH3Du2PoH9+pf19fM9LvdXkt6K9NYzbRu7Taf9Txudv8HNWfQm9z74MXb7T7nddov1WyOcEeJqB33OV8+0E6NuGPMpTfzv1ulN+NvlbkGsD2ntE+XKu79BTDTgL/pJSvzjlD4FnkvOM9yvoQyzaf0j73u9mZP48bL+F7l+6Md/dZ369B3R8jWM/0A966zHf5kK/t9C/Uyh/APo+IH8X/TEauj73/tz9A/1aF7pagP9D6uej3Fz0YQxy2E16PPLpSP3xtBOf+q4PrgsjQuvDh/D3N/uG+8Dr4J8ZgKgUrNszWd/uA/eg943gYx7p075vIo9WpLegRx2gLxfy8F53FPdB8ym3g/yh8JceuFJ5kM6IXM5Sbx3tlaL/t9DPJUl7z1sJ/K4Lr7p/g76YjJ8K9MM46tVAHzIgzyTol+NwGu1P9V4M/iaR/o5ydaWXtOfeTdTf7Ps/ad8NGsN/Qtq9gD4nIO39YT7mp3XeN5DuDb7E8HsD6Dy71vGBfnnf7D30cei4iHyag+8B+vau5yP0aSSwMuU7k/97aF9eCXmugb9bvg8CfRdMTn4S+s9zhueLotDjecB3jOnw5/nA95fU9ENa5LAC/mKiz1nA+xl0riF/K/2ZFP0fj55Vgb6/aT+O657nJ/goSn8VA+6nHd9DvY8eT3t9SceRf9pNDLwBPzPpvxO0H0E+I2n3bfRb+5jmITsZ7WOKgq8d8nnmuRF6Sgcg6gwwDvytgL5x8LOfdrU3cH7rCV1LtFvwXTkSQN/DmkHPPcq3An809Oq/7Cw2Uv8b8KaHnmjIJyXrx1rmQfdvg8AfC77/pn3njd3eX4O/MN/TwGdh6mufoZ1EXOh41fMb3+dAzxzf67VnYH8+3ftN9KsNdDWB7u2eY4GVaaci/Hmfscb3Rto7Av7j3u/Q7kPgZeQ9m/qvgXcl+doBLIsEcC/lh4P/FPPXU+ga7bsN/Hu/0wc8h6HvD+pvoF9fRK47oHMN+e2BI6GnBvVb0D/qT53QfUoc8gdDb07kO5n6TaHzCfnaC2hH4D1ree20gLcoXx9664DvOPlNyP84EsBDyOeh51zk8CX421J+O+1WIP+870GcL9ZQfg9yXkj+Wfq/CTD8vpKUdf1r8B5lfvH8HAP5XwJvHNJb0fdczDvvMe76AH03j+N7KfApfBSjP14F3zzm98Keu+nXCdR7i++XoHMB9SPuhyjfBr1KAP1lqe/7Z3Hq+/5SkPzp1PM8moX68cC/FH6119A+w3m7cGj+rgp9L9M/+YCbaN/1Lw3z7lXfD0Ln1Yn0R2n6yffk1tBfBn0+w/eM1DtC/h/wUwX81eH3c/irDT19oPcv7yNJD4CeN9mXPSIdD3xHfBehX+9Tv1/ofd73eN/nO5A+Q35UJAAP1Cvonwq+caR7UX8V9H8LHRdovxfyGAm++uBPSHos/ef7aVHqaU+hfUVm8C9Grpn5Hj6/ZgH/HuicD7xG+X/tZbynpf4h8H/P+M/POGrNOLiMfLTLS+k5gPra57WEX+1er7u/QA86ku/9UEHoOgH/XenPk5TzHf6a87TnG+T8iHaOZnkeX9H0z7dXj/LaH/ku5D2870NHwe89xjXaL0G5zOBZSP/P1q4N/sszf7jfqQzefb6Pkz5Gfg7qr6D+36ynj4DTwef9+Dz5Ie19TFfoi8+4Lsn8mBP5LwB/YupH990OOI3xlQ/+o/G9P/RFkZ8VfRhFf/5N/hjwa/+m3dsd5HeA+qVC5x3PP0u1f4Y+573q3tshv77Q11R7D/r9e2Ab33/BvzS0Dx9H/nfIZRF6MiACnd5/W999OvSn5ns65DOZ8bKY/nT/6L7RfeTblO9Evwy1P2k3M/XHBuBf++1E4OtF+0mZn89BVwrS572fpJ7zWvTQ+agy+Re12wH/68jvAOeL5PTzTuaB6pQ/BX23gT2inufT/a/7Xfe/2hf7/rOAtO9Aa0lHp9164KminJFPWtrxnaI+32/C32nXVdr3PTK57+3If7L7Xvid6zuR5SMBzEO9Rr6nei6n/TaUq+X6ynfPdd6/eB/zD/mLSE8nPwv9t4H57zb1WzOeJ5N/Bv59d/cd3vf3Y9Dvuh4BzyXPQdDvvmMH9FSi/7UnjEO+93feIxwHXtXelHop4L88+3/t2T9kPpjE/FDX8xv5nZ1/wHfe+3T6YzflfA/Por03dIbvt3338Xzk+0976AzbxXgO7of8JqDv3quE71tikf8Yul0/q2q/wHjMDf6d3EeX9P6P9vuCLxPft1D/D/T/ru+O7MMHwkdLxoX3AvHQl060lwH5PoDf/p43wf+Ect5np4ePie5P6b/NlHsL/paRX9z1kfpHPC96P0r6HPkbwHOe9EHorQ9sxj7O9zD3N1OQj+9cY32PY/+Ziv1nFfLfAX8X5LSK78eg6xr8r6DcKudn8tfAX0HktYT2fb/uQ/205N9U72hnL/VXIp8Zvg9Q74jzM+M5OfNOKuj4Av52UU974QPeD+u/Af4i2o9Srw56tBd8vu/Ghc4EjM+D1IvrfgF88aB/LPq1mnX5F/jXv2A9692L1P+A+fQ36HsTff+ccdAT/W2hXxXlfdduwnhyn5SO+SwJ7Saj3X7Q1zZk79gMOpaTTqR9OfL2PmQW9Vuhd+PBfwj9i4Z83Hd4/nKf7/lLuwr90cL2FZ7vvRfyPtn7oaTU1y9EPxH9Q+6yXr6BfNyXKodT8Ou7ou+NeWh/AXqlXVnY3mwt372X8J7C+4nzfC+L3mgHn0P7Z+/bwJeXdFvoTw3/2geF7VN7Uv4wfFVzPQL/Fvhvhp50AboO/Jdfzl7fT9Ff9bY383d6+NtAez2Qw1T65wr0he217kHn++RvR6+j0POy7r/on0T6zQDdVxz0fYx6vp/4nuL7ySToHUT7s0mPJl99Ur+2+15G/lLo6Qr/8cjv4vjzPQU96a6dPHS0ZH760fcY+sP9+z7S9ajfANiW8i2YH1aTbk66D/pZgvQq0lO0s5Q/z9foTwLk0Ib222mfBd3aKcVH/ruRi3aD7uvFn4/vA/l+yPMT+MuSXgCeWtqxQk9r+G0D7IA8nvouzHw2CKj95of6fzG/7fPeHnkfov0LyMP9W1X6X/1eRv0OlFtJuij0zXY/A38/oO8FkfcF6PF9JD7z/NfaO9FuWvITaodHvvepl8DnfetE8juGzjeedzzfeP7SriZsb3MI/Nq3v6wdGfhfJ/8N94fwtwk8+vNqxxi2X9QfMyXt3aXeJuXLuTs631NQvgj1HzivQ/8K9C8l8gjvX923ar9Zgu8DgFf0n3EfqH+Y9rfIy/fbZswfB9Cbz7W3At8H+nPAX9i+6zblX6Pca+wzs1MuLuvjXPT3PvyVh76foKux+3foLQv+U+S7LrynXTPyS47e3tXvR/tT2h9C/lDoOs88qv/eOPAf9BwJ3+nIPwm+B9BdH/2eTP9oB5GZ/AvQ/w10TkBfa4D3uusW9H/O95LUz0P9udoNQt9639Pgq6P3/5T33a4u+QnJz+r7Ef2UjfRL0PeGfpzQcwh+3iKdEvsv7enD79u+yyUJvc95P6W9en32H9PRs4PayyL3xfT/KuAW8Ou/0k+7FvKHIMdP4adoSL7a75ZmPi0F/BF9mAr+j7SHonxO5LHO8xf5b0QCuJf93Q3a+Y10RP8lylWh/0ZBr+/93zMespBfiXl/KfVzaW8Ofu8PvTf0HrE/+YNZn8cxjnvqB6V/CvJtR790oH/1/1yHfs5gHT2HfC5T7jH9PxF4zXOC/EH/Kea5M8AKyG8k7Tr/3qDfnyFn+1N/pILkzyA/QrpSJIAttLMjXRv92qX9HPTf8P2P8jUo/wVySgb/NZHnm/qPh+wQ/mbcDKZfwva8iclfj15rx5cIPHGQb4T0VuRVE/5c394h33XO9S0/8ukd2mf7Lqh+LtI/iP5WPzORHhwJoPbYQ9D/NsxnF8GfmPzZIXvereBzPXD+d1+YX39I+utl6m1hXthL/lX04yLyy0FaP7kiwJL6N4T287PBOxz9ukl/DjJ+APAudDxlP7OJ+WcbsAP8RQd/HPpDO9BR5H+B/BpAz1PKl/F85rrGPNCM9Cnw5OX7ee8HSceHD+/dvW+/SjvaZz3iu/d93gNeRx6boW8m32+DN0L+LPK/d/2iXF7od/9VlXGdCLhSOzPGU2r0PBnpn5GP+80Z+j2S/vU/7i/lQ/qzMa7y0J7vKJmhLxzPwjgXMYy/ob2y70ng0X9nIvX099L/6ylyPev+iHoVoPcz3xOppz2+9vmnaH8H9CeLBLABcm5I++73KlB/Cfru/u8F1qXoxiFAHxJ5/wod9zz/ou87kOP7yKMieMsA9UftS79l9n5A+3ro+wL6jUOwkfQ6+ld70V9919TPwXWS8aafsX6Z+lONo700jOvLwO3wlQ356P9QUXst6t9mvvQ+J/wedpL62hN4X9UI/rYx/vVPb6Ifi/Yp+heCLxPtal+7nvGcHLzrSBdDnrOQ1yuOX+Twrfc78NUI+pvT3p/aC7EfeEu/OtPg/4r+/hhYn3LjwdtUfwBgBvBqz/kl+AY7P2l/Rb721K6zhcCfDjwZjStjHAjkqf3FY74/Af4DPACf6q36OhT56D+dGfm1ol/fga5v9b9A/5Zqjwv9z+ivu9SbzLx+z/MP/BSG/rLsI1+H/szGF4J/7bA9D1yl/nnPHdDhPbT3n2H9jEV57UM/Ba/+9+F4F7fol5EBiLrv/pn8+e6r6P97jLdm0F8mFM/A89cj8vXrrabdF/j3k5+D/smDPBsyPpPQfjrko7/AgtA7qufpUb7PUd71LBnyboyctK8rAT7jNV2nfAbyPU8fBZ/vXmF75NfJfxW9GOq6yPg7DD/aHWmHVAB9yo5+PEOuBRjf2ifUC91HeV/lPV5Yvp6f3tM+1rgxzMPTSGeATu32kpLWfm+1/t3w15Dv+nPL/yP4GwedF9lPpqd/L0Kf84n2RqPA351xUwr575c/1xfKT4TfJdCZn/ppyF9BO0f1m3H+gN481Nd/Zhr0raL9iPu/0P1zTe3zqJc5dB+l3ZXz7lrkpR3WHuTrO+MLxoeAj3LMH64rviM4nn1/u8T48x1ukHZc0NkAfLvpZ+3/OkFvI/JHkx5OuhbzZS/jRAB9HzuOPLZB9x366U/o+ywAUROA6eH7L/LPoN+NwHOW9Jv6j6KP3t/cgn7nj9a0ewK+X/GeCb6vUv9nYG7kaDy0osxfrwIXw19K8ktBdzv6aSHpQ9CfCb0ehtxqs55thv4izC/d0dsu1DtM/6REL7xHmek+jvqer9/RL4N2esKf9xkjSPei3DXS+iO3hv7ppN1/G/fOeHfHaW8z9H2GvPLQbvh+Jz561ws4An0sRv8UAJ/v9NucR30fp33jy5wLxd95n/za8PWDfs7eH9FfZ+xn/U2hX7sL/bmy6L8IfR2oZ5yLcHyLOOiF/lOlkIPvs4Wg9wfpo/4H5HfiXsL9ezzW+QngM67HBtdH5HTB+2j6qwryaQgf+veURu43kHtj6i9yfoK/ePplQX8n8HcBb3b04S71azpfMN/8gtwTUT5rJIDl4CcL46AO+q6f8nb4079e/9rWtL8U+q5RLhX9+SHlBofeFfSn9X3B+BH/VU7/grD9gP4FDbTLp73uyGe7fsDo/zT3FdDreWUwfB9A3qmZLyd5/iR/dSi+Ww/wx0a+cYBpIgEcAswNvVvQz+Lsowepz8hfvTL+kfrl/k67ROPDfA99LUL+Z82Ry3HG1zna6++7s3Iif5l+qtDzif4d5HtfpH/VUu2xKG98KuNSGadqmfaE9OcK1oUztH8C/Mnp91L0UwrSxck/Dd91aSeZ96jaP4T0Izz/DOO79xbeYzh/hv1T4tG/3nMfo1/CdsS3fW80LkDo/W859Dl/an/VB360v9K/0HivL5Cvf+E+5gXn5wGky0LfIvcbpCdB11nk1ILyJcE/Rr8i9QS85YExQnYg3jt6D+n9Y1bqh98DfSf0fiYpfLeGvvD6p99zHOg2Huo+5Pkr7TZELxoAh0FfWK7GC9I+fSz0nEIPq0BHS+rrn6xfsn7mxsfJgF4ajy437euftoH2j5CfEL7Wwn84LuVY5sfC0KHfdWPtv/iu/feuUPyl1vST/oc5WBeMQxuOP9sJ+vQjLa09MfSMYX76G9ib82IL/dXo33XMmx8hp33GJ0W+xq8bTv+NoNxw5D6WcdXc/ar2MMhjC+010U6U/F9Zv68DbwA/9D4S/IOQ9yeRAN6kf4/Cz2Lt3kl/bZwp38NIa//1i/GVoLsGejhBu1zjzUFvOr6nBa4xvgH6ssT4XKSNH1SY/nHf4D7iB+ofC8C/djzGS9F+pzb5c31fIL2M8gP53hW5vea+Rv8t9PMh8kxNupv+b/ofsy/wnnGk83vIPtc4TOehbwT9M8H1CTjC9/NQfe0BuyMf92cR8iuib0W8v6P8Ce32lWckgHOR62P6v6f+tPDxLeUvQU8R+EqqfxX6rz/SIOaDBJT7L7sLz1/6v+jvkZtyE8BnfMK39BcJ2z8bD9L9I3q4CX5Tsx7VJX8E61Q34x8YNxa5v4D+ef/t/fRi1/9IAJMyvj3/6ofk/VcN7RDRqyfQWcz2PB8xL5ULnX+ND3OZeaWifsDon/diK+kf3zcWApvTP+mMn8f3Ibbj+u99F/Rrp5gV+lIZ/4HyHYzPYHwk6umnoR+I8+9D9HsR3x+RngN/2rt/FYCoGUDt4Y1HoD1JDOhZqJ+A70eh+cb32SzaW3gvCB3FfL9nXt/AvHdd+xro0z8xs37UtBMT/o0rUZB02P5WfPqZGN/vt2zP8/MT/DzwvEL+Mu3ZWQeiG2cF/uz3DuAPv28ZX854uvoL/UH9/PSHep2btPq+i/FyB6h9xlLtFtFL9Sgn4+8S+N6n/A/gi+n9PONXe2bjI+6lfFP3taznp9CTlsDq+udC70ngCaB2IZUYz0+Mw8X4+SZ0r1wKeWhf28f5Tr2BX+01jf+yB34u8L2ncVKMzwB/xnPSzq2d44vvW6n/Iuere8hnhvfD+v3SXiHn29B98n3w3iF9hfa/8r2A9vVfNF6YccT+ZHwYT+ya8d2Q20T0sJjxm2h/NXL63PlE+0r08ZD+fIw379E6a58BXUNprzfyre/+iPp1SReA/kTwl9TzL3Tn1I4AuBJ5JaTcXuTTR7uP0P2U9j5TyK8Vknc693ekGwLdX18Cf3bo8/0pfB+Z1vgN9HtN43x5vqN+yf+wh9ae17hxs7QP0I/DeNbAuJSfob+UfhHQ9xj5TiI9jH7Xfl97seHeu0LfRuSWD3w/wl8a/aWRu3Hj12unEBr/xqc0Pupe328pn939JulvjB/jfk17ZuTne677y3XQY/wH7YG0D5rK/KV9kPfah2nP90bXd/1it3rfHvKPNT6U8T/0u51H+ceh+Cr6zYyHfuOPvAyfQ1zPkI/+me7z9N8cAj/GvzTuZRHWE+N/fM14HkNaP4DctF+V/dMG5v+PQ/EhFsOf/9+RlfHu/3cYV+NH74PoD+NrTKF+dOb1GKHzR0rorUe7+o93Zl8Vg3a70T+OD/0D9M/VL3cq5WvBby/wVYLPh6S9Hz7Mfky72VyMU+1p80DfGO1G3ZdF4E//LsqH52v1QXtT48MYP+yu8RTA/z306R/zLnTpV/AtfBp/0rjly32vB4/255nRizTs43tR3/gzBwIQ1Zp2jpDuq183+1f985MDPf83pl87uK56/wW/C+nvk56vjfdDef/PJUboPSED9J9Afz9hXuhnP0H/F6wnXwJvOv/Cp//Lop+39nrv0t7BSACPAo1nlhZ5uu9yv2U852z6z0BXNb5rfzsJ+ncZH4DyjnPtZ4xfkAK5GMfA+AVnoFf/6arQHdt32JBfxR3S2p8fA7//k/EQOV2Bvn/oF+erjtC/VPsz6o2k32977nD+pb2awE7om/EUZhqPTj9M3w0iAWzEd/0rfw/5Vw4K+U8ZB7wH+I23MZzvxuH4Hf6X6JcL3iuUH6QfKvL4Dfir8gGP/riLkEtn1yPjoaBfCaDfeFnGz09E2neiKyF/wAPot3Zx/Zn3tI+bSvpv6FrseVz/3ABErQL+pH0JdBrHxTjEfbWbRD7doW8BdNTxflY7HeTv/zIZT9j44J43FvK9V+j8YXxg7wXC7zXnmX9rojfFGE/GaSijP5Lvgsj7HfBt5XvbSAC1r/T/nYx/53zjecz4d5fQ253M+8bP/BT81UL75y58dx9aAvk98D0KvMaX9HzaBbpP6HdJ/06iP/0foaf088/ul7UPA7/vTEu173e/gJz+gs77wHz0awXauYqcaxgfh/r6f/tO9ER7Tf0DKN8Vui6j3604v/37fwkBiLpA/SW0/7l2jdoB6S8Kf8YBmEl7ibR/pz3jGelHkIP8++D1Pcj3If+/zf9r8v+b/D+nm+CNYt59wLg8Dr6a3oOyX96Lnjov+H6oP6Z+mgvAq7+m60MF6rcFuj5kBb/2uj9BX2348z7beTOW/hvGp6A97yW9rzwGffeovxH9Cb8vXaC9Knz/iXK36L/PaM9z7Bza8/x6E7kepZ1TlJ8AHu3HawEL0U/aj8dh3BVBLg2Ql/sc39330r7/W+V430P/7gbm8P6ffN8Hs8CP74S+D36CvIwjarzieLQ3D7rzMm4+gt470DGNdo2DFY5/lZ/yt3lHPwKfc5iXjoT8tw6RPwH6LkNPeejPRLv5tP8F/3vApJwH/P+cn5HfRuppp34X/VkLfv0W/D+70eBvQz3tIWsZr4f8B+z/TjMPzCPt/eAp5HZN+wSg9zCZmZeGhs57u9CPZtrbu6+HHv8/I4HjFfktA89Hofru26zn/u0d5u/1xhUk7f8ZvAg//u9TrEgAjQ+aDnoK8H0o7Rif5VX6Q/+Vd0hrH+t9+A3qZ3e/A/6J0OW9yG3tt6i/2vhDtPcnelXH+2v9T2j3I6Dxlk5KL+0Z78Hzqf+35f9vLaaf/f8t30X1f9Mvw/dR42dH0/4YPKmQ/xbknTESwEP0ZzPyw/eX3lt6P/8X8vqQ/PD7vvvnKNpt6buy8bsYt68xftTDI9TXPnkI+LVLnoP83d/4vwfuc/z/A+c371c8zzm/ad+qXat2cdpf+78K2jE+dT5mnBgfw7gYxsl4jJwGcP46jpwHQEc02tnC/GWc0GaMR/1z/D8W4x1kYp00Ppl+NfrTGJ9xA/naS9xP/3y+8ahqgM847J77jSenvZp2bKmYR7Vny4Te6Vec1ng/0BP22xsGn/5/UAX6dyFyK0faeBreJ3SFj53GmUC+vvflIx3+/5XweddzcHrkNoPxVJV5xviKJ5HfKuhZDQyPl88Yf28wrufTXk74f8T3x8Aa6IP+lV0ZXz3AV8Z7XO3E4buy6zby9X1Q+2XtlkvAp/bL3qvot68ff3/a813KuNDGiTY+tPEItlPe+ND6bxrvqZB28Npn0b9bjZcIHefIr6t9LvXT057/g7kK/o0/53nPuB7et5TRvo9yMb3nh94CyPcP+u8jz3fIT3+zreDRH8z4Dmvcv4C/D2njxKVh3HiPcsX7uFB8K+OhGudqRWj/737f+Mj6a46D3oN87wt/nv/PMr/11E4fPJ2pr3+wdlit0FftsWqh98Y7SMl4MB5UKuTzje8ovpNDf2fkahzpLqT1D8iOnLQvKUG9BtA/Cvl4rjcOl+f9mfTfNuapQ7RzFPr1VytHegzj7JtIAAezHuem/U3UX0z7RaHP80H4/ii99xPQ9xnz80PfcZnPXqJ/Chs3ivb8f9eV+m+qx75Pwdefrs/ozxjktNK4ycAVQOPaDodu46u2J38aaePDVEFPvEc1Por7SfeX7jezIp9j0P+z8y5y6E999SIH/Izw/tD3JfA7j/v/DN4Pu995hvzm8V17CP0Sc9GO/5NWGPzVGR/ZIgH8QH8B+Hddrw3dh0P+K91YD4yrdRD8H1Pf9d59QHvyR9NeCu0S4MM4MifA34P8Wd5PgMf4nMbncP18HTyb9W9Cf1cyjo0X6P/j+i5XC/prau8BfQ0Z34cY17Ep5/+v1qb97CG/NONTnEa+L/qOAVzgOgTefrTzD9D3Ju8vvLcw7sedkHyVq3J2f7XaeEt8Pw3eguSvJd/x3ZHvju9u1PN/jUsz3jxfZ2c93ooeXCf9OvpVkfeAhLxfDGQ+2AF+/zfa/4v2/6RvIL+s8K99U3ftsMAfjhvufs/93f8ARVR47XicdZ11tFbF14Av3ZdukJcQEBDplkZawqAbpCVEkVJAQkIEJJQUJKVDWgFpaQWkBOmUFpTQb63vPI9rcdb63X/2mndmdk2cmT177xudPur//97OFsDSmQM4O0cAf3ohgIuovxEdwMsvBrAs/X/MFMDcGQIYm/p8KQPYBDwTqb+VNYDlwFc9SQDXUk6YPYBH0gVwE/3mpw1gtZwBfC8R/IP/fcqZwD8K/mYh15aYAcxI/TPw/5sxgGf5/QXwZ4GvCHBplgAOpd2I1AGcTP908LEP+SvA72j6XQLWQb9/Qn8Y/U6hx4KRADZFf29CbwPyVKB/DOT6iPor0LsP/Q6Uk0JnK+XXaX+I8gP4fx3+XkP/j/m9H/ykA08m6EfB7xj6fU+5BP3Xgb8/9fWAZ6nPljSApZIFcEbcAD6hviX9NzP+fwPXMx9HoJ/3UwUwHvAcfF8D3kDeG+grJv3LoM8UlC/Dfw7kawq97pEAZqf/M/B1Rx+VoZOF/mnAl53yV/TvgTwn6L8xQQA3ALskDmAt9JQYvBWZHxOgt4D5WYH5XBe9baZcm/Y/0X4W+N4HToF+Cuq70T4W/E4F/zLG5w34fx34EvXt1Q/9u6DPL8A/Jl4AtyPH2ykCOJv5GY0+vwVWA75I/dk0yAXMQ73zexLrfTp62w7+5LRrFICoebQvx7ishf+T6Ks7+ltKuQtyLqJcNlYA4wDXIedryH8UvR1jfOMxf+4yH5fDT4bYATzH/L7Oflc8eQBLo2/33d22B39y6H2CHJnA3xx+e8LXCOiPpF8l6nPSfx36KAW/pxmfssyPKsC/qZ9HOSn4psN/rfgBLEr/agkDeBt639C+LfPhM+cj/KVG7oOs/yzA9uoP+k/Bnxn+64O/N+MzH/5+oH4V5RPooyv6PE45L/xUtR58dym3o34v8yuKefUAuB06yeCrOePxCH7dn/Ig72b08An4K4E/G+2PgmcgeH+m/yj0O4R1NJJyZepPwF96vk+/Uj4GvlTuT+Bth5x30K/7eRLa70ZPPXM8z98e+H3gd575sy4AUa2Z3wnA35j2x+G7XpwANmLefAr+feCvCN570G9Lvd9rv+NJWX/Ox2boYxT090EvLvVP+D6cBmYFX3/W/z3mW2bwVARPC2Bt9NYSPaWB/3nAovC/F7l/hf8fkf8jyp0Yr7LgaYx8+cGfn99jwHcZ2pcE/0/OU8bpc/R1nH3rQ/S7Fzlmws8W9pOtwA/4/QD4q0F3TYwA9oLfodTXgv4h6LWE34vgKcn6rYq+MsFPZ/RTj/NRNui8DP93kXMUfI0EJoN+YfCH9X0F+g2YfynoN4t5/5DxHw6/L9Defa0YfFxhfMai19zw7zpxfeyh3AV8d+lfi3q/93VD32nXS3X01xM87sdrqT9Lv8/gbzXtK6B/z6WjPXdA33NqdfhvSP+ntMuPvu4z32/x+x/AEZEAFmXetGLe9OV7tMf9C/z3PdfBz1X6l0WudJRjw8ck+ieEXkf04jlzud8f1rPn8wLgy0r9dPj5BDgYmNJzL/pqgD4+hs83Wd+JwT+AedICPg7Rfgvzvhl0m1EeBf/vIM9myvfQ/0fw1x/9fEO7huwzlb0/cW6JR3126MShfwHwrQNOgv91wO58/7vTvyfl/oxvMtqlhb+/KY+jXIJxLQ78g36l0c8h6H6DHMfQz5uRAH6IfteC13P4fvTXiH4n6ef3dw78lqa+JuP+iPqM4P+Ietf1RujdRj9LoHvR7w/8dof/IfQ7xXe5HHS/Q/8LaN8M+Ix5cwj6Hfg9Hvq6ixyfQf8O+9ltYBb0mNrx4Nx5iPr5lIdD53f4G0y/fchxAei55AB89OP39+CnJftZQvT3AfqoSbs64Pc78yf6/Bn5joL3B/i5Cd+foj/XdWfqXe+/gO978E+hX23aHQN/hO9nAtrtQf7W1O/jXtOT/vspf0f9MMbtKHguIvdWxu9G6P5YHjoXKM+kvhzzujwwKfI94vt0n3VTl/Jp5C5M/xTIVR59jYO/JJS913g/9L6TB356wc9uynPhowbyLuH7lJ/9YRN4jkI/Gvzew8oz/3bRrwb8bWY+VPQ+E4CoC+DbCf0MtI/DvneD33Oh78XMp/F8n0+wT92jPNbzOuNRFHm0F5SC/jz43k39b+Btif7f5T7QFViA781i8C9Gnt/pt5N58EIkgN4vzjN+3i+8b+SEn7eZL534fQjlZPA3Dr3OobwL/M0Ztwzwr/5/pJwI/ScGej9uS73n52bQK4zev0R+9yX3qVasD/enafAfH7reV9wHnlC+SP8Dkef53U1/v58zgafB34R9aRZ6bEr5PfBkRJ7V9MuLPDPAn5zvZw/0tIf2DZGvDHxdpv8d5vcTyheo74x8rcH/vfYj5IvAT1Xwfwz9UrSPTXmFeKA/jv4xmKeN0NsJykmpz0g5Qn/vv0mgN41+T6E3FP7+pf+39HuLciv4fcq6Kcq66UX5gefY0P6ykPm5ivr9nDeKsg7asD42wO9k9PcW+h8MnUHo4y7954P3D/ivjX6+pBzL+xntUlK/jnkxCfyrKK8D/0LkLQw/vcFXhbLf4+bweQ06C8DnfWoe7avS7l/w50L/2mXcv7TXnGK9L2DfPkm5Af3HQP8M/bfD7xDqW4CvRCSAGdH7GuRfwLqOCR9HqN/JfEhJ/8rI8R770xTw72V8f6P/fuivkb72au2A4JkOfe1f2r2OQU/7VzHwxdWe5r5HuRh6qa79mvnTGPraBctzD9A+GMW69n6fE7krgicT+qxHWT17r97p+R7702zW/VrKxT3P8/37HDyvUH4F/vJB1/PKO+jpJPKHz5OOZwLkfwz/m6B70O8n6/csfJeDn6/hOx70W8NXD/BVgX4e6I+j/2H4KwL+OrT3e3LLeyH12meuZ3yefmb3a+qXaz+g3+fgGU19bdb7UfqXpN1X8DdU+zHz4EW+9zeRoxf4GkDnHnxXQP452v/AP1h9+B0E72j3fegNh/5yypPofx47VC70n5txOQ/ePMiTFD7KMA9PQO8k+syH/GeQR3uF9osfoO/7kOebScjjfrYE/uuDpx6wDXiu0r4N8iUE/nc+1n4AnQHU/+N7B79f0x4I/1t8z0HuSvQbQPtv0f959PYIfm7wHRiIvCvdj4Hh/bk6624u/KTifPGU/hOoj0bvdRmPDtBtAt9vQ7+CdnrGrxF8/wF8Ef6X+T5B+XP0mAh8U6lfHwU96gd5vwKmZ/w7s683Z38qx+8dkXc880U9t/Z7D/366L0YdA+iH9/PLiH3RqDvaLvRSya+25eB67XPIndl8PWj30bfh0L7x1rvBczPldgrVgBXA2OAtzrjcBK+syJPceh5P00O/qTQm0g5C7Cj68X3XOZvVvDnBM9s8Pq+Kf693oe0w0YC+If2d37vT/uy1Pvemyj0DpzK8yfrrRB8l2A8dkA/N/ivI38m2u0Af23qZ1Beon0N/fZlvn8P/TR8nxfRbi2/+y7rO63vs1uQZxd6agocCP+nmS/76Zeacnf03pJ7yc/0K4g+zjMe7dI/L9e30C2P/JfYP88AM7B/HoDfrdo7IvAH/v6UN2k3przFfYxxzsg68n1Ee81R+OjOeGwG9kK+p8inva8+8uyi3EF/AcZnAvz6zpGD/tnZzy7QLwflZdpf0V8r5PqcchT4ims38t0BuBX91fX9gPa+l56KBLAq67kF6zwx5ZW0C9vjXFdj9G9Av/tp5/dA+3079JUD/G3Q4+/UX6L9NPQV33s8+ONxfs/COB2F73v0v4V8P8NvIfo7H9TbaOT3vJ8D/czn/lkMvWpv175emHlRA7lfRb/p6P86cv0GjB86z4bt00eRP4r5t1N7NfXloLMKfbzP/u4+Xw7+3O9fg893gPNYHzvQ3z/wtYt135jxnaueme976O899zf0mx66c4ANkGsl8qfiuzQZ/Xp/6gt/abk/1KRdasp/+v2Erx+o9572FvrpT/kxfHmfjkX/xKyX2sABjGdTxm2078HuP/x+BHlj0U//G/1x9L/x/Oe5T7tsN+ivYn5e0L8Gfaam3RHOV2V8z0CPvSnXon1v2ueEvwWMXyH4T059euZLSvSz1fMt9D9gv08F/kV+L5D/OvL0Bd8k5stK9zPKxZl/P0OvM3jaAd+HfjT6qsC8HAOchhxnoNca/gbpnwB+7ZXi156p/XIo+DOzj0xCXwOcf6zbG+j5DuPfAvx/gt9zj+ehepEAdvF8FtpPvb89BP8s7omPKHcE7zP4cX/3Pft3/VdYbyVZh8VYPyN87wQWRp9vQl87bRzuq3GB8YA7vAcy3t3Q6wTKY6D/Lvp7z3Xk+x76+B19J0OeipEA5ka/7ttx+D28f2u/akT5sHZxynM4z02GXlf4XIrcFWmXSXsp/G2k/Cn8pUSeJdTXDL0vbfZ9ifbp9E9gPvtuP4XyQPR7lvlan33oHvq7A58D0Ntg+CzB7+v9vrJvXWc86lGuA3+p4fc3+PI7mQW8B/n9G8rTIwHMA39jofcO/N9Hn4l9n6P/O5RjA/1O67+UhLL2W/2XrrB/HAZvQ/QwhPYzmO+/sK6mUe6HPqqDvw58NtOeBZ2x7PdveX6hXBc5r6Pvhr7z0P8A4zkVfqYBpwMLQb8gZf2cJjIOe70voJ88+h3q96C/JnIdA+ZkHG7CR3b672Ce1fDdCfpToHuQ31uht5Lat5kP3fhdO532uRSUy/t9Bx6C3/ysv+msu87sg6N812L8NlJ+Uzs29D+j/p7nZ+q/gN9B3CfXArNyzvJ7UdH3GcZ9vN9T+CuBXqLR23H9pJj/3pvd7z8N3Z/PQ3ceUHvHKfprX+6I/rQvn6U+C+UM4P2U8c2Ifm+y/zaAX++HNeHL+bsPeVeCLyH1Yfu8fpL6f+5m3hSg/8eM52H4C5+3VlPfC/yxmP/FmUd/QS8l/evBT2XaH6J+Jny04fxSBLn/An96+l+iHEX7wvp5UdZ+N8JzLfqZRP+O1Pu+ehT6vrMq90T4K059PvB/zbxNwjxOD54u4N/OvvMDMA/r+QvajWW+jgae8x2U+aO/gf4Hr9NP/4NxrN9XrYe/9tSfo76k7+7oey7yRSh/id7SeL/SPs+45QH24fcp4C8Df/rlPtWey3glZ/xnMY+S+f4Fnprorbnvqsh3CPkfow/nne9mzr8B8P8MOf3+dgJ/bL5/MYDxwFM0EsA27F9tge2A05CnOueiIc5/7VvIqX1iD3z4TjUeuDgAUQ2BjZHvV/B5/nwTPK8xr5oynqdZX2+7/r2Phd5L9Lve4zle+zd49QtIjNyJ6f8V+20Pzl236D+S/XUj5daM52PoeZ4pGPLf01+gJXLkY99LCFyH3Ee0NzOvZnFuORF63ynP+trCuPmOewh+WutfAr5avnPDv365uej3knbCSAB9t/kWffgOuB35ZkE/C/QaQ+cs+t0E/9vQU3XwpqH/Qcq5wd8Xfa2gPrw/JkdO90m/37GZh36/W2uP5fuVA/gj++Uv7oeeX+BjMP2yop/bzKd3oVeQ8lvoaxTtsyN/DPA1dP5Qros+3vc9G/wvom/t2dq7P2J8lyBPBugNof1b6CdjyC8zLfz4ntgKel9ql9W/kPbu/77b+I5jfEpK2peiv347teBf/+eP9VuD73LIm5R64zr6okfjO7RLN6D+TfjI6/sT9Y3B8yJy1Yd+P9aD7wkfwvcq6j+kv3YA7/33fH/Sn5t++mHpH7ec/hNpv4Lx/476hd7vabcC/UQzv37k3LQL+Ih9RH/11+G7FHx9CJ9FjK8J3Z8Tw+9d+K0NnpH8Xo7+x+G3H/2f0b87/fYDlzH+uWiv/exjxmcd+9JA/cWB+ke+w3oqwzqdzT7VxDgSvuvJWZ+pkb8F+GPqNwKMDVzmOQj+o6B3G7zvGh9DfRfffZHT99l/+P1d9OT6yUd//SG+Bsb0Pkn5bfSTHzzfIf85+Pc8chR6nlc8n2TTv4b+2hG1H7q/ee6vEDr/l0E+7ZjX4Ccm+N8Ev/ca7znebwoxHrEjAayDHs7BxwDwl6e+CvjGUm7F+K4D7zHOCb7Haq8qTfuw/+9V90P4j6YcgY/27Msdgeu0v/h+R1n7rvb+B9RPhN8XwNdK+zv63QV/feDP8/1K+LtDvyzUn4PPbKwP/ZbjUZ8S+pMpn6FcgvbuX29Bfxj4vkTPJeDnS9oX576THXid7+lF8FxjfvluXY36KYxvPvQ2Bzkyss88pv91+DNu8X3alWb8f4CvAiE/Fv1XjCsxziQuvxdDvrLQGwm9+PC3xPdF7KMrgbHRx+pIAFvAT2zG4yX949DPZd9T6TcZvldA3/mciN+/QA7n90a+DyOhPwm6VelfA/47sY93gI7n+/Pay+hX0Hcy9KCea/p+4fsk8sRRr+C9Sft6yDeZ8+sFYDW+L7/YX/9R5IzDecf51QR64f3B96Ecft/h/wvwpNc/ivqW/P6e7zG0196s36d+WVHIe4v94Tbwju/lrgfkL6WfOPPoL+rTUV9Vuyd0nyD/V8jrfnOUdaC+t7K/bQdeZj/NAZ6O0NsKXzG9V3j/U379713/9O9M/RH4awC8Df0n1B/yvqafr/4XfD/nAPd5z2R+Xmde+v60jLLvTw+RVztv2L7bCXz64ep/W5358Rryz0a+M8h/Cv6TeT8DTzfo/kq9fucTGD/jfIwvKao/MHRfMY6E/sa3es49p50COmuY32uB68EzzPhYzg3fofe1lJPpX4o8+qVXZh9NDX/GG+qfbzyi8YfV9B8M+TG2gj+/79uBw5ln+b3fsG9UNn7KeB3wvAHdasg9n/XdQf9b32/h0zi56qHzvfa7QexnnvPHUY4PvwX0T2P8u+v/adxYKP7mEe31g0hm3Izx6c4n+N0LfynA/5jz3WHk9h1Q/yL9HyfAn3GBr4JvKPy5L46mnftjXs6DhVgfqem/hfGfjj7LsX/6Hjsf/I1ZTw+AxhPdBb7MuC2D7jn4KIR8E7WH+X6CXFfBv4NxC78P94F/v5v6ZxiX6fnDe+Vu9D8rFB9eiPJfofNdD/CvNX6dsnEbvk9k1K7quy56WGr8KPIXRj79lA8YHwv+gZ6Lob+QefCK5y5+H65dGn7dL90/cxnvRf9E0E8P35u4Hxi/qz3Fe6vvQ/vB/wz6Neh/GvkuU9avyrj+K/Qv6jscsLf+eLTbRtn9rwh6cf9zP6zDvKwNfB14jfE7wX71E9/HXyn/QX/9FxIh71vw8zXj9yNyL/L9DH4K0D4j/b1n1GcckkQCaN4H8z2YD6Iz82UD/J6B7iLwb0f+eazvBcD2rPOZ1MdivGLHeV4O+fc+0Vd7Lnx9iH4+8DxAu03we0e+fQ+Gr/D7YhK+h1Pg6zz7ZS/k28nv3u/6Iq/3u16U9YdKhZ4vAsPvW75rfUx9U/iuglzGKbWkPI5xX8N34ibfj/SeWznfbESODUDf+xIxn6dr/wxA1IfuA/zu+dL4PuPZ/X6mgY8Noe/ncMZtNN+XEZRXg68G+qwJrA685PcAeY7zfXyJeWK8dFf2Y+0nv6G3gsyPMc5/32fRc2fqjbcwTisH7UoDL6GvifBdRv8qxv9X5G4O30cpu8/rX2j8kP6F+huehf/ejPNB2s3P9jzd875vUt7sezH4xkNvJO0KMf+0F16C7wX6WVA/iPk5GPgJUDtXWu21+ufT/yX4026uHX0J/O8K+d/rd+/5u5/4qTcvxlX4X+P+TH038L9tfC7yp/K90ndXyleoH8R+9BEwN/Mnlf7dlN9jHa9X/8wP83dU4vewP0WN0P3XPD7m7xnDuGxA3x8gn+9n+itfAC6PBFD9a/+ehVzav7WHD0QfvbRjgP+23wfKiX0f0Q8fOlu1m3tuD/m/huPljKMr4PwB/0LwzUX+Jd6f9W8K+Tcsp+z7TVbk8Rzj/SY2/JkPo73+4bR7g3WXVn9c9sHxvl+BP5y/J792XNbrWOh8wzzoT//1nG+Mv4rB+X809e29tyKXfvWX0Z/+ofMpD4bvTuhHvwXfLcL+C+H9z31P/5JhnEv3AhuxnxjXs8t7qf4J3q/gs0sAoqby+0jK5neagX7eYJ3MpPwIfPr/zkZ+/YD9viXXTwt50vkdQf/heCzjtLz/92e/6wOcyvjEpf2LrIubwETQ6QE8BLrVwCbALfo/Qr+P9nL4/xP+hqH/gvIJ3tKuX+aX87ET8r7i/QV81dD3IeimoX4W8jRj3q5lPpei3SL4ugHe+tArQ/8J6OUL4Pe0ewN68YzXpd8C8Hq+7kO9/niPuO9d9f4NP9sY/7PeH4wf1N4aCWA4/rQM8/ZvxvVVyjm0f4HvVcYzofsj/H9KvX71+tnrXz8WudZAdzh4Bnh+Y76u5Fyyynwd6Ml4Vf1Iwv4jf8BHQcrGm8SBvu/6F5BvK+vhgvk3wGfclnlS9P8znk+76B7fiyjfRm79CvUz1L9wCuu+E+Ww/7H+CfolDDAPBe03w29efv8L+JTxT4U+9RuO5TqAv4LQK6lfMeOVTf965lMO5vfFhM/3j4Yv/UhLgm8D/XtzPo1Gn9o7/jY+FvnMf2Y+tAXmowh9/z0PTIXup5yPS8V+nk/l1K8hNnidX7n0w4LfOc6/SACnI98y5K3ruyPtbqFf7yepnD/Q+RH5t7Kur8LfFsrfQt94ymPw8R6/ax/4h99/NG7Q94OQ/XMq63wKUHvoEebfU+PkwON7Rj/zlgD7A73vzYG+dqPL+u8YX8l+UAm9VwH63trVd2HG+2vuEdHw/6pxNeivh/FJtDffmfnPdlD+xvcEvucVgeF8VsZjzTCvifMtEsAr7C9XgU0ZJ+Mv97Lf7AeaR2Q64+T+2Vl/IPDepD6v78v83kb7MPLN9B4VGvdj2mto777he7jxWbcoGxcxg/aDaJ+T/eVf+F9OeYfxp8ibCDic/q2QpxHnR/MpXoWecVBTGIcl8G9+sMG+h6PvjeDTP6oV8vl+Yv6bxtT7nqLd1vwiSeHf/CINmG9X2BdWes9ifv3J7xnANzXsj2m8OnROaz+i/0PWf3X22W+Z72ugfwD5tDfW0s5NfVftS4zHUeiYP2EB8zUD8/c47ar6XgTdREDtXS/oR4C+fa8L32M8n+tX5Tnd87nxF404H/Rg/Zt/rkUAouZC9xbl1iH/tSHIvZB2nu+ugcf8F3loZ/6LB8Z7a1eH/xLI4/vAAvHS/0/j+RmPfPT7R/8A8Gs/i0X/cP7Jf6j3/Tq38Tjoz/fdcH65wfTvzvzT/68b5XrIGwv5XI+uzx2UdzGfl4J3sf7e0Pf+miF0v/b+2p/2+ovpP1aR/j3Qz03GtTtl7YPFOL+aN3Ym+2t/5Lkc8j/0PS2accgH/XzI1dB1Dr9xwPsyZeMQljA+Xfge5GKfKQk/cZQHfJ4PEvmejvy+G50P+UnpH3WW353P5j3pFIrf+ZDf0zvP4G8dfD3gfpKc+5lx1uan8P3T+4/3odXOb+2mofe2MX6vgK+yD7SEf88F2m214+7V/wu5zMdmvjb9B7J4/qPdy9QPtD3zQX/W/87D3k9D+SdGhPJPeH4rif7awJ/nt7XoT7vHGdo9YH9tybzcj17zsh6ugN/vZybG3/eLMZyvtEdqp9Qu6f1gIXL5rj+b/Xwu5fjM69b0M1/aHfq31X/c9RzKX+P7gP7QKYxroZwNeg/A57lFf6Cw/+DL8LXV/B3ozXjgiuA5gPyt6T/T+Dp+TxjyL1kMXv1MnDcR5td2422g9wD6mbRXQ7ek3x36mx9zL7+bN9D4j3A+tI3oM4F+vuh/Cet+LGXzHJqf0PgS8ZunrLHxcMy32vS7hDzmZTNPWwLaq6fVnHuM/0lLf/MRnUdfy313gP5Q+P+M/VH/2Sasp6vwk5n6iN9v6JWm/2Tk+x28h6E/lXrzd5ivw/wdmyi31x5GvyTmBYH/cP5s8yk8iwTQ/C3zQ3lczN9yHL3tpP158BtftwZ5CnB+zmc+KvT/X7yW50rjnOCnMN+TK8hRhHIz6BXRLxW+0mpfhr8c6M84hnD8wvgQvvusR/1DzIf7v/yYvuL3KUDj9yrpjwu+ZsCWzNMM8JsA/r6DvxzGm5k/EPn0l/Q+3Uf/QP0bjavX3kP/zObTYf+bBjQO4CHwFfOleE+nv/Fh+sebhy4R49yE3/MyXj/Z3nwK6OMz34WRexTjUIXvpvF2xuEl1T9I/2XzHdB/LPtPJ84Hnc3vDSxnPhX66/erH7D+v1Mpv0G7It5fae/7iP7aYf+UaOZzMu3Mxomjn5P83gF+lvK7+Xk9J5hX0nyTx2lnPKvxrca7Pva9lfFcAizGPa4b+pnh/UO/JPAsRA7Xi+dT3+kf6N/OuLn/mY9N+7T+na1Dfp7aFzx/TvVdDVhM/ybofWA8Bfy0od7vUU7fJyIBdP/S/+YEcsUA30/I5/n8EXybx8Dz+TR+HwXeEcZL/g/5m7Gfuf83Z73eZt7VBk8K9FMmAP/lkYzG3mU+pono7W/jN42z9P2J809D4zYo99PeZDyt8RvmEUR/5q/Tb8zvUHba/Uq98W/bwGscqPk3WgPNv1HM841+MOA134fvteYP7BmywzZi/fk98T7ofdHv50H2h9bAcPya8X36JbaB3qxQfpdo8JvnxfhW32euA9uZT4H5o7+wfu36EZsfYgX0t9Hfe4v5MdW7+QMdD/33NnA+i3C+f2KeHO2tzI8u+r2yvq94/pNP2s80vgv5v2K+xQX/ab7jp4C94ecmcrhffx06vycHr+co86dqB1sA9DzwkfcB8Hpu9Tzm+cv4j2rUGwdi/Mdt5B5v/Cz9PT+WYN6bF8w49L7ovzT6NM9fvwBEvW2eOPbNctCNwzxvCX/as/5Xnp9wPhzfx25Q/y5l3+d8r/N9biLngcPM35bsI8npX0D7RCSAxpkN0z5svgDqjTOu7/dSuxR0m1JOqD2L+8zryNFIOzr42jJ/jNd7Qrkt+hrKvpQcvaUEjqbefD4r2KdGhfL9VKC8g/r6QONWd3E+0t9GO5L24iXobwvzwvfHuJ6/GV/93Xcbv+f+g/6a0N//g/MZ9IrCTxHzksHPXfS7lPFaBd6nofxsngfN81DPPAvaRdnPS9O/KPhfoz6cL8I8EuciAYzP+BnHF5ey8XtvMH/0700L/dHGDzJ+JdFjCeQxL5n53M3vbh7FauhzJnLN1y+EdhPRr/pRL+pphu9r0M0I34tob/4z89Ga/yVsfzS+xria1UDjPJuBdzF6vYJc5scPv99WQc+1mT/mX4rv/uf7I/KXYP5eQ/9jQ/ZwvyfKfQp65cCj/4J+L81D/guxWJcxgWF//hXM78bMk9+oTwx+76fm3YwZup96X9B+6XnJ/4+xCv6bA/tQf9/3f8arE3jXub+pP8a9mv65tNN+9AX8XmB8LoJvM3TMh6t/hvlytX+PZ///mvq44Mnme6LfM/Ra0Xsr/SfBr3GkjdC78aOr4GcscBywK/0XaG/TXxh+djG/zccy1PgIxuNf/R+Y/6mYN/cp6+cziHJa84dR7oe8w8Dne1xS/dORPx77RVxgUmBz5CuCfhw3/9+Q+4P+JOHvl/ut+5f7VTP0/wx9nPA8hx70A7hGf89rxpPEB3p+M49E30gAw/ffh+C/i/wFGY9Oxql77qfePNjavztBXz+q5LT/wPcGvocdGHfjAY0vO+n7G+2ND2vl/Ka+ue+/1I/Xn9F4RPrf1h6DvC/TXn+ZntQ/Rf407Iv36d9eewT9fU/zfqedRPvICeZVWs6hrqeK7Gstof/wf/g/zYS99eZ7pDzYcyF6dR1+w+8NfR9FrzX0Y6JsPqkK4O2GXOa/+QN9DNefAHn9vxmO72LPF76HI/9m1udd7TvotSztOrA+Outvh/7c/y8Y30c/84fvhn4r76fsb4epf4i+tzH/WzB+bdBLff/PCnj0P1PvjoP6j0ZffVl3SSlvon9F+NM/YCnymy/PvKCdjIMGmq8yAfcP88l3kV/jX8E/JRSnbnz6Av3k4dv79n3Kxk+8wr5mHIXxE353jU8dGIpP/Yj9bAX6zc33ZjrjE0O7nPEe4B8Kft+/9JPfDx/632+Evzbgb05////XLOS/4buT7yfQ1x/e/Vl/efMTNae/31nzIWZ1HrK/6j9hHj/ztLZD/jmMi/kWR0Pffbs4fHsfyc54mhdkML//YFwY/fNDN6H3FOhkY/zMd7IEeeaaLxd6Q/g9vnGXyGs++drgq2WeI/0ljb+FTgf95tFPI/DmBV9q8D9jHNehP8/NSenv+dn/g6T/6SX6p4Ge8+sp8rlfPZAf9yfu1eb9vgz0/wP6PtIXPDlC7yM7HX/jhuD3NPjP+P+1QnlRYyDfO/Q/TT/Xm+trG/XHKffW3qe/Gvv+Eu7J5YEfoBf/f53+j2H/It/nHB/f6Xyfq4L8F323930fOY4y7k/Af4D1UcX9w/sT/SvQvwPtf4HP7fx+yfM0/c2fNlE/QsqVzf/AfJjJvtGfcg/tzKHz/FLGISHyJ0b+J7TvBJ5tyPeYdbOU/q2BMX1/MD+QcWCMSyHated7kML8Jdr3/P8C4H+f/b8n0PP5i9z3NxtfZz5Q+O0Kv1mBablPZPZ+o/0Lfo0/cP6H836Yp/gifN5Drm+hp502Cf3+1p+K78we+BzhfR97g/9HzXgt47NKAf/L1w9980P8zP5+l3tgJ/N8uN7hL5LteTnk33gq45KMUzI+aRnjcoR2E5gffqe1z+in0Ne8idC5yfjcYN2kcL+HvvegJODro/0Hfsz/Wdv7EXRyhvLnxGM/N4+O+XP0t9MfWX88/e/8vwTGm+nnanyA+YlKQXcu+u2t/1/o/c73vLTguQF/PcyTwDgN8X4GfvPCNoCfCugjbM/Uzun/FzuCfp23vZgPzeBvCPhT0t44xzW+R1C+ilzm29Vf1nxI2nXj6N/C+CUyLigSwFy01/9zLPy9Av5xlL1f6Xdj3umw/8099Br2z/X9tw/fb+OkywKzUn+f+rHswzH9zkPf84LnB/dfzw/erxx350Fbz+fQGwZ8DXrGy5TXP4bxPYN+9AeI6L9E/UZ+36f/re/H+l1C3/wejdFnI2BS5MzL+KZm/pv/OBVl8x9Pp/0L7E+veg+Hz8no57//Kwc/xgUNpH8a9rV5rG/jQv1/Rf7/oqbQWaG/BetlAnqrRPlz5s9D9JrS/0tBuRj6cv+tj77dd9uB/2fqP4e+/h57wV+J/bkFeukViv/0/FEHPeRhHNajX/P5xeF38/q1N06C/v7fTf8Pp/9/03iYnsan+Z5kfAL81GKdHWb+no2Aj/06J+Ws6hk+CsBXefNBUN+d8nzjM9DbJ56nkD/sD6ufbGXaf8X4Gw+ov0A99NsT/tYan2S8L/KZ1107jXaZgdqX9BvX3x09+L5rfriJfEfNE2d+uBvg7wX/5ud8gPzmazR/42L46EW99gPtBWF7nH5f19DHMMbX/5dt/gnzTmin9v+Fm8/sv/xm9Nd/z/gZ/UIz629g/hjWm3EaxmdMQH+fsJ4GA/1/4f5/cN8H/D8oB8Dj+8Bq5t8G9ulNwI+R9/8A1D9rsHicdd159NfT9j/wFErdKIk0+VAZklkpylCZSiUZG5AilSk0KSIuukWGTClDhhCZSmSKipJEZbwoUQhFydSN31q/9+P5R6+1vp9/9jrvc86ezj7Da5999qf/TuX+/9+cuiV4Vb0SHLlrCW6qWoL/gO/9qwS3qFOCB2h/Tf0SPB++z3crwS8ql2An/TqCv+9SggPRPQye1bVKcFCjElxUBT39Nirvil53/b5tUIKv7Iiv3Utwm9olOB2/l+1cgtW0v7F8CVaqUILP4+s99W3I3Qye39EdC/+YGiX4wA4l2AD8ix4ab12CrauX4En4eLasBC8k77nkuJXe/gTvhW8eOveAdeBpRn/NtF/q950aluBW8O8P/3R0mxjfR41Pb3xOVt6WnJdtV4L1wdYVS/Ac+qmt/Sp8PFdNf/jrbFOC+xm/6vR2GziKvj8CH9d/sfoJ+G1BnsuMw3Xs45TtS3Cd31vQc3/8PUH+Bdofh893ldsYp2fQv40en0ZvqvZvqq/KfiZod7tyFfJ20r4b/g9TP5D+hxifEfo3Zl9r6PUh8vxMnkO2KsFm4Cz2Xw0/DY3TYeCH5J1G/iPMhy9qlmBHMHqYb1wPQf8H41kL/lHGry/+Ryg/TL7G8CwtIx9569DvXOPeitxvKQ/W/zryjyVvregVbGU8XyPfluzjYPqugf9m8O+gPAk/U/z+ofJcckzF33no/kSOz+hvJf21Vd8UP4drV17/EeT9Svuh5mcn8h3IvvrrV1Zvc3zP4HcJvd6g/K7+Q6xPS8BG1qlPjU9/+LNeX43f2N8Uci9Frzt+l6p/YosSnExPE/Sfqf1eft/SfIhdnk3+57YtwT7G9dzsD+R92Pi2VF6pvim+ToFvGXluYd87wr/UuP+bfleQdzf1XbfbnN7p5Jup363Go4J19D1wvnF4UflC7aqYH1fSz3fo3UcPNeG9U31V8+tLctys//3a9dL/FP37GqcHyXOifvvifzD7m1h/c/yn1duczv2Z3/T7L3pYqNwbvY/YzcH6PafcxPiW035/7W81/yuVleBy+hyA/nB4erOHE8h3Kf6/0W8FOfdQf3Lwa3cQ/h/YsgRnWn/uJPec2Lf2V8OX+XO78T/DvDkVPAXMueIgdKvqv0r/9/D/hXX1a/XH4uMn+nnb/HiTXN2Ua2g/SbkxvZ6p3Jee2uCjE7muNL5PkP8j7bbFVyNy3cS+TtR+N/2zX2WfOkS5Fv6aandX5q/5WZUePrF+foz/lezrLXbbAfwQP//A31X/M5Q36v8N/k/0+zx81CbfFPV30sNa4z2H/qv7vS56v8LzJPkHkP9y7W6DbzT8lcg3AH9N2fP77OdE/cbBf6D+NfR/mj7WsYNfwB+1P0j7XvA3AX+k5574+53cf4ALyXcU+j20W4qv88hXz35fjd2+a7/7EZ5X9BuO3iz4tkg9e10A71LzdW/0b9K+ofGaC9+e6t9VrkXO/UIHvlfYw0x2Mlb5Nfj20r82Ogegvw/7q09fw+hzX+23gH9f4/23/hvATeonmFfz/V7d/ncs/OvQuww/zctK8AX6baR+BfoZn6uM/yrn3mHgleDz5uFG+9Vf4J/gQ+QaD/9F9FYPn2vwd6DydO1ezL6Gv8fLkS/nI+PwqHaj6efRzN+Mj/4fqt9PfXt0niPnvPDPznY3P85RX5ledqHvvvA/g/5C5S+0X4tePfprqX8rMOvT09lf0T/avn6CcWqt/2z1+Z7LODVE71rjcQOY9bI2PKPQe83v+X77Wf8W9PE8vLcYj8no/6V+kPY/azdH/aPm1yPgY2Az82cAuu3p6zX4Khifjuz9FXi7ov+Y/s/4PefHnCcvh29//bdDZ3DsDP769PAye6uivoP+3zjX9EY359Pe+vVnN1/T24+Zn/Dfg5+b6XkXeGurf9TvneGZjM+38JPvz23ImfP0HWUleIX1dih4HT63pZ/nzf+N5Gpi/p+Y77+cf+HLuPbDXxl655CjEb5OUv+6804Z+2yKXkf2Vt9499RvIjmG6X9a1kVwiPWxBX5H0stq+q2bfRT/f9LPdOUHyf+VcgPztqfz3WD7VSP6ecp+0Vn9K+j0KivB6+GLvyXz5zjynOf315VrWR/Ogn+e/bq6flW0vzbrG/77k/d+8v3Avi5WznmqP3zzyNc652vjNo1+v0C/h/IJxq8yuR7T/w79J6rfCT+L4RtFLw/io5Zyf/xdVKkE18D3b/twHePbT/335O+rfJv+57GPltaxbvjtrn7LfNcah/7s6kb8fYvv3+LHof8e5Lwe32PVr1Y+Fv5q5M331d3wnWicmih3U99E+//Rb1PfPw/nHGZ88n30oPXiM3KM0H6Z/vuYtzlXLgaH4O/2EijXBlwO3kz+cTmfoHcFfk83Hk+w/4vgm2F8vta/BnlOpJct2OF87T8tnI9XaJ/z8THwLyT3c/g5l3x9neevZjeN4BkdPxF7+IfcT8bu8J995zP9cj7uCf8n+T7E7134WwX/3talWfDWNA4z4O+Gr93ppTU7PJA+1pDnH3RfR2+A/uXZyUpwIvrj8be19TbfjXsq53uysXVvqXXvErAC+h/j61NwGn67m1+T0PsB/f/oN1r9wHxv0scj2Qfif2AvQ8k3Ap4VyrdYH+egO0X/KvpPg38nerqBPcf/9DD7XxL/gfKf2i8sfL/sCOb75X38XZF1jLxvGu957OdtcD74pfHeA9/f0MvP7PRx/dvhZ7T6bcj7Fr76KJdnR9fCV07/HfGzQvtD852f/dr61jp+9LISjP/4YPY0NushPD/R79Pw7wDfRPU7Gof4H0bbh+N/iD9iAL3XZ1d/kffQrA/wH5H5o99G9rvEfFgM7pXvMf3PQW8W/lYqnwnfHHbbkl19UFjfDrSeLyHPsrISfCzzFX/r6W8h2BV/dyt3gP9j/JdnPxfkvAtvFfa5iH0ez74WqI9/vDz6L6L/HbzxR/2t/enqL9WvOj5eJd87yjujtwV65ehvA/v4FVxOH1uoP9j4Zp8r7m9f46ci+hmffD9fDu9lYEf9K9P3vvo9YPxex95h+r/FP7AXvc0hV9bpbeIvVl9X+x/wcSn+ptJT9tG28HcmR+ZT5tezxu8D+NbQY/z/12m/xvw80rzfXnl3eBdo31b76+hxrfHobV40Jv8UfF6l/bjtN/+9Brx98X9N/HL4Owieq+Nvxc9g9Seo70y+pvTzsfGIHY5QPxK/Z9LbJej1Yx9f6N+PPFlPMj+OzPdHzp/gUeitZg9T9b8Qf/3wn/0z++Yo/bJ/7kcvD+J7rf7z9T+94P/6OHZGH9X1/xT+udoNQudS9Y30a62+vvqnreet9M+6/jH6i9nTFbnXI+9eOR/7fT1+jrJerVEffVai/8r4ib7XwJfz7BHoxX/xvfVwBD6vhucQ7d+D/wjjVIMcf+g/j9zb5D4Wn5WVq8EzVf+m5K4f/xh+F8F7MfgP/U20H6wHL7ZfjM49hf5bZd+B/7T4Ycj3MfgheDT6/7VvHA5/E/p5ghxbO/9Uil9WOfdrp5KrfO7JCvcZ8dt39nv89v2y/uHnevJ0xsfu9PsUeoNybrIetMJf/Ba9rC/xXzwQfdrP9lY+xvp9If7WKp8K3ypwgPpm+HnE+tkAvjbatTH/GpCjtfKH+N8P3brk/Yscd9P/q/DEXxX/1VTlrsY79+Fd8HMu/B85v98ATst3mP4D6WsCO3yRPuewj2fNp/fpbbrynYmTMO7jjF9/8qxVLvq/nlSOH+xI9llR+0f1vxV/v5h3tfTP+rA3/VQm7xvkjf/1cfq83f4zQfl0fA8kXyvyTkX3NPzM0O4d4/8l+W/BZ76DFuGvS+5VlDeqv8H+MQt8HXwe/wvpL+e9VTkfsa8uxjv7Umfl7Fdvsas79GuS87n6F3235L50N98vo/B3Wb6byVVGf53R76j8svbFe7yGub/XP+eJeeRrDn/8U/FXNSrcD+deq3jftcz4daG3E9Bpa7yn6f8LvnKfehp6PXMfQP6L2XuNQv07O23e7lT0GyvXoY/P4b8G/y2Vx6lvBH/TxHfEP67dPuiuxH/upWqxu3nky/kj9xLt1Q/FVyX2/Ar9FM8/Od/0SlxN7Cl+PvXvaD+QnA8mLkn91+Zr1XzHWkcb43seOXIen0Leb82v662HPfXvBX5gnH9GP37o48j3fs4z2tfH1yXm13DynOl89xw9fUu+B9F/DJ3z4D2Nfk/L/GNXPcjZj/3mfN0P/++hk3GuQD9b4m+o9WEL5afQf1G/nE8uhX8H9Jfj+1j0cj7JfWw3fD2R+W08n4a/F3srr/1viXehvzvYx1fWsUn0Mzz+d+O5B/gz/k8oK8HE79yHvxOM+0rl3D/k3iH3ENvg59Cse8rl9T8Rf0foPz12i9618KyzvnSjx9vQ/QR/y+D7hV56wrcwfmD78kL7XxN4mhqvY7W/MPEz2T/g3x//OXd/oPwRerPpdQD4ZvRM3tfhHZo4KeP2EDhL/eXwx79+UuJV2F/m2Y3kyvzqQD/TjXNl9vl94iPQHa/ci/72yv0B+lnfs94nPqMS/f2HPC21Pwc/7djbGcrt4Tld/9vtTztmncx5Gv1b0Mt9yNvk/0B9H/Tn4vsr9I+K/4P9f4CPzmD8IDfDn/i1djmHsv/X0WuM/7PRqYn/PvbTmc5Z1fT/RP1V7ChxLOusT7Pwt9b4TGM3g5QvJ+8H+PuDHS7y+7MZH+Oae6Wf6eNt68dg/PQi31na5R741RIoV1+7+KHPMp7HKI8hz2R8XE4/OZ9Wos9/6Osn+JtbN1qAh4CH4a8C+W7Xvhb9VqDvevS6lfo7tU/80eG5Dy3E912kf0P8vkO+J/U/nv7a4jv3M3W1vwu93+DrSh+vqj9L/8T37Z74Bf1uyv4E/zu5R6XHkfSXe9vrwNzn5h5qSdZTdGfk/JH7cXbzLD20RGckeXJejL9zoPZ19f8ifmp4i+eXK+0v5+f8rnyG9jP8PqDgn29MP4dbTz9g9++Cf5J/qfp2+B9v/n8G/645b+a8Gr8N/b7Enroqv6w8Cf2H7aePgCvpc772FZ1/9wV72AdWlZXgVO2/I+dMfK+Dfyt898n+lftp4xz/w+7qt45fmH5bWZ8esy4tgi/xI3XxXa8QZ5z44vaF+9P76f9o/J2Fn/XwPcUOFpPjUfWv5f5T/dn424899gVzP5f7uovZZXl2sz7rSOTEb/yL8TfGv9ixBMrdh4/J5N8+8QHwH0LOqcZhaCE+djh6iZPN/cQd2X/tkwvZW/a/a9hzG/3uYn9Pwz/I7wvQ3RMfO9PvufD3AhMn/jv8uR980DqW+8Gu5Pwufld62ROf49CJ/6gp/eSea7/c76i/JXFy6ssb37MS/4f/y53v+uvfV/+i3zTx8T3Mp+7gu/az0fjvoH/uk3ZlR1vi4wfjcxy9D1Z+EZ0u9PEleWfQV/Rzn/XiBna1BJ5h+Bur/S7wnAz+qn4X37M3m9+Jc16nviX+xyReLfcD6mewjwn0MyPnQPaWeL+5+sW/8Ev4NZ7xI3djX7kfSfzG4sSd4jfxHGOM12jwL/PpeHJ8UQLlftf/buUm6Delx9xb5Jx1ovHJu5bsK4nXz/5SFZ2tjVdNfC/Qf4P15r/w7ACej27uoxI/lXiqxL+30T/f46sTn41eB+XPjcd28O+Bv09yP4efS/CX88Eg8/FycK7+0/DzJvv6KnF16N2UOHT4E5f7Xe6b9D/aOH2P/5wH1uE/55tDtEuc9ATy5146/pg28aeq3xa93IfmvnQoffyjnLin5uyxQ+IXrC/nmL89wc/pa7X6rENZdz7W/xfzff/cm4P74ee2+NXzvgi/OS/OJN8b8F4Q/55+L7OPXvrNMX/PLCvBcsZhMX0mfr8F/Afi4wT6Ol/5E+V96OdJv/+TOMm8b7IePYDPHs5HVyROkT4b4OMSfG2Cb7j+w/IOLOsceXP+vwbeK8Gr4auofd4P7Ar/qfjfVbvMs+uNczv2PTz30uofz70MfO38nvdjh+H71LwfMe5v2H+W0O9Z6vskjhNfH8P3sPrs+/3hz/6f+95frXcbwIuN+3c5n9B7BXh6KJ+H/1nsI+8SKiXeD/19lMfh79fENyU+w7hsBbazjv4T/4/x/Qi+n8nbmB73hK95zjfsaTl5P3FuOy/vjBLXrv87+M46MSbfgehtTe9HkjN+4Fu174TebOV831+of84n8ZfF3mPf/Qr3QlXJczz7STxDPfgT7zAj9k0f9XLuxl/e9820ntTMvV1ZCeY83kB9Q3ADeqP0f035R3I1yP5Z8P/H3x///xfqe9Pv2rxPo8cttN8u/uT4aXM+ZB8NtFug/Bj6+X5uTC+H6t8p/pD4Uaxn1dh3s8QTG4/Y4/fkfAg/I/C/Xvv7nRMeANeicwh+ztG+qL9TrR9ztH8o8w6/gxL/l+8/8r+S+BL4i/71vL+Kf/FS69hI/MXPuNq+eltZCW6nvL/+gwtx49eAx2qfeITEKXRVvlL9WfgflvvoxMmQv7t2dQv+iNyPddE/38U5R2+Pv5bkaQUeBjY0vleyr7yL6ca+VqF3rPnb1Pjn/nz7rB/0F3/lNdahG9F/Dr62xmssep2Nd5NC/Fgt6+MO6CSuPPHkiTe/Cb4W8K/OOwr8jMdPR+t/vtM7Kef7PO9uL0VvE3veOe89E4+X70F4L8k7MOtFM/rpU4gvWGg8vtB/gfH6L/3FXzsw6wJ+vobnaHafd1V5b5J3DPmuyPdE4jTzfXBD4ptzr+o8mPcwHYzHbOO8LO+V2NdlqU/8E/wf4X88fSauYxV6uZ/dwrjunPeVicc0/jcm/gLePfU7PfZLv1/7LpgLxo/8Q/yHeWcC3zryjdX/KvXxLyee+9zgM/+r4qOB+rz7yXufvAfqjP5Y8hxdAuX+hf4B6ovnvZwDvyf/Ufon3jJxmL/rP9x3z2vgA2D8wOez9765v8l7CuPTm37+i27iT3ur344+1pHv3QI/71kvqud9RtaTRpvzPwbfm+CfCf//1FdH5w528BD5c+89OXGdhfPsT+btyMSpaPeb+u/hPzT3JjkPotNceRa+BtTdvP9E/X+iz/uUh6AT//Qz8SvlPtj8WKR9X/i7kHsYmPdouVdaC3bQ/kb9W+Hz1HwPqb/AuWKt+dkcXzck3ox91zNeFayHTY3Pj+bnX8ZthPbTcz7I+xjlnFNuJN+n+GpViO+/XXkcf+Ie7HIi+RLPUka+4v35u/Ef4+/IxOMrJ37rdfrIu7AZ4JmJf8Ff3t0U3+Pc5DxcJecW9WWJn1fOvXpz+sn7wb7Ws/6JCyXnzvwYs3PeQf+W3CNn/uDvhrzrQmcY+mOMyynODQeyl6+Sn4G+DjR/PoqfzPgcT9+v0Es75cllJTjS+BT9EN1jp/h6CV9vJR+I8kvs6QZ83KC8m/5bwj+I3IvxUROdxMNM9vt4eJaT7yP6zvfHQuvxqMQfOR+0Ifc1fl9Ev+XJ9V7encS/kfgJ/CZuM+tuJ3i2sD7nHdYc7fMe62nzrgHYMn4l8EN29Tj+Dsq7x8TH+r1T/FLoX5/7hLxfyjuQ3COrX2y/TtzoEuXn0c/3b753LyTn0fTTKflM4HscnnLaF+MzEpfxBv7vx99F8YPkflu7HdC/DZ522h1YVoIvIVfMD9MRPwNzf6T9udpvlf2J3vOO90b2kvPLC7nv1n82/g7H35vs82zwZXAH9fs6n/yR7wrjf4v6WfGPwFuRfFvRz6cF/+aYwnu1ZdafPvj7Uvl98j8X/4n6GoX4yk/x0xn91uz1gfjT6OPoxFmhey/9XRF/r/Z5z5/zxSLrzibrbnmwCvnjv43fNu9z8v4u++U0djA6+y26q/VP3o34+4YWvmdyr3pr9uOyErycvefdRlXtdiBP8i0kP8LL1ovkX0hemMyTu7WbZv2MHWW9W5Q4afp7y3i9lO/ivL/E/y343TLvR/I+V/0w41fV77/TX+ITj8o9I3k/yP1+4g2Mz5/4nGt8JhXuwxKX8rl2+xif5JU4Fcw9/Tj18Tccn3cb5Mn73FHm3zTnsNHk2Ar/yaeU+MzkW0p+pVH4HYLfvLfZqL4ue15XOCePSr4f/OxBH3mPvFXuh9lXW/b5p/Ivmc/20w3xg9LndurvSf4n+lgdOZQ708uR+M+7p3XKc827GvRzifncCp7sd9n/sh8elvhX41cvcaO5N4P/U/rNueFCMO8f4/9ZSp/5fugU/zi5kyehYiFfwozsq/rdmfxBuV+Cf338MuCx6q9U/yw8bRIXi792zq/DEnemvFL/TfR/uPGbopz324vYxfvxe8SfoP4M+v5du6XJQ4WPZ9Gbgd5FmUfsJ9+n+R7N92nyF2zEzziwHD73x89S478Mna/AwTm/WY+eop8m+D4QP3lfnfwgeWed99UHO18cBI4ib95t5756Grx5b5r3pc3gX6l+nfHdFf1j2Ef8FLvQz6DEb9L3AfTbHZ8XGN9l9DcJ7AnmHLM3eTbh95nERaP/78TT4q8D+qfRf/KuxT870TyblPwt9DIo56Tcr2lfD/28o8190hHxf8Rvn+8A5XvIn3xFy8E7rGcN831Ff/FvvJDvK/yPR+fo+KOMS8a3D34uLivBm8Gq2t1nfGM3L6CT9XNjvj9jD7nnVD+WPSbv1nVZn7RP/qbkT3peOfGa1+Ze3O+Tkp+Kfr9Cvx18LeKvV3+2cTnA74vpoxn+ysg31njukDx09NsD/nv0W1NYr55XTr6I27S7m/5/zPeV+sp534G/8cZrin712dd05VXmy0HsdgM58t4r/rKbco+SeZX9BP+JP3sDHwtyP5L4RPi/pcejtVuf9/XaPQ3fOfkeVk587N7ava9/OfLlfXLeJQ9hf2Phz3u8xIG0x9819JE43ZGxB/JPMQ67KL+Brzfh32A8fwJ/BMerj3/t6viR8BH/2kXGK/6g/c2/Xuwn6/A8/fPOp4H6xH8k7qOYH/Fp/S/V/i508n5vTtZ1fN2jXUX1i3P+8vtT7OZt5Zfp/TVyz877F3TiFzscP/GXnU/+9olHM2+L+9sx5uVB+HuGPG+TN/kCkj8g8XrJHzA8743V98x7EfzHLxU/VdG/sgJfieP7SjnxFnX0j51f4feRhe+rO5IvAUx8UfLRJT9d8tV1oP//2W8O1e439tsl373oF89P8b8k7v5W+kw8fuLwl9u/827iq8L7ifa5b8PvEnocg79O2t8KPpc8jOSvbHzjn6qPj3PwX8znkzw/eT+f+5NN4GPw5/5kX/1b4esH/fOe62/+osSFJU4s62+Z9Tv5Mv5mH6ejn/wZyZtxfSF/Rg304o+Nn/YE9bPZywR0FiS/ivlQL/eV+udd4UL83ej3rD9fFuJ7toP3vnx/Kj9cVoK3liMPmHee8VfOzn0BfS2In9F4d1buqD7n1MPxs1H9RniSLy350ZIfL/E2icPZTzlxVV1j3/hKfFU19Yn3jV+0t/Ib+mUdPCl5kPT/Dr3cH3+M33xPbJN4iEJ89St5/x7/Ibiz9tXxmbw7q7XP+7Pk4WliPSy+031C/9Hs422wgv2sTfzghfutfM/3h38F+tvG/wj/9LxXSl4u+hme+I3kY0o+SnY/xXo+Vv29hfU27VPfMes0eU4lR9b/efSVuIzk2xyrfeIj8652pvaZD/PiP6eHI8BL1Ce/2BFg8ovVxtfx9qWd4Bmh/rrksUDvQ7/Hf5e8z7/nvXn8KHnvRr4LtD+bXnNftzzxw/g92zkjeeT6JZ+G748a9HqJ8X8B/vP16w8eaXzep8cG1sW8a9uUe6ack8O/8n7oH2P9aQPf3ei1VW6P/7w7XUfO3vDHv7MXfusnvo8cyb9XfD+6KfqJ/7fw/vsQeB/Qf0oJlPs68xh8Rrvcl1TU/gx6HaBcjjxVrIsXW7/bJk9KGbzwnY6P5M+qrH/d3C+xoz8SH5u44/glyXcnfR+uPnksk79yd/272hcTV5c4u+Q3bKj/tX4v5qk6OfH6ef+ZOBH63U6/vIu71P4Z/+4PhXXh68L6kHf7yc+ySfvK8HfNeS5+y4wTfR6q/nP9j8t5EJ0r1Ofesfg+phg/dd5Om8s7Bt6bwCPZX+LfTrMefWb8Ev+V+5cy694byUME/pvcO6B3AbmeRff63F+zp2FgF/zvlfisxC/h763EgWnXPO/J4E0+t7xfbpb3Kn7PPpX3d83xfxz7Tl7Yh+D/hvw5xxbPr98V4mfG590N/SQe5cGs0+qXgBv8fjW5jsg9C/6ewM/nidfNfQz5jmW/xe//VfrvlHO5fnnH+qr291v/Ts73s3Kt/+N8mHPhuvhnC+8v6inPhT/xiclXnO+NKfirgb8+6GecNtBPvpuTj/Ch+NHZR+ZT5lfmW/JjfJ14ityTwpfzWM73ua+Ln21H+O9X/yd5bka/XOKf4E/egLrW8y74H5vvLPgPSL5e+PNuKnGu36H3o/F9JPEWiQPP++G890heCXSSpz756ZvbPw/SPvti8jd8z27zrmyC/rHfxFskv03ih5N/P/dJz5SV4Iv0PCTxH3l/i882hfe3vRI/Rb5H8q5b/2vxd1X8FNaXO/CZfSn7UU/8PaL/fPznnUbygN2GTt4bPkL/fzsn5H1G8T1V4jrzfiz558agmzx0yT+X9Whw8oejv9z4nIyv7vDGXxD/QM3Eg8X/RM7d4Ene2eShnUGeieq7531m8jIZj6MS3w5fdXx/kHwT+Mn/F8j/E8j6nvymC5w/dkXvLHpI/ON9xrtT8jOB7ZMfx/jWp+eLlN8k71ByTcr3kX7Jf5K8ABXIUYyHfJj+8h67tvHY2nhORG9XcrSlr/hPK9Nb/m9B8uvmnWPm3zeFOK/Ed61IfAFYjKesh37i4orxcjmfJD9S4gDa4u96472te4cD9NuQeHp0JhTi6BPPOIk+Xte+MTvI/28YlfdvefeknPv0ieblhEIc3Qb1X9nXV4AHV98c/8voD8JX/Bgt816ffLmPi/+qmnLF+Ov1y/vBQ+h/uXHZtxDPsyf6if/Y3bj0zP9noN/sn/n+Tj6I8fBdTC/HxG8MrtE/fsdz8Vt8v5O8oS/je3nym2k/G70O9Jp9ewP8Ozu/xM8XfUVPOc/uEr9WwX56mV95p5z74CdzH+v3o+Cto/2TuWfNeNPHJPK+kf3T+rw2/mF4479pl3U/+ZLYybbJD5j3F/ST+699y0qwtvq8C8g5N+8DuvMHjso+rV9N9F9N3IT2/eg77yGWWBfGW+f7GO98b73FnofkXg9M/oYu9Jn3dHmfeC75ks8+ee73pMfdtf/cfJtA/58pn5h8NwX/UvyLy+CZnHsQsHbyLasv5tVKv+rZf3M/VXi/kfNJ/r/QBckfkntg8v9aAuV+Mr+uV06cQ9FvnHi9v+PPSv5H45B7+sz/4roR/+ebhfxAyQt0UiE/0Kyam8vRoubm/Fdjv/ETFv2DtY13HbAumHyh060HeV93HP6upa865P9P/GuJM1WeTE+5Rynen6yB/3x8bWMdaIG/A+L/p7994Tks7yPoOXkgb6bXv/Uv/v+d3uTL/+E5ze/vwZd7gop5X6w++T+Tby75P5O3qlryg+X7nXxnoZ9758TP533BY+wqcTTF+JnMm0PhLc6frQvvorbJOzb8TdVuPrr/g6ch/J+597+gTHvlC5Ur5L4p+dvwl/jqUehtk7zryom3ucX54Hd6PE05+Xvy/jPvPnN+z/vPE+m1e97jsYPEm+2rHP9V/FbvWn9yPzMX3/EfxZ80iD3kvHZ+4hhjHzmfqf8+9yP4u5c9JG6mbvxv+q9i1yvB2O3O+idvz6v0skL5lsRJ4Tt5g5JHKPmD7sn3dvJe4LMv+sk/uldZCT6m/ePq97Zffa6+ce5L8Per+feC/WOA8ViDv/8kX4D++T8Q9yi31+9VeCrRd/PkT9A++SX74Tf5JZfkPhFcD19dekxe7NbJH6Ic/2zjvJfBz97Kef+Y/CiJh0+8fPKjdFfeDb0J2q9X38K4JO7vf9k/0JtP7tfB58kxIvd4mdfJrwZf4rGSDyX//yzv7RK/3lD9ssQJq3+AfNvSb+Zv5nPy608nXwt8PJZ3aubROPbY3TnhW+t13ovNBPP/km5Pfp/k52RP9bR7S/1x6hPvkjiYxL2MtT4kv9U4MO/Bcw7Lup48Clcnfp/8eV9xKr3nnUXeR/xu3aqZ+8uCfzv555N/bwWY99Jn5P2A9ifFj6k+903JJ5P/A5PzyS/Wr/2sD73ApfGXwD8Vv3nf0VH/lebj6cZnVfYhesz9WvHckPxz6+O/KuQ/eSD5TpLPG91R4AdlJfiC82T8arl/jX/moMT9g3vjM/mji3nBEm+bePvkVSl+HyV+fDK5ZhbiHBLfcJN1tRs+ByduLvNDv8zjzN+Zid/IvMLfyeRvT7992VfuTW4lX/ajjez/JL+3sv49q3/+H0z+P0z+X0z+31LeVZ6nXd6LJx/0wNxL53sa3rzfacS+fsz5jb3Hz5v/X9I872/Jmfj2Lvkeyf1t4h3U35TvcPAY4/da4k1yv4/+dfr/G74/td859wPwHkGOXxO/kHgG/Ton/j9+EfImDq2/cv4f1YfgRfBVwN9LyQ+Vd3W5h0dvlvF6DXwVPAX+5NvIPX3+X2HuCX9MXJ1+IwvvzQ9Vf0nGK/8HVbm18T3aeOf/g/1q/BL/kffN+f+HZ5eV4GGJJ4q/wTrYjfzD8Zt1/Gxy53sycYYDlKtYh+fT/1/4+wNcRO7W+B8RPxC57opfSv8BhXwKw5XjH819XPDETmIfx+M/8eF5D5/8SbkHrhNIX0/le48+lpm/HTMuZSW4QjlxO4kHvy/5Ncn9XPx/6LxIzr2074bPu/POVP3J+md/zvdfH/XJe1le/UjrTYPEg8QvkPcW+uf/Jx5M3vnov6j9GO33yT2N9ssL8dWD7UfRS+JQM/75v4bfsLMXlb/M+Vu/5K9rj4/kr2urfCO++4Hr2Vvi1xKnmLjErO9t6SPvP5cbh3zfzrb+DcR33lf8i7x535l3nf+FP+8767Dn5KfbO/4H/CVf2m+J/wWn5/5KuU6+W7Vvid4831v35fvB+vCS/sfhbwM8s/VLHF/+38Ht+DxY/c74b6w+eWsqJT4cP839fq/+WQ/6qE/+6NX4Sh7pvO9OfvhO+c5KfIf+ufccov6RvIvJ/YP65IXL/49uY/6eYNyOB6sY3zfQb2t+lSfXEL8nfuBi/S7BT/LL7pn7P3KdAt5O3rPV30QfxXeYzfCbd3e1s57lfRX+M/+eLMSd3KV93kvlO7f4fbt1zoH65f+Y9Ex8pvqD8LU3uzwQvNe6dig4AUx8fkX6voY8uyrnfUhr56s78i4NTF6R/yU+Pfw55/2c+wnyJw4r/8ct8Vc97Cffqp+a84p2+f+n/9c9d/IdFt9xjCgrwa3pN/te9sHsf2/gP3Hd9ennKfZyFbuYDJ7JPhrS/xB4h4Kj6GdE3mHRR/InT1dOftfkK+yR93fWg+QvvMC43ka+xCkPw98F9DEA/V/Rz/8fu5t/6fkSKPeO/vfgpwf8ycsxVH3y++T/ACW/RW3td8r6jH7ytuf+Ov6v/H+1nvh6Wzn/X+0V8g7E5wbzJ+8wahT+X0j+f0j+v/xn8R9oXxe/yd/6/wAm4HIJeJx1nXXQlsXXgF86XlK6H1IaBCkBQRoUJERCQlKk5CetSEsp3SBKt3QoSEp3qygq3Q2ilN/Md1+XM94zPv+c2Xt3T27vOftkiBP1/79USQKYFrgxSwC/ThPAvBkCeCVtAH/NHsC3yC9I/lrq5c8RwEWRANbIFsCcGQNYJlcAp8cN4IFkAbxB/aeUfz09fGQO4BPo780ZwJ3QHwE/NbIG8DPSD5IH8Dl4O8YO4B7rJw7gAvjfnDCA9an/NvRuw0cN8AwEFkoXwFepn5xyg+C/TooADuH7PvjJRX4f+H8PfNPRT3H4+wW81TJBh3LVqD8xOoCb4gVwAun9lPvlBfhH7kng34F9FqYOYDTwMHTKReAT/mpSrxh4v8d+CfmeCvssQM5J5L9D/dbgfZFyO9HvafhuB55RCQK4jPwvAxDVDDwP0fd25H+OfbqA/yB42sPnx9R7Bt1GwC7otzL8VqPdvEn+Yujngt408MXAHnnJL4ReT4DnblLkJL8z3/fA30upAlgfOlup/4h++BdwkO0Y+pWQMwPfC8N/mkQB/Ai79wG+Cr3vyd9BO29Hf8sRCeAL8HuMdnIcWA5506K/tdD7nXpnSf9k/4CvV9B/A+zzKe0/U0rwIf8k5MqAPttQvjHluqC/buRvRJ7ZjE+NaV/VwfMd7fkM6Q2h/FLk74/8u/wY2lt66Iwl3Ql+kmC/Ush5Cz6Gg+cg6a3wm4ryx0kPJJ2VdCf0tBr6ydFvZfDdg48G5L+O/VZB5wT6vQu+F7FfHuBi7LYIOsnA+zvpBdTPgny/Y+/DjHuHgF0p9xv8JQKP/S8u+L5Hvorwtxc9JUX/bUmfg6+UyJcS/veB9ybtqS10v6b+HupH2z/JP0v6BfQzmX7zOfnnwZ8N/vvDZxR8HkP+bMiTCnyN4G8/9fvQX36k/5yAXlX4rkN7qQ2cRr08yHOT8e0P+uUjIfU/Y96bD99xsHst50e+b4bfePB/hXR55GvGeLKD/ELgj4Lvsdg1Jf0nPvnlkLex+qd/roV+ovgB7ACe9sAn8PUC+mmAXMlI/42+58DfVfj6BD5nwf8K6g2GP9u77fwR9s9CugL1F8LfW4wXvyLH36SrIM9v8NEDveYn3Yr8y6RTY7d3oTef9Hn61Rbw7yQdTf1W2PdP5vVRyJ+O/AzkN4XvGMhxn/6wFv1WgY9X0MtK6DdB399RrinpxpRLBD91wH+Q/I7kH0Mf6dB/efjMSHvvAt6alK8NnlvwfxJ9uC7bDB7XZ69B7z7tvz7jSW3n/xgBLAuey9TfHgngWL6nRb/b0c8k6Kv/nSE7NAfP5/CfBf09BG819Beb/h1Nuhf1vqU9bKW9HwIOgJ/hyPc28uQC7gTugI8y6OtDYCfqf+N6gfRH8PES5XqBfw10d5Ju4joB/WWl/axgnDhGP4kNnmfgHQu9AfD1RySAj9DLR+BfRbo8+GNCrzffZ6KXY+h/H/wXRX+vOu6QTom9fgYupr+/Q/1KzP8j4LckdoxD+/sS+nPhNynrIee3ytA/Sv3z8NkIPp/T326B7xvXOdRfhz5ehM4l8H0LvTroNxH5J6G/mvrb1BdyF0bPudBffcrXA74F3Oq8j17OgH8C9kqMfhx/u7q+QX994a8I/Tch9p8L3t3Ud73h+qMY+AuR34T+twZ8sSmfCv0Vg35a8n+C/iTkbUb7bAO+49TLgfxHoDcDvRTDTtu1L/mD+V7H+Rl6y+CnuOse7FOZ+rFjBdB1mOuu3vARk3EnMfRrUC4J/O4G3xq+VyXdlPKp4G8K6TykY0E/D/z+Qr1PHWeh/1/75j/IH4j+G8B3oZgBbIK9jtkuqPcy6XPoPxp6m4Az4GMj+W8w/iVADwmB7eG/of3bfSv1r5G/ivHsL/C7vooNv50p/xr66wyeBNBfHEqPRH8HkH8L+CaAPy/4ckDf/Zn7sV/dx5G+A93Y4MtDO0lH+hHjyyrwJwa6nxiIfs6xPqzqOAL9he5voXuKeu7vfqf/XYbOR8CrkQBGGG8+Zd0yGPgOfDp/HoNuK/Rh+9wK/XjosQHl4qgP8lvy/W3o3iU/GvnqwO/3yLWN9EbGjbPIt4XxcpXtD/7Sg7cj+n6D/Pi0p1zAJozfS8Hn+cBg7PEQObbD3zTwd6dcbcrFZ/zoxrnDA+T7lPGmBPX3wP9I9LaX9HHoTIXvTcj9EL1n9vwHe9wHXkX+mdT7k/XnBuRJ7fxJ/evwXR699IHuFfJdd5x0P0X9gsj5A/pqCt8T0ONu8l3H1KP+fcolAv9S8A+mXF3svVw7ByAqP3wl9NwHfEuY3x443sHfbPTbGf5WM2+tAaahXEvk74R9ItRbCKzr/Ag/d9Fne/gPr++GY8dWlH8K/hOMG3c9Z3Mdgt0eIf9j5FmIfPPB+yP8nXL8gX4j6lenflLWT/nA/yf8zAZfLOjnQr5M4I8bCeA19PgW7XcW+vsIPE1ZX7uOb4B8v8PfBcq9A55G8OP6bS38un7r7vyFvq7z/Svkq0R7WoA8n5J/xfEzAFGNgQUdxymfBv66Q/8s+tsEnqfQ9/ysBfmO11uo/wr181JuI/wNYb5b6DqM+fyZ4xvfWyNfeP9WGH0MJV0W+kXRf0HoT3P8Jv828rkOn+x5NeN3QvJfhV5P4G74zYidToB/COlTnhdi3+Z8fxf+nJ/ehr/k4PuKdYD7nxTIG94fNwP/96H1ZzHsMBZ6XaA/if7wJuuP2sDY0E8H/lzgyYR96gEz0N/ngjcT6VPobTb6n0A7n0n6L/TXFX2vRW7ns9jIdzM0P7+Anl9EXxnBuw18Q1mPxIL/NNT/GH4O0L9uRAJ41v0t/A+h/CPwdXM/gvy7HNc8LwH+BjyMnlOg/7D9E1P/Q/CfQ/5z2C8J5dZSfyfle4B/EfhXuI+g/h3Khdcff5PfCj7eR6+zyM+tPLSDb1z/wN8V5tc2zKv9ob8dfXTx/BG+r0G/IPj7M19mY51zFbiF/KPUr+S9Avz+Cp6tfO8DX99BPwn520lPpdxO143YP4r8p/CbNxLAZeQvpj2+QrupDt64jj/oZSP0xzF/ZoJObfA3w37j0ec48Hi+4LmC8/0F6u9hXXmFeW8X6VrO7+i9JnZIBHT8/o78Zsi/gfzN2Nl+dZi068QU4B9BPdc/rodc/wxm3KmGnOtIP6NeW+y5FLgEmAM6Gxm/vvRei/S30DtKf8uHHJnpj83g4z7to5HnxdCdSbom8hXxXgk+N7uewX7RwGTYaR/1U6Cvs8Bl8FGX8WUyeIpgz6K0z4yuD5l/HwHD5yDRlL9ge0eulOTXh69fmIfrkfY8dw/yvw7fB8Dfhva4jvayBrga+Az8I6m/CT56AzcDtwJ/Qk73xznh9wLryevAPYyfnjf14nsT6r8K/VLgqUr5LvC9mXQHzxuQtxvtynPIDeA/jj1jAduA5xR2P8F8dRL4HDvEQX+vId8Z9PAD9T/A/oUo1xf+h5JfBf31pF4q9P8+fAxwPIaPN6nfmvp5bN/IG833wqQnM/6sdP2EvBvhpwXtrw3z233gNPIbRgK4l/ErAfjXM97a3/9r3nY9uh583qvGQ77F8PcR6aXARJSbDbzB+LYf/v5iHC3sfp56nh/Hg14E+3u/9pT8huhxBvXn0C8bkO+4NxT73KP+x9DJRbk94GkHf5XRe0XgdPBEaH9bsWNH2lH/SAAfIM87pPcyTpeFfjLsVxW5+nmvi/7qUD4ffOWEn6zIN4zxcib9333AY/ejrKe6gvcP0vHA/y72Hog9kiJfDtfn2N92NcVxA/yJ0dt7lCuDPi9RPil6iQe/7Sg/ivbZEv20Qo7q1BtN/iHK269c5/9Jfnf03Q34MfAC/I2lXl/4esT3DMg/Gf0PdFwjvxL60n8gCjkGYQf9B8ZS7xh8DQbGB080/NdAby8i33z430D919D3Y/1ZyE/EuLac771gpwP1/ge+ZdArCb1a1P8CvkvBd0by34XPdLSnBuBJjf1tP2/TPp4wTnQk7flcEfrXGeAz5r+J2Luh9+vI3xg5yiFvFdKOE56/OT4MB+9S4Afgdx84E3vPAno/7739PeaXCuAtSDvzvGMTcv8Fff0L9DfowXzwGvwcDY2/+h8Mop5+CPof1GNcy0i9leBbA93w/qx3aJ92EPyzkbeu4y/484OvFP2oEXiXY98xAYhK7/04eskHn/m8f6Tey9DpRPu+xHrqZ+iOgb/3wZ+V/fQA8FUknQD9eb76CnQKwrfnq9ngeyrj3GTgY/hN5boR+DH8V0L/H2LfWox/bRxP4Hc09f5AvsvI1zQSwCXk54Xed7SfftTfQ7nTwJ+RY7vjP/XTgN/z/h3uA7zvRT+/QKcF/PehfBnK/Snf5J9lvN4LX53QT0L3gfSHgvQPx1vPb8uznuqKvS6BLyH8ZYf+eug2of5q5C1A/gzyCyLn38iz0/YPfu8Fnf9OeD/GPOm5+dvw9xZy2y4ngm8E/Hmf6f3mw9D95l3a117yn4KnLvTTIH864HPay0eeV4GvOeUXYJ8o8nPD30rwj6d8S+yTFH04vukv5fg2iu/Pwe9+2fv5J/TfGowTT0l7H7Na/zH0UQt6z8HfgvZehXGtOTALcpyG37aeH8NHFujvoj25P91J2v2p9yVvgG8Q8tUh7f1PNfj+H+nb0GlKu12A/fszj9xAnt7ebyFvffA/hL/TjD+30Nv/2O+l15+C7528v/IeifbZkvwj8DsZeS5BfyHpkuS3g+/Enm/pd0p+2D/I/dwx9Nsfe7m/u03+y/BTHD7Lgv9bys+E7ynQiyBfee+LwV8E2Iv8XtR3Hb4P2Az8+k8Ng34s5EtE/pfkZ4GO98a94GcO6SeezzLOzsE+E7DrROBf8N/F+1jvd0j/6jqAdEHmxbLANOD/R1/U1+9Uf9TL5MchXQI+57vuBW5lfp2F/ZIxP+nHONr7cOo30/+G8rXAn5Dv3t+1R39V6H8tkD98DnaZ/pSbtP4Po7HfefCvdH1Pfe9XjjFuVSF/d+h8JzXlz4Hf85pktL9R7t/J9z63A+33Avx8hn5P0d8OReAT/utTbgzp1Ng/P+kS3muQXkz9BqH9iOvNg+hvHfPXEOavRqQT6n+Cfl0nRIM/lv6BjJt30M89xpfN8LeZ8mOQ23vIKejnE/QzBn4r0x4GUv8RfO0Fvgx/seH/e/AOQ3/6cWYAv/4wH4O/guOx98Pke6/j+qAA9Esi5wW+h/1R6gUgaiNwNPJ4vltaP1fo64/TD/pZGU/nMG8Uo5zn4XUon957Y+zXHn7G8X2LfnH6x4CnMfzqF6K/6gv6G7E+aAZsCuxKff2OXFfoj+T6YnQAovZjH/dV62k/eZh/0rtfRd8/kF6CnsaBr5PnLPCn/99k+N6BvO+T77n4FfB+Q/ma6G8K49mnyDUE+BbtQ38L/TD0/3P+P8N6uwz57UmPJD+adJUARM2An3HkT2H8ewDMD//fkn8tzb/TO6Gzwfta8hejf+fpzuj5n/Ut+vCeVf+598lPpt8l8p+NBDAB9rnlPobvrk9H0p+vOB/AX1fwH2VcKAlMC3S94n2c97Pe126lfXivNA5YQz9K9zu0P/vNYPiw/7QOwD/6U7/7yb/IeOo+fy/pTdCPR3/yfvkvx3Pku0v6HtD7yELwkZD+Wwi4DbqLaH9JsV9O+IsJPOH9EHLrB5AYqH/pAeR7F73tJu19ifcz09FXttD9TH742qTfLlB/OelLd0fIv7Ut/DvOxoUP/SnfJN/1m+s51283aA+HsOM5YFnwh8fncdTvBX/OD+XJd55Y5/gd8tfVn/c2+AtBz33rYfZfT8AzwLgS6E3k+3vgX8r4kUM/L/Q5lPL1wK+/2ELPmWlf/WnP6amXE3zH9S/Dfs/1X3QfD/9D4XcYsDtQ/xD95+rDt350+s/ZPry3+0k/IOq3cz/N9x70B/2HYtBvcnrvop8d+d7vJSS9Fj1dJV3a+z7qd3a9CJ5vXH/Cx3Lk+8H1AfrqCyzjvGG8BfzqN5KSdDv970kfIj8u/TcF+TMdXz3fMT4hEsBbnqeTvk67+Aj7dgDfbuTLxvqwEfLtB28L0i/Bx2H9A8hvQ/0S+jkhn/4N4XFU/4b/ob8+wL7AidDbyvprm+tE+CtO/TjGK9FPr8Nfa/jby/eW2KVpnH/L8wA91qT8EPTThvQ9+D+OfE2QT3+AboyrtWifI1zve/4IfePmujFPGU93zfEa/DdcnxjfYVyR97HgPwp/15iX1wOdf/UvXU57LoM9HjpOkr4IH8s8V0be+tDdjBz6q3lekxv8dSk/mfqFwWt8ZFvv2/TrD8VfbGD8iYcdviXt/mAw/V+/laGkc5Lv+e9I+HwpdP5bifxP4H8Y+jtP+n30Uwe7xKW/XYO/SthjbSSA5Ujnpx+vg57r9yy088vwNwv6udHbCcr3J78f8jiu9SU9g/wr+gegx9LALdBfhjy7wH8Fue9R3/O3t5FnKXxOQJ7HjEuHyf+T9N/e03i+7rkp8vXCzqmZFzz/TUE/9X6nEHJ9Q3uaR3pGrn/zXY7yKaG7mvIPoW/c5jXqX6R8TOMu+F6bej8Bh9Pe5tN+KsNfBf1LsXtb1sEjgFX1P4I//Wsi0DsE/Z7sG2pBr67xFfrH6hdF+arUf0L/0V/+B+TLjR5fovyFKORF7xUoFwf+N8PfB/prg38x9IdRz/M8/fG8D1xGf/uvdaDnRkfhS30kjwTwIOOp8TX6BxtfM5T2OtZ4UdKr0W9f8On/UUw7It9y1rtdkasK9ttB+bzuH8DTDT7mUf8k+Z53e3/uOOF4PZ30NONR0Gdx9DEfOecBi6Ff72NWAVeE7me8d/O+zXOyXND1Ps34gmuRAC4F/7rQ+YL90P7n+Up18j1ncfx0/dYPuMf7ceTtAN07wJbaA/n1m50P/Mn7bteb8Oc52AxgdfgoAb9RfF8Gnt7YP9rxC369Z3X9G3Ge8PzA83nHH+i087ww1H6aMu8X1U+Z8WAPfDxCH7+R/4j5IAvyr4SfeaH4jDXGR7P++IJ5YTTpMpEA5kc/naFnHM3n5Hv+aH+fHVrPl9G/Uj8U6o90/LPde88Hf4fAq9+N/javo1f9E1+kXeg3tgP5Y4C/FPorAexLv3Z/kBv+vJ+aDvR+6iXGx4mce3nPWwA5ijG/FQAWBK6En9vodQ528h7IuIrEoXalH4Tx81UDEBXH+1Hyl7i/4jy3BDDsPzsJ+YzrSQBf2uEe/T3sh/oYflZQ/wJ8FgAm1f+U/BfRWwHvx9DzavQxiXY1GXjUe1jGxzKMA7dJz4sE8Fvo1UMfXwXgn/Mtz5n3h+47vd/0/O9L8qvAX2/4rY7cxm9Eh/ZfS8gfRP0KrC/2Gw8N/rfQRz2+G99YGzt7f9gT/h6Svgt+48Xdf+VDPuMf53i+gL2MJ5iJvpowzmcn/Rb4ijDeZ9WvPhLAQ7Qf+6XtxP3HZOidDvk3Ot85Pp2i3knjkYFjaV9xaO9LXTfA9yT9aFkvJoWe52X66+jPY1ys/v7Gy04Gz4eU3+B9JfrbBr9F4KdLJIB5sU8b+KkLnq7Gy1B/GOnr2DmH55S+b0F7ME6kNu2nHnTa6N+CHCX47v3Hj9TbgH5+d79LfmPwuw54h/Trnuf6PgX4czofeR8CvhbYaSP5B50P9B/T75J6KWkfpahXSv9u6i+B/kjsYLzHDyH/f/0l9KPYT1p/Cv2e64fuK/Ma/wG+kXwfoX8zdqjDuJzN+GbHZ8r/TLkIfLr+1H+0gv7foTg34wl8b6ch+c7nuZF3EPrxnYdt0DV+pgz1Y1LP8564rpdIG5/YhvLvwO8u5JmKnKvArx/favrXGvrRcdYH7t9892UX+I0PPkd9/f9Kof+v4Ccb7f8rz/8o7zsTvi9xFn6auF+F/47QX0v9hSF/44eej5L/KXz4/sYN/Y1C8dbZoP8x9NvD7za+f0C6Ovn54OcweI2P/DASwCLY5RvXa9A5Qf31jou+D6T8lNd/MTn2jg2dOdTXv+RHz59C/iWpGN/1zymO/dJ4fsX6Zo3n66SXUr8W+BtTfxb4F8LPDPDtdv7WTxM5jcd2HA2Pn7nZX/2GHa4ynyRzn0q7PE87HUP9KfDXiPEqJ/x0h88e6G9TAKIqAscDmzt/Md4XBX7F+q40+nhI++9hHDv8Og83QT7fRfKdJN9Heor+PQcOn/9u8d0B8msxvpcmX79e/ff07+2m/5/7C/LjG88Lfce7KthnSCSA+mcYzzMRvrIjh/5NdfS3ol5Zyqd1fmb9tZh1RTR6i4L+fb4/AN4D/oKd8iCv5w/5ST/Gng9oD3FJR7D3e8YPsS7dx7r0U6Bx6L5XUYp2fQn76t+u/TwX8rzoJ/J/hV/jgLdQf5nno74/4ns36Lkn/CYCv/7l28hPBH+X7N/kTyU9yP2J72LQ7u6ib9dBxkedpp5xUgWwb3ra70usf3vD/3roVXC+QJ7R6MH7kTLUfwVYCjic9hEb/tw/xSDtPbf+G6scB0PxS6/R7ysAq1BvJ/g7oIeZ1L+BPpvQXktT/g3wFYGPXaQb0J5qY/8BtJ+L5LsuyayfIvhGAH034hb66eX4ir2Tst7o6rsInvdTvqh+hHxPZ5yK55uez5I/gPzD4H8dPhqSPkC5rrT/ZaR/Qx/H9XsFfzzyffctN3AA8q9mfFUPLzPOKn8G9HIevLsoV5f6b+gX5HtYlH8R/nqR/tJ4D/QxCvw3PV/D/jdIe991Ev49H4yl/j1PBO8c362hfDvKr6a9+x6P7/Pcgv+EjC/xga0pd8v4Y+zjOc18+NpFfgLku2e8H3ys038W/SSFr/Xw5ftOO8C/znnRdyzA14/xpzXtNov3a+AZgzy+szKU8eGS/jHG74HX+0/tX5Lv15HjPu14LO1nHvWXe75kPA74PW/2/Nn1iefPvX3/Aflbgz+T7xwaV+05Uuj8W3/Udnzv5/0R/E9lvPf9Hc8H48O//gjuy06H4r8be15H/mPPHcFfkfwlvvdAuYHIX8HzN74Phd8K+i/Rrv9mHOwJnr3Gi9HfYhmXiX70f6rqe0Z897015y/3v2Ucj0lX0z9cvx73U8jv+JeI/hGh351knmuJPAWYX/YBm3MO8Ln3nLTPI8BDvpcD36sZH8dj7+sBiBoDfd+zMq7sUOh9q2rozf5/l3zvS/QPmoyd9A/SH/gH39fQv9X9PHAl/NVw3RraP3o/1p78Ach1H/pDmF/y299I50G+T/R7d7/lezS2b9+jgd/CvsdH+SK077S0syq0l0vwP9jy4NmPXdZBfx/yFDZ+F7xJPJ/FXsnQawfSW1w/uP93fUA7SEN+IfR9Gzkz+f6A+0fG1bXA5ugnu/fb4J/lvY1+6NSvR/vUb/+RfkO+n+N5YiSA+UhnRb/63w6DP/1vF/mOCfqtyjpygnGdjr/YvRr405HW/9z3LR3XvP/2fRr379fdD1E+C/hq+X6LceWMF74v6/sum9kfnMTuvu+yB3u5ftwbWocnZzzwnaB84PN9oNjYRX+5+sbvor/dtJ/z+mEij+8bJDPuhHQF5MpN/Z+9bwN/Ac810V9l2t068g/SHnpQ33dXvX9wPeB63bi15PBtPJv3MeWNj4LvPOi1LPTK0p/2sQ7S32Y99DL4/rB+jL4TgJxR2Gsu8/Ny1tl/GOfg+SbQeLWS0M+M/qdi37bAcdT3nVffGfKepTNyuP8wbtn3V9x/zMV+BWnnlyjXDTt439fD+B3k9f7P+x3PZXwP1POZrJQ/YFye57Ch/aXxr74noX9ZB/L1+xzm+sJ41ND6tRz8G0foe2Z7qec5hfER4/S/hp7nTxOZHy8gf2HKj6fdGG92hH3DKegbn5aI+tmhvwS68/Sr1J+E8W4k9cvTTvqQn8T34NBfcd9hId/3aqLB25T6bX3fJuSvvEg/Yc+nsIfn28YP+/5jx9D8l452UiMSwKu050ro+5rvecJPV+aDo/B5n/Rt43uZv8sz7lQCHoHeQNq/fnYTGL+8P3usfxL87GF9G9P7cPSuf0ulAEQlhX4X5CsO3muk9ZethH1cB5/CvsPR/1n00Yjvg+GzqPcR2EF/3APINZe076sbp37DuEr9xO0f+hMg53nwGi9ofPBY8D/P9m/8niN7Tu377QfJn0H9B3zvB/52jL+rge8B+8K/563hec/z1+LMm1nRb1rSntu+jL0y0W5LkG5D/nj9qbDXKPpJevCPgr7nEuHziqW0t4msS8PvjPjduP+iKf9drgL0Sxu/gL7ToCfPf1uEzn89Dz5A+/W9N/07jjt/ep7D91LQSQH/DZk/xtvPaV93aN85kf8m9ad6n2C8Lfifk/8MvN6PiN99gHTE/xnpm+AxPlz/H/1WfNfa9+B939r3G37Xj8TzAsrvN36R/HqULw8/FclfQf5043ecH7DX04z/5jc3fE3Dvn9RrhfwfdqX98vGBfagvve5XzKezQBOYb3puz6+A+t9qPelvq/2jLT3tyWYv72/1Z7qvQH2mEX7SKZ9oROOL7jjuyfAjJEAbgu1N9uf72Ta/tbQ787RryfRblIaH+L7SdgzG/X1n5zDusi4OduvfPyI/Fu8T0T+edR3v+D+wf1EHfSTlP5zG/27znV9m5Pxt57rGsZv9y/6m33j+WLIHy0e7UP/rnfRw1P0lQ/8+rfq76p/q/f7nvsZ52N8wjTGs6fOd54LoI+vqKcfUSXSk8FTz/N3vj8Gz1jPN73f0i8Y+InxRaF7d98x9Hw0HB9kXFBz5DsD/72o1933Ld1n0H5S8X0p9jZOoKb3j97Hguccad8Xuum+mbTv7KfnvNg4jHnMs8ZfVKK/GCc4nLRxggOonwQ+B5KujHy1AxC1BJgBuiuML4Cfc8AyzF/6tzwOjbeeu9fEzj/SL6/TT9o6rpGfnPZfj3a4B7jWOFLsfdnzGOTMTTsciN6Nm31OP1mOfL4X6fuR+gkYf32R9jPVeSsUX5WS8ekJ/bAN+s8nfeZ113uDSPfy/gr7D/fewDh2x3/ssg/YGT71TyuPPN6/X4d+c+jpT6k/qe/5xIL+EdrNMeBkxoejvguG/D2MZ4V+fPAbv9+D8sbvG88/Hf3Hot3F9L4C/eqf8hC9+o6J75d8Tvmvyc/O+Ob7KR2p9hCYBHmnA7fAb1741U/iGfifMl/txr7PSMcivzvt13O4VJEAev62HH6NWzf+wPitFr6PRLv9Dn15PuF86vzquZvx93noTxfpX75jof99augZH7jA8373V+DVfymt7/XA36/0O9+XaE26NPLr76b/m/4s+u+77pkfWleMhR/jB1ND3/fO3tP/0PNp6vsujX7WeRgfPoavP8Hn+OC7Mfr7+J5MTvDkgN5S+M5K+eroZxH5vyCf7/saH+u5YGzqhc8HOxnPirwfwvdLxr+7XqHdPmT+dP8UD/ue9lwOO5dHnmS0H/93pDvjjf8/8jfy+t7yU8bLV5DvVfS7Cuj/BBnv8YR27f8PDCHdGrwbSbuudN2j/8vX+kNDPwP6mo3+TzNuHTEOAFgI/OHztc/pH1XhfyN0jWsyzsn4pnqMLzeRZwR4CtO+F3q/Dpzt/BuaX4YB1yHPbuiVDMWXtkDO1kDvD9NRz3vEzNBfZ7wDeuwOdB2p/4v3l/rBeI/ZEfr3KK+f23no1zU+gv5xkrTtwvG8XYx/85ETeX7Xr4d0Uv3UPf/2vR3wpfY9N8q/QfpD75fR6yTq/409X9c/DT17/nIR+fshTyLfTcH+t7BbGfrNGdrLdeP/jG/z/It0b+QwPs+4POP0PoHP8HsQvhMxw/mX+SCKdhOOb5lBv3af9wVp93tnkS/snzc9dD/qfaj3o74P6n7C/YXvDbm/8H2XFZ5LhM4ZjF/aB9Qv703w+/9t/m+b/+Pm/9StpT35/q/vAbu+833ep/C9w3MZ5L/D+LXc+zzyv8Z+M8A3Fj2PARp/4b2h/2/guneZfuau58iPSVr/qGrwtz3kL6s/1STq1aDcu5RLhT6r0Z7y0Y7TG7fk+2/kHwYe0f/I8y3vq0j3AS5y/ApA1DD4eNt4nUgAPzMulv59h/QTzy8cH9FvDM+3sX8T6L8LvlLo0//P+gN5EsDPP/7c5LcyXsn4ONIdwHfNfTd49EfV/3Q98vkuTfi9mqTg9X2fcrTHVuD3vRP/z87/2Xrf+Ff2Kw2ZN89g/yPQzwb+hvrLh87nqnmfBV8twO/6ODfrD88f+yOP54TazfeLw/bbgt16Um+K74fob0j5eZ7PoSfH45rgL+65Bnw2R379NvTX0J/D9/b0z9Ivy3ufDd6vkl+Ret43vWo+dP1/Bs/3jE8xfsR4hSng+5zyUfSHtNjpBP1orvEq7Bd813s25Xx/shr0vP+SP++/WpHvez2FgBdpL0/cD+r3BJ4z2Df8/rfvh1aMIC/jUwzspp+Y/mG+/68fVS7ovxHa32zxXgw9xzM+g/XcUOR+k/VCJfT5gP6eGD6O+39a8On/jxQl7fl3Quwfl/Wl60rXma4vLzOvPWOczk3ad0zHGz9D+X3Yy/8zMF7T/0kK/z/SQ9sv9b230D/L/wtx3eo61vXrDNa9XwAzI38L9F+a/nwe+ucpVw05jS8wnkA/Fvdnxr8/QB7j4P3/hAXgWUp+Aui3gv9nxv+iB+NsypH/huM/eB+DN6b3S+RnRD/fk3+b+h3J7wIf5xjfxnt/rH+F8UjYzfdZfY+tM3L7Tlsj3+8A3zjsHLb3Zd9LoL7+10tIb6ZdeV/Rh7T/v3me9jyedn4h9D7Xr+izp/M/+HOC/zjye75XwPsa7Ok5mu9vhO9HewQgainQd0Ii6GeM8U+s28b6fgn4jGf1/NN4V/9voiTtzXjklOjT9yknIfcIxj33O/oPdPb/QOhXH5D2/3iNV/QcprrnmPpfheJPjDuJg50bMK7ccH7TD5ZyPcBvvG5p8Ph+r+sN3390HXLI+Bz0pV/ge6Q3wGcM6Pmuc2P4yQ5+19uuvw8anw5/+WgXc9DPLOAk8Fcj3RK8+rPrv64/6WLo62fqO0F3A/BP/LPnnZ5z6p/kuk8/Jcc59z3byNcfzv2P74NfRI7x4IsZCaDrcs/vPnc/Av+/6A8LnWn6B9F+S6HvvOgxE+3R8aIy+PQ3bGG8g+M04+5goP9/WJJ87z1Wg6c/7fNL6A9CrhT6HZKeS33fx/A9jFH0A9/3+D4AUZnBn5L1ZUb92ZD/IvqoyPfXqb/Zd0UjAYwX8r/dhX6HQl8/QPfv79Bu/N+mnrTLneD3fyHagNf/h0gLPv0LbkEnu+8TgecC+sqIXfx/Dsfvk9itGe0iJ/3lIPa6iz5OAY379v+3k9Nf/D9R/190Ffz5f1++J+J7I/pXub7TP2VlaH3XHL7rIkcryh3BHrVpNxMYJ3xPOToSwJT/cX7g/56v8LyI7y+H3id45n0Uac9ZPF8ZjT5nwJfrBNcHngd7v+99v/Fi3p+u4Xs43sv/zf1nnRFaX7yK3ZLz/QjffV/lBdZfq5Er/H67/+9+ELv7P+++b+C9kX6l+UP+pd9Bdx/2OQTepr6f4/2/76tghzvgLwC9/MCCwA7k/xCAqKHo5xXsdRX7Oy973+Z9XH/oxwzFN+Sl3HXal/G2mX2PiO8TSJ8Fn/40+tkcBc9wxzfyJ4be9x7h+57YNR7llpK/m/liEfpbAhwN3v8DC/x6IHicdZ11tJZF97APSEtK90NKd6g0iIh0N4JSighKI0h3SQoSIqEgfRDpli5BQRAQkFRaEZD8rfXd1+Va3Ot7zz97zTMzu2bP3DN79p4zNG3U//s7EwngwUwBzJgNmC6AcbIGsC7torMHcEfcAG4Dbgf+lCWA6VMHcGKGAI7KHMAa1C8H/+eUt0N/UU5+TxPADvT/iHYjoD8jWQDHA2ckCGBr+H1E/+nQ/Qk8Man/Cv6WZwxge8pjaR+D/qPp9y36ykb9J9T/RTkneDqD/x/4yoc+n6YPYG74v/dSAM/S7z7lk9mexz8EvUyGjwsR+A5AVIoYAcwE/gy0n0L/TpSTw+c88HdNCp4kAVwBrAf+GeCdC95C0D8HvmfxA/iYcRmTMICXwZ8TfcaD7gnthvFtmpLfgT2gMwn6v8NfMuj1Av898B+DnxK0z834RKP/XdhXOvS7ifbp4aM+/C2lfjXtd4P/TIoA3kkewKLwd5n2FxivtdBvye8TkS87+j/E71nBPwf+NqK/ei8GcAJ0i8NfIeTtw+9lkG94jgBWhv/E/N4QvOWpP858PBQvgOfRY3X4Wxo7gJfQy37GsTP9nZ+XkcN56vwsBv184G0HnvG0m4j9pNFuKY9Anvv0P4d9/EO7J5TfQL/vIMfBWAFsi37y0f9z+p1Bzx/Cz236xaJ9XPA1RL7NyJU+EsBBjG9n2t9NFcDVwBnY6RzwJ8YuPsROdlCeCf8Jmf+Z+f0F8BZHf7Ph/zv42Iq+RyDHjTgB7A5/31OfkXE+hD4L0H4MeK5Q35L2PwDnQa+Z8qK3WpTvUJ8F/grR7wBwD/XZGL/xlC8Ct2GHE6Ffi35fUe6H3m6g/1iUB6Ovreh/APy4Hr2OfK5LB+CvOXrdi/4vAdfDRyP0nw17PI79jGccWtDubfh/E33UhZ+k6HMa7UpT/zH028B/F+oXg3cC9ZMTBbAk8hdEjqvIf5p52Q+845D/KfTHgj8J5eK024z+/V51gH4m8D8CfwR8Z8Gz1vUIffxOOU0kgFeAn8PvUsZvB3jXQqcI+D8Ef2LqS4GvNHg6MD6d+b08+qkAbA6+CPxdAV9l+jt+jluE+eD4zWQ+xmN+jgF+gp420X8zcCL67oJcrdHfHfg/C/0L8FMVvqPh8wDtdjMeN6m/hr6SgrcP498LfDdp73ozBP3nhs/7yJsFugeRz/2X+64PGXf3X6vhvxX1yaC3EPxPWO+Wob+S6G8wdArBz2HgWvjZCL9+V17g94zgzQH9r6nPAP3d8HOTci/opeM7dx15/D524/u2g/qHjE9/9Oz3uxz6jY/8daGfnPl1ET5SUK5G+2b8/jL4vkc/vyFfk6jn8a+j/Rr4+xj+htP/G8qVoH8bef3u+B3y+9OU9esLfm/s/hF6Xel3G7l2MQ5vMb/WiR++Z0ZoB/1c4F3JuPyCXOvoX4XxjwXfPYEt6R8bfq7Db1H0/TX1tajfQX0e8KeH3z6OP3y7P/0TPl0XY9C/N/K4bjqfPgBvddonoP857OEUfPVEzjbQH8r6MpV+aVgPsruPYn/TGjx70ftp6hfBz2fo9wPoVGL8H/L7J/DTFDq/op9o+reA/93o4QfoNOE8MhA8E2h3D3zvooealDP6PaL/O8yLHvD1gHWsGHic787/DOgzwvjfpd8+8B6hXU/4Lw3/f8B3M2BM6v0e+X3ye5XC/Tvy1WX/ujP+8/JtpH8L5w/4HW+/0w34vT7juwn8h+B/F/3jYL+T0U8d5ntR6i9xXlDPo6kfA6wL/308P7I/7ME8nU7Z79os5OsGH2Wwt6X0fxG+99L+Lcbza/S/Ev1uQH/d4TuN5wPaf8jvX7ofxD5jwlce9PIecl6jfmHMAI4FngaeQP5r8NWQcl7k6ER/v7+/gncDv/8Mf+6L3A/FpF0X+P3EfQd6SBIJ4AD4dd0qQn+/F63A/xnlKfQrBP6q8OH56ST6Wwz/xWjveXOE6zTwM9r/qH3DR03nDeMzAXvJz7gWZL1cDv4E0D8H3QrwGw/8P4C/P/V1aL/SdRR7u0J5MvSjkf8L+FqPvFlcP6hvAP5XoPc77QfB3y/w85T6pDmely+X6xBlzzcrKa+Hv33IvZFyU/r5Xd4GfIn+fp//hV/P1X2Q7yT414JvDfJNpX4t5UesGzsYN/c/7odeTRzAo8g5j9+HMf/egX4O8FbF7q4BL6O/S/CbHTxzoL8fuVa6LmAPa8A/n/4J6e9+Lg7yxaT/LdaJRO6bqE/B9ycN688p6GxBvxOh9xtyTQJPf/pP53v2G/bzI/vbP9HTLP1PlLvTTj0soD4F8m6BTnHwV4deL74rXdz3Yn9J0NfH4F0D3kzgu8a8mYvc/6Knc66PjN9HyJuA8l7q+8BfYfotoTzXfTDr8Sro12R9G03/SQGI+ptxqUR5HPwlg/+S2Od34F0YCeBD+K7juQ356lFuB91f4esGeDKjvyvwswtYA/gMvodxPj8FH6spt9EPCJ/ngAf9/qL/SczLUuC7wzzRv3WI8+58+IrnOkz9Yr4f67C7DcC58L8Be2qE/g9jbyPpfxT5u3kuZz5kgN8X0Wcmz9fIuYH+ibGv5NBNQrkq9FrBt/4U97sR9D8QeZZCPzW/N4B/9ZMXvHmA6qcj+D6F3lDwxI0EsBq/t4W+/o2X0X8e/YXQy4R+XqPcEv6+Bs9w+m+H/kjm91bP39DvRf+qrB/DgRuhd5H6Cug/Pvi+xV4PoIe90Huffh+4n0e+r5lvN6B/yH0G/T1/eG6Yq77oX59+jagfibx5Gf+4lF+mXRvwfat/BHxxsI8XwDvMdQS8XYScU/vqX6LcGj18Rnkp9Z7ja+sXYR3rSL3+hILUD6f9G8g/i+/P38yvW7SbRX0r+k/n9x4BiIogX0rkOw3/33r+Y/xqoO+blIcxzun1nyLPctaFI8AS/L4/EsBXHS/436g/k/H+BjqH0f9A6otCrxiwOND99AbsOQo5ysF/bManFfZbhXVnK+vNceTdhn5OYQeZ4UM/9km+DxMZl9TQy0p9fddB7OcUfHwMnteYzwngOz7wffiLz7glZB2IR/kb8F1i3TmBvC/Qz/WhBvz0Zh1MCfyA9vsCEHUd6D5/FP3bad/87jl5Hfq/hn1VjwTwI9oNoX9s5mcsYH70uhR7acR450e/BRifJbRb4PrB+LwCvdnwP4fxGsM4zPN7oV8Jftbqj8Jf85TyVei5vruuH2D8UqDvlMDkwNW0936lAnR2o5/m4NmAfR2jfWz4ina/iNzxkOe48xz59T94T/fIeyLwx4SfZvxej3lVBv2WxT6SYmfJgAPonxC+X6b9ZOjk0n+L3d0C7xzGYSp8zuX7WxM8+uMPIO8zxt39Qni/Ux79NARPhHF0/V2C/K67O/nd9bc09WPc1zAeA6h/hvxFwDsU+UcjX2PmwxP0l41yXvSfC7mikfdz6Hk/8wR6CaA/HDxbqZ/L/ngP/a6BZx/t3X9mRD73oe4/T3h+ZFy6Mm7e722nvit0XZ/bwv99+E8K/CoSwDbef4F3A+1Tgece+PUnD2PchgI30M77Pu//VnIOaEx9K/STH3m9B6vH+AxFP+OAe7G31rRbQf+n8O14jEEPrRmvxuirGu266n9FP/3AFwf9/EPZcWmLHLH001DvfjAW/bIB3R+OZT4Uw87db3VFv7/zXZgO3z3dj8Pf1+hJf5b32AspD0f/ndH7CMp39ENSPgmdC8C14BmBXD0o649KxPiug//1wA36f5FvL+1r6bdAP/2R4yjrbXnopqXdK+DPSf/M8FGRcSugf5bfz9PvTe+jsj0v90f/Q/7tjE9W+uvHioN+HzDfqyH/Q8rq/zz90+sXp/8C8KcG71j3a9jxu/CfknGdD9/6FTKA3/velvzueuY6VgX6Kbxfo/2iCL+D9wX9qrQ7Ch876d+NfqPBuxj6Nejv/tJ95TT4r+H9PuvwWejMpr9+iw58N/VfZIe/Jczb6pwLvwHPQvTyrvElxhXARxrs+/UA/HcP6P1fTfdn0D/M96ED7VaizzfpvwXY1/MW4/YEum8j14foqzX0x4KnuPEr9Ne/VIJ+xeCnLvovQ7877GdvIOdwyjXQXzvstZz3+pQHwFcx8KWCrn7U76GXDLzO3530WwFfWZh33SiXYX9UjfE9SnvX9wyMV32/r+6voJeG7+Sv1Jf23joSwKaM3z3aV6b8hfMXeTp6v8C8vU99XORf6DoAv/q9w/v3V19ATuRYgp3FZ3y83/E+pxJ86t9t73qHPOOoz+f3m+/VM2AM/eK0O8v+2XPHKr43nkdOGH9D2fsg78d/p9579RWMp/7uUZQ9r6ej/TX4S+B9EfTvOv7IPxe+PUeUAt6j3XbtH/qXsP9C8NuN+T+IcdEPfAH+JlPOCp734GeFcWr0c31ewvzfBv5U2FMX7LQq82Ab41ER+b3fGOv9rPtT8K10vUK+6ej3HPb8J9/faOjsY77Mo7556Hvv/qu+93vQr4Wcr9G+gvsR+PoGeecYz4P9jkD+GZTTRQL4gPGJhR4GUp7heRl+jS+oT9n4gnB820n4zQv/taFXB5gD/rKgvz/gczD4ToKvEfX9se/R2PU6yvpN+kC3FO3zoocE8G98YWnaG2dofKHnyea0D98fJWfeL9C/jZ70L3tfWoP6adij/sMpAYi6AHQ//I/zg++G55Iz2J/nE+9RtgI762/APuOjr830nw8fG+k/jvXqV8a/KONgPGcq+lUDTzL66w/fwvfCeMOL9JtEu8eOA+0Tg2+9+2fwfuc9Lu2jmC8fsD9bC7766DcB9XGYX0uxmxbo6wn1RdBXYWAW/X3o5zX4aQL/n2APBbCXrehzAPRvwN9I5DmAvVUD727sIab3G8yXS8Ak0DnD+HZHX96bvAmfPajPTLkp7TqCtzH6K8586w1f89nn7EP+8syL/xXH+Rh9JuX39+DvS+QfhX7uGk9pPBN86N8qB/+Z6b+Z+l20X6d+wdeG9rm9XwBPE89b0N+kXx98K+hXGPm8z94F9PtufKb+8WOM38/es4J/GvY+GXt4qB+K/i9Dv5b7G/Clhp986P878N6ifgl8ej+difnl/t7450qMg/6v/uihG+PvParxqOXch8Bvf8b7U+AZviOz6J9Rvul3C/0aP/4e8g0A9qQ+Bu3zUL6OvMaxGL/ifZBxj94L3YHf3+HrMfPiHOUe+ouMV5Meet+KfReEvueCKdDNanwmdqsfJOz/6AS9CPxVAU938Ew1Hgw6hyMB9F62P/aRmt9n0H48eJ7xfb2Hnnsynnv1TyJfd/SSCjq19Lcw/4azzumPHW6cNXgq6Y9D3ymR/yD2tQ6YBrkHGf/BfnMF8DzwR+hPwV4G0a8H+urLOJRAv7eNiwr5m15hf7vHuB7K68AfA7xvRwIYXt9HIE9298veO9HvC/TVUj8/dP8G33S+P3GQqyvl04zbafi+D75hjNOb6LMT+F1XGkFH/7b5BPph9btW8vyF3O2ATfl9Nfqv7PxG3ovQMb5+Av0eo4dq8FkT+u57s9DvJ8bHeOmnyDnafTDzbDn4RzK+o9HbKMq14HMvdPvpP4BOBeRMgV0dZp2bw/c1PnIlQ3/GF0QZJ4scbcC/AvrnmT93oLON72Y16F0Cb2zkv408XVjfKwIrG5fH93ER/S/S/xfm5wjk+o76zPRrQf2boe/Rt/DZj/o18HcZuctS/hQ5vVfWX+B985NQ/H9Z8CeCj6LUGz83n3rj6Iyfu/Y//PMNGf/wviwN/XtD5xbjNpb+sdiHDDWOS38m5ZTouz74I94Xux8EToOPv6Dn970K+vV+73XWsyzobxTtHhmf6HmO312PXYc3YO9fAzcCq6C/mej7EDAZ68/e0H2767H38Wm8nwrFqxpnanzBCObnada9CcBe4CsM3ZmsO4OAlaB7hHl5DJiL8TiLfJ6Pf6Ycvs/OTb/T6O8K5Tfgc4z5MejPOArzqUow33fqPwudby+iz2qcM/dRzor8eZD3F/RQmvnWDX43YS8r6feAcnf0kxr5voS/EvCXG/o1Kbei3njIPNQb1x322/aG/i70sod1oY/3PIyv90YPofMH/Hl/FKU/A3yPzaNwfTDel/on4LlM2fi7QvBlfkJO4+eUDzlWoRfzr8zfqIH86Yz/p75W6D7Qe8LD3vvT3vX4BfAnd38Af3uMO6JdU/C/jN5yA3MZz4p+DjLuy91XAa/QP4P7X+SsZ34a/ZvDzwDsqb/7ffhbxviU8NzN+Fxl/Apo76yTQykn9P6T37eyrt2EbmH4mxuKxyqKPPcoL8bu32Ie/wrsgj13YP5MjgRwoX5K5DluXgr8bEHPcamfjnznQ/coJeGvBmXvS3cYrwe9+uAzjlX/wwf0L0f9APOd4CcX/BSmbNyZcWjGn4X3VykYh5nGv2J/SRnf9ZRTmz+EPf7NuGRAjnbG56PvAozDdWAS6PWBXnHz3pBzO/wZR+l+bz7tc4D/Yih+4AJl4whKYhfG/aWF32jqq9P+MevG78Di8DeSc1sx7LIjv3dH/+7H3ae/BB33656fzAMoSf/7lDuhnyLoZYr26/me/rPA+yPriPoxPjg2+ns1FG/+aSjeOB3fxyrQKQZd171V8FPG+1fPN8D7zAfzYasyT4yvzYK+t6CfKPTm/tT96hzHH/4Lw39cfo/n+Qz5r4F/Bu2NU53PemWcRSLGz/iKI8y7CuDvwXxMCP4blG8CC4DX/IsiyBMN/w2wF/0BnyD/R5T7uj+JBPAc+j2PXhdjL8mpr+q9HuPZyfhlz8/QrQY0n9U81pzQawy+tqy/+oePopdB3q+jD/Pz9mLfpRivPOB9D/n1zxUzfho570IvN+Oj3WmHX3m/A78vMu7ZKJuv5H7P/d9b4EsJP0W8H6W994htoV8F/szrMM8jJfynxt7Le2+tn9T8DfBX976Xdt5nj8Qu2mMHB7B/40XWY2/GDxj/fsj5xvhEse6cpX9n9G/8UXHwG39kPFJ+8I2i3Bg7Wkb/XPD/LuOd0Xt65GkD/QHQrYx9JPZ+AXzGVd0Gvkr9TPB7z+89uvsw6Ut3Z+R5+knAvwL5M/D9iHa8sb/r4DUOyPifcP5kbcZZP/1vAYjqazwt7dtiP667xk+OhM/C6GtkKD+uAPS3Qb8OervFPKpC+SXwt2Q9OIYc+Y2Lpr428jaGbg7KL0ae5/9eiuflkP+a5hVpl8ZVwd8O8D4C/un+g3rj66cDs1M/mPYz0OdrlK8a3w1/5p+bd14CezL/fLL5D55PgWVonw393qE8BLyd6F8+AP/de3gPUhE53Y8tA6ZiPncCz3fY80nGp715M8wP40LH0r435S3Uz8Eu/wQ2ZxwuGjeNfHH9vvuuAvgWhuIW63G+yoh857GXq8AYtPP+rBLzvyKwI/iOmX/AfAyfLw7Q/33Wp/3G0zDfxlLfy/wLxmUEfBc0P5v6hfr3qN/v+sH327jGV7D3G+jZ+GH905fov8N4Ju8jfW8C+6vs/ZZ5M+ZX0r8f/N1iXfS82YPyWujN5nty03gU9GH+p+9D+B7Ef+9DUK9fb7z+Z+z7EPwdpvwM/TcwvwD+vK9pgv15n+P9TQR+R8HnFuygGXS3Yr+/Ac8AjQOf4H4YvCP9boK/HuN9xPiNSABfws58T8A4t7O0c7zewe4WMM+/AaYw3g67SAm+ROAvgfxpsYdG8HXQczv149HfCfqdhY/ljJf5d/F8X4ZxOJn1ebye5+dBb7j7S9aFTvhdusNvctof8/wDnoLIlU1/Q+h+rjzj6T1de/Slf8595R3o7zY+EtgFOiexr1veXzFe+8CzFP3U8r0X/aXoJzf8e1+62P0y/ZeBry72vYZ93ffA1eZXUD8aPJ0p54Ke+YzmOaaHf/MZFjOf9qDfsH99PnyNQy+TwNcA/EvQ00j4fcb62MvzJd/NC8rHPErs/pX54PsM9+FnDvrNzHibF3xaOaC7zPcVvLc13pD6vvLtvgNo3MG7yJkU6DtB55BnMPx+hp1PBGrnLY2H9jwLv6+DJ43+P9q/zO+ZfYeB753nonWh+KGbxtPB91X0v4X6Y+jrEHbdC31W9n4N/j0f5aFc0Pgp5sUXEX7ne3AN/PplEob8Neb/5IPuTfMj6D8J+le9L/c7gf1uAZ/5+eblxzCO1fwn9GFceQ/KtaFvnrvnSc+b6m8u+unKuC2hvAg60ayvM13/zCs1vwx8LaBTFH0NRn8zjU+g3SzKRdBHdvBdpb9xpv9Q1l+mH213yJ+Wz3xH8Hcyj5f6f/l9Bv1GmedO/SrsJRH6fIV2K/T/pn2eP/mVP+93vc/1fjcG+tF/8Y7vhtC/gf4X9l2HqF+AvUwNrd+dzV/S/4F+U3vupn067HES8ngenAa/HVm/EtN/COPVPt7/v/8Z6GeGv5T69bFf/RP6Xc3TH2v8I/V/mRcMXvNv/6a+MOOeyndfaOf7I0OR/zT4a9L/B/TxA79/g5xDkK8A+AfDn/Gh3jd0xd67uI+ET9e3c7RbTdl84vPmz4KvqvernuvQz4/sd4ZBPxvzsyN49zG/vecM32+WM1+F9mUp50NP7m8rQ/9P6LjPjWY9O8Y4e79lPlAs78GB7bwv1j9Lv5rYZSLWtz+o97tRCHoX4edP9JOScT2onxP8xh89Y3ya0r+p5znvmdHLt7Q/Rb3xqcYHe5/qPeta49ON0zXfRXszHth8Vvj823FwHGn3JfXGYRz3fMF30fxz887X038T87s05THU13E95fvmO0aLsQ/fL9rGvmqrcdqMh+vXAX4P53X/hH4eo2/jlYxjqu75k/n+I/yVh4+H1FdDX03QY1HoxGB+duZ75X3oh5TreA7VXwb8K/S+ivPF+fOi71TAv37fEyH/r/5b80nMl/Adtv3ed1D/k/k5vr9nHhbt4+hHDenR9w30u+uPfx/+fJfoFdr9AN6M1JtXsMD1G77zgf8l8wNcx/VLGD+B/eyDv0ysJ3XR7wLqx7CvNQ9iAXy6frhuxPS9R+xhgH4H+Nc+FsFnFeMStRfwzoI/9z95scMqlL+n/TXWt2vQvQ70PZnYaZ7npyL21979O3y/D2wIrAmfxdCr78aE44tqw8+q0LuRy6l33Ix/cPyeoN+Gls2Hg9+OyHed+W/+UzvWycPoZ2vIP6G/4i/o6X+eTv8I67P+6Kzsl4YZtwBcRX/H2/2a+S9zlT+UTz6A+qPo9zH+FeMiU3vPSXv908aDGZfg+xwN+R7sBGZFvnnm0YF3IrAZ+At7nwb/7zMOp+hnfpP5suX5Lsb1ngz5bqKPeOgvAdB70KHsd2p5D075PHL43ovvv4TvI32v9F/4neH7AvBxlPno+2lXfF8I/azx+w38Hui7N5uNv6RfC8bbfKqy2Ftn2v9F2fc5Wph3Dj894ScH8o1EH995fw4d409KMC/6Oo+YLzHofxT+jgA/9D4aeaswnqdcjxjn6caPMG5HmRfGRfQ3/w97HwJ/5gWtpv94+DcPYwrl7Oi3DeNZx/UVPX0Anv3QX8G6s55xNJ9/G/rynaufoOP7VvplzDfqQH1C5ndb+r8HPAx/71I/JPQ+kPmnQ6Hv+7ATjAfV34r8r7CunzJ+g/W+cCSAnn9q6ecxvxv6fm/T087vbl33fYyX7ym0CN3Dem7xnWPPLZepN8/A/uVob/xfWvSywrwj5qvxowuRy33oVvhtZ/wK5YO2M+4O/Rhv4Dut5umtA2Zn3Ed470b/VdS/znwYCv+VKPv+ZVv6RYDaSW7qJzAvJgKn+I4L+I1nMC/cPHHXl/D7sjmMJ6O/72W05/dE4LsMvvasF9vNywGO9RyAvBfA3xd4Ff3vYz2qY9wg8+WG+y7j98yv5fepxg/Rbxq/96RdC8bP++YbjFdD5rv3z+Z/Ghf+K3KZ/+n7vk2Qu04kgL7vO5D+JV0fqP8H+rexv1PoKSf1zan/CHn1f/gdraL/lvlhfP9C5of+rK2+r0I57J9oiz2NRw/9GJ8j6Osu/Oc03wP63sfGQ1/xgb6fWt31CfswXqkCfJ71e238BL+bH5fH+zvfLeJ3822a0X6R+jfeFHl9n8X3+Dz3+16f53/vR/xu+b6u9yPJ+f1j8KfV7wn/k6j3fZTytNtKO/NBG1P2HBiNfSVh/Cuybvr+iu+xpAQaz+h7GRvMf6De+KP4jFsC7GNeAP7L2/gFPG9D37j4h8j9Wej9z/Hod4vx7tjpI+jcYX6mY1x8B6Yg8p6AL++NjqBX75OapX7+94PQiYF8pymXNV4SfMaHD+Y8at7PBso3KTfCricZ/wJfX6Gf1ND/CDs1rusf+BmMfkrxexHa+X6o8a6dgZMYT/MX9C9Vpr/vK+hnWsR4Gwey0nMc4xELvr+j/0jKxk/MoJ/n837o3/P5UPjv6juo4DE/p7j2azwEsCnwBfT3mHJMyhXp34H9zVT4fkY5B/z3DUBUi1DedGP6G9fk+1XTGG/jO7+hfzfgbvYbezyPsh/8jXIfyr6/az7CbPRdB2j+1F2+myl9B5vvpOvLIPj7kvJ1/TnYUdhfl1P/IvjfAK9+tkUhf9tJ5lsj9mW+C3AB+T1/+q6j51DPn5mMG5Y+/c0/fo313H2F97Qt9e/wewbaf0z/jylvAv9x6NXwHhb+4iGfcePmofsOgHHrxqvr1/N9n37OD+aV5/dB3kfp39EPR//azj/Gax3rknEVqYB5zV+Bv7Lw73uhN8xf8hyJ3VSE/8Ppn8ezWT8NfL5Of9//mEe7X6A/0XhSfo9D/x7opS2/3/H+3/fPwH+K9SEP9YmY77/pX6f95tD50HWsEnp1PRzH+niM+vzY43rssB14ooHjoTfBezRgOtdl7LYr7ct7zkW/5o+Zv7+cfgWg7/83+cX7Jecr+A4w36thlyOwt3a+fwN+/y+K99/Z0P8FxjX8fukb6M/7Ue9DP6f9QOors96VAa/vhRjPUAb+p4JnCnCe9zvIHZv+vrPs+8rvUva9cdfdS85v8Lc3rh79DOH7NZr6E6630DE/z/2U76Q4b4dSvwq9vmo8MvY4HvpFWR8XYCfzgcuoL+t9D3jSGDcBvqXuu0LvE5SgPgv874XvLeCbjP4+Rd8D0GNtxmcr42u+mvlr/j8X4x/T+h0ALgP/Wd+jEJ/25vs85vfq30PuhejvE/Tnu5TOV9+rfGa8IvJ57/Ex+mlC/8HU/yxf8POueZT8rp9f/7bvH3ve6ky/981fhZ77e/f1bSh7X7bS/CTwd5Ff77fY1+UF+n7iNNoXcX+tH9v3VWj3lu8V8/vMSAB9j+9L6v/ld/MRS1GfgXU9ATC+edzeHxs3Qz/fmfF9mcbeO4XyxQswjp6PdnqfSHvju78Af1v4N1/xCvJPZz3aA2yqnxt9vMO6+lB/EXzXBv998KePBND3cfU/+Z6n+1D/L4D7z1HUpwZPPOBT473gN+J7GbS/iPzGSzf0HTP4NX7aOHDvndfLD/Rdn1yXhvseE/j1y83nfDiTev1z2ekfvl/x+2hcs/M87N9sBp8vuT9iPB97PjJfD/lfpN1210fv5cEzHD7+hf5+6BWMBDDaPFfzW8xP4vfG7iOQ/1W/h+C/bt4z/f/g+3ISviqgp5LU+/+UziDvJfOs4Oc+89I8yweUzbN8yfcejbMFn++bLoJuefRjHKPvkxfh/s/9whHjPY3/N/4WvOF8+5L4Iy4DJ+GvmE37evDpuxdNjMNAf/96H0B9aeQfqn8Ye/Uca7xHar+X+qMo7/cdA/Tr/y8wHsn/zzDQ+yPGw/c6K1M+Sv0l9H4ZWMrzN/q7jH4813vON/8yPeP6j/nEyPt9zuf59z6zjPFrlJsx3hV9vxL8RdDrM+T1nQL/X0kN4yupXwle351qz/juBG9u7KSM8evwVy30rrhxfAvQbw7oTadd+P3na9jDIOxjjvna5kuitxLAdMwn8+R8v9Bztedsz9dnAxA1G1gL2NJ9B1A/pvNkEvxv9l0s32EAfy70l4X58QfzYiDQ96RaMZ7Gh1R3/QVPF/fr2M1l1oNl1CeEL9/pisU4fA/9eejtS+ypLPobTv0U//8W9pkU+yiGfnyX/V/4W8V+bxX4jCvozXgd119sfi/y+G6Q+QfmI1wy3g95fA8+P/1Lg997ZuOAHwGN948Fv+YDzKa/+wLzL90vPPCdugBEXTX/zH0o+ML+sbWUPWeW5Pcr8G8elO+jluf7NpR5Yv62+dzmb7wa8m9sBp/nbf8vynX4nsr4eb+mf9L/J+L92o+s74eNC6S+tPl12GdZ9iW7sc8MvrNgfgj60b/9KfP7DnT1f5l/05Oy+gnnhyWm3v9n5D2m+5cpxr+E3u+diB59x/cc/czb872o+4x/UuTKz/6lAHCq99PQP6bfALg3FF9jXI1xNpWovwa+M6w/8Rlv4wefsR49BQ4LnVeng08/1AO/P8iflPI28+U8z0Lf9xo8H/r/alzvxnHeeAScCb1N8LcUvcY1/jUSwNTGf6DvNeB1f+b/a/JevK759PDzGfz4Plw73wmmXWvq84LXPAz/v+R70P+B9S4F8ndlnbqondHeOEvfZ2ziOxyMSybk2sX89/1P978XA/DfvI+Nfjp4H+C9JO18H7Is6+WD0PlnHPVT0d8R+PYdX9/vLQF+v+vtfQdK/7n5huYN038l9eZjmJ9hvkZ99JcK/Rn/2979lPfL6Md9Wnh/5v53n34v45uglw/6s83r0m/B/HsCPt89uBx6/6AIdnHR+wTf9zX/Brucy7zyXRvjUy+grzfRj+u86/uYDM/X217/qfcW3lccZTzmeb/H+G3z/sp4YNrnY/ynQHcX+n5q3Lz5VZEAOs6+3+a9iO/ih+9HWqNX9wPuEx5Q1h9qfNN05DO+6Rx2l5B+0axDy+Sf8TUuxfOR77v73tcW8Jaj3vgi94v605PQ3vixvejD/XXvUHzRQ9YP35d4h7L3U3lYP9Iy7rfdL1Efji/x/zruQR/GF1eE//Ss18Ybuz/x/xWYF/mO53v4ct/ofvIT+vv/j7MY34de9kK/L/jX018/XSv6N/L/AmNfrbEv7xFq+O4D/Tb4vYSOflPfQU0H38aXHsA+N/Hd2QbcR7+62ENtYB1gc+jfRT7/v6n3rb6foN/G7/8U/QneL6Dvasi5Evn8/zfeO5RDHymMW9WekXeN75QBs3reY30oDd4GyKdf1feLxtDed8Brwd8g7DMjfGof2ov7dPN2ZlJeop8GeuaFTkbf5od6Hgv759wvp2K+J2U8G6P/2ebvGeejvND3+z8/tD9wv7Ab+r5f5P8tLkU//3/xl9Az7iW27xVS77st7tf9P3P+/0D3iz2R//fQ/vEu+O8ZH8g+NA7yjWbc6qOHesZHYh/GxxyE7zXgNb4oFvJ6X+Q9+I+UX+d7kxS5fJ/JfLA06Oc48m0wv4TxMH7EfYvvShhHMo7vUlXwjaGcAf3NQt6eyDWZfVhxytrHX8b7Q1/7GI9eX9cfFnq/o3UAoj4FPgKmN/4OucsAu/I99v7N+6HffL8mdL/rO/vHzQdHfzvgrwDjYj51e+1E/xZ0P4Vf93vu78z7Ooqd+X/C/f+QDX1fFH52oq83jPdHj8bDhPeXGTjf7sEuG1BuBX/fYpeLgG96f0V//79rAe81kMf/5+3/DfkTuR5HAriY/v8H1oZyFHicdd159NfT9j/wTzQQmiiJ9E4yVCKJK7MUmQoZItJIEoWiZEoiZR5CISlTFOUaokhCRKZwzRKSRFIkw3et3/vxvGvd11q/9z97ndc5Z09nn2mffc57fv2K//fbvnEZXrdNGT6/XRmO3qAMXwRrbViGWyvfdasynNyoDOc0KMON5dfesgxP3L4Mf9m6DP/TtAw/3awMz65ShiMrl+GHTcqwG/zv46fKtmX4nPy2tcqwRakM76lahuvl7wB/C/C1Tcuwp/KX4e9Z6TX4X6T+j9XK8LdNyvArcv6m/Pv0Ej1NBqOfzuQ6BuxG/q7w96lBLvItp/9eO5ThpEplWIvc/fD3Ffoj8H+r/J/AvvB9T39jtfMF8s+j/y/kt8JXE+XuJudr6F0g3YC+T8b/LdI3KDeSnoeT/w3pncm5QLqB/D/RfYZ9jJTek/xp7/vQH4Tfj8l3LXuZR2/DpZfIvwO95vA/rz2HSPfQrn+jew48r5Dvki3KcCn5vlXvO/Bq7fMjvT2p/q/0+26dMvwE/IEdHECeGaUyPA2959A5hfxnqNcE3BS/TeilLbofqXcg+g/D93H1MnyodhlOA8+l//rs5wP47qffr/D/fcMyvER+dfTmwf99zTJcqV9Not9L6ecL7T5mozI8Dv1DtE/s5wX6X7oxPtDvCX9T+LrKHyJ/MP43LZXhK/S6Kfxb4PcNctxMvo74PwJf19FfR+lv0OuM/nHGlWfptx0698LXHf1KvleoP5i8h29ehhtLvwLPhfhboN625LoVXK7eZnXhk16qPeoZj8cadw7FzwD81CdXVfK+iE4X+HdFfxr9LIB3mXK9ifMZ2ALfz8p/0/c79JPX0TtEfkf87J3+B85i39OV3w79Y/C9mfw98fcpPH3Q/479ttU+P7CzfaSnav+V0h9rv7bsrDN6V8J7JX5fgD/z4Vno/4zPbfF3Av11oq+j6Le9cg3wvx98Q5Vvid5U+dewt6H4ma/+6/Q0TPn16LQC/4LvE/XPMe5dT74XyD9N/qPgY+Bf8A9gT59qv7rgQPI/jP5i/fsD9WKnY+n9evB0+L+jj2fofRb4b/zVkv+L/tubXL/S11R0DkH/IuWHqT9R/m7G00fx+0/mT+XvxPcs+rlD+i3tfZXx6mrwWPbSq1SG1fSvHbTPx/g8UP3G9NUA/lXSjytfMl630T8XmS9eMC6P1K9fr1eGS6TH0m938u5BTy3Q/zjjn/ITyP8Z+T8h/574WCb/COnz1d/f+NtY/qXq38c+l7DHZvIf1x9eoP/+9DYAPAuczP7a4LsNvrOueAm+m+htDr0PMD4uxsdb9LU9/bXE/3fwf8DeFoMfwfs5eDr9nYSPk0tluFD94eznHvS3Rr8qfueg14QdrsD/NfRTQ/6+8I5S/zr5y5WvKr8hfnpFn+i30j9agw9pv0foe5x6G4JvaL9/oT9CewxR73Hpq+jxPPJ2Ub+V/Inye+DnLva6SPl3yT0l/Cr/nPQ17KMfOatop83gv139u+Bbof4p+G9u/OlFjuPRf1v+aO32DDwz1f+5VIZHS5+uvW7Hzzz0q8HbFjwLnj/o6VL9Z5X6P+iH1fBbn1z3kHcBO2mmfSeXQcWP9HoPfoeodwB6L2jHf+NjV/yfrfzZyr8K3gb/YvIcgX712I/8EfpHK3pvh0438p2nfx9t3dSLnHfJP4w8x8hvrT8eSa9vsOdl1p+/gHuoP135/fD5jPLN8fczPFfFLtE/Tn4H+v+c3iuBG9LTUPqZS/5Z5H9E+95ivNkSH7dKr1PuQ+PxYnY2Ft6KzNfK9aC3paUy/Aj+P+Bdrh0bmT/S/lvjbyf17qOHrtI7yR+P/53YVQ/1+8O3nXHgNOmu7GCC8WChdsx4lHFoPrn6kmMv8vaX/7H2+lI7jNPe48l/L/621y5P+j6Y/OvkjyH/VugcIP8z3//EV9Z7Wd/tgu6O5P8enX/o4Q3ybuX769KH4WMdfNeiO0k7PQLf2/R9NHmPUf7erF/gfQdshJ+H8DcM31co/41+NJR8L6LXSn4VfDwgvbX8+eh+Df+x6s9gj4+Dm8u/olSGtck71z71Pu1VQ7lL9O9HrK+WSvdXfz90d8XPbvC1zvqTfTyGnwvo62L5dfS/2E3Rnqayl0nG4+fMs9uon3F3O/ycl/0henONK6eSqw68W+B3btaD6nfUHoer/yg9TGEP3+K/Pn7iT1qBj6vo4xj5Ddnvfeytk/o/yt85+Zm/sr5S/hTz0QrrtVn4Ow1/n8pvR0+fSI9Rvy7+st+bTD/R31bWl8cZ977RHtfib570HeqdVSrDgejfxy4eYT+TpceR53Z0nwE/1Q4vq9+P/BuQ6ybldqaHFgX9VqXfB9Q/lj1sFf8dPMPkny89CZ0PM66Rb5Z6VaJ/9BarP57ce/qe/dukUhnuqP50fPxjnHyUvXRB99/wP4afDuxvtfqVjbPjzF896aG9fjGc3CfpHzW17+W+n6/8HfS0Gv0q+N8N3dvwHf/D+wV/4UL2mfX538aNbzJukX8yOu3ZXQ3py7X/GehcR/45+Mz6fU/0vo7fin6ip+jncvUro98Q3+lfU9BbTu+TpJ8j7wf6f21wc/As+KbRbyv8TlCvuvbfXf5keqmOzu/4aIG/9PvY6Vj4hqHT2fcO8LTVfkfGf5j9vvafC/9e8DSRP0P9G7I+YD876ffNwKHq11B+GDzzyTeN/u6j/3vofXvtuwv8m5G3WuYFsDF8U4xLb5DzRelf5H/GXi8Ho8for6TfHIOvreC/MP4o+v0Xvsajsx99/Mh+70u/l35Q/T3U60D/+0jH/3CE7+20x3P0cYzx8Rfj2gjwZv30ZvUax/8N3z/4OIN+f2IXXYO3VIbxL51DH6+pt4lyZ9NPzzKoWANP5o/O5N+CPjqSd4T6v8l/Xr0R8P8J3wHkbUaulfp5/ExbkWcL8m1O3rPRG0W+S+PPlL8J/f4kv7L0cvTbZ/9aKsMT2XvsekT8zfj/y3piNjt8D79Pwbep+Wuedj8JfFv9X+jjaHycC56V/RW6n+PnMnQuw/8hGa/Q+0r9+eS9k71/RY4l4J3K9dc/F9BbI/39JO1/QmH8GwEOj/8p62f9pB18k/FbJ/sGcqzHZwP2Uzn+K99PwNdn5P9K/V/jZ/F9fPbL+BlAn/FDrJLelh7iLxso/ybyZd0wLOMbvrN+OFp7VofnTfq7Sf5w8m9h/HgXn83xtz/9H6r+1xkX5P9M30vJPapwvpf9Q8bH7COyfzhc/kT4T9eODdjHJtbD2Yffrb9clPMy40V/sL7618SfaLy+GBwOnoefFvTxE7l3ML/tQL74NXvlfKDg5+zNbnI+lvOO9dr1WvAj+I7TXk3Id6Tyaf/sB9P+8YeNU/4C9OZnvY7ulsp3kd+Nftdoj7Xgb2A1+b+RoyN8tSKX9KbSn5TK8GB6z/4q82nm1zPxk/m1Av85B7tc/l7qbyfdl55msdcZ0uOsJ7ZU/nbpRtJH0mdxHs7+ri6+cv6Y88icP2Z9/L7vWRfvqb1esv56EZwLDkHnhIJf9ETwaHJPgP9ifFyNzw74OY8809Afrf3+Q39XopdzlMrsN/PcGfBPR28/8Dr62077tDKutQZvUK6N8f0D4/oMsEXBn/gUOtFPa/wtpP9dfc94P5S8lfTH1fg5Tfmc590fOeAbRd5R9FOh/mww8Qbn4+9p48ft8H4eP4f6zXM+4vvO0n/I39K+rDk+PrIfu0V6oPyMq4cZHzK+jsy+J+eQ8VfQ7x30N0f9vfFRyv5M/ibscSx8Y6UHqtcs62V4X5Sf9UPWDVlHPEHfv+J3pHH+KXAlunXib4W3KTly3nUf/T5T6E/pP7ezr47abU/zxdPGj22sL56llwOMbxfB15b97Zb5lf01Vv8c7dFYOxwOdtX+B+K7Hr7rkH+5+kV/W/xw78jPeq0feDu9LIM357nX69ePFPwl6/C7GLwArK/+t8b35zLvZr4n/0b0+wV5Diqhl/UhfnPel/PA7vJ3wtcMdBrQ/7eJl6C/avQ2B6yJzi/wXUL/E9nHqejNw3fOQYrnHzXRqwvPuEI8xlL4nqO3TtJt2NFS8o+ml83Vfxv+7tI9wF3AOuxz95w/4fcQcmyQ81h0W4DNwYX4W0Ce18GLwUdLZdiUHuP3ix/wcPRmsruq5DmV/ewgfbDx+n522Z8eF6tfB/+9pKvi/3b836z9WqH/pPa7Ef4jlX+APuqBJ6r/HfyV0O0Xf6f0wjKoOBQcmvOfUhk+pnzRz3AE/Cutz3Zk9wu1z93mte7atYfyf9HPptp3Gvw1tUf8LodIj0G3GzkzHg4H90TnFfJU1d9/pZ9N1DuI/q+XHof+zuSt5nvivt5E/3j5/5CjO36z/tg6cSXoNVXuB+nMS5mnMj9VJmf8QTm33cN4Hf/QEdblicMpxt9szz7GK1cF/1/K/xv9N8kxEJ1K7KRTGVScRs/3SD+gXNbDWSffa/2Y9fJA/pvvyP0Hen3gn4Cv1sr1Vu9+5S80H3wLXgLOJH8Dcsf/PQUfV8qfafzpa/ypT6+Pxf/BHk9J3AR5pqF/XOIGs64h9+XqryTPkfJr4f/gUhneazwby+7+YY9/4vcWem2VcyF8JE5mhPTW8OU8eRfyxR52B4v+wwn4W43v0eB4+OrCdwI4VPlvpfuZX84Ef0HnxpxjkmsOPu+Ct3bmf3Y9IfEW2vsS+XPxe2zWm+gfmPku7Rd+6S/7mwX0F3/iGdln0e9X6L+rfVbmPFb9FuhVk/+A+keqfze89eTvKH+t9rnM+D3e9yukX8X/Av2htvyXpK8j7xj2vIbdnpnxin19kfhZfN+Z9TH8w/T3etphCj2vi/8r68VSGZ5Djvhxhyf+T/5sfJ5O/nn618vgfHAz/L/JHuLfmZn+BN8/0pXk3+37a/Cfxh5+p+caxoEP8DdIvSPVawPfUdLz6CvnSjlvWq59asP3VPzb6Lya8z721QOsip9G6t9v3Jio/Inqz2C/z2uPEfj5CZ3V0q/T73X4yzhzQtYD9Lcu5xb0uwqeTxL/oN7f7OBH9acZ328073eWPkL9J9nVFO01hP4uwN9N5L4WnAvmfKoa/W0Kjqaf+OHeo5+3Et9J//vQU+JjExd7KPtKfOyB9DeFXNmHfUq+F8lfE72+vt8G5vwu53Z7K5d48Q70+3j8qtI3sK8OiYtTr7lx7in81cbXXvjvQ49Pore77zWVayh/kPprfU+879XKvxt/HPo5L/kenzfLfxOdz0pleH7mC/Z5ZGF90DPjrfx5xpcGxomh5H86cZo5v0Yn7ToIvTuUa4qf7B//iP+SvTQg1xLp39C/Df1bwAHwfU//v7Lb8ex2f+n4+4YZ16ZK/1s/WUqfn7Hv8fj+WnoQ/r6mr5zT/UZPD+f8Tn8bw06P1P6X+X4Ae34P3n2lb9Y/PoMv42vG27TXzfQePRX1k/inm+gjcVCJf1pt/RA/bPyv7xf8JdlnDKWHfon/xu+uvi+Sjv9vX3rZLPO+dqxDP//4/pf2P0E7TJK/TdadsXv8bQj/YOv+xFdUw8fG5NtbvdNz/iVdo1SGA3LvwryZ+KcL0G+Y+w2+Z5wdmPhc/D2gXRPP/QL8V9Drxeh/if+F+G1N3kfk76z+w/IH0tfuiZvG79HaN+cEr4GfwN9b+1Ridw+S+/n4XeivfmFc/zPtgd4G+kN3clTKOR/8i/GzDf7fk96d/vrS66DEVyi3CP3Z7P5m41TiZRMfO8h8sq96E6WzPo8/Y63yfyU+PfH85HmJPPFj5nyugfL74jfj7mPSJ8i/X3vsSH9vy9+D/sbQXyfpaYnP1B9qGWdWSJ8jv6l2yTlL4lsS7/KM9Bfyd4t/jHw/0t8n2qkP/XXD7zJ41oDNyLNU/dO3/F/5Ek8X+d6Un3XqbuT/Nes7+P7GX+JgE/9aU3pY/CLa6xb0fzJu92Yn2SfEXu4mb/a1y/Dxvvzu4Qu9xuR8KesL6UczHuPjXencJ2qQuCMw94sq69dd0LsKv9l/5zy5Hfm/yb5ZfvxNSwt+p1L2vzlfxOdV+uuduX/GP5lz7+J5+Ib0Xx/9KxK3B+6GbvyvDyqX+PV94L8J3qbSOb9Iu3aC7/Gs9+nvQePBnNxjku6tXZokHtC6YAT4M3x3wTeZPFnXNqW/quxttvJ19aMu+Htbf9qXXjMPXZjzc/r5Qf2p+Nq3cH6TOL3MH+PI11O/6g3+zR7mwXce/Kfh+z+Jn0E/8VpZBzyqfRO/tSLnO/Tyg3R3+SdK74jeCvhzPhd/U/xPb2X9m/uR5FuRuBJ4foZ/EXxXSL+ddSr7eA+/s8C/6O+2xAPlXgg7bm/8eTPzUO5H6lejpXP+MVj5QeBAcBU6uTeVe1FTcj+gVIbd6DdxdC1zP0r71sXfX/LrJU6AfCfBv0I7bpt1n/wN6ff33IuMn1g/f4Dd12D388D4Iz7IvTxwB/T3U/9H48lg8rzNvm5EP/PxZuR/Dx9j1F/BLteCiWNrn/sY7Gd7+n5CubOle9JPD/BU9PdEfyy9JG78+uxP1a9u3Ng38e/s5D32NA693cF/4+dJ/J8M/9zMf/BvA39f48Mm+Ml48GziP+XvGv+FdPwhF2Z/R491E4+be5/0n3uvOac+P/d7498nf+Jc5rGvnK9+hP5G8Oa8dRS574C3g/m6lHW08vfS18aJfwx+9bKvyz3Di8kfv9Fz+JtOzsxXM/G3G7wXK/+3+gezy2uNP3/RQyfts5f02fAmjvIM/Fa37tlZ/tX6w9Xxx6if+9vH5XvBP7Q9+e5Sbk/0c78643/uWed+dfx6x5Or6N+bwd4ak69436IB+v0Td5LzFvSzPi/e375D/WPBxMdkHZf4mOyX+/ieffSO8u9N3Jn8QeivhbcYH/aF9Lv4mWW8zLnCM9I5XxilXi/wVnjn4PcF9plz2Nn0NYf829JbjdwLMt8+nfUBfk6GdzZ97of+eer3zrpOemXu20sPx/e59BP/4njjyaTEnUnvht/Ex6f/PYaPEfBv7vvB8Xfl3pz89O+j4Fuj3EjyvQl/RakMjs05PvsdkPsv+vX9+lPubzaCP37x1UX/+Jb/y1fW/Rfjb4n2+BpcCmZ9Ose82grdXcAuuQeh/Ea+V+D3EPlDwTMSl5Z79trvc+PjBvD0w+cP5K/t+8G+x/92HP6vMT6sBxOX9jb9fkT+48mT9wLOkq5F/7n/1EP5GvjbO+cKib+P/4X+n1e+LbxXS0+QbkOOWomHTpyH9EDll8PfXv7G+L/O/Pcp+FH8JvhLfGujnOeoPwv+nM+My/oCnTPV/5G9dwXzvkLm1/jrEifzdEk9+juXnC/JL/rHjrFu24J9HJVzPPhXyb/ROHUDuJYcFyeuQju9nPvD8D+Bv5y7Ds45FPk3RK8hfW6A/zbyJxbWB2+je7vyic/uBX/uE9TTDm8U/PtD4GuMj9/IvSr3cs2375PrFf3ly9wLM07l/Lyn7xuQ9w10WkrPj/8Bn7kHflvuR+V+AroHxH8vv5V6gwvnvBfSz3b4KYGNwcrxK8X/rV88g++72dedvh+I70PRX0+/u7DrJezvFvBh7XAC/g7KvXv6bYm/g6Nv+DdBL/vzY/lLjjY+nKr8g/EvG1e7gKMK8SA34uMe6b3Vfy3nM/C3zbhE/y3p4QXff845dfyI6ufeQ84DmuScXvvEnxv/blNybqd+Q/YzkF4nKL8H+vEPXpA44NyfwucQ6V3ItYfvtdHfD/515M892O3lb659sm7PPHZO/Avyz0jcqvzj8Z9135rcT0N/rvZrR7+LorfsnxJfwp+Qe7VT2FPuu+d+ee6VL4cv98t7s+f4tfoW/FtXkr8z/d2G/v74SzzNMDD+t7zzkPE59w5yDyHz4efWJ5+BOyW+hH2/ZX+Y88ecR+Z+YeLBEx9+Mpj48HeMr++Cb4PpvxuT64yMa/JHw/97xlf67oqvRwrzX+a7p+G5Oufh+DuLXRb9UVmXx3/YqMH/ypf7p7l3mvvR4aMD/bRPHJz1yrvkb629F7KDlllvaN+P2d/f+O0L/zcF/2Du8f2S+8fst5L9yGXkH2q+uVH7PpR+lftC9DNL/WfKoGLjEv5zzz/+FfzkvP1K9b9JPJD8JfBvpV7u515h3rkIHAa2l38r+XK+nPul9eh7NXrTyV3HOPSi/GrssZN+kvuh+2dfoz2m6lezpHOv8CT2MR/fTyaenn4W0Ue/UhkeRe7jtM9v8O4Pz+/Sd6h/t/I98Fu8P9oVHyPJ3xqspHz23w+QJ/HN2X/nvDb3L3Oem/Pb/5C3WeLMjRPnk+cU5V+R7o3fJTn/YF/xf3Yv+D/zfk3erZkpfQ75T9LelbTPL9J3qV8L/QXq107cQN6H4NfKu2qvwbOtcnmP6n3t9kbmlZyf4mdwzjel1+i/veH/0/hwMj3n/Gmxdt2UXmYar2bST85HE+d2Ve6BqJ99ed49+MH4k/15/Kvxp8a/ulXhfDDngjkn7Jn797mXpfyd6HdFf5lxaXN6a6v9N0Cntf6zJb19h5+H1W+Z8Tf+bPR/kp9438T/vio/8b8foPevnJezx9U5B0Uv9zdynyP3NxJPdi29z5K+LO/50E/rUhkmXiHxQ80Sn5P4CXAFfQ8xX+d9oFX46Yx+9t0DCn6vxMe/jv6h5t11+Hw69/+k76KHRtJT815U/Dna8wCwJvtPPFnizJrTY86REn97hHpL0Un87bXq7y0/50IZn3+A71H2UAW+V+TflPjbUhnWL7y/kn1Y3kd5XLnEVzQhZ96TOkR/mgj/ijKouBFcEP984uDV3017JL7ioNiH+fRU9v0qe/4q93q0/0hyPqF+4kfWGD++hGdI4jfhz7sWv5NrifxLE//CPnqyj1HKfUve3OvI/fC8x5R7HlXwvSG4MfvcI/6Bwv3fOoX7vzXhvQX8Ev467OMJ4/UY4/eb8Z/n3QH8dc698egH/4mPyvn5aOuZHrkXWni/Mv7PxfQ3qAwqXgAn4nOfnI+QM+2xHbkOod+8X5L3rbaGvyF6F8C7AByeeSLxuPBmPpuUdyHYXwv8J47xlNyPy/zt+ybxQ9PLUXkfwXjejB1tI534yZ+NLxvZJ1woPRP/h7O78fCPMB/VRudh+KaCd1j/HIr/S/BXO35X+tmXvK3hWwL/yXmviXwz2V0v49KNxo/4v5bj71bwO3zcXCrD6uwr8Uut4t9KP8Ff4hLG5VwP/wvZ0zr2tSG5E7/9Onz12ME76HaC5wp0Psz9dOVzP6ctvqeT+ybzT+IDXlB/Dvy5P1q3sP/Iej/xxNl/1NAfEzd0at4vSBxIwW/0L/gS75D7dtHn+tw3THxF4hOyvwYfRb9U8IfEX5L1ZfpB3rNZD9+d8fdJr6PPfRKnJP8b/J+Lvw99v4x++tL3h/Ccid4geHpl/Zx4DfwnvuMP8l+bc0jpg3N/kn128P136a/gK75XuVvGM/jzPlLeQ8r7SJvD/6B0n9xnUn57+Xl3I+9wxH/1i/Jr6D3vhhXfE+uj/Ku530ufz6s/tQwq1oK5F/U4eRLXmfPkxHd2jv+UvdRSftP0Q/gfzLsPvuce7Ez41unvP+sX34Lzsp40Xi0vleGwwvqoHfnm0dMAfA3K+OT74Zl/c59f/cTrZB9+KXzZj2e/04PcNeC7NO+R4Dfvl7SxfhkNf0f6vkz57KOqw392GVQ8Cu8a6WXqFc9r31fuPOm8/9kwcfjwxv90bN5HVq6H9n0KH7nn0DLzPTw/ZL2En6Plt8l9T/SfYr9Xw7Mw87/y91gPTc/9IPSv1z7r8dU492oSP5nz1fTvnPfmnRb8Pau/XIp++sm/4d8m71Uofwv5Mn7WtC7pAv9a5Warn/uguR/asXA/9PKcG6jfmL0Oj/8h/puca+DvicQPkC/3u4vv8+W9uTOyr1P+VPrZEv2MQycnPhO/d0k3pue80/Qy/ob4nnvmxfeM97Zenm7ebQ7fSvpLXFDKb5z3DPI+Dn5zXzD74zPVL86/LdXPPHyC75Vzz5p+toh/UH97E8w+L/673ubfvLPzIDnid44//DB4u2e+o5+865B3svJeYd7HqmO+y/uP++S9Au3WCf7EVSSuKvEViRfN+4EPao/EZ3/Enl4HR5RBRcf47/HXLnZVGN+6Gl9PUf8rcKR5LO/H5N2YxvST92PyLk/efyu+I/Tf95nwkfeZNpN/FvmuyblLqQxXk28L40PuiY7HzxHyJ8L/SNY9yjXJOygZt9F9Wbqf+q/Q5wGZ/7Vj3q+qm/irvEeQd1Tw/6r0ieo/hf972ccy7f191qdg3m+LP68hfuLvi38v7wmsVi73ymO/rdh/3rfJezd532at9joX/x2tY3L/oXhvfBV97JD4VOl74a+S+w3SXfD7o/XrztbzDyc+z7rofLCy8m/An/j0J+D7WjuOpc/m7K6q/jkx97jJV9/4PD33jKT7Jj6RvhfTY9P4YdE53/e8j3JB/KXap4S/c9hZ8T7rnvTdEL/D4b1B/S0T3+D7yfFTKV9P+/3/3rE8T/3s+7If/JN8U/Ddm/3knDLnkzlfzXlq3pXI/af8v0D+TyD/L7Ai7ztotz3hOS9xrZFX/7ww5y/K5Xx6MfwvxV+rXN7/2En77Aw2A49Vbih5OyQOL/4afL7FvvM+26LcwyB/3s/Pvjvv5/dN3Lf2jt87fvDsT/K+Rmd4zsx73fB3Zs/dwGPAhvIzr++F3/j78k5eY+XP0H+2k/7v/Sv0rsv+Mfewc36ddVGpDK9R/kntE/ubLT92uCbvu9JX3k97Me2t/LbwDVEv72I8m/jLgr+++H5fG+NN/FqjEsdMv7Wsl2qDNcHOuaeifwwpvFt5CPwflkHF93nHTjsl3mRK7uuie6DyPfF/WNZ75D9evU8Tp5t4qqyT8DU39yF8bwfPmfi6Uv/KfjZ2N7xgf8X7Et1zDom/f4wLT5P/88T/Kz8U3byfHj9e3k+fSB95f+Rb9PL+yFt5rzL3dJQroT8Yv/l/hn1yz7Dgf47fub368T/varxdxK4rGR/WK5fz3XON759KHxa94i/3byeYj0+BP+9ZRu7iOzV5dzXvreY91uwPdgTvAU/LOYz0F9nX0O+0xCmz38TP7pp3j9DNfizfu5F3w0J+znOzn8x9kfh/rqSPDvQzMuncI9A/cl5bjO/KemkCeBeY9zU+13/X+f47eAp8i9jfY+yvp3Te362e8ycw83XiT3M+nX1W7rfHX/Wt/NXa+aIyqNibHL2kfy2VYda3/dR/PPd64E+8fi3yx69YGb/xByV+ZLT1yoPqvZ/339SbH38r+u/ic3Dm0dwXhX+w/Oy/Eo//F70mLj/vpyWuJPc6Em+SOJMjfN8652Y535A/oQwqakp3iz7JPz//V6D9VuU9hvipE58K/+Z5v4i8z8KXd4xyb/M18t2f+zzK5d2z/L9LS/ot3pO4NfdL7Temg9mHZF/yMbxbaYdj0Is/N+97L8Xv6fITH573d/Pubt7RzPu7v9FHXfkjpWeQ8258TMg9VDB+oEbauz89bmp86kb/VeWPRjf7xfiJT7C/HQBmfF6Q9Qd95fwi8dzdc58P/h1znsQOH1Y/9zYWoZf3/kep39z4vFy9k/JuGf53pP8G6O8KJo65Q/YXuX+s/kr4i3aT+7+Zj55mH5X1v2r0m/+jaG5cOci6ZCW+bsn4hd4n7OnVnPtr3wGJd0d/Fnni/8y5fx/0VxfO/3N/JfdW6knn/fkluZ8Bf/yp8Z8+ID962I/+timVYfyOm/m+ATlnkP97+v1P3iXB14n0e1HeywPjT4v/7Cf6XZx4ZevrGeo/gn5N/GYflP3P3vBtpV8cZnxPnOLL7O8w/D0S/13GX/W/zL1R9e5J/KP+Hr9tC/01/tviei7rvJX4vge+7Nu7KX973ifRnteS+zbpd/KOAL4OQLd/4b3dnBvMy7uHvmc+yXv5uWffTbmz8T9K/X/yTkDuueW8u/C/YblfkvcEnsZf2/zPGvhz4jDgfU+9jOsZv8aUyvBu/eP6xGlqn4xLdbJeINdk/M81LrZI3E/OzZQ73fyS/WresztGfta38RflHeKsb19VP+ekic/JudCl1jvrtVuFcWY+efKOVfZHZ9L3Kvk3SD+O/nPQTCfvQvjzvmneOcn98PiLxqHzW95nUT/+pvih4nfaooRP8/4reUfD+NdP/f7Gu7yPl/fyEl+a+78d8ZX7v/l/vi7Kn6Wf98n/c+T+DrvqAFZn31ckTlG/nqkd/gZzDn0DfIkTy7x3TeZ342dH5fIO/fNZj8i/0bh2je/T4j+jz3+kX875Jv3UyjpIe6xHJ/FJWV9mXZnzz6wvryd3j8Sja6/cf19GH/k/p+L+PeeLOVfsT76cLxbf9yreA36IPvsk3l25gervi7/9wOL9wrx3mX1Z9lf5v81v4Ms7dT/hJ+dz6a/pJ3kP7tPEJ/r+NH3mnZNl8vNu2qfoNst7E/H/649twX+Bs7VD7qUV12275P4++828uZf0S5k/4Ps672yA7ymfdxd64zvvMsffVKF9p+sfVaTX5j0G3+flXqN0iT7yfyP5H5L4HfaXn/vPX+jfiwr3oWdo10bG7c/ZV94fm238P9Y4NCdxDvST+O4NtNvQwj2ez9jXKYX1/bfkm43/+Mvy3kreV0lcYR9yJ77wnUJ8X+L6Gkonvq8rfPlfj/zfR947WYTfbonPgfdq7duDvnqCp4PvsJPEHw8vleH0rLv1j/x/2nZ574Bc+f+0I9jLkWCttDt8Wc9eD96Hbu7n5f8b8z957dGZl/sf2iXxSHnvOPFsk607si5uY/xqB//H1j/5X8f8z+O58D+U94LwlfejT2JfiRsskacYP5j/fc3/suV+10/K5zzr2NzjKviTztG+lxTezU78Xt6PHALm/9juxEfx3vUS80EX+lqLfh90X8Nfl9wXZA/xH8afGP9hp8QFsttT1M//B+f8axf4Es94kHR9dpl37BrqT1XImf+nGKtfdSr8X0XznA/k3bXENyTegt5yT2Y0/neXvxm7vAg/M9lL7mc30/8H5pwAzPteH+d+VO434ifnQ9vkXQP0J+nviR/O+dMk/L+c+3DxT8U/Qc9Tc79H++X/Dx+y783/IB6dc07j3d/ky/8DvEa+5bk3S44tyZX9wWnG627gqYX3qPJ/NfmfoMyPU8Edtfe6vKOhXs7T99aejfD3h3beGn/5v4XEnY/KvS789WefB8B7VuIf0c/9wJyPXpJ9gPY517wxELzP+Bp//Mfo5h2y2PX76Oe+Xn/fB+Y8SvttYbx5Mn54MP8X1lP5uwvvgkxWP/fvct/uavNYS/k5V/7v/4qpn/8Xy320/H/gc/T9Ib4z/3yU9SuY+edQ+ntY+bwfMkV+4hYy/6wiz+HS7dG/Uf2MBzn/zv4x5zN5zyXvt3zBnnexP8x+NfvTttpt3/hPtXNH7ZP3O3PvPO93Nsn+uxA/mXjKxE9+zp4+A7em/w8Tn4af7Dvzv8GJR16W/2sFX1Q/49PG5DoanlfAMfC3ot/2+L8Z/28U7gfnf0SvUm579JvS77Tcc865DPyrKsil3pjcu8/+RPmcB2Zf9bdy17CX93xPHECLnN8m3kT+f/9vXv4q9tdOv3iMfvbP/XHy5X3s+Pni38v/mXwOf96/30h++nvuBWc8SP+vyP91Ra/kORV/Wf8Xx7fcrz/Y/NEOPAh8lj7/D+tyepF4nHXdefSWU/c/8I+hRCpJGuWDjKVCZtFgKBkrkoREpJQpQ+ZKIirKUMmYImRIxogyhEpRJHNESvGQpzJ+1/rdr7e1XOv33P/sde5zzp7OPuc61z57n+uNTcv+36/HNiXYqXIJ7t2wBJ+oX4Lda5fg1TuU4GL1n9QowQe2L8F12n+h/jL4d9ikBJdUgne7EtywXgl2SblOCc5QnrF5CU7fsgR7VSnBP3YswWPx9Zp+H5Lj+fISHISfPdWv9v+b+BuzGYiPJduW4L7kbFKrBO9vgG/tjlF/S8rwrqxegqfRx8EbleBUfFyxYQmOUD/U/5/j72r891Jfh/z1wbrgZfifT69/gMs2KMEd8XsUWLdiCfbbqQQHgHOMz8NblOA+9NyM/kfWLMETty7B88Bv8bu2QglOo8d1yoP034G886uW4C34G0LOW8jTXH1XfLRXv4y9LFb+Rnkj+Dc1/kvI2dF4TDCOuxu/D/A7EJ5P6Heu+seMw7d1S7Ax+5qkXzPttysvwVPVfwLflsZje/VNlT9lr+eylz7085HyKeTvCs6jh+HG5yjt24NXVkMH/rX6bUr/J6B/Hf62UH+/cd3ffJ2Gfn9436XXy5Q/138o/fyHXifS93/IfapyFXq7QfuJmYf097j6G9XPUj8Kf/+x7uxu3Foa39fQbad9F+0bkf8W/N4MDgNn61cHf1PZxyP+LzOe1c3XvdF/qrwER6tfg+9L0buRncxSfpc8TfV7HZ/Xq9/FfNkeH9civ7P2E/x/Jnrj4Y/93WjcWmk/BD+XaN+QPKeje7D679H/mD0dTi8fgzep3wH/D8E3gt5vYR8Xqz+D/obg4y31U7RfCr6q/gf1l9DvC8rr6bmMfTdhH7GHw8D94XtC8wbknK68ATsZSn/3KB+Azy/R2wi9jcEn6Odx8q/T/xt096P/BfBspLwNfq7Exzj8V9buoTwvyktwN/gnkv9+8+si9Q+A39HvHuhvBv+xxmN//J1Evj+0G6++s/796fE27UYV9BO93E/+k/T/E75z8POw9k+wv0etF69tVYIvg+/oV8XzLfP7Ks+hV+hnW3wNxc+z+tWjr2r4X0i/H2m/UH1fz4sv6OVrctTE7zD9tqLvh/BxRvYHnm+tzIPjlQ/Fx97Gtxr+Di2Bsl/gOxB/ldBfhe4A+E9T39L/Y+B9ln4beJ69Zt362PPga/Ido/9Ucnyv32D1ozw/R+PzCPrup90D/j9f/7n4XKp/1qtx6u/A9wRwgPHaGn9bgQ/Rx5bs4SB6/Y18v4MTjNeX5LjV+MzX/zX//6n/d/Blf3AMeoPtT24Ad8Tf5extLDvsDe8Y8m8Mz4VgT/zcrvw0+9kY/WfKS3Ao/Yy2Puc5Wnx+Poz+yeBZ6J6v/2HkybqxCv0D0M/+MvvKscrZX26jffaR79DX+eg/ovw4fX9Kv9eZXzUK49aOnjJ+jfG9HzhafWVy/mE/UZGddlOe0PDf/HTH558N/s3fYPvDUfT4Djhc/d7oPgrOR38Cfe1mXWwE7gr+hv41+uU9Y4lxzPvG2+zlHXB29rnwL9b/Xf2voee25eix/7PznLc+jDJ+Izx/NwSvBg+mh2H6b2ydn63cHv83sY86sVPj+H74V/8cfloZt1baD6b3d/H9o3614P+InF21X0d/K9R3xW9/43sxuNT4LIP/R3wcAU8F9vkC/G3w1ZF+h6jvoH8LfD2l/XvqX7d+fQ9eAA6mv8b09lg5PozDTvBtZb5sSv4aygfD/6P+ef+6CT+7mh9Ljfs38H7IHuZp/7P1+DZyjQAXq++Cz+zz7qafT9CvyF5+xNeGylXpd6R9xwhwOHgc/J8Zr63syz5RPs34/Zr3QnwcS44h+JjkuTYRnG5852V/YH5eCs9c5S/V32G+Ns+6Rs/n4v9s5XP0f4L9jsX/i/R/tf4/GP/V+r+L32P062N+LMJ/Q+X4B+Iv+Brdiugeht7P/h+Y/apx2Zz9HlYCZYOMf/Zr2cfleZbn2Azyr0DnYvo50Pi+qP3e6p/Sbw78Y9QPzf4FnQvwtyj7A/roZxz31b8Le3sM3krkn2H8J2l/B34ao1c3+0v6bZ3nPXv+Z/3ET2f87aR9J/Sjj9/JF73Uha8Lu76OHjvAf6v1YHP2th7fR2v/FPr30ediel6p3DPvE3nPop9V+Dkafw+hO628BC9E9xDtT4XvA/QOIW9D/R9lV4+Aa/R/IO9X2X/pl/fVvH8sZd/xD32lfCk8H2W/TG+vaJf5MQX+Z+DN+vSYcch6dyR8d2k/Tflc60EvsD94G/5O0n83dH+A/7P/4Z8K/ev1v0K5mvpexukQ5Q7Wy2fJXYeephm3k437InxU8H8P+h8d/wl+njXuVeg/7z+XwJt5OF3/161ro8mxPP4T4309/T+T93r/vwz/RfYzLxifQ9A/Az+rrcf3gq3Z7+HlJVifvmvhr57ylfR3mvbxn/5Xv/no/06+9vTTHH83k6+W59PFntNXGPcf4Dlb/wbwv5v5Cv8Q60cn8tSmr1rw53mxDTzvwPuo/repv5h8K+nxUf3f3hgf5vkg9bfgp+c2/5Yrcr4Nf7Xa/26f94BlWUfx9Sb6r8PfPvNf/+w/tlK/N/xz6b+2+v3Z70D9TzNeH5n/w8nxFTs4AP455SW4GH+P0Ofv6NVSv0L9Jug/Wfff7drAd4r+O7Hn1ubFy9mHKG+ivCv8z9PHOuWrlEcqL9c+75fVYxfkb0a+c/B3vPeCm7RbrX8j9Tvbj632njQaHG9ex79eHXyDnE+iNxO8Gz+t8fsZexisnH1AhcJ+YJfYM7zR27X4O4T+uvr/Uf12Vb9f9vvgA/jpr34deV7H39/w1MTf+fh5nT0cgp8e5SV4MrtZax2sBS5kr1eTb1/t85wdgF72x53xlf3x2fjL+LYhV3/tMt5d4zeknxH4fTfPb/6A2fqNN54ryPmD5/UAcBWYdfwD9nIZvhcrX6v/cdanMuvTaHy1oL/byfcqee/D74Pxb9N/NXzlfTzv4Xkv3UN5JHqbwd/NfL5a/Y300LPw/j3G+OX9e0f6+Un/+vr3oefXsj+1f1il3UvgvfHrwf+e/n3Bmuj/zD6amWdN6XEv9BeStyN9T0LvHPKNNx67k+st/B+HzxON9zf0+5HxyfPrXvXZr8SfmvV7X3jXoj+RvZ0AX/Y78bvuQd4+5PzUOvAefQwF36K/m8j3JtgTfMm6PBK+h/VrhI/HyD+C/MvBv9nZf7VrQV/v4e8C4/MKeY+E/0D1D8D7DPk3UD+ZnMPg/Y58Z9HH5/TYGZ5n4G+svjE99sg+izz3Kq+M31/7T8zHXvYr68jxDf5Han8W/dbA11PsKf6Fs/1/Arn+1m+08kj2MDj7QeVrjO/psR/yHobfPF8qWD/ix33UPN3T+E4Jffiq0OPnhfPLnFe+rnwi/Wefeyd+m2c9U5/315ft014Bn2Lf4/J+mfVPuXvmg//j/78f/t3R+9F4vERvc+l1mzwHtN8+/mnlrumP//gnhhT8Ex2UD8l8RK8a+X43H7qCLeD/Dj/Xaf+r8dsDvBb93ubF7/Tak/xPoBe/RBX18U9Mxt957KEB/o/R/0Tje4/+r5Jj2+gj+7zC+VrO1Y7Q/3H2UpH95Bx2kfqB9tXjcv5Ans74XwdfPfUfon8RORqxt8n420O/nI/WYy+t6HOJ8nPa/QTv0fiZrnyp8sb4rgr/CvJMUb+7+TnTelbffvht9A6wvzwIfN38XYf/GvgvNx45L875cA/1TdnfaP1eUb8Qv2/6/0Ttn4FvL/r8zv+Ncs6pf2fjv5Z8Iwvrw+PGZzr7uYG8X6j/nn2MyPkHPNlPrlT/dc6b8p6W+cBuTlQ+RP3J2T/DM1L/a8jxlfadlbvpN5V9bF5egrvFbwdPB+3+oq9f8VumfLx+j7CfMvhmo/eH9lNy/m48V1mnLsLndHhuJ3/WjecK60kldnOG8s72CUPpt7j/zb73M/AC43KfcT4InqnqB6H/Fb5XGv9t8XcK/d9OPzsY75zP7Wy8dwEbgvG73Ez/D8M3HD95z96Ffr71f13yVqXvIeytHL7DrT8vqu8Df953z4Un/ve8/66kp6If8kb89lJ+kB4epJ8Ltd8L/RvxvZf6d9SPQDfn/QvwU8f6cAh4v/XhXe131X/nrHv+74b/7M+yL7s856rZn+BrtvZ/G+e27PEech+l357Zp6dMP03yXsyuNsz7N7oXxg9AT8u1+yr2St7IPy7niyXwj9/gSf/nfCBxGTnPSrzGrcpD0P+efuK/XaS+B/pjjUs1+Grjv7Jy4iNawzeT/j5jX/FnbY7OG8o5N068SuJYco78tPIK5ewD78XfQfAfCK72ftIw57PmV2d2WNP87oj+5Tl/ABd53zmTnQxnT5PA0/NeQR+Xm+9r4bua/PXI3xLd+FdOMP+uhGdZCZTVtv+4g7wPwt8QvqJfJ/6ZM+KPNR4/FZ6fFWMv+OsBds/7F/1Mip8Tf6PVP4XuIXlv1//9wvnGrfh5ubA/HKvfh+XkNh/2KayPXdDfWrvMo2K8WHH/Us16lfUs61zDvL/Qz3T85DncinxD1I/Uv0PGkz1Pxd8b+DoG/i55PpL/16zf9hk3wHcgfgfrvwP6tfCzGbs7N+936l/Lfp69Li3E2V2c8wr67mDczlfO+f0e3tc64eMVeLbEzwHoHZhzocwv+A9jH3vD85Hyc/hYFb9V4oLo80b4z/A8i19wUs7RjE+eH3Pp/Tf0W5G/Vxl6YObH8ujL+P+t/1nWgW2N7wL6uDPnNNpl//mm9l9m3UO3Cf5mqj/JupB9ZvaXJxi/tWB97U4tL8Hi/qs3Ohvg72tytQSrWQdmFs4jsn7mPDXr507wJ94374+z4K/tffZW77fHgn/Erwp/4pVuwPdF+l9v/cp54a3GJ+vbT/TxG/3W8HxsD19H4x//eyN6yvOnU0Hui+CZAf/qxFvgayL5dsr+oOA/7EbPVfP+qP8V6ifD31f/NeovhHdjsDp9/oC/duAvYCP6P48ea8F/EPx3Fs77cv7XzjzL+V/iWZuhm3jXxBc+qX0t9Nobr1PoZ+/EHZSX4FHm97na98r5AHgO+B0+K2g/hR6bmS9vkWccftbjYwn69fXvaX4caZ1axN6mqT/I+vg5Pbxo/lfAd84Xfo6/n16yv6htPq0Dp9jP9tRuV/1v0H93fPZlBw+lTB/703fiu4aS/z85F4Y/6+/X5H0+fvXyErwMfw/RZwV6+9n8fNP4/Kn/aPwNxG/P7AML8fT3gTfk/Qx/0/C1V+xO/Wz4msV/T457zbdJ4Gn4vhe9vB9cQq5G6lvQW96vDjX/24CHgcvz/kPeWzwfhrGD1vrv4f2vd+KwyfEBfVxOfwPAK8BZ5PgLu9PJeTL5W8B/k/rLwF/Mx/3pt7d+18ZP5P+u+p9Av8ei9zQ51uNvU/JMwHcl5Zz37cUud8XXg/RXDv+38W+Do6y/9+An8e8d9Uv8e0fj8yX+PtH+K+VL0XtD+xf1fwFcVF6Cm1ify9nL38ZrP/jvyLmRfrUTV0tPF5iva8zj1ezlJvKdlP0hfHWU+7CPeomPpd83Eo+Iv23Qe64Q//C8/omreV/75rGD7O/UV8R/H/TOxv8fOd9Sn/O4nL91MC7d8pxFZxL8Z0Zu+vuWPh5KfJ33guOzTnsPbYle2xIouw/dK7U7KfGwxrOP9eNIcLT+j3te/gaewd42g+8y4/mUdbgT2M747EKft+G3G/pn5PzVeDWmx3fobYn2x8RvZh7nuTINbKf/mrxf0n/iq5+l/0Ppd8Pwnfgw+n8fzPvVe/r3NN+60Mslyi/i9yT2XZncf1qffsp6j59X0c9+NfvTxMskfuaDwvnatfBdBw4El+Hv7hIoO4Wc0Wf8SyvQX6qcc5AD8bcN/TbBx8/ot9aue/bN8NQg9476VzK+b2q/HTm3Kf//tw+e3+I/1H6kdltY5+4i/285X01cJP13Yx/3l0DZx4m/Uj5W+0fQO1X9iYknSRwye3wt+VDq76DfbdnFg9bN4nnhzPjHs3+DZxB972S89lTflR0lnqtL4oPocWb8s+bH554Hy/XbGd7/JF7b/Dtbv2nwPkc/LYznQ+bPTvCsj38W/o3Vn0EfnYzPfO2S15F8j2/V35n48dCNPw6f78e/y77eUj5c+/sy/5WL+QXx485E71T4e7GP28k3Bv5nPL9n08c51quJ9peP4PcOeFskvob+G7C3K+i/GNf5mf45P4l/MvkwVRIfwH4uQv+/6CxAZxb9xD+c+XpVCfxzvlRV/Rz6OVq7zfCfeJ+8txbfZ1/yf/YXo3L+i9/ryHsjmPfD/uqf8/+J8E00/9aQ/3Prx3bhh30lH65C8jWUH9VuIf0m/idxP8kHiH9pu+STqY8/8Uj6uco4F+NfV7Gf7bS/UP2v8B2J/p15fwOTJ7kAPA4/reP3oZ9d4E8+bN4zp5vvyY/tzd7neU7X1O5t41GZPj8HM445D1iC3j7o75x4X/XL/H+F8aqrf0X8Zd/fMP4g8izB30GFuNXEsQ4MXvr6Gb2cxz1Lf3muJe+omI/Ul30MSfwnO8j7/NrkO/j/cvzfh7+c83crL8H40/J+n/frBnnO4CP+6hX0v0D7xAkmvmkx+s+jm/PInD9+Yd0vxklPgm945E68hv/rwr+9+uSTnQp/1peq+DlY++e0a6L+TPR2KOSbJU64L7s5D7wK/jmF99P7jUf87JmP+2l/T87Z4J/9P+IJhuMn8UmbKS+GN/6ROYk3tD5P9Zyqj97F+JnEPvqyj8rW7+74aJv9uvaT4T0WPzVDH593aZf836+M76ngUrBu9svm+TP22fUSb04/Oye+iR7reP5XgL+65+dfeb9U/pZ+xuqedekg5ZyXnAR/3tuuzHmw8Z+l3wB6PSznWxk/eu2E7vHkSH7VL/ol/irxWIm/apt4Qu1z/nN11kfr+QJ4blcep38F7SvmnMf8vCT+bHZRRt656ivip4bxr2xcZtD/kfBVYA85Fx5vPud8eJ7yU2B3sD96ie9srn/iO/9kP9l/Jp438YfZf7ZO3hX9ZH05Un3OU+qx67rgPPb1Jnlugbc9frJ/7+H/CfQVv23OIU+iv3novwN/N+PzgH1P18QX47c7fGvwUT/nY4nfhT9x7YkHzL0D28P/Uc7b4FvCXn5PvmvBXxL/0VJ4jjLen9HzAPLN1C7+4DfMq/iLs9+qRl9VwKrgffSR895f6CnnwEehn3jNl5KXRt+J36ytfzE/83f6OV2/PE9yHnpV5g+5m8WvD9+cnA/FP6L9J+Rapr4B+2luHdgQvAvd5LtuoX3yYKtn/2HdnA8uAZvmucL+kh+xofWiMTw7ms/J02mLfvJ0Etf7Q/aRyiPImzy9avR9of4jcx6o30/xm8fPwb5uS/xI8lvpK/nmv9k3XQS+DTaDvwt5TwT742dH41fLelAbrAMORmcWezuAHY5Rvpn+J2s/BN5HlOvi9/qc+6C3wHxYn/lLXy9n3LQ/jj1sSf6Z8L9ayMOtSX9Nk48Sf1X2d/S5yP/bJY9J/RJynlLYh2f/vdr/9xifSsl70r+l9XK++t6eM42SP5JzPeXco5Hz41vJd0z25eUlmP3DptrnXph74vcGp1vv2uk3Cx/l9FRRv6vo9WL4dtF+XM4VtPsG/BLfD2h/SOKW4FmMfj/8D9B+y/hR1F+Gn8RL9ae/qfTRzb7sXPNsM3gSpzaN3SVvNvmETeCbYn2vlftLsl7Fn+/98ulC3nXyF7/F35/KN+M/69HCvF9kPwT/PujvSP6l6q+E/zf9Z5TAP37G+BevQu8E82Wx/4vnIfHXnUL/j6Kb/dNVyZtKnFvyf7Qbm7iqnGvCEz/9k/6fgt9z0B/KPld4njwP/zjt876xtfm8tf9rKue+iuQnJS9pN/wmP6keeo3w2RCde/S/3vqc59MNynk+DYC3qnJ9eFYof6m+GB+zNvlviR/VLv6UivRzO3qjwPXk7Ie/7NdyX0biaTeMfzfnD/S+VH01+LdlvxuD5WDOk880LxK/dwD+dlL/Nf5n0M+a+PWMf2N0F5IvcW09yP86/veNP1z/3KMw0/jHX9mWHhuT71r76bPVV8XHWvq4IPfqoHe+8pfKz2Rd0S95GqMSP4Wf5J81oI/E7zex/k7H//Psqbf+OY/YLPsSdM5N/rj65K/HX5X4uWWed4viX8pzMPn56F+VOMXEpdBPH+vbUbnPIe/X9HhM4l/iz8HHxskPSv5XObrky/n7B2X663cHedomfoG+ZkSv+E3+3XL4so96Kc+/+Nf9H7uKncW+qnv+VAVnw79L7ger/2/+I0/O41orxw+T89icv35Krofh+QUfRyQO0f+xu3Pij0HvLXIv0W40/bRAP+fn49FJPNN48l+W/GT4ViROkn7nq68Nz6bGbdP45+Grn3Nz7e/Sf7p1JedfLylfkngReMvY2+HwJR/63uRtK6+AJ/nJlYz/jvzXm5NzNX09SK6HCvELQ9Afa984BhzgeVVV/d7wfZx8dPQbJT7KfFlh33tf4vka/Jte4ijCx0tg4ufjl08cfeLnc39F7qvI/RVvqP+l8P56M331VH6W3SZf/CT9J9Bf/Jk5n35av+SfZ/29njy74uMY9Huo/xsfvch1dOIH9fsqcem5V0x9nxIoq4rvnKePy3qW+GX9k/8WPB0K9028XxjfA+h1pXW8uL9IXmniPhIPk/iPa+D/TP9vwPHqR+EvfsAJmV/ovK8+eewPqD8r55/Gpy34ZuLI428pL8G8rzVDJ+fLufevuna3259Xp49myrknYNPsL3JeQV+Hxl+hXfI2WxbuL5ubeHv9i/7WvC/n/fhy++8vEl8KRg+5fy73zo2l/2kF/8vPBT9v/DFZL69B/zP9c/9NzjtOha8yPSb+4nftkw+dPOnE7yU+fQH9JE498em5f7K6fcQ6/LSB5272Mw6cA98P+G8a/xE7LeanDIw/Hd4VeW83/lv7vz7YKfcHJH8Bv3ugN4se4ydtnfx1fHyPfvwnyTf+tZC/MZP974W/ZuUl+GLiEnK+E78VfC1y/pD5V8gHfAScDPak98Rb5h6ax+G/m313t688HMx56Hz79Y76v6dcR/+2xuVw8Agw8U2t4X9VvzbKOa86gTwDy0twAjrJL00eYM69cl/JxII/vZi/l/fjJ9SfTw9nobsnvMXn8jT9vgJ/pI/+4E/gqewo+VTJQ0heVfIQkv9SjNMapf7DnId7fp6eex8K9jEwfrL0J2/i4Y6E/wTtFyS/w7qY9aw5Oedn/JPXqb4MbKA+/s3kv/5Mn/Fv3pm4WrB34b7apvSb+/DOgmcYOntZr+dkXJS3I3+75MviO+e4Ob/tH/zJAwcTXzKO/Gdat8cq35c8G/iyX8p9Mnl+f2I+76DdRPbbW/vh8ecV4pjeJO9FWffwFb/kL+Sf6v9z/X8bOrnv8cfEaeb8TTnnj7m/LPf+HZv8Bfjjv4/fPn783eH5UfvkbeW8rUruB9HuTPVXGKc/4f+e33Mp/Z5HP5vmvDjv9/AmPncZ+U5RvkA598t1gb9v3m+Sp5j9M320sn/c2jw6Eb7O6H9g3YmfaQH7in/pTPLkPaT4/pH95Vj0ss/M/jLx7Im/ynqb9Tnn98X8nIUF/1DuL4ufaKXxzT2c68tLsAl+D1R/lPa5b3EefGNzf1byvwr0s56Oyf1W5Fpu/R4Pf+4rSdxq4lizvvcz3ueDF3vuJH+3Erq5R/Ju/CWeLX6H4ntv4hM6aL9Gu+7kPF19u8L5+bvkaoK/or8zftDkJ0wsgbIhYOLXz6L3JuyrivVtjfVtnXaTyD0BHFSIw16e/XTmET5/IP938N8Ivp1znOw34TtS+RT9JoIvmN81s69SPpl8a+lvSp6r8fckP0d5ONgSv5+Wl2A/+M4Hj8NH4g+eYQ9fs6OnlfeF/0J6iJ/qbjD+qbqee/XA6jnXAJMvkTyK5E3k/rnkbSSPoxE95hzwYPN5Lvn6JR8Q/7ua36/D+xi7OQD+OoX3g7wv5H7w+P2vSz4qPSced43zltzPdxfY2LzdJ+3p9VD8Lk+cOLnbqR+Q/AP1n3iefQqOYS8drHuJx+2of+4ry/v/HvT1IzgR7Ktf8iv2Js8u8XuBY+hjF/p/Ht155Hor84HcydOfWY4//Dyu3CDnxzn/C34w+b2J7yne39I9+cjxX3juJV9wgvJP8O+vX4XMr8I5T56ruV/3r83/3f999Ornfco60JN+77Ue9rKuNgVrk3sOfO+AdZInWV6Cnya+yTyonHvcM/7q81xsbH4lfuVr+qnGrnPPQvOcPyTfDr7EXd6ufmfyfx5908/b8LRDv1/2z/h/NvFB7Cfn6jlnb0q/8Qs2wG/RPziLPFUyT5RPy/ljzgfxk/mX+5KeYm+/s8/t2OGVxqeB/fw24Dx6XkX+xLdXhD/zKf60EfFrGPd9rJNtyHs+ern/IHl2iV/O/aOH0n/uIY3/e6j5dCPYgz1tRd85N65GX1Pir09+q+dJn+Rr4SPPkcSDVSrEhaX/kNxHTX9zlNvnnBRMXvaHxjv52cehd6L6JuDf8ScmPtxzI/dB5f6n+KNyP1nuS42/Kvv+sYnLZx9bZb+Cn8zz08tL8GH1yb/P/ip5+MmviX+3Ve5BSf4o+3nYuF8ObsR+ch9x+/h/6SHzuhL8OXdPfFrx/D3+hvgh8p2M+COuRe8aMP6tD8iX+1xrgk3A5FNuCO6gfV/62Cjvi+wneUXDPB+SX7TMvGnJPqvBl/sVrsn9X3lPUZ4Bf767EP9s7hnO9xdyv1Dx/fEy5S3Nr3nm+ang8/Swu3yO3O9dWTnnf98W4sdzj0Xix1fk/Fr75Os8Rr7q5sO0nIsqvwXP7jm/0n838NrkYRvXPeHNeW7yMZInk3jm5CcsyP2riavQ/q5Cfkrin7vnfBQ/6/B/XPKnwKnmT74fk/yEi/F3E3x/Ffyzl7Ob+CXjrx2o/3nJZ8z3KJRzrvpm7teD77jkR1l3TqfXDsrHx5+d8xflleUlmPulytlr1q2qyUdMPDf7y70CL+ceZv07sa+/s46zn1/pN3kg68Gcx8SfcB29fUT/+X7ENcYv/oHcP5T7KHL/0NnkGk6ufmBT/ROvXyv3tyhPSHyC+VAj9yDQR+5Le8K6cT65++m/S/Ircz86vi5IHB754h85VL/4R+IveYi+E8c/x/h9GP964Xw94577l4vx9XsZp8TZJy4mcQ6Jj8n+ZZPsG43XE9bbSVm/0M+9Wh/Aeyd8eT40yT1r8Od58YP1tKt9zIv6NaHP3FeV+6uS39oy+QO5v4kcW5k3Q/BXg9xNtZsAJi7jL/hzP3LiL3Jfws2JnwRzn3qbxP3rf1bi7vyf+xZXZT9vnd/ceB+feGXzJ8/nGfrl/tDYT75r8xc5c1/Ihf7POUXOQ3aCP36cnvEfaN859+skHha95IfunvjO5JvkHlT85fsNs8h1WPwWYPIFB8B/DT6K3w9JPs6x8MxW/rjgn+tD7nxnoA3+joC/Mb4eNw6/J34hz4fc+5k4dvqOPcfOn1KOvVfy/K5JD2+Z/13yPDVfe8Abv1Hu/9xNv+QrJl69XuJD9F/juX0r+8z9WbPxVW5f/3be38h7vf+74zvnRTkfSrzR0thBwT+4ugTKFoItwXynZJT9eV/83U0vub8096NcSr6BOW82Ppuw/7zXFN931uA731n4RTn3AxyBj4mZ1+jkntSLjOsq8uY7BRXQz32SNdFflnOT2J/6o8mRfe0y9R9bb2+w/h6f/JDcf83eEw+Re5duoZ9h9PYX/L8mPx7/+d7WeeQaTF/5/tYq9pB7NfuaJ7lvs/h9hqsST6j/ZPzk3DLnmDm/HKLcmVxfwPcHfP3w2xf8MnH+8Cd+bSX4PZj4tW3xvSs56imfbXwXlUDZpfj40PzagD4Svz1AeX7uqdL/1dxnWPBbZ737Jt+zAe8kd/R7FHzJE70r9yfCn/sKOiQ+llz5ftT60Fc/LPrX/2P6uov+5rGHxfidr35u/MD0M1N97pOcwk7Gx5+S+z/Qzz3q+V7L59odmuciPZ6F/9y/db1x2Rb95BXmPuP29HVM8snhGab/F/Avhvc2esz9RXsoJ35wX/zm/aMc3U3wUVxPJ1gv5qu/gVyHZ/2mn/LE/2vXIfnY6OW7Pm3pKfcDJW79i9yT6P/cL5DvHeQ7CJsoJ3/2VnKsBxPn9CT6OS/J+UnuP819qD+x9188Z85Qnp3zCHab+67nKPdBbxC+PkQ33ym6xfr3Nnu4hr5yHnh5eQnmXt183yz3wCW/cofE07LnjZWPT3x4YT3JevNp7mFgt5OMU+49fBi+n/EzA72e+uX7Il1zPlPwzyS+P/mu/cif843kw+b+2xbZf+S5prwg+Z05z9a/Oj4Xar9z7qtK/i79tjcuz+W8hv4vzf2y3hu2897TBtwU/83QfzTxhfA3Ly/BNfjvhb/cJ3184ojoP/ek5d6P+wr3NeQeh++U56pfXgL/xKXn3ufm+HtDv+b2rcX4oFPYY7fkAYGV8J97zfbDd9aH/9LvJvD2Vv4b/mH4WALPQPWXwDMT/4PMm07GbbL5cyT+L8NPviPXF/74l3Mvau5DfS155Mknwd8v7DJxwjl/6VgC/3zn5SXlcfH3+z/3zxW/zzjJ+pZ1LfHjbZK/6/3zrvISfFK5J/m2Sd68da94v1jy1hIXUcxfy3tlvpdXfL9M/ETiai43fomvSfzdqPgl2WHsd731PHnZ78T/nPNi9TP9P54+LtF/Gv6zf9069zHg7+gSKBuUON/En+b+r8Rl00fm8Qfq/0i+CPlPyr4ZjH8r97TuhY8X8JfvexTvGVoDHq3f98lTAk/DR/wCNdDbJ35d+k7eY6v/sb/9wvhX1v6fe0aV+8HfK3TznUTtzrXf7Av2Bv+KvZsfk8EK/k+cRvF+83/u+cj+qwTKWvs/973lfs490Eu+96v+z/eLWpE39/1ORmd44nfRz/ftuvg/8U93my/5DsYZyrnfK/cr5zxhrvU6+8t9av+bbtsC/U2sN/3Mm9n4yPf/1qF7PPkfhO9K5bx/5L2jTP+8f+T51lG7Wujvp/0q8+Uz8yJ5OlfH/537E/V73XrYkLyJd8n53Cz9E//yRuG8JOcn3yT/H1+v4Xvb+CnxX4xfvkD7e43PTuwxeagv0eOx6I8l1zhwDNjXvMj3PJ4hX/G+yfiPch9a4l6WxP9q3amV71DAm/z/3P+yCfv/EXxY/6vt5zrrXzyf6JN4R/Kdjo/ks4yArwW6g9E7FP5832yCcr5LcqP+P5k/+Y7zEOVvsu+xPjyW5y395Py9jL3n+6xTzY/cP9vR8/LerLv+T/zGFf6fah1fhP7mOT+w73un8B29xLd8q307+rkEvsRHJt9wS/JukXx09Yk3ShzSx+RO/MJP9J/vOSU/cQv9cw9PvouRe3qaaH8ge6yB/9znPU/9FvAfAe+5uf8M/UGF+zSmxd+e9Ux5I3xfrN+78Of7pflO+ur4+7RLfkPifhIPlPyGfFcp301M3v8X8D+Z+5nwuYXyQeRZaL5/AH4IHpb8JPpY4f/cn/+x8c99YNezs8/BfB92Xr7vknVKuTp5/w++3aK3eJx13Xn019PzB/BPRChFSYvUWxHJVhRlyZ5CyLeorCmlbFmyhOxZKglJWUsiWRNZkyVrJdmSvY0sIdI34nfO7/14OqfXOd/3P3Pu696ZOzN37j533tdXrvj/X7dNynDiFmVYrUkZNqxehs81KMMnNi3DzvI33rIMH25Yhq/VKMOq25ThyEplWBd+y3XKcMlWZdho8zIcrd7xtcuwQakM91TfhRuU4Vj0j2xchrM2LMNzGpXhttJT4X+l3v3UN1c96zUtw8kbleE48CHlR8GfuZl66aGJ+n9W3+31yvAa6fnw/7t1GR5StwzPo5/vUh7/H6G/qH4ZPlWrDG9Ebwl99KOnHtLR3x/wdkZ/T/QHo19X+x4FfkvOx7VbA/xtLX2SequXyrALeb+sWYZz6G9b5RrVKcPP8LECnfbkH1WtDGepfy7YW/5j6m8J7330f2NfHbTnC/Q6EV+L2NcJVcuwMfzK0o+g/wZ6nemjs/r6Sn+B/67o9qTHFfLH0tet4Fj2eLL88+GNwO8yfJ7Cvk6it/3AGuy4H36XrYc+Pr+Tbk6+Q+lvV3bxJLxf1Hef9j6WPTSB9yS4cP0yPBJeW/Wci+865O+uPQ+X/5J09NPP9yvQuRb9X+V3Vn8v+nuY/s+Svw77OIDeatPPSO3RD94U8nyD3qnwZij3tnJL1P+Q9FxwD/rvpv7PjT9743svcBj5rqHvt7TPWPZ2svxT8XEOWBm8Dey8sfrYxzzj6BX0tSm+jwAPoI/H0e+mXGNy7+r71eAx8NbF9yj4F5bKsBW8K8n/hHLv0u8+SdPHfvT5X/r7Hf1z4N+p/DT1T0b/GXo9QftNQv9l+fOVvxy8Hn/Pqe8T+lqivifg302e09C5Tv0PhY7+8qXvK7XTfPY/Ht6+9NgMf3vLfxX9Eej1Isd99HGj+WgN+DD4M/4XoLtGeig6c+jvAf2yj3G8Gthe/c2NR4cYR3c1/j0Dvwt9dFRPG/paSY63lP+dHhqhd5XyT6J7N/3Wxd8P8PugP4X+3iTHyeQfRn9XKP8euofi/0jpWuhUgf++8m2NL4/pR4vQvY58G7KrE9C7RX0PS0/Rfzqpp4/0ZfBPJtcc9T0Mvw37eV355+Rn/dIF/U2UfxH/L+PncXJ8C34Iv1H9teU4g/2cI3++8i3kDyf/QHgXsM96+D+M3i/QLnfg7yj8D2SPf5pXDiVv2rOj/GPgDyfPB+qfwB7WUe5u9rA+OW9lN1eh/6z6t4R/L3qXkm8GvFEZv9nzjeS7UD3b4edR9rnY952sk+aVyvCBMqjoCl4L9ob/jHJZn12Kn6zPqqNfA9wYvJtem2nXlWA37dUCnaLd7k2+26WPZ7cZ9zMPZPy/jzz3gh/Q93n0uA9YVflN6ekq+hwl/wX8rFbuW/rdOf0YPwPxuxd9TNZ+j4LDzS+7weuFn6nad0Pt/yb9ZV12LfrvFdZnf6uvj/bbXP6t8rey7jwUfkfpbuTbgVz/ZN2j372v/iPQOx6cr/xF8DP/nyr9snp+QKe6efVY66Ax0h3Qm6K9DyDnHr5vjN5v0lkf/aX+w/TPr+lvW/24rXrmoDdC+W6Zl32fSj9V0L8k6ytwNf7PoK8uWc+j9xb9NGfP+7G/HaR/Qr/lumX4Orq/mZ+ezXxLH0vxNYvcx5DvQnbyPrrZF0zB3zns+lxwANgL/W8arC3f5trrFHRWof+79Bb619PkqyK/he+7a6/blX+wVIYV5H1K+Rczv5Kvl/apjs6v8GqSu6nvHdHvSL4e2vd48L/gc+TZX30NQxd+1q/zjQcHsotP2dFO5LtS+eXwO9NX7He+/Lvo80vtP4r8v2v31errZT67ifx7Gp/2AueR90b51bTHDHQXqa9a9uvGiyXS/eBvnf2X9fFEcl4lvWupDLtmPWxcaaLcNvBvQu9yeuyBn7rkOzHjQ9Z/9PR+5k/2VgP9vvKX0t/e8Af6/pz0TuTPunkk+W7Gx/nq72vc/A6fOQ8Yi34X+t4SfEs73Yr+LfjKfnU4PrK/r80ujibfMfT1H/n97de7xD7Y3b74iz10gf+J9ot9XEqf25JrYKkM98L/cHYxQPpU/XwO+7wQ/lnwhoM7y/+VfexE/hXSR2c9Zf5/yzr3NPr5GJ1r9KdG7OJh8k2CfwF6p9DjluSM/Qwwb92G7jB09sffT/jfX31H0c8m8k+R3kW53ZQ7HP09jZ+LjZs3gxfJb4i/rLtnaM+F9HmX79200/34vEv+ZPVW0745DziP/DUC1XcJOgdKn5jxGd5u5PmU/RXXM/9I/0mPmRcuhv8weo/Cn4X/H/Fxlvw35Z9ofF0Jf4163pO/h/7zI3mPQW9P+j+RvhZk3SSd+XEAu8r+fi/6m4L+lfg5S/lV5Jsk/yT29zr7GxM7hLcx/R8Nbw96qUne83yfqfzOvi8Bj2cP/enhA/y2YzdL0W9l3HgNvV/gV5J/P/km0d/SUhkOpq+n66+NvyX8Q/TfnLM+Qw+ZX77PeVjWS+g8LP/2rNvo9VjpveQ/Bv8+/G2D3045rzI+vQNvsfQw+t/SeLabdr2hShmeD/9k8sxS//vo1C7B0+9nZp2Bn8nwjyPP3+y4CvyDyTte+Z9jt/i/Cf0pvo+C/4322wx+T/JsSB9vKreRdB3t/DQ72JccZ8Hfg/zPk+MFsBs+a6nveniLtP+h8Ffj70f8Xqr+28j/LHme1j5js36l/0fot7Fy99LXF/Abyz9dPQ3Um/15U/3nO/3iFPhHwE+/GSq/jvovp5+/go//f9RTAT/7xTnkP4deGrDjevRxMLx56G9HvmHZn8FrhY8S+jtZ9+1qHb1OzgPAA+H3VE9v/Hwrv4322R2sl3NU+VegP499VwKbFdZLSwrrqQ70M5X+zibXLOUqZX2N3lz1vAceBr8yvrvSz4XoVIV/ifXYQnL9otwrpTIcgb916Ptw+uhNv0uNa8eZZ0ex55HwK+H3OfR74zf7j+HkG4OvjCf18f85el+CX+vnY9U/IP0b7JrzlZxv5VwU/Vfl7yP/dPpuqN3eMc98ju8OOV+F/1bOh9jjc/p1A+WvlJ5P3px/f5t+lf1LoR+10R7pZyeT/2f1rYHX2nizU87Hcg4B7yr87omfn8m1JOfT+JhN/7PZ7VHo30XPp6N/Evovozci9yT4HZTzwBI85W9h/9eqb7L8t9lJU/TfMT/lHupp9HdQfhL9VSXfH+jO1P6faK/u6cfoT6C/v33Pue9P8Pvif3bhfm+y9eaX+Ps+58b02paevoJ/Env+xLg9B3wC/p/sdQ34RuwV/zlfaEC+18ndTf5U5R/JuK3er7Xfceo/HtwIfy2U2x3/s8GO2Zein/XDNHAs/E3xf3gZVHyGz+/At9EfRS87wRtIjnXh/6Q9Gym/pfoHqH8n48fOYC3wGeU/YRc31l6bfvNSGY62XjiIHR8MDtT+92e9qX0Pw2fW+2vYS+aHpewp64OO8O9U/m31X43/mfT2VsYt8m2hfe6gnytiR+xvAPpr1Jfzzavw945yt7On28Aj8Jv9ZTP15/z9G3zUgP+q/rUR+m2kz5D/g/l3APly35D7hWML+4Huyr0gfw/4fXOuB7+qctfC/5Iesr6vkvMreLdrn4Xa72P50+CVyDU380nuyTI+5TzA96+lx+HvEXaySrorPdc0/r+g37fF/6vq687uGloffCp9C/m20a8znjWVHqT9F+H3K/UdQx+3kLcDfRxNDwPxWY/9NrF+PA7fy/C3CL0P8bm/dO5T3qKHnNvPlH5IfdfQb+4VdsPPO+jkfuF14+czvs+UnoresDpry9fa96rk3w79V/BRVXtVRr8Rfi+XP9j5wu5pR+2/febJnK9I19EvtgDv0T8yfnRqsDb+QN//xt8a9IfSf3H9+UTGTXJcSt6n4p+ifQ407y8CX9J+b9nfLsXHjujnvvxL7Zn1c9bTWT9fr75HMk7jJ/eHc+Rvr/xpvg/K+ZN6sl/Nfe6J+DtA+iTll7PzX+nnTPqZlP0H/oen/en7MPmjM/7CL64fn8TvN9IHqb89uvviP+vn9+CfjY8D5e8jv5/+O9s4Olo/vjXrqTKomKzesejkfjvnpxfTU6vc39DX5fjLOf+52nEF+tdl3w7m/rEr/d4qvYvyX6m3Jvv/E/9v4n8wfc7N/EivbeD9ZH7cCH9/5Lwq/jr0uAn819jjDvj7Tvrq7GPUuxv+aoAv5P7YeFcFH2+zj/Xkv1KBbvx0cj5Mz6PQP51cP2ufAzOf6LfZJ1ylfBPyrSM9gtyDpefi50bfvzav3SDdnRyfarchWXfTz6Xsry153iTnZeAvyj/L/jYtlWED66xN0R9A3lbKfRg/rewz6eHHnDPi50RwkPaYQv59jCfp33saDy4j3+HsZZX6H4R3Z+65ck7M/tJ/02/Tjx9S7nz0PlFf7Psb7fs8vAfCP701kH9U4f65ZLzL+d40+poM5n73MPW/Zr6sJH2L+j5WT33z4QR4z9DzOOWr618591038wP5H1LvI+zmWHB9+tsv93vwXtTuC9Cbrb5b2eP66NUi3/mRS7lzpXvA/5u930uuvqUyfAz+CPU3kb83OhvBrye/afyb4E+DP13+P77vTI4t8JtzyfidHUxfOZ9sZ7zupdws6ez/ZrLPTuA/2mMKflahN0O9d/j+g/arpX+vZGeZp1vnnCHjLXm3jX+O9puWdV/u7dhh1r/tCv49U+UPZI/VnG9cWIEv5fsrPxnfbfH7K37q0m/urXKPdb90a+uU4vlaztVyf3AVvd2dc/LsQ8Hr6KWPfej1m6wt9w/p3+T5RH2XaZ/sS++Wn33pjpm/9cdr0T9b+nD42f+9VirD3dC7Hf5F9HUn+fbFTzP1na/8Per9Hp0hqR/+icqvIdcvyn1pXsh+6OPMA+hVwW9b48Ry6QeVf1S7rOf7upGX/u+yXh0L3gn+gJ8N8d9Ue7xEHy+wx3/U2186dn8j+eaxo+hvb/K+lH06+Yr+ObvLbw//T/p9UH5v9c0olF+A35uzvmOPR9Lbr/jrL7+u8oPwtzF65+D/CfNK7pdOls490xj67QPekXah39Xq6xl/TuNf5ofM38PBQfFrUd9jvi+jp9fQuQr+c1n3ZX1GX/E//Er979JXe3QXStfGd0P6ebwM/t0ndkX/dflPqf+S3JP43jXrd+Vz37yp8hdJHyr/pYJ95r57F+PfG/KXmx9q0Pvpxtd3sm9Cb378cXwfhl7uh3cwbjcFX8w9M/z4zVYCsz88xnpnHHgB/X4V/3H4F2mPjvA+km4a/zX8LUs7qT/3dTkPO7Fwf3e+eiusw6aBd6pnPenlyrUo3Hc/GX909V0Wv5ISOdX3jH5/kPE15/tP0fu21o1N8HU/+O96Outr8nYgf4/on9xXop/5PffT8W/IPXXup+dqrzngeHCG/CHmj6G578w9HPvPemFr33elj2HK/zfn0JlftedI+ZXY5wvknEiOD/B/Pfyd4G+ivprxP8HfT+BA8Bd8jI0/Cr3tl/MedAf7/mypDL/IORD+WsjPvLxOzk3iv0ie9uhm/HtW+fg3XYGv+DflXnuT+MPp39f4fg79rjKfZF4qzldPWQfUob/76eV4/B9bIZ+eb5buHn2z73nKn8C+c7+yM/3F728GfXyNn6nys89p6furpTI8E39/x79TvdPxX8r9RPxawdNyvoafGfgcDP5Gv+OlO4DHZL9Fnn3Rj//0CQV7aqN9DgaX4XtD8p+ifYrr8jHoP2P8vE0/flp6e+UmZJ0H/zPfj9S+K52/jATPtd+am30G/PXzHgg/J+f8kn6eAlvSQwv0t4G/ilzTom/446R3j/8RuWbE/8t4cRH9rdCOB8kfoL3boz/IOBf/h8vZ3Y7qO4/8l+T9SM454ccun5dOf9smfink/yD+GvTdCf//0Ftb+Iutn9aRbq//ZH2S+eSGvDfJ+irnb8rnfVj8GOK/MIzeu8efQztNjf+O+XSMfrwKvZx3rpf3WtK7q/93fNXPPCp9Mz52jf+3/nU/+eI3/KZ2zL1KH7Af/NyvDGQf/bOOzj0Feivk7wH/PvZyvfrb5HxBvXkvcSw6nc1rR4Jn5x6BvvL+IvPbVuhkfjs154vofY6P58n3kPXbKvPcR+yvGb0em/cd0mNyn66ecea7lfL3xGf88vfVn/69X9LeuV+ayP7il170V78g90v2P7uAP6af6fcfKP+H/p93UM+rL+Pyxfhpp/xJ0p2zPvG9J/r3kOsW/G9Efwvi50YfY0pl+FLe9bDfitx/yP8o/p+5B0Vvoe/toLWjn/hpbiL9o/K7oH8B+r/n/hc8SPn4pT2A3+Xmzw/ZR2v4f8j/TPlD4Gf9+Rs+ehXWn030x6XsYLZ2/Ir+4/8dv++f4s+G/2bsM+d6xfO+ierfRn13Kbcaf8PZy1Bwtfqzf9mCfQ+U3136HPx8x34WkO9v9tOihN+cu9BPE3IeK/9n/B2S8SV+SuynBvk+zruM7DvyDk/+a+TZBR/V8Rc/ovi9HED+AfGfll8v9x/4yf3nEwX/uN2l+5OnKfv/XPof/f/1nE+jl/Pxy9RzmvzttX/JOH268f3yUhleT+7F8deAPyP7Q3xNz/19BXrky/1A7gXuANel36b4GxZ+oi/6u9r8ucb3z6SX4C/7l/iLZN/yGv5+KqyHs14+A3579R+P/6f0z9yPbIiPo6Tr5j2k9BHoPp37Q/DnnA/SZw/tfkPuGdhlX/Z+qe/H5ZyfHD3J+zi+WuD/uNzP4785+jPJlfOpI9E/ml10kn4293Lw844p5yN5x3mi8fpR9pF73FPJv4V1X11yXque/+DvL/P+n2DeueZ9683qP4PcR9PLEeR/n9zHK9cg7zbZV+z1ZXw3wt+D6N8D77O8x4W/Y96f4fdweukpfXrm15xPoJ93njeh86H+mHeHJ5JvRGG9v37Or3LeJT1Ofu5vc5+b+9sh6A1Rbr50Y/KtYA9Zf4yVzvvMnFsfCv8gcv8n5/PZz6gvfi5XyP/F/P0zuAJcHT8O9hG/ifivxn9iiP151mUTlF+C/xbGn/ivdTQ+30mfOUeOv2ll/WEEfquzq6OyvlPPvfDSrzM+j4dfG/5e5O+hXN43DIv9sa+l4Rtcmf5NvtPix2V8a46Peeifq91q+d5f/c2MHxfgf3T4Vv+qSmvzHTnC/8Hq70YPDxlvMz9/Jd1P/nR8jkQ/731yb5F7jNxf/CZ/sPI5f8v7jivIdyD+N4z/KzpHkHuF8W21dk4/XpLzHeW3ynyF/67Gly7gbfT/CX5bwF8OP+8t9tQ+30ofxD4z3/wgf3z8K9Bphb+3M//T3wHGlYvoexw5rzf/1M27Ful30a9TuG/J/cs09r+Z+fsI9O/Oezz6+Z5+30B/P3SO0z4r834GPyPkV1L/e/Q2G5wDJn7BZvQxJOvX+Hlr71+l8/6r+H7rmdgDee7A7zT0J8U/NvuNwv1f7H7dvI9R7kn1rYd+7GkX+X3kb5W4Bdk/OcfI+cVc+NmPDUGnpvJF/5fPlW+c9bP+fDM4Mucdyr8Re817g4xX7KcmfuNf0gNe/Es+Ys/T/sf+9Jz4Bfq+Nzrfyj86/p7xa8FPndyfy18p3Tb+TuFT/lz8ZPyphP/Fud9TX6Oc22vf64xLj5gXTmBf12X9Vgb/+nskzsH4+O+jf0b8HslR0n7x+46/d/zBO2d+ih83urXY1wz0d1d+ffmnJC4E+hvr38cbF6tLV1U+/sNj4jeIn9/zfo18G2TdkvvTnB+ajzcHu9PXMSWIhfP2ZdILcn+lvvMbrV3/i/BHmp+u164t8f+U+o9OvJq8twXjD7SV8jW1W0vnKfOU2yXxQwrnVDmfin92/LHjn32R/Ieybsq7aOnZ5B2E/hf0tiX8Wfi/37w1Htzc+HwMuWqofzH8Tujem/VR3lfl/X7e0yjXCl7f3F+gdyT8qsblQ8Fq4CaJo2F8iz9F/Cv2h5/5MePXhoXxK35BOQ9flvP4xLPQPq9K95T+R3oD/S5+Il/iJ/eBlfWHzehvhfGrL/0+zO5zfzFZujn+cp4/Gn857z8o9qN87rHrsKPp5C+en1Y33uUc9SXt3aqEX+Vzfpz4DjfnXlF6StYH+stL8O/N+Ub8b+izBC9+YyeTf/34w9PTUO17QNYL8HOvtgG+X0U/fg/xg7gq/v3wNyDP99o57/dzLjETXu6PW8KvFf/QvC+Wv638Xton8U0S1yR+ivFfyvuQGtY5y8C8DzmSPNF/8f5rKHvLe6zK4Nfa5zx6+0a7X8nOcv+b+EDZT95Cj4kPdB/+zsVXMU7Xp+xmW3punXEWH521/13WXZ3Aifh/QboSPp5Tvl/ux61PR6N7Nnt4Gv8L6bVL/NSk46+5Zfx/Mg9nHUXOpxNPzT6xXs45834Y3aVg3oG9gd5p+kv8+K40Pl9Nn1vnvlF9s/POT/ow88N+7Hqj7P/lx58280ve6cS/thf6Tegn8SwuoJ+l9Jdzm4vjT1sqw0Hk751zU/LEz/EV9nIIfeyK7g7soxi/6250ftF+2+W8G+yMv2m5ZzIeTiLXfujkfckf9PqBfnMK/Sb+0C7obQDv/pxD4K+Xdl0B5h5ree4tjLct9KNRhfVj8f1v4pxkXZP18xywbWH9HP+uxP3KPmMcfp8og3/XJYnLkfVJJ/rfULsclvhl9HdS7mPI86B0M/Tz/jzvza/zfXz8b9n1Svyfzo66KHcbfTWkv11znpL7P/Dx+KHjazp72YF97QjmnVPeA+S8JfPNMfRcTbncT8XvPvdS8b9vmPWqcvsqd5n6834gfjVPx1+G/Bvk/ijntdp1NPrd48+Q+GzobQv/BHJ1w8cY7fRE3pfC35M8V+W9Qdbv9Lnkf7zzj39i/BHjnzhY/f3x8yC5m6O/EP/xTzot8550/JPyPrtH/JTQeSPzML0O1X97Ftoj72XiLxZ/sryfuVO/agv+iW7L+Ler9xByTZLfH38t8ddIfY3J17tUhk8W5p3MR/FzyX39UPrLOvdd6ey/co6ce6Gj8TdQey5EJ/eU1cmXe8c+eedduH/M+83cz8ePdoL87uymUeIdsYMttF8f/f1UsDd4Cz4zb2S+yLlHv5yPJB6Geaau8i+UyrAYv+YB9BPH5nXjQuLT7MU+m6kn+//94bfD94HZvxXO/5azg8yviRezDXqJI3NS3ssnbkjOhen9aPaxHr7m4/MS8iW+Xta/ee9/hnTWvyfhJ+dzB6GT87l75C/Xvr/LfyPne/Gv97299AGZL+lnl1IZrgafw18780PO+/ZSz0+x17w/wN8i6bzPXkN/idvVzvd+8e/X/n2ksz44jnyJH5D9yWh0qid+lfn2U3AB+G5h/X9D7ucSRxJ+T3QT/yrj1zr4ybrsZPldsq7KeQL+Fmr/6+LnQT8jjL+v02Mx/u0+6OX8dCn8g7XPh9mvoJc4h43kdza+XZa4t9LHobON8a4puDWY+6GsG/I+sE7eF2R8yXkoOz8952T4+UJ+A3rI/WD8xwey5/NKZTgh+174++ivedewgJ3mfVIvdK/N+wJ6ug/+pNy/ZtxC/y7tm/eRU8G8j8x7yQnSj6h/C/LEv2ae/no//KrkaSU/83Hm59H4zfx8fBn8e44VP7qcY83Wf4dpvz70tjf8xFuK32nRHzX3bc/nnTy9JH5gxr+R5JpHjx3Yd4O8T9e+OQ+5UT/503jxF/h+3onmXLfw/ijvkfL+qD15V6g39wETso5Eb0fy5L74bvi/5f1E4ufRd1N6ett6eDa4jP0ci/8b1FeffAN8/x7+V8at+AF9Lb1A+fiLFsf53ONPx3/mg8wXtfOeL/e9yrXGf+vM7/Jz7vCXet6En7gGuZ9OvIOn83475/2FfWr2pw/EXuw7+7Lj7I//Mf5OBCu0c+7XfmF32d9kv5Px53v6zTrjcvXeDL6Kv6Hky3li/CPfKqy/3y6swyvYwz6516e3i9j3tew/70rb5J2gcoP03/jLVotfEPyhyt+RdXvisGnfyu4DnqG/ZWDiQ1XkvYn6XmJHh5Dv0sTVA3NfcLr6c/5+QuEd1R7yE5/hwbwPKfjL5/wn5z5T8JPzn4XYPD/vEqTXyzvanIfEbx4/iUf1Drt6PvHFwdhx4nb+BiZ+5x+5NzNe9me3Y7Rv4oBdmHgE6K3ney/6G5J1X+IPKx9/8ZvYbX3yjYi/AfkyXlYuvC/Je5Mj4PXA7/bqeT76Ie+5mdfo42f5W5lPm4BD46en/VqTt755uUPGa/w3J8/j6s37mvfjX5bxWfpvelqufdrE/xF+4s2cVCrDe3I+knff+sMZ+B8Sf/z4G+SdbM7X6P/YxCtRT94PLEw8g5ybyI9/9SUZdxOHTP7V6H9CLwvA+eA++NuJ/nPfVkM9VdC/h339aFwaif7K7O/0qzPJn3ugO+mveeJLlMpwEn6HZ3/HbnM/MtV4mPuRxHNMfMfEy0183NcSP4V+K/B5q/qK7wtvzHu13H/m/Az+pMRJgp/4hp3zfs33d+ivZuKiGfcfRT//T1CMJxR/0Wfxv73yGxm/mkvHPyJ8X45Ohfn35cQHMD88lnk8cYzwW4xf3419xn8z8SOn514PvUu0Yzv2kXXfgMQrU3/WNTnfjB9+zjdrJs6O9Gr6fAn+xXm/xd7y3v0x6f7wEg96+8QJgZ94yptFv4kXJ/849jWeHRTHr8RH3SD0zD+5n15ZBhWbG+e+xc/jiV9D3vyPQvyq6rCvvG/7qvDOLe/VjsLPGOm843pZul7Or6QXa9f18Xd45oH4l5In8cB64/tF/OZ/QHL/m/gYiX98ufqu1P4/Ft4T5r1v3vcmHlriN7yS963KZ3+Y+J95nzox9kWebbXvAuUn0t+B7G8Fu8s67D3lpxt33si7LuknyZdzu4Hqez7xYvGf86KtlPsz70VLZRj/sviVfZR+o/xe+M25UOIhJp7bIP15nHGtB7p753wm/szK9008tvgroP+HdOecU9JP4ok9YhzOvVHsr4r2/9D3K+kl8Stmwk9cyO7kyPie99qDyX1e4f12A/PJR7m3ZOf5H5HX1L8YvB38yziU89Ocm3agr5yfvq29dsh8Dh4Rf1T1H8JOm0vXZ1edEpcS3pScK2j/or95/NCXyZ9jXO8JjjaOJu7GAvaWeCULyJP4gPGPLt5jxz96CX7zrm5r65sJ6u+tno/oc1320RKfH5fBv3HOKsv/Dn7iK8e/PPGVEwcw6+P4o2SdnPVx3ic9ic7OpTK8I368yse/ZXvjbfzpZ8f/Wn3t8t4n/qvZHyTeA75zvvC/4taOy3xA/5/S403o/K38LPQbxr89cXTi36d9tgO3BhMP88m87yRf7itO036T8TcCXsbBX3Jvaz6Zrl074Tf/j/ANe/oz81zO6UtlmPvGVwrjbOgPZ28/yb8BnXvoMfHss9/+FN1Xck7oe3flVtFT/Gsf0a876p9DCv8HdIr6Er8240cr+FfnfW72w/Lrqf8y48mLxoUD2dMl+N/B/jDvv9+nzyPlP4ifrvg+Oes1+dW0T+I3JI5f4jfsGn+K+AfCz/v6efheJ++V894w78foP/93VV975hyoHXm3iz+Ldlsc/1H6aaSe/I/Og+x/N+NO/qcq/0sV+9gl8T+lJ6CX85El+f8k/eMWMO+fD8n7ZHwm/lxD+I/TW+JZ5R1S/v/jR/ac+Lo/SI+Rv6tx+Tz6+jL+dfKXas+Jxo3DpPPOf0YZVIzO+2vpjRKfgL7/oIcOBf+e98iX8Xqj9A/yfK7evO/vbh3+uvy8kx2ivkHx7yiV4XF5X5N71vjrkW+NeS5xRIrxQ+6L/1fexes3U+P/A782fTxLn+Pk76Y9a7LDWvGXwd8NZVAxMeO+9CH4u5d91M++STrzVG/9J+9xxuA359t/0H9z7bNx5hHlHzZ+PATWUv6Gwn61Zvx2st4hX+4Hcy94hPK5H3yEPPFvu7fg39ez4J91aMYh6XH0F/+favXXli/3+x20V/xkc78/Cv3a9DSY/pbFX7AQzynvFuMfMp28OV/IeUni1yZewhfwDsbnBuxkffTzPwVVpHvAn4Pfieqror7d6We9jdeWryP8fxK/QP4Y9DOePIqfcfi7Ad//Rf/G3E8bt+7S7sX/s9nX+D5Pv78QzP9ZvWP93zHvk9nZA/jL/U/ufaZoj/wf4qKcC+bcMPGv8i4Y/axvZhb8O3uZX2olTmf2q9oz/z+Rc4rNS2X4Mpj7uWLcope135boneL7+vAukD+hDCom09sd6plOv/E7yHu4g3MeJL2QPD/SW+LN5T19K+3a07jyGblby18FP/cHiTeR/09ooF3r03s98DztV0d9u+UdFjnjT/QX/fxMrvHyG2vfYnyOqdGz+hO/60z1Rb+JjzDVuiL7yo+lt0Hv0dxvaOdifNv59N7W98qF/xdL/IPshxIHIedzub/M//bFnyP3l4nL3kw7jEbvNfQ21v+yvst6L+u7/dhzbfxvBr6e96fk3Iq9VM39iPQW+l/esRbfr1by/W36TZyVeoX3i1lX5tygGv1/ge/0r+wnluFrEPo5J6uNv7yf3p/8p7Gr28h/SeIkmR93Vm9L43Xi47Qvg4oj5S+Xflj+idYr8+k9/8u4nfb9mL3Hj3WEfhR/1u3p+zPp5tI7w/+cnHm/lffheb+V+8kuxqfcU+Z+8iPy5t1v7oFy/5P4lxuSrxifqW7ivxbuteepvzr5NwZn0ud08szFX84HztIeF6L/n4L/UN69xH8o54mJ55dzxmtz3qdfPQA/ftpZvzXM+yb8bA9erlz+P6Nz3h8X/k+jK/7z/iH7jafkxy9n8f+I35DxJf/bmHv03J+/nPgW7GNk4Z37yxkv1Ns66/mcZxg/u+A/54SJD5h3sdn/JB5W4l/1K4OKPejzxcQTg99XvR3Jv0h6K/JNg/83mLgD3dHP+928eyi+hyix98bgb8axPuzrT/XlfyROZ2fxU14e/5O8w6HnWeRNvJ74uycOcuL3nG08T/y5ZWDiz+X+66P4qyROFP3Uyn477+Tixxc/NP2hH9hJ/v34yX1E8f+n9lffRPpYN36U5E+8j8vos238oqW3pr/cN+T+IXFWcv+QcXti/Mfw91n8l/NeNf4duQ+FvxpfbdjlJdLxR6uddUnjtfnJ/JH+n7jreZ+a8a4YrzNxPG9C7w5y5f9iEx9xG/Rvynu2zB/x51HfCcbtHRPvWTt9nX1F1oEFP6yc7yX+VuLUJ/5W4nGdqV+eBV6aOAb0k/g7ibtTI/aT+3v8/przLeUX4qP4f2CzlMv5S/7/Jv9bk//Bqa7+/L/smfid4Hv833IemHPEebmnyH2Zfpv4zYkrnPuXxH9Lux4s/4DsH61f8n+M46S7y3+M3h7P+Kx9Ek+ksfZbYpyurtyw3BvlvIg+foLflXw5r4lfVfys4l/VDf+JmzmH3SR+5sX0ul3iJ+R8I+O//Om5t8ZX3qlchO8LwTOMO21KZdg7+y3pyxLvKfGL4heQc03y533oueTvUPCbS3z9utpvT/VeF39540n8dvP/afHfjf90/hcz8RISRyH+r/k/2Fna9V0w/xcbfUV/Y3MOl/ik9J+49Imnnvj0E8vgX/+G+Ducnf1++rNx8Qn6yfvbB+jzUfSvRP8L/CwwnpXoY5Vy47I+J3+z+Kur996Mn4nDUCrDrDtuob/4h8QvJPGzPgfzv3F5T9BVfU+p//8Axj6PDnicdd13+NfT+wfwooxCU0LlkwaiUkYqmUlGZhIpK/pa36SkEslKpKFBGrJnw05ZWeFbkqzsjEhGMqKU33X93o+n6/K6Lp9/7ut8zjn3OvcZr3Pu+35P3b7c//+1qleCp9QuwW+UO29dgqtqleD5dUtwXqMSnL1NCf5eVoK7gC+ofwH+r7R7cIcS3H3HEvyjcgmuBX8Hn2pQgjekvkoJHgZ/Hfh3g7drnRK8GayFzjL1T25XgttvW4L96pdgFeUnleuSezb8TdF/FnwOvAV/u1UqwV3BH7cowZnoj6HPPeG9wP+PRq+O+q3IVZ++vlXeuloJdqevRVVLsFfDErx2E/xsXoKd8bVN4xK8A/7l6F8G/0p8zMP39eDF6NXRfw39HIffs/S7WH2FiiV4Qp1/0t9B/eTt/ylfa/bTWLvh+Bsa+bTfVf3dFUpwNb4m4OMV+Afq30f7LvhbrTwQXx/5/6/G9Tn9tzeeb2h3I/5uoK9f/H+J/3fA387w3MeufoU/8yHz4HD1V2o/k5zTlR+Bdx24FhyH/yE1SvAIfLyu/GLkgf9Y9E6ij/vJd5x52904HmU+r8HH89pfwZ5OQb+F/mvJ+7T2l6m/RX0D9th6qxLszB4Pxl9X+thAn6PQGwHfCO3W4385eovoZ4H2R/j/QOPfhn6ugP9M9SPg+VF9bfIfQ+7Ryn/CO03/fuR6AJ4G+LpVubpyff3mwH+mcmfj8wY9f4jPZfQxGp7PlcuTb4jxm0Q/Dys/B/+0zUrwZHBKzRI8B72f8f+i8p7kmJb1Bd2T0FtP7w8oP4beAPIdSp516D8Df3ntflNfR3kj/ab4/1fKb+v/aPUS3AJfl25agjext9/gf5XetoFnBf5ahy6+DyfPYPb35JYluAvYBFyl3Sz95+s/SXkU/tYZj9nW7ab0PIA+f7LvVDTvdsr6hv8f2dUJxq8i+2paVoLXka8Lun3ADeDb+h+r34XKG+P/IPpbr/3BykfTz3v+fyD99TbuX4C16fNV/C0g10X4n4ruEcbtKONzFH1NoZ/J4JHm+wXw32Rcz4V/onaPFvbn1eS5Bp/v0GNX/P2qfmJZCT4D/3slUG44+DR8beBpBZ6h/U/0sR/5utgXG9BbA3w2Un+J+l769VceC9+d7GIpvR1tv/tD/+H63UNfj7OXx8h/Fvky/ieAn9L3WPp8jvyj1A9G/yL1Z+K7hvpb6W9n8v+AvwXw9kF/b/Wr8XG2+lPx/6h+q8pKcLb2o8hzgfJmymvxNQz9T+yfl5P7Y+U3tWuB76/hb2X8bobvQuVvlbvirxn8I+0r+xu/Kuh8rX5C+RK8Vv9O1oWzwJ/haxx96l9T/cfqxxf2w+x/d+LvMnKsYO8von+19p9qtzE599R/JnsZY135kt6vMz4r9L8F3JwdDMJvc/9vZZwm4vc19KuYv72sG9fDeyM4nd66gpvkXKH+L/ZezvnvT3SXa3cK+1+O/+7KLdTPIXfOlxfg/0pyzlZeDG5gT9+jc4z+28HXg3wvKC+z302w/h7L/tfAX4PcD6lfBz6T/QG9+43b7vBfaLx3sN7dh97z+LxU/831n6r9TuAX4BPsvat170HwLv3X438lvr5UfpldTHCufRx/h7HPJ43PNPY9CKy+UQnO1v4V/D1L/0vIl/NaR/W3an8I/a3X7gTjnnNvzsGD6WMJPrMuXM0OWuJvW/gqlJXgndGf/mX0Gz2fbz5Hz5+Tayx4P/pN9X8y80/7fNfl+6U9+i3Rr2m+bIS/fvq9SB914T/Z+DTX/y/y91J/Avt6zfh2g78rPbdTX5FeDlbfQP/L1HeGt2/GC3+H428o+sX15Xb8/qR9Y/gak/tI5fvpp4n/fwzfUPJ9YXzbOhddZjy/QGcz9rrGOvCy+b2L+qzPZ5OzT9ZR8HT6+S+5z4bnFeM3mt03YfczwBZlJbgSvE37E9EdRr4LzY//gr3BW+jrRXy1pa9B/l+Jfoervwdspr4Oujnfno7/YeylvXZHq79YOevaLPDFcuiCf8DT3nj0IM9s9I42njdlfVCerF198CL09rRu72tdaO97+MHYM33vALYyfmeRYwvrxTr7RJnycuN3HHsZqfylfucaj/Xof0WuGehfhb/V7Op98D3wJvWPkm8gvI8oXwbfwHxHkPs4envL+DX0/67kvU7/AcrLlE9D7zntm6gfwD7708s8epqj/Url78BB7Oss/F1gvXqf3EvBt/E5mH3/CZ4D7w7qh9LHwOy7yreS7158DmVPm+Zcqz7zIfOkLX2db7y2z/ndOXGB/XAj9avY763wZl73xN9H+Mm497Y+ZPzH0svu9NhF/fv0c3v2Bf1nk2Nv9j3RfH+bfh5Qvl79O/g+A70v6WMePNfQ92zj8p52N6r/3P8nWucm4uPYrH/0szTf//R3Nv3uH3ujr6vVr4K/Hbzn4aMqffVG5y3tfzZPYhdno/9A7m38f6l+uY86Rf0j7GZb+twJfwuN3y/krofPIfjbzvr9KTutne+04Cvcb+W+K/dbx+QeEL5F5JuLfs4HXcAL2EPOB7/j50njVgn9S3I/l/2D3JPR3QXdjczfp/M9rHwjvHfpv31ZCV4JT1P8NcbPQ+x6Pj7/yDiUQLkazhcPK4/E/776tQM/1m4GfZwGTyP83ILPteT9Eb+v4+9sep5O/n9bt6epf4X919P/M/I1Q7+Tc1NV/LU3/07B1yT2shJfE/J9Rc+X4u9YfK3Wrzc++qB3m/+fp/2R+PkWvXezL2adx9+z+GqLXgP8XEe+SezhO/gXwvcn+k+blz3w9yw9n2t8K21cgvWV29m/+ir/jq9djGc5fD+jfg66V6p/UPv/4G8K/nP+bxL+9R8B7b3afat8KjpzyFMR3k/o5x36qWvfKQPbovM0+jkfbEN/Y+HZR/1h+Ml38QLlKfR3p3nfGj/74adSvt/Z82fwX6x/DXrubn0cju5443E2Pp9gT6Ph/4ad7aE+8zH3i7lvzP3iIPhOQr+N/s3wdy97O12/Gtpdgt5w8+d29efh+z763cx+Mp1+FpP/bv33pvcV4Fp29oL+G5H/FvAudPrS/3j8XmOcnjG+P+DjO+VB4LbwP06+U+BdCVbXb1P1NbK+kTv2/Kv6dejXUj+TvvK+0055f/VP4TP76bbw512rMXx532qm/deZj+zlZvXvspfsO5XhaUJ/B5C3Lv2/D/8D6ivYb3qAleyTO8butZ+b+2v0NuBngnF7RP1i6+g16N1n/PNO9b3yheQflO8P/b9WbpP7cHz9ys46o9tb/3nwfkmPW8BTVbvWxuta7VbQz4nkH6Xf/cYp5/936/6T7y31y3kh721r4J+R9vBVxX++P94g1xLy/1E4r29snXiocH6viv6sshL8Qnm+ckvr7d3sogM7rg3/JOO5yrw73P47jn1eg+4EdCeB26rfEb8fgH3IsR39nY/uh/jN/f/h+JvPfp5QXkxPt8E/l7428f+KYH/6XYBeX/R/Bn/MPZF2i9lDK/2Pp/+tnD+nkr8n/ZxcOL8PZy85v+f79sTcB7OLN9DdFL3e/t/DuHQhz0j4HqTvcvr9SV+Hkn8f/U9CJ99lLclVyf/b+f9g/I5VPlj9f8pK8Gb0ZsJ/BfvIfe+p+rUmf2XjFX0fhs8f1W/HHmahu63ysrwPu2/a2P+3cZ7oov7Scsr634zfU9Hrl/d89Uvo7SL0N1T+p3zTtv+nfA9b19/Qf0f4HyHHZcblQPQ+My8q6n+9891wsD17eT73dcYr59A5yuPzHmi828FbHv9LwYXsdblz4sXkqYOfFcqrwG/B9urz3rZl3sVyX5L30BIod53645XfKyvB0frn3eE+fD/EvofCN1G7buj2wX9teKvpf4R2n8B/B3wvKb+U8y383aw/76u/mJ4/z3kx5zl4drefNMfHA+gdatx7+P86+A8zr/eDr73+zYzvlfpfjs5AcqyBpyd7vcI6uBU+1rDfI7O/K1c0ziei9w28d/j/wtybav+675/jlF9Tnq3cj11UQvd6/ffDf0/2fSb4q/6jcj9Bv7vbH69in3uUleCp9HMOOW+zPlyH/n+NVxk5TqWfn9VPLYG/7a2H9i/kfEg/2U+yz8xX7q193ufHwnOw/uPUT6K/fcjfzvhsCd895BtIjlX6r9a/3r/tz+bTxuziQOvVMvxUMj+zvtVXzv6R89+p8U9CJ+e/59hXL//PO0F3+htm/S3vO6kPuiPY76nwF+/XBsS/hryNyf+Hdofi72L1/cF+4Mv0sA273hasBeZ9/TH63YldNAIb4O9D++8H5L+D3J+qnxD/IHzXpoeXlf+L3np8H5h7aPaxzrj8AZ6P/7xTLEE376tt8dst/kToN8u5A93Hwerxl4gfDzvPe9Ya/z+KPnfBX3flNvFDybiq70r++O3knrQ3ut/o/1DBv6Wr8q7a9aTfv9hdT3bbQf8qOXcU/J++Am9lPxPpp0fuceh3Mf0vsT93tf4O0O5G+nxV+VbjG/t6gHzxt7kBHzXLSrCb+pb+/0HeX9WfgP/4h3QmX97/Bpsfy9CfpnwKec6y7t1B3y3ZZ9a/mfbrOejPUr4Qv20K/ifxOxmFv8ezXqPXlzxV837KHs/c5J/tsz9cRH/9wCfV1yTnEfD10v5OdK8lT1vtO6A/3fq0Xv1T+h8febLPq5+rfDT5d8o+Tr+76p/3tTrw/P0+TF+t2cfl2v1AvyvZVzd0vtC/fO5PydNbOfedg5RXo3+b/vto35d+ahjv4/E/yv6V+9/B+Iq/VPynPsfnW8Z1g/XjCfXX4TN+WfHTes46Gv+sncBK+P3NODypHP+F+C3sit/4L7Sk7/3wl/vTebl/yHcpPOfRxynGL/5dV+T9Rfux5DurcH8QP5X4pxyQ7xnrS394NtY/76t1jfdc+sn76oXxO8n9Ydk/5VnlvJH7xp3osZNyvrufINcS+MbBd6D5WsU55yDll/P9kXcH47yffpXJN4e+l5L/M+V78n6X93l8tSH3w3nPoZcPwBvoK/dn2dfPhC/7e+w03ynPw5vvmGXKt7L3+FkV/avq0UfefYfAewW8jfPdjJ/q2pXT/1pybZd7HevMbtrXQa8e+JX1fiN0rifvbdBmHYl9/2D8LtS+JTniR3GU8dkh9zD4uSrvOJEvfqrm045Zb+w3HfGf9+7f479gPr4F3uo8Owj+7Y3bPebPf+Jvgt/x7O40dJcrZ3zOwNdh9N2JXi8Bj4196x+/refBreinE73tb3x2hu8A+hlDvk3o/03tH9D/WvX53n4F/XvQzffPR/hZpNzHuPYFb6e/+GGUGY9L4v+q/k34f817PX6b4H+48V9qXL8B99e/Zd7TtZ+B3j3kedT69St5p+BjAr3l/bByGTnAMviOU3+xcX2C3BPwWzN+2MZvb/zfiP4R5Ds6fvPaPYB+Lfg7lkC5wfivhl7Ob2OsS9/bR5aRP/fE+b5/AV+74j/f988or6D/TtqdqP4N+umWuAN8jyzsH7dl/QWzf2wRe879WO43sn7lfUv97/iOP9RU+C6DL3EjE9D/UP8x8MWOYj9DrMuZ1zvAd77+8Ud+Qv1uZSUY/+S8l/2S+UDf7+CvpvoPjccZ8QdA/xz4/2Mc3iF/C/I20v4C9nc+uA85a4Kr8r0A5v5vtvUp++m3+d5X/7B1aSb4HXgUOeea/z2UV1ufhpPnY+Vu2i3H93L1Z/r/PtrtBn5In5ewn+74aoTODfRXhV5ey3zVb6PC/U389OOf35l81+S8oX/s8EP6uIPdjiX3SO3iX3uK9vE/6oW/k+KfgP9qxv1p61jX+NEUzs972c9zjp6pXwXtq2gX+38M/z9p/2nOHeTvS/7J+Mo+0Trnb3rpCP9WYCvyb5L3ppyj40cJfyP0P4d3Lb5Wwn8j+vXp/VL94+ef++7cf+c+vJf215p/8f+IP0j8LNpYr2rS02/aPa5/7mu2KCvBX8mR+5ur4L86fpPqB7CPncn1Hn00ge8p9aP+5fz6P+vDpdb1G/B9nPm5i/r3nU9y736K/f5g8r3jvLd17mPco+T+Ou+veW/NuM4prG+JE6laVoKf0U8t9W3of1Mw9+xtyfO9fom3GY+/nC86KH9BjmfwcTW5e5K7F1gbv7vT/2HGsZlyA/RWk/+K+IWzn6XKNzkvjQYbmT9N805ZOK/1st7lHiF+FwNzbi6Bv/0vZpHvTnKdo1/lfL/Qf+Jkcv9bF7521rPJ+L3GetcQ/m55P1NfRl/X5F0ncRPoPWzc7zC+n1pPrmdnHytX1u5c8sSP8OS8g6g/Wf1z4CqwWeZt7t3JfWfuY/RfRp/D8D2avrO/5T0679N5r95QiJ9M3ORa9Ymf7Gv9HajdEHh+oI955svl5Cqv/mf9F6nP+1bRf/NZ8sR/J/dCV8M3O9/9sZ+8B8CX+8Uh+BsKJp7nHva8B7s8Of5H6i+ln0viV6+c9/n467yFvz0zH8m3u/VgKr5eNV+ewv+P1peh9H1w4i3Ifzv8r8au6WOfxHfFLxfso/2+7HWt/WhncsePsBf7/By/6/TL/foW6kfSyw/43xKdV9XXIt9Sco0ALygrwe7wvURfWX+3wkful3KflPul4bnvND71wdbw743ughIodxo8XZXnor+ZdWtjcK521+GnG/3vTf6b2ONxea+zb72l/2KwgnUu3x1Xo3cQ+bYhX86Fe8V/wPj9FPvSrw75t8Rf4qv6kqdC4trgyz3GRPpIvG8Hetmc/u4y7rPgba48A39nkWey8e2pfC76zZyrdgVvybu3+sfx0d84T834so8nrD/Hm1dPKl+L/luFe9/cA2eeb8r+7mJ3X1lv9iJv7GUv/MWeYj/bKCdurRjPdrhy7m9vMe6P4b924ga0e578Zxq/+M9P1+98evwI/v30+9n/F2YdwN/32Vfp7zvlHvj5i/zrwQ3gtujFHyv+WSfiJ9+jo+nlLvrePnEb5It/dY/wmflfVoKd8u5PDyuyTiR+Kf6vicPVbjP09zWfvgM3mG+JZzicPX6i/ebG+S/6yXk55+d78Jnz83D7anH/T/xM5nX8nYfG/4l+n9OvY+4T1W+qfmXWf7B5/PETz0zfPxiHA8pK8An1mc+Z5xfhJ/P9E+eN151DHlYur766eTEneQ3AF/NOoPwMOKKwX++EvzHojiNn/O+OMZ+q5Z6TfJ/if4HxqqCc+IepOZ/Q1xL4Fup/Kv13YH/dwczTvCfkPehY+PNOlPuBRvS6hjyfw3+F+i+N3w3s7w3tTqe/vO+MyHeV9ovpYQD7yflhpv/n/DDZfJyUdx3z7/TEH+Ivcf498f9g1hPtbwanwP9Bznm1/ylv7kcSH/YO/J+S+238J374N/9P3F3i8BJ/18v430g/xe/P8ujn3SxxEomPeC/vx9FP3vXKSnCU9fpGcCS4b87B6Oc7LXlC5rGPF3wX9IdvCnvcF//n6x8/6qL/dO7x40/3fe5f0J/LfnPObF04bxbjkxKXNB78in2Mg3c8/eYclfP8J/GjB//+Dsl7XPJO4Cv+S4vIez9YjLMcn3vBjHO+X/N+bX04gt772w9zH5j4igbobVlWgo/kfsV4fOn/p5Ez+Vj2g79dzvns+Pa8P+Gn6H/fUX0f9C9OPpWUG/6zHP/vhuBj5E98VvI8JC5rTd4vnHfmOgcdovw9+c+2rj1ufW0UP0HyTWMPzdnJxrEHfNxuPH/LO1/uu/H3vv67wpf3rbHKk+nj0vg7+n9X/b+D7wn6+z75HtTvnv1Uv3L2od/i/+d8fwLYOf7L6N2JvwGxf3I9C18/aF9N3GbiD9VPBU/HzyPG4xH0Y3ext1r6z4s/UtYP8+0gcrY3fqvZa33z7Gv8JV/N3fh7Gb2HjF/yryR+v5g/4yD416G/En/F+8dT2fXDyifFPwO9auwi79p/0mPeqeJvHz/8Y3K+IMdi/N7GDjsof4qPu5XjR5p78nfpL/lSEo9bvN95Df9nlJXg5omHs978WQLlvkDvafrZH74Ptb9L/6novao8Xf/cv7Qm9/25f7OfN44fb9Yj8sefJXlpivlqdvd9njwJLeFJvoRf0h/dfch1WuF+NOf7nPf3xf+j5Lsv71rWifX5Psj7MPk+yfqT+3723d28Go/vvek/8Rlrtfs265n6l+kn+RlOzb6AflPjn/PfCPyuzn6mf+b/GPtP8it1Yo+vgAPZ6ynwtzAe2UfGOR9m//jC/VqFvNsox/+uH/0cmfuw5ENR7q4+7zY5r+yf9xzlYnzqHfon38bb2u1K74fHfxv++fg9P3Ff5D8k6xF6rfJdTf7/ojdBv4etNy/rvzLvs+oTH/oZ/p61LrVxDzCzrASbq59Cv9Mjp3LelxoYj/V559FuN/QOz/18/MHoI+/ty+MXbp4s9P8fsj+WwN/xw/XYWfz3m2c+0E9/8l2i/Ah+l+c9Ubkh/ddCv7Z9p6Zy8n8U47nPSPxZzi85b/l/4oUuLyvBGebPv73TJp7xa/SS3yH5s2K3ed/Le1/yERXzlyXu/4bkd0B/sXkxOfFS+DsS38fjJ+8peT+5O+ewnNfRy/nlEO23zHcXfHvgP/608a9NvoIq8Z8l39aJSydn3reL+X2up8fEZ86Crym5+mv3Bn5eT5w3Ob7Cf/xAkncr+baSj2uB8s/w3p53ody/kP89620/sHa+3/K9lrxx7K4v+eJ/fZLz5jL9Z4J7JB4Rv0dFj8rJr7K39XMxu2qlXJ58yaPRxvjv4/x1R+LB4KtGX4mjSxzWaXlvoo8/4v/Gvmaoj/95/NHjf568L7mH6Z7x0P5e6/Fp+BxeWJ+/1++gxJXg45e8T9PTS4k/jR8S/hLX8Zv6LvSwF/6+jd8RfpJHLfGz4+xbM/U72Tr5NrqjjWvu69egd7v+yd/XmV6St68q+m/Bk+/YHRPfl3wPxvOExF+BO+F7L/1OQP8Q+Jqg38r63gLcA+yY9Y39XQYOBq+g72aJj4+fLr62o9/EDea+ohg/ONb8iZ9kj+yz+l+S+0XwO+2nabcX/B/iu2nOs8Yp/h/x+4gfyLtlJZj7z/g3tC3cfyY/WPKCfadf8oPl/NrD+XUr5ZxfW7GLcbnfgK8G/b9jPKsnXlB5Z/QTL5T4msQT3at9P/b8mnn7avzL1XfMfWzuPenvdPhq0utQcjdMPF7iG+OvmPwo+FtGX02tt8mL1V858T15n21IXznHf5D4U/y9nDyC7ON6+ttGOfN7vvFKvrA/1cefo7i/HEredfj+STnvMy8kPwr+FiV+D77yySdnXON3VFv7/RLfkPNe8ojh/1P7fRP85x0w73+PqB+Zd7/kw8v3vvHdHKwK1lNfD/28i/9Frm/oJ+/3+Z7P933ufzZYr0ZZpx6yzuZ7oZn+VZQrxj8KPNK82xdf7cB5+d7xXVAJ/lnK8/XPvdcbWR+Sj0n9X85dU7TbkPfaxJfl/FN4307+x/iHPwXOLviJ97Ne/gnvgewh/rzxq4y/a97pk18392TRS/QU/UyA/2VyvwQm3u1c9pz8BZXprUv0wx52MA4zwNxDr6DXb8BG8dOkz/XsMXF8J9k/E8e3wvoS/7Gl8a9JfHvixciV75rEd611/ppv3U0elXx/D8n6Ev8FdBbR38X6N2FHzcED8VvXvHvA+rpBuWJZCb4Hf87dOYcfir9ifsrkpTwo/v709Qy+i/lG836fd/t8t3xEnmH4SV61XYxnU/UzrYezwIZg/D2zL51DnkXJR4W/+dp/Fj/SxMWpL+bHSV6cSYk/Ikfya9RNHmn1r5O3N70cYf7Hj60DmHzNK8zP7C9HK8cPq+h/lXuB3BPkfqCJ+fsuvRf95xN/X5H8N+nfm76aGoe68N2I/ojcM8TeCt9z5yb/j3L8896m1+RdPVp9C/U/qm8Tvz/yz6e/S5N3LnFQmf/xPyzYSfLv5fzUIutL3jnKSnAr+J9Fd0vl59Tn/ib3NifD8yz4IPrzcs+S+O6MD/0uxv/P7Cn5T5JvNPEJFfBxbPy72EviOpeaz4nvTHx0/LXih5f34+SH2xqfbyQfYPwdjd808EfjOwz9TsmvGf/QxDcV/Nvi1/ZQ5mniY/RPvFTegb5WrhR9Gf/phfwH8W/Me2Pyk+Z9KfaVe9eG/j/W+Oe77C1wsHEaTP7kWY5dn47f5JtdjJ96+o1Xzn3xvfrNQbeP9f+E+CfiO/k98/2V/JsXoL8vfraBZww42Hgnj1PyN+2a/UX/5OOMXfWEP/FjiRtrpJz4savpL/HcifPO/pV89MlXMoIekv/wa/b0FbgzPKPopwa7WmVeVVPemhw5Tya/VBX7QfyD65I/3wULnB+S/3YX+/Vi/X5Hp0Lir+gtfhd3k+cY9ZvpPwacD8/W7Gk9/Vygf/xQ438a+07+l9h57Hs6ve9snb6OffQwr7dCZyZ4euK14c/7et7VO+f8rf4T9efrf27h++LC5BNL3kl81aXfxFd1M96P6j+Vfo5iLwvp/RjlMVm/4T/deBbvr+9MHHveG9BLfEIP/bvh6w7rZPJXbm3de6bgj5z3iE/1nwn/bsr99W+fvHLsK3HGyd83BL6O8P1Bn7Pgix3kne3nxDfgfyx7q6T9BYmHyPjk3Qj/yacxWf24fPfn3UW5bt5zlSfRywDr2CbkyX3sJHxfir86WU/YWfxR46c6iH4akmvPshJ8UH3ye/xuvu6Czv3mY+JH25s3A+J3af68Gf8T+t+BPPPo4xz8vBv/Ef2rq++U+FL7S/JsfG0/XVqIP028afzmX0f/cuVt6WMKff6K/3XKp/lOq8fe+uPj5+T1gW8YfW1t/Jt6D45/XPzljkn8BPzTrI+H2D+SD2EOurPBkfT/Sb7frRf709NNJfD3PdVj+Ilf7Q2Zz+q/Q/e1+BVYhxbhP3kvTsy7efzljU9ddneH8amnnPNjD+M9iB3sn/wixuOgjEfiZtFJfN8Z6CVvbNuyEkx+rdzn555/SCF+sTK9dSdv8oQ0wP8V9qsxuf9Xzn3lePZcDb3F8YeAP9//+e6vjs4c/L9IHxfTaz9wy9ynFM6vxyZOOvsku36F3bWjr+QnrAFfNbA6mPNK8s3H7vM7CMPQ/1F94l6TX/gm8k9U3iXvB/RThn7ur4r5z5JvMPmID0l8tvbXlZXgmfipjv4eme/ql2V+F/zs7sz3Vdbz+IHkfjb2Y37kdxSS9yP+12PjF2Wcs67GH/Oi7HfkyH7aBZ5x5kf8r5IPM35Y8f+I30dX+OL/USvfZ+Zh7jtyv3FG7ivppy985+V+Gv3ks0je3A6F+JZNlHPPX1//KzN/2Fnzwn3Vb+bjlcZvWPL40O8hiUuivyfxeT38yVeT+M3ksxkU/2v8FX+nJf4FsbecryeTv2fiJOHL78bsjc928OT8nPNyzs83/8v5dHnhnPo7/EX/wOSPqJrflWKf54FZ5+ZaV19J3H4hv1X8i5L/Jfmfkw+6Bf0mvmJH9pr8gW8Wfg8nv4/TOP7z9Pqc+rxX5f10Qd4PlFejX9v4npnv3uQvSRx7/CuV39Mv99hD1B9NH+39P/HEf//+Q+Ki0dvHuH6s/JP5sQqcCd7PnhM/mO+E4vdB/N5vxF/84Y/S/yV8NS8rwf3Jc03mF/13ca7toH3ylybePf5M0+IXj/8FWeeTPzTnbPqJv0h39OIfnt8n2gY/iQfI77TsbTyTX//f8oS1Zc814L+LPY5I/ohCfMlv8WPB78H02znvK/RbKfE15nf8WpPHspb6D+D/EGxlncg7Q/wy1+RdzPjET/Ph2Kty8rQlvi3xiIlPfCm/N5HzdN41Cnl6D2R/m5i/HbPvKed3Fh5PXGNZCeZ3XpIfv6PyUPUf5RyBv+Qfze9GLNRuv/h76f9j9l/8fYN+vlfiP/M2PeyY98P4L8F7rXNE8qfUdN5cbhxHs5dzkv/DeMZfsJgfo6X1pgV4uHGcnDyS5Eo+uBW5P8x7dPJugLk3D/63cn9QvyAH/g8x3+/2nXFw4v/o63T6jV/xQnJtDU9HfA/Tvyk4O/l4Cnmb4v/cmH4vgm/3vJ/F/yHv8ez/VvPqsNzfZ3+j90753SHlzI//+X/1rAPmR75PRhq/0/4lPqt6zqdgQ3ADPvL7asX9Mff/y/H/knF9UTl+7psp11NO/F1Z/G6s5xWMywxy/A9/2QeXKHfCR0Pr23Dj9yL80wv3BcnrnPwqyfec/Cr5/j8xebTJ3zn+c4nPsY63AveO/2riksmT3wnK7wPl9/n+R+/L8ZPf64vfyzJ4nqeHq+Db2bqZPIxNC++z9+Z3VcDjC3mu4geZfFw98ZH3h+Rt2wjMe3fet9vR7+vkSj6S2vo/pJy4sG/jN6H+Ot9PV4KT4J+m3SD8HpLzLTmqoPdX4puUu5j/v9D/V75/8vtbfegp+WFG5D22rARn0PdQ9Vmf6+E3ebaSH/gj7XMvU/x9kXwf5bso30mJg52S93/jlbiL6fj/kF6a5/uMHT6b+Bj2d6V1KN9x+X5LvMFU8LbEw+C3Kv19nn0ATLzsshL4O79l8l1mfc94bVdWghm3ReQYmXc3+n8bv/EznEg/1eBfrpz8asl/nrznv6Gb/Oe32I8mgsmL2i/+E/TUMudy/etol3fJj/CTd8mb6e8w6+MM8APwwrwz4/ta/c/QP/6jub/Jvc0c7b4B8x2X/NCJtxmT/ClZr7R/IPfrynfFP0L/GcmfrJzfBd3JulWRPT1EL02M3xXmRfH3N/L9G/+HKckzov6bQj6axIUmv3380Q7LO6D1qTz+q9P/B+ZB/HFOhCfxh3mHzO/4bK++I3nzexvJ0zE65wDrcX6HdSOwMnuI/qK3rCujybfSevsVeBv+kz8+9zPJnxk/jfhnNHI/t5DdDCf3QPqql/gq/MaPNPdL8U9uDt+byV+SeHLyPhT/cfOrLf3XR/cj62Zd8ym/D7kfu0i+8OQPT36Ru/GzxPg/jv/96WdT45s89LXB5KF/FX+vk++wrH/k6+u8mLzMxXzNuVfOffIH8S8m/0bsqiI5NjcOiQdN/unkoall3iYPzV8Zv8RN5xym/l3z4Wj6Wwtf8mfmu2m0fqvp9wD85T0k7yO3s7O8j9xK38PIfYvyOHiTPzx5w+vn3h797L9b0Vf23+T/Wu57I/H5rZSHlZXgPub/aPy1hP9V4z8I3eON6yzlx+Inhc+f8v1b8CfN90z20YnoZj9NXuF89z+f+An0Ey+W3+kbYrzz+3ybovcKvGPImTi0Bvi+0ry9Gsx91yuFeODkZ8n9c3NyJW9P27xH4y/xKJvme448i5K/wfjk947zO8j5/e8G6u9G70F6ze+jbEu+R/HRMvd19Jdxe5Q8p+HvXvWNE1ePfuIS6sG/ZfzT2O1a8Db0zoRvJL7LoZf8DPWUW+A/97T5/ZD4b3ySewrtF5K/+LsQuSf4Pe8PziuVwMqF74X8/kDikxKvNEn/na2/e9Lb1dbDA8iT/MHDydscX/l9wRPY3UHmfzX2cwx+R4LF+5fEj93JXvP9cFfyBSSvIfuMn9wnyvGXK29+trBuVbd/L8Fv54J/cBcw/sX5fsm75Tv0nffL5MXcAd8XlkC5AfB38P/4YeddoSZ5G+U+Ku9s9Bb/4Ph1P5N49qJ/N31MTp4P5ZzHk091Vu6N6G0u2NC4Jm/lk9oPQ69c3X+2H2S+tUY/ft214ndmfUvc8f8BQqqCZ3icdd159NfT9j/wT1RooOHSRD6ROTQgMkXGm4riVlSkQaZCGZqIIpGiRFFRpK6rQYlS5mSeKddMyBxlupm+a/3ej6e1eq31+/yz13mfc/Z09jmvc/bZ+3ymNCz7f38bykuwR4MSnL5TCX5UowSX7VCC52xZghMaleAfdUtwqvqL4FuyYwmep/25YO9aJXigdtXRqw/fNduX4Grl1+E/r752+Gyzq/bVS3CR33fC78G7lOAwfH2Jn407l+Ag/XffqgQvruJ38BLy19J/EX5b46dM/ZfKh6A3BN+94Z+Kn9/QnVuvBJs3LsFryT8cf4PU/6T8m/Kn5P8NPy+Ttwp9bYu/L+rgF/7/YvejCiV4qP7z1HeqVIKdq5bgh/htD98ydHvg/xDy/Ue5D/4WatcSX63J/5Vxf79mCX6tfDu5v9i2BBdXLMFJ25XgfvRbHR8d0f0FvT7qt0L3THQHqq+Kv9n0caDft0b3bXD5ZiXY7R8l+M/NldF9Er/t8N8CH8fR3530OgRcQr+D9F9crQS7squO7PUm49uB/TyNn38rL1D/H/bZYOsSrA9+j87j+N8G3+uU79H/euN7A/gsOg2Mz7fwdYJvoH7Ly0vwZ/qbRn918HeM9u/pf6X2XdnRNPOhg/5N0L2YXjrQ4ytl+IVvtPZf6n/JFiV4vHH+vOKmfB6Or1/Zwwp4rjY+H1hvOm9Tgj3Z9w/of8He+oOr2GMFeDqD52l/MD7GoFdf+Tp6uZB896l/oc6mfE1ptCl/7ctLsBNYG77f2e/37KY2u/kH2Bb+PSuXYEf63UP5T3Rm09MicEt28jL8jfFXVf/jtfsn++imfhu/72+92YD/yfrdYxwO1e5Z+D8zL24FXzWeu9DTefRWWb/xfl+Z9dV4/2z+XWc+vYKPb+hjKDgEXKx/N/ydVV6CJ5oHXfE3FV9XgW3wc5r+z5GrO3oT2OWZ9HOPdaM/+FTtEtwafL+gn+bk/A4/k9llLXxPUR6Ezub6DWQ/q/Wfqr4pfVxLb82V9zX+bfR/C71x1of1xu9V9lIbn7P1H43ez+bPGOtgHe0/VF+RPk+hn82Uq9Lf9vh9Ff0/9FtH/0+Yd5PMu2bKP5LnO/1HkWet9fBn8vc1n89GdzF+b0TnG3LtBk/WgRrk78e+zgbXottDfQN89TO+y43rLeQZR183gPPM1wPQ/57+9zaP3qWXl/A/wnxfRr4y/Q6in176j8P/vuCj+FvKbjaCj4BXw5PvV3N6y3cs36+67OFc9t8d/snke898bUuvW8LXA/4/6G0N+Am4XP2n9F+FfIeS99/Kj9DLHubdaO17sqeP1Lf2+z767W7+vQ7fW/geoX3s63j8DCB3VfyfpP5i+l1j3HvqfyP97KLcjjxnl5dgJ/2X4HsJfsvx+TA+x6iPHY7S/034H9KuIXzXwbOEfdQzLqtK4O916Hr9BhufIeBl4Cz6mE/uO32Xy/XfHb3e9HcDvv6d7wj8XejrQeM/CuyV/Z/5Osg8eUz5K3q9T/uF7K8y/CeTfyr93I7+9WAX+Oex59bGpxO8FfCX9bsZOz5TeUH2C+b75eTOepL1Y6T1LOePVdEH+3oNv0fo9yf6D+HztswD9avVryPfA+zvbvIsUu6uvgx/Y6wbI+n7WPL2p5974T8Cf1tZR2qoz3yfjP5F+L9Cv2PQm6h9vl9r7N+yjyvu34bi9yn6G6J8J31tQT/N8Dsk++zyEjyVmIvA4X7vj5/K+Pkx+yp0aqk/kF2tB29EtzX53835CZ671N9L36fQ50J2uKP58D/8/oXfs/WbiP4M/Wub/3PwPU59f/X19Psav9kH9qTfLX2X7sv+Rfsz8X8Kve8M/2x6eEb/5uyiGbiL+TAz9oNecd81L+db7e+H91jtMr6Xsv8J7Oc25UXqZ7GH6ex0JTkq01/Or2vg/Zq+/oW/Eebl6dqvVx6hfXv6/IM++peX4J+xV9/dG7U/3fe3gvpt0Gus/xByTlT/G3n2Zgcb9L8M3d74+o/2O6BzE/0Nhn+x9n2zPmY/bb15Xf0JJVB2ifo7jNu++DiIPutqvzP7y3dhnt/r5Htgvg0DR8L3CXlH2P8cb3xuMT57GL9y9rFC+6bwv0C+p8k3WPtD1f9HfX3yPYG/humf+Yef/4Jfgp3xH/1Fr631v5e+Bxmvy/H5jvrK6I9mLxWcW5YqXwhfR/gfNI4/0mdT9Pegl6yfLbSbbB7WJN9zJVD2L3ByvpPw7anfr/BcSF/98V8V/8+aRwei/7Hf96Svx/K9UH+t+bkd+6wbf4P29+BvItiC/P/OOml+LMRfN7/vhr/M/wvp4QPrTdaBL7Rfhl5Demmn/1/4/ba8BNuT9yz1d9B/R7/3z7mcfLWs20+bd0fg9yj4hts3n5FzHT77kWcbeHtpfzh97sA+9jevLrC/uBA8T/t2+KuIn77kmaB8QQmULSD3jvB3Y5+L9P8JP03ZQ9anHcznKeZhQ+Wq9NCDPL8rX0vPt9Ff1vuTrCuN8HUz+brjpz+6b8KT/e4v+jcgb1t4hqDzHf1sm++D+fm58rf619D+Zv2bot9B+4fY30bwY/TuYq/bWXc6s6fR5OiC79v83oM8O6P3I3pn0+9Jfl9AP+3Yz0HqO9tfTlHf3XhWwc892s1Rf6f+V+m3L9hXu+3ZXU39l9LHZcZ3jfH7BHwaPB3dF8iX/dEG9tKVPZ3FHvuCZ4Mr6edUevvOPmEpeD38u8GXc99N6BxATy3j9wWn02f8A5/HX42fn3L+Mr43w7eF+sbodtH/A+tHJXgPsX78QD9b42901nF8ZjyOiP8o+wv9fsn+MvrCf9F/9xn7nQKeo132J5ubb/PRvyh+dv3HGK9rwafM0znq+yg3Mw69lP8ixwT6G0qeK+mhL/2fxL5uBZ/Exw/632j+bPD7BnSejf/Ceni+9XFb5eHG56HIi/7O+Mn9RjVyvWSceuPvPPxVgW8m/C3pt1P2B+qHga+bz8PQfRTfu+q3Vb7T6u9mz7PA6dp9bhy+Nj77428L9nNh/E3srwb5bvP7R+zxpviNybNM+7r0syt+9kfvS3gaqp+Lr2/1u0/5He1P0n+E+vfZ407ofap+JLy5RzoDfzlfdnTufp18OWd+UW9TPo+mt5non01fe8J3Bf7uxn/NnD/iH8LnwHxH1J9vnP4Tu8XvhX6fic6h+Gib9ZF99tPvZuWe8FfQPue7tfBepv6A+E3I8wN+DsD/cvPiYetuD/yfg36+703R+UD9cvz8Cv/L5mt1drp/8LOrivgufm/LjUtFeB5nTyPIMQ7de5Q/INco8mzHfrsa1zrKP+Gnjt+boXuM8jPwrPK97AWOBs9F7030l9PDIOWx6J/BHibF76L8Gj3tSK9N6Tn++JwHHzfvt4T3Zfqry55Ww3Oa8pTcY+A//olPfJcOo+f4J3bB99LcF6PbyfgshS/79NvZYfbrVekj8h+D7AR43tG/r/o/9R9WXoJTjX8rcj9jvp2iPn7ri+itonPUPO1PyPoR/wX8t5In69vPfi/L/sn49MTXCPjawTc384H9rQfjl29BP2fQS/QWPUZ/z7CnNvT/Ue7R4W9E3h3IuxKfN+d+in4agPXA1ez3BHh30b+t8k6pR+/CnEvAdWmPXh/6OxM/X5CzGr0cqf5E8u5u/n+Y8yk93qX+d/jrqY9fMvfwm+vfTP2x6Gbf/wL69fC3vfJfub+kn/Xs4T3z4Eflx+G/37jVVt/B/uAwfFQxv2qbn2eA56DbDb1f9J+Dz4fptxL7n1QCZYO1+wn9Rfp/SC/d6aEyeeYmfgI/exm/B/VvqP+28A5Ff5vyEnwF3grw3MYO92Rf0W/0enT2vejPQLeZfmXwtI9/OfcT5D0eH+Pxd5Bz/VfwN9J/K/U1td8e3ZNz36v+WXS/ynxTf2Luj9nVuMSlkCf++WPJ/6PfNyTuJOe/QtzHe+rfBz/x+yJ08n08V/0c5/W38dmMfMeyv6Xm07Z+P9XvM/H/hPqnwGt9f5pYH1ah3yD+CXjK8LGG/b7h90+Um9NX8X4y95LxIy6ts+nv+b6k/lPkPtP/TuUjyduLXm7Sf/fEPeif++t32G0LcLzxjn8kfpGN8U/Q0+5Zf+A/Cr3vjd851uux9LleuxuUE99yuXU+8S3d6Df+g8H6TQc/AWuZv31LoGxDID09aT2pic7H7PkGfJ8Ff/yHH+p3Kf0M1W9F7sW1743+eHo5ij6ucr64FP+/2BdcTq4nlDeQfzv200v/xEt9pf4l43F7/JfK3ySeCt+vZj/ADkbAd6Lz9RH4TVzVh+Ct5Dsdf/9C/2P1f5A394hFP9ME+r8CXAN+Dt+12l+Cv3Pgm6T8pfIb9BB/SLPsj/0e/8NI8tZGfxx5b2Zvf2r/vvLqEihbnntE5Vb5TpLrw8L61E7/7trfEj6DD5/xXyc+Kn7W+LMrofNN/O/onUS+p+JPAWezj07kzP5tvfKpyjXYV8Z7WO75449gv3+hVzyftUI//qKz8L+f8c/90icFf0v8McPUx39+vnLsMvFv99Nbzo9/4Cfnx7bknuG7XgmexOfdx95nq//T+jkHnpfp4wxy1fR7eeJE0g+etuR9Cp8z8dcs99r5/ivnu9dK++L37yfrVr6vZ1ovTyTfQfj50rjMgOdN+uhn/fgI3XfsX243XhmPm/Vby+4Wwj9IvzfKS/Be9K7L/lS/d3M/BN+r6hNPVh3eauDzWQ+Mz534v519Pod+4gJWJW4DTHzAeuvPOvAHsBa+H6f/zvE3w1eJfvfBX0O/VyDHIfT3id+3VX4g5yvjcRH8iSM9Dd3f1b+deEH02sB3fr7v7P3LxN0a3+7l+KaPl8CZ4Ef4uQa/j8R+yNOJfispL4bvDb8fnv2v/e3z5LoejB+jSvSm/XX4Pwz/je1/Xi7ESa7FX+ZP7Dv7vdj3bPT3RvdRcL3+p6F3Rc5v8HVQP5c99YT/KfpuDn8T7bfQv4n5lfEpns8eK5x3d9J/Lb73xk/8f/dq3wTd6Cn6iX/1razX6a88w3oTP8jmfh+f+136iB3ugV7s8XTyTMp6g9+m8ByQ+CL916s/XX039ZUSt6ndMvP3ee3bkO9idC7W/279b9I/8TzPlJdgvs+Jd22jfr7+h8H7KLgXehfpv7N+Xcg7A77r8fctfNmHZv85Bv4n6e9f+JvP3mbC95v++yVejPxj6f9S9vxp4naU/4d+4ocSd36C/okXuK3g346/O/7tVsb/EPBR6/388hJMfObp8O5EvtNyf5H4Ku23oIeX1EefB5O/ce4R8HtVzq/WhcSHrsNf4uoST5txOl/9OvqYib/blT9CZyfr2jL71s99L8/H30rr/0L9qynfgb83yZP4if/6/Rbjs6318yv8LVXujL9P6ft5cIBxjP+jAX0fCu7r+zEB/lnwXU+ez/D53E6b8jcc/d0K/I0n9zz7g6nOK9OyXvj9Lf3XOf8thKeK/lnXpuIz61v8i/ErvpzzBf5yn7qscN/6lP6vOL8M1S9x4r+Vl2A9dlkHrAvmfu8K43sleEbOr4lvZJ9/wncKOluqfyz3c/r/zzj9io+3tEs85NWJq6Df7+jzcnIl3vMg9HLe+gH8MecI+rgcf1+x89yvngx/U/6LZb5zI8Glxiv5L8l3Sf5L7h/epa/Y1xr1X9P/Sfx/Dch9oPEegv7n5GqV9dZ4NtE/56ecl0bnu42/i7TfNec3ej1D+b+Jf/Z7BzD3rGPgz3c2ceYt8POi79s08u1GP7mfmqN/4iqvpt/O6rcwXovRGwD/1donv6CXfokzXpr4N/rtxY56g/uwk57sMfez/Qr3s3PINUH7rvC3y3xMvgZ+n1dfKftn8l6O7lz2+IB2rX1/fvfdqWH/lvvwucZ/C+O/Vv/c78zQ/gLy31LIn8n57Fftj9bu8sRv5l4Bvfbkvy37d/iyP24LT1f4c9/ze+Jbwdz/PGU+/QVeDD6ITmv43ybH9eAl8Dxu/RtkHNuzp+wzRxmfw9nFC+xzMfu7Hr2zwfvAEdbtDuTZCDYFH879bAmU3Q/OADMviveFO+LrNfLHzu7D34HWg2/pt0e1Tfntqt1r6P+WfbffH2Ana+NvYBd/x5eQvx/8R8TfmvtufM/OPtT8yn3FQOvLZO3bGKfMt8y/L/TPuesk7ZfBX0v9wfSznH4amzeT0KtcmFe7g5lfHcibPIKN+OtLv8NKoOxOctcwvl3wM5v9/MO4zFLeP/GN2b/m/gU/r+CjM/zXJR8Enm76n2V+nojPMvPpZv0vY2fJpxqifDT+DzSfH8y9UCG/7HD0vk/8kvlxauI7rF8Hs6NvjdfuxuVc+p9oXFYkDge+5jn3Z94kzgh/D5BvJLnOQqeCfn/ir7/yu4m/p6+eJVA2D2yAzpbxR9DHEfQ3BJ74d59E9ylwZ/wcgv+x1tfdfIcXKw+gny70ca/+tfA/Fp0q9Lk3eslDOF3/yfm+lZfgrvpNVn+Z9Wg6mPyWcfTXD766fm+RfM3cz5jfK8Cp9JC4/OSRVdY++WZ7x/6NVxd8PsaOX8z9Anxn6pf8ip3o7xf1ozLPCvGEbawPO+N/lv158nvy/cr3Kt+vO9TvVndTOao22pT/ysYl8fE3sodT1CfefQD6iTfsD99Y43lj4s6Ucz97Ln466p848sSPZ/+ZuO96+iX+e6T1ZD54N35ng1n/tyXnS/g91fx9jl6mJJ9Xu83QT/ztHfolDjfxt8m7+C7fu0L+xbvkKo+dwL8v+l8nviX+Xnhuyv2Z8ZuLv1ns4Gf4HtT/IXAKfg+DJ+tM8rMe1S75FcX4tRn0nP36DdavjTm3J08FvrG+by+wwzPtA/ron/iN5A8emXiSnPfUx2+duIP4r9smr1X73Afl/mcpe18Cns4+tyBf9Bt+o98j6G+q9Sr34afBMxX/R+g/M/Eq6H+U80zsE9/xo+Z+ZnUhnj7rzEHqN7CXfD+TL9U8+0Pz5Wzjcqv9SSvyx74Pw+c5+sW+u8b/mfsH+F/I/a/v7cP6rbROnpL7AP13wV/i+WviP/FHuV+9uxCHtJ4+N2R8Et+W84X9wgD8vVOITz+a3BcmLyN5ZvHfoD+/cK9dn36u8nvyft9Df/fk+aFXN/sL5TEFe0jeYPIIYy+JV0/8ZuI531aO/61+4rf8fhvYkj4Tr5W8nC+NX/H+41D2mnuQg/S/JPe18CT+eaH1tL3fL4VvhfF7QDl5O83o+0z927HPw41T5tn0fN/QP4t8q/Cf+LsX8Zv8qfa5X4+d0OdX1o0vlXM/+RG6LcnXWf1Nyu3hn2cf8Tv73Q3/x2n/TzD5qDmvxn8Zf2W+Zy/qX9H6+7V191Iw8z/xlq3JnzjM9bnnw18LfFWxfu6FfvxIc8hzjvZD6Tf3m/O1f0v73G+OsO6Op99x4Hn6VyTPg4nLBHP/+gu97ZF9n/X8ocQXKm8GloEnJ14m/gz940+fz74S93tSuf7oJr75POv7KznHs6ehiUNQjt8g9OI/qI6fR3Mfyr4e0/4rv99Iv2tz/4C/+GtOiP+b/l+NPwZ/5crPwL9j4iuMZx12sabqpvz/BX958tGSf8J+7k28KPp/v5+h/5oSKNumEIf0pHbJL3wg9+P425p+toI3cROXaJfzRVvlweqnJ67Y+J+tvl/uQfF/pXa7oVfT78U8v3bscYDxvT9xRol/0H9Gud+NS28w55UlhXNM/D8Xq/87jyH5k/Fzq38f/tlZ5/BxqH7HkSfnjtHo35D70+RnWD92138zdDqqf4KcF9BfA3wX86ySn7Yz+52Lzlj6uoB+PsTfYnwn3jzx5evN3zr617c/mFiI99xb/9yXJf8y72uMyDm78L5G8lH3zX0sPMlXTdx94u1Pxe876s+zv+gPfmUdPAf9vehnJTzfJA84+1P63I7cs+HvkfxI8y3x0dPoL/kFR2t/LDoL8T80/gX6+qd9Y/E+Pfm9S/H3YCFffmIJ/B1PlHijx+mjSSG/bS/lfF/6GP+dyZn4p8RD1Uk8F/nr4if5yb3Rb5Jzr3Ly/z4g3xvZp6PfCJ1dlPP+zNXxL+Z+jf7Oyv2Efj8Yv/l5T8HvE/NeA/vNetAh+SOJ2078vPrE/+S+MfE/vazHhxvnFon3hifvMcwyHkPYd95rqJ345cxDco3L/Qz62Zf0yP2K+onW7+T5TrMfSn7vOvSfy7m0vASvzv0A/U1MPkHhfnIkfd+YdzsSDwX/keRJ/mnuAZN/OtD5YiPYjJ/lU+36ol8x8eTwZT+duLaX2GfuW7ZFb5b14HTw2MQj4e9R47OndXFi7hHVP5b8SPhzD7sf/Uz03Ux+S/JaKqC/PbtcZdxfh//O5MeSL/7N5codlWvRx6LE19LT9/BnXWitPMV4ToM/fuj4peOvvsLvg41X1v98Dy5Lfg19d2N3R6CX/Our9KtAHz/j/5jcH5lPeWfpVuV6uT/Fz4IS+Dv/9+HEWbHX5NO/yd4W4a+b8qngaWDb+Hfxm/iPxBskvmCI9peBg8Ga5F1OT03Mn674S/xM8vGTp79FeQnm/v0Y9pZ96yzyPgL/1/AuAReil/Nc3stL3uJuOfejP9D4nKzdX/Gbka8hfDuAbYxD8nWSv9KokMeS/JX5zh1512qBct4buZo9VmWnE5VHwdPP/BgQv6d50jr5rdanF41zRzDnvU+s/5+C1dFPXNOe5E+eYvITn6a/Jb7Xucf4A/zOeF3H/hPH8Au87dnz/+itAr5yX5376Zz355FjdfyJ8Ncx/6/w+yj4h5C/M7rrtV9AT1XVX8Zee2d/le8s/UxRn/vf3PvuiP/sHxfgt4b2iY9J3PZBfr8Vf9XQ/zx5w4lrh38F+0s+avYdibNMfOVi8yn3cQ+AtyQOuPBeX97vS/xZ/MPxC3fXP/7hyPdI7kn1y/44730l/6pl9mv6N9P/SPrNub+3/tlPr8HvKeisoYfEJyYeMf7WxAfdgf9dfWfWGb+hWT9LoOx58+Y95bPjvy/E366HP/G3N5tPb4aP+Ffzrhx+W6JbybxI/Od8dr0ifj923D7v98E/BxwKf855/8VP9vnTEr9TXoKLzNdbzKO/37tBP/nvQ8n5R8H/0yD5PPAV78cTt/mo35M/UF6Il74g74vibyo68ftOxF/8vvXyfg+9Jj47/ozgL76/MtI6mndYXsFP4pjyXtNeiStBv27y4XIvr/7HnN/wf2TyL+LHhy9xinvF75D7Gf1z/5j7yPgX9kk8XPJz0In/sbn65D0kD2Iz9JM/l/zXfB8/y/si+mU9zfraXfmLvDdi3tejjwV5L5L9NPH7YPuo7+j/luRLo/tQGb6S388u3854JU4z8VXs+nn0erDvVfh/0e/JP32JvAtzfqGf4bEPes/+e6X2J8NzOLtI/vwh6MV/NdA60Rufud/OvfZj5Mz99vqCX/rIgn96qv6Jq0lcQe5HH4h/RfvEI8/N95d9v1/Iz1yDn8TXnp91Fkx8eh/030z8KLyHJj+I/FONwwjlX9VfafyTN/eLeZZ8ugaF+8GvlVsljwr93JvlniH3C3lfIe9V5J2FvK+Q9WNlznflJXhK/C/ofWccuhi/xvjfIXFtiW/NeMBfQ/nYvO8G/xX6P4PvzfTPOx2b5x0PMHG7L1vPk798jP4nJn459xH5vuM778XGX5T4yPHJD03cjXmaePJa8aPlXRz8J76lk3X1gbzvxX5in/XI30a/e9BNfEDeRcx7NMX3EafkvA/2YB+t4F+dfH96mh5/EjrXkG80WMy/nFbIV897QvHP5F2ZvCeT+Jr7E69PL9XUX6f8dPJX7UfjB9664A/+hDwHGtch4AnZj8D3XuLBYyf0/1ry7tRX028Z/bZyLu6TeHjnlcbqi/EUibPI+4B/5+cX7CDvdLyhXEX5KvjyTuUK+h2SOCX6/1T7Y+Lfhae6/tfk/s34fkZfuc/LPd7M7P+tH1VyToTnJ/JsnXWPPR4E/7TEhyY+QDnxIVvDtw3YHd3E49xq/Fobt+m5L9Q/75Lk3d685/uu+tu1nwomnvdycmd925L8OX88j/9HzJejzKNDEk+V/RO9rNN/QWE/eGPyUthHzvs537+S+xXfh7zTmv15H3p9spxcxvEv8+cR5bwXkfckNs/32Xk55+c+hfPzA/YDy+PHMU7J11gDf94DORc/o/RfV/CvjwV3oP+8X34pPa1H7+rkBZg/Hcybp5X3gqdu8ioS36VdReX55PpU+565f6WffK/z/U58YObje/iK329O4nOM78PGZzv70ivo6Zesh+TJ++CT8/43/o5DL3FviYNL/Fv8q8/iP37W+FdbKk9IXnne3zHeA+jjZ3zvhO+83/F1/E3qHyLHj/h7Jf5zcua9wUb0c0fiN/B3NLyJr74WvjuNw+3w1dc+71Vci6/kyVeLf1z5Vv27gA2Th0revJ+UeP3kESRu+aSsn4X45V7oP6L+vviR0v//U593kA4jX1N8bGb9SD5WLf03Ju7eeOb/AJxpPbgTnjbW01/yHgN8zyRuSPmyxFfhJ+/2v6hf9cRrop/4qP20yz46cUvJQx9oHFYZx7l5V0m/vOtybr7/6L2g/n3yPQlPRev5w+T91fj/TL/xq+U91rzPehj8D/s9foP4EeI/SDzhJdrlu5F7hHuTb53vWvKwEz9lfuSd58nWlybk/D75N3n/Sru8g3IA+2oJtkj8ec7D9Fsr8SR+bxz/XOIX8VudfQ4zvmfpX934jKWHXvrXps/tfIfaWq+2o6dW/Ia/wXs32Ij8L+if9zu60E939C/KviD5BLkHKSdv3pMEEy+Z+MjFeQ+VfGfC84P6segfD99G+9ntk19sfC/KO8jq8386cr+7lf4rjduT9B3/SmXwmhIoe5r+NppXbRPHA89miYcq+E/jN018zJjEuZM7ecCTtLtefRtyv5zvMfqvwv8x/G8kjgYfq8j3Vt6FzPig86z6FxM3B85gZ7taTz63D0weaeSsjd6uyveDL+f8oX/OIy2cTzok/qTgH/qcfMnvLd7XLKenrenn7RL4ex/bTTn72dHorzQ+91on3yq8L7Bb4lLpKe9XrsXvDrmfhq9Z7NH4XIO/V/P+GfxtrA+DzdNXcu4t+DfXk7O4PlW2v1mE77uS/67+QvqIfzP+zvg3i//XIXl8yd8bCn8N+hmsPAqe+C1zL1vcP7S2Hpzou94hcTzWjbxHk3dqjqHPU9Dfkl66ml+LE4eM7v7qryj8X4C+6E+C966Cv+kL5byblXe0+lkvauo/nv6r5l1E8q0yjo2Md+4JdjBuj+mf+Zv/y9Cw3qb87QD/Ndp9lfg04zCBXOeRs2n2h/STuJnEy9RMHrf69/E33Dr3B/tI/vBm8N+N7tHoXIm/qSXwd/5o8f99tC2831ZBfd5xi385fuW8bxP/ct6by7liafxsxvEa9ckryTtGeb8ofudGiYcwTvFD532HvOswKnGw1o9m7Prp7LOUX0g+TQmUzSLfAvImDi5xIScnHgG/deBPvFfe0z0OHyPxO8f+5XH1c9ljZfjWsKsPjFfOdfHvDzGuySftmf+npP/25Noc3Aw8Dd/JD9gG/m3gaZnvP/2VlZdA3jd/hP7fSBxJ/LXkjf9hRdZz34fT8DsFfzXM67y3nXe4b1Ef+xyd9+uUB8L/HHp5f39vsDX9PlN4H7Ed/U9KfCp6i8D+xnVJ9kvsKe/S5p3a5K9uKLzblnP4tOSXmX/xF+XecA/8532LSfgcn3sYcCW52xXsLvlFLaynbxjP5sqJ57yNfmuD89jX9/Q0nnyvJz+Efn7LPtz3+77Ey2uf9bFv9Bu/QeJks7+zX/wfvD/n/dDMl/irwOHkXKs+7yKN1P9z9D7Le1+F/X329bk/X6H9zKwbeX9Vu5vpv0Lyb8Ht1Of/6+Q+OvfUS/M+BLs+0Pcj8Qa5R7kv++Hcw/ru5f2yR9nPkcqJcx1Df7nXeRvdVfh5XH3eOR/LrvLeWBf1yZ+6gN6TR5X8qccK7xM9V16CeZ9obr7n9P1n/NHo5rya/UnOrXWT34f/geAbxmNt4iOUL9f/J/zk/bq8NzEg8fWJr809TRm87HuI8lHw5/yZ/c6EvIO666b0q5E77+mF/kb1iXdIHMQRynmfIH73re0fGuY9iMSFwr+BnCckv978uC5xG+TL/WH8vwPg+xU/99PvbeZnQ/M67/0vTlyY9Tb+tCrwz6OfP+G7Mv+nL/cL+Q7Q6yXspon5mf9zMDHfd+0Pwmf9nL/I9xz+xvmevUL/eU8l+Uuz8VkfnmH4id+qVexbfRX675K4V/Qaku8fef8p6wf8VyX/M/GM8CdOL/F5K/O+J3s4FZ399b+j4F+eXvAvv5D3aOgv9/vbwPdu7ve1vxTfyS+YWQJlfcBi/viL1s194t9Xnk7/N+H/fONTn3zT8Z/3ik6H9w76Olh99vPxD94NZn9fnTyHscPka3wIb/Ij/6m8D/qLlW9J/DB7+I1+d1TOe7yJa0q8U/ITEnee/UzymxMflPctmsOTdy7yvkUL9nICOzsJP48n/1j9/uSspLxf8hniFy0vwfgre6E/rnA/n7ie3M8X18f98k4wea7M951d7YFu7t/jX9q54GeKf2k1eQaBC/SfYHzznsYy/J8KJj80/2/u45wf0c35fPfklxv3/H/BJeTvZD36wrgdSH9zMl/A2FXR3rI/yv99zH4s/w/yBPK2y7nI73lfPu9LX1jwUz+Kv0HmZ+JtivMz8YHJT0184Os5n6tfUnhfdrz65B8cbJ06QTn5B2PJ1Qf9lsYn9/db4Sfvoo6xnzzSeEzh1x8IPgu+5zv0J3qvw18JnuF5/wXfP9DrXvluqT86+YaF962Oo5/i/1/M/128V/1w/O9V+P94s8pLMPu35KXlfZbEQeb9u8Q75f27J/K+knkxDLyTHcb/e3Xh//2t9z2sBt/d+GmMv/H5/yPkzbuGv2b9N97n0VNN9l4D3Bv+hfrnfau8a5W8niPLS7CScToVn8knyP103oHMu3cV0c//P32a/nP+WZFyziP6H6C+q/6H5v5DOe/P5R3WvG+W/L5LtZtmXTpa//hjt/Z7MY/g2xIoW638L/iGFe7Xs0/P/jx+lPz/0eTlzIAn+TnJR0h+QovEJ+X7bFyagvk/S8lH2xG9xsrJJ/wCnfPhm4ef4fhN/si5ysPh+Sbx1ujvw56K74vlfdu8f5z53Us57x+3he9A/Fya/bb+W8KfvOy/87S1/yDjq9xAffLn837IKjDvh+Q9kby/k/d2WqG/KvnkzjOdzOMBzjtN1L+W9Rv96Xkfj33+lbja5EEYx9zP3uq7cQt4Yu5j8L/Id+1N36kbC/ud1clfTHwrPmurz/vPeS8/76u+jL/sPzr6fSS+OiafVf/4y/fIPlr9SN+/vK+XPMW877cs92d5zwuspf0kct2a/99ViMPc0netauKofe/yfvdbxrUCONj45v+l5b6imP+X+4u8lxf/cd7Ty3kq8TqLfd8eSn44+RMvlf12/r9z8icHsPdD4P3B+F5Gn3k/ZRDYD8z7KWXJrzJ+8+BP/NXogn5XJL8E/VH5f4z4PQrdj8y/q63HI8EdrdOnwX8ifd9nHMaAPWMHeR+THicXvi+t4y/Fd94rPZl8e5Ir72nm/4Tkndy8B3IXfHkX5Ety7Kqce/PsU3N/3tL3Ivu07M+SP/V/7PaGqHicdd13+NfT/z/wN0pDJQ0t6qWBMjIqRJSPXWaRhln2VmRlFLJTaViVSCRRVFRGGZEdfeydrZCQkN91/V63++e6el7X9/XP4zqvc85jncfZj8d5vtK44v//Km1ehjUaleHMFmU4Z9MyrNuyDHffqAxvalWGD9Ysw22al+E06ZuVr1alDHeoU4ZXg1OaSm9Whn9Lr4/+M1uU4a3VyvC6ZmXYuEkZnoVed+m78dtL/aX4qyy9Urkf0XmopB68R6L3qfJj4N9VuQHyJ9DXxfDv3qAM5yu/Bp0PyF9b+W7ovone3vB+W6MMX9y4DC+pVIaRvwd999M+3aXbw/8P+mfJf5cenpU/gDwnorch/jZS7vWGZbiZ+ptoj4747KH8nuSbjd7O6v+j3mbKHwPfyVuW4U/sZyV4lXor8Vcdf83Urw7fo/T7etUy3B1fb0t/Tp/vqv+t/Hn4fBWd+vQ7rc668vdA/wL17i2VYVf4TlH/GvJciq/jlKtQvyF8z2qvhfCNwf8t8B2p/Fr4bpPuUbkMF2xYhs1rleFkeEaz//ekj1T+bPRuoded1i/D/aS/lt8X/XnkKdHbO9rnePimrFeGx0pfp/zHyl9B7lns+Sr1nyfPVPqpBS4j/7Padbb6ryrfQ/7kumX4u3Z7WPnL4K9F/o3BJsaTY/DVAb/36T+b099X2mUz+fPgbSLdg3xH4Wc/+nqBnv+D/jfw3IHenvS5n/b7pgwqLoR/vP7xKHzt2d+18g+rLR/+kvIPonNzqQxbq99B/U7G1e+kF6JfFz8XqF+ZXJ/S707k+1K7HYKPPeH/WrsfTr6B0nO1x/X4e1r9n/E3X/1F2uUh49IO0sPxsxM4B7+7au8XyL8z/naAdwj9Hyq9CfoD8POU/CHSvdU/HX+vsb8z0WuJ/j3Kbef/a+nnMvibqf8tunvDPwy9V+CtB89e9NiGPbYGB5F/FP3spd2qs88aYH98TWCPlY37d0v3xt+V1ctwU/W+wWdP+bfh72rtt9EGZfg9OQah0yD9Cj+r6aEjeTrDcxn4IDu6kFzdyX8g+gPg+xe//4Bd1T8Z/nr6YwW6VfH1u/xN6f8t/7cjxzL0L2Uvf7DzmvJfUP9++jnJ+NkfXAlfJfy0AG9Fb3DWM8bLW+uX4VnSR5H3CO05gb5v8P9O7Lc+vnbx/1v47q78h/AuUm4R/EfiryO++rO3yeQbpP6b+vsYcvU0frRV7hTt+6v0pvRxPT6qonc2Pm6S7oVec//vVK8Mr9COq9U/XL/e2rzbCtwm60X8/Iv+n/Q1g35v3qQMx2n/eezpQvlPwdM57UkfDci/HnurS84p9PEa/h6BN+vQ4vqzifoZX85Db6h0XeXX4P96dt2VfprqH4vRzzx4J5j+1QjfG9BjQ/3/PPp+A91P6ft3dE6mz/n6/9Ngw9gDfU3X/xcp/w16q+l/Kfv4L9gaX6vZ3b5pT3jvYr8bk+8Q/F5FDxOV31h/uYQeW6p/KP0epj0u9P909vJp5nPpYexiWiH/PPydSz9PlcrwN/Q74O8A+XvS2y3oP4KvCvwfrv4M8l2M//7kWi/9BP2/5I9Cryt8N6mfdeMCdjyTHFk/lvA1A/0K8oxiv5trpxXoPcvedkSvkfJvw7NK+a3VHxT86g9S/jPpbtJrpM+kn/XxP5O9PcEO78Ln8/BvY904zLy/nL4PVr87+3oAH7uyz9PkV1VvCb5PqcBnxm/yPmdcSn+Zhd+G9D+PHP/VPofTbzv5pyt/ufze8jfDb+a7LeCflvFD/gP+/0v9k+jhavxuQL7v6Ote9LJfXaH+KvPZDeT/kVx92XUfcHvtcLj+Udc8Non9ZB65KOsyfF1FD33w18l4cjS6d8Hbkn4HwzsffFA7TC6VYVX0m6JXgrcb+d4n7zjlb8XPyfT3j/zR4DHsaLT6S+i3sfrF9fML8p8m32B8ZL/8Ir2+p53b+v9r8Fz6rWIc7GJ8e0W9q+A/M+tl9K9Xv4KeJoHf4bMp/r6Av7F6h5P/D/Z1Bf1/4P8P6flT+Ttor6fV3xndr+TPlf8uuhX02EX+dHJ8Si8vkueorCPopX32kcrVQaeT/NHwvK3cvfC/j99h5Ni73rpyfqL+VfCenvUE/Ecot8z/OW84HX+N2WNbsB/6vaU7Sf+k/vvw7Uz/V0jfmfOgnEOg3wG9U/w/Ep7j0B/ALl4zPh+S9TZ8P6jfF74+6K2H/kn421r5UfKH018H/W6brDvlL4BvC+11IP5ql8rwIPU3MX6MANcq97X+9bX2mKad6rKPp/C3P/5XoXMFO5+M/sX4OSLnL+Q5R/pM401t/bYCvr3Y693wrq/8SnIeiE53+G8BPyLfJ+Qrzi+HSmeeeRLZmzO+gR/hf2rsFt6B+NqW/H3hvRzeH6SrqP+udv8FvJ+8f8F7ifXSgfLnk/N5/J9tvD4HfMd4MBgfv0uvAn8Do9+68NYBNwFnkOct+r5a+kd8vYN+C/rPOeSOGQ+lm6tXR/nzlX9OeoT0hsr1o/dB8quyhy7ys04bx/5W5XwPn1kn5vyssvx29PEofL/Af5L2aIjfOdrpenxkfs98/oL6R2T9pH/VVr+Z9Picx6p/DD56ql+DPP/q7y8pf7f/r2E/lelnV/h3kr9Pzp/Yx5nW17cpN1P9+yrgxcdyfIxUbgZ+hsB3kH7ysHTOufvRZ9YTWT/0zHkRPjuQYyP66cQut2BXjazHBqK/nvXXIfickvkB/kXwb4LvB+AfDX9767k58Jxu//d5qQxzvrICXJlzWPLcpf6P6j1nPM55yTDjWnV2kXloWOH8oxb5NjW/Z/6rjf/r8NOWXPeCa+BbiE5N6fby37D+2RC+o+n/Cu2T+Tjz9Dz1M19nvsu5eiftm/P1g9S7UflbyL2b/Ae036/kmiL9onY4gf5Gq3cMfXRArw76G6LbWP/N+fL32qV4jj0Z/q7wtfL/Oco1x9/fZVAxB/wKHJN1esZ9dvwwPnP++4P0FuzxGvx+KN0Cnur42RmeB6Wfoe+twdbo1c/623gwAJ666O0Hz2P4fYlcA6UHk/d8/TrjR3/pLdF/13zxuP+fAPuSrwm+jmJfy9DvqP4C409L9GrhYxz+M36cC+Z8+KLsQ42fH+XcCZ85nxmrfHN4m2X/gt6X2n+a9OP03o79DMTfq+ovzvkI+WrqH8uMg23Mb+/FjrXHkTlH9v+X8H9OP2MK68ysL4v3S7lXOh6/a5R7RbkT5b8Gxu5j73fS+33Sc+hnU+XHkvMH6ZzbtEEv5zk5x2ki/TC8G2Y8p//N4DtA+V7ke4/8x6pfM+tG9XM/cU/Wr/jYVbmc102T/y08d4Idlb9a/iH0V1n988m/EJ6x+M95yIbad1P4LlO/SuYH9X6RX1f6BHQHkfdX48fYnOOBH6A3XP4X6I6Qfsb4sjl7a4rfl7XLbdKnGw9XZJ0J/0v4Pwh/++P7Q3gfl98Nv+Pxfzr9d9c+NeBfZBxZYPzvn/2g+q3wlXvE/eQvQ/87+f8tleHx5F+ufe6T7keO6/GZ86dZOectnD911N+eNz/UM3/Oyv0B+v3QfV79zck/2fz1Ye7r0Lkd/Z3Qz3ixQc6H6L94n5J7libqj1M/66c9lc86atfC/Vt97fQyPC9Zr7yd9S172Br+fYw/e+IndrU9+aajP4ncj2vfseofRf5Zxs9KytfL+Zn2fRlfVekz57OL4TtUOvcQWT8fYVx7Q7/vAk5Q/mn0dyDfgznPJn81+HPuOh6cAL6p3ZeAS7V/N/J/wl63gr8nPf+C/gzynILvnbXPm/J7609PaKfW7G0p+SaUQcVL4CBwCDnWOB/sS/9TpZfFDunnWnwuI9cC+LfVHtfQw034/Bj8Gr0Xyfebcofhfw553yFHNXT3kH8W/D1zvgDv+fiYRK/3gcPMc4vxt6Cwf16f3EvYT85TtkMnevk250P+/yT3y/Rfrfm6/C1tui6fi/A5XPutlf+o8jepPwV/W+jfB2m/29jH0Kz75O8Obwl/6+tffxgHV5G/LvkOJt9H+KpKjvfUPxS97AuyT/gcnWX63Wr9oG3u0+jpbvj7ZvyAJ/eHF+KnY/bPxouF6k9SvwV+a6LbgfyNsu6Hb4Vx/u2cT6t/vvzJ5Mw+eLz8bXMeIj/7p9fI/yQ4CX/Z316uvXbB1xXw9JR/L/kus86f6P/sL++lt+H0Vh/cjT100/53aY/v1c/97wT0z8l9pfIbw5/76pHkzLh9IHsZg378dJaAx8t/rHB/dZf0Luj3zL6V3qajn/PzafJn+/8b6VvhH4X/7JvuVq8x/M3k10j/zD5a/hr2fW/O96VzDjCc3m8BKzJ+qD/AuDBN++b8fH/6i37Tn9O/P5A+nlwL4dsXH8+pf5f6V+B/pHInyl+uXTIv3I6/zA8l9nOW9j+cnt6EZ33zxd/k6E7OPvBsrb/9y27/ATui3zDrc/gvLZXh+fHfy306ubsZj1ezwxvIPxDeY/D1Bfgnfpppl+/J2wb93McPw2/u63M/PzP6wdfF4Bfgvux3fXY5DrwvflnWG8+AKwLpt7b0OcqfEf87+cX5K/PWUnY423h4AD1eLX2N+mvZVWVyLTU+DaafLXO+zz4Ojj8H+cdkvUI/c/BRKftj+r/V/7PU+zn+ZeRaDM+/6nWOP5j8J9B9Q7kzcg8D70T0j1cu88vWmRfh2Vq9XuRrbF1wKvnas9+cv+zGvncFpym3O/vYAf7i+qAGOjn/yLnHEvk5/xhN35PMf0PiB4P//cugYp76I6Sz/si6POv0as4LTpe/N7mb0k8r8i3OeWZh/Cr6EewPT/y2Fvs//lubKj8UbKm9n1T+D/if8f9n6DxJP9vLfwfetdrvJ/K/nf2CetPpb/3cL+lPi/Wzg8CM8/EnjH/hTvDFv7C2dm0a/13t8LHyY40bs4wr96P7eOa3wvn297lnyv0EvWyb+0z8xP8392rvo/cOvpulf+jvD8LbGn+nyG9l3GoBtgQnkLOCPVQC1wMfwc/+1ie9ydmOPXbF17SC/3RLfMR/5X7tV59cWQ8+Jr+P9qgWv0/phvjr23Bdub+FJ/rooL1zHtaxhE/t9x55LgCvRXee/AvobwA4EKxHjk/Jf690H3ztk/sP9KdnH1qQL/cg74Od+bcdi/459iOxgw3lp/3bs6tH2OFW5sPd40dOv1PI/xR97Yj+L9prD/RPp7+LlD8Nv3cU1sVV8Bf/hKKf3pfKfWx86Wec/ET6B+1TjX38S6/r4f8T9M8nRyVwE3znfLwj/T8nfz77rkI/9cmf8WtqzgnJe631xQvqzcu+D51Z+F5JT9dIZ/3/Kn77wbsVubI+vwreeux/a3iujf+vel/A9wV7uRye9YzLPbXv0dKX4rMJ+bdhv7m/bKt+/F2Og79m/Nrkj8T/KPA2sDv9z1J/6P9xjtmQXWQf+V4Z/G8fWTzPz3lnzjeL9/Mz0i45LyH3I/FnKdyfx/9iKPpXlsow5y8L4f+AnnOemPPDytoj+4v3jX9/hn7md3zUs4/7rNDeGW8ra4+0/40518x9dcZ76V/wXYV8h6F7NHgm/j9DpzUY/6f4D86JHzf8F6N7gfz55L4b301zfiJ/pHoZB9L/H6+xrryRf3r8F9Dtgt6d5LmoVIaD2McTYC38/wle5P/KxrnT0K+Z8wfprItfhj/r443I9Ro9TYa3jfrHx4+aPvfKvU/aP+fY6OwmP/55c2PfYBN87pFzZuPxltnfyX8JvjPo8cbER7C3o3N+TZ9rsu+l52Ho13MeVwNfN8L7TeZH5eugfz49fAffSu1aHRxM3ufgPxveJvB+olydUhneAv8D0jfR/9nq534p90oNEpdBvl2N92eB54AXaI/D0LsD/lPh/0H+8+Tvz06bSh+r/FD4DsDHMOnG+Biq3w4BK/D5qvxvcn/k/9fBz+hzBPuPn/JbYFX6nwjt3vT3VeKR8H8ofg4DDwcP1g6JX8g9Y87rf8j9g3VPT/Bg65+cnzQq+OOuJ3+7xDNlv14qww/Qyf5zvvpr2E2LnAPnfJ8+LgLfNE/HX/4i/PfS3uNzXpfzH/g+Ni5eCd5XWFfcnvs2fGZ9MZucO8i/jX7r0O/D+J4IXxvyfqJ8zk0qwftS4p3k/wRfc/JUQq9m7mfM3wfSZ9Yl/6L/u/nhD7Af/WT9GX/Htbnnj980fFWUP5Bd/V7wv+mT/RS+njF+TJdfj92fTL7tyfEC/nI/3EW5/oX74pH4uhm/Z+K3n/avINcq8Hl67pR7KvTi7xM/oI8TPwTfX+SOn9mD8vfDRwV+68DfWXo7dHuot6N0bfUbJb4T3bTrdvGvsp6JH0IL7Rl/hDnsYXf6TPxH9Zzv0U/iG7rpX1uh1yJxbeCp2ueB+E+pdy05h+sfd8Kfe7Nz8bGInnJ/lvG1u/FroPRI8i/G3z+530RvG/Tr629Hy385frz4T3zncunR9HdJxmd2mfi3Q6W7KN9H/44fZgP6aQ5Pb/9n3or/w8bpB7k/iD8Ffbyf+DLz6SH0ewa6R8J/pf/fz/oj/UR+9nfvg+8W9nmJz0m75L4s92Sd8fsmvGuUW0M/P5g/RoG3gW0TTwX/bjlfzn1s/Pm1e3Pt/bHyiwv+EfGLiJ/EPuSLv1r817K+ybrnO/vyzhkHwPhZP5Z7WPLsTd74j83O/Tn8baMf/Wti/Hfin0LOrUtl2BW9E7TTDPy0pP/rjP+PK/+w8S/xmS+iNyJxTfCPQz/zbj34JscvI+fP+n9P/X8tPq6DZwj7/Ut6Jngb+meR/yT/76EdRtDv5vHniX+F/19RP3r5DZ8PKH+w8nfKz73+KcoNjHz6ax371P9In4GfreLHmfhr/FZDfwi9PVsqw03BZvjch/wX1V1Xvifwsa316Xbgy2D8cb5O/JR6y/Wv39nPHvFLgq+q9sj5dB/rmpHGjTPAI2JHxtPL0flC/8p++nz51XPvVmtdejkf3FH6HnweQj+JD8k+OXEiq/Cf++RX4u+W+HvppfDPLJVhBb530X4z4Dso9zf0nPjfY9U/Tn7iPvoknpTctdjvZPodj857+IlfQ/wc4t/Ql32sDJ/xr1Lu5PhrwRf/rMTPX6C/XAgm/iHny3tqv5yf36n9ni6V4XraYzvlzsj5svzHjA9v+f9R6e7yx5pvOsjfUHqV/rOtdosfajf/j8l5KHx5XyHvLeR9hbcTD0Xuv+G7Ufvn3ib+fWfD8yX5T9Z/6oOTcr+jfT9ir4kvSFxB/C3jj5W40G1zbhd/Q/huy3sJ8nP/v7n6dcmx2v9/w98c/cyT90hnnsx+cePEa5A/55ftc26Qc0rl837EYdZjlxsXhhrfR8fPTfniucO29Purer/mnkd/eyv3KamfdNN16Q8t7Ov2l5/93cbk/iZxNtIjS2UYv+Q98Fe74Kf8EH3Xwt8l6s3VvofLfxE/Oe+J/0IT/I/Hf+bFjP/PoLe99Cn4P0b7xd/3beP/avnx/839aUPt0AjMPerWxpvXc76m/Wfi5xDj5jXxX1D/T+2f+8LcH3aix+WR1/+vs8P/4K9r4sfI/3vmb3q8HJyL7tJSGUbfQ8gfv9L4kzajr7w/sLHx5mN6epS8O8OzBP9vg++Aj8GfuPDNc86Ez9bSwwvxKMX90pdZn+CvduKgyfOi9qll/HsdPI1++8P3lfK5r9gi/kXKx3/8H+l66NUwHg43znbIPkH/6ij/c/PIG/R+e9YX6O8e/zN2Mr4Qn/oRvr6hjwPi3wV/4rUTv32F/Hfgz/37Bhl3sv7WHvXBNfjM/V8D9pi4/vrSifdvQh/TS2XYFf31c76D79+1c/yRusT/gZ3En3uu9AL1V9FX9gPZJ7SN/6d6D8WfTr0R8L+cdxmUi/9KZ+WOIe9cek98ZUXWr+z7BvDL+B/Bcz9YhV47x186caTaZ0H8rqW3wW8V6VbKzzA/biV/DnkPlL9Yeir+Em/2JfkS75j4ur6ZX+RnnZP9zr+JP8g9Lf5zTtLNeL3MOmowOJW9t9Hv76K/6dI7lsrwc3b1ctaJ8ePBT+bls3NOim789xPvm/jf5nm/IPELOZ9BfwH9zU17kG/7wnif8b1L4gkynsEzN+9TGc8Sp3kP2Dvrf/WzPkic4tPab4/4xxgXOklnfTNG+x9pfHmNvmaStyZ7W8P+PtHeE/KegHT2byPp+TL4J+Hvenp6N36yif9Fd7J+XUn/TTztl+ab+OUPLrzfsND6/XvpnLvnHuUg8+Z/4f8Rnk7yz6aXgxOPK71Cfp/Cux5bkTfve9yL/k7uAZ4szGe7kb8N/PvGb0b9N8j/HrneBfckT0/0iv4jy+V3pKesL96l59wXpV9kP5f+UT37b+lNwG3jb6z9cw6ec/IB8cOmn+HqncZOD9euDRL/rP1Gk+NPfKzN+yvovcrO/pTenlw3aLcS+lez15yL3q/8juDZ6JwJ/2vwxn/gjoL/wHf4Pxc8mxxr9NNXyHFgxnvjT/wn30yctnJvSHdF/x74/gbzDljiq2v4/xrr102NHx0yv+HjEumiP3tb9rMD+Cb4X+3Wg9yzyN2LXrdXfxf2OVY66+st8V+JPvePnyP6eX+rolQGuZfMfdFThfvLxO3Np5/R9LcH/BvQR85dsr7NeUHOEfaipxPxWxf+1TlHLq1Lf3f9f4Rx7Sz6WZr3x8iVffQ25Mr++YjE1+T8Cv7X4f9P4gP8/5l+mviLM/C3EbzH+r8P+a42frSjh5m5B4X/K//Hf6RB/FZjP+SJ/or7gxPZ66PwTJKuHT9M+pzI7nIPmfvHxBXdACa+6MqsX+C7B6yC/2PQ6xd/KvWzLnsTv3fkfb/4BbCThzJPqL8rO34p71/hb/vcX+deGZ128HfVftvRZ+Jp9pVOfEEt+kh8QeIN6rCLrPOyX8j+IPezN+vHuafN/ewc8+EscDb4LDy75J0/+DJf3hX/CONd/C0+ld5M/ijz5dU5Z9Cel2X9Qj+no3dh4f2uxL/lXbom5J0kf5f4V+edsRI88vfFb953Kd7nVM17PbmXwv8g9pn36X7CR/wXE+f3BnRdwBPhWZjzrsTH4WtK4gjlJ97gSHytVS7xBz3x96d2mJl1iHKttOu5+M07UNk/XYbvnNvOVS/xU1sYHxbl3UDtdb/8Hek77y5kPZx7sqfpa7/43Wc9wr5OVf40esx7R3mHIPFviZuIf+td0q+y38VZZ4J55+wD4+ct7Kat/cn0jPfSh8F3IBj7fCznCdmv5p2L+GcYN/poj8e007/yhxpPxtPPCvXjv/8je/8BPAT94+A7zvqjFzgr96zKtaOfJ+DPex3xLxqH/h/gKjDrvKzvHtKeg+DLOu9k+D6IPxa9fiU9GZ6zlU+8ffyP+rOf8+gp7xbm/usO/DyGzovSNyW+PvG16uW+KfdLdfAzIvFQ6B8Mf9YLt8dfWLlr4j+A3kHWv4mfSjzVB+i1V78XeufpP8drj17ZH0rnPah+2c9mXQHvHehPLZVh4vUTx38c/IMSf4/vG9nxFPVqF/wNE8+9jfo3590b9feGfwR+B9dYV45Tm64rT/yufgaL75W1Kvj7Jb7i29zD6o9516cNfjqyj/jv/y/uDJ/x46/KLvIOSe7nboh/tX6TffBq6Vvo4zfri7XyT6W/F3M+qd2XafeH0Xua/j403q2A52fz35b4y31V7q9yn1Vd/Ufk18P3sdlv53w6/MhvJ705/N8b33+0LjsPPzuwr9y7Je71Du3WgX6L8cbxE4l/yABynZDza+vMcfh7B/1G0pUS1wl/XePro+S6z3i6G/xfad8F9JJ1UTPtk7i3LuRbDt/nyvWijyPBXek/7yksgb+Ud0rzHij6l+b8gr7iZ/Aa/uM/+yI+4kcb/9n+ea9HvQ3gbxz/GHLH3/Bt7XOl/In0OUb9n9R/nnyjpCfGv5wcjdTP+Wr83uIPl/PVjRM3lvsJ9Z4gX9Z1Wc8tl94q76uoP45drGQH+8b/3v8DwA2Uz/ou/n55F/wUekgc3TXGp+q5X8k7JPBV0/8y7mc+iL9h88SHxY8Q3D/zEbqJy9qXfhKflf1b9m15fy/7t/39P1W9Y/H9RMbvvJeScZudtsv9EPptS2U4K++E4C9xhe3yrqV5/Av4t7S+OAq8Bb3nExed80XtUjV+HoV4tMQvF+UfnfiE7H/B3M/er3/HzzH+jZPIVyvxX/ErIudq7f+Kdl2J/+L7Fhtq79zDVpHOPezJuc+in1Ok817HFrk/pOf409VEvyv6e+fdHuPDjco1yLoi8eXSB5A/69OnwKxPs17N+cbU+Eehk/ONE9If0Ysf/B/4XwTf57EL48OixDcl/jDn9fAtkV+cX74He8BfjG9OHGTud+O/Eb+NXurl/q5n3s2U3yJ+m+pvlfh79fJO61z6f1D9JcbnVux3Rt4hse7rC84Ecy7zrX3xVuBJ9ssLEy9F/0PAL/T/2eTNeNsn967SGY9vJH8L5ePvU48clxlvPtffsu7boeDf+3T809WLf2/iZ/P+wY7k/kU77E2eKdLbyd8x/qHxn8Jf7ht+zfhnvPmaXFnPJd70x7z3nPkZ/tnSD2Z/qt4L5Mh89A19Jg6oGP/zN36+Vq9ZqQzzft5x6FdDJ++OzyZf7C/3xgOzPlfuwvglyp+QOEvp+vQXP5Ci/8dYdOf4P9+HyPsc8Y+oqX78I7L+H6RfZ9y5ozAebYZ+/IpyLjw2719lXwfv3vj+QbkR+kW+izE8/i/oX2N+iD/FssL7yHkfLX5ts+CPv9uz+Isf0m7SeWezXxlUfA8OAVfBMwPe+B9eTv74H7bU/teSfyNyHKR9G2TdV/B32zX8ofOF9kicxo/KJ+6lpfzYd+JfqhTiEzqzj3PoN/FtiWtLfFDi207M+9Hw/Zb37/HXJvFzxvUnjV9jyRd/lp3pKd8nuR++7B8Gq5f9w07wv1DYzw6TTvxE4trngWNKZZj49rvNZ3lXa4j0z+TbjNwL1W+vP+c9lW/066bsIvuvJvjLumey8gdk/Sx/JXvIe2h5J+1x+n/P/9l/zs17ZIl/KMTnJi43/XMRfeb7Dj3YW94D/Uw6/gnn5Rydflbh+1T1x5OnG/q5r058VJe8Y6R83pvJvXru2XO/nvfIM+/lvaGh0pvQb/yKi/7GW2jvzem/pnT85/L+w5L4sWrXxIdHnuOarStv5KtiXsh3K4rfs2hhvdUcPEN+zvMam18akHuzvIeBn/p5X0z5vHOb84kB+s2Jxp++sTv9+4S8r0SOefFHUn8yvluoty97nij/QvXinzikcA/xrv49AVyOn5Hs5VDytNA/sz5JPN4Y5feR/tn+7+rcJ+FvP7ADmPub4ns28XdLfGreC7hBe3QnT+a/VtI/Jx5L+UeyHog9aYc+0rfQz3HxJwCn0G/eB4/f/lT6+DzxI/i9owz+F9ee75Q8xL4ug7en/JelF0q/Sn9HgIfAm/fLZ+v3ed8h7z3k3fXcVzSMfxf+dsv63vhxkXE68ZQ531zK7g6il99y/xt/Yv0tced7GK8Tjz6cXq8kd971H5V4mZxv4e80//+offeqkA8+BDZRPuen25fKcEHee5MejP8uYHt6nJN4nrw3h4+8w7YifoLy8x2fRfJnw5/zxx703CbvgSifeXVl7ocK82t7882n1vlj8Rd/l5O0y574uVx+/B+L7/vMVy9++3k/YgP8xm8m70fkfuED5fIOePyn4m9SR/oz5f9gPxm/8x2bS/B5dfwb9fdGYN4/eL2wb3pGvZH+PxqfG4Az8dsa/by/n/ipyJU4qqrGr5MTd1cqw+boJb6xafpLxrf8n/0Xfed7Evm+RM7rLsw9OvkTF31B4u2sF4aaxx5V/tbE05dBRe+cf8ffO/ThzfvTG4F35n7RvNMw77zkXgN/0+R300/zHYBz4L+RfBNzL6efPyu/+N5v/F9vhf9d1YbFj0c6/SlxVf8ap5pr/7zv2jv+sfDHXg+D//f4RdNP1jlZ31yG3sTs/9nPg9FfzsvBfG/qhFIZzi28/1+ip/gvbOm8u5N56U907qDnrvD1Spxs7onJ83C+D5Xvf4C553mBPHk/op901tff0dcP4ETjRObPsfT8PnxjwPjn5rsh3ylf/H7IhpETjH9p3r/Ie86dS2WYd8ZmKt/OfL8C/y+ww9xDvYX+7eofBv8E+OOvkviEiqyf8Re/iuEZZ9hz/Cvy/ZH4G2yH33x/JPEgY5TL/WH8F3Pfk3ugHvSb+6CsH0/Cf96PzHryK/jz7npneoj/UzFeOO+fJv++wvtBHykXf4SP9ccBYL6XMSr+5fR/KbgU/dyj5v3F1fT6Zc5F4T826x7y3YufjI/z9Y9OYL7n8zT5FxjXBoKXGu9eh68/fY5iv6fT1zv6SfyLjs/9W/yutM/Y+E2gn7iNxjk/z/0D/dVMnLD8/yvu7tusv6T70Ut1+vhefj/t1wq+3ZWfJJ3366slnib+QOrfgL/cq+W8JueES/O+ac5P8FFL/dvh66Z+G+UHscN87yzvq4wyfuWdlUbgb+i1VO4Aeno2+wd0qsVfGP5dlE9cf+L8E9+f+PB8vypx4okPv4je853MmdJZX+c9r08S96vcuYX9afal2afmO6LxCx/F/geyt3Pwd7D/u+ZdUbA2OhXG29/zDof03+y7jnH/Sfab92PynszH8DXI+ozcOb/Me9xTwJfBvNd9ofRcdj5NupTzH/IfnPPR3LuSb9u851Qqw8/jV4X+ddJ5N6P4PZZr4R+E/42zPlK/Mr0Uv09bVfvk+yT5HsnBOZ+gh0l5vyD34eTYGP7EcSUeKf4ZrRM/mv1K3rXKfKJ+/J4n4SffqVmFft4H+42+807Yscr3L4OKj8FxYN7D7G19dD7+Bmn/h+Gvl3fRyDUx37HVTk31zyf0yzvB68mZ+9ncxxbfJ43/Ut5hyXlf/JfGs5t9439PHyvl574276rknZW8r3KeeW9q/Fyl832G/oX971/gXfhJHNdU8n6nP+6d+EX9sSN+emUfiv6p2ncT9X8hR75vkvcPFyX+Pu/XlPCZ853Ee8J/AvrX67/74OPZvF9Fv5kXi/YT/9sl6p9j3Mp7WLn/aOP/n7V/a+nsDyaVQcWj8C+Trlw4v/ky5+vw1CffGPQvJv8N2ifvoDZArzV6l8QOMw7RT75/lfdT8v2rp+ilH3rXsee8f1gl8w888QOO/++SzOfsfq11SuIpT1I/32vN+1Xz6T/vwz+S+Gmwbu5b4/+pnfbEZ6P4OcGX85acw+T9wOK8kXisnG+2tJ7J/VHuk3J/lP3OOPUejz9o3n+LP2LWHcpdkPu9xL/Bvzzzl/RF+n/iQ67XHivUf5le832ZH7RPvg/TTfmFxo2dEz+Jv//gt0GpDPNdoOH4Lb7/kHXg5fT3tfzEB+SeJvczpezzlM85ao2c7ysfP7Pcq3+g/BvGkxI9PEO++LVdSq58x+iT+HckPsJ4k/dmLiVfI/R3Z59/GccTH5J4kZrK593XvAcb/5Li913XgvF/jN/5yJwvF/zP79Qf4pe7Qe4j1Mv3MBK3mDjGxC9epX2zL79M+kr8573PS/K+lXrzwMSbnUueJuheQD/F7w/nHnoNmLj7lYW4+1vhzX143gMuxj/3zvfPyHVyzvdyn2XeuT73zvkOWOIB6Hl59q3hN/ch2jfnPDnfif3me1I/kaeX8fs3/P0/ywZd83icdd151NZT9z/wO5qolCGKcDdI8qjQYAhlqkyRCCnKUJlTkQxJURkaUIaKNEiUNJglZBahHmWWsUSiKFJ+a/2u1/tZy7XW9/5nr3Odc/Z09hk+5+y97x7VS/7/33fgO7UK8I69CvCp8gU4uVIBnl2tAN+sU4B77FyAd5UW4FnwbK1+Vc0C7LtHAd5eowB/UP+wcrddCvDX3Qvw3T0LcI3fH96tAK9AZ+86/4YD6xVgV+3G1y/ATbsWYMe6BXga+fZUf5n6S9B9GP+XaP9pxQL8DPwcHIHOq/hfhY+28IzAT8OdCnA/eMernwT/GvrdMXrdtgCrk79/FXxuV4AfKV+I/5vgPU37rYzHIPin0t8sct/g9+X4O7VqAQ5A9wbwVPJcW7YAbwVvAxfC9xy7eBZcSC+ltQtwXQGUfMwOHlLeV31L/J0K35/464m/oZULcDh4EDqjtG+s/4PG8Tb969DPycanh3Z12OES9n0x+X8zDuvBeeSvrX6C8RkPbkJnsvbNti/AKcpv439DhQLcCB6B73vVP01f17CLMuQ4Sv1w7cfR13r1C9WfU478xm0+vofhb6D+i8h9Az10pJ8X6XMF+guU79V/Jb7PNu4ttNud/t6l3zfY3wj09tH/DPTOIudZpQW4iTwV9X8L3j/0/wu/b/j9TPhHsaMP0F+mvAi958n/C/3UMm/+pqfzyXeS+ue2gZ99nQW+jN+68A/B96H4uhT9U/Q/Gp+t0XsJPyXsZW/j8w97Ohqel7Me0cdV9PWK8amzVQEuhf+sMgV4B30sJc8B5O6L74XKC9hjxvcN68cc/O2r/T7kbE7OXuivZ9fr2N065U3aNbK+NcDPedoNp98DyLMneUvxcSN5e2rfkh2U1+5k/N/t9z3p6Uj1b+lfvca/+ZtT49/8vVsAJffic67y29qvJ/dT8J6C3x2Mb2f8dkPvJ/gb4+8s4/oaO+is/Af6T2l/LT23i7z0U9F63cI6Xp2cVfXvzF5m4OMAeK5GfwV+l+u3mDyX4Xdv9R/D10n/K/X/GD9Xkf8w/RvrP5s9zwHnguuM9xXsczt4ym5dgI/T36/odUL/Ovb7inIX9eXR+xK/TdnfcuVm2mU8LtK+A/3dHHz430C+zcpHGofR+L6U/tv4fRT+u6j/Wv1M68ZI83jzDgX4HX1fTm+tyHssPlvgvyH+W2j3GvzPav8mvHugdwe8DZTLsYvj4N20YwHOh7+B+bwK3BtcYH7vU1qAG8EK5HwX/mv9fiF93UkfP+n/Df2Nxn9vfAzRvoz2FxiPTdqdQb7LzItpzk2j2XM3cnbVvx89VcbPK/D/aXyPBaeyn+xz51mPdqOXfdHrTz8vw7s9ue9T/o4dLTS+TexvBytvi7/sh88bpzVF++Ox8A0gx/7wtsffGO2H4Gu+/fQq+m8dftjF7eAG+utivt1oX3qFHD/BX936vhPYGt/T9G8NXyvj8xY+Wytfhr+l1q2PwOvhGU2v71k/HwOzX6/E//XwPcA+xtJ/KfvZBN9C7Sqr/0N9HfX91H8IPsZe+hnn17Wrpf8+yhvw8w1+TiJ/efLuQN+fatdYuY/2T5cWYEf8tzK+a+F/gl2fD99++GtGXz3UN1cerjzEeL2D7hHGYy36+xu3JdofqPxIzrH42V799VmnjH8T8+oAcLH5fzI6OU+cr/0h5LmafnYgT1ftv4V/V/SvIE8FdvsOfiqTP+v5G+A3+Mz6nvPsUPLnvJvzbSf8vaBdZ3w0xV/2o9PweTv+22bdZY+rwd3AXurPwf9p7LwD+D7892m/Bl9L2fut7Cv70Unw9cdn9qe26vcm3yva3UM/XZVX038jvzfQv7/+f2tXDp6K2vc3rjkXjTMfcj76yn7Uh16qmSenGL+29uNr7NNzwYrkH259mQrvrcq3oZf1YGq+Q+lvJ/xXgG+K8W+k/H1pATbL+JGrOv01Rv8o9Tfh97/6/ZbvP3xcxi72oa9v1LdSjp4XsJPouTK65dGbov0k/F+PfvE6UE591vOe6u9A5zP6r2V/bun3XuxnF/W34bsqfnrkvgP/r6G/l/E7Tr+WWT/RbQ/P9JzX4XvYuK3Vryx+J8C/3L4xk508ovwSfM8Zt83ojyFHFf1/0/4XcAftZuk/DH9bjOtM8uUeZzflAdqfof9XpQV4J/6PY7cj0H+OfGfnu13/nKc/oJ8T6GM1fj9Ddz/jfa7+Wa+znk9WPjjznv7ONh6d6v2b3uH42rHWv+m3LoCSbcjTPesAfE86N8wDXzWfHoPvRP1X4XMwem+bD1nPuoPXsa+sbx2cK04F389+gL9l8J2EryHo7Ii/55yrjmfH68Cu+Y4nV86P5xrnV/L9rXyR9jvgoxP+q6O3F/p74Ptt4/m581Yb+0tb8Gf8NTUeW5QPNG5tjc9ceh3FfqLX1bm/ML5b8P8MfbwHzx/428Xvb6J3LH73tZ79rH49uU+k3xfy3Qv/Yu0uxm8N+JbSU85Je+Mv5//trKvfK+c7YKr+I9H9i9wno38lPj9E7xLydsv3B36OQvcE7Y/SPvcpTfw+hhy5X8n9bO5jv4S/tf7RW2XyRX9vo9eIfVXQvqr+I+DvYD5cYR0YrF/77A/2o/fBO6xXz9uPjrS/zTROnxj//+q/Fl816W0t+jfTz3nKt5P7p9wD6J/7tjrqz1Wf+7fm6q+D5zr6GAn/r+z7T/r7iZ4/yX2C/n3ge0d5e/13Md8Xse++1vGf8HMBfbdQnqP/SPhuZUdPo1df/SHs73Tj8z08L8LzFvrbkusH82Qg+V9QfxJ8peQbA+8A+nsP3+fbP35Wf7f6M9j7EPz1R28gezna778oX5b9Q//JystzPiPH/vh53nhUpfe7wOPxn/PsLvQ1JOcV+E/KeOpXm7wvZN7lPJF7XP0rwVfbd2Vd8CB2WoPdDoF/69ICrEg/NcGbrPub0Ps632PaX41e7kd70sPs6I+9VEW/GjhF/yONz/ZgM+vQbPWN0XvcOL0M73TyPWG/mFcAJf/F5330t9n8/hvcAn6o3Qr7RVP0xxrvKcanm++h7mA9dC8BB6C7hJ66gEfnvGhcRpJnIzlWoPM8fh4FX7e+tEG/j/F5lJ1l/+qQ+aR+S97N6KdZzrPGe1nGndwH089g41He+jaUHnLf8lbuz8h5dtblnN/Z3zb4uRofB+Z717xrzW5HaLdI/SDj/Qa+x2l3C/m34Lscex2j/Ay724Y+77XO1VIeQP6Z9Jl94zLl6qUF2D7fO+QdT547s36nP3gN+IN+DfCR9WcjmPUn3xtL8PMouueQr699pKXfF2Uc1Y9j3xPxl/Uy62T0G70+in70W5U8S9VXw9f24D/0tgXcE71b2PFS/H1O713AI4xH3i2/y/pI3pfhH0fvvdV/zr4G08dB7Hdn8pyp/wFF979l6GVO0f3v8UXnxTLkvQj9JvCdSH/tzePr1Vdi/5fnHUW7qeoX0O9Gcr5gPfs79xfOixerP5I9T4anHr5q5v2LPn4n74v03pGeb8LHgflety7sCLbOPQb9bcXey+OrHDhF/SXwX6R8qf7LlMvR/5P4yTlsSc4H+H9d/Wj6XEP+N9jjjNxTKE/O9wx5zyF/XfTmwne19g+AHfB/kv7n5H4InnX6PaD+UHa6kTwn0sfO7H8//Oa9p6H+d+H/x9yf+n08OvvHP4D+jmJvJzsnLtD+YPOgNjjD/KgNzzDfQ7/S42v4yXvrl/keUK6j/gz6+jjvD8o10L0Hf1vUj4Tnmfg5qH9XfRP8TMDHf3K/Re9LwVXmU8avnf4PwHsNPb6Y+c5eM38ynzJ/LsfXfPI9Yj9vlf0TP+0yP6ynf6FzfNaHnKO1+6K0AK8zPxcb94nsJ/eVY+G7P/f5+KjHXt4wPj/g4y3lL9QPt14N1O8a83sN/uf4PeehpfD8qn/z+JuQ5zPj0BY/T6ufgM8x9P2h/t8ZlxONSyflnG+WaH8seZvCvzn2D//p+GoEzmDPh+u/MucLfB6DfhfyTzS+D4CHxD7g75J3h+hJ/QbjNkB5K3w+hP/r8n3t96r4bgH2sl7XwF/8DOJf8DP+i99/R5cWYL7fd/F7vuPz/T6cvibBswyeG/T/NP448QfI+Vx9A/1eU64F35nZ/9llGevGzspb298P0/8/uZfIdzv5Zqsfgq/N8Fc0TjfQz8f0PpucE9B/Mff36DU2X+6M/07O39a5HcHf4hdgvC+AZ/ecl/H3uPk+GP95l1xSCq9yffyfQH/16X+c+gp5V42/Fv5G4Xc0uLzo/nAr8hbfK5yi/53wvVO0r7XL/ug8sad9/CLlvH+cku9GdG7NvUzOB86De1j3hxZAybe5p9PvF/y+YL6UKS3ACdp3VJ/7oFW5L7ae/YbOYLAJe2oBf+5N4q9yI/1ekXMJvONzDlOfe9+Veb8qugfeiP4zeW+y/t2tfj/9Btb4N9396b/4vjP3oIvJd7v9e6p9YTfjdZ3+s/XvFP8e9T30b2893Le0AM8wXx/X/0z2Pc26McT8OxDeb/Pum/cLcu0Pf1v8fQh+x05q5R6NPq5hL9Pxeb/+u5qfJ2T/Vh5Q9L6Td+dO5KuMj33pdbH59yJ9x//nHnztCY6kx/XG4U9478RfI/ZyaN5/6WtbetwZ7ITffub7crAv+Dz+p5kv89njaPy9iL9X8XMNWAafK/BzJPvqme9768kd8NQnd3fjU5b+co81Ft6u8B4JnpJzH3zvKm+2v18S/VvvmrOTFmA7dJuS61DlvbWfgf9Z5P8dP0/kO5p9dMTfQP23i77pvxJ5xoHvwv+38R9ivrdlB3nXuln9UvUjwR2tQ/FnfIA9tUPvP7knJ39N+tkVrAE+kfse8u9Ob+f4/Try5f3rC/r9kd10xGdH9nI62MN419VuG/rp7vd2eU9XPyffpb6PHje/bkZ/T3rNu8gF6OS95Dh6O1T7r/X/U7kevfck5yT0cn/cAd7HlV8iV/xTPmJvuRebB+Yd+2Hl3vr10L6N/m3o73v8/hP/A+P1O3saq/007fI+/Lvx2gj+AfbRfqRxO4yejmY3V+uf9+be4CdF79Ffste5WReUp8Gz3O+HkvdC/A3PPmPcNtPvuX7/lXyvs88uyruge2/R/nFz7ovjr2F9+cB4z2aXp5YW4Cx6nI+fCewgfi73oxf/yvhVFq+v8Y/+BVwLxj86/ntN8Bc/vvjv9cffALCe/eMbcj6ufTN66QHfNeSPPV9vXGPvH8SPK/f15D5AuT/5Tsj7BjqXq28Hf/zP4ncWP7R74XubfXZGN35G8S+K/1T2r7nKvejjNf3izxd/v7wPb1SerN8p+Mj9bwd2+Q88p7PPB+Gbzv7ib7eDcnf4n7Uuflb0znwc/Pl+X5Xv9nzPo3ej8c45e2DRefsN7QbjuwM5OuDnTON2u3lwlvKA3PeT/8m8v8Ab/5wG2k/D/zCwq3Uq/jU75d2dfC8Y77L01Bu8kH1dqbwl39eJe8g9mvHLPdW3+BltPRnGvkfj7yV2+pT6+PFWsF68Ce+HxvM++plhvC7Xrhv+9qXPKjn3468he76U/f6QdTb+1/TxS95Pcj7O9yK+cj97XN794meC/6a573O+m584g9wv5XxeACWVjMuE3B9nPtnX9mMnM9HLfcOD2se/ZD+/H4HfQex9GX5moLdA+2Ph/9i5pZv1JfdA57G7/2ufzXl7amkBTvf7JPaxfc4f6L4FXqfdMPNhNjjfePXD7+Pw34ffJfp9Cf/Q+F/l+0T7+DH8rdwz78f0vhw8kl7rk/dK9lyLfd2i/4jcD+SdkT0fnvtK9ndvztmlBXg1+RMXknNV4kPyftzbuG7FftqgN97+3ZndnJU4Dv1L2Of8vBNlvcw7Zd5//T4r3z/s/yB6+5L8r8ZPRP8frRMf6X939g/6qUxf4+KnCf9g+KsVxUf9rP+ofOepT/zLwcYp8S+d6OPa+NWz0+/0/55+2vj9RfBi/JfF/83sazGY+KmH8Ztxq1VagGvAxez+OfOord/vgf8tfF+ZexJ8TYb/avace8X4P/6h/xzr3tzEceD30ty/wvu19p3p8af4x7KnKtr3xF/8Z3uzy6mJv2CvfbX7hv3FH/Eb7XIfvjX7PUf7HwugZL3yY/jJ+A9Tn/E/wL54Jzzxf8593K70Ucm4z8i9gP7X0ssM7XI+20f9634/Iu+66Od98R/2tRn+Y7W7WH387qcZt/jfr1S/O3vKe0IVfL+a92H6mqX8CHojMv70c2PONeDNifdgF53Y5VLy/mk8RsB/Gz4X4W9C7qPtKxvB57R/1vi1hr9h3tHNp4nGK/5+8f87hZ7i//eNdSnfbQviJ6LdVP1+y/d+/DPo8379NqPXNv5EuR+nz/PgqxH/a/qcQP93sdNF5lPu8c/F/9/wXFwUz1OFvef78n3lB9F/wnra2D43lZ5ehD/fF0vgOzD7er5P4G2oPn7gzyc+qwBK5rL71cpZ/yqgW7O0APMdOkg5fjvXolfs/x1/mPjH7I7vY+jvUvTif1j8PhB7fhT+d3Jej/3QTyuwlL6Pz/ur9fcWdjIZvz3Uv2784v8bf+D4/55I/ifhaae8rf6578g9yDtF9yEbzafp8B9EnupF/mRT6CP+ZvEvO4de1qG3Xn3OCRejl3uySfDmfmxX8vxm3u6mvAs+XqLP+I2NMU7l4P/F+NVP/Ap7uxb++P/E7+dVeOL/04d+Ts39Lz08nfsZ/K+h33PNoyXqV8C/AP5rc88V/030NuArfiMX4HcveqlUWoBn5L1eeTO7+SLxuvm+RP9d8623dleAryR+ETyQXN/jdzk+foRvU+IG891Fv3PIO894zFa+GH/7/B/n50/Id0zi6dApgTfxUs+w78PU5138DvKOZ8959zkEfyfT9zzyjEn8ADnXkC/+KFPUZ5/O/vyeeXdQ3q3w9Tn4HXrxh5+Xd/7E36DfGb9ZH442PvGfj7984mqOUc73Z+JCZqOX+JdB8OdeZxS5E3+xGD/lY8fKu7Krdc4PidNbo//wUvTgj59AD7+/D/97vi9P1a9/1X/z39J+skW7ScYrcXodC6BkDFjVOr4g+jC//vcOgf5+xifxjVPjx0hfiXd8X/8rwTnwfESfTzsPlou/u/J/jdfX+OlSFL/QN/eT+n2sfGC+j43/97l/SJwr/o+Df5v4y9JH/EgOJ1/il7O/Z7/P/n4CvN/CezM7+Bo/JfjtB0/ib3aMf1vRubC3+oPhPwZ/K5VXo3d67q/s9w+xr7HKTeF7y/hvhc42xmex8rnGY37GmXw5J52tfc6VOWfmfPl63h/w3TlxyImPYXed2P3n+Lkr/mv2laP0Wwt/zvddjXtDevxP/NuSpyH+Xejfzf7/zPmsAEouAPvh9+1SP8DTRP8BsWd87Kucd+W8M38IdnWuPRuc6Jxayv7XmG/97JtH4O/O7DPs4q4i+eMf/Iv6sonbwk8V+jtd+TntEifciP6mZv8jb/x0mqmfkXwZ1uGW7kdmad8Y3sRnriDXYOObe44L6fEQ9CYqZ385Xfvt4BuH/1bxa8n9tvIm/NXXP/MgcQ0L9c+9+r7oXQX/avw31y/+YLvR/zPx34U/7xaJs837RfH+exT5dtE+737LwCfo4xbyvIzeS2DyWbyHzjT4XobvBXT+Un84eV5iF43hPxb+8savl/PPj+pH4b8Xeo3Y4fbKyR+SeOjs9zkHJD76/fhXwZd75UO039Z98GHm5VKwT84R6LXNPYPzRPzmxpq/c5TftV5cEP0ln0r8i0sL8F7818NfbeN/S9618L+S/nLPcIz63C+Mw9dq8DTrYfyg8t6R94+8N+f943J836PcSPvXYr9F3y/x939G/arcH8UPSLuW8c8vOv98lfNB3tfoew7YVLte+j9LnqrgjeTsiE5N9HM/lribrfU/ogD+d+9QfB+xPvcX+jdkj4mD6c4uB5F7O+Xx+O+Ofu7j1ybuCv2Zxi/vMMnrkvj/3DckDrAMOCjf6+Q9k/wV7ZO554p/V/KTnEKuJ+I/Qb4+1sfkEblf+2udV4YqD4mc+GuY+wz98u4R/5l6WS/9/h2+El8wAn+N/F4p/rfqh9LnCPtr3nWTv+K+Aig5x7ngZeXER2bfzHy7i73VJP+Y5D3K+dr8zHtkl7z3GPflYB/87kD+VvSye+Ik8Z/7tR/8/gX+Loj/ofWhETqLjF/OM5+Qqyw8c9Xfin7TIv+xiviIH9lm68sW8B9wgv6xr9hV4mzW0c8m9D7DxzDlz+GfZz/91jh9A7bAf/JG5L3tU3x+kPf4+AObd/ur/0H78X7fif6mwZf4t+QDmELuZkX5AfJ9caP+8UNO/MNV5s/R6L2v/xv4K/a/f5IedtJ/sfp2fj9beWjy/zhv785+E0d1V+Kwjf8g4zKYvOMS32g83idPd/K3gf9D83cJmPfwRYkfxtd6/Mdfq0XR/dw7+NiHPnI/l3PbZuNdO3EG+uf98G785N0w/mXlrdufOjfOcN69LfbJXrbOfIifJvz5vv8i8bfkT/z1SPrNe/gI5fj3xP+xa/xT8Rv/x9h/tfiVoP9AzgHZb5UfUv8R/orjF+IvkvNWFePRMHzT8+fkzfvhA0XvK/2zX1lfOsLbQvlT/Ozs96eU4+96afxF0J8CltDP9+pvt/4lLmk6O028UsfkR8m7DnpH638Wvo8wHhfge+/ER5sPiQ9IvEDuUxKnne/FfEc2T5yQ8lD8PKV/H/g/x1/8XtvGzyrfzejGbz5+9GPzPlOUP2wRfuaQZ2XyUagfnfgm8id/S/K2TLCOX4r/75R7m98TwbmJw8Ff4sDPxWenovPFHvptV3TeqGFelaBfDdw3+YvoL/FNyYOX/HfxH7oQ3fgNVcj6gb922g/W7pfEyeFjOP0kb1r8t/+0P1TIuUk5+VImJj9Skb/VWP2/Ypf5nlwQP4p8X+FvnvrkXeiS9y/6uTL+esZztv6j8fOUdbBm/M/Q34S/N8mduMXz4etArvhz5J0r71vHWf8eMy6fKF9u/F+ir+7ssRp6c+v/W57k7zgS/eTveCj3R+i+VLS+/prvB+2bo9dcebH1qFnyVCRvH/4+Nn+fgDd+QRfG/4H8k8FOidOCP/FFB+iX+/H4XydfzmT0c78Uf7t8//8FtqbnfP8n3j3v3omD3x39k61nj8I3JnEP6s+H9y5855z6EFicH220cvKkLTV/4v8Qf4j4P+R+Zjv6a6ncPnkL6OMjfPfAX/zfHybXQL8P1W9b7T+1nt+YfGDkTP6DzVmfY6+hq9wfvyPhP8I+kf3xDvj/8ntt7WfGbxy9+DNcFvmNT+4jmhfdQ+a+In6mo9Af7Pxxqv7Jl5V7mv/lw8h7TAGUXIOf3+OXj/+6fj+qtACfhOf6+C/Asxz9CWAb4/+R/i/6fSH65+b+GX/xD4nff/xDKsRvLu9S+g9KHJXxmJvzLZh42s5F78Jt2HNX+P/JO7R+F4L5zsr350Zy5/sz8T1v4n/n3PfCl/17N/W3wvsAeCL+Ei9ygnHexvgnfmQf8yNx6M3dp6ygly7W37w7fJp7ppwf8P8Kesnzdw35l6BXm7wV6KdsUX6E+BPH7yn5LJqaz/muagIeFnnJ3yt+p/h8Aj8VyV3PvlQXXIPeYPvKs4mfwVfuJ0vwm3isV5Nfi/x5P/hVu7wf5D2havxa2UfyzZ2Ev4d9z5zh3LCd+TVe/8Tjf4pu9rc38dnH/pB4t+Sfyv128mflvPYVuZN/IPm+OplP83N+Vv4Mf7PxVV0591nLyP0qfmclPhT9gcbly8xz/frSb96Pk78278h5Px6Z/Ea5p8x6TJ+jk++nVDt4riZfncStOKfEPnqojz2tZ2fxN4u/UgtwG/RKivx/HyJX/Ncagwcl3hX/M+k98R5N0X8yeZGS7yBx93mfIN9pfu+BXr7n9kJvNbmznhyLfu/k91R/H/oPwr9Pzjvw7qW+Tvyv9T9I/7/QO1d9e/Y5JvERxn8V+i1yvwJvcXxs/K/jb1039//o5f69Iro/0tOZ+N/JeK0A2+t/fN7zyHcT+BX4sfFIfsIF7O5Dvw+Dv5Q+k8ejSeIY8n3jXJU84Mn7fQ79JP5sHJj9J/Mw78HZN5P/9dDsc9av5BE+Iet23r/sP1nHqhiHrGd5/3sQ/UsTh0K/K82Pceb1fcpX5L6dXteAw82XGvjP/WXuLdfnnlv/M7XbDF6b+0Ttz4pfUb7f9X8k63BRXPXh9JPvw0uUR8VvSr+jjM9V+G2F/5lgI3j3sN+No6efi96/d7BuJI95/B/iB/CycdnB78/Bu1PiRKzrp7DLD5TXJM+sfv0SX5p8d5E//mfmVQPjm3i/z9Hf2/jXB8vEz4z95JyXc13en+I/NzF5u4ryh/4Vv2H0NymPUp+4u5r09hH7OQj/Q9l18i3Ev2Y9+efQbwP66aj8ffKLJv9F7An9BfDXI9eviY+ir+nkb49eudwPkjf3YCeqPwA/8Vcdk/hMctej5wbgVP3yXpX3q7zn5v3qDvjiz3Vv7k2yXyd/Dj0m//8ziV/x+yfwPKP9p3mHtP+vpr+v9d9Qin/z/S/waXCF+lfINwGeB8GW+P0q78Pwno/vD8Bu8PQi1z/anxj/bfrOupB1YlHR/nCb8c4+0V+7WUXnuuL8prm3GsfO8h0TP6DkV7kp+QOS90P/qn6fgJ8J8D+R/DTsK3kHivMRzHSefNt32Cz2m3xey6w/8Quelzxd5Ey+galF+1z+/8IE4z8x76zxj839ffIHkOfe+CXon3icxOf8rZz304fz/yDweU/WSXpfU4K/2Llyd/1PSz5x5S/BfOftkvlLL7vjM/cxvfVfAT5A7/3U570y55Z8H+6h3bH0fjn7H0pPyd+xM3u/MP5B+E889S/qs68nT1f29zHKS9CdnHtH8Lb4d2U/p6eM/wjrxUhwFPg4/vfLvSv6n+bek/5uSfxk8vxp18b490T/Vu2L/z9LY/tbzj85D9XKe1jil/H9DznWwd9Mfav4f9PbFfEPML5HgK3APjkPW08axq+Y/Ml3kLwZ1dndSPDg+GWg3xd/PeGdmfvsIr+D+CGcl++f5A0At7He5f16UvLTgLOsr6ejv7vxybqW8Yidz1N/Gv6Szz75D58n9xh2+ZNy/PXe0r9p8sPAk/wSr5LnrqL4kGXkv579NjOuJ9kf43+Z/KHJF5r8oYfRz7fmZW3jVhdMnoLt8Jc8EQ3Yxca879NL3uNvSpwn/orzZ76Gn+RP+Ar/t4OHJS4p3zuJ18T/nupzf/wf9DvH34l+do3/Bvv6T94X2VfenxN3mnftGfAkLjXvJXk/yX6R+5cqicspLcA26M+hp1XKW6GX+Krk94p/WvJHHwJPvt+r4Tf/F+Zi8+ci7crCn++iYX5PfEy+VxO/mnjWfL92Yl/x+wje/P+ZGUX575IPL/nv1rDn+/VraT9cnftfdp+8s4eS4wT9+6J/t/7XKn+Ln9b4vzzvqvi/iDw7208ftE8nD07yEy1iz+fFv0c5+VV3wO99+udeoj3+8v818v808v81XlMff+vkH/iLPSX/wPfsfyv2nXugiervifyJIwfnsas+6B9B7mf1n4Z+2cTjlRbgfP0eV04+3t+T79Dv8WNLfNgxOXfClzix8/BzoHP1J9bRnvSZ+4bcW75QdH+Z+/vfcg+Gfm32NRGexfS7q/oT9O9Jr5XyHqx8u3L2n7NzPxz+4bk697noJL/oHuSPf2417eOnG//cs/VfmXcz8LnER5uf51pn9oMn++VA8/sGcFXRe0C+H5LvIHkQ8j3RMfGx+NiRnLfC/2j8u/C9bfI06V8TfyXqn8dnOXSeZl8t45+r/2OJh8Nne+Vu9sesryty/4GP3FfmfrIbvreDJ98n8aMrD98G+/KG5PvRP/FeibsrjsdLXvePwFbGM/ktzjPvbsn9PD6zP67W/rDk32I/j7GvG+2r8UuJn0r8UzJ+8TP9s2j8nkj+c/2/hT95tD6k/w3sYpe8Q6u/XP/kZ16X94v4e8Q/gjyx59jvifDODj783ke+68zna8Cy9D8T/1+wl/PBBcknwR42FPknxF8h+VOTN+A6ekv+gOvzfUsvg/BX7P9yIfnznrdOfSf85/s438VXK+f7OH65yQ/ZDz/x/4lfTeLe3i6Kf/sqeU3sK1/HPyDrPf4ezvtezsu5n1D/tvp2+DofTD6QXnkHUc77fvyt439dhxzxvx6Iry8S520e9dJua+f/vHMXv2/X1a8O+IhxuQL+P9GPv2I1cuT7eAP7/Yxe1uL/W/pJ/tXkXU0e1hvgP9r6sS7xZfSQ83nywSZuIXF+yQ97D/7i95K4mPi/7MaeO7DLtYknxccByuuzL+jfMN/P9Jn7qunmyST6K45XSJxn9qvko09eu4rxg4E/+SkyztFP8lXkfDsjcQl5R8fvePyNdQ7K/5fJubk1eyxNHHBpAX6V+7nkt0pcKXo5n+9qf90NrAU+j7/b0dkq8We5H8/9qHLOB1/A/1P8Z5SPxmfO2x3obxZ9V0G3Kpj/Y3EB/DPIdUveU5SL9//p6C3MPMy9FLrxZ7wo/nH6Jy40/yfoPfwlP2byLR6rf++8P1mPkr8n+2n2z1HGtTg/Sn3473buGguOBsckf1TurcEBYN6pD8ZP/i9O/k/ON4mvN/757uwR+fMuaN2fBCbfUPKKJ79f8vodnzhn/L+V8xh+EpeRfGft4w+n/zDt1hqfYbnX9/sz+M35dUhpAS6lz1e0i3/jpeZ9lfwfBbBS4kPIk/+HOgW9xfFfLMov0g695BdJ/uTk80ie1y7a/Rz7R28v9Vl/wkdt7Y+kj9Phr2z9zvljofFN/F3yCxWvE3/j/2D0G9LvwbkvVS5vvS4HlgWbxl9X+3fwF//WgcZ3UNF5cgD7XYJ+7LYJveeeeXtyD8j3f+554l8cfs335F+L/95P9Fcv60nOVcnXG79L/C/MOxE5Doe/Y+4X/L6/9bRaxh+evC/vnHU69x34GwR+Zz/bmj6uAMvk3jx5Sozv6fn/U9v+m+89yJe4+8TbJx4//z+ziXI5sBs8L9Fv8oO2oPfkCX0B/TaJN9e+qf2yLj6PLvIr76/d++j/Tq/PlhZg4oen5/ys30owcYHJ/531KP7m8UfP/y/M/3eui24l/Seq35a824D1Mx7wf6b8Dfzxv8r/j7k8fsX4f5I9ZD0em3hF9YnTq04/2Xey32Q/qqp+J/Ilfrc4f9SHuVdUviV5knL+0/9jeqmCflf0dqKfeuoPhn+/xF/Qe/IyTAKTB7CK8c86NwrM+ha/rvjtxp93EPrFca1LtT8v8Tv2v+THm2B+JD/eIPaWe5/i+6D8P8r3wEeMy465f7VezQW7FsWHDNMv/6+qnPUz94vJN1Ri3B6JXzA6zdlPM/AgsDo9J29NzsXTi/6/V/5/Xv7/S5XELSS+mT6W4fum5F/U7hjnn/z/o+THjP0uM6/f1H8P41eJve1FvsQvbiwtwMTzXpn8RkXxYXlfSV6hq+Arzi90kf75fxsb4Un+urX4fcr8/EE5/3/4neS3B/N/hN6Nf3TyZdD3H+jn/7smfjPv3SvZT+Izlmh/T/I7kK8yfgfgP3kHtwLz/zXz/4Xzf4Ur57tGfc6H2R/y/4CSPyT5XVo6n39rPU6el874bU8/N9sP78t5RPkSsCb7TbxON/bYT7kyPvvSbxPnh8H6PZD1mr6K/3/zFvK/Sb7/B1GsizZ4nHXdefTO1fYHcGNKCmkyf6k0KA2k0oAGpTQPSimRui4NhhJFokKT4bpCSShCorkoaSYiFdHcbaRJlEzlt9bveb3vWj1r3eefvc7nnLOns8+8z35m7FTq/38371KAJZULsGH9Ajx0zwIcJn11SQGu2asAK25fgAfULMALaxTgp/J77lGAB9UqwH3rFWBz+T/sVoArdy/AS6RPkH84+q/A2wIf14GH7VyAx5YpwHr7oAu+7vsYcDV4IH7akPu9quhWK8BK6r+L/uTqBbg/ujs0KMAbtyvAH/G3c3n09y7A29Dbr2wBPindRPkZ4JLaBfg5ekvqqofuYunH4O2Lv73kz1P/V/q9Wn6PHQrwce2zil4XwTNuxwJ8iD6uqFCAl8NzFL4fw3cr6R3g36L+a5UK8B/0Ua9OAd4i/bV2OgLe8eq/QN9rydeRPurjc3uwOli2pAAnSlfDz534Ww4eBf+ScvhU71x6Okn7ldfu71cpwJXgAPhn4mcoO34Kn2vhewG90vjoI303/U6n153o4w/t9Yb8i7X3k/AP0E6L8LdF+Rr4WYDuFdIT9b9q+u2u4CTl9tYuX7HLD9n7GfDP0t6V5b+kvZ6Efyn8R5NjiXQb9S/E94f02g7/W7TzYeSb4PsPyv0g/1f1z8FvbfreTj/bh972pa8K5JmK/rnKT8DfvdKfKf88+vfR473w/YVea+05hbynq78v/I9qzxra9x7plepdq/x18LapWIBj1b8D/Y74eUa5Z9lnI3x1T7+UXie9C/08oV4L+ptPfy3gf0S9T3z/FJynvYfT5134PR7+3WJ/YLvYJfit/nke+Dy571N/ina9rqQADwt/5F8Hb0XwDOX/iZ8n8X05fIvVfxL9Y6Xrk/8q+uit/E/S++FrKzsYqv7+6t8PvoCP59DvYP7bj113kW6o/AL8daa3Dehdh87YXQvwKfr5APyZnAPg+0n/ulT/HAL/qIz/5OuCXh/yncTeTwY7GJ9WkHd3fMwFS6JP9nU8/MPgv5f8T7GPyQVQ6nnwIvJdpv5YcvRG72P1j8j8nHmTvvuQ623pzF8b1a8tvzv8zdGL/M8qXxp/E8i7nvy/g7+EL7A6+fvS9zPad5x27WScG6s/LEJve+Nd7CH20pv9LiDvjvjpUlKAN5F/mfn1XN+fUH+x+tPgPw+9g9BvqH7mqz3V241eMn/dQz996GUSeXek33t8X+r7reQ4Df4G5t0Gvv/CHm5Sv5H8YfQ8lX1+Q5+z2fOn7PxX6cboLdT+30ev0pXRH47/wWlf9SrS5wH4/72kAPvLH0L+3tYXPeD7Bzuaif8BpZRD51Z0HlL+F/UXkbsbO1iOfiP2MtC4XZX8x2uP93yvr149sBw6Z9LbE75XgK8a/W3PPh6D7xL4e2uPYfh+hR4qxd7w+4hxYwr4MHg4/VRXfln6P/1VLSnAxfBXRn8cve2p/sPyq6P3Dbm2k3+W/hP7fky5Wemf6K/RLtspdx773w69t+EroY+r5E9Xbwx8DelnsXp/Kv8XuBVcq/xD7K63caEf/i5Vfxt7rE7+FtJHyj9Z+TvkdyqtHvt5jl67K9+afqbjP/PPCHJ3gu9h/P2bfqqRc5b6k+F/Xrm/wHO03wn0tS/5Hsv6Cf4r0J+vP56kf/YFK7Ovm9BfR76N8KzDzyPqb6/e3eAj5FlEvtfVP9j3sfgdyG7vgO8J+Gfjb578LurPxs8B6k+nj5vwe4f6n5O/Ifpbff8end3Uv0//HA3+A39T1a/PLr4AvwGP0a5r8XMR/qbR7zvwL2cPdcCp9NMFHx3or6vv14JZj5wHf330DvD9RO0/iX52lL+SHvbC/5/Gr/N8350erlV/uvrvk3t6kf1cie/R8u+UPln77IG/8fAMA3vi827j2wXmsfPBcvBV034NlP8VvgbpL5m/6PM0/DXD/yHmnzONa5O1zyr6GKP8z+hNwd8C9X+TPhL+y7VjB/SHqt9f/Q/xeaX68+n3du3+inRT9TsYLy70vR14K3yl2d1ZyrU1Xt5EL2XZwxJwIf72xG9rdL+1T43eK2rvpuS70vesp79B/2rtcTJ53kD3eu3/Nb6yHuihXsbXUvQ+C/3nlW/IPg5G/xXteAp9fql9zkC/DdiPfU3XrouNX0Oc7/QGX8dfY+X2yvqfPnKOk/VF1hWP4T/ri+fwtTv99MPfC/i/nb5uovecu/wGT0PyvStdC55f0j+19wbz+0TpgcpVUf8r8EZ8P4V+1jvXZB+k3b+i/7bs4lVwlvFkkvavp96f+PsV/6eqXwPdE/FTB71j1N8P3gOcq10Hf2V8lNMeY+VPkl7Djv6jP+5o3v1KOud7N4ADM8/jZ7b0anaxCt8PkaMx/TxTAKXmglkP3U+eoeyjfPavWXfR81vWWzmv+FI7v4X+s8avF9jrufi5Q/msN8erl/Vo1p9/0X9p5a9T7tOso+hzMH120/8/Ur619cwz6o1mx/vD/yO+HiDvaPT70c8g/G+L3UkfCN952uVgcnyU9RX6WRc/lHM18rwqPUa7V0T/lVLwSx+HXn98Hqv9J+KvLvxvo19JvdvId5n8G/HTJ/sP+avJcQv9/ZbzDO1dEX/7+36k79mfdjW+ZJ9VvL8awJ5XgLXopwM87ZTPvqJ4v/Etui+UFOC+WSeQP/v17F8HkS/7973JvyP9vE2PN5A36/I5Oe/Bxx/km0rf1dQvDf9g9W4yfk8g1wT2tjP7HKb/9IKvEnxX438GvH3Jtwa/h9JPWedeH+VcE7wWvn7mjWX4HmY+7Ab/3vSX+Xwb/p9UvhL8v8M7CbxU/SX0Gz19g+5p8n8136wAB4NPZ/9l3G7BPo4FK2iv3vI3qDcKPNz3HuyhlfRJ4E/0c7/0NfQ4Tvqz2D963ekp9yX7ae/b6PsY8v07+2Tt91jWtyUFOI1cWb9dh99l4CywKXr3av9/wNsB/e/SH41fX2a/LH0m/E20x0fwzsRP/9gRfo7DX3V6aUz+/ZU/CtwOX8tzj0G/12T/lv4HX6mcn6BTVn89Tf0d2de97Okl5Z5Bfzn9Pgnfcu30KnkfU75ZzjvZ54HqV8N3S+2zg/r30Wc93x8A/8RPncz/6LbV37vjZ4L8Eej9jN7p9FdT/hHoD82+E76+8ucUQKndfH9KOw0nz3Xar5x+tnPuM5RflXsBcCX4HHnamq++0S7fgcPg32RcHWecbiX9Uu7ptHcd7ZP7weukB0g/pvzc3Dtpn6rSu4DL6LeC8n+wjw3gcPbxK/wnZD+pne9RvwT+2wug1BB8PE6uWeB3+suz2mG+9UZt+HYB2+NvhfY9Hf4r8TUWvAocSb+f0FdL+ttd+gJ8D1SuOXlfNB6ei7/Hjfuzwf/gL/clx5gPVmi3E7XHQ+wn6+oDwYVF6+y59LkJ3xuz/1N/ML1VpYcp7LSi+o+i/4H2WIV+WfrJvHiHeleQ90394Rz0H6SXM4yvZ+T+wPfB9FdG+nz0VuOrMngZurPBd7XXGSmPn1byJ+gPD4I70087/LWEt7N2OYLcO+GvDXvL/Jr+92rOr9DLucUJOV+j30n6cxffx0l/qXxX/NQyfv6bvqri/xrlloKj4dlNfmXyL6T/x+l/b/xnXXkMfpeys0vwd7P9xSbzxjL9pTR61fDXhP4a+L6E/rJufMD34vVj8X3JVvnjcj9P7+N9P5w8+5DvzKwv5S9UfqT6i6UHo3+hchlvttH3a+B94Hvs8AH97S14utHj+fDNk/+//BS2aK/TrbP70dPu+u9b9PcrPZSn533J9w26J+O3RLuVl7+a/V2e9X7sUfnd0K0Nfy2wrPbN/vIYcnWmzxHoXIqfjfrBitwLqn+9/Oq515Y+paQAB6oX+9uCvzLwl9DHN0Xj6D+V/1Y79DS+XQ/WIt/B8t8xPmT98wX8v9NvB/X+wueB5BhmPJms/o3gUejPptcq0h3ZR2PyZX1zHL1lnZP1zXHk/YvdrYdvAft4RX4j5Q9gF7lfzf3bczn3yz4cvB8/h9Dz89JfZx2ZdgNfQ69Dg7/nl5T8vVzy2+lvHdnJPvSa+/PDtN9a9l88DtyJXvE64L2Mn0Xjy0iwtPrtyTMfnAi2hy/z5jn0UTx/VoV/AbwHat9nyHkpOjnP76F+7pevjX+D8l3A8vI7Zf3t+0fscYj8QfpbOXZS0XhwNrq5f3sDnwfv+nf63ei/G/t5kR1sjh7x1wr/M9nhCenf5K2k3q7w78v+7tdfco/aBJ131d+NfLW1aynj3Qb83QHfaeRfLH2l/APgfUz/aSi9Oet7+qqC7520a3vlrybfJvJmXJpdNL99QP7Mb1XI94H8HvhbSr5a6P+R/SrYF/6J6n+u/32o/uH0MQj9u+IvUFKAl8DzJ376at8L6GUr2Az+s9V/NvuNrDvjP8JeKsF3nXXq+dl/stdt8geQ/xDy3aXdO9FjL/Jnf/UBfCvAfujHf+pRfP2Se9ech6L/OHmbovMYeSbTY+7Xc5+ee4WD4G8N3yLfyyjXCPxQv6nO7k4EV6D3Ffzj8JFz4xfxt8l6ZjO4EdxGnvjX7aHeU/QypOh8I+caOeeIv9rx5P0SnqPhfTD+ZfKzL/o+92P4/9H80wicpr9mfdJCuQnabQg6T8ufA/94dM9C5/f4QeF3ELtogP4HJQUYf7vt4Ps9933Sg+LPpt7evu9HT/ugfzP8q/G5mfwb8fMEOmfLH5Xzb/jfVH9Jjb/nt7YeuD/+hvJfjr9AkV9A5fgh5fzNuBX/gPgLxD/gDHRb4a+8cj1yP2E+b4SPMlkngz3p90F0V8IzC3+5r66Kv67k3RB/P/27jHHmEPwsy/k3/uOP1Er+KvrP+FEl5xHoXCYdP4fLwNrG35vxn/vaSfjMve3Dud+Vn3GyJvluUy7+XJmfWiv/Vtbx+Fuv3lj87QN/36JznYHafRX5i+/Dck/2Ws63Mq/Bt15+xq83jbd7mYer4Tf+qNfTb2vjwqngVPSmSH+ofbag92nsQ7/dk1x1pMuSY5r2vpV8vXN+pH4X7dHKOr05Pjuqvx18p6h/CL4bkG+ydllX1J5pvy9yHq9eL/b2I/mWxq7poRx4Pnqfy/8UzD3/jvjP+uON2Cc+sv64inx7kudK6X9J7wjvO+h2gmer/G/iV6feM9IH0Xdb5R9Ct0n8C9E/if5bkPdk7Zf7ifhL/gHfzeTZKL3Vfq6b+h9Lx19+Evs+Qvn98JN76Ow7xyv/MPo9c/9KnkbgxeTclnW59VFdcH74z/mM9UX8rFuz98HKXQzPZPx8rtxq+roU342K5pv94H+cfG/BM4d+tup/Q6zHL8X/VOkh8h9HL+vmzeq/jt4R8N8l/0Z6Wm18W2Bd0se50kLpb8kT/6Rm2r0N/k/Svp+YT08l5w74myL/sKxb1O8FX/y33tAex+qXb8aPFH9L2c+j+Ek/u47+4o+W+SfvBqrK34Sf+CfdI30z/o7AX/w7z6CvKSXqZ/7Pejh+fVlvaZf08/TruvHPynoV/Udz3p73D/rPoeRaiY+sH/qg3yL3nDnHJuerxrVD2OWFRX4S8S+Pv0T8zONffiD5c//fqej+fyi7uAidN6wPp8aPxvdq5v3TlI9f7U/Zt2W9Zrz/Jv6v7K0p2KTovH4v/A/Db+41Z+Iv662Tcn9Ivh/jf2s/sVa9KexsPP2tZ2/18NUt5/TwZT/8bUkBZl98O3xb498A5j3HH8qfiv8GmZfxdyr5b2W/XemzsfXQZvxvVH+g/It8fwJ8lt0twM8l2uO7rM/Vn11kv83J30P+mdp/Gjql4JsluSs9vCgdP4lOmU/Bo8m3D/zZFyzN/SU9HK/9xqS/Z56Rzvi1gD46lhRg1otZJ/6B/9/Vz3r8T/KM1P5Pqz9U+z1NPxvoK/dT2WedBP+e8O9Af3P117PJF7+4vYv85XqQb6n+cBO8B6NXPf3LfNfA/dJ86Zro14g/L3mG5z0SfnJvc5Byxfc3WZcNpIfi9Vnuv2+jtz45p8/5iPHkf71jeIFdfBw/NvyfWlKAy9BrnXNV48c2+sp+q4p2yTy5C/kOo/+y6DUiZxn168BXK/dKYNZ/3+X+l95m0sNI/B0Wv0L8X4yfuejn3DjnxR/gsy79fK697wfX5Bw4/tfaf1385HKOrn7eOdym3Tqhc2fe5+DrBPw2Rn+K+i2Nf+Xlf0yei+MvTN7458Vfrwo+4pcS/56MN/W0ww95T5N9iPz98fmq9EfqvxV/wfCvP9e1vt9GTyPxvwv8tfFTU/3r1e+l3VZmn5D7OvSuZ3/PaPdn5e/K3gbKb1tSgCfQ18XyOxp/O+e9Rd5D0N/26GT+GUneTsofQq/xvyuvfD/132R/m8j3lvRfyjfGT8Os3/BZj/wz5VcB43fbFD/99M+n9cuv8fMd/kryfhPeWzKfqV8L3tvY2Sj41yhfvO94mhxNcn5U1B57RE/o5z6pI72eL/8W8lVkV3Xjt8keatJf7k/eJlf89OKftxD/58g/SH5l+DP/7EM/9YyXmYc+V6+NeoOUvwH/ze0Pu1vnfgouwt88/elleF+Wjh/djVnvlRRgnbxLgL+a/GPxU0G56vRUVn7e9bwvPTH+ENJ74f/OnJuC7fCV9XZj/fCR6AfeEfjNffw88mW+G4Fe5r2c/79sPlunX/9a6e944s+c+8mF5H8z7weMexfTWzn15+BnsPrrsz+CZ5n6T8B3MvmfzT0v+S7R32rkPkJ6o/orjBub6eVJ6azXV7HbT+A/Bf578HFQzofh/zr+sOjnXq0XeEHOqei3FPlyL5R7otwPrWVvh4IL8HU+PI3z3k56hvF+GvnOM//Mx/c0clwlP+cvv5K/Zd77kvsC/XcaPm/IvV38/Yruwzbl3BD+G+BpSK469PMv6V7mh7F57y59H/1cof7HuR9DP+9X78DfUTn/kf+a+gfL/7d0Z3ZcP+8r6bUrOBI8J36w9NlbvVfYa94PXxL/POm9yDUa/nvRn0WO3EPWxc8Y+pvBLrcWvS/IuvE4cuW9afwF5+HvdfAy8MjcP+Y9Iv19C8972ifzT+adPvLn4O8g/fsO/B0o3TX7g/hj5N0TujuBR8I/H/5ztNPjmU/U30J/Jyv/H/zdRJ5R6l+Qfqb+0ZkX5e+cfT76OQ9rzq7zPnwmeuviv5n3V/SUc9KTyf2z8q2kc0/8S85P47dd5D+Q+AeJezAh5yR5/63/7WLcu8/6++68wy2AUi/mHWDmU3Lm/CjvynJ+NAD+tvg9lR766OdZ313F3hrFb8V64Tv8dvV9ufT3JQX4deIfGH8WkOtc6bz/n8xezsu8ge7arK/wN1c7dMw9DHq9rKebw99TOv1/n8z78H6h/pno1VN+aPRK37G3UfQyiF7eNE6/gJ+HyNMPnAB2z/xmPJgOzzSwPD7S7yZpl/S/3B+WRqdu/BbIcUriE9BP/FYnSed92fXself0dtJelTL/w59zn7xPzvnPcfSz0Dq4hB3m/C3nQXnfkfceed8xDv3K+ukQehyVeBr0nvXvR6Eb/33t0Zl8P0hfE/+M3A+Be1nH5b1c3nNOBfPeM+87s+94SjsV7z/awtcOvxOtp7P+nEhfz8tfT/5q7PNs7Zp1SO7Pcp+2yPox56TF56NX6x87wl+npAAvkF8c1yLjZcbHHfTXG+EtL533dcX3uWvoZxn+j7Y+bAamX+f9Rmv8L8X/ZOm2+N3GfgZp//Hgw0X6jV6PKtJvL/LkPXL9+OXn/Bb+5ez+QzDxSEZr18v1227a+5rc89Pff+M95J0q+Y9nvx3QmaE9hsV/VntPRG9h/F7xn/PVu/MemT28qNz39H65+jlfK6v+cPocQb97Sm+FJ/ZUG/49tF/uZ3M+vp58OSfP+fhd7CFxVxKPZZ78T9DJfHx73i3Fv0L5ivi9u+h9RZ+Ma75fACYeR1/6WUaPObechP7n9L0L+xuvHZqVFOC/6WsP7XYufJtzD67d865zY8bvxAcI//J70WOnnM+h39733CNnfVxWu7zLjpuy38SPyLjVEr9N6WMMOXOe9BH+c96U86X12rOj7/ex34yT2V9nX53zlIxfuZ8+Hv34t+S+eoXyy8EPwZXwZTwYRT8ZJz6Ef7L+tTb3++aJjE9b9PdJyv0p/Zf8vHfI+WvusXJ/NZf+s3+eB+Y92gD2W9v56Lvxb49/DP3GL+kP/Mc/qTg+TuLiJD7Kbfp/N3ytMV5eDd/38P8HP+/ErwT+jMft2UPG64zP5clXBixPTztkP5vza3Z3JLp5Dxi/l5fw3106/i+bpBOXJXFaEo/jM/a0o3a5OOcG8ivj51p2MVH/Oyvve+DN/mqG+tlfzTHv5P1NTe2VdwAfky/jcfxD38R/zmWamZf31f4ZvxKPaaF+MAmfic90Ut61wb8M3xehPzv2J//J+HfFDwr+vPPN+5m8741+c38xnfx34S/+NYlDUBtf8a/J+VbmuwPyXibr38RVynmu+hk/tmZdiN9j2dnj6Od9YvygBhTAf98pjofvAPXX0v/t6l+t3qfKfYrfqeQppV3i93YrPc3H3/n6z7lF5wzHZv2Q+GvgXejkvv4/6N8e/uinvvrvG28qoRu/gcPx34e95H4v8eRyD5y4PNkvtZTeAR/d2d93xvX6YO71O+H7YHqvEf8q+rnTfH2u7z3NF8/hL/GGntXPLmK/78V/Jn52Wa/Fn4c8mR/KkSvzROaH+LvH/72/9Eb6fAC++O/Hnz/++4lvdFXWL/R7ovyr6P12/WQOOUrl/li7NwR/pvd/ke+oIv+5jCcZR+I/fgu9xI88/uNPGF+6gYuK7pty3n1X3kPS53dF82PmxcyT8b9InJgV8evEz2j4e+U9F7x5N/pfP3HynJf7W3y3AA8mV2PwcDDvqeLXG///y3IeGP829vki+A/2mf3gQfEXIdcafOQ9cFv8X5P7c/W+gr9C3i+A24NN2MNQ9v9W/KTzjlT+2+xhTvyQ9dfsY6qpl7gpNem1lPw+8U8Hx5FzLPzz814AXAIOlV+8npkTf8j0L/YyPftoMOdrR5L3FP34qLwPx98W81kz649R0rn3qYPub7mvzHsZ9vEM+cuT+yh6+F35zhkvwM7xd8t9BHpzwfXgz+gspbcx9NZS+kT832z8zro28X7iH9lOvXVg+lHiGxzLXkrTd9b7ia/XC/6eYB/99xb8Pa19fjN/t7S+ir/6Q/TTQfn4Ke2K/4WJj0jf/5Qf/7qB+OmD7wX0+wf+31E/7dNaft6BLMp5A/o7yz8n8WGkc7/SS7ncszxcAKUeROc76RuUf1v6R3A4uBDee7RXT/rfgR28D9+55N056yXtf6Xxua/+uXNJAR5Kr/Hzqqx8sf9D/J/iHxh/wPgH7ix/hPGjAj1dpHzuL2v4nritieMa/6uX9bel+uEV8X9U/wz2cjT4sPJ3o78X+/k992nWsUPz/oI9H57+wA5vyfl61kclBfiMdjlQ+xfv39spt1j6Afgy7veQzvifuBSJ6/Qye2xPvs3Gw/fU2yLdHn9V2cHV2m1J3tfKjz/TG3lvrb2z/0i8y+y3i/vnTPpOfLrEpUv8geL4uPGDSHzBlfC9Sb7E2+hPP82Ujz9A/AW+SFr7tVf/fvLmfcc6+s+9/zn6beei+4X+iUOad0SZH4vWP1n35P3fJnaV+8T20qXYzwvoJz7SoNzDZX+o/+xh/D8775To5zP85Zw/cV/Ogy/viV6RHl/0vqgzu7gz55TsO+uomvDOJHdNcnxNzhH4ybo08Z6zXl1L/9+Cr6F7qPrd9eceWTeDmR/jT/E0OBr9+FfUJs+Z9Lg494P4X6Lf3513k9K5X3g962dyVCsa3zLe5Z4x7+8yHm5OHFDpY7RHWfTjn3xE9v30OEt6rf74PrkrGE/Kqb8q/n3sLO9kDiPnMeQfCe9q9LN/mpp9WJEdpP0Td3Lf3OeRJ/GnT899cu691H9N+7Sn9+/zLga+fuj/WRQ/shw88/P+zvfER74CvcR3+NC8lLh4Fyb+Ef5L0ddZvv8mfSz8R7LnO+wfjpCeTI74R1wrfXD87sEB8k8wL5bOOXz8Q/Kux/d5ysWPvxZ95J3FdPVawH929jP6YfH+Nu/KJuQ9c+KvyU8cj8T5eKnIv3gse+hCX7W0x4+J70RvfyUOLnhoie/KZ17KPJW43rHP/57bSed8f4b2/UH54TkPyvzOnr8Hh+f9Yd7zgavt73L+Ef/NE+UfQd+v0/Nq9FdkfkE//s2/ZHwuei+W92NPxD9M+w7PfbF04kGPpq916H1VdL8w2LzwPD5PIf8c+LrS76X4G+j7xeQbnXUOelPxGf+8xB/P/UzO/8oon/g68ZfuLp31z2Ljyk6Jm2b9k/VX7ks2s5M6u/1dvnPQS9y+GXlfjP5041pT+Peg3ybkfA9f5+GnFn4S3+JO/fZGfOWd9pclBbiv9v25yH8t/gM96Wca/GPitwd/zkEfjv+c/ni+/GbkfxLsQQ/D4W+Av3HafxM9nBz7hn//xAWir+zTH0XvA3AcOT+ir4nqx+9mD/Lm/n4We7pW/0icosQnSrvnfjb+9LmfrR3/a+PE2yUF+FPOt9VvEr9t6XV5v0Avu7CLG+jnSuUeNh4cDE4G4z/8pXJNyXei9joE/kaJ76F8/FhqkH9VKfjYW+KNJ/7LLPjmkr/Y3iroD6PhqWudtU79+EfFfyj+RDn/3GK82srOy5rPf849gfacw64/Uz7xk+IfOJN+71E+41veb+Tdxix6yfuNp+nnNXy1xmfLjL/sJf8Pkf+FaEP+weaPIeBQcLjyr0ufFb8D8+cI/GdfkX3GL9Z5j+Y9QNbf4Av0cJd2uhffeZ+aeJn1Ej+DfDkHyvlPLXIm/kB3/esT+T+oXyH50okHnPi/+V+Iy4vuJxsrn/j2TeHvr1zi3ddgP3XyLqcASi0if84td9fOGQcTH2ASffyQfo7eGXkfYf7obHyYHz9t/JytXb5Vbq7xYET8WfX3vBdrqP5DmS+zn8h7PPq4gH7a4O9mctxF3vr4G5P7QeXvk877o6PiN4r+DviulPgC8B0bv2jpV0sKMOcnh8S+wZynXMGuhsWPi1x5jzjP94/i95T3k8oVx2tqm/sb9asnnkHeY0i/k/OKxJ0wDnYGv4j9GU82WJ8NL/N3fh40bjbMewn8JH5j1pWfKf8cfZZD/x397wjt+px++Jv8nEskPuLu8RPJ/E0fn5cU4PvoPEq/P8XfRv2ByuW972f4fxnfvaSPzv6ffcU/IPEh4/83gf5OT9wK9RPfO++dc5/cTv28f36UfDkPOJK9d5FfJ/vrvP/Bd9YH+2r3Jeq/C+4e/674xcVPFGwmv7n+kfgWbRLPhr5O12/ekd/RPNGNfIfiK+vL4v8byfvT5kXzcObf3fT/8ui+RP5T5D/P3uqww17SA/D3Bf6/BD8H22V+TnwHeqlfUoD3S483XyXu5kOJ4w3/qwXw37j4n5BnUMYL9MaAo8FTEgeZvvIOYLuMR/RzJrzFcfhH4i/vs/Iuqwo9536+m/J515n31DnfXUTvJyYeAPm+UD/z2hTjb/zwtst9F7rl4Eu8jC/h64+/NUX7xewP874g/7eVdwZ5X/Bq/B3oP3HIsk74GL+rwQH4aQvftfrthsxr+l99/D0B/pj72PhPZ33I3vI/FGXBxDNfpXx79p/4co+qn/k5cfkzT2d+zv+VdErcqvi1qr+CfexPb8ulc37SW/8bBo7VT2rGX9H483n6q3F0d/hH08cv9NQh54bwryHfAfjLOJjzgX+aD/9AdyPYPPF0yJf4kmXoIXFq8i7t3dhnkb/Nc+TKvHo1/mfkvkH553JfnPt/+U1zHp84EPAMo//b2VVdeLuy8xmJ54H+CPImjkLiJ1wF7wblHwS/Rf8t4/572qFC3hngs5H8/C/DXOUSP+mu+F8kjhx5e8nvj+/O2iH/9xF/9jekz4j/rXSjnK+Tv07+v0f7vUg/8a/rQr+XlxTg6eqfiK/cJ9fIvVPWo+ieQ861YP7/ZgT5cs6Z/+forX7isuyS++jEAcLfR8bL+ug0znm8eolPlrhGiXM0I/EtEv8m/mjssBX8p6p/NPk3gReof2v8trIPhz/vp1cWvd/Ke7u5mb/jp4Ru8fp6pHYZBZY3/lyb+ZbevlW++P1X7jmHxh8t/Vn+P7X/vfTXRXpB4jOYT7vDU9U8e2HObxKfmB7Owt8N8uM/cKn6Z9F3zkMTbzjxhRKHNfHbF7CXDeSbrH/k/qFL1r15N6zcbP3zNvV/Y/fF/6/yDX5rGVfLlBRgV/TfLrq/zL3l8+BXebdf1K/i/7PZ+iX76JfA7J+n0vcj4BSwTPweyTtEvfiP9ZW/l/b52r4i8RfezTuV/D9K/EPAP/G/kd46st+18l8ix43o5P9Civ+fLfv2vOfKfj7+7HNzvgzv6+z1NOn4R8/Wb+MnHf/oM8ndwvy+QLnEE7o9+yf0/gXvmvh/G28bmLeezjvDnAcq3y/3k/EnJX/Gy8H4eL2onS/SL18h1xz2knn87PidK38Pvq+WHkDeVfGPRyf+7Xl/mPVGL/VzPx7/tB9zDpL4qfHDprecjz0g/+vEH2YnrdjZidI5Xx9J3n/BMxLM/uo+/FyY+D65J2L/xxsvaoIz2ety9RfTX3903pb+jLyJe5x3cVXpI+/jLqbv0/Sn+CPH/7hjAZTaWb/IOeB78DfRn3pqv6MTTyXrB/RaKj+dXuM/mP9TyP8rHInPxOO4gL6W5B4x8236E7lfgveLxFGNf3/+H8i4NQa+/L/dNPLF76E5WAO+xOcqrX7idCU+1x7xF2U/OSduj37TrFf0n7XKNcr7pcSdBj9gv4vIu5w8I31fr9xp6ifeauKv9jded8NfldwrlBTgHPn5f8f8/1ziRuX/nPL/c7sWvcvL/6/E/zf+GHsqlzgE77OfZYn/To+ttNuF+HmcXZVlB+8mHk72z+TOu8q8t+xG/tfQzf8qjMs4go/Kef+KXoX4TavfRnt+jM6r+Dgw8z++d0rcOOmMR7dq35noTNHOh+V+SL+9Sb99Bcz/y2Z9cz04Az935HzT+PZm9rngc3mnxR7+V5yT/E/P0/Evk+6K/qno5R6q+P6pinq7JA5OznO1+/fs71rw/sRblR//tvi15T1p7u/jz7Qy70hzri//w9hl/NqL/HfaFcVneZn8GQ9Kqx+/o6cSf6Dk7/lbivySLsTH/3pXt4F+1quf9x2J75f/73qQveR/Pvah53fk571I3o/kPUneRyZ+0qv09xqY+EmJ9ziIvXyS+/P4F8EXv+xif+2x6Ff1Pf8HdVz8sKXvLinA+GHXVj/+SvFfSvyA+C/l/Lx37heUz/n5KPorTf91lVtIv0uzv4f/RfVr088G/GXfkf9he0/9+LPm/wAq0F/Wr/Fv3Za4gmD8W0/Q74fnnQr7yDu0/C924ir9YD2f+EpfO/8Ywi7rSrfLOkZ/XOl74uhfmf1N3lnBt1673y/dHV8XwXO69C/y90Qn/9cwgfx539JTeyXuanF89tbGr2b53wfj16/aaxv9N0GvOf4qwLcrOzrZ9yvJk31C4vYk/ngt42nmp+L/DzwfvWvw97Z+2QvsCS4md+5H8745//Oe+9HMH5kvMn+8Lj/xcfOeL+/7El+yL71fTu9VtHP2XyPp91ByL2KXee+f/xPfPu/X2NWf0pXy/1D0EL+D/P904tUl/mPieLZE//8AOKaWB3icdd159JbTGjfwX0UapFSmKE/mKSISGTJkzJDMc0UpOlGKKMmQUEIdlSFOqVAoJTKThCINZlKIikwZE71rvc/ne9Zyv+95/rnWvvfe17zna+9no20r/u/vwu3L8PYGZdhJuu/mZVirsfSWZXjPDmV4xBZl2MH3OaUy7C//26plWLlaGVYCj9y6DHfbqAx3qleGTaSfkN8c/nXhy/dl6EzB3+YNy3BjfK7cpgz74WtT9Xo1KsMZ+Fun/l/qjVHv5+3KcEv5W8K//VZl+CW9bbx+Gf7k+3Ubl2F3+I/Edzt4D4XnZ/odVbcM361dhvVrleGxyp9LL++h96b64+Ffgf5ycKc6ZTic3D02KcNvNy3DxuBp9LACf0vw/zx535K/If1/D9886dn0U1u6ofJb4vtp8vVj7+vIWVm5ben7afX3k56Kj6Hw7CC/EvqvK3cj+VdtVoYHlcqwm/oPKvex+heofyD5ZtBj55pl2KF6Gf7Ofnvzl6fY4wf1d6n1T/qhFz5C91PwJN/vQW+E8t/A/wB8l4H9wAPkX4jfqeh/5vto9M/2vTp7tIZ/F/qvi34D+pyr/F3yV8Ef/zwPnxvyt9/hi9+dp3z8san8V9V/Ar05+LuhAj3fq8BzZakMz/f9xfgh+Y6iv/XY71P4K/v+DnlbVMEH+HrlMpyhXD/138B3K98PAR/F32VgrUpl+AA+2/Dbz8EF/ONp/B+G/43h/zf/no6/avB1hn8BfW2j3Hba/TJ4m0g3k79mgzL8E/wD/A1/B0lfq35T35/E3xn4moLugfQ4j/0a009V+W3p/zP57dVvzW9+h/ca+Z30T9vXL8MTwdOV/wM/66t3j/JL6KdrGVQ8DZ5Bn2eyz2boj4fnXOVW8N8/4GuD7pH6v0rovUcvLfjXanq9Q/1948/o3UEfl5PvVPQWgSPp6UJ6+ga/y5UfRO5TyddH/3IlOFM/05889fhVV+kfYyf8j9SvH4Xvrch3FXrr68+bKH+Kcq3Y+WH8HEX+9soNAQ+F73Dj9CsbluGj5HuS/w4E3wfTr25Afxfg/zV4X6Pf1fCtgP8B+c30D03Ypy07vim9A/47mg80o7+L6OcM8j+Gn9nKr2+8GQj/GzXKsNN6ZXgh+BX5fmePdfQ2D/4p7PcwuaLf842n0e938H0LrgLbwvdLGVQ8Gj+hrx3h+5J9HuZ/B7LT++SbrvzRvrfE9wH4+0v73x69g40fl+Cvj/LXsNdxvm9JPxX0NUG/8zd8D8L3HH30gKcaPJ/B8xi5nsHnbOWvhb8hfVSht+ba6XvwFf3prsyz0L9T/oXg5vAPop/LpDNeZvz8lT5bBh99dSBnb/7Zhr+9Qg/HSTdT/3J87VQqw9HoHCd/Pny787MR+H4Kf/uo/zY9nYKfPdDfPe0Z/aPRfw6dbvyjPjyZv15HnpvTn4ATtbMHMz9Et2cZVCxkpz3Rb0ZfE7WzTfVHD8O/Rv7zmffg/zvyZ143At3M9zLPe1X/NIH96xmf27Hb/fhZSd5jydsEfz2Uu7pUhncq/y39pr0Mwe/T9Lcr+acpP5oeVsG/kfyT5R8O3y74eBa+Z/VLr/Lbn8Bz8XMh+pfi83V2Ol79T8hdnf8eQy9nk29uGVTMBnuDozLvoq+20puZ53RRP+N/A3xmHpDxfy1+15H7XeUqyNtO8h5yD5Luq33/QG87s/uB8Fyg/Hr84ht0W+mnh0TP/GoA/hspvwr94eidDS6kvyH0VF16NH4yH836ZzV6s8Eq/LBD1hf080mpDGdIj1B/AfufDf/F+K4U/8FXL3Acf36XPkrqZT24DL/12f/f+oXh/GSN8byP8p/S79boXku+S9BvBN/79D2FXDPYvwX99lLvFP1AZ/gzj6yh3r/Im/GmFvxd4T8SnnvJ1RP/l4KH0O8c/H5Hnlvp40x+MBv/z5DvF3ycSA/X088i/vApPz+Yf8/BxzzyrYH3D3Ar/DbE/+/4XZj2SD/N9UfNwLroXS7/Y99fVP82cp2X8d/85aHMi/R3Vel3K/rYGmwIHkkfe4GXlspwPPw7ojeH3IeQe4Z0dfzdLT0YP69J/yX/UP1LE3Q+5Z970n8N9kl77UGf36E/i/6W4G9z9joJvfSXvdPe9WO3yz8cvUH4WA1eiZ/sCzzF3/b3vTX+X2Wv4ehX0O+BWc/iZwv8Zp3fLPsn/HIkuJR/7Ms+af+7ahczCv1B9jeyr7EUf9nf6JD1D3xHgM/Lvz3zfeWuo6e+8uvh/yH0pin/fPbX6KsLPdZW7mDwa/bqgf8P0Z8D/9zwi+4T5HhC/uP0ORn8Put15afB35l/PyFdSbm0+1Pwm3a/RDr7Rdk/yn7SPfhcpF/+D7yXq78XezbA1zz0T5fun/0j/rYPv39I+njtbILxbWd6fMP49n6pDBvzu78yfrDHI/B3oK8Svnv5fpL2sxe809nnWHjrwrsE/dHofg3+hN7L6O2BztnSq9lnEv31gnclPXZE/4DCeJvx+GXpndA/E92dyVE7+x/yp8n/HPwy/TD6++PvOfjrodtffvqXCeRK/9LK95fQ21T5jsrdJL2cfBcr/678I9GpRZ7N8dFK+XPofxG4GzvU1698rt4f6Ncl1zH8b4n59bPo3qncmfgfSd4n4dkdP7ul/+G3rcBH9C/Xod8782b97CZg9qmzL3gzfGvZN/3XTfKzv5H9juxvzJM/Gr1lYDvyXaRf+AVf52tvf5Pjt/RL5H4V/Q3xMxn+3vS2k3p/l8qwIXyj6LEmuWag3wI/N8E/iv0+kt9R/9HTOnAQWB+eo417z2vfD4M/wrsNfGfgq5l6c+BPe/+Kn9dXv4ty9bN+Un4cfexDvwOkN6OP9G/p7wbwu0fxsT45FyrfnP6q+34/O24qvR/7rKL3R6WX4WenzD/TX6p/Lfq7Sn9TKsOW7HQT+l/xt+/Ufytyqp/zh2nZp0Yv5w9vyu8H/5/kGaV9fkCvR8nvTz8j0GmDv7bgLvBfQf9DpMei/x98X6b9fclve8Dfj7/NVe6/++NZB+r3p+J/Y/Z5mh98xE4fy2/EDhm/l8NznPwu/DrnWoeiNxR/o+hjG/JkPyb99y387XFwKdgs81f8nUY/R+u/Yr9O6Zfwtzt77C3/IvSzHtoH3h/Z5zT5z6l3Jz4PyflU+lX5fejjZPJfZP77kXG3NXtk/F6e/SnwbfWrqH9F1vlgC/w0pL8rtf9f6PUW+yV1lM+8thp8e/qe+W1n+D5Dfwh5rsj+te/3gluxzyT1b9XeJpTKcCP6/lL++uQ9CX8L+cO18C/Qv59k3tgW/A4f3LFisHnJEvAxcrVXvwOY9fC98N/NX3M+lHX2Heqvo7/j0h9qH83Vf6QwHj7E336QPzbnZvSyXqkMh4Jbyt+ZPHXxc6n6j5qXTQLbsP9d6W/Qz77c3eg/zz/30C7PIcfZYPaXVqr/qfrj1P8Y/i0ynyVfM/x+pf7F+r+tjSuNwNP53/34Hg1mX+AA+MdnXy77mfhYLP2b9L7o7yT9Mvzp/w6Dt7J2dpj6w/jXFfyqI/9vqPxs+TtmP5++FsJ/C76zL5396kPlv4X/9HM/Zx+Lfk7nLxvw78n8d0AJH/yxOT0uo986/KE7utsrfzs93Ei+k7Ofi++h4BFZ3+gPz855lnRT+eex76M5VyfHAvzX5R+/oXe7/A7yf6GP1eAa30+kn/+17sv+T85THmS3GtKz8VezsJ9za+jLv1R7fyrrFP63FJ2f2e8XMOchOU/fnV0SF7Ax/8h57Bryn86utylXH/2O+BuOrwbsdrf0APgHwXc9Oe9WfwZ7dfD9aPa8CX9Z3x5GXw/ztyMK/jeJ/Wqy8zj8PkcfL4Cb4+Mo9M/VHzRQf6n07/TdD1+/wvdMzgHl11RvW/jG0Edz/N1U759y1djkn/Lthd4Y+LbP+A/fTHpsi34J/pelp2g3T4DtwQ3p4V5wif73nfTb6PX0/SR0GuV8Ev9zDDCXsusz5L0v+3fG77b0tJH0A8pXl+6mHZxK3kbys//zM9gUf+fj7xXzgm31E71LZZj+82L+Oj77CNKryHG99v5d9o/N989Xv6d2sxYcCU7E5wn4HMxv/oZ3rvQh+Ms56iz9ac5T1+Ar5zLf0NNdiaPIeSJ99+AXY6XnwdsI3pH60+H4H8x+R5TKcAU9zuI/D6q3AJ669HNw4jvQyz70Eeya/ejvta/sq2T9OgHsVgb/zzx1wbb///rFdXAT/dHH/OMc/eSUxJuof6X6+5Nzb/q5jL0u4PfzpE9BvzJ9PIDeafR9k/wx8E4m/0/K5fwq+F7kD9kH+i9+/eMp5H4Q3wPkL8b/FPmXoD+QffbXHyyGZxQ4OOts9j4JPAXsmPkaf74DX8vAPhl/sx9daL875fxFv3SBfmpd0vTQX/0p4KuJl1F/KHoH4GO8dNY/7ck3BlwHLsn5cOE8fGbWLfR/YOI5tKPx0vcmPoo/L+Ln3fh5dfrLfDLzzIbqZb75Ln7fBy8HE8+3mF6GoXuedCX6ra6/3g6+TtLryP8afd0kfyq+Ep/1E3tfR5/xm5/gr0Vf16A/B/0tEg+m3RwCb6+ch9LfWPQPJs9n/HxtqQzv0j//oB3WoMfWyg+nv8bsMj16JV/WdVnnnQ5/1nf3q9+SPOehu0j+KfL/JX01v/hMug/9jKeHS/B1CT3dk/gAfLyg/vLEY2T9R39VpdfmHAv9X9Pe4lf0d7F62Tf7kf7fJk9jelsCbgP2UP96+v8G/qX4/IB8P6G/A7kSf/h69hUT70EPvaWr5LxIvWL/0xP9xqUybKr8BPRekb8D/5kEzx/wHIS/DTKO0XfXxCep/17BH9qSdyf5/c1n59PLNdLV6O82+twEf1uQb3P5H+X8hV6uIN/m7Her9voovX4p/QL6G5DvNXafDf5NnoH6lZvAg8iT+Ja74P1XqQyPz3hN3pv5+67w7Uh/ddTvrD1V1m9X4HtK9vfpZQ/fB2XeAn9r/cnF9DaRPaajF/vUVa+vdOyzL78ZTY5h9DsPf9tJX8jPi/FxiV/+Cv4x5G0q/3X5p6N7iPwj8Z94trXqr69c4t2qsnv7jMeF+fP59P2A+l/JbwB/4qePgGcreC+W/y/2TzzbTPrM/uRb5rfDzTt6GI8yXjblf4Oy7wRPNfz+jH7WjVlHZv2Y+IZnwcnwPp7xWf1R8M6nn/vjv+zTnV2Wg6+j01i9c8mzIzunfR/DPvMTj0yPz8vvhP6l6lWG72Ly1TE+1AAzb/808ZnGm63xvRYfveEvzlcyj3kn9sPfCnT3gbeR+meQdxf+uadyY5S70vj/Nru9A7ZLvHDi+tRfXBi/7yX3EfSQc4Hj0N9I/iz4VupfHsN/bX6TefdIfGX+vS9+WoDX8NMuWb+iext7VpBvZ3j2NK99Dv2h4EP4T7z/4fDmHsAV8H+VeGF26pE4f/mz9HuvgUexT092yfj/bsYvcm2b+Gr6SFzQdOlW9PgafVeh/8r8+Un8dte+6mbfAN2WiQeX3lu5BaUyPJP879BPzi/fls75ZfAPo7f56m2S9a38t8hZ7F8Hwncl/kboh8fjb4D+9VxyHUz/28F/Kvznwv9w7K3+qb4vot/K6r+mvR6u/GXkS1xzzodvYt+q7PeS9B3wLdb/vZ15p/T70R++i/tcO2R8598Ltf9F4FL4HmDX7F+NlT4Z/3Xo82z6qwHfm/K/I3815QYkLgB/38J3RSHOu2apDIegm3P1GekX4d+TXhK3unv4IOfb9NFc+5jE/xNvWoP+q8F7SOKV1L+Pvregj53x+Qv+jot88H3Cfq2l90z8IX/rpt429D+GXNf4frP6e5LvNfg3872F9jlS/Z70sx99Hq38DcpNhb9F9pEL8VGJC0086OLEb+S80vg5mR6OocesMw+Gvx26c8ibfcAV0hX01973A/D3svH6FbATeiPp/w396sbhmx5yTpz9svOk/8z5M/2czl59lWvNv0ryF2JvQvYdpXPetSbxxvj5PPPrzK9yvs1ebyp/QWH9n/X+TO0w9+F6sMtW8F+S/Rrpyeo1gf8H+Nvh/+Cchyq3n/yZ8G+Gv8XyXyi0v02MF3fp92ZIr0RvInzt8TmksH93s/z5pTK8I/zI3wX9xBfmnCPxhZfR8xj4n6ffKtmfqUAHTDxDB+VX4/cnsBI57sbXQv1RrfRj4D4ZH9gj8bND0RmPvxX8p4V6f4Mfw38Rv018xrT4cc5ztZeO9Ha69rYA/U9zf4Ye2kp/SL7m2l1D+BuAz8L/KLmb8Js70fsaf9P0d1PBZ/SX/dnhLPrM/YpZ+PyW/NfCe4vy0/D5Oft+LT2eXG/lnhb5KmcfS/0uGecTX1oqw+eyX8L+09VPXPWV6l9aBhWTs4/HPjtpZ9uxzx+Jc6KfnJPlXCz78fvAvxafuV/6Su5L5D4juzyWcZCcP6p/gnrN8dkY/y35Q13rwGOlv6DnvdJe1T8q523yD6WP9bK/ovz59Pd0xkvyz6SP7J+1Yb/E9STOJ/E9mRen3X2ddih/B/hqalcHkeOHnHPGPzIfyH1d+tmEvr6Rvhn93E+oiu8G5Mh+ePa/m8C3sfQ68r9Dv+343cngKeBm+LneeHI5vb8JDsn+TdL843rzhTb0l/uFKxInxh9i/wHstS85f0H3Wvbqr/+5gN7eRmc4+a/Snq9O3Da4kfov0e99WfejczX+28PfERyc+Gl6zr3IReyccW0IPr+lz6xbdk3cdfbr1Mt+1XDluyt/VuLJEhehfsb7N+lr/awr0L9Nein7LlD+Rd8Hka8BfDPl91S+G/pDyT2fHRsm/lD+evTxLf11wP9H5B+N78wfsn/X8X/Eh7yV+JfEX8L7e9pD7tkU7s/m3uxlyuX+bAd+9XrGM/qqof728l8h15rC+LVK+jd6uVq5WTm/hC9xwJdLJ/53O/tl2+Z8Ujr7J1lfZd2WdVziDxJPmvVZ4k1v117/5O+9cz9DO9gF/62tK1eR/9nC/doSfW4D1jKOdcNvVeVHGb8n5b6Xcg3x3S7nnvirit/XjYdX5x6Jfi77PWfyhzPArcm9D/o1Er9Ovq8TL5X5Z+jRR/bTs39+tPLZ1y7GT12S/WX2zb7BEnBb+UNzn7UwT7uNXLWNg/3o/6JC/5Bzy/QT6R821b4+V74OvKPJ/4X6Fyk/Fv3HpJfzu22knzSf35u8uymf/cbsR9Ym/+H8+4DsD/Lvp/lhT3a+HOwFnqp84j+uReff2fdDb0EhvuQG6Rbyv9ev9ALPzb0f/N9JnmFg81IZZv+nMX1+Ra6/5B8D/6f4Srx1N/rM+WuF+r3zvoByjyX+jX3/VxxSFfUfTxwHO28DXxt+kf4r+0uX4K+b+onLXCF/cs7Xc99Huhe+El/wt3Z7Q9qj/qBW4nHAs2IX6T/ge4L/7Yu/L8h7H//oVAYV/wFXgx+Sd0rOn9hrXNY/2cfD/0LfX8i9VOXPNx6fBybuLPdDE4+Y+MQLSmVYL/cHyZ9xoSWYcWP/xF+xy46Jx8j+Pv7q0H/21bO+7Id+4tmPgee67E+qd3z6CXz2gb/EbzfI/Vz6vRidI9TbE79X4WdM1g+Fcf/PvK+A/oZ5F4EdPoHvevSHyf9I/WvU/5w8XeRfC1bKOJnzQ/xfDd4K5py5acG/FhTej0jcdeKtby+sb9Zj94HsciN4cs7H9W8PGVefk34h80/jyXVgD/6cfi/3b7YlbxPjb+7fHMs/FpHjBvk/ov8CerlHXrw/3r0MKtaBuZ97Mn3k3mf2c7Pfm/ufBxf2Tc9C90b87Zb79OTIffvcr5+vfPbjN4GvXeL3+F2b3PNLPAY7/ozvCeBn+ufEj36c+87w53w5582vkLcnf32EvJ+Qd6z2OA7si27Wr3k/5OPcG844B+Z9mqzXcg8t79PUwO8d4BjjTORfQN9/4m9q4f5d7vnl3Cb3AXN+8wW+pih3AH42yn1M/P+o/l/K96KnGfJzDtdSuXvBnLfmHLaW+VrOY3O+8T68uS9Wmf4ml0FFo7z/I30e/t7QHhbz25bk6pL4d/6RuMfEey/F3/o535E+Pvd/4M++2F/wpp9O/PhIdlnALlPxl/sJPxfiKRNfmXcm0p9ORe9Q/Bye+4cF+tmvC/21uZ8LX/b3tlH/d/1G4qkHSy9F7zfp28xPjqj+z/wO5DlR+gT8TYR/MPo10x+Se7D0h/Dtq30PZI+B7DMe/ara01vaUdPMR6XzTkR/9ss+UfY/Sln/4edZ+vqSP9+sftb/tdH/mTx1pbcpleFM6byv8Evi6XM/A3/n6Lf7Jw5H/U7o75b2gr+885X3vW7Ab97l+StxNOiPzf0u/ds3/DjnE5vZ77iK/fqCiU99vAwqhoBtwa3Qy32u+xLnkv01/I/w/bbEl5PnwvCnfs4dT8o9DP7RKvFgyu1RKsNz4F/KP+5Kv8geia9rlf3/9Dfy16L/GH8apx+YAH6rfM4tcr87971zfpH7eS0L9/NyX+9/vVu0MP0D/nZnt9wfz/7M8+j9qtzOYPvcR+A/XflPV/hzPnij7y/n3jS4L/y5L1UCi++3/U7uKuQ9AH9Z/18Wu9LXdRkP1J9Fn0210zn0dZH8zPdO1L8X7zf05J9Dcs8E/1+z/7SsH/E/E/3sj9yqvxys3We9nfV17q3Wo8/sh89H/158vSH/SHh/oY/Edfymn/kV/CPnZehkPZxzjJxf9MRf3ktKHOp38ufFPjkvz7tK8OVe7IvGkdyXzT3Zc/n32txvp4fEyxffS8s7ag9K512xmfAdkvgt5TagvwHpD/lD/Gs1++yN78yLP1f/MN9vL/2TTvAfzn83kN6d/bN/VwX9YernnCf95xB+d1bmveAV6KZ/aZX7Cuw1Ddwk8y/li/O7Ztr3OH7bJvF78DXGV/bPs59+qvq36G835DddpROX3wmetuod5Puw3P+nz5yf5n2dnJ8Oz/1pcm8mnfl8c/6QffHOec8Af5VyXpB9GHCv+B/91M55LLo7aj+LM16VynA6eb5QLucNz5MrcZaZz+bdkxfRfQE8NPff+OcO8L6k/oGZ/9Lb1vg4kx23lP9U4f2pjGMZH/P+TjPfR+TeJ/4f1L5aGF+3w+8bqe/7S/qdl8Hz8j5A4iLAvfn7eoX9nZa515T7GPKPV28SPbZRP+9v9cVv3m97WrlXyJ/zksTPZ98n5ydd2fVb+OoYb4cpl/3G7EPmXO8E9Tel72XZV0TvT/n7WU+MB8eBY/BdufDeT8bR3eB72HrtZvwPlN+XfD/Qz8n08pj0yzkPYP/P8JV98ZaJc4Av961+yn3j3O9VvxgfuVL9etkXz31BfpP+Y0oZVPSRn/caH5Y/Uf325H0g8evKP5v79ex7NL19r372FbdIfFfh/toE/vicfvJ5/vyC/BulbwA3Zf+2pTLsqv9YmTgD9YaAD/PfmugexE+2UL+zenkPZ5n0Lepn/+cHetiNfB+Tf5L28BC8Q8nRXf2sF7N+nFiI552oXT0MPgL+jM4tFfgAE6dxOTvmPuNL2Ucu3G/s7ntxH/CPjK/wdcbPYHbuCP9x5j95F/Vg7SHvo+Z8MeeKb4AN4Ml7duPyXm7wZH9C+8m7dHmvbh36Z+W9ufTrmVeo/zj7dzd+nagd5Pxujvq5h/xB4f5x9qWL69B58U/zo7zX8Q558w5Add+vIu/IxJvit2XiChPHpF7O9/5WfhC6nfPOlPqP8Mfr9Rv3pz/JuwDscytYgd+X8H9+4sbhfyfn7ehnvZ19nQvwE/mnZ36Tc6S8F6z8dPrsQ79Hs0Pi07LvehA62RfI/utL5Mn+XcajjD/Zn8++fD3tLfvzWb/kvbOsY7J+2RO/u7LDn+m31d/UfOTx3DuT/hU/iet8Q7oYn/9gBfo5py7EayzO+J/490L8QvvEu5H307wTg79L4euU+Qm4e+5f6T/z3vdR4SP9v/6vPpj5QMb/qdpbr5wrSw/LOwDo38iPHgCzPl0fvppg1cTplPDFnrmHXrx/3oT9To3d1Et8eWN6/M33vJf7lvysm8PXQ9LN5d9tvDgj91r56f74L+5nZp8z/p9zu5zX5Tyvq/yMvxl3h+E34++v8GX8PCv7tfCt037a4f8v6f1zPlF493sL9sj+6nv6v3/x3370mPjnnPd2RD/xaolP26BwP+YM/VvujyQ+9Mjcs8XnXPgyf5rF7i0K86c7jXfPgEvA8XlnxnjVC8x9sNz/yrul7xfGiYwPifcbSC8T8ZX4v3193yDvqiT+l3xZz2d9v77yWd93JO8dpTJsVniHvC++98s9KunM91+glzekTzYeNcPHavZbQ78/SOd9+l8St4FezjtvZt8f+Xvu13xN/3n/t2fe4wN7gHPp7Rt6uVx6VvSofkf9+UOFdpb29SJ8ue/6nXTev8t8pQU7fhB6OQ/Bb33wX+Q7BD9b5f02el1Ez5vB341+si7aFJ3H5G+c98lzX1f5GxN/ql5v5Yvv7/6H39Xkt1+V1Je/iHzz4KmSd6TJl/tiif86N/tV9Htb4ksy/uVeHngrPHnHZRY+sj/1V/YXEx9Gv7lfUox/zPoo8Rl5P+2v3HMEl+HnV/1l3sUovpfxH/aIv6cdZH2b9e+iUhl+gP735PkJ//18T9x5Y/lTk49e3o9M/7YHusuyL4L/FoX4vaHwlfjZBPx1hD/vKeSdhc2zPkp8VN6VzTyQv98tP/G4T8nP++rT0c99k+p5p1f5OvS7xPzt7bznlTh0+G/A34rci8z5LHvk/YYrpP/7fkPiF7Nvho/r4amivZ6oH2xYeC9mkPyrcj8Avrxznf5nHDnSD+V+Xzv1lxnX2qb/I39n7Ws7fv2c9NeZ/8HfM/cO1XuuVIYP8d/jfO/i+2m5Z8sfEuf2gfy98Jn4+Gb8dmzi6vlX8X2D1fi/QH7OE3K+kPOGvO+WuPvgzXsLO6M/B3/r4b8nu+X85Bz2XJ79OfPhPdn7G+16JThZuTboH18hHxwMTkBvOf1tknds2fku8i3DX9YtKTcVf8X9v+wXX0z/iR/L++F5X/ol/OW9jAb4r1O4h3eg9nIvv5wKzsN/3otYIz0q7xRnf0z69dwnYK/HMr8xL855Rt4tyfseiZ+vmX1Sfp7zh12ldwJ3AT8j37/TP8PfEx9b4u94eF8yT7gF/bxP1Y9+El+cfbGp6H+Pz+vQew69jZT7GN6P+E1reA7KeXDmfey6P3uNUi73O1eBue+V96uHSS+Vzj3t3F+9sRCPnTjtfvgfyN675F4be+2Gv7nkmU6+2fg7DX/N+EMfeOeC+R+TaeS7LeNQ4s6yH57zHeUyDt5KHzn3quR7zsPSv3fFbyfwQvZ/nXwj8m4I+19IjgU5H+Z/Oa8Zxt+6J84w9xno50j+kPcIB+KvO/0+mfVS4s/lXw1/3tfLPfDcO9pYP7M5mPtHkT/jXB96ivyj2a8ePLvjM/HpY+ljFjn+wP9Y9L8wr1gCbgJP4qiqJv6mVIbdfB/PfgfS726J58z7MvLHsMuv9Jr3gyvxz7S/tLsaiZPNvAv+hew3Sv3PEk+Q+xr0Mkj+ljl/Tnyr8lvDn/fws15fmnfPcr6rfN53fTVyqZ/7nTdnPYiPmfjI/z3lvDjnuokDzf7Q7dEHefMOSOJziu9vzQcTjzJC+95Qu5stnffrVho/v83/jvGHN8mR97BzD3dJqQzz3kL21zL+Js4++215/6Rv4rjAxGPupvwJ0mfJb5D4Df6Rc6+HpHNfNe8f1c74S38ZHxbw28Qf5d3aublfRx8j6DX737nH/5J0NXxmX6m29tdRe5xDfy3wMSnz7ex/oZ93EPIe1LK8X6tdJv61Kvk3Z8cGYGN8Ts57afTbOe8asUfWT6dJf1gqw7HKH0jfiZ/eO+sPciSeurb6efc5/5uW/a4P2eUpcpxGjtwfyv8V5P8Liv/flvvPGc8yziV+rw79Jy67mnlq9nsSFzecvnOOnPi4meTNPvLgvEOEv2dzXpx3KQrvlXYpg4q14BfkWS6/DX668INu5PgRzPvg89F/GlwlP/EluQ83rhBfkv29V/jFjYX9vbny96ev1wrro/eU3176Buur3C9qkPe96WVD/O2Y+z/yT6an2Gd39Iv/fzMp8TP021J+Cf5JudcL/3rqbZj3tdjrO3TOyLvoYG3j09HZZ1I/7TVx9Xl/4/Os59B9Ku9byc//lyzn/3upn/8vOVv9wyJP4f3hvPed8728h7KuVIZ5fynvLX0Cts45H/9+ogwqFmZ/i742Zs/9pbfKfR7878Je+V+lnujmfa370dunsP+wf84ftNdzC3HkiR/PefuB8DTMuoT9VyQeKO8CKzdO/jvkOR7/7zT4J1+P1vtn+tT6/+SvE3/IvaTi/18dlv0q5Yfqv7rx77x/vhLsqr/IO3DF++eJ4+oNf/7npF7eTZF/SyE+pZXyiYepjf558F+a/WnyT8/+Fflqlcow7zjm/ZnEFw6FN/uO+6a9k/dV+sk+xqS8Y4LeDvR2EDnGxf/gTfxFdfgTf5H77pmHNuIfmX/W0u9/gl78Me+zxP5DlH8/9yXJmfOze7TL+eAIeCqZz2Q9nPVx3u/6XP+5Fbs2TJw0fVyD/lx265/3bMn7auLnfX+oIF81+nsk90gzb2Gfq/TXfcFN9VM5v11F3ox7WQ+uRj/9/yTw0cJ4kP/HeSv3u/CR/8e5vQwq/gQboLNrxtPCeUHOEV5k32Po6zTwWHBZzq9zvxc//bJvmv037bUPeLf2fDE5X+IfOf+tbb6Wc+DVyg8Au8NzZeF+dP7HrGnhvdIT4VthfpD7U4/kfBuerD/yjkvuo42yr5X/ock73Pn/mbf5X135V0nn3csv8JN3dIv/V9iOPyzO/4hIr8J/a3Y9KvPr8F8Yb/L+fW/lLsl9KPL8TM5D+cfEwn3sxuonvizvM/2I39w//Sn7EfCn/xyjn0k/mv7zCf41GrwfnJ790aybc3+S3rI+Gp64UvraOu0w/GU+kX1wchyU9xvgTVx+iX6zf14z753C39T6Ju8TPiE/+887Kdcq7Qv/WZfmf27y/m/u598n/xR6S5xQ1k15py7vGGX9VPw/3rwz0YE8eX86707nnaecb+T/PQ/Xvg4D8z+fb7DHl1X/iW8E+o3w3yfxy5knkm8L/dqFhfcrtkV/ovb6NthDO34Qnc340w3k2kL6KvqebN6Ve0SJQ0z84QnazVn870bt72zp+nm/A/8DEk+T8z38Zn8xcVH7kS/zzcw/75U+vYR/4172wa7N+8L4z/89LkY3/8eV+W/e38+7+5mH5/39Ynx7Y3y8n/kd/Pk/nfy/Ts5vjqOHQ+mtjXT8qRL8X5PnVviuhG82/fQm57TEq+a9CXZ5M+8DgEeRb7usr7Ivkvcc1L8ZTFxE1o2JjxioX/0aTJxW7hc9yz+qoTtEupTxLfGM5Mp7KXk/846sp/K/e2Dec7y7DP577+TNUhnm/kkX35f6/lvuI6b/yv8SJ35Kft7vy/qtNjsMyLtV5K+auJ2sF3MOnXMG/CV+M/Gcid9M3M5e0ofnHb3c74Ev5z0r2fd4/G+L/mL0P8g6JedDGV/YeQ18iVvP/3k3SnwMe9dKnCT/n6kdN5FOvE7eW0pc1khy537Cv+l3bsYZ/Of979x/jv/mHnTuP/eFvzO+z1cv/dv/AT9hlux4nHXdedSWU/cH8CdlrjQo9EpPScaipEERmTIPJQklJBIRmmggDVQilBKiDKGijJEMpWTMUN6UOZmpZCz91vrdn6+1utd673/2Ote5zh7P2dcZ9tl3x4ol//87C+xUqQAn7F6A59cowG9rF2CVmgV4svoOOxfgEs+fLi3Ae+sV4CP/KcCantfepQCfhe9Z5YbwNPd8TJ0CnLV9AQ7drgBPKF+Ax9cqwL+qFuB26E9XPniPAjwW/rvhG4mP5nUL8Hf1XdX/B7+Xk++aygX4w7YF+G2VAtxB/XPlCvBnsN82BTgf/mcqoI/uL/APpZ+y1QuwAbglvm8GH9mhANujO23rArxf/cU7FeAH8DYhx07o34H+OLAZ2NR7Vei97K4F2HO3AqxBvk/ZvxG7DEHvfPTLlCnAkwqgZBT4EHs86P0HS9HF5+no11C/Pfq7w/sleLvn/dnpFM87gFfid4X+8Ap55tHv4fDPIc8O+Ppd+/vUd8PXTPVV8TeHfHeg01L9DPo9SPs94L8bH/vAf45++wXYCaxBrkFg09ICvIycZ9D3SnyVqm8E/7nkq2+8HquftgGfhXd49I/vdwqg5BXyVWXfI9XPob+26J1uPO26YwGuBTup/wu9XfG1EZ4L8Tcb/+M8/5h8e9Lf3vDvQr9vGN9t6PMi709Eb6B239PvHeS723vP4P9YcrWi78vp4zDlxdoPLICSNeB/8DmS/pfD84f2n6JfT/u2/MLbxv27YAvv37RlAY5jp0Ho96OvAeSf5v2L6Lc++etq18a4XaA/jke/uXZHsec0enhV/Qr6uMJ7x5QW4EnqH+X3m4Az0NuXPZ4nf294WtJLp4wn8pWjtze8P0v9rezzGr6aoXun/tGRfz8TPAn96/D5tfbNybcF+SfDf6z6g5VvImc7dH7jl69UfzH+tkb/Tf3z1pTRfVu5DLmuo4+Gyivw86z2L6mfS0+Pw5Pv3/vKI8h5BP7KafciuED7wd4/Qfld+nuF/vvph+0838vzyuT/A/4h5L8V/uHG62zylSfPn+r3RG8s/G/Q7yPkfdT7Z9FnTd+jUrAOeA38rbR/Ct4h9P+W+hn4/52edjEuKpHnYP7gHe0u124COI18h2r/iPIt6tujfxe802If5evxO5neRihfTb5G+ne90gJsrPw2/XYxLrvRX33lKtqvRW+A+u2Uu2c+wh61jL+X9I9K+JtK/uH0Pom+jla/eKsCPB5fn+B/D/z+QK7XlPelp4HoZ97VQ/0x8F+qfBo6v3v/FnapR7+X0e+v+FtH7hPoZx/0+8K7NvMs9fW3KMALjev4wXHob+n51fi+owBK1mt/On/6tna74fdafHTTviw6mdfGf9bBVzVyVUB3lvodq+EXnpv454/Vb5XvE/s2Bi/FR1d8N0a3lu/FC9oP0K8razfZPO8cejqBfqfQ72nknIHfTfrPYeCv/Gcz4/dZ9v0U/m/w87b298A7ldwf42eR9nvol3cbV69mfKtvD99K/G6r/fbk3YD/WvB/QF/Had8Lf1WU44+n0s8689+14ETyd4DvKeWF5Hma3qvj51bjZ3/yv6u8DXrxl9vBNzzfe/Qr7rR5fbF/3TXfZ/inat8/82f6OzL29F5P4+c3/aG8cTxY+cXMV/iTa8wrqsL3ifq59DkXvfvZ83j8/YWf3Tzfnvzn0dNW6qPvu+ixC/6eZo/h+N6bPr6kv2/Yrw54Cjp7lpKDPLfS0/7690z115KrS8XN5ZtEnvijN/C1KusU/FZT/zC6TcGa6k/Fb23tniZHJfJdaP7VgZynGN89tP+jBL/wlOcH+sLzM/t0wt9V5HqWvU/hPzZ6v4N13r70vzt/35p/OpsffxF/a+gnfmKt8mr4GrHnCno+3fgcgv+Rnu+hfKL3v1LuSa4t4D+CHEfgvyO7vkWv3b1XJeOd/i/Gz6me3wtOgf9TeFrBM1n9M+oH0P/39LID/vaG/xx8fciOs7R/Qvtt1G+Ep4v2B6gfob5jaQGeov9WM+7G+Y5UVX5I+7rw3YOvEeSor/0KfneTdmXofwH+urJ/V3b/BhycdWoBlPwOtgEH4HMUvf5pPLQl/xbo/+n9rIMXeJ71b7XM39Rfg68B8L2i/+6sX8zX/+70XiXts/7MenSZ+j2N1yuM632Vx6Nfp3Rzup9nPoR+9pMO8/xW728gx8/0XsbzC4zPivCdUQAlr+NrmvKD7LeAXRaCz9BDC/VL0O2ATmX95Dv4s45sof5r38Ht0v/YfzdyH0cPDchfWX/Yl//LOvA7dA6g70v4gQbK72p/qvE7MfMq9t8b/3+XJR/7vam/HY9Oxm1d+jyPHnooPwbf1fEv9HOw+vn080LWv+SO/yhrfDbVbhk9Paf+QnY51XtHlhbgoeQ/gdw3s2sd+j2GvGdrt5wcH6D/vPo++Mv6N+vhrH9vhX8NuccqP+n9svr/G+y2Uvv52k82XkfT62Dlc7VfTe/3af+18lP4O16/2Nrzmez5UNYxRX6zE31NUv+278Lr+LpE/+igPvtdFeB5xHvxA+vV91L/rfrjtP/Z+B7LHi3Rf0h5a/Z8Rznzu8z3/t3nYJ+f1N9Lf0szP878I/sK2j/mezrY/O5i5ZHxF8bXnfzzZ8pN6fdc/M7DZwfyvJl+ol9drP513/tlpQW4UPvl5DiEnAPpZyN89dVfBk+r7P/6Hs8Bnwc7on+X/vUb+w8wLnvQw07qB2s3UT/am/2yv559jeyvZ39jg/ezn16BnrK/cBT+q7DLn94rUb+Svq8DD2Gn0eTMfm8ldL+mr/n0s0n/np11PX83Ev8DjeeN5HuY/XriYw18a9Adkfkl/VTXL27Hz2p0zsB/R3rJ+Pgi/hx/tY3XM+D7Qfl48pyk/Bi6ywugZEr2R/mLLfSby/H/NP6/Ys9Fnj/oeb7/U9SfYdy3Vd+Ofnqoj9+JH8p+yyTyVFN/Zr575DuKPj6jnzbG20blhfzF0fSbfdCT0N+dXWayY19wvferGD/V+L+zM/+iz/eK8C9C/2z0418jX036jn9tBP8UcBQ9Zx1Vmf53w29F5b2Ux+hfJfjpot30ou/lS8rV1O+P/kn8a/rva8rpv79l34a+Z9LDM8rL9Jsr2LUc2Av8B3vdwbne71h0nvI9Og/l+wN/5qP16KW0aH6affdG+sWH9POqcvbvJqA3y3j7mD4eVs66aoz+mPXVtVnP4q8feAP+RiuvQe/+7GfCP1p/PgX8lr3uwPca/btFaQFOAl+j/y31pwHpr/g8FX85F2qI7jaebwRH01t5cq6GZ0/10/nLEfxfY/Z/Eh/TtN8p82H0x5Mv505dvN+GvkYrl7BXWfLX5ieOx8fz6HcDb8LHRcqt8X0cevXIGf/djf4Wofc22AX+HfH/Hr72JUf6yyHG4wz1x+nf8X+tlRt6byVYP+e9+KxJL6v5k/S/++DdC19XaXemcjXyPk6suWBn/fUjfnMYeR5H53n9r1f8hedv8yM7oH8R/axFb/fYh/5OU79O+6x/L8r8xPjpq33x9+Ew9jmEfaZkPx5/dX33NxhXX2afljwPoL+j9gewbzXlJdnf1n9O0n6ofteLv/6G3l/ib38qWp88Ds4E55B3GrxjyLd39uGzXmD/H9n9DeV78Zl129bKz9FvX+3HwX8Zej3QP7L25ny9ZZz0JO/l5Ptf52ZZP23E1wVgRfjuoac+8E4EvwZnZ/7Avl3xf17OJ9mvGf0eja824JTSAsw57u/k/RyffyhvRf4twansejr8P7LXLjnnrrB5+w7KZ4Bz9aejvZ/zqpxfXckeOb/a3/svxu+bn+X8dAK9ZV8h+w1t6PlsdLdB50fzscxvv0RvoXbZ7z6afVrrDzd77wDPZ4M92fdodtnR9+tSevqMvmdl3CjPwF/iH/ZG/1ZyJA7iKfb4PPvE2g9R/6N2byv/kvM25R18D24kxzT+6lr6+4JdO/FrX2Y+XlqAr9FveXBCxg/5GuPvRnw0UX4G/t70cRF5O8LfK+cJ5B+E3mL6v0t5vvr5yoPIMV7/2o28Kz1fV3NzfP0Tl5JzX/y/n/gW/WEAPz0QzDnxYP4587vM69qpz35y1lXL06/gP8X7g/HVnh03ad+IvI+pb2b8jqKfSvipClYGu8Ozs/2TyezcRPlzeKsYL63ZYQr/MoW9ftJuTdG52XeJnzJ+LgC3pY9j0W9Bn/uR/2XlgTnPIP/V8P5onNwC/8vsc5B2g5R/xV/2s99Ad2DR/vZH7Dc6+/PKT7DD/sbdJvye5TvzHv+S8T8df4+BiY9qCO/t9DeXPt8g7zn0fLB2fcl7G/z7apfx0bRofNQib2/yT088lfcvh/da8GX8vpT9FeUHvZ/zndKcn8P3A/wtwePUn1kAJWPA7DtmffAUu+9In1fzH8PUNzSeX8z3G6yC39/Y+z58TAXX0N8s/uxx8B1yLMTH9fz/K75j/8SfwF+Dvh/D3xXab6X9GcbnWeh9RT+N1d8Ef+b176hvTb4G6ETvsUP0vzX6D6P/dvys8t/G1f+a56b/PYm/fHdy3roc/zt7voyfqA9/T/1xTeKl6L+f9+6F/wT9tH72VXJ+a1w9gJ+cXyd+Z032x/WD7okjw++j+GtL7sPIu1r9+wVQMq5oHtqG/nrj95Wc+7HDy+gnPipxUU9nvQV/zjsHKQ8Ec975nvcTH3EJPSQ+Iue7H3u+UbtD+e+b4R9H7jn0PR+dnbU/1ftLvVeFfufkfCnnL/BVyPeHP7+Mfc/gr77E30z4XmLvdficoj7+cBfPKxjf8Y/F38/i9e0R+v+f+JvOzodqX528HfDVEbwH//2M5z6hm33vzM/0nzvB/vzBL+RpzD75rt+gH1RW3wX9pfz6BP7mDXKUy/kx/i+nhxnkjT8eBO+V5D2Lvo8tgJJ3wej7puzf4ncK+rfAfy35E29wAT76wHtB5kf6XfbbH/feGu3f9z3+gn72V16K323oJ+vD1z3/K98H9s25T86Bcv6znr7Wgt+A8S8N4n/yfULn4dIC3J7852e+zv4V852gjx0TX628mHxn658vmGes52/OTrwIvI/SyzuJM8Bf4oE+Az8Fb9F+CX0drrx95of8y0fkm0QviScaUBT/k7ifzt5L/E8P7ZvCu56c3fA5njw1sl5MHB/8x7HXcnjfJucq+J/m7/bLORvYR7tppfAkfg3/0xOf5r3G3rtNfc6nc34yyXsNvbcdfqfg/7fMW71XPfExxvU1WV8Z7x3ImXiqxFcNQ++8xN+ZP52j303Rn9I/TjSumuKjdtG5XzP2uQDfXcCy9Nc4fkP/OizrKvWJLzkaX4/qJ1957zL0LwUn0X9LdP7OOp6cj6V/0/9d+P4e/BPfn+V8UrkP/WzD38/L+Zbv3xB4R3s/8V/b4T9xaB/gazR875Prdu2f9v7SxG0lXgH/r+acQfsN9DYDTBxd1gFd4P9DeSj9vYX/VsZ3xkFx/9/L9+QJdpqnfmLiJ/m9LfWLrcFOiY/T/74AF+t/VdGf63l/sJ36M/FZvP54kn5qkn8y/Y8H5+Ucj54m6H91s5+f+DD9Iudl2Wco3l8YkPsF5HqEvJfgpy78Od+szV453ywPfw/4LwH/xl/OL3JukXOMnI+8me+//nBb5lnwr2a/3uCn7Hik9ksKoKQzflt4/gH7vJP5H7uuSpyG8l/6z5Xot8g+Nv015/+K4zp/gr+G9ttm30W7A/ExSb8tPmder3479niO3Icb393Vx+/E38QfJb4g46sru5dVboePJfT+HjiM3NnfDX/Vym7OZ/j7kr9roLyInLlfE/6qsHP84/vojMn9A/wvzX2HnE/SR9YDWS/8pP0P5Oni/XyP8/3tRK6eWWfm/A1/jRKvUQpP0fch9ykeob93vXez9uWMh/a+42PNz+rTbzvtW+FvfM4TEr+ceGYw4/yqxHHhv5/nC+H9U/lk4/LExDEoD4B/G+v1cmDZnLfEf+DnYfrJunRm4rfUP4/uscq/Jj67SH85361C3rYl6NHfUOWZ+sutOW8HK4P/0Ns97NUe/l7on0n/D+uPA8Ea+ukx5PuLvxkK33PKF+F/HPy5r5N43Tm5/+P5JOWc5+X8LufDN8L/sPcv9H51/Tnrwurqsz5sSC9d6LeP+viHxE+/ADZAZzX5Vnm+B/tvMD56qL8Tv8NyLlvqOft2xedI/FxBnjvUNyw6b8p5VNPEM+qfX8E7E/8fZX+TPQcb90/Bk/ipjOdDtM94z/hua1ycRL4+9JjzlxX6c3/j70b0Docv8cNdsr8LZp3dSn9qj94M5bX4u8d+TdZ7WQ/eTb5L6bUnPXwLT3f98xL+OPvca43PxD/1yLoBnmvwlfsVOX9fRH8N9d+cv5f6vlbw3qn0e2nWd/pf7k+Vsl/uUX2V+BL8ZB7WkPxrjav/4qszOTrl/pvv7j3oLM49Nfg28Yez2eUa9s79lpxP5zw6+1jZv9rJfPMRequu3MT7Z5XgSz++TTn7DRfRSzewCliZnSboPxPBxDklvqmH8fUEuAt9HEdPfxkfN9P7LOXX8X8D/W7JvlfRXy/6PTz9L+uV0gKMf/vQeNxAngfInfXrduTJfbED9Y8h2X/R/r0iPx7/XQnf52i/M/u8gI/HtP8w/OPjfPxdq3/PY7eR9FQn8wPy575E5t+5/3a3cXurfjxJeT36ufd2fe4Del4+61X8nmJc/obPcvjLvbux6DaD7zf4Hsr5M/2cQx83009v47NH/L/3aid+Gv6jc68NX1eA9clVybhYZ5z01W5/+HM+1gb+68i5LXuW4Qfrst8n+HlRfzyAPu9VPjz374yb7FvXT7xX9lmK7lNPJEfuxxyGTuLtBuC3e+bH9PU32FL729Vfq3+u1k/e5Mde9P6U7E+ik/Vq1qen0de59Fed/xqlffQTfUQ/m/B/ufFcvsh+p0df+utZ4OrcP/b+WPhuA68m/y3sm/GTeKvcg70y+8v81XSwOfgje2d9kfXaveDBGf/6bevSAsw9isQ3fER/OYcuvk/5PL0PNa5OZu+Dcn6f+Ajwi+xv0k8FepleACWTs6+jvh36Vcn7ofrsP7bkF5ax25P4yD2N0co90L+TPU+Ab6Tno9jxq5xrk+8tz5vr3ztrd2PiV+i3+H7KksQH02dn723Sfqn6c7Ifpd3r7Bv5G6DzJDgi9yUSj6L/TtJ/W4B/5D4s/eSeybqi+yVN6G0R+XYHf0En87XM38ayR+Zvz9FvNXoaD+8F9DestAC30P48/ecY/TvxnInvSpzeqMRx0c+7WefS37bwHcp+LcBViR+EryN6uReyyfci90MSr1cG3V3BQ7L+Rz/3nl6nv0/y/eY3v9OvLs09GvVV6aUBeLj66GkL+LdSnpY4xZwPGx8V+d1834fq/7W8X4+9sj7OevmzxAvrJ/sYr+XZbwb5Ey/wWM7jyb+UXvuwc+7flqh/kF0S53u69ofj78HsVyY+WDlxIv3p4wp23Rqe8dkPtN66h/ytlR/yfvIbJK/BQvrckPHFH2XfPfvw2V+NXz8WvTnwraCfsfTfFXwA3BmdxPvk3vt/8JX4n2eMpxa5/w6Oyv1D/rof/q5nn6Oy/iwtwKzHcx5Rgv/c73kZrBw/R54G+Ml54IHwD1d/buZv7LAluRKP/T55NyY+Wfn9xE+j+4t+thbM+cuH+mVZ8mWfYnb8N3/1BdheP/0q96HpZzv9b6jx9mrmw/rVbPAJ8DL1G/W3nL8mLi/fv6vZY3ryroSPrKfo51V2vjDnqOw3FL8XalcTzPnJkqLzqpy/ZPwdk/weYFP2KVNagI+zZ+IFfqDHSuRYjr/78DuFna5Avyu6xedX0+n/I/1zsu9AWf7gwsR/xy8mngO9n+mjKXtUQ6eJcu63L4TvJ/wPQf8O/P+Y87Xkr0CvLf46pB8kXlF/upr+Eq+Q+VPiGRK/0JL+59Hbl/S7vfpO3h9I3kPx0xG96Ods+mmBvxvxV5e954DF8cSb+MvMr+Nv9mWfC9BfVVqAOZfahX4Tb579nuz/JP78U3JV03668dlH+30yPoviPrN/Oh2+dblvnnPT7K8bzwcZh43BmugdSF+JG983cY7Rp3Ij7zdjpyPpv3LuJ2bfDJxHD1cZlzclDwc9Hpp4/eR3gD95SpKfZAf81dVvkkdglffOy/mN+qO0m1t0v/4f+Huzf+7XJ+4m+5r98J/9zUP1n76JuwZf9P50/XMEPZ/v+SW5f6l/tCP/7bl/kPtw6nM/bj29/4P/9K/0q5x/pn8lvibrs5x7Z32W9chnyXugf2W8fUUfT+r3I3OPB/2e2d/Rfr/cY4j9Y4fkK+DvWuJjZdF9kUZF89uL+M3D9MtuyjknrEz+c0sLsHn2o9E7mN531I9aKP/mvW7Jn4LvsZ53Rn+k780Y8AZ4kg9gUQGUXJ/9YfpspX4f66G9weX69z/4y/78WPQyD8g5UxX1xXnNrjY+atDLLmBF+CurH8Veq8D+9Jz8WdmfvBtcgE72J89HP3qdGD+Ve3YFUNIFnAEmD9M3ysPB3fSX+PUG8LfH3xXJu5LzAfPBKdotAT8sLcBhOf+B7zT9J/HczTLfzX3b5LvI/nVRXooK3l9MvlqZd7PnCHzOwF/yK+yZvDrJ34S/1b4Pj8CXezTxb7lXdKZ+/KxyZ/y9kPiv3CuF/7zkSVC/GL3kWfk08VfqE3+b85qX1Of+ZC3ylGb+g7/XE2/tvZz/ZvwdzL8lfi3xbKfQ10nazeY3z8Jn5ldtjedvjKuss5P/oSp/0Vf9jsrZx8z5YQk/vUA537+7VF+Y82L0l8P/GH/9Mz++FryOPnIf+jbtdqP/C9VnXfqj8Zd16X35vtL/EYkLQ294xrf+/bJ+/QD4C3r7Zv6UPFb0emn2f3OepH/NRX8i/BsLoGSF915R/jZ5HbKvj7+D2C/5Z/4iV23+K/OJzCMyX8s8Lvc6Mp8bmPxQnl+f+SX+5+kXuX+U+0gdk7/L+33JnfOm5A+8Qv86obQAL/H+Dd7P9/8b+PdInCl5n+AvmoI9+ZNLvDc08WP61zow+4E302MN/J5ML5co96CX5onr9f6u+O1M/uSd6lSUfyrnATknGK7/5Lwg99Jbabcx+aPQy/lezvUGKud8rw/7XOT9QfT1UOJrE29LH6cZ/zuQb3f6qAF+yp/+ol3ymeTcvF1RfpOe5KpDn9+Qr3v29/WH3J+YrNwl97fwnzjVxOP+my+sKB9V8lQdg/+O7D6B3Yu/s4l/yT77y4mX07//V97FN7P+zP1N9eXxnf2pw71/s/Ij8OV8dWfj7jP6bcbfJg9RF/Jkv6hn7vEpV6avH+j9R3Cw+jHo7YiPk/C5DP2v+aPEB8xLvAn9PGreMCb5O5STTyDrg270dxC6/ZLfTX2+T529l/shddilDvz/4d+7xT8Yn7/Syzrwb/IcqH/106+2gDf5EJK3Lvnqks+uEvmb0d+B6k9Mns7Mj/BffM42An+Jv14Y/6++jPrdjN/eiZPN+Zn65/B9DjkG5X4J+RbBvz3+EndUP/cTzAc3+o6/rvwCfSevzzD9dAO8W8PTGn+5p1PP9yDx0dfxOxNz38I4vEt5TO4tojsDHKH+ZvhHg00Sp6z+XHy1Id8j+KpOvuv1t7v0z2cTp0bPh+Z+VfabPU9+js70eie9vlwA/97nmUFvZY2/IegkH2T8wkp6rMqO16kf6XnyT9Wjxx/IeZXxexC7v6U8B59346ccPInHSvzVanz9l152R/cN8u6H7krPV6L7ofcTn5i4xD1jT/pJftjEMWWfKPFLxd/Vu/F3IvtNQr/4nsLR+Mt6KeunturbJj7C9+QqfA3DT+JTE9/TU3lV8qmQ5139Yz2/sYQ/PQH/i0MfvavZ93Hl3I/IvYjkz0j+u5sK4F/7Jt/YVeov5y9/Il9FephBP0vxe1zWq+gvVb+j71Puv+c+fO6/72n+OAydp8DkBSij/RDt5oOPJ47efC/3A141vr/D/7fJC1KUHzX5ZfZQroWfmehmPrTc+KlD73uC2X+aR/+Xo18m+wI5/8996tIC7ELPOT9dod1eRfefkv8u98Iv8d7wzAfh+7vo/HYYeIj3WoOj4alL7hfQm+n78BK93UbeJvAv1/8+BpMv5zTvNfO8EbnL6OfJ39iPvvqCWd9fqT75MgbT+1n4TX6xisoVc69UuZQ82R+dnfkJvi/Gz53841H841R43oG/snZHwJM828nPmnx1mdeMoKfkn2qsXdZl2af9Uf229JX7NMkXlnt6H6Cf84Bn8LUg97PRfz/58cGdcn+iKB5sFr10hSf3Y34AF4M5n05en+QvLs7vk/y573mvNzrJn3uy5/l+J3/vWeqL7wc+UXRP8ET4s2+UfaTG+C8H/545r/f+S+ob5fvFrslPnv384vxFE0o3l3OX5OMBD0k8O3qXsff2+O4CzwOZP2R/IvEuWecq5z5FDfJOT5x/4gf4u+rG0aai+OLk47wePDBxj+q3zf8RZB8y66TE4RiPq4y/3AfMPcBlxn/mmx8q53wveQ924md/ynlg0XlLcf71nL+MQvcN+ku/3IX8rRMfRa+vwHMDfjbyF+f5/v2jnLiFqegnX9wD2ceFP/flh2WftOj+fPKTHoveSHYoZf8P8Z34vQ/IP5t82Zf/Bd2X8fUDfhonnpr/uQmdGbk/if9Znn+Yc9acq9BP8tz2JUfyL5VNnl/t62SfKPG39FbWPGS28vf4X+r7+jfYGMw++S8FUFJGuUHyEUbf8G2vX+6efbrsX+Vemfd/1f5V5V7eT/7X5IPN9+8P9iiXe47Kc7QbQH+5/zkFvdz/3DbzJfLPNz7+8N5/4cn8+1T4zqCfo9n36+zHoDMIfzfmPkvy2LDzaeQZyH6zyJX/WegPX+Jbkp/1KeUGiX/X38vqh1uCidfNujXr1axnfyT/bfzJMeZZnyj3hP8Y/aU7+76a+2bqP8P/Qnwnj3sr8uf7/BE+8p1Ofpd7cx8Nv4vgW4G/ZQVQciKYfb2D6b2K8bpOfb5nued5ffor/5c4vMTfzVb+GP+Jn0x+orb84zn0ukp/PjDxdZ73Yt+nEt8CT6+cS/+P/1EZlbwD2VcA42+mWg/U17+/UW7FHpmPJo9h7rPn/vpt6N+jf51L7sxvmrJPb/39Pu0vwN8gfj35/64Dk//vavxsCz5qHL3Gvrl/Nyb3a8HEmeTed+5fZT8q+fK3MD5b53sI743k+57fPc/zrD/b6Z/J512LXMlnlvVNziX+/h/378vTXxf9J/8rlPugB7P/L/rJV/kfFfjakXfPxNUoJ/7hAPpslHOF5E0iX9ZjF9BTzrveoY9q/NVT6L1GXyPg34Y8C7S7Dnwy95+yHgcTH5N4mfi73DPPPb+K8FwA/2P0vCD3jvC3Azwnapdzx4zv4vzKyav8XFH+hb1LCzDx0sm/kH3JxFFlfzLxU28l/2PylOsvOadpYjy+Rv9vJs+y+vXajWS3m2I/47x3/BE5853vQ47kna6VuD96elx9/GX855c5XyV/rdznz/5X8tTmnD/7D/R3Xv4vR7sR5E++uLEpo1/H+4kLSpxQzq9yLpL40pyPZH3bfavN8RbTG8RfDgQ/8Tz57bOuT17D1WDy48XeF2X/Ekx8fH/2XAL+kf/hyrwBvzNyD4mcTdFfmfm595blvkruZ8H7u+/ImcbbLPj7wlct65HEExTdn5zovXvYJfcps39Szvf3u9zXzfyT/3lXP60AfpK8+ckbazzU8P1YCf9+5gf7gr3oJ/HddfXvi7WrkPU5+ybfT/YRJxTAv/8v8zr5RtFX8j3snPsB2rVPHJf2E9AfrH3NrAdKCzD5E/Odzzlx1eT7j/6zb67d77kvjp85/HZvdD9PnsrsP/N3x2kfv5f8HbmPtC7ro6L7SaflPAY/yd9fAf/Zv82+beaRmT8mLiXx9KPha6LcnL+5O/+boZz1Z3Xf3Xs9/8vz4fDne5fvSPJ4Jn9n4tmyHs56OfFtFXJ+op8l3q08/N/Dn7wrxfv/2f+50fwl+z/ZD8r42o0c7yhnfC2A/xB8fo/Oo/Dn/1UyDtor5379HeTK+jvr8ay/axtvg4vuL11Fj7mXNw5/xffzEv+a+0CJg836uH/2F+i1fOaH8Of/2TbAm/9Pyv+1bY2v63MfswBK1uL/c3jn4Wcn7+V8pgL+9sHXiuTdAMfDdyq4FXq74jPnlfVyPzH7nfgc4738f17y6CV/Xr2sT9XnHlfuby2l7+R3mAUmv0POH4vzyydfbu4T5J5B8l3mvsHx+tMKfjv575IPbxm/3pdfqEfekuTP0V9/Tz4TeMbgf1fyXazfD4Q36/ut+PW9wFuK8ljknt/9iafQPvfLc9/ybHrNOUjOP7L+zrp7nnLW3xX4q+fgGZJ40tIC/AT/3XPPzvN15El+1z3wlfyuyfe6ynfla/CtnNOgn7wv+8OXe+jNyXc/uRI/lPxcIxN/bF7WhH97T/naovye+Z+GkuS9QP9O+t4P3vnKx6pPfNN28ZvwJr9f8uC1JteD9PxX/Af5bkc3+cE+9f584+9y/agnmPxaB2q/a+Jl07/hz/+xZB8g91uyH3Bf0f9DrSktwPw/1OH87nf84iD9IfsaLxvXU+n3SeNjVfKo53wx8xr0ct/icfgSfzGf/1iiPDHnz/gqzh+d/YN76aM4X23mB8mrHP1kfpD/a8z/OHbNPaXYP/EfOe/NvhL6+T+GfdjvxaJ41JbkO4SeWoLJA5P/nRjOzsX/PzE18fvs01u73B9L3HWb0gJM/uaPMo7Iczb58v8g+f/OT5J/DN3i/cVV5Ons+TP5TpL/Pn6vOT7uA7NeyfpxLv5eLFo/fkU/+Z+318HEaSzK/Uv+b4hy9iPyfyvDyJf/YbkLzHon66BW4YM+h1hvbNB/jw70/pboDuU3jkK/Ef2tZ7fzjMt1yqfU25y/4n6ykX2a6Od/+i7+DeZ+3Z301z77eeS+P+d/7JN7v1nnJv9O4uuuMf4TZ5f4uuS3Gou/efB0QP8L869m/EDN/N+o98aT905wHLgT+Tfw60vw3zH3k9FPnNab7JT/L05+kOSXPaYoz2zyvP+Gn/W554V+T/2ssv6Zc7Xi87bZ8CWe653cY8z9XHTiX7pmPom/7E92SP4H9fk/z9yrvTj768qn0m/+768r+CWYONXifE7/sNPP9Jf/r/op8Q/46kz/+V+S/B/JMnr+wHsLEz9Ivp3gf9D7ye+efbTkec8+2jjtM86Lx3cD+viI3RvW2lyuzL8q5X+38DWZ/ifm3qP3s9+W+LDMKxZnHZ39IHhyn2184rHhS37hbvpF/ud0BH/7mvoK5Mz/VdxgPOT/HU7mP3JPfoPnuR+fe+sHa39m7vvh/47k7aKf9vSR9eHtxm3ulS/MfXnvJ99y1vVZ5yf/8lD4X0Tvv6UFuDv+kg8r5wILivJjnVG0/9iuaP8x+bA+A+fmHp363BfIPYLK+M99gjeL8tvOKMpvm/wvyX+T/znJ/4RM8f6h2h+bONDsD6EXPSSuJ/o4k1zJB3wDez2V+EXtJyvnnPW9xKeU4BvcRn3+X/mIxJujPwi+++B7KPnY0U1es1fYJ/8PmLje/I9F7h/30R+TN7s4n/Yy/fID36+b9e/Pk8/GeMm5Vs65cr51T/KhmZdl3lsFf4kfa8S+Dybenz5zny/z8Nz3K1NagCf4PhyXc1dwD/X/hS//+1T8f1D9+NPEIyc+eQL6/wfvTo53eJx13Xf419MbP/CPUhmVKC3KW0oiZZXwRXZENJBIkWQlI2lYZY/KLJsyGhQSScWXUlFmVkUkMrLJDL/r+r0fz+91eV2/3+ef+zrvc869z3mdcZ/788h6Ff/37yLwZfDFUhleWLcMp21ehjeBnZqU4aLNyrByjTKsBM5rVoZb1yzDNRuVYf2tyvDercuwX+MyvBZso91m25Thp9XL8PBaZXi6cn/9227073471vg33mZbluEk8nxXvwwPw/8djcqwvfpvG5Th0+qbVS3D6g3Vw9td+25+P8zvL29RhieQvzl6j8I3C9/Hb1uGSzcuwwb4flf/XeDrQ783blqGa+hlY/j7wn88/Mfi65+mZTh3kzJ8CfyJHnuR+4HaZbhXnTLsD9bVf2C9MvwAP4ejvwBcg/507ebi/zL8fVSpDG9lhx0rl+FR6hsoL1I/Tvvr1C9n1y/BS9aHX/spfj+DnU6sgp8SPsk3WPta5BuD/yPxfSS7XEDOx8m/Wvkf9b34x07qR1Yrw8PQKbHT9fSwEn8N0P+GnX/T/1bjbSC4GuyM7kX6LQT/xO/F5PuI/72vfC97PEa+ofzncPb+DT+d+d/G6C0qg4rZ8N1snB5Ln93AJsbzQ/gZid5HygeQexz5Plb/rN+Xw/sCfS4lz1D8nav+EP7cwviY5Pct+G8/+I+h7+/Bg8g7hf+MUT4bfweiewX8fenjU/jvJv8Z8G+Iv8fMe7+wy0b0N5Vcx9D3fPL+iP5M9HvQWwf2H6v+fH5TiV/Wpofv8RP97IzOPQX91Nf+Mr8/gf4e8O+k/Ai5VtDDvMhnPn2QHzeG7xL1H8Qu5L4OvpPI3wXefcnfnn7PUH4R/wvwX8LnJfr3pP+G+DpBeRL6R9DXRvDdYpx/qbyd+kMiP37uhP8ddAfhewT+XtT/D3L/Cf5K3p7015B9Xt2wDJuDT5XK8EzlM8D12PkM9ZX8XgN/u+N3Gj725bcfqV+n/l78P2++WQ+/t9LLh+C1/OsCetsP3UH840z4+6sfAD6K/mD8riX3Y8r/Qe9uejsu3xd+cCz+XjJ/NMFPU+Mz/n0eegdvUIat8Hu0+lHoHk3+adYbL8NfEz9342d45lHl1fzrM3gq4ecZ/eP/Y/TLOIj/b6H/caUyvFm7I+jnSd+jDfA7RPkv5cn0OwnszT9H0FMvv680j60Ch5G3IXw9lR/A/+b4O8T38RbtXix8T78xLzeHtzhfngDf+uReVcD/qHltOH3+SP8jlE+lvzrGUaVSGbYh/zT2fgI8ifxN4X8WvZngX/iuke8Dvr6GdyD/WEX/B6Hfmf+dTq/3KU/Gb09yTATraLeB/vXh687e+2X9Zby9YB7sqLyK/L8bfy/wr5nwzUD/T3KNAo8HP9d+Cvt3tv5qRU+zt/o3/sn4Gw//9fh7Fz9/wPMXvKeqP5s8P+F3Fv2exD6L0V2K7jLwY3h+R28Ufubov1T/09VfyU6XKWf93ox/vsovmyhfWyrDw/E3Vfsu8H+d9aN54S7+9SE5L1ffEr0J7Fkt61D4Dlffxu9j2WXbzO/4znct69WS/h2sJx/A78HKg8jfCP9X4e8Q/T5S/xP7dYK/n3a18bGM/n+h9+XG60HwPI3ehfrv4DvURP3b+D8B31+Qcwz7v0WfS/DzKju+qv4J+B4Hq/Gn2votNt6yz+uinP3bLHQ/U94Enx3hb679f9Q/Sv5T1J+kfl3WY/gYpP4x+ruYnL/Q9+fkXF/5buP6GHAY/tfh5x76PhS+Z+Gfo/9JWf/B+xB+qrJLT3Y6WP1f5qd1+K/hO3aN+fWA2N/6oKP125/mvxvx85J5ZR54vu9ZC3xXpvcDydVKeRT8K+nlh1IZ9mLfw9VfZfzUZdeG+L8f/83I9wa+arPPq8bHdOW1+K1NX3Nif3xV+L0W/valzzX08zP9HafcDb6Mh4yPjJdr0V+i3/vGfWXrpcf0vwbdVeT6AZ7axsdoen8bPJ096um/M7vdrl8zehpPP5fQ3zp2+QusjL/sp2KH6L0P+DX+noX/f36s/zf0d6Pfl6DbV/8/4D+fnr4kxzzynW68XIrPtfTUAp6h9LVK/8HKm5K/tfJo9fvRY2v8faa+Ib2sNT9Vhb+z+g7sdAh4OPtvzR/qglkfZr04iP/d4bu4EPzAONqB/MO1fx2f/ennfnq9Gb978P+98Jf9yHb6Z5+yh/ar2Oc6+j+NXjvBv4Y//obuj+i10P9Jeh+D7tnqn1E/l34u9ftm8HyFv+znMq8swc+D6qcp18x6A6ykPvvLZ5V3o/fsL6eTq57fF9DHYPxO50/b88PtlD+Btwq7TzY/7Wn8HkqfT5k3XldeCH6O/jn6z6eHi5V/oec1ZVDxJLvXs064BX93ohc/7wfGv7+B9xf0tqPHceb30fD9x7pjGXu2zPcX/6vA5eBRmY/gy3og64PD9Z+n/Yb46MQfztB+H/PLgeC14CHwXgNfU/rekVxfglm/Pa/9z/jqDv9i9bf4vfj9zbpwS/p83fw1Sv2z+rfL/ISPEej/7vdD6PdOch+v3A++o8yrt5bKcG/9zyNf75y3wtdEu+/VvwbvN1m/69+e377PjxuRY1LGO/7v0W8teBB8Jyq/C3bWfjvyV7O+GgDvAex4Jf7GZ32R8xj8Z3xl/ZJ1y+2F9Us//bPuKq7HavPH/dWX8F2FfL+hd4DyMOP0avp5TvlHsB3YHp5ds44Ed0Ovg/57wB+/ix/G/yZof2LO60tl+CL5vtd+tN9bGN8N9H+l9G95LtA+6+PrtX8JfzcoD9W/KrvX16+PdmP0z/nKjr4vWX/kfKW/78sD7PQd+xyj/yPkfwrcl7wt1B+mfwdwnvE0N+c18OXe4mXfv2vxWYN/9yPHWfD3Id8k894m5qnsx6/Vfm/z7j7or4b/En70qHbr6LcruVuwTwP+V+L/z5DrbfUV6Gb9tAD9rJ+GkW8gPd+M71n6v5H7HrAq/W+r/nL0sz7aCn9ZHz3P3heYN79Vvhn93vpPJt8Dfq8L/6bmnWvwN5kdP836l5hVfdd+V36JHDkPPo2c880H+7HnNuTqj84z8JyDj7HscpV1UQ148n3tCn9D/abh71byzKH/PeltCXo/sEdj/vIEeiX9b8n9Ef3cqv5KfnFe1teZX0tleD2+TiL/H75H35NjMH5z/t+WXA/yu8+Mw82zny2Diib43dvvF5KvCbs2Rq+GdV1/5QH4uwi/veipr/7r4D8dnAGOyXqMfhaS60nyf6X/5sqD8XWMfjmf3FH9l/hvQZ/j4GtJ/pxHnktfHyt/bHz+B54myk3Vv4/fC8ER+Ngo3wP0HjA+/vT7K/jrUSrDWWBv/C+mr9H6v0APG8PzLjpP0PcifHcDu+T8ml2/w39rfnR57t/gPwD9rvT0cNZf7HcwWAPdq/B3tPGU+5iR6O0N/za5H8J/7i+2V/8Ef7jT+HsJPFO7scb9zublvvx4K/r7Ift7/lAVX23Vr7F++QrcC3+vkHMr+t5HuS96b6L/Ebpt9N+QvnM+NdH6cDJYT//d8n3QPuOjM/1lfLTG//Xw9dXvNvo5seDfw+hxlv45F6lmftkYvk1KZdiL/n9SfgWee+npJ/NBf/JdpPw2+bNezD1oHfTXqO9Cn1ebFwfA8y7+Xi2Dip7sfDt4YPZx8M8Bu/Lvz9XvTx/bZLzhe1W+7+SKv1bBX75/f6DfBL5e6Byv/fn005h8y+nnNf13VT9U/Q7ssRH6d5kPZsFb2fjbP/e75HkaX6/Bk/31puyV89ertMv569HwbsA/dsr8pXyN9ltl/+n3njm/1z7+k/ky8+ND7NeAn3bM/TU+T9Uv+/BWuR+GfyP039d+sd+/I18j/fZmx2Xo5/7vncL6/Vb4VpL/wNxX+n0F+1+BTmv4d/f7EPx9oX9N89O92rUj50L8/a39UaUyPEb50+yDfN/+wUcr34tr2es246VP5g3tNoXvb/7xF/iW9c/Tubel/+X4etT6bJnyfeTOuccQeKP/k9l3W/UXqp9YmH8z386g572Ur6GfOvpfoFwd/i7kGg+OA3dhvynKj4Kn0seywvlS/D7nTPH/N8wbY/I9076Z9r3ZowW5rvT7b8r1fS/O2uD/Tf9O82N9djnYPDmHfeuZj34FX4Dvbe0rs0MVcH1wCv4vg28kOu8q94b/ndyr4vuNMqi4Tn1/5dsS16H8Fv5z7jccbOn3nI+MNd/U9v0ZozyBfVvk+8xvt1ZeaV5pgu7LxudRfn8LfzfAuyjxSOzVIPENvsd70tts+qmWev68XP/DSmWY+7+X+Xf8On4e/56I78bgi/zn9qx/9Z+a8wf8t+afWZ/cYJxlfZL1SnXnRuOt03vBc6L+md9+zroMX4+T73t2mZtzMeWd43/wzgcroZf741PINZ9cz7Hf0fpvy3+y/h1mPA9AbyK8iQdJnMha8mXdlvH9CPkS7/IIv13Mb6eC9+LvKPLnPHAFP/lA/QR2X5W4KvBH7Q/nL92sC4bQ/+xSGY4i70HavWq8L4R/APudB54TiP9/+O8d5HzPuN2A/S5Rvzt60+Bvr76/+qXq8z3aRv0++J3Or2eTY3t2GYqPEeT9kf7z/V4Gf+JbOqO/o/az8f1f9RPY/Qz0j6f/Zeg9Df9c/O6uvpv++6N7bb6v5tOOxvFhYO4HJvHXieAjmWfYeXd4p9NLK/xO0b8p+rFHd/JdlO9zYX17X/Yv+DyuEBfwdOLh0Ns58sNTD50/8Xcx/38HPND42hz+HTOe2O07420B/cxCrw557sLfVeoz7g/C/xe5N1XeQPuctzUqlWFL/bfDf9ZBvxXinyon/ku/CfhLfMVo+v6b/M/Qy2z0++j/t3G3HH9V4Mt5Z84/19JH1kcvW5e04hcLlCvRb9bT2R9eTM6sr/Pda2PeOFX5qcQv0e+n+Lq6DCp2Q79D4kbhX0vfjclXUv+F3yeBR+b8xno18QyvGa8fZv+beBD6GUlfzdW/QL8/o7cLPNuT8138n4m/6eTI/PyR/uvU76t/NfWPqt/Z76eR5wf+1jzxafrnnDznX0dpv1B9w8TVgZnfvynM80fo31G/68HF7Nld/zfo48GcKym/C898sLr+F+DnRXwmvq8qei/yzxrK71uPdedfPcDns37ibz2NzxeNpxH6x76x63vKse+B5G5Lv1vw253Ut0d/rH7ro38yeXM/05ucxfPySfSV/ews8s2F/x/j6wZyTFBeTb8PotcmcWDaHQDfRPzdYVwOyfoVP4nn2g5M/Gviu0bQ/wTyfEz+rdjnLfrMfr4neRM/tK1+o/CzAXlvJ1/G39GFcZfzqQ/1n6x8Fv6ezvpHv830mwv/XtofDH9L9Tk3W66+I3/MfdyXOR/H73LrpoH4WKac+felMqioR+7El2R9fVPmDfhzX5X7qX1zf46vJex4M/yJq76DnAfAk/PVafhPnMJgsHO+r/yjLTjF/L9I/RL2uzLxKPg7h30Sr577vJzXzMz8TN628OXcv6P+xXjCxOsnPj/7kzsKekt85RB8DwUHg99Hn/rdRU9jE/+X9W/4Vb+cf0zI/tL8OxwcmX1u4lfosyZ6udeuTx9T4KtC7nv45y7qz9E/cRhnsVfOp3P/M9P4LL5jyX36j/r1ADdBrz+8N+GvFvkfz/eDP/1m3TXW+M86tiH95fwr52E5/zpRfY/EE+Q9iHJ//pv18y/oZH12UPavie8qxB/9gL/99P+TfrO/y/1n7FK8Hwi/Obe7v8G/+c++uHbOU/Cf/fGW+L/fuLgH7KH/h+g11j7nR/GvPonbJ9efyh9qfzF6uXfaFL596C/nZz/5fWLh/Ow6362cl/1lvB4Z+vj5LPE45GyX8zv0873J9yf3syPh+w0fW+PzL/iOK4OKmejcpzwDfxfofw86h+p/BP7ybuso+sl8fgf6s5V30m8UPE9mfsJXznF3AxPv8k7ul7X/L/n+hH8cv3rWOGtOn2NyHpu4idwf09+R+v9Hv8dKZbin8rXk2yPxWPQ1Rf+8b9oH/80zb4N3Z37Xfgftb6evQcqvR3+J3048cd5f4ecect4NDlOf90+7gl3ZIe+fcr82kh1yj5D7g1/p6xfwN/BJcuS8vm7hPD/n90uN74MTd62cfUbR3g+XyjDnr4+YD88z71fkfQr9fZL9nP6XKe+Y9wzw5/xpf3S3I3/O9XLO9x35rk68g+/VMnivAfMuLPH+S+mvae5Lcw+S9Q+5BoA18n6KWI3pLfcWZ9P/t/iqb165S7mp/n+bv3I+N7ZwPjcN/eg7+7xz2a+P8m74+oc9j0D/q8RLw9eNv3Wi/63y/dX/FXJckfnd96thzsmVV+Y+Cn+f0/cUeG4v0Dsa7Ao+nHMY69aNwF2Nj9yfVWGPDdnjNvj75fw9+5Lco9L/l1v/m7+29f/NZ/jbnT229t1/FZ0l6DfNfQq6N2c/Bs9E/XOPnfvrOdkn8r/x/G46eAL8b2a/hO+p+L0CvdbGXeIzK/hrzter8pe16L6VeFX8fVa4n/64cD9dlC9ynaL+q8Sv4q8xPIvovzg/PozPnH/WZe9P+O+lxuev5G+lf4V+O6PTSX3eEwzKvT7//gn+Ntl/ZP2m/xj8XJT4Avjb0t9d9Lc+u39Gz73A5/A7jF4HsvMi5cRTbJv4LfQ+RqdV5l/j+/C8e6b/m9S/Y70ywThdpvw3eRJf+Rw+E1+ZeMuc/+TdSs598n5lEf+bWXintCGYc/nN4M/73JvU53uY7+PCwvvfuui35+99tPtK/7/wdXbugwvvAR9E/zVwO/Pk79lvJC7F/NOVfjqxT+5DHs78gF7Wt3ONj5ez7iTfU/hMfEbiMpawZ/aZiV9N3Op/og/2udd4/hq8AHxK+7O0X5B9cd6hsc/+6PcqleF6hfjljfnFPcbR2EJ84eTc/yY+Ep7sbwfnvtvv2yc+mPwn+30quL72Od+baj4ZxQ5Zv+X9Q4fg1/7jwvrrOPa4M/trsIf2K/LuFd4PlO9JPG/mMbAbeo+S7ynlnA/uknUQ/8p+MfeHT6KT9+8nG4/D0H0FPAaet8wHa/hd1meL4Mv8uDN9Zn48LfcD2Zfg4/ycY+Q+mn2P5adZvyd++dMyqFgF9gUTT3lD4lIyno2fpvrPS3xN3sMV4uPeRD9xQ4n/r64+75+H0dNLhffQTXJeDu/Wym/mfN15TAuwKbgrOmfQ36DEQ+Mj9381SmW4efRCj9Pgb4av5+E9Pefb+hfvi+MHzdV3pZ/sQxNXnf10f/b/1LgbaVw/Qv95t5B7+dzTd+En6wrvws9X7kp/a8yn7cFHzIN5v/iedreUyrAy+Wfib4V+p+h3sPLBhfl9bmFfnvl988Q9+s4sVb4m8bv0k/jCbhk/+Mu9TO5tY8/YbwP1Lck/Gp5XEudMn2+yS94Z5D5xM3a9lz7H0e/V8NZjn4vgyf1P8ick/itxX4kDm5b9nfG+FfmPUZ5u/PQpnAfkfOAN/WvSR9593EVfXfJeFt7Etc8n//S8HzCenjK/Fu9fN0KvBbxXo9dO/+v93o5fPEber/Ezx+/j807f+Mr5Xm16S7xK4lfeKLwPuJy8R+n/X/275/ucuAB2urSwv8w5ZPaX2W/eAv8e8OedXt7nJV4n8TtD9c/7tQ6F922T8ZN3bg8kLg/cDNyjVIa/6p9zr9/hz/lXMV74IeXnE99P3v7gaeBS7T80L5wBvlU4p/ya/U7gF/fnfa7yNeTqaZ4eZzwM1W4q/1jpXKAO2BH+xI8lbuxYfOX+eQB5KuNjHLqPg4v0T1x861IZ5rx5C3xsmPt/dFepb8m/axrX2yv3p7/Z5ps54CxwETwz2D/5RLaIP+NvY/jeNg88n3wr/L0zfVwOTqavw8ifPDFL054ejmX/vNd8Dv5nyLG/+ofQ68N/7k8ejeThUR4F5txqbNYH/K1BSXvz9eX0+Tx+kv9oTc4J8f8Nf7iJHl4At8z7jLyDZI9t4c/5QuLy82407xnzjrGF9mvx1wAfHch3JX3+7PcX6Hn3xI/Rbwty9vb7MXkfoF/uMz7TPvGtU9m7VvZ76G6q3Ig9En9RUp4N/xn4WY3Py8GW5FmpvEPiXchfW/1Z1g+/snPyeOR9a85rE5+Z89yc314G/27sNibvU/A/md/MMO/2VK6SOCfzyS3gTWBb/G3mXPA8+7t7wMQFJd/EyYW8E8m/kHihxA8lnr4ae1xh/C/iJ+9p/7T+8+hhLHqfaX96/DT7cu0/x8euya9gXL2WODKwlfq+9HEDvY8Eb4F//ZyTgt/jM+97cu6TdW/uMXP+c4f2x/n9N/J/rdyN/79vXbVI+VL+HD/6k733LNwf7ZL1LrgXPV+N/0b0l/cus/DZg/w5b048yc+F85V96fvmMvjfO4zM4yMTn+o7sjB5DeCL3t+H9/bsN9Of/pK3qY3fz8XfK+hn/Byfe2B8b02/o8nVKXFY+P/S71kXDs98n/hH38u8D817pQvYKXkPdif3r/SZ97CtjduLjLtXjceP4X9TOe/sjtBuffKdRR/JD3WSeSbvP06l1w3B9YzjpvRxCrZzfjYTzPnZXP32LpXhQebvb9kn8Q2fa5c4lsQ3dKSvKeTfjdw34P9UfjuZ3zZSvjjvt+iveb7jWXfmfJ687cyr56BzR+LHCudV49h/Ij7W4C95HyqhN1L7w8qgoj77Fs9jzk38XqkMr0scmPIn6Oedbd7VJj9MNXguAv+g14E5/8ZX3nNcbH49S/2HxscK8PTkCYEn+Wwyz27CXplf7/P7veBO4NORw3zRyfzQVf3MvO8D74SvT/LVsP9Jyp9k/535vfRvuTfze87rcj6XfCnJ99TSuFqHXtb/qwvr9+S3q8cvLzPPJO446/OOvk+Jv7nP+E38zd3svrnfRygnX2EN9t0EXB+e8+HPujrr7C3y3jvvvfA3mJ4XwHOw+hPpI+eHiVs6nX2nkD/ruq/pZ3t6qKmcc+Vj9E/+iE/Rfw++sfxspPq9zT+zk5/I/PMce9xUBhWLwe5g3oPl/j337ol/yv4+3618r/I9G5v7J/zPgC/7+28S723cTzUP5L1lzpMid/TQSL/Ivzf9Zv85B93sP/O++nH9L8HHzokLyD1k4vngawZP8s8lz8MadJN/Lu+t811MPELeX39CX4nTGVp4/9hR+y30b4e/Ibm/Tzym78xu4LOZ38mVOKfENc3L+SV/naj+cOUB8I81H4xmh4uNs0r4+UJ91lVZZ2V9dZJ5MffqVdhvK+2Opbf91LdNnhBydimDineU8x1L/q8R6u+N/Y3DQ+FPfFjiMk+CZyS4Qn11eE9OHhfyP5Hz3cT95V4CTH6q53Kfku8m+XMflfupb/MeRv+e8Cf+tQv4q/azfA9Ggs+BFdm3WI8OzTtx/jADP0uM5wXq/zbOJ6jfHP3dEz8Cvpn3q+TL+8Onld9M/gL+0pN+xtH/6lIZHmb+ORTc1/lH8iXuh37i6j+knwHG317KtyXeln6Gxg6Fdz2nFN7X7AL/pnnPkTw5yl3g3ynrW+17Zz2O79/BL/DfPuu9vPcBr4c/+ZVqGo8fgTuax27UPvmzlqKf9WTyZ12O3hXgCDB5WxJf/wM8f5XKMPFBV7H/B+y+SDn5gL9mv7FlUFHyvVxOv8/Am3OJu5JfEb85P+ttnltJ7oaJP839vnHwOX5zv/4k/Jl/1kPnQXS+NX/sTO6vlVvxg+R7znnTveRL/ucP4cv9TvJv5n5nN+2PBLvDN5X+m5mvfudn1Y2jf/BXkfdrpTI8kx7yPn5O3uHz56qJJ2SfvuyY9wsN6SfxePtmvxW/9Hvi18eRJ+8XuqvP+4U6+O3rO9Mj70TVf2TdtwX9dtH+e3y15A9v8ZNBhfjL4n1x7pGz/r473x966a5cR/t26D5QKsMLtOuX9xnovZ371UL8wgT8V/guvY2f+E/iFRO/+AeY/EffJp9u8j2RayH93m/c3wcO8507N/cO5uNB8HZUfiHxmfyjar5/4ED149F/EL0x9PJQ4tXJn/ORxMFG/+vULwdvA0fnHlx5BjgcfCnv5MmdvHFLSmWY/HF5T597geJ7reL6fSZ5BtPvz/ypmnH7D/9op36VcZf8Y9cZf6ei/z2+khf5S+XkR048Wj/9PgMTnzYZ3seUj7eOSf6hqvzjSXa7kT89mPd9hX1+9vWLsv9Ivhb8vJ04j5xH69eNnjYrleHR6HcyP+YdcTF+bVP9byvcTz5O/+/gewn4ZuLr9P+BvbP/yX7o/Hw/C/cBH+E/8bGN8l5Z/brk32CPPvAmnn954on1L76nzTvb95SPzPuwxA0mLht/67FHm1IZPqd9Zfp7gv3nlUHFMHAsvnMuknOSquA/8H+hfd7/NKav0zJ/8dt7wLvAk/CZ9cCX4FT4sz54mF1eo7dd+f+F2b9kfUW/xfcOeX9xJ7p5h5H3F230n8QOK9A9B/7p5sNt4HtSOfETw81nLdA9pFSGyS+d/LY5n7wj71jpvz15Mq7/BhvgJ/ZvUPCD2H9z9BN/WAfM/cAs82oP8uS+IfcL+yQ/bPKxKG8N/9HKq/BzAzk7kCPvEgfm/Fz7jvrnvXXy5iQOK/FXA9HNvrou/9wy9zPG9yWJZ9f+ffgPMJ+9Q74zEx+hfrz56hZy3wqOwv9K/F4M/+TEeSufqP36+f8E7HBN4uX4be6Hz9Q+701eMH830q6Yh+d09ZXxmzi30ZlfyT/CvFzJeE0+50/zvsl80o8er9B/Wfwv/38Bnzn/PRZf5/G7oYmvxE/yP+X9Ua1SGWb/+zy9TAM78b+8n0teibz7znvwSfzzHPY5RP/i+6nFeTfMjx+mr6rwJX6xMb5nJ38c+m2M/xn42I/+zsn+JO/56beK8o7k/J7cyXu1Dr3X832k34HqK7Nf4uEvJs+ZYG/wOPzn3dIJyrXw+Ure8/i+zIb36DKoGMK/3jGejnFO1EX5n/zfAvPVbbl3Ad8n1/30k7ymP9DzifST/FId6TV5pnK+0tX465a4GTDftT3xkXyMC9i/eakMa9L3fHRzb3c6+gMSn0zeVnlnRP/Fe9XJ+g/N+1z2uhae5J+7EP4eyWuWeGz422R/of997NOePNPhOV773P8nHiD3/3XJlTiA/djnCPQeSF7I3Cvpn/lsIPzbqM9+5brc39J33uddrnx8zitz7qKc85/Et83K+8fkRci8XirDl/I+XL+BxvduOR9IfhXt5tPXB+SvQ56+8L3l9+8zvxT258V8qjPge0P/PoX3bxdZb0wG/wBP0P8R8sUerekp/+cm8ccH4T/nksmnsjjxBPoP1X/PvA/H7xjtXqKn6eRLfsvktRyUc1v12d9nX7+DdtnfN4L3dfxNAbN/vi1xkehOYY9d4d8wce3ZJ+WdeNaJ9HVN4osr/xvfH75XK8xbH4Fb0k/mr4VZ5yf/GX11wu/ZpTJ8jryRP+8Kb2f/vMPM+8Kt4c+5zOrky6Wft5QPBWfpn/feudfJPU/u0XO/k//nkryg3cDkC62R/zdCjr70sQ3+mvs+bQs+Yb1aL+8fybXaPLyt+TT5yb/Ub6V+c8zPAxOPTp4O9HkQfpJP8fXEhybPbfLTJz9P+M69b/ZD6Ce/62b0cZd2c5WHlMH/vj/5Ho2CP+e6yed9ED/IOe+W2o+BZw0/2yp+hr/EOyR+YTY+epk3e4PVcv6t/Zn0unnyWyVeHN5iPFHijJJHYzj5b1Q/hZzV47/6Hwkenv8jwS65vx+k/BR8yc/fDh+Tcs6Z81/l9uTK/+2pzV9eS1wK/Edqf4B2Z8Kf78N2pTKsqv445Xy/BuX9YOJW1Q/1++DER6LTnX7ybi/xT/P0X8E/mlh35B3PSezTMPHZ7L8remuUF6B3at6L8YtJ2UeRb0v8fZV1AP3l/eXZ6OV9b977Jr/cWny/zl9n4mMS/AvZ+1f2HqLfFjlPQj95lIv5k+cmn5pxW1O7ZuqrJ39Q4t2UO+PnYfPRQ+D4vK/T/wr0E7/wXeaFQnz3KWB181P+v1X8M/npuub/DeFne/QOxE8TdJJ/MO+yPwaL73/75j0ofAv4zwk5f0X/0wIfiW9ZXQYVa/2efBS5x03e5dz3LSqMr4XK/8tfjJ+VicdBt5/ysXm3Bn91/p119xHK+Y69nfeEeVfJn+ajX5/ecz+U+6LcDz2UfS/+sl94Bv2J/LUH+H7ep+c9Ar0kfjzx5Ikfvx29q9W/ju75uT8lf/KSjsZ/8pNO47c5N8r5es6Tkm/7W3zX0q9X9qfmw7bwtAHnJ2+C/k3RnRH59f+A3ydv+8vGR/YLdRNv7PuY+N6Z/O8v7XPflXuwb8hTP/fB8BXzdZ7KHxK/lDj3Kfhrnv9/hP7jhe/77snvXyrDavjL/6dpkPe1eQfv98qJn1Cf/C3J55L8LYnfWVmI40n8zs3mnx3IeQPYRP8h/CdxLzn/S/xL/ew/0a2XODL4f0FvJD+7FTwr+Rzzrk//4v9/TL7MdfwveTRzfpJzq9L/5/wq6++st4fkHYP6SfhJHuvNlHP/m/zsrdk7+T/Pzv0VvfawjthVOe8dk08w+QWPR2d14iITf4u/TQr5H5YmHzQ8j5tHcz7/SfLxFN4p5nzsHPrK+65xhfcLib/Jd7b4fU28xP/mzeJ8iv/E5SROJ/E559FHxlPyuCV/24jkB0t+AO0SH9ss+WnyHg2dptqNyv8XyvrT+GrA/860Hno89uEfE+k3833iSN9Vn3jSpvz3PnbJuiXvp4+GN/Hp+X+YZ+c9e/ID5r0wvieBw+h3XvJ/+T3x9cnHm/dAL7Dzw+g/oH8Tero/cSfJE0e+5PUfnnsn+u3GrskjnO94vt/F+LKayc+q3Xzy5b5mQ/Xt4L/IfP6EdcUw5eSnT/6T5D1JXFL8P3FZyWNSjM/6Bv2ck+9Jz9HXj5FLeYT5bgD6r8Fbm/4WaB879ID/VOXvjOtl2d8oJ/9v8gHn/DTxzYmrTZztMnxmvtzCuIoeo7/su7OfSfzR03k/qj75N86DJ/kYuvPfY8Hbzae7o/MF+U6h50/8/jX6o4yf19mvt+/labkP078VerXih/onf8A889Lj6CR/QA/zWuJiPjH/Zz00L+u+5H2m3+RHu9R80ordTiHnrej/7fe8G6gVPtWfAH9rciReIfE1ic/6HEx8VuIlkle0DX4q4Lk08f/mo+SxzPoi8aW7Z/9JL7XYry3/WkE/eedZWbsO2p2n/rTk1dPuylIZ/kz+5M9IPo3kz8h7+cTZFePrklfkJvX7q09+kVrmy5b8ZEdwWvJ0sfux/KCEz/H0NST/XyXvR/A5Gf7kG4s/t8u+Gf9ZD2Z9mP+3lfVhR+Nvg5xL01879Tn/zP8BOZPf5Tz0/Lx/oo/ESbbP/FShHf438f3si8/kD61FjhfyHhyevGfK9yP5aPK+KeuXnBt25HdZz2S/ugIf2bcmP1WdrJ+TJydxSYn/5Z+/8M9iPsgnC+eP+T9BeQ+42O/Jn9o3+ZXw+9/Mz1nn+X1D/Vcm3xm5r1ZO/tPFxse3yc+Jz/y/3Ob8vzO/GgsmT+Cr2o9n1z20z/9n+cz5yf38eLXyJjlvVf47/wdROfuvIeabRubHeugk3rUSPpvlXABfybNUl7xV8PmLfsnfkf+vuV72zewxPHqHb3ji9EpleBn9DvZ74l7WJZ86/BvB34l/JH5+sfr/A1eAkwx4nH3deRTVU/c/8AzxiBSKSnGFzGOmUGlARZJIg6moSEmlREIyJSqKeJIkQ9FEyZChJCTkMYc0iQyZokjxXet3X29rddfyu//sdT7nnD2dfeZ99l1Upcz/+9XdrQhHgN/sXoTr5Y+tXoSXgJ32lC4U4bZ7FGG1akXYX/70bYqwe80ivFP6gb2K8LidinD/rYqwdtkifGfvIrzB97k7FOHN4B21fC+CMleDlTYrwt12LcKD4Ntv+yL8pGIRfozf8eq1U76N9Mc1irA1+Zfhd7LvJ6E/YZcijB6ay9+f/F2qFuGR5J9Cv9fJP2DbIjy6XBEeAT5D/hO0wy9gS/rvAV9lcs2SX4O8a/H7w3+K8L3tivBH6Qnq74Lf2+mjPHkvVP8u7XkFuj3lDyLH+9IzyfklfYyD7yv81dFu1bXnpeRfXwld8B10j6TfFfg9jJ3cQL4t4H+5PD6la+Cznfrz8HkyegXy9KHfcvC38X1/drCv8t/TT3t4hpD3D/ruVrkIq+1chC9JHyp/L+1bDawKzqf/9fTyFDk2ojcU/4+TZx399sbHPHo6y/cl5OmD/9+kq+hv26NzID4rwbM4dCsU4Z7KX1BzU3mjh1rw14W/3Y7S4K5gL/qbhv+HyHMXvmdJj9u8CBcot1i6MvzT8XlRoQhfY187wT839gbv+Ngp/D3p57/sY5x2+U39T7THIvBj8H/kX0wvS8Bf9KOX8Neb3V7HPufC/1HsjT7fVL6mdBf87YW/y9X7g37roP+1/nOQcaGX+gvIexR+t8LXSPV2Qu8C9nhQoQgnascH5Fegv73U+4CeWsC/mtzt5P8Hnurpn/i/lJ30xH99+TXwPxufR+m/Fcl7rfZ9D94W+uFq/N2u3m3gELCp8tXopQL7/sD4vj05bmXf66WvZh/NybOK/O/h40L5t+J/A/09pN/Ull6r/CL1e5LnavodBf8O8FX3/R16KmR8lz6c3JPg7Uf/K+Uv9v1p5cqzrxf1l58zHuPvNviHKX8N+XfBzwj8/dN/1E//OYw8X6KfdcE15Mj64Dz6bq+dV5l/78Nff+0yH5xUKMIK8nvCN6iwKb0L8PsTe9/HOF0LbK781dq/FXlm4H87+Jvql5X0j7fxu0H5E9hvK3p6gj6GSg+kz7L4maz84drnEPa+J/30Qb8L+h3Jszd9rYr9aZ/G6F1ADwOU+1j+mcbTY+hvKT2/m3UBuc4g14/SU+XXIsex+HmGHCfCfxy77l8EZd4BW+OnJ/vadosivJGc3xaK8AD8b6CHyvA/Sz+j4NuVXXwPXwG+W/TPRvr1cO37ofapQd+/S79OfxvIcx769eg548ke6C8k/zL4+9PLffp3R/azEvwSPI8c95PravJ+i94k+qtLT3fAO5CcV+Kvg/J95b+H/7fRfxq9dcbF17fEr3Lj0B+GzmnknEC+U+CvDX9d9TajrxvZ7+34vQMcClaSX9pOn8m/03rtIvZ3qfaamv5L3/uidxv+OpBvIfxDwfHs7Wzy3LA1/OBo7fRg9hv4egJcC65SfxJ7mQxupJfB+G9Ov09mv6FcU/zNYl8t5W9DrlbSx5rfexlHKpBzOPxPsa9O8AxT7wT4s6/Zif4agk8WinAJfpaCy8Ar2d/H9PIh+BG4jN5bs5cv6G0x+G72Y/jqRF/Hq7ct/l5mX+fLL2i/zBdvG3/fyTgM9mJvlyh/PdhXuz2g/r7GpW/Y90j0KtLjX/Q3h95Oh3cW/a5T/3B2NxRclv1Fxjf1J6FfRf1++PoPvN+S80Tp0/H1Cb22lG7LDjZo9zrsYJz07uofq/+9Rq/N0D8LP4u19wqwnPG7J/lvhqcVec7Ebx/pd/XHKeCW7GML8Fft/zm6AzP+a9+y9NUO/B/5/6afl8jTD7xffhnyn4GfRtlvoXMx/r+hl27qXy6dc4MCfWYf/jP5u9LX+fA1ZKe7o/NK+k/Wl/hao/yqQhFeRv9t1PtVuVP33jT/fHr+ubBp/s34nMwuq2U9Kn9AEZRpAT6a/WDG36ybwFczD+L/G/z2kt89+8fMZ/rTMPUOlT6E/tux77Xkayt9JPo12MUD9HQaPndE/1T0DyFPZfVzvrAU3Vvw9Ss9Zf79wfh5cNbr6tcpFOGf1icDtO8K+tkZfw3xMxXcDJ7z1e+h/hXotGRHtdC/nlzvoPsrPUyUf75+cBD9HkGezANVM67R5x3kPEb+9fiazE6uBB9U/ivpneFdk/aTvg3dP5Wfgc/l8Peg/xe009f4HlVin7HLPvKfkl+/+qZ0mqOf9ehn9FUwv07W/5agv5X59i6wW8n5xGX4WkKeX6VXoDfd+PuqfeAM6Sfkd91mUz5/N452Jc/s7F/Qm6Y97ybn/OzX5S9Xvg37fUU65yCL8Pm58tnv7YXuruwo+7+cG+W8KOdJNbJ+w/9L8B5i/LwL/bfZ9Vvgtubz7BP3MJ69QT/zwcx/jdj3RnYx23g9SP4U/GW8zHj6qvx++LpReh0812X8lf+d/OwzTmKPT7P//cjbFH/p/23lHwtfd+3Tk/1sSZ8b4N1C+lbll7HfR+jjE/Ay/Cwnz0z1byDv6/KPV7999pvq/4H/mfT3Azkv9P097TNA+UrSVyl3ovTHOb+itwXgDvJzDlYfP68p34x+noXvRd9nKz8aH9ezlyr4fwX+7+lnKP5vYSejtf/x9HsDvKeq9y0+HoW/vPbJ+my18jfDf4r2SD+qbP33G/xPKH8dvtuTp4X6X+HnOPw3xUfVzF/yV4FrrWMex+f32vdR7bqldM5bh+uXP+qn58lfh7/PtX/24ZkHXwSb+V5H+aH0UC37F/j+BGfg42vlB5HnBPIvoI+O5N1R+Sna6b/a6aeMj8aHDvR7p/5Tt1CEo3Juia+fyFMef8dYd20BTxnwKfqrS7716t2Kz4Nznuv7Nuj9F/+nk68O+TLvrtWumX93ynkGPifA8yL8z5N7pXbtApbBX/bX2Vdv5Xv217m3ODDn28bHx9F5Xbs/gr+/zD+PqV8F/YJxuTw8LZXPeL0q6wN2mPF7q6wLM0/jrwv4s/a9lH3MAzfQR9Z/Z2jvHuA6euxm3O8OXgZ2Zd+19P+MhwO193+zf0GvFTmrST+VeyL2tju8E8DcTw0l9zBwOPg/fD7BHl/LOTu6OZ/dAj+L5W+rfe+j/yn62fPS59BHzpfrqHdlxkn5G8n/oPXCs+Qp53znffr4Gb3z8dlA+22Nz/HkfwDcBiyn/jDt9xHYhP6q08+CzB/4eQIfN+G/S8l55ME5n0V/ZfZT8A2k/6fQv5W+XyTHZPDCQhE+h/790seBr6Gf894Tff+avvuj95v8Z7Vn9l/l1J9pvKjOfuaS5z3j6mDlN895I/wHSy+htw5gTfprr13P1x4r4Z+vv76Pn7b4e0X774PeRPb1p++n0+fVxrM20m3w07NQhNuCZ6jfDP7n4PnFeHYi+R+k/5HgaLCD9jmv5Hw269D31Z8afaB7DTgb/YroH6/ecvT3wv+u6tegj4vweQZ6t5H3jpTLPgydNdrrDvBLcFbOM/A/y/p8NTgWnQ3ZH+BrI7zNYl++5z63dH/0jPHp/tyDkbMNPK20d9bJq9hVxtcz8DcDX4ep3xH9Cr7nXHHrrHukL0S3jHor5R/DPh82X1zFrm7RH9+EP/dee+L3LOPD69pvq6xXyN0Lnpw/vkHfvcF7wSfg3QV/++FrHD63Ub+Fdngcv43kXyp/JH3toh+tw3/2h+votTw8/aU7obdcvzsFPA//o8m/RPvNgm+0dHX6zf3Cifh7IftE+fO139bst5H2Wpj9BX12zHiUc0L4asrP+n6O9npI+cwvNeDdXPpV9LP+7oL/0+DfifxVtUPWB1kvZH3wmXoX6AcHoZv2WGx8XIbPzeSPRv8Ben1b+a+N7z/k/gzeY/CzH37PV79REZTZjfzV2M+cQhHuqD1ul/84eivgP5l9Lch+FP674b+bvDPYz3ngueSfj79u8HRh7/HPeJrc5dGdmfvW9FPz1QZ0NoJfqP9A/EnIk/PS8ex7vHZpiP8NGd+lcx+xJfvaA3+5v1qvfF/4X6WXneEfpT2asNt7pG/J+EGenMdenPtZ/Ddnb03BEeyzXM5jyN+OfS537xQ7m81+prLDHvrv6fjpiH51+HcDB+JjiPbJvekn6t1CvnXyl9LPxpxb0N80+su88xDYAP+Zn25Kv0Qn89NNsddCEfZX7lfpDdZj3aW7gcPY+5nGh5/op3LOieA5LhC/22vPven/5SIo0w5cBw5A50v9tzs8G+kj6+esF/aSv716/bL+It9S5S+gv4My/2ifHcCGxtfT6Wln686q7GCk+mfT3y/spYtyB0mvjt+J/n4ROZ6W7pbzR/uV3vJfw0fOb3L/98+9H/q5/+vOHgvWZdeA77HDfsaDYwv41s9HpP/Qz9OxJ3ykf5xNv2vQPVf+D/K/yzm9+rvl/Jx818W/CP9X0FsL9Kdn/FSvb/x+4J+A7pqcz6N3ufoT9cO25G0ffzX59xtf341fjva5Bb092feAkvXVpYUifLxkXzURvJk8LfW3atJV42+F/7XKH84e4s+zlfyPc19KTzdL/y3/N/1rLPih/vU0fFlX9ok+6O9O6TPhXUl/1+e8Ofsj9Frhe2/66KydvqHvSTknJO8d8D1p3JsWP4qc88L3Iz2PKxTh0RmP4L9Ef6tOvsbsN/eMjXOeW7IP6KZ+9i9DfL9f+dHSa/Gb/er56GxJPx3Yw165j8F/N+kj9Puu+s0y7XcP+e/B79fk+IVed8XfJ+xxBTrtwd74G4y/1/H9aPxQ4r/ke2flTwLnZX4sgn/umWqyh9wvZd27iF2U7s/HaO9a9NhL+o34kfj+J3k/zToKnxv1r/fNa++BM+MXWmVTvtewx174v8b49Ag9DYofq/rx/zqH3odoj/h/1VVvTuYZ6dzXN8TvDPk34mOx/F/pfzT5BrPbHeX/xR6O1L5b4feI3DvoP4+xz0XSz9PPmvjNyn/QeFWb/V1MH9eitwu7/45+euZ8zDjSS/os+b/ZPyxlVxvQ60veTr7/Qu4J6sef4+asF+R3Ite98nO/mnvV3LNeIL+BftE1+yblH9Q+B0ovoI8x9JD7xcb0m3v0LvjIeq279jtbvQ/jN6fc5fI746+CcndLF9BPf1vFHuOf+xH+45caP9X4p67O/Kf+DeDe+P+avZ9A74u079Kcz+HvI3x8j6/n4L9O+xzt+yL1xmR8K4Iyf4EvwNdRuS3ouRO+KpFvc/Wz/99B+fHo1GNvr5tPprCD242PZ8G3Wv0h8nPuuS+6o5V/ULtUyr6Rfu7zPfqLPqO/evprA7A++G7qKf9syXiS8aOBdmsNf/YjbeFfq9++atxoon3iZ/sW+SrAH7+PU+I/rT+3xM9XJf27Ysn6O+vxrL8/xN9T+Oub87DcJ5P3HfbzN3tqIv9b8pRFr6X+2wKfTxoXZ4DTMj+RJ/fZud8eSv74/4yRzvnXuPjLsI8d6acKPLOVuzD+J+TuK92AnBk/Oqqfc81B5BlPvsfp42T4/8y8RP+5b3sY/pwH5P6tl/77HD3mPDvn2PfTV1fzyG7GyzG5B8LfY/j6Ln4Y8T/G15X4apF1snR/eFvHf4b+vlTuO+15JfgXfg9B/znrh/vB8ew19zEVjYt/x08L3gPwdzz6x4F/kv/R3J/iZwdylfrf70X+db6PKxRhU/lV6f8P9bfD13TtdxO5Wls3zMXndHjij7uj+of6fiP+F8H/k/adh48x9LuZfluTHvYA/4e/JvgvPV/+Xf9+Nff/vi/J+SL8HYx/rxrH2pCrN/5OwM9449BH8VeU31R/uxJfQ6QfI2fWt/+sZ7VzS+2zBN5n5Gc/tj/55tDPcOXPIMcJ8b/Ofsj3F9G9X/7D5NrJ96XkvST7X/3hDfNQRemsL3OeUDq+vZz2UW9z8Ez9YDD9XM0uZoM/guOy/9K+K9lR5tPFOQ/Wf0/Tb/5WPv44x9H7IPu7v4wDQ7I/p99v854MfzXx117/WEW/p+DrfvJ1Inf2b6tK3neUg/+tjOe+/6j+uewz/gEfKp9xbr1+m33VqJwb4O8zen2DXPPBL9D7xnw0AWyu/GmB5J2L3j3otKWfs3O+FP9z/I3QfzL/1ysU4cPkqJ32YV9Xsese7P2+vE/6l/6VdUIr5c+J/4FyOd9uF7/WnK+wzxe10zD29Cm+j3ceEv/jOej/Sr7DpI+WX4M9L0T/b+Wyf4i//BKwFfs7VbmP4Kuu33+H/vU5D1NuF3Lnvcj0vAck/0L6aw2OpeemysfvPn748b8fqz17y4+9x77rqd+SPvcBp2X8jH8n+e5kR7nfzHj1VYmfZ+4bL2ZnnXMOlv10oQjfpIcRYNkS//Hjja9z4KuI/9vIU1P/zHzSnx0cV3J+Gf+EXzIOyn8scvn+JP2Npf+32NcCdvWm9OoSf9/4/zbHX/x/t0b/tfhH5b6H/hsof7Lv5ZTvqh2aGr+ewU89eA5Wfzj9LKPXazLuKjcD/knsYIr2HqXcz+T6OvtA6ew/r2fPc3y/Tvp9+v/CunQfMPdJ8X/J+VgT9p93stXUz/q81I866/Pv2NcT7OpY9cbST2vyveb75tr5Ju0Y/+Naxo3Y5z/+x/QxM+uP+EXR3wf4iv4Px+88/L1Db2PiLyCd9hlgfoq9TqK/jvhvDN9m6O+ec2X53yv/g/ntSfa9H/xV8b9r3rPA8yz+y5mPjqT3o8BB5PxV/9mHfubKj//qu+TfRrvk3rJc5m/8H43+VeysH/wj5OfcopX2Okb9adaDC+W30N674P9K+Tehf5py8/G3iH2dGL+W9Bf9slv28/T6m3aYg/5k/HaA/271asP/Bf0vAeNvH//6F7XvCcbJnejvHfh2N65NBg+l57ol/o65f40fZMOsL/SnzmA/7fl8xgt4c/96VvwV6C/r66yr8x4u6+ucz+U87i/pn9R/vAjKLANbgbfS29d5n533hdI/008v48YgdnYgOvVyHq0/VtQ+z2v/Uewn823O9/PeKuf7tX1vQl//kX+g/Frw/5RzDfLlHc2n2jPrqM+ks37K/cZm+Ms9R+43HqX/AwtFuIL+sz9+O/2Z3Ftq50kZX8mX8/ff9OecvzdFP+fXOc++Me+D6Lctu5gmPVD5ZcoPR6eJ9rmXfIfmXEa6GfqVEz8g7z/N+7dkHYn/rubDPmDpe/mHs98BHwG/gv83+piL36fJu1vWQ/I7yD8Gf81zDhD/XHJOjT9q8pXvV/K+/gr5NdNe7K4Ce7nOOLI1fl/XTyeln+T8Bt6l6DTEZ/Z/sZ/tfI+/5Xbat2zOLXOfQJ6fpT9ij2vQaUTPd2r/H+F7O3E12P9jeU8jf3/5h8M/C/9rjFed827LPLNd/C/0i5fYVfZx2b8lHsGYf/H//5C+LyPvXujMQL8X+b8t6R/xD9hGezyAfkf8rYOnJX1U1V6fSt8I33fqrdU/VkuvKxThEONSK98fpZ/Tsj6OvwF6Rya+hvysq7LOmkdvV2u/vdlNGXR6sKfGef+Q+3z6SvyBi/A3iPzD5Y+Iv6f2PyB+t/AMp+8VOd9CvjFYIfele23K93XkqFFzU/7/o78PVD/3zHl/egz+si5qaHytV7J+jz3GPrP+qYPvl8j7YO6L0R9g/Gls35R36InfUHq/ME9/if90H/h+l38AuEH9j7RL7/iPql8fnY3kbg7Gn/wb8Cn4p4PxZ75kz03LbSd/Nfnjh35Z5k/p5/C9gvx5B5L4AelPiR+Qe7it449csr9bHP8geDeQ/xXl4094vva4HR+X08/p5M772GvBXeGZzD7albzzyXvlzdhH/EBL/Y9qmC/OBM8C56uf/VlT7TxBOvuz9fr7XP3qFfBb+fuxn7yT6oDPvQtF+JX+tBKchN8XMz/nPlq75f1W3mEcKj0LvrNyTqr9K6M/WvlZ6Len793Qi9/0AnLGn3qocW1B3s3AuzD+EfiL3/xQ9OM//416mfezDsj830J/zflnc+m9tX/G+y3wlfO7hvK/gvcT9OPX/yT+xpIv/h3N6Tn7i7wf3oU+cg56p3QV/bO68bsueAX7KKvflp6TvYZ+1pt3K/8QfrP+3NH35+kj9zwryXcXfrNPKd2fxK5uynsp8uQd3kV57yc9gHzjpJ+P/wS+WxWKcGreYxZBmYlgffUeRf/PvF9UL37/P8cfkV4G6ydrtWPu+x8xb3+oXh90zoF/QeL7ZLxSLvvh5uS7C77OuVeSf8W/+J/lfPgZ9S+Ef2ft8VzO13Muk/hheSdFP2/Sf85VtoUn5yu5n0r53FPdEz8j9feBN3HGDkp8H+19dd795BxC/cSLSPyInXIPSh+J23NKzllL4vf8Ff8k9rWL/p55OO13sPxSf+WLyRN9T6aH23M+ob23kL87fhL/aojxKfvg6fj7Cf6R7GsZeXfD157qf5/4Pnn3S495z5t39Xlnf3vuF+k5+4/lymf/kf3IFPa3HJ7p5N2HPOehe5rv7fE9V/2ce+ccPH5cOf+On0Dky3o+8l2cdxDKN4h/nXr98PVRSXytzuoPy/uLvOvD5wv4G5P7M3rtkvd48ldr//rs4lT89M64xa4S32mqeST+CyeVzP95v5H3HC+y77fYxRrpH3N+m/08/qvgL+uv+EucnneeaR/0FsofmXfS8i8l7/6Jj2J8GsFe8z6m9H4598rpv9eWxOdJvJ7E5+mn3XJ/mHeaveM/R6/rwZHyEz9rPns5mzyZt+N/dwx9NQIvLnlfk/XVhYmfBH/Gi6PpfSf038d3/Mvi7zyeHmvhI/EL68Y/QXttD9aEvx/7ODXnj+b3e2If6Ma/oxz9DYQ/++LF+Bwv/bDytdnbo/HTAt/RXsvZ7/tZVyceQeJb0E/ej8R/Jf6Xif81jdzx83ld+kv4EmfkeHTG438Ze8o7iBXgs+rPzf2pdKPEjVE/80Lp/fZWJf77c9RfKj2Ufk+j71vY4QEZD8k/mF4Po9ffct+Ve6Gsr8n3LPx5r5n7uMrSeVc/POeH1kd5l7OZ8XdP9pF95+K8T6b/vI+6PPeXiV+Re2PyN2M/16PzWeKoKdfD+qKDc4FVYE30ekrn3Wb86PNeI/EQLsVHx7wnoN/ELbw85/nwxt/1M+39HrgqdkjuYcrfof5dWY+Qv2zisUjPxtf72V/hb2ChCJvEP4F+DiXPF+Sbb/zO/fow9EbjJ/vEQfB30p++kt9ZOvuAnP8sRj/nQNlv30M/ZeX/kfgi8f9K3DT4y9DTuejXz/yBTun7xysz/utH2beNhD/+1/G7Hpw4VfB/iGz2VZvBP5Acf+sXu4PPaI9f0Z+oXqOc56uf+KnXxH7Z48voF+QfZnyqzX7PYb9Zv8R/ION23oHGfyDt14IeJoLTEo+gUITb597f9yo5fzTezqP3hugn3kv89OO3H3/+//me8+7b8JU4qjn/fg2+kco/l3eE6Md/Ku+m4j8Vf6ovi+Cfc4CVGY/ll54HTJEeUhJ/IfEWbifX5ug/zj6a4C/xcWbSb/xR45/atcQ/dR/8/C3/h9wjyK/DXuoZd7+l5xfkX4X+69q5n/RJ5In/aPxGdyBX/Efn6D+JP/yU+ejM+E/it5bvOU/OOXJ/+Ueh2xi+xIFYYtzoaRypK71Q/SNzHoGfd+M/Sd/7GS+W4f8o9tMgfpj4/jzx5LTD4sQXZQ8N0Ut8x8TvyvvIvIssnR8WZj0nf7e8k4n/YhH8E1foBjDxhl6Ln3ehCGPvue9pTf6P5T+vXoPcv2j/W/Wfd8HEB3kBvcRzTnzny9Tf6Hvi5iSOTuLnLKGfJ/CVe7+tc39Usl7J/qKu/CPwn3OBgSXxSTew2/r0Vi/3kegckfPerA8SfwS/gzM/5d0AfXaPfz15E5fnZ3iyjthXuhN9DPW9avoX/GPgz/ni88afB/BzNPu9pVCEC3M/Y3z6kV2V+vc1tm7qmvho7He2ddUJ+k83eC5PHB/1c9+Z+89d8TMi72vQax5/37x3x//u2if3bnk3kvu3ieaNjYmzIP2X/FPVX87epoDfa///at/e4H3gG/R8m/15bXItk64Df9bPJ+VeUr28v/6YvJ/m/SH6Z6N/Zd6BgX3zPjH+a4lvQv7P4veC/vWZf3KOlXN9+NuQP/Nu3otUib+GcXcjeK7xcVt4ch7xDny5n39J+yzXH/oZZ+5LHA/5A6Vvhn+UcTbvaA6P3gq+J35U3sfEvpXLuBr/y9L49Ynzeiz6uRdMf884kPjFV8UfP3Hd4v9CP6ey/3fZV96fPS6de/i7Ey8r8WHw/6Z+sSBxwcE2uUfBd2v029LL2fi7wfff4e0B75Pkv5W+dkz8C3yfKz1Vu7xKrvTzQeofmPh6vl+tXM6ZVhg3bjPvLQLz/qx/1kdg/C++gC/rsfOqbko//PQ2P1aSnpc4rdJ/x19Vegp8FUre79VXL+/34g+ac4GR5qFjSs4JJsCf9ykZZ3pJV4Mv/uw5v0j8sD2Mg3mvu1S6V/YP+Euc+vixJj79l8abFeDD9DcqdlgEZX4Bh4HP5P0GffRLPGN6bo9O/J/i93Sk/pf7v5XGs8S17iM9UP3P2XuzAv6kv5J+OvEL4N+DHXTPfi3+/WDperIT+/tOeiy5Z6Af/7HETTko8brZt+5ZZim+bpKegv6W+BqiHxWkT5Gf+4gBic8Yv+vsr+kzcaniBxI/2S3zvpw+f0ocGfXvJl/TkvPZxOM6Dt3Es52UczPtOyvnRvBnvG8vP+vDxA1LHLHED+uJn2vzvxrGg9zHHKK9aoO5J8r73/LsZdusW6Rbx781/m95tx4/ZXr8Q3vvm3si6cTVfFS7HcTuRkhPhO/o+BNl3V8owi7kayR/EHoP0mfio9bL+w/wdN9ngLOVn5Dz4OwL5PfT/nn3nzgAef//LL5rWheNlh6Mz+xbc/5Yet87KvF78R8/uz+kcy75C7o7lJxTJv5n4v8lHmDi/z1Dn+vTP8AW2qGZ8f0U/B5e4gce+8z798y3sdPEB8m9ae5Rc3/6HL1fX+KHnf+fKI238E8chqxvsg7W/vXpM/5abyduRvw3yZ/5rxK+O+M79xpHwj+K/a6l9+zrXoI//lCNCkUYv84PtP898UeAv/T9dUfy7A3GHu/NeTx9/07+0vie3ZX/IH4j9Jz7jVOzv4jfC7xXqZ/3AXkXMNj3vA9Ypz2e0R6n4vPOrF/wdV7iDSUOSs5vtGtDcrwCxn8/cfM+TDyXQhHmfmcGeSvn3Y/xPucz/7auuB++nD+sh7cFmPOHc+gr8TWHG7/G5f7YuHQ5+Hveqyif/vA9OSdK7yj/GP1obP63gP3HL3Js/LGlE48n8Xd2Rq8y2Dnxc+P/q/2OLHm/sgP+DyqCMo+Br9PnKnrMuWHOEXN+eEihCBuQJ+vPz8m5GJ074T0ZfAuMv8We5J5Grqlg4gy9kPcDyl+lft4XJ675v70zvsIEP4NeRsF/RPwntGfibw7T3vWMB9lf3qtfJs5I4oucn3cx+tHF9HZN3kvCs1r5vrnfov8BVTaVN+2c9o0/2wnqx886/gtbZ7+K/0vVH6L8vewnfs4vgDnnyP/L3IH+IPJeE/8C+blf6I6f3C/cif9WmZ8SP1T5fX2Pv27i4Cf+/Uvxb6SvvGf6S/mTnLfXxXcT6dXKfyad+LyJ15v39au1//Xa9V320aegnPzvt9q0/HDyp79nHFgFf8aDzf8lfkbuzz7Ad+LQ/olu4s8uxs8X4OfgirzX1T/OwVfeuT8E9s+7EXAAeLL88eqPZSc7G19uSRwW7ZNzsYty3533KvipI3+M9kv8xZzf5Nwm5zj5P6Osy7Iey3rtHvju8j3nczXhz/ncZPJMAaeC3RLHLOsv+sr/OOX/mxagNxyshJ/4jV1BP5W0a+I/5n1k4nYkjkfl+F3m/jr79hL/oPhvzSNfJ3yehL+MP83yvw3sayp7S5yC/P/S5vFPyjk2+u/n/64yfuDzUvQnkauKcakzOp+in/9HyP4mcULzTj5xSXMOnPikOf9NfJrc2yUeYu7vKua8Fv2BeWeW+KrxX8NnK/bUOvtc+imXOLz0MyfvY9lz/N22p4f8/1/i68cfI34a06RLx/Vu0XfOT9BNfOpbS86fcz6Z/yO6Br6Lcv5cEs/rY/ZdEb9pr7Rf2vPh+P/lHlX93G8+Qo7E38j/7rzKvpuqf3r+XxCd/K/DWPKNZt/xA0k8jYwvD2v3strnF/3oUONJ7iMb5J0//LmfHIZ+efR3Ua6iemX15/wfYXvrx/PUr5H1h/Ij8Bf/u7rwTqSfPdlf3s83Ra9b4ltlfav+ufI/zL0mfD+yhx7WNwfIX1by3noye/2UXq5jz9eC8S+sWeLPmveXS9T7CRwKfo3P+Jdkv/Z23kXBd7Xx66r8b43+8Kr8WXmfj/9S/8hG9Jvzx+Plz1T/YPZ+AT4SFyT7gD3g/zT+XyX44z+1AP4v2cMp9J/3IPm/vvjNb6F+1puPK787e8w9bm3jwzDwS+Xy/zBvJr6g8vPgT7yHuewl8Ya/1f47J83OE1cz77oSX3O7xOWFt7f6uV/I/wLkfwKOBffBz0Nl8A12AsvKrys9DmyR96r0uZ49dkz8MDDv++4yH08AR4AfqH8BvLmvz/395/SYc6GcryYOUvyzFrKLvPtqCzYpFGHt+M2wy27WqTkvWY1+3qWV3gc+k/9XZN8fwHO8/t4O/vijXonvR8jfu+R9zWHxC6n1/+f7E/zlPnYR+T8puUdYJD/tkXY6AH85T5rNHoZknkc/8W8S/3Rc+gM57kg8LXwtVO6UzL/aJ+/serC/vG//lL7vi3+PdM7ncn7/vfrx470dvdroZ5zNufJs+OM/k/hGA9WL/8yA+HfkHZv8+GflfHMmPKXxzXoYLw+kj1Z5b6V+/LOPShw8+I8gX+JL5dwg7Z/zg2bspylY0/wzOu+tsv9JXER4Er97a+d2+R/emXmvgN8x7if2pvdaYP+88yb3BPinJ45z5Mu7kvglaseu6g9X/ilynouP/L/ML/n/HPKV7n8z/ud/6jL+5/y7g3Y9hDxr8VOH/hK/MnErnyZP4lfm/nUNvNcVijD3sPGXfTjnFuT5Db2b/uV/MfL/E1Pk76y9sp7I+uHP3M+j94b5OPEr2hq/ci+wv3Eg9wPpBzUSDyf/Bwf/vdIzyJ33vxcrf635/AdwH/bxFjvbx3yQc9Kpxrmcj+7rPOVSsGX87xKXPPESwIuNj0+Qr3P+n8K4fw97uCzvOcybjfExQP455BgI7w3g+9Y72b/mvHYUPInD2Ff+duTpRt4/E1eTfNvBGzsvte9yiTMXv3b6/ox8ua/Ke+7cW+V9ebtCEd7q+9/sIf+PUfp/BzP33JT/vC+N/2z8aX9Xbha5F+DvRem+8OX/qV5mn/n/sTXqb29dUR6MP3V39NfFHwq+o+HJ+/f4/ea9/Jv5f9eMD+zus8SHYn+X4Lf0/5XjF57/h61JP/l/yU/ZSf5fcjq7jJ9TqX/Tcu0a/7n40+V8Nu+HZuAv/0M4Wfn8z2M19W6l3z709zv587/GLcm1RP4n7LlNyToh64PS+9r415+c+72S+Eh5D5P4b9tKJ1790IyDJe97Hsb/G2De99zAnpazryvAvAdK/LQrpONXuwD+0/BVl/xP0lcX+fn/7w7q53+x7pCunnkz8yp8iUf3f+pLr7h4nHXdd/jX0/8/8DSkhCQ0xLsk5NNA2YpERhJRZkJlRVIipERDUVKptEOEyiejqIzsPVLUxyijiOxVKd/r+r1ud9fl9bt6/fO4zvOc8ziPdfbjPF5f1Sz1/34n1S7ApTUKsFydAtxZ+rk9C7D1bgU4b68CnFu5AC/YugB32LEA69YtwMllC7DKDgW4pEoBDoanS7kC/Fr7V8JzDfytlF9XsQC/AzvCX3GrApxYAKXq7FGAv8h/Y7sCvAcsh77++OmH/7HSx5cU4KPSZ6CnAzgXPWWVe1W7f4EDahVgc/Irg7458s9X71fw+W0LcCA5l2yPT/W/8f0u8jkCvRfKf0t7A3YvwKbVCzD6qlupAPcE/6KvKeR/fbUCnE1u58A/UHujyWsUOAn/teRPKV2AjenrIPQcLb181wLsAf9r2m2F/qt3LsAO6K+4SwGWU38S+hYo/7X6J8ufRV6zwfL0tGu9AjxV+2egq6N2voXvK/p5EbwJ/Kt8Af6u/iRyPQ6eQ0sK8PZtCvA36X13KsDjyb+Cel9ob2+wHvqvgv9q8uwKjgFvkb+KHVyk3kfgmVULsCm4WP94DZ1D1DsGntn6xRzwPvZ3L/gq+majvw6+foVngvxG6j8Pb1N6uUS6DfprkvcyejyQHbwB/7vsciR4N/01Uq+b8eMy8HJwMzzttHM6ek4h7x/JpwV6bsXHYvU+Ub6u9B3SR+JzP/bTwLhxcfoX+VZB/0fK14Jnpu8j1S+P77bqH6d8D+2dLL+/fneB/NLyZ7PD8ysUYEewq/wTyH2D9P34H4H/h4y7V+u3FfTj6fKvg/9+9O9ED9vLT788qaQAJ6I3dvqn/jsF7KT/3sn+Nmu3kfS15DmfHT2On33038/lV5U/y/jyO9iiTAGuQNdm/W87cqiFv2HoH4GuS9H1INgcP7uyj7PxXwO8B39V4fsvuazAz0rtfcYevjGPVUZ3Y/qvjd556D9G+mb4e6LnePyfCF5Fnz9rt4r2njV+P4O/2vrL3+Sxl/HnKu3fg6565LoB/bNLCvAo9rIG3x+Txy3qL6bvh7TfUzsvoe828l0DTsDPm+jbS70f4PmaHZxITi+Sy63wDpQ+Af5u+B1ofLpc+iH12+FnLrzvSI/WD8dKf4iOP9nLWvi7ks8V5DiZPlup/4jyTfTP4dqfU1KAlemxqfKzybMy/reDvyz6ZuiPP4Z+5Y/C/y0ZZ9Uvnr8yb51PP2/Sa+arzF/z8H0+vP3p97/0UAH/VfW/q/HZC2yovSXSh5NfO+UP0P4xxuMZ2mspvaf637OH3cHYSzV0LUTPViUF+AM6t8fnE+x5N+2fZZ77iLy/IL9X1O9AT83RtxL+5+npf/C/q/7P6v+pXk/lnlR/IrkOMg6cDh6hvWX0VUO9N9F5h/rn6c+LlVsjP+u7e6WnkccLWS+pXwf/NdldHfK/WH45/C3RfmNyPwF/h7G/RvTyE/vbW/5vvnfFz5/SPeVX1x96s7NX0HG/dqprfyflP8NHGfZbk3wbyL+d/m5E/wzyjTzulz6Ife5gPGgCPo7OG+GvA/92vt9FnnPl3yo9WPtXKL89/I3Zd1t28Q4+W8i/Qv37yLeZdg6Ef/+Ml773IJdOys9hL0/DUwKehp7d6KMH+3heu2XI53j01CX3p/SzsdovDX8zcusvHTs4zvxRk15rgcvw250+rkPXzextn6zTyGu1dA90v4O+muqtoL8K4Bf4+Jq9rjZ+r5P+Hf0PsJ+F+t/zJQU4XDt7GZfP9L2e9Ovpb+S2p/KNpWvD/2MBlNoK/Qulr8z6i9wqgSeBlbN+If9J2p8nPRD//9O/jkXPculm6OnGvjrTW1dwhfwm6NpRugF5vwv/cHJby04ORF9b9CxS/g52uAbdJ+F/mHITwNvk3yo/8/0I8i9Ffoukl+rPGV9XKn8kerOvuIve6yif/cVT8JRWvyt915I/3PjyHjm8iq5u+F/PXjeCt5Hz4drfIfsafH0gvy56dmLPM8lxGvsbqnx3bC9B19/S0+DpH3sFn2HvB8K/VHlqLbXM/LaP+a6S/tcr6wHpK/D3mXY7kPvhmTfA/so/TU6ZTwbIb11SgC3Rezl8t6JvFbqyDyxnHM0+sLrxohv72gUcTR9zye0Udvdf6ZPklyX/FfidiP+h6Gqk3XeUf5597Kb9Hui9xfde5LtE/d+sZ4aB/dD3LHsowc/T2l0OjlN/LP4m5/yCnLqzn3rG1XfQ/5v1eWP8voO/e9B/Mrupr37b8K+9V8HF8msZr1qpt4f041mfwBu73Yu8TiGfl8mnuX7UHt4fM7+z7/Ls6yd8jpTOenkPBnqP/IfRcws5DgCnyo/9/CH9q/xfwI/p6Snjz+/0t7fvFdB3IX0dzW4O125v9O1C7q/Q28fSZ2n/It+zX6kpvzR5nUM+67V3BH1k/zyE3awAV8WO9Ktx8A2G/2Dpd9T/Df6q+BqEzxPpry/5dvP9d3jPgO9e+t0XvTeSV4n61dhZTXAH48x58M3Q7+8HnwN/hn8h+W6v3f/Iz/hyNHksgu+r7G/xtyN9XJjzRXJsJv98eM9Sr6P0E/IvIpe/6Os75YZo/0LjVXdwN/PnMvV30f7p5PIVOh7J+pD8T8DvGfpH5r9r5H8rvR98g+FfJ78d+lqp/yv7ex39vbVbTv3O8ptL/wX/IPIsT04ryGM52F359erfw94Gghtih/C9ie8z4Ruufk/8nxj7Rl/Wo+3x8xp+DoCndcaNnPNl/2b8aMpebkNfY+u/0vpZzg2fgD/zSeaXK7Wf8WEeu6oP32foOFy6j/o7s4vS6Fiu/j7Gk07WTQ+QT0fpofg7BJ5L0NEG/vPR313+g8bDo/Af+U8PXvBSeE+jz07KP4y/I8g/+/fs1/sYv3sqP4je2+l3o42zO5UUYHP0XQ1Ooo+76XsX8nia3P80Tj4lfz78j4AN1M96/WWwWtZ7uc9B/1P4Oxw9nbIPQf+Z0rvjb6x0Y+1XU380vVbRziow67ms77Leayr/SvpYAk8FdtZTucnGg8XGhz7Sc9T/gn0sJJ/96eNB9NcwXy+xDrgD/Ii9vWRcfSPrf+lL4C/B1wJ8j2PPv+A/+/ns9w/Hb/b3M+m1MtiwSL934vNG9A5Ax1baz3rpdvNOe+kbtHstvPvh83P8/a/ofDbzZXvtdUDfHN8HKP8Cu58l3YhezlRuGLqXyS/HHq8FJ7HzWfj5kPyyftmU9Qw83+NjH+X28L0H/B/ojyPAdrlHgH+e8aqvefEI7TwMzxT6aADfSfg/VvpQ6W/I6QN8doD/E/z31+4eytdRLuu/rPuyDmyX9uVfqXzG/x3I/6TcZ6H7Zvo9oKj/rSwpwPTD9L8f9IfD9IMjwF7KL5b/YvoFOA6eauyxOriL9dwG9LTV78ajZ6z+0Rv9f6D3cPB58Cb1Mz6E/owT/4wP+v/+7PhisIfy1en9/AIotQwcBn/m/8z7WQccjb8q6o9Sryv4Cz1+jJ//gV8Yn79F38/0tS955xxwUe7n2HtD9crnvAB912p/L/2y2I4Xks+83Ntq72z1P/X9Dnx29v047W+mzxfprQ35vcAOu5iPHkTnfeDt6rclt0ns/2n0/K2dmdrtSG8vwjs89//sLfPUhqL5qRN5dMw9Vc5Rcj5jfbxGP56I3mfIYTb+LmeHk3Jvif5R6t2h3l3Sw/Gzkn3VYJcDpJ/Ex7e5TwdfV281/Hvjv4fvC7L+xP9W+u/t8g/TTl394w3yzXrgO+kncz8nfYT0DeRYPee7uRcBZ9HP3iUF+B5998HXD+Ap6uf8tQTenL/mPLam76fh6w96vir5+NtofnkTfyfRW+Pcj6HnDPgWSD+p/P7gIfC9mnWz9u6VPk2/aIGenXK/Bl99en6bfnK/+Qe+hpFnC/TfJn8CfFvLv1v98drdSP6t0D+J/KoYPw80Po5nX5HvEvQ/o70jyeNe+LZHb/+i86Gv5F+nfPYVy9CZ/UUt9Jzi+ynKP6p+U/3jtfRHeD5Gzzj0XSL9F7vP+fXp+Glg/NofrCy/hN46sqtZ7O3PnMOQyyryzz1Q7n9653wq6xDtVcXPrcaL3M/mvjb3d+8VwD9+MS2kD0ffT9kfkVcXeOtofzX5bVL/L/J7J/ajfs49S5NTzj/f9P1kcmutfGn4pxjP/sTfNOkR8t827l9OT6dKnyl/Ovoa4/999HWRf7Xxej/1jyOfM9CX+fE89W8sBT/5fJT7QXJZTa794J+l/ZuNE5m3gn9P/eWSrGt9Hw7epf0vwC7gEHLsyP5zrzGVvveRX7w/yr6oPToWs7cl7G+6dPvcW7LP7saVr6UvQ9/36D4b/BkdlfH/vfLng1nnlJU/SXtnk/sU6UvheQb974HxV9km/hlF98O5L94k/47Mx+Aw9VuEPvPSduzvTXawRH5L9tYcfBD+/5DfCOPXneDX4O/xC4H/Yf3+Pf3z7vh7sPdW8A3KPEK+LxVAqUlg/KG+kf+w9HB21A6Mf9lsesl9023g+znn1v+6ZX+m/T7s+Db1H8+9RUkBXqH90bFr9TLv753zUOuXurn3BGfiN/u/F6Q3ovtU9pv5PPv/3ONnvj+ePlqB6cdPar+p/tEN3VdJv6G9+P/kvDLrjC7q34Kfusq/pPwY9BWvz9aDOd8eiZ7N0p/jp27Wv+bfR9Qrx87u1l7O+3IO2KnoPPBy9aZmfMt9Pv22Jd/xJQW4PH6D8vvo1zP0z52lu5Hz9ezrv+jNOm167t+0n3E/80DG/6nGq3Xg9WAveG7NvQ+5tPG9CfyXK1/NuP6odO4XHiGvl62X2pDn7vI3WBfEP2dW1j/Bj8975Q9Gz1L2dj3+rqO/Puicyl5WkW9d9Scrd438i8llSfYD8G+UXom+jfT5hfS98Q9Db+vsx4rWX/PgG4zeZui9E38vaT/nClPUf1j+C/Qde8++qWvub9lFOeWyzjwDv0+A3dE/CD3pf+cbd88GzwJ/LynAW8w7FY37tcF2OefCT0t4z9Ve/F07+V4O3VPocxf8tsy+W7stpH+B5z79sww6HpDO+dn79Pto7h/odQH5xX9lIf3U0378V+rjZ2LOz/A9vch/8U181qDH+C/GvyzzV+az2HFH+r0UvhnaOSfn0PLbKv+z9j5G79/yh0hnn7EQvqH0PqUASj0l3Y6+m5DjPeC25FE2/sfqDQRX6r+5/2yt/YHqZ58yGz3v6s9LwGXy56NzlPoL4TsUfJr8Khs34s+4QPuD5A+Db2v8dGNPLytfy3ib++610Xf8L9hLLXBn8/0C+LJe+hvMfWednN/Qb2v8H4LP6+HfaHxbD/6B3s/J9wn09MX3MSUF+IH68SeIv1z8Chplfaj9augeZ/yJ//Ym65YR6G6o3Ffs6T3tZz5IP0n/eBe9g7R/ofZb5fyy6L50o/xPpHvpl030ozfAt+HLeepb0keTezP6m17kn3QaOW+dfPZwFVhZ/irlh7KHq+NvRW8XZP1aAP+f/8Lp6Mj5W87bzsRfN/xdYr3YVfnHpW/K+T37vga9m+KnnPNW5wY10RX//4yPwyv9+/tP+kPPvO9gtyeAy+m7If7a08/L1jmjcg+C3vbGg1bs+wrp13L+iv74nccfvU/WP+TWBl8v7Plv/uNP+T0Yf8tG7HAn42EjcEXuu/FbiX18yy63kf89Oi5H34vyB2TdhY4h+BqJr1+kr4O/Jnv8Nvsm+j4Mnt7KxU++2D/+RvwfhM74t00gv5PRW1v/u1B/zbuT+caFrP8/Vn+s+tco3wssT88v4fdicn0brMs+4n9a336yH7n3IZd7sn/NvY/66zO+qj+G3QxnVxOkc/6We5Xcs5Ql39yvfEc/l5Nb7ul+Dx3kfZ36nbJ/ZE/fkW8j/ecCemid+2N6fUy7TaTjP/MLvrNva8jOxrKfC+JPKV0i/Vf0zU4X4n9B3i/hP/u3+H/HHzz+3+Ny7q0fboWOpuh7I/479P+E9Fvqf0rv/Yzrn0lfSo4L0X0seeyefRH5T6P/KfQ2Ov5P6D236P1J3qPk/deuxosrwevha6b9V3I/nfO6jIPa710ApcbDv4q+47+R8ej1+NfCfxQ+1pHnLyXwZJ3OHh4jl+fJ9wPyvUJ+09y7sIte4K85x2b/b5Pf49LPFI1/h2j/5+wj8Be/qFH68Rgw+8f27K+lfnudceBcctqf3q8ln13wfSB57qw/nlYApZ5WbwD8bch/BH1M02+qoreC/Lz3yPr2KHjiH99C+ZwHxU/+RfJ8AexFT9vBk/OPG5S/Mn4MeT+C7+yjz2K/z+LvJvVzn9aBHN6KP6x6FcFtwM7on4XezXkXVOQHHMfCm9n9xeBo/GacHE+e8d+Pf/DBeR+j3kTl4md4HXl8Rq8dtHcY/Mfi7+At7Ed7of8A3z+Qvl3+o/TTG1+b4X2bvIbCXwv8NPcG6i9Sv2X8BuG5P+sL7c2Ad4RyWT/nXWX87/srX438j0T3vtp9Sv61WT9qfwp6Kyp3mPYb0PeV8OU+OP7Qvxqvd9WP/pDO/n0r4/UoMPvRO/NOgb0t1S93Qm9r9A3Kep9dPQvmvqkZfi5Dz03kU1t+S/inmwcvQ8d7OYfET843q5JjzjdvyvkxO8q7yOXy98f3q+zrNXBJ/H0jX3LNPjr757uMZz+AM9RbSv7xJ7uKHJYaj+NfNi3nuPE3Vv8J9Q+LfxR4BHgC+d5H7hVz7gvujt7n4n8g3T98q39Z3qdu4Z4z6/ey8PSUznq+tH6RceVidrgNfR6c84f4VRbdL61nT63I/T38bVVSgDn/y7nfZfr/P+d/Re9l8w6p0Rb821bBm/FoK/bxvfRk+I8hp9rk8iX67gFnaH9Pdpd3mRVzbw1+gp74HcR/Yk/yn8u+ts/7AHKMv+ij8ZuQjn5y/5z9bfa1Q9WfL7++/C/jL1ry7/oX6xfpH2vIM/1jW/r5MHYLbstOv4T/b+3mfcAO6ud8IOcC9fGd84H++HsIXVWku+d8KH5F1hVngJ3I42P9rj04UH97DL6B5Fsl52K+r8V/T3Z1LjrPAysqP5M97AvvCPWr4286/AcrPzH7NrAS+99f+tgC+Gf9egv7fhbeYv+0EvgvkP+1/EvZ1x7qr9f+Y+i9K+evxstS4N30+Yf8cb6/zn7XS49np/uS/1fkew2Y96F/s+8zMn7R82jpt+Wfib68J3ib/azBX33lHpbfT/lP0btn9pnou0r7Pykfv9L4Eca/dJn+ciD4DD3m/U0l/MRPv59xYnXWx0Xn8TmvX1Ln3+3Hz7XYv3VR9hvxB9FPytH/VPlz4hdBLvey787WhVnvnEf/o9Tvgq9TzduXSq/NOVPR/X7x+HwV+++RdTX4k/qPq78Wfy9ovz/55dyxEfhu0Tnkg2AZ7e7LPi7N+kB/jl/GtfTcreg8sTd6sj7KOJL3lHkHtLykAPP+J/2zifpP590y+nM/fXfmD3Tmfvp17Z2undHZP8A/Lfff5LOX9gfCt4Y+Gubdqfzl6n+qv7Y2r8T/6CftnKb90+B7Dh2ZD2LPR7Lfivpr7PtR5RM3IfEUDsVf/F2+iz8fOd6d82LyPyD+osq/Kn9kzkXN21PBF9HfIu/ntJ97whXqL4S/nfSGnAtL95f/YN57sKeZ0plfPylBP30+oJ1Xch9ATscY39dr51blP8w7UXjjHzWTPVaBryE7La9cE+PTq+R6GHn8qvzpuX9G32Ty2448q9hff5TzObCD/Ivxvxc93o+uRvTXDV8r4zej/+V+eDN6hqnXtsj/Yxr8P6FvZ3TPV75dUXyaMez0VXayJ/7u0N4h6sdffUT0S0998LFQe9lXtZHeST/K/upd7S4gl33Qf4n0JeR/Y/xb6fFo7Zcm3x+UPxi++DOsVv8W88rp0om301p/7KuffwO28f0b8r6C/D+QrkA+bdjbKeDJ4F765/PqvUJPK/Wfa8kx78aOL3o3lvmpvvr7gVubL6bir4L2FrDPY+Fvnfg99Jd7kLyzzPvD76UvIo8H8DWU/WzQH6pmv6tezrezb3ne9+L9S/w3OoK7Zr+s/PHSGV8/0n9WlxTg+uzLpI9W/hz0nEFuidtzTPov+ZSA8fsezB4fYT+3KH8EPKcnPgT816Ar54Q5F7w293vo+UY7oxJHAb1fkceX4Bdg5sucT5yi/mb1s76+kD3un/fn0ufm/opdVdfegqL9dz/0PcAesk+8WX7WX1tJZ92V++fL6aMUuTWNf5f2y5HbDvrX7/IX0f8q8+IF6FoZ/3HlZuLnNnI+VzrnoRuNR/EDqQPPe+i7TPmK5PO+9B15Z+Z7afPm7fBuyvsC35uBY5Sfj9/N9DM37wj0l/n0tIfxpxa4O9iEfI7Xb38yLl1TFH/mmgIotZRe3pUeKn8ufhMfq1LilNBT3pPnffnu6Mv78qPIbY12V4OJr/Bu4nHE3zBxsPI+GP/X0U/Wp1mv9vQ9985535P76LX0ETvO/eKB6j/MfvfzfTZ9z4yfAfqOIY+TlNsZfbuh7yzlx6PnO+lD4Psi46z+/h/tb6TnjeSfOC65Xz2IXbcix+L4BXeaJ0aCI8A50T96LoCvM5j4FP3Y2xW+j8Dn2sQH0T97oWOo9A70X3z+Ev/eXjlfwH9t6/7G9N9fe73Yazvj0t/4zP6yeZH/zvs5X859t/IdzEvx941/7y/4WwBOANehdxh5XYKO3vrLy+gfb14bB44FN6ifOCB5j9KDnt+I/xB5zSa/Z6TjjzJSvcTXWIffT6Qvz/tgdhJ/+fjHvxh/dN+L7TNxfV6KX53+nPiCwwqgVHPwC/JN/L5u1hs9rW+OgS/vIc/NeWjOq/B1OfxDcs4J3x6Jt5R5jH2M0U7tovh6uR/JfUgn+D9Uf07ud+AdpnyvrO/Z25DEv2MfuT99MP0fXxfLn5L3aujaidwqKBc/297a74y/vXPeTv4T2PVkcCKY+Baj4Ml5Sxt8TGN/ia+SeCqJr9IZfc+x/5xbTzOPlJPO+jfr3ovYwZ/orWQ8yfpucN5/ab8fe30TvpPQuyz38773Vu5d6VdyTmncvajoXvrv1CePl9CXc4Hn4+8vvyo4jr3k/WLiNu2s/yaeT3nyPYA81ur3L8W/Sf3cf5VDT/yAc/81JO8+5Z9cUoBT5R8d/+H44ZHfOvQ/w/4XqZd4a4/nfXbiRYB3kkP8AXsqn3uW5ug4KuNztX+3W3zf8Zp07mNPq/FvPEPU+1r6RvQu1v703AuBRwY/+lvE30z6R/jbq99Qv2kENgZznttS/1vEPm6Kf7jvH9Png+haIf0mfmrR/4C8U0v8IvRWjf+s+jfHHyr+P+QeP8qBJQX4B/nl/fD3vn9CXjl/y/uMtvGfgifvNb41760FX8Df5+h4MeMz+DL4BP7ilxd/vPjrfS4d/Q9H10Hoyf1W6v+J/n3Bt+THr6Mvve0B347qfWi+WxY/0Phj5HxPv3oLLKu/3aad1fiZqt4N0o+Rz5/Z32v/SvU25X1j3u0pn/P1W/Xv5uidmXfMiSOm/EHkvYG9VWEnG7KeyPku+38l9zbw59ymTc43yeE+9F1o3PsbfNz4l/ht8U8tT1+vssO833nJ/HJZ7uONw0fic7X56Eh83ISPxI+qlP22frGtdPz547cXP75lRf57B5NHTXpJfM/byPGGxFsCs16Lf+HMonE9+6iM763ZT+IKHiad+II3sYt6+Ls550H4a4au5uCR4HV534WuGYnPJ90m/j3avVq9Y8izFD3Mx888cDF9XEl+Wxq3cl7RKnE7fM+7hjHov59ecp/4dsYP9M2ml27gBvZ26Rb2e9kHdsn4g5224E1gTfroon8lPkiHvDfJ/o0cLpK/Q+K5oi/je23552s/4/2B6N3P9z7o3KB8s/iDGR9eAeNvNij+4fRen5xrFMVDGkreD5HHf9D3NPr+p/yl+Nku5w/xn2UHXeg58bby7i/vALcvev83GL07Gtfy3u2f8032n3P5nCMNq/Nv+g/MvUiNf9Pfjn2cg/7n5B/Jfsqi90d22Yd9J37Bdew673RG4Osu+K+k7wk5509cDTDvCa9Db+IgZP4aA99Dyk2Hp1nuT63HEvd1FP1MIP/Y60B47tbPX5NfCf1bekda/P72bPjbxj+I/lpq/7PE20Ffj6L7pmuks74clPet8C0ll+V5j4HfvNeNf/yZ0ol/PbIoDnbuw4/xPe8ecj6a9w85X5xOPveTQyvtL47fiHIvsOPEpzmLXbZlR9XAvOdIPJrcO03STuLVjGT3Ve0zJ4OJb/a6+tegN+908z73t8SPz3ly/GBz/w/ffeDo3L/Bt03WX/SY8SLxTkcn7vAW4gzti9+LjRt5r5L465exnxNLCjDjRMaHvEdv5nv8ZHN+eSZ7vB09Y7UzGP5N6J6D7ifB3E9Ff4kzVBxfKPvRdfBupv/sV3c3Lq5jlzcnXo32Xy+Af87rOkifK7+z8Sp+DbvlfXrGtZybw983/Tv+oOSbd2Hxk8v5W/yBGyZ+vvm9lP73GP5uJMe27L+d+kvQU41dr2LPibPaV/487TSln6Hoqxr/O/hOTJyl+EmQ5zr0N8g6m37yfwi5hzot51PksZT9LGUnc7VzMP7q+b7jFsbvSdFX5lvl+uX9jfwn8PcsfvL/EvELzfnHadrbDN/RpfCT+xjlFhft//omzrJ62f+dwA6OB2eDeadZNu/B1UscunfRv1n/jR6L9beZ3uvpJzvB+wD+Eo/7Vf36lUr/bm/3zJfaq0deuadsgr4nc28OXoG/7eGvje6ttd9R+7n3G2oeL77/K4X+ufCWkU5coU2J/wf/RTlHh/8D9H9N733huZv9nADfA+oPk/5S/Xm+R1//7Oelf0XmZ8aXzYl/Lr/4/UpxfOAjpbeSn3ci1bZw/t4BvzmHX6r/rE6ccfPvcfCVZw93kuuTYPyX8z4272Kb5v103r+g70v58ft9n/5rGF+mG6cmGX9+iJ9b4rqxzzJ5xwwelfcD5PYXeCl9JV7RWPVnoXeJ9t/y/aLMm9pfBP+sxKvIe038ZZ95CDk0p4/H8NlS+qy8/ys6p7gw40cB/HMuXpYd94Y38ZJ7GnfPpp/4R/dKPKz4s7Kvrck/cTNyrr4funO+PlY/z7uB7ayv8n5gH/ZzEb6K45U8gK+8ex2f/wOAL/42WZ+tR1/8G7uTd/4fI/+Xkf/HuAv+x+Fdnv9niD2RxxhwOnx5X3F97lWks97Oe/g1ibeFzrzDvAH+qYkfDm8N8rwEvrzffwL/eb+/S97L0M/18N2Jv3Hk8Qh7zT3oRuncf45kr7mXyT1N7mcmyE88hLyrmSf/BnBr+qyOngbwd9LuzPgDZx2p/BHm0/2M643Ae0oKcGFRXIkO7Klf3lOr/0TizyReHv7L0cc5vncj34zvn5FX7oFz/5v7zMn08hI9Rq+TMr/AOxK8CzwP/ZONHzXgXcGOVhX5+8YP+C3f4w/cmH1sKU7sp+SZfpH4COkfT8H7CP2Wl/8X+uvD+55xurf2KpHPb/RfCT9ZR2T9kHdK9eF/Rvlv0R9/+AvB+Mvfp/0XEz+TfX8D763qx783fgcjlD9Y/U/Mh5/m/RT4tvLj1R+Mvt9yrgp/A+vqy/I+TPpD5QflvB19s0oKcBz5VGGP2cc9TT95L/sd+3sSnjvzLk7/yHi1CP5i//vEPauO7kPwnfhnf+VdI7g0543sdQf2+Ba9/pQ4YNpvRh8HwJ//X8r6M3Fh3gNPZmd5H1e2pADjl/wqeleR32Ha35Ifc9/sX+RPSXwW9SfSX+LDnSmdOHG5H0sc2r/lN4F/e/USf2d79OX/Bg7PvirvG6Tz/zjT834E/pX0fXbWP/BETyWZt8kv6+NPyDXxJ7fNPY166afF/fNg5fNup0L82DJ+ozdxSxLHJO+vOtHv8eSZeNoP5X0S+k7Gx2+J46184hPnHUn2l3k/0gT+vJvpC64jv+PkV4T3P/kfHfLIeJBx4jj1836mMXlPNv5PArMvjT9fX3Q9lvtg8jkRf/ELSxzh+IvVy3tfeBK3PP9fkPg0PYwr2fckXs3O1qsTrasm4OMc/K1IHFfl52rvc+nc9ycORQP9LPf/eS96IbktgG8I/Dlfyv+q3SGd/1e7ybyT+J39sg7K+bfxP/97lf/BStzc/H9CxvX8j0L+PyHr96vJIe8Pu6PvMnSdmPg5+Isf1pPx1ye3Mllf0n8D4+lK68a76OHOxBNXPu/eit/TdEfvJdr7JXER4P+WXed/uEbl/XrimRZAqelgF/D1kgK8Xvo8+ntLumX8nfSfjDc5X837/cSX/CeuJPoTXzLxnfaW/x05Zn39CX3fH/8peoz9D0HPBPXznjn+qnn3l/d++T+FzA/3kH9n8u8K5p12/HsuUn/rovXjFfLnyy/+P8ke6HsW3E4/mgrPoezlHPPOAvAg8qyuP+b9Tg3pxOfomvO7zCfsZlTON/Iekj1vq/xDia/Brm8A44f3o/Ze9j1+e4/F3wW+vFf9MuN/1kPaf4N95B3rX4k3RV57gSfkfJY84+fZTP0L6X8cubVFf+alaTlvxl/+Pyn2GbvMfBn7LD4/2pV+co6U+5rEXR4A5nx2k3VHJ+PORun30Zn1UenECYvfWuLbxB+W3F7KOw70jY0fNnoGsN85ed+Gjh7kfzN8uV94xfh3g3l0inT+D2lLcR9nwB+/lY/AwWDi6Hdjr5ehc23iWWf/UwClJoBdEycMP5uK5LVZum/eV+Bnf3LJe8sx+C1Dnjn3bJj/m1F/cNG7rBbSp6L/dnQ9oP3Eofwg/jXaq6cfdYN/t+xPyaN7/C6l18ifkPsF+OoUxSeprN5I5TOeZPwoIY8S9lNbOudruZeNn0nuZ+Nf1R9/8Zsrji97t/zd0H249B7GgcTfGBO/Ae0kDke//G9j4qYp/4f8a7U3lbzzHjtxTCfSy2dg/i/jG/r+Vf16vtfLuQ84NONZ7AN9uZ87RP286yv+f7ITyKVPSQG+op0x6m9tfZZ123n6T/Z3Oe8Zot25uZ+HZ2Ap+fheJZ34U/k/q67w1pXO/1sVxzfIO9x9Mn8p9yCYeOe/kX95el2qfuIwJP5CZ3L/J+60/pH9V2ftZx9SBp7q6p9Ofokvsyj7cvy9Hr9Y5YvHl+L/Dyz2n8z5ds61v8VfzrevRt858MZ+Wmp/Hr08Dc4Hl8qfE/8J8i/+v8bfyONK/WHrjFf6Y3E828S5zf4q54Mz5BfHF3lA+3O1n/VJ/g/vM+ni9fFuGU+K/O7jhx//+8PgT9ytQ6Xz/x9L2GX8IW8gz6viX6N/z2eX88DKmU+L/q+m+P1R/v864+xaMOPsIYlLCl6f93qJ31P0HiDrk/hpJ77LLkVxXhLfpQx9lQVLg4mTnP8Xzz1eWfXz/+L5v8xz8ZX/08z/Z+Z+50f2mXue3O+sMd6fah6IP3PG4wfz/8LWRV+BpeDL+5C8C8n73LwPyfvexOPPO99f5I+X/5Xvq6Xn63+/ss+m7Lg8+WR//yO5b8J3Q3J/K+f1uR8qimOT+DWJt5V7lfwPdOLPdGF/8af72vzRJucD+E8cqvghd8t61PhxX9Yz0ufJv1b78ZPbpFz8ex7Gd+Lr5v8UE1+3O3l0A+N/lfPGvIfLfqM9+eZ9XPbrOV/MfdLW6he/V3uInnL/tVK9xDUo/n+F/B/E4+jO/0XEH39N/OHUr2V82p8c/g+hG3H+eJx13XnU18P7P/CbdpJoJ9wiPh9LhUKIULJkSYQSqWyprNkipZASH0qoRHZaZEmJsiRbSdYkUSTZyhpl+57zez2ezvH+Hfc/15l7Zq595jVzzTXz3qxS2f/7e2e7Av7QsIDn7lDAarUL2KBOAffZtoD1ty/gcu0HlRewaYMCDm5UwL6bFXDDWgVsDt6+dQFfrFrAF8Dm1Qq4FXxzKxbwZfAl8MBtCjgS/WvxVUG/CeTphn7njQvYYbN/8jdK/2MaF7AKPCcqv1W3gGPB1vRw25YFfB0ci+7h5B+i/yYbFfDXzQtYXXkGOk22KuAX+DkXP3P1f3nDAj6xRQHHKA+P/uljGTiFXi6C77V6BVyk/wywFzoX4Gvipuj5/z3o1yTPpcrPs9sT/OMD/rMYnE6e/el/cY1/1rcl9zD8N6xZwM/o5UrtftX/kvr4068l/tqS70v8TCD3rur/Un9B5QJeho8rwDLtT+PfI/nlFfDV0H8l+Zcrd4N/C/qIP55VpYDXoxf/fJheK5DnD/T/1P8L9ngD/hPgf5x+f+Ov48l/sfqd1J9NnM/8f6LyKnZoja/9wQPAaeUFvFG7O9GfT94L4d9Eu8rq71G/p/ru9BZ9PUmfmR/OUK4DPqL9Pfg91vjpQF/3svdj6B7L3zuAC8Bz+Mmt+r+k/RT+PhB/jTdBDz+3k/cm+v++AGXHgJ+Tr7v6ysbH/9hxlnnqePhPgm8f8h/Cno+x94DqBWzD7p34+xXwT2bfa9jlWHR6kGcb/Aylny3IOwX+Z+nxCf5xI/0NUT+GXPuB94Cvw3/uBgUci+9XyHEt+Vqx28bmvWvYbxx+XkD/bP3ugOcb+r6ZXA20W26c/6K+KXudXjLvNkL/GvVL0GtN319p15q8k4zb3dH/CL47yVtRu+Pg+VL/YeovBX8FH0W3Knt/RI5T0P9a/z/JNYL8i9hrDfnij5PwNUz97+zzEP8sw+/n/OED5VnaH4L/FfifpX8V/7883zF6OB/9Suqr4ftMfLbBf39yXeS7+xd/vUX/jfj/Kb6fb7FfI/i+x99X+HkVf7HfndrfDY4FT8PHZ+QfYh79SrkP/PHffvy+En+diP+Mt4zDjLsq+N8K/5eQrxY4kn7PN4+cB/5knA7DfxX81KLfqfQ1qLyAO7HvXHK/r93T+GsP35Hg0/h8EP55+Okb/vnbdPx/bb7btwBlDcm/TYUCbmk8foSfneG7FP5vyDUvfqs8Df6Tfa/K8X2K8oXwNdW+L7s1U+5Bz+v463v8Y7p2c9i3p/9XM681pIev0duEv11EXx/gs0/mV/J3Bjvxk4Xs9wD9P4Df49H9GNzB/DWOnl5S/lL/aeSdbV5+SvlV/b8yfu6Fvx++L8bvufz/ef//kl564X80//uOHr4Eh8A/2bpyuPm1uXIr/jTI/y/3/9vAd+If+FtvHJST60D4z2GfPuwySf1m+OzJHjuobwuuVv8f9AaWwae8Y3kBl7HL1eBCcLF56DH+OA18EhzNzt34RT34JrLDTei/ju5rxv8JysPI9wG7/gL2B09Xfxr/Otm4HQH/Y+oP5T8/wz+LfrZG/wv2fVb5RO0PZN/P8LMCvBs8iP2G0cdycCrYkv88Tt/nlBfwKP53PHobsG/W/7vR6x/6T1e/L3rXket/+Du1ZDx3Vf4P/Bvpfwr8R9HDfHpY5f/nZVyh/5RyY/rdDrzLONgH/T3NU9sat3uTv77//2J+/YRffA4uiJwFKPuI3o9Ufh3/7YyPTtmnKb+G/iz9zjFeBuvfSn1X/rKIPz5Hj/XJf535bih4LXipdheYj0eAs8Cs786gvw/xuze5tlE/nl7GgXeC/fHbxPjYGTyY/96Ov6PI92W+6/Sf9d8y9QvxWxM/d6M/hP0H8fOj8Pca+t3o9S56PRbsrn4yfxrLjneCveE5F/5Z9PsA/irp/ye608sLmH3T/uQZzD7bmrenwtMR/xuS5wj0DtavDvuOg7+6dtfRx4noncGec/XvQ5529LdCuRF+sz+/Df11BSibhL/7ledq39X3fL755wH2q0zOieSZBr6B36b4q0H+E83TB/KDrL+P9D25Bv014Gj9a7HHevL9YL65Xv/Bxvs6cCX9XEH+aez3jPrbs37V/0B83wZ/E/in61/deN8dvJE/reS/Pxsvw8FJ4FXk7MDfdkV/mfL36NfBb392b0TuK9FPPKiBcuJFiQ9l/7E9OUrjP2vodw44mz+8l/kBnweyz9HmrzbwdfX/dTX/yffV/HND+jwTvkr6VSVPe3J3zLpC+/WJ16l/tyQecgL/e4J/7+r/p/LHP9Q/qP+T9PIte1eH/yt+u9L8Pgf8FJ8j2Huy/jcoH0S+ven3E/RXoXck+lfBt5zdh4KT4cl+6hnyjUE3+6sx+J0O7+aJy6nvgv4b/v8WuT4FvyxA2Qx+9SVYAZ2h+v2cuFrie/D/QJ9fkO9K80xX/HbiLxXLC3hD1jfKL8LXl799hM7PysPxf572D+Dn+cR/6D3f3cy3p5PvSX47DXwCfDb+x+/eBC8j/1L8f8u/a/Pjm9mlKn6O5e8L6eEufO8OfwX8NML3KPqZit5A69NXrZM3VG5G/z+jf5H/t9buXPJtQX8d4NuPHerhf4usn+j1QXCB/svV98dX5o0/wJsLUPayfiuVj0HvaeUyfjsI/aPUJ/6VeFfiX1fSz0X0/RU5ys2P+6Lfif0vhndo9JfvJP3sRF/PstPZ/PNU9pmcfT77d8r3Tr9e+d6x0yLl5/GzBdgcvxXpdw98DMm+nxz1yfex9j3r/JPP8HeT8XFG4h7lBXwU/cwrP7HTj/R6Hvwz4e2Fv0OV8325PvEweJ9E/130J7BbY/VLlK8h3ynmzyfV98LvUPwlfp64eTVyJH6+Kb6+p+8B+KsC/8/mvzX0/pPyK/jrx95HwncYuS5RTjywD3wX0v94/fuSpyznCMqf4edD47YBOeuDQ+ipPn+qRO4pynX1/5g/j+TnG6Cb9dlj+B+r/eKss+nvT/UPsNMx5QV8Rv+u/v8u/3pb+/eUd+bXjaIX+Kfyj8H8v732I9jnYny+p39j83It+nwj9rUeP0//rJOyPjqOvv+T+Yycnyvn+5vvbr7D26Ffh388wC82Mt57k+M+/6+h3TKwVnkBbytA2TfsuyX7LqG/DvxpGHzf0l8z+kncLfNA4nEZ//lePMfuM8GryDEl8Q36qcUPGun/knYvk6snvmupr0h/lem1u/qN1d+r3938+0r45qi/Fn9DwQr4eweenfG1CziePgewz0XoDkSnIbxbgS3wtx94Nfqb46cBfVanv3XqK9P/bubn4eAh+NsDfzv4/yr+1wocA//j+GuNv6/gvwP/F/oet1Huzb+Xof8Zv9jJfvt4/tMt9uWXVyQuojyavqoZ91fDm/PhS/jPSv+/gBw74KO2+tnkHZlzGuW91e9Pfy3INZrcV6lvwL8+RWc5eAn+9kl8PPEPdmivf0v0Er/bS/la46+x+esv9KvTwx3614C/ceLJ5Mt50nJyLwMb5Jwo50zs9rB5bCw+8/1uQN85/3tAOed/jY3PbuaR643v7f1/H/PX3uAsem6a82/8zCDXcuM78bZK+k3Sbz9+cyg4D93m/GCl8bOL/iMKUFYZXx2UGyb+x//6gZ+Dl9NPF3r4gV7fpq/Xyf86vDPAZvyvBvm2xv+dWcewb//Ev+jzFHCR9pmHE5derZy49Ks5v2C3xvjcEMx3eCY7tKbX2823C7Q7J+ed8Wvz40/853f8zNd/ADl7a79nzknJVy/nr+q3oa8NMx+WF7Ad/H/5/pWZJyqBv+N/e3wuVm5hPP7F/tuTfwH6i3M+rV/WrTmX/gI/P+q/OvF0dE+nr5UZr+Rth+4Hyj/pfyO/zLyylB1PJV+15A3w77X0f3x5AU/Sf0v2zXp1Hn2tJd/3+O9Fzlb69zD/fK39UvJsnPVdzleyLsHn49rPgX82ulXhnwX/afCfyv5V+Ms22sU+O2e9Td8jYl98J57ThX7e5r+d+Peu6ByXeCL+DmKPBsZNa+XE3z/Fz3fgSnz9lvM/83EV+viNvm9Wjn4v034DeupMT3fwl8/VX1WAsh/JV4s9N6b3+fRdA/5J+J0MTgQHs/cs800b37+HlbMePxu+H8g/Lef9+Blu/ByJj6HKK9DfN+fa8C2g/3x/PsTPQ9kfkSP7l834++3JxylA2Ynkv4++1tPTm+i8gv4L5uM79NsA3x9lvVQib/QwTP974B/NHgvY7378naU8Gb6N/f+G5H+ovyD7LfSb8J976OOe8gK+Rn/Hqs/3IuvYOWC+HzcYF3Ph70yfl9PP/ez2JPvU5o9T8LveeqcR+BJ91Sb/IOvG5uaP0vyHb+g9cZ21yiejf6LxmDhz4stj2HMd/taDP5KnJ/y/J7+BHu9NPAZ/pfGzrJsrqL+Afl8CLwTv0G43/fO9WlOyf5zO3/PdyXeoKX5bGL+7lhfw4eQVZf3Lnybwsz1K/Cv5Yy/w//3I+WDip/C/RZ8j4U/8/g3lrLu7Gz/ba78DumfDv0S7TdTfS57d6aURPzlG++zfsm+b7/+/kS/n4jPBR/lXzs9K/eMc+NaqP0X7w+h5Gj6Sp1BJeQr9V1RulvNy/pp41sPm4duyf6bPXZTboP9f8u9Hf7X0H4Lfd5SPw3fOV3OuejL7jSpA2abZP9PT7PgXuTYvL+BU+q2J/kr2eRI8CJzNvpVjf/3L0a+t/6PRZ+KgWWckDxEs3VdmfHSAP3GH0njEBvB1Vb6MHn4kbyfri62V+5i/sv9/A75z+fMf7NebfIvg/4o8c7WvWpIf04pdK5mPJms/T/+zyFEneUtgDXyfWV7AM+jrF/wlPpv9/z3Kic+eCP8y/S8n59Y5TzBvTuCHU7RbiL8d8XU+Pibpl/3vOvR+BX8DH9N/W/JnP7fMeFmo/9El+W9PkeM79fsn/yPn1uSeqn6V/rvhe1z0kPgC/pOHmLzDBfrPgf9g9RPwfX70Ry+z6akKOAyeddb7t4OPs/Pr/KCC8XMEvMexx0E534SvLTqV8TMI/2/lfDNy4esZsDp//A3eOfy0g/63FKBsBbxtlW9J/F//NeBtxvdDyV9RngJOAkcnfky+Kvz6Bd+VHvylXPka+qiZOA0+J/gu35n4SOKR6v+D76OSN11ewJPoL9/njPMTlGei/555t5p56ZEC/P09Sf5HV3jH8oPkg8zhr1kfZr3YGP1Tk1+h3/jkvYEfkjv7wz/Ilf1h8Afvcco12DvndskfST5J8kdGkvNL8qzAz2Dth/Ov/fjXn8oXwn85/WZ8P5P4B//6kX2T/7Uefw3R2z12xn9lcr1OP9k3HgFvqf1r6vcyOvPh/wb/r+bc3bjqBa6lzw3RvzzxNPqekPNd65Xu5J4KfoTOjvp1AKvxh8wvB7Dry/TaKeey6t+jx3xX+xXg7+/rz8qTEvdVTn7VN/ivhO5E/3+AHn+il/5gHfJ30S7xu1/pcyPlxO8uzfyl/SLy34G/V3IvAKxpHD4H32jj5x56uJacp8Of8fIn+WYkP1W7uuaVa9l5NbhlzjfFR97A35nKWd+MgHdP/Exlh42TX0K++9nhAPI9mPyanHsnH844HkX+5NvczB/alOTffG/e+BW8C9wz+1l2S37jcnSOJl/ui5zo//3xk/3JJfT3ITnrGR+/4n8U/a8GL0k8jB5b5vwP3Cd5Vuhl3s14y3z8TfZB1s+NYnd+ti/+tqPvtjn/wtdOiX/Dn3PYPdHdQ7v2BSi7OPOt8gT8jGKvxHOWsOcg+BP/TB5s4qCJf+5Ib9fgbzE8F5Av64et0ds9dsPfRfh5DTwUvAK+BvhLnuYRyvk+/aacvJeZJeeTX7PbYDD7gJwPDGCPGeCV4FL66pj4hfn3KOVr1P/Ibk0SX/R96Ej+TfLdTbw63zvj9C122yz3vpJ/r/9t/H0d2NZ8+rT248kzDf1+ytlf702PdeD7lL/n/shEdq1Jby+Y7+/S/jv8Lkl+YvKo+MdI9p0I727azUT/Yvjupa9P0GuD/oXKteDtTl857+oD/wnwTy0v4CtgzqeuKzmnOjjrE/PN7ewyBtyL/9ah13H09kzJfY1R5s+RYAX8boX/g/jDffg5WLkn/BOMl7vA6ua5X9n/DHr/TvtH+HFn/NfXr17GIRj/yX7tEPp7NXmG+BtIvjngqfolvzv3125QrgdPD/1/yX0xcB04WPu19JR4avLrLmb/p+Ffyn6ry/EZ/ev/iP9fn3MCfpTvW9aHWS8O1r8h+x7gu7uF8qX4T35q4qGJjyY/tTH95T7XGuNxKvp7kbcFuCdYJ/nV5vse4GngW/Dm/DX7uvPIk/1d7rf8wd+Tj1WT/TfD/yztbsx5gvqm5B0D/2z4c3/mtJL8i+RXJv/iAN+bEea9C5W/yD0P8cBq4DT2uQa+FsbFT+bBOTl/JN++7HKwcXkOva1Qf5l1z6Vgx+TZwP8c+XfPvbysb8j3rvF4Pria/P9T3wbfbcGDwe3Q2Ua/BeTuRY4K+Psc3/vT83/Qvyn5b9ofAV9n5XHq3zHeb8r9Fe1u4X9Z147Lfjp5pIk/kyf5Fe/yj50Tv8ffNua13AN+ir9v6v+ZB2soH5b9RwHK2sD/hnJf+HM+8nHGD//fGf9H5zyPHMnD21X9t+z3u3b7q9+DfDMT30t+LPmvRj/xv+ThDzB+m+DrUv8/F97xGSfKuXe6LvdPk0ej/h3ydgWHgKNzD8F8m3tGBynnntF57HGBckPj6j7y9eRv7YyDNWAn/L8CXoafu+C7NfFr8/ZV4BSwj/aJFydfLPlk49G/JXkr1g1rlN+Lf+mf/cvTyfeEbwK71EbvJu3/1P4p88sQcGP4M78sKcD/l7d3t/llEb0ekvbmgXPwl3zDGVkP4C/x2Qfp6xb8TdSuGXzxz+SNJJ4W/4x/bKB/6f3kxG2SX/FC6Kl/UH3ul9XQLvfL1ht3063P/kweP3r784+q+Dgg523k+9r8Ws04rwrm+7cSvk3xfXfuo6h/HL8D6OVD/H2K/vHJjwE/MQ/uqH0//AwFLwRrq39av9HmvZ3Br9j5QeN1OP2MovdXwJeMp/hfe/h6535kzmPp+118Jz/54gKUTQLng93IGfslDpd9T+w32nhJHPYI67F8nx/xPe9o3uyk/7H88yj6bw8+b368OesP/vYlPeR+/1j2SR5Q8vnHkneG8n3keBO+68oLmPvjq4y3ueB14Inq+/CfcxI3B3NPZjH/rGQcjlI+l70S309cf6lyDXzPhu84+J4rub9dlTx7a38/eQ6gv17sc2vuI+XeYtYH/Kklufvwv8W53wx/7o8+hb8G2pfmB04pyc8frP4Bcme+Pp/+c38n93ay78v9nePIs4Qc3/KP7H8HGq8T/yU/6Fr0Piq5p5v8wNzv7FySP5P1fc6Xemt/uHaJf32jviJ7bkaep/R/Rvklchys/xGJc+s/kp5PQWdi4vvGyzbGTzPl2+FrSa69wb3Ax+mp9D2Kz/BZF3+5P14Dn4nntaTfR43LkfS2F3g2/ieqfwTMexXtUm++eUF9v8RX1Q9it/7GR3d+0okdjsTXQPJuiO9PwZ7oXaX/QDDnR7lflvu1N+XcjX4Wm48/gH8BfE2yf9E/91dynyX3V74hV9ZLM+n3lNyvMF/MAAdmfwEuZc9b2LcqeoeSv3sBysaDn4A/85ej6WcG+UrXv7Wtxzr7/v2mPBz9i9ljvXGwDnw69/3w9wO4GJ//o7/3+e/8vCuS8Un+Z7V/Uv+T8bdb7leQYxF+9mKfrNf3Mp+Mw0/inPvq34a9epHref4zOfMn/Geje5ly4qvdjZe8s1H6vkY18tRN3gE5E/97lPwD2CHnnpXxtxC9D/BzJ9g45+foVgY7g8lfW2DdNwY8BTwb3V3xOyj3obKv1v+vknVRWc6rkv9qftieH+ce9f36N8r7NPmuQ5Pve0X+Uw5uC+Y8sB69JH5yJ32cTA9Zj2d93tL/sz7fU/0+6v8id/PEP3KulHtByi3Q75F3MOj7+JyDKl9OnxdlXWqc5j2j5Oslfy/5fMkPHp57Cfj+Tvk7/PZEf0DuV4Hb4q8Tfe2qf0X2mUz/uY+e++n72WfkfnriC4krZHwlvtAW/ewL+/DfTuQrzb9J3k0V8j1o/Xh/7n+Cia/nPlHmo8xXuV/0GP9aap5/XLk6/g9JPhq87ZSn00fm/fronYHPrN+7aH8vOCvxIvxvm/tV8I2C5xP9B+JnF/6zuXLiZW/ia7X5a4HyHex3d95LIc9DsTM6zxhPw/jZmcq535p48dXKiScnfrwxe+8KjuQHefern/GV+GDihb/znzu0P0T/ecrV1F/o+3wAvt9np+7JxzW/NqSXLcHj1B9Ib83ItS8+luD/UPPOKfD+Qg+dc8/BfP0bvb6t3BV/ExNvB18sL+Bf8Oc+6Xj8j8m5Av5OKkDZq+DT2h/APvVzH9C6pg3/yfla7u/8Qa6F6K+B/0T6zDsfS+kj8d/9jcsJ5Do6cV74Kxn/Y+ipIzgQ/ka+a1+Aie93Yf8Zxvcq7X/F34v0d2zev9P+Zf2nkb8nfnqAL6M/M+cr9JN33/KuXd5/m0g/uReX/OncTzkJvZ3w8QSYfJZ5+rdmv61zTpH1FLtnv5J9zBTlBuxWH1yFz9yzv6sMH2CpHzyU8wmwXe61wT/OeMp7RT2N117qH6LXReROHmny159BZ1f1N6vvqL6M/VuW3IPI+zd9+c9b/OopfpT7/5/hp0buj6KX84bkX56mfe4v/51/mfUrOucl/yLxX3o5wvyxZe7tqM/7gnlPMO8LzlO/k//n/Y7F5u/kH45M3JG9rwITP9mEfrtoPy/noVl/6f+T+ju1z/lns4wn+P6b/Ef1bfnJHHAG/bUk58MF+Pvdlv+ByTfcg991MG/kHv3z+PmE/+Q+6Hj89oj+6PdG8M3EIdV3Qa8T/k7F1/P8NOuZG5Q7kzPrnSX8ZRfzfB/l+eRPvH0teo+AE/hfzoN+y/lV3k1Qn/taub/VN/l48CRfrSz3ksm/dcn56bdZ5+WctmR8/QjPOP1PyPknf21K/5coH0iu5uz/Jb9LvC/nXVlPPKFfaXxwPH/L/e9tcn6V83b23pa889k74yPx9OR7nlUSX6mD7zPw87P6rL/q5v0A8ue+X+73Jf86edff0Vfyr4/RP/dick8m+4tVeY8SvuQTJA8xeVWr844KeBx+DlHuol3p+xg9/H9L/18L5t7+K/zxVfC16v+sj//PAkeCGQel8Z7cExuf+Ce5k0+Ud4Ja0f/75r3Dsq5VbkU/d5XMf8mXSX5MF/1yj3cXMPd4m/GXj/O+JfpV6LdW7s0bv+3IVUn99/rvkPup/OgS8pytPnlopfln/fl14qJtjNe8h/oIebYj32jlFdoPybtE1gdH0G/OWxNvSfylue9U4i8dfe+nWwd8lngE/XyInx7G4avgx8mDJV/277NL9u/PWh/k3PW/+M/7NnX0fxzsol8b/vE1ef5tH3WMfmehWy9xQvjfMH7ng3vqfwE7lBlPNemxt3bnJL9Ju1vIm/3wvvhM3nnee8g+M/nnW+Ev9z/z3kDeGZhPn03o/43k56v/BL3b4Dne/5P/9AQ+T2L/3NPP/fzkWSa/IvmEOV+dT/76ynlnIPHPVckL0/857Ybm/Tn+e5lx/iI/O6u8gI8VoKwVeDR+Hoank/kk34l8H77F/wfk3ivnjeTPOyt3s9sI81g38k9LfM13NfeCck8o5wu99T/KuOiF/g34a63/3ub9L8wfA9B5jn/3AZex88isj7Uf7f83ml9uy/mw/z8J347Jj1Degr9uCb5JXy3yfiV8n/KTaeR6Fv+ZL5qaP3YDM3+Mz3szyruw/2HJT8v7p+jtnvUMOsvoayfjtD0+a+L//OSJsFvyg4eQvxu99wBrgrlvclnuJeR9FPAk+J5FP/dhE3fsCo6wP74xdsk96tzvK0DZIPPejsp5ry33ebbPeWzu0cG/gpzZj5/PHi8kPpB3q8oL+D5976Q++YvJW7wV3cQv/yDfXxv9s92VyR/IuSx9LKOvR3I/B/4Fysm7aoH/X4zXtexWj74+ybth8A3Nuyr4H4N+pbyPkvg1eDi+Wpk/dkH3Xnx8qP8Oedcy+ZI5J8v9t9w7yLoWP+30z73G09VfqL4f+Raj/5p2u+Er+8gh/p9847yXdR09H0a+ruaJAeUFvDXrgQKUrQFL348dl3fn8TdGeSH+rmefvP9SMWX974OvgXHcBLwIv1XZK3nYpfnXv9PHDeR+J+8twp98sNyfzXtXyRfb1LxZvyTvLvlJ2e/lnbnS9+UG8ts6xl1d8AT0/zAfLaHfPcAm5GiL7274LI2fVMdv3h2pHjurb4LfCjnvTp6O8gj++i24eeaB5IfkfXjtX4dvZfLvtV+h/2zlnnnHL3lt/CnvoDzPv7N+aw+uo4+s5w73/0788Abl5HO/Q//N6WnfvE+mfgd6qVxewI74Py7xC3RyvzXvI+d+67/ZJe953eS7WAbvCOW889AP3o/ynVffRf+WyjOtM/saH6v1j9+eip9S/92DXu7B30Iw75g8x35NtW/PLtNzfoWvF9nj9Ny/UZ93kEcTM+8l/6D91vTfijxbJa+O/n/M+yHlBTxK/QXwz8bfan4yAH/Z7y9Cbyt8JJ8177vme5HvQvLg8/1oSR/14T+dvvI+YDP85fcOZpPnT/3zHuqfYPwq+aPrEi/Qf3ny9nO/Gd3f1b+X74n69uh9k/uE5B+N/nh+cWvuHdBz3mc7jz8eWpIf1rscHf2vS/4zfxtFb7kfujl683POjL+cL+Rc4Rjfy5wvnG785J3PM8G897kQ/dLz3+r0VFc57zlVRH8S+m31H2Z9tSeY/WLeZT4M/rxz1RD+jfV/KvE3ciQ/Oe9T3pW4SM6NM/58f7ZM/Dz3CMi/VL+r0F+Kr0Hwr818o35h3ovHT+7/5t7vO/wx64QL+Ou2/LgueIL2W6DfH76N8Z/8tmvJvx/6F5nfRqhvpX/m58zXmZ/zOwbZ9yc/Ovv/Z7KfUy7H/2n0l/drfoKnh/LZ6i+13s19wav4w2r0s15+X/8z8Zf1dPanOZ89TPuczz6U+4jwTeFf83KPBr28B5j39PJ+Xt7PWZfzPPjnwX978r+0620+TX5uj5L8j+SDJP4wn1/1zzktfd6UeGneffRdzXuUef/o0QL8/c5Dbf6Z9x2S7598juR35B5R8qX2165/3ilSXxHdxfnOg/uw2915v508g/FXnjwYcmfcl+ZDNyov4Fjy5p3Zpvq3ynqKvfNOY5N8H0reG8o7RHkvJO/Xhk5jfOQdytL3XVagl/VpXfPNE+A0cGLy0OljvfXPZHAf/C21ftwA/zuQfxH5Ej/K+0z3Go+JH2V/kfuW2VfMwt/5yWsCS89Hcn9mKbmXlhcw36f70ct7APPVZ/7P+6q9wRPA5HmPoP/kVyTfYnj2PwUoex+cAlalv9rkP5z+K+QdKPx3+5f3Ox7J+i737fPdIOf++m9lPFyN7lFg9v3Zv2TfcqvyZYk78/M2YO5ft8dH7g392++85Px+C3prAOb8Pr+HkN9JyO8ifJH7C/wr71Ss5F/Ji859yr35ffKR/s5Dws/X6J1AP9eV7K+7WRe8XbKeOrVk3il9/zbxnJxntE68jv/kfc371e+D7i7ke8b8udA8sYIe9zLOcp6R9z/yXkXOO7JfORl/Hekn+5dDyZ188Zr5nRHl5C8nX3nnkvsbE/E3CXwYzHtRx+S+DP19CT6S+/P4+YqdHtM/7329HPtrPz3v0OZ+B34HkSP5t3tpfwK9JP+sNA40l54y395Oz98lblOAv/P2atD/2+hdpJx7sGvBFvmdK/3yDl9b5cHJPyZf1ol9lfvlfkTmCXLlXkXOr+uV7LuzD98O/0PR+xhcyx+uSPww+z/0sk7K+qg0/zJ5l3nfv/S897XkEUW/+Q6ob5P3LtQPS34oPt7GV8vc02WPdvn9PuXt1H9FHyflPnm+t8rbJf6Q30nSr1vOj/K9ARfw97wfNsh68oCczyj3Ik8n8iYumzht4rN5961M+/ezPsLHpewd/0s+cvwv8a7EvxrnfSz8512p3NfOe1P5/Yn8Xk/2pdmnZn+a8tX4+aHuP+tfz32QvFuPn/y+XU12SXzi1rzTrD7rwuT9lq4PEy/Ne0iJpyZ++mzyv3JfJPlB+f6r/5Af5B36d7M/y7vX/PZW/fM+/LXJFwSngQ/lnJZ9kg/VLu9eJP+Zfv9IfD/34Mn9QMl6NN+H1vB1xn//cnJrn/1uNf7QXX3uS+Z8dVUBys5KvpNyc/6Q9zs3IFdj9tkh+eDJ/4Y/39/LyXcjfspynq/dLPjX4KcVvZ9Evk0S/zaehpjXG+a9V/wnPpK4SOIkq+Draj5bYh2T89q8r5z3J/Pu5Ef0lfyd69UnnzP7h2fR+Z2/3ee7dnHJ+z5rfL/yu0RzyJH3GQ/K7x8lLoTvD5NfCO9o8/sP+L8O/pH0fRi8h4MbJV9Jv/P51Z1g8rvy+6KD8JPfGc3vi/6XnXcCE384EP3J7PNK7n8of0FPeX8l767kHZbMz/ndwrvBFWB+x/Dskvu1ee98OP7O0z7rmOrq875d4inJi0xcJfGJ3HvPffdWOcdUn3dvkk9UO3ko6vO7PomLNi+Jj+b9hPyOSGl+xHPmv/yOZzmY902fti5toV/OC3L+eDC5k/+Q9XEX+mlO331yPqBckf1ynyX3Wy5Jnn7i9/T5LLkuK0DZ5smvQP9B9PN7jnlfcqpy7gXWSx45ffbNeRL+9sDPw9qt58+rla+h/7OyHlP/Df/MuyEdcs+VPrbjT33g+T75/Fl/s88r4KfJs6WPL+j/leTz0cdc/GfcXom/W5O/wf/Oxef54H7k/Rm/P4I7GUfrs44vyR9LPlnyx8Ybb1cYl2OVK8euBfj7Hu6l5QU8lP0Sf39R/xfzPntJfCjvL12RPCT9c794oP//Ra/NMl7In9/b6EL+teoTl9sI/kPgy/ufeT9jFjvl95yTH3aY+eo9ejtc+TD9s57M+rIiPWZ9OZN8HdU/lrgPOXJ/PHkNyXNIfkPeI+/JX/Je+avgoejn/YFluWee9UQB/t4fn66c34vcA/1m+Mt598jkh8Cf90TzO523Kf/buXB+f6VjzjfJk3epz8j5hPoN2GkUfurSb96VG+H/LchVDs9p9JN1Zd4vzf3Kdcbt9frlPebEC/trf6T+v5bsr/vm+5J8eHwlPprfL8r36EX6ye8Y7Zvf80R/be7V4a8m/E2Vcw8++4NyeAaDL+a+Jf4HkC/vKw7ER95XfBL9vHv2WMnv6Q3hR6+D9ZzTJL6b8/LB5Mp5es7PP2C33Ottgr/c7x2dPHL9kscwE7/94P+e3vO7G7VyPmf9kd8/6We9kt9B6Yhe1t15/2Rv/bdPngW7ZT6N/u5JWf/S9fghyQ+Cd7n12MHky3vMeZ857zXPoP9Fxl1+z/GsrDfIORe+X8zPLyn/V/uh+OmW8YKvTvBnPZz4VP2S9XFV8uWdrLXwvZZ3AxKPhP9nenoq8xd+nwZPyn4i48H8OQ/8wPyZuM1L9Jd753OV8zu9WW/8UZKnkPyE7flHfnet9PdF8vvu+V33jdTn990TL8r7sDeDiSfl3Yp+iWfmdyzY9/8Ag7eOhXicdd13+NfT/z/wN8pqoYyyXihbiqSolCQje6WFUkjIisgqCRkZlRSySqElI0oSksgIyQ4ZEZWRrL7X9Xvd7q7L8/p93v88rvM+5zz2Oc8zHo/zalyl4v/9LVu/DNetWoY165Xh7puX4WXbluHKLcvwvR3K8KxtynC/7cqwzRZleN/2ZbhLLf/X7nPl70pl+Ne6ZdhR/TrrleGP8P2Aft06ZbgZ+s/sWIZbrVOGD65dhtPw+R782ylXwu/n+JtLvssr47dGGQ7SrnrdMuyh/drwtd26DM/W7pvaZXirdp21m65+xQZl+BO4Iz0fod3LG1UgWAa7VivDgeT7AH9Po7tQuQX8I9EfRs5ztTtE/9vx9QV9XrBVGf6g/w3K3dSvS88jlWesVYY3gz+DB+L3A3SfIM8O6HVB/yP2nUvuo/H3KfrVKpXhw/RTXfle7Q7DzxT8TORX/dlvRs0yXMivNtu0DG/Svw79NONfx8BTBX878puP1Pci32Hk+ct4eIidfuWffeBfwh9rkHtT/5+Lz+jjFPgX0Vf08x28rfhfe3odpd3x5OkF74bGwyzyDyH/d+Cu9NAQ/3tsUoa70ffx+NiIfw+i78s2LMOT8VNV+y3ovy+97an/+vrXwddu6j+g7y3V92f/evidvXEZ3kz+Jeaf/en5a+Wd0TmA37QEW4BvqR8N/xLj5hewhvpTtH/SuOmivIf6leQ/hp6uwd8L+J1Cr3fRa2fwIPZpo9yP3DP9v0S+W4yvXehzJX3NgH8Y/1iHv2yBr0rKbfSPH9WDZ1f925P/IfRm0vvDyov48/ngCnAsv32Lv31VGOfP0WPtzcqwuXY70Udl9r4M/bvUfwHeSg+/0O9g+o2eJ+JvlPbn5jvA/76Ffy//bwiuxT8W0NMD4Ar6esn4eJ6ejkTvKHBncJ/4K797BBwCvoD/q80PW/vOzFZ+S/97jM9/wAPoayw7bOj/3eltD3yewn4DjK+7lftmXle+kD8+7v+naX8X/Mfi9xjweHC34Oc3tfRrxO7x/xfocyPyDtSuMfwT2GM37Ruz1yxydDdvXI7uV/D01H8cf1qT7w38m6p/zXj4uVSGy4yje+GvWeD3PfPvG/BVGH+LwevoeRX8bfGb728Xfr2J/g+Ydz/hpwPMD6+z7yXo1zYOP+Rfv8O/LP+Hrwf5tqX/dfWvor4S+aZlfiTGx2A38Cz9++Oji/4voVdV/8eVv9LuJvY40Pjaif/cgY+1tGuivkG+y+x2ILwXqL+A//TSP+uCh/DX2f9/zjpA+x21q6Z8M/6b+H83dIrfx07wbaD+Xvaaz44T0b0Ff/luVOGnJ5H/fvV30fdAfjYVvTPxs9B4fga8CLyaPLX0b0/Pm/l/M/hP5A998N9F+/r4vIc8s0plOF15E/2H+y7dBP8h8AzS/yfz1cvs2Jv/N4evee1Ce/j3hr+6/p9mfW8e3U7/L8xXp+a7Yp5bSf/flEHFveTsrTwpfomfwfjrZJwdrn65+aU1ukuVD1K/I3udq99s9n6YPO8a17eCdcHNzQ8bkX8sfM3I31X9LfziNrAZfieWynAOvxij/77G79Xkv8j8vRSd7vR1g/bXlUHFavBC9ntZ/43xez3Y3/z0FD96ll7XwPe1/g30/5HeloM1ybGp/kPwu0D7I7LeV/7B/DsbvBh8ir6fxPdI+G7FzwD+U1X5cnp4B2zNX07BzwB2/BP8gv7fJ88m7HknPS5W3pr+t4VvZ/Xnq3+Yvl9Bd4nye/oNN14b8Nsm4DT6/Fi/GfptQP5O+T6WQcVr6P+j3Jz8+5LnBnI0Un5a/7HsOpdd34P/LPqsZ36qzB5nGef7wb+e8bmAfTNOtyuVYW3jZb5+g/GR/UXtrEvR34LcWWecQ54rwKHsuT3+Jip/YNw0of+L8h3gT1vBl+9A5v9r4HkZzHp2qv7zzAsryTnMPD5V+7HKk+n/UO3uy/xjfsz3/nTtf1TeE//rkftCcHv6/Y0+f80+gt/30/9XcmU9vhJfT+n/IL1+yd9G0ffv+jfD7zn4fM06oiU+5vCX1fA+Bs8/+h9A3wuM49/xM5D8u/h/DfgGw3Oa+sxHV9N75qmfydMS/d785yjz6yL97+Ovc8COYE30PlF+B7wm+wR8DIB3/1IZTmOPEvwf4q8R2N54vFH7x/Sfwa+rgA/Tz9v8/2D0RuV7rH8X+j4F7ByI/ivsPh/9V80PL/t/e/i60N9a2W9l/86+Z4An8p8d8Hmofkexa1N89tV/AXlXaF8DHzeyT030noKnNrma4b8ye3UAx5tP3kZvI/hn8cucu43hvzm/+0T7bdTn/K4L/VYCK4OPo98Z/lr4H4//5fqX8DNVvxbW07ui95PxOgmsS++D+NcU8g+kt+H5zqK/r3lxArs+mnV6zhPNLydl32O83oa/S9D91Hf/MOO0XqkMm7NrB3AsPV+g/1/k6QwejO5D+Mv3e7R58Wpy5/vdxPfxEHqbwP+a5rtJnn7G6aX84gn2y/dkfBlUbFP4viykv/PZdSQ+BuD/cPytpb659ivVN0B3f3x/hO+p6J+Abvz6ceX49wX4WV04P+hHjlfx01a5FT/vqFwP/fOMq7rKWf/9hv8rzYP38I+mpTLcgN3b4edw9r+SHGuze86Vi+fNC+GvxB8foZ8LlO9Dry96q8Hb6a8dv98PXGQctlV/Gb6X0N9N4FH4a8XvTgVrgj3ZI+vq7M+L6+tDKtTTezVwtP770ccKeDbJeph+G2p3M30cTB8f0+eV5OkBz9HKvbJ+yv4Wfzmnn0b+d/D7NjgZvdf519/svQY81XhorH9xfA2gt5zPPaD+2cwXOddT/yV/awRfd3imqz+EfWOfd7WLfRqZP27mZ3spX6j/ffxqFbq/g7eSb23r0zPI1zb6VF6J/qvoL0U/65d26ndUXxP+HfG3M/mH0fts/z856xn9sy5ar7A+mqD/jdp9yj5/Zb9uPORcpn+pDOvpfxG6p/GXMzNP4GMa/exEb88qD9d/Cvpra381+/y7f1Gfe5/417P4PBm+vfnnNvx8ivqu2i+P/vw/8/fP8J+R+w/1F5E/56b3gG+Cp/uOTOZfOS/YQv+l2/+X77Pp73j//w3+wfRyNH84BjyK/dbWP/u9F+FfBM9h5otJ5J4MPstuL/h+n+r7c6xyQ/Xfwj+f/J/lHg79j3wPPwRn+37vzn5/oVeBj3nmwc4536evM8HhYD10rjTe/4b3PHz00v9M/NWn52bkfhy8gn3zfcj34hv4n8XPc+A0sIROvk93w5fvVL5P3cj1ie/GEPJWUX8zun/rfzm6S/hXX/Jmnb0c/IYdfyDXaPY4O+d05O+b+0f/Pxnfsf9BFeQCM48fqd2f/GtI4Zw759t36pfz8vR/EP8noN+UnNkH/YZ+Y+Ut0Tvc+ibzY9YjuRfNPWnuR69lj16+S/Poezz8exg3X4GN8P0W/TzE3uuid37uBdQvQK8S+CM5OhTW770K6/ahub/ULveBPdF7m7z3Z32R/T05Mv/vzV8ugXc+feR+pjZ8z+C/NTrvqt8Iv/XRyznE9/DVUP8++tfwo9nwtYM/9765B8797yP4rW/+bEz/DXL/6/t1BXgQ+2b/0l6/vX3X+oAP0ucq8+Ri9J80vw2Af1xh/XhBYf34TmF81CmRC/+vaf8g2Bndl+gn5ynzrN9/UG6g/lX2+VN9zgFfVn8u/f3Cz2fS/8/o76L+w9BD/0v2yPzYFN0m4GPa3c8fxvPvWuT7Bx/HwB97/5jzcv5xIX1fxQ6/gbNzn2N+/cr8/UzuX/F3D71OJ1ctcl6lfi30/lT/CH7/Zp/47znoPYr/MfpXMb5b8YOqyqfT3x05r9TvKni6km8w/mfj80blN7P+YPffwDfAfYzLT/Sbh8/MK0+hf38ZVEwGm4PZz7+In2vx9zY875Iv9ycNwb3A3J/cZ9xknvxduRX9DTV+vwBzLlRX/Zv4aQXeAHaFL/c/a9hnO9+p3ugfpb4S/ldrt4f6060HHmWHxcpX8r+u/OZW/NyF7tFZnxrPTX1XmoC90blR+2W5LyNnA/2b0WfH7Avpe3XiFcxHn/uOteTfb2l3jXb9wdbGUe4vLkA/55Y5x8z55a/skfiVj5UTn9Edv3tlXYTP49E/B73L6PlQ7c4vrGdv9P+cz+c+90/+eh34ZNaX+h3Dn47KPR04MevV3HuWQcVu4DL/f8/8/j64EOya+cu68Hd6epv9K5E/51Mt8J9zqpxP3UI/4/x/mHYv0c9J8F8K70LlEfT/9f9Y3ye+6z3yvK//ufqvhd+c35+d+2Ry5fx+Ir720v4X9ZnfhuccJf3Qz/x4Ev4a0/ck+FrlvLpUhkeDY3JeTr4DfVf2Mu/l/GkwP9zY/2uA1cFt0N8cvo3wXw1/r+EncQ0DzevF+IZ7jZfB/OG1QjxeA/ifYedh4EtZz5hPeoJng9eT/8MyqDiSXZ5Sfozesr6sQc9ZZ2Z9uYQ+Ep/Tnhw7qP8af8+Se3judbJ/p9+2YDv8P134PuV7lO9T1le/R1/0Xh+8M99bdH+kr2rmw1dz/5vxzD6t/f9gsBf6f8B3F3xrq++kX9YbL8DXUP1s/F2a+2+wGT0+oXwx+Scr5z7+OPQe036N8X8p/OPxd5t2r5RA+sv+P/v+nANskXPCzJ/oDVZ+Hv7N0HsCfDTrV/zs5P+TfNdvz/0u+kclDiPjG/1JypeXQcXwxJWYP0/R7xp+eQA5epKjbtbf9LaT9UL99f5LfxV7HIjvj/R/RP/L+csF/v8V/z2cfEvRrZxzd3x2038D+lpMjpzz5ny3A3l7ZH+JTtbvd6N3NT2OUH4y9xHkmZH7PeXYfxl9LQBPTjn7IP5xKL4z/x+k/9v4+xG/V5L3PPY5VP3aif/BV/3c96LTVPlG+E+Df4X+55C7eD52Sfaj6PfXfnv2f9N43YvcDcHn2PeA3HeTbx76b8C/sXnpanAT8Dz1j/DXD8yzl4PdyfUifB/jbxE73Eye7GtvUF8j55hg4k5e1u5z/RrQw3L2ruR89QPlxMlurH+JvGOyjldeR/t1wcH001q73I89je/cv9XK+sP/ZyTOWn1XfA6E7zpwUPQP/6P0tQE9Jo4888th8N3CzrXwXQe8jf2WobdGuzPUG94V14Lvmg8epJ/e5p3e+G/PD3am3zfwmfiST9BpiL+zE++u//n0cQD/ONC6pS66LyqPRf9qdttb+Xn2yvnR3vAehv776PWNfPBNwecy+vw6329y/wZuZnx/m/hl35fn9d/TeFmQ+GP1WXev7/uS9ffQwr4lcVbZv+R8Ld+XVeTYkn5a0MtIcpyo/HypDK+in7PgnYyfXeHJ/dUD5M09Vu6vZvOrkfh+RTnnwZPNv+crX6Z/W/aYm/um3NuoH0e+5dbj34BfZz9IH0PxO4KfdSPPxuRbxH8b0tNc9v9Jfb4XiTM/i/1z/9OC3u5D7wj6G0Qfc7Nexf/T8LYg3xmJb0p8DXgz+T5D9x18bar/Jehl/bqL+SPr2J3R/wi+Ofi6SfkEeE6Av4PyTfh6HfyGfq7KfJH79sS/0E/2tdnnZn/7XmHf85V+2f9sZj7qYF7/Ap57c8+kfib4LnseSD/9yuDfe7fcw+X+LefvOXefSg85f3+M/BXofpf9Ffz3s9vd7N1U+1/x/2nOb7TLej7r9zb4XkbuN+jrVfi/J/cP4Ch+Og//V4Qf9LrG7+BP/E3ul+6DP9/njwr2jv2vyflkGVRUordl5OtDnsSX/pj7UuPnDvinma9mgNs5f8g8lLij4YW4o9wHVsfPnea31uaHM/U/An/TyVmMD3uFfhIPcWHoki9xFs/jf7X2i9Tvl/VTYZ9xX85/jKc/wTMTv6nd5vi9Ef93Kr/LLz7JvGR8Ji63VuLP+MfP9FOFvqpq1wpf5/KfFuRbjb85ZVDxOtgW7Bv/prc55NyPPeMPff0/+4Jq8Od+Jf7VHv266turr65/Y3xuje+R5Psz97P6ddbvC/BJ9m8Mtjc+/8bPT7mfgOdF5ffQOY6/feo7lHOunG+9ir/EX+V+6mD8nFsGFbfzy/j/EHjW5PsAT+Lw/8z+vhAf3RE/iZOunfgm+A+Gf2f15+Crds7F4N1bfe5n/uFHA5Rzjlrib+8kzk75L3hy/hd/3h+9vejn0a3/iy/ntDmfzf6tC/s8lzwLeL5UPxxcpj7xsF+a13IetZB/H4l+R37TCf056Ob+rSe93pO8P+VHtDvO/6eXyvBSC842mZ/oI/dmiSfM/dn6+J6T8y3wZPVV2O/uxJ+Cj9PvVubDe8h5qn4d6Ptu88UZ4Ajwdvw8gt9F5v0r2XGd7M/49U/wdzCPzCFfB/PZguQ3sUuvnN/AOxwcBtbO+Qt/TNxl4jATf1mVf+8A5vwl8+QI9uhLrjHkWU4PE3M/jM/EdSU+YXf6f4Tei/FuG+iXONFifGjO5zLOM647ZX28+X/b3ardmMxHyU8oleF5uTdDb5R1y37g9uT7kxxZN/67XqX/X8lX3F/+Qa7Dtf+VvIeZNzZgnyez3qLfDY375P9kHkpcR859i/EdyTvZCL1Z+BmJv3a5P+RXxfvR1uzdHexWuI94r3A/WdP95KaJf03eZM5d8LE0cXbov2CcNgbfp68z9KtuvH2Jv5uU15RBxf3KuW9uCP+afAfV707+buyX+KHR4L2FeKL12HsNPf8DDqa/l/jvbPA49Hqgn/3/hqUyTDxR9v8z8Zt75dwz576xu/bL/b81fYwtxOdfXAYVqv+Nr6/Jb2qBTcwnT8H3JL+7jb6f4wfnkG9b7U6F7xTynMg/dtF/18R/Jl8X/8lnyP1EleQ3o1fcfzTQfn326cA/VoKN+EfisHOfk/udYvxSP/i+hf9Z8MCc97Lnct+l79n7FPWJxy/Gj7eIffF1BLmPAsdr19L4Hp78LfZ6Xf/p7DE/82/iQel3gHnnG/PC0fhsoX6I9m/r/3NhfzEh3x90Jyr3oq/kpSRPpTc/SX5KzpsGJZ4x8yx688h7D795Xbk2/IvRnWdemAz/PHwnHnZyIU52C/JNot892X0r8IbsR9i/cqkMV+Pz86w/Et8ENvQdna7dRPhfhPcB8ET8P4HPW/VvDub+cAa+B7HvLvhpQo6p/GsAuxXj2xNX/kDibgrx5YlfvJF9Esd4JtgAv2vzs9vIM1f/4+F/ntwzwLnsl/PznJu34m85P2+Hr3w/8t2oyr9yfpNzmyXK+R5m3ZT4hBb8p5L+x+C/XvaB6O7D/q/7/1/8Z2/+VJ8fP8dPe9HbAPK2Q+8B42Hl/7g/PAk/2edemn0gOTuUQcUb4BPgueqTD5v82OTLLlZOfmI/+jgP/VuUE5e4o37JB+rKT+5JPAM9fU/OYdnX4mcgvRxC7jPxtx56uRfPPXnux/fln03Bg/n3g6Uy7IluZfAF9B9H59WcB8FbJflP7PejfltmXPHPr/hL8gMbFfSW/MDiejP79H/3M/y5I31kfzRY/VLtP8v3Ju+YqJ9F30vwM0L55+RP8a8p7DAZzDsfdxkfg8DtyLdO4mvLoGIBvLkfz315zpcz712bOFb9t4GvivGZeJrsz44xDo6gn8RxX0G+qfiaRc85x8x92FLfu735ce7Rcz9TO/Fg5Mj5Wnv8X8dv1men59gjeTTT6OmA3N8lX5R8i/nP5fgZr90V8e/Es+J/JnkXw3ut+aEN/78DvAX/q8nflh0Xk/PpxPOT6wMw9+UL8Jnvf/LzPsz5W/ZJyUthp+vwlfi5/fHbmhyboH+2di+Rv7ry2FIZfqX/Zeon4Lcq/VxEX4k3HJX5jH8vU77YeL0IXM1/O5LjTPIOI9/Tyh8mX4R9X4DvoEL+QB3yT6LnB8wfP+FrNHxL6PFo5a65n2CXB/HVT//R+Lu6cD6bOKUtyH+Rfq/Scy34Xoa/LrrJk0i8S/IP5xsvbyZPkH1yPrVd4h+034QdlhTyV3MumfVAziffxFd3/rtG/23Vb4iv2Df2jn1voN8SvVyvfDb9tERvz1IZvpR5TH0dduhEvnHGbd5PSN5Y8sWSTzYdfy2N52X8oA/9XJg4S9/lhcZhB+NvqvmqT/L32OV6eniFPmcZN/19Hy5STv5Avv9z8JV1QL7/f+Q+Sb+sI+aT7136zHydd5ryPlPys5KPlfVo7vd6kf9j89t5yj21z3taeWcr8T6J71mMz6H09yD79cPfVezainyn09O+uafDT+JaE+ea+Nae6DRTn/emLtV/N+uxYebtz8Ajcn9ufCR/ZxV6s9R3zfoBvnrZd+X+Bf7R4HSwUyGfdBv936DvXdEbSC8z6XUv+hmC/v/yi/kl7YyfxAFFr4kDuj75NPguvj/xuPky8TNDtU/8zISs1+lp88T9oJNz0LzHk/1ozj//ou9XwLvAtvDn/Drvx+Q9mZxfJ74t+RJ/4LcVP0heVz3j8p1CntdS/nUy2B7cWv+8B5R3mPJeUPK7hrHnH+B48Ct2fT/92W+i8f0D+lsbN9mHZN+xTc5nki+Sc6nkh9HzF/R5E33m3KU9/RS/11skHj3xkcqJ8xwPjqLHnXJ/QZ6jSuQFx5lP6pvXOoHr0V9PfvkneBj+++V8kj8/nfMm8+IzyisSL0BfmccyfyUuaSB4HHh93rmhn+2zf0h8Fn8ZzT4bZ12VPJ3km7B39rfPg/neHoOvnAf9Df9b7HdE8p7x/bbyZ8ZF9hXZZzxK/uvgy/seJXpN/nze9+iLneTB1mS/vOPyZO7n6aFa9Iq/FeTZKefSyuNyv4bPv3MeDE8P9jsbfyvB3/HZMvkxxsMYfPUAh5XKsCm9PImvFsZB8h8T75/4/9/JPyr358b14sL+sp36xKPeTY5Bua9D/wr97s96MetD9HO/n+9/8f2CxGfPprcTC/HanYz7zmBx/jyLvDtbpx1jvbFb8hzgS3zZX8q3Zn2Hn1/z3SHntfxnR/Pd+uB6YM7pkh+UvKADc36Nvy2z/zVOjtVuInof09+W7DeOvq7J/Qj+pqgfTY45+Lufvw+hnweUE5/zMnssTXwluD78S9HLu5rP5tyNfpKfm7z3o+HLezY/WH+0zT6THe5OfptxcRmY+7Pcp03G9/zE4dHTxeoPQf9Xfpn44BlgM+vOmuzwEPs3RT/nwVXzrlbOZ5IHVwYVz4DtwQ7o5X223+FvwU/zPtvG8L2s/aLko2a/SW95HzH7sOy/fjLek+fQxjzwJvxz6Hd7fnM5/e2f/ET+vABsaf2adzsr8HeH9ruVynBCYXwn/rwKORN//kHuh+h5kXIb9bkX7pe4BvbL/fDe+L0k70exzyD6+YN/z1fug7/N8Hc3MbqCR+H3UfK8Ad8k65qG6G8Cz/X6PcqPPlXOedlIfteOHVbT3yj/HwPvifR5Ovufz16JX49fxk8Tv553+XI+U3xfoiu7/q993NY5z8p6zPwyK/Emed8Dnx2Vkz/dhBx5t3SfnM/mHRH4DmTf9ux/cKkMD9BvtPZ3GEeZ71fpv8S8OBSevHOYvKXkK71JHyOUbyFnk+RrJY+Q/mbzjw1zXgHfKuXT2a2HcZP3S3I/Pgm+ndjpdnpL/mju68bm/I/9cn/3bs3//v9D6486df//9blvHIJ+ZXbdDP7f9OuifnDyotRnXdtc/Rb8Ju9r5b2tvK+V+/jcz9dk39zPjzNe6xh/OU/KOVI1/XO+mXeKcr6Z+8bkcRXPfycm31H//enhhsSX0NdO7PML/26S+DL+8iG+WuEr69ncH1wGXlGIx69TeD8r72nFv/O+St7vqmWeTPz9VPVDwV2zv0R/c/z8of0O9JB3DhNfnrjy4/LeE/k7kDfvnua9icPzLkfeM807JGCVxEfzn/uNs/7kG1l4/zb3AwsL67mF6OTdsLwjlvfDLjFebmOfe5WPVH8ifqYqL4P3LeVfcr4N/87gY8bXU5nf9VuXXAvBmfQ+qAwq7kj8Hv3lfZZTSmU4ljzv5vy48D7aWpv+V95/38HLOpH+a+F/ufZZh1cm/wn4bcmfP8+5W+JmyHcsvm8Bs37K++QPsM9cfLwGHgtP7q+f0//2xLXQzwD2n4v/Q/SvQ76f6aemfs/QzwX0k3ii3JOtq33ii4rvk3XLPgG+dvSS/K/E+Sbu7yawe/JVE9dEP5+ic6j/H43emsyPxsUj5Fwn40S/W43rtso19S/BtxZ+9kteq3Lyf75m7yVgW/Ng3nfvwm8e5kd5Zyvv1ub9xeSd5z2T6skfSD6L8rr4mpL7MeXEW5+Z+znlvDuRfKnEwSc+8iT6GAK2B69KHDV8T5XKcL/k1eqf/LvMD8nDS/5d68L7bLeQ7+zcj6vPd/Mi/vec+snKw/A9SXkn7euRryo9Zt+Y9eXKvCeE/ivot9F/TO5hwYez3yDfb+yVdV1v5e70UJ+8iY9KvE7el+iTd2uMr6lgD+3z/ug5eZc97xpmH1KIr6gJX+IrmufdGvNy3mO7XP0i9nzd9+8b9D+nz+/0y3n9DPpNftk15H2sghzo5Z3ybeGbknNm9Abif7x2txTigV+n/0nGVZ+cu6OT/N6T9X9S+yH09bb6v+jnMPLVNv7u1K86/y2xSzE/51rfh6cK+Wt/a78q30f8/aa8IufV1ut3gneAZ9HfzomnQDd6/wT/e/h/9k+7lsow+6fGvg9Zt5wEX/ZHp/ObdfTL+vk69cfTy4lg3vHP+/2V2e16fpD3MS7WLvlTyZsabRwlfyrvp22Dv7yjlvfTct70fN4RAnP+NEj9/Pxuh/oR+m/HH/MeT2f9XkM/72XmHc28m9kK3I/czcBG2j0KT3P+PQaczb/z+wk78u87ss8hb/LVst49gd/nHjX3pxuzT/+ML/ZJ/H5z9j0o8aHqN2L/WvB259fdje+8P/M6/29MjzVLZXgs/Im/S9xdNXQSf3cxuS4F+4Cfqs++NnnAfyRfDZ9597Mf2MD69kV8rA1uzZ7TyLsP/C/R13b0vwKclPe50N8AnpybHA1fJ+ufafj+ERyc+zf2ybj7kD5v4N9H8rvD2bMd+2Z9ukfelabnF8HEJxXjI76BJ3ESbdT/r3XYWfS2Lr09ppz8/ivYPb8r0S/5uuhn/5r73bwPmP3rP+SZpd+D5F+e/R/5qqmvDiZ+OedSyXvOfVHOp67CR+7jR+Qd2Zw/JA5I/XD4E4eQ/LLWiUskd0vyNDb+NjNuNwU3T36P+fhC/HVRzvye/WPymCvQz/6xPr/Oe4zJu9of/3kfMflZMyv+2y6/25K4lOL7ymO0r6F/S+Xu+E/8bOJmuxTeZ1qX3zxmXuyf/Cf8fqc+cUWJb0yexAfwv619b3S+UL6avq4Cl+YcLv6t/xW5VyZn8hO6Gr8/5Xub+Ef624Vf1yuV4Uf0sL36RvjPOf+VYE94rmO/zeMH4Gj9cz9bXF/m/d/H8b8P+vmdgpxvbU5v6ycPFd1DEj9FD1l/HJq8aeXqxldVsBp4Dv3kXOg5ei++L9aHvs/PuXTyzZJfBd9b/Dfr4bx/l/evuoF5ByvnL9nPJD7pusTxJr8bnjOSr0gPOR+axy8yfvMuYP3c/2qfc5mc0+R9gKxHjsRH1iX3a3cw/VyX/b9y7vev5+8H+b79qfxW4mO1PxjevM+Z/Ly18fdg8hbATeHP70fkd3Ly+zj5/YgvfY86ZP3F37dMfJrvcfJLcw+V+JPEbyYv4SL08p7b7smPYefc4+T+ZmXue9iho/oPSmWYvPDkiU9Pfij6zxs/M8EZ4AlZXyR/jvzj4M3vU+Q7kPzE5LccRv68h7YUfzXAvI92cc4P2Odz+PIeTu6jvwdzX72J+vweRX6fYrTvV36fIvkAR5jXGxofGb8HlEHFYHAceAD+OiqfyG55DyTvf9TD11bmsbUyn1l33oju7omDQT/xt6fmHln5DvPTdOXM14lTT1x69rEP4+cxfvgROALeB/jH/vTQwzxxGv5X42+rnBvx19m5nyTfLHBgzlHZKfEriVupo5w459Phy7q0R2F9Ogr/G5qXDlJOfOr47LPBvP+R31+5z373XvB7et4Q/wPo+1pwCP/rA3/OZXJOs5X6nM9cia/X6XEn9u0Ffy/yTgCfoccN4b/ceHxC/03NDx1LZXiG8Z7395+gx7y/n/vu2D/+kPOMxuaFRuC+4IuJr8BXzilzPpnz18RvJ38leSuJ3877ZMkvTfxF3ifLu0HJ216H/m5gn4fIm981W1D4fbMv6XcK2B3M+085X99G+5yzZ/30ovE+yL3Zcvif5teJV+rOf27idzmf+9l+YAWYOJ+sP9fCf34H4KHMc4mfL+Q3JK/hH/Tm0sc09V8pD1ef+I7EdXyS+xX4j0wcMDvlnDXnq7nvPt8+Zmf85D68+F7KBujl96LeNH9ek3hM+joH/sQ9nEb+xEMkDiJ5j3mXeZ+c/8KfvLnky+V3CvK+Z2X+WIPdks+a/NWn9d+Ffa9J3Az95D3lvK9cWTnvK3cm79elMjwEvwPhfyq/3wc+n3eucj5L7ifA+EP8YGjyxej5XfJtT77HE6+Cj8TrNkW/W37n0rx8MrzX536/8H5b3m3L+xdT8fuh+e1NsBP/PihxI/hvrTywVIbJr8/3Inn1M/XPewL5XYfP9cv9X1ffhZ/Y50J+/rHxd77++T2FJfAP1f8zfH0KzqSPxAsnXyX7yOSz5Pv5F71lvfu3cubn5Lckr2UVeAU5ZimPALlfxSnk+pq/5/dhtsJPfj8g8X3Jl0+cX+L72hjvR7Nfvfz+Dv4e1z75fYmzTHzlEu2/BPvjZx3t9vX/avRWPb/vmfML/B2E31vR6cu+z2Z/p1835VX6J6/6TXAomPzqc4zfvfKugfJQ8o3gb/sp35vfYc39Lfnz/mW+N/m+NFJuqXwM/8nv1x3oe5c4qdbKyV9IvnP8PfnQ36p/KPMfefO+Z+JfEoeX+77i+82xX/KlY8fkZ+b9g9Xs1YY9Tox/5j0w/p179NyfJ04x+QDJF0h+3rXJ8yvkD2+sfeItPtY+cRj5/cXv2P1bcLXvR0t057PnB+y7Dv5vyPlT3mNBN/Ga2Tfewe8fAXvCn3nyRf23iJ2Uf8j9Lnx3lsowv0P4Tvaj7H5b4Xy9sfar8Dsh97b6b5T7A+viDmBH8Df9n8BP8hESr5s43dp5/y3xFfSde+Y2+h+R8Zh1Df85z/ekr4lnMng2fSTveiw7JB87cRGfkD/3258p5/c9t87+Pr8rSa+91Y/Lu+S5V2anM/J+Bv5a4iu/B5TfAXovcWzoFO+nJ+Rd9Lw7gu47iT8tvHeRdzCuT/w9emclLhmsUSrDCxOXjL9Doz/6r4v+lNy/JZ5W//w+XeKOc/6adXDeB8+9R94Jz/1H8ol6+P9I5eQX5f59NL12Mr/m/n2J9slPSr5S4rtno98TP73pZxT9573kvFfwcPKQ6PePxCXn99HgeUX9vLx7rX/e6/r3fS70k3eVe8bcL7ZC70vjo23eicNffq8peTc5/ziLfFP8P/czTyjnfuZn5cSdFn9/cqXxugLcnf/nHYpG9J3fQ8rvJO0OXw/8D0WveuK7Mp/bj2xtHVr8vZXv1e8N3wTlOeS/x/9fzX4C//n99d/j3+Ce+BtCT5lvMv90yD2l/ueyx7nabVDIn5mX+RRcmPt69ZskrxKfyRd4lv1H5j6MHXahxzvRTzxU8quL75X+H+asjwZ4nHXdadiXw9sH8LtspZJE2cqtDZEIZYtQ1iRCKuJP9iRlyb6UpVCIiqTsUoikokJkjSSUUkJa7CLKUs+L3+frOFzH437zPeaemXPObeaa5Zz5dS8r/Q2Ac+DhjUp42lYl/Gv7Ev5Wp4RL65fwgvVLuE95Cc+R/rRBCWehd3PtEnaVXtGwhFeg/436d29bwvby+1cv4WublvDxGiV8Av2D8NMGf/OVPwB/S7T7qnYGb1PCTeuV8OqKJXwQLoRbaP8J6XXwfrhK+y+gu96WJfwE/Q3l77Htv+ltid99pBfVKuG+W5SwgvRtdUu4Fv2Dtivhe+Xkw/8C5WeRf/oGJayp/R5VldduLek12t9XumHNElal53vZv+rWJfyWHG/h5x3tYaPst81LWAVeJWO9av7Pbu9vhD7+NsJ/dXLdTw8DpE+rVMKV65Xwtk1KuLN672xWwnboX4D/uur3xO/W+JnJPneS7296/Yg8hyv/UfyHP22Ljy+lr1J+zw1L+BT+DsfXPvh4VPprOI58H7PH6/jupvyR8DV8HaLe2+qdADeS/xx/3FD7F0rvQt6K/HIlfruo9w75e/r/bPK+Rz9fSu+xcQkXsFcd8j6v/nz2+EL5e+nnGPnPVpFm95n4/IJcD8j/Rf4I6RHaa0w/28svh9eVk9N40wTuDAdrfzj5e9D3cPadhN+P6WsAnAvTP69S/hh6W6tfzqTfa/WfWyqUcD58it6eM/50wUdFcr2Lvwn4Ohvdl5WbqP0R7PENOu9qd6z8D/TbMfpdL+lHtv13u3/ifyx6sX9b8jWSX0O9J9B/Qf0D1Guq/FblJVwsf4H628MP6Pdg48d4ftZL/oHoD9avKqK3Hv7r0FMHetlQfh18HI//q7S/Wrn9tfe++k/wx2u0M1p6Pfw9xV6d4a/wc+1URr8RO00hxwvavxa9W9Vra/x9mR/WZbeW6g2n3+XseB1/r02+L4yXD6D/jvFgeuUSviv9DfnuKkHZS7AePdyF/qb4KYPr0k/Qf0s/HGZcqS+9Czv9rX+PLugx+quH/3X8/Vjjw9H4+FX/GEW+t8j3Jv4XYK8d/XxNz6PQ/5odtvD/R/DxNvmepPdP4ePKvyh/uu9DfXIsUv9S/EwynnwmPZD/LMJfGb7mwSfw/yz9fUHOZ9QvU7+Z/APocQV+GrH/QPSHGN/uhdexb8aF2nBv7dfnT7fTz+7au0e5/2lvD/RfZq8m9DCafY7H94H4Gab8eeRogP95xNqSfu+WnmMcWMTui2FV9DK/qsv+jdG7VP4U6SX8TjcrWwnf5YcjyPUKux6H7hPkP9C4N9S40Ut6iPzH6auZ+nvj+zb5H/Df2fRys/ba4u8IjL1Jr93hPfL7yV+vvIRbobun/OnkWYGPqsrvbvzLePw+zPd6CHvvSK9N4I/68bvstZ1xYRX7tqDvKeifxb/PhPvLPxn9LehrPHySHh9ip13Rbwy3kd+UnEeodzP+T+ePe7PTVsq30G9+0A+r0WNlfvVECco6wpPxXwv9VXADesh6ZJzyL6LXTTrfyQOVb8bfe5LrHfRv5w/D0HsSnZn0OzH+6f/78Mv+ylei16fotTV/ait/PL3dCTux3wNZP9DXWHa/pLyEd9DvFHo9gVyXk+ujwvxkJ+1lXlLO/xqr/xl63ym/ULqB9mspt5Sf9i18/05VbhX6+f49ady6gX5bse9M+T/RyxDjUE96aKOfvcE+78A34Rr6bqZf7gF3h3O09wD+zqCPtnAenM5e+7HLROmsj94qQdlf8Eh4A/4+8b2cC+fB+vR9M/vPQL8n+T9BvyP++pSXsDm9PkyPFci5f8ZL+T3Uf1H9DuqPZYe/2O8u+q/NT28zv/7Zd6ScvN+we/x2P/Xbs89B6F9C/5fi50d2+x7+AJ+Qv1b7H8Ov6WNb7dyk/cvwdyS7ddf+AP3hB35xq/TlmW8b1wYbP5qyy3L2nas/30tPXbSb+VFN9brge1f0+6P/F3n/hn/CD7WzMb4zvmW8y/h2Ef31gj3hIdrfmL9Whq/Tz2p8tok/aa+19Cj9p571yMbwHuPlR8ofYz7zBrrVtPNyeQk7yT8J9ib/5tpfjd8/4N/0NUL9ndjlaf4df4l/VMfHAvTe52dfs895xv/flH9U+iryjaHfB5R/mr+8Kr2J9gbpV1WlL1C/ofRi8r0MN6D/1vxiOf5m8L/j1L+JPWfCW/B3lvor6f1U9R6S7pr9EfQz78l+U77vq+mzlfrLyTFc/k30daP6d+NzHX1VQz/zv8wHz8BfX+PBLcpPUP4+9F+hz2n0vLX0aHQy74n/3g8zD6pMno/VfwZuTP670etOvgXZpygvYUvj0DK4H2yg/38oPQ/OgX3Ie1T6HT72Va8N+fb3/w70l32zNcqN0O+/JdfT+R7J35I9H9avtpY+xfiwo/6Y9f0XhfX9jehfrf+1Ub8Z/m6g336wYeYd9LdU/1oGl8PflHsM3Vf1v6/593eZX0V+cl+A78f4x/vGz1lwGDp3k39ZCcoegT3hA+gO4p+Xs8Mp2plSXsIavjcXafdZ8h+Gv+2NN/Vgffgm/2rGX/7Hj16XPgl/J2d/EF6T/S/0v9df+8HN9OPn8HmG/jafHufBW7J/TB/Z59qtsN+1Rv5k/LyI7zL2O5K8R8D5sCd7/8ieP8FG/OXo8hJ+ilxLdBfzr8u0dxT9N6X/s6MX7S+kj7vo53D94F3+s1T9E9jnC3rbOvvb/OkCevqUv3+k/Gewh/InoLdKOvu6C7X7QvYBs/9tPLqIfLuRux/+Z0uX42sQOk3VH0Duh9B50rhwgPpr2f0Jdv8e9sTHoBL8s67MOjPry4X4qqv9j9Wrj34j/aANPk7E13TyF/eLs498jHJf0efu/D7nGDm/uIK8f6h3DXpH42cYPp/KPKS8hL3x11f529Gpi+6OsDp/HM2vesGr8F/DuLAZ3BQulX+278v+2tkEn7fBPuQaia+Z+ssi9Yv7772yjxP/w3cv9PrLPwz/d+J3Bjzc93So+lfj90T/fxg/J/Pbgxm8Afp3Gxfmoz+fXmvT82BynMWe++L/B/VyHnKSch/p5+uj95Px5UT8na7+/fIzD7lEfnP0NlHuRHoanvkJ/34DHse/t6K3jM8ZlzNOn4v/Z+jnUf30G9hX++P5dzv0LlVvLX5fJ98bcAvyTSBHN/U3lG6On+x/vISfg9Eb7vu7rfafYde+8Bu4R3kJK9NPzrcqwoX0NC3jAno70kO+n1epf5p6GYcy/ryMn8mwhvH5EHq4Fv8XaGeo/4+D2ZevS3/ZhzgH/b3Z6wz2Wyu9QPmfpbeHnX1PtzZuHEif2Q8cA5uWl3Cs9Fr8fEnel+m7G3m+8v2Zim7OAzK+zFL+EfJmfHlZvTdh9oOy/7PO96M1ve/g+/kIesNyfqy95+lxE/SnGp9aZ92KzgD2uzXr5+yz0vfF6Fehx+2zH4f/5tlvVP6nzFvgZejvRz/PovcqfR6hfqusL/x/mXGmN/kPIW91/WITOEz+3uzxZ84dtbsQLjZebe27MNZ3uHP213MeyG5X0vf48hIOyX4C/nfJ+Ib+APadDHsb7zqwx2r6+Vt/6oFuJ/WHoz8p59HKT8Hf8fTXAU7CX2397UDli+fkD2a/Tf7v0nfS1xvav7wEZYvhq/gbWJiP/Sa9Pnt1pY9F/ON98o5BfyPl16B7POydczj2H4De7cbRFexwsPxm5B3JbjfC/bT3OXn3a/RvPk6Rfizn7vr/QHgY/hb4nh6inYNz3sRefeh9X+P6pdLt5c/gj1Pil/zpHPpdwv9Gkesr6dez/mGf1+gz34n4x5PGg770NFr6RPZ8A/83af9u/OV871j1dkbvOOnd6OdLep9UXsK20sPVP6wEZXfCH2F77ec8ZgA/2Q//OZ/J/t1L7J59vOzfXa5+C/rM/tOV+P3QePCC/8+RXpb9d/qrwp4n6k8dtX+/fpH4mPvwl/lF9rMHwsnsku9MzmNaw9vJUV3+pvzrfnZtaxzYkzyL+M3G/LYKvEj+XvQ9V/2J5OxJP5WyP8huC+mzNj5+JlfG5YzTGZ9nZf8f7uV7UM4OldMvyLFV9uO1/yR9PwOXZH5I/s7Sa9ljNv7XSW+A7s/61e/k3S7rF+N74h62K8Q/dOLv/1P/ROmG6mdet1+df///oZx/sseu6CZ+J/OdB/XLHRL3AofQ7xLpr2AL9UaQrwX73M//NlHu+5yfGQ+W8INDpI+S35Vc2V+6hj6zv3Qh/qewy2/0fp7809ivD5xK38fi86Ocd2WdSU8z6Pcw7R8Bd0I38RGX0U8Heusj3Y5+rtd/r9XeCvQfJc+H9D6Lnt6HOf+rj++T8V1GzoPYL3Fjie9KPFnmLwej1wb+gq+22l+H3ix63E3/WSz/uez/47s4v/+ffrMANiwv4Y31/l2uS4N/02tNvuzzXEr/36Of+VlX/pL+PEd6b/lV6PcT/CXOLuN1x5xvob+r8S3+V1x/zFAv65AP+eUHcDasSr9Xsk9t+Co7fYTeNdrfVfs/6M+ZH9REbz/19uRH76N/BLtdrtyR0tvzpzPJW42+D9Lu4/EH+k68wQ70W4v+mmh3TuZRxo98nyqhn7iZxNEkfmZa9ie03zjnMuTbCt3H4CPwucyX+c1S/FXhv/GfPzLeaP/bzM+yPqCXsfBq+h2Azw/0r5rkLp6vrytB2Rx66i2d/fOV9NkaPz8ot6n6y+W34S+/aufQnO8bz9rrV8fle/8f8WGbqJ/41yns0cH3aGf2uhP9U+jnZ/qZTj83qL+l8Sjru07WORtLX0ZfB+lfTbX3PfvlXGBheQmL+1Mnaa+n9hvwl33o6+HsR2v3V+nMI1aTtyY/yvnu1ML+0L7G3zsL+0P/U29CYV33XqN/19sP7g/HaKcye/RDdxV9Pk4f9flrH/9fjz/1Rz/7G5m/jpPO/HU0u2X+N4i86V8/0m++p6O3/Hf97dnnC/69GF4mf4Lxoon6p+K3PvvlPGhOYd0T/854nHE943wb/N1O3oHwMvJtpf5k6Yu12xtmf+x2/rS1/58NB9P/2/S/yHfoXvLkfDjxdhmXLyPXOHgc+YbS43D8V9P+IOPLTFiT/50l/3N2XQy3JGdb+uyNv4thL5j935Hs/gAckXVy9pvw8+12/+b31pw/+u5O0n6j7Asr308/bcXup+lHH/r/tMwL6Ot+7T2U8yV0a5Hn6XxPtd8Ov0ebVx0jvSL9nH98ip+cQ1Ym35/60xLj3Fv4fIyfnaD+keyYc9ipGT/oo3N5CW+Tn/V9D/l3ZV2C7nPsN0r/Kpd/Mvsdl/hKfvUCvRb3r2sZrzJfvyDxXtmPQe+1zI/hQ9kvpo9NE6eO/ysy/ugfLeER+D1CuVv44/jsT0m/n+9J1huJc2P/OZmv6U/Z16yoXPY765LvWfx+ByfTX3ni5cnxIXqJb+qo/ovyK9DzD+gnHnCM/x9JrqfIfwO+huJrCDynvIQ14l/0tz79/4ROa/7VBl7Hf89Wfzr6r8BX4VP0ebbyZ8H2+kvLxK/yyxYZH9G9MeNXCcqegWfAX5VrkvNP9BK3s1z6DeW/U66P9CT6Ode4dOt/zKM/5C9V9c9V+tmh5KtmvKwKq8Pe2h+pXM77LiLvqOz/kzvxoIkPHZbvK38/iv6Pht0T36m/Z76V+dd48j2vfM4N5/se5Pww+3HH4/MZ/jYOvfOjT/w3lr9E+8Xz0qyXsz4exK+KcehbJn63sG5/hJ9kPDhQvdfoozp6dRJ/ob1X9ZtqWa/jtwH9VIO3GAfGa//d3Begp5nSZxbOnzrj6156zPe1V867jQtv4ftC9MfrDzPQHaKdg+g38f4Zt7pmHoh+Q/nttHs03Jr8WV9kXfEwullfJC5qHf+/RX578l1n/HkBPsC/7yTvR/x/MXzQ/5vhdwx/eEt6HD720X7isTfP+hI/R2f/VPpVfN1P/twf+Azf2cfrq/ye6I7B1278OvO7zJ+zL5p90v2ksz9aJeOOfre3dic0/P/5CZ9Pop/49E3Jdy56R+X7hP1JcC08Xb/6mL7nwjrGxyX461A49813dDP0r8x3OfuLym9eWH++Lj/r0PjHFcaXA+mvj/Qg8uxE/02086D/z/+P8+kWhe98R/Uq5T5S9jvx05gerqXnZTlfwN8JOe8iT/rJqfITz/Jn5r3Sf6i3qX75in56Re77yR+B3w3zPSdfI/QroHtY9sOz/yX/NP6U+zDXw774rKTf3+j/ren5cf6zM3or/H+h8et37V1JX9PYu2vWw5lv6hfpX4ey9xLpxE0kjqI6PWb+PMx4uH3uDeFnL/zmflDi3mfSW0X1X8TvezkHUz/r36yjcp9iJP7byd+WfbIezT73x9pvhf+x/GMj2Cf3qMhVlX6uV/4Ecu5jvVDGTv39v0/sp37iphNHnfjpQ43fddjxMOlP8Nvc9z73U4rjweHGyyPgkTD75wPJk+/NUPpeI30y+g3Z6RTpafg72rj9Ob3Ols79u9fZ41V4lv7doLyEiZ9uRu7P+VPiqS/Ez+P87RXtnIf+yuwH6befJa4V/238f43/X6D+VvS9PvpT6WtD+puc85fE07JjHd/Ph+h7d///xv8zD8/8+xblcu78Az7OyXio/W/LS3gmfrsrdyJ6ueeSOM98X75O/2bXkYXzv3bpz8r1yX6C9s4xXp3PP+9h5xr53rNXzkdyLtLO/7vR11TlW5LzvMQp5X5r/C3x/9JHGrefZsc3jYOJT2+Q8wHtZb+hnvq5Lz4k5zzSiXfP+niFdNbJWR8njuWL6And1fC+3ItAP9/Nyujtk+86f8w+c85XMz4uKYyP0dd26FaUTvxRv8Qf86879NMm9J/z/dzLyD2NConPVv9rcq3mF5mPZv75Hf6yDiuuv05DbzqcC9fl/Eu5LvipRp+35nw399LLS7iCHi6mnxuzL8HfP8t8U/2nCveL70ico3oj6WcU/N3/B+V8z7iT/the+y+h30j/qkRPO+Q+LbneNJ5txE+X86e3yHk+f879lazzEhcwib2u9X19lv82Tvwa/e9bTm785/7wr/rtseq9krgl+TXw86T2Psf3kuzPsVcjeluAfjX6+K97m8/In1zY725Jzsuyv5z7Z+pvq14vOAr9VvBg+j8df6uMm78mbp7+j8dH9t1e8d1ZRh+ZP2RenvuPTekp+6t/4G9Z4i/Y50z+mrioOuyc+KgN0Mv+9Er1V9Jz9qfrZX2p/En0cE3Oe41fF/LDDwvx5TXQnZr7yei1x1/uF2Te0kA69wuepY9Z2h0nXVv7e9LrDvS3ExybeBX+mzi3xLUlXmAP+hqP/s34XYjfn+mvC/wJLqWnXemzKTxNfn/8Z78469qsc7O+bVKCssfhxTD98ib1z9DPrpfeJXHA+K9Bvtwjr5J9Ef6xAXkG5Jwx+8zym8vfVPqgzH/pd6F2lxpfGyXOUvmd6WM7+Bf5DiJva/+/OfsA/Hcn9HbjP3mPIO8P7EsP1bNfhu870D+MvE/iY5JyI9CfbFy71Xd3beK08LNF4qZy/9j/6+R+m/rj1bsftpB/qHH1B/q6XP3cT0r8+Y3waf/P+DMc/XroHib9duLPC+uVrGN6ZH+e/bNe3EY/ugT9xM/con7iaBI/k3jAnK+fk/WMdHftPef7VKa98/1/tP72ROKa4E34mMWeeS8mcS6Zn+d+6SFwKky852b08il8Ht7BXn35xzx4vP6XONKu5Mm+bs6BfqGP+3w3bsXPeP3oNunmuc9Bvy2ka9JPzfISJh6rA3sdJ7+t8vWMW2eRP/Fnf5D3VHwdI514guPIcyL5ZsGR2ss+eXEfPevfZ7WzkXQn9h8pvVB/nGLcfj9xv/h/iJ1r4uNB6Zz3XaPebON2R/5WCf0e6vXMvRHy5XuVuJy/+VfidRKnk/jjfuT9Qb3EH9dSbvOsE+Gp2v+L/2UeW5y/vomfy/nHPdKJT7w+92JgV3rO/f33+MtsdLdjx+7yuyu/DP6Ozkz8r4ffKrm/R5+jCuPXEfCa8hJOyP4j/30XHk6PlRK/wy6J37wav4nPqMwvs4/SC3/ZT7mT3kbQ407suUr+S/ifAkejk/2ap7J+zrqDnh/D/1nayz264n3F+vSZ9yGW8ofP5H/Kf941j3oHfp97v3nvSvop9bP/sq3vUzf9NO8wtcNv7uVWpMdfpdP/h2d/h37HKHc3+f7Cz995n0f/6M7et0p3prfbpGeQt2niF/S3mtITc08v5xP85hXj+XD5ua+d/YYv2D/3tzsX5r+J/8j+39vsUheuYZ/18L8PvebefNZrWZ8dr15z9SbAXZX/RXuJO5+Xdw7Y4YryEu6e/fC8P1KI753Az86GF6kXe19E7tj91Xyf+e0C+Cl/yHtne+FrSOI16fda7Ven941z7sDO2R/onHv+2n2DvnI+UIecr+XeP/t2zv5s1sXq70WeVsoP5H9Xamf/xCWp3978JvGYic8cKb94n+2uwvhUnD8X74fsRj+V+Fve6XhQOu9yfK9+8X2OJsarQ2HGs7xXp1jZanY+snA/PO+N5J5G3iE5QMWcJ+R8Ie8p5XzhdHY7XP/LfcVL1c9+xel5PwSd3J/6ij/vgt+9+UMz+YegezG6j7HX+eiPK8w3Mx/tIP0TeaejO1F/n5D7XtK94R3ay3szZ2beAbvBi8jRib7Hwc7wg5xj5Z4XemvZMfsL55Tgn/sRuS+R+xE5r8r51Xbkezr3fMpL+L32FvCXXspfRf6c4w/O/fbEaRhvV7DjUfIT/7mcvffNvRvtPQQH6vf94FkF/eS++1R2Old/yfo0+//Z999Fuazf875Y3kvZRf28L9bYeLMTbIKPufQR/4+/x//P1/41xotz8dkhGP/Qfif8fIO/h6U7yo8divoflngb7e1eOH/uk/vQ2U+ij+cxPjj39Qvjd+5v5X7b19ovvu8z3P7OpNzbhUtyr5H9EwdZjH+sbDzrop/el3my+rlPmHuGc2DuG+a+8xa518O/Tla/kfIv4OOXvAdBno7Kf4XOg7mHhs+8G5J3m/KOU87ndqGf3KNNHFju09bKfWfpm/KOkPq91c97BzlnbJXz1ty3hz3gFvhPfHfiuQfxy8S/zKOXY+j5Vumd1c97Fv2Ne3n/5CD5jYyLvQrj1xXaWas/5P3GvOeY9xvnau8i2BkfF6M/JeeJhfih3Jd7yf83o8fcU8z9xNxfXMPOU8ixmj0a+26dlvewjJ8r+c+wvLuY9wvwcyn9HVtGHrg5/W+b+7DauQu9HfSvh9TfDT/dydUDnpH479y/g4nDTbxxF+0Ohptp/5XE7yd+C94E/876JfM3flwv4wn75f2Aq/n9UnIsg08nXl46+zzZ3xmd+745FyHfr/jPemUV+2c9M4H+ci8q946K95Ha514OvxpaeD81+h6n37xEruj//BL8s+96i3Rf+Tuo95v2JtPTRPmb00/iP+bAxH/Uoe+K8GzyH0af/fXP4vi7Lu8YKF+b/mrB2jm3wk/b3KdD79LEG+l/zWAxfj/3AwaQI/cEcj9gJ/w0wV8nejpV/b+Ml4fST1/2yP3W8Pknvc9X/yD6a6j/3Uk/78HL1c99mHNha/zlfsxU/TpxZdOkn6O/Rf7/JbyY/r5Sf7n+0iX3E6Wz31uTHg4gX/YHZmd9RZ68O5N7/1uqv7oE/8TVVUU/66VJ5O0D69FH4lmH8uusp1rh/0L076b/xGfdBXNuPpD/vMVe2e/I/sbb2pupXHP98Q3jzXT/v0m5kwrz2brZR2KvvOPzp/b6skfed8l7L3nf5T7+u3HuNeceMHqzc37LD7Mu3kD9Ouq3K0dX+VP5a1/62Jje+kkfq3zm9U8ZNy6RPjH3odHL+rj4vmF7dpsBl8OT5F9LT4u0d5f0tfSTeKTEJ71eiE+6lNyV8dNVuaqJ52TPC/hdffoYL/9H9b7L+YX8IfLP0q92L6y7u2t/nn6zCb1lnZ394Lz78xx8Xv1bsj+Kv/cyz8z5BH12ZJcR6HeDOW98OueC8C/YXf7RibeUnkeu1+h/MH3m+/5h4T7/nfjJu0B70tf65M/7QWPQL5f/UWH/K+v70wr7X4+bL/TK+pp/5X3Ubc33Jht/vtXPrkP3pcR/0u8vsEXevZW+JOfecIh+2QX/ea+6m/9/h78b8t3nP8X7iQ+UoOx0uBSuUu8i9sg+QBWY9X8x3jlx0LWyvsZfznfzzk/OV2bn3RKYOKzs/5yf+0mJ+yLHj9lf0e405dcon/jFpfwt70y1zH5r9tfoM+/MNYV5Xy5xL58X3nnN+64Xpt/iYzPtb5379cbZ3DP+TPt5p++3vGeInyHGqfX5T/absw9dsbAfXUZfN6A/SHu5L5b3Hurm3SD2uJa++uPnn3sYsFnib9RvnvcuyH81fhfn3ov8jOMZv3P+umPiQxOflfNlds+69QD9JOva4v2uuvAq9bsnvgbdp6Vz7p7fY8jvNFRGP7/XsEMJyq5X/yv152p/rP/f4/8LpO8l91rt1FK+Qr7b9Jvvbr63OX/KuVTGy7wH097/s39TFd8LjaM7Z56tnY/jX+x7ZOF+R+Ke805k3rPom++R9jKf2RM/1yW+IvN5417OIXJ+tcw4kflf7tPk/kxn/lUdnaHsvXPix5TfTv1T8Xmi9t/n/2crXyPjSMYv6aPwPY3czeXPYrfDyZlzyJw/xu+aFd4/y35K4k9yDzP78Ik/yX2jMv0295Fm4KMVvWX/dmjiLbP/nndgtXNg7Cj/lrxvTc6Mp+P0g2MSr6HeTXBM5mf84UbYDyZuqgJ61+FziO9Svg95H3ci/nKP+Gb1E4eYeLLEmWV/PevPD8vIKz/rzz/p7RTtXczeX0pvmHjMxJPnvmLikNjzb3buTb+vK/+CcX9H/f556c3xv2fmxTD37HO/PnEaef/uXvzl/bvs11VSrg95s5+3YyHeZZ36+8pPXMSf9HVv4rJzP0dztXynJkovz++osN8+9DIm8af5Pqn3EhxOnzehv0D/3UH7DfnZ4/Jrs882sVPupaK/WPu551O837OV/n9b3nk3ftQol8Z34pCL8cc7JZ4GNoZ/4DfvI5flfrJ2Pkd/h7ybkN/FSbxa3tfNO4/sULz/l/u1c7OuTByF+v3ptYJ5Q0PyNYBZB36Xd+zpe3720/njXvTUnn+MS3w5+hugn7i5xKkswtdy8nVMvBX+TiJvG/3km+zXo7+B+Vze7awmnfc7z0Av4+Ng+s34GPmyfo2ckS/zmcxvMt/J/tog/tRafuW885D9Zfyfie9vsx+j/cSv5hyoeP5zbH6vht9cAadknUffXdnrlKD6uf/eiX1ezHvmuW8Cf8p7Ivy4M3m2Yb+hJSjbA5ZnPq183nvK/P1J8mc+9Th9vkdfu+d8i14mJv6jsH+d+6inwC4w5yw5312Tdxlg9h8ezrli4V3+/H5K1gtZR2TdMD3zD/VzflB8H+9F+p8Mp+rHtejjOPJ+kocr0XkXfy+in7iDxCEk/qAY7zUxv/8iXbxfPA/mfePa8vPO4Kbo9c59Xd+VX/TDY/J+svon0fc8+WOlH5V/B/4TB5i4vzPx3y504V4ZHxM3hI+8l5PfScr77tm/SPzUjML+xXT9eRX/nqu/5PdJ2pA77z/10W7ef7odveitFb+O/vL+dfH+dd6/3th8cMO8A0POvM/7S+YD+FopfWrO8YxL/WGZcofxmxb+vw2957507kcX3yd+jT7yTnHx96aK+l0qnd/Byu9f5by5aeJ9Mz8m/0no5/7eCXn3q/D+RfH7sm3hO5P98eyHZ3zN+rEp/X5Nr+vT37S852286MZuq6WzX7YB/lqyY9fsp2mvG/m/gJ8nHiv7wb6Xg/JOY+I41c95a85f855kzl/3zvuK2p+SeBr85129/N5cfn9urvQCdvkMzoft8fNO9r/xkXO4nL/lfGFNfocpcRH0e3HuZ6FXfH8y5y6ZB+d3OP65b5zvE7uPy/lweQkz/mTcGYFexp/cN+uTOC12PAC9Bur1IVd+bzD+15M+K9JvD+lh2eeVfgtf2/G3B9hxGn9srt1R0l+wwwP4ek9+O36V30Obnjhf8uxMf5/itz86u2sv8XX3yN+Qfn5VbzN6z/vJeV91T/3lEf2guXTeHU/8YvH98fC5eeJuyJHfbyu+z1O8n9BSubwbl9/DqCm/Lf2ONC+ZoL09cr5auLecdyoSz5N35VfAHwrvyxf3lxL/nflXzveqZ7xhhxbS2UfJ+iXrqqxfKmR+nH0C8vyJz6wPcy8r68TzCvPHzIsTX5b547v664t530F7u2r/duPVHHQSv5r4i3Xo7aXdz9Gtq37Ol3/h1/eww1nZZ0D/Nf2jinHu/sQvSo9k574w6/rf875o1hvZR2CPlvrvAXk3ET8TMv6o/2l5CfMeUvY7a+f8l59fAAdr76u8i0LuspyDkT/zvdwXyn2ixKMuY8+9jfsV8PlW4uMSj5X1XeZzeT8E/+tr52t8jM19NWw9DE+C/+y/sf+e6H+pfz6ifn5PdQbMeJnfV13Bbvl9p8Zw9/IS5vt6mu9UvqtT9ee3jXsZ7zIOJg7kHfXzewnnS29C/nfwld91yu885fedcv84cY8V8vt86I/KeIF+X/Z/GP1GkVf9Nvmu552EvAMJz2Df+7L+LLz3kXdAcr9xVuG8PfONzC/y+wWjC+/c5H7+K7mf8h9x7I/iJ/dmc5+2PfpztbdA/WJ8Xmf2TNzPvKwX0R+b383gf29mv4O8+V2NyzOu0dvx6E8zro3L71nCE5RrRZ6DYN6TzPuReZe9T95NybqMPXK+fkrO2Qvn7TmPT3xq7oN2xu/H+sMn8HJYI/EhxrOR9LZOft7X2Yr+0t9Oob/EA3zGHtvkPYq8K8k+z9PntcpdwU+GZn2l/Qr6cQPpvF+W+4qJe884lPj3ley2IvEi2uuY/dnCvbDcw87963P4ZSd+mbiT0+X3Jm9+t21y7pHlXEn9xL/n/C+/H3MV/urQZ96zz/v1R+Q9De3dgf+fpPMuYH5HMe/zJj7uW/6f3yX4Tjrvz+VdnrzHk3f6R8p/NPdT8bUM/UX42p5cPchVS7pT4gsL7yNknMr4lPj5140b12SfUr0NjKsD8rsjOYfXft4H/4Ve8s54f/mJd0v8W/H3SQdm38u8bCJ/7mIc7y3/4sR/+44cmPfa8bmGXlvirxv5ch7ylfb65fySvRuh+xL/vi33h+j/v96tHVqI//4UvQbsmHjw3I+elvtH+Lkr8TX68/T8Tg6ck3v+mefmXmjhfskfxrMdyfFTxq/8zq/5SOIarinEO1xfgrK/C3GJ+f2Wrf0/98dynyz3x/5A7zt6+xamv5yX7xW95Lwn5zuV2Ptq/nmb9KP4qKF+3tl60P/zvtZK85ch5JxNXzcm/oo+O7DfcfAO/eN1+rtS/StgzkHOIH/9xOdlnoWPF/x/R/7bT7pV7lGRqx25ivGVebc2707mHcq8Pzkq40niI3LfTn7ebci9hLzbkPsJ7fBzNHwDrqOXHXP+ld8R1Z+y/57fG0vcSTn/y/26GnkvAJlecBi+r6LPPjDngTkH7Gfcup092xi/Bkrn/fm8O5/70blf9n/y/XOmeJx13Xn0lsP7B/BPUlGSKFrII0kUQhIVoqyRNakkIVtJlpYvyk6LZC9JobJUtlAhLYTKml0h2fc9O78/ntfbOd3n/J5/3meembnm2mbuuWeumbtxRfl3NVxTp4wXNi5j+83LuOuWZTxkszIO3aaM+9Ur44QGZdysVMZrty7j3tXRrVLGd2qUcZdG/kfvbO2cgs7R2nugUhl/hJfBKRsrL303HAGv1v7GG5TxPuVnr1/Gj+QfqZ2xW5VxofabNi3jhuuU8Qr6OBH9z6T7l6GiMTrjyfNTkzI+hN47W5TxPfqaSH/d65fxHPJfUCrj5ur3xf8gOIT+Hqe/Cva6chPySP+qfvS8VHtV/X8q+a4nzwbkHC79KX3s0JC8+BtLjz+Q92vyPk6+JuTdUf4b2n8T3kXeZtqfvW4ZG2uvebUyPij/YnJNJtdd8Ojwx7++41/LyPec+r1ql/F2dh8P92S/l6XboTdMuqf6x2t/Pnk6ab+e8ieSp6v0JqUyHknfH9BPVfmV5bdC/yjttaXfV9Yr4y7yq7D7z7XKOER6Df+thL+q7LLORmWcIn8Bvdyn/c/oey/0v+GPV9JHSfpn/N+jvXvTj2BV9NdH7yD/V5N+lL0Poq+5+DwX9uEnm8q/EY6Uv4Y/9cd/PzgAnqH9Zvg9Hb1a2j1X/s3knkLeVvxhqvQx+F2g/qn8pz3555ah4hJ0e0uvpK+x9P0ZO3aTvly7n6Dflv9M2rCM1dUfrL8dxf7XSp+Gjxk1y9gXViJ/E/Qmk/+pUhn3wOd4/G9Mr5fTa926ZXxYuR3lXyL/dOlm6FeSfgOeoNxY+el/6Xdb4yP97yfjygR4Nhyh3Lv0tBd+3zbe7Kj+a+Trjt9v2am58pvqF/XYtT48Vv7O9PaJ/rGT9GuF8fpTmPFrjvZP9n99/lTsv/uSf5JxuZvxa3/lFpH3WzgRfoneJeo14xet+M+V6F+oX73k/5dhbfo4mb62kX6U//TjX7fTzwT4LP1UVX50GSpOwO+r0q/T3zR+ebXyvYx3l8lvXbmMH+LjKfJ1kH8tff5J3z3Ycyn5fmCPXvzgfOk5+D8Hv2P1o/8pN46/Xaw/NKhaxvvIMQD9Udprg++vjSu/46cl++0M70T3EfXrG4/rwc3gi/hrzT4bq7+r9B/kP1O6F+wNj9P+C+k/sPWmZczzY2d8n4HvH9hjofab6Y/j0f0y/qJ8F3g9ekvQu1d6EH/Zjt0ak/8W+YsKfvs8vuO/HdnrTfavL/0WOiv1h4/0v174+Qr92vz5LDiIfhcptwS97fSPA42zDfjBN/xrpPLX4uMb7S/GdyV+epX0aPnPGA8PpvddpLuRbyvt/YivuvzxePrvp/xE9avClvQ0hPyb5LmJ3obkf0z+Afx3mnJd1R9Whor74Q9wFPk3j/7J84b6jdA/TflP4Gx4Mz19rP4tmW9LX4Pe/5Svw08aqXeW/OGeC2fywxXwTvp5h312wm97/rer/rWIvmbD1fS5CfoDjTsz0BupP+/BPgPQ/1e5l6XHZ/5I35fCNXBX9H7kl7fwr5vhI/SxmNzpJ8X+UQO//cndlz4u0v4R/OZy/vmu9AP0cS953pRfA/83k2cyfh4zPsyG3dE/m96exscZJf/jc0UZ/pu/VJDjMO1/ajzZULod+zRR/wL+/jk9LZGuRf+no7cC3gG3wccg9G9H/2Lybo//79Bbl9+tNA5cofw1+sUNnl/LPAfq0/9K7c3Ncw8erP236OUj/b+d+o9otw+7fcfeJ7PfhvzjV/lvF+ZPp8gfjr8O+l3e83bHfw38LCtDxf7wSXYehp+L4d/8ox/97Mpfd4Ot4bPaGeL59zY+XjCfmFQq46Pay/v9BHJehv7B5jd12HM+unWlF6m3M31vUG/t+jX4xU/89Al66Mvf9lX/AfgkrISP3uzwJDnW4wf18b8lulvBEow/jdEfXs17vPTz+M14/xL8HHbL+xW91UW3h/bX8P8K5Z9jx0lwE+1X0l/68/Pf/V+ff5yl/Cy4ENYl39f86T79+Ht6Pxj/jennXfq5W/oe/A3l1697jvxBnkP48d/87EP81Za+hp13Q7du/Fa6NfqvGu8n4GsVOlXo7yT8/wk7kuMV9a/w/23+rwF3J9+b+tX7+G2j3v7yD+ZfjdjnAPzl/WAMefZhh5WlMt4i/4oGa8s3ucHa8t2tP43mt1fBT8mbeWs99sz89UD8zUDvf+hlnL9F+l76moqvhvjcAf28X+S9IusEeb9oYjycb3y40DiY51DGl4wrU+AQ/W+nvJ/wm4bqz877MX//Vbnl8ncn72r02kifIX0C+Zey5w2wMqwifzR9fUHurJstlj+V/c9g//XgTHqvia+/+EEz/j2HnuLP8fOF9Bl/f125JtrdRrku9HcAvfYxbnaAg/BXDx8Zb+JPX6PXBr9jybGfdHX01+UP3xfmQxPl70YvC9jjUnZ7gf2vY99fYS/+0F1/OJVdK/B3D3s+lPUlejvO+NBI+YfxNTLvK/rBNfS9r/rF9drM81/N+yU918T/J+z9A/19ge+P4UWwMzsOJH9DdN5F93z6mYfeztIv4iPjT1N6/xv/Nejne/q4ij++RP7XjJffGpfOSb+nj1fx1Rn99T2Pu9LLRtKN+MWO6J7E7jtIz0NvUhkqBsO5+DlK/Svp8wJyb0IfH9DfanS/hV3J+zH6e/H3I9TvxA634f8s9Y4l92zpMfp5Df8/4zk3EF5Ozz/g9wV2exD2xd8N7LOudleXythH+3X4aU9+mefresodzE6j1L9D/3gT/YzvmbdkvjyGvLeVoeIEevxDOuvxWbd9QfneypXwdxt9NqWXD6S/yHwVvcH03Fs68+k5+sds+BjcXv0njC8Vyj8lnedHTfqZx782kW6Lv1/46XHsMEk666u96ONafjONX5xOn8X5QOYJY+njEfbcid1vku6pfjv1p8L2+tfv2hmE7/OzvqYfdsDf5WWoeBcOKZXxLu3/hN5i/rganoD+jvAc/W48vqrRz1D+McT/eW5dQL8Z11cYP4rj+8v0kfFgfMbtrL/Ryx9wCWyp/r/qvcw+TcnTEt3q9PaMdDty/Jb1C3q7VL/4EV5Pf++XoWI6/ztT+jN+fQF7/Uv+Z8if9fvn5U9npx7G/0H4vIG/3Qab+/82ergJHzWlr6bv+6Wr0ueW5LhMugd+HmK/o0plfJy/5vl2Pnp7Zr3bc6AF/rO+lHWlhoX1pZ+N38/7/7lg5pHmiyOl79feJeg3oJeGcDt2yvtw1of3Mm5kfbgG/Tf2f9aDGhs/so/QmF4X8oMF8E70h/Of4/nPcNiX/l4wXtxJzr3o+fesU/KnBslHf4j8ueSaA7+CmdfczD5ZP15hHNlW/ZnGjb/I9YH/p2X9lr520f5U/pX14Tvpax12f4m+si/zMPkHk/tq+Iz6R+FnH/xtBv/MeiZ5z6OHuVnPkb+L/xvj73Byn4P/F7S/RrsN4Tr4m6n9P9mjRQndrC+WoWIvmP3s7F+fSz/Ha/9F+qlOjpXscbj8LrCDdl433hziOT1CuiH+HuUfn0cO5TIOzcBXN/gCzHOwLnrHau9S40UP/lyJ/prpV9vCW/N8Z9dl/Oggevqefk7R//qzU1/pxeQfxz9609cq9XfI+hO5DmWXV6V/096p/LK2/3/mr2+jc51y1bIf7/9J0o3o7wh6OBN/WR+oyPszflvR2wMl8iq2FL4CR9LfgdK16XUj2E37y/jrfcq/Z/yL/89RfwTsAPuQ60H+OQw/O/OLm9A7mN4bs9sdcEL2SdXfKPM3/9+Ov578eUP2qZVxD/2u+Hm9IOc4cmyA/of4fVg7GZ+f87yfBO/ib1cp1548W6Ye/Q9jn92UbwWr6U8l5ffXbs+sx+sXe5TKeC+/6cm/NtZeNfLNy/yLXhYrd5tyP5Izz/P16Xsw/m7S/qHqN9BfWuNvBv22JldxfrQJ+lkP24k+L5HuJP2A8g/j41L+04P/Pqe9zokbSPwFfWV9+Xt6fBq9q/jnQvbaSn+rnPUz9QYYd6pK/6Iffo2/rL/UIv8S9CfT5/nwoMxv0R9YgS84H7bFT/QZ/UbfL5Gzf9Yfsj6n3Qflr9T/V8D34Av0ON34PZde7pW+k34vxU9ruBIuNZ68I80tKlbpH1dI1zZfyj51S9iMfJPwMxE2NZ+4QP4/7PsxuQZmHUT+rfTxhPw32eM7+cOMd5PYry27HZp5ufn80fh8NuvR6j8tfZ7n1lDlhmu3jf8784uzE59Q2L+olP09mH2Mh/A7AL2zyFFL/ZfLUNEL5v3nC/Z5SHt5P837at5Pj1d+KLpP6odjlM++/TuJj4L98defvTajx+PYaQv0TuY38/z/ZOH9bzl/mAkvgdcYr+7W/3Y2PraEu2r/cvm/0Nvd5B1JvvSPWeilf+zKfmPZawz8Bh6OflP+/jC+H4IvZ18O/S/1rzf430mZX7HvArhu1o3I/3f2vel7Of4ukr+APs6FVem/gjxPaX+Y9r/1/wDyjVbvPdge/by/9KDPC/h7T+nFef7T60fy/2Xv540PI/nnYaUybiH9F3nux98U/NUi/+7az/jYjd5meh5sn3V38j4BG+mn35BjPL7ezL4v++X9JPvjiZc5QrmW5NucvBnn66KX8f1j/B2C7z8arc3/Oex6mnH7l8L6xLv4fLrkf/QuUr+WgfF9/eRr2DL9h/6b8pNv6XUqefZG7yTtvUbevH++j35lcq4Dv8rzsAwV39B31s8H0d+/7NEc/c/yPsD+i8h7N35nFfY3dlH+25J0+iH5z8XPm/TeSLoP/rLum3XgA/lf1n/P4g953pbgcnq8mvxPsvty/Xc4fv9HvmZ5fpDzIfwX533tlX8q/l0YFzfFT8bHVv4/B//z4IXot9Q/prNbK/WqoX8SfZwYvcBt6K8fvWX+fKb0Y+pnPn4+fAS+wS+nsFfiXG9kz355P9PeCvgWve+vvWPU/4icp8Dt6SHxn3uS63jtZH+nC3sm/vn5xEmT7yr8fiz/c+lW9Jf3zYvo7wH+1lP9xMslPqY4HiTedrD8HoX42x/Z5wzy7iW9FfqjtH8h+c6GC9T/1fxgvaxDSs9Gr8L78HPGn3/Zb4j66XeJd7pf/r3Zn8T3v+T5B05Sf2XW+9Qbz/+O1A9uYr+L2T3v0a2yvszun+LzHOmm+v8Jed+Ax2jvFXy0oe+fyHEq+4/gnw34U0P4Afrfk2s1fxqsX58m3Zx/LcHvfuQYmvVI/N2Z5xv99tVO+7zf0cvryi3nj1fr703JU4d8k5VLHF4LfNUo4dP7wSr0r+W3E7IumXgg+dfxpy7obUE/g+X/VoaKDdjtbOnsb9ZE/zD0t2CnUfSf9bNX4YvwFPRPKzyvfkWnT+YPxtGx8Dr4ceKj8LuddEf9b7J0PfpoQu8PwqvIG33HDtH7Z/jfPet6yrWHizL+seuGsKp+1ivrb/R7E7ot+FVL9f9k3zXwK/3/11IZz2PfxGknLvsv/M/nFycbt55KP+DffRLXwF+rGC+uoYfsn2XfrD7/yv7ZMcp9j37i/BNfvGPi78n3FXv8nPMa2svzPc/1DdV/idxL4ZLE8fKHE+l1y6wjsedf9NtW+bvIPSX7OPQ7gb/Nx/cV5Gkn/wz83579ocSVon+Z/jKUPl9SboL87Gu+/P/sb9blL3n/SDxD3j+6KV+dfbM/2EP5T9Zfu90bC/xsjP44drsVnof+5+jk3EHxPEKex4OyTyvdlb5r69/TtF+9VMZ70H8g8+ast6tXNeM/+89j/7Y5z0IPm+L/QP16+8QTa2997W3ALs+qd3j2KwrxH4vJtV2h/bQbPkYkvoc//bd/ID/nc/7Qf59B93T62FP+KnY+An5WmM/Uk+4GD1fub/LN9DwZC9fAd7N/x59rsd9f9PQD+0833nSDM2DOWzyg3WO120Q68+XsiyauJnE28c8m+l9tuB38h53vo99nS2U82f/Pqn8x/hO3PVw68dszCvHgN7HnP1k/VP4q9aeQb6h6ibdNXOnR/CnxpaPwdZB+vkfihDK/9ly7tQwVfWAXfOQ8XOIvMk88DJ0PN1ibzyJ/W+jfD7LrK/xoD+0fSO9j0T9eeznv1ll/3kS/OFS6n/bPpP/E59ZAvwf7X2Y8eTlxlNK30G8T7TfWbuLWH2aP7PvnPGJX7WX/vwV/eJEe18DdjIcbkft8/9dRL+cr1qGvp5SvjN6+9NOXv2a9Yjo/Xij9pHrjEkcNm9PPhpn38p/EI38ivx191Ed3TOJMsx9QGH8r0W/2Px/J+SB6elx6GP4+Ybde2t8BnRfp/0zzpY09x/rzo9ryX5a/vvFkL/8nvniHMlTcDT/PPiG5ahXe//I+mPe/BuTeVvnHyLFtzl+xR+LdPqbP7O99mfVjdKbC7KPcxz5bpx/Tzxv0u4o/DSTfKzlXhX41elmQ86Yw6w1NYFv4YZ7n9PSx/vk0O0zEf392vJa/PwkP0x8S33mU//8slfECfHbkv2Mr5MO9YYOcsyDnTuSpq5+doP7ixCvB+PMyesi50JwT3UU650Mfp+8d5JeyXlp3bf5OLPDZXP28L+c9Ou/Nq6Uvw898fjiSH49U/yTz5pNhn6zT4T/z1/n8MvPYzF8Tf9ma3RJ/mffb7M98zi570v+2pTI29VzcBlYiTxPpxAskfuCqPPfovyE7zUy8OD4+5j970sOJ6B5EP/OkBxmPX4yf0s/G+OuN/1fyXNXOptpfpvxS+A7//Ib+8p5ZfP9cN3bXH+ar/xQ8OvFjyu1BjlOkL836MLs+i8558Gv8d1bv5sJ7et7PM5/ehR5yznIs+jnvlPNPw+Vn/b9K4fl7CjyfvR7N/i9/eI9cl6i/Db42p5f4wTz8jSPfRHrP+cacezw7cZDG+QPR6VcqY2P0u5I755XqkOc249r9ORdLHxP51VbGnzvxsUq6SeJ39Zdl8E78LCXvLPwMhevwh7/Vv0L5cfi/BW5JP2/T7wHZFyjEK2XfL/vVxf2/8DuWfDfl/Kv2s293Kb+7DGb/rh89bF4q4wj+kOf3qfQ3El9bkPNm5VvkHBZ6zaW74HeJ+qfg43npT5X7hb90Ur6l9v+h38RvJm7zSeUTv5n3r7x3ZR6Qc/xZv/qNXdJfNjLeJd5oEdw3dibPUvxkvWUxuR+U7mPc+3zztfk8NOdD2WO+epfxs93kJ35mZNbn0V0Nx7FPzl22Jue16g/VfvPE8dPrO/SZ82+X4C/n4HL+7QZ2XQ0vhom/T/zF5cbPrCMn/iLriVlf3A0fWV9sy19PoPeF0vGbrOuMZcess2Wdp2epjG3Q38z4MA79O/lzz8SNKX9k9ifppzP9dsR/zr/mXOtexoXoO+dbR+CnGizx4zP5R87Tvpb3/Spr0/+rDBWj4EfssDc+cv4w+wd3sc+7WX/g/9lPyf5KB/Q31N652S+j/9ryW8lvy993lX4p9qP/4r5s3tfPwt/1+LsBZn19ovlH9hM68bdB2u8uvSX9Ff2lLr56lMo4qzA//1X7s+B58CLlj5Suxm/HSL8hvx+//Yz9c141931k3fDRnOci95Pyc27kNTgS3p19C/b8jn2+187gxOfx98f4f+JpEkfT1fid87gbJC4o8e308330BD/NOmXiNvDfg32W5Xwlez+rfzwHZ+NzGn1sbVx6C76n/Zw3H5x1IONBzp9vSp7e5j/z8Dcaf7/SU86Z/I2/jdD/OvF67LdrGSpKxuu+6g9Bby49PZH3R/07+8OP00eznE/C99/k/gt+i5+s+1Xhx4lHz/pKM/7TMPsq+M/601Dln9buqOz/y1+Nv1FZD9Bu4uc2oL/G9Hci/TXIOMA/BuT8JPw98dn86hf6Srx14htvw/8vcAJ8mf2upv/O2TeXTnzQIvovrhvWhAelH8ifTb5O8Z+sP9Fbcb3wO+P5ZP8nXjnxb1vl/Ax6j/HbjbQ/nH530P7F6l2SOFz+n+fuFOk8f7O+nHXlCdrL+vIS/SPPkzxf5kg31f5G5P5H/d3kV7DDNp4z28KOWadm7y3Yvwn7VdHOAPZYlfWpvD9mH1r56Ymvh+/Rd3f6zPpLP+msvxxO/oPIX9wvvEi/qMk/Oml/F/n7kv9G/PRF5130l2f8gXfArM8dp70XM36il3jUT2OfUhkna6eU9Wz+fIR+fThMvNtu7PEDvq7JPgL7rEPvuXcn9/B8T39Xs/8HifeT/pj8B3iubSfdWXuzM3/W3gg4v97a+XfQ5970+570MnSy/3ZFqYxHsm/24eYY985Q/i3pY8m3kN8fTV935fxX9keU/0D5GxNXmflW4nErtAe767c16etQz4XH0d8064H6/yT8Zb3+FO3tY97VIft+9JnzD4kXStzKCfg7O89H+sn9CJdLj5Z/qP7W3jyxLXyIPg5Gvzf+sv7cQP1GuReFfz4Eb5D/m/G+Lr+YlvXGUhkfz/oQrMXO0/hXa/zWxv/zcEdyXpD+lfgH9arhYwb+eim/NOt69LcTvVXO/Q/q5/60i8rw37mwLrCH/KHsnHW2nKPK+akm0Q98Sfs5/zegMF5l/GqR/khfXdnlInqcnvE1+3cZ7+h7s4w/2imh9wk+6mT9tRA/mXjKxE92pP9O/q8Fx6Cf+eOp2j09+3X4aSf/jtyPA6eivwe5co5t9/hhzp+W4f+9h+Aq/ee2xMHBxLdfrn8eB3Pfw9/ssEh/eh8ugIPwl7jh3DvQHeb+kh/ZawicE3vi7379f6JxNPtv2Y+bRr9t6HXnxA/lfR69+7LuDXvm/kPjydv0t8LzoxP6ZxbOXeYcZs5f5rziIPzlPONdmYdKZ53gV/0z50bq6z9V0fsdXzvk/G+Bn9k5d0q+/fSf/sofRz8DpRP/mn3neYX5Z2X9I/vYy3NPD35H0stUdj0k8R34bKG9ubmXiD8t01+aV5ALXgmr0tcQ7b2m/ZyP/JneivGl9yXuKu8//m+n3dH4OjD77Oy9AiZeLut7iSdvrF9lv+Jn9a/B51n4eRj/r2kv5y+mwZzDOEX98/G/hp1zbibxCw1zPkv5gfJv0D+2LNw7dg075Hzbpvidk31g/pLzJCfjZxzcgv/GPivxd0BJ+/Q5C3+j0K/K7qOl96PnGuZ7teD7sE/2LxKPg37m45l//5FxHT85L/SU9hMX/SW5Exe9ufwB5gWJy98m8arobSzdn98Xz5+sKjw/8jx5A/0/Ez9Eb1vJX+n/LbN/Sq7iPYafaGdy4gvkP80+d9HrvuRcTJ678JPzC6fCxE8PVn8iejlXcYL/c74i9xLdmudS4Z6i2YkHSVyB9quwX+YNf6l3Lsz5+SdzHpL/PSEdP1+Pntqw35PZRyJf1l+z7jqc3rL+2p9/5L7QzOc3VC77Dvew766Jp4799d+j8JF9zuxvdsdvZfq/23h4Dv3dZL5wDD3NkT4r98xkX9n4Ma1wP12Vwn0azyeeC/8Xkqc6O95AD1/i7yl+lzj842Hi77tp7yT87oTP5fT3Jv/fWv6uuc8H/RHaXTfru9nXzv4C//4Rnz/mOZL1M/paN/vO9JP4qIz3P8M8D76hhyMSf8p+J+b8Kv3lftvl+J+Nn9wP2Ul/XkTuxF0m/msq/32W3ybuuCf+fka/tvLr6scz0F8h/8GSdnO/nXaGaj/n3Irjyx3K/1PYb87+clXyZH75qnqJz8z9yrlXOftauV95tH53knF5jHTu59qAXWvCzPe6aSf3/+Ten/r4y/0/mZ8fX7jvIPPz7E9kXyL7FPtLZx1ia/SzPjFFeqby/90fJ537T7K+e1xhnTfrB9eQJ/dBfYb/Q+Tv53n0A//omHhO+RPoqwZ8kf3+ynhThv/uEfkRzs77D7rpf//iP/1vmOfFQ/ATeAD6g/l7xqv79IPsTz+K3yPJfwS8Tj983bj1Bnwt98Wgl3vZmmbeI5372a5n3zw/ck4vz5GcF8z7V97HJsv/Xf2z8fNT7gfMPk7eV+n3NNhE+2caB37gh8PgS/wjcf2Xwfbmi721353+W5E786Gco01cW+LcZuA389+cJ8o5o5wruoL+DzR+fGr8mKn9VuQ4zvgbP+ghHfvflPUi7dwg/QX+s6+Rey8SN5P9jdzX/U6pjLnPu716I8k9F14DS+Q4jH6H0+tS+DR7PU2v/1+c2jjlX0GnA+yIn6fKUPF6zlXmPBJ5jsx+hP8fgYnvfkt6iHJdpbMe9xi9zoJV9c+/1V8/8xJ8Zr1tE+NAcX67XeL32P85/E+F4+XPp/9nC/RCP+t3hxp/ZuZ8Or6WZH03+zfa35n//ZL1Sfy9zJ6/GKfv1X7iPqeoX4z/vJB/bMdeXQr37QzTH4bDi+GN+KtqPK2Jbi04GZ3cN5x4vwH4PQx/C8tQUT37qdK5n3t14d7ZOeSYQP7El15uHNwMfkK+d7Nvis/x8EP5ua8p5xty3mGnwvMmz6Gsk+d59GDmN/R3LHt2QP9F/eJ2flkHdqm2Nr1u+H6kytr05xbiN5bB9eg/9+Hkfpy2uddHfg3yvE2+rf3/ETyb/++Lr9y3eV6pjLm/LvF7xfs5Eh/dqhCfnfjoW+lnceLO8Zf4lLyXb0V/v6GX9/Sfcv4AX1mfeR6d3pn3wT4w51GbFe43L54/uC73KWWfmB3y/YU50rlPN/e3N8/+GnlnkfMnflxHftXEh+D7O/Jcgr9x6N0CP8Lvgfwt9yJmvS3r1bm/8zX+/Y3n/Hq551r9M9Dtkvtncz+Uem96rjwMh2Q/kn7nGa9yv2ruW61HH4PQn0B/t8L3s87CHp+iO9nzK/f7X0e+5ej/lXvq+MM65Bmo3+Y+kwNy/xr/r5zzKPC1UhkfYZcryJP48OyvnpF1FemFuQeFfl/H75tw3cxz4YnsOpBdP8g9LolD4B953hT7R+LpEl83Wzr3+3yQ/WN6eQa/xye+iP4y/896cxX6/dn7VO4Zag5noJf7yXMvefppzuvV0d+7o7PQeFBFfp5ffekt5/Tz/LqV3cfDm9R/Pudx2eskfrIjfAedmeTPvT+5LyH3I/wmnX2h7BNlf+hh/L+O/1lZb9B+5qefsMvm9JH1yVn09Sr/m67+zdkv1p+uLUNFpovL0s/90Y9/LdPOZvjPvncN/ahBqYzZ/94T33m+XVF4vnXX33I/5DmeN7/qty+yy8bo5X7K3A99I3kbJZ5a+y3Rz70FucdgVOH+guPJ+wWsrL2sn25L/pxLzjr1nfw39xc9QY+9C/cX3UP/e5NvunQL+sy60q5wff64Jt9XMF4dRR8fS5+s/qv0vzznPuH++X4Gu2T8z3c7Mv7nXtQB+k/xftQHjMu517ktPeZ+59wX+BK676NzG/0fY9zuzw/2gRfKH4P+9vpNW/rM9xsSt3ZX7omQvj/387DPPOni+2/2Uy6G2W+5GL97aHd32AYOo4ch9N2P/u+Hc3KPF3rZN2yq/QHq/2G8OKHwHYZHE+9Yhv/OUU+Uzv1dWVdNXExxfXWjwvdTfoJD2CH2z3dcYv/4wxT0J+J3DP7P5R8d+OVK40HuWX4v51/oa4R+nftXvkX/IfIcA2fC3HeSc/G5ryr3WGV96kv+2ZZ9t895Bfxlfa5Ce2PInfW51p57u8HEOy/Tf/J9sBK/Kn6vKvFHiTv6OvE9eb7S9yw4MN+nif/qLzOMO7/zh3y/ah//b591qIL/rZLfgt+MyvOLvJeTP9+H+Tf3GOR+GfbKvd655zv3e2femvlq5rN3qD8dP/vm3p2C/n6WvyDzafUfUD/rIYk7TzxZ4sgSt5D3q2foJe9Xi4wvl5L7H/p/QHvXoduYn5yPTj31c39v1i2zjpn1y+o5L+z/9aVzP2PimiqzTzG+Kee6co/hosI5r9M8z/5JXI7+umXiFtl3f/TvJe+Vua9Kuc0L31HK95PyvZw96C39K9/PuZD/Tdf/66jfHH/VPZdOw0dfuDT3C9D7aHYeCVdnvmL8G5+4A/Ienv6Dn1VwP7iwVMbsV/Rk13y3LeuBmZ8m7i73I+R7bd+w1w+eq4kf6KV/dKbPQ+Chuaco90Nk/5c+E++e88UryfUL7Apn4T/ntibl/kDj+N6JnybvpjkfKP0g+Trx/wX8dxvtro//3NeV+4NyP1P2wfJ9gbxnZ511YNYv8l0/9Duin/jOdnmvIP9++M/9RDPzXRJ6yTmLzcj3Cnskbuow6cRPHWQ8yrmYnDuvr/4a/XM7eCJ+872h/76Lhf+st2Z9dZj8h3MO2v/7oH+S/tsc37mfP/d75HtRiYuYBHO/7kn8ow/8BZ2cD8i9WfmeQr6vkP3JRonf0M9q4CfrnhdmvOG3l2WfFv0K7a0Dd8/7Lv8/gD4SL7wTvU0k3xPGjSX42I593sLvEfp37tdKPNBz2s85r+I5sNcSR0nvb+T9QDr3LL6vXEv1T5Y+nR9MTHykeufyk3yfbpXxZD381aOvn+NnOU9kfC2O3yOUa6T9JbBe7kMx/vzouXam9Df5/g17tiB39cTpZB/NuDNK+lt83Jj7HaTPy/5C7muXn/evefi6pwJd/H+u/BHk75lzBPLn5z519m0mnfO7Lf1/Ir30hgvwe6z2Mu/Keckl/Kq4n5197txPPRV/+T5nvm+R7xNk/bJB4n1g1i9zv2Xutawo3G/5Pv3kO0hZzztAP3gWvdPw8Yx0B370XdZD0Vuc+W7i7zS7sFTG4v1704xLB8n/g3wdMl9l33b8cEXucdPePuS7nlzL2O2F7L8Yv3Kfw3jtrUe/iS/oQo+Jm4n+O+fe3tyT5zl6CPlzfrtpvr9RuL+6c84bkG+5cjkfcW/W99k/5xD3137uZ8u9bCO0m/vZEid0bmF9dX/lt9S/v9KvxuQ9Tf2sv2demHli5od/669z6Wdz8vZWLu/ziYtKnFTe7/fMOXHl39JfOmb/plTG2+Fo/Dyc+D39YQf4E3yW/YvnGv67XyPxD+y9F/o11ZtAvkMyn8/zmBxZn8r3srIuknWSrI8caXwanXvM+WvOH+2c+/gyjpL/f/x/lPJD8f8t/TZMfF7he1PF7wsPy31O+GqqnVvl98q+HDoL2SP3e++v/AGwE3wTP6P4b94/jpDO+0fuZTiJHBOlH8dP8fuSf/CPHdFrk/l+9MbPcn9sc+1lv+iqvI/QXwf0apFvBT3dSv819dsr0b8aDkFvJP/pqF+2ll6A3zxfzi+VMc+ZPF9qJd6KPIPV20L+2exzERwI22l/qfF0MWxH3g7kaIOfPeEEmPvJ16Xv5fR8SRn+my9tQK6jsu5NH79l/1q5xIsdlvuXyXMB/x4K/wef0X6+75LvutyRuET50xNPr/19yZnvh7+I3o789J58X4H8z+V7SrF71ntzPivrPsb/zFMyP/mNfvLdhOL3FJJ+u/B/vq/w/917k+8LN8v6Orlzj3Xurx6L7zXKVUI343vvCv/nvk/p7G/muxq5p6CfdO6Rzvpi7nfJfS+536Uhve6U9y31Mj9/XfnByuf+/tyP2t3zdTP6fVv6BnTyvfZ8v/1+mHtsd8l9b43Xbi/0N+GftROnCB9CP9+bOke71Qvfn7rd83g8//qcnTL/GINOC+lG+utU6dyXnPuTX6Cn3J/8tvncpdp5RzrnU/Jd6uxX5dxEvl9yDL7zHa3i97MOZ9fn1XsXnqj9zMNzfibz9Lvl76O/nGnc6ErvzfHzfz09XyB4nHXdediXQxs38BtJpaKFRHJXlDXZImuWZEm2rKWSKERFpGRNligtHkQppSwlCoUKUZaikO1BkT0q2cv6Hsf7+3x7D9fxPvc/32Puueacc5u55jrnnPldX6Ps//4d0bCEZbVK0LNxCR+oWMLlVUvYb9sSHr59Cb/X7IQGJeyiPHmHEk7ZpoR3qt9wqxIuQP9Rz7fYroSnKL+j/ZF1S7iwvITv1y/hNdpPrlPCAfi/F52hyiepb9aohHfVK2E19A+uVsIXybMvOWerfwa9Z0MXf+/i5/mNSzioegkPRGcY/o5A7wfP3U3fH9LHCvyt3rqEB+BvMD1/QP8XoHNAzRKO1f/ELUuoednLW5SwA/7H03czfO2K7mbq6+l/jvoz4EpYDd8VtFtDr5eq33xTdD3Xu0oJP0V/EMZWajfX8821f3OzEj5diVz0M5O9zlU+T7tz4Zn84BnyzUR/Lb32pf9PPN9KP8uUu5WX8LMNS7jLRiWcpPwR/i/iH99WKOEv7LGt/n5hj+0ql3BvfMd/HuO/C5T3xHc3/M2gr5fQm6l8pvqXjccb4Ua1S/iU5zuWoOwmdnxfeYX+rox/b66fKv9u34rcs8jdTPkZenxHf9vDh/FRR/sftbsWjoedyHkcfbWBKzYoYVvl15Vvhztofx7+n/X/jf3/CuVq/Ochdh3ADhcZh+8Yr7dp9xTciHw90T+d/8woL+EoOJb+r0b3ePq7Xflg8vU23g4xDv9Wnmi8vG5cNOEXr/DnJegfonxc6Cp/gv/+m5SwtvF/hfJE9TP45VOwMT4bst9f7LWC/S41H89T/yX9TYcPop/x2pEcI7W7l973w//n5D2K/FPpdz98PKb+Uvgrvc3U/t0SlHWGffnxdZ5b4f8rtL9BeSN8/WA8LyD/RfTdknz/ZFyYV+ebjyrpvxY5l8Cn0b2EfxxEH8+wy1D9dNV+X348EL+T1S/Uf2vj/0v9P0SP8b/J6hfr/1XYAv3u7NaY30+C29BHHf47Bp3N8d+Bfzyhfqh+G+OrNvono/Mw/I4da3rudePmCfzXZN9v+fOV5pMryDNA+Qn0N8dXF3INbvDv+suM11fhbdp/4bmVynuo78DeTcnXVv0+9H688vLyEq7i/0PgVfT5NT+eol3sNhXGnpnPXoJVyZ/57QbPf26e/QK+Tz9N+N8g+ruDXM/pfzZ7Xg430s9d9NmyDH04Dh5G/guNs0fodzL7z9B/f/asC2ex88b4mKtMLWWjYCfPf6y8AF9NyX8+/o5gj0fNT1NgG/T3Ma8dit4x7NiL/M+T+15YXz9f0FfmjT/hY4V5ZBK6A/0/89Gu5SVcjJ9H4MOwIv1MJPjr/GOu8gJ6PA3/+6PX1Tw5kv928HwPfM+Gx9DTEeRYxj6T0LlB//er39Q4rcyuT9HvHPK0I+d8eAb5H9VfT1hRv+9qX4c//mxcbKk8jv67mA9rwyPQfUD9b+TbGs6lp+n0U9n4Hku++yIn/XTT77b4a43OneUlzPp3IPnLCuvgHbV7mX/MQu9NchyK34/Ra4mfu/T/j/dBR+uzv5TPI187/PwDu5LvSPpbyL9P188C5bPQ38D74R/vgTLl+fQww7/bslsb9myC34P19xG/XMu/hho/S+jlXHqpoJz1bw10n0f3VeWm+u+Obr4fJsMG/K8Vfcxkz/8qD6afa+h7Nf0NVt+PnzYn3/XwA/bKfFGG353JO5Jep9JfJc994/GM/+76/8F88SX9luv/AvIPybqGHpfwpwu1r4jeC/ynDN+30s8g9nrU+30OPAe/q+h9FXpV+WUz/B+MvxOU76bHJ5U7018z/L2gPuu/meaXP/ExD5+Pk/ca9trRe2a5+kfRrc7eL/t+aq5cC/8fon8XvzqefPey/7vo70Uf7Yyr+uxUxu4bwQrwMc//pnwcbKN9vsc2s+7IeqIG3ET9AN3UJdd7ymfR8zx6aYP/Y2EP9sj3zi3wODibHzxMb4/Ah2C+z9Nf+Ei/D5P/aPq7h3y7sMtY/U/QbgpsAt9n55WeH0bfrfnfPfrP98rF8AP8nad+Fn9PnKEYX3iFf18Pdzf/1yPHp9pNQX+58pn4+Zbeu8DxcHPjawR/GYJuHfPMbfSyH/9pAbfll720v9f6ZAy8H+5JjpPNDx/wh8P4RyP6r8KfTjTOK+r/DvxfgN8DM66Us56vis/K/OgXengQf3sYl58bPyfS/7b638L7ZBi7Pa6fk/N+Rb+O+g7kX0u+deTrr/7T8hLWx1++qzYg9wz9va/9Ofy9Gbp7wvHqfyTXOHq9CV978Y+X0PtKP8/S2zz1m5kvWsFu9DsEne/5y+r4DX94Rftx9Hc1+1TTvof2Pc2f0/D7D72P0n4N+14Gf4Ad6eMofGfcTENvDPqXGedV6bNyeQlP0N+tic8Zv0OUt9H/AHp7kN3nJ+4CXyXXM3ACeX/VX2v275s4Hz/qqP9F+lvBTouVz0G/duZ988QWyk+Rvzt9nsE+vyg/RY+L6WsP7Q7T7yz6SXxgF/UzlRMfuKS8hMfyiyH85fW874ynlfR8cAnKOqi/nj6a0E8NOIO91ig3gzeZRxKP2jLjB25RGE+Jf9U1nyUOlvjVVfQwTnkCPu/P+OevixKn034f+s+6rn15Cefxr4Oy/jGvroYXeS7fv9tlvoWb0Ffiw5fyux2N253gQvSv9PxaOAHOw3/e74vgq/rJ+/5L9m9Ezkn6W8r+L5t/LjVvjfb/H/P9pn1j7b/hn5l/JpgvK8MW5KqCvy78tpX6zsrX0+tBxu/m9P0jOyY+29V6urJ57jv1r6pfwE8WwgX4+hZ2Jd9u/Pk2frOYfLXI9yO9P4zOLZ7bg772hHvBo9A/1Xh4Gf1V5HqS/E/wt8v5w/zyEj6e8eP5QdoPRm++8hbkfgY+C0/Df418n8On872gvjV//Uf/H/Cfn9UPNN5vYt9ifOZH/N7m+UboZf5/iT2+oq+FiVdl/ZT4un6OgOPUL6bPT/jrTPIdmPc8uZaR62PzRC/1h+ivPfmW4G8Q/V5agv8X92aPfCf9Yd57x/zch/3PIt9S/beEI4yzhdm/0l/s9ic+dkr8DN9baP+B8rmJK279b/6r1fs3/5sYzzPML5fkez7xssSzCuu4rN++IvdwWIf9X2avCej9Blt4Lvta6/C9N3yN/BWyHmOvY/T/EXvn+2kqfS8zv7xCvuhpkvFfJe8V/3+cfjclz3/Y5wH+8xr9TKXPa/nFGJj49Qp8naT9H8q7oP8pP6ig3/Pw+Zr6zvifgN6b5Noy8QP2q6v9l+Ul3Fv9SuNqGj21VR//eAH//fG9CG6WOG8J1ttnqXLsszf+b8D35/RZQ/vPyfsFnKfdMvqrbD5+mX6ux2/m3+qF78UH+MH50X/mH88Ng8fq52h0sx45SnkG/VbH70z06rN3U/1vQx8D6Kml8vn5vtf/eYn7wTOzn6a/PeDH5pubtT8Fvb/gScbbgfRyLL3Fv5eZL3YoL+Ed/r+JeWMf/dxI/rM9P8r64hzlhfrfwHjMvnY/OJteVsOt6ecdehhMP6fqdwS9PYmvAeR/M/umyombtdE+37OvGX8jPJfv26xbMk9kfzv+N1/7AXkf8sfD0a+S/Vz87ULugcZLd/NX4oAbZn9P+Tb8D4c7kf8Xcj6R/Wrjcyfj8ezsT9PvOM/lOz7yjUHvWPb/SXmY8fMifsYkPkkfr5L/fXwkv+BD7Q/V/wp+9AI7/cw/xmm3C/terf1D+Dyf/i7G7yrPVSDPsHzf8av6/LqP/rLP3Eq/E+jzRf5aS/vsr2ZftXrmQfppg/7m+NsZvezzzcHXY+TZn3/vjs5u7P+J/38Kh/GDx43Xd8n9pfljlP6Hav+7+fNbWE99D3JNYf+Llc9p9O9+Ml7PyvqAPNl/v8r/t+O/+X55E79/wcThdkA3cfE53hNdCnHyv+mvFfuMtN78Bv/78ZfMf3vS58Hqzze+NlY/Vnl//vF+YX/9Wn7ZQvuT8ZP5PnHwK7RfRd+/s8NQOBb/P/OnH+EPMOvbKsbN6cbFCd7P7WFxvZh15FD4A/3/ob9z2fF09X8a94fz28PgA+R4hP9+BfvAZ/F3MvqJn7RM3An929X/h/3O5zdHZH7kf9lX7Ov9WKa+Z+Jh9D9L+Ub1dxrvg9jlR3Syfsl4yfjJeLoFf6P5zb3wKs/vqf5D9H81LrJPkP2BB9l3Fbt2hEv0fyy7jcX/a8nzQL8vcTVbv49wd5B9OpHrZfN81l/NCu/fvI/z/l3JP2rQ13PkH5Hv78L+6hnwTfR/zXuVv32t//+y4wp620q/3ypfjP432q+A38LNtP+dvRejO934Har9XPJvW17CF5V3VX+j8VKB39aD7dDvx/++U55ML5vSf9aX2V9sqz7ry8QzE+fchn4S74zf3mQ8FP13KLmuop/F/Ki7fmaw80/8aI/sI6FfJXqGL5ifLkD/78T7YZn+Bqk/KHED/TYxH2b/+RL6G+C5wz2XfZpj8fFN8gvpczT//o/6Jzy/tfl9EX6zT/YW/dT2fsv3wcneJ6/DrINPUt8wcXDtT0B/ifob6bsP+a8nzxDyj+YPbeh3rfG4OT28w18rofMOP38C/80K8c2b6SHxzUfwuzp8abc+f7ME69cXWW+MoK9J+psIF3ku8c/Zxstaep6lXEH9NP1mvO7FP/J+Gkbf35Dza3iD5y8gdxv9D6bHl9R34O/t4WOZJ7TL99Fd9DGvvITX4u9W9S/kOzxxqcTJ1f+u3fGwgfb3s9M13oMfKX+iv7ONy52y/6/cM/sv5P0cfgEnJL6Dn7PYtyH9d0N/nxKsz7t4Tz/Jv6hkPqqDTvK1kp+V/ePkl2Y/M/4/nB53Me52g3fT/83ZNzHPbMqfty4vYRv6WFTI852o/48K+om+sl67h55OV66GvwXoLDXe96Cf/p57Fv2B5o0jyV+L/MlfeJ5fLdPv9vyxNT+rl/1R9S/Bt8ldxfhrZ17cwjjuoZ8D0FtNDyfn+9L/F5lXEne6DH5G/x3Jl/flJPpoqr4ivV5E/uM93y7xY3y9BXfKPIO/heRpTP/DlD/S3wXlJexP33fzl7vRTzw1+0aH0sdv+LseP3vHfzOuk39Kv4mv/6yc+PrKxH1hMY6S/fOzYReYffSXjadT+eevyTtCfyB+9/T/LdH9IN+/+H+X332b9XjyyemjefIfPX8FOsnn3Jj9s8+f/f3kN11UyHP6lP5/44efkGNRYf1aK/FIfrU8ZXrIfmz2aQ8zT/2Q/Mu8j7T71Tqgh362QucI/ddVfpD+/vT8BPQegGvwdzn9dOQf19NzVe2fLCMXbA9PZb/pidOWl/Bk/8/6/FP6SZ7sn8r3qU9+4u2Jx7Nf9meSH5688OL+QyP1O3j+v/y9Mv4PUd+Xvl4i97aF+MwphThN4jPVc56AX9+u/iLt+/DP5IHuTo42+Kmu/2czT/LTXvgcy5/awzXwa3rcp7yEc8nTW/uN9J+8hcvhjvBZfnwJv/mZn2U/chC6b9F/9ruGKk8l/8bkb0eun+nhV/J1o7e55unuykPw/49xV5Z1qH7q43+Z/hI/r5P8bv19Ro5b4Rr4B/q30fvF6J+E/nT6+tr7riu7tU4+lOe3xW/WeZWUMx8mz326do+gc6F+sh95fvIjvHc20v/G/GNI8mPh1/pPfkTyIbLPmf3N6dqvy3qSHy3M/oXnk1fRh/6S73d8Ccrug1fBSfR3JvkqmT86sG9f8h+R8yjJS4PJ/5nAv6eVl7AxXMR/Pk4+Y95riU9nP4R86+dn9DI/D6X3S7JPRb+vop/4buK6jXLewvi6AW6A32n624r+2pF3D3p8HJ3N2W85eqPofS96LU9+JL5GW8ddqPym+jsK8Y8m/PxE89FE/e7ODyrwo+fUd2Kfs2BHuGPmO+1zHukDekx8/hb6Ggz3Jt9l2t/BLh3hb+qvo9+d+EnywTIfZ/7tZF7/nNx16OtKev+YPBXItx3Mfur3nu8H58Hl+OthvFyQcQcfUt+YPb6BZ2t/fM6L6f8pdt4UTiLP9uRN3O5PzyceV5d8xyRvDd6RPF/12QfPOafsfycukzjNXJj4TNazWd9mvdsw8ePko8NV7D2Cf1yJXt7LeU/n/Xwpf3kkcVjYOvlnygvgo/pZR7596LUevgYl/8PzvxpPb9N38kwSn31F+yfw1RS+zU5nF/Jrkm/Th32+ZO+NPD/SONuwvIRDk7eTuAq8lP8+mu8BeCYcQr7O6M7H54XwT/6Q/dycm5io3Jh+c27jau/lmcZH8iv6ZLwoT9Hu+byf2PNjfvWV8pGeP5qeT6GH3ZQblZewS/JdYTF+vJA9km8+2rjL/nXSRD+D++k3+bc98n6jj5XZH2fv83NegB+fDX/Qz5mJ36P7PT7uzPhi79v43d/a9y/k72R9mPVi1ofF/axh5r8jlSeY16rBgxM/T3yPPq+G/WFV9Zd4fkvtq8DTyDGF3iuR4xB2zHmZfXO+Be4Nb9H+U/54G1wKD+Inb3svP6KflvzgdfLtSL/b4becX0+hv/7s31t/O2bf2vMt1O+c/7NzK+V8z5+V+AR9N1L/FbmzzvoSvoH+NvjZj6Mt0/6U5F+zV+KfyfNNfuwA5Sth/+Sn8K8d6Geu+ePanM9Tn++hV/jVVoXvo5axG1xFv5fie2fzzc/JH1aeQh+703/d8n/LM5A8f6t/K/vonluFv6bmm1nG1e7Kt+BvXOJf2Q/T74Tkz6KX7/18/29PfxP1/yM7fqzfVp5vnbgW/S1PniH5i/sB2Z8fyJ5rzItdjItLzV9Z787jX/vwq+roPof/jY2Xydr9rt3Lhe/Dg/VzZWE+qMEeNeHbxuvh6D/g/xPhBDgd/b7GWeIeiYc8rv4n5baey3nDnC98Ev9X08vTyh20340+mybPgBznsPP17HV04rn4/h79j+j1NXItxmf2h7vhb1floeXkVb6P32f/Z3hh/6e2/x+VvHj6uQgfZ/HLVvhNPsxW2lfJ+0m/U/lZK/Xfstd1cE/yz6fPbfjFffrbnp9dljxB74Unc86Bn0xNvKoEZTfDZfBX/F6Gn9no1sfXcfS7B3mf0U8D/VyS/H763T/xS/z2xl8r/l03+WLkyos15/vzGZx4SvbV9+IXX2R/oryEyf/tZF7awbzXWXmO5+vzt3fZuV7eP/TZi30TJ018dEbiboX7F5IvkfyIhuzd0POJc+f8++H02127auofTH4Lvk7iX5ehc2Psrf2m/D/zZ1lh/GfcZx2WONHoxOtzvixxOnRzLvy0nIc13vbX/+H08pfnB3ruePzXJ38PcuS8Zs5n/oreBex+Nr4O0m+N7Ddk/yfzLfo5r3EP7AWXa98Y/Qbob46/xE9q8q/9+NMw9Y3V/6L/5PnnvGMH4+GWxPP5Vz16jn+t0f8Z+t8keQ7w2RKUzUXnCbgF/nMOM+cKc84w5wsPwM9Ydr1I+Th6bml+6cGPG9Bf7mOojO9jjNtiPttBylezy6/a3a//Y/SXde/R+Q7I+aSc304eDD0mnvUmvo7kv7/gO/lbe+U8o/p62YdF/2b6XgOfhNkPnW9+qMBPm6HfnRzvGS+5l6Kueaxi8ge0y75S8fx/g5ybzX5VeQkTX6xM/ifh0Mz/nh+tfLn6xEcm4H87/NWi/6X8aV9+eqP56kN2zfu0Gz1lv/d9ev7W/Jf94HklKNuC391lHF+vffZVEzcu7q+2o9/3k19g/dg2/qld8vNi59g38dVK/PDnQnx165wHxGdXuDDjQLvE4Yrxt5yrzzn7K2HO1/+ccYLvzsbRDezQhPwV8V+VH4zH/yLyjKaXWugfoP4U/jSH3q+lrzvQy/0qzyeeiu+cj8t54Zwfzr0HOT+8SSGfKPlGDbXfHv1qOScBV/P35Bfnu7T4vfqS54fT63x6yvy8kN1fhzfws3nZX/Z+fACfw7VbmvwH9VmI1KTfP42PEeafU/U7Unk3ev/D+Lg2+Wb8d3j25/jPlvS3OzwNH3l/5vsp9yrk/VmbP9zt3/vB5CvPoe8vtBuP/znseZD6/spH0XvOqS0onHu5EJ6V9zl91uY/S5OPRD+5j+ZZfrJY+a58n+N3LnlfUK6Z87fsehH7XWUemZxx7vm34UbGw+Psl3V7zjkUzzfcTZ5X4WTvo/bsOUO/p5PrjHyH4G8pfVXDT1P2Xk7+jvwn+2jJb2uvPvkMyW9ojl7yG5K/n7yJ5FEkf6KR+aGd+eUE8h3OPjlnuwE/OpPcB2l/tvrqypdr94Zyzusn7pTz/Mkv3Tp54eaNN+j5Kc9n/d8bnXwHZP2/Inlhudcm3/n8/Qp+c3vyzvV3Yr7n/D/7R9lPyv5RuXHwX/PS4+x8N/5ez/uJHt9QvgWfOfeWc6MdC+dHa/D7mrD4/lnA7rlXZGv63ctz++Iz51hzrjXnV1/x/xPyHYteE/x3StyUHjaAOQ/bXPnN3Auh/J76auStlfPqygfj70H629k887lyZ/Wb4edWfrEo+ezs15V/Vcx4jH/TXwP91qXn5Tn/gL9B+psHN837D53ce5Z87qr0NR1/NZOHxD6rlbOPFb84KveTeN/HP/KeTjx3vHGU/JmRyo+wVwNyZv05y3wxG3bwvjoT3TElWH9O6h+YvKBLtMs9OvOUN0E/ea/38evLivmv5Iq9PiPfj+T5iT904R9zlL+n/7Xs19PzWWdH3hrKjT1f7v8PwQfZJ/cF5lzFf/B3u3lrODyPfR7Db9ZviUcl/ybrtwPVT6GX5PEmf3cLesx9YFmvvoXfifSzFN0Tkv+e/EX+lvNNibckzlIJ3/PNYznHs/78ZMYlvkbSc3X2T97wb7B4v8gb+KqQc0X4moJ+8hmT3ziwkN+Y77t81w1nj3zfHVaCsrfgbbATfnvSx2x66p08laxDjKun2W2DnO/K+Sz6msKeyYdP/ny+n2/KuaCcR6Sfk/SX9XbW34nvXuD5tfzgtOwnen4aNnOP5UEw50+WoZ/7yp7OfJD7JI27YbB39v+0Py779/rrB0dkv589XocL4ZicZ2Pv3dFvCnO/4of4uSb3ieH3vORHs+8B/CP6/Rr/o9RfQ74rkmep/xHJ52en0+jz5Ab/pp/1do/C/lDel5XN30cYh3l/7qf9VPS6w7b0l/vRquIr+xG5HzH7Rdk/OiP7BFlfKhfj89lfGGfcb41ebfia+p08f7v2a5TrJj8NfzlnslviDtqvY///Jj+Q3sckn8P4H05vpyu/lngP/X2WvAT6W5r1FXscAreByc/PvaXJD8h9pjm/krhy4swv5jxh5vPc1+C9WTw/Pgm91vy2K32fSs6K+P1O/fnGX+5TObkE6+O3q2DikX+YN16lh/vIsTP5vsj9CnAh/nM/4Ynsk32HxB8aJl7LPsk7zf2KyUfdjbz30dd56M9V7qPfc/2/HN6SfRZyHwormoca6L8e/Wa/LPtpjei/hffLkbB39j/xNYc82V/KvtLGic/Sf8bdYfAn8iXfYiBswP9yT8pf5psT8f+P8lXkTz7w/clLhTm/tYR+ck9J7icZrP0t/DV51oML+dVZLyafbHt+OCDnef2/LbmvKSMf/d2S9XDuFUg+buIN5Mn9Amvg7/TzE/tchY9ivmPysW9Ht6r63DeV763m9JvvsfXfX4X86twjmPsDi+fWbtJP4pV35H4G5Zynzv1W9+An9z7P9HzuYZjGLskjyfbFAf5fvH+5s3YHor8J+l2Tz4vvR9T3y7lf9DZMXjh+E5/a1P+n+H977XfXf+JDiRclPrSD+Sd5PLvCnMdL/LJu7sdU3h+d6/h16/IS5p6B3C/QTf8LC+dG/oDVjOcn0Lk553wzPvSXdV15zksnf8B4/Au/exfOl+U+g69zLw98Pfl1uf95m/9/+0bqj6HXyfw4dlyO37U596ic/OXkb6/2/2J+dO7vTv5Uz9xXqr/bE8+Ew2DyAt7N+5J/fYrejug/bD11f+YHfran+n3przr+6idPCr1xxlMV4yvnsHK/VM4fFs8Fxb5Lcv9NCcr6w7P8P/HgxIeL8f+z2e8mdvs9++Tq25jXv8Lf83D9+Sf9PARH0X8v9Tl/kO+e3+kv5w+25JfVvUerwdo5X+99fTQ/Plk552uSH/hR7g2DyQ/Mvb459nUDfEe7+Ef8In6S9WH0MpRdi/oZSR+70dMnynegk/OvOfc6nL/k/OsvyQPNfovx8SL+p+O3F/1m/zjr47oEy/79HHzWSXw45z3h7TD7t/l+7lr4js738z7sl/t23kC/Jv4vw8+bcAEcrD73ag6GuW8z92z28PwvaQeTl34l+6zN+7pwP8ti8qyl33fYIefHbizkrzfT/4vlJcz9HGvYK/f8nKz9kewfP8p3Vi31u5iPV8M65LoH/d3pc7LxP9X4exj/bf2/Dzsel/vjEs8sQdkrcCJMvu93nl8Jv4UL2Gs2f90TPkmOPZL/y9/yXs65rbyfs3+X/brs3+X+pra+m/Y2zx2vXG78vEUvz8HTtK+k/TPstb3+r8TnDsofkbeM/YrrqQtzXol/dMk8r/9K2nVD5jrYV/0+7H8Keneik99/6OT/y/0/+3fdk79Hn83gwYm/0dsl/PhedGqS+4Gcj8u+uHa5ByX3n6zK+CsvYcZl9jfzPs+5kD35V97vHYyL+9lnfBC9h0qw/vcdMp7z+w475PwOf+rpPTdRfT/0R+m/v3J+x6Ff7h9kl+TnJV8v+Snrkg+XhJnsn2uf+5yTP5bxl3n9Q5j5fQI6Dfhb9gGbFPYDcw6leD4lefW5L+qirI/ZK/dH7Y+/xLe/yX1o5SXsgF4VdhuSPLWct1PfKecLlN/Wvq/+PoY35p5rdBJX/c17cbl2ia82z/k2co82Prtpvw695FXsoJz8itw3Pgj93Eee+8efMb4+hmfAv9h7jPHdMO/hnHc1vueaF17I/Ur425K9lxS+LxLHSP5DH+WG9P+o/1ckfy9yLYY/wdX5/QTyvgBzT1Xup7qCX9+Hv5+8v7uw/3vkS15fzkcm7y/70+0K+9SvJX5rvMyCjTl068Q/6DP7qVvgv33eryVYf4/iFcrJc2+O3lh6fRtfWd8n/zp518X7wx7S32h4NWyt/8wjJ/GHnI95OutD89dc/SXPOvnV+X5NPPsN5cQnc/44+SE5h/yd+r/o7Xf6fTr77+TJubacZ/spv2egPvG7xO3yOyeJ37Vl913QXZrxlrwE+qjBD6YV9LOSX5wFH8n4RX9z5esK9+cfgu+n8Pen/u6mz+x3VqWfTWGP3GdL/zlX/RQ95Xx1fg9iALm7Jl+qvIRvKX+T80DwBFjfPPA3fZ2pXe4PmK3/c/A1Lvm9/p/f58k5r+wr5x6V7C8P0+5c+hqc+7qUnzOfTDVP7wxHo5v41QaFOFbin5Xp40B0LjXeu9J37m/KOr+4vs/533Pwk3PAOf+b+9HvNf6O4T+5H/265Efmdy6UW+GvgvJMdpyGzs7Jj9VP4sP5Tkl8uPg+yXvmQ8/35l8jkl9ofP1H/VX86X+dgz5R/SzfbU+Rdzj95XtvceH8eUv2nYC/C+DTsFP226xnnodz6OO55D9mX1W7nIe+Sbkzf/k+v0thnCVuugW9/0SO7F/chd+zyTWbn3RWTv58ue+PbeF28Er635//T8P/FdofrX4j4zLvmeL75dbCuaucw8r5q+ae3xduSP+16OeJ3Eur3+nK68j3fe4l0S6/J1Rd++QdD+JXxfzjZuT7X/cE5/fZDsz3eOJxyf9kjxZwfO5PJX9X9LdKvJ1fHZX52Xx4o+fzO3H5fbgjCvHdnAvN/VE5/5pzr7sknmV8Ju6S90733DelffJtHobJx0n+zRfo5x7uYjz0Du+NGYnXsGP2aQ/5H/G95LdMLPyeUubZzK/r2LNX8mrYP3nE+d2gjPvMB0vK0aGP3F+zAL+5H2A//jsJtoDjcz8ofb2HfuJpy8mR90PeC+F/Wc4fl6CsTuJP9Dsy62nzUjd0zoUj6eN38vfLeVL0kx+e+xaK53uzftmPnoYkn8Y4OId+j8TfWngF+fqoz33Fub8456QST9lXf+9lXwT9rvTzdH4PwnOzyT0P/TeSD5B8enQ2yP0I+q2TPAT2z/moRuQ/AD910LmZflYV1vUzYB/PV+K3F8Dx/OMtes/vljTmR0/jZyk5eprX3vDcJcpZr91J/qH6uwu/63J/CL/eybjZzrjJ/TY9+cPFsBdcTb+34rsV+jtFDnoYYV2wDhbzIXKeOevM4vpyf/PPS+TPfWpZz2ytXe4j/zDxrpyvzX208BR8dNR/I/5fD47Je4p9P2OvpsbPtbEf/irgry/6xfuf+4a+gbgzPxqZfRL1idN3hrkvL79X8Tm6ed/n9ysOw9ehMHHmRuyZfM3cM1m8X/J5fjMHPgeTP7U9e3xZXsLifbuj8H8fHAurF/aXk7daPD+7zHheCquQv3fmH+/FZwrfJ931Xz+/awG3g9k/nsI+P/Kb5JMnf/xd/R1P7uyDZv+zE719AofC49DPunMJfAdm/XmP/tvDI/GxFb/taryPz3mm/F4XP0l+de5nfdDzuZ/1K8+9S3+X5jwQ/3mMPabBx2ET9nkv928b1+/nnGDuueNP08m9Wc4xlJewEns+kP2JzMvo32M8HZt7S5Wnap/8rORlJU/rLfprbzzPZ6+B+d2W5NuVoGxTesr9r8kvGMhfevCLIbnPjD/2I9ed8Hs4PnEp/X+I349g7redSx+3Fs55rPHcQPY4gNwVlXPfePZtvmbXXfnHX/AHmLzVpjB5i/k9i9yf+nXO8eIv55lPSfxdeWP6W0n/uc9mHDtukO8nfL1BruGwX97P7PoC/V/n+VHZF9XvKfp9GyYf8Ubv05xTuUk551Wyn5n9zYfLS5j96YaF80LF82sP4qMBvdXG/2vZpynEVcZ5P66PrxTeR+vy+5Dxx9w3DW/IeYCcfzFOb4I3wwv1txX9bIvPe3P/IjkbsutLyRv3/6vJ+5F2ib8W9zeakye/K5nfmUx+fn7PJuvqrLOzP5HfF/gMv4OtL/L7Ah2SP579Ls9vlvzd5BvRezN2eDDn9Av362YfMfmdf9DHNO0awVra5z6+h/W3TdYvOf+T3zdT/4x+ZsFH8d+CfMk/GZfzf+pzT3Ev/LbL77v+j7zQnL99Hn+5T/RA4z35L83Z91T9H1xewnvxn335fc1j+d6spv/i/v83ieNq/xm+8/vZT5Erv3/8Dv18h48787su2v9VgvX7pclHWIBO8n+uLnwn/mBcJT8lv/vTJfcS0c9ryc/Ff87Pt0S/+Ps0+V2a/L7M+ELeQPIIkj+Q/JFR5slGysk/bcGfs859LPkQ9POS+fpFOBa+i/+c79kkzyvnfE/WP8mryzoo65/e/Hkx3Mc4OYX8J1qf98dfU/LnO6YmfluqX8W/ftf/VHRzfvYV/SY/fA/674G//H5Ozt/ndw3W39dBnpxDyfm7/D59zuHl/EPi94nXJ36f82WH8JvW+Z285COQP98HmX+TT5v7j77nF4PgbPNFzp8lzlqMw56uffE+8+LvMx2tfe4/PQbOjf/nfEe+I+kh+8Bj6P0ccneFuR+7Cbs9nvw98rXB//8BgSBfU3icdd151JZT+zfwO+SRRBIZitssQ4YnhCLzTCQqKaGUeWikohJKylBmFTKn8iSFUuZMlaSIUoRCSUgl+q31Xp9vaznf1fXPd+1zn3vvY9rDufdx7GvBxmX/7/cNnA8r7F7CPbcv4YrdSrjNjiVsKb9e1RIeBg+H+5aXcNHOJezo/XeUP3uPEnbYtoSPa6fzLiWcpL0WG5ZwSPUSztm8hF/CUduVcLR2ztlJOeXPrFTCM+D16Hto1xKOqVjCXb2/H/r+lu7r/Z4blfC4LUvYBT+9PL+vWgkXVy7hLfj4Y6sSXrFBCSfAFvg5sRx96utHDhdIH4T/T5T7EY6UX2ubEjaCHbcu4dyaJXyZPl+CY+EPyq8il93RuVp6LTn8pt4ptdSn/k3p7/kaJRyA7qHaHYD/xeT79aYlPHuzEh6g/CjlL1Jujx1K+LP2LkHXQngCuV1C3zWkm/+nhNeR15+eL8Rvty1KeCp6dqHfNvKfQt8zcHl5CU9HX13vt0XX++RXG93RX/QZ/bWW38Dzq8j3SfnVyHc6udaDe5DPQHq4lDwraf845Y9ijwuqlHA8ex2i/Fb6x43KPwz3x8+T2ovdxI5iP8dIXyu/Az4+1P7Hnu9P/r+RfzflapP7PnBf+Jx+2oo+WsL29HG7/vkle+jv/f3ofZr2J+G/t/ZHSPfz3mvqrY/f7dB/F/mMV+4i5S6GX3lvQAnKntDvDpN+BT2t6aOe9qoYz+5E/+roBS71Xjv5dYwXh8CN9Y9B9HQs+xvMDm7Xz0ZGf94fh4+npH9X/mb2cCK5nwxrk99A9tES3Rdopz36hpDHVHq5X/pRfOyn3Frpc9nNDPTNK0M3vBxm3Lhd+6eXl3AouQ5DXyf8NEP3BcbZ6to7UP7t6D5A+gb0N63gObp+kW5D/5HfMvhxQX7t2d9Z2utP35WVn0Ee49E/XXoz9D9lfpiqnsxv7yh/tnFqGbxd/xmnnrfo78CMW54/U5jfzoKNYOa3nehnMrvZMuOJ8jeVoOxB+rhSejz6xqD7fHS3ib6Vv1e5w6QvJOft8d/N+yu1+yccqP4t2f0B+kdt/O2lvr28/5z67sXHY8pXp4+bvD/B+4/I72U87wkrs6On8NOBvKexq42NZ42la5L7hnAWeoepv6dx7rJyqPxu8p+mj9vY1ZPS39PPdPq9Vbqj/NeUb4aviXCl/vKz9CryXUA+X6BjV+X74Lc3vAWe5b39NilhN3Koyg7reN5OezXItYd2/9LeFvjaE86DF+nHr7D/ruq7Eb6tnqElKOtHjsulx6H/E+kX4GHqPUL5DfF/EPpmsdeN5S+hj0+ln9ZOG/QPsK6YhO/50luzj5rs7WP6qSC9VPpwdvEeu/1Iek/5lfSHetob7nkT/P1IH8eg70Dj+Gven6pfLCHHn+FZ+N2C3u4xP/0CnyKncvJppZ8cA7sZz5qg9zw4jv1dJX8T7U+Qn/k08+h95PYtPI/8dkD/6eo7FZ4Gx5Hve+o7AV1d9YcvMr6wl1vJ5R7pWvIfot+L6fVjOFH9D3n/EXip/luXfGqY1zYk122kz6WnauiZRb/Hqudu/DWX3g99Q8lhIn6q028N+D7+x2d+Ms7cpJ174E3qb4OfH/XDSdK/yf9G+j5yaCJ9ofozvn+Hng3Mf8PkD0dvZ3b0KT4q0/tYuJfvrerkeiv7vQT/E8hvW/knoW8J/rqr51zyX8G+fkHvCPRvbD7pib6XlZuO7kHks6F2N1C+l/JXSjeh35eU6wX3z/eX+p9W7j/a7aP8ScpX9Xw2vq4uL+FNyrdT/lnlmsGL2Ocicj9F+V/0xxfI70ryrm3cvEx6uPcPzvcFeb2Bnt/U/wT5TIMHkUsj9A8n79fJ7Xfpw7TfVDtd4G7obUp/daTb4rs/+t+Rf0EJyhbDW+CGyjVDT1O4v/4+Q/s7pv8ZN75jZxtoL/Nd5vXjyT3zewX526F/FTmVoe8kcj0ZngLHqu809vkweWYdl/XbPulX6NtRf2npvdfw9Wr6AWyOno/Yw/PqmSw9RP0T0f8DeU3E36ny1xovKlq/bAzX4LOXceVFchuPn9/ofx67343+35HO9++N0r9r7+2s88j3BHSPh/PQH/3+zB57mBe7w5bq/5C9NMbnp9rJ+uFh7XeGO+qfC9l9XXZ9D1xMvheUl/BO49b59FIDnf3Jwetlf6v/Dbi18mPZY/aBXirsB12u3bbG/7vZ6yh6Oku7g6Q39f7B5Jf18YHkOkG9r8pvjcDK9FyVPueqbxfy/B997kae36H/PHo/CVaAWY9WV/4D9X2KnsvR0dJ4sKNxpxa8EX2Hspvp6l1IfqeRw5ISlM3RP2Zrtxt+X/F8q3zn4GMX9GwsvzW7rii9E/r2zfzkeZus07Jeov/V7Oa+2I/+3Q3/F+ovr6LvEuW/xleZ+u+gj+PQn/XntTDr0Kw/K7PrF9RfV7sL8XcJef0Fx8JLrFN74Wd7eAc6Yk9j6HsP9adfV6ef51If/B5mfXgJe37U84ukL4Yzs35Gz9Pso7/20+/T3zPOZ36M/b+J7t29H/ufpZ3P4Bz4D3429H5veqxlHXGIepcYr59gl4/DfIfsrd3DlKsHe9Df+vp9Z/y9ol//pt9uzQ4vQf8R7PwudnGs/rJQ+2vYVz/17g1HKr8nuU5HzxP43kb+KvXPwn9t4+uW2uur/rXofY++ttb+KPxvm/0D6bbJp8/P0ZF91jnomENeX8F2+sMz9HsIef8lvxx9fZWvpt4PMt4bL36UPsz7v9Lzx+TbK/v/ytfE3zb6Uy3p9vitip5O6D9V+5eVoOwfOB42l19JfV/n+zn7zOafK+m9Vvbr6eMh9P1KDz9kX4wcMr91R98f+kd9dL+d+SH7N+y4kvR72r+Cfq7A32p0bKD9Q8xjU80PH8PrvH8//TwA74OdlL8h5zv0epTyA5XPejTr02fLS5j16VL21IR9NWan9fHxrP7wHHxM/Qcpfwr536He7BPdgv+b0fEFnOz9SjlvYh+rYG/4Cvk2I7/90D+bHlqp/zP29xW626K7ffadtdc76x90nIH+O8wnb8C/4TL8HE6+d7OTjBMZH4rfC5dqb3/1v4C+uvAA/aQBOnpr7zc4DS7F5y3Gta/g8MwD2m1UWH9lHyfrr84lKJuk3VfQ0Vj792R/gF7vlW6sf22OntbanQB/oI9F6v2T/Aerf6x+NFu/2JH9zJKurP026B5Insu0+3T2A9V3XOYp6QHy26on66esp7J+ep1976d8bXb+eNZzJSj7CdbA773quyDrHvroqfwk+S+aX07Rj181/tSh/yOVr72e85H56BqOr8cynoYf+T3o5Qjtr0R/F+//yU6PrPTv8p94/od+MY39noa+Vvj+Fd5B/heR78+e/wYfg/t47278PY+ug+H75FWNfh8gl2ezD6r9W+V/5vly/f8L7a/A30fk0BVuoP0dyP9p9rUfft+Vf3j2JTzvTw4Dy0t4i/pP9XwH6ZHyjyGvxfR2fOTH/tsZjy+FfbXzsfI16OHZnHczuJXSd+ivFbMfSR5n4r8+/irn/Jh+n5C+S7tl5P6y9/9Uf85hHkZHznFzfnsVPd0n/2HtZ/+qk/oeJJ+My2X0dzJ6bs8+OFyIvqvpa6vyEh5CvmfL75BzJvXuoP1u6s+6M/tYVWJn8qug60q4jDzOjf+CebEJum6lx0u195J+29d7b6gn+vgF/fuhvy3631B/z5w/w5nGt5wT57z5MngGO+2f/kU/Kwrf2TPQ9xZ+34UbFL6zlpPPXp5fI70Fueb77LbCd1q+zwbh+/HM77CX+nfCz/vkNgXunfUdPltq7znz0XjyW6j8o+RzWvTl/RXmiZWwofevR98N6NseXbvB99U/U71L6X2W9Hbsv3bOzdTbkR46KR99VND+FTnv8d505d9gJ1/r/53R30z5pnA0OnqWl/Be488f6hskvYj+f6CX7LPvyN6yv76neveCteGz9DMSXQPMv9kXiZ5fMG+MgAPJ/2r172e8/cH4vAv9NTIu7KU/7kQftTzvkfPRMnyTxzXS8c85Ujp2HrtOfgP6fTR+RuyrovqWet4Efw3w1VS5A5KGt3rvTeXO0+495DVB/6qL///Q9yPkPkc633tr2cVn9F6VHOehL+c7jbxfU70535lCfptptwb5Lpa/UPpS9M1STwfynZv90eyHsNvsL/2m/DXKZx2d8/tzyGkLdnwDeido53jj+5nxqyC3h+lpKX4HZb1M/+9J76/+zux+qfXho9obQW510TVKu33x/736cw6Xfbn4z5yT70HPp5LHMRk/9evP6b2a9n6iz+3kD855r/SW6GiA7gH0XF+92R8oV9/OcBd4JXrm4rMCeU81nz+snpwndiW3FfSV88Vu5HVV9mnht+qpTr7nZ/9COv56h5Dr4/h5OOOv+rO+TD8fXlhftitB2RbSg6SfyPe+9tawj3r4H+H9fKeO1f4x+D0K/6PZWzdyGiPd2PsvSU+T3wO2IP9rtF8T/1dLz0Jfw/QvfA/E59Hk95nxchX6V8Oa6B5sfHiKfuIvE/+YKuaT3so9xV4noT/nTjmHOrBw/nRr/FM8f176TeUzX3cwfi0vzN+L6OtYerxKugJ6d4u/QPYp8ZPzv4uky+ljD3w/I707u99dvc/oR3t4vrF+M5HeK0rnfPsD7b6Dn07aHU0/U+L/RK/3x/8m+2TKZ3/o/uwTKF9f/98NvX3wfZ3248/6u368Asa/NevFHvF/lJ6q/nfZTc6Dq7ObZdLx33lX+fjxjDUOZz2fdf425JP1/sXklnOAi+BX6t8t5zjk0Yg81mb/Cv9z5d/m/eOzP6n/vMwuNzZ+D5ffj71twP72gu3Q3XmHf9M/h70cTb7n6c9Lci4Hj5B/OHqPQOcJ6sn35Sva2dbzQ/OdlP07cu2rf79Ofsdo5zfyuoIdZX8u+3U7q3++/tnEe9PJL/6p8Uvdx/P4p17Nfq6C9xpf4s+8OfvIPJvv+8y3R8e/OfMv+zxR+TcyPilXmTxz/vhBwX8t/mw5p+tIPtNgM/Z3Url68HUIOVUjxw75fkZfzYJfS+bX1saVq+MHClfgpzL5VYS309/22n9V+43i3yh/Z/RfyD7jv/o8+6yh/EHyb/P+EdqN/+YM9vhB/GXx8aH0BPU+hI41mdfw+WEJ1p1jfwqzDmzB3lrCH/IdRD4N1Pu98WsJXCH/BHaY/pb+F//yon/b6/TREP3ns7sL4Of0eH15CfPdeg6cA/P92jzrVliD/u5VPv42V+o3l8L43zxKvvXYac6FOsjP+mUr48QE798Wv1j63oF9xr+2C/4q6Z+bwiVZz6OvM/luBCvCFeg4rQRlw+EPsFP0rL/uQn4578j5Rs73cp4X/7KZWZ+zn8noGoWfYehrpb/9jL/2+mkb9P2T8zT221y5CfLj3/G293713uvy66PvYTgOtlWuFb0sXI//7fX08rb81exrhPrbkPsW+LsxfijKD8s8wO47wXbkFH+iLuj6Hh/xH53G3uIP/rv1w3x8fpfxSz+YQJ4NtT+E/P8Hp9LnAPWfip74kQ9Fb/y/GqDn7fISDiaPbeNfhO4r4Ajv7+n97/Snr+E8mHX8Gd4fQ77x149//jjpsfLvJ//b8Ze4hWvJZRR+BsXPRH8ZF78H6cPDX/pD/K3QF//YbcilE7m9FH8G+psRfxDzfnPpO+V3019ugFPUPyz+1+gcRo8t8HsFel4qQVlHSPxlT7KHf9B3Kf7XSu9kvMp+ZfYvs97K/mXWnZPWs/5ckvmU3DPPLlE+49P+2V/ER8an9vpXV/m91fdQ9i/VG3+HdfEw0uv8+WAPOK+8hLXV96X0GONma/TNRM8cfN8vvb3809nLpey+j/fuU1/2I+N/NLKwP/kAvb8Nq9PDyeqvSN8j2cXyrEfMy5kXcp68it0cqf7e5JPv+6I/SvyXX9fegJwHZv803+novgFm/yf7d9m320s6+3fxf8w4FT/IjE/xF/xfwW/w/Zx/sI8W6j0//qzaj/9q5tEz9a/Mn/uUl/De7KclfkP9H0tfrb6jyXMJ+rekj9vo50V4LTrj79+G3SfOLf7/w/WfRXCG945SPvNV/FVjzxXRH/mcSA+RU+RTn9zjV3iEdPwLNyOPKnBzOJQ8LkLPkMyrMHECq7S3D/09CU/wPOcf77DHuwrnITkXiF9W5YJ/1oOxX/JaQh47Kf8neaR/PouuZ7L/Jn/zxB3q/7vQX+Ivsv+ZeMXsb26MvhFwVRl+5I/Ovo5+P0a6B/quYX/PKX8U7Bf/cnrLvnX2sbN/PY493Q1rs7eu2j9RfbXk70n+O6j3KfQ2hDNhm8RHoW+BdhfTbwfyyf7MRONDY/0h4+/F2llcOHebjr7ift4MeCx9Zr0wDbYwX2b9MCT+T/RzMbl+DicnXkT5y6Wnon9zdOe7L342dQrrk/inZz8l65OMfznf3NHzxG+MIJ8P1N9S/snoO569HVlewnMT55f+V5jv5tH7uu9bfH+7nvFnVsZL9Re/T3N+vlj+GvZShp+rJR+Fa2HidBNvuCG7npHxLt+ZWVd7fpJx9m39vDG9bCY9lH0l3ugS7Y2Gied7VfvnFfwlV8afJvFRvhsWeu9o9nNo9t/Q9yD8Ouds+L8dX9ugb5jxebXyZ9HP79qvS77tyXcofRTjXvJ9Ev/zP+O/U/A/X6r9TfXD6/Cx1PtVtNdU+zmH+AB9M/X7X+Gp9HC99s8ljyaJ/8l3nPbzXViMn2nA/uoW/PkrJt4j+0v0Uck8Mcf7fdV3l/FoD/R1kW4f/aL3KnrZnJ4G6MfxLxiE3z70kfXIH+T2O1yd9Sr6XsNv1l8jYNZf2bfJfk3iceJffSL6HkX/dXAK+m8oQdkEWD3nAejL+H5L/J7p5U7YyvtP08Ov0qdr/4vE/ejnx5NDv/iHs6czjWO7V/x3fvwdcx5WXN/URNdM8n+W/GuQRzN6/YM+GkqfIz9+E+3X4z+ReL34ocaPNv6zj7PLYfAxuAr91cn7s8gp/ino/D7x+553kR5PP8V4/T/J8RvpZ0qw7vvnA9hCfpfsu6HnAnq6N+O/dj/R7mCY9UHOLcaxu2X6z1uFexSGqy/3LDyZ/sce8z3cn/5vlv8Neldqt55641+3e2FeyzyX+S3rknzHFNcnuxf8u+PvXbm8hJnfqqAr81zmt+vZ5WzjWgfpy7N/Sh9D0LNEfx8q3Zdd9YLZv+yY+G328o9x9G/4KDoSH9EA34vjz4K+9X3X3hp/jay32GF/+vob/f3z3ZZxWbqn/MR9dNR/ivEf5eQxjX3vLB2/8Ow/Z14vxr+MZ18L8T0K3onOnI+dL51zsePwX4wPeZU+6iSeX32t4SEZT83fH2ffB34Er6C/+8kj/sVtYPyLG6vvXf1iUPwf8Bl/rqwvH4u85R9TgrINyW+UdCv5Y8mvn3F+x/jNk1/WCy+xq0vM/1k//JG4GnZQST9KnNK4wrr8WNhT+TvoZzK91mIP8ZfOeVXOsXJudUrB/3lPOEl+/J87kV9Hcsu56f3yG7Cj6uierP1W9NOEvrem//0zLynfNfvG5SVsnHlIfveC/1T8qeI/9UP8WvG7gh5yPvWPfjEPf3Phr+w18c6Jf362EP+c/ZML1xO/dWDON/G3D/m8kfg99d5ZgrK6cBa9bo2eieT3Lfv4Cz9/s5vp8D/sYvfE8RfiWRPnOj3nawW/roeKcTjWU33Q8RY6xpSXMH7DieNqWPAfjv9B/A7K1BP/g7c9Xp44Vele7OyKxNXS6zL8HMe+f89+XCE+Nee26b/r+048Lf5Tic/RXua/ndQ7gD5qSn+m/PPKV9LeT/Bw9eXcMeeN17C/7P/01G9aabeG+m7M+QR6E8e7t/aXK/+9/he/6z1iL8qvTNw8/l+HDdlf/Jfit9RUftZr+X74HZ7tvT7yR+a+idyLgo58N36o/zZhD7ewl/nS9+h/fdjZKep5Vfm5JSirBx+Af9JH4pHih5p4pZPob0FhXfRf+nmQHraD2S/eXjr+tTnfuwt9D7DDnO/lHqLsaxb3O7M+zDq3d/Zp2fdK88b2+HkicUg5X4l/k37/I/3Pooc74m+aeDj9P/EJa7I+h5+jI/uObdQ/kh3lHDv3cv2SuFLtb6X+zfG/FXrblqBsPhyAv87anYrus7Of5/mR5F28t6hr4sf1n+b6T1vpKfJbam823KjgH3e6dO536Keeb6Tz/ZM4uS8K30M5j8/5fM7rE194j3aPh6/Be/SvxK3sTh7F+JX4599ED/HTj39+8T6dxGddLX9n+ohfS/xc4t/yi/yz4x9J/qNyjw56l8KGMP77a/B7RvYDtH9HzrfNB0fCo+ALiWdhP9knLJ4/vKj//wR/xu8Z8vP9X8P80ZP+3yvEXybusgnM/kf3xPvBm+KnSz4v4y/3PxX9B6rqv5ug4xH6qav9quz6Bv33cOnHcr5duO8u998dpL34H2xAThslfhsdS/F7rOeTpB+If73nWXd1Luyv5Bz2Ou/3yP0C8k/JvgB8L/Oj9Ur8d0d4vzz7DuT7jvwD1N+UfdQnv874HUSvg2Et9jzbeuQZcvjc8xeVz3nkq3B0YX97NHqXkvtX6l9rHHuLXh6HN8NWucevBGVvwtPhYvNK4gYTR9gbTkxcHns+h50cm/ME8mqKvm0T10TOf2v/FXTvxq5aei/7KtmHz7589nOqaD/n6fHbjZ/RYfEnIIemsBnMd//uxofcy5d55HDyb4GvYdn3CL/09AJ570vPt6P38uzP0G/uAWkLcw/ITerfXL0fwVnsaYR6r813N8z6Od91iWOaTJ5bsJPjjCtH6TeNyLmZ+hsqt0o98YfZUP35Lm+r3pHaTzxt/MiL/uVPwdwPkvi+xPslvi/3b0yJX0fGafmJN8x5cfQ0j5565bwX3Xsmjke54n0JuUehnfID5U+H9fGxr/by/TrHeNY9+8voy/1WVWOv6Mh+eTl72wOdR7K3xOudWoKyP2D8T2O/YzyvAzvA9/BZlz7eoe93M14of3TOT9F/Vc5VjB+z408bucD7vF9Buqt2J8Nq+K9Gzq8m3oa8/sz5NH7vT1yz9Cjl813xU9azMOv7ruT6Lrl2htkfzH5G/CPfxG/2N8aiN+uSrFMGknM/48o35NJfelrOv9jD+uII31PfiXAw7Jp1HXkkrjpx1k9lfE+8LEw87Rj8jEFn/IL/MG7+o56djT8bWtdMYQ/x9/9A//+UHX4GN5If/4P4n+Y8YkHi6uTHH70eurJOfZs+T2N3jeDdmd/xfxT5fquds+V/o/4x9HaH59nnm2KcrSO9h/r6kN90+rg5ceDSHctLmDjmlfT3JX0uZFdHG78OpPf/Zp+GvBsr9733D4W3qf9z6WmxS9gXv0eyk0O1exn9/mg8yPdwvo/zvfwB+SY+/GHtJU488eFVvZ99gtbS+b5M/MkvcBlM/MlI8r/L+7Pi9yT/CPVWNS4vou9J2Z/zPH7L8WeI/8IN9LJS/18Nz1J/f/JJ/OLo7DcV/COWkk+VQv0zjU9bkWvup8q9VRdrf0zO0bLeTnx87jXRbjG+OXFRicvtk/gofJyv/QFwWeK7jZ85v8+5fe5Nzfn9y/Q1kF6aFtYnw8k59zddp77/4n8t+/1Yv/9HOv1orvQ8+FXixZR/KPdVZf9cuU3Ql/OZieTqtXXj7wPkO5xe/sNeDsZn4ooSZ9RLPfFHuDF+DeR1sga2037iyhNPfpX0Xejsop4j1XsufF37C42f92rn5Zxn5t5ceu3ODkYX7LHov5f7quPH11P/TTzNs+p/i3zGeD/96n/qS3/rl3156bfQ31Z6X3ZdDbZkX+PJazV7/pp8E0+XOLrcS5j7CC/MfcDsqY/16PHqPwFWpLd56L8b3ffmngv1l9PXteov3l/+J3rvhrlf6yT2kvkg88O76sv8kHjt+DHN1T/iv/QH+ztSfYeSwwT58b85B26h/evReZFxoQ28GK6lr5+1t3Hu08s9Fuzjdf0p96PFzurh/1Z0P6J/Xkk/9ctLmH3z7KMX46Xj953v0fh953xr79wLm3FSO4nf/Ux9zeCowv3kCxKXmbgQ9E5RPvfL5X7VZeSW+1Xz3fhV7s2S7p3xbT1xNev8++U/iI7a0vn+Oo+8FsEmcM/EzbHHtuz0UunYY+7Nvowei/dnx9/yIpjv2tz/dTB+ch6Rc4r4n0QvOe8vnj/mfqhs/+d+qJyDrpTOPURdyDfxA7vQ6865361wDjW74B95s/50nvw3jBMvqu9q759Mvn31r+fJ5RvpnIebntZ9Ry2Svg1+TO7f5H6lrIvRE7+m7FMW9yeL/hnxw4ufxlLPW8Hcx/4gfnIfdPyg4/+c+6G3ZdfNvbdz/CA8f01/mQhviX9s5F+4DyX3yw2Lfxt6h6NrqnR75d8IvSXINWrr4g/3z/oWv7mnO/ftnKH/d4EHo3sBelrjZ62K781+AvoeosC2+Iv/aevE2xbu3S76P4zIvZOF/Y+J2X8m17cY+Ony99efn8MvsssqFfxJrlnPvT35/4bIN/dgzJfO+fQdKs53XPH7bWfpeuo/DB6C7rnksZjef8r9vsrX0S/eN68cn3tgEk+iP3Y3Dx1nvGlhfMp56td5j5xyvpr7XY+Pf2a+J3K+5fmH6n0B3XXRlfiA+Pu1k38GPTxAn7Ppeb5xIfdn5X6pH+n/Rfad/fn/0VNdcrs98brlJVzueUPtZr+/ZeQnnfi0FhlQ5B9Inul/78APd/p3ewtyLgH3otfbci8SOayhh2PZz2Xs9yv4F8z3xVnkUxvfl7G/YblPkvxrkefFylcsL2HiAxOf/qvxN3GCuQ829z3lvtjcD9uZXXSEnfJ/CN4/kb3ED+Rg9lpN/YlrzLla/MdyvtZMuY0T1wITH7sreZ+lv86Bo9h3Jq5xymW9ke/vDvIvzfkEHFRewmvRczj6fiisfxN/n3tzxsU/BF5I3+/D3LOf+/XjzxD/hsTjxr8h99/m3ttT1Jv7b1uzv9yrMo/9/Or9+uxrH3TvnHkIf4krT5x57qO+md7jH1MBfcuk46eaffhdsw+i3vSfd/G9JueM8ET5OT99FrYonJ+Wk0/iIVsYN3LfwaPkE/+j3KOTe0YSf5f7DeLHn/i7hYX1efF+pXyPnmmcaJR9LvQtN25cyO7yfyn7xL8ZPdkfCZ3xH3gOP5uxs220f0jiN6wXe+g3ddhvY3Z0lPbKco84/BJ/NaWnZD8B/fXQfU/iadlLb3QOzvcce7xZ+i/p3I+e+MXN6S1xjDPKSxh5LYI7Gvea0n8+yLP+TpxA7gnJvWTDYCOY882c9+X8rw995fwv50jjPe8B58bfmt660P9p5Jz15SPkdKb+Mxr9W+Qe/IJfWe4Ti3/KLfjqQK6fZh8E/bsV4meyT5Tz8aJ/f84J4793csZv9caPfLDyixJXmDhm6QPZR+Krn6CH5eygsvbmb/pvOqru8u/2Ex+QfafECWT/6SL9M/H08UvI9/U25Lk6/m0w94x9pf2+xrXc43S0dkaQ94LEsaf/kcPnhfi3PjDxbyd7fzC+eqh3LPq+xFf8UDqVYJ3/SfwGL/Y8/oPx949ecp79/+kHv2vM/+/CM9AXf/PEAT5e8D/P/l7u4Svev/cHfs+D58L4gWU++ES7mS8yP3TX3o2wGxyD/ibqmWr++ZmeGiR+gJzy/0GJZ0788grjXa/EuesH/yW3pezyp6xLiv2D/Wbf+uTsb2f/Rb9uw276Sscfex6658Lm+HkHvYkLyT7kt4X9x7/Rl3v7F6Czt/KJd+8OEw+ffZD43e2Y/bB8z7OT7dhXVXhdCcqaxv9MOvcg5z703IP8knbHwuwjP0+Og3KvM7sp+me3Iref2MeX9Ds28SeFffncE5X9+faJD6efZ6SPUv+bOY9id2/m+yj7uBjKvaZzrfd+Iv+cP+XcaSF8Xfuzjd+JG8u9y4krq8Me839QP5l/ns/3Y+aJ7OckHiDxHezlJHgC7IS++ewi/3vVwLh2lPLF/4/K/0a9C2eibx/yOC33JEtnXZx1cvPC+rhy4klKsO4+jNyHlnPJ7Itnnzz747n3YCR8lH0krjTzR+aNzCO5r+P83MtUeJ77OxKfcEv+58l792f+0W597eb/fPL/PZ+b349glx+xo6HlJWxeuJ8v9/X1lF9Ff94KFu+3yT3lxfvLT0xcfuLB4BW5x149P+FnBP0uxm/uF8t9Uzk3iL99/Otzb0c19FWCh6E/8aRPwuwTT8r8or2sn7Oezvo5/xuW/2VMPGv+Ryz3Pe6s3Z3gEPq+Eb9VvJ84lsSvjMt9/+RzE/xdfvwKz9Cvi/6FtdhnzjWq6N8538j/mXWH78Cs/0823u6X9TN57lpewgHsLv9nVowPL94n8bZyiZ/ZhLy2YI/DyfdQ/C1JvB4+VsOh5HUevi4npzdzfqe++Jtlv2QIjD9aDfNmg5yj5336+Sj3CWVcJb+cz9yXDb3cR1G4fyF+fGvw34+91sb/pvhJ3NBdyid+KPGNWf88Td5Z/5yKrtwDOZo95D6A+LWej6+if+vA+PWwm2r4iR/8ZNjLe+nP6b/5bj8aXfmez3d8cT3yfvxy8JN17/H0WVz/5n7S3Ev7S+F+2uyvRg3F+916xF+UPnJ/UO4TqoC+0xNfoP6DtP+d9od573vpMYnvItcfzMNDyDHxnPF/KsdX/icp/lCPIfwFcliTOFn05v8TF6g3/5+YOKRe+Gxc8LdYFP8Z7+celPPYQ+4/Kd5XmntM56FvufKJCyjGC9ynvjfZX/x72qFvfNaN5He8+SP3k+U+2NwPO79wP+xg/S//S5V7WGaid0vp/G9l/i9nPnu6MPvxOW+BdxXuh38MVlZf7offxPOsE3Of0gxy6qG+T+HhuR9S+/FPj1/6Oewr/umT1J9706+Uznn3g+rL/wrlPCn/LxK/mfjLHBi/TvZ5Ts6n2N1n+M76JPeO7kv+K7R/cM5F6PcB9DdMvFnuQaT3k5XfR/8Yip7c3zFFe58oF//jIfpN/PwXG2eae//lfJ9p52bp3NfUEn0L4veLvsQvNMDvLokHKkHZKPm5Nzj3CA+By/M9y+4b4e9OOBgfOR/8CtZBf84Hr9X/HyzHDxya7y/rg01h7pvK/VL3SG+v3XX/h6f+tvFLQXdl9tFd/V/I3yh+md47Uf/rit6Z8RvL+iL75ux8svZ6oyv+e3WynoWL4Jnqb557z/M/x/EjV0/OX3P/Tf5/Kfff7GlcvpB9FPf/mxb6fcaBxJXnfpSa+tfe8hOX+wB6qht3NiLfdvi9TTsdYdfs56Av+xfZ5+0PE//4qfo/gTNgF/ab87Ed1ZNzspyPVUDPKvKbrf2/1H+99ybD12EZ+9ya/ee+zGHkfUj8g4z/uY8l97N8Qr+r8z/E+s9T5Jr7yL5IvFTiTAv+K/n/9fxfdv5H++3M3/jJ/8Qtif+K9uNP8AN+cn9U/AvGlStHnp+wo4ry4xed/3WIX3T8Q9NeC88Tr7eJev8P1Nx0Gnicdd151NbT+j/wJ5kioVKJcguFZKokCqGBEscUIWMRETJWVKLMQqYcFSkilSghKmQeC0kDjshUpqIMx3et3/16t1af3zrPP++17/3Ze1/Tnq597f2cWa3i//19slEZj9qgjCfuUMYZdcq4ifSsbct4bsMynqHcW+uX8R3YfccyblmrjMdsV8aZW5Vx9wZlnF+ljNM3993GZay9fRlvLUNFS7gYPqu+u6qXceuqZbxP+1uWyli1dhm/1+7J8BD81JfuUkM7Ncu4zU5lLCl/pPZ2Qdfb6K9Xr4zbqa+1/KvJ51b1VYWdK5exATqnwPfql7Eheb6m/afI43F89t+ijHej5yf6W7FlGZvRX8NSGW+vVMbL4Bx4j/o3Rdep8Bxy6I+/3enlqk3LeD45v02/L7GPOdJ98DET/23LULGUHP+R3kv7vaUrq2eu9LH46+L3KtuU8RnyPoC8h6p3s7plrAq/Vf8t65VxFVwEu6HvevWN117Prcs4QvlX2Mfx8HD2fIL2p6DvGPX09Puh6q+jvQHkXpK+t1TGremzDmxNzpegZyf6PNLvbaVvJO9/0PUbu/pGuqH6fqfXY9hPH9/V9fvtvntRP2zF/iahbzT7egh+7vuu+BuBr7PhdfA+cpjGntbT3quwBnlV0Fcz+l1Ue932J9HHKezxTXo5W/tDyP93+VPZ3xnkM1x7XfF1Ef5r+70jXInOD303TH3TtP8x+obD+eo/QP+YQT6tpXvK74GfZ6V3pdfnpd8hpxVwW/IYi896xtuX0dMYPXtlfPb9Hep9qwwVzZQ/mr2uZBcPwEe0P9D3ho+K83zfqFTGBrC671dqbw/prdjzG/R+Deyi3Crj21bsa7V0D/mfSy+Bn8GJBX7C3wUF/hpq/wrt9vTdZujLeJvxdw/8Z/zdBb+rNyzjR75fI32a8e50+An9PkkfZ2p3B3SskR7Cvo/B92P6bxN2tjf73W0z7cLXtXNGqYxvqa9XpXX5XcjOh7CHW/H9Ir4XkM9W8iv5fZjvjpE/nb2fyQAao3eR9hv7/mrz2uP625H4r4Hu8caFk8xXN8TOyfN3fP0Gh5P7jtIboG8Ue+9MPiXph9BzMr0czf732qSM2/n9AP3waeX3ofcp8Cny/xh956l/Pn5K2hmg/k7svZb0ONhI/fONx5mPMj9diJ+LtXuPdl+Dd/u+Lvo/JL9tpKuR9470dwI66qO7v/I12VU7/HeA58s/g5w3MA5dxf6XyZ/MrnaHb8OflXtSOna4A6yhniX4+xhfx0q3Y1+11TMANleuh/azHsj64A7pB/G/gL3XYkcDpM8vlfF+8rlHf2hD/s+of3322p38Xvf99/T+Jf2NNh5MMk++Qs4LyPNNdv2W/rJc/nPa2z39RDvd6H++/Cbs60tyOpV8PlBvf3LrlfEn6zB28Qj6+knPYX896L8r/rvrx6/LX67+fXy3nv5WQ/sH4/8Q2AaeRX6dpX9R/gN0XIffoWWoYLYVM9nHnfJH0HsleC7974i+a32/Eb0+KP11qYz/aK8CHZVgY+Ufkz+UfB+VHiZ/G+PZgVnfwDvkH4yexejbG+6V9SG5Zn3+BzvN+jx6uhOeRY+V0D8dvc/BlgT1EfsYxL4+pJd58JSsc8h9Nb2OoM9m5FtNvVvj6wL2uSX6PyXPZuT7gvTV2pkFn1DfBuivhb7tlLtBuUfgadqtQn4X4P8W5eeR04vmh6bs9mPj8/b4a6z8B8r/Djcj72r673P6a+aDndnnGP3tF+PFer5/E//Z32Q/k/1NG/wdSB8HwRI5Zp15Arrnsqsu0gPUt3dhX7A97FgqY9ZTWV8NhDv7va7x6An1dTdebIr+gdEvO9mNPTym/jPVV5levpNeKf949J6r/BP4fFr+D9p/Q/uZXxaT706+34G8DqWXrE9flD8FzoTHKd+PfLIPPwzfQ9V3vPXUecbdJrCx8tdJ/8puNmLfVel7NT6+8X1b6/OX0HeY9k/R7rPSVyuX9cduhXVI1h/van8Tdvye9HDtZb3Sm93d2mDd8k9o73TtT4N95Lcnr7awHcx+4DD2eBO8Hi7F3670+5lyO0tvgY7HfH+s/GPg0co/XoaKo+BvcLLy8R/8Dr+B3bRTm/2MYhe7KFcFf8X5NvNwZ3Kuq75Z2p1dKuNb6vmNXCOP1vJjfyX9exWcqX//xT42ku5JfzPo7y/lP818aVxdqJ8s0d5tGXey3sVP9j/D0b8C/gYvZ6fb+n4D5b9T35Ha307/bgJLcD76X0P3Kva5Er6W/qi/tsr+mHwvKKynl0gfI38/+nmvDBXjjDsjpV9S3/PGm1vgs7CEvkvZ8/ns/G94l/JD9e957PAg/fht7Y/xe3e/v4f/M+XfQa+N2Nv91keTjceDzU/vwdbyV+BntHTmtfML89vD+M2+clP6y36zG/2NI8fB9Jb+fZ5y8VssU25w9gfoXk5ut7GLpQ3WpS/zcHH+7Se/CfvcQv6v7HqC+ifCfchxtvr31d4LxsU92PUV6OujvrFwQPZHvjs2+y14DBwi/wLy6g9fg18aD14x3syB/fC5lJyu0r9bqe+yknLSw+h1Z3KYJn2Q8utlvUj+V5ShoiX+L8y8CB+CW6BvlfFgO3b4i3Qz7Z8pXZkdL8H/9/KvL6yLusPr5c8mz/jbrsl+lH1+mHz6zj7xRvp5iN4fhDXRkf3wBPrtbBx7E7315Y9BT/yQ50mfQn6/42cm+V6hPx9AHoPjX9dOJXa2A/n+pb6K+B+k26N/vPIfa2cX49nW+O2g3bfQdyXcWD/rqfq/4E3wy8L+7S90LZXOeJf11zTlOhmf4t/aD18z8bsN+aefbOL71X4fRn/74r+u9urBbeDz5HGies+gt9PhTujrhv+X9dtG2jtCOw+ie2P2erp0Y+Nv1uHFdfqOxsdu5N4Hv8X18wz9cn/6asnOTpHeRT0t1b8f3Afdn6J7a9/di78v1L8n/Z+g3mulz8z6RvoR9bwY/1r86PjdBF+d8f1rQb/R6zLp14zbtZRrpZ5nYA9yyH4p+6ddjU/ZPz1jfMq+/gH1zkVfH/K/GJ6Cn5roPES5RZk/0D1J/QdUrFvfb8axk333A3mXyPu2+P/0j3PQ3QOeDV9V33Pq93PF9/ApclmuvpHpd9p5hP0W/e/L2GH2R0PpbQicSQ6t0N9KvR9mfoZ9lP+T/C/Rf9dI/yf+Cfq8iH7nw0tKZfw4+zLj3zXkvwP5x69aUn/Rv9oDv/+ge4h+VwfeUIaK/8Ij4Ax66sBeD4Pt4TPoz/lf/NCdrAPifx7t+4vR31B+X/TfaNy5JOsC+Jv5ozr9jKfvevR2afYv5v0Pc07n91dhM3LZQP98jZ6HNFyXri70u5p+7o0/uTAeri74tybJ/9vvOQ/qg64D8TGGPEer50F4q/6TfVX8chnfT8X/UvJ6Qj87GP2L8b2d9hqo5wP5e9NDU7gXnEWer5Wh4i54LMz55m3GzwHsbpj0B+jcm9xa/Q/7/1s/fALOzv5B+7+y3/g3t1L/WdrfiF1drN6xsCG53qn/VI4fOHaZ81F6/0c7t0q/Tp6bKXdf9vHSo9CXdWnWqX+ab7I+jT8257ht1Rt/eTP29TB+Jig/Vvor/TLnZE3IIf6IrFc7p19Iv0z+Q8pQsQZGfzmnHkff8a+Ohekf1FrxERwI478Zpf+cYIAdLT00+2v2eBp6D2d/rdR/Ef5OU24QOd6X9Th9/gXfhrflvAIdN5Drn+jfP+MBeXxAv0MwNBs9+2nnUOll0sPQvwp9w/XDDX2X89ecm1+pveL5+fPxX5V8X/DPvs9+VuG/KjpHZX7w/Rr4R4G/C31/EewNW6FrTBnW+uGL/veD2dtkdHxn/O2E3q7wevLd0zi1sfYXqu882IX8HqKfauS9EVyine3VG39I/CM5r4g/f7j+cTn53CldDz3F+IM/1duWfLvg7zh4PFzfdwty3gNPzX7GeNnC+NWO3PeVHqN8zgNzTvhF/Gvo+yP04fPxwj65PXmNY/dnG9+u83v66ziY/pz++zF5zoeP0v8n2h9Dn3vAW/XTifS3P7nH3mKPOZ99XXufwMvhNeSd+JWcVy2Tniydff+tsGnirEplXJ88r/T7T/T7BHrmxo/Efu6hnw/8/q72LjMO7A+PR9/v5PEueaWf3q/+m9ntDPL+SjrnHe+zu2dgcf8/EF9faOdzOJL8Wil3nPqPpudW6ploPbY7uU+QzvnoXPy0gHeyr/eMQ5uodzC6b0+8C/7ukj4T7h5/CPl0I9d70XMPfFD5+8pQMRueDBfp3/H7JH5lcM4f0C9ZUSXnqPhYhI9bpHNOXjwfz77n3+r5AzbIfpv9dMJH/MH3F+I7Mn+dBi9HdzGeKnFWOb++HwNXlKSN7x3o925yTfxc4ukSP3cr+m6BB6Iz588z2Mt0OAL/58j/N/t6EV9T6ec98v/C9831m4ukD0F/LeVrw63gKvnroWurnOPLP1V+Vf0g8Sh9yeM6/XspeWzu+//6voX0COv7zdBVFV5CPsvJbXNyu1Z6SvqfflGNfI42fmW82o0e65NHX3R+RH4boO8q9Hwav1PW99YTS2B7dtg759U5b4avwN3VNxRdOxi3DyG/j+L/9f11cAh8jvyyH56Fn9HsL/vjw+jlYHI7FB6Q+Ru/NdXzFX7PkD8SfScpd432J8n/F7l/Du+BP6u3n/63PvmsVK47+nI+eaHvE6cR/+Mb+sfA6DnzGv7/YrfxwxT9LyO1X9nv07KOk79v7ApfndRzn/x/K/897B0/bfZr0v+wl/HSW5Hnhux3c+3vqv+Oxu8j9P2rftkEvoq/4vnrb9LdtXcefW1Hjg3pf0v2X9f8PB49tbW7WnoP9tyPXtor/0D2Z+i5NPFJ6P+kVMbE8yW+bx46PkDv5ewv53CXSj+i/I300cn6qCo5vYz/D9D3X/S9xj5Goa+T8p3hUfB2/M1hj0eaD/6CjbUf+dVC/7Ho7k2+hxgfWqNjYvxP8CDl25D3bYVzgmHGg+rZV9HfCNiY/bVC9wrpEehrVoaKDdnVLdLN1dsfPw/h8530R3xkvRj7yTlr7CfxHon/2Ju9Zn/RCj3dzfsL2cHJ9PPfQlzkPPQkPrJ+1k/66VnqW679seS3SH2LYVvlx+uPz8NXyeF99U4mhwcT/2s+6oiOVWVYO48/QR7xX1+q/z2UdY763pGuIr+5ejeRHpz5Xr21jW9F/2DvnJ+hP/6nnLfm3O/JxB2je7F+eq3fn/F7L3iz/pBz++PJ6/87vyfvDrB9xkH5B6G7DTwq5xnSHfETuQ2UHq3didFHYXzM+DpCPXPgTei8OfaB3py/5jw2568fo3tTv99HzxXq35M83mCfc/CX+OG6OS+Bvxl/sg/vpLr10Z3zzOXoesXvyxL3A58xDmY+GVmQQ+abc/S3t4zDv5TKeAv59yOXv+Fs+JPvRukfLfH/Ydbl+G9NL2Pws7nvPvVdzl8Th7W733MO+zh650dvmc/U913W1exwNPl9TO4Z7zMPLDc+535CVXbfTEeZTS718NcYv0P/xzphUMG/F39f/HvPGFf60cMPcGphPZf13Rr0Zn0Xf0b8G1vrl4k3jH9pIDlcKP2Y704rQ8WzsAJ9g8j7Q2lmXLEx/s4h3wbkeD/5TpWuif9tye9y8qvH7u40Ts4iz3eMS3vJr14q4wDtLoRf5Vwf/1dpb4j220hnX3Mi+ewSufjuIeUHaf9M7Z8Gd5M/wnjyFfwaPoW/aeT5j3mnEX4fJp8vjbuL4SL4gPL70ncG4hbSUzI/ob+xz1bC5fhZor3E+1TVT/fUvy5F713avUy6P/q+oc934b/gCcrfjq7bYFf8jlT+Ov2lDjsdyD5Hov82/bdP4s7pZUYJf+r9GzbE70/Kv6J/xK/bkx3H37tc/iDjZ1OG+gf5/my8vUm5H6W75d4HfuLnLI6v8Rck/mRE7o+o/3jrj8Xs5kTyez/+Qnwdh67L6Wu5+quhf5l66/h+N3a8hr3Wl+4qXZm+z1ffBbAXnJDzYfa9Bz5+zfpAPZuRw+V+n+e7h/2e/v0HbK/cG+yjOf0eSq85N0l8zwtlqDgJ9oOnoi/xu5eTQ3E9txm5bp59ZeIbcj5q/kgcdjH+uiN7v5Jcr4Bbqv9Z/S3+huvUczH6V8TfRC4fktP68lcV7CX2FP/4FuzmVePDN+xgJv4zL32r3sxPXdnXw+Se/elw2CT3kOj3EXzE//lkzk9835Nd7MM+t9beadLHaKep32/M/Cd9gu+6wKvwk3jzP9F9LP4aK39s4rGyvmVXOyY+plTGxPvNKkNFdfT3U29feB/9VSPvvuanabAa+i5J/HD81uxnC+nX45/JeAyvgT8Zr7KuSnxYcX31K3qOV+449nkU+k/xfe5pFe9nVaCzlfQE9XaQns2+E/eQ+S/xD3UL9wdznzD3B8dKr5f4BPRumvu39DOXnVRnT7kv+1D8u/rRb4kDQt+9+v/B6DlKu+k/XdCf+wCJqwv/c8pQcRXsBhOP+Flhfst8l/mtMn2Owl+tnHOwr33j78Hnl/jaO/NzIa5HtWvPh75V/zL4DXyMPiaSR+IHEjfQQ/1dtd8Y/pud/Fv+++Q7N35J37Ujp6b4PUN+PfwtTPxn4tJyP1T67FIZf2FPXXyf+2K5H5b4783N2+9aPyQefFbuN6JrHPrflb+z/rGeflcvfkRyWMzeTkt8k/GiUuJzyXNjWCX3S9B/qfFkDbtcJH2S8icV4v1Pyr1B6cxj/4KJ424uf0fy7IHPc+Cb6q9Cr32yf879GO2c5PfEQyc++mS/31Rj3fZ3yjjOPo+T/4r8+rBbqYz96P9QcusvfQX9XZP40azn0dGenLKuPw3mPCPnFy9lvwTPgXfrf/PpcyCcnjT+RxvXtvJ97GkR/oajJ/vK9ekx+8veiftP/Au5NURfzkHjjyvGj6+ir4PUU/R/Vcr5Mj3/AEfQfyPlWuvHGYcTX1GrcL81ca6537otfY6nx8G575dztjJUnKof5hwn+9uXpNvC7DsTP3xr7k3B57T3dcG/+mnh3n7ut8ymj5wHrd0n5Hyd/PYn9xHp5+q/uXB+k/OcnN/k/OlU+ALcN+dD5PVj4m/JIf7zufrjNHo5WfvL0HdjGSpWw3bwEvxsxm52zD5B+08lfp1eBxuHbvHdZcrfLn1IxmnyuBf/J5L70eQ+CuZ+ee6n5F7K7tK5n5J4x5XoWgUT33uR/twn63f0fI7/jUtl7Iqfh4132yr/NfteBr+BuR+e+2m5V5j7hu3jh0pcnXZiR7GfWui5np7qKP8H/s4mn5xjTqLHXvpt/A7xQySuJf6HNsiozT6mS1dBT/PELUt/7LvcL7qePcV/GH9i/IcHJl4cHom+isQ7o+tt8+f99LhE+fV9d7vyzyROWXvvkdel8BN8dUBv7kfGr5p7klkPjfd97gUnvj/n39Xj1/D7+4nXUX/kvjDzSvys5L+C/d1Ef/30g13Yz/PoORvm/m0D5RupL+di3eFLxuHL2Mcp5Ff0bya+4gv15b2HxFdkffZgYZ2W9Vk/9X+Lj2/g5uSztfpzTvSp9WbOh0YW/D83wbaJh8h6y/zVslTGBdGv9nPP+zD9N+fjY/GT88ecR+b8MfEANdhp4kZbJ75M+z+nHXi78vfI34xd7i39dOI38HMuPsdmHlB//H0H+u4B/TfjT238JP5zL+NfzgdvoP/e9F4j46H2c/75a+EcNOefW7C7C6zrtpSemfNA65SMG4mDiF0vSzwh/r+RfoC84xfuyx72yv2onP+ie0Lebcn5GTrfQc/b8G/t9ELfCvrNOiRxWrlf3StxZxm32ee/0FON3vNeQe6x7q78QnKvU5BT5PMz/f0K79XOp8bf3OvJeymJQ7kB/4eQZxs4wfhVRf7h8augowo6lqh/ELuZUIaKRvA5drY9ee2Krj2VH4ie3NeeLn+C/Fvo74KsA2FL/K9AX94/yL43+5T4fxO3mXvyeScp8ZtZb+Vc4RzprL+K9wdybyDna3lvZwFsB/P+zq7kNwBfibdKnNWR0mejs5fvM75cajy+BB5Fns+jv178MfQ2GbZEf1f99xXyy34k7+8soL/EoSf+vL38j8ynNdU7TDrvqDzPnv6Snkr+17PPkehrQH4DyOfq7Ifl74D/FtrZCD3bys87Xxtp/6NSGTfGV9aV8wrry/3pPf6l+JviX6rPHkpwoO92if9Bv75UuqS/H63++NUq5/0EGP9a/KorC+fZOb/eFr+V4C7428l3OxXuZeX9jWo5f0f3mrznZPxLfMqe2n8v7/xUXrf9pvppR+PitRYgP6t/SPbbcBKcL78YD3hQ4jDIK/N2zquL8/f8zCfkeIrvc3+1EvpfNz58n3gj9G9FHvEbvwLvoaeMrxcYHx7JvQz6yfybcTHrj6xH8v3N8Rfp/9lfvIGer+hhL3zMS3wxe/ye3EbGT4D+E9X3gPrHJT6L/OJXLPrHhmn/YvJ/V3/pCzcvnAcW477i3xlALs/htwt6Vqh/qfYfgrkHnvvf4+nzzNhrEL996Cf3/or3AfOuQ7//8b5D7uHnvvBk9E2lvzG+z73Y1wv3Y7MuqYaufWAN9R7Evuqq5wDpqfJz/yrnCK9K5z5W3kNrCSfkfaPEn6Hn5pwLJX6M3bxsvPgRvpT51vz6I7t6mV3N0Q9yzz3+sUPND/GTxT8W/3TiAAaFfuuMEdI/wjPg4+ivjM5HjSu1tdMMfYkLvwgW919L8fuLem/M+Sv9/Uw+J5HPSOm6+DiZPFeYL3ZBz/DEX5NL7r3Pkj+6VManjWeP6Xd5hyL7xcSvJm4140TGh5z/5/2hxAHED3MZenMvYj47yn2JCuWm4G8L/J9Hjjkvy/nZlMR7aP8u/A3P+gH9LfSH7dhdfXguPvsp387v7WHbvE+kfOI74m+bWogfXKC+heT/iXTu6eQ9xdxLyPp3Rd7DocdS3t9UT+5nTNLuE4nvLvSfDuSzAMa/lfcRsy/IPuF+9Gd/+x/fH5dzyexT6KcbeZxMH6dKd8z5m/lpNVyonVvj/8r7LvBNOJFc/kBf3g18IffAyD/vf+Tdj2Okh+JvlXT83ktyn8v3eS+yiX4X+fwpP3FeHeDXuS+A/sroedHvs+DB5N+OPR+nXx1K//3l572EI9Lv0Jfxt1fuC6lnYvzs8psU3n1K/zi3VMY9K/AB+8JT1PM5/nvDO2Dmz16+/xTmnvcE/TLxyolffrUQv5z3Sf6XnefctFvuPRfOTwfS21Uw9wF75f6h76Lnj/B/ODt7M+sbmPv6r7CfFuRaQ7+qDufpXyO1l3V9D/lZ31/k917ou1j69eg379+w/7z3mvddqWHt/YdT0X9v1vu+HwgnoP9T7VQ1n22aOEr2mPOXO8kn90Tb5z07+J3vD8g7KNIz0J/3F/LuwhSY9xcS7zGM3d8Bf4/9Gu9b+n5ncj8dfcX3YlabP3L+n/OU3K+gropKvjuS3I9A/13Gi28Tf5TxEl13am9Kg3XrvSDrmkL9D5B7F+U+w+9+pTKOz/ul+B3EruvjZ2n8h/TQEz3nwCV57xUf8SPOMb48TN6LYN6pPFz7bfMuj/Xgd9Il8utoPhhkfB4Iv8q9APb5YOIjEo+a92TLsHYdV1X7Wc/tQN7bwwbwQu0nXirxz5vmHWHyOSrzODlnH5n94wryuNi4OStx0Ln/R69N2PNMeC/9d5bfCZ975z6r8nk/K+9mHVF4P6un/jUdXV9L18Tfjeg6JH5g6bw/tL/64yfbrfDe51vofRPmnkLuJ+xmPBxN7tVzTsg+m2v3cO3Gjxr/aaPcM4m/jd4aZnzPehJ2Rkfih5vGL5L3qxPnl/tDZVh7/laML11A/q+yi7yDfj36xqi/+A55/Bb3mS+qqz/7re+Uz34v+78F7Czz11G5X6d/Ndb+ZPIdV2ldPhvmnBafZ+vfea90ovr3yPqO/N/C3+HS8T9m3/QGfrJ/elW/3FF/yPuWibOKf78ffV2H33m+vxB/eV+0uI7Jeq99xhO/70geHfy+IXubm3vq+mPe92qF3kvUl/vQWX/WxO8N7O+I7CfZW01yfDrvF8Jl+PkMu0fCnOfOLZVxovprZB8o3UD7zcm9BXycnt9K/Ah55X584laz/k58yFC/Jy6kU+4H6e9vq//d+MeVH0tu42Av49iUnC/T+0kF+sNP4jfzrnniN/O++RHaH6X+TtJNtZ9xOHF5eU8l++sZ9NnF+HcivF1+xsN66s24eFPuFxbeL8h9tbxfkP3CE+RSPJ/M+z6J/+leuB+efjkVToMN1J/7XbnPlftdL5BP3nO50DyT91Pi/90+78/p9+tLd5S/H/pvxlfeU7qtVMZffH9u3q2SvjvxMewl8TFz0ZP4mE/1rwVwIexC/nkfMO8wFd9fKt53rUnPOd+6kTy2ybxsHMj7NWfR3wxy7ZHzEHruQ18Xw8fQl/elqmvv8Jx347tC/eMlT4S3wXE5XzAf9YtfS3qQ/PrssR7cNetC+LJyN+ZddenuyudcIu+u5P825Hzib/TfxC7yXmDm5zrscbLx60c4NPolz67wC3itdg/O+WreJcHf2FIZH/b9n3AT40HeZ837TiMLfpz4b54sQ0WN+IWkr6S/Rokrx99ZWSfKj/wj94YF+efd4uawBRwe/4b2iu+s5vxme9+/p90H4FnayXlm/IiZ/3K+OY78c36S85Tsr+qpb5Z2E8ea+NUN9N/9sg5Cz2G+y7vZeUd7lPS++n/ucyRO8ZTCfY+/rTtOT7xI/Dbaz/3x3KMovp8Vv3reEcj0nncEFmlvR/Vsnzi//F8M9nUHO8k7s3lfdorxZj3trSG3jD/7s6PEvX/Nvj5U//noyb33xInm/nst9B2mno5wdu6Xyh9Ajtsl7h89C30/2LizWPptchqn38yCj8Lcg8p5R84/ivGlr5NHG+Vq4nMOfd2Qe2rqaQi30f6f5Fsp8wQ7+kD5vMuSd1gasIfEn/fO+9v0MAN958a+zTuPwtnsc5/ER+snf2i3Y96bLJVxURkqmsPc7+yp/lHoznvs08l5unTuQ8VvjYy196Nib3mHPnb4J72ONq58bdysq934VzPebY/vjfPeJfrz7sgR+C6+P5J+l7jgMTDrgy3oqTl6G5oP6yf+3vc5d64TPw/59kfXpvT0KDwQfblXu5BgFsPvtZ/7cy9qP/ub1P87+WUfsxLm/yctUz7vuGTfl//vcKx+3de68crEA6Mv/tDWhXtYWcfmPd7cF8390azf47c4S72N9b87ya8me+tOP5/kHXr05f7mBvpV4kv3VN8+5u0WsDV5vkQ+8QfdDr+g//iH4lfIOi7/lyjv8+V+Yu4l7oGv3E98V72b6gdH5Xxe+Tm5r0oOr0nvr3xndB+R81v5O8nPvbO/4GD15/5Z7jMmjuVbfNxIP9lfbkNvid++u1TGpeSfONFifOhxvj8WVtOfhuRefPzfZahIeFjnvJcunbjD5dJr73tnvUOOF0rHn9WevbRhFx2kLyOfH61T825c9BX9PJ24evKdGj8H+4vf8AZ8TcsCgx3n/tY38v/G18j49QpxCSsyn+Y8OPef8HsyOWe9WIzPS1xe7u9HbonjfD7nVKUy5v8pnA43pafrEr+P3z/Quw16M3/k/4L10s4PMPfv8/8i8v8jXqOf/P+I/L55zjHZ+cPoO0F+VeVOkt5C+fgLm8ITtB//YdZLeTf12rxHSD7nsMOn4VPw6vg/9Ye831T8/2Tv0GdLcnqcHqv4/cjC/fCjCvfE8/+hcq8797xzv3sD/XlDuBHspv0HzOdZV84ulTHryxe1Nwquhm2UX6T9+eT7Nfm3U1/uY11HjnXy/znIv13up8HpuX+Yd/3UWynrP+NwzncO1H47djVBfzkjfnbj0r2JY6CHvC/ZQ7mcoxTPT1qT6xHG7T+1/6TyVXzX1nffoqeT9o9HT97hKr6/Fb9M3jHM+0h5L+lu9pr3/+6Rzvt/nyv/ftYzxqE35J+de4/sshhf9DG+4ucd67v4dysK6/vEyWWd35S+nyaHsficiP9i/EnilXM/K/uNxAEW/fnZv2XfVgW92b9NyP1V9SZ+55fcE5e/l99fhu9qtzb6l+O7L0x8b96V/ijnsHD97De0M5acEo/1Qvzr8qezr+L/26ujvn3Jfxvpvom/N34MZhd5h2UNXEzuWec0+R/rm7X/v6ewvklcbuJ0815r4nPzXs8nMP+PLO/5RI5F+c6jxyfxX9RP9PYwuTT2favEsySOX/n/wh+U+0n7mS965p29+MfY6av0MQSul3mU/Zyhvl/V/5H0JuRXXG9mHVoj8ZP5/2r0cKx0zr+y/8++/63C/8eIX/9N9hS//sbqz/4y+8p7CvvLvGd0Bv7zXk/uKV2R96YpoH/+T1r8WcaVjGsZ5zK+zSvD2nsxuV+a+6aV0TOrEEdWx/gwlD1eqd6+sKr2EzeXOOPi/2dM3FnuGRbjz/Yx37WAeccz75V+kvEXf5XhJPK5hb6u8vv5+tHjOT/1e84Ru8CcHy7Iu93SWZ83zfm8+eCX3MvO/8NE/y3xT/muYdbB6OtRiH9rkvuPsc/IG+aeaO6HVtfuM/hYED82/laS1yDf3YT/vI/WIvG18Fztf0ff32e9lnv+0p9n/Cy8m/kVfeT9zAvyToz2Gxr/TiiVsXL8ieTWFr2j0Rd/ZvybX7GTnL+cblyrBmvkfiz+ry3D2viOxHvkPcL90DMZHZPg9fTHPCu2zb1G6V/wf7Lfv4R1yS/vny3Ady3YP3Yc/4365sPcX87/pd3VuLKUflolvta49R/yzfuNHWHu6+2fdU7enWInD5Jvzsdfyvt45JH/5zUu81neIcx+s1TGxDUmHiv9PP8fZCW7mcpuTpT+JPGy+f+LsIb5YVrWcb5fA+eq5z76fxm/o9B/Rd7LVn/e/805X/F8L+9D75R3PfKejPysu99VLu8tZf2d9zJ6w7ynkfcz5mj/qbxzht42uR8o/zt4vn5UD38H+71W/k8CvA19TeJ3oJ+tYebHwdrN/3EaIn289vPezTT2VTxv71Nr3XS+z/n7T+j9GS5NvJP6j0l/yPuZiWeKf1p9jej1SfmJi7xeMvdUs9/P/v506WHwB5j/b5H3Nz6Ap8LE3+R9r9wTzXtpuX+0We7t+v0JOJ69n0Bed8SPnffcM/8rf5hy78NJxrPcX52Xfab+lfurVa3/865e4kzy/gsy18on8op8tsz/+ck5MDv4TH7iRxM3erd04kez//5LP8g+PPvvB+g374pXp7/v2Gcj5f8hn52lJ8jvir5m6P8z9+wy8Ko3/yeo+P+B4pcqvn+d+NIt9IO8H5Tz6Pgfc18x+/a2MPv6h+hjDHwYZj2X+wVHKzcZPqe93JvL/+kp/n+em5RfBZfAmeTcQb+bSq7F/hh/ff6/Rv7fRvwviZ/O+dsr2s//V6nKLuKHKfpfBio3Dd6VOGz6/D+g6R94eJx9nXXUVkW7hx+QLumOhxZpUGmkQ6RBxI8uCQlBQrq7lAYpQRAJkUYEBEUQBD86FAQkJAUVRCTOWmdf17uWex3P+8/vnWf2zNw1syfue3bKuJH//UsFpgCP5gwwe+IA58cKsA357cD1sQOM/UyAo0k/zh3g1GQBvpEgwFk8Nz91gLcyBjg9U4D5KVckT4A/U185yi0n3Qr6cscLsFvKAPOQfj0aYIsMARbOHuCvmQMcQTtDqO878DZ4nfpXpQ/wnRwB9qbettA3Hj7yQ1+cNAH+QP2Jye+YKsAzYMVcAaaG/8zg9nQBVska4A3ofYN0O/Sxj/bvwPeXyDl1nABbQm8+0i9BX2n4qwh9zQKITKL+raR/pPzM+AG2pp340P+I8uV4fg24GExAfWVpvwx4CTqeTxvg7mdB6j9Huk80QJqJXAQf0H5J6NuAfBqSvoW+kqC/3bTzA/iE9ndjv9fRV1XyR5KeRMNJ+L02WJ78hdT/AXq7lC3A7fzeGf1+D90twEHgsiwB/hd9rAO7gwXgZyT2cJR0KrAn9E2HnvPgVegsSH/qgv3nId2I8veh8wz1p6d/9OW5ithXH+qbSv1lSL8G/d8kCTAh/S4B2Jfy71F/Se0tGuBs8lvSPwZCl/2lPfR9Cv2NkO996muGfF9nXPqa8kWwh/bUXzVpgPOx4y7JA9xE/fvgKxd20Rb5lyQdG367guvAxtDzLeXfBYuT/z3ydDwdniLACPbbHfpmQU9i7H5YogCXwU99+s0v0F+U8lmQ5zuMByfp/8voR13Iz4c8z4P9KX8tGuA86h9D+Z3QWxb5aj8p6M/akfYzEn3Xxg6+gs/ctF8feTRHPiNIv0J+VvQHOZHl0JmP5w+hz6zI+yb0fIt84iG/NbxfVoOPob8g7fUAO1NvZxo8j9xzQ38BMC7lJyCP0QkDHAVmQn8DSH9GPbeRfz7tH/7mIK9nsK9Z8L+V9lJCdwqwMs+P8H2LnkaSfpv8V5BDK+jdg3zK0v557OMYeBQsRrnM6H0x9T4C61DfavSRHLk9wn6WUf9G+DsJdgRzYy9JsefnsJMHyGcL/eMW8rsC/gLeRz72s4ykr6h/2t8EXU3B42Ai8l9AnnV8f0FPFPlFA4ixw09Ia39/Y185kEss7Psw9OSFr+xgbuTTg/av8j7axHuiOvxMpf3x9Otx4FiwN/mtsf/OjLf5qG8R9fxJu39BZ3nkd5f899DfCOiaRrqh8qS9y+Bx+MuMfhIgv6PYSTr0WhL+diOnJuB6+tly7OsI9FSg/FHS31E+B/Unwy6Tglmxv7nwu590SsafBJT/Enu4TntD4Tshz2+j/l3ofSX9NDPl+0N3CuhuBBaivqPIrQZyOwgqn0LUf4N+vIL8megvPL89Cj/Oc7+SPnA3WAD6XoWeodA5g/QL0LcxgEgXcCw4gvJvIe91vM/ywk+E9+hC8gdg33NIJ0N+16B3lvNR+GlH/cUYzz6i/+QHq0HnBzQ3D6wLtkQeE0i/DK4Ef8bu8/vexC6eI/1TNMDs0JuG33OQbo58nK85f6sJjoG/7vDneL+MduvAX1fHI/RSgfRA9FsYff+mXYDjqK8/6ZPIvTTpZ6HvCfRdQD8Xwb3056n0yxaUi4B/Uv8Vfv4Gu69Iejf1f0X9PXh+NOlU8DeO/rMAeywYDXAX6UHo+yr6dz6mfPcx/jwLnRXpZ3so35T+1gv7as44nJr+swf7SQjfc0lPgN434/yz/bewg9Pk14S+hoyPU6CvF/L4G7vISv/cBz3Pw/9D9Lofec+CvuvU7/wjF/U6D1H/dam/KniG8vPIj8W4tx7+umA/zkuWwd8e6FlO+hvSlXjuLHp7GzyAfHci9y/BHWAl8p9SX0Lmwcfh9xzyv4s89kJ/afSUF/q/gJ+68OF60PXfBfKPUP6i7/dogE+g/xOwA/Tfof5j1NeA+rdTfir2tRl5bQEbQ1836C9C+cLwUYD0edc59O+76LEcdN32/Uq/7ES/SgJ9dcnf5riC3LKDXbGP1ui1As/5Hj1Cfa9R/w3SGai/NPR/Q3+JD3+LqecJ7a+B/nHY3VP4OIJ9+N5vjvw+p77h5J8KILIL7Asmor7G6GUmdB0h7f5Kavrjccb17KDz9OPUF4v+14r0MPrrOuj/OxrgIOivCn17kGcR2t2LPL9Fjo4Hsfjd8WIi8u8E/53BOYwPz5DfkvRs2nkPOX2N/FPC93/hpw/6qgK9w+AnDekj0N8X+azj+eaUnwJWQb5DKb8J9HWWl/o+ge6ajE/VoXMT/Ws3zz8Gfc//yPt7PP17BHpvSX0X3f+BnkfgjtD670vaXYR8a1M+reu/UHvScRX+GlGuHPXfpv5cyKcrzx8h/Q3pLeh/B+NSIuopj36zw/8s9NMe3M14r31fg64y6CVC/njssRB2NAP6tvN7OupfF+JH/vZD74vQMwi7PwF2iQZ41vc59N2C/yvIbzPtVcXemtAfylP/KMoVdT+MdAno24U+xrm/x/gYF/2eJ38nctyEHbyBfLpBD83F8NsDuktT7z76ySzs4Q/oXQ+/n1OOYSqyi99vUc8A2olHeg/8u8+7ELzpeIu+3Bdzn2wcOAa97kUeaZFPN9d78L8K/RwAq2FHCZFfPeTdAj3sYN55g/wS1LuaehuCY6IBnsJ+zoCnXafB32DkPgwcAs5Vf8yPdoNfgh8i38nIuwz0lwXvgvGRwxbouhZApAb2+jEDymPGjR95P3an/v+43wGfk8Er5Lv+c33j+8v1TTH09YT6s9DeBPg7hh2kgt4ipEe5bwa9ifg9B3T/jvw+gr56zsvBOeQrH+UyiXQv2v+Z8sPAZZQvRvms6L0C76MDvo8o/xr20g3+l4HJ4Lsj8ixMvWd4fobzKPLPghfBn5Ffe+q5QL1jwILY7+s83xR8A1wA/bPp33Ho93vQT0fPV0j/ynPjoc/1wiL69X46blXoaeD6Rbtm/uQ8yvlTNeQ6F/6/Cq0falLfQfcxse9HlK9Nu3+CtcDN5E9Bry9Ct/vg7n9vgb5LyKUN9ncO+Whn9pMdAcT0D8f9OdTv+6Atv7dhvLwE3qX/tkB/K0mvAFPDb375432zDHmmBfMin8q0mw/sDX/DqD8zchsEf0PAB9QzFLoyYG/pwIO035Z0EuTa2nGA8gVp9+3Q+Hg9GmBC9BkbeWyCv1T0m5X02yKUH0h6N+VbMf94Cp2tPW9y/zKAyCvUj9oiXfjH+bnzcve7PsK+u2FP3cGuYG/yl2LfS8BN5O9DPqOoryjtnaWdnOgnZt8AvsP7B1WgNwLfno/VQX9NkecbYHb4TI8cCqKPgeQPAJPzXAX69TTscgH0dHe+hN21xS5e4LnPoS82dl/R/UrwrOdHtP+B+9ekiyG/Mjy/AMxJfyrgeQty6Qzdr0J3Dex2MXL5EuwETqD9x9T3C+XbkV4APz+R/pP2d5L+Hfr+RD7xoCMumM3+T/9LDr1psNuXyN8eQGQAmAb6WqK/McwHtLvw/moq6D6L/X8KpgnNz3uBzkeLkn8W+ieC+cEc6Hcp/LhuaB5aP1Sm3ozQ/S7pXdEAX0ef3eh/hZFrW+r/jPY20z+2gM/Df+3I/89HV+R7jfoSeb5J/ymAHYym/bFgF/RfGXk1g65KpHdQPhvy9nwpB/p4E/1Nh56OoPuJzyKfxPSPpa7f0Fcifnf8kc8noPP79thbZexvKPRof/PY9+kXDXAmcqkB/e6nVaQe5/vutx2mvUrgHbAM+c9Db0f3R5DPRc8bQ/TKj+NnS55vyPOXoSeD8xry05OOj5x6g/orvMlz+jHo1+D61HVpjdD69DbPr6X9POBTxuHJ2M9C+tdk7ML39wOeOwwdx/SjQL7zsHvPebf4PnJfDrtqQbsDwGHQ9yr96wXG1eLgR9R/Fn2nor5s2N9h8j1X/oP6ojzv+XJX7OwefOR1/k/+Ceg7A+bjuSf0v4+cb4JDoPcE+p7pfBFcTv5vnk9ID3LWT+Qw+b+h1wrItR/p0/Qf90vdP3U/tQr0z0XeD8Ee4IVogBuprxb4DO10R165qO9z6k+LfLfC3yHm8/ng6wDpGuTPh75m0FuNekrRfhR5XmZca4J+p2BfrltvgN3AqfrfuC/KvPd3xq9azh94/gIYFz7XeF7A+3gX7d+knO+f8Hy0OemO5Ovf4vwo3L87+96jf2zlufu0Mwf9j8WekvB7PcrnoD9s1G+DelLT8D7qiwt+RHuroVd/Bv1n9HfQv+Ex+noCPgLvUH8K7KUnfCW3P0PfAtptht38Svs/sC/hOewtyus/dTIa4FrKD3K9Zn/BfuIgH/2obof6yTX0t5350RJQ/65atBsbuksh30X6p9DedOjfRLoa9tACe2wOLqD+0vqr0P4flC8c2r8+S/vtwMngVvTjeZLnS1edPyDf7Nh1DnAc49Df0N/c9zPoPOcY/aIH473+D2lJ14a+Y+ipuuMW6ZzUvwd63eeZD17z/Up7B8Ee4LhogKeg93vklxQ+3D+7TXvf8ZznGEfRXxbthffYFNeT9hP6e2XmST2ovy70XaL+DZ5vYd8lsP+TzPNPgMOpJ6f+hox3i+DnNPZXHPqmIs8yjGOlwUu+H+P+k66/SI+g/oKh9az7bO5zliM/DpgX+srC33eeJ9PP/gLjIJ+fsINzYFnkcRf6MMOY+Utm+slv5Mej3Xr0h6r6S1D/cfrh6WiASxjvL0DfJuzhHNhTPzn9E+F3AXr2Pen7cQr9ag18zyU/FdgWulfwXC3ozI0+u8JPCtp1PnIeul0fOk8Nz09d706iPedzju/5sL8t6LUU6ePkTw3tF7mf1BL51Mbei9E/i4I1KF8CfSZm3hoffp+NBtgbfcSj/SXY2UDK90Qfnmcvxe6K0/5E5DSZ8jeR3/fY9wTozQgf9R0v6b/LA4gUAP8Af9KesZ/F4CJwCvXPh5+S8BnPeaj56DUH+cXcr4euD9DrZ+BgsLr7X9DzAFwK9kP/6Tw3Re6rwcvwp9+vfo4fk66gf8W/rIvfQL4fMm6V8nyA5w9qN8jDfbEfowE6v76X9v8ub7210dcq6nsTnEk9sRivvsB+UjGelUO+JQKInEJuw0nXpP2xtPsd/S8248jX8DeN8W+67xn4yUL5u+itn3ZLec9/fL/4XikP6i/q/I/qY84tPM+7h74K8EA76n9I+9/6vH7npP+DfXgu/r3jHGnXL2XpX4/RfwPPMdGz7++e2IX+IvqHFPPcmfdODrCn+6/o7xWwNHKuSfk+2EUW8h+Czr89NytNP6+G3Bain67wcwK5dCPdgfadlzlP03/O+Zl+lxvhuxfpGtTzK+U68Hsi7Ez/k+dcN4GroLs07fd1Xce49bH+rPDfEDsvwe/TwU6Ud15yEtSOnDcuR6/O8y/TjvN8/b8GwZ/+X/qDNcG+dkHnKvTTCPty3uH7PDz/mI1eHqGXbfS/SpS/hNzC5xOeW6RHzmvA2dCTDv7dV9kM6qd1hvYvw98w6psGvevgPwdyuoodLWK8OKd/MPV5bpXMNHr/ivr0/1/oeQ/ly8H/WMZb4zgKQd8Mnp8J/oZ9f4t8aqC36mA18Bb0r4O/b/UzIb1F/3DofQXUn2I486vzjJc/gc9jb8mpP75+FfTvdz2PIL8ffF/EPvqTrq9/Fs+/j16rw19O7ORv7HkO+tnDc2Wxh4eUv0v7d8BDjs+k0/PcaLAD+fEZ72bCdxkwG+1khY4T8H0cbIP8ilLfYM+jaO8t9JcNup/HMAqSPomeM1HfH/zu/vybyGca/aEhdhKLcvqndtS/A1zhfrPzR37/jd9/BZ2/vg+/r4JXwcWe50PfEfTwBXY4hPq/Z/wfBbbn+WzQ53zZ+fON2P9sPzwfbYkctju+YS+90EdT7PtP/bahV/+TV+G3C+11RG6vUp/npYNp33gQ40MS0N+NDxlCuz2g6xPafRk8RHul3DcAx/n+JB2Bnj36jdLeNOp3nW1/sB9kwh7KguXA96HvvwigIfJvAI7GPj1/GEx7nkO4//sm5J0GyyGfT5FPcvr9NfSegvRQ+JvEeOL+1qHQ/tZpnj8DngKbkD+c5yeg52GkP4U/4yE87zMu4qz+df/iV+D5+X74dd96EPIYD38Tkdck8AB2mIHya6mvKfgV+F/kWRV+qoPt6Of63xk3qH+X/l76d7m/eQI7dJ/T/c18PP+D5076GVC+EPX+GEDkJXC/+5bwUxN8BdwFfQOQ+x9gB+gvR/29sLee+nXC5wHnr8jza+fB0NcB+bUmnQx6EoOj4O8t2usCFkcPH0NfZeZlrosqkXZ9ZJzbEugqQ79JBX1VobsyeI/nfoG+YgFEZoGZoDc1drOE/uX8xvmO8xv3y90/H+06FvqGet7Oe2RwyH9G/7ByyEX/MP3FHkNHTbA3cp5BOx2g9xG4A6xO+8tI5wWzUH8m6ntgPKd2BHZCrtqn9ui+ov79W+ivO7CfcfBTCf2NI782dheL/GKODwHE+CE6Hul/eAv6lttv9ZczvgB6XQe67ntJPyb43QBeAQ9Rv+cDzeErOePEF9EAnR/px/8IfBl5OE/5hnH7PeiZhz0/ZVxsA7bzPITy+sPlgn7jTIwvSeG6BPmlJ72T/DHY+yPkP5Z0ZeRjfMtZ5PEjqH9YQ8ad0/A/H7kcJ/8D6ttIv7zn/gft54KejfSPTqH43VbY0XLsLxvyz6sfOP1pK/ga5V+kfzUNILICjImnoP1w/LDjp/FdnlddA7MrP/g8hf5aY6eTsJ/PqH8zfO3m9wHyS34a9O0+y1PwHu2nQq8vgft5/gDjkPF965GTcX7G971F/kjkMgr8hPafhuxqGmnt6zTtpgztI03l/ZWUdt9Fv8lI96L9t9FTC/I/RR7PIT/Pv1xvJ3bDNBRfu4GfMbfIWuhoST9pYfwU6Pz2GO0fB49hJ+tpbzb1uU8T3p/JgL2PoH+kI50T+VyAjvzQrZ+I86XnPb8Du1J+KeVzo5/LyO0qeBD6spE/CTubCHr+XxJ91aRcf57fTH47x2/HL9L1sffH2NET91WR3yD67wjG74I8/wIKuEDa/def3V+GL/df1xifg9yfQqfrp6To1zjycPy4/nkfGodCPfrn3aC+lsj3IfxvpP7w+s91XxnKv8fvxhUYZ2B8wUr3VcDV+o/C30vQV8hxB5yOHBJBzzrjTEjvpXxx9JIU9LzO8zn9td2HUh/K37idjbSbhfQX2L/2nZpxQzvXvjvx/lqB/U6nvXdp/xfozWMcMDgX/nqF5nXPheZ3fzLezXD9n/if9W/zvB6+jRdzP/096DWOqw1Yj/7V3f0A7Q895tEOGXccfxyPHH/0j9Mvbgf86h+nv59+4voD9qIf6Fe5nN/nuH/nfQfUP8X4TepJi/47oq+V4Dz4yQ59Y6DnFfgaRfpz+G8QQMy551rwc9rvrx86uAl8B/s5BL3h+BLjTpK4nuX5JNjhLfeP0JdxoFNA/aPrYB91wXrgXPhrAL913NeGzzrIPx70Focv59lR173Y1ypwC+UnQd8q0tWQ24vuv1D/BvgbxbztNnR3hD7jBbW/dNBjPGFLfr8Les/HBNfL2FtP5HmPdHz6Z3g/tGcoPtb9eee37tO7P+96IA79K4F+ZvBnfP5t5O45tfH57nfs1Y/BtHGPnicgt928Hz7FfvUP0S/kTsg/ZCzPF6N8UvS8wfg86CkkXdhPYfh3f/sx5XMiJ/e39T/Q72A1/VH/g5TU53x6KnbzFXJOQ72zscNYjG/PuH/P8/ptrQS3UF9DxzvwO7AB/I2P/JPOfiF6PY/xnMb7O4wHqovC64M5kd+n2Nd97KkCcrmCPno5v+L3k/Dn/Q3G7+p/Y5wC2TF+4+08z6f9rNR/i/rzIb/b6OkOOJ36U1L+NOVqgT9TPh713mT8vQEa//8OdB0EvWdJ/968tPev5yC0XxK8wDg8B/pKkV4ZOt8+CP9ZoDezflDUkxX9DoT/mYwHK5Gz8ald9TMEo9jdEfjuHopfj4X+O1O//qaeu3gO4/mLfteesxtHov+18WzGt+VxPxH51MDe88P3C9jvZvcjyG9M/zzj/jLla8LvDp7bCF+fkf8x9dWh/qWkJ1J/Ru8Tgs680JmX/PdJz0N+dUmvxe4vkh5O+bGk98K/fg36F+tvrH9xOuQ/BDqG6GdKfsMAYvzctoHub3o+fZ/ynlOHz6e3wncJ77Nw/gK9w6C/EOnnvD/HcwFwKM81onw574vRP5T0EtcXpD/2/A10v9z4mi30uySMa8nhf7vnumBx/V/h74Rx5dBbF7t0f7mp+4PYxz3Qe5a6hPxW97vfR/vKtcO/yLe5fmH6XSGnurSfE3t97L0WpFvRvvMX45TD8cneR7UANA7P+6nyML+owviQCTyJfbRH74lo/1njccl3PeX6yvvOXL97LuM5TYPQ+UxRxqP+yCu8vvgVPsra/+BTvwbj65tB3wDKG2+vX47LEf1znA+XhT/n0X+ApSjv+Z3ndg953vM7/fOLkK+fvv75a5zngcazlYTOt6DnKOh5qv7o5bBn7/X4jHoyIMeE+n+E3gNP+b0Ter4BPe8yL0qMfG+G7m3yHifvb6pG/8oNVgU9P5iNfAtB93rQ81Dvn5oJzvB8Afl9znx8PuPBKeypkP4nxkfRvzOB/cl3XNTf6z+g4+M47LsA7Y4nfRv6jW9uDMbEOaOfd41ro93jpFNgv5eo72WerwjWon39ZfWfdT9d/1nn7c7X9QfQ/+MEclwIjoS+ksY78XsZfv8ANL7sBO3OoV39Kdyfcn98vOcWngdHA3R+5LzI9Z3zI8+tPbdzH9h94cGhuDfj4KSvNPRvpZ277mMgn+zYo/0+f2g8mAd/ReiHRT0nQT76FS123EGP3p9UwHhZ6k+Pfo95rgwfC6GrsPML6O9G+2nB7uBf0N8HeXpPWPh+MOcNKZ03hOYP7v8dDe0Duv9XivKL0Ut592dz/t/874RP5eB8Xb/7HvRH7185Srn5yOMP9+fJX4PeVoG99Zenf2yD7+Tw3dvzJfJ/hP6JzovAgdhXeejMiFxfJt2P9it6Hxf6D/svp8ROuqC/jqRTeP4Xem+H7xscEkCMf/gPpF2fFaa/DosGmAEcof8r9B4Fj4Fx3B9nfE8GJgU/oH7XzZ4TId6Y86EzyD0h+j+oHzj5njNccB8CfI7fnyft/U6Z0dNf6P0d5Gb8ovGMxi82QC+NwL/p356P6e//NWg8wAX9uzP+83nPMTw/cT+iNbgY9P5R/dKL68cW8k+/rv8s9DV2P5z2vE/NfuK4oP/hUPjxXseMxquSf5Fs95G9v9T94520P4hxYwzp9ZR3Ha/fsuv9O+5nUr/rI+NTvc/1HumhoOt09xGuwVcVsJbjGvanv8d97z0J3Q/q/YCLjdsAf6J8Be8lBd/3HBz+9R/Ub9D1iP6D6ULja9g/K3z/0wDoM37J8/+R2O0JsJPnf9i1fj6er+ZAfpPpB5NA/en1n2+DXJzvh+3f8c1xbXdofPuv4z58LSA9GvqN7zWu13tGje9Nq98t5fRXbRINsB50G6f8OpgIvfVHHy2odxbpo+jPe1Nng7PAPs7P0Pd16tuJXUb1//bcELmMJ12JfM/bXAeE/bfTo/c02MHnYBPknx/+W8L3XbC28d0BxNx7tNM4KtrRL+oMqL9UHc/LSd8H64Fr9f+E3zLgZvpLIvLV5ybfu6D6reN+I+PMGjAv8t/C81v1i0B+zgev8/xN8AbYzfFR/27fa/ZP6We8qur+p/E2xifS3kFws/FKlH+IPWVCXiMdR6jPeAjv/XsIev/fFOx+ghu/3r9E/bWM50Rvro+83+N35G0/dH3geuFt6O7h/hhYmfKZof8wdrQEPB4NcA366w7eAPfm+Ae5XssXmQPugs6R9L9R4GjwJPrT3345dCzTz9N4wFC7131PQ98V2lnluTn6c333LNjMcZ7n40O/8YPed3cSOXq/ZiQ0r2kFer9XMuxhp34V8DPb9TrlmQZFPga3Q49xv8YBH4ePfOQndh+RceAt+kF96vd+mphzFejxfOUL5L0N3AHWYPz4CHrygX3AH9yPgo6t9NOb0Oc+ufLzXlLlqPwO0p5+c9+B7Q0MQj7uazqfdH9zHvq0n4X7VyPobIcczhl/CH/eG9wBDN8f3JD+oP/yOdD7941vGRmKczG+xfuUY+lHCeZyfQo/3hM/EFyh/yDlL+vfo1zJ9345+1Ur0PvmjpDuASZBjt4P7r7eUe930k/K/Q3KOW90Hpkf+fs9AL8PMB/0+wDzsc/B6Cd8zmX85QfeI6zfNuU38FxC76PRHxv64/L+v0v9E7HDSeDfxquAj+lHnvN5fua5WR7o8/zsNeiqQn2NSQ80vivC72As5HuM/GbUm5b3+0rqWQH9jtcjwBreLxINcC30fk29FcHD9GPPA7y/IXw/xXraL4d9vwyuRr4TPU8BM6E/47ePQNcNMAn1ev+299m575NefzTy69MvWoOtQNd32q3fWQh/X2ERdHUGj4rkGwcXjo97Al0l4KckmFM/OOzFexu935rHYu5v9N7vb8Dw/d/O/7LSXvj+/GHo03Eg3P/1Z9W/1fN5/Vuv8d5YhNyGO06RXxM6Xwmtn/z+w03m/+7Lu0/v/vxLzg/B8P0Yykk5el+G92R4P4ffHQn75zfR/rzHDVxM++5PuS+VwDj7aIDh+Z/zvuWUd1/oF+UGep98Qui5EEAE8cWsp7T7fuBWMCntpEafp/yOAKg/awPvJQUbgsWgb4Z+ucjJcXIK5Z1XOc+aHJpfTQrpt5d2Bn3GnRiHoj/IcPh3XhIJvT8v836YFor7Mg7M+C/jBNcyXvo+8f2hf6V+lfq76l8Zvu8lIfMA70dbQ39aC+rHPZbxcxbyqIp8ioBb9S/BvvSv0N9C/4pvoMfz9JveF0j+OeSyB3S/Uf94x+vCyN3x3PE7NXSXxy7S6I+mnTIPzEj6NvyPp/2MvH/uU+4eGI/nt9NuP/TfiXR9+Deu4ibjUDi+wv049+fC98P4PYDfXe+R9vsAxnN6z5nr56fQNzh0/7X3Ybcgfy7vvaHoZ4jxHuR7f1Yn9Oo9Wt6ftQF5vM74t5F0TsoXh9+KyL8N+AP5Lah/l/E+3oPo+hf7NC4kHC9iPM4p5GO8jvE5hdzXpZ35oPczZ3a8hq9neP5F6JlNvd6zWdU4IOjPgry/DCDmnosD1H+e8eYSON57Otyfw35/5/c22Fs9+OexmHtV3I9zfCnmfCp0z6TxMW/zvPc4he9vuoA8XDc8B7p+8N4E71E4C3p/wiHsx3usvLfqRc+3XK95XheK3zduyjiqLaH4qSU8lhd0Wac/ayfvWYaOsP0e1n8UO/RcxfeX8SR+Zyn8fSX3Q9wfcb/E+NxPofsRmJDx6z79TX9l7UR/T/074/C7/mL6k3m/j+cdnn9c1Z/U/Wn0tIn+Nw76XdA3xr5vGleNvMphH7631/7L/k1D7Cmt4yeo//sbztuxww9p5wn1D6G9Q9DXmOenk/8YPa7xXmfo9n5r73PxHrtBpL2/7gv0uh0s5X0kGIpxNn+H4m+8n9lxLHw/YHX9go3LCdmn8f9dQ/cPLdF/FPl4n/Bhfl9F2vuF9evqC04BvV8pPvSO5Pel4JVogLFYfzwDxgbHwb/3Pud0/5i09z9PCiDSFjTOzP3l0chljO936DdeIr/nCqH1XdzQfQv6T4T9o93Xdp/buDbb9x4l/Uf0J9F/JLxf5j7aGdK8PiJfg96j+Bl0G87gPM04WufHR7DXDchVP+Sr0PcIuop7fu09rPrnIO8XwTPgYPrxJe8VgS/vWfB+hbdJr6b+10iX1j+Z96Hxrsa/ej/wRezWe68c54yfMw7OuDjj5bw/L+xvrh+68cv6t8yGXv1b9HeZwu9Nkdvr4E7a749+czGulOR53/f9oecrsAh4FPp+ZXy5A3al/dfg/wFy/cv+7fvFc3r3W8CMji/OD/nd80XPGz1fNH75Heo3jtn7YvpQ327wJ7Ce/qeks1DuJOlS5Len3XGhc0zjpz2fmgdfnlN5PjUmgMgB0PvjXiD/cNp/1uP3Ovw+xyTo+dC4J7AF+t+F/XlfgP7nSXy/kO/80/P3/eQ38j4P3jvGixkflhw5l+S5q7xH9pH/lP2oTa7/SS8l3/evcRXGz3rfi/FRxkUlCcVHvYi9vgSWMI6Y8UW/isug34nUv6IW9vGqfpjY+zzqn8d4+GE0wCjyMX5G/8q51J8X+/b+/ymuVxzo6K+ubxMgt4RgInAE9fek31yF7hF+h8v1GXy4392XdDPHH37HLGPuA3Cfwe+CGi/le8D7d/IzrjUxLgb9v+f5I/pYAX1+328q5X9FLnfANtDTC3nvdbzRrxT+ykD/BtofhJz1V7mKfvpQrqN+tdop9P3bvSnun05z3RA6v5hM+9uo3/MD7+Hx/p18vH9OuC9Kfgbo8/4Q7w1Zipy8P8T35hz6RXHSvj+NC68H3+H48COhdY/rINc/A9Hzt+BCsAj86c+sf/NxD5z076X9Frw3b8HvA+qvB7/eg9Ab+W/Tv4D63b+L+U5iNMDfvZca+fyCHOdTf1HGJ/158mOf7h/4fYHelG+Lvv2OWnbauwkWs9/Tfkz8Bu0Yv/EW7WQLfdfJeDG/78RjMfMU5zHOU3xfFwV9T/pefw/63we9b9/vb/m9gts87/cM/H6B9yvoDxm+n/Ys8izLuDwV1P9yA/LyO1Lqx+9H+b08v5/3bOj7eY4Xjh/h+7v8XhzqizAsx3yHVb8A48zD/gHXkbt+dcXBbdDflvHsRGge7fy5kuexYBWwPOWVq/cCe15o//a7WsmhK/x9Lf234tDuKdLeR+A5o+eOJ5zvoJeJ9LfvkeNl0r4/2qKXeoyrLyP/psjb+ZF02P5T8vd6b6rrLPdR4bMv45HjUvh+o1ver8E4cJfxyf2pfdhTLB3DwD0oPBf5D+Djvt8rIz8u9PUD+4J+/3UZcr3pvi/o96+V+5gQ/8rfebLzZ5ff1ue+iuez4f0Vv2fr+Oj3jvy+kfeZ1EVu9j/74xc87z193ssX/j6386FqxhXr3wg9nnMaL2d8nPHKxi/XcF9E/1PkOfBf5Puh8yXqWULa72H6nTXnQ84nnT/W53njoMPxz/LnOOF8w/3HrPSn37CvbKRf0L8RfvXrPgjq9x3L7/wwT/MeCePLHX8dd41/dPwNry/D4/dh7y1Af6Ohcxf0P6TdhvAVvj+uEHaWARyKHb6D/hxvHX8dj72/zvsyZ5D2Pk3vz+yC3L1ntwX4suf58OO9aFQXcz/aTujBfCNUF7MucVw8Cjr/cdxcox8vuJ3nlsLX/wB3vgqQeJx1nXm0j9X3xz/X1ISkgVK5hqLMlzImkZAMoUkDkRCZGqiQkpQpTYZEyBihMg/JlErmMgt9ZSwlQyj81vp9Xq+7lr3W9c/b+TzPc84+++xzzj57OHfIRYn//3fRlUlcmDuJ/92UxKevSeI0sMnVSVzC80OUW4M1eW8gz7smIcHjBI8T8/jP9dclscSNSbyK8h03J7HZVUm8DDwJtiqUxE8zJ7EADazPmsQqlyXxqyxJzEa/UujnOL7ffHkST2RP4socYOEknuP94eAk2u/E9z+nJLEbeEmmJLbNn8Ss2ZLYnvazUX4C/izi/TFgD7AfzzddkcTcuaCX8rs8fyhvEufcQPv5kngl/MtEfzKD6+HXDfC/0/VJTIP/069N4g/Ufx6+jgXX8t3ugkncBj8KgkPh03XwrxPj8Srtjrw4iXfy/pokJGaCkJN4kXbKMC6FqXcY9b0M/2fT/6r0+9rUJA6m/2NppyXtPwW+gHyUYzwqwd+KYHHqKcT7j1FPO8bnEPS0oFwJegvz/nfwaxN0yd9WyPd6+Ff40iR2vCSJN1MeD/+nU08/6n+O8hz6tzIJiSbgeHAxz3dBt/KrPCu/h6G/DfXfCv1/M35/U98nYJ7EhfRMYTzqUs9Uyh2h/wPoXYlc3Ue5vfKGPEwFK7Ievc33zaGnGXic8XmDfu2nfASsDBamf8eQn/2M80GwLPx5ELofAHeAfZgvH9HfrMzvPylPgb4V9Ks5/CpNu1Wo/ze+mwXeRL/bM/4F4Udl+rOT8TlFPQtp7y+wOpjC+rKb/pyEb3sop0Dfd9T7DPXOcx2l/R2pSSxFe9XoTzfofwA+9KL+V8EPqH8Gz78CZ4I9eZ6L9fUy5PtXxmMn7b1Ef66DP99QXgJdw5Gn72n3W+TgF/jWGDlsxriV5fm1YA3e+8d9CzwGfbWgrxdyk8o6fQvPYUNiMHz7lXIznrOMJG6k/YvBA/z+DuUvwXVgcfjv/H4E3Bvmdyr9awXO4fnbBZL4IPzsyrrxAOU/XH9pbz24FpwG/QxD4hfwS7AT/e1De0vBj6GjPN//zrjdDXaCIbORg/PM6yqM4znK/fm+LXzPj3w+Qzkz9PeGnsKBvnb80AN6bmPc5jDuDaCjBXS0BG8C36H9ZdCzFNzO8+Lwvz/9+gV8ESxI+w/Cp5ehvzPlStR/IoxbRcqOXw3obsj49c8J/Xw/lvEcA1bl/dO0v496a1Nvb8ruX8qvcvspqPzmhV8dkIty7o/0Q73qYsrqW+pZb/K8E/Soh6h/NOC7j/kujfLl8GsK+kx5+r2FdeJN6isJvSXA58GV1FMavpUFy4Azaf8P3n8LhO2J7sy/zoznbfR/E+UHmBjrWE/XgxvA+6j/Neh4nP78D9wMH1bBp8/p/1TQcRuNvD9Mv4fwfl/GpxnjWggc5viy/o9W/tW7eT4L+maznqfQ8TXsP5vhb2P6fR68hnlzgud5+T0VnAF/hqUm8U7aO0T7tcDt8O83+lsZPfwn3r+V994C1VPVS5fT/zTKC8HqfF+G/m2BrvJJSFxFe3WgvyH6YR76/QTjcpj6l8CfuakXPh/B94sY3xaM6yWU8/L8Y8atB/tTH9aRNOp/F7pagOoPDRmP49T3CNiadrbAv6cp9+R5GbA99Q/zPMG68Bg4hufz6c886iuM/unC0CrI7bXUX4L54b7hPnIo7B/5GJcz8P1fsC5yvZH5+DP4GvttTc93lI+yDszju4uofzx0ZVWPAT9H/rMwvtnp13eM50G+v5/3X4SucZQvRd5+o/5qjjf8ysP390FfPbAu2D7sT7yevk/dSzvqzZ6D4/m3IPKTChYAPX/tpZ6tYEP6UYl5+i7zsTWYmfEZznjXpX9jkc9xYE/7i0LvOTyev2Fn4hLq38H8WwT9r0DPy44/8niMdnMhj4dZ3yvBv330ryn0dOH7zmAe+nsz7fzB7+epfy717aVcGLnpTv3uz56rOmRwvvqM9ydDxzzm71ief42cVFW/pJ0C6k+0Mw6Uf2cpT4f+HvCtGOX9jA9in4BNiV5gUd6bT3uLGO8c8PUa2q8Jn+bz+yHKi5kfK6C7AXgJfOwPfSto71vwWXAD9C2AL2/Av97gi3y/nffrBvpH8/1B3j8EHnY8kC/1/qf47htwFeuP83Up/XM+38b3k+FTbrARfG4BfU3Rm4YyjsPAYjzfCz/+B1Zhn9pMPT9Bn/+oLtGH9t7neS8wB3wuQf+X8t556p9DuTLjWZL+NKd/HSkXZfxSkdcC6vd8t47xL8b7PfhePW18ahJX0l598F769Sn8vY3+lAMHgpvox0Lons48mwa2pr6XqO9f8CS/76T+psynEsjRMOr7BDqzMx45wXW8/4nnRyaG68YVlF0/CoZ183Hadf3cxe9ZPFfTzgieb0bfupf1pA6oPlsOvteh/drgHL6/KZwvWoXzBdUnYFuiD5gV/uZjfp/hxeNga+R7InK1BywLFkFOm0DfKrAx2Ij2xzAeJyHga/j/D+V34U9T2n0EHEX/S/H96+BWvv+QcZoCPc3BzeB5vm/Be+WpdwnyezvP5/L8e+jIA3/nMn/uzcD+pl1up/IPPso476P+q6kvLwvtNZQfgj8joWu0/Qab8tzzahr1ng/n18+TkOgO3gFO5rnnxVugu384P2r/uJLfd1MeRP8HMZ6d4VsX8Dvq7wm9n8CPUerb8GMg4zwAHAReq37BvNXOF+17L1NuCmqP6gD96qvqr/NB9ddc1P85vz/B+xOQ75fQt47wfgr7Zw3qH017zcAjYAvXP9aVR8HtyNEM6l8IXwvD/5zgftaJj6DvJvrbElzE87+pVzui5zXth5h30+3W2rG1X9ejrJ54FvyB/ubkve8Yt+/Bb5Gz2bx/AmwPFklN4nLevx06/2Vd0G40kP5W472xlJ+A/vXMi1uZFxsoZ4e/FahnAnzqqv0W+vcif//BlxZ8/4v7L+vpc/RnOah+Oon+qGd6PFG/rMU+OFh7Py98BP3aV8bSvnzQvpLKfKmEHEwC6zEPXkEe14PZkNMV6jeUP+T5Hv1BDPhS9XXXcfp3iO+1B2of7Er7bdQXof9Hxme19iv6wfRIcHxNLAe/0D9CuTS4DNwI3XfA/y+od4b2Ue14PN9KP6L95S79DuBsvne/LMu8yM069Qfjfwb5uZ79ujr9Hgqup3/Pw7c1fH+a339Vv6Y91/1ngv9Ff0tLftcfo/8lF+PfmfrbQ99uz3e8p59iP/3UX7GW+n+kH9optFu04vk06D7l+ZRyAfiThlyUAbsgv4UoZ9ZuD77Nc+0Zy+mX9g7tG/oPN0J/8+A/7Mb8HAE9L1L+hed/wsd60L0ebED7DzNer4DLWRdb8bwa7e4Eq8OXVe5P9H+RdjawOvJzP+N/Cfgl69dK7Rdh3nm+SaV97XdbwZHgfOhcyHd9+K4WOCQ1iV8nIV2v95/6vXpxNulnPFLBLTx/DFwCXsq6pX1hIe22CfaGV2inH+WbGJ/X6P8g6qsEVgSvp331sW2g+pr62Y/QXQq8EvlYrv4OXRug67T+Qvi3iu+u4ruClPfx3gnaPen5HDm4mfFMCX6d+mBuxm+19jXtoshpbe09zn/wPsdRvwH1/U1/9GPqvzzguUS9F5yFnNWBvulgOX4fx3zXf63f+gRy2w/69fu67rge1XEdB+tLP+vRIPrxEfWNAHMzDn/Rscme+7S7go+yjukPUa9Qz1C/OEu9TVm38rPPn0O+TtOefJXP8lf7iHaRLvBF+8hU+j8KPu/RzgH9R6n/DPX3pLyG8ZlIP5bRXkHKk4J9uhF4NfRdDR/dz9eC7vPu+x2SkDgM9gXfh74CrLdFwIJgJ8b3edpbS7+1G2ajn0/Q/w/AAfzu/F2M/ExCrtLgp/EJI6DnY7ANuM34G/qtGUL51m+vXvsyL0T9Njt8rcACVwkcTvsNU5O4l/fPoV8toH3XL+2iHzKO2kdX094I1wf49Tb19uN9fk605r3fwTvdj+HrHnAU9OVAfisif4uYD5X1rzPOqYxbVfr3DvJjPMSt4C3gVOj6gPI80HV8IAqX/i39jD/on4Ufk+H7KXCL51/mn3bdatpxgn23H/QO1P9HuTr9U55s1/1C+SqMfP3Dd/NhtHLpuWk0eBT0/HSFBgrGuZfxG7T/IXI7BBwKXqtjkXIK2F57E+PyI+P8H/gh+A7y5rr/G+t+XP/136WCn4G3wI8OvPcg9TwE5qQ/tZCfJ5CrEmBuxmck7x0H61LfYOlD7rRbTII+7RefMd7PBz1E/WMZ9bmuu867vm+B3zlYF3KCVaHPOAL1lMdBzw/H4cMu+n0x49CFcThHe6uhWzuw9t929GsU/SwJPesY3+zUb1yXcV7Gd02En5nkD+Uv+P40609V5P4o/X6d54ND/JzxdMbP3QE/VkBfVcptaf9u1o/X6Hd35lE39zf44Pne877n+yPM83torxJ6v/bHl6C/NfU3oH9baT8f9alnRv1yTTjX1WccRnmewn9l3FoV6nV/+CoJiVKg/vBhtKN9U7vmHvUJ6F8L3/Rb68fWf60eGPXEo/yemf7dQP/foB/XU3Z+6ld3Xm4z3iiM783IXw7jF4wf5Ln65pXU0864Kb6b6z7H/MiBwaot454Jun7je+172vU+Cfa9x+mP56Dtxl/An1OM13PIWRdwGPTvNB4JPEG797Iet2A/rYC86W8zfqUZ/SlG/3Zpn6D94pSz8zwNHGRcLvXXZADclzxP9OH5aPB36HD90t6iHesFcDz1Ox9pNlGA8kTG7Rhydwd8Og3/noL+6fB7BjgNfAv+j+a7MWB17ed87/n2SdDzrefdlfr/4b/2garQt8zzZrA/aJdQL1BPOA2qH/RlvHsgX64vX0FfW57vA8dD/1XqV/DRuNvMIc5hiH463v+J9eBby8jRv/BnI+XHtX8mLuyH9GvHct/wH82nn29zG+fIupqd+p+nfuO9L0VujQc3/ls+2a502P4s6i/HOloU+XjT8UXwjDs0DtH4w6UIqPvGUOhx/9gKvR3Ba8DT0Lcbvsf90X3zUceZ+b/VfQ46LqLfkJ04CM51niNHtZDrrZRLQt8h5QJMg77e0GfcyN3IbU3XR+jVnt0Q/mnv1r69lnYP8vunvN9S+UHeo51D/WEaHfscHKYfhu+NL+gT4gy035ak3Y/0C4XzgfHix10fwdJ89xLPtStrZ9a+rH/nD8ZFP4/+ne/g1/Xa7ylXoJ1FjPcCcCFYG/pOJSHRCRwHdkMv6MN+ORS+tNLuAH8mUN8r/D6RsvNZv4l+lNWg/hP1Qe0Arwf9UHv+GdB42Mrw5zD9POS+DJ2bQnyV682X8Nf4qm8QiHrQ/y/yew30GTfyaQbxI8bd5YdPMf6uMXQ1AY8wjsZpx337Gcru61WMBzO+JPg39ENHP/VAfi+ehPR18jhoHLzx2T1DnLbx2cXhRxV+Xw22YBxyUt5FvZ7nN6QmcR/yeB/0vUV5DeN3iv3afJuTrHdZ4B/sTqDGJV4Dz9Juafo5jnF9ClQ/bs6Hx2j/b/VR9Tr9XyF+YYb+eeOVef4v7al/1OX3OeA58DHk+ATyeCt0FAfPBPuOdh3jEI0/fJxzRVfWz+HIjfFr2lULBfvqXfqv6V8h5KYe7RSkXAoGl2L/c10yvyUFeouwj51AvvQ/GcDTElyJvLh/Ob+/hb53ad9z4e3Q1wR+XgGWpP0n6c8B3m+rfR756UU/eoI9PIfT/jH4XxU6HgQb8vwo/KxOvf21H5jnpH5Od40TNw+rMetHI3AX87e0+jPvmXejv0T/iHYz7RbaMbRfbIGfZeHvVPg/nvqP0J+VPC8NvzbyXHvZEPj8a7AP/4286RfVT6p/NBPybHxUN3Auz6dQ3zzo+J3vjU9bRrvake4BjY/Oaz5bBn6kwawzu+HLWPpZmPXiVegxbks6pa8M9aWBZUHte57/+kHXMspP6z+ivcrMg0pgHep3/TUuaJFxlvz+APQMANeDP1G/frVVwb/m/tRFPyG4H/mu6v5CO54HzEPU/9WT+l41j0V9V/0VefneuHRwEfU7bvo/9YcaH/Q6/e2tH17/hHkuxiWAO0Djj4vRnxLgQ/Dhfdo37pJjQbqf3DhM7cXaMfPy/qf6l+UHdM31nEv7+v08Bz+hH4lxNp7ROMe70YuMd1wezlV3Bf9uBdaXEeAYMI3vx7A+fcY635hyGv3PynrSCbo6gtdA97XIXV4wH/gy32sv0+6vPa2c50/Gsw58Mo7e+Hn3k0Swa7i/rDLvDbwL+i6h/uHsK/Iz2hc8N3uOnsd88/zsuGkvL+a5gPrrU19dcDr8m8j37nfuf+6HF5nfEeIj9KPoPzF+2bjlGB/UlvdmQffTxifRfmHabc46lp9+GL+m3CmH2mHkT4xLch4Yt9SK+p4C/2c+n3oj7zcCr6Z/r7N/tuH9tsZnmOdFWX9Ye1B/mf6xLNSnXjbfdlKT2I3vuoIbGe8ctGPcTQ3qjfE3mfjuJf1AlAeon1M2L8f4T/Nz+kHfBPAG6tE+uZP2F9OfheDXtJ8bud1C/ZvBw9o9qe9ZsL36G/2J+aX6s8wzHc7vnqc9b9fm/DOQ/sS4eu1nvyLvU5j36gfjkB/9o+ot7cD91N8EejLKgxnNvNoNX2azHjWlfv16+vkmU9Z+u9+4CbAaOAM6nT/Om2fC/DF+yLghz/Oe31+Ersaey8FG0KG9x/O/dh/5/B/jcBYsq/4JfVmQV9epgdRbxfhI+t2G71uD+RnPbxiv1/jd/bI5dC/TLkC7xm95vuvD82h3vo169Vvox/iYsv6LKeynWZHz8XyvfU2/zGDqfwf8iPpdf1uH9df12LyEI6D5CuYplNWeA3rO8nw1k99rgNXBr6GvCfwojj6xmf7UN/7QfZHvPgd/ZnyMa1gPGu9gnMMG89TD/L4CPrqeef5kuiWWUM/7CFhNHpxgfhyg/SLMn3n0ozP0D3V/o73BPPfckVCPoj/3gOe0/yJ35lOYX5EVuTa/wniN48Z1uy4af6Wf1Lj8kF9n/MW35gWC6+h3EeRYO9gX8FX710N0ZzL4DjjB/Bfa/RU+mIcwk32gEnz4Cjn90nOB8cV8b/yp9ylU5vfxDNw4cAL4Jf03Dj/G57dULwT1P2m/0v9k3od5IJ6XzP9QfzS/SP1RfVL9pV7QY9RfdE8bN78HNH6+Ae8vQK7W0g/tJ+rzWRlX9X31+y48N76nJ/33fgrPneUyOH+aD1kCLKkfWLuD8cfgF9pRoMN4zOmg+nFdxs/8nKqg5zvzc+bynXEBximY/7wKXIgc/0c/Hod+/W7SGf1vvVG4vJ/lSuz15of9QPurwCuN/6O9HwNfon+xDeWM7kmYSn+LgkVA4wKNz/Z+B+O0jc9+Ablw3XEdcv1xX+oFdkbghpu/Bw7lufksI/l9E+vAs+r10PU09X+NnFYCb6eeu5i/+Y3zBW8EX+H7SxmHOrR3ivr1J1qv7ZzyHBLWH9cdz5OuP9qvKtCudiztV4WMF6LfReFPJZ6X5PdpvHcYHIJ8LoZ+7VreX9KY9bUjZOwHN4Az8Gea7/UCfDOP0zgs7e3u83F/994I7aTx/gj3QffHe8Fn6Ods2u8FToP/y6HvqHoO9S4BL5c++mP+uvZo72Wxv/ZfP4T9v5r1oC/9GwZmpn/634xr0o9p3Lr29duRi+gfVw/Ur6WeqP6dzfORcZxgf+TPex+8B2IU6P0PMR5gAXRtTk3il7y3lvmzBhxE//7k/XHwdbznRda1GBfpPu2+PQ1+qdcNcp1y/6KeKfz+mfZx5GUG9G+m7H473Pgtyt7jEe/v+JZ+Z+L30vpF4Z95HeZ59ALN7zAu3Tj17eH+nFeZb9tCfLVx19rl6wa51j7/PfTp1zfO17iMXdr/nX+UG9J/7z9wPTYf1fxT85aNe435y9ofS4f45In08yz1HqSeDpSfYx/6Mew/X1DvHuN+zIun3zWCfr3O+E4wxvcbP+o5X314MPqL8U3zkTfjnPRPm+9p/qdxceZ/bmQcFoHNwAp831e/EfgXfJgT4n891xoH7Pk2L3Tt4Xv94Ruhq4j2kwz8X+pz2pmjfdm4dOPULzK+Qnsi/PnHuBawNnzeBB8yMz41WZ9GU39F9Riee3/Gec+prO9FMtC/3TeeD/uG8bvaqWN+pHmTf0NvLXAamJVxVq+L/jP9avrN1A/1p0U/mnE9vn8Pv09C3n8H1UeMxx3P+2/Ld+oxvq0979fw3EA9lyK/0W+hP7kX7d9P2XsInLcrGI+M+JIFveA96PF86nnV8+liyu6f3WjXeeS6qNvPfPl2nntoF0hUBrU76W/Rjn8H3+l/0b+sX31F0A/GUNbO5v0TdyMv0a9Ynna1r2qP+Q7UTqPdZh/03gWOApcyftq9UKfS57t2sRTac/y1r2p3rczv0b6r3dd8GeNWjWM1fnU28uI6HNfffLxfFrpgQ7p9xHsNjePyfi79M2fph3LWCFS+lAPXV/Uq19cByh31z1ceYdxz1Of9Eo+wTvxDu9rltNPNYb/QPqfdWzu493a473/AONbULhD0nyhfypXxG57XvLfKe6z0MymPMf7Bem+h7DngVsrq/+Whby90VQDvo3+ZmafGZxmvZXyW/mDtNH/ynnaaAcZRgO+F+J8WtHcIPKy8pNJv+iv/o31Uf4Xzyzwa/fdAup1A+4D3cBpf/iRonLnx5TfSnvGN1vdzWM/cB2qD5gd1pt/aZ7TXaJ9ZQn2atehO+j1O/WlwAPg783Kt8ffQPcR12TgCz5uUR/Dce7Zm6FdET1yNvF0f/Hmul+7j7t/59WNRj3FzxtEZX94Cw9NIzivHsBd0pL2l1DsLrAn2Nj7NODDXf9B4fPdN75+K+2eMS9YPa9yy5yrPme+BY6D3D+1V4EaR9W9XsAt6j2BPvp8dzoVnw/nQeDvvCYz3AxqXqt805sd6HvN8pj/T85n3QaSF9V//mnmL5jG6Tpu/eD/PT4BT1fewl8d1o7xoHnxo1/sqbN/zWZNwTjN/zfPWZNDzmHn46rueo+L5yfOs+Scxfsx4N+PfXgjxb/bvYAbro/qX+la8L0r7p3qy8SEVoU99sID7Mu+pHw7j/QpgvMcsD+8NoDwQfA/+mfde3ryUkP++JsSHaQcxPky9Tz+G8SzGr+zwXkZwAPzvbvwH9Gqf3QpOp37l5Ri4N8jPhAzO9ebrun64bpwHyzB+2k+0j44EmzA/lOOGQc4XIy/mE5tfXDbkF5v/nIXxMw/a/GftmMbPeJ41fuZn6PF+pw4838T72kvUH7SnqD8YP+v9y90pG5+m3d97AqL9fxT9eRT+PgZuY3yN42pP/71v2/u1n6Sez2m/r/Ew+uep76h+aerVL5OF94070Z9m/IJxGa5rq0DjMzxH3BP0K/Uu9ea1YNSfDxoXDB13U16HfHpvQvRv6Pd4O5y/ZzPvGulX4P2od6iPnoTeO0DjR40rnUA9DxufRzvmrz3Mc/2gb4JLjYuBAO3X3rP9Gd9pv3qIfmvH0n7l/HDddz/Yxjz8K4yv/rWB0JsTfhzg+X79ydp1gt11Jahd9mb3C+3SoHlV3uf1CPV435f3e8nHyOeu1H8e/uiXflo+wp9ntfPz+2jXIeSrkX4lfjefqyt07KBsHtDPzn/zmc1D4rn387xqHgzva3fSHuV+5b1Lv6NIxPuX2uinysC/7L3Bi0HvQ/b+Y+OYPSd6HvR8qN6rHznqv6636leux66/ngfMCzBPwPOBcdfaoaL9STuSeql6qvqpfmPPJ85XFe6Yn5YKapd235Be6X8M+dJ+aR5/zN/3PN8IjPEX8nVtBvzNRL/z8/tD4NPMb88t3oNejfm2IfBzOKg9TH5rbzQv1wOOdknj6TqA2Wj3BN8f5HfzC07CN+/LMn5hb4hj0L6q3NTJQH6MZ9H+6z/jVNyvMsrTs3/2K96zZ/5XDVB92/wv7YvaFfUDaF+MdmvlQLlQLzfOxjwh/SrGDxqf7gHQ+EHvxfWeXO8j9H5c43LOgdv5fSn89/5W7yf3Hlfvb/X+ZuPD9KP49zG2QRbbQLqdzfsC9T+YT2G8r/6HEsGfH++/LEr/vL+unOcL1jPz2/VfG/dtfnsKz71fOTP9zMuE1p4b/YTad+uZfwHu95xCR72vwvsrKofzXWoS0u0D2gvMf/R85vgrD+njrx05xKEbf24+wHugeQKFvBfX/GtQ+6j2r06UZ/L9LLA2gug+eAS6q4KleO76U9RzXFh/lrPetKVe47zqh3Xdc1E8L82jbDyVeQ/mN5kXZn6K+Rjqucq17upfQf3g+q2MY4j+K+348k0+mk9YKqw/8X6cIfzuOeDPoP97TvT8WBH0frEHoEO7pvlQVZA/7+3Z7vw3LkJ7If3V/mseRqew73sPabx/tFKgK95/lkr5FlB78s3MW+Ni1CtjfIx/VyXe3+O9PjHeR/uT9+/GeD/jAD2/eq+w9qEz0O09Daco/8zzn8D1jLN+T/36+kP1g+bFvqfeug8snoG8xPmnXctzqn447Vv6kbVzRPuG5ynPV8OMk+B747AmZeD/Ma7ZOOchoPHNrgfe22Yeg/e3Gdf8LNjd+GHznow747n3yCXC/jYp2IG1j5iXtwCM+Xme9z3/6+/3/G9e0DzQ+07cJ/R/3QoWA733wXOHdvRoh3+Q97VTGT9gfJ/5OJ4bzNMxb0f74J4M9g/jX4x70X9g/Ityo13jOVD7hnql5zLPaZ7P9KvWd16rZ0H/UehsCt3aAa5jfuu304/nOdtz92S+N05uJeNrfM8C6NX+oz1I+4/rifbBMtSvf8p9Sfv/nWF/cn3Q/2G8sOuF9xmrr/wEer/xGegxP+pS9wv473nU+ze1l3nfiH+3YZr7Ks/9O1HGkZg/bj65+ePrw7oT44tyUZ/z6yuwHeuS96Gb/zKdcf8g7L/Ov5ZhfXD/dd/NFPZf90f93vpjvR/YeC7X/R6g8hD3vWg/1W+s/qyfTz+y+qB2ZPVE9cbpfP8+330A3sP3OxO0D2pH/Qd58/5t9WfPB8ZffMP7NziPKHs/nfaEmP+r3cF8Rdc31yvzGlOQ45lhfEvw3HXoeVC/nv5B7028HYz3J3r/hfdemMfi/Rfmw5sfY568efPmJ7ovxL/n0jHY3bRX6h/0vOo6WtR8D/THmuG76B81ftR7b380Xg16chk/kEH7+g/vDOuI68cG9QHQ+ze8l8NxHRnGV7uI9ao3Hwn1T6Re9Wb1aPVn18/uYf4YNxnjTmL+pP5p/UPRP6p/Vv+Aebzm9W7kd/mwhvW0r/E/5ufxXHuCdhv1QvXESTxXP/S5+6/xJ963VCTwxfwj70lS31sa1nf9GvobvV9Hf6T+x93GaWSgr5mX8Sc4Q7sd5xr/3ske7WXh/Ky8uk/G/dG/Z6TfVTuff9/I+av/w3ns/DUuRL+YfjL9Y/p7jFt0fxkQ7J7xfOe5z3b1wyxA/vW/5GE8ENf0/A7vS/Rcbpy5epj3lOpX8e9jRf+Kekv0v2h3jn5/55vz+hno+BT0/Offr3L/8VwTz1/qc65LrlPqd+qLxl0Zh2X81dvw2/O5+1At9g/1Nv3K2kH1L9uu52zXS9fHmE80AdQ/8k2we2gH0f7hfXcPa/fS3wP/5XuDME6Oj35j9bIYP7TMuETqNz+4iPff8J32PfUd46qVZ+VcuTb+SToifbVyXIjqtyuCfuv6He3Xrt//hO/qh++dh3F+Ok/025kGrD9PP577inb7+HestBtoR9CPqP1A+9r2YGfTvmY8ueujfz9uNfKjvV8/ivYA/QLGx3lPLsV0u9RToP4b7b3el5YS9Hb3Add/5TjKt/uf8WEeG9NA/YDmG8X8Cs+5ztM4f23X9cDrOLQTaTfy3kzjrOJ9y/rbHnAeIQ/65eLfN9SO7N85VK6V8xjf59/VMz82/n29+Pcrvd/MOLkY1x3tp4OhV/4ZJ2R+inm25t2aL+09GK4/5kGb56jf1vtLtFOaJ+l54gD0xPhe434/pB3vXT4F5mJC7UhC4nbwNrAk73mfzH2g9hzj19WXtDPEv08T9784v4270z4S4++yu69CV/QPGf/jucR4rVH0/7R2K/AN6h1hnhG/Ow/Mw/Mc53loWwbjrz4S4w/1j3tvvnnZ/h0V/66K9wvBtsRuvjeOQ33Cc5D6hvqF9197P5/3YKfffx3WXddh1/Xo1zTPXL+n+qHn/fj3T12H4jrl/mW+kPn3/j2py3JcSI/7ToNAX4z7006SHv9NO+6b7qfGP9UL8nsgzA/9ssaVRf9sjA9VDzO/z/O/+rr2N/2r5mE0JV7XfLrm+S587u++59+vHEeAifF05l2bh+1zf/e9ddCRkprE2vTXexPq5Lrwub/7nveRf6KfX32OcZ983YXP/d33ioGb8l9Il/QaN+jz2E/p3wV9KfA7zYly2YXP/d33NrJ/+3d+/Xta/n0t/46Az+Pf3SpH/xZ7zzQXv1SEzq/zXPjc333vTuIw5/F7Vf9uHXzqye//B1ZsrVB4nHWdZ5RVRdaGCR3oREe43bcDFzEnUFEHZWRABRRFVMCImBWVpOIYRseEERUVcxYwoWAWDIgZUcxZDGBWFCOIDPqt9d3nYa1dq+0/e+33fatu1a5w6tSpc3pOU5v//+vaNW+3q8rbh7Hdcnn7TGHe9ijI251KIy+urpR8f6jL2xfIfwn+wtroy6v/vDlvNyzO247w6+NvUBx9efVf8vvLyecl8n0L/ILayIurO6I+b1+jnmuh27Q6b18vjb68+mUNeVu9Tt5+Tf6vZfK2f7fIi6t7l/RTyHcSv1PVMW83z0ZeXN21tMfDjXm7iN8pJU5f1kdfXv1kyjNs7bzdP5e324B3z0ZeXN3O1GPgunnbkd/rSP7X1Sd8Y9TdTn5HU66RJXnbjfpuT/1q+f1pxP2worydmvjy6rtlI39IUeSnJnp59aY/mnaaTT06U48vM9GXV78Ufjj5TC7L20+65O2YisiLqxsGvjn9aGFN3n6Dv2tB5L9JdE9Tru1pp9W5vN2O+m7dEH159R+S/jT4mZT3+/K8nVoceXF1mZa8fYR6LajM2wL0I5siL65ugP2Beu1CPOYT18KmyIurG0Q/Wod2mYY/g9+7NhP9aYn+mmzkn2qKvOn15dWbfgPq9SfxvpD+tTAXeXF1fxL/AubpEvIfSfu2q4q+vPq5xL9srbz9DDsIXfts9OXVDwO/iPmjJ+N0RN606Z2Jvrz6x8l/PH4J9RxHuh2boi+v/j7miX/jH0E9D6W9u7VEXlzdU9jystZ508un+Zt+Mu1xOuU7A/vf+ujLq78il7e/Ur4LqOfz9LNXspEXV5eBv57ynAN+BnHbK+HF1VXCv0k9p3LdaAc+tSXya3B0bYnLytLWedPLp/mbvgbdEYyLsxkvn9dHX159C/XoQFwfZ37pTz3/u1bkxdXNxT5R3jpvevk0f9MfRrs0UL4yyjspE3lxdaup36S/4U0/6W/yN/2t+D84T5GuvDny4urGEpfv6F+XE9f3yfemxsiLqzsrl7cdaNcJ/N4xzFP3FUVeXN1U8l9Z3jpvevk0f9O7fuxEe7lu7J2sI+XV/059TiQeP3M9uQ3dOYWRF1eXoR88wLx2Gfn1Rj8+4cXVHUUcG8l3HnFuBu9cH3lxddsxj+xNvoeD12CdN/Xl1b9M+mLK15f1QiaXtyMrIy+ubhXx3x97Hv1pd+L2SEv05dXvw7x0GPkWU56rKPf6zZEXV9eF/N8i3yrsx8Tt/PrIi6urId9p7fL2Fn6vkThVtY++vPqXmceuphyfcj14lfluTHXkxdUdR//wOv8e+h3hjyiOvLi6Z1w/0J6XE8+j7Q+N0ZdXv4p4vkr95jCuHsHuWBV5cXUPkf9nrOdm0k+/xd+iJvry6kd7P+V6G/1E5qvnqiIvru5H6n8hcd2J8jxG/baqjr68+h74cynXFOJxLPle1xR5cXXV5PsXdnN+bzPsIVWRF1d3Pfk/mcvbwYy3IdjdKiMvrm4O6T+iPn3RjSFOi0qjL69+BeW6D/w11wGMk3VzkRdX9zvx+E+X1nnTy6f5m/5O+sGKznnbA322c+TF1T3ifZfXMfI/m3a9JeHF1R1KObqTfy/65Wzae0Bj5MXVfYcdWNM6b3r5NH/Tf57L21e9j6B8uzZEXlzdsbT/DVzPLuX+/0rmrcmJL6/+dOwM5oU3Ke/nzDved8mLqyuhPKfSv/bjOvE85b0rE3lxdVdSP+/nvb/3/sL7e3lxdd6frCQOdZ3ythr7QUPkxdW9wv7PVsxnYynXOPwZhdGXV/+S9x2U70HicQf1rG6IvvwafWPkazORN72+/Jr8SO86YwnlSdcj+vLqF8G3p50/cj+B3/moJfJrcHRrkc9S8t2a8gwA3zATeXF1baif8+POzJeHYp9J5ldxdc6vab+6lPLZ//TT/rnU/Sn69yDi4fq+bWPkxdU1EJ90X2xbePe/5MXVtSd9G+KzCfP6b5T30ZrIi6vbgvQLGBeHMM914HdfzERfXv0l5DuU+v2A/mbG6xuNkRdX5/3/ZoyH84jvHejvLYy+vHrvK2/K5e1C7gc/Ruf6TF5c3cvYydRrK+pzEOWb0BB5cXVVtMdPza3zppdP8zf9btRzIv10V/zBhdGXV/8+8buRuB5Gft8m+33y4ur2ox2vpFyduJ4UMk8fVRN5cXWryL8T7bA11nG7IhnH8upvpH/sSf7dmE+nUL/LCiMvru4cfr/Z9JS3K/bfVZEXV9ee8nXukLcLicdJ5JvpEH159bviD6Q+Q/mdz1znZ6Mvr34Y7fCr+3PE6S/w1V0jL67uY+J3JeNjFNfjcq5PL9RGXlzdbuB3k//RlHcj4nJuQ+TF1d3hvk4ub5sZl03YlqLIi6sbQFxKGZfj8begnie3RF5c3eWUqz3tMAdde8p9eS76a3j0zzmewIto1z1Y3w4pjby4usnErx/l/IDf+xA7JBN9efUrqM9XtHMl+X0Gfm02+vLq7yG/n/DPxp/pvnVD5MXVLaX/zCLfKu4r3oP3/lJeXN3h2Lmsp/vAP0c/+0+n6Mur34T6fUE8NiHO39GuuzRGX169+1GX0M/7wzcl40ZeXF0D/chxlfLpuEvzN/00r5vMKwdTrxs6Rl5c3Q7UYzVxLoQ/3vuQTOTF1Q2kXCPpzzU+z8LWFUReXN0k73dzeTuKep3E7+Uy0ZdXP5j+tQ3801xnDuX3TshEX159P9J7H7O199H4V1REf+vkvsf7qn28fjGe57uf3Bh5cXVfYr2+/Mb1bQJ+ev2ZkOhOcB+S8fE+9TmYev/SGHlxdaPdp8vl7ZHkvwfx+V9D9OXV/4P2X0JcDsTv7POU5siLq9uMfrQYfDjz2ubE9+KKyIur241yuQ98ovsh7jvmIi+uzn3kUxlX7zBefO72dsfIi6vzudxbHVvnTS+f5m/6B3wOyXqwzn3eisiLq7uO+K1HfNyPmkd9OzdEXlzdavrDhvSDk6nn78Slayb68urXJ//r6Ke7MK/OzOXtLZ0iL67uevDbwRfQri9hv+8SeXF1E0jfk3i4H7sFfp+y6MurX0I9riYuF7hvQT/p0xR5cXX3kN+R+HtR34XYWZ0jL67u38Tvedr1DvzbaVfXr/Li6i6kHVfanqyrniMu39VGXlxdb9ZBP7FOvZl4787vVHSIvrz6fuTThTj8g376Atb1m7y4un/SL91f9nlgO8rdUhp5cXUPk75Laeu86eXT/E3/FvHZmH3x9Wnn2c2RF1d3Rdu83bBd67zp5dP8TX+X8y7rmadop68LIi+ubiXx/c35yfVb3rR5OuHF1U3w+kv/OprrYxnxfqIl+vLqr6V+Pl/vQr923+PPwsiLq1tAOwyua503vXyav+lHMT4PhV+MnZb48upn1Ef+086Rn5bo5dWb/mTa9XbKtQz/xnbRl1fv85h68jk2Oafk/oq8uLqXieu2f8Obftu/yd/072GzrCs2Y34cXhh5cXWPMJ7u9bkg/WI3fm/7TPTl1V8C7z5BX/q154a2q468uLo+1K+a/tyD8r5GP60pi7y4ur/cv4D/yPMbtMuTDdGXV9+P8t8Hvpxy/c7+7qqSyIurezU5l7KKeM4iXsMSXlzdAT4PYny7vp7IfPdXh8iL1ybr7+W057n83q/4NZWR/zXRtSXfWbRPL+o3A9urJvJrcOz3roNyebsz5fP8ZXo+U1yd18MTie9Y8DngfYoiL67ububVo6tb500vn+Zvevf3e1LfD4nbDsn+v7i6/cmngPq5vr0fflhR5MXVuf6dxjjYnvZ4izidXxZ9efV30b93on+9S3/5J7+zU1nkxdU9SvnTcybnUe70HIr4E8l5iNMZl5/RH+/zvGjXyIurmwVfTL/s6vkuyllUHH159eWk35j++RXjuS2/c1rX6MurX0R+53MdGp8jX8/f1kVfXv1i6jGD39nU52Ge+6qPvLi6TeDdH5xEO+9Neec3Rl5c3QXYleS/I+PkXPRzWqIvr3405TgKf1f6xSf0q2W5yIurG4ztyLjamfJdi19WGn159TvhH0s7LMNuQLk/zERfXv1bxMf78RbK0wX7Y1HkxdVtRP//ietBBeN9GvPb2aWRF1d3o+1B//6EOHleaveGyIuv0VE/17mes9ua35lfFn35lmQ9PAL+cM/J0i8OKIm+/IjkOefm2DuZl+ro35+WRV5c3UbgO5Hv1ayLrm6Dvn3Ct4m6jel/zbm83ZTfm009y0sjL65uCr//e03rvOnl0/xN35f+cSXzu+dbny2IvLi61+l/FxS1zptePs3f9PMpz2LuyybZj7ORF1d3sc8RPB/EfHK847Qp8uLqbqRepxOHh+jnT9NeX5VHX179EvLzXFUt83J34vx+ceTF1d1L/Q9nfI9iXd6ddXr7TOTF1U12/9T7H/I9Bjs44cXVjcZeS5wOIC7n8rt7N0ReXF0F7ZOeP96PuHq+WD89f/w5+bo/U8E8sQ/5D85GX17908Rlstcb9qd6EOcR2ciLq/uU+g+lP41zXwi8V3n05dX7fst71CvdX3T/UT7dp9wcO5j2nE573U5/6dM5+vLqR5D/k7TvEcxLOzDuBzdGXlxdNXaI44f+7f50j0z05dW7f/0C8elHPefjz8OuwLrvVEj6f1RGX169+1czaPcdqf+v1OeybOTF1W1K+Y6kXDfSnj1ov+rmyIurK2DerKLebxOvIuJ6cC7y4ur2S9atFcT/Lt9H6Rp5cXXnef1J3h+ZR1wGF0RfXv3YhshPboq86fXl1Zu+HX45cZ7ovmE2+vLql7ge9fkZcfma8Xdgx8iLq/sX/eE+2vVV+sv72PcqIy+uzn3LW4jvmbTnVVyPDqiJvLi6dp4PAT+eeWcQ4/GfZdGXVz+UOCxOrjMrcnm7TkP05dV/zzjw+vMN/dLr0j8rIi+uzvyKuP8bRH1O8vxmVfTl1W+Pv4T4nE55f2Xc+HxTXlzdCvz0+cRuxKdHNvLi6fOHYbm83YrxcTf9amY28uLqtsHu7Plv5s3jKNfSTpEXVzcUvx/xvZa4Hks/P7Jb5MXV9WB94r5ZI+vBdH8t3XdTt4/rKfI9hHifynhZr1vkxdV9TTzqG1rnTS+f5m/6b3N5+w3l60X5ujZGXlzdeKzvoazvupB0z9VEXlyd/dHzj/1Zt/tc7fKGyIuruwj/Qdr3aPrXg5S3IBt5cXXn0f+mks+W8L3dt6iIvrz6IV0iv1Z55E2vL6/e9FMoX7Pv91HfV6ojL66uBfwD10e0x3Ts8naRF1c3l/j4Pqzvya5Dub5pjH76nq3vz3pdvofrTT/aZ2F55MXVeX33nPSdXE+fxZ7TFHlxdRsRB9cDb4Kfzbi8skPkxdXNpvyLfT8E+6XvjyW8uLrh5Pse7bI+80oV5T6iNvLi6jw3u3Zd67zp5dP8Tf+5z89pnzrmq7KG6Mur/wK+O3j3XN4eQH95sj7y4uqepf4LuE6+Qjt9S7tfXR59efV7k9/Bnkemv4+infpXRV5c3Tee//E5eXJOfodM5MXVeW7+Beajm5kXp/I780uiL6/+XOI4knrsQb86Df7UysiLq/M9nVXkW4/ty3y/dyby4uo+gF/COmLNOtL3ByuiL6/ec+aedzvR/kdczqiNvLg6z8d5fmJn94/pF2eVRl5c3RTyexH7C/PCz9hFTZEXV/cEcRyD7Utc/oXtXRN9efWn0v8PoH/3ob77EbdjaiIvrm49+t8ZxOE+7ufO9Nxgp8ifmeiuIv2zbVrnTS+f5m/6g4lPKePMdXUL8e7i8x2udyuwRbWRF1f3AO12IdbnaSN4LtymS+TF1+iS8q2siOWsLG+9/CuT+4NVubx93X7ie641kRdfo+P3/6R+F+GPQT83E3lxdaup1xeeH2A+eIz+u01J5MXV7UP/7U55NiH/ffG3rI++vPoxlKOUenkd/ZE4TS+Pvrx6r3vzieOxxPU47DUVkRdX5/PX+4lPM+VZSLnHdIu8uLoiynMWfA/G2xB4x7e8uLrfKNc45r2RPpf0XFFR5MXVnUIcF5e1zptePs3f9Ot6n8g8sBb9pl9j9OXV1xgH74eIx8dcTyqLoi+vvmuObJm3NoP/iPgc1Bh9efXXJ3xdJvKm15dXb3qvv6cwn2/FdXnL5Posrm4ecZhNP6ljfHj/dmsu8uLqMlifB/7FvPQX1682HRK+OOoeIP5bMM/dz3hY5XOS6ujLq/e5yNnk732P90Pu78un91HeH6X3lXMYX5t1iH56f+n9572Mjybi0+z9VS7y4upe9v0V7Cdc97am3r6vKS+u7lvieDL9Yyf8EtLdXBl5cXXjKNer1a3zppdP8ze9+y9/tw8pL67uFd9Pg7+Yet5MfK9siry4uimUb1FN67zp5dP8Td/Bc5GU5w/itVdT5MXV7UR+7nPUkt9SxtmPlZEXr03G2Srq533/NZ7raYi8uLoRzAdl8Hvhv4H9tCXy4up+Jh+fD6S86eXT/E1/KnH60/eqc3nr9V1eXN1Y5vVfq1vnTS+f5m/6a9wXRL+K69ybTZEXV3cP9Zvo+xPE1/cNL2uMvLi6Q3zPOtM6b3r5NP9DkvWZz0V2Znyvk4u8uLrNqf8flG875qs/qHdNaeTF1fk+8trk7/sovid8cjb68urPdHxQn8VelzzPkYu+vPonKdcj5D+NcfkI9vjCyIuru578tuB3ljNPV1GvCysjL67uXurnc4B+9LM93Acriry4Ot8L/4l2OIrrwWjKPbYw+vLqve85jnz7gw/AzqqLvLi6gdgTiGM35pfpPvfoEnlxdQO4TxvgeCReH9O/BjZGXlzdeOwTXBdf4v7iS8r9YUvkxdXVcv+0Jf3qMdblj2LnlEReXN0+tN9z9K8XPL/OOL+ta+TF1e2fvF9wIPE4GOv7BfLi6kYaR+8/6C+jsTeWRl5cXY78f8zlbbo/ODfh0/3Bp7D1nvMz/r7/0Tby4urcf30U/CLKdRntOrEq8uLqvJ4+QPncTylnH/qZgsiLp/sux5C/z9nPJ95n1EdeXN22lL83+V9Cvtewvri+OPLi6hrp16Pon2cyPs7ATimIvLi69pTL86EneD9N/+zZJfLi6l73vWTyr2Odsq/7WiWRF1dX6LkC5sGLfO7o+fv66Murv4zrUl/mh5l+L9Dz410jL65uQ+LzHPneRTkfoV53N0RfXv16vh/J+P4Q3W+U+8jmyIur2yyXt7cxDz5DeafjX1ARfXn1Pid9hXJc5z4TcTkrG3lxdT433bOhdd708mn+ph9OPAqI5/lcn9sXRF5c3Uzm58H0A8/n7sL1cfPayIurG+R3Rrwugt/s+z8VkRdXN5b0/SjfjYyvC6n33JrIi6tbQb7j4SfSv87CPtMceXF1Z2ObqN8b2BeJq/f9+vLqjyX/Sylnf3DP2S6qjL78pcn524W06wJ+bxz+x82RH5foVlN/96fW9/s/rC+27Bp5cXVn489P7rvaw3v+Q//v7sv8ndXkl+P3ipsiL65uMPlu7L4I83tP4nJ/u8iLq9vT7yeR//Pkdzz248LIi6tbmkMH/w7joxv5vtc18uLqqsj/CNphpM8vsV2aIy+u7iBsG8rhvtoy0rn/pi+v/iX4DPNDCfPjj6yLbmqJvLi6+eR7cKfWedMfnODqTO+55n5c19fzuVxR5MXV7UI9fK/vL89HUU/f/5MXV/c96XclDj+C70a5/2iIvLi6dfxOn895qNf9tHN558iLq1vu+of6LWVe/QG7e0vkxdX1ZBy9bfy4rqzlewelkRdX53P3Isr3cC5vhxKvvesjL65uHvPvxrRre9bnnlt6Mxd5cXXP+H0I1oPe7y/Dr24XfXn1txLPV2iPR4nLbOw15ZEXVzeD+A+hfL2YV4Yxvn9OeHF1w6lHe+JzE7o/idOW2ejLq38hWT+6r358sr8uf3yy/z66Mua7l8+vPJeXjby4uvGMj/G04wTiXUxc57SLvLi6k4mr31F81/PZzGu5wujLq7+sOfLXFEXe9Pry6k1/kPu7ubx90u9sNkVfXn13+IsYH9vQTqW+99gUfXn1fi+8L+viX/wuGO0yoTL68upHeP6ZdhnquQp+Z3km+vLqCxifd3Kf9A78NMrdvzz68urPT/Q/l0be9Pry6k0/xP0mxscN9M9NGiMvrm4R7dnovnvetOmDPa1N5MXVZcGXUY53nIeJy4Lm6Murfz0b+V9ykV+Q5C+v3vSDWcdMpV/eir2lMPLi6mzH/fwuJO18iPNyWfTl1fch/c/4bemXfq9hUCby4upO8r1K6vWJ5wDRn1IWeXF1r9K+fata503/EeX+0ueL6CpbIi+u7ivs9cn3vH/3eVVz5MXVXUP+fvc75U0vn+Zv+lncx9zq/b/73ewnnVcbcXUpn6b3+3mdfb7F7y+Cv6k58uLqdiX95eR7Lv1qkuffSiIvru5B0i/w/CL4CM/lFUVeXF2d63bK2Qn9GK6LfZsiL67uRK93jK/7ua5m6U/1VZEXVzef8l9C+/f2e5j0y//UR15cXXvq9SfxfYLyrE1/vKU68uLqJlKvn4nvXNp7kt+Jq4u8uLpDic/I2tZ508un+Zu+LevMWscJfv9O0ZdXfzXxeZ96jsjl7besy77pEH159bNdJxOXrbhe9MRuUR55cXU+D3jbduA6WeT6NuHF1fXienSA36NBV0G//LI58deO+gbG+UfuyxDX7/1uYS7y4uqmk35t+scw2uc62uuH2siLq/O7Fp6TuZP6jvc7wNnIi6sbQHve6jlT+OnYXkWRF1fn7z8OvwdxPYhx6vfp5cXV7W570b+9n0zvR9P7TfV7uM5z/qOffc48s31j5MXV9fS8H/lczP3QuugmFUdeXJ3njdP9x4vpn+4vyour28pz5NRvJuOihnk23ScQV/cu8elIPDZkvD5I/1jSGHlxdX/Rn9L7u7uoX3r/J67uV9p1IOOiJ+V72u8YlUReXJ3vJb5JP/R7uz43ntcceXF1Ffz+j/Tn19xHpL0PzERfXv1w8nuU/KeRby/mtRvWiry4uhnYY6iH54HHUb/xJZEXT88Nj+J6+Dbzqu/lHV4VeXF1v9OOvodZ7fcX6Bc+31vznmc26rZmfbUX9Zvn83jiNbwx8uLq7iCOdT5/YDzPpt96vyIvrm4U5bgDfgPKdyfjze/7y4ur87t+e/h9EvyHGG/PZ6P/aaKvz0S+pEvkTa8vr970heBPUU6/T3RMffTl1XtdKkb3A/n6XUu/e6svr34I8fB81Sa+RwrueSt9efVXk7/j0P0V91ue6hD5dB/G981OBF/t99Kxe2YjL67uBb+zQLkWsC8wEfteu8iLq9ud/jcFfjfK05lx0rZb5MXVub/3G/xQ8j2H9VnH9pEXV9eZOHTzfFuyfn2nIPLi6lzfDvL7RsSliv6xf0nkxdV94Xmtjq3zppdP8zf9ubTPB7TXbX5XJRN5cXX7uv9K/zqCeq2dy9sjiyIvrs79F895P8b1aFOuU4dkIy+u7mt8z9Usor+OIe4XN0ZeXN1R+F/A+32nt1zPt0RfXv1AxvUb+Hsm7zeuTN5vlFd/r9+VYnxvSvvcw7y4cVXkxdW5rupMPD1PXYFuecfoy6uv4/drmVdme/9KuX2PUF5c3SeuW8l/vM+vGC+lHaMvr/5+x28ubxegPwU7POHF1Z2BvZrx4fe2R2H93ra8uLpLKYf/1+V5xsuz2HEVkRdXty/5v08/fp910TfYb0sjL65uL58LEpd9mU8G075n5CIvrm5331NB9xXjwvvFT+siL67O/clDWU/s6/s99IuO1ZFf3Tnyd3SKvrx60/v//9yv8Pv/w1sin/5fAL8b9JT9B/xtzwUTv6bKiKuTPz7d32JecH9LXlzdpYzvSn5/Y/xNsMdmIi+uzu9rPY69GN0D9Mdn66Mvr76D758ThyG0539d13eKvLi6vfFfqm2dN718mr/px1G+S+FvRd+N9K5vB3BdHIj9sF3kxdW5Pi4g/je7D4z/YkPkL0t0h3sOMTlfst/fnD8RV/c2/eQg8i0j7h1p11sbIi+ubiv6r+/p+H3dG+D9/q68uLrbk33IlD8h2WdM8ze93xee5//FY15031deXN08/CPJr4B2ztLu72aiL6/e74eW+X0g5qUXua62lEVeXN1ZPucmv6Hc5/h9vfT7e+Lqpvv+CO0zn/l6Frqbc5EXV/cE10Hff/X9r9PQ+b6IvLi60/F/8btkxNnv/LxZFn159W94/gJ7FPxY9xUaoi+vfju/c+K5BuLsdyk3zUReXN2O5DOIfCcTl0uxv5RGXlzdcuKfvt/ezv/P1CHy4ur+Rzlcl2RoD98Tc/0iL67uE+qznt8v4zrg99a/roy8uLq57v8Xtc6bXj7N3/SebzmUdr3H/y9XHXlxdR+AP+T3UJLvh/ndMHlxdc/5HQrmZb9L6/dql1VFXjz9fq3fl+tN/n5n7tH6yIur8/t0vzM+Tvc9fXDnS3lxdUPJx/OFBxIfzxl6vjA9f6juSMbXDN+HoJzvEpcNqOeC4oirS/k0/e6OQ+q9HH0j/eCDysiLq/P9iKG01/7ug6A7rST68uozrguo/+V50+Zw7KdtIi+uzu+fX+79I79X631hTeTF1R3l+yu032ji3Jd+NLY88uLqXvZcZHnrvOnl0/xNv9jnKZQn3YdZnOzfqJvq/9lNns9szHx8RTby4up8fvMa+XelXXLY0WtHXnyNjvmulHbdgvXSH9jX6iMvru5t/48IvzObdpmCfbcy8uLqxtCup5C//+/8AM/5NEdeXF0z4yL9vkMx+yLp9x/E1a3r9wndP/EcAXF/KxN5cXVZyv80+f2AHUK8T2gXeXF13/q+QkPrvOnl0/xNfyHlaODc0HTfP26KvLi6kXnTZiL8Rz5/ZP2yqCry4urKiavfLfyeflXEOLkK+3/a42X8eJx1nXd0llX2tpOQRgqEFNKTl1AVQRT9jQ1sqKDoDCqCDbCgCDjigGADGyqMCoKCqFhQEazIKKCIDQU7ythGRcdeQNAZAbHht9b3Xhdr7Wdl8s9e+77vs99T9jlPO8+Tze0y/v9fblHabsxP2zU1aTuofdrOK07b9+vT9taGyIvv0BWk7S0d07ZzYdpOQXdfY+TF1V1KnI05zfOWl0/Gt/ww7G/8Tlf4s4qjL6++Efxl4vbqkLYv0C+bS6Mvr34w/bOJOG/AD6O/bq+Jvrz6g6vT9gn4o8rS9ufatL2iNvLi6tpmp+2STmm7vS36irTds23kxdWNpR796eeZufxuS2xx5MXV/Zv2zWd8xtO/p9I/h2VHX159Oe05nPrNxP8b/fptXeTF1XWopH1NaduiPG1fpl0TaiMvri6L/phJnPoq6of+x3aRF1d3HePSknadl5W2B7dI2wNbRF5c3WXE34X29W+TtuNod88EL67uQ8Znf8bn5Ly07cY8/6ZN5MXVLaZ/5tKuStrzML9zUGX05dV/yfjn0J6z+J1PM2h3VvTl1U+h/IX0z0LG9zV0D3aIvLi6fOpfQn1eaJW2N4J3KYm8uLob8C+Bf5P+yed3VxRFXlzdrtRjRipt/0z/lJJnu1RFX179abT/INq1hnEejv9hffTl1c+n/KPgzzLefydvZjREXlzdM9inGd/VzNNi5vcTtZEXV1eE34p2zaFdZzBe19dEXlzdqEzaRXvW0683Y9fUR15c3RxsA/FaMd5nY18pjby4ukKPZ4zvt/iX0E93V0ZeXN1ltK+AfliGbj+Or0e0jL68+m3EO4r+ORn/XX43ozby4uqOBD+TenzFOO3M/G7VLvry6m9I8DvlRd7y+vLqLX824/od9Z1K3ndujLy4uskpeNqxlLhLsBtqIy+uri/9uIp+7cRx7THW9UfaRl5c3UfUry/1yyZuBvNmv46RF1f3JMe367Kb5y0vn4xv+ffox/s5Li7E7twq8uLqrmI858GP9zjOz/TPiLy4uv3Jp/zM5nnLyyfjW3467byN+XYwx6XhxZEXV/d/5FUH+Kfg2zGv72oTeXF1VzIPL4afSX/tzvweWBJ9efVTayK/pHXkLa8vr97yczguHEl+d2C93b8u8uLqTqH8J4zPBNc58n7nqsiLq/sQ/h/8Tj7z5DLOK7dXRl9e/WTKfwt+rusn9ZqVG3lxdSupz/rc5nnLyyfjW/49+udj1ssaxre2OPLi6tYwjzLpn4fhhzDOx1RHXlzdMPxV8Ouo3/fk3cclkRdXdyX4z6zv66nnJeTlL/nRl1d/YrvIjyuKvOX15dVbfjX2B8bzDn7nvprIi6vbSP+dRl6eRX9cz3ivr4u8uLo3WIemgt/DOtuS+X1mbeTF1Y1kPbyV+nUBf556dqlM+E1RP5r4v3l+Ar4G/cVV0ZdX3zNRvzXM79ewn9RHXlzd69jPiPuo6xDl1lVFX179SPr/a+Kfmjh+TayIvrz6k+ojvyLBW15/RSK+5evp543U7zDq5/mNvLi6V1Jp+31V87zl5ZPxLX8T+JkcZ1Zgu9dHXlxdC64jJpGfK+nPvtR3W2PkxdV9QB54nHY9npY4nsuLq7uQduRgfyKfR7M+uf7Li6vbm/zpQ36O57p0MNf375VFXlzd3bTvK8+/mJejWC9KSiMvru4V2nc1fAfi9wWfnRN5cXUXet6f0zxveflkfMuPpX2j6ZfW6F+tiby4uiL8M4l3M+vzbOyS+siLq5tL/0zCrqU/s/AvKY2+vPreXv8xvt9Qz2Ow3SqjL6/+F+IdRz+0ol4n0N935EReXF05v/8412P3kOdL8R/Ijb68+p2pR43369Im42XWxdU1kRdXdz32Aeo3ifw+ljyb2DLy4uqeJP4jHI+b8JfjLy6O/PKEbhL9MZZ+7EN/lVDfkxojL65uf+xlXvfRP6tp56HV0ZdX39v7H4n5ncG4J+e/uLrOzhOvQ4g/G93bVdHfwaO/lfptJa/qaU8P6vtkY+TF1WXQn3sTdy558TTnN5sLIy+u7g2Ox4em0vY45uWP1Ouo+siLqxuMHZTXPG95+WR8y1/r8Yjj2zT8yRWRn5bQtWf8xpCft7Ku1tJPOzVGXlzdzYzfCHS1rAs12D3rIy+ubjz9eC7x7+X8bjP9ekVO5MXVHUfcFHxP5tee2D3yIy+u7t/k56X0y3r642Dy7rHKyIur+5X+eJH8bkv9tqFb2hh9efVjwOuoX2fvT5GvbasjL64u+39c97RIpa3XN/Li6qYQ59+VzfOW/3fiOkqd5R8H351+OoRxn5wfeXF1z+MXtGmet7x8Mr7l59Ivg+CXc17xROvoy6vvzzh6fbeE84Ji8vPI4siLq3uW/l+J9f5kOfFzq6Ivr/61VNq6PvZhPj1Ef91WEnlxdX/n+LeGvFpAvbzOmVEfeXF192KfQLc/7S2gv/oneHF1p5P/fxB3Jeelj4IPy4y8uLrZxC1vap63vHwyvuUfYVw7+RzOdaI28uLqWtKfd6B7k3HenXHbUB99efXPed1D+9q5jjFfLq+JvLi6BfCTideT3+lKfhR0jLy4unbkU3fP71kv+2GXdYi8uLrDsAdxntSH9qxnXT44N/ry6vun0vY31rnt4EPIkxXFkRdX53PMixPP97Yw733+Jy+u7id8nwcmecsnnyuqs3xXj4+sMyNp76aayIurO5bjkOtKNXgO41TVJvLi6m6kX4aSlxvonw3wP5Qm+DZRd1SKdmFvxz7EunBkZeTF1V1L/s8i/mLOF87Gen9YXlzdeZxHHEn7Col/Hv12W1XkxdU1kE+Z5Ok6zisWM14fl0VeXN3rjOdr5Pcj9Mtazi+PSUVeXN1b+HdTrwvoj0J+75+VkRdXdxb5uwf9s8zn0dj8ksiLq2ui/f3hN5FPlewr+LZ15MXV3UL7ltG/PYnbnzzr2zry4uqe9fqT/sliPAcy7vfURl5c3dXkwaH001v0SwG66xqiL6/+Q9qVR/0ep7+WY5/A3ks7iyn/MeX61EVeXN1A/D1oZx7r3Tifm9RFXlxdA/lxFfFfRLeOdo2rjL68+iXkzf/R32s5fu2JPyYz8nsmdHvg+xxqPPX5X8+pxNXVki+30r8/sR5fhr2gfeTF1WUz3+4zPvnUAdu5deTF1fWkX8r4nb/Q3y+Ar66MvLi6G5lfY2qa5y0vn4xv+Sby9+xU2g6nvv+pjry4ut1Yv1w/dmM8DvT8r33kxdUdgP8M/HXEXcd8WFkVeXF1F9Cei+EXkxfjqGe7rMiLqzuc+Vud1TxveflkfMs/TfyJ3q8mvx6qiby4uo4cv26B38j8qmdebsmNvLi6pcRf6P0Y6vkH8R9N8OLqvsaW055xnhexfo7Nibz4Dh1xy7wPznFnLPhhhZEXV7eU+bOovHne8vLJ+JavZn5u4/g/nnbv0Rh5cXXT3J/g+Y7PAfBn5kVfXv0A4rVhXC6nvu8yzo8neHF17+DPSawf3RLrg3y3xPrRFduaeVbi/gfzqiby4uq+xS9jHp1OfYZjF+dFXlxdo+f5/E4n8nQM7T26MfLi6np4flfZPH90gk/Gt3yXVNq2xx9Hvt1ZGXlxdfOoVy3tzKSd7d0P0Cry4upOZnweJp8+9zkh8+PjnOjLqz8H/1Xi9iO/5qRNRn1m9OXV7+LzCe+PMB63Mb5t6iMvrm58Km193taW42Hy+VzyuZ26nXwOz3o+m/64E39edvTl1X9P/TfSrl3Jq+n87oENkRdX1wM7iPOgeczz2czrObnRl1f/E+NfzO+s4neGpNJ2bVnkxdV5fGoob563vHwyvuVfwG9FXj7t8b4y8uLqesH3gj+Q8TmFfp3ROvLi6kaSH0dyvprN/NpKvwytiL68+m2UnwheQTvHeJ5QFnlxdXdRn/2p5yb30TFfNhUn/Kao3498eN56EW8L/dOpMvry6ofVRH5lx8hbXl9eveUbmQ99Gd+98HdrGX159Uvpj9cYjwn06xvsAz26NPry6qfgX0qcv6fStjW2W03kxdU1kH+nUZ8vaNdw/FUF0ZdXP5f4ZxCvnPbmmQ8tIy+uzue3f8tvnre8fDK+5Q9jXNqwTq9gvj+ZG3lxdYMpfzt55f2vAa531ZEfkNANIf/+TPwjyfepHDdymiIvru4a/NJU2i5iPX0E6z44eXF1r3MeMZDjycvk12z4WUXRl1fvPp9nqGdv8mE74zytNvLi6s6BH0H7bmK+rqB/55REXlxdV+rzGPk5iPG4g3Xu45rIi6vbkErbncmHqe634fjycuvIi6tb7/U27WpPvYqwmxoiL67un/T/obTjIuLeQrm5lZEXV/c1/beX+8NYF58nL3z+Ii+urjPr84W08xDa2Yp5clnr6MurX5FKW6/jDqM//td1nri6WYzrWuwvjPcQ8m1Jh8iLq/sV+yZxP+V6ZG/0j2RFXlxdT/rnfPDLGd+zbH925MXVTSavn4GvYHzcx/5NZeTF1bm//WjwRcyrxdg7CyMvrm65+/UZlzdZ57bQL2/kR15c3R3U6xmfr7O+dfG5THHkxdUtpv5TiDODuHOtZ07kxdVtSaXtbPjSxHOdqXWRF1f3ms9Lmc/uf57hPrjq6Mur3wn7J/dzuY+R32ndFHlxddsZx2fdp0u8gzi+PpcdfXn1v9N/Pq94j369kfEaUBt5cXUPMB+2eF3JcX6h1/FZkRdXt5vvx7A+HUr8T9EfVxV9efUtGiPfPRHP8vry6i3/BnFf5rzgDPrnu8LIi6v7yn3E8O9yfHgH+2lD5MXV/ZN+LCK/PiFuf69zmyIvru5gjsNn+XzVesC/VRB9efXl+L2In0W9Dsf2y4u8uLoTaZ/3j5dyPrc76/opCf+IVNTLex35IfWcRD9fWhd5cXULacfd4NMZD6/T3q2PvLi6Ve73qWqet7x8Mr7lfW9uM7qFPg9LvFcnru7GVNp2YH4N5vj4LevkppLIi6ubS7wpxB/AereavPpXXuTF1S2jHSO9/8/x4hzWlwXtIy+u7h6fzxPP5yAP067+bSMvrm4M/Tevonne8vLJ+JY375L5Zd7py6t/jfYk9/++SX3PQ+9z0QPpv7HOv8RzVXF1r1K/FvR/Efk6j3FpLIu8uLptjM+p4N4HfBX82tzoy6vvYn7SjnPAx2C/L428uLr/MP9eYt32Pc8r8D/Pir68et8P7cH52ouM3274OfnRl1ffk3p5/7GKcfnA949yIy+ubjL5+RznTe5Pf9X9/S2jL6++lP57g/49hn5ZB39vXeTF1XXCHs+4vEF7/ordVhl5cXWz6b+t3ncib/cB/60i8uLq1rsPtaJ53vLyyfiW35VxfZr27UreLEpFXlzdM563+34q69UW4vaojry4ugmsk3+paZ63vHwyvuXnU88V7kfE71oe+dkJ3X2M7zjWhwbG61bwvPrIi6s7k/q4v7CcfNiXdWK/gsiLq9vq+Qz98znxV9Dub+ojL65uFf6PrCcvkWeb8c8tjL68+h99/kI71nEc9Xjm8e2j7Ob5M1pFXlyd5UfhJ6/T/5odfXn1Xr+PYv1tBJ/C+nFCXeTF1aWyY7uNOxr7t8LIi49K1OunFNb+ZB3aWhh5cXWf+r4w58Puf9vO+nllfuTF1bnv7q2c5nnLyyfjW97ni3szHg+53zPBi6vbynj4/kl31pFi5tWkssiLq/P4dp/nP15XpdJ2TmIfnbz6fZjfRzC+v5K3w5g/Q/IiL65uPPGPIu5L9NOLnkflRF5c3RjKP0R9ricvxhLf9yjkxdX1wm70vrP7YNMmY3tZ9OXV/8T4PJ0df2c6/qMF0ZdX7/sfbRP7M9yv4T5Y+f+1j8P7cu4n9b7clY2RT76X537TVznu/JdqLSPfpmdEXlzdF+TRc+ThQ9RnCnm/qiby4uoexI6SZ3yupt+mFER+B+7+Lr+7QT6sRfcN8/tfhdGX/y2RV7631ZP+Tb6/tcPvGPW9U2nr/blJ9Pcl2BuqIi+u7mr3l3h/j+P1PtTz+PrIi6u7Gev1/VXcnznefRK1kRdX15Z+uZw8bMd4nMp53SGtIi+u7nXqt5F6+Zzyd8bZ60Z5cXWHsR74ns4vHLdfpJ+nJN7jEVd3j+cdxJ/P8aWadnUojLy4umuIf7zrGn4d8W+uiby4urXYs+Bv5PxrNe0sS0VeXF0v6tFEP1zkPjryvD4v+vLqs/n9Tl6feh+I3927Pvry6v9EeyqJO4T+fZhxz8uNvLi6tuaF73f4vJx+m9kx8uLJ+9r2Z0d09vdeddGXV+/4eH+yH/Vt8j3vxP1LcXV+f8jvV3zOengF63Py+xbi6rwvfJXfP/I+CeVOr4y8uLotxFlD/fI5z9jo90uyIi+ubgHryKBU2m7mef/F2LZZkRdX9x/Wh5tpx/ms53v7Xaa2kRdX9zRxZ1O/buT3g9yXPL8u8uLquvv+Avl9Of38BP7ygujLq6+i/dPJjxvcR8r61KUh8uLqfmAc1hL3I8brBPQVVZEXV9fEuuJ7c+/SX9fRP8MSvLi6rfjuM/0Lv7eIeft0beTF1Y1wvybxJ3jfBLsgFXlxdeOxO8EPZ136C8eVW9pHXlxdCvsrv/M243IO6+zEusiLq3sP283vltAfV3N+Nbws8uLqdqIfrmFcjiLf/4xt2SLy4upeZx19hTwYznpc6L6tmsiLqzsDu5T+OZR8XkK/HJYfeXF1D7l/kPz6kvXlStbZ2dmRF1e3r9/NYpw83/qD/HyvLvLi6royP1YSZyD9dLj7PxuiL69+Gvnn83Tfm16DvSUz8uLqfP6efK9+P783Ux/95Hv2vn9/PvFP9bsKXuemIi+u7kXG4074bOZDHbZFTuTF1R3rczms52W+B+T5m/wdifO8fvz+zcQfTX9+xjy5qDHy4urGMD4fe35EXs0nT1/Kj7y4uq8ZV58vbKA+n7FOflcaeXF1ncjf7rRrGnE/R/dSu8iLq3vB++w+R+X4XE+9ni2OvLi6mcS/Af4M4l5KvaqaIi+ubjj2eeLNp52b6K9OBdGXV+99W/ejX+Y+Y8bF/en68urXeX3k+SXryTv0y7kJXlzdVYzDA+6XZ114Af6xksiLqysmPzcT/w/W12OxH9dGXlxdI9b97V04vh/A711RE3lxddvoR7+/M515NQN7fU7kxdV9Rvy/u74zP/akXya2jby4ukOIc7v3D4l3YuJ9OXlxdZWptH2V+u3P7/UlTz+qiLy4uvk+3/L6kuNSN/LthszIi6sbQf9P8Dyb9fB7v9fSEHlxdf1878H9rPiPuL8kI/rJ70D5faZM1qOJ1O9q3zeviby4uovgT081z/dN8Mn4lh/B+O5BO/fzO2YZ0ZdX/wX9ejv+ieTDYOzxOZEXV1fiebv329GdwPXF8bnRl1c/wfewqVcN83MReTq/TeTF1bn/NR/f85SO/F6H3OjLqy+i/56nHm+7rxy7rCDy4up2B+9LPV+gff3wL8iPvrz6xxPnhzvOtx3f2siLq/P++ET4vmmTMQ77U0bkxdVd7PEEO4vxTPE7+1ZGX179Fe4fB/+cde192r1zbeTF1Q1lXPze3ip0J/K7nRuiL6/e7/fJz2mMvOX15dVb3v3oRam0PQ9+UHX05dUPqYr84OrID0r4gxPxLP84cd8iL2a6D6U08uLq3B9wBfmcQTuvxD+zTfTl1Q8g7kDiTgC/HvtUfuTF1dXSn139PgDzYRC43yOUF1f3pt8LZX7XU9/JfiezLvLi6tzH25P6fUM+ve/7oR0iL67uW+ydqebLy79Dv/l9jFHYlYWRF09+X6Mrx6vhnmfjz86Mvrz6zbT7Wp9/eJ+ZvB5Rm+Abou5a8myR1/msux2p35/zIy+ubrHfefE6iOvJL/BPKo/8Fwnd/bSjfYvmecvLJ+NbfhLtWc64H+C+1LLIi6v7zv3s5MERrOffp9K2sjDy4upepvy74Md4neN++Proy6sfyXwvpX5DGafN4CdURV9e/UDi+77mSI67vse5LPG+p3zy/c7LqE++3+WjfwYXRl5cXTX4kdTrfuJOww7NjLy4Ove3D6B/HifPfK+oXXX05dUf7XcY6Nci5vsW7gMsaIi8uLqHOc584HdOGM8J5N2/2kdfXv2HHSO/uTzylteXV2/5SdTjsVTa+r3L4xLfv5RXvwf573u0fp+9i9+XKoy8ePL77sP8rgJ5dRDtfKom+vLql1OfA8iLOvDt+F/mRV9efTX5ezz1uY12/oNyn7eKvvzxibw8nfzKYX7/QrkNNZEXV/czfoH7fvA3Mb+7N0ZeXN3t6qnXauqT53GtNvLi6mb4fgfjM4vroc3k7dTayIuru4TrpF+Yx+63dx9+Y1Hkf07o9iWuz9mnu7+BvBqdiry4uln4H2Y1z1v+wwSuzvJj6Z8C1vfX6Je3E7y4unbg92Q1z1tePhnf8hup5xzyZCJ5OaMy+vLqf2F8TqIfT2Vduwv7WGbkxdU9Qj3cv5/FvNjF71K0iby4uh7Ua7TXFdRvMevGEa2jL69+JL//Pu3ZDbw9urMroy+v/krWhZt8voPO7zpOqoq+vHq/A1nCPGtkPrn/4Zo2kRdXdztx7sF63fuRz6srI/9RQne21yn0b3LfnM9X5cXVDWRd+oT8upe476CfmRV9efXve55Gv8zyOO/7Gk2RF1fXQH2u9/4E43MB5z2n10VfXv0lxFno/TPOD6aSN/NqIy+ubgHjcQ/8Yz7fNo86RP73hG4pdiv980/G9St+56uWkRdXt8nvhHg9hH5q4rsq8uLqPnMc6Wf/r4L/b8HveOjLq/8yEX+285O8v6sm+vLq707w/03wdyXi/zcR3/JD6FePTyPct1MQeXF1kyj/O3EPpV15tPePqujLqz/JfY/EX0NeV3B8rmgReXF1nj9fA57yPUv86wqjL6++Xyptv2A9HYX/JvnRPiv6oxL6+8H7MT9akWeFXNeVFUVfXv1vvq9IO383j/ndq7KiL6/+V/dJMA9Gcl7oPrb88siLq+tDvSbTv8f5/Inf8f3ayQlc3RTm91bPL/yeMseLY5siL67ufO/TEG8u+EdcN/YujLy4uk6MZxHxp5CfU7FXZ0deXF05/bEf8f2OwlWMq9cn8uLq/H7smd6/J+5A7LWtIy+u7lny/13va2C97ltYGXlxdZ5f+57LOvrHfppfHHlxdb4/Otrv/nA+uJTzw8MbIi+ubi/sEOIXkZePptJ2aEPkxdVtIa+XUM/vmFdL8W/PjPzShG6M33nzfT/y8wPG9cmq6MurX8P6/GLi+L0beenxW15c3QDy+ZbEd1bd5+z3V/dN7INWfwr56/3LMeRFAeMzuCby4urOxf6DuBfj70GezM+PvLi6O/n9p8C/Y10ayvqwsCzy4urO8jsG5PdPft8J/QtFkRdX5/uCF1K/Tb63jN+/IfLnJHT3p9J2hftnqJffVfF7KvLi6pbQr5cTx/eAfjRuVfTl1ft+0DHEv4u4fkdhRnnkxdX9ifJ+t+Fn1uOdEt9vkBdXtw27gHnpc5cr0b2dGX159X2ZFzvmHePifHN+7Zh/LaP+POw4xvET11vG7ZScyIure5jfP596HUB7emF750ZeXF0e8W6gfw70+zd+fyc78uLqTmb9+5r4Q/weO351deS/Sui+8H5vIs/Muy2l0ZdX73d/rqV//M7t9hS2Mvr5Cf1Av+9EXPfdt2DeZRVFXjy5P78X/eF+qM+p34aOkRdX5/OCIfXN85Yfkthvpc7yO5GPDeTTe7R3QXnkxdXdnzY7/i9Zkre8fDK+5ctZx/1O5nry9tec6Murd7/zOOLPZ3y+Ii9eqom+vPrTWF96+R0f8q2EfmnnfbNU87zroLy4Osv/4fue/P5an0s2Rl9e/VDi7+L5DfnYgH5JY+TF1U2jXnXUq4J23kU/ntAUeXF1q6m/x986+t39yi1LIi+uzv3Lz/o8KG0ySsmDEzMiL65uEevLcubLDH7H64jnayMvru5Hym+oap63vHwyvuXncf5wl/dZfb8vN/ry6uen0rYj88f9XXt6P7M8+vLq3Rfm9+ervP/J71a0iry4Ovcv30o9BjM+h5Of16SiL6/+It/zYnzGui7R3sy8yIur8/+jdPX9mbTJqAU/JSPy4ur8vwnvUB//7+cDjJv//1NeXN3DXkdxvtsD/wj8l7Oi3yOhr/V6ln55i9/x+2jnVkVeXN391KeI8X0O3fPETVVHXlzdCMY/uT9onu/5JPYPiavbTpyLqU8juu74i2qjL6/+DH7/euq3zO/SY3vXRl5cnfs3i6lHch1zfdKXV+/3FFYT/0H8Nc7bmsiLq/N+zXbiXuR1Cr7vd8p/mdD9Tl534fztnbTJmOB1YUXkxdVdih1A/X5gflzA/DiiIfLi6s73O1a+54DO72EvqYq+vPrH4G/yuTPrQg/fzyyNvLg6v0Pgffb9mS+9sT1LIi+u7lesz9/vdf+P73fUR15c3bPEP4f4/Z2v2AdzIi+ubgnW/z+UQ/zOtNs8kRdX5/8bvMP1zfMZ34duF3lxdQdgm3yu7P9Pc5wbIy+u7iP8IfzO91wH7MN59Q/FkRdXNy6VtvvSzlf4na9dpyqjL69+HfzuxOlDP7Vk3HKqoi+vvnddgq+JvOV3xK+JesvvSh64T3wa/TIrO/ry6t1f9SfqdRDzdQHj1a0+8uLqVrq/keP5p8zzo9EvLoy8uLoy7FTWlVXkwzDvP9ZFXlzdrlj/79dDtG86431GXfTlk/8/rIm43ger8DlMSfTl1Z9Mf/yHvO7HcbED9r6syIur24f2j068f+J7c35/RV5c3evU3/3dRVwHneZ9tPaRF1f3Ae3y/xj4/4AWEP+v9ZEXV7c7+eN36oYzLwf4Hn1p5MXV+f//FsLvA36T/6emXeTF1X1Pe/aif/y/y51pl/9/WV5c3VDsQdjrOL/ug/9UZuT7JHQHJ/7fZ5K3vHwyvuW7Mz7n0t4x9PMhdZEXV/c395PQvv18fkS7H2iKvLi6d5mfI9o0z1tePhnf8v8PzKV72XicdZp7jFXVFcbvzIADM8Md5v0eLjAMDx9YXwWJhKdVsZVAiwLGB9ZHtCo4WtGqxapBRREM2oIVqFhEFLFqnQQFQ5BKG3GosVYQkVITqNopSH3EBzbp+f2arJPb+8/K+r5v7bP32mvvs8+5Z/TAzH9/1SWJ7apIbJ/yxI4eGHF1vZsSu6gmsUsHJfantYn9a2305dVPa0lsti2xK7jeyt74vSP/PxzdfPp1V0Fiz88mthP/nJLoy6s/gh1Nv0ZUJfbMnokdVxZ5cXWd9OuHAxLb46jEjqlM7PTKyIurm9Wc2AXwt9C/8YxvXHnkxdVl+tE+/duE7rpG+lsXeXF1FcSn83IAOzMbefF0/saTh+vJz8nUyZyyyIur66R+NtG/J7jOG/RvcUvkxdW93Dexl9P+G/hd2PvLIy+urqI1sX0KE3tLe2LnMa7+hdGXV38s9XcydkX/xL6P3VEXeXF13zL+OtbDfdTHAPQPVkRfXv3M6sS+zvh6O/+5xI5tjLy4uvsbEjtXPfl+mH6fWx95cXWPEL8M/jauczbtX9EQfXn13dTHS33oD3kex/weLoi8uLrx+M3k823W5ZvkpaEl8uLqzsDvQ/+epX/nMM4RLdGXV/869TOKehhLnZ5C3MKy6Mur/6Iw8ocKI2+8/qGU3vh66vIb6mkAeb9hQOTF1d3J+t/MuF6ifx8Q9+c+0ZdXf4T6aqU/q4oT+zi2pCzy4uqsh7W5xF5IPz/iejWN0ZdX3019rqOdGayPotLE9iyNvLi661hX1zKus8jnJGxRUeTF1T3FPvYtfD/2m5Pp9/Q+kRdXdwQ8V56fN/585qnMvGJvrYy8uLq+5P0I+TuRdbCVej6pIfLi6nrRn8fI0wLWywHipldFXlzdRNbH9qb8vPHy6faNPyaX2OO5by7HvtgceXF1J2H3c51TyXcr++ec6ujLqx9G+5eyD2+j/o5Gd2Vp9OXVz6D/q+DfJL83Mb5VjZEXV/cKeTkI/gr9PI752lYbeXF1U6mLGxjny9Tt1diTiiIvru5T8lBDuy+gG4Ld1xR5cXULia/FX0++ZnPdJdWRF1fXk/PbYep5OHW5n3k9VBx5cXWPsu7PyyX2E9ZVJ/vSi2WRF1e3jPm/gnn9kHl5inFv6Bd5cXXfIS/nMr+rWScf0r+zGyMvrm4/fBn8XvKxBzusPPry6suaIz+tLPLG68urN76C8ZWx32WxHW2RF1d3DfMykvarmN8TabdmUOTF1d1LHa4vzM8bL59u3/jX6Oc29tPnyO/KXOTF1b2G/Yq6mkSd3sx1vjwq+vLqD1P/99L+Ts4rzzCvE/tHXlzd6eSxpCQ/b7x8un3jPyFP32U/OoDd0BZ5cXW/Bp/H/NZxP6n3PNo/8uLqHmI9nAZ/Fderpn8b6yIvru5PtHcC/bkc3RJ06xuiL6/+qLbIF9VH3nh9efXGzyQPnzPexfBr6yIvrm4b41/FPsByy/yAffut2siLq9uF7WRcJdjp7O+DmyMvrm49fjfjmMu+einr/J6KyIur20BeihnPZO9z7HuHGqIvr34J/RvifZXrDMZvaIj84JSujPwtpQ6u75XY67DHtUReXF0H9l+sw3PIy3LW6bvZyIur+xvt7srm542XT7dv/BfYVd4PGd+o6siLq/s749sB/hvm82Hq5B+1kRdXN5v8ncl1XFezqNOOqujLqx9BXV7A+EYwvovwC/pH/qKU7kL8wRX5eePl0+0bv9XnR/xv2V8zxZEXV/cedelzewt5eZbx7a6KvLg6n+872V9noLuevK7MRl9e/ZYBkX+rNPLG68urN76P51b84+nXL5sjL65uCetrKf36Cf61zPfs1siLq+vCr3O9+j6K9ycbWyIvrm4w83OIfG5nnJu5X46sjb68+nLuvz3RjWFcV8F/URt9efU/Yny7fX8H/yn5ndwQeXF1Gxj/efX5eePl0+0bfzl5GMr6uhl+WWX05dVvzyX2Gfq3kPNMN3n/S4oXV9eF7aAu3kM3hP7ubYm+vPpy8jeNfk2nTnqxrtrroi+vfmxT9NW90xbj30nx/y9e3cSmGK8vn473/cWJ5PWfrLMHiiMvrm5yLrF9GdcEdI8z76c1RV5cne8nVrNOXSdTad/1IS+urov8txfn541vT+HqjP8tuOetz+hXc2PkxdVdTL8+ts7Rt+Gvq4t8W0rXynwuo/2v8X/Pde5uiby4urvJYxX3iQqfX3n/t7c18uLqVuCPzDE++ruT+ji9JfLi6m5jHEOZ3z3sbwvYl7b2j7y4um7W9x7fjzC+Dq43rCny4uom078q2t/CPvcr+GW1kRdXN5vxvEf7N3O/aaTO+5ZHXlzdH8n/XNo5mvPUC9inWyMvrm409+PzaP9L+ttBf1+tiby4uoWMfx31Ue59Cvx3DdGXV38sdTQXfBT53oid2hh5cXX30M4vsM8x32NyiT2rMfLi6ibSv03uH9TleOygysiLq/sAu4D272B+1jIvMwdGXlzdEebhAurRc/Ji1sWMbPTl1ft/z37ORYu4zkz2hTlV0ZdXP4G6eIj1tJp5etPnxPrIi6u7NTGZrZn8vPHy6faNbyK/teTjJuqiu3fkxdV93/fn4B8yn5dSn/PqIy+u7h7q4F36cTvrZR7+RZnIz0vpVjKOV2lnOfNyOvP7YnXkxdVdiO//t7tY71Wcs7Kp/3fF1fk/z6nkZyDPh1/T/jd9oy+vfkVz5Pe0Rd54fXn1xu8nv67PMZ7b6iIvnl7f/n/mc05Zj8Qe7Bd5cXXzaadXZX7e+MP0++rEZH6OXVoXeXF1Jf4vzbrZzX54I/as1siLq9tIvY2HH8p++zbvfb6ujLy4uiPeV8n/1ZwbhjGPvr+TF1f3OOvjDfjF2Fb6/XpT5MXVdbB+irhvzvc7Af/PLY6+vPrJ+IPJx7+te54n7qyOvLi6LT63o/P8dB/72oPV0ZdX7/lqFP1bl5jMStbNnEzkxdWNpH6GU38Z6mo48/ZAU+TF1a3PJdbvEJ6g3vxeIdsUeXF1J8CPaMjPZ1N8un3j0/9rnood1iPy4un/Pz1/lLEfX8z+W9o78uLqdoOfwvgugZ/VKz8vrm4N9fUZunbGsy/1fYC8uDq/63iG9n0t0ZNx3ZWJvLi6+1j/N6TWzxTWpetDX159C/UzAf+rXGJriHuuPvLi6n7meYh59f3PlfTvjkzkxdX5fmhfJj9v/L4Urs74g+TlIP26EX9zYfTl1T/P+D3nzvZ8iT0jG3lxdZ6Th6Pbz3zchu0uiLy4uk7W42XcN4eAf4/9obAw8uLqnmA/amedDAUfRP/WpHhxdQW0PwX+afApnucKIi+ubhfnA88xw3yPnzrv6MurX05dbqe9WdxfLsEeUxl9efWPYlmGmRtZZ3vBvymIvrz6ndjb2V/8v2MQtr1n5MXV+b/LbPKwxe9KsB8XRF5cXbP7MXkZzXpaS75L+0VeXN18v5PxfTfyA9hNmciLq+vl8wR1XMD9ZTP+NbWR35zSHSYv6e+7zsb6HCAvrs7vv55nHNOYnz9QH++3RF9efTX7q+99J/k8xPUeaYu8uLqN+Au4Hy6i3eUUyOe0PzWbn5+Sjby4OuMn+f0W181xHhjbN/Li6rqY58do7zLfT/n/U1XkxdUVMa4fM49r/b+f680YFH159WtqIm++5Y3Xl1dvfBfrZRH4Dtd5e+R3pHQfcaPbTd2fxriuIN9r+kVeXN1l1iXt7CQfq/1ONBd5cXX+/9+jJT9vvHy6feOL/M4P/kl4v9uRfzL1HY/f9/g9T5o3Pv3d0JOp74PSzx2l+OnnktKUzueXCa35eePl0+0bn143m4hLrzvx9Pr6D0aaIEc=CwAAAACAAAAYKwAADRUAAP0UAAD9FAAAAhUAAMAUAAC3FAAAtxQAALoUAAC/FAAAtxQAAC0HAAA=eJw13S2DMlAUFtpRUVFRUdGLioo6KioqV1FRUQkEAoFAIBAIBAKBQCAQCIQJBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQDDMek9Zv+Hsj2cHvn5fkCGGGWGUMcb5zQSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzx8OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3749Rd+CTDIEMOMMMoY4/xmgkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjnDwcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/z6i78EGGSIYUYYZYxxfjPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577POHAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffv2lXwIMMsQwI4wyxji/mWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32+cMBhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+/AmCQIYYZYZQxxvnNBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPHw445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvj1l38JMMgQw4wwyhjj/GaCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OcPBxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PorvwQYZIhhRhhljHF+M8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvs84cDDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9+/dVfAgwyxDAjjDLGOL+ZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfb5wwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND/98+AMMMsQwI4wyxji/mWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32+cMBhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzc+fQs9f+yXAIEMMM8IoY4zzmwkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnz8ccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zw66//EmCQIYYZYZQxxvnNBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPHw445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvj1N34JMMgQw4wwyhjj/GaCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OcPBxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//FPoDzDIEMOMMMoY4/xmgkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjnDwcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P38aPH/zlwCDDDHMCKOMMc5vJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99/nDAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Ovv/VLgEGGGGaEUcYY5zcTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz5/OOCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754dff/iXAIEMMM8IoY4zzmwkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnz8ccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwT4M/wCBDDDPCKGOM85sJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58/HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/8/Bns+Du/BBhkiGFGGGWMcX4zwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+zzhwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH3793V8CDDLEMCOMMsY4v5lgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99vnDAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/7eLwEGGWKYEUYZY5zfTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77/OGAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745od/BvsCDDLEMCOMMsY4v5lgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99vnDAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c3Pn4HOv/9LgEGGGGaEUcYY5zcTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz5/OOCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754dc/+CXAIEMMM8IoY4zzmwkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnz8ccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zw6//7JcAgQwwzwihjjPObCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfPxxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDPQH+AQYYYZoRRxhjnNxNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPn844JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvn5s8jxD38JMMgQw4wwyhjj/GaCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OcPBxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PpHvwQYZIhhRhhljHF+M8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvs84cDDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9+/eNfAgwyxDAjjDLGOL+ZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfb5wwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND/8s8gUYZIhhRhhljHF+M8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvs84cDDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnim58/C5z/5JcAgwwxzAijjDHObyaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPff5wwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDr3/6S4BBhhhmhFHGGOc3E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+fzjgkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eHXP/slwCBDDDPCKGOM85sJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58/HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88M8Cf4BBhhhmhFHGGOc3E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+fzjgkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eHXP/8lwCBDDDPCKGOM85sJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58/HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88Otf/BJgkCGGGWGUMcb5zQSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzx8OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3749S9/CTDIEMOMMMoY4/xmgkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjnDwcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/wT3BNgkCGGGWGUMcb5zQSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzx8OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3749a9+CTDIEMOMMMoY4/xmgkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjnDwcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/z6178EGGSIYUYYZYxxfjPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577POHAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffv2bXwIMMsQwI4wyxji/mWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32+cMBhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ//BPYFGGSIYUYYZYxxfjPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577POHAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffv3bXwIMMsQwI4wyxji/mWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32+cMBhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//t0vAQYZYpgRRhljnN9MMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvv84YBDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1///pcAgwwxzAijjDHObyaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPff5wwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDP0G9AQYZYpgRRhljnN9MMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvv84YBDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1//4ZcAgwwxzAijjDHObyaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPff5wwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDr//4S4BBhhhmhFHGGOc3E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+fzjgkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eHXf/olwCBDDDPCKGOM85sJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58/HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88E9Af4BBhhhmhFHGGOc3E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+fzjgkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eHX//9LgEGGGGaEUcYY5zcTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz5/OOCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754dd//iXAIEMMM8IoY4zzmwkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnz8ccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zw67/8EmCQIYYZYZQxxvnNBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPHw445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745ItvfvjnME+AQYYYZoRRxhjnNxNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPn844JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnh13/9JcAgQwwzwihjjPObCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfPxxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDrv/0SYJAhhhlhlDHG+c0Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8fDjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++PXffwkwyBDDjDDKGOP8ZoJJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY5w8HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/8c5AvwCBDDDPCKGOM85sJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58/HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88Ot//BJgkCGGGWGUMcb5zQSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzx8OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3749T9/CTDIEMOMMMoY4/xmgkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjnDwcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/z6X78EGGSIYUYYZYxxfjPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577POHAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psf/jnEG2CQIYYZYZQxxvnNBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPHw445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvj1v38JMMgQw4wwyhjj/GaCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OcPBxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//Po/vwQYZIhhRhhljHF+M8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvs84cDDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9+/d9fAgwyxDAjjDLGOL+ZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfb5wwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND79yv/w/dLzYyHicLcUhuAEAACBmQRAEQRAEQRAEQRAEd7OdbbbZZnd2ZzvbbLPNNtvczW7uThCEFwRBEARBEARBEARBEF4QBEEQBEEQhBf2ffP/5Q8WAv+/kMOOOOqY40446ZTTzjjrnPMuuOiSy6646prrbrjpltvuuOue+x546JF/PPbEU88898JLr7z2xlvvvPfBR5/867Mvvvrmux9++uW3P/5z4B98CzrksCOOOua4E0465bQzzjrnvAsuuuSyK6665robbrrltjvuuue+Bx565B+PPfHUM8+98NIrr73x1jvvffDRJ//67Iuvvvnuh59++e2P/xz4h9+CDjnsiKOOOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx75x2NPPPXMcy+89Mprb7z1znsffPTJvz774qtvvvvhp19+++M/B/6db0GHHHbEUcccd8JJp5x2xlnnnHfBRZdcdsVV11x3w0233HbHXffc98BDj/zjsSeeeua5F1565bU33nrnvQ8++uRfn33x1Tff/fDTL7/98Z8DxW9Bhxx2xFHHHHfCSaecdsZZ55x3wUWXXHbFVddcd8NNt9x2x1333PfAQ4/847EnnnrmuRdeeuW1N956570PPvrkX5998dU33/3w0y+//fGfA//ut6BDDjviqGOOO+GkU04746xzzrvgoksuu+Kqa6674aZbbrvjrnvue+ChR/7x2BNPPfPcCy+98tobb73z3gcfffKvz7746pvvfvjpl9/++M+Bf+9b0CGHHXHUMcedcNIpp51x1jnnXXDRJZddcdU1191w0y233XHXPfc98NAj/3jsiaeeee6Fl1557Y233nnvg48++ddnX3z1zXc//PTLb3/858A/+hZ0yGFHHHXMcSecdMppZ5x1znkXXHTJZVdcdc11N9x0y2133HXPfQ889Mg/HnviqWeee+GlV15746133vvgo0/+9dkXX33z3Q8//fLbH/85UPoWdMhhRxx1zHEnnHTKaWecdc55F1x0yWVXXHXNdTfcdMttd9x1z30PPPTIPx574qlnnnvhpVdee+Otd9774KNP/vXZF199890PP/3y2x//OfDvfws65LAjjjrmuBNOOuW0M84657wLLrrksiuuuua6G2665bY77rrnvgceeuQfjz3x1DPPvfDSK6+98dY7733w0Sf/+uyLr7757oeffvntj/8c+A++BR1y2BFHHXPcCSedctoZZ51z3gUXXXLZFVddc90NN91y2x133XPfAw898o/HnnjqmedeeOmV19546533Pvjok3999sVX33z3w0+//PbHfw78h9+CDjnsiKOOOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx75x2NPPPXMcy+89Mprb7z1znsffPTJvz774qtvvvvhp19+++M/B8rfgg457IijjjnuhJNOOe2Ms84574KLLrnsiquuue6Gm2657Y677rnvgYce+cdjTzz1zHMvvPTKa2+89c57H3z0yb8+++Krb7774adffvvjPwf+o29Bhxx2xFHHHHfCSaecdsZZ55x3wUWXXHbFVddcd8NNt9x2x1333PfAQ4/847EnnnrmuRdeeuW1N956570PPvrkX5998dU33/3w0y+//fGfA//xt6BDDjviqGOOO+GkU04746xzzrvgoksuu+Kqa6674aZbbrvjrnvue+ChR/7x2BNPPfPcCy+98tobb73z3gcfffKvz7746pvvfvjpl9/++M+B/+Rb0CGHHXHUMcedcNIpp51x1jnnXXDRJZddcdU1191w0y233XHXPfc98NAj/3jsiaeeee6Fl1557Y233nnvg48++ddnX3z1zXc//PTLb3/850DlW9Ahhx1x1DHHnXDSKaedcdY5511w0SWXXXHVNdfdcNMtt91x1z33PfDQI/947ImnnnnuhZdeee2Nt95574OPPvnXZ1989c13P/z0y29//OfAf/ot6JDDjjjqmONOOOmU084465zzLrjoksuuuOqa62646Zbb7rjrnvseeOiRfzz2xFPPPPfCS6+89sZb77z3wUef/OuzL7765rsffvrltz/+c+A/+xZ0yGFHHHXMcSecdMppZ5x1znkXXHTJZVdcdc11N9x0y2133HXPfQ889Mg/HnviqWeee+GlV15746133vvgo0/+9dkXX33z3Q8//fLbH/858J9/CzrksCOOOua4E0465bQzzjrnvAsuuuSyK6665robbrrltjvuuue+Bx565B+PPfHUM8+98NIrr73x1jvvffDRJ//67Iuvvvnuh59++e2P/xyofgs65LAjjjrmuBNOOuW0M84657wLLrrksiuuuua6G2665bY77rrnvgceeuQfjz3x1DPPvfDSK6+98dY7733w0Sf/+uyLr7757oeffvntj/8c+C++BR1y2BFHHXPcCSedctoZZ51z3gUXXXLZFVddc90NN91y2x133XPfAw898o/HnnjqmedeeOmV19546533Pvjok3999sVX33z3w0+//PbHfw78429Bhxx2xFHHHHfCSaecdsZZ55x3wUWXXHbFVddcd8NNt9x2x1333PfAQ4/847EnnnrmuRdeeuW1N956570PPvrkX5998dU33/3w0y+//fGfA//kW9Ahhx1x1DHHnXDSKaedcdY5511w0SWXXXHVNdfdcNMtt91x1z33PfDQI/947ImnnnnuhZdeee2Nt95574OPPvnXZ1989c13P/z0y29//OdA7VvQIYcdcdQxx51w0imnnXHWOeddcNEll11x1TXX3XDTLbfdcdc99z3w0CP/eOyJp5557oWXXnntjbfeee+Djz7512dffPXNdz/89Mtvf/znwH/5LeiQw4446pjjTjjplNPOOOuc8y646JLLrrjqmutuuOmW2+646577HnjokX889sRTzzz3wkuvvPbGW++898FHn/zrsy+++ua7H3765bc//nPgn34LOuSwI4465rgTTjrltDPOOue8Cy665LIrrrrmuhtuuuW2O+66574HHnrkH4898dQzz73w0iuvvfHWO+998NEn//rsi6+++e6Hn3757Y//HPhn34IOOeyIo4457oSTTjntjLPOOe+Ciy657Iqrrrnuhptuue2Ou+6574GHHvnHY0889cxzL7z0ymtvvPXOex989Mm/Pvviq2++++GnX3774z8H6t+CDjnsiKOOOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx75x2NPPPXMcy+89Mprb7z1znsffPTJvz774qtvvvvhp19+++M/B/6rb0GHHHbEUcccd8JJp5x2xlnnnHfBRZdcdsVV11x3w0233HbHXffc98BDj/zjsSeeeua5F1565bU33nrnvQ8++uRfn33x1Tff/fDTL7/98Z8D//W3oEMOO+KoY4474aRTTjvjrHPOu+CiSy674qprrrvhpltuu+Oue+574KFH/vHYE08989wLL73y2htvvfPeBx998q/Pvvjqm+9++OmX3/74z4F//i3okMOOOOqY40446ZTTzjjrnPMuuOiSy6646prrbrjpltvuuOue+x546JF/PPbEU88898JLr7z2xlvvvPfBR5/867Mvvvrmux9++uW3P/5zoPEt6JDDjjjqmONOOOmU084465zzLrjoksuuuOqa62646Zbb7rjrnvseeOiRfzz2xFPPPPfCS6+89sZb77z3wUef/OuzL7765rsffvrltz/+c+C/+RZ0yGFHHHXMcSecdMppZ5x1znkXXHTJZVdcdc11N9x0y2133HXPfQ889Mg/HnviqWeee+GlV15746133vvgo0/+9dkXX33z3Q8//fLbH/858N9+CzrksCOOOua4E0465bQzzjrnvAsuuuSyK6665robbrrltjvuuue+Bx565B+PPfHUM8+98NIrr73x1jvvffDRJ//67Iuvvvnuh59++e2P/xz4774FHXLYEUcdc9wJJ51y2hlnnXPeBRddctkVV11z3Q033XLbHXfdc98DDz3yj8eeeOqZ51546ZXX3njrnfc++OiTf332xVfffPfDT7/89sd/DjS/BR1y2BFHHXPcCSedctoZZ51z3gUXXXLZFVddc90NN91y2x133XPfAw898o/HnnjqmedeeOmV19546533Pvjok3999sVX33z3w0+//PbHfw7899+CDjnsiKOOOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx75x2NPPPXMcy+89Mprb7z1znsffPTJvz774qtvvvvhp19+++M/B/6Hb0GHHHbEUcccd8JJp5x2xlnnnHfBRZdcdsVV11x3w0233HbHXffc98BDj/zjsSeeeua5F1565bU33nrnvQ8++uRfn33x1Tff/fDTL7/98Z8D/+O3oEMOO+KoY4474aRTTjvjrHPOu+CiSy674qprrrvhpltuu+Oue+574KFH/vHYE08989wLL73y2htvvfPeBx998q/Pvvjqm+9++OmX3/74z4HWt6BDDjviqGOOO+GkU04746xzzrvgoksuu+Kqa6674aZbbrvjrnvue+ChR/7x2BNPPfPcCy+98tobb73z3gcfffKvz7746pvvfvjpl9/++M+B/+lb0CGHHXHUMcedcNIpp51x1jnnXXDRJZddcdU1191w0y233XHXPfc98NAj/3jsiaeeee6Fl1557Y233nnvg48++ddnX3z1zXc//PTLb3/858D//C3okMOOOOqY40446ZTTzjjrnPMuuOiSy6646prrbrjpltvuuOue+x546JF/PPbEU88898JLr7z2xlvvvPfBR5/867Mvvvrmux9++uW3P/5z4H/5FnTIYUccdcxxJ5x0ymlnnHXOeRdcdMllV1x1zXU33HTLbXfcdc99Dzz0yD8ee+KpZ5574aVXXnvjrXfe++CjT/712RdfffPdDz/98tsf/znQ/hZ0yGFHHHXMcSecdMppZ5x1znkXXHTJZVdcdc11N9x0y2133HXPfQ889Mg/HnviqWeee+GlV15746133vvgo0/+9dkXX33z3Q8//fLbH/858L9+CzrksCOOOua4E0465bQzzjrnvAsuuuSyK6665robbrrltjvuuue+Bx565B+PPfHUM8+98NIrr73x1jvvffDRJ//67Iuvvvnuh59++e2P/xz4374FHXLYEUcdc9wJJ51y2hlnnXPeBRddctkVV11z3Q033XLbHXfdc98DDz3yj8eeeOqZ51546ZXX3njrnfc++OiTf332xVfffPfDT7/89sd/Dvzv34IOOeyIo4457oSTTjntjLPOOe+Ciy657Iqrrrnuhptuue2Ou+6574GHHvnHY0889cxzL7z0ymtvvPXOex989Mm/Pvviq2++++GnX3774z8HOt+CDjnsiKOOOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx75x2NPPPXMcy+89Mprb7z1znsffPTJvz774qtvvvvhp19+++M/B/6Pb0GHHHbEUcccd8JJp5x2xlnnnHfBRZdcdsVV11x3w0233HbHXffc98BDj/zjsSeeeua5F1565bU33nrnvQ8++uRfn33x1Tff/fDTL7/98Z8D/+e3oEMOO+KoY4474aRTTjvjrHPOu+CiSy674qprrrvhpltuu+Oue+574KFH/vHYE08989wLL73y2htvvfPeBx998q/Pvvjqm+9++OmX3/74z4H/61vQIYcdcdQxx51w0imnnXHWOeddcNEll11x1TXX3XDTLbfdcdc99z3w0CP/eOyJp5557oWXXnntjbfeee+Djz7512dffPXNdz/89Mtvf/znQPdb0CGHHXHUMcedcNIpp51x1jnnXXDRJZddcdU1191w0y233XHXPfc98NAj/3jsiaeeee6Fl1557Y233nnvg48++ddnX3z1zXc//PTLb3/858C/+BZ0yGFHHHXMcSecdMppZ5x1znkXXHTJZVdcdc11N9x0y2133HXPfQ889Mg/HnviqWeee+GlV15746133vvgo0/+9dkXX33z3Q8//fLbH/858C+/BR1y2BFHHXPcCSedctoZZ51z3gUXXXLZFVddc90NN91y2x133XPfAw898o/HnnjqmedeeOmV19546533Pvjok3999sVX33z3w0+//PbHfw7839+CDjnsiKOOOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx75x2NPPPXMcy+89Mprb7z1znsffPTJvz774qtvvvvhp19+++M/B3rfgg457IijjjnuhJNOOe2Ms84574KLLrnsiquuue6Gm2657Y677rnvgYce+cdjTzz1zHMvvPTKa2+89c57H3z0yb8+++Krb7774adffvvjPwf+n29Bhxx2xFHHHHfCSaecdsZZ55x3wUWXXHbFVddcd8NNt9x2x1333PfAQ4/847EnnnrmuRdeeuW1N956570PPvrkX5998dU33/3w0y+//fGfA//qW9Ahhx1x1DHHnXDSKaedcdY5511w0SWXXXHVNdfdcNMtt91x1z33PfDQI/947ImnnnnuhZdeee2Nt95574OPPvnXZ1989c13P/z0y29//OfA//st6JDDjjjqmONOOOmU084465zzLrjoksuuuOqa62646Zbb7rjrnvseeOiRfzz2xFPPPPfCS6+89sZb77z3wUef/OuzL7765rsffvrltz/+c6D/LeiQw4446pjjTjjplNPOOOuc8y646JLLrrjqmutuuOmW2+646577HnjokX889sRTzzz3wkuvvPbGW++898FHn/zrsy+++ua7H3765bc//nPgX38LOuSwI4465rgTTjrltDPOOue8Cy665LIrrrrmuhtuuuW2O+66574HHnrkH4898dQzz73w0iuvvfHWO+998NEn//rsi6+++e6Hn3757Y//HPg334IOOeyIo4457oSTTjntjLPOOe+Ciy657Iqrrrnuhptuue2Ou+6574GHHvnHY0889cxzL7z0ymtvvPXOex989Mm/Pvviq2++++GnX3774z8H/u23oEMOO+KoY4474aRTTjvjrHPOu+CiSy674qprrrvhpltuu+Oue+574KFH/vHYE08989wLL73y2htvvfPeBx998q/Pvvjqm+9++OmX3/74z4HBt/8PdlHZBHicLcUhuAEAACBmQRAEQXhBEARBEARBEARBEARBEARBEARBsJu7s80222yzzTa7s5vtbOfubLPN3QRBEF4QBEEQhBcEQRD2ffP/5Q/2A/+/kMOOOOofxxx3wkmnnHbGWeecd8FFl1x2xVXXXHfDTbfcdsdd99z3wEOPPPbEU88898JLr7z2xlvvvPfBR5/867Mvvvrmux/+89Mvv/1x4N/5FnTIYUcc9Y9jjjvhpFNOO+Osc8674KJLLrviqmuuu+GmW26746577nvgoUcee+KpZ5574aVXXnvjrXfe++CjT/712RdfffPdD//56Zff/jjwD74FHXLYEUf945jjTjjplNPOOOuc8y646JLLrrjqmutuuOmW2+646577HnjokceeeOqZ51546ZXX3njrnfc++OiTf332xVfffPfDf3765bc/Dvy734IOOeyIo/5xzHEnnHTKaWecdc55F1x0yWVXXHXNdTfcdMttd9x1z30PPPTIY0889cxzL7z0ymtvvPXOex989Mm/Pvviq2++++E/P/3y2x8HBt+CDjnsiKP+ccxxJ5x0ymlnnHXOeRdcdMllV1x1zXU33HTLbXfcdc99Dzz0yGNPPPXMcy+89Mprb7z1znsffPTJvz774qtvvvvhPz/98tsfB/7ht6BDDjviqH8cc9wJJ51y2hlnnXPeBRddctkVV11z3Q033XLbHXfdc98DDz3y2BNPPfPcCy+98tobb73z3gcfffKvz7746pvvfvjPT7/89seBf/Qt6JDDjjjqH8ccd8JJp5x2xlnnnHfBRZdcdsVV11x3w0233HbHXffc98BDjzz2xFPPPPfCS6+89sZb77z3wUef/OuzL7765rsf/vPTL7/9ceAffws65LAjjvrHMcedcNIpp51x1jnnXXDRJZddcdU1191w0y233XHXPfc98NAjjz3x1DPPvfDSK6+98dY7733w0Sf/+uyLr7757of//PTLb38cGH4LOuSwI476xzHHnXDSKaedcdY5511w0SWXXXHVNdfdcNMtt91x1z33PfDQI4898dQzz73w0iuvvfHWO+998NEn//rsi6+++e6H//z0y29/HPj3vgUdctgRR/3jmONOOOmU084465zzLrjoksuuuOqa62646Zbb7rjrnvseeOiRx5546pnnXnjpldfeeOud9z746JN/ffbFV99898N/fvrltz8O/Pvfgg457Iij/nHMcSecdMppZ5x1znkXXHTJZVdcdc11N9x0y2133HXPfQ889MhjTzz1zHMvvPTKa2+89c57H3z0yb8+++Krb7774T8//fLbHwf+g29Bhxx2xFH/OOa4E0465bQzzjrnvAsuuuSyK6665robbrrltjvuuue+Bx565LEnnnrmuRdeeuW1N956570PPvrkX5998dU33/3wn59++e2PA6NvQYccdsRR/zjmuBNOOuW0M84657wLLrrksiuuuua6G2665bY77rrnvgceeuSxJ5565rkXXnrltTfeeue9Dz765F+fffHVN9/98J+ffvntjwP/4begQw474qh/HHPcCSedctoZZ51z3gUXXXLZFVddc90NN91y2x133XPfAw898tgTTz3z3AsvvfLaG2+9894HH33yr8+++Oqb7374z0+//PbHgf/oW9Ahhx1x1D+OOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx557ImnnnnuhZdeee2Nt95574OPPvnXZ1989c13P/znp19+++PAf/wt6JDDjjjqH8ccd8JJp5x2xlnnnHfBRZdcdsVV11x3w0233HbHXffc98BDjzz2xFPPPPfCS6+89sZb77z3wUef/OuzL7765rsf/vPTL7/9cWD8LeiQw4446h/HHHfCSaecdsZZ55x3wUWXXHbFVddcd8NNt9x2x1333PfAQ4889sRTzzz3wkuvvPbGW++898FHn/zrsy+++ua7H/7z0y+//XHgP/kWdMhhRxz1j2OOO+GkU04746xzzrvgoksuu+Kqa6674aZbbrvjrnvue+ChRx574qlnnnvhpVdee+Otd9774KNP/vXZF199890P//npl9/+OPCffgs65LAjjvrHMcedcNIpp51x1jnnXXDRJZddcdU1191w0y233XHXPfc98NAjjz3x1DPPvfDSK6+98dY7733w0Sf/+uyLr7757of//PTLb38c+M++BR1y2BFH/eOY40446ZTTzjjrnPMuuOiSy6646prrbrjpltvuuOue+x546JHHnnjqmedeeOmV19546533Pvjok3999sVX33z3w39++uW3Pw5MvgUdctgRR/3jmONOOOmU084465zzLrjoksuuuOqa62646Zbb7rjrnvseeOiRx5546pnnXnjpldfeeOud9z746JN/ffbFV99898N/fvrltz8O/Offgg457Iij/nHMcSecdMppZ5x1znkXXHTJZVdcdc11N9x0y2133HXPfQ889MhjTzz1zHMvvPTKa2+89c57H3z0yb8+++Krb7774T8//fLbHwf+i29Bhxx2xFH/OOa4E0465bQzzjrnvAsuuuSyK6665robbrrltjvuuue+Bx565LEnnnrmuRdeeuW1N956570PPvrkX5998dU33/3wn59++e2PA//lt6BDDjviqH8cc9wJJ51y2hlnnXPeBRddctkVV11z3Q033XLbHXfdc98DDz3y2BNPPfPcCy+98tobb73z3gcfffKvz7746pvvfvjPT7/89seB6begQw474qh/HHPcCSedctoZZ51z3gUXXXLZFVddc90NN91y2x133XPfAw898tgTTz3z3AsvvfLaG2+9894HH33yr8+++Oqb7374z0+//PbHgf/qW9Ahhx1x1D+OOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx557ImnnnnuhZdeee2Nt95574OPPvnXZ1989c13P/znp19+++PAf/0t6JDDjjjqH8ccd8JJp5x2xlnnnHfBRZdcdsVV11x3w0233HbHXffc98BDjzz2xFPPPPfCS6+89sZb77z3wUef/OuzL7765rsf/vPTL7/9ceC/+RZ0yGFHHPWPY4474aRTTjvjrHPOu+CiSy674qprrrvhpltuu+Oue+574KFHHnviqWeee+GlV15746133vvgo0/+9dkXX33z3Q//+emX3/44MPsWdMhhRxz1j2OOO+GkU04746xzzrvgoksuu+Kqa6674aZbbrvjrnvue+ChRx574qlnnnvhpVdee+Otd9774KNP/vXZF199890P//npl9/+OPDffgs65LAjjvrHMcedcNIpp51x1jnnXXDRJZddcdU1191w0y233XHXPfc98NAjjz3x1DPPvfDSK6+98dY7733w0Sf/+uyLr7757of//PTLb38c+O++BR1y2BFH/eOY40446ZTTzjjrnPMuuOiSy6646prrbrjpltvuuOue+x546JHHnnjqmedeeOmV19546533Pvjok3999sVX33z3w39++uW3Pw7899+CDjnsiKP+ccxxJ5x0ymlnnHXOeRdcdMllV1x1zXU33HTLbXfcdc99Dzz0yGNPPPXMcy+89Mprb7z1znsffPTJvz774qtvvvvhPz/98tsfB+bfgg457Iij/nHMcSecdMppZ5x1znkXXHTJZVdcdc11N9x0y2133HXPfQ889MhjTzz1zHMvvPTKa2+89c57H3z0yb8+++Krb7774T8//fLbHwf+h29Bhxx2xFH/OOa4E0465bQzzjrnvAsuuuSyK6665robbrrltjvuuue+Bx565LEnnnrmuRdeeuW1N956570PPvrkX5998dU33/3wn59++e2PA//kW9Ahhx1x1D+OOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx557ImnnnnuhZdeee2Nt95574OPPvnXZ1989c13P/znp19+++PAP/0WdMhhRxz1j2OOO+GkU04746xzzrvgoksuu+Kqa6674aZbbrvjrnvue+ChRx574qlnnnvhpVdee+Otd9774KNP/vXZF199890P//npl9/+OLD4FnTIYUcc9Y9jjjvhpFNOO+Osc8674KJLLrviqmuuu+GmW26746577nvgoUcee+KpZ5574aVXXnvjrXfe++CjT/712RdfffPdD//56Zff/jjwP34LOuSwI476xzHHnXDSKaedcdY5511w0SWXXXHVNdfdcNMtt91x1z33PfDQI4898dQzz73w0iuvvfHWO+998NEn//rsi6+++e6H//z0y29/HPhn34IOOeyIo/5xzHEnnHTKaWecdc55F1x0yWVXXHXNdTfcdMttd9x1z30PPPTIY0889cxzL7z0ymtvvPXOex989Mm/Pvviq2++++E/P/3y2x8H/qdvQYccdsRR/zjmuBNOOuW0M84657wLLrrksiuuuua6G2665bY77rrnvgceeuSxJ5565rkXXnrltTfeeue9Dz765F+fffHVN9/98J+ffvntjwPLb0GHHHbEUf845rgTTjrltDPOOue8Cy665LIrrrrmuhtuuuW2O+66574HHnrksSeeeua5F1565bU33nrnvQ8++uRfn33x1Tff/fCfn3757Y8D//O3oEMOO+Kofxxz3AknnXLaGWedc94FF11y2RVXXXPdDTfdctsdd91z3wMPPfLYE08989wLL73y2htvvfPeBx998q/Pvvjqm+9++M9Pv/z2x4H/5VvQIYcdcdQ/jjnuhJNOOe2Ms84574KLLrnsiquuue6Gm2657Y677rnvgYceeeyJp5557oWXXnntjbfeee+Djz7512dffPXNdz/856dffvvjwD//FnTIYUcc9Y9jjjvhpFNOO+Osc8674KJLLrviqmuuu+GmW26746577nvgoUcee+KpZ5574aVXXnvjrXfe++CjT/712RdfffPdD//56Zff/jiw+hZ0yGFHHPWPY4474aRTTjvjrHPOu+CiSy674qprrrvhpltuu+Oue+574KFHHnviqWeee+GlV15746133vvgo0/+9dkXX33z3Q//+emX3/448L9+CzrksCOO+scxx51w0imnnXHWOeddcNEll11x1TXX3XDTLbfdcdc99z3w0COPPfHUM8+98NIrr73x1jvvffDRJ//67Iuvvvnuh//89Mtvfxz4374FHXLYEUf945jjTjjplNPOOOuc8y646JLLrrjqmutuuOmW2+646577HnjokceeeOqZ51546ZXX3njrnfc++OiTf332xVfffPfDf3765bc/DvyLb0GHHHbEUf845rgTTjrltDPOOue8Cy665LIrrrrmuhtuuuW2O+66574HHnrksSeeeua5F1565bU33nrnvQ8++uRfn33x1Tff/fCfn3757Y8D629Bhxx2xFH/OOa4E0465bQzzjrnvAsuuuSyK6665robbrrltjvuuue+Bx565LEnnnrmuRdeeuW1N956570PPvrkX5998dU33/3wn59++e2PA//yW9Ahhx1x1D+OOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx557ImnnnnuhZdeee2Nt95574OPPvnXZ1989c13P/znp19+++PAv/oWdMhhRxz1j2OOO+GkU04746xzzrvgoksuu+Kqa6674aZbbrvjrnvue+ChRx574qlnnnvhpVdee+Otd9774KNP/vXZF199890P//npl9/+OPCvvwUdctgRR/3jmONOOOmU084465zzLrjoksuuuOqa62646Zbb7rjrnvseeOiRx5546pnnXnjpldfeeOud9z746JN/ffbFV99898N/fvrltz8ObL4FHXLYEUf945jjTjjplNPOOOuc8y646JLLrrjqmutuuOmW2+646577HnjokceeeOqZ51546ZXX3njrnfc++OiTf332xVfffPfDf3765bc/Dvzv34IOOeyIo/5xzHEnnHTKaWecdc55F1x0yWVXXHXNdTfcdMttd9x1z30PPPTIY0889cxzL7z0ymtvvPXOex989Mm/Pvviq2++++E/P/3y2x8H/o9vQYccdsRR/zjmuBNOOuW0M84657wLLrrksiuuuua6G2665bY77rrnvgceeuSxJ5565rkXXnrltTfeeue9Dz765F+fffHVN9/98J+ffvntjwP/57egQw474qh/HHPcCSedctoZZ51z3gUXXXLZFVddc90NN91y2x133XPfAw898tgTTz3z3AsvvfLaG2+9894HH33yr8+++Oqb7374z0+//PbHge23oEMOO+Kofxxz3AknnXLaGWedc94FF11y2RVXXXPdDTfdctsdd91z3wMPPfLYE08989wLL73y2htvvfPeBx998q/Pvvjqm+9++M9Pv/z2x4H/61vQIYcdcdQ/jjnuhJNOOe2Ms84574KLLrnsiquuue6Gm2657Y677rnvgYceeeyJp5557oWXXnntjbfeee+Djz7512dffPXNdz/856dffvvjwP/9LeiQw4446h/HHHfCSaecdsZZ55x3wUWXXHbFVddcd8NNt9x2x1333PfAQ4889sRTzzz3wkuvvPbGW++898FHn/zrsy+++ua7H/7z0y+//XHg//kWdMhhRxz1j2OOO+GkU04746xzzrvgoksuu+Kqa6674aZbbrvjrnvue+ChRx574qlnnnvhpVdee+Otd9774KNP/vXZF199890P//npl9/+OLD7FnTIYUcc9Y9jjjvhpFNOO+Osc8674KJLLrviqmuuu+GmW26746577nvgoUcee+KpZ5574aVXXnvjrXfe++CjT/712RdfffPdD//56Zff/jjwb74FHXLYEUf945jjTjjplNPOOOuc8y646JLLrrjqmutuuOmW2+646577HnjokceeeOqZ51546ZXX3njrnfc++OiTf332xVfffPfDf3765bc/Dvzbb0GHHHbEUf845rgTTjrltDPOOue8Cy665LIrrrrmuhtuuuW2O+66574HHnrksSeeeua5F1565bU33nrnvQ8++uRfn33x1Tff/fCfn3757Y8D/++3oEMOO+Kofxxz3AknnXLaGWedc94FF11y2RVXXXPdDTfdctsdd91z3wMPPfLYE08989wLL73y2htvvfPeBx998q/Pvvjqm+9++M9Pv/z2x4H9t/8Pd+bZQHicLcUv2AEAAOBnex5BEARBEARBEARBEARBEAThC8IXBEEQBEEQBEEQBEEQBEEQBEFwN9tss83dbLOd29zNNtu5zTa3uc3+PM997y/83uAu8G8KMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqr/GGNv6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy8D/+CPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwip/WOMv62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwy8A//CPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyh/W+Ms6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/wy8G//EWSIYUYYZYxxJphkimlmmGWOeRZYZIllVljlD2v8ZZ0NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffhnY/xFkiGFGGGWMcSaYZIppZphljnkWWGSJZVZY5Q9r/GWdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH34Z+Hf+CDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6zyhzX+ss4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pvwz8u38EGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVvnDGn9ZZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odfBv69P4IMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqr/GGNv6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy8Dhz+CDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq/xhjb+ss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888MvA//+H0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV/rDGX9bZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754ZeB/+CPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwip/WOMv62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwy8B/+EeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlT+s8Zd1Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvhl4PhHkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU/rPGXdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb374ZeA/+iPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyh/W+Ms6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/wy8B//EWSIYUYYZYxxJphkimlmmGWOeRZYZIllVljlD2v8ZZ0NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffhn4T/4IMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrPKHNf6yzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+/DJz+CDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6zyhzX+ss4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pvwz8oz+CDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq/xhjb+ss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888MvA//4jyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqf1jjL+tssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MvAf/pHkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU/rPGXdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb374ZeD8R5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVP6zxl3U22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++GXgP/sjyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMof1vjLOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/8MvCf/xFkiGFGGGWMcSaYZIppZphljnkWWGSJZVZY5Q9r/GWdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH34Z+C/+CDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6zyhzX+ss4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pvwxc/ggyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMius8oc1/rLOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND78M/Jd/BBlimBFGGWOcCSaZYpoZZpljngUWWWKZFVb5wxp/WWeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHXwb+qz+CDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq/xhjb+ss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888MvA//kjyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqf1jjL+tssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MvA9Y8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKn9Y4y/rbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLwD/9I8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKH9b4yzobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//DLwX/8RZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWOUPa/xlnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9+Gfhv/ggyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMius8oc1/rLOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND78M3P4IMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrPKHNf6yzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+/DPyzP4IMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqr/GGNv6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy8D//yPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwip/WOMv62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwy8B/+0eQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlT+s8Zd1Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvhl4P5HkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU/rPGXdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb374ZeC/+yPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyh/W+Ms6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/wy8N//EWSIYUYYZYxxJphkimlmmGWOeRZYZIllVljlD2v8ZZ0NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffhn4H/4IMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrPKHNf6yzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+/DDz+CDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6zyhzX+ss4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pvwz8j38EGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVvnDGn9ZZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odfBv6nP4IMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqr/GGNv6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy8D/+KPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwip/WOMv62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwy8DzjyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqf1jjL+tssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MvAv/wjyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMof1vjLOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/8MvA//xFkiGFGGGWMcSaYZIppZphljnkWWGSJZVZY5Q9r/GWdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH34Z+F/+CDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6zyhzX+ss4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pvwy8/ggyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMius8oc1/rLOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND78M/K9/BBlimBFGGWOcCSaZYpoZZpljngUWWWKZFVb5wxp/WWeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHXwb+tz+CDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq/xhjb+ss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888MvA//7H0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV/rDGX9bZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754ZeB9x9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVf6wxl/W2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXgX/1R5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVP6zxl3U22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++GXg//gjyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMof1vjLOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/8MvB//hFkiGFGGGWMcSaYZIppZphljnkWWGSJZVZY5Q9r/GWdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH34Z+PwRZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWOUPa/xlnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9+GfjXfwQZYpgRRhljnAkmmWKaGWaZY54FFllimRVW+cMaf1lng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh18G/q8/ggwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqv8YY2/rLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDLwP/9x9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVf6wxl/W2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXge8fQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVX+sMZf1tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhl4H/548gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKn9Y4y/rbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLwP/7R5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVP6zxl3U22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++GXg//sjyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMof1vjLOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/8MhD4t/7N/39ygdh9eJwt1yETAgCXllFWPxUVlVVUVFR0UVFRUVFRUQkEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEFz9zi3nBzwz78z9Q+BPAv/vggwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8Cd/9A8MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfAX9CfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+Iv6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88Msf/3z4/wiDDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwl/RnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/rL+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwF/Rn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/++OcP3//nDwwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8Bf1Z9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4a/ozyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8Df11/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvljIKQ/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8Df0Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6m/gwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8Df0p9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hgI688gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8qf4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfA39afQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+Dv6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfAxH9GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgb+rP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfD39GeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+vv4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sdAVH8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgH+jPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/EP9GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgX+kP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MRDTn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPjH+jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwP/RH8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgn+rPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38MxPVnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/pn+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwD/Xn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPgz/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4GE/gwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8C/0J9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4l/ozyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8D/0p/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvljIKk/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8K/1Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6N/gwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8C/1Z9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hhI6c8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8O/0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bf68/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8B/0Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/BtL6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA/9RfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+A/6c8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8Z/0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+BjP4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfAf9GfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+K/6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA/9NfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375YyCrP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfDf9WeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+h/4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfA/9SfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4YyOnPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/C/9GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgf+tP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfB/9GeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwbyf/T/AtC86Mh4nC3RoRcBAIDYYXvvgiAIgiAIgiAIgiDYZpttdrOb3dlmm2222WZ3ttmd22wTBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEHY27vvV74/4PcH+b8W+P8FGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgr/+Vf8AgQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8Df8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bv+k/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wxUPCfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+Fv+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA3/bfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+Dv+M8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888MvfwwU/WeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+rv8MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfA3/OfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+Pv+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfAyX/GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgX/gP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfCH/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwP/0H8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WOg7D+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwj/xnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/sh/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4B/7zyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DFT8Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6J/wwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8Af+88gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8if8MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sdA1X8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgn/rPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/DP/GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgX/uP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MVDzn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPgX/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwP/0n8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgX/nPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M1P1nkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/rX/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwL/xn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPi3/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwMN/xlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4F/5z+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHw7/1nkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/oP/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHQNN/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4D/6zyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DPwn/xlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4H/7D+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHQ8p9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4L/4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8Df+o/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8Gf+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA23/GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgf/qP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfDf/GeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+u/8MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sdAx38GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgf/jPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/Ln/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwF/4zyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DHT9Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv7SfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+B/+s8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8L/8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bnv8MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfA//afQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+D/+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA//XfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y6D/V/4/0lHpBHicLdGhFwEAgNhh994FQRAEQRAEQRAEQRAEQRAEQRAEQRAEQbDNdrZzm2222WY322yzzTa32WZ3bhMEQRAEQRAEQRAEQdjbu+9Xvj/g94f9Pwj8/4IMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfDX/so/ZJAhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv66/wwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8Df8J9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hgY+M8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8Tf8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bv+U/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8Ef+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA0P/GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgb/tP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfB3/GeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+2H8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WNg5D+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwJ/4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8Df9d/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4O/5zyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DIz9Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6+/wwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8A/8J9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4h/4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8DE/8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bf+Q/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8I/9Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6J/wwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8DUfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+Cf+s8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8M/8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bf+4/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wxMPOfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+Bf+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA3/qP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfAv/WeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwbm/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwP/yn8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgX/vPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/Bv/GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgYX/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwL/1n0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPh3/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwP/3n8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WNg6T+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwH/xnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/qP/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwH/yn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GFj5zyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DPxn/xlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4H/4j+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwX/1nkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G1v4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8Df+Y/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8N/8Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv67/wwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8DGfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+B/+M8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8T/8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+B/+U/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wxsPWfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+N/+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA3/uP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfAX/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwM7/xlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4G/9J9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4P/4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8D/9d/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvljYP9X/j/T5ulAeJwt0a8fAQCA3mG3zwVBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBsM0229zNNttss80227nNbbZzm23247PtecP7/AHfP9z/QeD/LsgQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA3/5//uHDDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwF/Rn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPir+jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwMH/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4G/pj+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHw1/VnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/ob+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwFF/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4G/qzyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DPwt/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4G/rT+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DFw0p9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4I/0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+BP9afQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+Dv6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA2f9GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgb+rP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfD39GeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+vv4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfARX8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgH+jPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/EP9GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgX+kP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MXDVn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPjH+jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwP/RH8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgn+rPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M3PRnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/pn+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwD/Xn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPgX+jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwN3/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4F/qT+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwr/RnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/rX+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwEN/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4N/ozyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DPxb/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4E/0Z9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hh46s8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8qf4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfAv9OfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+Pf6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfAy/9GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgT/Tn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPgP+jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwP/UX8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgrT+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwn/RnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/rP+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwJ/rzyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DHz0Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv5CfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+C/6M8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8V/0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Br/4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfAf9OfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+O/6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA/9DfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+CnP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfA/9WeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+l/4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfA/9afQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4YCPyl//f/B86B6H14nC3WIRcCgJaVURyfiorKKCoqKjqoqKioqKioBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIjr59y/4B3zpr3T8E/iTw/y7IEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwN/4Y/+gUGGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPgT/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4G/qD+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//PHPh/9HGGSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgb+kP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfCX9WeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+iv4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sc/f/j/P39gkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/qr+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwF/Tn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPjr+jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwMh/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4G/oT+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwN/VnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/pb+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHQFh/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4E/1Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv62/gwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8Df0Z9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hiI6M8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8Xf0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bv6c/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8Pf1Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/BqL6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA/9AfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+Af6s8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8I/0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+BmP4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfAP9afQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+Cf6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA/9UfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375YyCuP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfDP9GeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+uf4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfAn+nPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38MJPRnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/oX+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwL/Un0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPhX+jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwNJ/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4F/rT+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwb/RnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/q3+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHQEp/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4N/pzyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DPx7/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4H/oD+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DGQ1p9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4j/ozyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8D/0l/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4D/rzyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DGT0Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6L/gwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8B/1Z9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4b/ozyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8DWf0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+B/64/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8D/0Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6n/gwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx0BOfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+B/6c8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8b/0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+B/6M/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wxkP+j/xcsy/jIeJwt0aEXAQCA2GFv74IgCIIgCIIgCIIg2GabbXazm93ZZpttttlmd7bZndtsEwRBEARBEARBEARBEARBEARBEARBEARB2Nu771e+P+D3B/m/Fvj/BRlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4K//lX/AIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/A3/GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgb/pP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MVDwn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPhb/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwN/238GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPg7/jPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38MFP1nkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/q7/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwN/zn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPj7/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwMl/xlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4F/4D+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwh/4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8D/9B/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvljoOw/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8I/8Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv7IfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+Af+88gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888MvfwxU/GeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+if8MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfAH/vPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/In/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHQNV/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4J/6zyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DPwz/xlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4F/7j+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DFQ859BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4F/4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8D/9J/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4F/5zyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DNT9Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv61/wwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8C/8Z9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4t/4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8DDf8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bf+c/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8O/9Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6D/wwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx0DTfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+A/+s8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8J/8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+B/+w/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx0PKfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+C/+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA3/qP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfBn/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwNt/xlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4H/6j+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHw3/xnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/rv/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHQMd/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4H/4zyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DPy5/wwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8Bf+M8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwx0/WeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+0n8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgf/rPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/C//GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgZ7/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwP/2n0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPg//jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwP/138GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WOg/1f+Py5g+QR4nC3RIRMBAIKAUXOzQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRDcrd1zt/bO7toZQRAEQRAEQRAEQRAEQRAEQRAEQbjZufeV9wO+P/T/LfCvggwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8O//7x8YZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+B//CfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+KP/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwMB/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4E/+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA3/2n0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPhP/xlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4Gh/wwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8B/+c8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8t/8MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfAX/xnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8GRv4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8Df/WfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+B//GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgf/1n0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GBj7zyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DPzNfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+Dv/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwP/8J9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hiY+M8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8038GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjni/wG4JJNeAgAAAACAAABjJQAANQAAACEAAAA=eJztwSEBAAAAgKDu/8EeAQoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGME7AEx4nO3BMQEAAADCoH/9A5vABkABAAAAAAAAAABwDE9gde4= + + diff --git a/inputFiles/singlePhaseFlow/synthetic/synthetic_1_0.vtu b/inputFiles/singlePhaseFlow/synthetic/synthetic_1_0.vtu new file mode 100644 index 00000000000..5f6097344cb --- /dev/null +++ b/inputFiles/singlePhaseFlow/synthetic/synthetic_1_0.vtu @@ -0,0 +1,23 @@ + + + + + + + + + + + + + + + + + + + + + _BwAAAACAAACwHQAAOQAAADkAAAA5AAAAOQAAADkAAAA5AAAAIQAAAA==eJztwwEJAAAMBKHj+4dekCm4aqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqr6/AHwD0ABeJztwwEJAAAMBKHj+4dekCm4aqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqr6/AHwD0ABeJztwwEJAAAMBKHj+4dekCm4aqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqr6/AHwD0ABeJztwwEJAAAMBKHj+4dekCm4aqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqr6/AHwD0ABeJztwwEJAAAMBKHj+4dekCm4aqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqr6/AHwD0ABeJztwwEJAAAMBKHj+4dekCm4aqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqr6/AHwD0ABeJztw8EJAAAMA6Ej+w/dLfpScNVUVVVVVVVVfX+ehA7ZCgAAAACAAACIRAAAVkMAAO93AABJegAAR3oAACh6AAAwegAAPXoAAE56AABcegAArEEAAA==eJx1nHk4FW8fh9EiRdmiyNKKFmUJJTktlHaSbO2bJVJCFEnIvi+Hkl0hIWvWJ3tSKbIkLaIspaQQxTvP/M6ZZ8bp7Y/zXu99fa/njJlzZj7zmfv82Nj+8c84CFD+v0c5bTL3YcdeZrFy4SnYi18ZC4+fir3wsXLZ6dhLyCMWXsAJF2PlGlzYSyRg4S9mYi9irDx/HvZCK2Xhz0WxF80SFv5JHHvZVczCxxdiLzpFLFxwKfaiX8jCV0hjL4cLWPjmFdjLyYcs3EAWezHLZ+FWcvAlj4XfUMRebHNZ+G1l7OVKDgvPXY+9uGSzcC417MUji4VLwHX8HrDwC2uwl5BMFl4lg71EZrBweU3shZbOwptVsJddaSz8Mtw/+qksfBE8LieTWfgTXuzF6g4Lt4KfwyuJLFxwaGJi4kY8Cy/sxnhwLAsvzcW4ejQLd07G+MGbLPx1DsbPhbPwNWXwfYNZuGQUXN+fhdfj69z4P/NXWTgN5+dYOOVfdgiVM7/Xkznz34//s45H8L+5+P9Z///xyeswOel9Rz+S/i7Sdk55T9oPJB7eR9pvJM77hbSfSfzaL9JxIfGSL6TjSOJrP5KOO4nfayV9Tkg8tI/0uSLx7D7S55DE6yG/nMjCv+F/1x0WPhtu54lkFr4c8oOpLFwL8p1pLNwE3z/pLNx4EOMRGSzcsx/+XZksPK8H474PWHhSF/x7s1j4Kzh/LZuFV8H1L+ewrg+3xyaXhd8dgfsnj4VH/MW4aT4L9+ZgQ+dhEr8MrzvM8zaJm3OzofM8iR/mY0PXBRLfI8SGriMkrk6+7pD4Gkk2dJ0i8Q54fmNe10jcfjYbug6SP+dwO5nXTfL+h9fNEFauBv9e5nWZxBvg9dqPlZvC/TaL9byRsPjz/QV7ymiP3jXeu+SPvteL4g/eMuoAtE8l0tcl3BCXXufovz7Eneb7a1mP0g3E09Ph5zniv/VJ5wf7xPJ7Iw0lNJBqyrnwEuIZ+9JV8roLaSKbmq+890JcwSvWL/B0HMv7Ghtg86P5LPNPfmLvuyCD5X07ROYuHbxzl6Y+scCMlzTvYYytw53Lss6ycWydmVks6xyx8rpiFh1I85/4IF/qjHgYTWNjzsF7tPNs4k9ppP22HR5HxvX6qCbigWXoPBPzGHEJHjbic0LmqaTjTuZrJNiIzyd5/SBSbiHzuaTzEnmdZlI+Ic8nf0XnB/L8l2nXn0dk2NLqdbaxp81D/PTr4Ywnr8to5XfXZb0fQTx/2q2VtBdltI9ccgeWkOZf2dQm3GqypcWq6p1oGUbcMi4lxWzhf+9bz0/anpADB0J//rc/1/xFvOkqxjvyWHh9ekrKjqePWNaZlY9xPcDCn9pi69QXsKxzUz8lJcUmimV+riU2X1LMMu+x+cCBV2EJLPPXh381uXt70wY3dU8ZHUc8Mtw1ZMPxUBYe71Cc88EshcZTIvxnGh/iI0c27xBfd5+F7791VulmSCjtcK1ftQIP4r+3tObl9XvTPi7Ska3gQPyKrtLN3Tr3aXFrz6vUcaDzgPCGlFWH3VJo61c7577kRTzlmJiJQ30WTWVPTRPgQjxIH+MepbSaTGUZ9elo/QsjF3LOrH9EU9FbJ/FnGuJWnJ/Mnhfl0mqSq95PmYnWiS/qCHfTeMCyjoy44vJj02NZ1vFnx9ZJeciyjvXFytWz3iWxrDM81mX2nF7EMs8h53dJKi6LtnxD+Wpp0vp/OwYK2zxyaEVLzI9uEkN8Xu9Iu0UMoG1tC4ku+YH45s+b+Lyu36SpZoNp4/xo/WMVzcV+s8pYeKLydm0BoUe0rIb+tmNf0DpTfCKWCITF0t6rTmTQxhD/ZGu/75t2Ke1CY37jdh60zumppTdXK5bQruRUaKqwoXm/vVkWQ/uKaJIVbHtLBRHXi0q/LLa7kFa5U32U/S/KaQsMsPnjD1nm+SdiZlRGxbNs/1SR+UaOqRm01s9NvPazSfkkEVv/SD7L+lExVcq52ndoGx6fU1xJ2n5Zt4C4ZRdzabtX8i25vRi9b8HFuI++tg9oGT+U/uzkRvMHBIdGzh0uoxWs9Dx6m3R86b/WiFTPy6Bpr2wpU+hH77st3nDAROc6LfX1o9qvy9A6i4Ze8xayu9DCPmzb8/g7mv9pvd8yoTmClrjC+KrxEOk+QszvUE98IG3wSrtubjvi0spFlvKG92hq1099r5NH6y/L3LSMHhJIU9svMqygiPjCr5ICu3Tu0crvdc2oa0Pr9LhsZPvzJo7WOd03ZcMg4m9PfJ8AFYCFv6p/P3GtNJ+24PeFA+UL0PoXnmE8rZCF/2zE+IscFr5k9Wpz1/K7NHu/Hjev16T7HZHH4WX2ZbSY9AtPzixE890vsrQHvEpoJr0K54LEEKfrDFkNnaXToi/5jDpuQLxNq5hPj8OEpr4yPoWXdD2tanxnMCFdTrO7+TdOksQrHiipmjXcpbnf3xrjpYrWyRy8Z8DxLp02wlfdULyOdBxjj1qkqD+iVUxo1vO7oHXSijcuTd3wgIXf4X/0Wrc1i7aB7eHqr76k8/8RjFfnsvBNmzEeWMqyTtkBjOc8ZJmv2onx+CIW/ivScYfeQAzLOk8hf5rEwg0OtLjt3+9Du9IUIGBB4uONbwMDnEJpL8rD1FVJucjbNYNv9HIKTe7TRYdaP8Tv2n3bvn3bfdrqDaaggpRzNF6lpPisYuRz0v6/dPzAgaoLgIXb9Hl1f/j+iFYldf+iojviU2f4n6mee4umFBmmnH4VcVXnvGc12/NpXEF7/JtDEFdcOlO0si2DttLGbv1eV9Jxv4TNKxWyzD9nX3DCU6KEliS5zacrkLT/NwYet6yNpw1bZFpJX0acx/bIlFubsmnvXuR0KZWhz/PSLoNDuWtv06aafls4uAd9fu7YGZufGymlydjzn1xE4gNVuopaOY9Y5htVb0yE+BbTVL/l6Lk8QutHxyWbBMUU0P6E8b7lJvE/m4oWH9HJpGkqHH29m7RO8NA92bahBJb1TVKxdR7ksazDVyNb0xRnQhswE/y6jvS9YHuy5vvtpeW0hUeiSp42ks5X7cE3nMJNaN6l+xS/krhE+tRZaVLlNO2tu1LCyN+vq64vwjPLaIPrH7mMkPJ83M55Vq/9HGk1tUFpNE/Ej+5eb3dqYRbtO+ePuEp1tM5MrsWiE+9LaPfFE06dfYzet86CS+vDzwe078HCB4/WI14hYViSe9GO9mx02PfFA8S3Z3K1xj8po307LK3+Nxvxczs/phRZ2dGOCV11vnAIve+QCPbyO4d2+5lSVlo6mu/M1/i81iaO9uPHWTXeo2iecxYbm3MLoB2Xe7xLh8S/aBziPjWYT5vNE1z2jbRO4QaMfyhk4asSPp30rC+jqf2Q5ss2ROuMKdes3MIHaK4rOs7GkvbDWnmMezxi4Wr2AQbuZtm0DGmx4MOapPv0EyURn6KiWebbrbB5xWLalUbq/Myt73YNpiSyzDvbYfOaBSzzxk4Y189j4WfjzyXZp2ayrOPUc9uxR/sR7Zf5VI2Vumh+dXZF1NMjgFYz1qX9isQL/L2zBOuKaNLbbttxkY7vvoEW4SVvH9LmPJl1gIPE2Yz31OdFx9AGFH+m/CUd36qVsm+kxjJpUxKevAoj7ee0L2pjL/tyabNCxgoaCtE6p1PH6tsPJtFmlGTdEDiM5qfHOk4t5cyhda3dunctaV50AN4fhdK822NfjZmgeXd17EXzPs1m0eHlU++g+UZ4P3XQm2X++RLs5XAKdd6jgfbf/06672Zy5j8Sp/TzJE7p50mc0s+TOKWfJ3FKP0/ilH6exCn9PIlT+nkSf/6vngTjlH6exCn9PIlT+nkSp/TzJE7p50mc0s+TOKWfJ3FKP0/ilH6exCn9PIlT+nkSp/TzJE7p50mc0s+TOKWfJ3FKP0/ilH6exCn9PIlT+nnyfiP38+TjNfSPXhTjlH6exCn9PIlT+nkSp/TzJE7p50mc0s+TOKWfZ5m/ysIp/fzk7+/k52uTv9eT+eRefTJn5q7J/Mf/Wf//8cnrMP+R3pfSz5O2k9LPkzilnydxSj9P4pR+nsQp/TyJU/p5Eqf08yRO6edJnNLPkzilnydxSj9P4pR+nsQp/TyJU/p5Eqf08yRO6edJnNLPkzilnydxSj9P4pR+nsQp/Tx5fXI/T+KUfp7EKf08iVP6eRKn9PMkTunnSZzSz5M4pZ8ncfV/PReG5wdJNtbnyBin9PMkTunnyZ9zcj9P3v/kfp7EKf08iVP6eRKn9PMkHs/o59UlV+y/4Yy+14sZ/Tylx8a4OKOft57ZKvSYdB64/a9+HuO2jH6ephs28jYc8SxGP0/p4THO7Ocnvy+zn588/89+Hu5/Rj//iO1j6DfSvBejn5+8jvS/+nmMM/t5Sg+PcTqjn6f09hjfRerniX4b4x6kfp7owzEuRurnyTyFdNzJXI7Uz5PX9yPlFjIn9/PkdV6T8gl5/i6pnyfPv2H082vS8sd1hhE/xejn1Q5W7ZIQRryU0c+LDT1LaSPNtzD6+SMVybek5iF+ntTPE7033B5SP0/03hjvJPXzZF5H6ufJ68wg9fNk/pLUz5PXuULq58nzfKR+njzvT+rnyfO+jH6e0qtjPJDRz0/miYx+ntLbY/wno5+fzI0Z/Tylb8f4d0Y/L9ae9kKVB3FmP0/p8zE+n9HPV9Vf1Vo1QTo/M/p5Su8N/15GP0/p7TFux+jnKX04PO8x+nlK347xOEY/P3mdJYx+fvI6Pox+fvI6lxj9/OR1fjP6+cnzMxj9fFP5hvpm0vrMfp7Sw2NcmNHPU3p7eN5g9POUXhpeXxj9/GTO7OcpvTTG2Rn9PKUnh59zRj/vt2LbijwOxE8w+nnXHaoPq+eg7Wf285SeH+P6jH6e0rdjfB6jn588L8jo5ydv/zRGPy81T+abOzua38vo5yevf5PRz1coBTxpIG0/s5+nPKfA+ENGP7+P5/GU7CmI6zH6ec0G2+hjpOPL7OfTG6TU6hYirsPo5w8s3biWvwdtvyijnzcTz89UkkDzHxn9vFFjvHP8fNJ9BKOf57m+KFVLHnFmP19+JXKOQjtafxGjn6f08HCe0c9TenuMM/t5Sn+O8XZGPz+Zv2b085TeHn7vGP38ZD7C6Ocn80WMfv7GeSEHm7Vo/VWMfv7oPl9Fej+a72T08/S5dQEWpPsCf0Y/f+yG9TSXBsSZ/fyjBuMD326g41jN6Oc9T3IcekfiZYx+3kG78IhNI1onhdHPz+hXWbm5CfFljH6e0ofD8xWjn5/MMxn9PKUPh3mV0c9P5hsZ/fzkdfIY/fzk+VpGPz+ZM/v5yetUM/r5yVyP0c+7ypz7EkTivxn9PKVvh993Rj//fL6329prpP3A6OcpfT7Gt/2rn8f4xX/18xi3YvTz61u0vZ94It7P+V8/X3vKtGZfAOI0Rj9P6c8xrszo5xu9PCozvBGvYfTzk+efMfp5w3f51iJOiFcy+nlKn4/x2Yx+fqHsDpHHu0nnN0Y/T+m9Mc7s55vdv95sJ/FvjH5+8vxLRj9fybsj2XEPWv82o5+n9O0YH2f08wV10UsfkNYJZfTzk9c3Y/Tzk9eZzejn54T28VeRvhfTGf38u5jjm+RV0Xwao5+3oaU/4SdxcUY/n16YdcCU/P1i9PM8lRsdOUnHPYrRz6ustdApdUec2c/zjvAcWl+P1mH28zofjCKDNdH7NjD6ed6z3Xej1RGPZfTz8tNmXJA9hLgRo5/ni20GHEaIn2L089E9zld9H6D3HWX085S+HV6nGD08pbeH5zFGb0/p2zHex+jnKX0+xosZ/fxkvpzRz5fzNPfvzCFtD6Ofp/TeGN/C6Ocn83WMfn5fM6kPh99rRj8/eb6X0c9T+nOYZxj9/OT5C4x+fvK8KaOfn8zNGP385HUcGf08pQ+H13FGP68yVeT+chIvYvTzLfnHPIZIx3cPo5+n9PAYZ/bzlN4enicZ/fxfI8XlpqT9fJ/Rz1OeF2Cc2c+PbNp16Usmmudk9POitYUZtaR5Zj8/uVdn9vOUHh7jzH5+8vwLRj/PnF82GB5ho436MWOT3K1Lx0LAJw6Jd+8XID4a8rlXf0coKOGr5ZTsfUnwS2e6NKRiQoGHY+Cx4XzEHfWcfaTHQsGihW4a8z0RP++lu47HMAxkygVWrTREfKB50fmYwjAwd6O038sViFeODD0vFw8HJ74ZSdz9+4Lgx/ieXD3jEg58q0YEdjxH3GRwjq9zVzgoP3KGQy8GcYMhjZJxTTpw7zz16KwV4j0cdwfLEulgbWPdw7XqiG9QUTgQzhYBpBdbvDzBjfj8I/f0VuhFAAFVQ/mi5nqCL5u2z1woMQIcUL6zTjwW8a6lCa87+yJATJRYt5cJ4h/O2LxaIxMJXg98KpKWRfzaytHflUaRQOx89A6XzucEf3hwYke1SySICrqjZmGGuOQuF/EnUZGg60eN2Jf+ZwSfuGZm1nEvEtxdYy1QfwHxC1Z3rnhmRIKMiXSbuqGnBE9I6Q72TI4EUmcle89eRjzFIjK5iR4JTgn1rpRjRzxeYL9CpVMkyNvoEFHiUUfwIHlBtVjDSPAKlM5cwI+4oYXw32TZSOB5gHPj0qgnBFeYOnIg6U8EqA7ZlpEmg7iDbdi9lsoIIBjbG+iZV0twI7/YtJXeEWChF9uLAE3Ela8eCt+/OwI4Ns0uiG56THDZ0fR5TdwR4PHCdU1hZxBfvvo9h2QtHYBCG2vD3zUEV7obJ+bhRge2F/aIvfRGXMf1q9cBdTpweVgt3C2OeOGQeGD5cDjYFU8f9nhQTfBeN78jU9PDwdLrvzfEayJ+4XsL35ZT4cBk0GFiWVsV2s5bTQqJIuHgVrbi/WlWiPMfb/i283kY+BWz47ncNMTX74wZ1L0eBlQWdD6/HVlJ8Eu1F1a0KYWB0ValFtoaxN8t+3pwuCcU8G1NTOSuqiD42+nfvMCtUKCQuPj0sBHicrzO/rv2hoL8cq5bQwPlBLcXHd+WwR4KNvutmJi4gXj2npMTE1khgLdF7ziXOOJ9yi9y954OAQ7fNOkzsssIHvbn4LmseSEgo/SZ/qAW4g/OfLdWfxIMOlM1l5W+e0RwAfaxpBlYvhJYES97zAZxXnPHhiVyweDCfs3Vz2Yi7rjXYFZqZxDoFz61bzQaEPxl1Oo52fQgsHyr1ESLIuLzxNY+MdwdBOqUj19/GFRKcGUX1a9FHEHgbbLC7P6CEoJ/1faPHssPBMMF3U9XdxQTvDOKy3KDVSBw1O8rM5qB+LaFGhdTpAPB+dE0oZ2rigg+curmB7uOAGD8WEX75b5CgodvM/3zLioATE2M9AQXCghutC7hk4xRABhVqjF6G/SQ4FcvTjG5JxIA3vNyvP6SkU9wu8Gw+KSH/sAkXD8qoS6P4JU6jxP3bPUH9P6uazlduQQ/fnDx/qwmP/Ag7Hp39VgOwavbp067d8EP3F244InLbMS7569xKxbBOK9OQpRYNsETrd7RbV76AomUEZllMlkE/9F55Z7ObV9w3r6T/4z8A4Lv/zOl5csVX5Bda9Z8ZH0mwSVNU6Z/tfQFeflPy6Q2Z6D3vbtjhaqtLwgR05q+M+w+wc1Xq5ebhviCM3JhL4fS7hH8es1ps/O1viCpWVCo4FkKwet7/bgvzvMDgi9vFt0du0vwJW/vH7jt6AcOC/itma18h+Bajsd2Ko34gUPbFMzFXRIJ7i/Jt7zBzR+cbHhl9uFNPMEXdtxLbuQLABGlM9boaMYRXP7Q0lSTMwFg8xzLwYiiGIK7K6dxq5Vh8y/4mqMdbhP8QRfXZvaFgWBt2P6Sw943CT67Tdn6qksg4JDWn+GUSCd41wNbZ3pXIDhW/Vi0uSyU4K5zt67ZoBUEbH+4hSq0BxG84im3/5F7QSDs8uddzW/8CX75YUPVD55gYLSKrU7ggyfBt6y6ad18NhiM8OhMmyi8TnCnAtmClupgEHpEV6mm2oHgp68umXtHLAQMduTJKWiYEzxm977C12dDwPe5dNYcEh8E8v6Is+YQ7L5en4OaQzQEPmlIbQ8GrvupOUSL45qPdHwwWF3jSskhakoH1vFwhIC2NwGUHFJyffH5mBMhwDpbipJDghKGn5dXhQCJA9QcMmpSd/XM8lAgPpWaQ54O8fk6+4YCG/fTlBxS+ntbyXh/KChfSs0hLobJg2W7w8DiadQc8spf8UD43TDgb32WkkMe5KbprRgPA1d3GVBySKmxtrnQ7nDgsD6JkkMyX2A5JDgc6CYvoOQQh1LbV2teYNejWdQcsqcFyyFT6GBDfhQlh7hPYdtZvZwOnn5PZM0hGnTgb17NmkN06aC19DxrDtGng+cx91lziDYd2CyQYM0hNDpob+im5JDmMzoKlcvowJHPnpJDqtwF1GI56MA3tYSSQ3wfCf1NbgoH849Pp+SQM/rDB5ISwsH7FE1KDkmrDb3XYhEODF/3sOYQhXBQ/26inpxDzBuMw/f/CgOd8tQccnwPlkOyw4COpQolhxy+/o5D8kIY6JOk5hCzP7FiHqvCwDThf+SQz6Hgh+k/ckh0KPjt/o8ccjAUJPwrh/CEAjb2y6w5pCwEbGz8Rw6xCwGCdf/IIStCwCsbag7Zamu9ou1tMDDZqcyaQwKDQW86NYekPsByyNZgkCe/hDWHDAeBy/YzKTlEsxrLIclBYG/ISkoOuTaK5RCjILB+qj4lh7j6v8zdOzsISIpup+SQE3f1z2WBQBA5vZ6SQ5wEBqzVrQOBHdd2Sg55dw/LIcsCQdXNBEoOSS5zaljSGgD6n2yj5BChO4azUn0CwNu405QcEq21Zk42LQB0tklTcsjjQPOwnF5/sObwKUoOicmyf21/wB9ET1Wm5BDu/QvVhx/5geqnfZQcsilp7ptLa/xA9tF+Sg4BAz7durG+wOxoJiWHZAyolH8T9AW7sjdQckhIUONIqbcP2PLmNiWHbNm68+n+6T5gdncdJYfY7eeq13fzBnqhnJQcMq0yIj6JyxscXHSYkkPOeNcl7gnxAnFJfZQcotK5dH/WMi+grORJySGdSzmn3SvzBJbjCyk5ZGBUzq3YzBPc+HWQkkMie9/TbRZ5Aqf0cUoOaRh2vKfT7wH4E3opOaTcbWrLlzoPsF36PCWHXPHGckiJB+jf3kjJIZcksBxS5QFszupRcojXgo3lpp0eYN/JeEoOaeI6ZXZexBMIXV9EySG3VX24L5p4ghH2FEoOWXY99cDtp57g+FAkJYcoFR7aqbTdC9T1baTkEJNh7uUNr7zA+u3tlBwylqa3P9ka2/8H51ByyKvubXovxH3Azvc2lBziuVhvvkOjD6BPXUDJIXGJfK4cQb6gPeYQJYfIlZ39NK7rBzrSjlFyyLvzvWxyov7gwrZGSg7ZsMT16KUOf1DZEELJIYdrZ/of0Q0AfCXsu8k5RCj3RdWPnACgK8lPySG21yKtmwUDwbZSA0oOyZyN5ZBzgYAmeJI1h1QGAt5bxZQc0hi7t/C1YBDQUfWsDy5Ax3fm71cG+xd6A/d9r4VyH6Drl4WC2H69qxFghn6+VsYv9PnJq9+j0LjEG0xbKfNaKhRdp06VSH8KdYwAq9R42Th/oM9D3gIsl17wBm+SRdSdGiZdZ/UiQMfbuk4+bvQ59yhSkrcu8wZr7bK5hz3RdW3H+ejTVbIR4OqtHT8litH3SEnpz1c+Ux/wJXt8qlUmuq41nk+eYddGBwJlJULBJsnouHR84mnl8QG2L6tvfTVEeeBHxnl7Aa4I8GarqpmPMPpef+G8slN1pi/QFp54vG4qWj+1o9mgw4sO3E7UCOfOReeN0aOnkgsX+QE/s2mDS6ah6ya79r3lcePhICNLbOv04+j8c6+kuKN/wA9cNWh68+cwum6uKv7iOyM8HHzKlR7p4EbnN4EZi6ST2APAmyNFLn6epOtmgmCzwexwEHPcdOutcnT+HN0/9/2XwAAQqev6Ru4+uj7OUZglIeAUBs5Nq1oYrIvOz/1zvoV8VQ4ENUdfvzlbiK6DZUPCZvwtoaDFMSaldHcSwY9dm9Jd/9MHzP1hOHN7CdqfKaYXfMJDsf1juFr65AZ0vXC6qOE6uy0QVDrpNd1sQNfNhOK7DgOKoSA0I74/gLeM4BrgCk+FNXafa/NszrkJdN3cvf/IgOqtEPA8ru24Xyeaf5jL3rNgdjCQmluVMUMJzZuJZUz3nxkC7ujFDv8MR+eNllOZDvHffYGu4quj7HNR/hQYH9t8X5gOhIUUXcbcLqPjVbrq/LnWINCz7Stf93yU268adfgFKIWASmflWP4gdJ6xmOVWMnOzP9gwnplabIPWL4mfETtqGQ4icmXb0j290N/1XUBaXikILO4SuPYgC+Xzc1qzW562hoBDy/fFP9W5RXCfsi8W2RoBYPnumKUNZWj9K89Ng3bWhoHqvtPayuvR+Sdp1dlXqj6BIGbOKy/jk6T7i/Olyyuuh4L5J7rO6dijXCFmnJsmeTUYFCq+/RnkFU7wjwPjntbtAcA33bNebw6p59ypb+sjHwYWCB2dc7IJXV/4n3lcm9DxAkIN24efLkHnGRebBerOnyLARE7yM/cJdH2h3+mKPHbRC1g3Ht0pvg+dN+6mpMs/fxUB2m00b9oYpxP8fmTe3k9zfIBNsTa9QwXNf6zc2MI9IwK4Jn1PyS5D2/NGSs3fid0HdJ26lZwoi7ZHabtePm1OBGC71P+kRQRdZ0szDM0rEr2Aly1/RDAHOu9F8s2rFSuOABXqB2/1PUXXX4lt79lCtH3A9i9f1syUQfNn1Y0m1n6mgzu/io4tWY8+P8V+2SsUEoKBAmek/2dba4KvVzFurDMPBptOdK8pL0XX09Y5fIonXnuBgDOWEZxr0PdOuELl9LO4CLD576HeCUF0nnSS/1naougNPsv0cjlPQ+fV2f5Z0cE2EcBlyDHItgKdN36rC8Tf+OYPkp7b5lSkofMGTTVs1YZ54cClzUQwoBOdl+JKAGfZ+wDgsMT7Z54YOi/VXjMZVlsdBvLKr2TW30Hn+bmbl5/1avIBU+1OJAlvQNtzf2H844IEOnDab6LyiZTfHPYHzhzWCQBehQkd3KT7iPkl93/OKA4Dntan3jrxou0ZZ2uTmVrvB/bvjvQHN9B88aHtvX/vhAN3y62bVUg57ZbL7H2g0xsoRXa3fyTdH9UV3miOFosAz81yq/gDUwleqkVTMw/0Af0nHye1z0X7/5hx3LEd1XTw9qPwtgoldP5f9i1AUjCZDnbtLTpn9wDlSWexe8XNT33AjBQvt4SN6Dw8GvY2PtUvALRyzrc3eoHOw/OfrTLSvRYGZouaP6qLQfn5yAMFRwvbQKAhNBIVoY6Ol9DZD9eCIkKBwju+K2yjaH3+gVt73FUCwU0zR5eJuWj9lr9GGfbNoUDvJtfRr8/ReftNXOpIXmMgkDW1vs1PQ+ft3YvXTt+uGgqUaHeXucSXEXztCX/9n+eCwPHS8URuS3Qenub26d2KhBBg88A5PjIZbY9/XneSQUcgGB3kMTp1Gm3P0o2C+kmrQsEV7el7Dzuj7UkLq37j5hwESq2vpsf6o+3hpS9Z5OAfAryaOGvPa6PtUflRceuVUDDgaul+6lCCtqdw/pSltN/B4M+iXbrVfuh4beSfXr/wUTjgybt44DwHOl66dR8PF0X5gfwgtZnluujz0zulwsUz2Bc8/M7lcPsU+vxccaFtVNWkA3l/+6aliui6nxT4zcW6zhdEtEcLfLVB1/3E3a/UqmToQGKvgmtnNPpcLSm1FTbdGIFt/3BbGw3l5NPh716sivcGh1sPTuO7iHLIjyW7KotO+QOee+pXhl+h9e80PLi18FA4iP/rWytuhnJ4dZzWEZl1vsC3+uCyIgf0vrxGRfvMrengTM/Q1lTFWIKffP1jkQKvH6h5qBRudgxdd8ZvN1p+4qSDZ2UOTyc+3SC45HPZd4bPgkCZ3nX2mhp0vVDh7pdM3BQCjERyfvhMQet8W/ZcqiaTDpSm7zOhL04g+LauhZnninwAbZXLS5kmtJ0Hzqz7HTkSDpqO/DbN9EP3C2HH9WbXyvqBY9NS3r91iSP4rjvt45Jc/mB7QdHiBGX0vrO8253PeYeDqcZGClKpLgSPllg6KrYvCDgaH6xK+oG2/yDHt2kdpSFg9/G42wVm6Lp51iXGK+FrEBDPTrLs/YP4nQgztUjvYHBJ4L1EWiPK4eyHVMV5hjxB24TaueREdD0Sjeux+i0YCcZXxPIJ7EXvW322Y1vswjDwcsqyzmd+wQTffdc4/3B/AOCfxXt46UO0/ufBPGn5fT7gRo/gPosstH6mclrfJ+x6pHfI1bPhMcr59zzmmxRguTp3xr71Qqno+iUv8ezJIixXRy9997RbF12/TPtzNULOh4Dy08qzI7xNCT52bk+B+e0g4C607XhmPlp/7YuO3k/cXoCtqGP3nSy0/tL5x718uCLBU3GpOQs50PXCymw+1/RwL6B77IrdNz90vUg2Wjl2pSICqGrKVXH1o/sOtYmDdckHvMDO57G+jo0oDxydziayogu7j9jQmKA+JYzgOQFidzSPBYKC2YHT6qTQfh78stLg4f1QsCLfcsum9jSCC2aYili6+wDX2zr30+lofaOmXz9q6uggMUfwe+wddNzvy7oP9QuHACD1/R2NHXGazKYF6reCgVerJu+Te6TnC4J9nk8++oCZUl9tIx+iv7eioWa9yG06EEpes7zWL5DgVVOc54eJBIGUpRqHBM6h7ddNzPxk+isEPHo25G46LQptJyfn5UETf+C+0uxMch76/Mscqd/sboTdp5y51NA9G53fjgqbvhrb4g1a6nRCvT3Q+U0ztEuQwzICWKy3tjn6GJ1PXMPild/89AJxpTwDDZboezqj73JnYGgEaNyn0Hxjpw/Bb231+f4oLhDwKa59FJ+Itl/iV+icjRahoHuFZ2+XFMrVVjaJM7fIB4Cvga6bp1xH289udu9XUXsYeHtE+mnsS3Qf93H74i2ie31AS43VvPQkdJ6Ps+g7dKGbDtrT51kEy6G8cWHqgblfd/mBk2DndqVhlB9SV4Rf9OwJB6nxb9XU3NH5VmD/lCsXl/gCdqOvRz7UofPtkR0HHlU60kHyjqRomT6UT/b32c9WP+kPFD71y5qLoPWl9vTbvcfOz/NlFrjW6KPrhdaCFF7umQGAQ6Gh6OYJtL5dTlz/4LRwEJY/wM/zFvUSHT9WZ884HgC0DFNlJUbR/vHdtnTXcFoYWP1t49nX8qjf+B3p9VvpTQCI9REweNmI5m2ja6c/VggDG/V8+l/NRtv/ISNc5Bw9AAQ4u3KGeqDt742P6gywCwOafQnrR8+g/Pkkfe22Q66+4JXU8w8cb9DnR+SlgPGL3XTwKuVMcXY0yjOyv+9YzMTua7bMGYteSkN55v0Vy8Bf2H1Nou51trJKlFcVf1o5GcoEAndPm3FxUl7l+nzfOfFTKBC5LZqiuALljZKsG5w/KgLByns3dJ90orxRZHB9mGdnKJB3b9A/mI6u+xqrNT67ivuDb8mJOroq6PPjqF3nXewcDirlkmd2caJ8EtvNs85MPwg8Vf46KDIDrT/3QV9laF4IyPxYpBXVjuYL9y4+0zkQBB7oVGcfl0d55rZzebioeAgwm1FvN38e+jyrG369NGuLHxjUX7xlcAran6+e8G5x6A8HJaBCWScB/b1pN2/1GVQGAIG9jVVp5mh7zuafEkjaEQbef99Rav2a5Ht8bLrnLBwBfpy1nHL8LLqeznCQvTP+3RtUm+zmML+Etj8n3uBAyfFAMDZP+U9IONp+C7+Q5E1poWBu568Mp11lBJeSkykI/BsImrwcdl8rR3msvit7qyV/KFAsjRFYIYbOk6uOK4iqhgcB+c/R41pmaH7lWHeWsH8wGO2aK914Io7g3Fu3Gexb7AtaDGod3FTR53lvf2bDQSc6cLXNi+R7e43g5QXpL810g0H7IQnrOb/R+YdudnpVaGEwkJe03yRDen7XMxK3oGh5MLjawbP5iDnq2exETT9u6QoGV+aXSyssQvdrv090a9zHzg8XH/pGPtyC9rP+TP32u9j5YU5EaessDvR3JX39GLjuagh4XPorUoX0nGtA5WFUsRAd2HQtXqaqhHKg19UTla4/fEHjmMSn2ltoP4fFLX8vdykYCOpGvExkR/vh3Vq3hZciwoFaarjpC3mUr5T4bxTP+eoHltxdX/K0GPWiEwqmCdy+fkC8f2Tx4ltonaPSQvftH4cD5XN1js6cqM/kKPi6ozMwCLgq/h0r90f7M3etao6oUwgQ3c7HcV8a7U+TZ6MhbQ9DgH6ojv3VRjuCB2+eY75ELwi0dWoEmKxH6zi9zXvWuiEUrHzp+Nu2NYTg0qOhcssaAsHWsehHcT7ouhxv/sCDRyES+PuZD13kQT2DhPzj/s6HnoAzoTNJ4S3qE3ovq2wKy/ME2dHn5lrPQ+vwGru8U1SMBFyi3w8skwkguK3u4BJL2UDAr+QbaeGGtnPzzbVtgR9CAbdfesiHSNQPOLmYTA995wm2NqQo+m9G+Uck1OvKWslIYK/FscQ4G+Xt3bQN73d99Qfea/UvX9RG+//TUdkAg/nhYPmbCZGj424Eb6Q99HN7HwiqeoQnuFvQ9uj0HT3vsDoUVGzuunT4ODq+UxcKJ+gkBADeDM15r2PR+o2n1xmnmYeB+ILHj3Iuof4kNEXi2O6l3qBtfLl44n6UJ2fMO7XXwDECuN7oSbu2Er2vq2VX27WgMPDOxF6iKw/15FIGh5c4OQaABsMi3wcW6LicVbCdFaeN3dfIpxkFX0T739PcfFT2TAQItHf1rlNB5wfphX9vOv8MBm9VsXuwBLSfJ/Jr2edaeINfyaXi8WpoP+sEdzvZGESAGr4W0Uwauq9vDbMuyszxBiP289/0SKDvXQB91iKptRGgz1Ta4cTiSIIXVkw77NjhD/atVK553IX2G7++jvYj8XAg5L8hyvkDyrHmxwUFCnh8wBYF5wx1CZTreP2lhhZxRQDh45F2GrwRBL8eYiFiuS0Q/C4+cndsCK0vOfqpK7AmFKS5H7Ky/3yG4LeXrlAo5A8Gqg6iPHL66Pu1YsObuq1/g4HU+JbptxTR8VrlJL/DdV8kECl9PFCdi47vghcm5sNOnmBtb2necA/6XpxvvX4+dpk3WE1fyOcyFx0X40Xa29KvRAC1hrUvm6xRjrUu1pvZ2usJThqNhgo2ob/3UWasQ7BIJLh9+sQIz3N0HP8eMd7mit2nJ4086jV1RPlTv4y/vKvAB9TNLeLaqY2ud4n+/OK+D+hAkVOyuGoNur9Yk2t6a6WgN3i/wD7m1jA67uvKIjN73CLAwLuvT/9Uo/w2ck84JzfQD1g09Iez30P5auRXdcKS6nDQt+zs9YKZKA/U7A624PDxBYl7TxfHeaE8IDlUUjOuhZ3PR5KiW93R52eLQsOnQ9h9U6T4LDYFLpSTtXoUFbZi91nTtRQarYTQ8RoStT9edSgY5FyUG6g9cYXgTzNvRq17EAzM+R7RPl5Ax2XDRIZrWo8PeBY1KrtNAR0XTsNyNZmbdNC6rF3qtCnpuUaE/Iorv/yAX/+Mvl1taPt//H3Tsyk0HPiL8hvZF6HPA29IaWzKax8QOCtYu1wOfX4WHRBMT4mjA4uV3LkDCig/21yqqjpk5w/6a14u5hxC+XBg5VtRbd1wsHNxXNlyE/Q9vaa3TOxVjBcoHcmO6jVCx+uRg/L50NIIMKaR3a3BgXKIXUROnJOJL5Dhv7057zPaz7EcQunAiA5Mwm+phXWjvBo0qNInqhUAVNIG32WLou2xThgQ6KwKAwbPC1bx3EX5s/uFMfB7FwBm8tef+a2K8qTvrvyN59eEgQJPT1PuzaT70EF/o7yNdGAoPrr88030fV9+ZcP2wDhfsHnob7nhQ/T3bu9v3DsDywM5U3ijdBTQ36s69KZ5DMsD0ZeFtdp00ffomO+t3c3m3qBY6ZphUBd639VP2QwEDSPA34+6gnby6HsUEnl6b41GMHiR9kWBeA7oUU5LCNfCnwNOz+VQgc8NJ+C/G+W06LL5+HNDbfmg6cRzRmz+680F+HPGM4b3nxLPJTHec+8a/lzSTmP1XuI5JsYfLbmPP8cc1esOI557Yrytod0PPvfctfOCGPGcFON3igXx56R7juyYSTxXxbhuz2n8uaqfkD8gnsNiPP1CSxd8Dtt0ILSVeG6L8b35Vtfhc9vnjq9/Es95Ma66NHUefM7rwndHjngujHF9t+AD8LnwpW3JZ4nnyBhXUYzWgc+RjYq2WBDPnTHuMFNfBj53TlZ8I088p8Y4Z0rmDvic+hD/ilLiuTbGZy+bgz/Xnjq3ex7xHBzjMqXT8OfgXpdSXxHPzTHOvmTMFD43d3sfxUU8Z8e44J6hMvicPetjaAXxXB7jHoHS+HN5L9c9rcRzfIzLuWfiz/F/130QJJ77Yzzn6Fr8uf+yeO6VhCcA3zerBfcEBGouJxFeAcYV+ywjoFfgrKT/lPAQMN5/ZAD3EOSP1vUS3gLGIxy+4d5Cf+0GV8JzwPiD/fK60HP40lAUTXgRGFeW+50EvYiP7nZvCI8C4zv9uhKgR2Git/Mw4V1gXNLJ6gX0LqY6rPYhPA2Mz5j77Bn0NM4JvNlPeB0YLzY9Nwq9DuHME/MJDwTjClpfK6AHMvwns5LwRjC++Ih+L/RGPsmCesIzwXic0HA79Ewy9onzEV4KxpfOmr8Jein5qw65Q4+F+T26ucztDfRYrmunsbUyvRdsvmCZNx16LzS2n9qEJ4NxTXstXujJNMq8XUN4NRgXD7jCDb2aj7lb10APh7n+e96URujhvIkekCK8HWxe4+iau9Db8T5x3ZDwfOD6zrI20PPZYTgtkvCCMA4W3baCXlCVksRJwiPC+CVhyXzoETkKjrOh/15JOY0roAD/7xWcOPoyivCUMD5tbJcW9JSqCjrOEF4TxqU6qgKg1+R0xOgO4UFhnNtO1gd6UG5dH1sJbwrjqe2LDaA3NfruxgvoWTH/3vvWsSuhZ7Vnflc94WVh85v8K39CL0taujqd8Lgwnvfl23focXFwTWOXakP8gkWvIvS+3nZc3kh4Yhh3N/7IDz2xHk2B39ArY77v1A9+R6FXFiW/fj7hoWHzr2lzg6CHNsz9UBx6a8z5FL5Wb+it5RxuuUh4btj87zoXcei5qXGHNBNeHMZ91bOnQC+utvZ4IeHRwe/vkN186NF5TdvzkvDuMM5TOI8OvbtELrlg6Okx31f58N770NPTPnEjk/D6sPnhJsU06PUZ3aSpEx4gxh9GuelBD1B0xeAswhvE+L7uINwbfM12J5LwDOH2KzjgnqF7/mxZwkvEeGf3bdxL5Dqm3gc9Rub2VAjV4R7jOqlaW8J7xOZPyE4Ngd6j2p4bgoQniXE1u1TckxS78EocepXMdbiO6uFepfy8lI2Eh4nNm7Lr4R6m3PLQnYS3Ca8jn4t2QG+zvtegGHqezHXS+uNwz/NetwfyQrF5rTxu3At9HM21nvBIMS6RI4t7pI6fs5B3ivEn7i/NoHc6hbMUearwcy67HPdUvY7NKyC8Vngeu5emC73WlsFU5MFifOWThbgH++1nEvJm4fdMrLIYerNnR+UECc8WXq+lwn2gZ5stGIi8XIxHjunjXi7XuAHyeDE+RvfGPV7/vFLk/WLcUw5YQe/3aGE68oTh/hz5qwI94fSVecgrxvj6N8q4V7xXuxt5yBgPzkvHPWStPAXcW2bu51mcVbi3PIs7HnnO2Pz4SBLuOYeKdeI5hDmP55CzIeCrMKcK4S95MHKIWAhocA7EcwhzHs8h1cFArvu/HMLkeA45Gww2bVpCySG+9fdxr3vRlg5KDrl79a0f9MBDYs5SckjMzFm4Ny5btIWSQxo2K+Ke+fFwN0oOOX3o6wXopZvH+FJyyOtDDzdBjz28s4mSQ5wS9XDvfZZwHCWHHKmoTYGe/C2QQMkhPRr7cK/e2lAdzyHMvzdP3UAGeviJLs2UHPJncdYO6O3z6ktRcojSzzm4529/tRPPIcx1hsym478LqPa+g+cQJj+fhuWQWl+gczWCkkNkcrAcEuIL7LKDKTmkK0sa/52Cpc4u1hxi6QvmZ7/DcwhzfYONa/HfQQjFzMRzyDjz+O5swX830frAnpJDKo5hOeSlLxh6pEfJIa9HvuO/y/j5tpaSQ54+68d/x7HaQ5WSQzbVyunC330ojhVSckj1nZEk+DuRr7dtKTlEWQrLIQ/9gYvnDkoO0R/Nw3+H8jFEFs8hzL9rtOn0Z/i7lbNCbZQcUrtb+S/8nYt85XFKDjm40rYD/i5GNpqaQzj/rLCBv6N5UVGK5xDm+uZrx/Df3RiliVFyyAwdnxj4O53bicaUHLI7eHM//F3POAc1hxwK1qiDvwO6cG6QNYfQg8CDyHY8hzDXwXNIZxCYu/QfOUQuGJSyU3OIffbqu/B3TPpNLpQc4tC4ygb+7mnO9H/kkHkhYNobcUoOSTWXyIe/q9L3/0vJIWqdD/H/Pptw0wtKDlm3F8sh7KHAbT41hxgpYTlkbygwTzGk5BD1J6t84O/Cwnb+I4f0hAJppf9yCJN/qI5ZCX93Nn1PJyWHXPxY8RP+Tm2daRWeQ5j7p4+G5ZDnYWD9uamUHJL4qEcR/g6udjU1hxRkdPDD380p0/lZc0h6OOD1XUfJITyhgkHwd3lyR/IpOaT9VIs3/B3f8hfNlByyaiGWQ9zoIDktmDWH1NLBnmP/yCHcEeBw3G7WHLI7AuRXrgkmfi+AcfMHe+7D3y1qif2XQ5jfazyHVEaAoO3/yCF/IkBl7Q88hzC3H88hspHgW2QSJYes9LDHf3f568R/OYQ5j+cQp0hA4/wvhzDn8RxCjwQFdY8pOSTMZUoI/B3ow1/urDkkIxKsE/svhzA5nkPuRYJ3VcmsOSQqEhjUhrDmEBds+8v+yyFMjucQo0jwoekfOUQmEuhF/SOH9EWAgIH/cgjz78VzSGIEeNlfwppD9CJA8Ip/5BC2CHA+hZpDRmwX4b8LzrxDzSFPa7AcokkH3dHUHHK+AcshXeHgaloAnkOY23P6jgH+O+WrodQcUr3VB/9ds9Jcag5Z5PnICv4OumQxNYesTRhXgb+b1m7IpeQQTg8V/HfWzrLUHHL0RAb+u2yjW9Qc0vygCv8dt3ZbHGsOGQsBPvV/hKHnzJznluDDPWc7UduXhBeNzad0Psa9aPOo023Qc2bOd0iewD1ny5IfOwkvGt7nrge4F/2ni0aDnjNzHv88YMclIqF8CuFFw8+/CXadveANbFc95YGeM5FzJgZxz9lBt/0T4UXD75dkM+5FF+yaNR16zkT+lxHigp6zUpTGEOFFY/P1nTX90ItWMO2eT/jPGM+Ywo/7z8kumlHQf2auo9jYfwn6z5u28j+BnjOT158xMISecxGfxlnCi4b3U6NWu6AXXb5910/oOTPnNwSYroCec9VHdRHCi4bHsfdFCvSipy5a+BZ6zsz5FbUlftBzbh+P0iS8aGy+rEG3E3rRPKKirtBzZs6nNv3BPec1Qw2jhBeNzauumSoDvWiTod/t0HNmzgcozZSEnvN6I81thBcN718S5nyAXrROx+m30HNmzt9yWGMOPeeaxt2LCS8aXsdVpoZBL7p9z/Y0wn+G90dNvJ+h/zzaV4X7z8T7nmn1hv6zssyfZug5M7m6Wetl6Dl7TH8pQ3jR2DrZYhfdoBetVuLOBz1n5vwl8bgf0HOeq2v4nfCisfkWhZLZ0IsWOLkn6vwKNK9yZYHwR/YQMFvsxN7h1jKC35hr+dtqWjAwC1x6DHrOTJ5/1Qn3nD/8OP2b8KKx9S0q2HAvelrKVH7oOTPnf4sU4Z6zU9ElV8KLxuY/3ZHAvegnFgO458ycX7XSPwZ6zgf3X4ojvGhsfj/Xl2LoRZdsVcM9Z+b8YyvQDD3n8V69dsKLxub9+X5JQS86S7MT95yZ89JdbwOh57xc5Hci4UXD+9k3YbgXzXOT3Rt6zsx5msxx3HPmNI/SIbxobP6r2hbci760ZWtAWlg5MR/jYqLzLgC7j1B5gnvOxHV5Zp0N9JyfPzgyTHjR2DptR+7iXnSyEn0Ees7E92LmZtxzfnjhPh/hRcNcc7wJ96JzSqJ2Qc+ZOe9jfA33nHucq18SXjQ2P/d+HO5F5/JZRUDPmTnvryiKe84BBsO3CS8am79t54p70bcu16RAz5k5XzPrFO45N+WwpRFeNDa/+JMO7kUrLNOMhJ4zc97O4zDuOe+tX/KM8KKx+Y2zP+JedORXbnnoOTPnhTmjcc/5r+fZ24QXjc3vKDzIDr3onqyEAMJzhvdlF3fjnrNtWw3uRTPXWU+/gXvRnQenR0LPmck3u384BT3nNtdiRcKLxtaJs/BQgF50luPUWdBzZs7bBMyPgZ6zx5ULXwgvGpuPP5UNoBdNN/2WCz1n5rxvb6gs9JztwLFQwovG5k+t40qEXnSD1egv6Dkz5xdIHh6BnnM7n4ow4UXDvJ2SOQN60deiL9yBnjNzfu+sMdxzBpZXsggvGps3nlqPe9G6p8Y+Qs+ZOZ+i4PMLes4ZvByqn0j3EXfNTGdBL1qm8k8A9JyJ65SqXB/0nF+9n/eB8KKx+ceFsSugF33ImPcd9JyJ88MevhboOTvQbLeqkO6P2qcLaEMvulN72x3oOTPnDWp34p7z0YrXjwkvGpu36craAL1oB7f5FwjPGePFaTNKoef8bcH+7dCLZq5TJ6m5EHrRScFxDtBzJs6fgzRj6DnLKs+5QXjR8LpzrD8BetF7muyioedMXEda+lyg5zx995EKwovG5pOF1ztBL/rvMhFX6DkT59UIl0zoOW9fnupIeNHYvHM72It70dYLY6DnjPanNSf0nB9vyDlGeNHYfPOJ7t/Qi67lcml1PIvOw0XP/e7MigkB8puWGw7GovP2lzRlyUbzIJApk2oMPWfmvKyUkgH0nKPcRBIJLxr2DAOcd6EX3f1xSSb0nJnzvNsPLoaec7FI8j7Ci8bmt28ZaYde9GH7RUp+JWh73L4YnFj+Oxh4f1eXd9NG22NmIdJWKhQMWm+nHSQ8Z3h+bp5/FHrOOyNsDkAvmrmOu/1d3IvW5eS9DD1nYnu2ZuGe88Mlq7gJLxpeZ6tuXYdetNWvQUHoOTPnuaYkbYSe86tv3K2EFw3vi+NdXaEXfVXJ5S3hOcPz2HUu3HMOPxqFe9HMdUxXfhWCXrSDhKsj9JyZ/F2NbRT0nDdI1XISXjS2jkl8VRX0og9ynH5K+M/wvGfpdBj6z4eKH+P+M/E9bd2A+8+c2x1wz5k4n1/Sxz3ng3G6moQXDb8vdB3ci16Rmox7zsx5QE/GPeeWQ6bPCS8amx+NE8S9aDluSzPCc8b4AlGDDOg5257hHYReNHOdM91bcS/6au+EOeE5Y/MTf114oOdcurcN96KZ8xPNmSPQi9apnLIEes5M/l7oNO45H5Rc2kF40dg6kT/UcS9aRskO95yZ868ySnDPeWTHd0XCi8bm57AL4F60oMONYxqJ6LrpluFoY7QoBBjnuQTOFUBcWCO77JRrMDh/bY8V9JyZXDLwHe45z9bKXEh40bAfWCuLe9EbjDu6CM8Z4y97xXHP+eWUJtyLZq7DdtAK96LLolS0oefM5NqLY3HPeUUl+1HCi8bWCZ55B/eiN3y/ogo9Z+b8Hos/uOfsREvwJrxobJ5XzQr3ok0PaPASnjPGTxRr4Z6ziFYP7kUTnxPZFNyL9nshuRd6zkweLxmBe85RXI4nCS8a3pf93N4HvejL3gmXoOfMnJ8Xdg33nEM69vERXjQ8/8wvwb3ojoEcP+g5M+d37qqYDz3nD4eSHxNeNDbvuf/PE+hFyy9/gnvOzHm6Zbo+9Jx5Kj8lEV40Np9k1pgEvegnS0+mQ8+ZOc+3uAT3nKv3d2kSXjS83xzhxb1oiXRB3sMm6LhvmUrn4hsJAnWX1kmWzkbnJcec9o/AOhiceCxwCXrOTP48fZ4q9Jxd1Cz5CS8aWz98+3Uv6EX/ABdxz5n4vOntwz3nXRw3VxBeNDb/lksb96ItXt7FPWfmfPRlLdxzXqp2xpPworF5od5DDtCLvnLCLgx6zsz5xjPH50LPWVUk7hXhRcPeTFS3CXrRFywtcM+ZOT9TmQ/3nNtfJNkRXjTMpWHsuBdd1W+Me87MefsF23HPeVOwfCvhRWPzAgVncS/6XmY17jkz5+esW457znPfv+0jvGhsXqFXB/eic0Oi5kPPmTl/w9bjMPScX/499ZzworH5z5v3boVedGx0vBb0nJnzVr+sbaDnHCOVc47worH5583swtCLPrVq8zHoOTPn/2wWLYOec7vbBRrhRcP7+j4XR+hFmwwarYGeM3H+Cem4BD3nXclWcYQXDc9jhQd5oRct2r6wBHrOzPk3ZtbfoOd8VCXBnfCisflM0Yt80Iv2dO3BPWfm/Mvsmzuh5/wnU3Mu4UVj89y8b7KgF81dp4t7zsT+yd+Ee84itApLwovG5vW4lXAveqZozwzoORPbs+pGF/Scd6/fOkB40dj8uTeXRaEXfeRBewf0nJnzovV2uOf8bGvCBsKLhveVDwdwL9pT3CEWes7MeeNAuyDoOUfdNQCEF43Nv5ueZgm96M/2XybESXlVL+z+Neg533hyYgrhRWPzYhrmV6EXrS3Bpwc9Z+K6sDx8BHrOjodjUgkvGh7fV/QZ0Iv+Y1GxH3rOxPXr8SUf6Dl7RI8YEl40Nr+n3L8betEKrS6/oOfMnO+J5auGnvPKVarchBcNrxev5NZDL7qRxzIXes7MeQ7/MTr0nF8rHdtJeNHY/I3phibQi14zVWsr9JyZ84YgFvecxZ6M2xNeNNyfn9gcoBfN23qmBnrOzPn2fhdB6DkvV9ddR3jRMI8tyvsCvehVIWXTCM8Z9l0W25NwzzkqDfeiie/1hk24F/1G8u1f6Dkz+QzVyhToOXs5DUwhvGhsnfwRDz3oRbe5Ku6FnjNzPjztlwb0nG/tuf+A8KKxed1Yk0LoRW/R9/zS+KOc9j99PS50eJxEW3c4Fe77loYUJUmKSpGdZJTMp1IpZacSpU8DicwiI0Qc80zHzpa9j81jb3HMFmkoktFQUfqd73X9rpw/n+s+73nf+1n3/cf5+5f1CWgAosend42uVDwhTFjBSK2Hv/8fbzqkdOajNwXbDm1191ft/Rcnbtrfd94rEoMHKyX7ryUB2/8+gQ1ww5Z2QV8kFGf8VJw2/mL+w+uWyu6jVVIwOuJLzKYRn3/4aK1Y5i1jCp65dPzYFRubf/F3heZvj72nYIK79xFJg75/50hv9xOqkqKg5dpVMeXHev7FRcq+vXziGYmaEwxphT2Z/87p1tI+nisaitap1mLfuBv+xQXmVOyaiWR8TL8toXow/V880Nu/0e9LKBbuMYlRTlw+vydpX1w1fyTSX3BuV3Jq/BcXV/u2q5tOQcf9R2x65VP+ndPWPVO18XMYhs2NM1NXLPPmJbJlt2sUHXfoKoqKxC7HD12MyXFro+Oj9ADsqo7/d84R455krtAwbEiQ+N0QvsxnbvK7YkEvKrbHyXh7c4T/w2vvbT39jkTG9eMe7g/67/2LHyCssRE1IWOUnTh7rsQyn84Gb6kvyqk4Mxi5ePcZ9R/+g+jpA2J9JAyd9CZaqSz/7t7Vh7qfqdHwbmvpL2fu3H946cKY6XflBIQdKfVJIU//4b0JpEBuhWg8DoH8TgLLcVEB01FFxWjU+R2WqTCS9+8c/d5FiCgl4Bfvsmhb/+XfTSx49Zw0RsOfMoLnxSSJ//AiVp2idrIkjLo5qRR+tGv5ng7PPZSEo7E3bzZiLLroH56o/XsNbZSAn2/S3Z0NlvmfAUb4xW10LD+kvdesOPEf3urQ49Ezn8NxY5vaX67h5fus993jcH8/DXcUPReyWPL/h3/dkBjm/5qEwSeCBZ4nLp/vIV9yKccmAsfGSe6X/1vO7y+tlmTDFCKW+VzZlWrU/Q/ftd9J76JnFD47P9xQ4lrwD39LRfnq2b3BeDfHYvf7Utq/+JYJQVEvTyKuyxPO9ZFZvufFBdsXPuQI7Do3aEZxXuZ/8JbygqxlFLbc8SQV2i7nkbBXfH2SQTD+/ZXirDDU8A9Pq959/YEgBSm/Fnclqy/zfPOJ+AOXi1H4YaStvjxlmef0MXX2LbbBGLg67eXEruU+mjXK3y2uxMIbWewqgKx/eJn+scqCkmAMqXNpbXu/zJtJU6t+3U46hh8keVwTif6Hv5tuZu75JhwH31MKNHd1/sOffBQwv4czCjXuaT32Hiv5h/8j07a5gjsEd5TEP1mcXz7/T83l96RWGvJ9YLt/nCfqHz6nYNt2u5MkZISLch+4sNwv3Q5tnVp/KGifss3R7YPlP3ziHVGFSl4KPoko+NrCWM5XlEKyzQ8vArqWX+SIVVzO76SZwWk//Wj8kdFY+WNiuf6JO+0dEsWC0a7zHK/vluV8KcconMzziMIFmR10vsHl96rdGb1P2R6Nc3vO9w86Ff8751xv77pnkwQc02zm+ALLefzGrCtz/0VBac+n63QMOpbfdTl0Z2hhJK7175iy9ixdnj82Cw3vK0KwWaY4MfbHct6FuvoKJvyjMEPlVG2zXOE//AbvT7EyfME4deVw1Irstn946ilSqmgLHW01bHt+t1T8w3slxzIYpDDcscGtJimo/R8+ZVKvbelUJI5w3vWvWFf+D3/qV4ode0go0jM/sStwPvkXL3ypK69lHYLTkoIJzx4t15voUa1x8xeRyL9p+kv7NY9/eDUKIe5wIQXZ7mj32/Mv59eV7+h/zeYUHAjZIHdSYZn/caHH6pIxkWg+Yqj11nE5Xyfknf1yJkKw2vfY1JkXy/dPsPKZPEKj41TWQamb1mX/8DuMbWQ8vofhrowSw4YDy/Xg3SiSl5kUiStO85q7VS3XT/PBZ4mZz0NwXZrkXo751n/40vkKIQNjOgpcTSubU6j6hz+k59Jqfi8cs9tn4ycvLedrjaabA602Cm8lvmyUslru0zXaiTsGEoJQ6uDKY6Uflnkrz3uQi5cikWezzKfj7Kn/8OyNLYleVqFYmmExViy4fB+ZT+/53jVHYNjgTYj4WL28R16ITwmeIqKcnr71L9WWf/gBrnpNB7kILAvMk+N+UvsPL3/oWl3YKBHZIpT2fYhZ7l+/Jz+1SUmhOLy/7BbX0eX6f3X866VSjUg8m6MWb6iw/F4BW5HhRZYecCqWaTYtX34vr4GJ/lqWHrh0u+AS+f3yOR57lS7ymUah4NBxnRfGy31karhJd8gmGKPG+z8FvlruIymtsvxD7RS80/z9eUtrB5Q1bRHYJ1EPwgc29q0oo+MV3ZYq3NcJL/kUyb7FdbDiWpovcYyOH7jOlFmc7YQ79Y1Xn6nVQ01P3kz4ZzrKylwz+BXVCWF6NVSv/DqgL/g0mq+NxC9E0xfbIlrgwl5xYgOtHvhTVKKKjtFQ6N1YxO+OFmiTLntPFmyAC1bddBUrGqpf1Urrs22BYbOY20sbWPPZVl72gAQNM4TX9Fy/y4C6P9bXqDoBoJhtIB39nYAjP6x/HW4sAbLQmfbOHyFwfkOgTWM2AZ1EKkJFE0vAsyjiFz/hIaSEi64495iA1RPmWn3OLfDtTblul14geF7NFfotQ0PvvT9qdgS2QHDKx893roVBdzabirQKDQ9OXFAPkWiB6hu0q5MioZC2ec8x959U5J26eEzsegucISzFju4jA03r/v2w3TTU0+k4aA21YHr7XN4Uez3cIrDbfRIKxz1f1D5tk64FlTdGfGuz6iAvW6r03IZwlOShzDX310Lmzs75q4114FRAFt3+MBx5br5rPU+ohcDddWMzJ+tA6NnTIyv1wpFmYe2Uc78QFlamP7wzWA7vb9T6NPYHYvh9MxC5VQQN5C5Ns+0VELX9bIL4QiDOr/X+oU0vBKCglHBmBRS5bM83HA5ErbjBCzPve0BpRc0f4WJ7uLpe7k2vMh1ffDpmIJvfA4k/OFrjU++CiqlytY8PHY/vdCiTKOyByTXYX2B/A+wWHFZyPKCjxw8z6e7vNQDKcV4uKl5Qt39bxfxEGMpzDFjfD6wB9VuRtqe22MC5HcE9w4/D0HdQpoOoVQt/hC+WeqjYwYX5Et7GXeF42G2uP/NsH/CY9r507C+DvFbjmw+fkDGLseZXMWu+3ahbr3v/bDlsNVjPpfubjHuIcmfkt/dB00C1XaN6GfCTk22ezJORczK029isD+JtK4khpHvgvFuofwOVjHnXe/sGxPugQdC6Jt/zDoyoBpuuGCOjb5WwpZZFH5xY7TG51vcmpJNKh4vDyHjvFFt55MANWD/lFuPUUQ8hI2+l50TIuHMyZH3wOlc4dGWNOuc6lu6645K6NEjC6ijSnc5X10CHw+Tlj30s/bb9lLiOJBk5jlVu/NV9FSR3jO8zNq2HomNRUX2yZBzTzfdiZt6CzTY83ORvdWDPI/kqhJ+Mrf+95v7veh/IhlN3Vz/3hbNVN2/KEMh4KiDfOtOwD0oDsiVfHyQAl6/qBqdEMnZo+L31j6wEZe10S/KJTBh69IN7rDQEb+4vqT0yWQGG8723+Q5mANFsTYnX2RCMNQ2gqaZXgo7ZuSLhniewdfTF5B8MwRMZ667ruHfAXT6OtXtyEUxzJzi2s+a/GKk1k7aqA3JMC4w30hAeS9dcUbtER2u+LdH3pDvglgCbgJomgvh5S5tKOzqSP2azQVIdfOl/kZHdUg1mT65E+P0iYqzq1CQXVz2IJj7e+ulrNRjIPnWXP0HCh4IFJk7ddfBGdiT8dE0NmMrSrz/YRsLR+k77KK3boLdJQ8fJMRtujurd5uQl4wpzPVFzQw/o6N9zkN0/C3xXpfgUV5LQPcXK6duD+7AYHz/VWp4D2sOeHx1bSCjgwePC+18vXDit5K30jAhvrt08t2QVgZWOqRXsbr2QmxR3uY4rCH4bWUkoqEdgxsHDPjEsX6OuE9eZy0GCq9vMB8Pnabi3e29b0O82+Nh2T/VbZj08O3tpgr0jArubzwUWarbDIFuTgDAr75vYwxed5yLQTfH8S2plG4SnO1zzF2iAkAP5YX0pEXjBYovucflEMM4x/PrtVh2sZd61yIkNwYM/MtzJlglQVLzF6eZYHRj2JSwS/oTghE6mN3E2HmRzrrEfNKmDx2/Fl/Y6hyKvWorDTzcinFd1MNb4lgdp5Vvqt7N0+AaTnqOCXBRIDByrNGjIB021jzekdIn4vjtzr7gXEQafGV/uWVUARhJtR0nJROxO290c2d4JlfEyMdGej2Bh+l4KaWsk3vjQtXnXpi64lKSinNweBtfPhL/ukorEmekgR7b8TtBV/THVeSYMrJ6dUrDfGIlfCySma22bYL1lWUUaMQk4bh82d69h6e2HpFNfVjZBxhVxB1nlJCgwOjXb6cDyv64aJ4OONIFclVXk7eQE+HvGacwrnoIS3zG9JKYXOjneO76syIUtNo+lr/6kIaPYTHB9Wi9IiVR4+lKy4XNU+8lLb2k4tltVKuxpLziNhqza+ykHvpnHpc6G0DDfb4WG5P1eODlj/Ge/YQ7kKIyq/1CJwP1mFsZtla0QcO/Dl6t7qeAkNvdGd00Epm7/aXBtqBXGtrrG7VkiQq1vuNDPrRG460FFUpRYGwTm/NwVbUmBI4pcvl9PReCtA0YbLHb2QtElEzGSqj085pfoHn8dgQk0qQuum3pBvnmm2NPBG9at3la7aj4C91l43evdYwPcVm0o+IQGsqkHg1S3kLHTly1EZy4TiuX6lKx+MUBxQdzhx1WWv7viUnVWPQs6w6tU3nwtgUz7GW5ZYwLqkDcKlg1lQ/yFtg1L1QyYQ02xIT4Cfn3FZ15h0AcHhscDfjMRkvQbXBqTyLjo/97bMD8DjnpHHQpRZQDP4G8ft2QC7nMVGC4MrwLXAI3E8P9qoE7T6kOAUSg67xPNYKyrhnmxy4/9idWws8Pc7SVLt1z/m7u28WQ1TPD8eWb1tAZe1TCi09tD0Vuex1bsbC/8eLd0FqstQbpKzys2PAIXev338ZzqhVjttKpP5W6wN8M46W9EBL7ko6i8JHbBPl6yujwvA1w+dKy01IrEgU9XsrZc7wLGjEd34RsGcIa+zExTi0SZ3AM8G1h1+BOf/oTfJWB48npWG6sO48M+Goh+Z8LdjrXdr8VTQC64wbVNkYLVWcWOTlJ9MHNZqMRjcyoUCMp///ySjEccoqrJ00y4rn9Kb8XGNIjpUdc9xVqKYUFRzR6SHaBk+DnAYAHBaOznHbSlI/vo4/b/Apmwz8+b91dTFtzBUX6flVScOHVIaNSKCZvj90TO7M6ETQzpg7laVJT4ucZHlMYEzeN52iMjGZDMb0jPmqCgfqVfrnxcIYTJqZ7iY+nWm+yxb/mfBWLiZEOXh2YR7HzdUEdfVQyhX+xM4UsgvjEKaLa4UAj17zrjbJSLoXu1lcpQTyAmuefvStWsAp0Na5J+KBfCn1oeYohwKMqsVXxdyFsNGifZfuzlK4LdFZcmuZ6w8iLU6NX8pRK0r5lF8UsXgeN4DHHbbAg6n35k+oVWBLf838aLixRB4/e9Kf3sBIxPzKcnKVRDv5CAheZ8AVgQpue9q0PR/WJFemVRAcwHOVItw6qhZZC7WrkhEB8dEnWtYL2ryuZ5uuNANVgzKh9LsN51wfQTV1lvASSfzJXro9UAuzdv4PqmQLxMI/P5Xy8E1Y/frS/WVcHbQ0G6csxAPGd3QmFfMQl+/JxNKD5fCf3beNZauxNxtm/7Xep2KrwnP6Jsn66EFRcTs/ZJEVHqmM9i5SAJdrz6OmF1tAryYkI4398l4jDlamLUwypoXEGxsLJNg0ujAuPtOqG4gefA9WSHavjvzqAme3caGPh9X9w2Hoqt5nN/ts9Xwc3wT4bH/6SDa4NOpictFLXUbbimbJlgYBT75Yl2OkxHrA7fqULFVVih5XGMCTrTtTEfudPg4MiJyCkKFe0aT2ift2ZC7jpuOdukVHB0DvUsPEZFub123/X+Y4LAInUzVSgFXi8qGjgbUtEo0vDxfda+9h45I66Rw+pfM8ktz1n72tdgZMbFvQqEdEp+bJ1gQHPP7mH6iVDUXnHqx2heJYgNMw89opfChU2ZI6bNIZjdVHnw9sUqaDU60zT2sgQe7f56/6NcKLZ/UzwhfakJzBbOQ0FGDbywOOfOVUBBjztSw+EaTZBpFXyVh1gLg0yyp0ksBSNtntRLjDdChv7qtvSvNVCzlLBaxIyCG9kyJF1ILdD+KJp4KqgcbBQCpwlAw1xdMVW1lBa4M2IWcjC7DLqU7d31z9LwxWX9gOIPLZDrf8hnybwc4qKnBN/ep6HG0f0Lk1lh0EMrra51qYLBO2Jpx9qIuLRVYmNecDgc15FXn2ZUwsZPRnmClUTUiJWczy0Ngq1zCodFcyohte3wnbccJORVd2H7SGJCPr89U+1wKqzli/wkN0vBzeLNw+fCmDC953rUzdg0SDT49tj6BwXL3qpJ/i1jQuQmWTHTV2kgzlVA35ZMwbYLexqD7iVBsnhBcTAFwa7yvpkUZwg6NHQrXYpLhkNlWjoccwjXl6RmlUODca1F3wPnj4ngffzvCTpbHXBa8yu0aYcgo0+3Kb8lCeCbbYjEtTrwYqvwchgPxpMZlddnFXsh+nnILZVLkdB//7pAZEUE9kubaz4X6QXSltLqw51UEHikBg1DEUixjxatNegFR41i/akHVJCU9YxXD4jAk7+hZ4t8Lxy9KbmCy50E+tDWF1gbgYNNbHYyumWwuLohha5VDKkXDXXHBoJw/LSfZolxKRAFFDdz2xZD5klI3msahBSJtfwrS0phKJVLcXVmEZT2yRBSA4PwxWdydT/L1w2UXHoQ15kAi2qWAV/XkLCdl0/avrcO1hxVcqz5Gwcdrs1+GYIkPCFarTkkWQ+pH57Y5isnwPWTO36/vETCl/VHN1zsLAXVNKdJl70lsENF+aAkNQglz9V3Sif0QKWKXnOsJUL/oRjj1Sw9WXIyb8Wj5B4gmqrr5pbWwpug4j2rSHQMUfhziK23Bwj/Wd0M40fQPnd2xs6EjntNtE9zDvVAnOnzTMmVteB7t66WR5eOGW+q3vtqpENgcnH/zpVRLD0e5bJ0PAiLiZafJUXT4XOV+pEbV+PgjlQj4+XZILRIkdm4piwVEvMSHOOCY2BdiKLjroYgJG063cwISIXXJJvTmdsSIOSw486RviCskSq9e5c1V//Ue3zpDEoF7Q/xye/TQ3G9jEbOIedUuPIxrHnqXg1kvYvZXfw8CCtj2QykTNKAfFwy5EdwNZCK7v7WDAvCzYnck/ki6fCtfu/mRzo1IHuBjWuFbhDGfz7CKbGbAXveX+uxKWIA8eaxg/29BAzJb17pV8aAfs/THdtPlcK91sfKzrxBmMfYSKfPl0C6VwWnlW8p/NIRYak0ApooiG08MMOEBgot62VPAbhxfIuS16Rg139pq2tamaAiFTNWxtonO8/sH5Txp6BemcSgYAsT3L9fueftWQA75GKOagZSUO3Uq0qpCSa8Da+pdG4thPuJJ46+OEXBC7FOi1O/W2DJItyokl4Gn45DiyCBhtzrdYiLh5NhpdCUjeye26Cz46jldkYw+vY5dGQmpoCFZO+PO8/uAin9jd4V8WA83nJmZdreZPht/uT1RVsvuHF8YjSqJhgvXA9r4BTqgjfs/loL/aVQQV9p4rIvEsX9dW9cieyCpHMrnpzIKoVXEwc0Io5HommsCgWFe0H63Fqde1sb4H0UveHLywjccyygsv1rD8w9zCMp9taD0q8HyvqidDycFHBMh9V3v6N5DtKo9aDBb89ZNByBZdFyAxEEhKqhn1rpcxlg9teI/40ca4/UbIlLZPW/TeZbXoveJ3D0ttr2ovusubSGp8NnFmHnE6mqhuJMGNnfO/7ejYgpneHbR+0SoXj79lU7jiCsHPObvu0dgvfq2UeDah4DR5HuGfFLCH5ivFspwJrnLYeENHUSYF3+9zOXP9aCo8fxmIvrQ1HCUlhF7EUCnLBaFPdOQOi48qFltCkEve9cXU8ssQFhwev7Wlnf83n0+VXcZjLW1W3lMuYoBbsE+1zh+Ur4IUwO4zgYhPMl8s4+hxmwlD7LSWKvAlXG1gNjLwj4iqg402DP0pf78zXZFyugb5ArSu4rASmFA6NU/T4oPsw9IThZAxp/9u35L4WMXSfl3F3lW+D10YGTEwdYeo85vvHCXyrac0nuzjRqgUBHkYAgll5QHjORUOWnYWDcs92KjBZ403pVePXzavhdNJ/hfZGGDa6594JPl8KLDrUCzUMVcHHxapLJuSAsPbHxw45LDLgVVPW0YaocbrtFTf2aIGDSwxthi44lEObw6/nx2Aq4F+N2SzSMgAK/pMiKqS3guLJP1hyrYGTvBplfrL1j1aAUzldZC1OxH88KVyWCmJFYgZFDOM6ekJSpcK2FF3qB17rKkuFpKj2WciwcVTb0TkYW1YDFX+L37zZJoGLzw/VvVRgq3d5k3dlbBsPabCevBxVC/znuVUqCwfilTkTBpqEM0l1XimVfKwK2U9bbfTcHY/jczQntmVIwvRqb0hldCNSPOkhODcL7f/lPU7prgLtNTC61IwX2J1bYnn4ahnXpBzqVHrWA6gzHe+WKbOCbnpUfUaYhrUzE771hC9hfuBU1tzILcgKjPxZtoeFGuhunZ0YLHNwpUPuZkAlWL2JSx/RpqLSroMFdqQXMZRr95nUyoPJV0tLtFTScV/ZHRfFm4OHZKS5pWwiT+atOR7F0SN3rj57fiM3w0l8meGV+Iby+wrUUGkZFzeZ2M4ZqM0ybyahGmxeB15HjxQdY+kS7fbzuqV8zdGk8EA1OK4Kn7xynf/tT0f/7VqffHxHmP7/LOJFcDLPtVg0EZyKujXIeXv8A4dpAbMjvK8UQbDyo4ShJRBX2RA/TfoR132elUouL4NPshxPPbxDx114iv3sQAtmaqzXhRhE4/3134OEBIsqcLH37iKXnSM1+IqRXCFeEAzZa7AnFIA3tT/2hlaDx9vsp488IbxI/FmsVhKCow989+zsrQSB6pqcgECGHJOX6cygEuQmcO3KXKmAmL+B0OWu/zz15kN99MQTdX60f7KxmQrXe1nvuIhWQ4t7d+D6Kgo30dwu/c1l63qZT9plmOXQ8P6brxmCNGNtSiaLnTBAXN859q18OqiXpSVPXKPjeu+jww5us+byNLaEhqhiySz4d7Jkm4KrZtLR4lp7ru1aeFNlZBMab2TCJOwjX9n9LW01sgPujwxGhsyWwudeF/c1VMs4xP150P9gAfFEaRgXIgOMveCxVhMlo5QrJmkINUHUj86dzZwkUnqnVYuMm4+mzNgddoAq0LU8J0VKrQVTH3JJndyj+Hr1QW/+sBE7Z9u4x3l4Mq3QMv0iVENDmo0w3xc0bBs6brVX5Xg4yZy4prI1j7Wtjfm6FZ/7w2yTZhiutHM7IPey+ZEBCmPyqcdL0ESwtCsxwRFbAXv0N+d9OkXC4/GvVoWSEPyeNeuyepYPgS6eppaNEfLoUdW3P8VZQqQ8UPeBRDhPRTyR5y2m4t8wLDK63Qvt6AffTzmUQP/dLmdRFwyrJjc3hHg0gOv3c8PSWAhiNbkmONSKjp6hymt+zBjhj35utq5cPHmc5oproZOy4GZ6T+70BchlxUr81C+DCoucP62wyrhUKtwwSDoUrmzjC9IueQJf/i0/sb4gYYsL726E2DHI+G0Xp5meCLHmz29pWIt4cFN+R8ikQBIocnz79lgHMIgM/HxES7s8yLG3ZRYKP3DfHXXqewOpZiwFGGBHPiYhtbHcpg0ej5pf8s+rhaanCQ9fJINxpr/2QcaccVDQ9akST6iGmO/RWmkMwvrj019r9bRkMjhaWFWxogEPXDfeXigbjs99LaYvxTDgV0ZhznlEBJyTjdv0ZoGD+WF2nG5EJ9kdXTR78VA4zdumpfF8pSB3duTP3LhPSvHt+GJVVgJeaLOGDOMtHjDmyoXgrFL9jD8+vYIDuM5GipFQa0neZ0M7vbAUx/ua8o4WlsDTaEnDtMQ15en6VGHezdHvt/qGIOQa4M0kuT61p+Mg+iG0PWyeE6IpEjBsGwRC/mbvFUzpu3nR6f+KxTjihs1twdwgR5MzeGn+aoKPunUPBwd0dsIKR+1vtGAl0H1by+1TQcSbB+zNE9cLu8kcDYkrVUOHWV3/+Dw1vbhn+GhDUC4s2a77vFquBznXHK55uj8A1l1UURWx6IeLTyWT1rdWgeEP6wsvzEXikokshOLsR9GWO3p4WqgQr448D4vIUVDTTrzA93ggpqWdNlmYr4GedJ3f9OBl3iLPJVz9sBIvGdmE+4wp4s+OY82U+Cu6/aHjzZ1UvaO3SJrL9rIZvdzY3LRSx6i2RuG7qUzzkDG9Yl1KSDG3GOY0GLqFYqqDdYzv0GL7vPng4vy8RRPLoGjdUQtHcftDl3XgCcP53OqZhNhnK4NshbQzBvi8MX4f8WFjcR3r1a38SKNidInOtDcMspbLK5jutUMV/vknmDwNC1ndF8AyweHjkq/e+ph6mXY5sasiuAraltSdTW0m4IXDT3u6b9aAWZezsJFgNbjc2xpwKJCGXT+GH94/qQXTl2rmuH5WQa7ymkfGYhLdH88+puleDy+xVaql0PrxRHtO0mgrFuxx6vB9mWbwT7vCPN+ZCeMhq4aMqYfhbqTbroV8N5F37OXpmZz5032CTlYkLw6pVkdIrrlaDh5bbl1csvyh36ceS7ItQnM+MFO8UrQHK+GCPyNdKuNLcLDRmFoZdHBKtJkdqIFXxcMyRuSpoGDm+aelOGKZ2PxnxP90JH7m8A7m/RoG43vwe7yk6cm6WHS8e6IAm03s2J3dGwYxLt1hENR2PWs1qXpHthJIKnD6hRAOtoPgPXWN0fHFoL/t7zk74fjpGMudvLJR115qb9tHxyJVqRrJBD7B9/Zp26i8Dts1+VAoZp+OD5LX7Sbt6QGmin5LfwwDlIQMD5w2RuL6bflZsfw88t3k1x7aDAUefuMuvXhmJNT/OO0zJPAUnIRdZde86CJapf9OuG4lJOb5pMiVPAZ1Na/4G1YG2VaFQ1cFIdPoplky3egrSJfOmSot1wOofNsETkfjw7PSsS1QOSGTt2zUt2gCtETJ1J/4Eov7hr8dKM7JA5qnPeSPWnE7oMf2cfISA2i6Zv7cq5EDEr47mgIZ62P4sW16Vk4C2nNMuen/zQNdXR/CCFBFIz0nDazsD8fB/sWauljmwn6PRM7UyHAIuZq9aYCeg99O1fwuIuQDcdlk6bYGwZ1MJ7d27QBSyezTgkNMM9PWD3CSrOlglxSyKSaLit41vVr2yaobAQAO+fS11wO7o+kPFkYqrpK66nWbt91vp0k6pxnXAfev673cGVGRMZWgc6nsKF9Q+N68+yoBzx8e0L++PRMsLjnJh/7H2Zfp5r3uLRCjQtNC/voWIdP/bS3vSEYx5Hj6R5Q4BlcGRdU3HWftagjuohLXf9/z577/+aBIEXuZaI3iTiKFfLL8o+DNBY1GLGDdWBoWX+gbY1lExtklsaac+Exp5LyxMzpVB58kQz++uVPzJ7e5ne43lUwii6n3zpRDdG/5IUJ+KZmnSV3/IMGFo4j/BV2plkD8TXX+mkYp8a1cYhbiXwItjbJtVDBB2ZdttOk0i4J7TbKv+3GL5KI/vu4OuIyg1uFLKZgnYTeM/um4FA6TnD6ypr0Y48PrZy9ZGAqpO2Ei3fC4Bv+rJcMvJWlj6am3IV03AfUL6H95OtYPViVX2FO9aONweUCekR0f5BYXjvfHtkNkXIOFxnKU3eijOc3vp+FHn2/36FoSXxzfyitjXwbNnGUIfzIjo9yqttpWlPww5UjlHWT5bhrB69xZlIor0XdzqcArB6DAtl3K7DkS1VB83riTisWc+IZNbS2Ck+rt6LEt/HkhY1zhtS8AqXW2Nlaz7b8jyfj7yoQA4JIzXNbPuPz82KnhBgAHvyLJWjzmKIL8jsOpwNwFbeNd+U9NuBqazacp4DRFMa897CFyiYtuHOJmDHs2wGK2ksk4+FBylJYUmH1AxY5i9QryGVT8/ytkakQhbCxOVz+dScVBbOZlrXQmcrt5uNh5SAOI956TUrAmYOHvjqt1fll8aOWGTNlQP2bF/dA+TWXzaRszXZmXBOVuTWZ2oejC19BHQZfUFpWA6R8o4B/zPniFHS1YDynH7aK5m+ZE5mdayVdlQRn2hkRxVDSn5jx/xKxDwHv+HrcTcLAiZbNJYaKgCw+ZQ2hAQcNtUmlUt9SGs3M0+fYsYDZW3IgpXO5Lw4eW1Zu6DvnAt5UJn5/nH8On7PJu3Bwk3PlKmvfrkBqdWrbFoyo0D8fm5MyIdJPxoPvVT7GUNDGWnh7esygAn9aJdD4fDUOad3Q5XVtw+R+qD0Ys04FvlrVXBivtWuc1QImrhWR9xhz8jHQ4XPa7efSEcz54qWGX6iQkdD6WTvighqJvdP7twnIKVqXlGZ+aY4FgZ6M2tUgsKPPY5D1QpOLTQStQX7oPfqNWlm1ILhfHV6S+nyJg2b5E7/6Yafl0tCdLZ9AS2eeiv+SMXho91jpbyMMjwhOrnnOVABHean3nwRSKeL/M9HFxMBZsyPxH7cjKclWj9SWL1qVEj+2RKGQlqNDborjtNBcF7g/l9LN9KJ5R+OyZNAzYJ5bFHZuHwpuZVVuJqIm64EfMt3ozVX98dSO1udfBfoGmS82UqMp0czpSqMYHPibDYK1cH1SUiHHasOROcbFngcpsJL7eqMGqWECpst+nJqFNx6Ggj6igxwYnwmXSIXAeyRWzGlwupGH4svXLRpA/2KanNdVmnQXFur+PtGDKya609acDioWRg9fOag+kg5DDn/4LFw9O8LDFyrwecuDgfNcxXD++Mtkm6lpGQ122nsFmcNyzN1cXvSa2HhBe3JURjSFgVaV4mKOQMhluE13C41YOPo8bEzhkSaoQrudwPqgSvyPueDWII/E5VzvJ5IbhZuYrTaPQGXFjwbjkyUAmb5L+SBkXIuDo+EE277kKsqoq/yM1KeLHQeqBwhISHCgcYE/EuEOB0XmCXXxXkVTdkfXtPwsT8G6XlfH3g5BprcVc+APTZxgcD/pKx4cnSzi0r+8DkT6149iUPkOmhDL0QomDE0hIl/FAf0A9bjITPeMOGydu8Y61klNlrp6PBaII8DsFJ+a0NoAlOOVVfKDizK1aqXaYZLo98V7nC0QBTnvZXKCepmHfi4e3zUbeh2iOMu+p+JjieqVTftomMlJHa2k7dPgj46XokgVkO6476ED+kkVGCeVvb/kkLhO1s1j5CqgDhw/WHpFn+Ucgv9URjYgsUrx/aaZJUCVsjGrYm69Cwok5XJPFYC0wKHjW8rVgJp7sJ6nLraXjBTHhGcm0rWGTaGQuvYfF28iRHPJGGe7hri+susvZrsZTTcYXbIDCfbXisiYixVqkDSm8R/nL00QX47EGupzrhtj0RDwk9ZUsNLQVeCVuxkL4U8Dp/eO6OSxCe7X37S/RqKUyzqa+a9UoD2xmHrA0WQfhUkRa4ms6AR3841d6+SYHZ4LK5spVB6GiSIPg4uwsYN68HW75l5eWz9eVY7UhsPXW6NdOpC47l7BA1G62EDwM5Zu6akbjRxE+49FkXELje2d2orASJzFZ5R5Ye+JoRX84r1AXdFyKu2ntVwVPvXffv7YtEhe1OSa8LesHU220hxC8Vbttzmq/uoGHBXts9fuReqNwWZ63+Khm0SpRev10XgX3sc75POnvB6+G9vGvUZKhdN/tqA4WG37n9vVcF9oK/uols/0IqKGcV5rTvikDVfH6znk1xwJ6R97m22RWqyky3lE6HYrJk2U/a5TjwuXrPWCf1JhzQ5w7pfx6KDO9zWYFcCQDBZdIWKbdZ++LqTXGpUIwJ38DQ6amHDAWXXbl21TCdWnPTYoCE+QVMs5q/PWAotN5efpoMAxYumht46ahUPTUzxNkLO6+3mS+xh4GA0YKRMjsde7T3EtnrmGDnU1tjZpMNq/ZrRbZSKJiQFzofVc4E/pdw3XEgE1LTFnbPJlJw+9QVq/7PTFCUUOLZGp8JFgOO7ZFHKBiTEyJL+kyGn07b3n3kqwNLi3c3lAyJSO60VLzuSoNst4L1NMU6uF0xTPGbD8dNXJe0uBgUeM44e8aUVAcdPz78iThExE0qQc5k2QjYwj/cmvKkDnpupFTbNoWj1s3wHtGLTKiRFhFcEUWBn4SbvE9vUBEm7v9xk2PChbSJnRdiyNDokCZVXUVFkx8b38SfYcKR6Y8LY9bhYF+lUGftzdqDjx4pbdnLBFexsrevvobC7jfZGWcGqJj98b6LVy0T5vjc1t3blAGbPwpOZkZQ0Mn1Fa/a52Tgt9/29e5cBfDezbkubhuMW84VO5wTT4HJt6csanvK4Zel4YOTJsE4Y72W5mmUCsJt2TcO21QA451K8MnxIGT7UpofHtAL0W+SRjY4sHRCqxmjQDgC3ZJVCOJ5vfALH/I1DNTBvvGcFyk9NPTckbrdwb0X0vQf0fLY6oHAIfDITTkC7zzfvPd0fhIYj1IpClABngkJ6x7OsvxmWRbZd2UCWFsGKBFKidAUrRgQK8vyNZveOgeExsFYvn5tt0gwqIbcOcHoDkWB1buP3bueAHJCT5PXuASC6fGlD1x/Q/BpQVp/1/NycJS37dq/rQFquEJe7ckNxoFDvItvGL1QbCe8or2uHvTYY5xSkIZDR9IT+At74fXDXuatfQ3AvZ9YTmunIYduySe7R70g2HjG225LA8h6RJye2hOBzj4JGa/OdMLaZ3Gpn9vrIW1I9OSVz3S09vH83fOyAz76fVSUlmiA7mGvp4+RjiZFEQFrBztA5cAZbs+Eelh0UGevYPmLJqmi7Yr6nZCfcvvVB5kGmHYaHYmZpqOHd2ur0kghFFbYOmuw58M2v/tuym8C0ccwQq0wogh4Nx7cEnAkF3z4HGV/s/T2DPf0vs6pIsidUgi5si8f2KtdEoCfgGVLj2e3GzSCbVpClldzCsi5j30wnSGj7uELR/ZlNLL6yJhXdCIZNPn6OYv2U7B6K9uPHYRGMOCcPPpALg2cAgI2nhGgIGNbcFehZiNYrW/iTD2aDO0No77xb8gYqvk8gCLcA5mxMTv0Okoh8Zh/eDV3JIKXvZL0m6cgxZU4qJRRBqueaYjdkmb5mhzhlujepzC4v2Y3c7wUXiZsvdXK0u11wdzpyeZ9ELrtsejt1kK4kWw6dpxMxr9sW0wlTPvgi9qbmeovRWBFnXrNSSdjqmpxcKx8H4gd/rnvInsRfLFd//pKDxkXJxcti1j6tmzDH4v/9AvgQvEB8zGWvnV3jbgc6dgORJcr5xIo+Sy/OTA+xE3H+RPn2F2m28H3gYnJjYB8SEq4c/MTSyfXkwOv8OlUAddo/ECdfS1kBBB8O8VDsSb06+ymiCpgKnKHFushfHiz70rs+VCM+7sydYK3CLpWXj79YmsE9D6eGwibDMSrlgEjb3uKQLlp+3RIEhVUSXcGcjcS0Mzplcar8SJ4E9OdueJaJEw0ZFH6+QioNmB0tfhEEVgqMc4YLpDgFqNfLfRrIF52pPdc8OsCtacVzjP1CCkzosOmRyOxPPyl3G7hLjigpXhv3SKCZQ7pi61sJD67YdLtLd4FttdFvpS5Idg6MgL3ykXin67CSDlaFwwrJhjYm9RBG5tDH//xSNzeJM64c68U7IeEuzIFSmFLj/z3sltBWMsRErtSthTmiZTwlhVlQGTXcZ87GYROK5N/m9xrgJSQX0V5S3nQKmh1vlWPjKOvMorJNQ1wxVHAdZE7D2R2B4Wv8iNj3+rpplGNUsjSKDfUO8IA3fA3YkN6Qehzx6ZbMbIBvqc+YN7iLoXc0o0ObyzJyDy/QeKyQQMw+p+TRwNLoTJa8PysAhkf+MzFrLrPhCnt2vGiTQ1g//ya8V9hKq7MMeRTtekA5/P805q0WuB4ne9FCqUj97ju2sPSPSCw8er1B/Vl8Gud0Pbfq1m+ODfS6dBDJoyLpA0UW9tB+LqZ4k0bqOgwvnLL3SOFIKddZP17Ih+u5bQb3e5m+Vyl7gjf94XQ+L54QL6yAE7+lLA1ehuI3AbsIcaMAvDdnHfKoKoARszOi19uCMT4wvnKCpYflOy9nUpi6Rmje4/2uulR0Tnh/vr7KkwoCviwYra8HNIl8q+ppVPR4tJKycAzRKh5bydwcUMDLPxUuTKdQcRHjpHzYyvbIYHRzvwthXDLd72Y1tMInHhYqLnGtR3o9zYXlsTVwvaWxup+HjoeXvgWzlSthCmvfYbhZrVw8OWbo5+8QvCvCc9Ky0MV8Pwsl520cC046609QHwbjLw8/dK2fytgZ03KS8+0GlCyr9l81DQE69UPHmWMEsGXvEl/DcWWNUcdstjoRKwJWFs9plkEB/MNBDqes+bMjIG94ZdAfKjPG1DN0smhHx9Oiyvkwo2rUa31LJ2cOcQ1s/Y1E3a2tebqtZQAX9/rTWqmFBweqFr0aWXCNWyo4nvKgKdX5B/H+VPw7bl9bTNZTHBboQN2fAwIPeQ/ZFdFQf3W1dHv1Z/A7Nu4kVl6Paxw3mm9bomAC/UNB/SHn8AZ2RvbPnLWw5+cC8b6gwTMbu+WcjucCeS+zujiq/Xw/KnUA45HBNz/6bOHUCgT4gtrDlRtKoUfLdVz735RUKiW/3JjVibQ2cZe/B6pgz0FthNidwjIb9p733Eny081Rspnz5UA18sHh5MuhGHV4M4qSmEN1PV41aWsYfn4HzNU3aowfHHniQeDpxZGzs9Yynwvge5Ne3J1f4ehYMfb6e+TnUB52JI85B8HJR7h2C8ciYcvqdas0uoC40NBrQ4iCVCizGZncTASxcJ/zTe1dwKj+XVZ/MkEYKuo5Hm8NRKDqN/O0W/XwuJU/6n1X4vBmPTzgapqOB6ZnNb03cvyXXmftDzLqDDH4SRCWRWEQyOafAf2ZcBCcEtnYygdKtgqHubWEbCzc5o5GF0MH8xMXpfHR0PQFr+RzOME3LiYVcaQKQGVe3nxIZmRYPvATmmLCwHn9J3ZZC+XQFR2eTbxcCwkpRk8o7L4LA98OL6Gmg0JtifMVzzLBguWaly1k4ArsvyUVK/nQJJDlbTBriw48/PNmOlKAj5OpxRpuuXCUzXLUPLWHFCNcxmaGQ/EovOR6zUf9sADJZHiN7MIUetX3GgtoWPlyRVHTv3XA4Xq4eeORiAomG0JVx6i4/nMj3OrvDNg1OMVrUWSxf+d3hnzXAKia8eOI2WdLP2Zn+yngjAWWvSInTcSw/NN072udsIEY3/d9fsIxElO/0/f6HinNX8v95VOqB5u/rx5NcKKDRmVnKz4BLVgt9mubHj8NpU45VcBp8K5zNn2E3D13JeVWVty4Nsz5baliHKoVp+7PspFQH2v9QyvTbnwX1eCupZRBQyskpZLnw1EPq0dler7cmFfcffX6y2F8F9Et82Xz4F4Q2ecwJeZDfvd9+1QFCkEP7Li8V/bWXmR0T4u0poLAVFhkS2seXLuWHLFydeBKM+/e8cq+1KQaMuKLZSvBNl8gRBJyyDsH4kPeq9WBpdepq8wsKsEqXjfLQudQfjuYuWRyuJSiPS29oqZq4SjR0jqvoFBqMqQFh/RzIaZEaU5D74i2GO6M3+nFAFV1kTYJMvlgfK5475Bt7Pg2vpNAzbDgWhhvaczIroAJA393oeR8+CVvfWJqbpAXK9deFOgoQOyFH4elBH2gZZRg5oAVr4Ebu8Uf2jUAYlBpkpdFY6w24A0rOVLR02KS6jlWAccLbh4wnCVHbCvfR9Prqdj88b5xX0Hu6G7+VB78GIKVP44efq6SSR+2fOxeLi8G9KrMp8EhqdAxe4hevf5SCyj/G1dF9sNmnacair8aXBN9q1/yIVIHHXQXN8g8hTWhYwYp5qkQWhN1ehrvUh0yhXnCPqeCzt6G0THfcph5RCve+XLQGQo+UoxfrRDrEbSHfUbsfAoueh9ljEdQ3un5vk824G8y9znP904uHSLahGzmY7Gz6ibe4La4XHdOsGfpVGQ5HatRFCQjmLn4gPZFBtgbNcU8fpZlk5ezeCx3knGA8cOJs0y60Fk53Cb0JZK2PfqS4feEAlzFYgrGjrrwexBflYxVwWQiA6m7UwSfklf0rYUa4eqdt1C/921ULhSZWD72wh8U2t07++LBnAe1R856J8BehOaMxFRZHRnOJptVG+EZHZV2+bv6bBDjFch/zUZ89qEltSONcKOY8wnEWsyIZTTMFXpPRlb5qibPHa2Q6+J4K7iC9FQuEHsFHUkAp+HvWruGKkB859qRwKmM6HkAs9OvedhqPGwO/GzfQ1EcOSGb/mUDXMXdWp/hochV/yDKfr7apAdfoR1AVlg8OSlT5V8GPYnSSatVm4CDYO+4r6/BTC8sF0uik7BMMbKt5zFTcDDParS5l0I37r0+sXmKLj2SkWWmFUTxDbNqtvuLQLPsTjanQoKOu7qeOxzpgNcxnOfGXvVQ+cW6oV3XnRUjKPbDRp2wGO9tZp3WT7iLK9O+5wPi3/qFmctnQbYsFggVe9UA5ZzR4zu7Sdjrvu1j6Qv9eAp2Zyrd7kGargPP703TcJ7ba6nVouw9mtKXYd4ejWwkRbq5zeRsTdQ8776rv/9D9Nn/IdNLZg59Hsd2EhGo6B3wZWNDaC9npLprpwI3RwV2YGBZJw31lxlt6MRFO8mxVtcSwSTS5F7AtvI6HnkYPHCVAM8LpG0yu9NAk11I1XONDKKr0D/+lnWObsTbwgT42H4jZRP9xMyvmjnfDJd1QRTLkPJ3IEF4KJ3khb8g4I9Ue4U+eE6qIky0VnFUwKuDZxh4cKs+uFwZt4zY/mr4kWTo+HFMGbL43SwhYiG61aH3GH5zNTemLyxySL4GJe39PsPEeWMAokSxGL4ze+hpdWYDVqqOO98lIDttJ/JokHFMFNGVA19nQkaagvamUDApNZRthtXWHtObY9xqmIWmDcnc68OIKAF8yRBzojlYwutMrcHlgDV+u5AEBJRY53BJmmWPxXb9cI8KakENqh1P7bwoSLx2ur3R91ZfpzTiFdLkgEd9r0r7XZS0a+FZHjYmAm29s8fiY8yQCiMpqRuT0W81f/fN9VeqHKa8Mw4nAzyG1bHn8uNwAIiiXvuai/s8Nu+WjU4BcLn5NaoW0dghYmlR7VcL9QbvxMR70wFhx31Hs/rIrB9n+33tceZ8Pa/B6d3sXSU/MLCTAyRim9WbrpQyBYCUaON59nj62FaIkSp6ysRt1/jS//QQwS+hUfNeXn18N7i4IrJSCKaudj5pLl1wNKxktecB/PhEb7oOkel42rPsTa3vg7QP5W4ZmA4H1L0OucTquh4SPVBfYF9B7wcoHy4ubcAvkK8miiRjv4mza5vR8kgOmtlPTpRDzZDRyNXGRORJTFiVET6QCW1i6fsTAHstdM4pvGRjPnevjOVyn3QKnVdYJq7EDY4bY3Z0UJG4uarRZK8feD/W066/FQhJP3i4S1fScH/iJq2C+lMkBm6xlGi6Qm8Q07t8o0ULLUL859j6eSAtvX7Oda5g+DjtqUtu6g49spd7UdMOygLrlDg8c2Dd0c/91iK0pHWu3VmnL0DxoI4WoN/5oJr70Hfq6Z0bM1u8lthyoTNrwYO/GxwgvLS2fnFa1QcH+h+kjNRB648ANxEInQrdfao7SPh2SGtnncq9cAuxHtM4RwV9r3VOXvSioR9u1dKElj17Dv3c7XOFhqsr83S72bV84jP8SSFi/XQu/+95FtPImj5cpHMvUi4gbf6vKFYE7jVfjy/5FIHnbui9jcEUZCHc4ec4EAjVExT6Rf/IHhoLhaW6VHwdsaTobuHmmCaa9djk/cIpZY9eQdY86dbxDvTfj8VvIXELfa52sGDa0Mbr4sTMe/1F/NORiPcfYLRx1zrwNlW6E7SYQrqnuThZO5jwolVIfL/cbJ4iDuZ4lJPxQElkdvEy0wg3rrvvfFODgzu1rcwNaXienf1XcU6TMjrRXuL63kQIstUvuzLqnM2y8bDkdUg0Jrm9uF6Jdg5cvR4/w3Fg4FGyc9aqyHknJzAJWIFaGTY/EjfFYYmlhPXFKk1sKby1sAd6UpYQbhHb0gPw/2yZYUPJK1B+JPkKqXFGnh50u5s/XYya/8SbBVTr8HwUObC7lU10BemKPhOkox3rm5YYVbkDK9DnKtlJWsggVOUEvqJhNKvLs/lneuDi020uxTJBPgv50704Tgy8scqPiy16IOvNoLy0VuT4Lev9pltYWTUVA/IVFbqA2M3PJLalQhjPqr7rTvJ2LDOazyvrQm61VenVQqmwWhHxMYSNipaa1CXBHybYIYeeGrPs3SIEL5RJdNFQYp0kXm7YxMcEXvKpsSRBu6CjvG76im40297kpBQK7D9eian3p0KH6La/nyIo6GKL/sN4qVWmI+MPyz6Nw0mjm3t72uhYaRmGz/7QgvIRQlUvL6WDhqGYZslAmgo8M6NqR+ZDHFOtk+S1lfB9cOW/MfDg3FnZ9Ewu1Yq+LyIoarfqoSHVxRdOj8F4YuZ55+9LqfCZNSXpyv8q0CkINL6ypsgXF9mHGtUkg8qH/TYOLwR7D4En+PDQCRkZYoEyeZD1asjwqt3IVhvNv3Y2BKImQHigQfEC+Du/g+XQ3lZujFqTqukJhBjChdOaLzMh1VbVcJHz9QCV+a3/K21gRg8vm7+wEABRFuN8Mj41oJvVlH4iaZA5A0Y36h/og5k0p7L7mGvgibSw4nTpUSUJbd9VQ+qgy9oWnpnTyVYaTVK7P9IxA23v0YrxdWB4fwNnxtcVSA9q2H2+jsRQ1wprrtKmCCxZl8Fkbsegt4ISpMyKVgpLngxa5YJtyZnxn431QHhtOD3KDUKdrxOY869YgLt7rMgmmE9vFNNPbL6MgVPn//AMR/VA96x055P+UrBsjde0yiW5SvlO+eXEnvAfjNBU06BAZ77Z5OGyXRcEZYqVdTfA2cW9A63WzLgSfsBZUMDOp4QNem5tdUfjNc6XftmUA9bRYafWZiR0HeDaYpq5kOQEHDdIFZeB23OH7/125Nw3Va/F0p9BBjkPTrZvK4eqnenpWdvIWFH+hB/zqFWcLhu2yHR8QR2Sx1bvz+fhp5enhlao0zYvrurtdziIUy8FBd7fInlH2vv6uZOMsFKj5ya+zkEVlrWVEudpKB5kajBzXImfJrsuETqC4DMRxcuGCVRMO/V+jazy30gHzFoR6QVwMYXG76dIpFRpdhqhscsCNhExMy/pQXAp88t/XbcJBxN3TJCnfSFXSazrw8Ih0Dxh6frbrqTcGrldHbTEX+orTM0TDd5CPXHjtQsXCShltXHB1vVe+HZXodbrTbV4NZ0ie1cdgSKE/1/fTPrBffv02eOSdcA5+z782GOEbgxnas99lAvnEhVZItTqYGDDlvXzJVE4IstFS/IxT0gasOTaqNfAh7qe9cuutNRPSAqo9AgCfzN2e9VayeDS4Lto/ZtITjo+orn4flEaN+4Kde8LRG+/l8H5x1O5f//8WSESCIiK0WioiQy6kVK+pSRERKF7Kw0zGSFYxzHWdl777297b2O0RDZEpVdEf3O7/vv+7qv637f9/v1er4ej+s69zHxCrqJCUX0p3EzaDkZNh9wHWTaTILzIQ8exI1iEA8UKo76DoDauvIw90oJiJ7+JnulnIRG3kwmzOUOwBu5iWJzlxKo4mPeJgaQkNAJPqxvzgAU3nLb3G9SCoUjzlfvviUhPF2jwHu7Gqj8Lrc9o14Nt5idde/FhiINE16bfkwN9FwaeocJrQKLkXR6+sJQFCTKfVzmTi0IzD9m/01XDdknvKv8xMIQC/OpirGxARCzy/dXsyqFlPmcWTU1EvLnzrgpiu+DbWHRK73FVfC1Zl9iCpX/09d3Nes2+uBDfuWc1nYl3NESnXbUJSOOWnmmhH99sFsnq3uauRoudE8KBemQ0aRq12uMZjcYxh/YMGCPhCfNNR8e+JBQ9Ie611Kp3fDiZOfgk594SDl6e3kog4QSON3y4170Q2LiNUeKRRVUnWV9l36djHQzMvRkFtrBk5zB5aaXC2lMTcVh7gRkHvmIPeNMO6TkfYt+K9EA30ZVdq7+waNDRLWO2Yo2eEazz4cSWg/PowVermXh0dGsriX6hjZwUFYqbQ9oALZJOvb1fDza+8x3oKSnAU57iM6ORCaA/x7hva8X1ff/ibziM0Dw4OJ86X2GJNDo7bE5dAiLOglm8ttaCJ7y6NuOi8VDR0IjEysTFpFpcjjU2gaA3nQ0neFdITDL8URsWpBQ/zaN8jVqX5v24LiXSgpA1DLVoy6KhAzZfoZHDA2A8/LKvrnxfJi5sZE2f4+EPnhhtCepdfJBjNN+JLQQrh7zMT1PrZOmoa3cC02d4NoqOZQ2hoX4uwJvGjOJSJIj5kj9eicQIyd5BD9HwQPJh+uzrUR0xkXYgQfbCeK3uPK+7MPDo6TU7cYQIvpCng1iedYOVsP9Svt3Cv/3vUCLBAEVYycJnn/aYBkX/PyNShHY39xT63+PR/eMG3vyadtB/bTkuL1OIehuKnYuTOCRbeex8XtPB0CLxWhH/QKVP8NpSB49JDSg59Ts5TcAfD6d61WYMnAoP9XrT/VWTr90zN20LphjlnSS86R6xPiwu8MZ6rpghkrORBccC6taGTCqAwMz4ilErUO1UNcnzcLdQFcEDa8D6yGnk+BiY0tCDPJsD/68x0Htvv96re2bQEi22/uwHpU3Hgz/yBuIgJ8BpfT7rjWBlNbtn5XlWHT4wWSwtVo4OHwQ5xvOzoWZZk0ssR+L7vT0fKLXCYFsRs+THZU5IExFvm1q/ogvhILCh0pAKfz60+JJsB1dfTFLAIPk93mfMRavhGWaxr8hUilQ9PWtiHtzCLpjljOJ7auAopHYpADRJOg5KZ2sQghBrrTZn19Tua6V3KClVfUGIqQouStmePQ4MRjrHkyB7ISk1H8R/kBLV3ZYjQaPGH9pqTef6QY5U82Jn0qV4NhL92jmKQkxKr7K1nTsBg3X6fnstxWgS2tb5xVBQqoiZ3OZoroBL3vzysqrSjCEo5usiSTk0TV1anSnCxj2eblEECoglf7a53Z9Enp3XTaHPjMJmDvV/5ho1MINy7bQY5ahaEb+4o3g6mTQ5O0bEdyqBZfGQPKxZQya+Gc/+CmyCGLOCF09O9AEtGzDzwMag1Cqc+M9s5ki2E6K+Dp2rhk8E28zq7QFoXyp86qY/UVgqFw2YirQDCfsGo6mU+f1g9n939doLKDw8SOaF1vl8JwgZrQohkNKxGyhVLEO6K7iutvbkQ2xXHt08ukEVFO3z417IxIiNVZf6/xshBPPFoNYn2HR1upajalDODgqaj6QG2qEBjG/mJO9WIRfou3vez8Io7RumlTohWaNcxddPQjImBiQK/l9EFh0dFnDpOrBFXfv+cBdAhL+fu3pCyYKuFzhqLLjaoDxb7Ecq4cJyCbAgybbmALDhflysXeaYJHJ/vZDEzxKxUearTpSQPFYYDwDVSqMlZcLFmTwqGCs+CPBnwJcf72/nlekevApESXVg3j0I6/9Px0CBdLH+W4+oe4TeFm87i5GoX6Mtn69NQUWzx1pIYcEwxc6nsk1VTziThPaH4angNTA+m33Oxh4LuFp8flbFEr97X70MG0MnHQr0/diSoSiRjrLY27hqMsbb/Yv9x1IkXYjpuuTwFsJn/ZoOBxpnDp8h/SVBEMGC9oa8wmQsXrDSEAjAmmRHi+aluFAylrwuWK5H5xhdSxLNsSivasL7xd9IiFxoZCbmBACpVJrmsd8qTn2bOJJ8mUsFNiwvWKv84eOpMqmmlxqH+G/BRH1wuEEo0J8jjoG+otHfIv7sAhbHtnalEuBIoNarJ9cHejgnstRqqOQNo2rAxuVfxTD20zErepgeWf5fqJpFEre52eo0EIBYV1fWimbeiCqizLnhUWhm2qD/zH9pYBBuC++QLIeaBfnD34Ri0LYe/wrV6wx4J8TP3i0IAX4FEmUU1Tvzo37G+9kEgClmM1fA9opUGmi+Z+RQSTKttAWS3wVBGPPn4ok3aVy9Smp2/fEI5GlVWDqP8lCWKu9ZU0wrQXFrRKDdCpnHnK6FGnUWQgDoX5WDI018MqmZsWHypNNm5Ud542L4Hdk6mSEWS0wxpn7xlPXuy9Wjo9QCuCT2ozy9SCqdzzV6TfsC0J2r/5YSL3tBmcKv2AlJgT4rFjr4qJJiItNne8luRRGct0pHgFJcIFAMFlXDUbCGsZmybGl0PxqWr3/eQrk8jKuydwMRsT+qBXtjhL4j8TRRN5NAtlPsseqWYPR/bWq4OK6TsgwuZfW6ZgE+yOUyo6mE9G+gtgyh9xOeDhUSrBMS4G/qYl/O2OIqPXiJS+aG53gyPbMo/1mMkTdbZT+YExEn4Vja3mudcKdwzdbJM+lQs2VdDkpQyLylhIf+9TeAz1/PM5aaNcDq0mwO+IiI7uhYvbqrh5o+XGc87pmHfi76QXFcJPRzV0FzRMXe4F2/XUmG2s9zNml52EuklGiERtnklgRNLk+ksS/aAQL7CPNSmoObC/8PtNiUAx6uxqi/6QbwbGIm3N6IAhFXPJP2fezCC54eaqxjDbC/fzDgXzUc1Gw33w5nxMD70VmWANf1IL323Bj6zvh6I8Lqz2vcBwU220dOImrAe/Qfcpe38JQme/gF8Pj8XCNRacjg3r97q/R63eyw5BWLpFEZz4Ijn+TYtzcEHD9vBgsa0VE4SY1nhKmgyC8T73UZq0Bpvw9C546EFFFgqMtS/AgJNPdcqZRRZA5/O4K4ieimdH3SQ4yReDfpqO6uIxApGovaIz6XIk5K5/XvN+AYYt5UDZKgiGpLw6CEZHoM3aBg//OAHwbv8ZxWqoMmD9yrVotkdDY2N2ybJ8BMNkKOTDVWgqvjnz1Dq0kobvlPD/GTieB4Zt8aoCRwVpfPw6bFIoieLUZU28mwdHK8OM6L2IB3IyyTkWFIgWr5agrPxNgP8PbyXXBaPh+Sdb79aUwVJofiNf51Ak6ZjxzEzNEMBEtYaOrICLZ5lmbqoBqaMk4Hi/DUw+Tv2qWA9hD0ZZUBv3ZjmrQS7BuN75YB71RkYPMV0KRc6hZs+CTGih9dNhZa6EO9vZZHL9IDkUPyn6xHlClAHN6b/EhxWzgdlRIaMbh0R/lLv8fulTfqf3qUY7PgRTZ5NhaBzxKZrDaKRWjwC3vOXCyzAFle3TPoxePynpbGNmmB+DMXVql22MZVN608n16lYRcOXpJ7tsDoPrQyi2aOR18/KH4DC8JibA0ax9nH4TiPdkcHbcMsLkn0RG9RUQafgEq1g0DkFzkWK3vlA7C7JNHmRxIyH7kT4ZPXQ3cXLurHf6nFuYHHGyG+qh83v9x++p8MTTlKbP/E2ymPrfPOaeZICSv9sgXP1MC8XwzXOzU9XU4jGPhDEazofTllcbNcHntuCNWphne6aLX1xVxSH9JdeRwdjPoj1a72241wefwq0I7rjiUOH7itlpJM/zT+yQ3G2MBDYHGPrUeOHReYUb855Nm8JINyCy86AK3fk98obuOQ61XZYrtQ7Mgba3m6BfFCpB2OyGMyQlGyvd1v8nyZ0J5ks6HxPFyUG/nme9nCEGGAjuSb/IyYGosz+/bQhn4rbuJN4uEoJexN9KDNfvggXqN3km6ZiBY00aQ7pPRv7/xP/1s+uDKK0LqJVwTfLVl/mpC5fns5oFbd1EfRK9eNDRqagL1t41jEdTrn56t8b7xMhtotrmzaj5VQGkk12k3t2AUaV52b/tMFtD12HX5sFSCdsCTEJemYERe1WIjjSXD7zei+c8uI+B4ynDl+zgGcbW0fOsSS6ZyO98f0ZwG6H957POyRCiSCsey/fjRAj+KH5Zx/GiEVUnfNn+zKBRX3i1qZtsKHU+DzZIONP3v964stVGIU3Ryhf1EE/ge98pqiQ8Gn4L+Kx56kajPffpjXFoj0KnajS7SBwHdvMrj9R0scrseLWj9qAwCpGdaFOQLIFXRIN7sbTCSkzaf9FYsh0thTdZRS/kQzlcfKjgejBj+OgguV5aBlpVfYcW1Qkj+Rf/cKjMYeR87pHpODQvFNvX1i3aNEEtbPReXjUU2jCHYr26RQOqz+mCRmgTawTcpNH5YpBzVc6+jGAtCrmwatsopcE8jV74nFotGUxWc6NfCoCKf50ruahK0u7W6rg5j0XcbkWmMHwV+Dex/sW8KC949ZnUWrFQOXJU9buLaDV6vHE2zn+VDO/MT7/FIElLoyHV87ETtI6Mwp16letBAi4p7l/Dovg/p2bAnBYQMJL+oO9YBciK0XDiOR6HNCn2OZAqEdH1cPcNdD1v5raRDM1FILlTnpksABW6PPbwd59gIj21XzN8w4VG7x4xLaGcFhOu7mCSn54E+/csHbbgQlK5x8riocgU0jtXYhRIK4FDKf7+/aoWgS71Fv/LZK6h9ofz59Jk8+DOS3dUtH4KSsAUxY2JYkKc9kXe0GQseh9ZivPOx6KzkXMVxrUqo+eWq4tuWD6fl2tWnRkNQwMeV2f3LWaAxLdTOVlgJ9YUlJy2IwShT8lq4/FYXdM+9J53sLoHT5+1dFnVI6HK2uiSQuyDpXuvcXe4SQCEPBCyFSUhQF2XOMHTDPpKLa9yPYhBWSmy3MiahR9i/Nxktu+HHJXPx49dL4Dg9hY0PQ0JnnKebGiq6wa4zaYmxs4TaT8E9mEIScsgwMcpS64agOvMkZeFSkMrCTmE8SehkzhIt/3ADqNhmueaJ10JfkuPrVN8INF5FFpmTQHD0WXRkxc0auHBAWU16IgJ5iCqQemwRXDXW/bEoXwvq0iXCUsexyMlt8YiWZiokufC5B1F8IVWr/2vTTQzqLfHU3fmXBvE8jVJX9b0gRyx4rig7BB2baXPH7GsEy3M3b2BxVWCqiPmlH4BF4tlesSdCEcgvS7xiy6iCe6XcL/IuYtH5VInzxBoEngTHJ3FzlbAiN813XReLTlzqZuTaG4Dy47WB742aINne1D2ek4Rk/vxL2dcxAFZeEYIacU3AHV72J92MhFqKftPma2cC/BdlfInXFg7Eis51/Q5GRS5u6Xv66eC3yqDpTXwKjRiqRoaFoFkP2roerwHwbJOIiKXmJ93gjyVSDQkp3XB7JlQ3AA/v2N5LZ2+Ga2u/hPY7k9COhqxB//4kcJfVE3aJLYOnTlc1mUpC0fmK0p/vFhKgVz2YyY21HLYfek2ZXQ5D4SfGCF+644Hm6CS29nIZ1B9c7bPxCkOUd146hyR9AEucz0vfrYY/McNoIzESGQ6vXxW8+wLY2utmn1pUw7Tjv+qOqUg01GvlzsVaCZ0jykFkvmZwUnCOIJaGIHhjWNeQWwGH04sWOCqboEhIB0fyD0Em4dcPdvpS82JPdZ80dzT48P/+j2eeyo3PsFJyxwtBlCXv9+klMghf3dj3tDMItVSB6Fx7ARhlcyUpKcRCSOrBE+tUPnw+3Dl2bncAskQCF9IoRKhXXHlGx0VC5tPzdHyfCqHDpqVFtjkGHgy0r56gcuZ4/9SjUfFUSHh7ffLnSwT1z+i8FnUx6HC418VHjv2wdYzrqvANBLkflgRXVMmobZ3Z8cN2HyjdrZ9IfYJg5bRr5ooOGZW293wTEOiH95/aFEn7EHR9v9vkp0VGX7uUr3nuRIJH5ntD9+0KSDIKTzrqgkUj7JvGj85HgXkwY8xj2QqQ+dUVk6CORTJy4wwtlnjAaJoTsYKVcG1mJmJXEIvsrB6cFUnug7sKmgbqbAhIlaqzLtT5YmvQgylYroX4OdMuylYpHDsx/9E8IgxxDo0eZ71dB0dNlTLSz5SCXmrPbdGeMDTx8L6LPaqDY6H6D7cOlwGNvW/iEd5wtI+DrF5yoB7S3xvbC9wvhfLW/Xdd1MNRlEl+2DeuXEjyjvtvu6UCxjMy+9WlqPPourGCrlEORCitiH19UwmjKE2TSzMYTd+NSir0LAcH9vD9Oy8LwbNckk+TWs95X89OR1eXg+wV9nYa/SLoc21++ZgjBIlO590nUcqgY1qwqG2vEIIJMzkPioPRroTPUpw9At/YgxvRO01Ad1XA+yUfFgW1SKj17DbAb8LBR5dYm2HOCuWGJESga+W1o/zP2oDzyj/5oKYMUKx2BU83PMKp/k1n62gDLVlS1CXq/N/2vLd5qwyP/DZ/nj95uw0OaM5jTjlmQXKKQ5ezMR4pysYI9+qnQSKOcknX7i0EZGqo885ReaCw6HigRjpoXlO70uoQBiaBes9rsSHowZNv0m+3UoF9wlRNhiscbKO3jn88gEEnaP6RnnWRYYx1zWQ8Mh1iHhN9ldgjEFMM9mOHChl+tn82EozNhC1LU8cumQg0uBkuZrFIgMyTD++TAtPhb8zcMueHCFT5Jl/CLKUNDPBh1kmhzuBy4wIuKAaPegwUOHnZ28HN8cngUrEDaA+bDsh/xaPbrunuouMDUDzv/OU2exPs59ItcLlBQvxXdMln66n5Y7M9xlnUCDQr7y6nOZJQ3rvHipKLA+BHeDURm94IJsqzVzkukZDFczKbW3wl+IfWsNxcRVCeiI8d/xeCxq72a1TqVQHGl2LIkItA/c53spQ5BqWfzt4gvamCuOkfI4TzjdA9wv87zQOD+N45zOnN1oPuuMLRLsY48N59doNjIhxB3lvfb4wN4NwVnJSqnAgVCu9+/t2iere2UMr1jgZoDlxL+v03Brh/ud9zdo9AdzANT/X+DsKA3P3zkk01EIoZ51c+R0AFN/LON9NSQDqh4mB9YzXEemmNK/ETkIh0nEHZWQpcFqa+8fIaeFQbxTrWgkf77pc8G4xrh6l7LiEdvQ3A44v9tn6LgOz3ml+FYtpBjuax2bmf9aAknF/mq0hArx/3Bk1ItMP2QE7PI0YEbHduENq38ajZLsxJ7lgMWBu1Ou5KZ8KtaePf7s/CkfwvvqdMwjFg3iSwpv4yHarZL9pOOoWjQpky19mEWPhmKMlSWZkKFl/GjpqwhCN0+X6+p10cDDrxKM//S4dWjqkzr9+HocJftN9W4xOAdn8j7b23aRBrdbvO8VYY0iQLCUguVwDbESHZxN/RYCRB3kefGoLMZTCF/Ncr4UD+Rru6Lgk+fL4scW4gBGnr1umplVaCxv2QeF7jaGAM8LrheBCD7LlKj5AOt0C4VKzhw7wyqN73rVYI4ZCPWnDDQd0WyGW9/q0vpBwWn2Bxb1ZxSMXCe894shlYjjHXFXqVA9uvZc6uWBz6/jltmY6jCsgcl7gXjpBAwKyozvsqBkVLPL05eaQC3j/4y/qTvQQOznzMMVAIQY89uCqdZSwhyLF9QbOuCnZ3GIe+CeOQfOGfWy/ud0Iis+x9XG89XFLbaZG3JqIF4W0577kOWD+VoPWjux4od8WerAkRUSetqtlpFap3HzpeYMhbDzxLJFPOB0R0bnXFpG2wDTCpRk9khjJgr6vsPFctHnE68lQ9WesAp2yR17sJdeBNeJ924gwR6V1hnzTTG4LK5hOFhnbZ8NV4fD01Docex104v0HTDEls58wSAosg9UmuZu2fSLRcq668UdMELa+/Hb0QUAhd60wO3m2RqLS8hSZFkuovUvTXNXGFcI1BdUnmOA7Zqzn7eo0OAktKWuXCZjV43rTQot4cLQbtHZkaGQS83fSQ3nAN+H9+fT30NQG5W2yaBRi1AHOzHnsfUy1wBjzdUtrCIc4NmkXliWZozLI5WRVXA0OX5VauxuDQAKtmnHtZE+j4PR43Z0mHA6damJoaIxF7MdFrWLYZyNPs2L/P00GO/rqV7Akc+v1z7zf+cxOcF5Ns8ZbIhImAY89NJiLRTWUfHE39IBy9c4Amo6QW5u5+VB0sIqCE37ysOkWD8Djfdu8wtgYe+uftF+8hoOU+216u8EGQWGEa0bxTCy5DHLq1HETUe5ducVy9F6xe3PhPYC8T9qzE1HGyZBSZ+5NJerIH1F+O/P5imQURJfvTh/nJaKDoy9TtuR4gqZwjqTzMAG8v83oVQTLS43B2ZnPqAQk/h8vRvZmg1yv09/g2NZfUZY9LnYiDR974Oo29Mvgr6k5X/S0MpfX/yUn7XAW+g5GvaRMcIAn/IlyqAING5rBvpj2qYVa8VE/znydssR2+XH4wFLUpHMS9f0Wtv7gIr34eH5jsd5xveIFBM8+ctj6XFMFIZ0wvEKtB+vujd/LNQYj3hrjXoFYxCC3bXSnC1cDym2xThoEg9Pqj/4PoZ0Wg3snBX+hSAztHyVd0URAK/NvgvLq/GXxk1NW0FZtAJr1k5Pl2JKI5pc/tRvVDltonBSUGTSC1qqYtkRmJ+E4EsORmNUF8h+ZvnaVG6Np8MClYFYlqe7UrT5/qBeXln89DNKvhwJ7FbVNJMmK/c+4o55teaFl9fMN7pRokL3yg71MmIywjchra7QFrJ/uyqSc10PTaZ3RWhIysKQonR5J7gWvDZkBhsgpeJXEynlcjozT0XevtrSbQGuGYnxJqArOjSxKXXSIR25RG+CHWFtBY2YdZqvYHHNd98ZA6HPK+lvU10KsFpMTpmFo3fGHgUGX+MFsUKldyWdexbAGXUyR31BUMDPviBSf3cMhsi77gVXsL9JEHY6ecA0HxAstw540oNBtkspvalwwfp5OLtHvyILw6z/TFDAa5BfJrjq2mwG9duWzpugL4eFN8S9sOgy4JapZt2CaD9oYZYXWpAB7tUkrzDoUi1dCTPASXUjCxt8/44NYI4wtvjJqvBKOZ/26Rj6qUwcSoa4Tos0Z4W/6HPsIzGP179FTA4XYZJMrdYlqdbIQXKu+M/F4Ho/9MT/8IXC2FzEuD994fawT+CP2D7I+DUe+qJ3NARjeMB0g95UzLhAddk633skgI1+6f0MDXDcUOJwNNzbPAKuezno0VCWV+qTQtudUNYUHlj3mfZEBrmOcnFi8SsuzIk0uY7YKy/vJ5I7kM+OIgtu/9bRKyknISEh3pgYbprtebZU5wmEm+LJuXjHq/7nUw2PaAZjI7yT3YBpDLGZ0/v0ho89DIn6W5OAhN2DCyXk2ApsekYzsVYaivi8TGbFcFkwwRlztOV8ITBYrIQUcM2gnH24r8qYK0ontfXidXgH2C+vrbBgzKETO+5LtdBZBtHyiUVAnl5n8jtRAGWZqWHUvKGgQs7332NI4G0PMXbN3/mYDkDkvpZiVWw/Nwz/mJl5UQ9SeR5EkVo9ibTq9SbCkwUHt456dbIfTTGQjsAB4tsuAPtTlSQISu3WNjOB/q7Cq2lS/j0Vbwky3GWAp4iieXtaECSHXoCv48FoUKdsayHJOyQa552UPqfDRI9Pm9EXMORsE5H8udb2XDx6Dp7zXi8aB8U/Dlmm8weq9RbzpBPQ9OR00GuZAYmLh+9vP2dDDiyb0GVvoDcD/cmvXVzTyw0/4YoTpNQtVjuc1VFwZgg32b5ZNqLvSfDQs6SENGScN0z+64DMDpJqGjcqM5cNfT6JtXO/W8XMuLu/L7wPxojFhgcQaUBY9wi1F5+0fC3rJkcR8sJFckhBKz4JC/BQ0bdT3UIS9I+zKVz/E3Hp6MyITpA203LPXJ6NRQjWuB9ACE0gq8JahQPbK4sCDwHwnJirpn7F4dgAMiWT2TwQ0gnkVi9NoioXVD9Fv92QAMa/0ubeBC8OUfTZlnGwkdUR9f6nNqglenVaLE9Kvhx0c7MWJEJNrALePPwQCkGzy6/yYuG6x69Tj9NklIjw9xXkhogSC1Jx/zn2VB+gLDBxuxKBRm3ufT39oL3bn4saCsLAg3yH3IcIeMuD5bHKsu6QXNhkSxO81UftbavxWrTkZ1R85y8WVVQ3RY0+gRgWbwOyVv5ysaipK37/NunuuFQ5xthiFL9SBg3H877gIZnbVOfPYqoBc+H3G7zppdD3azVlMhKmQky3Om9lx4L1S/XF0UCG2AuydECn9fJyM5Iz9FysMhkMRfKOt9Xw6v7zE4M+BwiH/p/qbTyyb48IR7RZnquXn77TBP8ZGoaaC8zmu7CRzL5mstOZvhoo3nhupGJLJ/4Rmb4fwasrwkWivPlgPOmpR1KoPqoR/MTGouP4Wu+FcZvDzlUHCNldGIDYdGrkzhDf1fAK7uvFmnGZV/5o5Xuk5S52Z1HXMEuQWUJmV/+UnaQpF9qivuZBTSmLRT8T3aAq0Dxa1a8/Ygxh13sKYZh+6u/7s3RCmBx8XxEdxSifD0p/2a0OFgdHhl4X3K0RK46V/kNNSZCF8VRA7SLgUhJpPJ4T0qDzUv/gtNmYwD9wcaU1bfgtCus8Jrr3oKMPMmVA77NcBDS5pMPDkK5fTna6kTKbDUGKUpvlAPjgKfmEwXotAhx82avggK3Ohi9LnQ2gB1NXFEh40oRCsTaXCwPgXYyxzFGWWz4GHWv4e0Phh0zUDXqpgjDeb+yXzfP50FY1fUuy7thqDq7p8Q050Cxh/tHY49ywE/TwXNSHcMsljwqbonRc3xQrrPeVLxMHZjWtJOkMo5BejDyOVw0ImvNsrRTgQKq9KvxAEsGi75z1OMIQKkewd3r0jEQenJUpvIZizq2E7yimzogCNTrRk9ibHQP6MuU8tIROGvpSOHdTpAPX75ZvLWO5Bzp9NqaCKgA+8uhJmXdUD7wnWdgHoSmE29Dry4n4hSwmzmygw6YPwqIQ+XFQ/FxQFXNloJyHqEkyin2gfNci3jQvFPQddo5wjffTJKzj94p22iF7z3myzvXbeBwdiebHpNah0SsgicnoPwc2is+WruGzgrzyCsIEtEEwGLKfpqg9T3v7xoHOoPGXr3i3miiWg312TzrF81XK09YnuW6t3ZGeOadIdDUSPDLKfGmUFwbmPDtQlVwgN79d2IPiLaXto3Nn9lEOT9IgzMRCvgDI/djZUiIlJZnTIovzcIfy8H5zvuVEDcoqOOWwAReV36N19rOwi9LeGf5FQqgP/6+5V4AyJSWmTI1MF1gnz91JWvAWkgWdF6kzeUiMq//HyP+90JJPe++xtTqbCrsl1S2kFEuY5nRX7xdcFn17OXW46kwLHud7iycSIasXLgMhtJBiZ+XxP/dQL08iQK4ScxKOJ2CXayOxGs6Fq0vlXjoXUl9qR4byjq5vbzF2tJhvG3p+Zo70eDUIJi/OYCBq1jSUs65wahnZcpM6ITgVOiXmJZO3U/7oa7fg6DMNkz35C8gkCcJm/AVpt6X1xnvbvkIDgF8j8SVEJgfNXZn76FiMJojEKarRMhr7qXMG/XBF8sn8ds/g1FPzjiFTl/JcHxBLPRIZUmOD1BEy+lEoqY6Cg1k0qDQFdVcKEimMpfByPo17KJiJ2efFWRel56HWcPnHEsgfyV89zq1PPq6Kty3OQbhAz9iRe//isB8oaR17UZIrqd3f325uRLmC7WvHNMoAJqSziKGD5EoiP5h8/PK/oCv4hl6dD9CvAy/fP6i38kUnc7FXtebgjOGJ4RsVkoBSli+MRqOw5h6DdbZPWHoPYO9vJXShmkK9IleFI9iJTQNcVybAhWXr7dsXtfBjnaW9JC2zjEdX1FTHC3GmxM+jsYoBZStrK6xg1CUb7K0JALfzWk/Mrjrwyuhetroimewxi0a11oYv3RBZRthae/nCuG8Nj4T1lbkahzveF2IJsNBBNUD+KVimCSNzyOmeoXEY2E2mwBDzCofnf4nU4RENc9tN2aI1FLpcYv1sEqWF4gfNyyroOiCnE2XCYGvVT//XTLbhB+i3Wpy/cUg2R40IXb+kQU52NVVZ2VBmewrkfDnHPAk83UhaUjBFmS6u5Yu5ZA8VlTqQPH66H088S48N8gJLWssU9goBh2P4j+iP5aDxNzFp9OTAahDIsRYY+ng6DPlbjpvZQPtcewExY6ROR38AuX0i1q/Q+9ilSqzIMU2TfhHmQimr8RYr38sBIavxnOOAl4gd3jVH+miRD0Pju71mW8EsyYWvAE0UCII07qvDyBQU1dQV1t9JVQsu9Zh8ivQOh0lhGcLQxBnyXych+OlcDy+F3V8P564BiTpuM/EozeMvsmDh5rAQspA6vRvSaQu/ku+3QbDrWlsL0NDG+B0w8Zf3Qca4biF1aS1/iiUKUNqx2PZD+MpOzarfRlg1GGj22gBhmJaBik2KX1w86bmdSTk1nAl3yS7z95MmKs3vzOm9EPta8Uw+eo7831oo388hUy6ju266TOSgHbCx6fPsyQ4fD4I8sCRgKiKforEqBIzfMaisjjJ9FweulN4sdkPDKiyZv6zkOBDCP6VPff1JzMuSj/+DsevXD8N59/jQIfu6OSXEzjYY7H8jx7LB5ZXlxPqckngfYp1fMYOwTsq8qEmocRyPLqut+RGjwMnyyKNlRA4Hgv82MRJxZ9K3delKMnwa2rJkEBfQ1APGkh9BoTgewLQn+xm+Lhzll+K0/nBui1llWkP4FFShcKsseOUEDsU/DswEAuKJzGyGT8xSP8OfvUV3IUMPd/22qSmwvFRsGHMDl4lHPtdlBAXS+c/pego36WWlfnj9ev3qby0iFDGRq6PvAtiGDu3CuGwN93fZvvkZH7l3Zji7BemFbDzSLREvjdJyDwgcoDMYFMTU1K/eDxUAmKBVKh4K/FvUQqn6wrsVdihvrgStqjY/jeZEiIns1Op/LVocs/l7L1WuDjR50/I06NkFhtcq1oDYeuTekMRB1uAbsQ8TFlukbwL68zFEA45CZC84nueQugMyUlTAcaoV5i7kwcUxRSucT6FNaaIWPP/JI+1Rc4dRUezWfhkJSnMqdedRP019yX0arCQuloC9JojUT36z9I2v9rAsGkItFVfjzES5inT/2KRGj3kuhOdBPc93hsVnwAD4/tVUbN8iPR0VGBqAb+Zqi4OG6skYYFlenZBJ5DOMSSmG16/lcT3Nyu4pQWcYalmLd6H1Yj0bYFn5vbmyZYn031aum1g7SGygEUE4kixOlvK3AOgERzSMDOU3vgpM2kyHGRUXSN3Lp2VTI4RJCUvouWw1/21dj4ZQyaXnlccWsmBU5m35I7tK8CjtGUHedzxqDtlPfYr/8lwz2zH44LhhWgIFn404CPOtfEtdPP8Q2AbM2hd53+XjBMETg9dJiMpE8kX6Q09oNqXAGdNsUPLjIc5q+WJqOo0Aw7uqZ+MHt0RXfB5SW0CVnO5VHXsdqCyUhwAF5sic5MhwfAtzAzyr1DZDQSKvNX+3gTfM40yNPmyQfOG75Bd7QjkfHvc4rP/zTCCT/RlhMMhRBlcJhSKBeJ5LzZPooVNMLi34AARpQPpcUVzz7uj0QnuY0Z4o42wfw8r8e5qCroKwYB0buR6Hb5u+IDh6nzI6m4vzqvEmQucOxwqUcicUzkp/8wTRBqLNNmfbsKuPasxL4nRyJVaW7Kafcm+CZhzXP3QiVcj+HstSZGorprauYryYOQINGTgTOvhGlg2C5aJCBlVbOLch2D0CrLwswYWwHPFfg+WscSEKwUC2YODkLY3IOxX2mV8Itbfdg7iIBoXcXdaPCDcEr63w8pvQqgrQLDhQNEZEA3u70wFQ81aRK62XfzoLx46/2Hl2HI4fTsLVHtWCivnLKor86Hn1NdYZtC4ajXWGRNSj8G0o6uPdyi9uP4F5qFQ+bhKMx7PvxuYALQafiPx3MUQABeNQavEYYeH4r4cOFcGzz2XME4H2v63/9xjavh0RdMUbBWchvUJH3iAq0miAt+wtwRjUevg/kdzna0AYv83/jgwUY42tEt8LAMj96r5v0y224BaZHLB9P+ZMNiuPbkR9so9GMgNe73vxZo//qZOaQlF259Ub626BCFLp44Klvq3wK8WbkvzmNyYMrOc/bI0SgkY0nnHdlLAWAuvZVpWAMve3oOiXhGIbuD45vGfymw5cP725m3Fkhup19oUj2lUVzy6o/3FLj6U141K7IWNhaG2Heto9DXh5UzigcR+GiHK/n8qIVSWxWhwsIIJMxBVxyIaYBl7+c00V/q4KB1vLS/VgQ6Kxnfc0KlAQ6vfhXk+VkLlRUEJR6BCDTasNPBmVcPuS835OTm60D56vAmoTIcbdrtNDXRtYOkyUHvfyqpwFTRVpTxBY8KLxr8l6DZDgl6irV/HyXD697WE884CKgvh//vxzftkP9NParnZCrgawg3Z2UI6JPZBq9maTssit6QqVdMBuFPRF45AwJCoTuyHwktsEteOvekLg/2W4hvkk5EoW9R3Gf6phGoXHCBhd+BEL5b2CfshEW2CdUeBU8RGBl+fbbn4Qeec7Z/ZPmxiKbUw6JYKhtYfD/Xe2w7gMlyl/DHt8FIPYtCHlJD4Dqhs/zECgNFtofnk/dj0dK6BEsaVy/cnj413b5AfU/JTFixs2TEFHn09ACxFz7l8l+8TfXTqpsb+wxukNHokrAXfr0EGGdnGa8lxAKlNJFujjsYLd8tt8zaKYaa9MpOafVouAbG7O3zQeiSYLSYjvIA/Iy9cVWApRmmNBRMsRsk9O0hZ89jQinE55xLLjREUP2vtZZeNRgleuf+xydVBhdMe8eT2xDkf8qVvP4iGOUV1bU9ly0FX+MgvUtzCGI+neBWOxOMGHflGwUfxAEl/7CjpjCCCwFaKVVjYSh1rFiF3T8G6JdGrweKNkLd5/bhZf1wdFdq/SLWIB5kr++k9dUhsPvxQjwvOgwNftIKllyJBi+m24lrJAR1p3RbjnuHIyt7Vr0vq63wW/700imvGjAtfv7Ojx+P3gxXF636tgKX6o/La9drIEwgnbezNwr1vF+smK1ohY2n10cUX1SD1fZfs+X1KHThT++9CeU+2Eg1MlLdigXc1bzkf9Q5xU9zXfRcZR+USl8+RLmcAK2ezthxqqe8TN07culmH8gINpmP8ybCnEfWHWnquiqXZQ7HwCBI8d2e6fyGg8Mq7jajGAIiMi3+W0wfhBej0X/fshJBWN5ULWqKgO4bhikKjw1CYFfQ1wwWEujIqN8wcyWgtqWekr+MQ9B1zaH5s2oNNJS90Fw+EoVW4nWLFezewudaN6Z4xwyoUvOZPSkfiRicKMaX3r2BwAj+BvQrDXS94kLKwyJRx+A+tnnWQCj9jp/U2EsFXqb98fc1ItGPNtedUPNW8OPti7ewr4bxUUkFvooodP2kYeMKNQ8Z88alp+7kwCSNNM/cWwLaSJaWe5Q2CAsRQvuPR2TDeIhkYuUsAXHpVkwoNw3CWDTupdHhLGC/ZHnkeyYBjU/FyeQdawSLGDWxGeUMEEp6PUcgYtGGUAht0NtGYHqsnryRkQH7eDxx8vNYpNF77iyDZiPgmQXOoJdZoPJYkhxah0UK2UcajlQ1wlTqstYj6Sy4Uf7yMj1zJCrgfNxz+1cb3Ir3d/v2XzFsyszuvzWKR/+iTd1/LbVB6cAP1PmI6vcpP3bM+vDozMP30XabbSDxhvfGVXsEO33fz20P41HU4TFuV8l2uKf6blSmCEHB1TenVHbxSPWeU7UmNVcduvzOWpciSF9J/PicmqtcWTueX44hSF2wecDSVgoLmSkz2c0RCJIap26IUteT7BVlEkvA1UvwkNFoBKrmvTDffnEIjvws41k7nAdNZ2NG+QdwqPWymXz2/SF40H/nK1kvFwYOvcC5R+PQkJqUsedGG3w7MCljRd8IomUp7jrUff64b1znRfXV147niHT0CXD7S85J5/oQdEfaO3i6nzrneh3fE+PjgKH88Z3zvBj0TP9ojGZhN0hpsIr/TGuEtYkDo9fySOg/uMXmdKAFgqzKm2iGa6Ftc/ShfRUO9SYeDWONbwbxkks95PZaiB0gHzhrT91PoPnUCn8XjCvQchMH82A65QdZdYKIQtfqteprO8Fh8xO5dysXeO6wevunEdGUx9lM4a1O+Kj2iHyckgM/fhkmqFN9M/zFA9EXds2QTKNUon6gFvp55V4eUcMhfv5CUQqxCxK5THgt+/Jg/hKHSOIJEnIUH3e2lO4CS8YZ393IApAQbep4/Y2I9nNtrEQwNkPXQIz735epsKqrlxy1F4mEGO/86n3WDJ3pz+nssKmw42CaK3WXymmmCx+CU5uB87hAtD17OoxvKwZ9d8KhZwUjjqDdCpc+mDpu8TVDW0yT3ZesKETbKZGgLzYEAneZZe435sMpJZmzcpM49EDXPM+iJAeacoPazap8gf7r4RgWCEbnH7tZ7avNg+snpwpCsl9T6zGX5PUnCDHfEzK76ZoLM9ciuANKg2B8MPaWt3Aw+repFxjFi8A/O9OCZYIMUvGpT5nbIhA+vW6Ku7EBGk8UimiXE2FAmq3Z43kEqnQLuldInQtYszzn+lgi2FU9lwyhzoWabDNsQ30jqNu+PGXRZAsimU/wQoeo/S6Lz/c7jkDU58TpNk482MxV8Ri2R6Dslj3dFSUKXHQXd36dXQgmF1BkXwIeieyP6POYywEP4dhv0psvIfm71Ptt2WDk1S8uompbAOvPg36sYRCI9SvEhg4HoYPJF5/ovMwH5qT0M5cPIYD3ohbHF4KQ7X9qqtYXKVC9N2Qc8DIZ1iKPnSNU4tHGB47SL7coUNf1zOL7QCJMhfYsWgXhkfT8XBGLCwVuFhw3l5hIgr5Eq2H/C3jURlSJ3XhKAZ6PzwMeziaA77OgQhZ5PBoQM240bimH69NRuvzC4UCnQve6kjsESV/eFnL16IOfjaLCql4I6NaT9P7/e5wD4VxJLoZ9cJ/91iOhHQR641Peq9R8rgortlXc7IXPpIueWpHUfhXsDjHTJiOBzJQbszN9MBKar7K6iuD3x/CuLD3qPP0TthohWQStVxg+xD4gw8e7UVGd9UFoUvaIynZoEVSHqvZ1yuLh6Om3CxqNQWiWltteVKwYJojbwoIaJLje16y31h2E/PY66a4YFIK57fCNrjw88Mzd0sptCULnnC1issNaIDCBzvlULAJZiWxS/PEoFOjNSDqxlAUJniIPRbD14B06gvDEYLSQnpgfeCEHHnHWu19xawC+2JK9G/rBKEUz04yslAXNN8v36N82wHB9xueuumDks7dgoefbBC7lgy8/m5CAIyjM+nFsJMIxu+m/NxoEN0GeoO6xOFDDxZ70ekFEikdW/4vXG4S1TDp177loWCRltZ70ISLvfWP3rAMH4UQ2lRBbYuCEyCXtP8JElNr+Jc/OmjoPBL4EL11A0LtScu+ZZzDiLcq8EV/RDTpit40MvNIBO9xG41VIQlxGGqy5yt2gksytwzaaBhqfCojJbiQU8/CAl1N8NyyrjrhOX0mFo9zLEoppJGRw8utfb4luUCOWCdsfSwU7Fh6OBgcSGq+6Stvr3gPHTJxazvyrBJ0SM47PuyTUkaJW0sXZA8u08xki0VVA+W90rfY9CaXKXh70/tMNPQHLD1irK8FEivQhrYeEQva1J9pa9MCCqCPORKQaIL3M5vcmdR2yPgkbUeDu7gmDzrISEBEYdigzx6P97yyH/9yjwO3SbuadmGL4T8OtfMYFj7qqXX8xBlIgK1E7YO5ICWR4mpvfZcSj3DK+tSvxr6H9eR27Q1gG+DlyMeykUf1oX+If9cQa0E3gx7RT80fvTf7BwtpQFBrtu3UmpxaQdXX1AaZmsBR3OHnqSRiK89Jp90kuAezDCJ8D1Y0gPhW26UIfjDzSrm5sW5ZA2LGnepjbjXDOs1MhjJo/uTfTqxW/FkO+edbVCw2N8FOTcL5+Jgjx00q0SiT3QvzKUWu6njq4nzxby6lGRvSvzw+9u9oLYa+Fk27p1UEL/amQqzJklExaY3Jd74WesdbvrJr1cHHwV4AMtV/+fAqgiZ7tBbqYiZSRSw0Q6y5ll61JRntuTAE/t4rB6mSrYbhzMjwYTDA/QOXMa5bT3w+klAB3cS6H7fMU0F977xtB3f+22ZaD6YdiQAc/P8uuS4UUJb6zhlNByIjru1T89U4Y/FBknvnNBi4Sn5j+fUBEv0wOXHlU3QG9/lPMhGpHEJ6Q/2dJT0T8D1dm4q4UwxtuDJuYTxL0BjorJ/cGoZBZH075+8XQ04ZYx20SYNk4WqhigLqfAt/71i86oElm5i7pUDn0uP4RevKRgHI1OlkKRjuA6+xFNqWlcjhj7no6gJuI2m3DJf5sdsBbPmbB051lcFYMu/+JBBF1v3kq4OJZBE8P3i077YzgKb+cchoKQj1pVjtIoBh2CbImGAUEWZpkDU5qDmg9Wo4y2KwHsQs2zK18tSAZL5aevhiOpjO246bP1kHs9873GX8KYf5JbSdPVRjSjz7DEKVSCym0hWTMrSJ452+MrITD0FmHx90LVL+C0SLFFvFC6BFgjFrVDUMYz452S7ou2CUVnbWbjodXHyVoI/uJSC780pNnVD9SknV/+vzVO1gNFX/jRPUjXKTIyuIKlaNuhN0+PYWHV1nCoqODeOTuYmEzoNMOdGv5Z1uaCHDzgKWXHhcBCTc6tBEKBuCIRqGEtJIfqJ+qPA++JHSRxa7l5ewAdBS7ZjGkvIW2dsH1NXlq/054fLMpGwCD4dNDc2kYGIgU1vnmTkJLzSHF3sMDYKc4oT1RgAWUPsoZo01C2jdY+5/wtkJHu7rCI5EKYHJOGTjuG4X8BXNwATKtEN878LxBuhJo/kjLdRKikOj1fv218Ra4fbpp/rsMlY+2VzLF9KNQ+KEG34QHdbBav+3+c/wdlHbW9GS8D0PiNs+kNYTqYN2xxI/mayzMcPzUXygMQxtLKV/o7GphUj2b4MAaA+v/Jd05rhiGJAI9nhfldsLa58cKM8vRoNGFWVyNIaIzPctVDUmDoJH/i7ajthQmD1tXCiwTkMXGdv7rp4Nw6NM5s97iUlhsmJA01iEijqdMPhIvB+H+K8n/modKYF7ziVkLENGheBHuEddW0K9jDyVlV0ClmojEu2Yqh/wqWLu4WARD4impElTfig4mbue1BSH56TF57b1CeMSd6tSXVgpzMTvHcqnzqMvO1AoXXgQaSd4vcqke5jas4feIOo9CH5mcJ3kMArePcsXzwDIIJH0wl5QjotjFRGYP/VJwNTUeLL5WA/8H+ZoDSnicJJp3PNXv//8zGkapjBQhkuzISskTpeySkaTE21ZaVoRIHMc4xxlOGdnZe69zHXvvClFGZpKQrOp3Pt/fv9ftebte13ldz+fj8bifcwoEH+U1y2GQLT4nn+V+MSQLGmjpMtXA+bq33GVbocj/HDbdVa0YEglM4XcEqiHNwHZu4mcoumLHW8BhUA1v0wVuhzkmQ5bR6a3HmHBUr+27WP+wGoa7px0WeVLh7Hb78s234WjTjNl/FVMFPtPYysjIFJAb2P1pN1c40ppCsX4yzSAoxnMxeDIEKo16BdqvEtEo7WykXlkzEMhXwnGPMFDcJX9mIIOILpWnrKZq18Jt3PBq2lIpHBc+OPatLQKphF//78UEgjjmi5kfWeoB+NUmFN1wKNiD5WaJBYKS6lsTM8s0OGFZXivFgUMOfMF5uoOtsFKXyNCuisA0bMfvLzcZpeutLXp8boW///5pecRSYZ48pfSMn4yqp1rj4kTagP9n0f1lYQSB+kffc18lo6QYiZLDNq1wc6DA55w+grFJ1lreThJS23tu2xHfCm9X2DTvF1Ih+rPAifUFEvKu4vpzPsMWKuvYux4rFcBfVevFT+LRyPVR0A7pXBvsIs91mQdSYW5XZXajKRnFflioLl5OBwMtl1182VXwVkHEzcsqDOXq+Q931qYDjnjYLbi1GipOdRSr3A9Diz0vD7Hn90NZormPr1wNqG4XzliWEVBuYu3SXVI/UDXuUGdfVEPjNz4uhXkC0iOL7rBQ6PebYMAcJorgnkOWhBYTBj20PLXfKa8YTHgE2KJfIUhr/3b0714MuqzO+L5xugiq6p0Ujtsg2NDdG2o1FYoinpsMhA9WwB5s4VHtwwXg/IRhbz4/FlUN4g/v2VcBMk0GV8o0C2D3anbLnqIwFKC0vawYSYUxLoKy+3Q52FW7JFgZR6ERDm6eJwxUqKAma+umVoClyO2s6Z+RKIDdgbektg7Ktpi/o65yOMMz8WKoIRIt6DgebemmQu8C0xJpsQKmCVUsq35RSMVOPzFIEAt/LA5KHq1NA58/QWJEBjx69U87vNQqEqoec3NO8L+DSdH1IdluHKIeWXj1obkdWBuGu4s+l0GNc76R9vkY5HCobO61egfsOOOeutWVAe9XbtFErxh07Ii0QHhbOzQGs+mpH2+ATXXOlOILMYgiy2SVKpUEb8RZ3zEcTIeM9xUB1+n9nynaliypkQx6soT/KgZSoellLNPRE+EoZ+YFS8RQMpRpvtNu3E6DwOKiwHNfsGhLpuF1EK0T3qlwlJWwNoDhD9qPj1wU9HVJyO6+TR9IxLA1jO6tgW/4xjc3HMlI80ug5LB6H9gmiM2zpdcAWzPXkvs7Mkqse10VebYPND/6y2avVMORH64Kf2rICOLFBVN2F0AAm473WGoRuJ2fiXvUEYqUFv+kP6MVwLuz3VSlxGIICg/zLaOGIi5a7szx5/nAkO9dPfWqGEx1U5/eGghFx2IHQwupncAfPGEWEVIPD7pX7+vSz7kU/DDT4E8PhDcYbpZqUmFr64kCVYSCcjhHr1HYeyGaV4TP4h8VOJK71eX5KCjip4Ef2S4DTMWPfelNqoYGB5sfkasYFB0+t9ed1AO4D35rn5br4HWFh0CBGgV95DIiOm/2wOGreGKlVR2YLtc/mTxJQZcV1K3c3vaAUNRH2ztTtXDv85R+zHkKSqmd1z1qkANUqqhX+OW3wFp/GSNxGoNshsb6sUPZwNuDtey4EgeKPEXRLKoYZNhnyi9D31cw4nn2wZCX4N748nJ+YCRiLRPqMOGog1ti+VF+tb6AafFKxxhGoj0hl07eW8iF9pKvo7cuJkLoRIT2m7VQ9KTMxtXaPgcw6yu4c45JUBizFuN7EoNicLFJ3f25kE1+m7tlngx2Q2YiHL9DkRhex9pwVz/Y3GUkJv4tBBOzhx2FJ0mIod7UKkusH5rOFo9gQopg79px86oeIhKu++X8mbkf9g9tOmuvF0HvMtPUyDESstLqeb16ph8Md8xuXjYohuU5ill5NRFdO9pQhGXpB/eUoLTs5mI4vrB6uuEgCZk8FjgZOtYHAR+q9dzuFMNG2aLxFTcSqn9cfMd8pg/mU2aDdAhFkMc4a+x9m4TEnWbZ7nL2QvLiwKewbCL04c8vt/NQEK+Q6Ijp1x6wU2D50J8XA8IVF50HJCjIqF7o2N+oHpDx0lCEEiKU5t6R6rpIQYyvCOth2bXwl4f55tjXl1D0+M8vDfZI5Lj9W/SwUSoYjMXKPYxMA5R9rntEG4uucRFrJfemgp+dgqmp8jvQGmqVmrbBorwXXMyqLSXgesD0/kPRBpjLNrzqcAOD/nMR99V4ngLej5wHnP6kwKH+R6pGb+j1e6jZ0i4lEH484f1lqxogcimvJCljkFTeq6fGK1VwZPKZv9zzbLANbhK+ZRyO1B0+YmvX+6FCoaxZZqoA4juzSIzyBFT0c5TnxMcWSON9cdnnXD1EX3R5VUt/b0t2jXPxLK3AcyLZdDGxHu6H5F8i40loxdO03061FepHbS62KtZDJS06ZbuQhF4ZXfghYkdfv8wWGaWfBJ4veM7zdZPQ2UrBtVd0P5IoTXvq65sI3uDh/JLuRy6SnsY9T3vg0x7tAM5nFSCdSevb1KKggLttW1FC3RA+sPTLP6IGNhXujew1paB+mpFu48lumCiQGvnPrxZ4fa51XqevjzzrHUhnaICfl+rPGt+vBCHRrbSgTTxq/6J4P260HtjHvQPTsBXA7PZ93vYzHqWLlRnvOtsApxe3pI+7VUDm7kDN3OPRyHmJWGw3iGBpvfSlLhuCO/G2MGmHQxJOvP/6DtNA6owwRdmCCjlMPu/sonGo0xrnpapNgwsF/2W9P43gFdsBp/PlOFSfyRLKj6XBKafx2TS6D0rLBdf2zOGQmFtFyFxVIQQOlln/uZsGttbCAUkNoWjtzLJY03whlFD6Uti4UiDzzJvqiuZQ9OKzWtib882A//OzOns6ForCor8dNyYiDHOo1dZOE/Q+lkRoJAGe7lV0dRclogem6Y+b2prgxDYL2XjzDbx6vDu0cRcRhdiEjh2n9sGe+Ouz74xp8HqC545/PgmpBiMN4cg4QMJbAygLD/wcvy4wHIpE9lcyXw++bIL+wSN/NRUTYID/eqhoDwHtvdqoiqusgDHmzBfKTAiUHO7Uqh/AIjM7PX177Uo4+iWYS9YQQfWubofSW1j0eHLKqdm+AhL8fCztn9JzzbL5w5TJMBSxufuQlm4nNGMd/nBwvgTC0OcLDosxSFm2cz1KohN2TSf+vrv0DFaP/bG+MR6DDjQKvKMldEIsqNSqGvvBvAqr8XcWCprUyXnMJEsDz3v7WdnWYkF+R9KEmI5DZXsOp2HZaGD4vuim/9O3kPBC5r58BA7ZsDZSn1MR7Nlv8brUMg7E/dLM9pnj0A18MedXexp8UyksE5xNADvzD/vL6H4aVvqvLftrFfR7hhE9ksrhZlsYVlg3HMlzmn0pC6+CBeVQwQ3PMlA1xbhncIcjmNobuTPeBFOHMxL8WBCIjZnkuBwioogJf5+nzM1Q7tXOMy5PhQ0e3qwuCSIynrt6PfBaM8g35eEPb1Khi/ik9Lc1Ef18tvSLL7MJmK152VXMqCBawLupQ88521ezXcwYk2H+homRaWU91N3iMxRSC0e714Uj7yQkwS3XHQr1TAPUS359HOwcjiIOK24/xSWCyrzenZKf9YCoVK2K+XBECHjVdp6el2Yip53Zz9RCSQfe04Cel5oHzzwX1y4Da/cL15hdo0Hh0o716QkM0n37/cW/h6Vg0/kspzQ2GoyEW7ycIzDoaPQPcZnjA/DUbWF9r3wBnHz25ejYz2gUca3+kavRANTuvmtgo14AtKU5td3p0Sj3c8t06XIHuIn8sw7XoQG7kO9phrYY9Fmd7fdHvU44Ox9hcfE8DThCfBn/0vtB+PRyqmBSMyz+HatgzU2Dar9J35+viejXutj6JdlmaJI/7+Wmng7lcSym5jpE9GKKzaiJ/t7H/UqGDOsqgT066WNaXhRKdPEO4riGYMiBpuK/XQEe+wrvO+7DIQGtE0/eelEhtG3Xv+Zr1ZAUv6b6QisKyVfpPhABKvgKXJzSeFwFnGEWSdX8UXSdvPI7aJ0K2r1GHj6xVbCXV7/I900UGiX59Jsfo0LIA31Bt5E60BOK6ZhgjEIZpP3Yq4tUSC9yWZytqAMBgzfZtoQoVE+VvvAuuAX+VaO7c86J8CPg7oSvCgnNT2PCu4+2AIfr1C+FvETYiCHsubxERNcXbLOx7IkwmOuxpfCnGlTaL34TlYhAJYo3JCwONMK4uX+M5eVsiJrKuOlbF42+ZVIXbM42QtGnfonifbkg6XAwNnY4GkWmyDD/G22Ai8IRykgjF+QjMBrGb6KRvtuTKafHvaDhU0nUEcyH7dRJXuuWGIRPNdJKxPfCPb6unJSxXFh08fOaTotBKRd2jxpv9gH/+0jTJ1M4OFisoFVzloQW/5T8GKb7PuXvx0mxaCJI77n+46UICUX4hl0zJHQDJzKcu8FcC13njt9Pu0lBhk9fZz9J7Yatr27fO8/WgBeLtJsDff18UU7Vz3OJEB4Y+0STqxbaDdqt+zgj0GGnS4JVzvEgwlt774leLYxryLsUfoxATe8FXb/f6oZmphpvJv9qeKp+3/2POQWFbtrirRco8LTgWPCgMw0+zD/kSN8XhXiVyRvWjykglDO7u/oXgnNtiSfXT0ehlgwRiem7/aDwqju05SgCr0vCCGtORHe/+7cfsOyHpO8Nk+l0jtijg/6rv0dEV5p+q8ZL9oPypzf2V+h8Zt+7WafUQkQFF2dzSjX7QVF+YL2qDYG4fek7EomIfu+zvJj7IhoqB05FNTyKhax7DJeeWuNQKsdbPc6eaEB+SqOtrBQQF52KUzPDIdtfozJSzSRgSD6U3+j+Grj+8WOjJ6JQRfITuTQTIkjIzl89vUKC92sGN52F6f0sku0xmNQOZDOFyMSP0fBv8kQaTiwGhcYyawzPt4PQ2DHTDYQDTxYKK9YgBi3WMm+2C3dA5nJb3J1gIuyLOKVy3zkGmeIbPH4n9cHeMeHASs5kGOPgVsr9RkIDTbzeRx70wXO/aIEXR5JBwK1AXdWYjF7Lck5JCw3Ao4dbGgnmmcDok9/N+T0aMVntYTgnNgDD0jF3vrpng/zzV8nrE9Gotuvf4WeXPSFvl/2/DtdKmJiyUm//hEd7hQw5xor6oOf2V+20okTgNM7X3G4lodIpe64DbX1gMP4yp+E3XeekJlvS35BQ5/6Ih8L0vFfwdKn+t1MiGBmJrQg+JKHCsot2w7sKIYM54dGoSCrMCVgbZNSFoofkDd3k8QKQ3CLoS0yl/R9XMtG5QL5WXLMpshICb27Zxn+gwiePrmXWICxqqjiR0B/dAsaWqqffObyATq/43V4aJPRNdVNRqrEFBg8Oqo85YqAoSvTzqg0JVS753zBtJwB39MTSm/R8qNPvZ55SwKHLzLtDvzC3wq5ZDE5TLAhO0uZjXCJJ6LMc57Lndh0sa00LKz+qh17rpgv93yORIoxUpaXVAW/sRrH7Cg3c7NJEIosjUeM423QcTx0EVsb3hZrWg+2RLFX7G5EIp84ln7XeA5IyNfyRjLHw2Og1IU+Uglpa4Zlgcg84Cx1sL3kfDxGRgweZ6BxRb/TrRpZ1DzwRcT9xXeI1+HhEnne9QkEb2DHHtLkIeOih8PfLQAksh7ZWhLzHIfhnNMl9FAsldWwKt/tKocnw4p0NOoc6O5169ehrKNjV75qN/1oCj9nPbi2J4FFBdPIQ7XAw3HL/xKQfXgopCtMmqbfxSMmkrZCDvR+6q0x6Je7S4FizyogJGwmhG/1oko8+R9kU36ivCOYDK56JzRMRq/xBYflbQUCcbQ/c61kCzY//u6rpjkfoWuyJmIMBoMbiYfz0TCnYFagdiEzGo+xdR8Ox2t6Q923UJeZmCchoHKed78Gjst3v5pipMaB+svN5pjYeXhw8qWtmQfcFn5WfAzQyLAs84H3JRwJNjm7WwvgopJlzz4CxuQew7Ye+i7wohI0qRb9ieQriyO+Ft9U9sCIlW15oXgDa2jZjyooUFDk9e/Y4dy8Mld/tWxooAI7XCheTuSnIe9DFy0q3B3i4n1bXfi2AGkaPkU+6FHTxyD+/E9uVcLerR07LHkFR4nWlHIRFHM5aF8ajC+A9zZvtiHYCMF373eJIC0XCEQ4pCS/ywTjgcZyU2Vu4c+lcymE6tx61UkqzfdwHSzsynVs9MbB5L/zeHx0yuirwlOvkpUoo8Wj9F+RJ901vph13Cyya+bx950d7JTRSVsQiPqbA+RN+mtxpWCT02OUjz6kq0H2+YBQUlwb6sgxW/sNYNLR2++7pVz3w4IDeLWxCMXjv77tRBxTUZrnK8fQS/XP5jHBtbxfBE83lQyV69M+7y5r2r7YHupSYP4kXFUHb2EGvdAUK6vnY2ztomQ8py4ED/a5J8Kb4N8fz96HoglOmOk6hH2bnu3ezyqdCrpYa+WcxETXeNdFowOcAHXIEjtH9/ClZ18JUAIPCv9ebL9/JhbUrPd3VolTwpF5v2qTnlon+sxE/32YDO8NX5/yAOsjtKFnV0MKgpOsVelnN3XBDLija0o8KiU9vu+rSfYGJfa9unmwP2JTF7bFVpULlTsjaE0MKat46rQPnemDLfOuvo0UdHLgXcF/VgIKuFQS/lRpuhpNFsk0hzAmQ+zpNXotGRG3+L4RHsc0Q+XNewtf7DTjYT0qvhxFRYoS3WvR/dP+wKZrV1awFwhRudw8PDs2kPg4wbkJwszTKgGmmBqTLH/+VtMTR81L5DqmR7h8Fyb/TS2thoYvtZPotHIrxfUxRIrTA7Do7QcIkA/id2U/U0PUn5/t/rBrhdSDWonrowfUq2NypVrBLjkRLRRvmnL/r4KG9VqLIq0qQDlCRGVyIREfz9A3vZzcDQ/oLI+fYFLBfr844k0REox3p6e5Xm8Eny+6kolkqTH/ZQWBJRHxGykQnvWZIy+T7WlSSDGwfjkRYWBFRtdLl14F2zbBRuFSvk5gAG1f2nfzkRkTpaolqn9n7IMIo5cPrSRoUrd394fCHjJgTfrsfGE4Ba9o41tYsDBrXqzdl3bHI02ufYNt4JjSdSlQIUyqACbavy30UDHJ73mw2MpcFvwv2vsj4XQCJvz62Ymwx6KBqrtuWaCaop/1aF35QCO+PyC/aN2CQVcWuAxuWb4GtVjHvtkgdRFgmGYlbRCDOHVvKimgSDFSOvlvcXwfGn3+89kgORx1JJ3Xn3ZPgwTVu/dcGtUASve4g8Twc8RjF/mZaiIeDhapPR0WokOr699pSWQQakNkUaRSPA+eh663S6nWwlGZ5QUcyEv16GiPpuJIFUcLdubvbCiHs1U5s/T0M4lK92HvJuBka+zXzbvnnAMlSyEbZhohwAT4Hg6qaYSz0BwxV5cDnh4FTrdlEdCjzTfvJkGag8ls27ufMg8y2NJPkELru3Rvg4jzTCwvdMrW8E5Xw6ZLnrWuMFHT9pWdKgmsvcBKZlai8VSB/IPmJTFcM2kmcz2JU7QXdn8EyqutVED8heDRkKwbl087k3XzaC3OdFaqREtWAvajC6NQUgzblv5FSjzdDlZFv9/e8XOBVTnRpvUBEfnqOrWxn+uE5yF38cJ0MtiMHvLJqiajIIa3pZFcDBISw8xk8QMAtfVW/ODIa8RsSVC+cawSZSv3AkQQE+w5VkabGopFFpawM47sGkDrGVJ3BQoO4uHbl2sfR6NC0JY+ZPwk+raXaNtUieHLKZH/6WhT6ox+q+kmzAY4NponFdFFgf+lQsb54NOpgSGpq+FAP4peyv0vqxICfrKsz/wgePfwz1/fHsQHkjabFqlYI8OvFlVbNy9Go/Z2M+5nMBvhPbqwjxykbLnQ+oJg9jUa8n74oFHg0QHmA8XO7+5XwiKeGxdCIfn5t8glFv3r45VLn3EgoAwkNM+E7r/HIsMHkRwF/PahcbOwcnSsDd/l7bXrGeDSYaStUI1oP9xI9JAnfSsFX8jDn+E08qrigXJDqUw8aXSVF6tfL4euH1E9+MXjkKh17nSO6EXb8J2wO+xZAuNreoQEBAhKzn/xivNoIPk8LLIXECmBr68d2mR0BmWBfJjxcaISFw+u6TicLwZz/tw/cJSC754cCwnRb4V9F2q03kt6Q6Zf7X3INCZ2U/TMaM9gCSakyA5VM3qAvXyK/7wEJKbAoy9gTGyF4DSul+Dwf7HqpnBghAjqs/Xu/sHgqEDwNHvF7lkLCWEYpwZTuO3zXWVLKU+AA69ulO8klIGn5tS8mEIt2JuNZOtTSIPuPnrNrewnUjOSy71kKQ+89nBW9V1pg94JHe1i6Mzhr1N7gDyQhqb3Jjj3GrRCul3jq+IQDmEmavuGsJ6Ez3QrMQ1Y9EFt39/yLJn/AZz4SnaDnDU53/Gd2fCrEpcmEzvwuhrhT46RUaSw612xiUl+VB+6vTx9ML6gHWuOQm9VEKOJoFKxR0c2FMd0fsvcu18ORFgcmtz0YRPVX/aOe1w2Bb4vTy+SygSj834wknSP2pONbDOX6oVLIsLZFvAQcEsrZV6uI6Esoz3SSVT+0E7XEyuNK4H4xe+f120R0v7Nc3nauG+62CresGuXAui/WzNKUgmr22O3bTz+/NHHCzvp3Dhz/sreU4SoFFSdeuZPyvA8uypd/LueshFaeEjM5BTIqEsCycXv1gdmY7I6QUgUY2bgc2qVORoonL+2Up/bBf3k1eddt6Hwq9MX44AwJsf5Wv2KpkwHGs1M0k8s0CMs/V/h3C4PErlzhsZRJB8qFBauyZzTwGK6xuxIbhgZ+xvb8rEuH0k97cmNWEfjyZkiNuYahwu6fV1llE0D3P/d6oVvZEFx8Ru9SWgQKjNrwSDROhIvhkUNaG9nAUmTSVbc3At0X2sbWGbTCwr2ekJ5DDYD1NrxXV0dCf1tHjqliWmFLr/S7IKEetB60KqdPk9B1t+iU9UEEI7ozd/MtqmBr4+h1HXscYggK1EhwQlDLwdM8ZFUF6pVDzyyP0bmmmpbj9xLBWQ/2nkKGCuh8HTauI41DbS3WVAv6uR0/UA/pq1SAojr8WPTBIRMHXPJcdx/sbzhxc3OpEJ4FPHM3pOdkR4XxtMWZPvhwGlZc5QthMBMxqVqS0Kvk4TsHZLrBb1rn6mGFIjDaW5SwQL+vxig4hTnaDTLFk9r8dwuhqn8jPdiEggyMjzVExXTAe2bXa6fDsyC2O5N6PDkGSdo1FPZJd0Dff9ocL/HZEL7udWLaLQYl6vIuMKiXQoXIYfGeMhLs1ox65O2DQfM39jqKF5aAxi/uGjd5AtzK9ZP318egeJmOSePNUsjzf2hDu0WGtki+b/k0DJod3OJ6wV4Cc7k8aT9u4eGyIVWDi55n8o6JKEY5dwJBx1XaeRiB9GZkr/hGDDrzuaCJq7wTfM9xlU6eoIHymnVc2iEKuj/X/vgMma7z/9nF/KrFQ9tmjm9BYgziyrG5uvSmF9a5DUPvdpPg4S15qlxsDGLejD91/k4vPJQ2G33gSQQx07UF9k8xSOIVwef5egfwSL5unmhAoIqg26EjBv2qyvB03pMB03/J8+cqETyW7+Fn3B+GbrrZ16TlZNL7pOaa5hICbc0lOb1UDBJs7SM9iGkEFWYJ3Si6TxZdD5+kChOQR9ZcJ5JrhLmTCh5TLW+gqn0h1GkoGp1I9ph19G+EkqUG27qVGDB7vtyvcIiA4uyYJtWtGsGaPz8rm/8tcDzzarmwQdfnLxbfcV71ICHD2dzFSH8/+jfq1Ul4xM+lcVb9cz0McarhmWQRMHMpeJK/4NGZVwy8Mbh6KDLUPpuBQeB+JkeqIx2PDj5+wIeK6kFtroTz/VUqeLNkKjVQ8Wi+UFOwja0flkJ+pnUuFsCV+xnnvtN55C3HdxV39i4QEg0uP+tBg1WlnahUcQp6G3Wz8FNwP7jJKyvs8qkB7OrobOY+Inpre6t68Vo/MDofH5+l1cD5dI5hdU8ieiAjn3bJtB+2Uv7cdsqqhZMMjz/tfkBELM8ce2321YGZe+XKsmsxWF9bvjOrE4nWGK3anT/UwcIaqthaK4ba4O7Y+MFIdCvW9NbdNwVwlMLqfS+vEM74tOtx07lA4L1EzuMThSBd9ZufgVAE70fzlrPonBu549OME8aB7wVVxQ3xNOCrJTvo5+OQJMVV5swjAty1HVETj0sFu/H6IgQ4pKxwW7REkgDqR+88k+pIBrELXje3dHDIOa5mhA/VwY7h/c3bA0XAbJG45t0UibJyGPefGCwD3vkv+omZr0H+7D2XZoEwJGLsRWRULwc2ux9HQkbiIZwwEzhrFIZuO+EKFc3L6H5xg3yiMR4OaQ1x3ZjDoLQf65qkpX6obrliG6BbBV7J/mOXgIBMY8pI9991QIvzvpdPdBHs7tbVuJoZg3JB/cXjqQ6ow9rF3smigonU/JJbAz3nZKmFxIsNgEajyYasWxWsVNvdsZiIRs/6Ym9wJtKgdDhu14PzFXBLotB25TcOeRUw3j/AWg8+ZRg+XlQOhnPVvtRLeKR66FUNNS8Qcpkf31QMz4TK0tuOOX54JKIbyqNU6AU2iae0DCQyoetpZPB8Px79PkYWS2qsgIKVRhYkVAunb0/RxLiwSOzIy7Wreyohy/3SuRPKdbBpdfVHpDIW1QsFjGfTdZ9rX1Il3qoGqts8NW2csehDTuF3F1wtSMVL7phS6+F2bSjWcisCGb9quDntUQdx5MeSX+nrr0/ZdP0hRKKKWfftxuwSMDzfHoR3qIV9RKXj73UxqMCTFrR+ugReHRXNevarFpQPJ95yFcWg3WIjGYtuTTDJ857hZGYufA9Gr/cjAurNFLX7ubsJlAQXcnve5sG36dV78ISAuPeeiDAp6QaD9GeztlvFsPPBk/MvnZviL6wruc13Q0tL0dqvM8Vwfrs96Cpdb52Ke/4RhOncNGv2ZGO0GEZ08glM1+jrH7l41l5XwWFtZe2S13h4eNSX5cXxcPQ7uQu7r4GewwKMtS/w4eC2EYc8ORGLlkrWX91+WAX/dvl22ARh4UCes9U35nBUXRjkPP6SrufZu9ijFopA+sKgZQHd31dVeiUPVrfB7WrfW6d0aMCkxRX7MpWMyq4VDypKtAN11mZS24eeP1M3bbWnyWjqr5gxx2AbfC/5kVBVRYMLJhFqN4rJSEZ0z1DzSATsTajXukytAvKvM0t2H3Do760L+Zz3wkDnu93X6OFKqI2zu3liPx51m3l6sw9HATBks25EVsLkh+uEM2U4pJ2+VaiIt4WLTQwPzYTtweBS+tFjEtHo9GyPH87QE6g3Ai8cOecGd5q2B/Gf8Kh9dJeAd6kdxDedPHRx2AMUAvM2r56MRnsuJxLHrAcgy0E93UO2AYysTGamI6KR49CBuiaJATilvz+Fj60BPAXXJB6MRiOGyNb9pNsDcLrUg0Oprx56WnT3lBPoOVwq6U+AOw2kKm6vR+VHQpvkbO35YRxSigwdN1amQThjS/sZtWiIEnsfgMnBoS6mE6ydx2jw9zpj5CVsJDgHGmgeo+AQ1r3+12ECDST3Lc/viosGBm+7rsglHDLTmmb0f9MEG6oBu/bG00DV01uz8TMBhaW8OJE71AR6Tf/NWAAN+K8lBXiwEZHH5ur62V9NcOxXV5neWxrsEvaumxYkoq1ySbbvvk1w8UfGpL8CPefc0D77qI2AFEc/j8gp9AL/+twDn8+14CB5be+JfzEosjKfZ3KjB27ZhlUMB9aCN8lYhFWUgjpNA8tXP2ZBx27Nbc7uZKiQavMptcegfFk77VDnHAg3WE03FEgBp9/Fj6ZEMOhxRl7WRblgcGN7MuJOzobKgLdhC7fwKJaz6hYPBg9WXUpUtxO1kGz0pmbvCxwaslu7rq0SAcqnho6wWdfCfe0aScw4Dh1PyGp7dq4JDr4vsWtRrAXsg9r0dxQCKhiSonUcagIpjQUrjm+10OY68mHUh4BudufPtIw2QlzUpv3W8VpgUs+6Z2RK98HD70dHSnCw8r1zrfx3LeSbW0+ExOHQBZHgvWds+gETcjpCpS0GOJZTg8uNiSjjpeq5Cad+0O5bND3+NRYO8Hx7h9ckIuobgePfLKNhfHt7VTAKwTL55kdXOxzaVrEyCfpIzx+Ojsw5+xG82p/8u90DhzaUbnLLvumHsXrV/zhdU0Bw+LZi1BcCYi8M12wXbKH7Oqfr5scgSKQFI+cVOg8GLlu6jFPhv3dypgG6dO7RD3CSwEahe2nNhbEfaOBVquSiUpICgw+yUh0F8ahvhAkU/tJg5QtoTegkQ9s+JgmRC3gktb1xTOVsPTj1BcmxfU0BWSHs2wIbPDJRMXo88pAKqkLH//qfL4bC6Yhn4hejEC/v24QUv05IyItR+zGaBMxhAkdl6f2Q/Dz42Y52J3yM63N0Y0uE4dknM9LfYtAInlYqLFgPhhsJaQtQAlpLt38fNsGjAWKyhbZhPewyW1ChcZYCxllTw94Dj6pWJ15HHagBri/+am5LJaCeeacrgiECsf546G5mWQ1zYtysJpWl8P5kAqtcdDh6kHhbMvdXFWxs39i7a7QEhseOt941CUcVhzRUGhg7IeOOjkGabBL8yRAZeNIbg8LJi/ON0m3QO/xFgPlXIcj/02t2MSQjXF1BjvSjNqhlcTptrV8IxxsPyu14ktGsh1e5SHgbKNwomkgWKoKgb7GXrULJSOWsxUr+vmxo4G1YUsMWwYcjVq7vrDBo39lR4o2VRrBfE/C81FMER5tB789/BLSaY5leSWuEUw5FLRd3CiF7vqbutQYBbYoV9aQ5dMPNZ+2L5pz5ILAvMciErqu45Yakvp4uUOQbWHPczIUzTVIzlw0o6BKT1dW9Lt2gpMW1CgM5kL91eNyeXp9LZDngvNMGW0uN1EDVIji1pTn/o52MJC2tv9s4tMNtCg3fIFEEwS123ul7YxDx0Atleb52kJG32+I9VQy8n87tLRolo88qpUeJH/ohFxLqg3q9wHL/bi0vF/pcMMq1+Uq/gtVL3yZ8aPXAur5TE6KPR2dfT27dTG+DsNeXUpimi6Dsgo2SKIWM/tvR2W7LCwdf7pULfwOegwz1deXBeRx66odt+d8+Aul6/7c/pZ279n/7MJspF2CS+4Ej6ciBjdh60LHU0v7RTUDyGu//7zxtvf//uYf/tWn+7zxH3A+M5+kOgFXG6+u+7PXwNiQR25wTjYz2ikeTeQfgF++0Uxg/ve9IT4w1NqOR4MSThcsyAxBzRduOma6jaVbl3cwfo1HFv7lkd4YBuNF0O+9KWj283BE2jxMkoNOab7ajMh7AoTNmM6oVIdDhbP70HFs0ony/42U54gPLU5h7FuWvYOn3s9y6OjzKL6b+F/zAA6zYwrIrjaKAOK0mtz2ORxX4+FS9vgAQoo8fq7kvhLxqyrCl4BGW3f1wlb4n/PjgxR9Bz0cfspBaPN2PfjFWGnbR/WVVmVNSwTMSpJNHXW3o/sIkuiF8NagPfHaupkdKEeEqa4W4sDgZZdzEfpb89gocb9zap59RC7nZF6zJGngkkKrizt3yCka0U38bOtXB/lwHl1wt+nnqS0ocWV6AM1F4RUWoDqSCY2cd/pfnw7VrR94kwsFrX+w1d9OgYulRXPHXcESZuhL/6koQnPTIZ9LeTQXC+12zOvQ5vepfKbmPvwIS0YmyOEwVCFpXMUvVhKF0A6N0MqEJChJ2r5ukV8DLF+LbbcMEhJERHDTubYIGqTVsZFo5HDRZDvXaTURXfskJ4SzLwLHhCV7zYT1cYcq4JLGAQQes3z7lqCmDLzeky57Q7/3sy31je7jC0GIj6SYurRTiDH8YV7bUw5fV9U2GJAy6sjJU2Bv2FK7NOPpcFQiA8biyb4GLeOTjZ2S5Qed5t85zIuhDHvCU2v9kK8ch1dFau5MuNOD2CF3cZM2Fkkij+019OHTLaft07u1AkIgrzRXdqYFTR2YpokF4ZBNrHsmd4QXrb4pXh+/WQqb+jwXhATwyHoPaQcUBqDK76sX3qh7Wki9wPe+IRq1yjfrKRzrhg0zeJxfBFPj7vr6gZCgGsZ8iyG6/rAVVUYa/Ib73Qa20x7l/JQJpWzB8JHHUwkU+2yofnB+8/BDfuyc9Ap12YZbexUOE0f7ZYRisAoGp6UvtEjhUvyiuluOMB43OZieDkCpIZlVz/vOSnhP6HrNaN7yDm2KTv6nFlcA2qzVNEgxDG9NeoadLM0Ch5nrw8P0qeDCXNsX3BYPCC0e8DXT6IV7y3rRlYAaMPxmMeh5CRH8+3lGJftoPru+nzRzfZ8CSaa/FFSkist1vZkZ0yoRuzz1krFcllMkHnQouxiCFm7gR0vk6ULhTMJt5vAFoQdnZwq6R6MN5gysWz2oh7G/lK/fTDTADXZSBbxEo2Fs7XpZ+7zkNim+lxBogocPbhYF+79V2rlg/6T44cOGrk+PrQuBXEylzbSEj6wPvphWd+2Ci8Bgz09dCEI2dxr+1ICPM/iVPnrsdwM4olky2KqXnkCdyPSExyKtpRtF+ox2u8L7UOj1SAtxdakx7TGNQqP9N8xNBHaDw+N3Q3/QSOFClS6mlxCD7apa1yyxVsKV1/t8ObyHkWr641N+KRS9avXveeFdB8cUf07HbhXDd9d0nK9ZwtHb6mGMrphI4mp+H9e4rAoMAOaQWgEVZUmLurm1VgEKfXps8UwjK81bh7efCkbThZt9ZrSrIqYlr7q4sAoL/46BHC1iUmPBu5D/FOph5uF6iUVcB77+rVO04RKJjZwJkr1+ohaFaXMvL3grgE360R6ohAuXa3/1aNFULy7y7ny21l8PKx9v8z+QiEXNNxsVAOv/0QqaSTmU5fHrpqspSGIH2bb5sdT3QC2cvu+txj1WDGJfW0u5jFGSyff3cwd89cGXRTN0hrwrcB9SO4+n5rZDFh3TsSg5sSjyIuPJfOkwyyYWzi2PQjmLiyBPXHJB1yat88iED9r3h/BhHz28lGjpFMmFZoP7R2oAn6h1s/efwr9wdg8YHjl2jqlaBpslEiu77l5Dw5sSBoGksGnetP5rzphIOMxzYxTAQCkxPh4m1GCwK+R3KHNMXD5OiY03zQ0Fw9dKdLfnaCGReRFzu/NUGnx3V+FvE6yGA63DNEXo/BBwiMBZotUODEJ931VcadHPFD5eskpH2zARuJqsPBkQl/3tEz0XKiS4B9sMk9P36s5VJ/XZgpBRzvmohwaq5ZMj4BhkN7Gvj/PWxF/56mouHSwcA+/Sl6mb9GNT9Vf/fe5sakDVL2yoUqYAXJdd0ppUikN+/dltvixrI8RrmJHNWwt57Up+Wz0SgUsHU0Tmhcohm7PqeRX/uAuOz6o8aYai3ZHmBt7wYNLzuLU43lgLXykroJAsGcRO4T48v0/MELrRIRqoUJll7+LimQ5G8fkeb+EoxHD+GDSxoLIGlsGuD4UcwyChyyfnv8zboucDxwOk0AqEk/+k2fzJKEDHCt7fR+yfy+FEmEg5CiCzn2Doj0WPpjveTEnVgLEHbvEXDAlH3Qe+qdSRS5TqJx8hRIbJdrZtpKxQcQvxoNYej0B71AL19p+rAyeeNVcNQNMytHYsosYpEMp2KzceyW+DLkeHou3SO2XMaf3/rOgmNvF3by7LTAkJzpgY8bTTYXe2kHxRKQr/sqoe8PVvA9/5Y14ENGjg+2+3dKUNChdtrB3f/aYHRuZmkcCkafJQ7NCWJISHDK1ZcJa864dsXTq2r7flg3S+nu8xAQe7BYiWmlzrh71wtX/BgLni7ZKnILsQgwoheVFV9J4xdJK2NHcwDA4oKmxI3BRmdcJDL7uiH0aid2CNfksGjKOx7gT8BNXLqFU/09UN172rpQ4MkGNlLoJ14SkBKfipKDf/6IbVnJ/XNlyRIcNZ28hcmoORsWen+7/0wInCt4QF3IihdX66Mo+e0mITbanaiA+CSzv/ayDoFyoNPXB/8Go18hpz0j5zvBANPLa1z3wogW/4LU8EMPWeSdlR7/3bAksFDcmVjPjzYh3Z/6I5B/9AjvQ9lbZD71Tfhcm8pbLgmmexKJiNxp6vOB0ra4OAEueQ8Syn09B8fM08kI8ELsi3dvO1w9uBtC1blUrjX9/LmjU9ktNeokpRJnwuvUOdlBnquPhf6Q4yJPhfhrmfcP0rQoGZb7+ulCzRoqd3cH5OCQ0dB6hrzOIL/MNbfcSsIUp2UY049wKHx3POTV+urgZeWFTvX/QbCLz9x6OoLRzl1fhi33GqQ3BaKEv0bD1mENtmPjeFIZnr+V7dANVAXnnl4jrwB3I3P+7Tuh6N7vdkhp6ebIGhE7eOQVTSseDT/cOSic4rWjYxt2WYo+vo4yCubCPeJj2yHdYjo+Xfb3a0aXZBfuCYnHFAEiZ08PvOKFBTrcn98U6ALLFy0ZBjvFoOAS+aZ0zIUlI5l5ceOdcKeIzyfHnwqgnWGR4ucxymouXHxhB53MwQ+OGV/ZhRB+uLr9gElIoo0DRIgFnVCcWQaY3NMMXypr/p58SAFtQq1j5dsIci+JdDue4cEZEYzZSk6V85Nxn04tdAHdz+EPdojXQBjYO103YSEyv7cjuMV6Afz3c3+Pt35YJGaFXzvKxExwmzb41sDENHu2kZJq4KHzUfCUsjRyOb3n8YYiwG4s3Lf8VpDNbBOWX3tjYlGtse5VS8oDwAD5r+2Z1rVQLwcRr7TFo3aVO21PbCtsMsqOfRkZjl83ymaOTpLQkrDugMfhul6scxBO2xXB2YT597Ll9JzUacLz5m5EghXjY+2TaDPq6pg4647GFTYx80o+LwUDCUzVEPKa4Gx9DPuMx6D7rklS54z7gbXgIu25/emwJDCy/jC//3+fne3saJECSQL8MvkaVfCfXYeSySKQR1Mhok6+qWgUlav7eVdCexMcFsqAINcoz1O2bqVQPQ7dRrjhSqAWHHHjyoY9O1UdPbrIFeYsaudO25cC19ezM2YHYpG2SNu+3UnbSEsrys5P7UGMuTlGNXFo9EI5pzFluEAOCo+KB95lgJfH36eSU+PRn3n20+LWdPf55xQ2IX3qWChcNRuNDIaHd9wDUmbKoWBd8dYbGWpcCJ16+DBSgy6UWhzOyu4G+okLmbNE5OgZuF51f99H/Xl7NWYqFQQ85dmGbhJg9dVu9fkZLAoI13k8V+LLPDIuvSVeK0Ejq8W/7Tyx6Dfk8oW0t3ZkKPiruMwTdddEr948XkMYn7klJH7IRu0jXoKLSZKwJ5zidFMFYOWP7UMyuplQQBfsCqPfTGw/T2TbBOIQZHq0ZMZBvXg6PypV3gPFf4RqD6r7nSOFueLjwqsBz7v4LN98nWQwQyL2Dg8yom9fMhAPhoKBRVb/ia8hctq94WnnXFofi9Pzb99/aBoeM/eL5nOs1Ir2j8PkZBYaor0p//6YaydWwdOU2Hnt9b4MQMi2vP5T/cDuyhw8/v7qgxHgQ+XPA5ianHo789jzsNULLBYJFxqOUSEk+sMsq2/cWjf5dLJgj+hsNmQvK21HgP7jUw+PRDGo8l3DzGD4f3gbNAoM++OgLO04ofHFgGF8tcoMGT1w9nnD4600LkgEPO1VxkRkPkC3VsP9kOy8ucE1vRSEDr19tRtRhJaC2UXZR/rgyO8JJEG6VLgTo64b/SQhILz8BGYiT5gnc6n8e0ug+NXnadq7EkoocOHtXGyBQJy8lG6IB5mU89l4T1JaKU+7HcAAxbY+Ngkc482gFy/Tp0DEx4pvdLcWM2n63naKbVSogsoyFVoUEro+nxaSeEnfd0Bsmwa6fU5lC8p8fR1Y81an2H6PnXvOE1nI12AwWfT0oa+T9T10t0fZ7pAyvNvyTBzKpigyzBnREES5u8DaDy1kOXGGzhekwf4J5amBVkRSEJtyusw6gcCj3uAMgbBd/7Kk3gSAX26Hsa48KwO/FKd/KOdaTA0acpQTI5ESiyfrpjV03nfleV7FWciTL4gz7FpEtC5F3gzJ2wHlCk8nFgKzQH5FDG/qLgYlPpI4KTd3g4IiKHq4mVygVl24n7m7RikfjVTUjO4HsKvaKtutmDgZWyuyssEPMqyfBruTr8DtEvKL7ALA1KyJhYhc3jUnVlTxJxcAAFR73ky4xxhcXwD24RCESRjy5/GF8KmJVdx0x1XuOt57glHfSj69CKK9mW8AKxFpMX91Z6B3YW0z4zUUCQ0Et87964VArIE9jPJl8KNfzMzQZsk1OrMfofraitoVwt56umWAu87F2WmahKSDfCizcYFAfZdlfx3iQb4iMxYoh/h0W6DVRrvN7ovS968XnzJAerJWev3tQnorwbz1g9SEPyVGOdoUHSAvjjZ92v0+iM5EHCNXn9Hg7p6WrIB2EaLJNjo9dz7wq07v2WCxMO5NzbnGmDt3KsZNzIG/QpMHKwNa4TYBlPXgG80uMcV2uJzlIAYI9CTMNFGECAfGxKjr4vV9qd79UQji6uHUx9tdMPopeeXDJ3ovkMUihQxoSDz5fzF2P09sNffQZUnqRA64/Y/v2BMQZjnTCkbFj3w6ShH6fE99HqDwVW/qxQkz9Oy4kfqBj7/5cb91EIY4kI+iXT94f547lonTy+kHtZWVGUsgumR7IUALgraWd7HoMZWBx96FXRxjZnwx6fQo1svEvGLVzxnKaoAkRFeWpBFBQyE2fxVY8Ui3mkOW3uDSuicNiFJiVVCMdPTAOIdOl8YTXdLxVeANmfPTXu+SlBmMZ6V/heGVsQ7n7m4F0NwxqkDr7rLoO71S13TnVCUU/jA8adOCWRItXXc8imDgpLen/oyGFQ0tXwEI1QCT+/lKrCFl4Oi6+V8ZXqen/RIqb/v0w5ejXpLXbdLgLfuqU7x4Rik1tBb6pqfDzb4uYXJAndYlKppMOkNRVuT/K0hT5thnF1qXs8TwfPLJgq+z4jognxpst+fJkhlEx2/9L//1zH2/BsQpftyWJniw4hGqDMLj7OqSoIek/qVJ3wExFd1My3Ctxl6sYudCtsIclSd5sUC6PpWrfb53HwhWN0Yfn9ELBekc6p985pDESWFkUGepRC0onR48k1zQW2YNPm2LhTxHnrOW2BTCO/XP2ubO2WDuka9dCe9ny0uXrriFYug3jWKmBhMAR3O8A9Bajh0Z6vV5sVhGrRfu7oxtP81YFcFmKWicciR0zyC7XchdAiGpXKXZgLWNsyqqiWUjnVDR5kkCiHtZZHbm+lMSN+Jc6qmP9emccfqMQGBJvM9vIU9EW5xrfAOKeNQHqaoSbu5EBb5TruWOBSDkFe+67XGUHRP/1rVuEQVcPjRg2MrguIzefJXRrEovGC8fPNeNbSg0vyZnEIo1KUYa5HD0VzVvxNH6Lnh80zJuZaQIphcTvx8KygcfXPOl6m/5gCtRu1TErPFoHLlouS4YDRi62kRLfCohikleaYA7hJg+6QZ9zc5HGnbN/cU+dYAn+rPVgu+EgjejpWyuRKBmu6okGeTu6BM6nv4auczcMyxbj1zhYKmy+ttA053AYP7rSkXKX8IlbioZH2GgqL5qamvrLvg6p4vl8Vf3IfPDd/4ds5TENf8lrq7ZRsE8up9kw8pBjPWUyn5zmRkcFxC+GplG6h72OHU3xXD7Be8qHsKGfluPxI/kFAJ+545ZRt5vIPTm5+70rBYVPWN45RwaBVIU9oz7mq8A8yx2ZiVw+Ho57K9yuBKG4QX2s3iT9fAkjtvye0mMirfMyBQfrodxpMjLQQeVYO5xOQN169kpNbXQWrXaQeqzUq+A53bei9kNor8JqOkbjK/f3sbmJ17af7pRjUMXJrnz80lI33PMGWdjyGQUffoFtt8EVTWBM33ncWjXbwznM+wGLDdem15nacI7r3YdN88ikeNwVGSlybD4W/os+JCej213sJ3fBqHRvh/BoSPvwSX80lUyu0icKvON3x2F48ijx0RGpyl8zvzitNSWiU4fpj8pqIQidYZGPM+i9NgWTvaIbyIBixnVga+JuPQmYBqmtNFGqx/K3hoblQP5lil/94W4tDh9cZ3SgE0Orebt3//TgO30tXk1XEcSu9Zrsmj+1TGl0NXPimWwNYK46IDkYDM9jHPXivoB/LULe7Bw6WgF1LpPFVMQO9wXy14o/qB4tp1Iu5iCVwN5ir48ouAnIIKUy8P90PTwq6w6sES4Dj0yDjUnoAqGqydLRXiwU/ZeOWVYBG8nLFlr5+OQMtf+welbybCnVNPtr0xRTAfUG7EsjsCsevHjmNj4qGOPOBezloMueUdN050RqAL4vfO1EglAuXgIb7NN4UQ0NHtqH8sAlVsJt8siosH40xMbtexEiD+u/yuqz0CycVUFb+QjIVsBr/aMOdisLZzjrV6EIksY4kM1H+vIToqWSZXowS0/DBVynWRSM1UBzec1QvVaKvi9PkMMEStMsdDY1BXSHF8xkAv/NY/1XHMMBPu8LOsNBjHoI0nhMXQL71grJv4792ubLjxwyGAXTMGieqgQLP0XsD+Yr6dqZIFmO2t2YSIGPThO0XYuKwXZg6L377okgM2wRucDd4x6EaznB+HTy8M3RXL5rTNgJpWbV7vuhhEJj0WOTHTBDieEW8V8wiIxZWy8nET0TVtazVyXxP8bBYZDQ0LgpZS0VjrPUQ0OORt3hbVBJ3pIyYiSRh4WBJwm/0jAfXI9Ew9OdYP76RH5RE9V3tEN3eoLxLRWQVOXYEfffBQsOtfR3oN3CqLc83WIaFdcjyjxcx0fqFsXpw2r4WD1+4XKfGRkEJG6nwGWyp8L7r+iMoSD0Fr1+OE7mHR5Lfee+SiZMjald9YXhUPh0NE9YJ/YFFEWRPv5VUysMYU/5TpTYWDYU9+meOi0AKzaHJIVj5oVhrNPhSkwodZxqvxdF8I4co+id3TB6pspoZRXVSgnRPRddsbg96nawvmyvXBAdcsG6MkKuTltj5XQ2S0ul28dFOpHzwZHYQ6CFQgOTJF8RUQ0bRIm0XyhX5Ied5kyhNYB68H8zfeJBNRB4F4QOZRH+xfe+D5cCwTKhjvC17TJyNqxEsZC/U+SHgTGjZjlAVChz8Sb2aQUeF+sRZDzT5Qa0v6YaWcAcs7L9aP0PWnMq/wVAtrH9y2sqtJu5sJy77Rz2t20e+LicRib0Dn+YgSloH5ZDCpeSLi3BSKbj6XVRs8UAjddg4/Y28mg0N/DDWerv8778odk/jzYTFXWA5D5xoTfEPEx+FQZBvTHLoz3w2H9XAMcm/ocz9z98VFUwo64Z6Q+Ce0G16eZVfZmKyF/w5YcBTS88MHbjvO0zo9MCXh3eBK56nlrNSkfXoUdHtedd9X/xboUx0RJKw/gPS3MrciFP5fB+cdT/X7v3GllKQoIyOpjELDSgivUNJHKLtERogy2rIyyuYMZ9h77725zzn2HqFQCEnZibL6ne/v3/uP87jf9/26rut5Pc7j/SYgJFPar3S9GSKnfrmNU97A0C/+89sHCei7S3iQkWA9CO3n4jM8SAPvXSemNpjC0ca3p+f96Of7b25hfKmQCvZN1e/3GoajZrRfhZWjGhpds3QfkilQeP5Yco1NCLrF1Oj+e6QKfNbW5xn5qUCrLIz8ph6CSAPykrSjVfDBgb98Pp4C0uOmZhNdwciyiyrmY5sEGlvLAhe0qiH9EuduSbYQxMt2d5u2mgCzPx7GHH5bBWHLrOsFlSHoZkiUL9dWAvBMRsq99qkGVaECsctlIcj8xFlWC5ZYuIrzScqh5/wNee9Cy6VQ1BpwXTgjNwZA0XnklUwB/Ocjm9y0Pwylq/8zzK+Lh6I7wTe6vQqAr3uCKQhC0Tbj7tFekyhYmE84gH1TCAZHNjhF0sIQoyTzd5vTUdAv/PyvcFgRMPi0jeaVhCHWx7QAZ14C2N98Wtm3FAv709t9p/Zh0LPq7xIfSyOA8SunXh9fIhSmaug95MSgk1tFSgHzZRCdw/1cdw2BVQ3OUEUsCN3b53FRaKgUyKykiAvCFJiyzWk5XRKIMitzHbnDIkGfZHDkYV8KSP+8IJs1GoZcTNT2VMiQYeXthXhJ52R4uSV9nyAfjhIVTpjOP6PBvO7W4bekTGgiTBdq3MKhQ8wq+/5TpEE7o8W4pXoGiIQIaVJO45APx8qn85k02Nmd7DrbnA66LybsDZ7jEJP8Ac9nEt2gKPZNa7AhAx7VSSZ+0iaj+s785lrUC9erSkMIdUWwZ/pPJE8OAfnci7yr1IpATJXWbelSAM1WopdX72NQBc6KOjyF4N+6/avKtTwIrXYzJ7vQOcqi0IxDgAK/Nu0DzKwKwNHLKPJZFAbd3Wj7eCWpA4rZWUhyCjXwfC11lpWFjGb6Zu+73e8Ad5P5+pwr1fBjzFvt9S8SqpCUX7oejODcrO8Hr5B8mLi2xXVUCoNecnhZv/3ZA8W+WWcIb0phZIy0O/siCf3nxl+6p7sEdCa4P/nfS4UPwr83xw0C0YPJ79u5CqXQ1uBaN6GXDptlE2dXXQOR9Wnv80VXSsDtRIN6g1Y6CLx/JVsgFojGMT0V1OtNYPfxC19sXBkYBSYNsNyNQIt1erfdZZvg9dUP/ndjyyGzzWGSRu/dz5ieXWr+1QgDdZY/DfPK4Oawdf24QARSz3JufZPTAWVFX69NeuPgsrr3pN4hMqJ2MexOepQPJ7vm8mI086GBi5mV9CEA7bxs9Y5NLADjTAG+DMt8CFTyim2l9zVdv3etL0QLwGwq0b+7kd7nmHkETFsCUKW9unUvvz04reC9NHfIkI79u8p7DIdSzqr/fd7yBuQ/rzKKdhBBzgtRkhrp3BKK/Rb/+iVQ7yUFj7jhoWHm11rNOBbplV+636TXDxHT+3su2SEQ4d3HMh2PQ9lTfBJf+PshYfrNCbc8BBfPKivfX8Gh0TOP3x4/3w/SlcFhfscocKh4N7PaEA4pP1Rm+k5uAlPFdanRa+WwYLBseyYiAtU9KJMZ5KZAh6Qxlxu5DGYuf+TeImDQj/L04ZExBO+7jdbnXMvBh0WjjdmRzkus23Z9TQjcKv8V8NDP/77whdgrphh0Rm/u+pUwBJ1sxeUTZ8qh0Fm37awMBjnE65QurjdCXuqZj5+fFYA9l8i94ZMRKC3vVY35mSZg5L3ZvnQpH86+idNwVKffi9LJy8a3muCJpelhJesCcD9Irqgwi0Abb16enDtRCEZRw3dO0AogdZdW4f/eUzt+KyZ+hLcRZP5ET96XQ6BVe9TYxQePjJKYHCZmGmD/+qcDw7F0fZi/L7W6j0cv9Db6JdMaIIolbVX2CgL+SLuD78/h0QOTA4raxD5w+NgdSj6RATaZF8QMZvBo+8ftaY3aaGBOOuI5eaoUFqs4PvdphKH5RX/aegQBLJKvOxzYSQKZc33QvxCOFPgedlNboiDPVLFA3joZBocMMokBYWjuhfSOu2EjOEtvRXi9RWDqpRaemYtHf+4e2nzP1gKbU6vZHMdrQEOPcUGSSED8zp5Mowu1QKvOipOuT4WqqgSOb5fpHDVw6KRHdjfUzt+Or+tJB+6qI94rl8lIbyyYteB8H+TT1sP/YmqB/6OaGQlFoM42L5FnI72wwXVGcPx+LXxl9OAte0ZAIxuv7/Jp9wJpbk2qWaEMss8TP46FElGcoesMcyDdZ94dvDdE76FcKgrSjceJSFBp6eyMYRGoipaqvhOvgL/OJsfz6PwwuBpFGZIuBmq35Lp5azmoduW7XFii5+/S2+BlOkdm6Phm1qxVwNcTu32VZwPQF1kG2WHuXngg+zZbgrMM6kdKGNJ+EtHne76dUWq9wBT33HbtSilI7/9n3ZJARAXvDN3CTxVB0vrnMc/9lZB9lMPySXsAchf8cPqDeAPI5lwfr3YshrAXxXJHP+DQ1TK8kl4nDaR/d565P1sMLhU29wfC6D5sLfyxt5EGf/LWFT1XiiCwz61MPxCHaiT+BZge6YVy8msr5W8l8Ft/UypilYjitUXDj1b0grqlznN9SimYzpvUidcRkHAs48AVug9XyLdj/bLLwITzobloLgEd99t66eJUBM3WAs63BMrh+T6VL879Aag9vFPp/MtCOO5whf9Sajn0H/8q5ED3jXLjspd/P/ZCqsEbvy3dEni5+q7w72s67wmv+Bue9Ye1SMlcK/r5t/Qq2W4oYRHr91O3XAIS4WoSA5CHCoBj5pJ29PMQZKkhkJPInghetwvVzMvzIUtYXmF/TggyYAjUsruaDE+/hZz79acAyFI7P3YXByPRsmPMv/cmAUPv3siHo4XAw5Qr/1YxBC0FCoWlmfRA2eVVvUvj/pA6M69wa4yEIr9i3/3wp/NzrrH3FQgCtiNyE6UFJJRkvFkxbNoDqxknrwluhINIpvhpw1ESsrLjEYjNSgZt1bVJ3kNFMLeru+2TfzAiSWyUXcztAeZ3ipqvjKog/tL5gwrvSGjP9cSo46QeUGE1+GmoUglDHV0P4uNJ6AOI3iiUjoIH0z4VcfUhMDcc4KhfEIYyo4bM1PJaYR+S4r2rVQ97GcYVv8YQkXzrLU/BjFYYdfpso36uDuRK1c5fiiSi1uSpnw1TvdBsNs3BVEMBna0vzQPmBCTLrunQbdMKE+kLa36ctTAoV7Kc6kJEf41NbibNtUKoJldixIla6LxQ6lBPIaIToTxXfa17YOEAk+bvS5XQt/u2L/cACZ0wWLcQ+k0BOULkF7Z3UVD9nj0zTBaLrA4ZEwTOUMF2mjfzwm0S8KK6mzF3sQg7YiLR9YgKa4EJd3XNosBcaOCXaxAWdbmKMPpWUuDkR5o+4xUyUITLXAwPYNGLCa7Za9WVoLFXstJAmgrTo9op52KCEYeMmZyoUCWoLsuRI+nPdXL8GN9njWB07V/bBq2vAr63BGhnKFJBpsBpsJIvGM1+St92uV4FZ2OG91YnUaFa3FXdcC4YsZg+zY7bTAajUsK7xMMV0PIyzOa5bTA6ftBrUXArEX6Vd2WeMq6ACeX8rh8qIcj93uy8j3w2PPqmYCZ3BAO4L7Pnh/UD0S9HQzPm05mQtIetzWkZA3kq8Je3IRAtDC2WCx7LAnTsovFSXABgvPe1boUEoj8qc2n1AalQivUUGNYphsMy8ljv/iCUInn0sPp2Mqjtv9BUcbIYtAylBzptglE8Z+HMFVIq3I1/VTBpUwQe55Jnn3cFIQ37R4W5m7FAjeGu/6KeCXVUTnPbolC0OlHkw82TAIuaswwxpelgdeI649rpUGQMaue+xCSASIVP/KEjWSA8GsJfPRmCWic4nHmPZkB8FsXReTQY5pkd8KHMQUgqkNgiTPeHJ833Tvnfp4DkKKZwju4Pf2n9Ndd1eyH33va/dn0KeOczT88F0vsRJ4ud8N9EuJXluS9EMgO+JteZq14NQaMKqYlttYmwfkahKCESC4rMnevCpiFo4dSlTR2xJMCZDe+l2QQDaTchWkU8BBkaLpD68pIhIiyVrUUPC7Una9VE3gejyPNnRuwzekHRdS059kkVNMuu7vX6QkCu9grv1v16weGvKw/IVoN83rlPPcJElLmYz1xG71M8PGaj+F4KyB9mOvUgiYg0Xk7YPnrRC9jNaDH2/VWAe6XrLaZORHU+bGxtN3phBB/IPb1WBb/dByY9SEQ0vaOymqdG54mxKYGl+HJ49eN4gW0pBqV+Tx8lKVKA7RCjf0xdBVi3r7yIzMcg9vBk/1RHCgTsStLojiyDDK31e/99wKACzcnrWh2NwJCx69jp8TzI5vedjNgdgZ6ea8ner9IHbxrV5B/mVsGb3TvuL2IjkNIL24FLQ41g8z5Y7HJgDphcWjxsfyACXYUqJ4vERlhJP+yr8LIAZmdkMion8UjTaxfvJCYCPoZ9nrRqpvfHT2OeJrwY9GRI+ID1exyI0p7EacRmQbBJkMqAOQbZX+GceYevBq+rhj+ygytA+oePWmtJCLJi5BuS+JcJG725X4aO1YCpeqOWBi4Qhbca9UleyAI71Z703XzVEMX6ie1sQCDy+GVKM2XKAd6Q1PKl3GrwPtbmNyAViJgs3CKlLyKwLfxXcpzxDXAQskBuKhwdyX+2wv+hHn6x8qhuwFtIUTB6luITjnoXCX/I+xFUfhR8zJDjCCvHXNT25IYj57LnjzvGmkDMv+3QTDkV2g70Wk01RiCqCwW/LNwMj9meGC75UoE8rtuduxaBNM7cYrHd1wwb39s2dFhpsGm0Oe4xEYGIx9xEPn9vAttN02O/CG9AKJSv5XJHBDKci+07JYpA9/M5U91iKujdFrUJGwpH1izh6+IM3XC31W05U7MaKHPEdjc9MmIIjNe45tEN9x5l+z5wqQLD9qZjjqpkVCxj7ZUc2g1fD7zXqkushvgH63uuq5BR+u14wZnibrgYTnTH9NSAudeR+H1yZHSEXPLsvXIBlOhqnGF1TAfjnSll7yY6PzfY/dxpyINx83318vyZMFpwLTBgPADdZxbsEVLKgw+W3YSj39OgYTHiteNcADpxoiBW9kEBpD3rXJHxyITFjEFb0YYA5PL7zPiuslw4Y6pTuZ6SAkHvrb1ObwSg/TJ/IhQms6EFJVs5+KQAaWBey/AyvXccF06NmumCZ5kZKz089Jx9oan5yICMPkq+IWVMdMG0B96bbV8eMIXv0e+mr2sckXfg0+uGq+US6szq+ZCyMnEiXJOM3g6FQlBTN2z5pIUuOedBQcj5n1gpMpIa6q8afk/nT8lPPz96lEKYF4khlQuPvO70NKQ1NsDXHzzWzbplkKx/XeulOh7xxC39eJjaAHZxW8t1t8vhx6St+rIEHhU1sVb4CPaAtO3JLMN3FJhItHRrZSUj7BuJFTerHhhuOClW8YgCuIaoyaODJPRXU58Jo94DJ78/+dy7SYEXSgW2o8sk1P/g8PvQdz1ArKFFKLVRQPDhToFmMQkx/rd4TTiQClMb9zlEcYWAdVn/dzcRi95HZ14xuUmF35smMZfrC+BDT0dJ4DMs+mO5X7/Lngr/ORiXp7vnA/u3gmGZYCy6eaX1FeZdJXBMqsa/X8mEuCPEjjGPYCSkc3sKM1EBDRL7vlEyMuDCrjMTeaeDEe+FF5lQWwGpyqoKfuQsKHvOri3HFoxaBA8dX9tph8O92TYyUXVw/dVg+HQXCZkN789q726HBf/t36/iaqGDUUWDpZrOLU5eyhjtDvB6bdZ1rqkWeH6lejAskFDNAQ6Pyj/dIK1SJFa6RIGmf5cWOIXJaEKCQWiLrQeK2qXi/2vPh1e6e4tNj5HRvCNT1TGrVmj/kmz0RLEadKUbyeZOdC7NUd3jFN0K5yd4bNpFaiCFvKBIwhLRoryV2XvpVvBx4Iw+wVoDiamz1Qx3iIj9RMJDjpNlwGT7JYbyMwEKs1TPdvQGIv4Ty6yiz8tA1+FY7EZVEhw232ROWQ1EWk9q84bfl0KJavTMJc8kuFEfJ+5KCETKS7khk9erIU6vxaPOLB1csd9nc96FoENCB8XXx6ogKWHrkBM+FTRf72C1NUKQbgX357111RD8S35kaW8aFHXoaol0h6Di973Vuh8rQF/5hetx5nSQdPtQWyIQjH5Gcko+dS2E8aL5y4Km9P3eqt0VSOfVzdLPMs3edJ2GVgkvXSiH2DeYzwrUAHSr0Td97TQB4mdGQrj2VkJZxt7pGCYM8rqW7Jm6SoDQLOXTFb8qgWnghtrBgXD0LiC3mP8LDgg3Xm8qUirB5Ep2Nehj0NqpixJqoQUwpbCFyTUog5qbcjVZlAD04dShdakjPZDz99aB65pUsPyntYjhJiOmpT37Yk+5QJv54n8CwhQYih2Ib2DAIa0wE7JNyUOYcu6/Y+NOgULBxpn/hHAoWR+F18aWwvpFtZY716mQ4HWXxhJH5xPS9ljwowa4/pTprZ55IWxMv3mtsAuPBF8t2ox7NkAdZmZQM6YI4t9p8/Sy4ZFl3uJF29la+BPyqEJuiAKpboFL6rJhqDwXt5f/ai0YXxt1Z6yg76fwIuFWUyiiigSSJ+NrISRhTKLOjgKeKsFm4XvCkLqzpOKrG7XAdp70vFqcCvKPJzr520OR4gqz4ppAC0gdz2pn/hwEpxgur3XEE5BHeaf51+AWOHxa96I1LgRYTq3zPJghoG//3nv2WbZAprFSqP55LKyi747EDgLSJPyr7UqjgoalBCWloBQSx+Wb9pVjUZOIXG4pkQog6Wth8bwEwj5ENKtlY9HvtzKj6G0LOH0WV6xoeQelx9nvnR4nIP1H2i7uav0grqbjWcONh/33t7Qky3FoPH7NnGTaD7LXTY52m2LAsydouBiPQ2JUPz52jWZoOlHiGfS7EFaH81rCWAkIY8vQ6VrcDKrC5937WgqBOb8Cn25EQLdjN+v7ZpthJXu3XsxKAdgfWDqh405AGX4q+g3aLZDOVV1rfrgWHA58z7OvJ6DxrrsPXTeaoeTgTzV+1loQW3X88cqfgJKCpQSoL1vgeBOaZpGtAYlsvtL4TwTEMDJ0I9u7lu6DQaPrf5LBIfuSccpSKNofcOKZlXgd4Ki3SmP2pkBL9qEJTYswVFjNs5hW0Av8Ep3FvrRisDq/JyK0k4Ba46ZX7+2iAIX/9WGZmRyQHK/o+vkOg5JcHpGeJCFgxbXpehdmQ+GyyLiTKgbxfLrIVFqcAjzxil1V98vgSddwT6RgMHokVbfJbZkE2oqj9tlMpVBZeGwNeyQEVT++W+keWQpkCtmBhy8FricMXnWJCUS6jwbd3XR7gI1oEy3ulga/Ljux4WdIKMzwUkMgXRe/elxPPT9H9wGJ0DYjui4ucKRufuHtgb19hy4svU/9/++5VbGTEW7uRGikHQK+LyT98+fSYFPiu2AKDwY9updBsT2OYFxc3cjIKQ0+Zct0bbaGI9A/98npJIJ3lmPKH7+kwEUttfGo7nCUX+HRaK2CAJ+9eqRYMwOeReQYv/wbjh5vC2p/qi8FBdMAi4mRVGjkKPl6JDsQGYCTU2VDH7jYs7CWPcoDh8K3eXUheORUJxEnSOqDUyZ5HrooF37fU6PmTeNRdYK6d5laKUzscpPi7k0Apiuf5U55BKKN2VqDYuYWKDeL070WUQSs8gRMCpaAhv5JXkx9TF/P2yoerC6Cu1K74vb0E5D7iMZpPrkWCJpk1lmLL4b0VMr7rnwCEkWKkS+edkDH5nL+clodnJh9+/XXBgk9qfj7OySbCvHts1xva98CPtnKzasKi/T859/yGVDp+h2PaDX0A+kj140t3LCox5TX9YkQ3UfUSq4UxLtCybEJ3JwRFtWq7Dk7dK4DJKepd+RFa0CkuEQqcoKE4sS8fEv62uF9zk0R/N1q+Bt5QkirhoQaTXKitdKaYLd37JfajWpQaQ5MJ9C510zsTvDOchNc0hBffv2pGsKvY9eJfRFI233gKmahCU5bN4zgE2rA50RJklRPBPr61ZYnuLsJ3suFdd9coPPzx16T91URaHqgbfigchfsOyty7Pt4MQxfTXzRbUhGv76Vys1UlsIZJ9sDZQKZ0JbSydKSEYguGycc/2pcBofvMFOrXdLhZPtr7v2zgYht2MOpT5AG7KEmntwD3sAbHaB+lw2H9nhcPfDMugF2fofsiLpTIUin2e/tNt2Hu428pqoa4NRklg1elQpvF+bS467gkdue8/64nw2As2Lx3F1NhYc/9Z4cfYBH0TfvXHHtbgaV0yy7OZzyoEOcUB9hT0A2PaqR07da4LrvjRDmm7kQNcTM9bGOgOb3YvGcii2QLFejbcWTD3kvDFudigjI91wu5twiDX7E8gTk0XnEeZFYnZqOQxUZjU1Dt0igcvvGj4fsLoCdmUicfBWOypmwzcKjJFiqE/30/JAPxAgK/XC9HY7WWh0YLs5GAOWW4OafYA/gOnt32PsQBoXG/XHGMvWCzZUgicAr5dCp9NX84T4SyrpCFY8co8H+5pz4NNVKuD05GKwQg0P9I3KvxQtoIGobk3vcoQpY1R+sPXfFoUOD5MLbBjToepDDmqxQDVliR3cPXsKhJbES31NH+2Dzc0nP839UEL3aev7QVgRyXK9KVjrQByO894qO2VLpnO5xQO0wAYXhORmeyPeBfpjI5YRoKig22gl7ZkYgZdjeH3KwFaamjZ9Y3MsHtgnbF4nyRLQg7j/I8qIVdPVNir1t8wFbw7Zj9IaIBE9yYkyVW+HDbq0XLU4FIDXDs1llTER9eO7mrKY+6DVRdnxgVwAaeSaXOALx6Oz63R8Pb7ZC6dEOH0GnXPiqhZ6ce0BEP7gsvH0LWsDne0B/JRRD4rmbHof/EVCH3H7r/JFmmOEYN3Y6UwA+qcezu54SkNoj7bR9d1pgwf7N+NrzAugpn7qCoRCQoqLntyylXnhcbNhzW6YEpBQX9t/OJiLpou1DfAd6YfbUv1vJrCXQkfHuQ+cuErLbNpicmemBkBH3K63XioHH7dGjFVkSstA4MHZDlQY+R82ZxLyzQWW5y3biDA7JHG+nJoaXgs5H+8B6kwqY/2RRVkcORFyfspeVjpXBfjNfA0bWSjixhWW70EVfJ030z4u1wLXnL/9wuxeC1YsPNnXpBITn3RPT8aMFtEvI3b+zaqB8EN+jK0REd1xYDD26WmDk4YSWKl2/rtV9S5pHiCjRzt9YZK4Figuf2V5lroY01fuCEvSe/tWlJLVUqwbu7nv5m4GaAod+BWkNnAlFBQFaN6Mu1oAuF+7Gs6Z0cHBX1d3HHYrsm+W4MwWSgIuWqPZoqgjGca72LhdDUG8hlkPBNgn8buXVflwqBr55qQxdthDUOJXoeVg8GfJu+C03ildCRkxunUFNMNpInyosWymDEiXpsP8WEyBSkPoySiII7XS++Kv2phhavC9cfIuvBzEx6xyN7QDE2ZpkLJJXBGV9ty5cm66HrPNs8cYjAfR+Smr9S26HkNcVV28R6mB4zzMdahIJxRu5cMpGJULkAsEi+lUlxO69H+/4OATx4gt3H1zrAc5vxgMB6hXgNKiW8V2QhPr8Dvd94ukFC0WRr7ZS9AkaxgqZfyeijQD5np3DfXDIebzYwS4duDZUWAZ3E5D53rlyhzu9UNVzhE17uQLCha+u7HpPRE/7buzkRSNYzBn5bG6RCyz3z/tnKWEQx2ddHldeKpRs6B9b1LYFwfzg9jxdLOK9Nvrt/e8G8O+MUmsQowGjNEHmti0eERs+CP3sTYHD+knsFyty4VPNlJkxZzBi7GDqX+xKhH9MqPnBaDboyjwNMtYPQQoszbt+efTA+ct+N+91kuHjo6tuTvQ+otHiOMO32gfXbYs6xem6E8HnrRIu4dGxsyFqz2n0uf1k14mJigR78Z39ZXYkJP0fLutNcA/wi56O6+iJAd6zTfUtOSS0wlvd2fgjDrpHWuW1b5LAc58cQ8yLUNR59dNhO+tY6JkuqJaJiAILHsFnep9CkZOFxvmq2GhgGp74lrZIAvsUvylh3TAU+yF+WlaqABwLiEhogQo3znTYvm4OQBV/P4lLHMgHLbviOvcLNGDLc+G+SL/fT7xai/iIFuCbs2Oy0M8G7h3qBOM8ATXfmHh42rEFHtx61/NqMhN8Djr77tDz9yVBP0u3sQXuN+tNNaZmwtUJb0WHg0T07Ub00QgC3bcf88mPPskAvv6K0Uz67yzUyGXpRfaCqwZOoiwOAefhmGXJbQIiPjnlVlnYC1QF3ZuusggomU+1DdsJSL7kkalQVy+0ndPkYglCcNhD9vB8OAGlZiwGG2w0wSaGT5btUBqgHQ5Tm4/03OTK+XO0px1ePqHah1nFQ+0uyisx+r3Y5slkSCu1gHhH+6mf0gTY/LbzY6CYgEg2DIN6fhQYfefCr3mRBpvRosw/JzHox0nLma/bFDgl1OXoJ0wD16uenN8VsWhU7Kij1qda4KyRv+U9h0A9uOIFViwMtdKU8n7ztsAHpqQDPv4l8BpvNXI6loA+pq47HP3YDGlJClNryqUwvY4te+BMQDIXJxhP7aqEF7ebm3NDykH6twEvVSYYKXuV7FsWqgApsc9KLCnlEONJ+FmKgtBCe+B3UcYWePIULye6VQqO7/mWroUS0L7NH2dzghuhyPLkQMX8Q3ia0LrG8QGPbglHHDt+pBF220aqTcXZQa3pmx/c7nik+Dh71yfVYviYceWfJVM66FWdHxleCUB/QnV1nPBFsPuApfZIUAaoXWew/zAUgFQn/AoUDIqA7jFjdm1pEKTKkOvVE4AkH9Qb6PiWwvsYPhW+SzRwTPr6/ExEILpj33AbvtfC58XF+EPRRXC6xHr0rUwY0v87tWFqWAcVETyz4TOFEHwh2ovXMww5f7LTSNbpgYdnN5s5Nb0h46kh353vJJQUwNfM3lkPR+ofCFf/CIc/0p9tGzzCUZ2Emc5r+XpYqS7qTTeJAKVxYozYsXBko5P6mT0yARLfHHXdxVMPGo1LK+HTIUg7LlX41dlm+IcO3tQPpMABV6e+438jkLFQzIras2b4Je/3t20LwYGTpbQf4vT5PEfmFmOsg8Wfxim8zIWQpuG65/H1MHTEL+IFz6E8gIW0dqaQAkgqTru3vRSAMn5qp4ujHBDP4NDTPVsILFpyJze4A1Fzx93XMz+zYTE6maJ1vwCUinMl1y8Foviic2OUL1S41pOdxB2UDeof9U6sjWHRx8c3n5uvUoHDxLpCwCAXuG4G9rYuYhGZpWFDHkuF4emo3aCVCyf/G5BQTceikBXKm5o/NXDWmDo734rglcAbMSlSKIoLc739eLwGGvVDiliuUsDq802VF/6h6EcR4yfzlhpwvukxdCC3GtZ+iL1afBWKAlKVo5a/1sDccPP5h41VEBG4YMcVGIpGaSdF1KKLgXc7N43xRSbw8bPcW2AMRHkgxMxNKQJpnszcR6QsUFE4Uv3ncwCqWVpYu8DaAOFCnerJvUSoNXNJTqqlc2N6oo/EYC8Q+7a+U+h8GF5KlJnzJKC1oEusm13VoHtspBE3VQ0P+idXyz6FIAkPppeqf6qgSpJpQEKmGg6GPopbMAhBuo6+0r9EWiF+DZHb1dJgldRhK36TiIzvKTd5+7XCxfv6CxEP04HCybVd60tEm7/P5BotdYPwLHtla1oliIj+kPMQJSOLzs07k797ATf5aESXiwpzU7aegor0/Zxf3d+zmwYukwak9lwEJaKupvc3sKhxvd21cBQLVr0xa0xzdbD1iuh7/CUGFaySNS7JdgCD8w63zWwJnPvxtMt5ioTUiB1W76Q6IIsaaNnYVAwyrB277SZJaMLE6VhXbAdEZFdcv/e4BCYbJwXimMnIe9+8Y99WM2ANXrK5C6TA6E/NvQcCCahLQt59gFYNUaLKd78nkEBnwsO8oS8EZei9vSxXWAMdlyPsK2qIcNBZKnjfo1AU0W8wKqrbAJ9DLuHsZBD8FCrjylzAoYjeCu/Ht2oAUGPXmyt48OEJvqt5NhTRbqvduHihFSLV394zwyM4GWB2UFuHiFQfrE9Zl7dAn+R4hF0Bgkuxz0PdGf/3HpP1H/3fLVBi8Hg5k48Cbp93ndoWI6JqqnHyyZoWGHweE11VngbefRcI/kx0zpxpGZU7Hg3K83nPJvT8IHx9J0L0KV1HluGSj3WToDETVYdrZUGeQXPkXd4Q1LP4B/NWpRf8woSc789UAttKyciRDCI6IC+ml0HnwJu3/JSO6lYBHf3d5hlIyNo13cShIRBuxV+7/xZbDqY5LHPhXFj0euqyUJ8yBXKjfFS4tbPB9+DczR+FGGTzcrfQx3oqnL3f+qQ6JgqoGkGzhq1Y9E9L8FtbdwMUPApLT+8PhbmJqYlP/+HR9y9XRb/YN8DUUZYHl9sxkB9TSpXcjUelO9urQtdzQXaWg3iUKR+YMN/k5pgC0c1D/TyyQAUNSe93jVkUmK5gFxB5TNdpZuDHk6n0vvlx7BfZkQJtp4SUukqxKKNmkWNj3gq+Mnypd+dNgla7OesTZ+k9oli68OzAY2C45yphxpkC7drVTk70/sWubKsiRGiFvtZRFj67INAfvbLTEUpEwfJPDp/e2wYShneNbDmCwSHu9Mp2NxGR/+j1tp2MBNj1SnOF1x9eSs3srv8bhjgjQeF1Ig2iD7+oM75cAU87+51yHXHoRsdRoz1arfC2OF3G3RQD847SOucsiEihNlAlcJUGvbVJ0rL3yyHEQ2IZl41DBYPnEnddKgLMIFf5BrYIOPJDFq93BiD8kRTb54ca4IrDhaUgzQoocqVoYepwSIMp/93vkU5IT7zVrVJTAlwFnHwl2mQk9iXKyOdRF+yaUNxlTNfRLozjmJkxGRmUZ4183d0F0gYP15laSyHz73/7su6Q//c/Y6O/Iw2abfh8tfNzYZKmg7mjiUOj3TaMv3hpEK7c3VP6MB92Xh95d/AgDt1lWd8/vFUMji7bAraShVD/X+iaGG8gemektlOf0AIagkjpg2w+6JfiX02tEhB7EamwrZM+z9Lc5+x1cqFwpYg2xE5EDHiBB/EvmiFpiZE7W7QUyBd0u/zPEZBgmb/31/pmsJfkCwq6XQKY5j2TrA8IyLAMb0s73Q7ZLi+aS14lgB3t0fB3exJK7BjQmzdth+ge/9PdLkkAXzqsm9+TULK9v7jcWhugGavlYw+TwFYNymb0SGgj2ribx5IG+hzrhBCEYN/FDXVZwKGVFOZu7jM0ADn57bf/0fVYNeKSx4lD9bK7GrJINMg/6Dd2wo0C26kJlzxscUiBszJatZMKxFvNFp3/ELD6n60S7cciaVrxxW+5NBi9q64brUgEUdnD1W2vcCjq+o+L32do8Cpzg/PPJBZOh/CF3U7CIUKW0BWD1zS4aDrOuMsWA9TPb1p9dHHIxfqkda1qA4zbY5YirkYAQ2L1tY9TOLRx8Lv1bnwzEFN4DmyvlYKefhKWfJWAtFkvFJir1oP4c45dZ48WgasqOVlNIByhyLWKE8t1INs5zm/IXQjRvEp1Td/C0JKnyQ5/LQ3ulT/ksp2ggIlnc+iKDw75LVQPgEAv6LEfPpjXlQ373rCQeSeI6DLhnuDKoV4o5gn7lCCUBx80pXw4NoiIsg/LbgK9cMhpr5lEWz7oFPxTwKcRUZXiyUNHXWrg2H3ptq+pNdDVoH13XSUUfRAlKgw5kIHiu0TVvVIK4gXaspVi4ahjt5nnVks36NkMeIYZlPz/d0HXJMloz41CXbapbmD63AE9kcWQaZxp9k2MjLq9ulU1+Xog3SLg9gv1EmhgYhF1YScj5uV9ZLvNTuCgKdRitSrASH/ebuM2Ge1u2QnDWNJ10Sf226ytHD6HOgvK0nVhVP/O451JF4gJ3JcZ/10Bbpn5PCtGZHTyuHng8O1WSJ5zwTRepAIzVniwyZqIZJ7L7MYst4Bb7h3h0GAqBD1x0406Q0SWIrM3F/60wLM1Z8oqIxUu9T+jqJ0jou47l6un7jXCTfwD06NcJTBocjAJV4hHMcEVDOssjVB2rDh6OKoYmHeIfgmv8Ojg5QK10phq+DJznPcD5ztQNfS/+roqBD3QSOOSVqmBWqekc+V4LzDheHlbXTAUTTlYujKK1EDPP1qb5a5AoG0eDjBkC0WmX8csySI9gI98UqsgXQyddyL/2dLzsXGfQsnfvDRoV/nRYsNQAuWNxUxfXILQ3juOlv+5ZkCg6On3Bpb0/ru94PJ4IRAFBL///Kk0AwajRObTpUvgw9iNs4tfApHdRXWWusvpcMa6zuBLUxHkNthml2oEoWU19Siyfg+YeC929MsVgv7n943f6Hl9YMdxMfdGD4S+oWCGJQvg6FKIlNkCCRnGcp+S+h0J/7WbV/WwIVD49s3yACUMDdkWkFvN+iHPT0PnOZ1/57YunSjD4JD1xBWtM7r9MPtTjCPhew1IbYV5bqbg0GfHn5mU6jY4N/3LL8EsG9gSpMBelkTnzEXdvB+9wK/swv9sKAaahxQvXNAjILGUtl2Td2gQ9807MuxREHTm3nnKKotDfJQMSoZRL/js9Xg+3JQNLAmLnx640/1q8WD6JYU6+G6mVbvvcx0UYzJ15RzCkKr/4FWu0VrY/7lfUW2jFuY5P712kAhDs8u7I2SWmkHZvZmvKDQBNibtT5HeEtAOj/fj93wtcGGP1o/wi0lwWLiW34/ea1p6p05Sn9RCSjkh1vp7EAzV3SWFToYiSHHUUvarhW7jbwfC8jHQ+ZqDw3AlFH0dvvtO6WIt/HD6K3dECk/n2NurmtWhKOXnzCPmpFqQOqSgoBNPBI7ZeNONvf/Te9iFR8Yt4FO8bmPeTwH7u8c+UhoJyH/SR2biVgt4SbBzHHpK72238iQH6ug+HKkxZOrRAgtXXV9HHafAFS8Ky8JnAmrtDX64qdwCcYHzu7lKECxMnp/cXUpAxwdp/dU/u+F5pp2wPC0HjimnfWk5Q0bZX6wOE4/3wN2bl4QsxnNBZXBM/+NhMop4cHzLe28XvNhtOvTlVTmczbV+PE3Po56+Oi1NnS6QkMmmMreWAb+2ziECXY8EMKhQ/FoA44/1/n6JpsLq/KmT23UBqKt2zFersgD8mz4+SdlFhX5Z8pnV+gAU12d0aSapENrUnK2971Jhm7VHXp8agPaVvqxd/NAAtFFRPVWPEjC8dPVQpA4ezQRywpJjD8x3p7ncUS6GY47ivmNtJHQw/PaFxNv0eaZ4muXxlICgScuLsG8kJOZD3vWYrRZ+Xjr6RXq4EmxtzjLi0kKRwT2P4D7LPtiT9oWqlVgNcmzVfha3I9A90i7af/0JMKh84cb9unLwmnMfi2sNQfZvLgl/006A1v64vqPFFaCgcK4JwxyKzqSfrE4hVwOXguDHfmoB+PQyCq2Wh6CnCfb13XdwUN/6rcPqcxr08X57HW+DQYJxDpVNRq3ATl0RrzSh+yrZSuWxHRFpX6YR/eg+tp3rw9GnWwb7enLHsHQf8zvmUVI41wTj5rTvOvNlMKt2+etUVwQabPWamp1oAtWK8HrOPRXw+z05zqw5AqVQhL6LcDaDCHcSu+f3Ushm4XQ68DMCCR8qWyx42AxdeZpz0tNloPChSS32FAFdWDwS5u6UBWFNHvaGKlXQJ7s8vs8tEGVoxd2oHkmFrzkPDw1W0znBPtp/riwIpW9fznx4mZ77IWeylfPK4U6SsoQzIwE17P2lYHwawXnpNFzcqQLYiszhVu8LR55f7yyfl0Qw9e7U2wX2PBD7ovWCOB2OirzZO+KhEWa8re6d318Km011uwZi8ehOihq0rNVDCXX4xEXRQijuS+HIiaL33KebOX4G9VDB/Mm3QawAOsQuJFuJh6NeiuTD4y9fwnSAXc1F0WKgFhQ97hjHosGKgwedV6zhpdaQc8FSEfSeFqaYiuBQupzahagjrXCmsIpyVTADZHl2KzspEZGN8+fDnh5pIHz4x2/n6DJgm6xLwHgHodf8kv1vdFMhE3m99tUuh30G+W0mM0HIaYv2NzS/HljeKGgm0PJAZzLl9v1H4ah0cnNLpMYG4rNm7WZ1ELCRXl10PYlD/ums4gcHUqH+rvpSRFEpNBiUCEtVBqF6pOzlzZMG5BWzexx6FTBoxJt0LikIZV47PBp6tx+KhO/3FaJIyHOxM/Ik4tBz828BNs6NcGdSlFiRWAlHdr6mPkR4dLPe8Xk3TyOcN8aaN7FWwrHbQpl53ngUd4CnfayqB4KUSBE36DmbnCD8ae4ZCUVladfdpuvoPYPKX0OeCqjwPtLr0U5CjPHl112+lsHXpMTl/AwC2O85dkJeOAhVH5t1PjrQAyWXuoJvPimHAc56hw5dEmJbqS4w7PGDciWGe6q91WB5t+Ga9QMsyt89n4wx9oIDmvXC1X+r4Xj5uT0d9P7eDZWJ/rpR8ADv+FbndzRw3SV+TcgIQ18tXiqb/RcDDNX/HcRvxwD7uJGJ66kwFLESkmDP2w23YxiWTjJUgEryPa2fumTUYdaer1zXBZYU+9WDohWgfjW2IIXuPxf0qkMYJrrA/cnpoxa85VBm8er8sAEZsfEfjTq95AadLXzDQdcqQEnpXo5kHRaZjFyX3Vbwg9HcmyHG8hXgFyjH02SHRfNRen6O5j6AE7xlVEw/T5X1eaV/PlhU42aHzi0kQJmOuqFweRnIOmm/660JQVaa/3E4X7GEMPzflXwmHzhYsy8t7xwOORay1w0kx8GRhEK+ovUy+GkzlBjiH4pi+rd81r/S8+st44gBM4Kh/O8R+VYEZMLw5NhNWi98+5klEt1TDydL996jpRFQ0bmRE/5W/VAt0cNAsKXCfewvk9tBOHRH3UruBFcfSDU5hMdPU0CM5ukc9TsCNbU8/sVf3ginrkb88SOVwDdyK830Fx49rOF7oxbRA6UCdxwwvkXQ9fuU13QSCf3lYhLibuyBc9w+L/Y7FoHDhIhFkA0JQffrkIMCJEhQm2HdJxIEA+SbAu1+4Sg10sKClNIH+TztZHEoAhPf2qyxNjyS4LGY+e91HwjsYXN6KV4Ef9JaUsOEItAu2cmyl7+agYsln9PmaBXI9bBLN/kQUEW63ktniU449es7GXeDClJVT3Ou0XkygbfdaM68EwwMHasCeilQPqDJPKZIRmdzisrESjvhraKoq4AUFYxH+Bl6NMnILy91+4k6BoCd01hkqBgETlb+XM/CoCixa2ljOljg4fSR1W0vAra7C7quARjkPqzpeEM+EEof/lUTni4Gd/b0p18FsEhvRaaIie5v8X0R7lPmlZDMx0Q+T/c3h/e5CcK3mkHrN84gOq4CiqfV5uvYCchSp63+chYW2Bkf1KR35cKuI455pe4YVDFKaZxwxsJFKf92KfYcMDm2K/K8Hwb12SxZ5QzgIUXhXbzlgxwwP6G664E0Bt2ZnXVqbaqBvgtX+6e2w+B6XmvQ7MtQtHP8s/D4cjVwvhwUk9qqgqa9s6KBiyEIK3HVUUylGUpIZLKzWhX898tDlH8/vV+goUpv1ALbJ1YtbYIpIP7R9qYhMxHFpz27EGVUDSm3+XySaO7wW3V+7Vt4CKrUE3l2b7YK8pbf/lg/+Q68S6sFVrVC0KVzmXes/zbA4e1jWjtHquBl02C5oD0eSVtzdTi5t8I5l4cE/WQqLPtXxAx5EpHpmMPxxYxW4P4T/cLjDhW4SsjLhZFEdOAszysLXCu0VJa7xq5QYMTtYcypECJKkTO4oxlJ9x/7qXG32EIoX7rMzx9LQrSG6/9o/6WBwsmhRwfeInCygOQkbBD6I9zonnYjDIx8FE9O3ssD3QtjJJ9uDBLzk+v3agiAf0bsHwx8c+GQv6rRB2EskvlghN95FQTinA+rba3yIbY4sKaOBYvG96yxl1/PBLEeBpZRd/qcf6rqTakORNEbqXmf2dLhcBETdk98IdzSfRCaqxeE8lnuV5kfTYUpZpufpraFoHzEtOfOdhBaiSLe/92YBk8Tvc4dtS8HS1kvjlz7IPTqUfZ45nI6sJtkXzjeVA45O+eDio8Eod2KRh6Cz3Bg/v2roHZbCfwYtxs3s8QgNY4rcuKMrWB7b/BTKJ2H3z9r56qSJiJ9H2l+Y9FWwM/cb9lHy4Q5H6EH9jeJaHSxWUT1RSssiSkrvr2eDfGnb3G7viGiraSJZ+cDWoGzBvtIHTLhNSmH6c87IhKu5uf6KpQMlV7kaCw3De4Wu2/8rAtGYxkRb3S8aoFjTDnklHQuUJ1xB7kXQ1GJ1hTjamUfXNbtLzitVgxFUd2yaol4RBWuXJMltkCOTYAjebEWXql+rDuyQEC/D0QqGSW1gHVxjYf08VqIlcKRf/4moLeyrF//uDTAFdbtdKUvdaBU6nnaah8eCVja3RiMa4D47DfqOcX14Pt4DS96Bo9Y5JHAhEYDnMLkjo0E1QOpdY4x+jsO/Y78lrclUwJ7xd0uu7cVg2v/FZvYM4HIWffpE+2DtaAft5Clfi0J+toG708nh6IfZ9Wiz/TUgHxZqMGZT8kQWK/5ZtU9FAmPHz725FofKJ/+W3l1igJTXhUdjeERaJEvkOVWGwVeuXwoKz2YC11PhL97cGGRFN9uFttTVBDxH/Tf5MsB+5kMi2eGWEQZSxHYF0cFo5yVfD8reg64MX6OKcCiNfWnFWddqPQ5uDiv7RIL+P8yH38MxyJzw5wJgRYq3IyZeovhiIPnR6y2rLux6Olkn3fY6xKYSjGy/PevCFguT0x5KgYiZe3b+x9mUUBwi0PeS5Xea4I/v7X9h0HGP3MPt5LbIdU2ouBIewIM+1tI5NB9e/hOT0d6YDtUszk+CFWPBXvJqhIUTULPRRKGc9OCgWN09SjWrBA8rv7YuPMXgwLCeHd+W76DyG8bxc66hbAmGhZ+zBiL1F8QG8vvtkMYKzSR+shAZLpyufIdCeX0f3lTei8YZn/xDwfFF8Dvy8K+37cxaHekYkrIwR4wuMwUd/xCPARYtxTK89F7ugE/dUa8B5YuWQYGQwy0VyUouO4lo6icuGm12CLQX1+e7n6cB+MK06d4PgUgY3/v52/0y0Ei4MBZjdcIru/laWC+G4TsXlBrMzJyIaKViuT210F6p74leTMAseUFi2ILy6Ex5XIC62MKSH0stF99H4T+xfqYxNeVwQZPT5GzJwWK/Cu1xTiDkJwAo0C/XDlk3LnL7jZJAX9t33MBWkHIJ9rh7fmzEVDE5mkxpRgE0ee5pRXOYJDQxSWZXoEeWLR/ouw5nAhjo3v8Ng+RkevAdE59RTe9t4cJxW4mQC9ObGdalox2pbjzf3bqgT+cinFMmvVwNDVCdaWVhNJfLl/8Ft8D5n+jRWzG66B8ueGfEYGExkRJl0nUDCBaDvav8cXDo6t5Z6pHAtHOio7SmJAPJAZ4TTfcLAZfi1n2c++xqFBu/Om3Z93AvPrzV7xOOby5YfXmtDoZndmKbuNf6IbU7Oe2HfTni02e1RCg9zjC0Sv5Q5AOARiKoJx5ArxwcFG/dS0I6XOzZH6k82q/TRa/+INsGJxpnMLQebVjw11I3K0e3NossC4zOZDCoxl09Vo4+n5YkM1stg/chI9c+jhSDCUtG2temngks3lM8NWIHRR55OgwdFVA7p21J9F8ONThu3RDPq4eOAkcb/HETJja72dlez8cCQoGl1Q1lABfh7T55tNSSLMYlY69E4hGSuJ+mRn0Q2+xt12BGxEu9RAcsmJxaP2fccCmTD/4vXzXr7NOhqP6p2iNHTj080+bX9DJfvCSnj7AIUSELx7vBX78wKEHuVUliWVVYHBId3j2YDzIs9W+w5wPQU2u9zRjNKpgyr1Z9N92FAhvrb/bMx+MeFpPvdFYaISvI2GTdgzJ8Pfo0Nll3gjU+YnV+1BLI9xz/lv1XD4RLk7y3g/8h0ffKh6djotuBN2kXW+E3qSAHJzgw4/hkXppYux7ci/cEDS2R3uKwetVfGL3DgGl3XDZMDvTBeXJrqFX3CjQyHStL4zOn/8987RX6u6E+7ghVSO63xy5uPVR+hYZta8wpqklxMDmrX7MJAcN0OIBpWsHw9D1DE2T2y00AM6yI1s/I0FJwxt7NhiHJIO/D35raYVwwdfa1UO+YFfE/7w6h4iedOBfV5ykQJDBf6Ht4bUQEZTacSgWg+L5lzSWNSigYA5Z157VwQmRh24vKzAoUVxGRMHwEfgHaGgmVCBgv8SXf42X3lOcXNdHmp8Du8qtlOuPEMgpslmw/6T7WMvxtrEkV/gmd6KxhIbA/Erw+koHFomkf9Iwe06BE7yxKr/6auB0o7uu/UcMYmA5Kdf65D24V1XM3TMuAIuOJ+cGbmBRC9uHtDwNGix0ZXq8vYlA4EuE46AEDhU9H3gV0JwC0Xn3Da6x0qA4O2lAmoeeU/85nj29kQreF6XUTT2pILa9fy49JwiVl+fUnglMg3Dxgg35AzToI+pYDXoEof8DKG4LFHicFJp3PJXvH8bLKIqKKCKrgaKSxjeFj+yVqCglCdkllFEh+xzzOIdz7L33dsz7HHtvZZWVkVWkMuJ3fv/er/N6nvt5Ptd9Xdf79Zz6Wd5dNbZASEXPuO8Fl4Knl6rN+mQIyrvF8cfteAhcnzPZ3GtaBhlXqvlL80NQZB/9xKwyDqL+3NjtcyuFZEvZ2x6YECSQenc0QDYEZvulsYlFJeBkj5qIWSEoqX8i/yN/HfCqkPc0JVBBIlr0vfHhULS/QUHCvZQK/uiNSXYBFS6+/qj3kYpDl0+SlGW86iCSMGY1O1ULegnHqmUehaLLHgparj/qgCn32xx/03sImv3pGZ0eipqsuzvdHtWD0qcXtvatLnBpJzDddT0URXY7vax9WAYLFrfeNvXlw6S6vvaRJ1j0sdIqz521HdxGZO7e0UAwLP4gq6ufiDyYPcsp/nXQx/P67vP8aIhz/3eb8jQU7Tuk+VV2MwkuR4ojbhcqvAn8zL9r5o84a9fTHWp6YCdRUj3I1BpY1tZnx/PD0IBdhS2/aB+Qqsb9qjiqoMHr9PrOl1D0JdjvVnOSI2i/1xUdmEsBoYCJSbchHHpiIqkjNmYPxpduMA67p8HL0AHjiB849M15Ui5F8AV0tChuL9qmw8Idt8OCp0KRnU/6iMT3YhASJ5f/p0cFhf5LlelPMWg9+0wqg18qyPSf3XtOOhemfcd8JF2x6JFVVb7bahqIH/1KOsyeA6sqW/FO7Fj0bETfTa00DdQYkhdWYvMgD1sjpHQKi7icxcSHjlMhn+MfawpbJnzVrxRuvINDeZuwcf0tFfQvaC0uzmUCL8/iUQweh6RiPH4qFPfCc6s8sTYxBHG/U5qvZ+NRuWW+xbPZEih89mBppCYCTkYlTWIqMOha9Nh4xSMynP7qQKdCVwtn3nBfszT1R4Uj4tHtIwjk5NarXUmF4GBpKHzWKgRNB1mUd+hRoMS/RnDBqRD8/74aHqkLQXq/xobbb1BgzsCtZC2sCMyHVCXv5oYgLhG1B861ZJg72HBu16gGBs9O6YTE+iN21ZOuUqOt4LG20E69WAhvWwZ43ikRkYJPr/XfA21w7CoH30GzAnhzYmnC6SkRYXMTcfQv20Bzfu3By2uFYF132GoiiIi2Rv/+5ynRCMVePFF3HYqh4F72iR9qBNR7aWH+VX8DPOXrqnV4UwRXnrDyWTMREC42ds6lkgrCgiGN4Y0ZQPlIzjrTiEOfWJVPlBytgzw9wx+oMgMsZl4crNkXii69SP97XrYe6Oz78ka5yKD/pWfw5mQosvyuEP84oR50lupvYxTIQCUHYXdE8cjFkc3u6rl66P8eJWi4vwJmldsip3pD0eKqQZxQIQXKR7R+cm4VQvRJ6uM9jDiUWrS1l5mBCr9Ufpueoe1zW+fZB0PAIQeM51/T/hpo367kf2mSC+TqCYJMXxASY93fY+SIhdTGB6TUoUiIval4vfkgDo0nSrX7Urrg9Z6o7mD/FIhvsL/cLklCNew/cheeYIHq8DvX+2Mw/Lf1NNaIFYeGv4x0MfOUAB3zqvJsWy2symx57L7EIKeEcx06V2h6yxhW3A4rhCXVZ/auxjgUYdhsfljFB84a3P2naBEKTVmey3vUcShc4W82V0AHTHItxLMkUcH5YYt8ojwJ2e89qs7C0Al0Sff3D4dR4fNbyod6HRLymgpL5CrpBRE5tpTZYAq89PI1is3EI6p0g1ftQC/sadaFT1IUyBp+wbZrjUdX3GcLODspkMCzrjqyrxB6v1cG3uTGoei0w9LT94tgYl9b5uTlD5BIIEyf/e2HYiVELnNOFwLfEtm2d8AbUiQ7mnim/NBBrVmP+BOF8HVhVYP9qjvso17nLGn1Q7cuRRS0dJZCNu/UoJNkCTyv1xQz4sUinRuH73KplIOSQ5TxZmspnCkw2F/Ti0XUGUJQi1U5XKx/gfFfKAHiz6c9st+w6McHTPu+Z1i4/99mzXIoBaK8W8IlaO85F1dcfbu9DNRWruBSK2tg8h+PCB8Bi5Cho+xhlTKw646/d7G0GpZfdRqcu49Fj8Ve7EuXKIc4wzntU5+qYbxOn3y1CYsEP4RxjzJ1wwy86zATrwPudJ3+wJMk9GVHb0A/rws0+G0O+9H0+zoC85n9PxJatHc/wcLQDZn7wwqWi6hgYXNz3kuAhHZYXagd4t2wcZWrKDE1AJDB74UDDCT0LbYxKPV3FtQuxgjvNr8ASkvhdeWrGPSS8/etzZQckO1Ikjz60pqWR/++TG35oQLOmcsGjt7QWDr2EaQpUPmBVLKii0OTBzXid2n+Y3jJN0JEOxhqvdnJnbT5cvBp2/060gMzu3s4dzpq4KzrjddDv8OR+gdNA2uVHrAe+rYm/K8G9jS+8TpLCkft+4azZFe7QWk9E3/iSzUkJk7OJJwlomnJUi5Tnh5YD2Tp9G+rhh8pXaH938JR33PGcL3yJHiukHbhn2c86K79PKLl4Y+8jh/WT9pOgOnsf3puZ+KB5bD1mXzZAOQidvX9SEQxJFceeXkr9R1UV4QtPFXEoBj791gFfBFU1y7q3TawBpEi525lOgxySLB5pzLaCyZMXXIUvVAwbOQ9ecAIj6wwZ8y6povg+Z1aS1KZF0gZaT7W46D5/5zEfOifYihhu9ObjimGd7L3rY4YY5DU8Kemsu4SSAr47xmzQAlsG5grxRdgUBCYDuxuNYCtmO6QWnA5NJcYKlFPE5Dda9mqIudGcH+r9snhbjmQ2RlPnXYloMNHg1YLVBpB/8SVFRNNMiRlleKtHhPQ6FLZ5PdTJXD0xGABXXgRMJmEnTpoh0EvKjQTo9obAXNDwHb2OBko8pbSTuUEZCgdx6Xp3wiviMI4TuEKKCxMVcZhCciAtgXqTDewXMrX3++ZCLqbJgKx14mI94VvO5mhBxLirNZF7sfDVAHxvtoBmm9X0akq0+ayYC69tiqQCKWySaWMM7T5Ej+W0owH3tadsX2zVgtVnabL1CAcann4fPvBPRf4mR0Vc1WgFtR8rv4NbsYh6uFqp7HyCtj9vNrNER0O9bVfI79dDEDSVx+qKa23w0WFt9ZUukQw5y4wTzhFQjZMuBn/6lYwd6+6OLMdBh18bRcNrtF0sjPt/myzFT6Q3G6X+ZFg563rbyZdIlI6UPE+t6wLFNxVjXt4kiCj1Ojq2WsklPjZ6vwV+S74ZIa9R/gvEfa92R4bVyehY6NrXtN2ZDA3Wpt+sJ4D3vadndb2/shj7IjcEM3333z62lD8KQvIUyssw4/8ke0Pbh8nhgqoUwmpoK/Pgry/t66yNvqjae05ezXfcghQVsy/PZQNmXFFo8lrWDTXVXU3SLoFDIYLWrM6MWAQKi1482E4cqFjioidaQYYvshSNuMNy6W+hAzBcBTbILuSqdQC1tuFLcctPeFpKt/drwbhaCpMksd4pAO4xwZeXaevA8+FMaOkOyTkYta7xv2oAxZaHnCp8NSBx6CWXKgUCUWLTNnJJVXCZJrbM9MxCjDsmcv2qQlAN6SSeVaMq2CM5CdzmJcKRk8lrpOuB6ITkk0ra4mV0LCPWeqPNhVyJfkSdWm/1xhZUsGKpYGflU1csWEWKCQu7tdXxyKS7ys6Lfd0MLokeMSqKhMW/kt+FbWIQa0hCkKZfZUgSej+afuAAmaHbcSTRgMQp4YY9r0AgscffvcHjSOYzRMPVu4MRnMP7rQSPiI4M/HhqD4zBYbp9nTdPB+CdlJyiAHR9fBQ79/jWP8ieGY9y/v+LB5NhXjMjdPmSx8tf+a1hyn8+0X37ARtvvHnHBeT/8uE7sroX3U22SA9PP1c0geDftXeMu89UADdSVatXeaeoCqVuBFb44cu0jecozueDz/ay1ddJD3g+4tl6c4WP8RivCRuFdQINV3VqhfX8TBp4X2+PoCAqv74mdvbU8H6nkqykVcR1J6HKU8cDol7mqrsFlaAjsjm6xciFFCqtmo0FQtA5qTI5ToxKmQarw+4VxTAHV3d6X8GOKTmZTOxOUEBVO3HnHuoAOav0MunCePQoLf5U4+/tUCnFxfTjQpBa+/A9JeoYOTTbVUmxo4gcv4VXdbBQui79t8P3YpgZLX0kP3WVD0c7XM/5/agBAL79Xnp9PFoUZFVgPFCA8R+fvBHe28pBP04XPMwBI/qRpijTim8gRsh79AAHQIZLndDvjkckrUsZLD83Qizv9xt9wlmQZCRmU3WAAH5PbE5+C2kEW7/+iLkeCELviWInvAMIqCii0e0rpmmwt3hFbonZdlw4OW7JUMMFnVdPlV+crsXbHl+MoF9NDw1GNmuFMGjtXyLq2S+PujPTfQQqI2DgF/ToaYroej4Y/p7TJJ9oBNKNyZ5Lhp+HrpMqewKRcbFUaaMBR2Qs6b47GegF9A9chK7pUpCnh6+9VessoHRvfrQ0iQFZlbN01tPYZDFF/10Y2oWsF0ZIsTeoEL8QYb8SGkMSr1w8eqwWzdcr//Zp/fEEvSHRsiWZCJyNDlbtKzeDdKjvu5aHiaQd/jMjZAFInJ/p3WMLYoMvtcPSCbwVIARY8OH3xh/ZDmteryENt/3XxnKI09UQFgFV9AN2ny3JFzyengroJN/5fP0QAXYjQYo8/f7oynDwoMX39ZBZsV8oGxcNbzsM9VZuROKmKz6fD5V1UHN5Aabp3sNaO80xNZ6hKLxrE2Dw0LpwEu/lyUO5cO41sWzHxmx6JyUD0k1IRk2eMivudQTYf2a7YynsD9a2QqM+X2KprdvAhHPbMhwJnwkRP6zP3ol4Hfv33wFPGXtyvl4k9Zjc2t8H2gGoGwP9bXuiDqQuLYw5T5B8/ml0ewjFqHIR1nOWeReHQQ5/hrZ4EsA1teqRnA1FNnMHS0OJLQBXnWk+xQ/BewMbzDVxhNRoIL7BCE4Fbb5U1RC0/LB96TGl9Z3WFQ6Gn3IpS0ZMG0Cktph+XAxvuxd1XF/pDhfmlT4sAOCPbg73q5FgcpIjL4rzZeIyZ+fnU7uAAdFlrd9OyRIDv/yzVCZhDgu7xkQ/dQBTE3or3NoFMz6C9w+S/O3/0bJ66LzpWDzZZTHWbYQpMZIK/IiWDRmGH8qqqQF8GzBz0oKECyxhDkqJISjW7YaB1LmOiEFP/7+yZMEiE8tq9R9QEIjbfx8DKd6gRKl9tpFkAxT5BQ76hABff3lJ5BI61Gn/3sVuCpeAqVihkRRWo9qrXfZozLWAAdgUU68mAr03w831B0ioPs/tP6yOjVAxAE2JZsUKviyPhtZbMAjztmh3bLLFDil31mr5+ICWcLiN29lhCDdMiGmVSIFGg2uSunpvAdP0bXTR1dD0Nu/AwqcND5Kq/z76u9tKu2821WY0fioyE8wYX2tFUaZwpi2aykgYHXSt1aHiA6dEmT0IbXSuHjLh/cvBSywXl/9hYjoMSalwV09BWKucMg7iiB41CtZzj+PRdU1Lrc8yamgrbP1wWgfArbUys3gl1h0R/In0o1oAneem0ysFYUgUboyMKsYhs68iN86L9cEOp4hI4G9hbDJJ2vqyhyGTJUuLWOMmiCdWVqTmlgEB39Etdbxh6G8Bu3HZXf64O7ZjJibVWUgVHB8njEtFM0jGZPwy32gmfjj7oeSUvClGIJFdyiSOebZW5JWC2OE2x7nhIth8mXJ2qpxMAou4sNF3o2Gc6SuvfIztLncsxE5IRiEnN14I2YkYsBMKVHWg1IBqWon/pjMBCKlej3MNb4oiOdkkFddqYCDJg+Ypl8Hod0LHa7T67Hgfi5v/w3DCmhoHjrUaReIzAONWxefp8ARRY/tt+61oLnCudIxjkXcwToz8nZlIP+MVUGO1w0CigP8pM2xKMOaN0eXtw+EH51b22tTBq+lxD5eWwtFHtX8T7Rovr/Ozix0fCQLJC2NcfK7fqiRcYqrmlwIf2firntmZEPnRBPmx6gfUoh3MDlzMhjKjghemzYrB33pu7dOUkMQHwP6M/E9EASbVC7q3Uew4D87bjwQgi4YshRrNWKg3HmzjZlSDnxcOyN2x3CIQaikKXUhDSYDt3bmaHx5N0f25hMOLNp9t9T/UjYDrOYpeua5FPC9JN73uBqDMPlqq3dQFwQ9ZPFV1qTCs5QsZq4rJDTdqvVTT6YY9BqkDf6m1sIfKRZ9ofMYtL0nQmWEMwhIHUShgcBaELmyG1vYG4Is6uuYNX53w2CMohnHWwSh8h4FvgJEFONx8vv93hwIfLzP5/geCqTkP9jg+eOHdCn9nq8oObDZUWpg4oDg4KYk49xfPxRqcW7qUEQvBBc7TspGRwCT0MxS1wQeSf45Vlce1QsnDa2s9k3FgOxQdPT7UTwKtOl5vnaM1p9sn0TRBSCQPLHzRuUSBu1tPmTKt9sLc8mXr5yJLYVvgp/ekk7hkbLdyCYdNg2Gm5mvt8W4gPKWJmnuIha9unmamxCYDMeZHfSeB5OgPEFz7/oFf1RkOs79LDgL6FxQj8xeCnCbW/PvU8IgPaXJbv1LEbCRzpCUOlIGMzt7Dw2sByGLDAuFpotE+IR1C+iwKYeS9WuZe92DkXwegK5iOBw412aMUSwDC6dDSLU2GPHW5F4+YN4Es24TolzviyF9cCHrxukwFHBvaV7nSBNg93J3mm8Vg2hBACZ/loBum2Rr8w+QIN1adCV6mwIR3g/g6aFglNBvpScmHwaaU3RfLnFSYUooZ9aSLgS1MQTr82ALwdO5zOAT7iU8+Hf/UdqgH2ou9nZZGW+GVQz/vWOnyuGl2VQBC184+iVtqXZhqwf8tK+x+8f5wTz9akXVxTC059PmXJdkL2wEnE18d94XWFuD7wWXEFDtJUkx3/xmeG+2IFOtQoa9x8qG2HbD0HViIMnnfTu8iRvbm2uUDfqPZYocdojIlzAwY3+4BX5PKkkMXyODusnxNYeb4Sjq/peNJNlMWP310NDvfgrsriSkUbwwqOoar8mkWQtMjBh0yT4kw7Pbz+COXTgi+df93Zag9eRPtYHx1ytAsnLgCIt2OLqa+N/xWw9aoJ9wl5itUw7Jf7/OjrwIR1KWrBckSS1guFEqQqad9+V7BkPJweHohLfGzbrwbljfTt1kp3ExvfxawH5afule2G8PT9/ApLzok0yTfDh5n17VbRaH3CusbAaffISHl7wzC3D5gM+ot1kLwSGP27Ynh5RK4Xy9VoTuTAl0bDNOvZ7AoKN/Opz0TEsgeu2PcJ1gKaj/5ew7j8GgQpaNra/e+eAaEXHQ8D4GwgMj9u+j0ubiQq9Mt5kP7NYv2YdMQmB3l22qiNY/CVJWRvx8LWBi+rvB/6sTHFas009TCEd2BvkrJ7AtcDQ6jD490AUkHaYvCvmGI6XQuJmo0hgYNZz6RneeCv3KTmJC9YHI9kPL2XrVWNjT4c5ZVkAFnPllV7vYQBTUlYZTTuuA70J0m7yGYZArvK02SMvZ9+wW+7kFOsB68j+MaRURDmYsMlpfIKGFFxyDDvwdIOA10jZbiYclcSMFRdp6aBUvuXOqEtQi1O8QEBX4109VkGcC0Pi9djHSiUrwqDli/imDCttnttSKLQNQYZK4OD1nA1TGRBpsHqqEM4Pk/suuePQydA/bWHYPaMwfySnN8Ybt4bhLBgNhiC/OWms8qQeu2K1vOuS7AGPCWEzzbBh64S3j7FPpBbPKa2UZ9WFwdfypYYgRDgmQbZq977hD0bjw6dbyUAjX7xTVjMMhX1ap9lOTvXB8z2azZRcCupqI+Fe6eNRVX9fjz9gHlVNOlTOXKMCMOzNYyIVHr9kaz9wsKQCZsXFNxRsYiGdPlL1T54fus9Z90i+l9fPNXK7TgOB871IFKxMOnTR4F4x+UkA1LdqMVFsLy74aZVySOPT39fpBLR4qVOhAiK0eAndDU1M1bRyay5U4bpfRCynO8Tk/ixNAz/Fg+l0KHo1vTq3E7FJgP+5GyKXiCmjxDxoVlcYh1zAFiRNPqZBk+aciTbwS2Ea+Ofz4iEMfSEXGEnupcOWToOsXciU8+a37/Y4MDiW/OML6/EgDZIXmjceWpcN38k3BQRc8utZ/POBXQT3o26YuldSnAVM6p/qJa3j061DpfoHDDSA9rbtkmJMK+2KOSC0649GBgy68hH8U8Ogv66qg5cz/cyf3Jg45H4gvjrChQs9rA21t7XRQmucYlQnEofBXkhqlbv7AbVXm2y1RA7emeo1LtkLQj4jt55XebcD1aJ3DtqwCvO/UBP+MIKKCBO+4QPY2eJ0vzLl6thLEpZ/Jajwnopw9okc5BNrA5OPp2sCLFRBly/6H3YKImrAON99btEFIjrmCLaUSFm40v6oJIKJBlzPsbJpl0Pchy6bCLx3Wo/5L9NXFou78XIZsjnJa7nqGbrSngb36n7yX5VjUG3e5HLNTBlURKZiU9AxIZzK+K52DRYXu+e1JmekQPH/OLw9XBcumuNF62rm2zlOcuayRBk8uCXulRFeBDq+y8w85LHJt/HLZvbsAgnyNWxv0QsA+T/TYn3o/9HFIOY5RJw1ywifSdNeLge5Qddx/gEVHIt6GESsJMLRKsn9kXQBpF7n3xnOEoHdvWVvczoRCz9loydj2Avggz2OItw5BdIXVJkmPGmDYie5yv0wkJFx5vfMjD4/exIuESfE1QHjbem6oXAzse3eLOuWFR1/Keejzf9WDLYG9zsErAn4WGy4Uv8AjkxG7/snlSphaOR7BlJEF5G9hrhlLAWiPWDqz2O1SCL8ekOPplA3tLDymH75i0LOtU2uiXiWAT751d9w5By5SP350JmDQarTca8EDPXA/WsncjSEZ/n3LLqzbS0SZT+8fYk0tBhXdBfap2lzAsD4fPaqKQQ5eK8VBt4Og2iEvsrymBmglNGi6KwTRHy/+dcyzHlIeXMXhFMoBq8PE+O0oHon3+k+PfOqGuJytvpM+yXB6W4DxuwYRHfSHeZfQXhjqfm0oERMPrwTE3jOt4NHSyEGd8/MdIJg6WPhTgAwst0OrhO+SEHvASHf82w4YvGC2wUAthz3jHzb3AAkFSt2yUOImQ0ioceIRmt6eF3++Pi/nj8bSeYRtP5RDz/ZyNf+5KrhHyXrivIxFLiIHMYilAsQFub+EFVZC0ACDbn+rP2JRKLaeeVIJaRfMDyVa5UBGfbfiWXwAem+8/8PGcQKI0PXXcpiUwm+OIw0+50JQquaXZ3eooVAhI5dcXVwCo2syPkt6Iaj4gcdu2OsKaPU06+7gz4GS6vr1JMYA5E73Jbe9vh3+eH6MPhVRAUl0KvMDnCR0WqYl8ER7O7gSPnMaJ5BBO+XFYQYuEpoqn3qFjywHlmEv0fM0PX45sfFf5z8sOnCs7HVVaRnsG6ZzEYwtgPZFn/euNB7PJIVGROjS+krUow8mW/mQWDCrIT2MRfJlPxX20Hjc/3xZy8B0DRx5f2Yt4EcoMsTfrVh2cwH5Dhnr+7rx8F8oJ6t9Ew7ltPOcV9bug4JdldfcP2pBq4g/50VSKPqY0eP7QLgPmnb9lTb+Q2Bg8fVfy0QochzZemX5xAooohipSLdomNSd0YngCEW6k5cOxJ5zAjnstbarTpHAeFeU7togDsmbfgi5JEYGVWVXDXWGAsAP8YUqavij/qyebpNMMhSydxSzdeeBSxljYEyoP3J1lDskdqYVSiXVD8edLIWh9saVF5PhqG8+86xHQCtMbAgeFdIoBazl+8X9vDRuItj8F3SzFZ5Plj43Yy6DBeqAEN9KOFL/bUBUuNgIk48SXYlXEqDVLohNT5WALC6R/mWMI3gjlvat8E0NTE9w+EW/DEG1RdsWP5d7aX1myMskqByq3eIjE2XxiNzbeEZ2lpY7gRVnVzLKgGr5XUFZE48sQ+9ktOt4ANOq7a+dCzkA5G7mPE8c2hkgl3R7eIJaJ5vG+J48ULrrR6W3xyGuS7vJJenZcH5f8pUr9SWgtOlxV5QHg558SrSyY8uFT4YXa+tZSmHDw88s/Ycfqt9az/vl0AMCO0+7g6h2sKbe3n5QMRyZ/qwqr7vUARvqpSm93mTAhFAPyVwmoW58gXjBRjtYP8iKujNWDocezlh1niYhy6Idk6lTZdA1WXQjQSIU5t/hNm7IY9G1LLa/sZEIfH1ySR8SEkFPvevC91sh6OBpJ2k7cQQlw0csaqoTQY7J5ovBeDDCPT4oxeGNQJA+/pPm+WS45cz4rEg8BP2blhZ9/qYRCp+Zz0JtNVzgqo059o6AtA2zlUMmG0HXYMKfv6AaXrnr9fU2EZBEYIzxIrYRVLxnrB5tVsGXjsuHNbEEtPXTWJ7hYzdkbHk9wnG5gF+8yGexciLSo/+VO6xJW+94MHTy0huaLg5oT80TUUV+ile0czfsjISh056eMNYpeHK7loi2hV8WXUrtgX10cVB8Iw3GRJ1MD02Fofg1EZMpiyqIVHmadLciBxKdG78+vxmI0D+xBffpKviVryb5X2gW2MozxXFhA5GRdYFG/9seiCk9XH2lNQ0eaM3w28jR+hsumDy03gMeEiWLDmcSQelmj9DVm2GI6E3y8OFMgYpNeuaKVQoEK58cwW5jUezl36Tyyh7gv3/Fi48rEoJMV4vDSsNQ9MaEpb0RrU9c0fOoLyyExS/CkTG0HOHUrOrcpt1X+2PH1UX+WhCo8anlo92Xg0tKMK25FCoGc77s76gFk0vcSYncWPQ9n7i/jloKIrpHbSJza8C1y3du73EsGhhgOsflFw8/PvZhNVAcrPcpnq+j5cXjkzIqTxn6IIlVMuv+t2KQ+fvvUd4JPArQsJnmLmyERGqFRs6TYkgb5pGaSCGgjH8ODoYsTRA9PVP25TCNd+4sc6xOE1CCfXFfA0s7HG268/nOcBrgms2UvfqJ6GWw4tYnrnYQRxcnvJhSoNXKL1Z/iJb7OfeOqQgXA1POEWW751QY/qxzfus0BvmEXUl78r4I8FG3mL7wUsGEx5Ot4J8f8umwLll5XAyVgU/9tTcpkEXuunZHEoM0xPi8Oq8hmGXRpRsJqoXn0smddkvBaPxc8LeBlwh4yOfkjr6sgT+PP5/dzxeCettNtVU8a+G0eE8U45daYJsUZ/ikFozo+YuWjj4qBfOya5Ijfynw3WP1zMl5DHqJnXbadxKBbvqed6/6quE53u+yQ0sw2ghfSruW0AijxS8U6uQT4OSz6Ny9kQQUqv8kaWUbAxee9nLvLUDwaUGl8txRHNouRMmHrviAz5vZfWa6CKYORJ8T1sAhihHf1YNaTbDIpjHgpRoDEqTYK6xHwxBLRJ/sxmojoNaTiwLOiaA5z1qi2EdAZEmGW/LlvWCYBfEF5HDgval50DMZj/7em5kvH+wFf9MDyndCI8D9fHnSFSs8Egx9KiD5vQt+kwyUmikh4DXBfu2aKAnVXz5H+nKhG8pU5X4k9eJAKfJX5016EnomN1K/MN8NvFNG5WZvYsDM0Dlk5zIRSUyda5Y71wM4zbYkLqYYuGCqzrvaHo7m6dSyi85mgixdrHo/pzusGXpLLtP4KKmgfs/11G4oh+PWQzuJ8HQ5iqMhkIjGf1RyNKR0wwxF+Xs7ewqExfps3QkiouzQwWBO+25Ykln/bkFIhs1uxvWCRiI6D50izFkECLOjer/+UQXXCLr3Ph8LQbZbj1LfEsIhTvnt8S2VKtgOfNC5khGMAh1mUnRFiMDXqhyXaFMNE5Km8/QewehVluOdqqO9AGwB98UsUyBukbJL2SQgW5Gg8eR9vcD54nFWwUQS8B55/Gjf8TDk0/Ovg+9sOVjrjh8nD1NAw2h8WouCRckPU7oSpstA2jzn9IgKFRrR8q50PBaJ49t/tOq0wB6myOt+r+PB2OLEmr5pOGo3a7v6Pr4F/Ldlga0yFl6HH8qJJ4QjXjefSoHH4bBVLe7RsZYFGp+ba83Jweh5U4u7DJ4EzZItEcKQDYYMDfI8AsGILzJbtc2d9rzq34n8j3PAKk2/RSYvGGlrvhJ/JNcNGzXfjul4UuE/HOtz/19ENJVT+6BDJwOuFrjV5HsgIIgfy+sqxyBDQ2Pu3HPpEMvwx4P1Es3v3UOXL9Bj0V7e6O9VbU3gOnrxTV81gnRp9/jD5mHo2yevto/LTfCYL42g/QjBk9Ickr1bGFLKm0l5t7cXXNylK699QFCNz1QREQpDCoN4VS+/GhBZoucw1w6Hynpll69xQUgnXGfv9O0amFs0czN4EwGHm6ptmV4HIV2pB0GK5iTA/Uvaq6ZLgkO+w/Z554MRs4/tnANNDz43g7wMH1DB/PddVm2aHkhOKz7fLbthJH5ctItKe97vl5XGOmk+k+7Ua6adCdvYWYZ6Iwr8qbO8f/IjBjnWWdzLdO+A34JTjBY5AWDfs8ZTJUdCYeFC975udIDt8pvPIpP+oPDryOUBbRI63uXZVoTrhqYmP4ma9Hhw8V581JVCRGO3DU1UX3RDsrOsR9rzRLB/G9Nn1EdE8+/2hdg86AZWIvPLsOw4KPi7mnZ2ioh66eeM4pLS4QfH59myc55AN2DJFDiFQXbnsV2359NB7v28AjHVCd46xSgL9GIQOVXaZPBtOOhcP7RwP70GtiJ+Jy8X0HxM7m2RmGcEpDdtvw/VqwGlF4w/iV+DEFFBIE2OQgJzTfKuoFgtsEq9Fy87Gox4G/w+m62WQL/hy6uSJApkSGzxLdZgUK5YuFY6dyPs/5A5xL6bCVdcTTt/3CCg7XWNx13JrXD57uzYlk8VaAeVl54TJaIX4pgmun+tUFyrfImX1p91ZHvvG+nR+tXS9ccRexLgw9QJX9OmHBA98PkKZ3EA6hsiELkb46FEQeuwjk8xHD5z132pKwCV/Ev+KelbCyz38z2pWAROFqM7GM1glMatOekggOB4x9uN5Ps0Xb3in7zVGYxyVWXuVVW1wU/qwbEq20RwoTQr1xQSkYknv0IXJh9iokc1e2UoUHDHp76f4odIzIm3pAXyYS7z0vCVGAosJl7U22r2QxVaX1fn3+fBflLADkGFAkkNGsUGfX5IQW2kvzu3FRoywiwlEAJj+u4GnwtEpP9YbUf0YymoaNiRYrQyIMmQb/TWJgYxJV+8MCtRCitDIbqLpZlw85vOoYrPGBQ+5Cc+65MPf6OyzIlXaP0wJZBhg7YfqcseeXwKBdBrdpV4qLMchHR/DnHW+iG56CexDPbNgFN8+r5ArRL4JPhLLnwKQ6LsT9TNVJtBJqpK7zaNG6o9TQMnK8NQpj536uOwZijhufDyjHwFcHcNa3gvhaHjNYuuG+/I8Dzbqih2ohCiiWyu7k7+qFaCj/WaQzwkN9zQnfAvggDyCarpnwC0WYcXeqTZCZhE7uCDnFSwVqIhuB4JfVKWsyb//39gLxc6DR4Fwue9xyU8PvuhbGcj7AM+2nlZWfQTzqJCUi2S23uBhD6rtPW10/pkBXG1EjdHARb5Z1UDtD7p/rFv8m5+ETDsC7gfvS8AtgLNCsyYMKhQpeVXSGUxyLVazniyB0Ppia+MVVoYVPBXzEKPtQy4S3hPUTsyYbVK8F3bf1jkceDjW6077XCA9WuZsEAZLHduvZtbIqL/Zo1BrakNrL9/flE0Wgqv2LgWHpcRkTv9FeLj4+3AYVkWKclUCj+ci4XrPhPRPoln3k4/2yBUNy8zJK4Mbmw53tRpoa3ficpjtiiE7O1zMW0zoaBmu1RZ1OuHLnKa1obc64H6N1bPNR5RYewKs8C8Zzjqesp06xttPaFe58CLHirQhcuL3KGty+W+FHRJSoAuERMuqQUPwFj0FoqbB6DWOOfrg/EJQNeoeVi27y0wtoclG1sEoGAtmQAWwwYIq/L/XpmdB+HtHLPDRXh0079nfTWfAr3ZC48Sb5SBI+5T9WkGHErvS1764NYKO+c2dHn8E8Fd59vzJQ4i4m+oWU7oaYUmy0cVJitJ0E/ddF4FItrtiqtY0w6Fu3ssYzwHyqH9hIVZ1YsQ1HaP+MLzew9MCvV4nwtPAYZnDwT874Wh7p+RyoY7PVAZ6c35SDQLcn2zhkdFwlCt6/JV/CLNl8vMwxR18iH9x2PGR3VBKH3jG9tvvl5Y3Nl26ozMABGxIF3PSQJ67rSSGyKUDzu+zjdW5HJgMeKOexPt3DEmHKBfYogE3chnWZz/ymG8uWTvQFUQelfG8Nn1MwkkteRCmq5UwFes0fAb1mDUL3zzMhgQIcPO9X6NEhnUHJ7kVtgHo6PyR6I/DHbAxw9HJGMfJkKVUt0R9jsk9E2CqZ/4sQMej/T/cy9LgsBkO81pmp9H8dun+5p1wCtZ6RSd7QS4VLlvr5o0CQX+sT/Z5pQDXzsFX06vFIH4B66qv3swSPj1tdil6/EA3+x25F+4wn/NmU86OQJRR6jiHbqPPWAx4THRQaAC/mZqB0k8HD3lfy/d+y4M+AOFXwkSveBIZqQcaT0Ykb0EWKO5c6HxZdcFAkcJBFdyfhhe8UPmr6VGb1/qhSHvQ/OBMlQYYj/4VbKagCpl7qXaTlBAQZCZY+9kFRQ4VNDLC+NQ9qaW6PVLfeBRdWFafasaPh12PMbcH4q66bijAy80QNCpkJjTT5KhTvAUuTIEj56Q7paM8TjCat2kwAxPIuiKud5rH8Wh6ueJMRZhxTD9SGHLvyEWvAWfHmNSwKBzPfNjAivdYBq/y+h4qQ6YdZjM1c8TEadw+umNxmRwWxtzlp00BY4nH0UsuP2R1XijaQ0hC67+dmim/s0E59vanfyKGPSibSrxV3077OzWlQca1oK/ncryBCcJafl4VJ7SyYTy1dZrSw0Z8PYzI90fdwzi5T2lOVNM42j8icwPjnjYY52Uu5uJRwSeEeuHNC5CNj/aRBlSQFCaftVHEodKbpXUaAdQ4PrlsaofKBlSppcHc+dDUKfwgu6fBgpkTjh+OSaaCsnv7RX1ab36u++NtB+8ZPjxxFPd/1IxWG/9Fvsu749MZyMVxpW6YfXdda+K3HSQlnScml0hIt9/av89fNUN6e1BsWwMmaAQd8XZsZWIjh17Z/DABAueozsL/3HT+t441+YyCw4d8Ts7OGHUB19xRwMGo6MhlxR2zDcgFGmPhM8R8G5gqW9acUq+ELQ+wpnbqTj03KiK2HKyAW6fFWT5FFgFx4e5anFeeHTN02pp4mMDYMaJg+t5VUC3kbfL0IFH8Wz/MtoPG0N5Sg1ry1wtUPY3b749H4qQFZNu3V5aj6XXzhziqQPV6lNSLwOCkWqO1Qh3OQE4aq0fXheuAzOXxZHjnCGogO41ef1NGORncvhezaXS+i09r9ifYCT57fbQ9PFemHmrO7Sx3wq+GBtENv4koHtnvhx3u9UL3A+s4/5cMoe4u06xM4kEZPFUNjKRpttvVsZNNdffwfhLT7JpFQFdSD7w8FdVA4zypdS2LGfCN+aUrOA/eHRginjKU7YVconvkx36yRDw4z9p/Z/hyJmrTTcnsxW2wrpS0ivIEHPR7uxdMSL6eFPytbNFK7gxndXtiq4ATrvbDp1MRJSVFfSIeRwH1Xt1+hWevwfHSumAnDchyNf08i3xry2QuHr/hUQkGXacytrGyOFoMoCTv06qFarWvh3oYCaDyXCWZtZyODo8/85y16IXSm4bDC0lUyE2Jdxe5zYBsbP+NLiq2QAmOktV5zYrgX7aQXg1FY8aHCVUIzpa4N987XDakhmcxRY0e+SFow76Wq4CnVbIirf7Zu9hA/cL7RkFt8PRvbPYrvMHWuEaA19BvcB7CDryumSmNxyphAzaeHu1QukN1x6We+/BLV/QLuc4ET3KH10MGuuBB5JnqnZ568DgsdbX/16Foajf0TkFpm0Qvf/HMJdvNdgpWNGvYYnIcSHyGltaJNB99KNjQ5agW3oVgnBB6Onp0SJFcjk4ZhkYB/whQz2I7OM65I96OcMTZa3IwNTY4NiJKYWSkgY60Vf+aOD6tZvPRXogqK1t56IYFc5+MWnm7w5HH/Gn5Ze3E+FZlefNPdXewBe5xxh1+aPBb8f+Nht0g3W4IsMILgomUGWT4wgRheZb7P8t2wOdMT28qlwBkLZS0HY7LRxx/LOe9KX1bKG7/5ysYsiQO7KVN9wagpp9JxyT1zzB0M7jg1ErgpVTksvIGocaOaIVn4W7grftGfnfEhSYPrKeNZiNQy93f1apWzZBGPnqJwaFPBDnzs1qOBOGLllN/nQRaQJ+juozXdPZUFTHov7qLwHpZuVr3Vvxg8lnIpe106qgD+U7qZ7CIavvGwWuc71gMZhrK7MSBnCC5QOrOh4datA1z2Htg6k57fa9haGAMzabOHmQ5j+kcddDh3vBg2/+iRATAmEuq4NjDGFI1uis9vFgIrg31Jxa3IkC79VrJ5VeBCPlYnu12DNmgD1MN7bgnArGmuiAnkAo0q8pvheFeiH0T4FrcE8ypPPM9AUQ8OhdXWbPW0cEiddz5qKrXwPzesWLE6dD0N0fwWYvKttALT3HesWjCm6EFk4K0/ptGrWGj0O2DXJf793/GjyA7n3s6FMnIipRY7sXUtMKtWn+Hg43vOD2/bTTs9f+/93ksuraSiuIvuPZebP+Dg4Kt4vk3yUi7SfE3/v2t8HLE/M6T8exEHrJPdf5CREpqBIkMKRGUPk6d+zoJhVuzAZFfcMT0C/DDM0JqxK4QXxOaMusBCPQvBzgj0F96y9OKcaXwOPpMydtqFWQsevpsicOg7g0UlX3XW2ABPLIrxABLMDg35/WYXi0ImV9Y69VA2zLjLpIGXhCyp4ZglsVHm137JZs0Pg5xOnlj9/fKKDM1siKF8IhgtnHxp1kCiQ7Cj0U06HCBVlWK/etEERHjHxDNW6F2wZhhySotLzb656SxEhEt+8EXbu23ANcXAjf1ZgN+n/EHseoh6HKiysy12kc+lYjN9xWNheEnGPqKmkcGuh2vU71fgtozE3ODKdFwIdHW2VKL8JR20O9unqPFnATU7Qh6xFhwz//aL5HOMq88pFNwh3BoMIeOzMpBBzRDzbhXAiKTLcRWMpA8JF+z/YH81pIU2bOr1EOQXMeqtyYvT0wzEqhfFYuBDaVvu+Kh4lIvauUX3mzm8ZRB14EihZAg6myrdMJIvIWDskZtDeD0OGqj5jvOKA8jbJ246fp58SFfqVbDSDayePqfzwcFpAcITcSj9q13ILf0xeD1NCT7Am5QtjPdM+7mweDBBUdjPazFkG7kKPESGQhxOMwrOHzfogqr2/xyD8TpCz/bBolVwPP2EXmD28w6MI5XsVy93SwKsp0sSFUQy77zRvuixik5eVESbNMh2/4uc3i1Bp4/9an9eYqBmVcXc82vEDjmufCIq/tqMCvIWza3OSHpCnVasodzdD5sbx6xzofLmSX13uyhaOUjnftXfHNsIqkJPTFC0ClyzB3+VcYKrq1Lkzuo0AgtiboUAMCTp+f5toncairfyr/YD4V3J8ebbiHLwTGScmJ5moc2mtrliChVg887xaM7bDFYKB2ylfjeyiqk0VMnqgO5u0117AjxZCxpOVo6x2Klp+k63A96gPOb01duWoUSF82xLuTQtHupK3o5gQCiamXeSGhCfDpIOuY/6sQ5H369Il92hQYnFnk/q6VAOvq3yy2a0KQc9qTh8rSFPh8VrHDRSgJNBtnGbryQ9DFdOawUfFGwIrUUt4r1UCf6IM6XRUCOrrlMLtR0wApKYOrB8xr4GsSEOk38KgrpeJEYk8DBE52Iz63apB8HsxnsY+A8ilFa1iONKCKZDz+4+cNemOH9uB0sGhbgPl5gGMzGAxOn0v9nAyd2oxZp4bD0Prp3qzXKd1A1zqxbXuRCu1/vPqKgohIkW7O9/ChQhDjmDDPWY2CqDEealQLbe53mT3Mz/bB69v7ou9+LwI1/TdK0lOhSGTQkbPzXyNE/bunOu+TC3MOdvPdwwRU96afm+9eAXQ6O/r+pcYC55MFFlManzr/K+rA0rfAeuHmTQPeAqAOOuj+lgxHb7Lk2CwUo2Dl+kb0o2u1MKmd8czdLAjl9J9NtRg3AtXRI3xDQoVgJZC2kXwhFEXT3zY70tcB56zwv3yaSiHq68DxTE0SWvtzX/KXXy/sHXap3eEIAyHmO7UP6Qjohkq6UOB4MNzXNNf98A2B+pXQO6UlIYgvZK7t3r5uUAq9Z4E9mwU80j7j/Pwk9KW/RVQ2vxiKuqkadMbloMxjXnFNA4NkA4oflCZ0gneJx/tVVwq4/Tq64vCQhK44TUuVs5EgVP3sS8VaKth8cuhllA9G3hZxL1PLiSD2zuHuOTMqkB8uPzz0OBhVVhkNRldGwo9RIlMthgrfD9y5cCwgCAlGfaR7i88DWauhZ0F9RrDFPMSy1eOHrBl63D9lRMMtr0mT0yfCQCFK3LKBOQjlbW2ZJ4jHQWS3SCBxBw+un88mNZkEIs1jn9+8L4kAMZl9oyS2Oojjz7h8ojcIVQatB7NcLgOG+DYKQaAOki6ws/arYhFd0TL2eXUP+B1Msa+cRoDfl6dwsigM4a+uL54J6wF35itHxJko8NtIXziaMRx5Xnr1uPYFjdMFtfxZX2HhBbc0e+dvIrp6bPnF4SOdMKQZd/fKIQSKMhuMLfdIKEz47z57kz4gNTatsK8Ug5bypzJOTCi6+jo78NqLTuCQqVp6+bQWigrenNSgvU+2CVH9OUYE448Td/QqfcHYhcqunBGMJGSrCo4faAKVlXPv1FiokHtw2vXJFAHd+nnZlUk0GAqJOqqf/hQABpeR9YQSgi7lrwSrO5KhXUxf3PdPJDx7XuU6+cYfdbW/eN7USIbUo7+tW7FxUECdCClL9EfHPpAtZbvJMCFezLlnMxw2GsuUedP90VEKz15ZvSxYFBcYfuNMBrkt9qQ4LQzSuf3XuWO2DY79Pk0pcygG40/al5QaiEjCVnsfNo0C71jPnKg+XQGvWpW59P6FoJv7/o5t3KTA3Pd7X+SfVEDFSH/917wQtPY9JkXJlgTfA08vqVtUgtfcoeu+osEoOjP4TTl3OKgHnbacda6E0I8PHrK2BSNbReVdJ69wCOI/ya7VVgFP458nQ24wcuEOz31j3gC2ieo/vAczIE37dUF6BR6FXU1nExptgGMKWmpLHhkg8Vv34E9WAvpqluigFkaADcymkoxvIdATTWyp3CGo/vN3o51XRCie2kN0qyuAo3ST8lkvg9FsEi4Oo0TTsxuepzarELZeLQSPOtPm8upQxGkxIpD3eV793ZEAg1N7VrfdgxEf4wX7rvZuGFOdq1wviQf8jXBHUVpPKLlnoHGYpivDp9Ef+Ptq4Zpmc3QLTVfJFKZn0py9MJxfXEwvWgOUfXFyHn8IyM3SvtWI3A1ft0IjXJliwfFQWv3nN7Q+k7V0+cDFOHhnX491W4sGp78YJhua/sdrfatffS6DWN0nzzWGa+G1BZEoGolFDHYX5oWiq2D482KXUKQt/Hh0i+D2OBAZfcotH6vqhWPGkuIEp3KodEok5Ubh0fEaW/6kW63gfyuHVS44E3SMvyZUrIQjnRBx64MsNL54IaNp/z4dMh/Tv9/qC0dF5Q6amqGtEO7fI+q7lA6ybHbvxPmJqPuRjt0VajPkWxxcEKCvg5HVCEabA+Eo4t9/Rwq22+Hg2BdlfY5ikNe/TSWdISEW8Xs3/tvfAZHXKiWeTBTDFxmVRG0REkqKLHRK/EqGhgMrXs2cieCywL/wLd8ftcjwOYkykaHj24ybvksS3BpgvUf4zx9ZPLgeoG/ZCosaXJRXWtUwy15Er85MRJiXb9UceFpBhJoatCJSAxd6Ls1+Gg1HI0PbNZ/WckF/341C/FAp+NQ4Oo2O+qFH7evXTCl5sLFnra69oQRkv7bGaHX5oVO//Q9f2t8IN6u+hnF2pMGAbqEXRYyAvNlZ6K1Mu8Ap/57wdati2ImxiEhSIiH7vHG0FtkFquJf1aUkS6COVYrb/xYJuQmmHBlm6oKthofq+K1i+HWWPahAh4Su97CZvEpC0CyfaWJ1vhIelny5c1Y+BJVNv/l+yCYCPj8TN1acLIW8kpH7vt+CELbOdLf3EREG4l09eC6VAqPeXc80h2Bk7mi7ZcgfCROXq0+JbJQAZ/RBG2pJEDId1pqZ0ewC4SHUFi1UCqKtTLx6aiTE9UBqWmyFAF+WuTgMBjJh4UkHWzFrCDpvRd3FaxJBUzSj+veHTOgd8VledwxGWosPox9y0Dg3Jvji+iAZdIDy3HaDgJ4fKk0eMKkGvwbtq7pPEZTHnjpZOBaIHA4QHJmFqkEkxUxFvaMWqiV/7+4vDER7ZKI4Vturweps4dWx9looGYHjhkJB6Lr0uZOJUA0y7gerZEczIJnh1vd/DYHo7X/pGr2DDcCYITbA4EGGS68jfwkeIKC/p/UuJxi1wuP87I2jQtnAOug/5cBARPOq8oEVmDyQqJH6UEEuA2szVUJorx/K1JG8wv+lBdJ7cOmL9zMBZ5B1VZbGv6InJ1bmxzohXZKDbfAvzf93H55h0SWhkwZffJqcO+BJlj6j0/US8LlrVRkIJCR97uIXXfMO+Byw8/qdWDEQG1T4baVJ6PTlm2zs+3vhlNdWhtgRZ8A59pNPHAtDyh/yE96z9IKssTqr9n4P2CBmJ1kcCEMSdMluY6M9cNqG45l7hhv0eVTVFdqGoVyMkd26cCOgK/KKctYVoCT0IERIgYAWvrK3GBztglKkbstnTwWJF/Lf0rVJqKPBXyFPKBfe2DnqnKFxAJ4rI/rPsh+yL1yY8TbKg2PMygy2vLQcEQmNPznghzzEyNJZiz1AJ+uocwFnAz9enrJZvBOGxh5dqfI9RgaphqNfMixeQdrdkccW4I9aZw+b+8y1g2gzd1Hsw2wIaMgoEREgof9arlp06pfDv5ABI6qGJQQ6N9lajWKRDfnR+ec6BJhz7ySxFdWA6fT3rjKhEPRJ2y9viYwHfa7EROpyNdx0Gk1lvx6CJv3A9bx6F1wPWYrJE7aFd4niX6tp+lQLrf5bu1IEtby+07IyKeAvxX/kzzEMei+uY3D+ajYcfGXkNmdPATmlpLzS8xgUQX/0tc6zZpg97JoTxZsEIex8E6utYUhVkMDu19AMMnQH+d/9TgSp73PlQSzhqGfVm7rjXAy5v73Zzaqo8Kjq1NnvNzGI76pahptcN5x2EPrKfZgCTpHtTla/iCghPXGgb2837EHuQwmnKdBl1cYwKkhCb27LP9SQzIQjd0r9hxvwUHU+dOKOL+06H9Rnxi5mg//RL2oax/BgEtvP5SGGQcVTSurpidWQli7FliRbDYTHlxWN9wWheoOH4hmqudCtoU8gWeKhoXy1Xm7BD7kclRP+GpgLf1WUk/5XwXmHU/2+cTyprFAqu0i2lBQlyY0kI5XM7JBR2RTJiux1tpGVvfcezzn2npFZFOFbQpIi/c7v3+c613We8zz3/b5fr+v6nM+JfURYqvJ5L7AQijIu0/5uDxiAJ0cuad3jIIPepOBlvBI1P7833772eAB2z4/x+GchEPevLMhWJSG21ZvI3akPfnhWlu7lUes/4dKJ+uskRO4UuT6q1QdLvyxpWTazYK+Z9pH4FRLatQzYtivqh+iRX5Uaa5UgdHGxQ5zKLWNKZVJxh/ugP/HAcSI5D7KTbmHzxUio14t4ILQoBfqGL3+UzqiFb/QtD6JvRCEJhgEayy8dgB3Lfd4mlgunWT0O5XvjUa5v2Lz+4174zBGPyQnKgk/5u1XO20TkM5rwynlvGD4ovE16w1sIbGvfTciCWBQ7Lyu+KEcB6db2ZclcCviyr41H2cahvv7Ed1xjrZDZ+5SiPPkCzOm+i7jexaLGPsuLgtPd8N5GJtUhjwK6UOrvdJOIPB/mb/Lq94BXmkRIJE0LzNuuJwW9IiIpx5spDsfIUO12Snf+TD00fV3qGsZQc5g5K49ZeAgaHNM4N+JKgAeTUck6SkBlVmUfOreGYJfvyKxtbxXgVxgHpOXw6PHcrFT17yHI8urWXVqoBuOfTrc/S+ORqM6zO6xCwzB21TUuUbMaTPl/WRm9w6HoxH92KzbtUMc9wzQrXA9GHk45gs44lCMovzV2rATO/ImIEs6tACxzViRndygaC2w6s0TN4dE3tJ1+t1KB+7yl6dVtHFriYcwtOTBA9cMN7xo/Akzibhgdp3Lp2zSr8+GdwyAfFWDxeDsJLpG0ZKODscjfOS96pGkYXsmZXco4mQrr5/ei1ohYtHt1gCmSJRROihKSvw00Q4NQpQhWKg5tYcFU3XwImB6P+je8zAKHJ1pTMo4EhMvATscIh4HQ3yPBKjTNwLU0ybGPPw55x9+X3+hFUBaZ6zgSQ4EDTyKMCRaxCBRxrcwq7SBYTfwSd9APrpy2yrA3wCH8j3PKBww7QHfpwNJMdCa4eTWqynHhUSoD48xdkT64mQTXD9/OhJEflwK4pUio+9ZqOW1dH/goWBgJETOhQd7d1ev/c437zZ9IzDD4PE5QG6Gtgevc+oyfV7GodnHa9PlTHNReP+rI+a8QSi8G93PwxSLh8xVdFKduGDLPcTxhQAEbBZ1BtcNEdO6z5bFDFmWwrydD9Xo9BTz0HgsWUz3lpD/ufcflfDDnTVl3TSgC8OycE9ULQ/r/SXztE80FSitbru2rIvB/Xi9VRwlD4jc+M1rb9oL/gKs513opZCmSF+l/EdG7S8+W77j1wofPR9+EfC6D/msyjrBDRJaUuWOtv3rgrvKRf7LjZTCwj/XHag8RmRGmMcIbPSDg1GeNKSkF+j/HihK6iCj3RFfxJfIg+L9j3nL+3gjc9YwahY+J6JVk4vczYYMwG0Ar9nyxESpfCP5nWkxES2Gmj6fpe+D5quWaOk0VnItKw9maEpHEYhw+WSoLNAKuPG+RSweaHzLOoVSedPw12UpOyYY8TllGE1nqeoJOToFYOHplKDHr798NU/jWfdFBkeCYX8H/4gQRFa5EqgprdIOzZ+jZT15B8N27VcXgF7VftivXPltmwDxDcPcw1esDrpg9TVKMQK0lorPJPelwacvANf9rI2xzDDBTPlP9hd05RFOnGrxmpPkXd9LhpH/6131G4ajevqk7P6gXnrwrHM0UfAOli8beijQktKr51iSjvxe483g+rvslAHMWrLRwkpDhDVPchaAWmIz9u7Er2Qz1XZNPZIww6Dm5+nF/RAtojg5cPByaAhmZl7DdZhhU52NsvL02BNjW8seOV3OhUMt4sFQVj7o004zFJ6lzk3aM0Hs9G7y+Hghx8cSj6329W7+DE2Byx+maRFAjpPZKcpgnRCPtJItN9ZgeqBhp29w5WgVsx37u6ScT0T3bHLlgUQJcjb0ibGVQAVnZvjjWjhgUyC/11NYPC6OqtXjzgnJ4+Fp5avp6LOp55R7TTOkH3Oo4Cw+dMyz9G2LxNKD6uOcBfwFlPNhctoEpj0qQ/C2RFb0/FpU4hKktCw+D3T/3Wi/nKjD21B59MIRD7xrwRUGVbWCtcZXfmb4BAjYfXb68gUVfS0pSI9zaoAobftu+rhHevTOQzadg0bdNq9N3ltqAqRCr5BLdAATxvsY8dhyqZ/TLckkig+Q3ena9knSoe2UyrPMzFvUvhF2kU2oBR70Q5ci9dDhwegv/UwSDPHReC+YLkUEnxvo+K30mWIlPe86nxKI8ocqms9ZkiHuo0ndCPAsmo0MLyb2x6JBa+fdz/yGQ6WHvX4t7C3QesmHcnrEIc/GWg7p+FbSffNa2lt8IpixaOt+/hKGsR2dXPpoOwznR7MJq91IY+CjW0muMQ2ZtsXlCUtR1j95bvOWlgPUdrndtxKG0F3/bcty74c6JdrL8eBZM7ayv/GEhomSXZ8+GBNuBJgUR6NQaoWROCy0o4dBpGz+aIyKtgOF0dv26XgQHFQPm8YMYRHiUzXtuuRpY9RRoTN1q4Xmg5NGg9HC0KiSiv75EARMmaTIjsRoeS5/kevwlDs2kSvdu97dA6MPU2drYRpiXeW/PGItBd765Hyb+7IPXBr/QKKqDnvCax4+pXHck9rZOyGAjcI07RCJIB5XLxR7NgtGoKWX5Z49IJ3w6PUNOpPb79Wy69LxMPBLw+9MrKdsOj+rbuK8alILPwbtiyto4NHXRJVMxugLUkoxr6GYJUORkSPNJKQxJLhf9mzUfgWTVT970ZWRgrqliuB6DQZFRtMKsXb3wr4NU9TMfwZWUN/68HCQ0jTsl7n/EGj6wNt57bh4FxvgbW2RRDFIJlC49I90N6ayRF4WJcWBv+Tmlc5mAIOqGl2vlEFyaKdRtuZwM+62a+dJa8Eju24TKpP8QnCRKCYleSoVh0aG7XyQJiKXF5EPYBIIsyzJ19dpK6DSlfxhuH4u6POF05NdqOPkoQUUxoQY4FpQIFzPC0XH6Q/VFrNXge1Hj6/jxWjhy7w7hg1w4ihGT9xa5lg9OiZj0KEcCsCgJnn+oS+XG0P24E5UFYLS7ne17OR6MJFJdvLio52AnJoddGoSYZo5H9/oLQHTfhYFfl4ho3wOX5fKEEqAsxaZGPMqHK3R/G46SQ5Fdfmxf1P4hGDjWnJMuUAKly5yUYmYikumxsuNs7AIzImsHTXUVqLurHK3LJKAWg5nUlfJeqOkT+FlZQYCNcueZ3CMkdHOKzWUksw7ej6UdKjAsgSiZMJtowUh01HLBsol6PqzMM++PZudD52rKn5PnCOgIe/Usrz0Z3hSqCfEdJwBPGo/LncFYxECgFfiU1QZciyo8Pm0IHJUfx5R8waKXYP8u898gDBJeylYqJsAfEhYusVH3Odn2oySEOsf9e6eXOUvhoandmhM/AR2s+48z5zn1e6PTzjOdLYGFy9x/5hUI6P1PivDBgiEIt1N7FKhaAsEcbA5c43jEwqeelD1LAd5PDSd9U6l51Tm/MP8hDr0cfOaVavkWBnC2WXPTZPigOcyelxmBHF9hGjd20+BEEElGoYkMnk4NzpGKkYhplMvoSm4pvOdlG3BtroXdEnOxbEoouhDRc3Y8oxeGRqctKEIZED245PKZiYSEF5PYtgfLwe23kF8h1T+uH233LmcNQ2iZntVMsBIaYlLa4G41sMks9Ei7hiEumwMPRvLJkCxzxO8qby1cfrOm67wvDvFb33971roNcFnt+yO+5IOR95ncmGosOpa2XH9HZxAoPyNXxA83wNv2xzsbC0T033Rjm3nsIAQOiL+9wN8Aka6B8XeyiWg7X3ot1qQFEnaskgQNy0FWe11P+BoGHTnJ6Z5B3wKud39MLmSWwSNtvdz0vTjUdMhXmv5BC6zYaov+lakA67WILI2rGBT/VGKfJ/8gcOXeShetQzBf7eM3zExCw4XfLe/MD4DVhadmKxYIvCdSjCwkqOfw+ZaQv3kL3OrAG128QeWHFHOx29cxyPNlf9sGlWuVfzCmH16vB0uHIrX633Go/TK6wszSCi+ZiA2LClnQLKBSfaMJg84X327/yDkA6f1k3MunWCCyYQNOUPNnt48p4uzzATji2x6rxRwHRWkYZTMVEsKlxQRv8fYDd+BC2YH5Wpj+jpFq16XO2avhFrdTW8G/mdZHiKEJluNcdOTEsOjm0kxKmRMFUNAPukrmdDBUmSxsj6buR1zBsFm4DhYaBW3GXuUA7/Z/4nMTEUhd4VWeuHEd9C1TprqC8gD73eO353YEYsZqB3JTeTrucn158E8Ejxu8tLxTw9H95dnBPycpcOXY9wSOv0nQ3neyXv5+HKr9aiSjAINg8aTOT2a6CP6J81zw/ElEg5cQd7BxKVzMa/WfHswGmXLLIwnNoejOUZvP6lLdUMBUIz9pVQpeZ5xi65cI6O+hmICec/HQe9884YdnA2RYfjGBrWjUYRybc721CyTt9RIW4mugh1Cxs51LQPPqEgctbKrBz5C+r9bHGbYY3zIeexiOOEzadttnW+GiFeYx8xwB7PtWnrfoY9HnwUdTEZOtoLPvhZ3QMSyEecR9KLqPRVqhQx7N0m1ga6gaezssDk6rN9q0Y7Fodp2NVu4CBQTxbjqz1HxWNNh+fc0yDoFf5KRRUjGYOm2WZEXXwfP1tlJXKq8etvf4OLFUCHq8DgsfJeuhxc4hgbIZii5RHM64y1CAtNGnk0idz2Uoju+edRzSs30VBDNkuCzjcWdMnwyvXYUJcoJxSPP85Ie1iS7wWXv69dbDUkD8WntdVQTEvp4yxcXVDZqJNUmnM0rg1Ls/T3ynqPnf7/L1S00X1XfUL+9YlkBlx8qk/FsCenrFaUanrgRGV/5dffurDn7ncHN+pZ4/qeFizu+kPNjoHaLoJyHQkORTpKP2rxM/m9TBjVYYFKDlqhtshmKjONVWaywKkxf3uX6cOr9/hBtM+tVC1i+GZ9/ehqMDKJNYmpYBdDV2lp20tVCwPotMRCJQqv3bte25HnhXc6ZzproQap2VpAcpRGSwn691/9YgaNYE3NpdR9CRvZ21xU9EfAmXBsZiMkA0zPnPyRIcmGJnlrjORaA84xKLCP4S8P7j897jKwJOu78Bm52hSPZEW9W96mFgLTu+7yypGs57lvLpZmGRwXSpUUp4I8xwa/dbTlXB/ehbD8O2olCyg9XL4HkEC2Y5p/iZG2Ad63rku1Ms8tXjEzfkIgNun2RzWkUD2MwESB8hxiKXHrnO7K02ENZJC26oyoCinNqW7/w4tJmcJdw32gpHQjw2f/M2UD1UYsbvDhZtrM6UD8lTIFeTZtRqIRNqbqi9+2FH9TKpez8HHzQB3+xrhrzxKsAJcr3iDIhGbP5ctmZTJXB8IvRkt24T0JYMjfNQ76WEYb+kRWwJdCj9ff9JoxGYNj51B1PnoCg3y+lVQjGI59Jqf2FqgqT49YQ2ar095P56fKS7Dy7JZiZJ5qRA94a8Y44WCbHpDzzb5usH+5eYEU3zNPi3lHjpLzU3KJjbLzFXusD54lNtNZYWSD4hijujR0D6OzNLxkJlUPxChelqfD6c1ienFveEooSQZ8b/f2+Ib63jtVsej6Fpi6VYWSkSVZ3Ef/yvsh5kh2eDfKkqpXHMOYC3OxI9GEv+Wp/dAdzslQH0s9XQk7evveQOHn3mpkxrSmfCfyKigiur1HtYKVcW3ghHEyz2Ub+6qL7fFiWkNR8JK2PtF+tJeLRpfv+r/HgfHBYIS54nl0Puw6MWotokRLOX46/1XyKMPmy/iSrJIDZyb6xcPho9ejRisJ1AAbafx9Uebb4F8bM3uiyK4lDDj9LkqUUKMJldZNSXSodjxg46nxfikJ9FYg6dRyuwPPCb7j3RCEXGhy+nMGCR+nyUpaBYKxgufvwz+qsRxpJbC3mGMYjVjOvcnSXqPrcZtGT+IHA2uGisYohHiw59Z5l34kHptUmcniMOvn5qVvVqjkYjupmvZfz7gUtINN01sg4S9Nc/5RuSUOk5tSdd77rhBJ7hM6H6CbQX3Fs9pUJEzPlfaQprq+HYkvsbH1McLKnyVK+Fh6NDtHKCx4lDsJ3swRQ0lQO7N5eE6mgIqPQjjplLvhsi3Xa1fai5pF30/fPUKgGJzfQyfavsh5sldXddzClQ6+Lw3xrVX6qP1JzlyB+E6RZll9itBjj56tOToRAiGs/49U7TdhAa+LPShDkawdu68aHtMBEF0Jx7dmBqEJqmxf8YrjYA256C+fNbRPSZN33uuRACkmdkaLRENdCL1O/Kv4tBkvp1vjq3W2Fj8mDPuYBqGNT850L4ikG17McCCykUOOzL55B+shg46YjR9j1xiGb30A3ioWz42GbOysJIAfezsNGtH45Ota4+8l7OggLJSda7shlQXer7vtg8HFk9VDTr6c0B4aKEMyZRbyH1qui65EQYsmUe/fpCOAeM31wKy1+m1tdd64U7B8LRzV6Mua1eJtyPmYn4LpYB8V709vEL4ajCyMNB7GkHLIkpXEtxjwe3irjQBhE84slQloo+0A/We78NtUk+YKnm9GdAh4R8RIL2ZFTjAVP9H+dZ9SJg/fMw5OpaNMJhNRL6OwigMffoz03VYvDs3hs9lhSD4LKDgbZAJ7CVmSfIU/Pz//+vOZiOR746+SV6U41wkWNiZ2EvCfomeAn/SUQjfpW+PjexcrAmpP48NoZgXLfmmMVqKNKXkmTTlSwDK5WgZ2dKEHz949Pl1BuKnq17dF2s64cnx5xKVc+0AHuDpn4P9X5LupPvfw9vADPlmuiWU6lQGM8R+uJuFNpX6KK9KdIAH77dy0rDpcNGS7xK7NEoJDx2ijM8tB74mH+/MWlMBZqllN1/hZFImcGt8pprPwwcVr5kmF8CJov3NUOodZvVC2S5P31QZ34y/pJsCVQXPuuaoXJLaOOVCTvfPpBY/+e2faIE5FWnx4yUSKhVOMNhzaoRWISZyi/ppYJHxN96npko5DggpehxsBtMZDWH9iKoPJIY7SM5SECfn8UIeip3wYSoKI3OjWog35o+rWpMQKQYxXD/hHqwS88TmsUXA2wIpHHXRqIN5dnr3TUd4LhZhNORwUP2tXhaJWM8ej5s6kZ5Pwh28vvVvt8mg3TJclKWJhERT8oElH3qgNuWDl8GXUlQIWi0cuE5HiHb8yK9XpkwxxFU4DUYB/odspxN78PR+wGhVwU9TdAQfCDOZgaBb97Vmzp90Wi66Y6iy2oTOHZ+TynUQWD0KOHFj8/RyHTFmX5xcgjiNK5YLHbVgtKqyoN5dzySvUR0zqAZhrqqlH1PVmqgi46kO3gajyTy7MpbRZrgVKfEAdqHCJSs+YZmzKLR2nvWOh6zTnDtfKiks9AEVZ87Zfy68GiLZ1SB6S4BbsypVZByS6D+AYfWo4YY1LQRaXil6C1ISOYPB1H3xfqWBW/9OgI1Gj+trqKeb7279ZtesQpY5HacOHIiEkk50EmcX66DB5bkXHGDctg3lew1oRWJpCddlWdr2iGNBAqiAgg2kv0waXk4xHt/cnBznAIfQ3re6udXgeHv6OKdyTiUvnokX/9KK6yVX2qRty6h5qVGrPwMBpnSs9acNkBgyh6XW38uEc7JZNqbMceiR/vPUQywbcAu/341raMKjpglZCVNYBFrmORWTXEbHNi8IsdVU0mtiya+w6tYdFa55XCbXw006NQq2liRQUSyVa7sezh6NLmslONDhuji5CNmt0rgeaKhidVsLKK7p6Z5tqofBKvGyQFbwRD6XWR8ldoXjIGH3Zi8+gGZDjwbw/sCBWvv+YZazwGtM7nOW/3w8np206sMX9BNXJW4TZ2PTS/qg4QtyVAwtE/WxbAUDvKrZ+C6Y9HsXjVec6oW8uoO332eUw4jd6LrHYoiEM2vleEz72ohNXCVf7qjAvIVnJsW8yKQVCVdl935fvj4894Hg6YsuOHMnfdPj4T+uXnMvWMZhFHOSL+rl3NBTCvyDIWLhJTmfR+Adi+sjad5/MdcA0R9lfn5b0TExZleiy/oBR/P3WLhX9Wwn8fK3oSFhCoeNARWcXaDPTMr64xVGmzSJDxWpXKg7r68i8sVFZBsqxRUPBcCh0kD73Nuh6HLxAu1a/0J8J1WIfJ8RB7srJ76uv46GtGVyU0xh3XDBVvcyfYXleB96PNLYW4iuiBStDfO2wZ5jfhonD4FBhTPWs6/wiKOR000oj/IECRid6Ka/RW8vSGQcvJSHErBNuYSP3XChU29nnm3CHh5+ZB0Ix8B/YSdvHj7bojbEAh565IKOfP0Gh/picj23/iGLZ7qxX80unv/koCwjfHhOEhAxiq5JFqhfnifYLbZ3UOCBVpGlv+/F+v4NcoB8Yv9EHrQ9mISHR6em350vKJPzT0NtRMixH5g/fykQd2FCH5GpeJJ1Pu9mtLCpRhYAy3d5vzeVlhIcLTp2VsLR0OsKTt6VTXQlGjGoC/bDNdmfBNDDkcgifnm3C3GBnB+bcSw4h4DzlMhuhr/IhHuRbXcghU1f3quJuwIY4Gd1X6fCzESdYUwvnugUQ/n92MORLZEwvyWpUpPCJV/hMns7dAHr1odb+8WlYK3S2pMuQwJjbTvkvLy+yAr4pzQVZFSyHlxX83rFgnRrygfzhTrAgfVyP1mY2UgaGzTPKFJQLy7bTjC/i7gCatW+vuO2qfGJGuTiwQkEie6e6vEDvg+WZa9OFAJr0ZuPTnGi0FwXOqthiAC4Uevh3yO1sDoh4+qhJEYtBOidaMcQ4YN5+9nkznJYG11vE59NRaJ15WK1wSSAeNyXbMsgAzFrStnKfOxqGjW287XkOohFbb/iqhzh05y5+OD1ljUhH1Vo/WyDcRfrGNZXmDB2CZZpaoLi6QTjrWpRbWBRkRd1VPpWNh8admh8A6Ljj4teRJQ3Qa8mxmfQ+oI0Bghty/zBxbdFzAN46DyiekXi62pUSwY/h2f/EXt0++n+n9NGo0AjXF622ebHJBn0jF2J2JQc7DdLHt0L2CYmL+nteWBoy5KfXqA2i+HL1/79t9bOJXqPtP1qxm6Tn81LHgagQo8xiODf/dDhAdeqOpgDHhNf5w4TO3r7tFwB0+TfvBLPXHz8nAsjFZ6P2Og1skrl/vbgVLV4FhuuuAvHQIMZknHedXD0RWpFh5pTBU0Bg1Eh275wlKoDzGZJhxtbSZtWVIegfpaxGDtONWbj8gftTtNzT03uufcGT0gbu96Zzy7FtL/NNJ2ZxMRtnFzPLerDZhfuN77b4cMMkqGVSX7cKiyxd2ykVgC+ooVnrRNqfC57+kBaSrnN3f9E9W/SYb5EeyCBjkUlBb1Ne5UxyIhuSds1vt6oWN44eeWXx0o1XmEvxggor0olU4WKo8xx09YCVzIA/IZlfXs0Rj044L5XM5SO7jGCqbMb9ZC56fz2sd7cSjxFHG4zbEP2HNazrq/jINlyl5a4nUq55xu++ronAOix+WdBvhbgPbLJlPdWhjqybo2Yt7aD3/+2zeXWNIEYWkFGtbU+5qRo32ygh8G/A/mqSihUtgnfL305BIWtVvmB/Uo9IFFGJNG6vcSSFKVm2ej1n/Gj9LwxkuDcKFtbuIalgTM969Ol+8REaHieLxnWCewbND6euhWwD+f7eC+BTy6VNJ5ded6L9xa/nRHba0BjLjxIuJLVH/8t3YvVakDYgVuXHkq2wCv6tnT+hnwaGFuSeX0j04IuPTSVaK0Ag6f4XxIEiOg9P7QsOakZvCrZyMJlWdCc7ngzEOTGNRPz/hwNmQArBTzRWYJFFgt79ayBxK6tXN6oqy4BMRrheg+fqgFvpO6j2+gUMQ+6ZyaSqkGK6zosxP9MYDjDXR7EBOOBLHjvaiiCu4eyHz4oL4BHPYHxXYdCUdmuUTxrLpqcM7sfhvW3wAsDSwWjyPC0V+BX2EXWTvg1OUi52vGcaD19vbe0iIOaYb3Cx9e7YC2aL4vA9S5v19Mv0zQD49eKw0q/1FpggfEcnVt3VQ4oNHO0uISjVKfXUosyiuDJrVn0tp0VUDz3Szh42Qo2r29MH1UswuSBvsSGOPJEMetmkS0IKDwP+HzyUpDYEI+X/qkLRU6Xrp0380gIBp/9+U6qWIoeC/YnnehEYxVd847vA9FTzr9tsUmsuDdPKZWKSkXnpmZilRbhyPL5fws88ockHpEOUkLOTB39+Yu84cwVE7/zVb5Jx7oRUsGv5iWQ2/f3605ah1a7dAlH5cbAKnjI81L34KBPkVOEm6TEF2HzqJL1ACwC+2mWSxEwKj1l+U7ilTOjPWunjFtgetDamblDJXwX1GYIbcCBp2Z0XaOr2+B7PO9ykGHyqCwndFmLACDforTHVzuQmCQFOtoeKgFZjmQmKNZLDr1fHGH/WY7qD7R37dxyRnsDi6PxRnhkOkLzNneTy1AeWwVk0RoBkExCV/tFAxSoJBGLp5tAYFZPUrUwht4ZLkZUMqJQaWXXZW+0/ZClCPbRNlcLkgynFddHSQi3/jkXlqDBohSiO9+jnKBZxBbanE+Cn2NzAyl7euE9du5H02OloHZgI+b4VEC2s2dP/tJrgTccCx/03drQPZvxpvp9lAkn+txaNixC3pf8N9psaiA47XcNRGeBHSc46UJ89ggxKdcsk8vLIX4akc35ztEtPI56tNLbDtgb4uoHCwqBvW5imaDWBzyNFuQz7apgfd7NAJYj0z4e+vMLvN8OMJWqNYeSG2HsBdaBzQ6S8Bi95q5eDwOLZ5fNdsf3gti9zXVeTWr4KNYWBwLLQl5JDJwl6EakL4mnU/iiAa6A28amdkiENeKcj3HXwpMXi05YNRGhuM/r1DObsWhOVd0Y4mtFZqsOCucxCPhVF2XwggZgxxdorla6xNAi02svqyuHoqep9UzRUYjsbQbm8vkfij7qMpdeC8BlsILd3ypefKib7aAZw2B1iGha+SXCBgHjnK/8YpF5+72af4THgDWxE2DoaIkUOk+l+R/h4Tm2mk0PvO1g5pszbGteySwu/L0w8PrOMTsw/wqMq8bogRyB1tf1UB812fM9bNENOWydblIsBsGfm8O8p2uAWPbcU6+eQKyVlEj8Z5Ih4ZIAeKr9ibgrY3vrrwUiW4vtjwVP90DJ+J/u0Wdr4XbTs8a39gTUdaXdIXI1m4oqOkT5A1JgQ8vuo4cvUpE4h/uRfhMdUAYUWLCdyQJ0tTb3Apc8cjWQMv23nAFOHEffLhfJBfu1Ev2rOqHIZ7OD3yXzQdBO+KK315CExxy3HLgnySilIULO+HCg2BbetFGi7ofs6iWHhcGEgoXaTH4IJUL9p++SKsKplF9cNmmH4Whw6+Vv+072gs850MHGbyyoE01w+TKGBGdJJMG7ksOwFYueXvoHwUk8b8Vm7RJaCtE+X4MAwJu4YSyhJ+VEDn1ueNBUQxqiZIra2fKB8WFA0Fe2FQozZkdYTcNQ3b6cb1yJu3wZ/QFYfpkM8iYC/Gp2eNQ0OwXTHs5AmN0ojWyMwVS+EIFa7VjkZiYmlukYh/ETgcu8u4rAtW9OxUu1PyXHvwr1GbRB0tXj3Q/kSuA5aDlWbprJFR+q1ixl7YPLha06Q/TlcBU8cUnLiIkdO+Z67CdE4KYS4VfRlpL4UyIbZTjqVjkfE27dSyhHdiCbV1P36yEVkXNqSA8Dn1s+30OPlQAq8Hg93y7ElAuXyNyGoch7XefdDSXa8EmhP3w1d5KIJlJbTytikCxnHl5F1/XQbHND57S15VQfWZWuv9oJGIZmBhd7q0HNfrsr+5J1BxOG51/8j4SBfJvftYLQMDPWtN9+m4lLLLVu7NKxCLGehsrheh2+FUoohSMSiE4dOHj20gcmltYezQ3Wg1+biazna/zoWoucNeaFI66bHxtsPJkuKvCW+ku8QronWeUCMWxaG69O/HJaBsEFoRW3NKjAG8XS7M9PQ7VTKWUYnoTweHVi9X91lQvPjV0uEclGonfvllWV5kIJWIjXu/VasDuWHnqoHo0wvMmm6u6dwNDRQ7XSBsFDE1kpFtZiOhi1dY/O4FB8Kw96tL7pQF8aEQPOx0mIRNvweGuiAY4MCyYzUWhepbp3zt096LQfTePfze5W8H19X7lZwZlcMwt6aRcBwb98esrbNavgudpNSb/VTqAp8YzxdNLYag/S+HD7x0KPJDSa7VLqwDsoXUL459xSJDowb/WXQPs1k8te7YqIDr3NQrhiED6tVy0HtdrwUzcLedTeCU86/Bf19GPQE24+0o/7MohicOcLJtNgSj9u17ffoeiXL4fa5T5Prj7qeTqKfc46NoI3vGk5gAuMBcUysug00Ei8rcSBbLzBbwYp0MRpv9Z80TPILC4y8osVeBAANe/4WlKRB+cMV3sSQ2QKlj86FQEBQ5RqJ80jkJpDzlSg6k8LPfev+ldRQLYHFOrf0Pl4UduDQ+9qXx7DquuZnMBwV+6lpsPqXz7spHjtFhWHcSnFRkN3kyD9z+7jMiCkUhgeZ9m3bU34DEtJUNZqgGO0biDxE9R6DbBcMRJsRl4Hq6l+deRQCZdPQl4Y5Bin+KRG84dIOiy4V3sjOD5Ed21aTE8ou3actjR6oWEqr3aRPVmaB5i03Wg+iB//iRGIIACDvdm73H/RaD67YxJQGIc2hJgfzoT3QrvvrQ7SxrgQCRv8K0vLxbphptOhkRVwub8544rEinw94Jl809iGJLG6+x1U+cU+TRr1f0yP3hs2LQ5Tp1T0WIfRknkEjCr/bao7V0JAig6o7I5FJVOxA64TQ3CTSbuKC3LWmC+htucVCMivgfWjUaDHXCdh1tkxLMcglGawNnHePTD8Mlthr9dcPmyoFLYgyxw0gww1OohoE6N8ZeBgU9g8PAMz4esIsgcDNgzOopBk93f1k16e+DFmd/TOrcqwRePD4upJaKI9nWfz8p9UMS2JKde9BrKXouWCcqSkPXDa/QO1S/ArbBNIdiwGFwk3HJTm+OQv6xE8exYH5TQfruRUJIPv171uJ+k5l46o9pjsclOkIwbaBHryACGzPKGBi4CCnvwtADxJcBkeeCZJSoP09XcxeVURiO3nXQvilQ2UBSf/ZO70QxTHX3cHBrhaFEh4ift4hAcKEzfUaZ6ktFj0UoJUzyailOfeGPfCSE8cko8f0thXeCaE8MQHt3f6FKsMK2EiCiMpaiCAziuW/ywex2GDiYL5u2KZMEVO81nYRg84Jtm/C3fhCOj84tbjF8zQUWhYVJ6nARzIuZfHpWGoz/GyfbMUSlAilArbjpcD8kP7YIWtKIQpu2B9oOyDtg4JCXDypwFA/0/mz/r41F6uIDLdbUOmO3SZ+6+kQ1ZGbyHipjxKGPKvn3lfjXIvqqR+qTVDLcqK3PbjMIRexOGLCrbDm3p7WHesRRopW74ujYO/fHJhfEJBDlyzIVFa77A2M/gRLaPRbQXMxbOt9iCcbvambbZati7a3k/4xQG3bhPObgTWAdq9ffjDbqL4Hq5c/8iayRSUrW5vjTtC0evCj7v2X4L+K6p8f35cSg2WdU+pKcL9rgbzzrmV4OproO3ehEBpXVIiskatYDW+lvjkmkKBEytZJTIYdA/w98+Nj4t0GH7RMfVjgLzY65pL+9j0Cj/9lhXVQtYqfpEbNp7AJPuBeM7vhhkc07sVQK2BV5dYZiY3A6A57lZZoHWGNSvp3Mp5vAIVAwBpflYI7BzMrtvH8YiOrvTNEqBCKJGhSy3//+c+DdPpUpqztfRTvKvxrQDTZqmbv8fAqztph94F4VD5/SqNBUUBoHj+1b+zzMZsH06VP+/X/+vWx4pOcZBaOYvVuD58xYaQ6TXy3hJqPdtXcXe60E4dtFleQCbBfPZ7FXVpUR07GaZwhvmXtDgcpvfWcqHqO/q56dGiej4uiRL1/1mYH56gPHkRhVYn391+6J4DJKzETHu3F8IL9TPrPI34CG/zphbmTUM3Sf+kl/oHwAhB/mhDwMIIg9xEbykSKgeL142sToMzmljrdN8OeA3dN64VxGLLniX7qcZ64YUnY9aZ6ncqFyY/0dehYjEOAfVzHPJcPMkU6FaHQXobx5Xz9uLRddYrJuenyMDq5mkX9w8BWSDxr9KZcWiUu7xaCmhLujIJN/mxBHgYUkJN5s61b/EiqtTH7VBwm/u+4zVXoBOxlTp1WKR2SBBKWSOun5cf3eg0B16+YWODRzFobDEG3xv9ncBElGkp+DiYaBBIcjiIgFlT4TfOtjRC2mG5v8Y2EuBvmkU789OQoZfKhd+UwbhrpUVe8E7BHkZtjMGVE4TE+4s8OkehDvaugvcTxEw5P93/o45EQ2nCUCPUj94h/0pvReVB/2pQjV7+iT0ZiN/WG+sFyRsSlPqRcvgW2pxwX4eEmpuPiHBc7IQIg/fGPpbVwOfrjmGrjOFoQfRB00vaGeDEWNQk3trHHw879xopBSOCtqPxq2wZADsf4353dYAhxL25783j0CZnNxtYwxF0LAmZZui3gBfOvKX7NdD0coD3+svlNvB8dGvnpJrDYCNTAqmMcAhZ2PTEMlk6vwq2JF5cocMhlxrWZZEImI6+24kqA/BzMV5q+SsTNB9bB+yZxGLROD237j0Sgga95zwyn4OCwpTZh9SwtBXsbEjF+/0QHZgXIBKJdVDD2levOBPRPJu9tkXUrrh7t2tFAXfelA50WopJExE6XZ+X7P0h6A5lDe/fr0EdDW23a75EtDlMz3fmbYzITk33/YFdxYwufW2GBeGo7kmm9A6xWwYsHi+thyUDS1fpZbTVMORaynZK9QnE1Z9fjOpSOWACwvxTud4OPp0qsTe4PcAMIlUnAiTDYdTXZZ0S4JUDmy9cqovvhdyCU/cex5WAoaycPMOPQkd3y9f3n2hH7QoribyqsFwmdlo6wz1vgwOemU9dOqHQz7ZIqo2EdAMnHEvDElomzblzfmhQRgs5b/gerQBPgVzNUvqE9FjjoEvxwsG4Rb8Xr52rx4wvMfGSK+JKC3xsvHm5CAQzo3oTP2og/oHFadjbhFRrNkVjbozxTBicvr2V78ayKLwWuhNhKKtK3kCwROF0LottdiAqmHeuDvywVYoktStKf1sOgi/rQ8dWVQvg/wPhAnTKSLSrJXkyU1tgmhlmq2soWZ4tiRRcq4kGrHfLRjkCaqGAz8+cNHWE+G93ivjEedwZKHIefanSzOYPz9ulLaEIMXUZ+K/6zEo/QJRVORbH4y6Kf1zZiZD+YEmNcxdEhqlCfb6yTwEGaeYlLdLGyAs2M05d4eAPE5d/nJXsh0sitS2fKsq4f3huDs/1Kj9pfW4nuEjgoPyz5WkTEohK6TOVdwxFrFyZSh+YxoCcSUmV2uXepBltrRd2iMgCoPOJ8/bPXCl3o0nLZgMxbXw7oEfEQVPbm1R3nVD1rw2zxklan0GqUfzUHPjx/ZM5daFYZj/fbE3e7kCbNvPYcNqcWjDgULkuNgFyhFih6SZ34Djfc+J+nsEJP7r/vuTS0Nwztdk4349BZgU934UGOLRJxovP4G9eODzta8NwHsBYamZPaspGsk7rMv+CBqGwXfzVu5KlXBNKeJqMCMO/TwaJDjEOAKX0kJ2CNzlQC+0cG+WFYt+0dem76V1gvXy6PVnJykQyPvrQdlPPKoaVb29QeXg/d6eUgIir+GWpVeNTmQUaqx53a96rgUU5uj0PYYb4GxY+pYMNwbd4X2vVzDVC4/VNHy/HKyGuqc+XhHUPM8tiax0bByi/q7ND4dOloLTs9kPtOV4tE8u/XzdXAuIFf3WPfEiA26/PkDf/QaDOsTZfkfQ5gDOf+3MMa4y+Jd6cKSbORxFTAyIzll1Q8RtHyPRU2RgC9tXXHGQyu31bpo6pG7g5To+/DKWDHUMX5acBIjI//BFdmnDFsjb0grgnSDD2VN0P9avYFBF2dSy4LVkWH1Lk2vfR4Y3us9//JcWhaIK55b7qlsgOWJh5fJqOEjfo2dm8cMgGpzBzvJdqt/Gl779ro8FlSyFjNcWEShG2X3prF4VEPKuLiQr1cCyzEuVZ1/C0JhrTIFIQjc8d+IPuJNcDTdPvIt6eoaI0HVabk1PElxo0lmVcyoHbCoLx5JIDHrAEcfiQxiCC+3ep7q17aAw3UL5634CutO0v6ggLg32ZqvF8Zw2wLcyMfrAmcoJv0886dYbgkjVlYI3F1vAKPECZtiPgE67W47e4BqAxfCRYbm4BhDp+jLCeI+E6k4dyQkNqYA2H1umvrt2sP/bXdXPimGIQ4Wp+SxtCXT/zlOuPZYJTGdFXP7/PENk7Tt23TftgH/18qfrlSoo7FFOViXiUEJW5sL9xwhKVnl1GCao/Gv47W4MTyzalDtxegwNwY/VGcV3T4vBxEwmazEfj850HpRW9UCwn5kz6NONKuhgn3kXLRCLTJq5LK5cG4DrjNoBPCqpIK3A9/SdFglVnZiyW7rfBfY0onIzB8nw8fDbNsZHBNTHfLTsbNIAHDiVhtWn5oP9vD+jOtWLOeb26REGCgFvm+pD/pMEw/TM5x/9CkUBanItw6f6gPinUV+h8C1I6t1dPXWOhMLaXHfa+xOhn9/jB2diFWweo7GQpXriL45B9+frZJjt/eU69YAClatYy8/ScWjgJ39EyKk2qJpR7r81HAjVORbJPMFYlH3X+4hDUzfcEGimG0ipA+gymBuWJaIxbJnXIaNk+FgV9ecPTQ3UDR1ljEmIQt/SjcUYRovAf/KWgKNhBfxBf5N0P4SimDu7daZ2Q8CtbDbyKZkMhYqyIXymBMQiVHCe7W8qpN0TnqHERUO09d43VBmJRg76zm+2kcGOVPxqSbgKamLtfA2PxaEwtRsdAhptMHTy9UG25RJo1fj7tiYDi+YZDXxXmFOg8Snf1ULhFngy/GEWPYlCQjq5fqoKCHZnTu3+t5IPaQy1v15uxaD6ztAcB0oXfGcK0S4oKwID4V2dTzkEdF7+TVJ0xhAcahyO80yMAE3FlEHrRTw6NtcjfWmhH6baGAqf7CuF1ulXGlg9Ero/6kCpovYvI781Jb6tBgRTTvA3U/v3nCVPu2VkKRAnPKx+cqXBvet9lrfIoWj7kYgERrMfuHRYx+4GNsHhFa5uRwMSQq9p9oWw1kH3P1xvQBcWcvKCyhx7I5CShK5nD003KLOa7G8/QgbLQ9s5LP0EJKc2xfmMZwju7rx8y5oSAiM/bRaqFgjIs0DjtZILglVbr9/sNhQwL395o54vFsVeeejRlNwO0rozfTHnAsFI/FnNDRIONRfKHRJMHgKW406Ou4xlEMmHF3X/gUdRzZw8PPW9QByYy6Y9Q4FfWpaPP7GR0JCG0V76+1bYfOx03PpmJpxz/7SgoYNFe9PHJo0uU4Cx81nPxycNUPyJob/MJg6lBW9uuc7kwqMcnO7mWgPk5dR5R8SHIYtmDYOgmUFIeJ/9rf1aHeQtcVz/doOIhCh+zZP+JPhXX/E6iaEUKrn9sKxCMWhvZbP6msowtHLQ12lhqoHSiI93x+GQSVvRv64/LfDo0E8alqI6GOfy+SZSgkFeH0XYxW92Q0Gk2/3QnnLQsVLu5fpJQO9FF39wLXTCRy0KOeZYHdA+5Ssp46eu85hXWLV0w7Ze73U9wTRYMGL1d5cjIgJT8pNczlZg90q5qz/eBFy0/11hbMcgukoexu75IfiiGHGhrSweaPgbSo5Y41FDdyJW/xcFLIyKze67pILcDcWOn+txyE7rsfS2cy6w9nS5iGRnwYpT0aGh0jB0r9JVY8sqEbiuy9fl8VBA0Obvb3vzaCRYurlBCS6CmW2PMts3TaDE0TQ8tkDto4fWJ1Uc/MCLzePrsgGCgc/YXb3sOERr/PxVMnXe7R1WuVB9PR6S+upKpY9gkcxs07jJyBA49m6uBCe8hmi97yfmg/Co28RQJe5zFzBxvc8KL2iCSB/Bm3SNBPQi58KL9+294C+6c6NgMhPOWw2Ku1G5eicr55LT1zSwkGtUXSougvAcNqm/NyPRxOjpnnMCGVDjSBRdlW6C8xYPajQMIxCPD11FsUcNmEwLXHePpq7z99U7rIQjy4Pffuh/pt7H7etktbd1IOEfWH/1eBgy+Hm/9t9SG9y9UlBSwl8JbufvyYlx4FCepE7UPhEyjJ7GozvfS+GL+K3fY6mxaNH/oauaxSDE8chtnfzcCLjiula+CSI6FfhjsqOzB9iOn+CUFKWAbjDLCM2RBFTqRGlAkr0g+lIaE1hBhkTzjMBYuQTUYaFWY3G7F7DiLZYT1ygg5FX0PUY1AcnijO/9pvLnLrke51tCBhtNv1ZTiwR0rth4iovQAXbMIrEteKpv3pGPL08kovbwecJuTwd4B9YsYHhawNCun3gVEdFDNtWskacdALMJT/ZYqHX6VPrc/3lbZGlrwNqzCi6dCrDCaYYAllNTIiEzGm0yG/6Wa62EXi+T7t5fkbAnE/C41SQaPcblRQmmVQKk5v5mD3sFg9mnaPTuRCNMhtmNEfcOeMjcq913JxTUmYt5d4OIiL30V9PJ0A7A0Pz75mQVDYmGNFclMER0vtNIIVK0A4bFCi1XzkSBW7OAyou7RJQz8kBF2LoDYp8wv/kgiQHLNW/vaC9q/W/OyNpTaXpk0aT4634KvFqmq/ZYjEMVFI3/uCSoXOptepw+nwwnuROmxD/EIVfdtPX20WYICZrYsmwlwz0mbbYoLgziJm12GoQ1Q9K5vrnvamRo2vqWGvAvDq0MirkVepdBDHPeK6exWrBqrg5oDYpCDe3CcMahHCaK+xRNuOtgoVU5VSQvCtHMqfy6RSwD312yOH9eHUgPsJXohEYhj/FRw+8Lg/DQYuEvf4UzYOqk54di41F2Btw7VzII+0o0OpMzPeGA5bXGgIl4lHHUuUa0bBCuZe+NljrbAJ2OGy3deDxiXNOT6P/ZBH8CjH09rvoCnyuj6U5vHMK9HbD3Dm2C67tmT9VPPAaJORW7r9S+o4yL9MTeaAZZndPVPlcdgcHZiGH+Sxx6/2Z1NO/2CPzyHZx2Ha0B7wHDR6/24RFfDs3vCvYRMGQ/qu19uxYKzY4d1tbFo05mcS1p7hGwV6lybFWogaNvCx/naONRL89CDemdDZQc8U5066FA5OwnifUXOKSo9owpgvE57BgfUmBgbIF6Hs/MvXM4BAEBTr0zViDDoj/9S7IFhLjVRTQDcKipP6pf12QEzHbrYiPjngH08Y6yfMWh8XtDI+9ERmDfqEFTyUsnmJWPeEAjh0fvC/htb1iMQPPBZyv0gY8gO676fcUiDin0lLP+7reEOIdFSV0qP5SrxMePvMYhppUo3+E8B5DXOcKM2SSD8xGxmUhHHLpg9JH5ofUIbLwgnG6cDAQuO9tHZ+dwaEm+xD5PZwTMP+aIfZQNgwnJayxuv3GorDrmUzCpHpK4qm0xN/PgGvO/12vlsUjAsrZZaaUOBNsXnxyXzYWd80EPmn1jUTomDC+fXQ9uu0/L+QdzIFXf8advTSwyv3DQWvNFD+wt0tILFCEQ/bdIx/0tHrHIteXhD/QAZrNYlxWP4Kpog/m18nh0GLEmPJPogTGPvxzXFBFQ7ts8rm+PR06VlfsgnQxrWu9zCzoaIbLMhhB0D4uuOK6sHD5MAS3nVI7/fjRCzVjfC+lkLDpkUaPv1k+Gh99mYzSamqApMsnazwWLOjmFnONvPIGNuauabq4F0Dt/7wmDAw7RhzWdMdXxgUpTbtn9wfngb54dUHEMh05vtrtu+nmDQ+ybr521hXDsQ8CSKx/1HmUYPNgeDkH22ll/mYlYmBpw09tDJPRpO7VuvxeVq7VJZuTD4WDG7CJ6EU9ClOqLAYlJQyB1LKa3iC4OfgbYjcVok9AlQ8Gu8N0uiDzsLb+ZRwHm9AfL+8/EI9SvG1qm2A3slDZOfmr9qOpH77irx6P0Cr1pXH0XpDC4WQVztkBzcHH0yC4Jydiu3VaVTgN3Pb0fmw7Uc9K7UaKfFYvit2NeYGxTYS2Ow+3RHBlWJ8f+to7For7A5/6xa8lwxs9qv6w+Gfbtcv1jY4tDQvJaLttesSCPe6l7fbMYnnryU7h3MUiq2UmZ5zAW4vRW6u+1lMCT3U0b8SwMqn5hICTiGwvvXM3MBg+UAvfCiHLcDgaxRXC3k7p7QVtRKDHh5WvA/+eREeeUgFSYKMf4jvbBJbsLV952R4PNesTHvsAEVJAX6LqvpBc2+Fe+9mpFg6y42kVn2wS0dU98tflpG5Bl6uuyYtMhteWq6Qt2Auq/Hae+QdsGg0sSLueupEPpffW13i48euMBauFKbWD/4CnpydtUIGW4z/lu4VFifX12ZeIQrAxGuE7XFcG0SJ6EJdXTq2P0eZiyqJ6e9+plILYAuB6MqxnLk5Cxn7R49MAQFLDDAaH/CiHYpzhz7TPVox/tKYh5U3nvPtvf8zqFMKOwoPALQ0LcL811u+o74ZTR/IalEA6yvdfmtc1IyOfc1j2r8U4QX3J7I7AXC8IS0bzbTiRE/7kmPV64C6T2rfMl2GLBPZQp8EcaCY2bWERorueB74kFGbvfVVDxVtXl19FoJMk/XX9bIR/+B0bQIiF4nBSZeTyUbxfGERWRJaUQQpYkUhSJI1KWyNJKUhGyJEsLkiXZGmbMwox933fGOtyMfYtBUon4RUq2okK88/57Pmdmzj33Odf5Xs+T9rFHY/JnJVzBcO0+xh6FNLs8hatHCkA8/93uTRoVNgwsZUZaMEj8yurjAUln4AI6EskhAj7ndMQZVwKCwwfelUXXw9E3J1Oj7zaAVFzFTzorDskYqORSuWhwUsEmOQRLgwS7ck03eRzSf1G7s+UCDfjn10cd3zTAmO7tXouzOJR8V/BWrdkgfOafCd1gIHi4QfduWSMgjXGz3bZiA3BL2VEGd8YdBlqP9E2fJiPRPpnrT/kHwI1ze+XzRwGgwSveyG5CRj7r5wLMS3KBcr3w1OszVDi+51DQM4so5FTA6ypzaQBaC/abIJoD/Ha47J8wE4fsE4IV+QwGwJZGrf9e8wwWiq+nbc3HIcmTYRofsb0QlIw5qyJABd7/Orc5JFCQMZtF/l67Xogn+vSVTVJhZGw0L4tAQTY/Zfh28/cCo6LvD2xUgkTcnfzOIAp60zdlJr3CgI6Fpd4J2Qxojet+2vmaiO7blnp4HhkEt6+7K/32ZMJen1MrP04SkWQGgRYzzwAhvuOmrLxZ8C9c38Qgjoh6qkhtfvLdkJ3xPdRsDUFt+O+HqJWMhDSIXXfDmPnD1gJ/W/NhU31lX6AVCYlqHhMdd2TAtbndcQuH8sAtQEutKIGE1sibAdJEBryjxV389CkX4sfuxubrkNDf8TtFKoll0FeuaCDoWA4KHrFT+8IxaPVuSq+fdjlce1neFMteAQaBjjchDYNSLt9os71eBo9RR6Lz6QqQnLurMRLAzF8dEc/UroeSq+xpv0+XQR1J8KL+VyxK2+46USZAg1Czv6uHBcvh30Hw3n4Uh2ySF/3blusAc/smeZ9COQz8terg7seiSG/3m8vEcmgxa0qSlSqHcPtDGUNlGCQdMx2bdoIGLr6cttqrpXCTJ9wXqeHQAsk9u668FNSEvQkOUTRIKeSknfbEoAC26Se1zHMpvX+f7TFMg8Gc8mQ55rkEArK5qwdK4fjhUuVBIrNvBXaH7fLGoG/nLQRD7MqAW+C3042memAIB5soB2EQZzvLCcUKHPBpzaVUXKsDthcHdjoNxiBNxR5vgjABtOdC8MLzddCxtyBfMSgGJRtorde9xYHzm2+zjufqgf8KkfNLXwxKqLNKJQfXg7lRrq2jaxZkRHF5fvmHRUHtKnbpj2jQb9yuzdaXBbz71/9xG+GQdejqP+HVeii0mDE//y8bDn2RHW6QxKFp+j3uOVcG5Aw9Xs65mA0HyvZGi8WQ0NJwuZ6fLgMK+rLjv/JkQUfqlbi57yTkkwEXrzkxIGZ8Qsk1LROST1Kel8WTUFaa44rpXQZIBnjtIYhmgJcdmHnlkdBX7VfJPnF1IG52QVarkAo0zwyuH+VYFGEssejtWw/sqYW/hWapEPTu8JzROhb5PAj8PV5cBy6t7adexVbBuQf3HyrWYVHLwoqay416OOx+sfXzx0ooGYg867WIRSavz+orWLVCS5UllOY2wC5nK19uThJS1z7+LlqrFdb+ht7hwzaCxvG451d/EREXtaRZbroFFIW3OrJ/NsD8zmwOqQoiyvlGk/fGtUO1eALWIKIGlI1I8+FxsejRM/UzmhntsLhy+7VaQTWs/fHzvZwZi1rId0IrZtqhLE43cPNWDRzf9kdkihGLLh5u/vstPwp+ReTQGr3rYfCwYpbuITw601i8uzgyGsofSp2dp9bBO2OrYpE9eJTUX79SVBUBqY/k1aUL62B4UPvh1G08WvJ4yPIVx4CBZT2GpnomOMllfFe+SEKceo3vrkQxYJGVj3w/IQscnNhSnExJqOGbmvxWNQNE2Dhkbo5lQagELfbAOhF9SpugRzxJY/ZbXUUkHkHjD6NjRGss2pkcrmqVmA4fx0yNdiwhAHOppwliWPQ7PeWF19dU4BpivxDL0gRRTiSynR8WwfEDrSXtaeAx5vVa7l4TGKg6Np42wqJa5zK7xZMDMFmV9EDDKg62iF774wTICPPNQvu91ABs/WihqfcQQDfVGOhKZBQ8gZNuNBuAU84Vl+deEMDSAJN0djwOwZ/T/XtVBkBYW5mV2xcH+66PDIYJkdGZoN1uR02q4dcnakasXgXctLxh8jkkGqlHhmtXWlaB+ZzwHh7XCggYOpd+mCsa+V3j27etsgpeqi+c4Mgrh6D3yuGZp6PRsH80baiiCc79uvgisScFOjF2oT9t8KipnlfBfaAJbn7c59GwlQjkTvrLXE88OqVUoz0i3wwNT5JdS06ngEqc8MbHcjzqWjTcfaOnChSNHb55H66EjWxNNXm9aHTRrbRHIaUfKObn2xIcEHTdKLbk+EFG90ISWF+l98Myh6RJUVUjcFp3S7LPkhHlytwploF+WJSzuR+1D8FZht2CWxEZzcmrGnKO9IO7X0Oe/LZGyE370MiXRUa1dmZfgrSygf9W/pDYNjIMX67x3lyJQg0H5ufkpbPhGbeujv2dRDAo+Er9+C8KLeyj795enQm4SYpHYmQ8TPHc8BD3jEY8xoxWamgmtKo/Msw7kAKuv+PFPgVHozbPxsePmbq6YOW33BORCSrnGQPLCji0V5pWcMorE1wGStrmnjTAtdzOQxUR0Wg7h/PlI1eZe0Xc6PXvSBp0GWRvaGtFo2Qhn9kSqWzgCNff88qoAb6kHeVm3YxCfzDHOOUOUeHdoFW/czkVrvqeURsKjEJulJptL6upsD9Mv1vYoArSJsinvZqjkPuTP6TY1UqQF63idAyqAllOYaE49yhEn93Le3yBAUG/jfI/9pfCwCQfRSWWiBSrYzgaOhggugCfq5n7ZJeq5dujY0QUn73vrUg7U8dU+Z8EPC+Fd060c9oTRFT7q7vuyCwDsHWudV4dZXAqwP7ch1Qi4qkMX5/baIerPygWdbHV4M9p2i7yORYl1Z3GI4kBOIvfYfREiA5Tvyj05ZNkdIMcXNf1sx92RhXhTg40g/22V6cv+5GRQ2OwrhGz/7s1edWIhGZwk3jMWa5MRtZ3Auicor0Qci1Eb22oCuo1Wa56h1AQURDsb8f1wrfEf9n6+VWQr6GkRUqkoFf0U9h19XTIUS13PibpAoI/M07wnMCivJnL3XmpGXAgOeL3w9HHkMuyYHp7hNmHgorbsg6ngzG6P3HD1R92+a4vGJ/CIvPOv29J4Qg01vbqZy/lQmgXSWgyLAaNbQknpjLn/xh3iYDtQA5Au7ZwOSMGWfL19wcuIrA5/IhGr8gDjtZv374MxCDReDPhcbdUiD0vxX5QB4H1wuUnanFYNOlY9CmiIRk8hs2MZa0QkPXxkQZ/sKjx6qaItlEKcx7ZL9l8bQSrPyW9BWNYxFO7pC7zIQXuYVnkAlIQ4Js3pxZqsYjjhPwubKUz/HC+pdjB/NwllfmxRGcCmpwZ3GW5owqqCr2LJFbrIPCfR9SO6Si0XZ7NK1CdCvtSFjhxbPVwnrDt+OfIKGQbKLBAd6eCyqM8bbb1WkhU3YxTTo9CBJbhccLlQdCt3jUr8q0BRiyVJO9uENCN85q+T1XaQYHYdWH2eAN4TszzXr8WixbC1Q7lWbTD/QaB0AgmLzjo28qdcYtFZ0snD52ktkPbxxsSHO9pcLRhIzegNBZNaqY+iTSsgl2Kp0u1T9XCowKrtKsc0eh20t/pg1ZUsNaoeUOfq4HV69i5v+QodIVVJ2rdoxL2VK68P59QC/5KLg+ktaLQ3htqMScz22Gfeu+xW6gePE/sO/qXuXeO/laIFqxrhHN8NZck6lOB2Bf9LpcvBh0plT5a+7QRrHea3OutTgcTX8O+zr841NPT8i2uvAHiLt5aWXFOA+EHT+pfUHGo9ZSsU89ANfyX8FXfLqIMHBv2s6t2R6NqPo0TzvRq8JNbOlxwrxwOpHkLB9Gj0ZtL3rMXF6oggfQoo4dSBj+QOYq5wsxPEzTE9zVAOmNJKbM7A/bYflTLbMShr6Fne1RftYPVQ94vp2sLIG/9j8onbCyKF1V6+cW8HZoiA8hL2/LhHCnta7lrLGrkecn5PLcd0sblG3+E54E9Li3zc04sukKspfuqtsP5r9MvV41yoRqfu+lyIxbN6BPRSdk2aPGWlpV3LQP/A3yGZCaHGPj+fv4L2wb4qycjt5WUwQf3fZuYaRIaFHlnTT3TBh/9lc9QbpVDQZZJxXEmn0xbTJx/87INEq7OJERkMc878YW0MUZC7+QOe258RSD8cSRXP70CxJQ96OE9MWjOMPLdrhcI9HbEvN64XQHUh9NaHoExSOJC37L7EAL3g11bryvKoRjTrP2NFoP2/VApfRaBwPmCxOlk+3Kw9M9UDQqPQY56lVOvmDwXJPhcCjeG4IcQfYfyLBYZ34PvQ5g66IZ5A8sfCHDYRzfTSpjzG7UiqdRTB8L50/2lYQi2b/FrbtCxaKNvRbRosxbazgUa1jD3+1y2+vWZl1h0ZpLtbQ+NAdXr4k98pWoh/tx4y5clIprMe7+2UcSAKl3GsVHtGli5fM3k2W4SOnasWK78PQMKn18rmrpcA71PqWlzdUTk9rJIPfg+FRgNH5Lp5Ar4Hj2r1p8UhR4fz8pKYvLcSMvrtLieckjo22pMo0Whc2WnNNzxdJB9IV1YuVYJqfwu1vfqCYjw3+INXzU6NDNOWpQiKnh/2eeg8ZSAdEnLZmbCdJDfI/12W38lPHQ8vJN0j4BuRruoeUM9vA0AUWImDdiUik+EMfn/jph5Y/NoJZSPZ0laClfAsQbT5SP2UeioU3cv/lkAfCRe26mxUgPYPNsTO1fwiCU+l/vEaAh8eJ/qzJ1VA34a4X1WuXjkthWmdeHmK8DT+RZ2xNXClZuCJb9S8Wjn4J/6U+kIJEWF+t1GmTx86sncJiUG1WoV3pM83wFhjknSx/1qYJ9VpbwAfxyih+HBzK4DZLoVfQ29qsGOc6c67nAcMlkxvrH2gg7HWlSdPMRL4WFA7b+DRQS0p+5M1stROgiv9BSYmJZA0QYnuXWBgHoPaFqjn3Qg8YnujNQtBSO+idotNiLakJN1iJDAwLW6P5jL5TnwL/rzdzYNPOr/E7T+qDEKnlZfJpuU5MGt36LPdkrgkfmratGM72FwYsjpzZtfudDndP1loC8eGZnvrmoXx8GT0dvT3v054JDrNEydZp5r+QBvl3c1zFdZW4XkN0OEvmLwU0o0yiNqBlMf1gDrhE+DdFoztF7XVR3kw6LMqd9OvlPV0KFSVl26mw6H00yUqoaiUR/tZ9Z6EgPy9YYLr1FrIdWkXPyfIgk1ilf1PMMygJWV55va9xowItAyBY1IyFhEUKzoMQOO5rz/bVFdC1k858NnXpCQUXokC5LtgHMX90SX1FLh2a8T5Wn/YtEr30fEa2IdULg4VHyurAqiN0dD7/2ORQWvBamWfe0woXZmhLREBe3z6d5vmmLRV5uXLJIsPUBQFCRNm0dApsMNX1tZCsJvO6eUqtsDkx/3ixx6jQUV1gnL7zoUxIuUIyP7uuHW3cwNTV0ciA5V7wsUoCDrOo8fQB4Ab4EXwzKqNNDPXWi+diUOfR7q+hkaMQDxN7Z+HZJpgGW127VvPOLQ3tkjJ6WcB2BoWD39rBANrs9dvP6xOA51qr87EVnQAv1Vp13mRevgOHVhWDaC6cdNbtbePN8C1oq6VzcXa6FJKoSnWYuIShZ3qtCCW0DavllC0LIWxgcNvGxciGh3q/79P/UDsOqnj2X5Q4PKOIXWtV1xqGWAk2vuexIUzAlyZVSmQ9Ksw2SOAA4RxNrfuI4kA+tTNfWSwVSw7bdKVlnBou6NIO//plPA5c+VePpiOlD+8YhKV2PRvUDzoEclCaAYEjn2VykNFHuPG2y3xqHsg2/q2h52gJqXS+vRf1QQe/OBxKcYh3Y2PDb90tAMAcJq/PSCekjSY7mQKUFAVy4LHO673wxcT428PEVocJ6fL95gAo9sElNmvrxqhrpMnqXe38w9TvhLp/7GowfxjCtnfGnwa9ScUKVQAiM/18VPmuDQR21PgZlFGlycMd433VIEb7/v5jvkjUN9//3ID37ZADZJY+PGYiWwOc0rRMrCoYmJUgXWOzRwLw9YHmP6xer54Bex53Eo5nyDbI90A+QemOmX+lkH1efdo9xf4VDOXYOOqzoNcPrn+XidpXpwli7auRWNQ/u3pX4KMeyBE/neYTw/ySD/a1kyQI+CzlTLTFcMd8P6rQfOF8TIsCTcLUPaS0HcbTPat4/1gFwzdV5flQj6SvEzveoUNF4myvaFswcUnmHlC7cSoMaz/tZNBQpyz6imppv1A0tKT5bBFhVK0n6ovtaiIH1DdiWceD+UDubhS/qp8OCVpZnXfQpqux93SUapH+pzC5ZYDlLh8YaPCocVBUUtwqO5o29gPd7t2NmAJqB9aJnsyqKghkeOWUcr38DfNIuGrYgmeOpRLVofRUFsrQLpsY5v4Fzi0k3V9SbYrfCPRSSJgi7KMha9yYWQ7KskPi9NhwdvlJr0CzGotoGhW5WbDxtWL69ZiNKBXcn2R/oSBqWKeW0InSgEL8c3baH0ZhCKLlc5U4NBow+J3qZbxSBxyFTk+hEsuF8kvdvph0HkQ2D91KEQzBepzzProsF0XxX7WhkGcSzUbJZii8Cz0TnfqDMMxNvriP8RMMheL3L4UWEbVFwc4ME5NgFbyHB5/BoJuVROs485tsHNS5cEFdubgKXX97dGFwmlbjg8M2Tu91YBWc9MyybIEHXa+C+XhHjGsrVODb4B6VnUxnGOClfOf75oE0pB2189VI66iyB+StH/yToWjDRtLtu5xqBSBZdNyWwE/ndNc47xvAaNt5+4WhNj0AkhnohK5n7/c1Xz7hAFB/Vlu7aLNMQgmrvV8okQBggs62ATP1cD98e5YZa7JOTgcmBT7DIDNG9cXfu2VA3Xn+Q8X+knoWchzi9d7zGAg7j37OBqFSzuKHklkkNCO2ZE7vw+yoDPh2+IjGlWQ/Lz+mZjUaaOKU+Yv/athBsemwIaZkz/HnuX31AnCrWQprb9e0AF5fc/D0XYIXj22gVfnRKF1M/+1eFipcImRXl7Mw1BGF/fxw6vKPQDb6zQ/oPpV/fNRDt8a4SIp7fMBV2jUNjpizNTc13wZ37tIT6gEdzowU2i2WT0XEfl/EBSF8igUDm/8wgmpPFeS8/JqODkH5/mdgSTREkBKfcmGDlZKDpTEYOWxYsaO5j8YexYxTnO9Nn0M1yH9mJjkPr+O0KPDJgc1ZBdhHdpgrpV7eQWqxg0keHz+ptQJSgrlJ1NYPJnlerOlvmDUahE56LWNmb9x/nk33+aKYUdcpZcbcz6DeU/iVzfT4VV61mH5B3lMCUeVq/uH4VU23f+0rzYBmHBtzOmG7Bws/Ga3/5yEhKtTzqq5tcG7joXNbhUMMA086LfRkjoBGNbrWxDGyxAJ0sLwsLUrbTT17bHIp8rmuncXJWQ59RgNf26FJDstSOaB6LQ/LEzd9y2coHNycg5a6QZJGnbTdXPRaELm1arjfn5YOJotWhEbgYd/sj9Jsy5uHdDr/CIZSFM7raOocjTgGp+KFC7EoNEnYLaq9kLgE9hQSudTIOgQ7Wv9k1h0FyehhC2KB8es73XWqPXA1EjjziyyJwLjhL2m98ZoKJxJG1ZFUHabb9La4lEpM0otDBeYoBUfkgAj0Yj2Dd6FL7AE9HRL+3YyxKD4B1+rtckoxEMVxuyP+oR0aji2h+Zjw1QZu8Z3c6eCx9eforWaWHyeZvXwafM+CvX+WmLD1kga3hO8hYzrkl8sYAnNYJj0/mDIdRsYBsb+MTHHoPGwwIcGwnBcNH4+48HWApIuMWVcXThUYTjnJXv2yB4tKbe03MtGV5e+sMSMIRHLtgdxLHvz6D2w/Lt1qJE+JW6bCwlRUA9Gg5Fq5M0+BRIjjDizwEPnSPB/u44dCBAooqPGgMJCoFe+Y+woJ8QdiuyNAZl0xzUIysIMHnBR8q9JgaMg7v/4JhzetDoy2xGNQ62r25d4jIkwAHGaMkg07cmmib80lUggpy00udX1tHw+cDn/NRbMcilkfIryZoBZVuuuK5nTbA+bpXmRSUhcyl34ypNBoyxhK4PKDfBgp3MDjemzmCP3y/1dmGA+wF1asMmgpoOUdOjRBKqc6AjI1UGaAXO4k7FNAGBymZpwxWLqh5l1q1fHQTDA6pLvU5ZMH1ryMPlJwE9Dma/YMa8FwWt36MNatlg7Ps75APzXg7XP5eJGfAD/08r5HeCzVCydUD+KR8BCcmxSVgnBsDAelOSZGYzbB93k5P+iUebEjrVIqJegBGT2L7jWTOYiGnPil1g+mIDOW+fiDrIUvJ6TpdBMK97U4NcjEWyk6qcFuP2sDDq364zXAd54b9wb30J6NHfnehm72MIe6oaInW/Dnjyuo+XqRHQ1Cdz6mySN/gftdwv/rIeiva35/86S0B/Fu2qagQHoUgIY/tYJRS+Xpt5G3qN6QsiNsX2bhuEj3vzZQus/OBoP37kgxcRddE38dGnBiHK1PpT9EIAfCC6CnyWICI8n5uRFrUVaqn7v6kI0UEbPAvrDUnIYz3+SNfRNpio+6lxewcd5p6738Ynk9CmFa2xx2QQJp39dFIYNTB8MQQ7s0lA6ex/na+RXaD+ZyhPvU8e7MqoP3vAiYDM7J5fdM9ph2Zq60UdXC1UpPaeUmD6x2/uFfotqe2wv6BX7GpaHQhk9wqlp8ei6rs3pFJ120FY5aS5y8k6EFTGnVW+F4sw2ioL8js7oHzxuaXE9jrILDbfkfSVqQ8FtIqmG00QeUXA8/wJF3iRlG+uexCPGgvTh1WnEATU1sTuF3SH2Kf1KS4dMejqnT6WTEwVtB66IvN6MAMeLJ5eeng4Gg1oTv+VvlMF1hf/bVv0zwITNs/83XzRKF8XF8YRSwW7jcUzU5MZcK6XulRdHoWMM0JFkgt6QemKeaTDVD18mba3SUihoI9DJzryPHshIJNP2nq8DkTf5Fr7xjI5Qc1Fomq0F46IDrnZ19XB77VWFQ8mD5THRdYIiPbCmEnEHXf/emD3EfF5EkJBC0+d0yZKB0CvyWft9ctMiI08cItDKg4xVOwlX8YMQG5ostPZsXR42H9+YupuHGLLng3K6RmAqMuexfcI6SDmszW2+3ssMm19HsAeNgBmo+bHhtYyYbMZFXY9iUMn6tes+vkTIaqX/KOx7SlEdJREWJnikF5mxh+iTSLk371vaZR5H5AUp/4DJqeJBl3MD+NOAf5ZooJthgu86jxRvucHFo3b8FKN+pvBxfO+eJEbDWrNGu/bKhLQ5kKndcNWP8TxSrqrzMdAX0+Q9u4HzP3l/2VhhHMA+sd/3Npki4KCOg7L0zfJqPWDMJatiQHXg7EN1s4FsHb5elzHdyIS7ni5Sq5hAPGNpJ3HcB44HeCWXPxLRDa51x2HfjBAR1KUTygpD14TX3TFkYnoU7jvMdyPGLB6JPTfV8EmIPPO2KvmxaAPmyYn7Z4SYfNW8S7iySY4Wb1gcM4iBoU9uaTHTcXD3zBj45u4Jji+PvuPFB2DRBufe8UcI8EU50hHRk4TmKgNfaJqxCCtJky/9A0GeGw/KMJKxsPqf04Cb2gkxG7z9N8zZQawaL0Xux4fA3L9+UdogrFIM3H3ZJIxA8Tvf1777BQNac5qTU7vSIhXLkR172EG4C7mTY39xIAFrjjXWJHZz988vf0bGRBoaMX1hD8XuC3lv+XNE9HD5isCmj/SYc5M/efjJeYcjTwqw+/GovN3ZB5dkc2AYHMH28b+GvDaaGmU2oZFZwYeEp5bMPvGvMde3bkWflPdIy+QotF7toiYoG0pwJfirhpehQUZlzRdkwUsEpGgeoViEmE7p0Zjn1QktCSclbLSxqGId9t0n9ilgMb1kvTt3mFwknu716sRLNIyIUsblqTB6lIp/gTUwrOpByE6l7EoL72sJDp0APJnUz7tftQEQ6P3qaVP45DO81PhssUD0PMsQJA+3ATyCRUfMuTi0IWJFOFHvgOgSXxJLGZpBrG9Eq+eYeOQmFjKUO/7GtBwdOlVOkCHNbYWN34lLHrWyLc+SR2AYbIYa1cTU29vJXlm7Gd+T3NWyr6yAXiU2s94oEiHrFe4GqJkHHojUPHd7dUAnOw1CnDbSwdbBbLhnE8cIkwk5I4Z94DMXELmj65m4AmQunD7PAWdDPLd6P/YDafcv55UkKMDm6L/m+T9FMTvjA/d+bYbcv2NeJ6nNMM9YU22Wqa/kN5dKnzycg80SruMzRylg2THp0/x+hTU8YrWofqpDDgWznlpsZWAS+vTZ6djMOjbMYJmGakcZh82CIbqFIFL4aNjG/9/77l/QbFnjslPWd8jbyuWQC3r4xRow6DxLcqisFkLtIcn5fu3ZYC919jMzQtEdJFqoaOY2wK9NTYC0rPpADX9nOWhRJSePLt6MLwFGA3bdV8oZ4Efesxr7E5EoYNhvWXaLdCV3cSZeS4d7NFYUJIGEd27zQjFS/TDeZOnB027q2DgUmQ0zZ6CxvBWqgqTb6BEKfCtam41nJzSk3kQTEGGNL52ysAbWExLPMSYroKsbJEHHUxub7bcmZ1+axBmV15Ku3SUwZ0bdz6f/0ZAyo27b8rdHISmudoF2nI5bKb+muBcIKDU1dzIBJVBaNzfrHiDrRzMxoQnbssR0dsOLsdyJt/6R/6yvXu5FOab1G99ZvLtnz0FNnEeXUyeNLuSgi+BhZTP0yP2ZHRsjw2b93wX/J2zuGofWgLqFl73vzM5WVgz+LagUT2EZeGHm9wb4co+XZ3p71gkgVte5CfVw2ubHZgKUwSYeJJS3zYcep80njErUA6h6XcNPwiRIJX4fTiKgkHmrI6fpvrL4Yi5xPzrNAL0mTkOFzVi0E7fOq2x6XKw9RnIY70XB7/x6fihFgyqWztxp0K/HA4FNhibr+FgebFPE5OOQWL3XvVff9kLw58rvBaaEXiA5LubFAr6w/VG+ZBEL7wrVnrCtY5AdTNq2fUVBUWY6/cFyPZCsN/B5epnCNKdy8IOh1FQ0pOMOGViL7Rejzdzv9oEsWZug/sSKSjOTpL68EkVVF8R683bXwXausor1cLRaC9XUMK2Y1VwPAEX3c5aDVc89H2Xfkchr1fPjnc/ocOFs+ePEZn9aS3zMepgDgFxfeF4m9pAh6c7Et/D7mK4zeGXzfuRgKRt5lrHtarA5VGpuakOFYKmPsuMbDF9iqj+ttw4OsRAnUwOXxXAwdCcU4iAPDoeGria0aG/V1CPLbwKakL4H65HEpBOzWI8uw8D7k81TJfz04FTxd5y6ykJ+QxfFDzj3A3eM7vmtYmN4K5Y4I/7QkZFlro71RX6ofKflt2L5mqwapEW3rjF9NenyJ6ngpk66Rc8XOHkBqtlPyr475PQseplwcc6ZbA6leC0MVsC1PkOCxd/DMplbyQFfSmDERfisEpdKciXyLha4DFIo/ZHpCW1FJqGsgzM6kshVfaqrI0nBjm0fKurZfrBppBHmTgm5xT+Tj78LJuEuvpcd/loMMDkxyzrYk0N3C/ovqe5RULt4f/kwoyxkN/rtv/Gbjq0Z5y5Pc+KR67UuNXP27qA2/sNY+MIggdBu2T0ZMnovE2u9vanXbCbLlhWmdgIwYKINuRIRl9+T0UzztTBxRkJ82jrRvgi4ZLqHYtFjysW2BxO1UKO+jY3BYlGUErx2d9hgEXcWw0Krlu1QA8mf3ye1QD1oqOch0KwqMBN7hx1HAus9wQvb8e7wjtVz3yWhRhkzM1B+6xdDlqvpfd3vy8BNV0zd/M0DIpX2h1KY3Jyc7DrvOyJIuhsTOpoZnLyHHVjfucEA7hKXheZtleCS9E/fs0yIiJYFK0H/v+9nndiveAbKkRNXUpOHCOiGgPhzoV8BtQI8YKbIBV8JPJG3ASZfO41QP5yNgfORGR8WoxthgdOR524iqIQ69knxy+/y4G9eW4HvnI2A5XibHn5VRQq6H995Jl6HhC+DFIq7jSDks3pFzvUotCvbx/9RDEM2EWjHK/nr4Jy1oml/8xIaPVk7a2W/DwY1/j2YeNTE1wrfDErIx6FVKT4fD3EGkDvA06lYKkSxiSHRc1e4tBj91v1+LIG+PDOsyljeyUs62AMZak41BA+60fla4SEa7MOR1cq4dwx2Wuyb3GojfF2fuVbD/h97UgfCUmEqkOv0dBTCpLdUGxg1+sFLTym45FUClSNbbjaRlGQ6ZGF1dauHtASmaxOupACfVw1fMkPKaji/fGrsS6NgJ3rNNj1swLiZflR4goOBe+L1A46nAN8ISN6z6sJoM0WJYWvYNaf1LfnuGIuvFht7GnBxMLO9aHgokdR6G1tP+MtpQKaHlhN1CRRQHDF51PeCgZlFOKrqUcrITCpPOl1XhzQue4zOSMKEXSsWI7ZVMIAd3MBVj0BwnIujhKY/+dfRe7p7YQC+PbR9hbraAEk3xbHs/cx99HELtUzdoWg48tQMBPPBwG+pc83yzHoSapcufazImAf9cPECBXCA7YXIwskDGK1CNulHdwPgtyiFZOLCG75C9h38FDQo8kFMLjbD67eL6+cIyE4IiUTfVqJgmY/WC6xB+SCQfkcsV2+EmQkfi7csolCDSL1B3Wqe6DlU176Sw0E/kpFr9geUJDIUZNs/zs9MGig0GTng+DPKY6Q78YU9Fsv7TDP7R5YRU0/9nAw58sqo46TGe9tXZewFi+A+j112LmXtWCnKneLZRyDKnvUt+XvLYSEGuPOTVINJFrstB+vxyCeO9aV/vxF4EUqOatnUQtnr2gqZ6dg0MeT72rPKhaBgdp/P+3ay4DtyLDzciIGeQn5hQvmFUBjsM7Bk1JlYMOve/5vFwYZv1jSk+oogosuyXHtTD0pEsmrvYDFoPmGTVF29ypoXstMKFOpg3nFna/lhaKR27fYiC+a1SDZm8Jq5lYHtrH+e9f8opGKq7JOXUUVsN309o9fqoMggUtng05HI6GNcplP2gWwYqq/5CdYDmsnlEvE3jN/lyjnnK5cDOZ6V4IiXPLhv9L9w85hGKSZzd1DopTCz1/2X6JiimHjlqP+3CMMsuUsvr+f3g3+uxfVjkoEwrGwyw2hzPvSoYvKBlt0g3W+mWpvrQdYZmLf6b0noyiMF8bhcze84LDQN2d3A7adX5JihCnovSvfhqJaH1zi1e6KXM8AS1MDQ7siCrLmYat8V9MH0/MJOWHRGTDv/Ta2r5iCNOyPdHIl9MF32+UzGvuyIDZoMuR1CQUtTbruoku9gVOSmZaZV7NA3rZqfCKbgupkA7dHrBTBx2GG9HRgDQx5ifvWvcagD30+R6i/u2BgGvvwrH0C1CUUf8kvICPv1elVweddYPrcIPCuSSJY8+Js453JyPpw1J7+iC7gIv8R/lNFhhGP25UinmTEWmzxZOsDHSLNL31SC8kF01ntBdISAalFS1vznm2BLd7Hrm0r2aAhMqpScpqIDr08uKmp2wJB8505pO15gOE0z1Q9S0QSvBsXHWS6oKzRoizkUCMcKDg9LHyGjMQIWWEsJ+mgd3gca3epFqZ56/mcHhPQb9Ol1EVGM/zHs9ApurcO9MNQt6kSATl6UFjpPc3Qx5udX8FdCzeXn97sOkJAYV5Yfj+xLuDX5BSvuE6BwNtSBgQ1Mpr+tdzW/akBJp9y6oTO58GqH2+0bCsOWff/SP3h3gAFqi+i934vgNE9Jbc3knHoRCVxLvYLDcyNHFFTaD74za6AzSMcGh3zWq491Qpvg/xgfasUeL2deO4tMPlwkaeWWt4Kgop34qcDyiB5X8H27xdJqLiou4vi0ApPFFzS5Q6Xw5+0Fz5cAiSULNCVHGjcDbG1RaOW/s3A8gB//b+3ZGTrRXR7a94NWis7tB8zOb+i1qBraZSMhDiFvfSM6HCQN/1Is2cD2Buft3gSSkBufA5fccvNYC5QU2Rq0wCL9WfePNEnoJmc5wYcUnQwv1rRLZtNg63v/5pXnQhI21bX56w4HfTTvKZ/OzfCzZ4R/+MOBHSw+7/IuhY6DB2LyfM9nQp9O2oLwiYI6EWcFrvbwRZoPpKcZHsvFa5axUmGHSKi/zjVKtbm6DB69LBjyUAaeODMz3BuElDFaGNI8yIdMguT7SWwSfBu8khgHwsRDef9Duqtb4Vz3ep5+8NKYfTBXbqnKZNnZD5MzIw0QQOfEEOBrxJm6RedbjzFo7Ct0Uxp6ybYPJ3Ueju6AuSSKWlrYnjE/Tf6x/dsZtyuPZryrRykb45+SLyCR1OekVg5bAU4Bszq6rUUQKdC06rXMgZJ7p1Ll46oAELK/TOYiTwIS1i9mLfI5Mz5IRb725VwSBVnkXkyH+Y/J/NwnIpC618nbvFaNIH1zeCmw2GVwPWeY8tjPx5tOZ3kV2D60+FP2FtpaZVQf2lXiu0oCeEwC/+d82VA1Lt9AnryVDB12Nzm9piEuvOfm6tbMsD8a8Ur2XEqaAQi1bMdJCR4uefurzMDIGD+43muejq0DOxJurKdjAx/hfMs3RkAtuADHGciM0CyUnv72aY4ZJVl60dTHoCaM6NSsj2ZwPGq1+/9ATKapLqs7DzPgCtW/obiTI7qNttYiP9KQiU+69fKWF6DzdeWa2xJzRAagFHtNcIj2j7h7Jl+LPirhrYVFzfDgUpV1m+LMSj198PArGfdsGhcPcGpVgLmLh97r8yRkVvb+85ng90wH5e1ffhdCXikdK6mCFJQ0GRgc6l7NyjZxs7cP1wKr+OSNaW/klHaVvPTqfEYmJh2dBqfbYbTwbpx7AUxyDtaNV5DahAcb6fwVRuXwuyEqa4WEJGc/rOFutODUK9wav88TxkMRRyOPyhORFPWFuXyAoNw3OLnkRqDMtgUkxWosSIiQw9t17VsBrAZHdlRqf0cBEY8u1RESUhPAxuy5PP/5wa7lXZw+cJBvbbNvU9ISOpquObv+C44vsVxgi+oGAozfvU7+JERjlVsYZqtG2oit3dE/imCJ0c1gu6UkdGEVttL1psMOFTz9vgfuidI2C6srteREP/O/pzC2Sa46XoWeLBYiP/c068Zgkea1/X6/9NoBoMTAronrhDgzimjSxcQHrkss8qHv2sCoY+LHEZ7iaC9J/9yH7OfS9r1007caIY2oRn5qedY4D/Gg7v1Fo9eHG26Zi7TCl22k9c2vZugyydBiT5JRHFeh5RFhltg7Rw29sY/BD6UzbLqbKbvO1008vj/+hMunHz1C4Igt6Hi40z9ednyKM9diQB/Xh2yVXzqBv/dH+W1exGD7mqu3OqhtkAKVx1F92kTjLqLPUzDERGdto2TociABPuzKnc5i8DZ+26Gt3Asinq0zwVrw4Cc9NMBvA8LofPvA9ubZSQUFaQoXmHEgO9Slu62dsVwwfHXaZv3JNRyp6hFPY4Gydk5z2bs6kA7UcQRXcMhxIZNH+2gwWq9xn4rbC1cOtO1PuiAQ1z0KLuThAbwGXEffqhQB+OffnZ/zsehPevGZS/kneC+5xF21fUGyP3pdqnZg4AaaIdcT2beg90C+WuH2BsgWUNV5L9AApL4k8BiXe4F/8y8aMfkG2CgWgaP0SUgF79bS8VXBqG/AvcYL58C7SWPKOorBDTmfCK4ynYQOCqEVChCaUB8b2B8YJqAUnxf5p1WHQSSfpVOZm8qPDsJSk7SRKRiGzRd3NkKUmW8WXUiWcDvS+atvE5Cl32Jm/uDWkFHMNxAcjQblJ7erz96mIR6D1fe6vJoBT2ZIRbVHVnwWcwrSVyYhJ5oSqSJinbAqYJl5bN9mVCW0vtvZiUWSf/ltMdadYDl5QJ16a0suJQmOjQoHocadjL2sa21g6XlmdqJe9ngZk3YIzcei6z3bAxcjkuHbExUTtqueiBdvhSZJo5FXz5JvmPTy4QX+DrC2Qd1sI3b0bsnPhotzl364W+TCTYde/pZQ+phJanL6XZMNNK+syfBorIEjpWYs+wIQKDME3VF0B2D/CXuSkUcKwGrE/oSHOIIyAdtv7Y8waCxb/+FHpctBfabszYYAQQ43iW9SjcMes5Spq/1sQQYK9rR48aNkMG6WiL0EIMeuHevHB8uBSOBz3xHgxrBOqg4Wt8bgxi+P3kv6zeB0rnxY5Js9fBr9fWsIS8elR5y/nM2ogken1eteihZB7QZkaNKgEfxmlsU1cQmUEt2DLTnrgf0T9964hIebUTHPBWvZEDV8NFaLE8zSGkcVMCxkVBhoPCN/EUGsKLFzxutTSCZJrpCJhDRQlomY2mMAVP6oxFE82Yw1M7W4aASUeeuzztWyf2QvdLz/I1gFdiFZmpb/CKjhazO1c3Ufrhsf09b+QQV/CJ+pr37RkZ0YsqR8qF+CK84qd7lQIVHR9VPm+eSUb312f4HQiHQN+px75dZM5T4jI7aVuARhXgx40xeMNQlP9ktU9MEd3tmfw114NH0bp8PqoPhwCjV+dbG1QwRvVnZBa545CAysa/wVAc8nXvSLdedAyFhF3cp7YxDfw4+z9UbZ8Cbj7UdNbbBUBkmJ5NcTkQfuB6bFH1jQGNNeGbRj9eQ0NBIO5JMRMV7pc3u1zBgARqtcIOh8FjlxnWLNSJqlN7RaW0zCLoBdDcssRS4cXt/GcwS0BrL6QU+6wjY+13s1q+sUDiY2DXkZo9H2fPvxwjfguBP/JeJ4xKvYZrE4Lo/iEdqah0FrTohIDRnYZ59NRjkLug2rJXi0ffmkRdCZwcg6tqtBx3ONEg0fsZyhZ2MuPCP//6yHgDO8c/GugoNQBRnux7VFYdentroTDg1AAdXJFkSNRogyvjk9iUeMnp9uP5DTEU/iOGmMpwvV4JhlOTO9UFmnKSeW2aWBnlNu5/QLqYDP4ex7hc7LPo7+pov+FoqGLoJFt3qTIUcRzO99EQs+nZWeQrNpYF9sdguzpVUsGtrLjTRxaKhy42ab4P64eCxn4NCi+Wwvuv9KfXdFHTs/ULyl4J+sB7HlN3zKAdr899/SWNkdIYhjQ3K7wdW/TMrbDYVMLvfQevSOLOermmxEec6kF1QXpsyqAW5J3pH5LOw6CtO3+lNZB0Y0zvIka9r4J7I5yC2Eiwy7tcXUTWuh+qim/x/2Gshz7jvo84cFh03kav68KEfMBovXl5wqADPj5n/XUgmI6lTOH0ZQh94ZQqq95bVQIUDa0o6k/8fb341pf3qgzyd9C+X16qh1EJu8mEBBQmvHuJM3uqDOzRxS1muWojtm5QIy6egzbWWF5Gm3RBusvXzOj8OTgjWvLN6R0aeE9QXyhndgF1vGLBfIEBmrf7c4BYZDSPbosTHb+BIiNRDhl0NmI3zk7PiKYj2ruKK6kw7cy+n73t2pQCG3LrLMIxYVGTygD9bvh0IQZOUUIVGmHltsK5lFot+0C07/qtqA5OgPy8YrxtgxEL2yTJrLDprPfSdo7ENnIpOVrSHNMIu0i7+n9tj0clE/h3lPUwd0RieGsYlg15Gu3PTvhgk53/oqeh1BAdi6yqubU8FUbEup933Y1DsZ2uNtcsIXCR3PxiTS4J/cTROnjsxiAO17bnQ1g8u4jeytpNL4KDpr6iVejJiF5XT0WbOdfbfC/u+lxfDCP2xL+07Gcl83REdPdgPIhr8LF/GikCWm5E5nUdGcttqzSaYfTLda+c8/LoEpB+a3D7G7JO09Z8Fx5s7oXbPkcHMD1jgWBUNbGIhI0JErEDDz0440Pz2gPhHPKwqWP387yAZYabF3Q5gO8EVw104zkKAdoP0tabJOMQavhzG7dkO6vL9Z9nWS+BFJmOwJTgW8T76QfT72wZBbHjvwHOl8GZr+8U3SrGoK7Wvp2hbO8zIqI25WJQAteh854xaLHq+JTRm7srUq6OK6wbHqRCnwRbrK01BMxc96c+D+8GcQvpZE1kJD60O9b5k+tYTYymRlzK7wHxF3P20XwOoHWP4uAWS0Upv8rn8T10g31Sx2H+TBhirGGnE7MOd3i72dMluaHdXaXzxqgE+N+M8nJrJ6LIQt9XfkRjQyjbsdXRphh+T3f58hTEIFQ3OF/ZHA/+pCg4W7Wb4t264UL0bj4w7tMIdL0TB5jFF0aG8Avg0dANLksUjLKveew6LCOCXeybVUZ0PVY0X09aY+hPjFAZn3lUD5yeTq5NHUkF6d7VKbl80OhPrI299pBpkz/dsRCinAz4l5LCPZzTaNMqYwPZVwRO/itQQmVQ48l0p7dz5aLRfN+/jCybXoSt1ly/XBEK0MqNgsZaE6vvCsT7hDNB5QMzYin4Jp65X8F24QUKqf4wN6PJMv69+49PC2Wrg6mKznWolo1UHzzzTh91g7Dw/nRdaBQtbDrTnM2R0lXK4gBPfDcRhI/XFp8y6cAIrPH/IKOnFhPTb9S446ILxiCZWwbsbWh/bi8jodM1AHkdOKnBlOf21MamH4VM++tyRWCTZjPTCa9Og8ejysPhqPeyXtjbmNsEihsnVgfe4UnAfFtc62t8MkhsM75BHGJSZXGl+d6oUFLijv35QpIMFw4Dr3GMMeqYrphfJVgr/rCuHb4vR4ZBz494s5r6uCPedW2a1g/yH91gfr1LhQ9yRm7MBBIQzqpDIkOuAqQaBS70deRDXw86hsRmLVM+tPRX6hYONhMUXFgtNUNv1LYynm8mThvN1t92iICPUxOr0YBM0ygXHSx3GoxGF9b6+kQF4KexrCrsawcJVW8VrMBa53fMrUPoxACPG13kwyg3woOK+d39mLDp8Vd31MScDXmQdqHHe1wjpbPl7lhxj0aE/Pqx51gwoUCg8nWDcDEF3XA1vUUloax57d+khAxjGL5O2f2qClbgfxTMYEvLcWzZKfMmAovP+X49pNsM+P5mzevdICD/ZZmRBZMCx46L69sw6Rx/xPL+kQ0Lp7GZXGxwZEGDM3xIXEQ75JQcmlhNIaNFJgg1DYMCSzB9DH+NI0Bnxs/t4joQ6AlX28m2LB/ePmVefc6bADxHuE68JOJRgcunuVgEZJCMXoicbUuFp1aC5cjMOkb3HjWK/xsKJe/VmJtPJ0F8kr8i7hUMap0xmb1fGgG+RqLcmNRis6h9VppXGILvfPSOzATjobckVIiVHQHnkiun+90wdw3bYp6lhYWWY6yk/7SX8vVzXXMeOR4/vV4SRrkRB4l7lpHyDSOjjGQ0qk8Gjov7Xrc0FDMCbNWODT9Mg6Lf/aYYACalfdXfjZfJPg3+nzREHGsyW/ryWUkVEt44E3DjTwgA506Btyk4NsJatwFX4hYhefe4z4txgQGVLIKFYqQH6Fr7tGg8goq+05QV1x0ggaocM7C1OB5PvZIY003dD5miSu00IQND4736zdDh418zoZgkeHetUk0t5GgaTO64eTr2UCj5+xw3Ng/BodVMtY0upBNjfmTkSb9dDoEPt9SwmZ1ZdmMXe7CyB9XuRDtub6iDQkLYYwORJqqtHxzHrUvjNnzMRfbceturuBCUx45wm+8aGGcUwpTOvoxtWB0cNrN/c8Megvk+/7JRDu0FZjF+8OjICqPd20RKXyejl16OiT+IqIPuDL8M3JBVCJTA2P39h0NUC3btpCRVwW3zC4I13OrwisSyrrmIQv537ollHOUyXCjTH/UuF1B6l/bU0DKqcqwwvo3UCn5N+ZufDVEiIPFO5dzMOeffHV7oVdIKqcAbxfmY6KP1N3uj8GYdoKyrPWc93wn4tJ1+mBYS1lcYT7yriEHl/Yv0B7U5Y69FsUVLMgLAvWaeVS+OQ54jQh/ftPcA19/ConVkDjFkE+yA3CuouSeWv7eqBr+wCgrqmNJAQuRwW/5Dpx8NkTQ+p9MJ2insOL08DmNSkFkZGUND9gbE9qXKlwKt0V4nwuAlM5W1Nq5k6kDnZKd9yvQy+hJnIbJ1oAnqsgOBkAAbp81insyyUQv8/vwvcb5uAL47nlSjzXl6+9X0ynR8P6nMrPK8e14N+4LVjJ/1xKO3ec2dhyURwUtm9UyqmDv6o4FO0LuGQuYHW+A2RJPhu8KAjm5kffm3zkIwiDg0vRsay3xuA73zJ8c+eIeDmvxB+qjEOqecX+SncHgAZDp0Kp+VGSCskFLu2xaHvePsH3OEDcElM/xGrHoIBw0J15B2HDP+mpLqploKu1BW92TkEN3g2wz4wzwVnGB+X/QPhaqJ5WB5KBeewCTfxGTxquT2/56BxPxjVs+yRVa6E9318Sw66FKSEvVqZF9APBE2jHZ9bK8Cw8JP/az4King29uODbCp8KIhRVPGKg5ePa0w6crAI48O9M0M/FfL6nolYPE6ARH2aZUwqFnnPvMSrLySD6g2niZ/iFLBKlmvUXsYi3KFggsX7TnhwkOfLpykS/JEs5WXnJSOJE61ONSG1cMzhQJLqgQbAh1iuNttikbjsM46jHbVgyHen3VqFBveO1DmGeGER6/g1urh9Hdwhbnt0eYYG6t+KeA5kYNHNwXmeHXoM0L3bXrZbMw+81E2S6d9IaLi48eW8JQOqxfp8qYR86N5Zk1DfRkIEuLVeIceA9/Od4H4/H/q/DJv7Ho5FxxvadvJO9gMftVTT8EM2dHjaBbmSyEhhujPWZ60fnsRpP6NwZYHQqfNl8h5kJJvWaCbCPwB2pXz5Fs+yobdEuYNiQkYvukPPOTb2M33Zodqr7lmweGdsL2cbGWGdZrIDaHUgLaRnFvW3Hj7/Ka1wasSirpXuNa3pMtjupsO/JU4HwjN/RXc8BtnUmQYRpsphu+LUPn5mPMSaO4a7BYNMNDio1dZ02O8p8hCrSgeyJXqhSyAgsxy9Yb48Omxvq/F5sNoMH6O0JNZ7mL6e7ZDhhXI6BAq+P/1fvB0sv7cKqB8koO1hk0cW7OnwYk9ATomKB/gZfxpnjycg9dzYUpfXuSCh9GbvuGYVTB09LxlpFYX23KybPXUwBzoPOrxLGaPCXjHd6TfUKORc7KQUWJgNLfoNwd9mKuGXbPoR+nAUasnSzgo37YPlvzVXpNjp0FnPFh1bTEEN9wkLwU598E4dn3EyphlEGzm/2jB5fse59ouXUB/sFDl+42ZzMxiENn2IZuZnJ+71P/8kD0DpaG7d+yo4QTol+0w+CnGf4zdfk88FBc/ArgDuarCmvo7w8IhCXBtsvLEf0uBr6YkiTzUEvzvxCav6WHRt2etbl1wamKmp/ZXJbwS0V8xt1ZXpg9onFvkPNYOb3+PclqRwuGTVr+5biEfv/5scTcxsAu2wW29nOcKAffrcnZ//K+G847F83/+PQkpJVKQoZSSj3lE0dCCSHaGUkayMzDKyyqqs+77d2957733aW9xUKEVSEmVv+t6f3+/f84/rcV7HcR6v1+t5PR7npReFTl3Gcfz50wwHztwr5frTAG9CAloDqwhot1GPsLltC+jeDDBPZG2Eub9X49m5iag3I0fAxqwU+Py/Nl29kg/KfSZx5pcj0GvS8zHfa2Uw0pxoHfU7D86ItYYJhEcgJOInMFNRCq/mWQvKbxSA5Bn2Z9b3IlB8FNNNiVsYYNGtrftl1wAyD6onY5mikIq4P2bKEwvOOipDFimJMD12i8b4CYe4V8t024swYBqzoGmrkAw6mflXupdwyI31khPzQjgIT2/I5swnQptni9u8eBRa1zrzLTSABngM43OGcQxMvLOotbAkol03rvCZuHVBQaiLaZZrHpiZW/mO/qIgxtEMx0dONLjhQnTquV4HEz3z13bCiAi4cK6D3jTgOyX39bZjLYRIJDRfcCUiUoBsryOZBotbo/Nnj9bBokU36cBVIjrQqaviEkQDm8UHarGODbDRMP/45aP/3fNadAnrKAcBXJNxUlouDGX7PmhVjEReI9f5hBXKIUPwg20YIR8C+O+tTTFEIk3uutU8znLwDHT8JHI2F5yjCzq7piNQln9Y9CdRDCz95c093ISBQw0r0b4sUWh/6nI5n04F4KPnFV615kHsvb7b48GRaPyS4nemmUywDpdt4yioAA/l4dMWKhEo7RNEXFnphIKtb6TTXcWwOGzv8iubglLE7kgBuRPMK7onNY8WQyjWlN/Kiz7vZY0ZEyxdoJXr5Rb7pwiq8Ylt1iUUVLi1rrLHqguaVW3F+JSK4VVuH8fxCQrSejHcWF/eBYNlab/3dBTD0fdB3aF7qIh7r5FR5q0uaK23T1QQLIGu1Ijx0EEK+p33lOXEYD2w21S75YrVgPICAXR5cejFSb6zk+cQMKUsRpWrVIPZJlca7y0cctm8Sum2RRCxMD7760oNSEbxnTnvikPswdWHdLRTAF589XxNewUFvmNTjSuRSOey+t3Nf6ngviV3Xt7AB1R6KJOFRpFIMc74RShDA0joVmpgcJVwNmZl1WAUh94uhcWeCkNw1NfRlyO9EhZWPjzPfYtD8YkECWI1AsLhm7axkxWwEOh+XCkHh/6Jtuw5stMHPf9VB380aoT+fhuvOHsKuu2ykczQ3geNjyIEtGIbYexvzXpaFQWVzr7flXcnA2wrbz6UPmYLI1+kJjsz6POSfS9txyANOBpxWr5EB3itqsq0eT0SLTMz1Hb79AF2TSwyhq6fTOILv0lcVJQi8Nz1ZG0fTAg80U3jbIK965snmTooqP3HoOE7pkRod7EUdIkphalrZemBhRhkpb/7L+VnPKiejGbz3F8G9wYHnS4sYtBh4cuEr11xUJc5h6m5VAquiuE/S45gUX+eiN4BKX/gtR/LTduuAozWMFpai0J4Ryd5Ac3nsDhf+d3BogrGO5mq2+Xw6DjFzOvI/gqYu6Pwmny8CWb/2kcSLSJR34xGbX1OOfSxF/7kqmiEM0saOJJ0JApk6tjb8SoPJh7pMlw8SoVbI0wavMRwJGN077wsXwEIcpWvifwmQ6/hOoODZzgi3WwXmmzLhysfTidevxoDIUaHTi3S8+FrYqjZB7EUUNzUGfvrjkCzB1fnxoRB+LSC3cdHCuC/B13Nl5ui4dpE+/wpes48RECfJLb7QLsj8WcqjQiBd3dcdz+loLs44//MHN+BDiebvKAyAo7L8wJzMVT0SeXP06GNXvCTLP6SYolA8OPzjLlsKvrRkDvNz/8OeLIrr5EYELSr3mkMyKCijZ15ee9NLKDeqfteG+Xw5Cgl8XAnDvH9zn5oJhkFTUv80Y8ul8Pjh4PR8Yk49EM1gKXZCg/sFc+IGIEKiF/9G7ntjkNT0zfEhZJ64e2U0r3bHAgeWyh/d6H7C7cIc1j+TA3kV9zvpK3Qc24682yhABbZunId369WC1N8MulpZ0uAfb+XEJc8Fs1+wbrYo1rYvaxpvHKwFMRy7uqwWWJRAry/XcxaB/9du2PPb1gC/wgE4UpvLBIOYQufPpIDCSX56hvN5eA30fDu9hg9Nz7LvXLXKBtwjCxnp15WwOkjzdpH/oUjG864xALvMjgifJBp070AylWkj2vTzzPtmPQ3alUZND0sbmU0oPNubqv7o6YIlP++yJBEK4WNVxUFrTsFgHs+mf3APAJNsL78HWuPwH/w4BJ1sxH6fvH7urvhkEbv+Vvd2/VAtuEwk97fBPcumxu0iOBQjETjhxOurfBq5PjV143pwNrgAd79RPTwOHM6R3srKKyVRknT/f9cyL1l1f0ktG20JHlarRWK92+FnnHMhIQd507nEiJSn4rxEh7tg5I2569qnI3QLmGe7xJLQQvTKmTxuj5QEl7/xF3YAC3m2ZdS2yho0VX/mtQv+lwze3yJSWuAP6Yr8lxhFHSLTCS5dpLB7N6yySg2DS4L32+IG8Oi1JSjw+2KZIjBTRkJxGTA4Nf6y5MLWHRRQkHU4hcBujjvGZKC02D9i/fzvTdxKM0675x5civE746zSQxzhjTKedzrRSIKDbzKfYyzDVQ3fPt/Fz2FE/5mfVeAhAYqHwj2GKTCyLKL9F27EBjrsbh9jBCJbqtY8gVrpYHuiWXZlqfhwND49FkNRCKP/ISLISspgPauq8gciQDnYc7jw+V0PdTz5/CMqwCT61XsKvMIaqVDYkbz6frZVq5VoV8Jd+X67rPkIDig4qRBZsMgVyxmifSyErDXZ98TJOl1cGfdoh3GIIZIi0n973WAq1zg7twTCyOaZUlsbVj0cNzr1fSeeuiKMklMUUiAkMft7r4DWMQpxp2s1F4PGo7piWtb0dDgJpcpexiHYkWLHfS3+kF68Z6kVGM1+D5eO6EQREKXf8VLNu2iweiH8n11DVWwdM9h9PozEopVxN0rFafB3mSOaExZNX2/2fs/HSeheZFa1/7YNmDocnzb3lMPh2VJ04sJJHT0QpdHWGgbeBQ9MJf4WweDg0Wlr/AkpNX0/vWXc23wtDWt22wPAtcsNUKbLgmtuTA6yfJEQ/bej47bFzPgRhN412KxCP820Z5NMBr0Xp9duO2eBh65Z2WcMFh0OP2a2/f4GKCtyLBXVKQAp+n2XikTLNrX1pDrbRcLYUQxhR//0qAzZBehXgmLhlVtfs3HxUPKnb5duiGpEB1S8eXyFgZxCRzml5oph13+JpcT1qiw2o1jYL4biY4/8Ck4oVQB6+1i7bfvksB/9/lzEv6RiD+9QP9WSQV4OXfHHXtIhYKc58qO1ZFIQegBbd+BZlBMXok1e1MKDxerCpSOENCGdlT9vrvNwPhQbrr3bRkUtZFwL28T0IJI8M7DsSagWTPUFviUwQ3GRe7OJTx66kua2c1VCcZFjkd/HiKBAiWz1vdPJPIPd1YZO1QO2aPN+/9yFoPTj0/Z935HoKQTduXOMlYwN9L8U7u2Eoh6ewemvfCIGrap+tywA+R41QxxPXXAsLjZfAWRkQvXjqzvZDvsJBTp/Omqg8t3xCwXPMhIv0zVXESxA8qkpPLvH6sDdSrVlLuYjFQL10xa+1tBDetvKTOQDo/OVkse4SYh18MClZYL7VBgfMNvO74WVGM+pZ56SUbLhANj5voDUHSYt+C+XRYUPx5fTFnGo3N3KmZt/jXCl+aAtCTzQgiSslT6qo1Hnd6aCkvVjbD32NThC0EF0K61/6kvPx4t6LczJks1waPqXUrauAJwLlX5LeOKR3od5q98PvSDjU1ixc/lKpATCtCBDyTk0Tp3aPx9Pyx/+DqgP1gNn8tjlMI+ktAtNu1Yr9JGWLtgMfqYPQ1YzzSzNfLi0d671wMHLzeB6Js6zNazNOiQP21/2ROPpqNb+QifG0H3gsF/fucyoEkwIsLkEh41SP8zDzJqhsYidc5ethoY/eG2cl2L3scH+34pfGkCM36T05Wx1dA3Iz8nv4hHyUUuOMa6fmC33M2YXlwDTj7LN/vZyGhQjH2/XmE/1Is93jmIqQat8i4msTNkNJzzoOdIRD9ste8MamvUgDnLf3dr7MjIxF7o1+jtHpjUUVLn38mAzRNSt3GRVJS5e9fei2PdQNEbWftqlQkLnHvSBp9RkWz27LjaZDcoCMmSFI3T4XagdZ2iOxW1xHo4czh1g/eQ6yVqTwaEeJ/e4tOlIv7R5GPnT8UCo2xGrdZOKWhY6zAZa2LRl28L2amfK6F9sdxvV/xTeOYld4sshUGBqm9efntRBa/dW/S1/3nDaD0z3ydjDPo6yYD76FEJgoVZPu94/cH8iMyiKRcGkS+Kr3wuLgTy8fgeIFZByx5jyhXXcGT0+bd3v04RCIvbyxXiquFvV7Ipi384wnMqPqC6FsJDsUMnClyqYbSHIHfXKRwtvUbO80xNsJymeuvOtUZg0i15/0wXj8q0DY560vmQsc0qv/heI5yfv3XnHAMeLQcFsedkNoLOY501vd8N0Ln8YEyAE4+YOKFC5EwPbOF+P3urXQXXVs3UTEOoKLTh6GHulz2QceKesu9cFViIDTL3UqioviDXaWC7G8TSLErHLavB5NSLD999qOjLgsjp90k9sKvFvO/qWCWo0BsgGU9F8bOzOiGqjWDz7MiP8ZONYH7497lLnVGIO04r4sD+ZliIWnn7uyoQcEcMxd4eJqAvLzOmgn2aIW9jbk/L0ivY9bg8b9CagFYpzot6Vs3wVPqFF+p8A3J3YwXGDAjInTK9ldKbBCdOtxXe6c6FwcK/UtW3MeiUYbLWp/lkePXwQdbF2nx4xiqxmbEfg/g+fS5Zsk2CCqlAwvzvfOBQfDViYEr3EUHmfI+2ZujtqI4Zdw4Gx6B9gx2xBCRzhZGX4FICH0fs0oc8G0B+3d2o6Vc4Yr9wlnxYsRTkJdwihV0bYE/pH+ZI8QhUkXeH/6laKTx1v8U2P9YAF59HGgVIRaCU90x/gudLoGpvn+5Hngao8VLbx8kZgbqTPfcGpXfB+uAFB+7UDGh0+dqiy0jn968+8fXH6fxocybY9HEmPNEZ1n9ST0GUpBLTYtUuwK4WPjpmmQ5mb71G2N9T0PDRLNn4751QkZn3w0g2HbzshBk+JlGQTYf9SeH33bAZOeW3XOoEN43lSrNcqOhW91Y7i203tD77SvR68wSWWkX11rWpSCj22frvyVgQifxsZDMfD3E/DcO2L2JRxGoOx167SqioCLrULlIBIcx/cUEcGJRUUGgrtF4Je2fVvvollUOEfu5602UMkqQ+l361UQkGcmbBJxMr4OEQ821RWQw62pnFk5jZD3cP6XOmctXD923pFiZpMmJ6cvduZkIVwLDTjy/uFTC8NKJeZ4NBi9kPPZJtaXBsqGnjr2cBhCz582+SiWiWOfBAqyMNFO44v1gazIOvmkMbChFERNbTX9kTQwPFxxKlrSgfNlKm33y+SETupWaZjolZwBO5+OK8JBUwg9EvRU9FIMV83TJn1Sy4+mV5tlosDoxnrrgv/BeBpvUVTL/Q+2GXfZdF9m00NM+pf97ARaAaRzuwNugDLgcedg+VXFCvLIy8eYWK6kQ/NVVe6APR6ap9IzdzwCv6yet99+ncZHjGVcOlD7ofneSW/ZANTfNXpn0EqGgbu17UmdcLOHln0eCidNAOHjgqSs/bJV+1Z6WKekGF82l8GDETMv3NGTno63LU7dd3LvXCdKGa8enIDPCs6lS2yqOiX82ZbvkX+6Dwv4MhBEUEDJ11+cGG9Nx+wjp9W74PbD+GdI+9qYfXPOl7fLSoaKk0d+22ax84wnRJ/REE1zq5S735qcg7N+RXr1MjXJhNixI1qIK2lHJh4s8o9NL/AEEC+iAy8KnBy9gs+BQrxx2gSUV/NB4duhDfDEfrz4/kuWZCwJb6hyf+BJT9j/nlu5YekHAM+vQ6MxNCDxQbs6RQUb5BGE9VcQ9UDaeLajSlQ0Ie60pMIhVdzxM6cjyzCmpuNXw4xN8E/jNUGQU7DGqWv3lsWaIHDlNK77/9XQchmZ1qsW+oyGXxratHUA+EJVko7c+qg4TRx+NvqfQ673DVSET0gFTJ11/8YfWg1XqqYC2ais7Z+l+jGQ9AkPuZ0p6PZeCby+bMMk3XQzHDZSf3RpDm55lToHNuLpNdqMNMFPJ7XFbrs9EIr178qLHibgKr2hdLNzXwSPNjUnS6sx/YCsq1VIiXwUprTOaZf1Eo3SrFuPqSA+D9fNOP8ZYBtxLHHiNrPFob1cPfD3wOKw2y5h3mpVABAhVusnjUtFyzN5LcDK5jZ1cDpGxhEiW74V4Q0MqsreKrw82ALHNbdH7YwwO7mH3VfATkJPBJd4BWDHausZFHzydAk5fFwkkUju7E1X5MPlwMPPnZTgMdCTDEz79vV3Q4+nK4ZHCHnoeEuXfCksdioXBdZdyaGo50bOT8fOposKgcWzEYUA8iDswZ+DkCenY8R+c2kQYHA6K0xX7WQbzoGJvpDSJ6lLhY3RtJAykeFv8LLfVQcySR+FSDiA6589zbV5cM181wYnsuZwLXp6P5jDwYJJg7aFXElQpNx+7PMn3LhNUQ907p3EgkcO45RHclg8od3FMe1+z/931AlZ7bj+2xqNQ9/wZiEr9+yj0fB3D7u5SdexQK/pI19P5SBLA0xBtl30kAO0v51QTRKLRDPO8tyhIJLcsZ23LnYkHjRekTLF8UmitM9MHWtwPZsCS9OyEGmGRvy9SYkdG0kwx2UK8dYph/qyStUKC/n1mn/hgZ6aycD39c2g4fPlzWC6ojgfm4X/B/RmSUWWQ7WXqvHXrSE3JxmXHgaxIst3SCjB5tcRJlb/bCuvTK6Mk4B7hrtHnoeD4VFWHYNFq/9EC1us/MjtIT6I/pzmJOpyKuP2kEbu9+mNcZbpLPeQkY8j7Bq5FkFO49mWxwqx/QwYVfD8MCwancpIh3gYyMnqouiwdUwcI/dlvx/3H3nSkRJjO6TzW/59Y62w/+n/5hW09WAB/h0XakMAVpE5ZGfsj1A69N0D1z4XIox/krz7FR0OFJ2r0y3X5wLPHNc9wsh4cOoXqeo2R63p77UWPbD2dvvBmRVSyHTJfFubgCMpImsWbo4ToAb9gnNxWUCpvmrSrHvpORueHsR9xaBwQH1RsujaeAxe+14pKTFNTld1Zo9XgnSCuevtR8KBn8XMm4UhkKquwRPmL+PglG/piYBC4SoFrV9KCaKgZFUF9hxroSIONHms50FR7OLAxzEuowaA+zTKBocxIYDx2Y3GVIhTIRqXcb6hj04Fzobz2JfuDnYsmI7EBw8altQqkABYXtvbMd8LQf8nO/1yfNITA4Xttnm0lG6dHnQ1TG3MHPzECDh78cQqqOFrKcxyPKpVtvm2wSYMHpHeGHXSOwWtX3eH3AoIZMv2vcq4nwSdnqw4BiI6xssGrzeGJQHrZA4se1VzCzy6lkwLAcxmt3/L5+jkL5k9V1XlL9ELN51EzgOgKd6teBzMcpqO0CrXrsej9U8XldKH9TBHdNI5gXmCjo174o+Wv0/katsLCedSyGg1mXj96m9/cf1DguH+8HJt7i56vqxdAza+Bz4yoF3dPii5GUHYDak2tnnvwsATGmmC/zAgTEqzrXfNlgANxpbpemaKWQtLA33pvOQXKp9ePsPAPwsOnept3HUnBqZpU+qUtA0aaVogLbVSAoMNbOAjXw3frm5NNA+jyOfaC5nKiCU/m3+Cve1MAbAbU78or0uXtxw8Rm2AWqI89++ypRBEg9cSRTC4/SOk+qBXM8gaFrqvvw1wvB0yUydi+dL15T5quz+F9AtnPCQYpeITza8LvjyUfngmCB1f39lWB+unJ4xaYWCr+EsN4WxyBh+TmHFbt+aFGg3L7SXQTh26QLanlktKT+o6IqMxUS7MmHw52z4ePlUBd2j0g0/SZEw8atGO7/ND7PylcHKRaDo4I54WjvDDcDf18RMNgK/6FO1YG088ORU5hwlJ44KPjCoR+oczeWfX/ngb4T9otFNhklvR0/cl21H7gC+LDXK3KBPcg74sUcGUkM+tnMGFcAeQQz4cTvAx5h8YFsEZGoyjiuxmW0AnI+LeAJwsEwFT2s594fieb5vTtbmSvgCim6XWg1GJwokgLfzSJRlr93jvEnug6bq9+MeFcHfi6iu080hqOsvy8T+nmaYXrGwPrDTiPIqlCyRPgJqPQ6R0hwRDPEjbP8aedpgqLn1lI33Ajor6qrHa/UO7AOums315sFEj9dbYPTqMitJTvZLvUd3G0UTjk9RvfNAM7j6jgquoMe/TmW/g5+6ciET9Lr5ld658oMlorEl7uTq/NIUGEhLxlqh2DGIK1zlAVH9y9awKFqPKidzaHev4qAhTl3uNAeh5yPXvsly0yCDdt7r4N66wHvKoepP4FDEfwPVzlN8fAl5Ii1t3M9bLtcv8bsiUMme9adbu+nwS0lw5GhCTK4EJ9Y5ZuRkNnoulDQNRqI3ikVemRJBcPlkIThDSJ6E5oxPstLA8fT48leazGwffDalUfKJOQdsvkj7wYNoiKcE11M4+CFyFNJziUiCktPyfp0iAbl83rf+/py4PFaokz6XRI6ePpRiocsfV1Cv8UkJwfSPiYcCN1FQh+OW70OqqXzyI633m3xItiQFqibT6L7/rC9DOPuXjCycdjbsVMEM5var5qyqMhP7N1Di/AeELrv/x0JFwNW+CT/ED0P3DxzqrHx+jsoaBeEIv4U8NE0102g55OP53krQgd6QVPEjAffkwS0PxNZafR8pcQ6/ztLvxkEV7XW3zs1gNwhsxuFagR0UNCwL+pgMyz6Cn1S2N0A05X19/l5CChrH/PI7mfNIB+ZV8zG2gC1wVNnYx8R0CI3hwMsNMGrZ6bSBnReyM2+ZvaDkYDynBW49asaYdrOSEanEgMlH5qR1gk8unpzSMr+XyMYCpYKz5/AQ9y5x2nj2ngUcFhGeJPaCD9FrMyLWPHwyF7xgzkLHu125Y+qP9EE5cQvD7VSMaD47Xs8rxUeTX7MNJVcbQR37hLui0LOIDAXrD90G48q3vB5er5shNvtZJ/mHjsY4qroQ//7z8YKk9pV7j5gPf4raNPBHnKNMmmyT6kIk9CycKcyCY4IZlyfFS6DUGOslrYWXU+EJspUJ5IB5/hQ9gBDObz9srg/4iAGMTtYYabUk6BugMnp5/1yuL895y5uhUE2M+ppEsf76LzmROkI9IH4YUGRARsqupSG+4/W8A7eOczsvkMLgAuPuE5UhdI5dDDObnfjO0gsen73p4s7rL2zmcylr69eP5qEBPpgZ8dt4ltEEGjOWNN0rajI+Fgrqx5fI9gXrznp8uaB6QU+dc3MKEQN2rr3bL0BDFk/dZ5iKQCDlY0fBZgoJOpOkT6b3wD7Rq693YPywPPBr9JhoyhUwG3NEnu4ETS7+V5IRFXCY6TKL5wahV7V/3eP9WAjSKqR16tyK4Bq+LDySGIUGuMZaFIPbYQq1opGG7VKaNPsOjq7EYUUVSpLhL3o3C1UYap5oYL+vvVb1n+i0LW4S4/nkvrBLrIlHfe4Avp7RTYKFcgIL3bnP9n2fkjqY9m7J6YciB4wbLNEQjK7kgUy+vvhVbrBp9XUCviRajvoO0ZCNRd4PRnx/aARsP3nvH451C2Y3/9pSkZ6pwU3fo7Tc8yQ+t0szVzwSOGyn+HCotIFaVXhOzGweH7boq4qDy5mbrV62WARk5XH/HmDaFBl2G+yQp/HmzSSa8gbLMoIORmhGRwP7g9SRuO48uFXe5Wm2j8MCt3CDV2QaIUegZlQZ55GcDP0/W80nojCx0re6CS1Ao/2xyOg0wi9sjZ72xeIyOT5qafi7a2QYLkW96a/AW659/Ib7yehtz4Fq+YbzaDJLbkvdT0LtHB6Y8ONBNSCu6S09q8Zdu2LM3nbnAM+m4HbU60E5Htd62RJYDNoiJQ6SoZmA4F5eOCQA33ulLd9sD00sCfVqGbcrwYn2ZEDQoMElKkxtPxwi64nufxrzsdqQDxE6rk2nVMwQmLyfz7SIMICbmZia+C05ijnNiKgfwfeT1zbhwC7knHd/08NBGRLH7x3HoemGi8UBYfWwyxrBCP1ay1YJH/hVWTAoZ0X77pPKdYDkXNbgPdvDVStfYpj/4lFRzpOdnDn1sHl9t1ysj9qYVR/ZUOtBIsCbHY1Ne5ug09pl33/KaaAXEN3YfplEhI7aKwer90Gz3zMarbMksBHtOOUqx0JFXCd2Rp+2QZX9z2N6j6dAiaNFJXv4STU/mn1mHZJG0wqW8nUXUsCvTeUY7IFJOSBJx4bIjQD6UFolWVtLmwq9Z0heRLQh7yjZ3u/IQgM1oefa8HwILOwV7Adh64UV7zId0CQVNLiuvMiACbCn6xffoZDWrn6FkXns0BeOLruxcZTuFZKExy+HIHWrPvIA7cQYJyOzlhahwIPF8ePJCMcwgzzsKce6YEzl45+a/tZD/pzuzGigVT0mp1JpI/YA6l7jvynRufTENI8w71YKjJx2fbGLxbD+aEfe27Ex8BDPGn3ZFs4wn0Mt8rcLIJ36lUdF29TYbNXn7ONGI5cfhFE9RT6YB17U56fvQmy9W+YYjSoSDfud9cjQgmsi4onFdxHsNNeWcO8FI6m296oHz9fCjfPdo8mtSLImkqQUhKOQCxAaH12uQR0IERfehKBx+aRo7eGw1GO1AwSeBALWXOcjtqCCBotivo/K2NRuuujbK6+fmDw/m+iYxoH+/QCn3yYICFNnW//fqX1g/TZkK2Q/UQ4nmZ/K0qOjM6ffX1N8FM/uMvYT6Wzk4BvQU/ZvJuEMiTO6X+db4HkDMnfZ3yq4c+5UErAMyJatOgtnH/VAh8O/bm0oFQNepdKjnUIEREvZbP8e3kLjA0pvr/2vArwVWyPZ9SJSOR5ve4XhV6w73hmdHMlBlpxOUn//ncPVFpWWKKiF5b33T9AuxQPWFEXzCidU0IW5g9Jq/QCNy/t8eixBJh8kalxkb6Oz41Q5AyMhqTj75WChRuA6mtj+zwAi7oPlP+HuRcH9c2bqb21CGJdlQgGQljEc0jwjdQcFQbrVBIWSAge7Tv/bT8Ji/wl24u39gyATJpr0+eb1XC3yVd7xpaAamaZi67ahQBRwJYtzjEddDYCv5/GRSH/xtiH0pSXwK3MUY9WUyFYPOFt2WQU4jvec+DH/mA4RXw5prWTAjwWzHGGaVHIOfPVZtjjFrD51BFnYV8FQz/lrh7nIKJTqzoNc3Q9lOiuvDiukQ1D7Uq8k19JyNlFXNYstR9e4tmZ+CKzwFFLPqHiGhnVaeR/UWikc9N/Ee5GBzOBbfP5oVkGMlrM7JPN5WkAaUu/6xMK6WDu0/GT8AeHBs+E7Xod0gD6d0SSltLTgeLkg7siH4XOOQYAi3YDZM0EOSD3TDB50JUWdjgK9e/69u5QZQP8Pot9aXYxEy5iEhWZzaNQRqhTt9pqKxRtYD2n1YugZuEPk6okCZ2+6+S1+rsVRq+uoQ6zYnrfNjbNhUmIZe9Xqt1yK1xRPKwsb4/AVGJRYkOchDBPJ466SbVBuR32g0whAq7Y4DOK+iRkfuxFlTZdV8tCvMVtShA46mYMP6Pratm3oz5feRB8IRg/YG8tgVi1Sef3cjjEWhKWryyM4NitXB2ZhGJgusP6XVwJh27anPvR9t8AyH2m8C4czIUzP5I/nBAloBu7TK9kGQ4AJkF+iqyfA9YNXjivBTySnrn00HupFZ4afJKxZm6AOusMLz36PjVy9Wp96LzKc+oZcTdzPHzaSD/t/DQSyfI+f/PtXQUMSVd9JMbFQpeQsYZkZyQas+CK1i7oAqNf+8T+pjaA0EXWDzeYqeh5jw6HE2sz1FlkNzIO1kBj9qixPScBzbHyh++Pa4KjimLd5LYa6B6JYxVvxqN+HpvxuROd8HJj4QixPxe49ebJNy9R0JerjTp1NR0gSc0g96zkgK82h2/gNhmt+klmCK50AHZGi8xHy4bqZKP423Te/DloK/zcrglihi8W32atAfMAJfdD8Xik31IiTCN2Ql+7/jGr3lzg+X5YKMGTgorUp52tLnaCKrHq1TY2H5ZCOtr9FCno5rmlucg9TeCyN8Zryz0F5u/qJ0UZ4NG9NxqrPa5NEDruutsOkwKbT01zzqfiUdnD6aE3KU3AU3GYas+ZBhxZN17PtuNRpsl7R7jTAjSasePK8SZojW60+8pI14ezp+MNRAdgXuCztGFDHpzIVBSXlSUgouGpXIvibDjN4tBmXvkKRNv4otnnwtEsumLNUJMLN3xb899m+YHy3WKST2Y4ypxofKTilgMFP7BHg0pewwu+LFVfWjgqMdIJjjqG4Mp9Gwv2L2TQVO29xHwVh3yDi8aPNtRDpa6T0J0yIpyIChivPYRD341f6RbQfUES/8y5LoYIAyzOUm/pvnDA7hGmvq4Big0tzlg02sL9LQv8SasodJ4YmRfAh2Bk55dwKzceApRGwnLoz282m7k7d50GhTtjTn5ZBUAfR2zvKhEdvGHc+2KSPuePPKYvLruDf5nsx42f4eisV8KZm7b54MoT8WchFMGPrJsxYYHhKE4z2kLPPQ/KcnLPXjpAfw8laQs+UjhyzVO4afMfDfpa0MMgd7pvpp2RIBwkIU85jpKvqjRoyzK1mO1LAI6F97+sx4iIz2y8kN2FBu3nmB+f+5II28zOg4FviOjEP/mYJQcadFXoBRl/j4ejLzEF7Dgi+vBco+Fhcxlwl+fdPSEYAdq3tn0r2iLQ1d3fTrq96IW3PicEb/ogkL2VqP+/+zj5NYyJLvd7wSUVzE5uInhzYdx3nq7Pr27G2V5b7gGtHDFvHSwC+eMdb80zqShtV6jy94leYPudqjg/T88pFzCdmblU1HjceD5SqhCKM9iHYh6QwaYZF9XxNBypcE4pbIQVAuW5em/HZTzY2AT91HIOR7YOs3bCokXw880/QQEtEni01esvvAhHh9vIu+XuFYDN2c/Knbl4qD6hoZPjFo7u+NhEZ4U3A9gwOJ+JQfBkJIcU50pAtZ4WxFO/6TrIecNYCFMHzzfXEF4lAmUnLeQGX8gGGe6PXnKe9SATS9tRZolAzqc4zMnXM0GrZmCHOaQeKMNdnzsdIlDT8g8L/VeNYEKkuX82IcGtz2E2j5aiUPxlJ4OPRv1Q5i32uutTLLjm5pz26SUjgZWf6nH6/dCyznXbd5IK4yZVLaeHyOjpFE3XJrgf9mgdy8xpjgY/vNKddS96Ht6llWtnkwViGTNvfl9AQNDv13UVj0Bms6nKceVd8OXubaN7Pmmw6t3C6LOHinZ/ur0/R6ELdMIP6nF8SIWpD7nEpH4KMpFg9HGK6wLdzW63b3IpMGH969y1bQo6V/pty/dcFwR/yxa050mBK8ZHuOpbKWhS+OKuHq9uWLBwbT77rwLe5JhwfdanIsY/14s7ubvhnP1MuhC1EliVaQs1UlT0TlWi33e9C3guzD3YX1UBUWejhlLPUFHTalWCrUU36Kc74kyEquBZfOGTNU0q2vspbETQiAbrfVWGHaXFcGWIw7G0moiWOjQG13VpIPDWcu9mdBF06BeUTXTS87nYw9U9wTTYbvgdOHmoGCL6CY81zYjIwDV/Xi7OD/B2hZxPw9OhlJ+XZXM7ClkCZv12QjUk250IbaPrz6Q3jfleGQYdSvNdOZtdA2i0tIqVrQkOvi3lxO3FopSgC23+ScVQVxfhz1rVALzNwcsupeFI/vzRpQ2rYjjxyl4/VK0B9qw1XA2n688Ds5dV16aKQIs1U/5CfQMM5ERK1kWFI0ZLrpZzST3QcpnJZnd3Ldy7NV7DHU+vWzzPAEW+ByxvcCeq6teCuJ7AW/lwKsq6NczmttgDFia5s/u164BRcDlIhj4v8QFPGanfeyDuUkfye+l6sO2SsMtKp6I9EZ8D/64UQWte4/0I5yRI+0B+zErPmWKfa2ZZk4tB90QOl+2zZDjB2vcqkr7/9dXep6ZDRSDG/dE1qzYFznkcEb+PDUe+KTPn45Q6QHYUPc6YfgL/ES1Nt4rJyBvDImdW1Q4sWbv3EaocQfDLlX9WxmSU3F47EStXBB7rwRyi/okg6GCvkOQTjtZO3uG+YlgEJ1Nq9o8+iYfvJwkny/3pOvYm2tDmeTv0Gq9pkg6UwWok2ynLC2Q04P6JPf9DOzSe0eW4/rsM3rr7iwQ5ktFrzoRz68vt8EtJTECkoxQWv1OZLAPIqN1Tit/FuxAitjVLRZwRaL+XUUh1CketD8U3EX8RHJCQNQm9ikB5HqfFTdcBs7Vj+HvLdfB6t+/eluM1oGR7Rm+gG4vcuhnivonXAtU4+WP6egFscY19D5OmC5SDFkuUYg08LC8kh6oWwoEaubGLvzAInQnq+knnK63FwmvNYgUQpx/Z4cGERd6ZTW1WuzuBuZksbvctDlTEzu7CilDQQOclS1c6H5WXkx2eeVDg7fdzL53ofKRyWXTu11wrtMclqomM4+FLzhnhD2dJCOVaPenTawNZzWbx5kYCZO+18dF/SkK5GTathPw+GNs1d+7i9QD4egFJwggF6XZbNLt/74OCgORMluQQWBY/u7iAo6AunOv0k9I+kPyoNzCZGgpkLQm9aRoFeQ68LPId7ANDXkbdL/kYmLWa4I7OpKBl12PvLI+1QI6L4lUzoXK4/CGnj2+EgELGynFBMi1wbajzWf3FCpAyuS7bMUtAHsEjBgujzVAUU/VjVqYCuPesZ4jmEdDGrpJX8Q9qwT6y3evvKAUonEY/BpSwyOuS5UWtk7Uwlv0ygHEqBnZKXLJdz2PRdBP+6267GnA4QiA83R8NWXnqaftXMKgpzeNZYU4H4Oq0rk7MUKHU5e2v+UUyGhEaqqxP7Ie7mbRd7TUlYJmDreC/SUb7Xf/k+Tn0Q7vgIfOeohI6H61IPcwmI/2gLb9z7v3wjp9ZvWmgGFzP+Jo3k8lIOebi0fduLbCqxx5GyiqH4ntS5yh8RLSs4Lnw369C2MeTnnKOzlvvXuE2cp+HI4sDiVfu7BTAw5k8p95Uev4c2+TJofuR8i0Ja1xEIXzlDnieQ+ewijyNADO6H/0Z15IkveiHqPPny58Fl4J758pjKQwZjRc47X1hUALcH+/3F92ohvLix3mt4+HIyNAtn82hGJyq1ZXUdtWAKyPhcFlWOGrx00uzv14M4UJMYSb81cBien9qPDEccTAcLODQrAbNFcmHb22SINmD06cyBoNi3N1mGp2q4efDf9YzR1LgJNdjj5x0DGJk++e7+KYKdnFkV0ZEJINk8stZJnMMSshsiPaVpOdezVPyQd9CIHizj78zgYi2SNIR6mWtcLLZNAzj/AaKe/47P8BAQvxWY4spKrXQLjuwmPqnFPCZ0X+Wr2GR+Es9i5fjCOwHNTI/sjXCsKv8uEwbDv09fuheCZ1jxcbsx3/MNcAdy9pacWsckhd5k6c22A6KhXmMnVfoHC33z3fHgYzutq3NPP/SDmrXeG4+j64HPpUfl7zcyIjM0BkTc7oDzMfrHeboPKu9xvv+cAIZzf64UHLIvB3WFKteyGkgcCNw1PKcISPL/OubNli6XoUfV3QorAesnOCpFUUyqi/HbV3NeAwSW/t7XC4VAAn3aObTSzya+Bq4RZDrgPMi/3oMX9VDSU5ldnMuGYVbqFYXz6XBQ8s3DHzZVXCYQd/RY38kEpCZGOquTQP36xccg9qrIYtxq1j2RCRKvO3LyZ5Pgw9XH73wvlAD1tV1Px4cIKKsiZI/pgQaqLU9qf/5ks6VeyW5pRWISPzk0iYbuRgmXTR2vxVCkMeZIKZUHI4iVNfYn+QVg9WeE/twwQhYPo/z7pSHI8mqnsHmySLIEXoifcIcgfn1fyHGdH85eMp6IGywAjoJb3lVDhXA+/3srPndkWhWqegQy54KeLXKfKtMsQAGf1e3sZhHor151+ZlIuphlxPp8rPJchjJ03gnyYhDRPU7R1wZ64GnKENFLYU+17WK7xf6sKiRNYunpLYOpL1YZlFPORixsCrMVGJRIGPJkbbeesh3PDNHmKmA/tLZAM+jOASGexMCBEKB+HddjLc2FVR2vxbB349CRgd+hZYaR8CKEDPX+PF0OHR+a0hKOArdc5sO/tDaCaTl+d6iL2VQY5uvrRJFQVy5pVOUG11A2Udxc6wr+/+c0kdB4V7n+MM6OqExcp/6jRNNYDbFmVyMpyAGttSHKeKJYKUqkM54MA2ME11QBv38m8VaJJ1TSIIXpmkWFQMpYN4y8TLMBoMi3h1mCx9KgvTuOpXmzVRQ1nRqiLmFQW7t9ZSAhm4g6BwoK9nbBK+UGv5+tKciA6WDlg7m/TA+vd74mc5TGU4TVD1ERlOxzueGb/RDN4Xz1760GmhPufjn2T8y2m4KqYq42A/ysdZS2QvVkOAZJr3NTUHPBVkEkpkLICL4sedoShE4EH/FONN9SvJfb5pXQwG0tn+qv0Tn2ePfQ73LHMPR38uqP0745EN2/NvqieBioFZnuRkFhKNj19+9LqzvhoGyrwbhIY3A1jXvoEbf57dfapma2+9gSlR8vVSxHsIf+0nXv6DnsYcdOmT2PlA7sovv/r96cCwbufGfKxW9F0nzIVpmwIfgS1/7EqvBUj3ib0RyBLp0tYX1GeEdeLgYL32aqwPzY778BQQqWrx+Fm+7/g4mp+zxlcZ1cCK3x/WbNxUVifMZO8a/g4LckscmE7UgBr81SFFUdEnjvhqvZg4wril4hCnHw9iK0RuxoXCESXlICx3KBu1N6oOuWzEQ3dCKY5um+/iA5nFJ+nPrVrSyD4YEwmnj+iRDChbZf+XpustRB59d7SJ9a73BMllu4KYfFpWsV51+NJ0Lsgzzn43kE0BrPVqFmhKO3jsO2JlZ5cDgIBNWziYRjiqxkb0Hw9EZpv2JvbRcINTk524YJkHBmOVpjvRwxB5x0UyLgQZ5FtlRCTuFwLYV31XoTUJTVXLGWSI04OS/OfImpAh+3TcyrBIhIebtD7ZfdtPAODPUVoWev76ZqUyMuJCQQ0kBZfE8DciVPw2VNYtBJnfEoJyLhK7YxhWFstFAz5orNbu1GB4eUzrbZENC6r67zrwe7YfpZht1R5NiyHAQ1rvVRkIdwtEmhj/64bQlJuB2VBFsGPHpeZaQ0Pv80X2mXH0wrszy+W02HphiFOY6n1KReBTXiP73d6BzXfoDLY8ElbZKtgOvqMgP7T+2E/kOVBPsZaAED/4l5uI9RCq6Kf125W12LeQfGTQc/R4ID0w2N06aYFGVyEuhQ9opEPa25IJTRCr4f7TuHVmJRL8Tj9eeY02B79l39PUvp0OvhDfRhQ2DrIzZdl9pKwH17LsOTkJN8B+7uqr1rgiEHa19oeCTDN023gNPtpNheEQrVkQIgwb1Q7Ml7EpA7GjMe2XjGkiTFF1IpPMvm2i4m+5CFbCe9/W74JMNpi8tOCVeYtDmaHto7QoNIh09WiUnCkAssYnA9JaAXL5/OXLqYxsM0F4pv5BrhHNE++Baet2+XmudimVrh7rlZP2ZhP/9d73gJvEXCTn+NaRZXmmHm/OW8u0yjaDLi0+mCzBibbz297RlO/BLcEdEaiSCksTRq3zCZHQsQGApmO5Hknvj3by9E8ATntsG0v0IL2qh+87tHVgdEvPn8qoA8d0t/evRVFS3K38j8mQvFE4PL/uF14DZqOkIK51n+2suqjWf6YWFea4RC99aKHLX6r5DX1fNHh5IY2yCIzHlF3UdKuH4J4a0gDt4lK/rsz/2cyP0Dt20TgutgJu5YGpxCY8u6VqvMVxsArUO2jcBxwoYubJSnfsMj86MxxZbDiJgeo4C1fYhiEh/At9qccjm8ul//YcawKVRnHz5fj0ocgakW07jEJ6f5HFFpQEiC+yy3osimH7C9eQqRxQiHj70+nhoA9iy/fiZSvdB46uhte8gCp3TCAmZqiqE8dsVZtumqfA+QsA/0TUcMZvVirTQ89LFWVryPu5kID0lVlf87979CYW31KutMPR+pzp7Mhom5Ai/T2QRUTFXmPHGVgvMCV1DaCQO0sou2z/zIaK5ugyXlo4WUE/iIOquU0Ggk+V18z0i4qaFKQhGxMDWxvcBlIWFn6Yv4/zNsGhKNHD0RH0/JD/S/pmu2wCbVAETP1YyEjTIoQwGtsBowskdRZk4kDup91pIhIg6tLOuYCor4LBixsvLuxCMD+nU3qiLRJk80hpWKpVQTArgltJCUGs/VmzEjEFqaZ1PWq0qADPv+cDKjV6fG2pOybhIhJIZOJXUumE25OE2B1cgSL7/fM36Jr2//9pXIsW6gYrFrpr+8QKjpk0zPVk6r8Gx9Ia4bpBnlKq9ousLOuN7dGcfUVHh9WSXXVINMOE4zLZvKRouqQjdxe/gUEM/e2rovgbwyvK85+cWDwNeYg7/TeKQlGttvU89AkTjpZQ+iAFcV4LBnnwcOknL4/pu1QBNd1+VCfyMA+st2v4yup/6hoh3Zn+vArFH/vjnieXAtEhT5vTBICGy39eysCpgdAoUWHMvA7jcf2WQngOd+dkjtsZaIPdxWpwvGwIh2Xs5dk+I6I/wmxduu1vhCq75yNh/9bDczZ/V84qIOBru3Hml0wpfqanYQ+v10KnmVbpaQUTlvCvLfJktYGnBzS5rUA9vDvCv36bnnAwi0c6AKQkuMBpq61c2gn/UIRHMcwzy4z8aYRKXCDjcNrn+fBM88HerVAzHoNP9optumATgOKhpUjLfCN99vp363I1Bc5Y6HVfpeSn5xHdb9vO1MJQe7K5Jz0uPRk75nFUpg//4lHR22+NAfXnZTBQbgapzh17+cyoFDUpgTmk0Dnpf1HvYXo9ATCKTZyVPDIC3WfMK638FwKcwxzt6m4B482qc7bUHQE5GXdP8RgEYbs1dZ97Bo9C/DZOlc11wqHbLLOx2A4w4eYoynqKipXqm1Y/q3dCjGXpf/moDcIp7Mu3Qz0NB/2qKQGIrMJnvrdybmwr8oz+95+eJKDtMcuWmVCtcf3LXw/FGGmhpH9A3TCSiL0eSdFrodU95ih3VqqsEFZ3fM7pSODRllB3AoYOgN8X7ut9mBezMDjjYmOHQRkvq83iPeoh7JM3QplMN7+4XxKF1LFq5I+10Guoh6Nb+SQWXKthWvttv/AOLeGoubwas1INW6nfPF9FVIJgfYCQvhENUSyrN8Fg9dKeYCDiO1AGfyYdJp2EsMmk8F6o6Uw+2Y/4zPyvqwGDi4/vCUzgkdPDCtfSgNpDjHTWdsk2Au4GPxr0xJNRLCw/r5W0DjjDGFem8BBC7RWRRViEh470c2aHsCSDIh9uQ3q6GglMly4dmMUi2Ul/s/oFmMMvzJD1QzgaRq1n3vI8Q0GMqY+jji83wM85lqWRPLjxVMzsYc4GAUvqHM/99boLGUxqJLQq50M2xXqW7gEfp5xMnnrj0gROLbtRtgXz4alDCYyZARSJ1zkoJ2D6QeZaTnTyaCxQ/Q4/JbQpKk2X6rLveD4WKfvquExjY/+SqUk0oCdlXFP4dpvu++XjVNxEcHsRqDP8GviAhgzJ7Ha2oXmC4Jj2lt7sWeuROOKQWUNEeAZ9s15ReyJM0nO2+WAPKpRKO1vR1zhGjqnm5BPiyp8xVkbsWTu/2LJgax6C6r038VbaxMNzV/8hVvRbCWjJLh+hcPLbKbD9r1Avn0tI9d/lVQ3qU/bPtfCrCTKpjzabJcKiXJ2jQtgGOjlez6n3GoqudL9bMXMiQzvSduXoZQXS93qEXM1iUmnlSbNKUBrxWfa/beBFkaomi0Hwi2m/j03ngAQ2CfzV/S6NzhG16i0VjJRGNHV66EnuOBve9Y61u0flsa5Sx/pIACa1bTuaUKtLg7/nBlaoOBEv2lemEWSJS0FGWz32JA1mN7Ygm52jIqNl9060Ch9TigtS53uHgoPexz+17ySDi/yPmeh4OLVrWSoq3EgAT8Tev+RkFTv0XpdyhikMSKiYXUu/i4b+jH1VFFwjAmqJzz9YLh355pj0fTOwEhq1zEQkfcdBzUSAV40dBGx//wfCvTmgIPai/hjDAyULcG5pKQYbM/9Y6BbtA2K0+xiQIDx9GT8s6NFLQL1L189XEfpjACL2q5EqCPeeELuUqkVHzCw7Po0/7oWgggf/l0ST4Nt5w40oWGYUcfnbIS9kdNt5a/Ouyr4Sv8o9udF7Eo7LYAxMSJwcg2ei3QpxhJnR9LuvlUiYg3zEGRjmRAWBcCjD5/iwb8Jcik1bkCGhfmArHaFE/kD2+qaQWJYBzQ53i5kky+utpyn2gox+U0/xzmlYToTJ6vi1tgYS0vYKdBOl57zd8b1x9kgCHrWUWBNpJ6PnX3ZbDDIVQx5bi/Pl0CiQ+NtPMeBqOTGfq1JLGCkB1PUZDbCIV+A4U/9hF54LnHQcVWyIq4fXH1cexH+pBMtzUI4gXg87ePRVHw7WBfNwN0XTrl8DQE8PsQaHPqcm6jHhzG/zX/OXGqM0bKIoU+rJYRUK3v3Lp6XdGwW3tuT/UtHz4P1nXJxp4nByYdzzV7/vHCymUfCKRkVGyZUvUlSQ7JFGoCMnOSKGMZB7OcRyHY8/seex1H5vsUZIKmaUiIyT9zvf37/24Hvf7Pvd4Xc/neflgiu5LZAyqaKQJ/UzXBSwLr7BqZ4Mgwn6R6DBPRMw/OVae/GmClC+LAopuLXDc5QHvUj8OefyercvOboILln8qPH9RAC6//a+zDId2exjnktiboLEnaSj0ZgsE7RjzVATg0Fb1AZn8zQHAHXnPHUWTCAw0KfhiPxIKl1J4dipjAPIMhXrIY8mwhnvLQosnIXHR2Rv59wagxSaJ31A0AYrO4C44ppJQRnvIw+xFDJxTMtr7PEIG44W+mhAJPJps35w+zhkB/2SF5cyHKkGk6IrllhkeOe6NBrvNhoJoBM9C8iwZGJoVd3744NExB6VxyrFgCDFYo9WNrISRi9+Ms8h4VMjbWXb08DC0XzYaFL1LgTJv1QljayISrxlAM1zDwFAS7xs9i0BvuvHZ2ctEtMDXwS9zOwiMLk8FHnxCBtzTh5pqfXiklgj8RBZ/+Cr5ysjjXCXsWqkxR+3g0ezZhIgIjaegar/kQDQlg0QSH+XC2Vg0xfBqka6ZCB24Jr88DRyM17GfKaCLQQG8Y6sjlDjwrzXleMlFAEdmh+BxoRg007GsR9MxAGymEsuCAWWgEsD6vCKchDLLfC6n1g9AP+KpKrtVCrdplD8qYkhI1BLkeI4PAu81rcEfI6XQEb6tmuFEQom0i94W2gNA31tR1zhbCmKz1hMfMkgo1mvpOf+fWrCy7JW+YotApEOAy0QJi0LPH1KZiimFzJEgphMaKSD/b7vzoRsGfbi6kJESUAIfiYFJ4iapEC91OfNYEAZNrEpkWz8eAv9Byd6dASKc9ku6/zc9HmW8dWA7rV4Lawa9/4KeZAPy+Pe3jg6LDMnblj97asH57n/CmHeZkHnjYnq4KBbFVDq+YxeqAz+LwwZBSdlwVSaguFkdiz5Ght0VfjUAkdpLZhEpFTD7r+tGUzwJiZWJsnioD4Dtmhvbnz/lkD+1+B85k4Qm/Aop/xoHYPLO4wmR8nJQat57khNJQrWWuoOjd0ogcgQzMuyYDruO+1j8gjEodjvjElZuGGh+Vx9glMmC1yXacatMRBQcXAOtuEKY8cziPcmAoN74ntnNfgzSkeW9tWJZBPpPpvrrzzSDOqtN+3YFBm26vopcTS2A3j9bj0r8m+DA66G1y2sYZLs/USe/ox8uDNrH3HneDOd7LRy1S0hIOWReq1hqAI77vaC3Vm6Gl7SR6+45JIRNPagF5wfAiebD3kOzJshhDXZSziYhPHN4qvj7Djg9bNIeQpcCBeu5Mlc4iag76ZXAZEQH4P7tifo+JYGM07zE5kwc6lgOU415gMAotWFBW60RhHSTDgw4x6D67FV/o3YEXWU4Pdr5BpDN6t0Tq4hB903bdgltCHYSMn7nVDYCh+zx0znlMei/Lp94BXwn6PSK4UWNc0HX4xh/QwIRCZ+/z3Q5sgnYFLL+czasg5PaFSSZPGpuJEbdYv3dBB3tBzIEX9UC46Mt9kd9OMQDRvpOBR0QsZ15/VFiJkj/bc49tx2HJEQKczw1OyBl3u+0vEkWlM7vo0BFHDpdrBJrr9MBqVXSs+XkDBib5MKYVcahpSathECbDuAPYmjVSkuBzQym0x8645DxE6Lqp8NDsP0p823CDAW8Dzv/tLuZgF62N3oyv8+EI2/DI6xNwuG059Iu8RgWSbtF8HZP5cEgqVQuXKEUIoX/rQxpRiE7HV2TicV8aC7kCMj9XQpdHT+6wlijkPSOmMvOmTwIEaD/LeBcBvhNg2Vb9yj0NfjZka07qWDyRrvYXLAJ6M9Nv46lwyHGnaPxv86kw2mZrdfLR5ogwItJ70IeFvHs69Ra8kwHuV/yugl6jeDs3iRLiMMi0Wsyv2m/JoPGiIbHpGAz8OAihZ/I4hA2GivYJpIEVkaWXRKXmuBd7IWULCccYok6JfbwVz7ov/xcdKC7DC73H0tq+S8KzT/RHFQ36gDFOaPi2y8KIea/s1aKdXEIKYWwBNV1gFYAzeXxukLweB7+pYuWiMIFC1P4QjqA48T32ZOsxRDNu22V+jkO8bC1sbGeG4SlEcZGjulacCkKvG1wm4R0lm0zUxwHYePolHwzRx1YiJS7S56h5jblXT6N8iAo+NyVVN6sA+ttCc4QIxIKq+ApNvWg5hLglKNE64FM1qGx5yGhq/zrhCyeDujwwvZ/Ly4Ctu85Dl2xcUjOy7aL6dww7FnzXXxrGAeS08e8848T0W1iXvvpvlYITKfn0nNGwBaqo1sxH4tmOeOVVc63gcPLa4ETKQgOOjYSvsgTkBpJRpLmdStMJuzV5TJQYH9ar2JjTyy6E3KN3eQFAeJ10q3bGxE4tBTS3zCKQRu6Icof1Fqhazn3LLEvHi4zjFfoBsQikc7U9ta3LbBPt/S7mBYRyoMcHnHLxCIUtDj092ErdLjOnK37hQfhtxpdasmxiP3sklypVysIu1/1s3GqBWXvVgb917Go261n+VxeK3wckSMU2RfAR7bTKya9sejvwjjmblQb9ETssJI9S0HcY7hWwIOA7n08M6e/1gYlREdNwbOlcOvhb3ZyIwEdlizUufmhDQ47irQHC5fBR5vxiMuFBPSoOtCeIbYNNq8opt73KYGQm0pmV70JqEtn4+SKXwtMfpx/t4yvgm3xGw1iq3gUIZqyXsjdAicagmo/L1ZBUo7jrGY+HmWN2DhGnmkBBU2//NhvlYD7LWTRWIpH5CgW/3DtLniZn3ybJPYUJocLH2SwxSOLod1J4mgnkBZPj9TSPgVdGbLMoQ4i4gnyyU7wofJBYL+mjWE1RKYuvPH6iUcb/7yPCIhkwcWT5m7cTyphH//3iW4aLNqYHzmUWZ0JCz/yf1hmkOGDBtOSDicWWTJxMLxRzQZdf7NHjj1kmGb4dJg+JRoZyD6Sf/qrE3re2veE5zyCR5cbb3BPEFFPZPrDAaMuuMoSKcQzbQcmYjdJrCfjUXGACN24xQCkS8dfCGh/ASL73c9MU3mjsozl02FcFjB+VA6d/10BPN4scVkfo5EzO59xS10xqKmIseSUtoA6y0cXCxwGfRIZq1fSLoIt/LrU/astMJbhSutShUHnTBL/XiruB89Td3OqpAvAyv3+vFgpCcnUuXXqSw+DsuBiQ6cIGQoadw+vHSOicwlbs+kWw+AS9lmoOokM/l06vYbkOORUJClrvdgPPYp2HWvXC+G+S5DJnSISupbw89AR6vpb7uQ/uPe7ECi1q+T9aSRUbqxgmek3BIoqeZ+qWWuhJmvMRDoyHvlXPmM67j0ErLpnd/kUauD9cvh/+4jxiI5rTOOOVi6MDqxSjK9SoF/QpGwvPwp1mK4dvyOZA0fEfltUPaMA/+Y7m2s60Whyv9zAalMOFNSzFxHXEETgu8Q/ckejDzVyu9VZQ+DxtaLY0KoWCPl7RiwX45G5nZQmo1QK0LrFtvDdLoDnl8rOZIjikPvJaK80ozQYf1AxfmWrANSl2mw/f8CiE007EU16XZC+Mxgy8F8rNPXp3W9ij0fyae9PKod1wVuNuu+n8C2Qz96pmKMaj+rVDHM2RxFkhRnYlJjVwf6fR25oNVH72uB79RR7BPsYpfvGLepgik7G787jGHRdaLLw+UsEvUNsA2X7a8CiJmlKKzgGWT7wbDaj/h4w6P5PV6kGumiu/1weiUH+6S8yFvuH4E7q+K3tH2XQ/1+Kpz6Vkyc3BrKX54fg6tbWqqNMGZhHf6FVriCij627lsyS/VA9zqV5TK4cyIzklK/U88JGegiFcfbDy6EsDe67ZRD8fjcnuJCEVgY5W6OJb6DgiquBcGQ+JPbnNfPsJCB+0+ayIYk3QPprcvQlrgCE1rz45zoTkPC1f0v7L1WCTjWnyEAVATJDX7k9FYtCw93f7UTKyHCR+VSDiwwe+Fu8ZF7sYlAMuXrGaLsSLJwDrSi342C5nfVbiVsU6l//xBZwmAx9dnzZP2/jAHuj5jIblWfmNU/IRz/qhUUfe4lH7xFY/QofFDEgoT6JnHa26l5oiGSpnOGngFKCRVK2PQlJHaI8Phc3CIurccSNRhxYWNX4lm4loJVvppo/SINgdMM39G4/AehaVZul1xLQXBte6ILlIJQ0YCadn8TCzbq/Xw/LkpCAcoSP3+YbuB9J6JhuRXDBRrXfTpCEjAVlnjyizwXfqZyl87UITkf85KZpjEKvuBbqswvzoEq310DtB4LwKkYZHeMotKt69zvWuwVqFpk7+mgQbBndarn0HY+WL16RvfSpBab2FHC0UgiSHeSfxCnGojR3eg4itgX6b6jL5oYhcI8oEX+zh0dznu5cqLwF6O7ls45pUrmOpUih9UQsyrk5TnAmtgFXoZR2NLUPa9PhZpqfEZDx6cVeJN0GVirSXl86SfCd92uo/TkComv0Wnj4glp/mmLd9IsIJn4rw3L2BOTcSztzyaINpKrz8gu4U+HoM+9OFQMCKvCVPtXNNAyKb/Kye5dLQd6k7/x3qo/cH55R8jzcByWiAdWyXhSghGxHZwWQUGOYYdmH4GH4FH5Fbp9PAxgyfVvIuxeHjO4Y1S8bDAMMikwtUKhc58T3/tJAHGIwE89WvzkMZ1YPW9jnN4Ih5fmHAx3UPrucPWh1qAlCfQt/rThWwK+NyJI1XxyqkU7qefS2CTxRcc3OegVUPtnt02/BoXME+dt3SaWw18P29H5xGXQPv9E5TvUCtmymwsf8VB4aoOXZjy+Hp3XFK/nOGOT3x7wDK4AF+t988lsi2TDfSrLTPYhHnWvqkufc8OCg0qYqkpQF3Re7ylF8DFKPv3qGLIaHG4aqz8TfZMAZoo/pTnoMyk/YmOBCTdA6dnvbfKQcJiqsdxrqcEgg/ddh/tEqUKih10vLS4D2NTOHjv4oNMHkHEtzqRqeOkhzhEwkQ0LTdODCvygkEPOiTP5WFdzBe8XxtyXDPqEhthvxUYj+1Yoa4ccwHNvUt/bXrgMmpoiP6vEEZOdQRHB6/QaCreleumsjUO7UuKy5n4T2sDIBj7+8gZe3bida5jfDSt+XHy5cJJRUeT4k+ewI2GSbbUm51IFAh4Ol2XkCeiuXd4M1jQJs3un7nC/UQGh0nfWv63hkFMzsxMzYAkfowrg4UDWUprf5Nifh0aFh+Ybm4kBoBTtT+cg8MHh4/2HhWzy6OCPCrlDmDamqXFf0RPNA1hsbvCRK5RBc09n0thpgDfrFgPga4U7FFuVsWzS6irNZ16SvBV8j0/P8ik1Q+0HxZ9RCNFLXPTtVQM3rByNn63AWDWDAIsgvfQSLhKJLvztgG2F1UXj3ZnMLbHK2tUvcxKHim+2mc15N4O/zWGyWOn7/Wdn8XjoORe1c+9NWQAYr1BmEs2sENV9hnrEdDHo+hw/aFCYDWVAg/9lGI8jyxd52HMOgZqWp3GWXdrC1HNx/Oq8IqiPbEo5wxCH5RVGb1QPtIJX+uWggtRi+wu/78IaAbKTlMMbkftjp0lmw3qmAc2JPWPeo3vSxg0vRZYnaH71t1zfOVcDb311BmtS89TH78Q8vMAC0wOK+NVkBkz8K8LS5JJTfd5B9PaEONLJ1NcgJOMB9qX2JbLFoLKol4lBrLQxau2uocGHhkwUdp44wFk15fH9l7loH6v9S3lgFRcDT4PJiz9tYdG4059HUy344LdDGFP21HCRURu+UUvu7SeuoGEt9N5DaAm8LaVFA/hd74svdeNQ7VzUqL9oD519az2j4UIAm94+1hmoCCn0rbXR0tBsInGspdXUUcLTEq95gSkDqhLB3HRMY0P/ceOVqcx2I057/YSOJR4MB7cWs98MhUtdmNuZ9LbzaczTlt8Gj26LfvA+/j4bwgRLGrahaUMfexp9jxqO0K4tl8jhriFekdzURsAU99RzOk4GxqLCv5jlW/wlwvY1VOXHeBUTddkdxsrHoTO80z9NKG/ibf+a/i++9YJ9kybambyxaP5wW+/HeCHSpX8rxkmqF6xbG83NzsahUlbmpXZQ6Pn44k4upFViebIg6yxGQ9LmuIwTzEciM8TqqMNQCSe469NXfYtGMadZff08KZPDd3IwuiQJJqaXGC9J4dN06bMpIkQLCkuU951RjwHxkzD+MDo8WH55m7D1JgUKaRYx6RBQMBF9XO7kSgxJTWzeO4SnwTWZhaV9SDJAGbfuiNKj7c26J5gWpHXIuPtl3MJkC54d91doU4pD5m2D+ovF2oNOznDcDCnAVZPl7Wceh5tStTdmNdoi63VGlk0qBPV/fprkncUixVYrpu287zBdlzLyQo0AujZasG38cIl99MyEtNwjrXK3OPp8aoZ109yD/LRJSvRzGPrM1ACY/rGveBzbCkT0LQUY/EnrzZbVq7V0+qO8a/2Htz4Bmh1mfSvYoFFg7ejX0USFkNNK/1ufNBLH2LrcvIxiU8eli/kXpYOBNdprwjCuAKoWc8K/leKRp9fw2exgOzkdKNrvwN4JDWXrDwfcxKM3mlaGGEgZiA3tPMN1rBPvdFrEwJWqeuFR3PzvfDoyLRTad8o1QO9KR83qFgNaUFShv/msH9tg5i6PfqOsXmH47OUJAQ99r5zsn20AEt2a7w9MIvWll968XEVACd/rkBBkLbNC+Xv27EQqO2E2HrMegML6gg+eshuHIBg9GqZsIE5u5wdX5cajhgtL5afthiJodv8kzmwjZXT9f40hxKF7pIM+3OzHA92tr7VQ0AgGNO+8cG2MQFF80DnqHgwSNB3SFRxAYsuX87umPQSKmN45LkYYhLID7AatjJuhdtJWPVoxDPSYYtZ5TnfDSVdxx+10QODm9Qo+0qZxP/nPHYaoZFtYv3vTXboFv4m1yBJ4YtG+xtSzxLQV4tvkdlMiZ4OKQm/XwCR6pme8DuT0K2NyTuzKtlQFEs32igrHUcbnNk0qyLTDB/1SaaTYTerjDUkvr8KhNMFR9wrUZNl+8O+B/oQJkG8OL2H7jkFgTMSXzeS9EvUpQ/TmZDsMTXJxS1Pvwadr32a5GL3QrDDx0YUqDD5Gu8xJXSEj6v+CaJJ4WOLwzWdIMZMD7lGv9pnrW7+A8Mw39FpixmFeisFYCH8+1y7b9eKTBeZIUzdwADW1+qi4/yICW0HzHOBZxk4s8Te7Uw/1Rdkbj2kpQzbsfzJGORdqVoWJFG3XQnmlycN8kGWq0uGelArHojvx5pVaaXhD9dUUvWyod9vT4RtyFSYhMR/u1TaIblDZjeOk2ymCL/XaHQ048muNsKpRw64YYlt9n7+mWQcUQh/TuQDz6VxBZLRjZDYzrT6Yz+Mph9t/rqxZT8YjZ/fNqyaECMOca/aEaUQ6Yu+6Or49EoSMrsQl9K21QdO1cKOdAOZCODKRM11M9VNgqp5bSBgYBeZ0Xd8tALYnSlJBAQK0FdIPZdv1wyEl5+RZrCVTfTQ8ypuaq74Xt9KGBPoi4Hrf+cLsIJHxk569mk9DabpHmQYd+ID6v/QUjhXDNiG3KllqPjeVnfrTbDTuGxc2ByuVwytZg6adAArr0yPW7lV0PuLTW4lpFqXwu7vI0524C+hMdoyjD1QOOcw92OIQqgHX5ysFyuQSqX290+Uq8Aqv/lqd9KFS/293XGJKFRy5TlZyxb4fhnsPzlqBBb2ippL3i3UpAjW4bO6Y53WC8IpVJO1cO2tlOCmdW4tHzEeE/3cWR4GK0rrLn7wexLYm1LJfxKJ/Tq/N/8x/Nuvf/8zzwYv//+U+dUygNyxgGd8YTzFuJLVBieVXjp1Ac0sQO//93g52+/v96vCwG1P73XaPtI1PF2iOA5hMMfQ+3gKNsekQHHQG5yAnHxHGMwPeBOftwqt8vLHsYXTakjhu4f70qOQJnMzVs6Kg5erGypp9OioB+Ki9keO4fgVJV8+Jr2VRfvyV0K+kJATHNK/+JznWG9rQb88o1IUBkN/U4bx2LeO/u974z4QNVamH3zapfAd9rv6Im9lgUKOr+INjZCwx+BhTUXo+G7cVL0n+UYlHUYkSWzpA/hDMZyDHe8gVjmY5c6xU8kpm8faxO9wl8CvLmxlD5KMOEoppM7UdS+jX6fdT+wnf8iJjckyjo2P7oaEXtLyWBPwU0g4bAu0o6J0o8FmCoS0QggLrP5aKfxL69gltWNw7p5jbCx0q1e3EJ1D6i99njeOcr2Fee+lvfvgmy7zo6FCXiEfY/a/JDhgD4T5nvlxIflSsV0xbsqL4QYn6qcYKUBu3z07ZqByhQ66TWb9aDRZv4vaRX14KApb6IVuNAM1hO0i1oUd/pL+YMsUPcNfBaQ6IqKawO8meL6MQdoxHjK4ucOHw7qPvu3zTOqQGdi3J/uqXjULqp5KjRYDtQUyMiKrsaxln+hHpbxCGX/FN82DtVoK/sjlNzbYEO8zR1UVIUSrXFehxtqAIJdokqd+q5x6zs/0jfFoWEx4NNsdmV8Cb6h1FtJ/WeLK1s7zeMQt5JpWWD4R7Uvmjvo8nrD0/Xq78Fqsci8YfMd7aont8oeIEfvS0GiXrFVaajeMQJE86nHShACNal3WEsglHtz+7tInhExEQLF5kHwkBiSdGZ3QYI91yOP/MBj8b3ZWKO53rDuF752vu7jXD539pXAbFYFHIUGkflR2D0jqY316sWiNxRZfMTJKCi5kZdxRO94PM2/4PDqUzoFUKl5HMkpK+JkfrzshH+8Lb9DfF1ArtFG3l7QxwavrD1lnC0EVTW2Op8sM+BzKn7kFYMh+RxJeL72GOhRe7Hexitg3KdVfWewBjEofZZpfARDkJLOu31Quogmevao7+TMYjfi8Jwr/U1lOf++91cUQsB5Z5zhIEoRDPXFSJcmQuf/JyD3zvVgf/N4S9c0VFIy3X4qZ7WMIQ+vD53JzAXsubnov0+xyHjYROlGI9hMBAdNnk4lgvz3NNm117GoYqQzJux9nmwO8YfF+FdC0FhhULB1lHogQZ2gnChCapKShbyeFrh0cbYzf+icEghQPua2bNGOJxY/cpTuBVer9v0Lunh0N7hi8lS/zv32/Kp4mdbQV3fy2E/9dzXNR9HPJcYAtOoTPuHCWXAL85Z5XgqAZm4Zs7JPxoC1qrPtLSzZSBguIxLLYtHJ/5besJ+9w3IhUtnxFlUAluMm/TA5wSUVzErb7vVA9k38FeEJ8jg66lCS1+UgC66GN7iD3oDyu+Lx/dyyDDJqBnfuJKAlK4JrV9lqAM1H4V/uxxlcHqfloC9ChbRW+EGSE/rgP7P5lzinzJ4ODvxXdICi/5NKT7sCqsFWzb38MFD5eBxjH+KlwOLeP21PB276+A2vZ/BzDlq/bqSxpwHFulf5BiWvVIH/RLJHf215VAl3kJR0sMiA/LcxAP5Jjhgu0W+3FQDNmHSFnsRVL8oaJIyVKH6TGBk58vBGvBQ0aONO49Dh0YzZ8u/NML61v5nP3qqgV/1KnOjKw5Jjv68GEj1nwbeNAWt2mrQM9VLfnkOhxRLH3c5Mg9CeOh1neMf6yFE+PqPA49JyJ5P+jzL7wEwxctesiuugyylazw4Kr9lH1+IPXmtEHh2gjDXHuRA8KxG5OH3GGQQfWLC3bEQnm2017q/zYUombPvkqj8pkSqLZMMz4cgMR899ujXMFMV9K/6TBTqa2IxaFauA971nUztsZfwIftICEUbi749reYsJNWC/umr+/aPhMKJDvueT9xY5G38GTufPwQ7qcIP3Kg8k7jn6m8rHY8aCISV3o1uYFO+zN0p0gK66FjDCep9uO+Opym90gNbbdxP62Yp0M+W/J6sk4CWn9ynIw4lQ3vom/al8SAQt5TzS1DAoVc9nr9mdHvg+r7XrK86CYAxFgmZMkhAHFmv/o1ZNYBmbuJOmWANzH2uy3q8hkVynDQPnpo1QD5ukDWOtRY0M187ea9gka5TG+vGu0GgCQ8XiZTwB4ZEnfqOLGrfNMNNLvJVg0dk7/d86vpDtdzq361GocMpbV85qivg4mer5bm2SpDUXAqdqcUgPszC2amVcph+GVouKV4Jnm86udgIGMR2KK9b5FcF/JUPCCxtI0OakuZoZCcGOXGuPNrz64YtPIezvTCCZV3/ue538VSvUcf1dDcBghUOWgIWMKIBSQeacKjtGmVsRrQJ0uqeb9+mRAA+WHbxaSgO1YRz48Kkm2HmFG0/7U4o9R003LOcxqFyUQ+dQ0JNoHntkUXreAzoGYZpTLzCobCy8x0nCzqpuf0u5i7VY5Te4Z128ojItXDjIMNuJzx/aKbH3k2BlGMOukFTRCT4umn86ZNOGNCf7GPeop6L38Gnva+IqMJ8m+XA305Izf2aHilOgbFIti9i00TUd9KGjfyKypOfWa5o9pRATICc9ooZCdUFSJBvqvfCRe8WruDRIvjkXKgkpUblHxrz6LqWXsg5Fbn+kaUYyjZVmRScSOhkvZV0wZthODU8m3jicwaMO+C/l74joP3i1yqmh4aB12S60lUvHTLtSRT+XirnF8kptP4bBj/T71mkz+lA4tOzf/GMgOSOiUsMfx8Ge/vLrc7H08DuzmZtEpXTuN1NVW3OjIA7jiXh+r1MqLggbDiqQkC2Dc66Jy70QnGm2pXz30qBRWGatvQiCYmb/lUe3HsD9496xdW2lYDzIXTgrRAJSV14rvO2qhvqlotTrg5WAqU/13jfTjyikbj5iJncDRPDLeQLDJUQL3fm462tePSDrNjZz9EDuYsvzBgVK6FNKtz0hmwCcvzXTsijvovkYd+V/VSupvm6eZaW+i5K5OU834lSYD381qy6CgW2HHePEP/EoMLycwZ0Uwjo1T2+Y38hyGhTJgp1xKBnQhIzmi31YJVZmLjYT4KRPnLFPMKiB/jHYS5F9cBofTb6zF4ytBycJjrUYVGixceNft56uLQb7fVkggTicg4v06Ow6Hx+YYjwXDscNIJ34xYx0CzQ+fOhYxyiWTfO/SPVAU423kHeBbFAv/zY+n16HGKmOB/outwHxS9npAX8y4F+kMNnCUNCKZzOU9u8fWBqoyxJc7cCeB3yzgm/IiGMPRN3xMde2DRj+eD8oRxaityWWT1JaP/sKr/O8Q6wbeO3PTeJwHUtuWckKg6tFPjxxpb3gvOBbJoOYgVoONSuXnxI5f+fHVPkHQTZ7391+1oS4MGNG4riVK/cfIB9K/R1COKkDd3oJUqBuhx7w0Ii+s9JP4mDdxgO79184dNfAl8ke4LvqxDREYu57se3R4DuiGt3fHYdZHieDM/8EYvMrXbbiGYjsJDo8tCgtR5c5+/ODv6MRdKCx5RVFEfg8ZmH3c+u1IPYVlScJT8BPfjPR8Mroguu0zSEns6rhvmHaJ7zUjyyDxUcefu+EqS8jlCO2TTBbzfRMRmbKIS8r7KfWyTDMWJCjHVKE6w3HWvbxxyFjn/6uv+UH7X+erpySHUjRH/qx366HIXUcnLFzhv1Qy67tvWFg5kwLvcyuayEhN5+fGcoL0oGhgkuyWKNWrA/yXgHjWHQ8TGxNC3dSkh8gzS8n9bC9V5Zc/FzUajYQkfI2oVaL3mRQqNSB8JqPA/fLWIQ/bt3+QlBjvArsWGRx6gR/pP+Nm9iH4uEQ74d1p6xhogDvRklWQ1wOVyG5lJALBKzVDTb0R8B/Zt21RPPMoGdb3o+Zy8W/SzvEj57bwQeRJ0MVxnLgmZFLpvJ+Vh0blQrJPtLJVgmczBYSzUD69AyC4t9FFrZMzXPD+6H7DWD/KXYdGj46lf3v/+jHIznrhGjs0Db4zzDiCkFhnMF16U/RSNN5zi3PbN8IOvemI01IANn4eCqhVQUcjhZZCrRXwDHKoK07OYqYGxSRqTiGwYNSo6/LnpbAB79H8vMpsmQoXOA1uQrBoG26qiUTj5g3+CV2W0rYO26XoaVTBQayY+bydVrAY+5sUEB+maQvtLis9aHR9ZRfMnRgS1g+ddXdkimCXLuXlmOWMejxw7wn55MDIT2rnXspaTCsSUngbmWGPQ1fLX+36FhoL190PZ5Bhk4LC5fW7UnomTbNIkPD4ahS51XC4SbYbtIe+pkdhxqHOvrd7aJhmKtL6+qsPEwmvqUJew4Hr3coti/b46AD+rR6p3/xUKo8UGprut49HbWf6b0bygoUjB/rmwSgSn/1gfnZ3gk0uwcNho5DKnqbZJLngg+1Tf89DKKQ46xdXL784fhyarTiU6qF5CVFgYVOeIQZSwbFFmGgftaVgpjTiXIXfgkZH6biPKOrZ4+/HEIXpVYC7ZKVAKOrsvpehcRxVx5igmbHoJZhlgK14EqSF5P/tLQRES/lXwZ22Y6IZ+1GuWcwgHZQDkfN0BEMuzuv/33R0DTKqNYEWcr9IjoNNndwSPMV7WttZJhuGS1p1IZ6wAPg6svxx+OQ9U/5ORWqeMG+/Kt2qj1x5KmM5Op44dW8n3eU+eRmRS4uRDlAKThnTtW1Hl6eusOvJvvg33TRyrf02UBn6MGLL4mIaPra/4U9ka4K8UYONVQDCXW1aKmEji0XT7tfQwNg/AzD3/FMAS8vfWncd8JCEuTRPP1WRM4jz18EfOIAs5fS/3NMnFI1mTymklLG/jTM32vY02DEgniIhOJgL7L4U3sI96AmJv79I/QQvinL/w8ej0BSbWeOm1z8A20p1O0cZJFMDQx7ZRHTkD9P9JHG8Pb4MpxQ0f/bxTYcQjr9HEjoGwSxT38TBsspLGPn6WOrz0cyfE+S0BqlUXldBmlEEQzyZ6X9BDMH21HtLtSeaPbt9ojuQwOn5eqaLd0hJg3Su5HH2OQQpo35fNUKfhvXxB5ofoMnmZmf6JxwaDIRfLg4usuYLMQP0IrUwlzLRvzQYbxiP2QiCWbZhfQ55x9oqNN5Ra354q0rPHoCZ89ZSEpCHCddTLfRVsh0/EWQ0w39byc1ygc34YB9FQMK9TtoCUuf9MphYAOuW5s/yQEwdi11aOt8naQrHlubJ1a/7ntkr8Btd60v2lNWKwVsmTJokzUekK9x73eb3kQw/uNZHW+FVJvRMy7aEShmfg8MbXgFjD4oKa83RkGLxOLlF5u4lGwi0ek59cWKMeJPg/sCwNxKWOzEIhFEekGWW5b/dDVwayub18OKgpcUYKFJPT+JeP3xCMDELzZdZ49vQwefaHzU8knIa46y8wtswFgwbmReejLYUK+Y+15GgklqNCuPSf0w9cjUW1Hmqn7at/sk0bNn92jLga97INgGoaVU6YpB6xW6Fd/RxK6bXVivypTE5wfY9XGtuUBX5bFhQU/HPp1p9mPobwG9ujZKEFmNVCxZbunWheNduVOWdvq1UJgqD5B/GwtZB26CNoHsWjr3Ld+8eQa+Gk6YGrLVQsKD24uSJREI9OsxGcOnhWw4iPC/Kq/CrByPto3CzGI8ca1h6taZIjX63hz26cKln63r+p+wqBJ6Y4TYXxkIOYUyjFFVoOZpnKJIpXn8Q55LU4+PWDyz+JHnzkZ2Dm9tSoeJaAFm6xKx5ISmNqe+zpT6gkttU2txv4Y9O+QYFeIRweYVAot6TxBcE3XVM53OA4136jPeP63HUxX+abUbRH4MYz8G/GLQwFqVfKumDYwsw5PsqhLB5o8yi93dwJK6bbIxvh2QIj5Qq/cHwT5BMels+NxyNpe6NP5pTLo/lc7duJsEfh/r/Ut9sKgiktT+2QYykDBBdhLbhZBwh/CTKozBtV33eYotaL6G+07jVv2BWApSZHopd5n3asXr3knIkhLNIpNC46H54dD3wYRYtDJqFargGMU+LJ6fGv8SAKg5ZN04l9jUNwhBQzT7zIw7nmRdbwyDyrfhljUPcGgDtYiTlrRMphzLXchzeUBjpBkX0/9Ln/QlsVjPIK3uyI4M9tYMK/9wTEeHYPYwjDtGh1lINkn5Ei2q4CcI0WOBh4YpB2pXDclWgffBj2uXOlC4NZtkCCogUUksX012/frgYaeUjJfWAZCZ0zy+DOx6Cwbr8AJKjdYCtad7wwph+P5Zi5FCVhUellUssXADiS7B76ILlRAijaITT2JRboVm2dKvephPE2O1v84GRqYz+m/yMMipYq/A+W+DcCI/d5lxkWGLzF32cv+YJHLf7JxCxl9YB7wO3Kt9xkk7bvXdS6VhMLPNFr7C/cB37bZFwfxF/BzWEXhXigJ8WY0ZL261weRyTtXRQKc4D+Ob1y7eBIKIDGC551usGFQ/yYTUgEvXaQyS1rikZDGBQHNWir3Nj7EXnpdATMriWc8/8Sj3wVuIswptSDgZVNw3es1TCr+nB/mwaJ85mNCAqF1YOk6m3v38mswW1/TeXofi2jGHiqN/uoGk+jnCzjhBqjj5ySb8ySg6dIR3mrhHnhh/tqM160ebonO3HBUSUCKmd2EHq0eUD21v9SO6nOKc6/bBK8noHcMJO4XPd1wWun1rQ836kFJ8xt30YEE1HtDWFHrXQjslATfZloqh6WOsKWhCDwqpXVhfRYRBiVTuXcM2cvBQnGf17YbHmUw8oqpz0RCiXR0RRm1PvT0fd8pVTxaPorxj5x6CQqGJc3x5uWQ2l6p/6waj9KOGfONLjRCt/mm/Y/sWiCjA17cj3FoZYum+JMIBcZdk+wiyymQEbI2MrsTgzKEGyj2FyngX1Pjeut6C5xWVHyQyoBHt561vVbwp4DHsnnP9+8UcKlcy1hTwqMimGgopvYpDp0CjQ/yZDgxL7Fst0xAdjXf5w1KhyHYcY9t9FglyAvNPfrCFIcM3/eYcUQPw4ihPX/SRTJ0SWuWftaLQweuJGddfT8MF0wKwupHyfB3m2AU2kRA6GyD/R25ZOCPNf/16lQ5fGO/Rj+tjUO+zY9HJUzTYEPN78/TsHIg6q+9fjlB9XqRvc8RxGS41PfZs5qxAnaYd/JYLuIQbv+eVIN4Gnzb5uLaJpVBQNQLOaE5LHpaxmBanpQMNVXEor6TZJh4UzViq4pDFjEXKwLEEoF0DtMY/qgCFF3b+ySjccjhn8D+5n8JkPqNLFl0mQz+ksYfuapxiFvNGPs+fxBElrxrhC/kgrFxvSTPVAKiZ2pIzh0ZhMvBRT0n9fOgp+Lvamt+AsJ7pS2Hfh6EN0KM/17vK4CWwZv+h0kJ6HjTcKBJziCIMxjeyVPKB8m3swspcwmo7mqpgFHVILjSG9+56FAIbkYTrK1D1JzcU3t+1GcQNniw+azWuSCeL8fxlJ2E7rG5C/LPt8P1ksmnSrcwkIitZORyikNjEvdU44baQf2pwGRoeBB0Vp5JvGcZh5p+Pr3VHd0OMWFvjQXTw8CV7G9+WCoOEejbv7ifpHIa7RcZROXqoerJN5fUichJ76A2788hkHkx8O9NTgP4z1Q5FqQTqTx8eLKCbhhUNP9dnLvVCCndgeUK7kQ0derKUi5TFrwT1HZrZkgGka0L+thDWBTV4XM/rjwDPm1mtVXXJUPW8ezslutYdHLBh+PqWhzkS+WuSg5mAe3b1h0xvhhE6x2WHpJfArZCtxdcTzXDyhyTZjK1L3x5RTodQT8EA0tq+tF9zbBgo6rtcjcBEa8rniqSHgI18SSr6+nNMPp+xk+VIwGde1Xyw1RhGJ5auPC9wTcD9umRaK5DRCSBaTXLUBmGtLSBm+yBTbCzWL9F2olDxdejmSXdhoBry+yJ68c8qGB9csogi5oncYGSZpeGoPqoZfj89XzgdZqINd2XgLgPC3bqqw1B1duAnxaKubBcHrp5gpo/2LIKoU7GIThgztGQfTcPVvmj/RpMExDjj5sMtnqlMKLfyDCylAGyot6CjzwxqGZyQ2WUuQzw9A6riaYZYDdMbE6m5v9mhcTDdO4SWLh5TjqM6jW/XvRh3oVhUBYxJ3R3qR9+tj/eL01qBJOv9wMuFpEQf4d/2t/QfmCaXlHcmmmEB8xmR8uo/BASo8YqrDUAooO3Wh2pPnWDIT/9UCYJmfUoH5p90QlMT9+fwm86Q06q5G1MJBFlJFeOqGp0An8Ko+8U5Rm8W+OW/PuAiPyv4sJv8TXDBPkEl8nhVqhXZXns9wGH0k76Sr6k7u9i78bUSlkLyF6830pDG4MuSP+9eIStHqwKXhvYxFNgMDTU0DICizr8an03PtTBhPT6d1ruFhg4Oabr/gyLcHh+6VbWOiD3cVV/T6WAjefZEtdLWGTurysaaJcBPheOnZLSrQdK4OkAjntY9MBwY7d1PQ1EbwYkHfWvgyqZVJ9xMha9VlcJYt9Ng5ShGkXvwHrQF3I+zl2BRX9e+x6+z5QMCztRGYXUPl9N/85U2gCHPtpgT+cWJYGpyfMPT+RKQTK73NDaHIfqJhRMSppSoSuYpDnwohS0+sJor25R88Tv8YchMxLI9Bcy4p6VgbMICxNrAQ4ZMkcs2AqS4GVgwPaZqHJwHvV0vlWOQ13rOaGuJwlw6vGl2uGVZKCnGQiavRuDgvt6xMcrY6FVecdomCsdfAt1btg4xaAnFSTV0O9VMOnN7mGwiWC2LsTk0kQUyo27f+70u0qIDouLlTpDAe6C9C7BB1EoPNvQ+URUArTa3ThmM5wFwlxZJ2924NAj+r+0NXLx8PgPf6q0ayasxWUW96zj0KfHyubf3VuB+0nfUX9iHjRUb5ddy45FUY1LjDoXWmGUe4fHWj0XBuxHdSg+sYj5ftaEZF4r9DZ+fbrU+RqOGj1wuNkbi0gJxs/dxQeAJOiu+7YtFy6YCae/zyGhUN+kzkY0BOltzpGEpnJYEeYncdLFo2fh+bdVuxFYXSwasHIrBWFvWaX1yhik/tq9ZWIWASQpP6ndLAb+0yF347upHJXqIH+QlwLCfF08ltalEK24LfHoVwzatGkYV8noBY1wWqKicgN8vJK+dMSahCqZPlr4WPTClNpSc6FKPRhJ+F3x1iGh5B8aKxoRCOav6oy+iCyBSRP6E6zhMUhq1PeB/7dB0NPGCBOeVcJ75USaglBqnggwVdINkAEjRP8+5E42sGX//DN1IAoVnP/4t0i5EgzEoWn6xmsYxXwUWReJQk+SHkmWq5Dh8d1k9Tbd1xBj5iZfOoFBOqZTNS0aHfBV8x1XckoVfFstGmMqj0PriVaGvvIdwEwYCLmdXA1ZHzy/tFK9O5Y+UKFzrR0aXM2/mRRXwTGiS/OUVxxKwdt2PyvsBeaGyatfAmJAecnvyw1bEipJy9ufYV8CGWZ7xUlaVI6uZT5CfIlBf/xeBySnl0LvXT6uXKsSECD4J3dTfS1J7X6359lSGB7LCxloL4WOU9y85t4YVH1923qI+xFoFUe+0NqLB3fVnfWTrrHI1X99y6PrGWx+XKQ92xsHSYEtlAyeWPQ2W3Y+1dsLvpNJER988CDybWOzQSkWHdVTsOi4MQKLWYcGFR4i+NV+kGnudyySZ+ES/8Q9AtKkZ6d8ihF0+1+6aKFNQKXuDv48kiMQuhcR9ZKDAhOWtAxXpAjIokKTfjG+A3JUfspMXq2G6uotO+HlOHT6nntU/wkKxPxrOxUYXwU315lSN7/HoHSGpokPnxHUfLb4vfy0GoqEbvUwdMQgYatj9sMdCHTL9pdxUvf/56Jqsgo5BvWaHLymEoUg2bCuelq4GibmrXtEImMQkUPxvs3vdthZuuXT6lEKacYTtk+exqEf2V/5dIU74OfT4723FUtA98vm9XtJcehLiZe/lF4H9L90ywt5UAo+G6uDiVVxqG71Dv/yqTLg23xrdKqVmhufdcpyqXlOw0t7QT9uGPLo8jHxp3Jhy/Gi6M1LcUgtKiP1w8l2EPZM+GKhiOCLC4ep2wQBDfczOUwvtMFQx1vGiWQEGzbhldaVBKSK/TcindMGyp0Z6/Iq1Hud6nj4VTABTV0YmL3WmAh5rWeefxGoBObmROclHxzyPmDe+juWADJI0oFxLwN6+FzS7K/HoIbNIwMtXSRwvSNXev5BJhTZVBnrJOHQ+/PKe74m7ZD2aDv2hT+C5o+a0XkH4hDn9Mk/r1i6QDaFvpCNpwEm7zH9kP5BRObjz+knfzTC0bMxKbLN2bD/ggGjuwcOye3T5vcrGIDLN0ZSmgZfA6/+gYBfWBIyPPvySKnkMJj8pMFuYxvh2toNSyIHEYmLewi5fxiCT00ifFMWjZAhTjhZ9YaIFo453+bSH4KdxnWZTuUqGMvKG/88F4/uBD1cYAgbgglx+jvvqB56nv+ObLtnPFLgLRdZMCmHPJZ6tWCxGvhbZ8RTTOUHKWNryjvZCsC/kPt9t7sa/u3PcZNKw6BfBzUjVqkc6Z0SnNewWQPkuq3AiwkYJBm2JTdxYgiyql0KxI9XwXIiZV/OlQSUrfesj3RlCCx7rO02VSqp/nTUpmsrHr0aOO4TLVAOaqdnPz8/VAvPGJitnHwwqEuK4uXmUg6+Gadd9XirgUtK6ZNrEAadnP0Tan5sCHTfm1tfnCeDWcU+2VjdBOR4OEJV0qsMXspc5VbIrobKsc+nHajvl/TcbFJstgWE7iydUk+vgPsczl3LF2KRUT2ppVCtFVxc1N5lCFWATkB9hmhALKqnZxGW1G4F9ScSbQE8ZOjhLNAqeBWL+JNZollrhoCMV/EwplTC1YXQJjH2eLSluDKqQs1trB3CvSyoAnUzzN2zB+KRZl5giIlICBRbaxRZU/e5LUTdboeARzuu8V7b40PQzCH/cteATPX19rLtQSIqWiDruoWmwy+hoxD/rhQGI+Ve68Vg0beWioL0/9LBmG74yt3qEhhZkeehK8aiOGkW3YeXM+FNZJLE2lYp4GTiPQOksUjnWfahjQMZ4B3GkmAzWQYtZ1a4kScWOT/mjsoxGwS+d1rGClMh4Ky1oaynSEJF42HBX0MGARudEaAC4fD4zaXpykMkxNO6WjNhPgi9TSFX+XaiIdRKTtBEjoTUd0g8yfmZkGtMN3uSuRwKBQPmlrmwSKZjsepc0SD8esSp9eRWHUiWXjms/DEBJe7Hk3iIg6AmK//N5FItDOA/30v9nYBoqug0y2RJgLntVJPSHAlBy5qKoqU4pPVp3PJKcTfYPYeTt3WbYbhg6sLMejzq99F/zpfbDfsufLdVl2gC2vvqkgqrVG6UnfnWNjsER2Vn2OgbKFBxe7ZzrJqI9v/VdRiw7YbSQMbfL483wsGFqtXs7ngkz39bO2O5G2gUzqbHnmoE0odKh2bOBNR25vDloAeDgOuY0dxQqIV/LRZBJyRIiNl6/f7pDQqYDUV8YgkmgUnQ0bwoDB593rhJ4BVugWCXE3lShkQgNzRoJ5XjUd/pW+L99i0wfj3ltoElCXb4RtaezuCR/0dB2qBaCvygVBvTqsSDcD/ZzcQKj7KMDy5dra8FPkep2puyLcDYJzDMLoRFLRbaimdP14LBecX4BOrvMhNk5vr4OxqJPq/baR2uAeWfIfq5F1rAc9T2be2baLRsmvzXTaMODG3GD9RntMBn5fMCYvpYtPPge37Kn0zYO14UnH60BtQK78vWMWHR12bmn3y76cBePpcnYFoDzn9d7TaeYNHQh7DvgecLgLdVxFLxGBbmOnckJ+ii0DjTjgWDYB7gNn53u6xigcHGZPukRxSK6Uqt5uPIB8NwetOVlFCYfcTRvUttFHrmNjnNodlQkhfBO3G9AmY77HABQdFoQD+GWf1vJpD6lDtq+Cuga778qy11Pa4qQgsqxGzwCg4p/WJL9dkTI0sez6NRUUFDadGfZDjOI9P8ST0PFk+kl8hK49A4863AE5xpkPWHZn9S5Wvwa6rd/2cJi67LfRT/lJQGC6mZqczH8qH/xt2oj91Y1DbS5nKSNReSbgY4u05GgFyXPx5TG4Xag/KJw8WZMI59xtJ1Awf0zMv8rNT7DJ8fp/c0psNWJ2d5WgIO7u2t/jn2CosOHk61O7OdDglcyQcjpXMhyP63VLo3Fqm5Mfy5LpoB4V7JB1ptIyCTPNqX6oRFGrQRXWeoeVXw/I5AiAUFKDsZZcvUvCKGv2nQMBiCDdKff2+MKcDqzjG3PB2P1CI4PjzKHYLwpOXMZKc64HVko3+hEI+0fokE/345BFIkB06QrwdzrP77Qb94VM+fx1BF9SmDd+aT+CEKJAgeE7i3Q+XG1UE7e88h8M6IFP3vUB1w07gGiCbFo5KSvaM9mkNwbZ/HibnNOtCp2Pji95P63UqD9eIrFPC+vMS7kloN7/ZESu2O4JH905kJ4gUKzHLvhic11cBBwyKPhIN49IPde1+8MwWCNTM53ydUQSWdTMplcTzSi/2qodvbDheyGTgEp4qB2Sf0S+ztOPTCJYvzCzYWkMn0F+vOXDD48e252eMYxJzxhuHBqxio8nJNuZacD9+c4i6NVcegY8bOYwrv2kHpRqyoUlghNMauH31kFYf0Ep8JNaW2A7PuYwdH71K4Kf+vOkI5DlUfayg4dGkYwsM1z9sU1cFo4Ak/z404tMt0bSEYXw/5q9e+FkTUQM7GYPqDciy6xeL0VvxfHmyKdHx6x9EANI+/6l5Ti0IBQzlD0lL5gD209JqGqx7ER/+yiChFoUmunBZz+kLoXq+pXimqB/tH8y/HZjCId9I7QfYcgt9aY2Qe2mdw5tqNNC7tGPTgitMv7tFmGPTaubwD/vA9Ie+8EWcMut2G34o/hOA851eHfYXOwBZWxR8oGYOc/Lwcez93gPOzLuaF6hawthq2nuUhIpPdFvzqmU4QPuBgshLUAtJKRgNF+kSkqqrPZHewE2go3TvXj7RCJ+3ulN95InJ97CP0cbEDNJp9OdYIz+A0hqtL6TTV373ThwXOIjj5XNHcoKIFjhYel+28EoPOSD/+LbaP6iMM91fztOphLTHhjU8BCUmeD7x21W8A2Dwig+651cGrsV4OZxIJVemovcjEDAD3U2vdpvR6eNiyR6dBpPqLmw/fQsUAOFi6+2IHG4CixJV6MJqEZjm93V9dLIXsFWPhI86vAR+1dDHAC4PS7v38utdWDCX/OJvPc+eBT+r1sFAsBl1qJAycVi0Gw8VpAutiDuStp3s7J2HQmKNvsvw96nkrvPsl55cH32kn7M56YJDsZvzn/VVFMHzwfu3vrCxIV/Z4IZiPQawD1rHKXwqga7XG2iEwCyKMDuiZLGKQyc2EbNJCP4gbMfwa5CyF53aXteyLSAjj8ouYO90P/wLT/VkOFoNrwO6NAep4PN0nB64bAzCX4abGoF4CJ3i7T0WnkxCx9ubl8A7qvs0YR6y4FkPcl92vuHAS+iz5qW7iVRs8Yxr4Nu5XCbemU/ZlOxOQC91kW057G9B2sTzoNKiCA8zXdb2SCChCdferTXYb4KrWVpsMq0E32VV99SUBsdXuVQfyDcIBN658k2AK5Fo6+XTbkNCaHc8vH+tBSEngFq2xp4Dp/3Vs3uFU/v8fj6TMhKhItqxKkob0yigpofiQyl4ho5SZ3UA4nINzjr333vt9jr1nyh4piqwyM37n+/v3XPd1rnPfr/v1fD4e17nv0fRvbOeIyGz5Di1GqQeaOa3Gev+RwP5BpcXoXSL6fZbqfdC7HmiJIuFutJHAc4Cp4C4DEZmvrSoL+ZMB56DHLhJWAPW82/t6W1g0yZQr91iVDMRJ7egrdRTvEe8p9m/HojYWOq0uKzLYfFAvS3PPg/HQguFL37Co3K/VCfOuAjTvicS9X82Aww/u/VjiwKBKUfUZzFQ5zG0NfCelp8Nqu/BUbn8IMlvyzYCacpjmXL7qh88E3I2TD2RRCGJ33Ode32uHI38SzS8Ra+H4i56Q78JElM67m9He3Q7503/XnGJrQEbz2h0GNiLi6LeTxzzogFNpOl2STTXwcy7u7YHbRNQytONesdkN+MAcsZJlEtSX3Fg8/paIiIbqgjssPRDSSxdzrz0PNpJ6C5/aE5H8EabKEyatYGbVpfPiehVwXWvFGzTjkdVdZRq7qFYIiLtq3i5cDfTRy9cjf+KR0xMr/ffSrTDRJB91hqkaruguVh3IxKPiqQgzdr5S0Cv8GU2ajweFJnnRDm9KPx6ZYxJxLAUZ+tMx25WJEO+6QZecHIyomrJzh99TvHg7cfayRyJUh+HFXZSDEbNW7qdvt6vAb3rxba1+GtSo/HUcJGKQ5VN68Y2JSqgaETpqh02B9wl7KmluGDSozD52qLYK/tPUG1k+lArcUiLC2DoMupzVWaXxtRxGA3RdTtOlAZt0X01xVwgqTf984aVLAQR7rV/hfVoKczRVVP4UTk7+EXGp2TsfrCQahZbPl4HWKdzYtZdB6AS1YNq6QDhI9c5/4jhUAd8sWb9H64ehogrwSPkbDtwSagLlfyrAfbCA770CJd/SDIq4x8Pgt4Xvv+ukCuDbKqmC7DA0/GhBXDEoH2ZYaENztEvBwPdadaZDEDr7mGbjImsPLJ9Vpb99lwwGJY+WMHZEtDy+QBvD7wDeIkv3eIRIkHR3MK5BF4fys+Xx5sVm8Otx/0NzdxK87WicveeOQ0f0MkNqYkrA0Uqh5eFtMjyUfFjP8CAYHXrPxuuYSgZGn2de2fklID0c+qGRGYfuNnMQzoSSAVPMJlb6qhg2JUp/nNvHovS3fy9Y/KyBXiGzctkvJMgNuu2c+DIUjfpGHOK+VQN+hn3uB8tJ0GFNaBO+Hoq47RLx3+JqIMd9UKLWkgTjk2p5d/RCkYSr1HUnlRoYmQ9xrBInw2LysnnwjVBUU093fZ2nBfK9k9vpxgKA/8CV9Y6NSPQ6r8NgOrAFFq3uXDAN+wTyb9ZPGt7Eoyih9x59xi3w96Z8kNa5UDh7fM42QhCPDNKZFaSeN4DufdmbTwwKQO9Cz9VN3XB0hTD8UNWlAYb5rONiowohbt7pSrVpOFLavziKvFoAFgSul7e8A+6mo08EruDR7wE1B3fFfjigpOZRzYmFhOLd+1JHw1H1g3WDyKf9wPtYl637KQZU3QOHi+ZxKCopjOvYnWYQaqzwCFgrAAEobwk2i0Qv9452uhQ1A53VWfe+lgLosa7HpuVFotZ/dKjvZzOsfPj7MHo1H/B2W2fUByJRhL+KVsODFrjt0l1jcLQGotgXc6048WiL09LMZbsZso+vK3Iz1YDuY+dfThORaMXzGg/5TQvwLs18Z5CpBgwdX0mcFB4RB7tUsrxroNv89ejGZhJ8Zzgh8VAjFBn+OfHKRLwWVKpFS6IPJUMT07vl5I+hyEOUZik1vxf8D4YX+dYXwSmXC7ggITzac/yz8YSKBHUKOxyXZrP///mK+bEwVMojQnyRiCDw+z0N74IsqPzEOW1HDENW0rmHSoqSwUlJravyWSksnWHoJfSEoOiqB/84jRNBouCnVRZtCUxsCf5TMcIg5ky1CndCCdwoCLY+yZUMj9p7bzncD0aeH7+7u2n0wOTWGlHcLRW2O4xYsDcpPQJqDf6UvWA7vMnnKJkGs5YebTqUvdgpKfo3fqoHplgrzy2/T4Eke8EXlc+J6O0YfxDBEoGEjq7WOclUMLzwizfZIQwxXcwmWZxGcCjkgI6OXSrwHDo9uysXhj5ynBuy46McvxEt/3U8GWY0+e07b4ah4rR3jaY3EbxMzGMtupsOMelPJKq0wtCrDo4HQ3Ul4NpoZDQ1kgL/XcifZn0SjAhPjO0qGvrgi3glY+nzXNh8R8itnQlH78zOxPJG9kHO0PO3GigH5qT1ybk3IpDYlJR3qWIJOO/5XuTsjQez9EFZfslgdKu1S7uIrgW0lDEayrhCSEiIxyT/jKTwntKFFJsWuPdurGiwqhAqbzPF0ojjUc/qYwEu2RZwsT2gvh5XBEcqO993HcYjjTExwuuXHbDbNZe3kloLi+Ou038eElGt8tbapywyTDbOcnjVeAE2ycTNkxWH0mJ+e3Fpk6EYM4xr/c8PpFlv6xr1Y9EUwymXF4Jk8N7JkcuPc4HiE1NhC3lYtHXu39kvkh2Q2Fnz8KpINYjoFlwkXCWi7mon3+K+dvAl3xHG6lVB8y9uwfvsRCTzrzvqfmoT3HePGq/ZroKOqMS0cAqX0i9bB+6tNIHqMt+K81AVnDFL2ogQi0Tyu99vYRabIF44dwQbXw3T0ijx4tlIlDbpfDKwuwl6RDHdqouVMLIw9vg9ayS6ajA4zCjfBV+M6E7MTRZB6u+E1925RBRskCs7W1ECoRYrdKU8GSDX38bQohuM4j4lnZ7WLYUJ7xJSlUMaVPC7ch4hBKMT3m/t+njrYdxB24PzszeoLX1Q0rPEIfovt+hfmTbA3rr/nog7GXT+Nft5aYcjbryu50xlA7zFpJpjFcjgtbiQFosLR0mPzn0Im2+AAuIRD+oqMpjNP3rBVh6OSkMM5Fy6m0Ete4+K3S4XtjGxdTgy5bxq1Anf1VqgKlTkE51qDuxgWDm+cuBRk1Y09vj1FuB/GfzA5GQeKPrqt9rR49Gn1hyM5FI9VMpyfsyl8MiNqMiqlH0c6rYuafqiFgkusQq/zI45wLmN1Z4VtjB0xdalWWg0EthaBIYcmX3gvvXxteoDYQg3rnvgwk8cJNNw/dsMfAsqX58Oe5uHoQ2TRftQ2l6IHXCS8Jcrg03dVQMzAwKqO94hTpioh1vZcXGpChVwSnk88NpfHKpiVXAWz6+Hvc2gnNPWlfAlxWLdsReHckUSCzS16wHY4piSrlXBq0+nqAeDcUiWEjv8bH1A/aSox3GfDAjfdo5ZKxJ9XqlIukHfB5ymuoUnLMhQOulJr2gRiWCW/cCLq31gSha8Eh9FhoQWKyEPqki0NElH94mxFRQxf2yMnuTBkILd64RQPFI6SxhkeN0KB/NmCr0t8kDXhWtPpw+PSN7imKfyrXCe/sDrFrt8EH8k8q8yH49kdQ83Zzb1QZDjzgtDy3y4MuV0mX0qHGk0m/8yU22FI2YffHjtciArt/mFZDke1Ti/9PbNb4FzGQ79FVAEMhHab4/q4NHOJodp3kgz8GUP6tqdzYe3pSJZXW2RqP2YXurhh5Q5dulNrjvmA+HkghzmJB4xSTv/yLzRC89KL/doXiqGrY3NI5oHCSi4bY+Zi74Xjs1OqCUxFYNFiu9A52MCIvAYfJud7YHOJpBrVS4C3qNPn68GEVCm3Mvxuwr1sCHN+lLcOwuetzEKTHvh0Px+BjkhpAQgxcK/7nE5uOhrl9aqBCMdDGblxolSoI731j7IVAGKX9+znPcIRsuHV/p/i1F+5/Onm5zuBaD/fty8dj8SBW0yRHf8agG3jqrutcxqeOCP79Fwx6M76hz/ve2i9DUXq5oCZX/fOAwt37XCo1eeYbrCCy2gkhhtcYuuCuySTXklKJ4eeyQ7peR+NUhW+awdICeDdptCqtUCBv10uqtKvFANEhcSVF41pQGTPW+67zcMkhRq5MjgoXAhQ5bi85lC8An+r+SKPQYd6+Vjv2aRCAN/K2q+LheBMe1FrbOGGBTsJeBxVDwJIl7HrjSKV8DFmw4TYpcxiFN2pKB0tRRcC24H31uKB47PNW+Io8Foj11hS9G1CLrYJC94Yevg/Em97Ds5QQiaLXSFcwvBUk/tvPL3OrBXPBKnGxiELqV/at3Ct4MuPueWWngtOKW+UCdvE1CXKM1xGWIC7FnnGUU5VUCAZbO6bDAGfTmdTM243gOnHBU+f1QqB6lk3fQ5ZwL6ObfbO3SSMndd5mmLixXAUJoraAAENISX6tk72gcRykNF1pZpwEzSYBjUi0QTn0bKrB/2ArvDQZYHK+XgpWuwSjWOR8fXdw/kRSGYfofGDYxygEPhhH9mOIVLm9RPupwiw7+XyieWHliA1sHA9tx0LJJKHPnxfq0BPgoQFBvE6uHyB9wlzbpwxLWpLTjfmwyjDC3HLpTnQLAxu4FuYwgavIvvW+pKANVDM82Go1kQpfRQWcKHcp09aqj+vO0Bo7F81SedeOh3vedmR/GRq+3Gs1x/+8C7UL9TnLJ3c4b1f8ODw1Fxqo+iY30PlNmEdWKIBIiYp6crRQTkZRSQ6RrYAyVa12M7eqLBfbqrroWGiDBYs87GX7Fg2px99YFqJLyIED7QxRqKlDM/HrU0jQHdBUzVJRwRjgCxIkMpFAmSj5yrjIkC7oj6H6lLkdBuoLrK6hWKxhg+fZe5mA/XKawluEjJycROC2enIMQgSBKXoM+D0LjiWvfz9VBj84rzAmW+HYzaS1hcC/SOq9MaaWWB29OWqYPKeORnOm8mYNsCpIa3PU7fMsCT/MZ3j9K/bgH6mRqNLfDS9uZMY0oGOMx/uG5tikeKW4lsuPAWmLh44uroi3QofFczmkH5npqJ85mPCL1QW4CRKI1FAGLZK1LaeHTo8im3ioJeePNRXdVFBkG5ve+D/wTwqPCDyVPBrl64N6/CwRCAQO6GwtHfs5FIUnwjUHu7Cdy/35VhYU4FgWennppfiEQ7tsmbbD3tELJXaBVsEgd1qTVOYpS5YG9cSpe+0QLp6t3889LhcP763q/PDHj0w4xv8JEfCdC6FffdC/WwfOIm3fx1LLIuNpqd3iWBnmW3rZ9QPbjc8jg+h8Wi4h5+2/tDNVB54pKa9wKCFbmpSpUXoehazaPctVMtMOedQu/zoRjodV6OCKxFIvYcVhu2r83Q2qwwsy5fAq85kksNWyIRb//yQX6qCpgxJjfnfCqDlR79U+SZEBRTWHJ4RbAc6kVGbjAkl0H+9/D5EvsQRBxInBM52AKFEQmyIjslYK4msaz8PRJlzH8TzQ5sBOXJ1oHy32Yw8rthnV0iAplGYU+cZm2EksVAxZlYS1jJd/nFORCOPpA+UQ0pFEHJN6F9Y9o0wF4VHRlODEJGL8XV7bCFgA9TezASkA7Z2H/PBz4EIWPdZ/nXtAvBSSxrwrItFUxO7mR7/u85w8pSbXXfEii+wHWT63I9dDyfcDyrFIx0tfY0Ya4G1PRG45gp3rGlo2wLFG/inw76+/S/Wrjt8XM2ZLYAJj9m32CKDEXRDcZ3ktR7QD/zcsvxu97A2PuE6yEQEQ2OrflYZx0I3GYQqvoVAm2/5qWnOcJQduQjdeerdbBP49qb9hgHEVN3HhyfCUXjF4zHjhHiwfmzqAvVyTpIsPm41dyGQerx6UJOos1QyXtEVcufBHbuDn2nNSn3yeHEVcVXzRBm473VtoNgQKSi/pdvJFpuO8UpdrAWqA3Xk07RFUCmGBv1ZbdQ5PVX5vVJ5lzomypqp/2UD70n8p/sxgehfP3vqeIoG9zGhR5piBaA5Htlvu3mIJRkO+80O58FuaFFpPvP8uGZSp3Uxo8gdFCZHFE/TgaxE9PxvAFZ8C2dx2hDluKhURIqZn/JcOjHhwsy2jmg+I+Ho+sODhV35GrIUfyUi3d7/db9HKh5mzGlSPFTfppm1+rNahj5XPHzdyuCV1Q3jxMEQpEUh5emzWQ1vKHxK2S4RYKElLS4Sq5Q5PqFZ8igpRpST779Qp9TBY/+xVRtsIWiAC174sp0NWitNJwza6wEAYcPlwK5KZ4bQiesGFUEBzK9Ug++zgB7atoni0VByFqJiY6TVAik8fc5zyMz4dYEc9VmUBBy919cP8/UABkDbUpJvRFQo++QlHg8HH1hifeRGOwFXbHtORKFD4NYiJcWBiOR3mtg+tdVBbJbg41hM1UgX+XoOtKAQSyvud8obFYCveH2gMSlKogRvq6+QcnbwJj30n+EW2G9pBjfrpgKj6O6LMQTKXlCutnk7dcKHWawiDNLgyASx27NCB49W2HK0VnuBs7B5fLW1ApY+rgi+9aTiOxSth9+W+sFzIjZiAYHGTTnnnvwYiMRNWnjSA91PRwI14xsz0HwY9Dt6bOHOMR7K9qlYDQUTOgi1mkXamFLMsb3dFcY+tsUfOeyTAd8ekl9wvxnMZh8s+2ylyMieWqyybuLHeByIsS4sakIntO2UFteJyKGF+YnumI6IOhN5e0nNsUwYzXJE2tERItnVm37dprBfR/D4s6TDCO31Q7RT0WihVwJ98/1VfB29rLeXHwk5H2tPG9MwqBiescrsgUUfjimb1VeHQF/Xoc3+jKGoo91BwS/1pGhu6T1RVU0EUSXP/78jw+HwvSzvW3UqqHCI7fLVQ4LgpG3cpIpvHEg7Y7KhfOtsHgl6Ik+FsFDWSPGB2l45D+9P2Na1gIWpss4y3wExH8uQe5P8OjbtsWm1loLcBxxXcngIkHOJxr+XR88uv7rWRJfdQuou8REVZalgqekdPgHfTxKuJ05Kns6CgrKE15NPfID1WbfNrbQULQbe1rKRiMRbl2eqQq5nwmfj+zelzTDoILEWYzXzV6AZyz2z2YroLOnf4T1AAHZvz/xKJ3CgdpUz2+waVTCjcZRt9+6BISjl35s3eAPojKPnnmFloGuMetCiC0WfbgBgn3yJPDT0LzJ+SALTtUtq/6iw6J9rN6oiEYDMMpdDLO8hOCnZwVHxu1wlGrD+6OtuwF+L7qnpfUHwcLUzNRQUjhiwtwSGbdqgAZ5KsMr7Rj4tlxMltILR9+Phf8VvJ0D3cfOR7DR5sEXyT+yC6VBqLiz76QMkGHzhM+7xkwSfC8/xiPcgEXMbwK/8qWQobdg4s///icxcRW60cWEQ6SkPHyrfj/o7t5Wd6Tk5TutK2dK53CIYH39/lmNfiB4iLPHz1VD5D7G498ODh2bNb0pGN4KyQdGGbgsA6DK7/pex3c8uhphdVTgUBto5OvqWLAHwqEovtVdEQKqPnutt42PALnV9ndXT32A1StO3hMDoUha6u4154R64ImwrNW9Ug6JX4bscppwiJx0TIfmfivUGiRdcn+KAS3Oi+qSFXh0c8DsPvpbD9e1G9icnpXBnrGjStXBcGQpcDyB6nIh2FQzlm2HFoI8f8DS7bdBaPVPtoUjcwP8HRNYDrhbDt98m+9jOCgewZ72bm2kExoP3Om+WV0Md2mOcxWnEtEqO1HH53kX3PgsSqVL2SMqjO2Efj4R4fUSR6apu+CO7pMN2tYSGFW7dzgzk4g+7a80frCtB4ZdTt8HeTngzqWJeZiAQ/eHp76LcdXDK7resFvmeaDzdNhZxhSHOtU2jwzvFMHn81U8FlIF4IQJWhdrC0LPh+7t1cW3wDOc840BmTwoZyM4zdzHI36OxIK2zhZ4UzghYaWeA7npFfVfnlPyBF0yjHvdDKbKDJxZIiUg/ke/68O7SGTOFu09XdcM3os8AQGaxfDfBOs3pvJI5JXzyaJeoB0sJa2bi53iwcrSfHiOTECRqOvR76ftUFXgJtDtQNkD31bT5nECkj/gLS673gbnFnVWTpglwvM5udLZLAKSW37SfdK4HsQOr4Z/QgheSO8oyeApXvOLsZvzbD1M0l3e9bpHgqmaMYfcFzj05QV1Q2YkxYtnPSfOuJGgTTPh8ts6HPKyq45S6CSDuUOjUec+gpcB4pUi4jgkJ1B04UdOPehnKWlEXY+AJ/7MVW3dONSD+3lhbrae0l8bxze/hcJ/k6eCNbdxiMNUUE7buR7ea08epLLAAHnMtdUnHYd2WPlMaxQa4Eh44DLuFg4urVUqf5ULR0/uHjCjxjYDzScB+t31ErjHVRSKJ0SisJVjRAOFOhjSVtg+y1YI1X+utPHNhiIacf6KMyu1kPyimfs/zgJgNpY0MGkPRVyv9Pa4a+rhzEtjDospEgiLtQStDuOQswfpM/D0QuHdXIbcrixIQdT4U1cJyK7ZgneVuRf4VHa/xgvmQlY/jw/7QwKS1Yg49hh64YC/3zOJtjzgvbd+DbtH8WUmMWY2h2qQVpFqm06pBgFlsZx/Gxg0zC577Ys1HoLfHK7XkCuBznvFxKe/Q9F+jpvHTks3hP/3ziNYuxiIzoed1/2J6L3UtAbLTDf8lDKCHkIR5C9E6f/wISJEO6lwl6sHmvqlNF8rFcOF2H1hh+f/e79yI9LyXye4P7lYE3q/HGp35i23M4ioxWIpGGPcBSGnT6/pt5XBWJA9rwxlL77tOrx995jy+WX1S5Nr5ZC3m3tyNY+I4L2B/7BmK+x6OGMaL5CBLlRosKma4puvpakxKy1gPaQjFBRIhhqSqwbRC49aTRZUFzdbQE3DlfT3IBmiB1+TFN/hUc5YCT1dMQmayth4RrcKwWGt65whpSAeX6GmpqMhQ/PpFTOh10WAPWT21gCPRYf6UhRLoquARZ7x1MDxdzBCqUy5EgxytonhkL5ZDc8PPJcsw3rCP73ys/xzGGTrpuNyULgasv2T24yp/KH7Oo2S+CQGObLtGeOFKRz4dK36mnQROEj67ltQ+nHQIbtoKzcVPrxcbzE/UAzC2pO043wh6FrAtNE9l3QYFpd6r21cBHLX2F7axAajVNgaHSpJh3bfS7/TpIvhHdZGdCk4GK2VV9LXXkmD+IhO7fGmQqALw2SVbAQjq3A3Il6rByxbxDr6ZQvg2iXtxh+Uvu5fzF7KUekBz5/TIcNS+bA9r3NR/zYRmXwd4ru4RgB/a/3KHhYEa5tuUu/KQ9FyCZl9+7cJmDl+qXM/lQgR7L9Nz3jj0G+rhXzRzzZgnOcgoX88GfDbVXZ2ljiU5/Ezg1TVBgv4Db94/SxQ+isFVkEEFPDtp0bur164sK3O/epLNJxduHP+fFYkarZqo/r2sB5iuT0Jwc8DoDPn4UumIBx625NGStfphc2/Nx2Hm7IgeWN5yHAAj2L0RNMuX6uFpQKtmsNjtfBRUj89KojiiSeXbnGM1oCn18h1xe0a6GJ5XS1jG4qubB3CXVpuhkux41yFQfFgMGvDH/k1EjV1+Nq852qB1RnDXyEXEsHxbB23H8VrwGeIj/yiBvTHdWJM5wLg2HRGe9PdUESONL4v70fh/7u19MF5GBB+Tksvrkn5/m61dzcu1MB5Yq8s60UsNMUKbifLhCKLsS/P6RJrYEF4+6p6XAQIR6ie29Wj9JR5yPnnui1w+/ueuUE/CS7TnvxKOo1HxvvvLk2ptYDY9ZPszC9JcEszX+ozBx5dKlf98vRtC7yQ8XEmnqZwr089w6IMHpnQYs3+ybdA5u5fao5iCucoXPpGzUThlvibA1Xz3WBTuidwtT4bMLq+4y1eRBRPm3w04nQPiL/04TeazIHqiUKtrxZE5Bx5dMf7UBcwWml9GXcqA4y2ic13Sh/B18L7d9W7AEcbR6ZrLQXuB+rM4ZR97Ai5Wn59Oh+egtbWeBRlH7UF+HZtg9Cj+WLf+xX58PXv8ItkKjIctSac/WsXhDZYZC/PJhZA9iN7U289MmQ7dF3VehmE5GFlgeE6GYYWWIJrwgpBBx/TaoKwSOajBCzb9sBe9U2Hh/JFsBzN7jvBT0RDUcbnEzR7YFX5rH7uyWIg/Sx/HSxP6dPUHioblhoYk2cZlx6ugGuxqVR3xUORvcWrwD7jPuDJ/Em+n1AFW2PdfkYZEehRSCz5Xn88HLZWUnlWWwa1woN23dUYJBI3KPjjQTx8+1DSx1ZUDiUbkiYtoxiUi1WsSsZXgf0Tya/95Hw4wc3Iul2EQefWpOq6H4bB5JXhDpOxVIhy/+0cVxuGZJzdK5p0WsHjOJ9ExeMSWNWyvWmDKP272BvhR8mxs08L2fs0SuG5f+lEKCXH0kwxxQULTTDAjebUf5fCtzzl6RnhSDTwK3Tm51QTeFJ9rDtOUw78d1Ji9c9EonvcV+eEjzdDqUfqMY+5EnAQELCjV4xEid9blvLNmqHtoNqC9PdSsMD1K8a4RqIh9mdB7naZUDEVafXfzUrIKjs+dVg8GFUzi6hUjaSAEc9H5sGqPGDSa/iwYB6CckbvZ5hdaYavT4Sz5HPL4ETlfQn7J5Foe+rIdV0BBCyFPmGx/BTvq/7OwH8rDNkwG6yck0LQs//Nc/FYLjidzbvWrhqG9pi4vf7rJsGM/nf6mcOF8Px4/brASyyavmgHLet10N5cfeaCSAGUfzWi/08oDNmu8+f4adcBz6sK3waxfEh0SektoPTR758FpqffvAGPq6+qL4gUAWIotem4gkOq2WEM9qumoGw1ap+/XAhWbsKkpx445Kircp7I2go9H7NJt3jTQdrxkLxdOB5Ftj846vE2FbLJO2v2UaVg+G4hHiMVgsq9U/pcNVJg2hvn7PugDJ5XTLY9jgxBWrzzW0F5dRD0cFslvj4XEsYm0nMZw1BlCPNokF4/JMrr9RUgAtxpfa7jsYhDF6jfiTF+ToFPFlrLuMIS6JCbFrr4PASxy6Z4eJ9MBdsKpyfsj8rh9cr9RMmHIahehbQjXG0OZik/LX+qIxhTcL7g4oJD+q1/P5rbNwLbQ4GI8oQKYDr6O8XsRASSpnF37D7ZCKP8AQZNTBVwp1QyI3coHIUrMrVPVPYAOuKGU6H07GXTS0ML7QSUQaNcq0nZo3TG01v/nSyHHz+4et8KENEKV/pth+lSaP9Ut5KXHg4ldMfOXP0cjAynJuzZPveAd21xoOqLMqAebLfuSCcgfvrH+f/1+MH0pU09hd4qaCpvVTYtxyLesdtJGF1PGD9ZIVS1VQUlzy/SdFD83RnvmfBBgwgLYape6mtR8Er0kYNGdii61ndBXv9eNOTeOcuI3Y0GWe2SbLnnoShG3y3e6lQ3VBJ+LvEdKIfk1Gf359OJaJ1UkSdf2wWHHuv8ZRQpB5bfMfnJlPwxv5P36cBUF7wVYGYzOlUGvkzO54ZziGgs35MgsOwGbIZnhgOUy0EOr58txYFDTbe/Xdq95gfK8xqfdK+Ww9ys3MkmSs7oPl7ztTXwgQDPBzpFlOuZpP3nxv4wFu0QDyHJxXhgy9D5T6isFA5515ItSzGojFmA3V7OGL5VbKzm0foAY/Xh1Nx3OKRBbV3zOSkWBA43cRVulILr1gHNJq5QxHJ63WdjuhfsY2hGtOkQWL3awOVVRaJGZHpCtb4X5q9mC0f11MF3Ec4n9XuRKL1y+MwHk354K9dzINyCDKI3/j7WnKbw556R7BmOPhDfsQiJ+06CJy+97YlqkeiT4pDbBV3KfoVv+a44F8LvUokRfm4sKlKXdVXE9cCZiQkrjG8hKFkf9Py+TUBHSScFORt7gA8r9PqIbSEolzAaBdQS0GT6s0+MPJFwcXOI6bBwADxPOxtidioMqbreN4pM7gPLL7Z4cSiEcZ7ZzAn+CNTreXf2nnMfRPXn2L4RLwTXzc2UYPcItLn5t/TNn2bYlK8+bs5WCe1XTks3DUeipL17b+wlOmFA+gc+TIUMHaX22coUnhTAIJ0Fg06YT7aq/NhLgod9d+gmsERUwZReKlbSCZ8uC7rwXCRDnS/XgZ4EIkrosNt9oYQBzL/zusJfioDrS938BjUlTyr3UybUQ6GpPlxGo70QbtZtaLhMhqHh8v0XKlcpHPaCU0noexGwN2S9nH6DRTcZVAtpKfkWIBHkPmNQATIT7PhzlHxr20LxQmrNIDOM0Y6KLYdsTc3ftc8pPB9uVXclMxRo1yyr07py4Fyfa27JQBjy37ZonLIPhcjIwPaLx7KhQoKJcG40DL3HvTPJ/owFC5XgOGPDbBCS1aAyDAxDgeJjdq1N1aBHzdA/sxsMxauGjY5soei24QHhyZUqCFDqEru4Uwl1qfvYhm4Mam7TshW72QwSMji8vWIlKBkEinAbRqId96EKb9QCNgpUJuaBJGg4/1z1PyM8Oslgc56oUwVO5474JNa7Q6CVo9ufOAxKEOR+9eRnJfQEvfu1wfcOBn/oHXX1wCDahJKHplsNcC6Y5f4eayV89Zwo4yWHowlup4d3CT3wdfDZpFtMAZjSsHJzrxFQscXXvfp7qRAz9f05vRcCTKxpUuKtEHRH7HiHnXsr0NI9D9dKIoPQaFn0l0E8mmWxPr2U3gp/9eNfv31IBo5i/ErBCh4Nwikno7BWSIqsdYlZJUGaiHk0/wwefdzick9VCYaYxwp8357kAufCz0gfESxiKYrt82z4CE3ZrAPavjlgD/d0Bt5i0dey2rA9pwBg2rSpsjDJg44T2OpaEyzqqXA4VnY7A5YtWRhG3QthameoN9k6GOl3nMkdY0kDVgxHKE1cAax8/RiUczAEKQUOVxiwpYCG4Jv5pxYFcP1VYM/DnBCk2Hng2VpjKuh9xkmyWZVB2K8c9pxTIWgijnkyYyUN5oRI5083lYHPZb2AInIwqiEIv+V9FQb1Nw/wPWgrhlPztpP6lWEo6ZiyrPjBVmgzLB4KovDwr94ejspAPAo1ucatK9IK0v8UWg7XZ4CvjKihVSIeTca0Cyu8bgXZ8lPXvW5nwSERdU6XPjzipJ95de5jK3w54/xcCTLg2FIO7eYYHmnuMnBMCybBCzwxKpSzHrKKb+2+lsUgzGyOq7pnDdSUCn/il86Bh5aa7wPVQ5GeQPfBvxV9UFn5Kl9AsQhixzdkFLfC0dJj0rpMRAvIixFt8Us1MBI/Vst6G4++6yfe0ElsAZOlkbfSp2ugUw6Pn1fDo4ti7NObDg0UH1tLuzFeCwMWvgImBuEov81WZTC2Ae7ddVTKLqoDrjP/sCJe4ciUvpln6k4DhManTIwE1MF595WDURCOrrB05+5cKoZuBr0r7m1FgPG7bB7zNQjli1u9eMBYA9LM45lKyokgWzqXuyoaipjZrkad7akGWeH32meHkgD/iu+GK0co+sN09MQL5T5QlVmvuDVDgru+lR2NsxGou8ssXO1/zwUqidqVMubAttT+PQ9bLDqHXWSz5CeDB3dL0i5XNsgVmvM75mLR6G4iz+FYMmi9XcrzM4mH04LUY9FHcKjH065c1IEMCvpnfz9wiIFzKmk2X2exaOF7xhRPCxn2Y6a9MOyxcPSo0Y6pCA4lBJC8g52LwdxFxHh/vxAMeUZnPOaDULqqsJ5ZJgnYvnw55KWQBWcO0FZb6GARrWTq0VZ8O/w+E5jP2h4PoxL6EtmU3J5bb+lI82+Hf8b6hkFKMWA9WFqM/hCQYwvrcE5qIJCt9tlC9QtgYnt1+6EmFtnwJu+uGb+DfWqaYnuNAvgzhgs5kY9FoqMhjWV67bDcKNUU2YcHfNaVKxVjBKQVrOpa8iQQDj4VHA6IywedVUnfOW0sqr4km/yJsQfOxxyKPX0+Dj7UtRdcfUVEnDbHybPiPZDP6O4fCNFg/CLlmsszIso/hfmuGFMIbmsZ37ttcuHL42/8J/2D0HqMhaOrVhm8+XtE9I4zAslsxgY6+hDUHHmqJj09B47Q9SHZIxSfu2BhjM8KQr8kHUVCC8qAE67EM9mQQEEt1erv5RDkqGP9OK62FMoHugvtPUiwL5X3QKwxGHEyLJ7uly2DS+Z6x9y+kWDOwEXy404wignS9DonioO/mk5GM9cDgOB/SvqaVxh6Lb9yqZenB5j4tOU9hhOAVYrG7585EdmJzmTXlXdDaMtHwZh/8dAbJrb3PYiIPvZZco/Z9UBV/8lY2rt1QNecrrDKR0RmvaMXfsT1wOQ9F2HzyVpwPjW2r/ObgPqYWK5EktNBiPln/zpXHLCw95ytCgxG/z3Zk5sQ9AE6x9DvDapFcIp98ZjkOBaJ/Oh/+eNVN6iqdv6JUy+D7A0zV4FoIhpwCWnjXuwGx34Niw7K+UXtLdzhoXjcLdmS3C+QBpeqOnhlDeIh3YqgpLYWjDYOCWZ8pfDqpIUlt7hhFnhTWb9sofCq++9NQXG3OpBh3MI4zGbDsqd6Y/x2KPplwcSi/7MP5kyrZL6OFEHSf9wbngnhCPvZ84zTiCWoeGWrH+gqh9uZGy+iXuFQsjL13auxdeAnOOCJjciAROaWgiLaMDRjYVNc2VAMxhlnDf69LAFU1icdQx2M9oVi/+hr98PSY0/LfLcIOOgeYZ25RuH23zof/13qB/Xvnv3qG3jIzhKobxQMR5tbrX4BfJTj3afo2QUjQNH7I88vhXD0STKvOKG0EhhyvIZ/MsbBoMOIgoodBlmPP7gbfacSdM+viOzvEoE9aVPB5wEGfSwWdr2z2AiHjkR9szyQBBu2w6IrLyOQAe8xb+aWRjhnSlXleDUBjMNOP/PXiUBHrlgJxEY1wksZZldB12SQhTNcWNkI1FgTFvMe3wsm309bIZoisM+sSej+D494+A239c92wXtTxyA5NxJI5Cn2BVP4UynN3upGdycIpvQr6FDyxuXr9lfpFCLizVxLUYyPho7Afsw39nqQYv8Qy68firgzvqTm3qkHFWLSWy9VBL5TEbaDfjj0uOjH4I+WVpgmuz2o+uIL0bTcjlU0BKR7KM65nI8Ew1TKQe0hNSCKz+lgXgtDRiubd1bukGDU51am8qta4B61dnvDgkUCRoeEr/33HDiM7tyNL0cwPsWVp/wSh8qS7m2MNDvCt7X7ybefI+gOO2Z0TBGHcFJ/WicSXWC8n6exuB6B+FzgxqogDkVRTd7RdyTBwjrx5p++aqh08tawukDJh6HyPdVjQXDfwPnko5BSKA5Wf7F2DYsSfPrXPTkx0IBx2qYyKwOGxcYzpUewiHk4+nLri/fA/aR24YluPmwMvZb8HI9Fsie/Ts7eCYVvN//b7/cshQFHZQWfqTBEZ3t+9NNNDFRPPwtILCoBRdeG5siDWJS8pfJYs6UebGdLWXfmCeAQ5RUq+g2HhlbrnD42J8PdD4baykz18Dsi87N0awhaCwBRge0UYHh1RempBxmqEedC2tMQxCkVWnPWPxV+xBdtX6WvB8xLXZNByRCkZzOd732mHvqvlR9oTiDD7h0xdxMLHCqoUZTyKiXDhssb0+wCMhg3eul4n8Kh+/rRd+T96mHtSbf17Lc68Nc4WSNfgEMTTYrqHsv1kL70Ze5MszsEz674Rh8IR8xB3V2ejxvAHPvA/lWbK5g8DEr3UAtHWlQfbet0y2BTZvR1c38+qAcaabIwhqDrgfp5XkwdcHnkmsaD+wjedKtndUsQUcotn3JSYD2UK7/SMM6Phr6BHQVSKQ61MIhO3NxOgvOxF9FJVzL4pf8J2WfAoIB3a+mOtb1wRO7ivWAzG/gauz47eQSPXA3K7M+I9sP9oG8fq9mr4ams6Nre5XCUfPy2XEuSE5z+c0/081wKfAj5Nu0phUOd/UuaEmOvoOjRhUPDXmlw+NegCUEFhwI9cLdS+MxBWR92FuzTwS/V6yifGw7hRTEjUr+KYcizvPyKDhkYfp6tSmcORliluBSaj6kwOaRIJXYjF1J0j3yQPheCxCJl8z1X08Cmdh9/lDUHzv4+k+BM4avgpBEP1dI0wP5pnF+KzQNO32n+2/3B6KTFetQQJxnCsU2Y1GOZwLpwz7kpFYuEQw7tX3lDhva4m+FLc5lAJu33+c9jUdC414pScR/QZORKtEsgiNXMaJGliUCyJrHPDWdLYGXM/PdILQEYPaKn/a0oXCeGJisfV4DZjju1CnUdiNfScJXQY1CdQQN9xwgCryT/WTd8Idyd/FEnVB+GOkhUHTTXSDBw0HLOIrwIUrqyHjnTYlFDlaC2S10F8BO6xfaNain+YSGqIoJBQaOCHtdG20DCcaGDfL4QoGeIyy2WgAoih2w26dvh2wlWHgYKlwLfypRzKQGl+CSEHrRth83ELW3b//1PVX/UeuoHAZmNNb7ykWqCZME3BDXHYlgM1QxeSqT42hMXmYdljfDh2rzAo8hiUNs7w+x7LwKxLN4zfjTQCP5RaVtar4sg0TE4VccwAiX7jrK4VZFhklEuK7IpA5RERVuFeHBI6W+aaAlbPRwVp/5KqsqA3bksjlp9HHKPL9wUv9kAxfea80ZPVIAADA1evxaOmCo14p8kNEDu4WoFf6UKEHwVGbDnHY5e0HK9lBFrAOa4ED6Dw5Uws9tL/CYWjoJ/7v0sfNYI//ldEq1gL4avDdu/J+kjkBiedGCDoRG0JbKjholFQFsc4xffHY7Sr2dvmg3UQmXbuzO2prlg6OGhGkcKRfxs4z1GFC8YmLiKTx0iQs+vO7ItFC9QsNPv+EDqBrfdhz0hgSlAX259sSOQiH78xSWeKOmD2s8sKbMhJDg8+tEoljoC2ZWUdtNxlUBfxeKd2fY64E9Y9NnnCUZq9LpM+JEGKMBksPxxKYZ+r8MiL7PDEftWvV/d5z4wO6QDXyjzZxm3PLbfEI48Lq1kn/jUCQdP/oxnpPjR5IEWxcQoyv7O0t1jpKH0SMrDw8PhZGBsR28bMomIkT43d/5pAMhl/Mh95x0CB6lNYo3MKLxq6mZ5VOU91K0q7yo/DwN9/Y+LB5KwaPiMkY33rUZgLDHfGz9SAt7cV52c18NRvP+O3IxWEZjc/pc5ffEtqHCGzginBiHPB0wXj88UAubXZ/u+z+9gWKK1mQsbhKJsun3iTxXC0RpaNVYZL1CKljle4hqETv2MKGjtKoVR2Z5BZ+kSGOu/L2HUEYxUxDg1TqiUw74J3mS7rRRozhgfrvUJQeTWuOBW63JokTXxD5wvAQUG096b4SGoR8i1g9YwALg/btUuhpHAQqotQopyXm1vg2sUOsqguP5yaGpVLbyTpjvLoxSCGrzUbh5VKYNaSHt0vrSGcn6Vz8RoQtC1oGu06VLl4JW3qSnwpQYIh5QrZJxCUFxKanDqehZkLzuL7LeYwzFSmeyd70Hopnyf3HZKDijkhkqz2drAqiXVxDcKZ4rz2JM7JXuA6otXUWLqJ/Cv252nf0rhvfCwk6NHeqDrh0unhWQ9eGRpDQS9JqJCWs3PenndINdtffQjZQ/oVwK+smKICB1zPcVI0wMXP4QVLBaR4ZLjzZ9+zhRO+9198ZnTO1ilH/OGGyTQ+kwoWaL4xSX2e/H7lPyp839HOKsZAoL+7BVdlPtN+vzNl39ZeuEaxzz7XmcteDz+z2HoAQHZ2Mo/s1HpBTuVr39Edmuh7m6on/AyHp0TaM66udoDtwaCsKfGa+Bc396PBA8CavVOPmHG1Qs3tP52BrbXgIr3QtjADQIKbY8J1ylPgo/bmed2feMh6mvQR5GTGHSoovpx0k4CvDm8o+MpFA8Jj1tYvzph0AStsPsIoRiiqOVt5VLdwEcsdF5/LQjd/mwXoIQtgsO513UVntnAQ2GnnjuFQciUYOOmMtoHK6Edt0g6YdDYynOaviIcfTA9atE9UwQykiNW+DI/kBZSeaLTEIQkbE//DNsohquD5/vS/YuB30LNmoUtGPVktzSX9ZSAoAyfIR1vCZx9Y3w73igYDbY4ft7/1wi6Q5pDqiHl8JTH+jbZPQJ973xQXeTSBOiJ4hdHjXJQc2MREByMQPtJcasFKk2gbymxZKpW8f/va1gXRaBa4bzpXwIlYDUZW0AdUQRktTABBv5gRNYzTIzqaAL39yfsZzkr4PdBpxvOLJGo3q/ohFpgE/ji+EKPi1SC0puSO6HTESh1kLf89E4fbBpNHYFX0bB+dHKniuK5Ez7mMhU8/eBYGejDWxcHyw9/hZndCUf/Fgudx8opvHqPsZc9OgLahm06Vykca1mmoXp7rQNco9xtyNSJcJAjzzLBjcKNZoE/AmvaoH817/yPnXCIsms5/yyYgAyMx70Mt9ugfNdeoewjHg5wu60fySUgqumrLeQfPRAwmad32DcRNBnseGNDCKjmlkdHBU0v9Bt4rJ3VioeM1hQtVWMCUqzdUrlDuU94sx/8WeVNBJWDhaWH5Ano0LtG99yybpAyFzLp5UoCp8MGMsLBRPT5k4P4JcVu2OX3foS7kgjXWv+NTSYRUdOrDb+ZlxXw5E3jjPZaDpw8aWlRegyDzpSevDVEyX0/5ZzG4i9ZEMvpSvubBoM+b/K9d6aphCerrpUHG7KgxjOeSHsdgwocF1+pfigHQdOhPIWhbBh9UDqanBSCjsZWagTfaAWWiJK2rC5/aLgmx3c9H48GX9MSYn+0gHyCBGPZj3egbfAel+GCR/nU8kuZt1vh2G5ZK6eVLzQ+OK0xUYJHyXOSXCYjnZCcOmAne7AefOfHjJJSiWjBvvvPyced0N6jdUKFqx5KxdRvhYURUe7i2MtbSVVwqtLZ0GyMBM/TX/6nWIZByWlJXEsm1XDY7638UW4yDHzCc3X8waC2Q7VLfxKroHmX+tqGJhm4ZBk1xSnH+xVYqARIpIFFf0hcsUEWDNSzH9H7F4w60ueo1L3S4Qn/LRbr6kx4xdNsFxUdjKLz5fkz+6tAIah1xV6bBF/LiiM0mzBoM0EmwJ0Xwd8Exs/BkwiWg2KaBW6GoVMzmm04bwRdojFsenQkYCyk7r7uG4aEBj9ZvnpFhoBepWQjvyJYGVb45vsTizzOeM5NUuZbt+Ag5OBjBq3xBw1PUeb7+OfafPKVTLCvq/xb/yIbBkL2jaUvB6O4vTOWffQFYEN2aeu29IXUp4lbsbZBiLsiVYyaMx+kRqpXXaV9gJtj5UaXSxC6hxYlrYOboFOo9e75NSy4kd6LN8xEoKHAkshP0Q0QXvL3SWxgEYS++c3t7hGO/J21VPYLK+ETccPB/CwlJ2cvfLtoi0HOhrGL9RJksD2+8tmrsgC8Dj2e2S3Bou44h6ntKRKYivrQ5TIXANfMIcU0TyzKfv/nu/dmHTzNp47sQYXguxejsiQUhogpplgJVgSGVzXmMhkK4bcgnYG4TBiSHjRllfvWAH6+r8U8tUtgKciEm7owHO1sneQ9dK4RmgsfbGhSlcJyxola3blwVN1O9eiIdD9MhGyNSotFw3+sl0hVIuFI4E01jdV6E5TkEexp+bJAp972RZZkJBLyf83wHdMEOte2+J3OZcHx7POnfH9EoCmDjw8um6XClAHrwadl2ZCjmfbb4GoIknurXkopfPj5VtD+9Z86WHxruUj+gUVDVqv/tB+5wv3Y6BgZ3jpQmbqyGcJL8Y5H7UQBpdew7+qGPlMjSObyMeABHNpRw5odKuiEnsS7hitBfvCcyklCLoGIfOjFGi5ZZ0OYcSPz72kSTOq/SW/rD0JSpxjTTchZME07iYu9SobOdpZ84u8glPNKUmbYswfkU+UHdJ5awZ8LYxVWx4go6p5Q0eK9HtiXb/RS9zEFFQvhqxhFIurSNOY4FlUBwuQT0glclfA0elb+HzcGDfa84CyhzFeica+MeKoSQJyzmZsy3/sh0Xm93JVQV3NsaOZzJVzy7Ek6qoBBx7LKGc6/qYfugPGgm3E1QPve6uFSKg6Zew69/1JdD4JCv4/5elE891BbbN0wDtHtvHl2lD8dViRZGeNQPshMPRT2LglGYMeGv5uQDNvsTQ4n7iUCq1jUD98vIWgbmxyzLlAJA+1HCYYvKsA6ybGFTwmDbGiyH+3+rIT1eXKO93UKpwv9qs/0wKAqmwd/egj1sKU3/81rKhGql8ezWUg4xDsILmcf1UOv7N+RLZ4EuNWoYgRBOETleLQ4CNcOJzWGegTOkIDpqeyRuk0C4nTem8SFpMLTm6UqYWn5sKn5erxNPAT9OXua2bU9GUyvX5TWDM8HcapZt+rmEMQsk5FUqNsJB+j5O9/8iQIOiSg9D0ouvY9oNRRM7oR0B7Y3/Xt4kMeOfjeII6K1C8sDol86gXmob9MlLAq8P/IoCFPy7cooaU30ZynQ1oZzudwshGX36CXFr8GI5XWiQFRJK7CmRRiWFCB4bxrhpLSFR1/X7tCnzHWBwOMl96dPEyA+tazqvxwiCnzBykMj0AeyyaoOrnwVcD2c/JIsFYlWZTG8iRT++XhQKmhVsgTOuOpFilL4h/qu2wGVsUYgiM3dkiwmw8FfRxvrzSNQrqTGJpNzI1SHMN5+kUKGD0yGIwunI5Dz7Jf9soskeFtTVqfj6gqsPeLX5aiwSHWO78hqJAnkpQSu6Tx0h9K3q4Jsqlj0ueWz0nGKN1FPbNptKpBBneplpQXFmxIK+BLW/rQBbgx3ZKeOBLzWpz/UZRLQzx7eQ+/xbWCjvvOee5OS5wF+E4GuBPQmQq7R614K+JcKKDqdRXC263H5GUIIUvuze923IhUU/jB6GNEiIBVPb4fwhCCffGrSf4RmyHx89QhTZSGEtv37PBsTif4PbYs97nicDJd3PNR/HMeppGGkIiqRrVRW/BDeJYkUqZRRMgrJTIWs7HXGnZv23nvvz529V8gMWZWVUinpd/9+Ht/Hfe8+93q/X8+nekPRn7OXW4HzPWEcM1AMhjI3nniaEtH16iurwaatUON05SYtuQT+K8zsaHxNROTDt4wqbg1CgENinFJtBfiz835i+heN3ryWtyBID0KQ9oiuR1k5nDhjA9ZiePQquG6gLKMB2AqlfM6IloLl6Krr1n4sKuUKiaToxgLJa55RbaEKVti0jmKsolD1fn/SglQcvEyvVvWhVsPF6cQ30jeikOKld0Fyp2LAQo1bTXOtGtqFLu3ZiIxCPyYFPec240H0Thuzgkk1WJ7xYbbkiEIfJ9fal83S4PWZ5O1X3g2QVauy1h0ZgdZ51BfUnCoA0TSvXj7pBdfVAoKUuSOQwu0jefonB0GJmfsbo20F7N5RfCt3A4++B/IY6/iVwD052ulj4zlAOWwWpVaAQSdgiLuuqhjOD1rK+2blgtVUc/B6GAbtmVg0F+aNgIRcCbk5y0qo/fHgEu9xHDpwOvLnzGcMrMVcu3D/LgJepc/T5udwSHrUpDX9SwaYezP/WyqmQpL2fSXjpnC0i4Qt0WkJhuDLDF37qZWw6Mo04WSHQ1Mz4e/sVLPAV7DnvlU+FWIoaoNGtuHIWVph4xbqBQnXfYEaN2lwNrdgP3cYBcmrCn69r1IKmU2KD3+lNwBBhMFQYByDKkXvXB/nDIcadazAEKYBGhZ2JxSfwSGSYBd3NCYV+itM7ptFkGDtsx3j5lQEgtMJn+4O5MGr42wBxxiokHDSfOtEBgY9CLnua0/Ng0NnGx5aOCPQ36XGtJSJQaHOYh/ZyAOQeNN2VjWWDINin1d6FQio3eFoY2XMAARK3rfZ+zEOUuSTY91lCUiv+5rZN65cEMJaxuwKQ3BA58ir69P0zxHa/eTUvwGYf8UmKxxfDuykz69Ib/Doa0vm710hGdDCkCnXGecGHrHGpKUP4UhrX9l+7R99IMmkann0FYIVK1JRoAsZST0z5XkckQO/Erv6VRipoN3wlm/vDwy6kmndZyhJhrVZnpT08QooecsR+HkgCsm8+KvWeoEIzHnYsG7bSkjCig8xcGMR9dq8qr46AUY2Z8yD1SsAr3tkOlUeiyYTaNIHrFqB2WRJnNu9FOxWt3IU3Ilotx3DZ71DrRBKPNVj9acUBHgpwYWqRFQaSb7NN0SCu01ia7HbVOA+eY7/wocoJJhtel9CDQ8HRHZNSXLSwN0tf/GZIRb1eXobnggpBpveLw9Houzgxsk7BhkBGJRrHO22Nt0GXPvU73AJVkJs13IRyysS8rSy0jr/px9ux4gdDk0IgtIDP6prA4nIcffvpV6ZAfh67VTym7OB4NQddSeClYgeLF6WCCxsA5/vrKp116tA8g0a5bhPQmt5FFKAexdIWU4y5pvmwgarWomzPgVVrM8svGBvh6cRTlJjclUw7cj3zRlHQgdltLdSVLNh0tfJJOhuGkQzoAyqbDiy2BK0mLVsB5eRqF7VB1Xw87sF3OogIfja/Wtbqh2khtYwifLVIOk4cYgli4RMfC4fu3SvHQ6w+BJz9SqB+f784ng9CfVHcZ6XIbWD2v45sSr6vPvvNRtNXSShVml1pUZCHwj3p/0+XEKDJ9t/wph/kdG+Cm8nePQSPstKGGdbFMLJgr2aXqrRqKVy+/mw8VuwPBySXRRVCI0lHbbflnDIicuCd/RaOfyKA7L+Qhmc/sjw0TEqHOVPlLrcf1IG38RXRRtPl8PQCMvgWYVwxCQ79OeDfyHUTiYfNLkbDIl2Mcx7nei5chm/tut3ITR0vDw8ahEJFVcPfyyxwyB282emfKfagffodnPoBxdgV280zIgloa+8BWvHQ9rBOzBudybGDSzbPl4Q+EBCTZffLsSUx0FFzsf5XWdpYLAPuDgUo5BdbJFIk2Y8rNu95awookG41klVBVF6bncTozQyusG+f+/vkyZ40BT6rTWcQEFHHxkx8/B3g6COTPCTWiKw3vrE9DyAgiZv7Bt25uuGq79HOhdrcFDj+eiqOv3chXy0qudjDdQbadyKRjTgimSfNO6MRBVPaRKk4zWw7MFqNZJFg66PbsKGmEhUc0Ph3G7OZlA2wj38zVYDgRG0d9LDeFQ39PfQZG4/bNQx5ZXn+cNjhTTJh+dIaLeMjc50Sj94y63+di50A3nd6bg2VRJS7f+vS3B2ABwyt9qe9SKwpMYk2ufj0YVZWn8o0yBMsLnWLEhSIXlJZLjYAY8w53e5BtT4QULOXEVWEx5klcxMIqtwqC1Ovs3/ljdkvz8l1FGJBXxZv/jNnzhksZMmrFRWBDLO32+qKwQDUSpR9dYLDLLsah0xLKfC6rtibiFAIH7uazXrYxxSCPaJQF+pQD4RZ0lqaAC9hdsV3KE4tK9l66DOCRrcsroc6XAfgVe11ROtLBxyThy6Ue4VCjq8hYF9UvXwfOW9edkdHIrS/LoW948K21+UIiVLq+HXOnFCHI9Dyvqbkscf0SA2i6Mm41wNmArlOq+P4tDKnzRzKUYa3PSS9Zyqop/Pa3++RcChk4VHWM0ONUNnRtZ0fEUm6NYpnx4ewKMJfRT6vagJRBw/rJQ1ZYDY4pDW8XA8uvUtkZmfvRnKFd6umOSlg/Moo+JyPx5ZKLcKRP+lQhgj9XANvX+S+6Km83H0e+s5MUO2pcGXkF/Tt29nghtD6LbKPA79TDp3zClrAH5Wh+R9LU2CFb8jmbo8BGRC/mFW498JBzo3jzpUVMOdhJqIr1/JaDvEOwFzuBMM30hwbojUwB/MQ1Xtavo8ZggeOcpPfx5zpgFzoRqsqew/D1PJSNnEVsnduhOm/j296kCtgZWpJvv6OTISwUkd5rhZAfqPJWyrgzLB1lQlOXBvBHqzUbAn92glpJ2Xw251ZcDHdz8L7Kwi0J4DCpXBOxVAlj8fnJaZBdUdT3WVH0agKuL+rpTsTMDcvRZUEFULsb01E030uW40yZyX1s4AzTR1v7TYWugIe+m6/jUceZ2plvbuK4KnXLYdzfcjQd9SlOunMwYpulXHM+llgMDe9Qz9zVIIzFpI+G89HGHlT+GJNdHgLZD0wuB5ETBfFWZMfI5FWJGqNi9hLFQ+zpKJ7yoCdQYRE1wTFgV9bLBIMWgG2fDd0u9UKKAY5rSzzkxAfl/O4hVPNcP0f7/zsZfjwMZThfZxAo/W83h3F35vAoavrI3OfmQIYTH9UlqPR9qCnu9mV2sgr/IEeV9WDqyV3mp41xOJrg9k75e4Ug46VgW5vi65kMt38olHRDjaxyfxTdyvDP5wy+pMu+YBT7nfW9er4ejFKSXH0wf6gUNXxcprTyr8+lFe3GhARi2cBmys6aVASJc4/LEhHzwDzSeObGGQ1/qlT27YATBCJiZScYnwn4+M+z4NAho0bfjO5dsE4gFno6KuVgLf40NM8zZ4RLsUODc+0gfb9TODvAGpcLpYlOlzKhkROIml4VfC4Sg+k1JZXw/pQ+fC50RxiOPMr9tnP3WDB2tP8Vf+KshQiawVzaQgwsHOvsRX3SDaYrG1h1YJjP5uvxlIFISSLllf46kC7w+ryYfoeTMrfS//6WsE2rd/UMTBoxKiOc/X852pBc5L/sau8RFI1jwnCLFUAy7r+RS+uAY8SxbOPFOORLOd1OcLxjUQEu7FlmyTB3zWywK4pEjkKtDnvnUsGqgXvzYctSiHhlfHmgN8sEg8fvXxLRoWuqg2qXWlZfBq/VLASgEWGc+F/sM7VkOkkUVfN18esLDN/+43jEQPU3ryu5q6oPaXR6wguRpYdNU+DdlSULpsDeZ4VxdcLhjjNE+qgoB4M/Y9DhRU0vXXHkepBO6PJuJn6XlMlWZW6MmLQLuPdzvWllfAcXuq6+n4IljvjHL3VIhAypk5ZLJ+JZh3C3pY/CkE1T/ftZVDIpCK4OnqVS83YCyWfn5XPxGYVLhYX/BFoyaN9asMpwZB8lxp+9BcPVw5K/Yt7Dqde/VPnNW4PQgJkxqOPOsNcMKEP+/pn2i0f7Yv8J7oIBw/F3pt6z8Em2j6b7sCHnnMVto/M7aBs5xeihSvWMjftahHfh6NXmhv7Y8/4wIlz0Q7L7pQID7jzC6589Eo8zEhUlKiCnqCLLRv7CmCJUsJrPp2BEqdHuizyK4CzcTGUo6+AkiR8m25dToSPSnRYJMQ7gCNZ2/YE3jLYUS0Y+2pIhkZJeeK+IR1gKXk1SMC2uUgSPNYZnYmI+Iz+//ClTrA03bOzHJ/BfgdHxE4pUFGUxgz4tULLTARVOxJlE2Ctu4ojvtJBBR5I/Vv1jQCg/MF88Uv68Ft7WRQbAsW8aMPmV16PtD51f77zvk8cGwc3l8wjkMXQ9TK+nx8YUCSS3uaoQDU9kbQdnfikHXQd+uvqwPQ3j/kZxFeCb7EfEoykd5TvrXCqosDsMsgU2QtqwLuBG9f1UjDo5mMZ6llmbmQEFMsK9tUBt8fE3XFOzHoehe7jRNHPrwVU25oYimHd4xEy8xEOm8vfy/47twP8Mm0L5zmBAY6PV0H4+jc1Zpb2SjZDZpKZWkD/lUQcrGBTSWEgrS+JZ8r2uqCYlpuzK3JSlC7PWvT405B3aFfLT4K0j3HrVkhSQoLD3VCtxS+hSNWPbZf8RQEjateJI+kZNjQ6D7/ORqLpmtfKDudQ8AyPG5VX5cMAuIya+evY9EU6YDiUX8ESdetRm6eTQX77j2PS/yx6MQ/HXGzly0QsvJ0ERrqwOh9ZxzXIAHZK1RrRM62gLNzfyhfUR3Ezz8eHOAjotuHcsyXQ1pAu/W7jcHvWmCRucR+c5aAxO6YqO152wco/J1BFLcb8N05917iEAU9CFvPH7vZB+b/YkZ5JV/C4izL7Y+XKciLM8Ev1rUP7EpHkJCvL4z6ifFuH6MgIu1piWR6PxybToFShQy4RA58wqZEQsOtihYfrWvhIZtpim51HsjGLNkXbUai5/aXvnjP1cKoyBWZ/7A5oPMuSIeFNwpJCedov3vVD1nZe+tkOzKgzHyDz5ZM51LO4KrRzX5QfpC17CycDCx3PghcxBGR9gtjnwDONHj0hWV/9QYVeKnS4yG5Eahfb41UWdMPd2qO+53ipsAdD4YyPBsJZWPWJpxMEZQm7rdvKi4Gr3hruTh6j7T+yO/Zpr8XH9B8cZmvAVxVEhtO0d+rde/k6Yy2crialj3F3N0ArQsHU5Lbw9GVcSfmRlo5iJgfsaXk10OM/eslxtZwdCSkTZw7KBGsiLQQbZQABgbF+Bl6X1idvXD90Z5BMEpdyb47XwqdXVyGBU54FMTPkMBT3AKBPfEDucalYK72YP/MXwIy0w9xNmFphQu1KxVT7KWwt/7v0Y1LRBTcVTbYzNIFAW1672+NZUBUm6WGnwQFxZ9X+zPC3QWq4+dn/Palwd+GwHhDKQp6nSvHdV20FB5tsGs4mdHggfSNs3/eYVB/AWeGsXsJJPxU2jd1kgbvV905ivIwCDt1q2zNqBQOND0Mvf2bCozqrXK3PmLQvRAxvx45BMxFz3eNhzeAm7eBZdUtLHpvEjc/ZIfgEfnS5SN29SBCnRFhfoVFpw553r7u2wC39n6KYZpqgPidUz42f6OQvmXsyhGDcjC6Jycz/osKJn+WhHnJ4SjH/Y/LXl4ESkPcb+wH62DC4i5P9SUsirixkSGX1AK7+7yvNqolwcmahHzGDQJKH/gvZW07GCJO9fMwFiFQXtOqOWODQ6JZ+FQ22QCgqC3stdRHwFkdf0Y0FYfM8k9fPKjTCovHXg/5acYBISZRltWGiLp2jalubdDnKEV9md81GY6tc5SpnyWicdKuS2qVA8Adp5RYVEWAEwTdg77beGT5Yu5T5fAA8Fxm0LiFJYNnQE2KbCMexSRo8ct87oXx6YhrbdRIKP3CLSf3loK2L/ORps73geuU93rKQBRMZGz3KBlRkLfBQNOXT33w/JlXpeXLOIjmC4jcCSGj0MTTbZfP9ANGez6Fe18cGHgbndwQItN98GBuiUg2cHS733jH6Q3uV7Ayq3Q/kpCiMsin98HuhV3PR3eSYTMx8WjzPBmJnaw92pzWB/iqQ5+7DqcBPj7gz60FMoo4OR7B+aIPjh8u+2wdnQqSHYybRacoyPC9j9j+nGg4KUf1d1yvBam0x3fe22ER5Rhj+qtoAlxscD/253otYC/ILf6UwKIaY2yavhgRiv/cSEi2rQP/XfXfGXmw6F6rw63aIwP0XvO+K/EsDXaM+v9R9Yio81HgdOreATg9eyunaCYF8getDfbaExG/9lL3KZFKmFWZPlY1RgXj4XdzOo4R6Mme6N6kuQqYX80VGr9Og+8e8/+UdSPQELZjvUOvHbDN4fJBjonQwcHzzbCOhG47tF50T2yHMXtR4KiJh4M4lrzEZRL6R9hXw29EgIe5l3y6v+XA56lNk1JZLJpsVPBWwZGgW2qSLAq5kFSymcS6FIUCDp7V7PQmwHPcbyKfUR64tdRbJFzAIjW3p+cMLvdBU8hHLj1fGjB+O2oWqk1BJEfFe916WRAgG1Ff6INg/+2LBb1W4UhodJQ7/0wmtLzd58sqiaA/tGL1fEk4MnyR8rm2kz7XI5IvB+sQqK77JbIjItqqwnS+XW2FQweyo28bIAhDJaQXI0Q0qjKb9oZxAJiXVWrkPBBUppZeF3MjojDtQE2/oHr4t9xyxOo2AXDjfHVrGVEoO1SDce5KPZRXins9fEkGjUNG//lFRiGmP2fD1a1I8OmvL6OWPgkivDaqRlaiEHnNYsmZnof/5DF+Jvdo0HbgIetteh50Ti8FfH7WB3sdPoj30ui/V1vx2qQIBSliH93J9u6GW5fnmazzwmDcdeNELZmC8Be57nzY6ob8c77vxWZDISeWXXooi4JSHnh0lkT1geKDMKn6zERQW/xm0PuXjDiOPrLQfNoH75xFfDLMkkFVIH7Q9CwFKe9jjLS91wdlvvvt8LkJcD3nZ4aIEgVdD9nst7ydDeOPv+9pMqUCxtX/Lq9UOMrNSzNNSMkEk4zkxYozvqBf/2YfBheOwhwf9F75lAmvYxKuEtNdQKYgS4PfJxypc/0xH35FgHwpli93M+tBothP76ckFpV/4i2R8CWDoM8uD+z9evBrDf/V2RqF0n1H0y9TSdCRU/XvtASd0963EsZnotAYh+17y40y8N9rd1GGRAVxyfVTy3bhyNaQopPJQ98ndpWjh/9lg/SoVc96FAH956hh1JvaAX8tlif/BNTCHZmy8jNvySjSwbd1198O0DW4LnmSzs+nI3vvmhaQ0XhntyGZIQlkpJQDn7Tmwc4fP8qBYjrfJskSeVoSIbHBmF0voBSatFTRj4ZIJMRW8VUmsAEEamp8aSEIllWc/zXtRKGwRv1ZZ34EQcsBW6l3EeTYcjmeUsWiosmLd2prO+FcFsNkrUMyFFY3adQfoKDHe5fUeoMLwaX8w80BFSrM/g1qeueIQZXqDpeU+QvB0Et2TDaOCp2HZO//ccGgsFfPNz65F8Dyy6id6OtUOMR0t/ShLwbtfjj2ri+/AzA8+GdSCAHxfm9zQAAZdYQ+2hF/Ww7SSlPEOJ0sYOIRnbiUHY40V+XOL0qVQ0XU53vL5dng8+ceW3VQOEppUTq3GFAIbnplVkTZSui1jNqzRf8+ez2VCk5dLQJtb2UiW08lzPOvj3LaY5BAxLP4PS/a4Ieup3uRVg1oE8TKzl8goaeHbW9YarZBgP3Q/St0b/AHB8zsERIafSyaboRvg5GZW3bCatVwXXZO21+dhD72sHptvakCfz+LkviZYgi0OKwKRyORsmQdi5xzIuR6XdWfCS2BsDahmeLBSKSq6S9gcLMH3gtxRRzkpEEiRdXibQEFSWTyP68iFUPDxp7ehwYYuFd+WMonCIMCFw1D7p3qhqLYz0GiOTQ4YNVwmTGA/jxr42AXnSdF+NZqopaokK76qHaIzpN9RlWzuoUlkLqZfDd2bxh8+GxaZFmJQYu2xd8ja0qBAee54Hs4AtL+jjDV/sOgqUgl6/usFUB7YCtA686GVSexN51L4SiD8uqVzq0uKLP+WCHKXwGCbT/fLKlTkIruQ9Bq7YS7Z6aflkyUg7IZ5xcjdgq6wXKWaHSsC8aaaiky+8pB+EWhaKMkBdUz3vd3+doJp3rKsiMTKkAp0VlJ7zQFZbW8LNhvXQwjJTJxnQtYaBX6VFPig0FgpnvaLSUJzDyBW/GLD0g5O4xyhUWiF04W8sOJSZBvJcyuOvgKvFd1Boro50KMpg2Rd/pBc9naTNuABumEQ/yfxklo6RPTpXn6eTvu9oGn/TQgX78udot+nir6YXOjkArbHV8MkhUqIO3HdJ2QMQ5lhauHsZg0w9AR/881uQVwzotncewgAaVsxa94eHVAY8kn/ROhyXArZdZs5TkZuRZXrSb1d4De15vVFmspkHzkl+sGiYxcJG9Wf7uNBSG213G+Q5WAG3lhWVuPRcptEU99P/eDmW2P/xlCGlx484Q/NIeIrlzAapjs9MMa01NOA/EcOKhXPzbhTe/Bo3cv4pbJ4NfrjFfXK4QwLM0ntyoKzbFPcvw4NQCH1TZceihZoJecpO+rSESv3BvzIwUKITrXR2Htch78M9LzbqXPXebPoF0reyjQEOScw/m3EiJdl72flUehRLnIEc/3JAja0otsla2GshBYqZ6KQgm6PVLwkAjvmiPu1l+rgoq/l+5PcmCRTRVrrMdwN9z8fEom/kEy1F5rPHQ4nYIOUve9I77thsLzc3+9K1IAk+p0c46+52OOPc8MtOwGu9OaaXrbSUA0Z2LUwlPQzLntk50ueTC1T8pubq0ElHRFan8VYtDFlSu3dr2lczvj25nuaBr8JOd0k/xJqMHhdPyKfCLUn9TcUXvqCTZGhuctZyNRJs9T5YE3eCAvCdqfJvrB3sI+/i49LGrKIrPE8uRDRd3E+eijZSDBJOgxloBBYgkKE1ckB0B54OAnjAoN6Nr9QYaTiAYstNMdZqjgLbz/KONsLdzkKtut5kXPgyNnLOZ8M6glJMcJGadClBN/Vc0SHi2p3xKXlxyExp/n5m78qYP9Da5c+yXw6GKSRNnkidegBsP8CyfoXvbe806XbDTa3PaNs8aXglC95p/Q5nhgY7zHte87BuVY4oS2WlKhiCfLVXX2CTCFBYtZt0egT25qT+qjcyD/dEQb7Vc2uKhb9vBtYpDvvaVJ/rU+kM/ZYXot2QhKjAetbviS0Zme/uTvTV1w6WZFJcakAUSPqq3O2FKQ5vpWtaBeNlz6tSC30pwFK4mnd/2UDEf6uo8f3rMIAa2Jv1/+46FC0cfjv1ctcIg29v75A7oX7S2f6BTfkwZB84wbAaE4dMq0pP52GBXyPFHtOkoFFszKcP5lHGIVXNb/2UwFavGjKS7xdHAUc1Y3pHP1eIdWxvrJKjrHe90IlSyFg58Zzn3+FoESXUquTl/rg/aNEN/q/Ex488Ts46IGBamxWvz3wJ7OFaca4zj2ZENFxwnX1wL0/EycvrlQOgAHt45le7zGgfSJ9Px/uwjoXIvw8IzpIITgD4UNx8aCxjqBK3AuGkk9WVmMxnmBoYVDtaBaMRwPuip8ZQeHvjJ1ENt5m+H13hMsI5haOPxFoCFqAo84TbxXZt42w1g5dnizoBYeWzX82yNMQP8sGrK62M2BS7CBtX2pAcJL2n6/8o1Gl/4y6DcyEiFvSTd79EQjOIYc5pU/hUXdFU/GeSqjwbjq+QN50UaQFVkZP2aLRbfnras2X+JByupo4MV8GpxM3sVGuINFKhxqo3PHBsB75t7oFrMNTJk/pLRoEtH2y6ljXpcGAL7aJ/yUtIKB1NfxC78JiP2mKiWZntvZZpPWevk3MG3nW/XkKBEdH2V78L22GeKdsxraV7NhziIzJ0KHgCSi8IK+qh1QIJOQ6vyuCr6T5JUNNclodKdNPy+7A6qtF9Iyq6tgz3sHEV0/MvLVP+/oat0BxZqX9Htjq2GOpurc85iMrOU9DPZPR8G7Rp13V83cYbJeNSyvG4s+LcpdOvehHY7r+zyVolTBBbHqzkkOMlIa4uRrVOyA409ZDnbvrwKLsZybOdfIyPH8m2f/rAcgT9p4dCWVBnuySC/0KARkGcH46OLNZihaXKo987sGiNreohs7eHRXTUqT3N0OSrwdYxkrliASUtTmw0xGGQfquYv0OmDDzmn+hY8tBO19wXT6Lhk9vBbce/ZAB/CZnS9q4ncHmoVD2cIZMppffGfr79cB+xTe9rPccYfiPaed8uzJiEE4WI4jgwLXMa92caBnsMLAy9+aGIXyNXB5RU86QeXI0hh3YB2MRT3d/W2WjIw2x5fDJ/tB6ohQ7b+TjfCjWPfDf61ExDO2UKJeVQnmlm/Mw35WwW3b83u56yNQRUdOsqpNFQj5Nb7uCS4HhR9Wb6PZI1GppaSSmVg/ZPd07FyQoMHpNbs2PjEy2vb9c2V1Oxly3W4pMdT5A+dckNS0aiQSa2f71fawDwxCLPaMR8VAtkBj62sZClLIN2f+odoPMxVjJzW5w8Aut7bzyj8SmuIOng2k8+67zi03m7gqSP3LXjgmgEMKm02vU7/5wmD5Ww/TDjrfvZFdRU04pJ78Sv0xwRPKtoTUfkhRobB2M2d4TzTS3PWv9sazVrjBJT+y52oBGHtW5DR7EJGh1MpXN7FWCDvVKdw7lwvX+4/esNclosTYazp31oLgtQyv9O2MWuh9VeGi+QaHDMi/ijyXBqCzKNtBZQ0PabxsHqwpeDQ3d88qj3UQWhh0uhiLsfDzqfUMrzkevXg67snGPkDf41+MBfYhqPF+dXDSmIjcJbd1j0UQAWtDEFzeiYH0kUQ2wYNYxNx0Rite2BK+Pt2e+OKaDhe20IH7LtFIJ7PgTgwagNZDWM+I/lRIkVgfDFvGI4P3mf2vXiP4OYhbiq1zBIe4qqfH3bGI81ig5dOaTgh/nvl8zacW7ELzZ0XpfPvdqfbUUdVOEHD/t9cRfMBaKG7iUR8Z9SSw3Yms74CoX2E+zgp+kLWdJrQYTkbkuzKa39Y6QFjo6s7LzTcwMtAlVphJ54Ec3I+9zJ3Q93ha79F0CJw755nvWkpGT95HSwWTWiCNf5HryG8aKCyGx8x/ISDF3x43Z2zKAKYfRXdm18CqtbJ0mBKdb80VBNUTy8DhsCivLa0WLhc4uTHohCMBz3TNvReb4UN83/dI/hCA4V9fn6/g0eWvNgqMNs1Q/3jITfGhL4zenY/2OkpAKjiG8i26P6MQx/Uf81Q4UtfCinPDITOjty07qVQQuSH8QEKPBqY4FhvvOzi0a43wkmbeAa/kg9ikaKnwaMcjLeUh/fcO+8nJrfZDCDYQ19uSC7o8l43iUoiIa/GjijzdQ986GhMcVPOh4GZ5Yw3dQ5PGLzZq3m2HE/+aF8YyyDDH+LviWj0JPeS729jk0w6K/Uq2VfeJEB2Uf6RwjIROigRzSHkj8M5nc7JURHA13eg3+GARCnPhX8lCEPsfx7aHVQM4ZB0qrE/AoolZPZ5gxn64feQN9b1GMXj5NX1WtySjB0ItfBq/+yDofskTjHgR9C9dcHBxIiPWlIt5wy8sAVtU9Tb4cxRgDsQ+93odjXC8F95du9QMuhLHPUOPEaDi+ZXo/A08ypBxinDfXQqMnaK5M5eLYX+ejn9fJwb5FBmZMrOWgG2psdQ4pRiGQvxZCWQ6z8QXWRmEZsOuArY/pql1oCdye7+HcDhKFHW/WumdCbdlWt1so+vgjbWFgndsONL+PYUynmVC6TDTn9L0emAh5XcoJYejZ/8N5ZqcLwRhY3ExRycabL4Xf9L2GoMeiPRoaXS3wXdxn7qd54Xww6qxydeahKxcw7t6E9vAyZNZyvBcEWR9tMlf1SYhu5wt0apBer8foYWzNSM4MvPd6vZLHAq9IK/73aQJDMx0lXLdS6H1TQyfvB4e+TxofdTTTIMrqYKxGP9iMFnbcSkRjkZCBS4/3XUaYeRMC8tL2WKYyBsNigiJRrp7MvW4DQZhnKOtN1+LCi8pj3He69HoWZWt+O8ZBLnPtQoisUmQZnxgMrQVi8K4BI7vvU2FuMZ+ns86SWD8/aP1Nhe9r18aPtBQpsLadaFuN4EUKLVb2NO7D4f+5h/DT5xrgZ2uKqr7tXroUTRp1E8koFo3r8Wt+maw2n63ccCqHjKZrhN33yago0F9x5P7m+HugU50yqsOsP3xp6wfEZDRYYdvIUczwFhV3+hnkD8wXRVkiNoVgQYSWMzCXrfBe4+VM+nvU0H2HnOOoDQJaUk05jim9QE8nN52uECDh1zEwZIFMlJoqgxkZysGEvajVd5GDPQNH6PFuGLQMYc/b61EBmGUWhqj+7kE0rxCrykr4ZH1Iz/Onr8tACIWmp8C8kHr/JtPfdJEdIMngefUnSLoZHAP/EWLh/cin1me0P2UhmvuDtndDmyNZUoPTxZBMM5L/0coCXU2rhyyVo8BCbedWAO5BlAjm0ii0Cik8q02zXraFD4OHD01KlAMe1wyt1IDolGBgJzlocFuYI4J+x7QWg67gt4dy06joKSXd2S+Bw3AZU+Xhp2jeLhbqdvwwJCANq8FCmCmIyCq8Km+xzyCQvnoW+WsONTZztl1Z28fKAlfswoRyaHzzrNpvtcUdKE/SVy1sBQkzlO1d5lXwgWaUbXcNt1be+LvlSf1QAG/h/uGJxW8vh9Zcy6koP8kRxUrOUhwkl/ETr2BzkX2lz75bEWhtgisXXolEfgFnHXPWNKAdsFVIpAJi9w/6AzH1lDgzCBxX0MwDSwuiR87GB+F/rQ82fUKVwAvcH2PwwdNQTt9jOXPWwziaMR6j2TFguilVguh43g4JcVXNmsche5llVolnUsAsxJWDHEHBwbPYvvND0ShS7e6X7qXkSFLeu8EiaMRrBbv8bBSoxDru5UIFukKKFDspEbzN8JKOBvru61w5L/nU4hZXT8c9Ut5UTOH4Pvxmqu8B0moaXZ1WRjfDzkK0ofO7aOCoIClaOxDErp3ydKo4WkX9GUrhbLah4DsM8XDPbcoaHti+Cn7oR4404DXlWWjz8fCT6b2HArKt/y+94XFIJBtstcOr5VCSdpEBedMNCK9jcLIPe2B6cjUFbtHDVBS9JJXm36fdWMNRccOtMJxWbE3Wiw0OMK+4GmsRESOxSKGS0wIZjgcd+7XBAJD+KPgFAksunQ/xWOfeASckjfVHPlZBJU/inOMeXBoCjMXceM1nRsU8OcCf1Ig2cRI9evhSCQ7YWrW2lIFM1PKth0hCbBKsW8zEo9ENueznqn2VcH5lAVOht8EiHs5IsgmEYlCRe8xqN7PgSkrlbGXrlXAEXsxJeEfBn08uOravdgJG2JnqRXOpUDquyl5jZeCwoiv9oZkUMGiSup4nVA1mCWbcd+/h0O5NDS9pUQF4y+bM2rG1XBX8V3LB2YcysiWSrvmQII8WemVG9Y1cPIbPqZxOQrZ2Eq/rOQhAJf4uWeLrjXww1s+N0AZi0JkPu64+BEg0VD8sE5nNYjVqujxX8CiYX5s/kurZsi4obbuP5wFL5PtijIPE5DeQiaHwEQzfGl9oLXikwV/k+4f/PqEgKwcbzhr4aPh/YmDGiqBxWCR4+BAc8SiWiM30x17IuAWWIhejUUQ2/Qv6R47Fr0vP5sQfI0I4XdSTjTkFMNPwd3XV49ikdaNMZKQBL3nku0u/uhOgtJBZldPbizy7BR50dvVB/e2Vms2yxKBGp/wWpzOCQ+G9bTZ6bn6r4DkwTfYAFvHJ2Pb6blCxxkfK3MOQMBITelu8XpYPl1w2UeHiLTdbDpMq/oAs5ND9twXD6qdRU3vu8kosi9Q+sCFBIjZnxXi9S0WPgTd9pOj598u+nmd/fsKOPfayEx7rAHe8YUQxbUi0Kyx2CeB2Fpo0OrsFaA4wA27kx0NTFHo6nxK5WTtAPD2nT0X7VIJntcqSPnf8Mgvy4Ev5VIHOJYns16OyIaAiqmkag0yOnZQ4vlBlg5YZL5w84V7JnDs2eX+5ywZhd5zvHkT2wF359vFA1cyIb3K4c2512SUfuq2kyytDb5Vs37h390IbBpkJlszEvr4WOZQ0XYXnBec1DA8WgrZuy7TSB4UNNCnpfAfczdMNFZJGc+UQm6EevJtbwo6AdkuyR+qYE6Xw7+NMxkeXsRsOklGIhKex0V8XxUYVW15GbqlAO3ZwTvRSxGIVVY6zPBZB3wPOkm116mDcvPC3TdMyUiAwVnL+UQHRA4VhK+J1QPe9cLiiCwZHXC3rB/5lg8P5K8V40bL4bior8tEGAbNzdvIPaEWQMvrncau5jKg+g/E6XhhUH9lFLskcwuwH9/Ac3ZnQOLDcj+qHwF11gnstnnSC2IKR0XlbUpBlviEnBJPQen/PqNvlF4ICc64oShTBg8P/McTGk1BG39zD43t64U/OZI3cH9KQewNR3hRNgV1fThvY5+CIN/5spXN2RoYkl68IxJD59u3uz6z2ZKBdVjNXH22HHK5PLIbO6LQqRa2fwMGRNDuIPqckCyHj6ql1DuHsShi5e9vEz4KxKsMCoptlYG1Ml5upjgKvSzQWli42QvyPgmdsQLlsPly/8n7yRS0Gd/zUWItGnbrnj76cCgbPPgnOEqfYNGHgmv/cDeJ8Ha8ou6HRzbMyN79+fsIFi0H34h9cHQAVG9GXNgcroLsE1NmDreJaH0ApQ5Z1IHpxK2L+o8QSPDg2UavRSE5fvLr/QJ1oHXf/PqN7gbYlbb9b7dUFDrgnH10o6sOvBJKLk52NcChmrTQC9ZRaPivPG8y1MFq0u8a1YksMHkrsLmjGIV2zCu1B4abwfi3yNAenyqI9E//ftqMgMZe6UsnmXZAwmjm1hGBXPo9hX50NiYj7s3ssOrgAlhr0fCorqoASpdeNNYHg+IeyMryTbWDzLx35vLdbHi0P/eiKt1/X7b1rn2a7IGOQnaO4V9UaMwxEGbJpyCGlaGAVtdusPiiz+QiXwYrv6xrMCQKcgo4M6Vv1Q1PnX85vpEohQ6e63wOeApSaVLkOMw8AB+eb2ZJHHKFM71DVcftiGgjqSDJnWUA1lavst5m9gHsWl6KtRkRfe5N9pqc6Ae0wfzYO8sLmKQbGovbiOgw1yunTdEWcNME9cvPq2F03jxSIJaADj1han94pBd0u687nHpBg466q/OZWRRkEip8tUAgH87Xe+gJ0z1Amrkk9mc8BqGnMQv+pgWQH6+1x+EkDcotiIm8/hjUylWlnLPcD4w8L/TOR9nCup2g7XI6ET1Mk6gN5KoCSQv1qSxre3iOho2s1yPQTKWwVcASfX5/HyqJf5ALtb0FZWIuFCS/ds66x7ASar2YzWjazyD/YKODTVgEirvJd9ZMLxoGjrWSOErq4c/Xjd4KNyziFrpesFKFg0OKccm01TqIl5pPPxyBRe/8lTzP3uiFhDes8QWiDnD09/kPdfR8/vuW/KthrQScOl3mVFXSQKOd+9DPFgwq/jJnfPZiLpCu2XgtvaCCUHpJQfk4BhkCp6Pe4zZQaAvIizmZAuLP+GY2BEjIRAd/OKi5DTqGDvC9+ZEMewmfKsMtSEhx04G241oKH4X9D1vW0qA7glfk8xcMeh+kkOV1uQ8mdI9/4GGnguPeMRcbbQpaSsQODTL2wc2y16NJQlT42/duz4QrBQlee39fWyYbzD3SQseaceD8InPmlnw4Gp+dnZ+8kAtivUNa2lw4cNOb4/aZwKBEncc3MpPr4L3eFY4U1Trg9k5KljKKQkvy3ySyNPNBUsswmvQMB994t5sux2CQKceAyAdMPhz6fjOFk4EIL1QC3gvgMSiEc/FXy9teaGE5q337GBWq/jsjjydTUJV48s1LNr3waG/nCe90BFTp6tyMOAqKYrdDzvbd8N/frKKd7Gww2lbirCFQ0NXTKirvtLtB7N+z3Wzf0wHvtO/pmUgK4il0/WWV3wNXaubLtNbLQFhmofUMnVuOE3oko1i6oeQGw1EiNRtS9XRwOW8pSOD0x91B+Qlw4p3OtHRqFVyRcTmn8TsS7eEeZjRdbIWn3XUuzeJZUEl13ZszQERxMWGz+jZdENCdgs30Swf33TvlDroU1N0T5euwMwCyNS9j407mgaPJP2OqOx65fpE7s6BAg/cv2z6dy6KBJ9f6CKYBh65yxwzxDDcBf50+7crYG8AZrYo6ZeLRU6bHMkITHUCLu5j4LJsGQdGF3vbxdH80yPp+Ur8TZszPBoYxNoLmofVYv3EyMlFxSX52hApyw0X3ZgVrwNJRqmvgMxbt6c7PZhXpB0l5fe6NqEII7sGXsUuQ0f2bcR/afvQDn83WpGVXOcyF/dcrHUVE1xa7JSu2+uH1m8a7S/MV4C4dfXMuhIg8zS102IUHIHe3cVTMjQrgOsRvYXCOiC6OH7f+/KQFPIonDk6J1IDPF59MoTYCchD+tzl8pBDIbCSMSFYp3AnPCeN2w6AclSrBJfoeznjzrdXreiLkE58/VNQloh7nX5mFe3qBP/Xwm0ovArxYVjc4SudS1yOmF0LaBuDAhO1jm1+x0Kl1Wy58Eo/SbmSED9YPgFPlLdlU3kQ4rbgnfH0Nj7wzsQfD2IKAdRAbv9LbANXelaK4IBzSPKv4UNOkH1ZGW71rPdKh0/vB+MUWErryUH0iQiQYwkRZ/NUYG6CQ8uEYgwsO6Q3dVdroQrAHX2w3GEGj+2KYEaESi4ic0U2sai2QzJG7GMXkBf+dNk+1LiCgPmv5K3setMKTRLmlyfA0GB6hqSs4EpG/EMekrmg3vBjRVmG5mQbPb8i9PR5E388qe0p3V3dDS5mdgTAxDVY/v3Jype8N3a/hv8OwAwANIRqDuyuhXdPpwNw1Apr4Zv3QxTYaWlp47bj/5cGhlOieY6+xiKZR0k6z7wCx9Cw7zvs0eKKs16dhQUb1I5pH9j4uhusyqeoqNTRQS7cSKqB7yu+2E+9b5XPgH1PdVydKPvSuTc6IMYWjE3+zv3SLZUG+tEyWpW8+zMqOSVY7haOAQ58OWFh2QRuHownP1yI4qNa4sE+HgmK+On7SedEFE16ccYFzxWClIGMHdyjo+euxI00/O+H5c85/ciPF0J928NuqIAVZGk1jRTY6wdew1wJbWARJtznzKafpvXOqrECW2gdW7l82HdbqABaFtPIaySiHNXBNMLgPvMKnxFwW6oAjSfHLQ2YKah4xtpnY1wkTh53XNRnLwWwmMdqyjIy87A/h4yXT6bqs4dKokAx6io8dgug8yXRPu4makAFbChoHjOWSgVH9TWbuaDg6eFVsytu7A2420BjC/cJgX2Yx/xtbMqquC1EX0eqAxJZQiY+ufiDQ26h2X4eMPt37b33ONBWuMGd2DNC9vron3DZ2LQLV1TZMxncmw+ljrk45y3Xw48bOXlOtSHTgxPPAG3oVoF8iz7/wJxmOJiQuM+yPQLIvSjpy/LrAVjnrXZpQHCx8uO+makBBLReJxqk9XeBoeHz6qxcF2G8of250oKC+FdNoKb9GuMuwvrF9rgGqhKaeXyyKRqbWFTY9ofT5F+yTYQlKgNQ0WVxHeTRyW9Az+rXeDwdnc23sFLNA2ca2ryiOiA6eIxudGesHW74JQpdKBiibcAU69hDRgS3LH1v+FNh0fHPprF8dvDZPDb2QFoXs7xh914zohGBq7/c/HOUwbb6xo/+DjM4YGCv4ixHg3TMdEfP7pdBjodkRqIRFf1M/P7f0wsH3w314k9wSiPpyY3yCgEVDLg4RDbQe8CB+ZzvB7ABL//rZXhVQkB9Tj5fAFTwMcPnA+Msy+GEokx5uiEXsFU4an0QG4MGwbpWrQzlkvfB6ZyhORA38efl+Zc10blbkd9hXCy41r+XltQiouac+MfRFM0xv+t20rq6DvgVTuZzjBFQ+4XdaZ6kZenQjLjuG14L+nfm6bDsCEnBwT3eMpUII0wbnvcJkuOttOKB3E4fapSNlmC83QvhaxJWwnWSIGfyN3/SKRlPZ/kI5wlTIxSrdYd+XBuZnJl7N/sQiD/7yegkLKsSk8HVznkmHDMXgPKoQDn29XLR2/guC4rnP3etRKWDHezH4eA8WSfOceqapXw5+d1yb13PqwE9WUW+NGI7Klbg+Tz8cAA1P7bwKZ7oXjz1o7CohoMZyt2xhyQEQ139x/WRJEVwX2lXrxElEyb2/mzOdO8CDtZKqNJIOV1LXP/9+SkYZrtGv+4VawOJlHYFZow6cCkzRPJmAdEQiU9hEm0A1ONzr89d8mDmgORsthkee9xJPnv9UAay8wPjwRRXsjxfn8NOLQNFuyr/Wlmiw1FDbup9YAYeZPnE/U41GIXPyXb966F60RZqqiqyD3EsT1geWotG55YcsxM1uiM79hN6hangaWG5jQ+e6VrPLeoF9deCTpRmGIBn4dAerTZ5Foarajc1O0TZwrpijxtDn3a6INTn7LxE9us/SfU6uBeLZu44r3i+CrGZj8SvpdP+dvZumGl4KgZeNK5mnCPCYV5fx41cMKkvJ/zdlMggarz667Sumwph5xX6VxWj0y/KnMHt7F2Bco8s3cxAoXKV4n7Sn88/yuLj3IQuI8a++7WKCAbHL6j+o3tHo0PL5IkHpDnju6C8jQoyCPY9mE9ouk9GqibKrU1k/LGUl3W2Uj4dokR6+pBMk1ODTrzbm3Q/SA3LCYrKJ8FdtRnfRn4SeXbX6EDyKILc7T1Oziu5NNofMQqhY1Hfn0umwZfo9O5HVVCmVsBWrSpC5G4EsZjar89krIKXh+vLI0Sr40qVB+PApHN0Xa3YVvZQDuXsikjF2BDgnpXDBbE84+nsnGMdZRucxRsZMT3kyXAotdHRtx6An7EoKuKU+4GOwfHK7Jxd2vePq/RlGRnZ/1D+VUApB0hWfGPo0B64s7dRyOGIQn2RiN2ZXP7R3P81MFiiEdcRAK3hCRsof7K2469rB8+a9VsaKcrh2Rouj+i8JTeoMJH4u6QJKFPdmWSkBvj+wncyyonuimrDjYFo1UA+U7819UAg9w+3SGs8ikc3EtGk9/X7eNJW+58jIgTOZmb95A0joVWDZ1ElrKsxnSQvzHSWAj+ZxRx0xHHKWOCDwMb0ZZvzghHszAqZN+4hCVQLi3zEZSvvXB1/vxsmVqVKgoTAJZJ+RUaM7+lYY2A9rYRETn7iLQPz4i3V7FxIqHPrEnenSD3321hcOShRCgcqp37N4EnLzqxFhyu2H3X/Zn/qoF8LHgNPPeC6Q0D8/fosHUk3wTDl29q19CVw9ZHOcVxKPZiuvuSaapoA+xS59ZoIKtcIvDg6diUR/057VbWwnQcFq7EXleiqEu1n+1/I6EgnFDTz4L6sIphm4e50aqkCdw1g8wwmD/BvbJUZSu+CqzsfHNOFUCO9bcpwzp6ADNs8P/+orAYsSYa88un+YrVS7lTRgkLPZJ7ZHQmWwzhTTDLoVsHZvrFNaIBxxKLIbDuZQYfout5fiySroyv511+EBDm0N3k+RsGgG1cXmXaGLOXB/SCQrgp2AYnYN1+jo9YF9r8XnMyy1YKng8WdDmYLwV7ObTSL7wP3G7hQp/lpYJJLIOv/ovpkofsi+pBHk3veaj1eUwEtXvezRwWg052wXZsTcBLXrl4SPPyuFXQ9Y7z/kwCOTrK7un2WNsNS9OLJrrBhu2WQblA1Fo0v9PAyv+Pvgv/ZLyWLVCK50BXkNPKGgke1uU51ZuvclmDz6/BhBpkqWwWNfOid7sY97FTZCYZp/eldnKeS4zAwX90ejffih5g0612pPMSSzfK2BXydLNGpuR6ORSup/rGxNwMiPq11QTocHblcrrnLhkSFNsWWauxfseGajPWxxsM2Jf8tJ3z98xb9CJFx6IXBtNVKbNQpyt/FXHsVQ0P7zbv4/TvbA+8T3xXtmq+D1cqRkSy4FVW7hHt9MbILBw3/fCO+vh3kNFz2Ft3gk0j6WUGxPg86kZeYy1mT4pvo+r2UBh6rYLz9oEKmGa6vnngz7ZsLuV6/x61cjkcDvgOwzRtUw97Z5vN0vG24t1bgr3Y1EHylyPsfpPL39X3WJ/yaCxmVbbTfdCAT3x/t+89IgmHmWcuxvLESfOlGjlIND2wm4i8rQB2JrxzwvTuSDlv8XyVc3KYgiFXnc36gIeBZavSf6MuCXx+NDFHu6P/J6z2lKdgDxVIrSmHkRvMd6RtYA3Reei73tPE+G3fU2lG+vaoHU9vY8/2AU6tEnZKo0tQPlahhlnkznzK8Vf34xktHzndNMj5/Q9xJWoLvK3QGOxcUfOHI4Av032bzdMtUEyYYRNqwzBLjo+sWlMR+POOUsx0PHmoC8/tJK+AgO7p3GfsjPwaNWsYGXDdLNUEi8HHkzOApWv9c9afmCRxJax3YrSNFAw9hZb4q+nx33/gm4VIVDsPJp1CC2ABxbGIrSw6vhUUxvkROdVwXD2j6MLuVB4X3X+elzNRB7xZ1CS8Wg8U1bQeeLNAi406sXQ+/nOftovtu1OPR3298PJqnAfdpVZ1ifCl9eihEU3HHohfi3D+uj7cBBVF6+blYEenOGO+1sZGTeVjXOw9MBKJ8cezq1EApJ+209Zcjog3Xw8mJlO6h/45T/Y1oIbh9+jSn9ISHGo0KTetWFkI9lVkr5WQ1cX09yL9Pvv/VLTsZWbDYUJX+g6cci8EcKqsz0+c3rPSbJtNEE6SF/uav7GsDtMV69qRaPqJlhb1SOpsO7Vxn3x7yqoP6PyuuVOxEo9vYxYlFSKlCsfU3bdldB+j5OqvFIBGIISF//NdMJ1QqibZMVeaDXdkW67zgFQQpH064ffZDxw+P69lcEde0sGT9cyOiUwXzPcEQqsL66/Zu3MBoIb/8s8UxFoNKNF49D+Qvhzpm3718uI3jTssvnuwsGXftaUX67YgDyT+/8O0uqgFqtDr67O3j0YOebQUJIHfxlv95jOl4O4lqKRVfvRKHftElv/1kEL0SbTvGz1kIZdfnwWisW1a+dP/OAhwqH3og2JJXWwpY6RvrQGhaFCkJbxo9mcCYW+teWp4K6UX3jmgsBFWFLRLrfNcGwtd33rZO10KhzcdIrA49m3CZK+pVo8B9tc9B8Pg2WSdeGviEcKnWO2uwzrAc+Dd/92SPlMHow+XIYKQrpN3Q/fTReSN//Ebwdd+vhl/jgyAn6/9JgWCbxOLIQ+Eh7Rj9q1QEtarHDn96Dq3+f868SCgAfyHZr8f8Ozjuc6v/940pFRCl8MpJVRmTLSredzIaZyshMmZklosix1xn23uvY+3WOvVdoaVhRUioiqt/7+/vT+3Kd6+1+3a/n8/G4rnNhbIdQjR1SN7Zvup/fsE4ODIPPs9Y08aJMsP+qeK8oj4R+Dvf4bp0cAWbPzEm9W9kgcz5V9g+WG7999R8mKPSDkKiboQ5zJ4w7CyUJlBOQ32zX8vVTZLgUJcaoRCyFfcwdWZWB2D6neVxfmGqGB/duq1y8fwd++z4xy/aLQ3Fsse8/17XAzqv6sCC5e5AqXA/MbXGo+1/9akthL2R8bAqhf9sAm91HeqoK8eidocsbPel8oOeSF/y0hkCoeVL9dA7mIyX20b/6x6Hquc8p/bkoWIoalmn5hkdSH0xWlWeG4eS1hxlzFCznmY9aCxeQ0EfzyGD9z6lAonRrozoK/Ccn/vnl/Xg0RjdptkWigpUaq47Dz1wQFdPstz6QhIJiqjJeL1HhzENpBlPJHAigdb6ycD4JifDlF9Hd7wLZMN83Q2yYR7QdO5dpk4w0DJJtBEW6gP/Yi9/Pf7WB0p/+ci7RZKRqwXbWaHkcJOkP6sv9RjBxROW6RhUe2e1kijHtEIGBQyve5F4SPOZZymltiEfWu1FP5YJHAF1hy/GMaobhkm/zpVUklOis7do/NQCR3RcXUhpcYZvm8hpPKuaPRW/3lDc1AI9RavqDG0kQe5e14ZtSLGq5JSXIih+HIh5fxrDXRWBZ/+tUswUBfQxJYeJQHgDe9H+GD7Bc4rL8tvBam4imfDoYv9SNwDVqg7HHLSo0ebh8/ob5y57QXLH/SsdAtZDDI26zFXxo/7iOvyOiJDQ/pec4Bq4HH2Wf/q8Ncl+N2TqKYr7zg8N33+sxoJU48Nt8rRUyxC1v+WURUa4N+uB3CsHYnriImDMNoG3j+TddPQHRF3UFXTHogjfzOwNnQxqAWH7AM0UzGcWssz0up1LBbYjLJedEJQQxEGOcBZKQ90KnBv5AIRDFnA8zM1CBP/Ha94EDschX2MYhYKUAvGh/HDaWx+7d2ZIXlYdjUfZK5Y3BoSLo5agSsIrOhfIj+uviz2LQSyfN1cDTRWCyZvCsdCUfnm5FLhrVxqA9hWy3HE3y4cq/77ivInmADOScicmxyOSUn4vI3V6gMbqukulNhBcNiRGtj/DoubaKZMy+EXh3icHCkPAAbHTcfo+WkFCM38ofOS0i0NPu5RDTrYB7wj0aJ8bikd+BHuJIbwqwrPn91taqhMHQ+E8HTyegKA0vM0P+PpDdsCcpY/kZ0p5dsf83HkX8l1ll8roNSuYJO4t/02DtGsPgxt141FqRMewlUgNLTZkbx6YRqOlUHbPOiEbcNFss18TJsCQQ5itQhT3/4Nvv9gDj4YMe/TLNI2D47m61lkAnsLfqmQ5i53vuWNLVr5GtIOlaFdPJkwUHQum7ztPEI242B8OfQq2wpW9SkJ2UA5F/+vj63seh/u/HjkdGtIBn4r4Mq7YsKPDR//uvIg6pF1PqVDxHYOnLWxnz0irYOG+iF47t7duXjyiKv4eh8doyQVa+Cj42POyfxbjFk8fupVPQMKg3ffDaYquCfYXz0xZEErp0INHlm10bFHP8IMuaZAHb163ZaO14tCdW4sL9/QNgkH5v/C+uGY5/i34gLkxEHheyBX3U+yHh4bU9VzQbwKT6I59WDQFpeVhFBpNaoAbXfuptciUo+ZKMo2vj0Kun71QHGnuBXoGadEUuGbyXibRqNXjk5mXsRX0xBpD3T/urAQViA3bTCnKJ6NukQgh5vheySaEfxzwJsDR5/ZPUGB55ub0/PeSfD0bmN8v8x+JBlHzleHtELCI8lwktG2wHv3108fazCHg6+QSK2+NRxpTdBY+1dkjt3sgsv4L1JuPzNv+BeDRqbEu/9GoccjxlrJf6m+DfkK3l3BAedchEuOftmYCc7FQa10+NcFK18dqYPx45rPnWdAm1w4iA2D5aWwTuxUnL98Lj0dF61maum31Af9lN7cpiO9ReGJJ7xEdA+5HVeUbjFChju1xLKK6CiD6u0zLyCYgaIWiuUJELcmEDE2HYe/lJpl2S5opD+/8lNtRj8x0ec0kfEqmFL4NU1wjbOCSdLHRGYqUZXq11FYua1UCn4stW16A4dCQ3UP1tYw+0/VA+L8yPgL/4SUL2XjwKkNkjWzxDhUZvPG9XaT084E4165JOQu+a9ZgZFTDexv0HxbergHnYXmGfXDK6FEDfyGeGeexPg+KWs6lgdzbb+aZ9AuKpVqGaJXbDov3EWnZvPcxw5hekSaWg940bxwcru+HU4TY6xcY6iEh5eoZDOwXdtC871P2oETRnGy/Y21GgprpBkZwZi8im62pFDyiQ1B935ObFKni9fcPKTj4RMXsr64nVj4AteZ0SsvkETFKFZ9awe8HltM+L0X8EtD6v+E4nB8HmRyefdGyfkwOfF7tvjgCN/kR7aF4Q8Op8PWOA9aN8Jr1hlTUFqhskpmgtqsElppt4gT8R3fo8kaz3ugmmk44Y+xXVwPm2kRtyEnFo35d9kwJTTeCQ8oP3TW8tZARfuOUlHoc4Qs71O0mMwJ1i43dm7QXgc/JEyb9yEjqlgP8wxTwGv3mGgpTOFcPIaR8BqgcJHeL2tgRDzL8y8+9/ZmqEIaMLc3NaJKTEndKUXDYEloV/K0//agAF1lvOVg4k5H+V/Lj++AB8WNt7eNYuG7p+Jd7RwjgwJy5FZqW2FpCyeVjlh3B4E93/ouhPNIqkT2n8NkICmqxrURK4EhB7K7Dpl4pxEc3510zPBiD2cfWJnsA6eH9w6eFpTyJiWan4O8PdDaYM8TFJplRI/SxmM/c6GT1Sad8j/IMC2uXWbA3soZCryZ95IioRCf5rKcbP98GjIOPBOS8cLLzbJ93mS0BRAhslROcBEGk/Hp7rkQXF4fsvvbcmotTDY98dk8fhZ4nKwNAfAlCO5T747wYBGU+lEGhPjYDPee+fA4ME0C+jZzbF5jZ7pHqfqMwIEE97y6TRJUNZ9bt7ChUktFYjxyaEHwEWkyetuh54eGRRLZqGne9/lXUcFx43AiUqijfALhHGD90c/JsVi46WheyY1DdC34zNQVP5Dkgmu6WGt8aiKG9y8SZDKyg+lzv4yTsW4rsuiObPxKF4wVLFRbsW0DWVI+2cToTnHyWDG3PjkNv43+eWl1pAbiJpX1RnFNxSLM9eTI1D3KNT7D0wDGWNZga7FdXAIpgfWxNNQu4TgsSS0mFwCtt/SkkI850nFjr+WSR0V9z0UL5IP9i9sNt7c5oMYW4eHS9zCYjbaSYpZW8/JBdVqf2ZqoG+/3JvW+EI6J5x+s7FKifQfuZIDtxXB9xnLrke805CHR+u5F4SRHBxCzf+gKURSgn0AoNqCWig1VizJoECcmWbYhnHKWDX/l+zrnYisjKvEW18TIEf5lp65BAKXOReFaMqJSKZlkdOQeYUUH7k/q8C650DEX/fW3InovL8sEb9h93QWL+WyByYCMIsmRr1fCnIQZS1Wye6G/gIjfV3pePg50Ob3vPiKciPg+wa0tANitsFC+HNKWA6r0STr5eCJCb1nv2H8Qk657/5+nkimP+ZefULu6eWzEO/XllMwp/51O4F+yJQdDC57v01CVUc9n3LHjMEbaGHvmZ3l8AEuTvrrhUJ8du+UP7yORdYU+Jn+391AOtAhNg0cxwql+uNerI9AmPl3afq98fCUdm5l4ewe61DDnTxsRoBAghon5uIAzqGAN+D2J5MhGltPZZsgG9ZDxeDpcPBaSCZlXs7BvFdqOeSTqiHPMnFmIjNIBha9MFnVMcgqW2WTRuqA9CFPxtrmmkGBycVFif/JET7iMaPM28Qwua9jWYKm8Bdr4V24B8RKQv9minu74YuxzuXP+9QMH+1rK8yT0EaMoo2bXisL42afGjbs6DZ0n2fNMb5pfU0IqbaFIhRCVm8RIkApgSzS0aHExH7lu3R2zRDIJu5uLH5qBl8azwiA4VIqDXDqI8Z4zFcAN6OX6oENPRKtq5iPFaV6/GhaLkHAn6fyJz72QQbuSqGrIJ4xHi0dPWeexEcOqDqNsrbCTTpO4zNWTGIwZxn8lbXCMRaL75PrWoH/u3yS7exc9H4unbnU/IEOGU0vIo+VQ1NbI7VJyAFlWqGTHTfGwZh3Bsx74fxwNP6Ozs1hYRuHesPGzw/DMmyP3Wzvlb9f44dxfZfTa44sk12DPZuH3qlkkgAhoNqb2pMSehavBDR51kfHDClDbp/rRZuxe97Onwe2//hFqUd1SG4Qj9rpPOtFaiOcUKiQEKhu3uuZKn1gnGWkMJd+VZYGOXPHrHBI6a9fzT4fvTB/qBozzPVtaA4L2hLCCGgGOWYZx1pHTA82o0/VZMPWjeS7kkdSEAy3H9s3oaPgr9ZkdDbFCrw2g3rOxNI6PvI1AtyZRUc5pege/8Om1ux6R1N92i0/ds2K4vaAFdOW/myjcSCsmagl+WFWGRHXzWEauthybLc1rKlFQpiPeP6UQxifmEnWtDcAMX7F3KfjbRCrfLGrTvKsUhTf+uZzOFe4Mpsdle5Hg/HjQz/LqvikR5+8vShtV64Ecb/cRTrfZowC7LgDB693epQ/63RDgXecbqG17JgKeRG+Ie4eESS/keqKCHDalGgtCFdPXwbNyO9j4xGj/Ysv2HR64dn12dIDEQK/Dqhk4ZvxOYwHTKXoTYO94UvVLt2Z0G75uMB410CSnQcW26WrITzHJI9JVJt8LX8gKRLRDTyyNn6JfKyAJpe1TappRVDrWq4UAMr5mtyPAW36org5Y33J2ihCNZOu+wyxcYg62y8o/pGMpwp6hz7eKMGAowid9yxPfwt+judVXEUJBz+dCx/eQJ3c5TFIZ+EzpuqLXlEj4JNn0aO9SIOJjo+rRjhSWjYcTXW4Von9AqqtwUerAN3Md5UkZgklE2tvshP7oQCk6Fs/QNkUJDBFy5OJKEXrAf2r/QjcNVNvmd+oBNYXDtE7tUnoIqNxR127R44zmFP813WHVItlqfjq1PQUDlebGi+E5KIZrFpKR2wJiERZPgrCTUE4ydlxDpBStqMGr2YDqS6HyHV7knoareP2lfaIdhbzfqS/KEYEg5Jaa0JYx5dVTREa9YKK6MZA36oGKp4h82rvsahtvfkCNrhPihJ931vxUIGSsQTL3NnApKRTxKbV6yCZ6Gcf3J2G8GBrjT9jU80Oqr+5MDEvX54viVl1GldC+o8go24EQJyZIy3Ypoeg4fdI0455dXAFHHFy72QiIQZZ6TuJvbALfa1auWKSnBYwu/oLacg4RfzyoX2jfDs80e+xPv5kH1aYJcpIRYNXbnatC+rB3YqTPZd6quCGBvtW6LrKYhlau7m3sgheFlvoMutVw9sAk/ima+T0EnHHQ4yaoQggncp4b8YUM1JbmOixiKLDo2W//5QgVW6cp9FNwVYNxSoYoZJiG+5Q3P5aBe0szLWuolGAU9z//lJjmSkXMnO0dVCguflyi3k5ha41vN+dn9GPHKNlfu5QhmBc2y3Ocsvk6BOvmInCMuZt9oLZVzfEJgpyatQHiKYmmLjTB9PQJJ+SO/f6VHw5mI3H69Igzd8kmnBhVhuR+y7tHCyB76JtRzbvEyAYWW3d7YpKahA8lBoVMkA3ByhjHWFYhx1YiFBNYyImHd3zlUIDoCLFu/4Sb5GiGJ/dfykEhF1GazhudlyQJNWHR/a0w5ueOtFS884ZGWG7oryDULmZVrvaIkmWL5zvy2dgnlEStr5qK4BEG1oEuQOz4QPvD1HWBKIaG/WNdyD172gqHT1ZdBkGhww6PUqG8Aj0RZNx8sTtZBY2GizV6gY/M+eGVw7EIP0JwZPnrs1BpyRrI/+ktrBTuHgHV5pEmpQ5tmJPD0G6peY7fWx9xHMHx/0sCGh3n3nzN5JFoNS2Ka0lmA2CGgyOoy4x6C9d9W+0LAMgc9i+NhB/wLo1sqzUjhLQi/D4kevio/CRxO0Nf6PCj2rvy+0F5BQyJ7bV2MPIhj+mUwmbdTBmurB2+ISCUias7i6h7EUDOyPhfknZkEsx/YkO1MM0tVKG1K06gHXMK+UNyc64C8SO6lDSUHJsfMJPTUI5uImOqP6MiGrK0ywqSABLZs6ekVdGAZ6C8clbpoKUK81rfXA8h+lnjrdbT0Mhrvb/a6KZUBe+vaWLomEWOu7LgzRDsObnEbTCboqYGxWdPV4REKarU8mnNwQWLMlf5zsqgbuH97R93wwv+a91TVN6gHGt06efNp1YF5k+jrsSwq6lEMjAe9qgbrvztdSpyqw3vmOP84Yg95X01zVW2mCrUD2Q0pDddCXwLstLxOHjBWel8g8bYYy9g2u6qd1QD8RyPHROg5VNIw/Xxlqga9ipFXvtHYwynb0kO+KQ/We9IsmIQgIspUDfMZ1UCba7304NAHp8/ranY/pgfRUabUnqBrIF7+/z11IQQufmBw/PG8Aj4zW2b6npRBnHb97+2IsYpoeSnV93g1H/EJrL5pQoY73SIezdQr6/fGhfaIyBWxNGOu8z4SCStcbtRS6RHTsxdHqhKFUQLtxa3tvN0C7ReDTRf94FOBdV91clwqTvz76v9BpBJZrrsbLD+JRiGLqLS1vbP8PFHNMdlOhY5+sdJcDEVW5zP9z4h+DhP7P7kMfW0GdQ/6Q220SKjonONGPa8XuG1chB5UCPHN/C0Np4tGu0hbvAdYu4AuRVcHfI0N0vHxmHmcyKmLpKu8wrQfXH++tPte5AJ2D1wU+QgyyzQqiadqgwkk5j/aIxlrATVrO9VxMQpsrYbzfBhqhJMHZZnCzFg4bx6DwXoy3+YRo76s2QRebb9F8ZB3synf5idDGIc2Jc2o/nGrA7tMNinwhFZ5y6vl/KY5GZzoXvlHnhiFwlazE4x0PkqlhOz5YDsjcj4TzNWTYe/RM1LYaFQStefwZoqIR0/17HS8Hx8Df9obccm0SGF17/d2njojuXo3uZ09rBWGeYgceHBVMc3Q+tuyPR9+Zj2Y9wXjYWeR2+1QtCUiHNFrSMR5+E0C1DcD49smIto69FIKk5l5tW4xvC1sO8YkUNAPv3X6LMe1sWMv8UGbtEoeehttealZJh3iithx1uRE8k2cfD+pin3/FYNLtQgdwFJZnBzcTQJ6Xz5B3KR7dFdQ9ouneC9fDvwZUuiMo5rT89iYEjw5VLrns6A9BwvOfTam6HRDbe+iaC+aDBt/Y7s7GdMGaNdVd3CwJhErGcoO8k1HS59kE/hAqTFjMXub8g8A37bRVyI9ENGWn+yo8ug7uKu70KpzJhJlyi44NnRhEa3757wDWU0FezPVXyY8go6zt5wzWU7vuWc8JlCrgR5tLhgF1MBoUl1fnFo2+pAWPer0eg/fP/kTp2zSBLFPpz1eZRORy0qfNYqwXHjOwC0361MDi83J+sU48ennyjsHBP/0QW8Sq9syyAHIzg831BYgoro/n4ePHrrApPsv1rqACGJ+H/rVwTkLqifPrVkODwHb675srF+ugJib+WSwLlnumKw8W1IdBwmhRUbfiKXBICJEFY0jIPiiWzqUhEDJS+s4/Ma8EFWnf4qz/kpBAgn3l2+lh2GfXqUmqKoWfihPeJ7DcU/ise0fkVR9YbYx2ivTmQfZubWurBwHRc0Zs0C6NQ0Rg1o465j2mfBJ1Z+rwaEn6P3+qZCEYx+D/KWp2QOuTX5z//Y5BmS3aZegkCXxYPAWWMe5NHhS/9Jwcj9ZuWLxMd+6DvHdsalx/qqHxnbbbQRECsnvWfqH2Rh34LL2yET7vAjp9Vj+c5DG/KOwv3hUqAF5mGd9nCckwd2w32MYgFqnVh24yrOYDn3XZK+kZAliLBX90sIlFdQHrTkzRmWB5w7ay/VALfGe5RPX8G4cIT60NLcm9IGl1Ve4wUwEMi2x3LFTg0e9VUQ9VnV4o0w1hGtAsBAZa/gMV9nj0q96459PVBjBSqJWc1++ArMXi4u6D2OcfS6IIy/fAJ7POZwFxVIg/F5OgWpCC7mwWwsxLBI2ly2UV34LAw4fejUJJQHlNbIsSnY4wsKYr0P22AfBFtlfzfJJQXNv0/p3HzXDB9ibRbKACsq+oOv64FYdcVblUl98EgdQCq9/gVi6c5Zud2UubhD536juHD/YDOrIpdq+0AYSu3wvQPUBEK2a/pvvrO+HRi/u4n873QbVI8rrRdBIq7xIOJSV2AmVm38tXWyFQ+if/5uPWJMTTKi4ib9EJWWy516veUCHk9ae8qniMG9u3H9g/6IQtf5crnk5UmJv2zH5YmoROcRjJxh6ahICX6tSOY20Q4HPUe+t2MnqsI7xH7TGC+Sglm61cBGL6D9TqsJxXiHvDuxbbA63Hb1wb+Z0CJjT5+6YWU1CmS5ve+fNj0MXfXLohkAdJnY9NPxuR0BWFU5KKDGPwhNvvPNfvXIh6KLZO9iYhOtmu2r9PxwA86FZGEwuA6zNjfcNBEtor2XQ+nWkItCq85naWS6EjQ1/itRjmuVF3mfuvdoBzMy3Die/1MKg5U8DxJR5VTzZY9u0tB8cMgTXe1mSsz5051TuikevajPLiyCh0fZYYfzeKgJ+VL8U/goQk5E6RX65NgG5Ke9ebk0VQLq94fQifjGK1y/fumR6Ap+bT+mIYN84WF/9WTiWi5WNjOreKKdD3lalcp5kK9NqsuiWmiej6mdvtfmcpsLYu9Sh+jgryYTOrkn8T0ITBVIzkqX7IuVlncDwpBfrNKzmPZhMQc2VFQ5ZDN2TRMV5laPCHHx4x9SYsKej7wxS18A/doKZusTta7g1DvKeOjTqnoAmK+sn0vf1g5HOWnppEBHl7lTBrHAENbxMu7u8dAtsak38H2athsutFcvA9EuJ8VbC4TR0DDscb7GVTCLJ6AmfNME7TEG4sezAwBue29BY57yKwH9sjadRARK3y92BQbQTcrvVXX44ugeEd4ca/FST0+UXNhMn0EIBBcWaLMBmu5FWX7fUioZv+TqJcJ8rBYtRs/E9zI4y8CI1Yb4lGgS1lVlKGhWCjdbvduysebIMi2yzWY9DEx9i4T8x5MBpanLDd3QpsR1NNVuniEMXbvWv6YAXUb6o6Zuq2An6yddk5OxotyzerBqr3QA95/1CVCuazkz1P9lSmoLOehuHiGWNwOf+XnKsRBbij9hTafCWijP3Tk2HDCPAs5XYZBfnA+59L+N/GBPQqX+NPfE4d+L5OeOlf6AdnM2ZuvjOKQXPrw0dkjAbhN3N0iEZdK2j805aRekFElXtuF0plDsC9t3uzzge1AIsDxeZUEBE9YQxZLTAdB7rx2ZKWdawHUje8VKYJKPW0zlfGrXwwPNjrGMhZAJS2rc7rN2JRZ+Lz8OYLhVDORPy2ElYI5/darWRvxCAXqqp/xIN8SOfkPKQhWQRSSt1GfeGx6DVdurPZ9igYtTCzP5OPhBAhR7rlByREtRXnGSYOwTEXN+9B2zrobfmgbWRNQtGdkjUDUiMAmQ+tlLWewB0b800B7LzWbe4U2LqNwM0PSEjLHgcdcDw+sIqEnvTg0iXGx0BA54+kJ0srHCTLdIhXEBFuvOUja9kYWGtOrqhcboFwoug04S0RMeqcuv7z1RgI5pCvvP7RDGyvh/lis4iIkIDXbRaohNYBCYPVR42QYiBsbfIsGl0lMPA/eVkO3wtgqRU1wEv+11GWBdHox8/Z6oUbY4AT8T+8pEsGU0OvlzdksP0pVucqzmqHDYdDmwXjHZA0xG3+X1U8eiSYOcYV1gBZ60c4aVvw8PXAw+uTvLHI9Y6M2IYH1jcXTlpkLyM4rtq7ev9XPJo3fSIs9GUYKEeV/7kzUcBwT6tOQhEJzat4+m8wjcP25Be1repWCGiMdy++SkSdYdofjcV7IKVMYzOovg6y+lONfmSmoL1n27MPvkdQnj3ZKGFVDbfovKxFexKQeEv8hS+M43D77JrHbY8WuJ4U5LhsSkT+O0bzPgaDwEny5Mp+QgF22wtTljNEdJ7l1yZ1agB67hpwCahR4JTkpRguLDc0zDrqNqUm4KfCq8HClVooj3RPfMaCR3sLEf4/mX44xsd6QJopHXIK779sKSag+6tXXpxYHocMf8vvV1uocH6N5mdZFR65mto+4v9LhN6315tCkv2htNaW8WpDPKL/NCP/I2wCvBoj7bzV6qD1S7vSE9sU9FL4vuA4wyQ821LdSeGsgZTtP5ffOiajE77NOX+z+yC2+oOq7wkqGPb9siQbEJBIlLLBd4yDUzZ1JPmFnsJzB0UrEZ54dFQqZkTrbCdYKeya3J9ohbiPhZtynkmoi3vIpOz1EPBe0Qv6uL8Bvjr4+eOwPNcQD6m71zYOzJ617w6cqAbJrM13tIwExA25Es0fOsGcY+MaW2AecEjvpx/YSEK820+3cLRFIG1AI3iMgwwiHWcmB9piUFHKhPAHuwFY1POzEOahgG/U3sraG0SUX+atd4UwAF9+HJt4GEeBp3Ufl90CiMgSJ8Mubd4JKYGXQrhfUmC7n+7HelwS0pCpXxFUyYDasT3FzsMUyOCjbG8Ix6PGex9Whhs6YaP83adza5HgkE/HxDyThG7a6u6sGDeB0I83uV9NE+F3MecVDfo4NHT+1rKYST2M3VZYzFBrhDOW3hq++Bi0sDe+TIg0AIJnlUKMMhrgKGUq+m4gEbHmpnLo+RDgJc3tNUW3GrgTmcz483M8+jkfx/wgZRyCuh/wDBg6QXmOtfqqJQHNamyUl8Vng8jZVNHk4/ZgyujuIh4Xhw52s7oOmIyDfNdKWbpMJ7RnyCRMzBAQEa/2XJNjFMgJdROK8a1wWvDzJEMx5rk2B4oiwmvBzYHEOGzsBMe3DbQWvkajOcuBdjHaKoj70KDedCwfjNPFPf73fQYZls/s19J7IKvTY8NToR4Yla9kaH1NQf9Emxav3kGgZL7nysGXVWDW9ds41isBcU8c4ptG43BmKODC1N1K4B3XLliiJSBr7hPSWvcR+EhzhM1r1kPH7JepmIAEJIqOWiuojMK3OxYhXBpZMJjEe3cqj4Tcld46LV/th7fcMoqz+ymgdSS/m6GdgE56rlWLpY1CqP3jRFMsH6Q1Ixh0MS8Ws3l0LWW0HCIKyA8ov9MgrIlTwqEwGoWkynRO8AxDkc6g6fnyXEj6Y7jG85SEmnNWfveMpEJSfeSP46n1YIU/KpmKeeK6zJi33zoFdkd+e762xLiIlGSzEJmI1CZP4sJ5usFrWm7k4sRj+Lx7K4NrNhntIr8jLu0D4O3XTzea2QxeJ8w+TMQQEdmZwf+ARQYMfsn5/XtPIzw5xPNE51Q8Ylr6IHzwOcbx/0z475nXwgcXuvRrsdEob2Gz+YbTOGjirCbnMyhwfxfCT9YRkMGrcImjf7KwHNh8Q42PAUcvOt/35DgE7168m+6mQF3NQtSP0/Vwy8KjU/1OIjK+Qq1X0eyG5gymD1WrVTBDpqfz2kpGvX91gj4xZYLa7Eml8tOd0P/Hw82aGePwM5vBWucRyLix7X7+VAqbtt27qlcTUH5PcpELtR88ZrUMy8gVsCqz7+o8DRHVXiamxeSNQ/CVtnifVBx80C8cu61KQHrCp2VkF0fgCPlumStNNSRNPLyUWE5CWcXdlHrs/rpvPKASuxuBtlGdtwO7v0huqdsmqhr+HvS12+DIBpnNAZuLHtHo9q1DZxL0RiCYdXPK+HE7gCrHwL1KElo69+Xf08PN8PpX01BIfyIokFUszqnGoUOR5j6DewbAus16b88RCvQe/F3EfJqIal5PHfflGgfek8m5hzPDYe91t8X680Tkym30VM0DQc7Bp9vs9lS4wRyi2eKbgNwe2t5vz+iBocCvw7FnH4OFqG+j5rcUZHzm7AHBjHFY3JW4t8tAhpC0MmFvPcxT+Fm4uFqGwMnuXSGtABUSdG/dmXchoVpH/b85L7qgkPEx623tfKA5/GrxUkkyasrf98riHBU0gvwH37u2Alfg32FyWyI6zKm76TlbDDfpy6/9/NYKZVvvAnC6MejxXkWzsNkxsCoO/9Kj0gzn2iRVv6QRUQnX7/ZXwQSY+9vxNO1gNcxojveHf4pHT3vmG1Q0JmD/2EaTfkIDVBU0E71XU1Djq8Z//b874Wzi8h7mimbICgz9IkSfjIhCsuyi2gOwOfzwasRgDRhx6A5xGBCRgPS3HxyLfWD55RMl9lgz/OM/XUX2I6AMknmtXecAJBUgVRPBbOC8yhjsHU9Egc/yXYuPd8GMVoqx6Uw7PLD5psDAk4ysetgYBubGQearrVQ3mQhn3/dVHWnFo7viqYmmv6hw0bHy5lWPLHAlqPZu6CahN+8npbbci+HS5pKHUGEBeJmMHxi3iUEMRtcvbdqlAuuqUnMJFxXaefb+qQ2PRzm2ht+pTypAUi2U7JjeDlwpQxPTydGI1o73hIbLI3gc5r26YoZAdjl51+RfItJ66ROagfXdE3NlqQZVIuwZb62WdkpGQ8TWGavJcaDhW/j0hPQUTtH/ZJt7g/l4n5lG/EI/sFW8L4gsawc0JqBNx0ZEIR9kA1/0DMGuNa1W2at82GUeF/XCuLovXUHWbTUbZLffay1XVsBZPX5CUGAcSpUqGTjLnweXXjUJr0m3g9OoptWpfXFI4Od8TeX9RlANFlX1jmmHjD0tLS6kWLRd3/LDdKEGGGZVKDq5zfBuwqdFqSsaqQjbNP1b7oZL/xVXVfHWQXaSpaKIWwraZLwRTSNEAUuNCGT0tRoeKhhvT28lIFkPQ08d6zGI1D+2eWKhDdb9h7tOSmGe9T5v7O33EajymXccT+yAO4HWrpdCich42k7rnlIV3NwJE8j4lg615t97nThwyPcIjavv3yq4xKbGXmbeAvdPUr8F/4dDdoYftyt+jUAM3qTtyyQZLmh1hV4MISKJ9yZptUHVcHtOPjmZNQc0UzM70tlx6GWtvBfD5RFY8Yy+L7y/HYh0Joerw4ioouQm87heLQi/VuGjnEgGL9HDMfLBONQuL/dYfGUInrtbtR55SwZqucfqMV0i2ruuvdDtNgoTpa+D7uNqwV7biZjrSUTHaHii53IqAMUmNjZatoMwpXdi+jwONVXeVbZ9PQz6WSejeOxq4E39EWthjAfo3loJy+0fBg0WtSTCBgUu4G+1Thljc1A9fzFngAwOidSBFikEgnZ7Im4o45DYs9ciDznJsCE0KL7fqwmG8g/b3hXAIcJD8b6Q9FKo1Ogyo5Ftg+S5Eb9fOTjE/uNTyerQEOy/b2t+twDBRGpqMLcGEfNT675OgyrIKhsqELhNAWb20K7n2JxpRN/TX5+sBNLhFOFmnkY4tGOUlCCKQ3dmf+owvhuGl2t6Fdd1GuDXHxvXRcw7ZNweGrf2VsHmez2mLSy/a7VXNOuwOT84U8ZjnTYCF0/ImnJHUmG12/nzN+x8tU+vqa+Yj0D5zG3Lzi9ZsBhYrC+DPV869uPoo/IRsHugGcWyUgWUhMhLidg5Zr2/KZXMWA+4wgX+fVfxcB3GeMcFo9ASK2hV1dbA/ejKV+5ZzXBqxb9FyRWH+iaPnJZPq4GGQ1XjD9+RYZyXL++5JQ45vzr13erQGPwdUfCpaayEeqEvZCtNIoqZvc/7ebka6Ji1m2g6S0B9uTWrEpvnX7cv0ye3h2Fl/xJ3Aj4Pwlm1YBnjJXeaC79xG6MgfdPkqb39MzD2u023jJ1X/tQn1YlfZVBwu/gTywMSWK2bXh+5g0Nqox6SVdOjIIPjOHVcDEFPvWl3mwkRMTPs7248Nwz7tBzCpOea4JsChVn1JtZrUcY6FSzDkJagv3dVrwRe6ukllmK/f92A/4JR6BBUj32XMZYuhKLjUfUXzhJRN23f3ojcQag84G/lxl8IG3EPHFVGCEjnTHTEnR81oClZ9/2THZZXcgZndh7gkBOzd53Kn1pgWFBy/o9AAX7LN4kKLTjkF+UpYKkyBvwfyyK9oB26XyS/8OfBfOEF7k9C+ChUz9z2TNvXDnlmFN9aeyJyYFpmBp0K0Jd3C5+tqoOpgkTHoos4NPww9YrF22rI/febv3mmBnj9Kl2NuXFIQTyp/rPRMLC/fJC5n60a9ugqzx21ISJhyYmq+Yka0DBhp/7oywLtHqfvvE44tHjYa80ppgz+XO9wDfxLgfkit6KBQByq5N8c+XRmGOSclN5dK2wH3j1Dl9Ix3n5Beu/FKTEEF9HpxwuHasGCh9dNn4GIFqO/bP9MH4XWyLl/+WUlUNVhprSKvX/my0dffckj0HSlsV5eugzWo5NNr2P7tqIWcqRcaQS45QbLZW+FwDkmi02Bx9i5aB8YSNqpgJs3ilyKmZtBdmm3tg+7j6KR5uPq4mXwks2KbvZ+AzjSJpS64LBcUqirfP91CB5sXNTtTs8A7lMx6Lk+5u8u4hYfJEfA4lzkyXXrZrivkyTZE0xEXn9OX7RnHob175zfnp3LBZtiozUeSyISkn00aNjWAMfDaHPZvrWDZSef8KuVKDTfNy9E1hiCikf8Zjp8HaBJJL7W+l8vSHu4kNXL4RhOY/zwiWygJGVaKGDzjHtzl7TFUgU5ZsNiaTeoIFsjZN93EoeikvaX1D8agfDykOQ6q2Qgl1eJpmF5ePBNzux0bQlkufY4lRwNAmbpKHu2ARyqFsycKRsdBrOk/kTSlVQwlD2pfhrLsaK/X/9L2xwGTsd749H4Inix4SCx+YiIWv8qnVMjFcFFp8g6EhmBdsqTNxEaUejq+WZBs1AsB9kbvpmat0N0zatZ/ms4NPOUJkmTowZGNZ26+J9S4O8l7no6eRyqF75ykeJTBMfJrm6i5AYYKStRjDGJQkTzzzPOBTVwpHFnmF2jEYpp2wNqHHFo5xsyTiXVwuPIxNTGCAQtqr1THLk45P134l+ZHhkMSC/cB1STgaNHcNNfEIdSA4QubscOwNx/XO3uPlnwfPRv7RldAnLbu8QluTwEJZl0TmGKkVC2ujGcjuW/lubMyWiZUfDbSog47/QIXNWkSkp9iUhQn1mjC/PrElvBj9ZdFEAMevjxuwREyGugZZoYhfbRj9XHFRrh1Q6nS991Igqea8p6+mYEoreOpY8UNMD7PtmQC9geFjzzSIqVqoPra1enGJyagPWF1z6lFzhkay226SQ6DA5XPflPd2K9I5GdK4L5PqvFoP+HQyNwm+HAddwEgiXzNp2EB0Qkr5LIqHOADKrv936K8KPCn/Sa0/zMOET7fHlzPr0ONJ3IH5LeZsPYerP26A4OVVhVqWleHYObBpC3+LQWPHDvuUO2CIiXWaCYZ6sBVOkcllr0CWC3cEp6YycKsawlHPdrHIXlSDrqcVEqbO+WHTxuTUTvbLYrljvrQP4z75puIhV0PtPP3jwWhfZJuzb8/TQIfWP3Xq3PIYj+KszHvE5AKrEBrnbHquGweG7w/Rtt0JqzPvAE6yMS28d/sku18N0k17Z/oxKyt0+o/KPgUIeX0nmXCzWQ17w11PqjCsLfXXG/cgmHVC8oDqTZDkKMASFhMzYbqEnsTgy1BMQvEuOqu38UBl4F3a4/mgYaA2fTgrE87wkMS7uB5bxaQd954SEKiAexqDA+JKJnURzbCcKlcAvPVvuPvwMqhB15+xtxyMAVR/GQKINl4umVo48QeFic+HQHu+8ZhOAP1z41g1zawYteccUwf8Jm4H15DPrSDuZenxqBUjIb82a9EY5MuIYUh0ajy399GeXNxyBt1EvlbUswJBX/Pb5BR0Rqd1r86xQb4CY1N/V7Xgt8+Or0O60yCrl7ES66T9bCkTLpOzibWrDzP5Gg1IxDmd6WH9b8x8DphcLdj08rQYguZPT7PAFZkcI0gpkGgNPV6iLxHwWOsZ4zebGLR5VDF5mPVtaDTOuhrxqtxTAQ5jF87HYUWmeyUtyvOQavToxmRPSWQLDWB6G440S0j03NcHS1HjzjzXc/5zdAhMbtvmcPo1CDwyGx96fr4GFQbWjtkQaIUW49+W8Uh0RGisgMimVgefWKszZLDYQdE6rieYzxQ2N+iIdsKbh7+9ZovW4CEcp7N5kGHOI/sCilLlAMPzMdbhRLkoH9gefgtngUihD8U8pIMwbj17JbUvgpQPQc3fcG84Lyj+eIRP8m6DySbuEU1w60eavz53qjEcOxkfbLeXUg7dZSKpsWC7e8V3qJGzjUpe5zdcN6AHoKuSIMj7RAq/2j8BZJAuoX/6ZsdG0I4s2XmRoUH8LXpqDwMyeIaOCthF4Slm90gV1j7DGxYOL7O/B/PKk3du6PrfoAnNMM8ZPjwXozQKRQiJOA3Kl6+ZcdB0CGLzxjL3s1nDwouCkgS0D160K3vv7ohyiLoMhWkxpwc9N/JrSORz+u+aove4+CzWfJyq6ARNBw3PdBw5WIklk21Ks4R2E/o3GOU3ITVF2zONSE5ecF+ZYLQoaj4LlScnZpKBuU+ndm32M5Y5fxhFv2dh3YU5PQufAWiA5hUny6iEPXy1a5KxrqQaHFss65nwK/dMJzuz2iUHBQBV70XBnkufHX7Z9IgO3SN8cfh+HQUQt1KbaERtD0/nKqibcBKlelAniMo1Gw1gVcfmcDuAQsSZzKosJPnsCgyo0o9MY5j9/JcAzMh2PpnsVRYTeNuWAPKxEpD7Q6K2N8UiI3PhUd1wjtfB2acqJEdNpWs8LRFevBO5u2TpzlEDR7l46en4hsZzTZ563G4LFubYXKAQRlCzQG0vuIyF7tNUeFwBDMZnON3qnMhWNPKo9K0hPRd7rulCfBTRBmlzx9e6AQrF+FhF2aikYkt3c5itWNkEHTLfn1aR7YpdyvGbkdjZ47M9CFnByBliLZd6rX6iBF/OLKT+xeM51OpD5O6YerDEXB13rjQXRmfoazAY8WChaqbyoOgkZd3fnv/5qhFZZMRXMJSC6P7ozy+hDo71Hxc6iqhzsvom79xvJ/IjJk2qi9DvxNOy+dEyiAhT01c0dpo5AFYn3Cs10DkcRZ1+i6PJDmepLF6Y5DPgxmlu+YRyF+RomWrh/BM5kULkNsrwYuK0cfzhqDKDwN/5NnbcDOKKrT1UZAhzueC/pc7wfcw2esZ+kQvFZuvcSY8L//P7nXPzKvH1p5Sg9pFlbD0acdZ1078Ehk29XN5XkfnN0MJxJ+FYGr2ejSghoe/bS8Gm3fXwkEiUfn5N/WgCiDRZ2LEA4ZlS32zdeOQrHud5nnpdVwoqq0X0eHiDi3h1nxDjUQvGj06sjZKDD2tq12tMahmhqPDl9+jP85K/okniUDC7Ur1dsc86aogDnK6yqwHVDcTj1BhrTa3b3aPDg0gq5n/kyogcerhip2/8ogzCbO4vxNHOJ+x5pfjHkfdNxVMy4pBIX11Hl6jDd2xsPOpRk2wNwWO1uqbzzsJh6iZFGjkFK8RiyE9cPK1yMjqsVUkOpVUdmoxiOPucc2p8KGYTuh3unjcCvc+zQec8+biI7nJy8xOveD2t+psPWQfLjxNK9lIR2PvEVqR8fFGkBQYN9vl54qiBayEeUnRiHHgB77BS7s5/dX60J+J4NZh7ZxGcardarHW8Wqe+FyE1f/TdZa6PvTsrv5OAWJlAc9CzathkvWEd+42AsAEpqXaDEPreVqM3x9dhCYdrfWXj96CExyK0pqiQQU+kJCag3z1jnnYuu5e/UgvKjWWoL1muHBkGfRHB0QkDxNo19JBQ3rVA360ji0c75tgXRxALJJTpd2P+bCG+4HqScECUgm6K7Bd9M6GK4IHl791AZSb9xylWdxaDdYiT2PaQwK1jgMHnm2wn+f0ds2zO9GltVrDlPHoMskKd1IqxZGnP8MuMQQ0NuP9y/01PZjuVz5Jp6jGQyS08Y5+/BofbKCdG9vFTgr/rK6xVIG9g/evLIQw6ETrcnaDit9wLei/nLKkgyDqTprI/p4JMnbmpjf2g1rg6863TtbQXUP4fpJ/mRkdorHPzW2GZK9jlQdZmuCjterJWHuMUiquC7z15N+KD/QDF6FgfDj1F2mPRV41Lpj2l5aSwapucG3jbqt4Bd+1VGDH/P9yajAemwOZuWk+OobycD28viTAAEC2jot3fDyRgV4HT9GkvnWAvU83h3bZzG/YKj5zM44BC/NLn1QZMnA+nPX/dYvAgpWimhUCO2Fxv26edbsgWDE2FS+dTsFkW8Z/2i/0Q6+Lbjs+WkKJG8EBBLc4pDvEUr73SsUuNfyNn+VlAf8OTtLgl/iUeRRtZXc+0WQT5Z3+LPdBpk7j+L8LaKQwNP3Ud9Pl8F9u+DYfWeqwfbpemJ2OA7tHad+Lcsehr07Tf6Z2VS48HPtZZoFERmZORnjT9eA0OqFM2omdeA1RtdTeh7jz4suW5YP+iBwyUPiVlkTTDSYJ95iwKM1eZmJ2zTN8O5P3AKvOxke3xw/ksEdg0wE+4kfLjdC/Wc6mRAhMjQw9X+ckItGPzfvN1/cbACOaz7pHVgOLeM5OO/viUa1vh0aXVf6Ycqnxf4mjgDNfXKrslF4lGzzvJF+uQiivtFms2ZSwD/vgLrtuSiUpRvkM2XSDOvpWuu/S/Ig5EXoDX/jGPRiyuBLx2grPKof55PLp4AFXa008W0sqmc5OSWx3gLffhR0/DedB216hgmpF2PRHjfc9YCQXhA/aKnH19QEgwkjv6/apaDtz76eiaZjUGTbZXz5QT5QGaO/1DMREUH2Z3H7/75P2yJqnKaHA9r7hm+MilLQmX/ZFgcr++CUKsO7HtdwEDnZ1RN6Bo9wY6r0zSnlcF3gniHzgXxojnN5JHAFh97QT9vacQ9BIV9UXOI4BWbN2e9SaYko1ttIQUEQQVz1pR9z2PNKMcb9Cpzx6Jeoei6qp8Be/f2DdcGtcHGN61SYUgIS+w95mqZ3AuP0qtPlllyQ2bX/F5KUiJZU2/2KPDtBmmZ0j5l0GygpsXg8DExEiQopt7Ish+GvaQb7OFMFvDW5XOuBee7Bul/inM9rQfMgLX79YAms80zI5ZXiENO9ogzEMghS/XmPdjEevkybWv4xnIBeye3/Je7XCrH7PucGxBSD5iVztJ4bi2Sa/92tNBsD/XpGYYaoeqDTJoRIHyIinlSRXgHmEgi323NJ83kGlHy1ZGX4hUOXkxNOqSl2giixx6/6WybsX46yfXE5Edm6r7GLBFNhbuAPj4tAJjDCgcyF7gTUNPf5Vft0J1A87LMnj3XA9EprulB7IrobbrgyHdsFlwX1/E7pdMDGcRsbrktJiG0nNsy7bxRkjPvEd4zrYaldOFTGjoh8NC+Pv83uA+FWIn3SnXyM0wanPLnxyGRgtYoq3g+T5UuXnd3q4HKsQNTGfTy68lEzM/3LMFzUTrY5jDog8ezpwdg4IpqNZOLvfDAI55UnTOcxH3IwlE3d00NAcTnpKzv1Y/DOtDH4+d56aMy+0mxKJKCfovFGt1N64CFbiNJZ+Xx4SP9MQQklo6uh5SaM/GQoOmCwtLOcBgE3O0ivJLA+klhPVOtvAp8yWU/93HB4yB0j/nsjGnmGyVUz0bSAg198yda9B8DdR2b1LotBd7ODN1K6ByC5wfMVs1cTrEnpaDU7ExBHyVecUE0TnBtc6Ws4g2DX6aeO1FY0GsyVWpZvKwT+1P/eSOcQYeXIM4uG6ChEaKE8H6gchNUvAhvKqyUwPnTZCE0TkFn9n399pkMgn8T27bZrM+Ql3bEf/o+IurN3WK7jeiGKfDts5lw+rB+g+C04pyAnkeej46X14PjdYMygkQzgKSO8YxuFGsd+deFII8BrfpK29DSWqwfF3Ryxns31ElGoDmmFK84mwvRC4RB8x2bjelos2o2OV2+J7oOSYwxxVhhvfLacNtc9jHHFQc6yif4SaBhyLupILYSAHa9x2THMH20+OqTYDIFW6qrUa91qcJEIeSfER0TCT28sV7zsgZmGxPsRWG8G3WTwtF5NRp+nelgF1evh28Xxsxr8CGJQ7MQ5hSik94MjsUyuGFZ6bCSfHqoFg3be1ntsUUhI4n0Amw8V8hOZl1bNWqEsUPlnb3sCkpf5KyaV3wT+tXpwuZsAKjYiyVcXopF9BanUSJwCovvzQ7+wN0DzvOA/++l4JCK+EKYyPgp0n/QGej/kwf2Oaw9p7hJRftdaM4t3IYSIWX9z7QgE6QDlqjl8FLrzdqpT2L8ONgKz337JeQhP357UcniLQwHbLF8VfjVA1+dAwwMxheDrQb0mOReFxFVZPbgyG8GjU6NPcakErokNE5evRaNso1DXmvpauMYYzPm+JxXG/nsoKY7x+V57qbWKpDFo4eZRyHYogj8t2el/hgko9svPCx5JTbAVYmBSI1ILm09C+/3msL+rXMz5nvUY8AF71UumOEjMfBjAQENEDVdPYI8aQNqRnro0mQtmM1LaJv5RSOq7ps+yVz8kH81zk9VqB3FeC3vlAjx6LDIXpmrRDZPiLIUJPPngG/UhK3AqCfEH/zA4Rd8CddwNEoXH2+Gv7CHBt1UxKP7n8Qtc6a3AvUCwPUFFIOsjn7NTHYvw02ESo1NNsB3q8Ghtow5+6msPJ+6PQSv/GLTDbw5CpaSh8T2LGviPmH23sZqAiFZsYkvKrfB/jOIhPHicDJeHI9R/GMfJJoQiUYikVCopKx5FRiWrQkIoM5WRkawo2+07e++9N587ezsUoiGUykrll6J+9w9873vP93m/n9eLwnbhl4xIErzgHFwU9opH4pmHX3106YG6ZaJq2r9qGN0d/vziNgnF9TmG557qBWvDhZ0v/JpgLWctXcmPjLz62XYbJ/cB+8UjlzozafB0ITt7wYKCLAx72HXH+mBLyP37j6Rm2J+8f26POwVF2NuExUrUgNF1o57e8QqQvSApeaIlGn0qFPHb0OiAwgnC4HnPHFB+KPmCvouAej1KqrHfuwC7//uw72I0fGC+a+q+SUQtESEH60zaYe/LLYn9EU/gwcJZeXEnPCpgKXyj19IOgz1bwm1FNDBKnR+fy8OjPbyj20+16uDIMqGCz7cBTkx6thAaYpDo53xzlx0DkBjdZPfwcSy41uT3N/yhoJDuwFOhf3rhhtwr6VH3GuDN+jhA2mD835uKyp57miDAewITWEyD/3Ql0ACKQ1YbHYmnTRGEx+copgrXQWX9v54wFSwSO8Oxz865Byo4LeNX7jfBjiBRzu0/JBTJdW3qvXEbHOt5PNnGRgJ7fZ933E0Y5NC+nMbv2A0836OY9boR2K4qy/w0I6Erky+nhSUaoPrF6P4LIeWgkcay8ZQSi8oHXySp1NXBQtKAoqj8U4Bda1wZKrGIetJe6p/1CPQFWBdbZ1Mh4L3qqch/FORpeT/3BFMvdCrrV7oRy6GL7/QHbxsyOtYZfIidioA6laE6PN0A4oq2f0zDsaik/X6Fc2g3sASllhwqy4CSV9ckl+6Q0OdSmS+GT1tgV/kxCUxpNlwmDf5hOYRBScetQ4/TGuDVO/GHU7Rm+LBQ7aLzKxZ5ERSkB1n74PrEZdMzS0mwjh/sfblGRsvk0HbtmQK42jo3eYfYBLs0ti4n8sag49Zurj/sGPM8fvCncQYNuO4JCg9ewiKL2dPRWiw98MRcGXfhZz7YlAQFJNaQ0L9LFC3m5l64OD3WrX8tA+Qukp3ix8loXorQPsDZC6vC7dzPIQ2cSm+GkO3IqEjLfiI8uRDmoiqPjLfXwKNObfpqazQKbwjvsSnpguF8sdLQ84HQWM4idayHiDxm0xNavLpBSLBCPlQRD64jU7+dbpKQauHdbTOxCtjqSS3s+vECrDMyN1OFo9Gp97JFZ5K7IVZ68HfQyTrQ2ylfWP6IhEaY/6ovPaSBoeRpxbOHskH/Z4DxxRYcaotSeGjAS4X+i7PPpa62gJfOEanFJizSv5c6f364B+xNkm2ipPFgVhHjZH2RjLaZ9mYpmZSDpu+5cSm5crgZF5DSuzca8actniy/lwfv9xe9Ws8uB6F48cHLZMY8ddFk41ILaJ01dT20FQPCd/fLV1/CoNbwszo02SagFH+5VhIeB/tbDYROj8ahjKIe/r1LfQC8L66m5xVDhecJSc/HFBTPvtTbcLEXcKWybT9GqKCRMtu8HsmY57RP6ZrWAPCa/v0qfaIF4m4NDFsIJCDxX2a/D9CogE/jfj29mAhzy3sjcSo49K4Mzz57tROefD0ZPn8UwcGqIp/7rwjIvWPRCTfaB4rtuhe+5uXCnIrq6Wt2FJTwPNNj+EYe3AugpJ84FwMfmZ2vO6TGIDOt/VYj1xFosJyc+viyDDgdw60WGbmj/nie4bZjBKIO5d7pFW+ExUOrFbW6CWim32hmx8t+SD9TpHThZy1cxEtc4f1KQf8VjB+IHusA43tdw85lLSCWFDz2yJOAwkYF+GrDukHl05MHtYFNwHfK+ruBHQkV6UlJJn4cgUD8w3SWH1SIvPr0mektCsJ6dP2WO0IHIaua3sq7VCAp1xP3rZNRtuXnw7/1OuD8kzDNwR2ZULTgiZ/dQ0BmVoKDLvYI8m8nK/sYFgOwp2XvvYhFA+dbBIYGhkBxKqM1ZjoGKt3eStTHJ6Ccw8c5zyaWQja7iuiDiSDYE+fo0mgYjeLmHi8k2Q3C6WrV71cMngDnf9/VFJ8loLSB2saWY3Vw+baMVJpAOjiltdUdLI5BicyjeqoH24BJ9XmG+2AhBF90z5utxqB8lunzv81aQDvki36ydyPYiDsU/RbBoLL+NTHVhDY4Z959jLehET7lWYizTWAQLSW3snO6G057lq7P3KyEtCRehydpJKSSrin331gnhChij7qvxMBek2NmiWeI6BUfoZlTnQqGECEs2kCF6Pue7+5OY9G/kY6h8bYcuC2z8jF6rRaymDw0Fs/FoiPM19WcLLIhetTjsBo3ArtMnPHPvFjkLzedsCiWAzbpZL9Ul1aonPtwDWMcizT6x6evXKWB2V6srP2eUqA49n3vzcQhtTzjFi3xPiBNNb2UvVYEfNfKCKI8FHSh5uTAxbBaOHQ2l0+NuQb2a/9Zi7wWg0rw3U+WJUfgmjaOd9++FDB72Hj70tkENPyJy6k8NRuO2vwcOMRUBljJ3LiJiFhUJzYedTE+Dx4o/qZ8iCoB58rPoQbxMShlayLRQLIfQi+of/mgTID3OY/+NOEpSIcP6/WcpwlUzGge32gISD79WO7KOHS0YGWhUoAGz04c9PsoQgP1K38+/vXCofLgYdGrfzug5wr7PQrzCxg5u7yXOYmA7A9vB3wSbYc0uW1P9+ZW2HL623BMFY+s5bGPwrS7wXjYSfV3fA24xJ98UKlCQuYlSQ83Tw2A1qWVXpIDCQQW7/p8409A2idWLrEKNIKcwZbjz9xiGL1paGAtHYfuWuS+rvKtZeT5lGX1zlLw2ql5v8E0BhlYxd2e3NkL1boZAnWn6+CJwa7caScyqlbt0fykRYXFqePq9RMl8Pw+v+vEHBbJvzRqrxlpgnm1tfzor21QojcScfNsPHp6lqp4uqkL+P56z5tJ14HJv0H9oFdEdOp79av7yc2wu5rA8VukFa6ePcf1oTYeFdUPcVlUtIPVNcPv988XQMT85qXpHDwa/+2O8xRAYDP0WvL67gYY+nf4hvpOLDLXaPA28e2HXbc296+m0qBwn0lQBI2CKCf+CDi7FsEbcYfwAyGlwHTEuy20OBo1EEyNTo21QKaNxzfiLQpc5qEzuQAGxXH9/ujJOgJxzTFY3RtVsGA9H3flVAIaTCuk/+Xvg3PR0un0xVIoD7wodHqLjEZbOUoUshH8/lDd0EyoAL0bU6MXTLCIXqC1rbXSBkk9Nex/fyNwFKFJJm1iUPjEvQ55uQ44IrvB/af4KYjSrw6u/sEjA882tfFPNIgXzT9MSaQBlPWf3rUbjy6GxD4Pzehn5GK5R/VOA6iu7g3Z30dBp1NLpF7r9cF3q6+cU5YxwJQvM3dNioLy/JPqV6q7QHPYpcuPlgFrIkZ/pocYebw/fepSTD5EP62tmRfMAo+94VEVl2MQ68rE9UuluVDq7Pdv4UQ6mGIO8E5MMb776x0F8W86gGThSPw1WQeXYrpfD4YSkGVPjYWoVw9c7h5WfMvo/0Px8geSGdzIvCLgN9QWAhdydZgmYlohbCbo4sMqHOKXSaIGR7bCfXmZvY2zVXBl7XfU9RAMGjQL6NaYr4fLD1ae4BWbYCZayeC2Rywq5SLOOpr2Qh3T3/cJw0XAft1/8moUGbHbZOUVvBuBEPrA7rtDOCA2TCrzO1HQPPmXyXZbF/z5GSDlV90E70aTQ42niSi4Td34qnUhPNnP5sDH4Dd5s6kc5x/RiKnaVKztYA+sJ7b9ECssh9oxlSqJQRJ6vcuHqqHcBkqCM2cKq0ph/WdJy5lGDPLhfBAp2E+F2cG3k6W0RgjxsPnv1gUc4gkbIX6O6IT8z2sU89xW+NWoFFi3TUCp5DapvWH+cIclK7MmsBJUb49v1H/EoX0hoa33ryEoDRc1odXlwvzRGaFjZ7DI7rLU+2z5NlhSPDSynp4D64+P7BupwqCm00W91FwEsd1b18/UvYAHH851q3hgUe6WNs39JBUEVFyVnIsxoGJK9KoexiI93qUzGs5dwOJdOBCzkwZJ5yrOdKUQ0fEIF1Psu064v/KY7uFBhTG/NvJlICJi9n4X4RdU+BGnQzccS4cJddsQPUEcqnfyuj+Wng2RPz9NJ+/OBjujBSWzyFj03u6z7C3BSlj6PSy0JFQGEhfHlWPWo9ANHYdAowOj0JB+3zOFgwYa8SLfnwiSEAzxi/1KJEGyZlivHHsETNKbd4ZtY5DOyrbJreIRqL43pDoYVgnGNPlBvgoKcjcbifKZ6gBlYzvPt9Z4OK/KHD8SQEBsZ/u8Is7SgA0fd0xGnApXdiw/UsDjUAXr8Rnnnx1goXh3SdmACn/8RSXNEwgo/R+/DGkfDVhjacnKK1jYZP77Lu8xDvW++XNtQbcV3iUU3PU8UA9/HC1UlB0xKFX/jZ1Cfh+8PzKsWni9GtSzYtTDTSho5zNL70CfXnhsu/hH4SuCvWXbsT65ZPSL8F5JgE6Fgg/sWkNKL0C+16v7ow4OcY9i5QfjaHBr9NwBQmQ4GG7JXR8fYeyJdGzfikYn8L36JJa1mwZ1yd3Kon0EdF+1Zvx0SAccYj/Qek+BBtJzckXymgSEd2H1XYnvgl0yrvi0fAQZX4IbWOuJ6FZvQ6xAMIKinsozzH9IkPWiz+zPTSwS3bEatkluAY+pU7aniDSQO6hrn3sUg0oxa1iX5hHwL+3aOXo4B8662bO9plDQemH4wYqjjH62CIgrr6kC1aNC0dH9cWjdf3DOrqEL6ELiskWWpXAmdJgj8DURNTZHRMbe7IKSh6sPlm4XwbsrZVqiWCKaPvclgmt/HtztSd6oNm8AemCyiFxdDMqOuVpVKd4PqZuaqyHi5bC7bKzjC4mCvlbOhJNpXTAWePQa0bYSsk7kPNRi9P965J7065YDoJcn0+/EyKkBz3UVHGsCWvbbyJ3e2QPh1VfLzl6jAd/jc7wNLSREbnwss8zwhWp0zYYu3Aq/z1Zd+XyBkaMTztr7NZsgLjwpmjmfCjFSJattjP/leK5aWXxzBIQMCzt1M/zBcaJlD12DgvrKlh7ajIzA4cDXlq+9yyHSMFddhvHdBbjjXUvO5EBctJavalUz1FmHqgcZxaJdItFD/fz1YB6cw7xTgQozlypPBgvFoskVb24xBicY39MkjeiEAjvl/aPrMbGIZEKON2vPhEeS1RHqA9EQoGTdZm0Yh9QDW9N03bpg/V/qjckXNXB4zjM0J4mILt+fux5e2wzaZyS8Uqxw8Ma2lz5WFo8M9VbQ8n+dsK3k16h+NQuaG4atfhoSEefq9L2Y2U6oF3amjlmUQtNYyuFKZSKazOoQmt7ohIOXxThYlhleUGS0MmNARG5ypzVvm/TBw83XL6dl24BoDeN8Bynozd2le1dlmsGK98SuY9wN8OOiqNPQo3j0j29BDpU2AXA5pRwsLgb1cowP96l4hLfGCbBaYYEwtDKxt7QV0k4k13QWYdGXkNty+8THQGxadUSVRAMJirN41BECyllT+eK96Q/5Z+i/cpQDoXJH7Jw3ow+HmnjfmFT0waDNn2NzDC6rjz9QF8jgaklpas2XwH44LoPh49uN4Pndp7vbGimI1zra/mlxC0wenXhxrecJHFy0nV85gUGvbfsKEuV7YCrqsK4qw6P36lfZXhshoei402pC8d1AD+iwimPkg1ny70CqKwlpJPPeEc4bAT/JgzTDAgTTNxRIO1soaEr++ub16B7gSOyYy9EshRgM70exXWS061Wb06Oofuj121TQPNYKgeoPc/QZ76ND0rnFLT0GPLKx994XVENI+k9TK3ECmt4lT550boAWC78Rgg8NeMW0V/WHGJ7+pu+2x6M2OGGaMLC6Jw66lZWeP+jHIFfxMNvFmSGoSn7kMlVMBX5WQevs3AT0hph2p0OkG0rzw4/tM2FwrJUC+d5uErpJ1+NOs2mDj/+EWkRvt0BWZytXXzcGjVldVb7EyPvK0ffP/xq2AZmT2yMwgYIaFp2fPDiFAJlzCLYtVsGz2mela6JYdNLApK8rsA28ej5U3HhaCXyz3w9oDGJQ+bdx/h9uNFhNu5DaaUaBpIxZO9dmHBqo2ljjyeqAu4kqVxyfMp43k5RCMCWgDe62k3l/miH53PGTnYrN8L1/+w7bf/Fo+tmx1azpXhC69dhsza0Z9n/9M+b+kYzOKFHPuCy1g8vec3oKUqlgROxKLBvDo6miS/jvQxXQ02vqNbyOwJb9j21kVxSalRZ0IGZhoX55+mkNqRh4eyiJ73uwaEjjxvFR3QzYbc7f1NzVCNUchGPft+NQH0GKVdqBCjnNWe6Urnpgj2FbG/+NRfsPEba6MCNgWPDywxyuEbKfaulQhihovFXrnFpJEyQQ3uxWbqiAZ5seKqGS8Ygu8Zge9KodokQUb2jz1QNtasgTT8WjMSHF6veMnLw0n1NjOoyD4Zn/FD2CYtEAv7j+Ul83vKhr82d6RoX/9P47tS+ehFjkKyrfXO4GjwvcVWLHaTDq+nPQQZOEDPjs5Kwje0ADa/T0BuMOly81uyWJkJE+SzlvsWQXpF02upox2wb5TK8qDZyISP7XP1vMBwRrEeEneVyTgV7k4PW7DosUHzrHfjShwjZ1X8oVkXxYzlo7pruIRaTdwVyh/1FhY2LM93JTLiwpk3W43HDIs6HS6uqTVnh5iUtcdq0JBAz6spSDMMj/PeZB/EA2nGDBsxm4JcIO8VS22eexqKbLM6rVZASevz3WwB1QAVaXqK1pDN9XvuY/XeSQB2oGT8XY29rgyvtXb6oZnl7Z62myndsMbv8dy7VKyQB2vXWHSRSPuD5wOF6VrAfXNRb6k2MtwPH7bVOibCwqtPYQLtOugtM/4wfeHM4H7agv3k/2RSP9+dPaNTpUqBH9HGuUXw5ZZW/LDRj+OHRl7vASdx/wi2y6PWjLgwIR1cCaX2Sk8fwjd4R+D2ykHP11hLke/P1Of7R5z+gBX5LOt+xGMHmRmUqdbYTF/2q7FO/HIZPAV2c/Mu7HVx0vE/9NBD5Bfz1db2HQpYuC5/9od4L9QaVOq4x8eC0cV+PdT0DtRJwTmbMLuG9Pb11qqYN5+/OvzEyJiPBEMPWgUB6cvL1Y3yOYB/Op4zV/amNQae1CxMVhKryvz5xqxBRB4Y2xqmoGJyjwGUXeMUcwHBd6TfC/TBC9aOJepYFFZy53Hc2q64KQAPTNmdACxvVsi4Z0IrK5N8Z+60QvXAsabdh4XQXeD4Xs9MzISOfZAcUeyyrANqpkeb18At1fyl4kiEajyO8+EV7kHOiSfJH3YQTBYEiBFZyJRXe4fli4NLRA3ip16VVrCcwmu1mPqGCQ6g2Wg11x/tD248PkVAwN6um/3Bq/4FDEt1Ws5cAoHJvFOuO38mGEwFTQX8nIO7ZNYSVzBBxq2A06dYpBvozrcAajD1/d9lmdc2yBf4Fabd9u1oB3e0q++T4Movs6ZdlujkKMXyQNz50BKz+f/VC7TUDyVLMMLu1B0BV5W9x/LxcilT99E8AmIKW9+74Oi1DBL2HDhP8NgpSjUkbK7Vjk7HeA9+SvTrhq4n4y/CYRiu8ZFHRfIaJn2JK/SzE9cHJP046G2gTY9Of88YSRI2d/O78Dn0bh9NErhh27KfDt1LhyYhABLd3hMFHXHIbvWwGXBbjLIOzGz2NtcQmoiP/RWlrFCHwfr/V1K3wOPPPaIcPJFNTEL2ch19MNJQc41CvYEXymfI9RIpLQ2QK8u/aJNlAkEWt39PhDQFlX4CcGt4+arFnz/KTBDM8wV80yFnZxLF74KYFHu0S1M37s6wDrtB5rfQavFsaeb+FewyP5u2y9Iuud8Pb+j5dPPuVCbeLk2oYxEe08/9BKaKoFktiYCnuU2sC6p15cVQ2DjnPyho019UCA2aZCezkNgvM+HDmpSkaN/HEVHw53Qmr9d8MkyXIQSbrB3dBEQJdda3XOWyVC8fLqEQmZJpguuFFZE4ZBcrb4wEjGvXb4yWWCs60Fg7a6Hv2DBLTb6DuWskSFzKai/M3VWtD5j+PQsDkOGWOF7NU4h2BYWNPk8XgF2BTfaG/QSUA1mProiw0IJD+e9VFIbIJbPHxRGU+xqKS37Ohjkx4Q2H1F6/rRTPBVcyyXXSGh+gfGoS+e00CIuD+Ys7YcJGb5E/V6cWjC/HewLlMucNkGFKcerwSK2zmJ83yx6G24y507Kj0QMbg1Fs7mD3Kiq08jPpLQ928qb5+N0QGG8snfe4pg5l/tG+FyEsJQf7mUKfQD2c73lNR2Etx8sB3plERBzY0tz63FOmD3GiXaMrEF3uyIpXX/w6MyytOvQ5ajcKEx5uwREhX08023D8YT0cTbe/IPEkdh+8UHW01OGjjatt/M30lEMg8s9AXGcMAZ+YXktj8eFDwid7wJxqLSUEnSvspYMP1ltM619QK0OiTyb7Lg0HPlSBcNznZQIVrmTrwtBbUT2HxPWTw6sk9PUZGxbzVL8XtSGNx7X8f4RmoGBUWwZlh7dHRCooSXtP9qI4wOF7kNyhHRMdsQ1/v8COamGr86BabBo4WllAJWLPpALCQTmLphn8/IJcuTbXCX2Ecz5yEhi+kDpKwT9fCX85v2CSMEFOM7BUbbMeh9qGN6PEcfXLAa4fZwrgdOe/VTv36SkfdTTGdfVQPsHf52nNeQChRdZlGb7Vik0qDWp5neCV1nUYKkRBBInuzkceJlzOHU+mn0gArVTsd/sMfToNYodp28A4cMD6Xcnmbs1bdn5CFumUrY0STMuiBDQDIFVdtdTRWAOzaYI8TUBk6spaovX0WhU/VReSThTjjG18titL8ZPEs3vrSmERD/BwMJizJfuNp0w99NogUqK6yCpTcYHqfU/3z+fAcIkNgkDE1I8DJ5w7PxNx4Nf6vwERulwaEWefXaFgRN6mFxOnvwqDY7eZz/YR4E6u3MIwXXgGT/sch7+BikcIojUL6HCtNJBOEHExXgO9UzuUcXhwy8NtNkFP0gqtPXeg9zLfD7+Nnv+4tDo69THZtvdYB0+VlNJbNSeLI8V1nFyItfsi93tFwTFPhfeDSpkw6pdq1hcQNx6HC6558z+0ZhRj9SfUaPCt1S7pg74iSE5bqoXz5DArkCL7EDm1ioSnF9kPodgzbXLuXG2PVBBucPP8OuAAhzM74ayODzwWcsp/YltsP21uOlxepi+LeV86EvEY9Yjl/acPo1BLsK6FuJP2pg5jn/j+2SBOTIEuuh+moQeMetXK0X60G7682/ieIENJ03ou9xvwNcOst+RdHz4dW//8pyFAioWWj4vDC0Qnwm25RMUAYI7fKw47THoK5elbTwwSbgSQ4n2NrUgE4GUfgVg/933FDrvPupC2psditbuFBB13vi7u8/RPRHcJf4+osR4Pt+3DtajAz+/qLP3CcoKFFfZeWsLw365ANfpV0rAJnaA6f723DIwcl3b0hVF1x79ey8w6sGMBKJaWUdI6IvzOGyq7dGwDN+bPSsez1Y/XXg/M6VgHgzfu08zMjJkKbfeLF9HYRoPXjat4hDi9iEEt1d3TDM9Wc64G0e7Euf2le5h4Scl57ZqeDpcHy7cK9jBBVMe24Nr50loxnZri/OV9Ig7PT9gLjNeAgZ6rx1oDIeGV/8nbbN8HTViwIqONkasJF2OZBFJaBd35xUI9o7YCSkBZNHagBdWg6T+n0C2vOl3EHkZgf4exHqOH7FwDJn2eOb0gTUIpWYsFhPg6lKkZCgeiqEDXJG5C/h0N4QMJ+Zz4H3M2qp7FIEqLD5xLd/VyySTOQVtuChgw3+DOuRpVwQw9klOMtQEOKM0/wp3Q7HpwnexZQm+KTP+jBZA48i3b+m+B4cg9oEJ3XftXqIOXw4SFuYgFwEd64z4ctguKj2p5dePnyN95lNuxKNagNHPgZdCYaqKre3Y4UIbkiGtrsz5l8+L5/m9S4DOgwynkFMMySJji66ZsWhhjfrM7+CM2HxlsVXDrFWSO6dmx6yjUOZHcDEEtEC0s4qX0ICK0Ec6xmtegSDCpQOVrac7AZX9lV8q009fL7gYSq2i4S+cLsJuEq2gpKdg1IEsRzcDWYmom9iEI0kx23HQodgN72qvwJVcHDT9USgAgWJ0uoyTc0GQVKh/mitChVIA7s/eSQmILwcn1IdbQSCmO5FbeAzQKDXUPcugYI4PPsLv5iPwMf/tudTejIA91ZTAS+UgET2RHOdTPQHpas9TccUMLBC5lVl/4ZDN86fiUiO7ABB/98+rDqMu3Yn6WmSLgH9bnndMi9LgzOaTf/pvG+B7csmCanPcMh+UYd2htwJ2hdEfQKEq2BBgdXVkJOIpFk5g5PXRkFK3zKQNa0JOol8p6ZcCOid41I/i2E3/PIv67I/XgFJ1cFqgcok1Hjjw20rh1FY/y2ugLtcDH8wm77ngonIVKs6PY//GVB2ybC5tBSDEknoTkoaDskIv7t0tvkJ3NZ5+Y6/qQwiL32fcFnAIa7/7FXPSo3B444kFkJfC9ye+ao/KEpAo6J/eCZ2P4Oss3TX8KlcOCvQn/4zA4e+zdDSpn2pcCviiLHbZhWsyJVcJHHgUEn17PvRMQSs0kR7rSNV8LzTHT2gYJEd0xBXqsgY2Da/rZ+3yIYntwL3HT1KQA8mw7A5O3JB0zzpW5d7IdTukn+sxx2LzLBg9AvfAFrm8kB+lgFyWnWXX0/Hov2aleJVCr3wxHV2a998PYhwCQafdCSjATMb59febcD0+YDWV4MaEG4+qifcg0HMesGlzxVoEEFP/dFSVQ9bBkOyYy9wKO/6KRuBQBroOJsSo7Qawahd7XNXNyPvVItJiYdNIK3HBS0OzWDOzr2p8V8cEqt5y29ZnwHSpT+sXksjEA/5S3JBcchyQSfJ+Xs7fOYwiPyWUg7sB0qy5SbxqPHz2+dffEvhe958j9VGG+TiaGocb6KQq0nIQkN5Fqzvr5hu4GkEyp7pJvc3sUhOts3i9PUmxvtYVEgH10F6R+FX8lwcaqz/K3Supg2wP7Evnfci2LKNfbTwDoOefTx6OkQ0HWbqO5LM81qg1fX+/e/B8QhTyBd7RYEOh8OVTuk5FMPuafxj6goZ2TnG7RAXfA5hEnWszVIZcHJL7ay+Bw7xfBGIqeClg67iSV/LsFaY/u8quxyjH3Y8DPpx36kLRK0PX6A9SYZwDEVnIZOIDnHtyyTkISh+NhG0vdYGMemrj/fdxyL/7BFmfwYf6p70lNYfSgB3Iq5Iq46AfhrECYQvUuEbBv/4nCGCeF1fQguD9/rwMnPSulRYFvloIsTTBnt0jWidX7BIKIzCoZo8Cvcu3Jy/eSMdruWP8AnzEdHg3y/L9/yKIUBKxkXzSyG8+3Knos07Gn3GjUlhzucCh2z4f685m8Cu2uyfHmssisKEvHiRFAj8MQrGvkQqFDC3XJt6i0M1O0yt1e62g5zCbvVqzQQw4fpxwvExHlFX/ornW9Lh5PAnr6zNPMid/cSsl0pGyF1v75k9Y/Bk1X9QWYgKFucsF94rEZAdp//f3JR2COD3/+yzOw6O3dDcskjCoxeB7/+ae7TD3FGJJ/W5VCh6rcOS64VHrnzHlyQY+5+69/77RxdKIIDwy6/qCAGtCPjstUzuhjK/SJ9PraVQaWXTsPSIhK5JPw9Zt6bDl47yNNOUODh0w/FURDwZndZ5gzxP06HINsX53GsCfDOmWCp8ICOmxkQF02902PtQozkpHcHlwW2LmPsktHhydmvAJQHMjmnsP6hGBm22oFzPTAxKCfH7aGrcDuaPdpjli9aCo3CCY5cdHvlus0ud3p8BVFUd0n8WofDytmM5SSAeXU6cwE1upAP3WfV/e4Wz4Vw+8kyVZNzrd7SaTw9ToCK92r+9PxOsHL4Zb4th0F2nJ4rcHTmMXvZ98qmMChsvbb5bHIhFoYn7KBsfR8Cq/YHbAUwdHAky0dOyoqC5ZFYrrYVRKHDCxY68rINLzLIJR0MJ6IWp17Fyxl6Zn8aDbFkxNFlEOwnWE9DQgtjMjeI+yG3ZYEsqrASd3NqqF1oUVGi7AxvzrQXOULdaYwvzIWq3krXYVQxKOoxj+/t5BDq2RriZnZrBep/ZdY6bFFR9nTzoUhQNk/wvJRxSW6BMs/9r00EcIh9rGpM8zujVmAuPznJWQc7L0XGBn0S0fI/LxUm9HYLfRBSr72sAziYRw/cmePTfJPkOloBAYr7GBVxrYA/nt3P5TlhkEnHTrkCBzPBZxd30sTq4hu3e0l/GILULP23TvtTAXsEtQcJ3BPKvFZ/J2MegA1PiLheraeDzp12Q6yzjOT2ROzzncehXqdpBjbl2uH5Uiee+NwK83rVrCkN4xDr1UOhxTydIi4jH1aylwV6S7bKIDBFJVTzZ08hPh/69rRUPdRHMZDrPsElT0GIl95WHDN+GMCuWT1GF0KZD+PR1KxpdeVP5O+36KEhLyR7cUdACnOKxbiiBiNY6rVh+HcJDhlef5q/BTMgnrH2Cx1g0g+s7r5aZCpy7PjR5pjTB7mZR8dDFeJSPYReVXRqBMtmVjTf7CiE2QbqMx4KCbOXPDdobRMHO2je8k/5tYF5ALf+nikNW4atNT1aGgVXoq9xyqh+0cdQNsUsnoMJSe8F631Eg3zsRuXq2AexLHI9MGRBRb6zNnVS3UTjBLzCzUFMHrrL2OX8cieiIXcC/xe4X8Nnr0lfmIBoEBr3SSLDFIX7niBuYIwXQfPiQe006HlqD/XkfGMYgE/ycOz8PFXYnPxK8/bkQLv6o8f2djEUZo4NfiAwOzMqNeDChWgUZrTtk9D7iULFikrCLfQdIGH2NlXtZBQ7vD72pY+Q3WJ4z96VKB7jdYWrQVagEgfq2jhYuAppqo63PXKODXV8FbfUWg9fumnIJVpKRYeLPK/xC9XDR6fn1w5qlQBRo7d5QjEWWKeMELiwddrU/G1pyrIQKevZryTNkxKrV9Go0PwhYjrsV5c03wLk0piKfLhxy7fjZgrWpBJZg6TKZd40gWZYnKZgWhew6Lp2JPdQJCtxUIcveDPjle6vnQSUBvRpmfofpzoTWTIkT6o9yAThWZLKN4tBVBTWi/j8/8JjyL++UrYa1SdOkl+s4xO1Zb7nA3w6v9rKvKn3NYbz/2tva43gUUOSx84F5D2Sk5XpUO1aB9sazynM8ZFScF3K4gbEPnzrm4++3lEKJ8L7g5oV4NGS4v1azdRSWRXfaZr/PAcGfh0kxHYy5RdnTEu93wp/9omfru2vBYGfg+sZnAvrksFuhfDQb1h61DOmkV8Pi6RXFuNBYpBFp+1P72ig0vDHmUWXsL75kKcqykIiS5IuIp7RG4QYxyf/LZg6YJx75VNpFRGca8r0/25bAhw/fPRCD93A/G0l136IQ79FKj/P+7XD05a2X539XQKuLdnViKB69sZWNimDwz1TRvSPbDD+SlRVX/i5OQEo8MoUXDOgwgfDnuJPqYaeBjFBzPRmdSwm1uM1Hh6jl02bPhxtApeMECBygIKNGF8zVPZUw7VH5IbStDrD89om3B6LQeFbRkZtN7VDd3hp8ndAI7mzp+MIiPNIl6YQvP+6EuyI822/H6oHjTHd+5yoBDU74Tjb+7QWnTWGfrOsINhrTRaP3UFDvBcJrRQ46NB5b+0zEJgNWYb/BxeMU9KPsPFfbT4ZXP/TPPaNeA4+4pmZSHHDourWV1C6Fflg5eEY/cLkOTp4Z/nUtgoKCWWWM3jO4ZXKZV7pDpQYmoqd1LacY90vvMCfr6CjkvXcVqLZrgI29IuNmiQQ0g88f05SPg2rdoFNB1vXAdM3uCP0PFrGw1mthxtKB55nukQCfZEjTMA9ik45HX+vH3sfep8PPeNssyfU2cHg+ofk0kIyGA4eG3fmi4SCbOu/7fzWwrwy3rngUh4bmvOLVuOhQMIQXUmbwW/hs3PYgo6+MJ6S+bgh0Auu8xvGB6QrIdY56F8zw990Tn32sGN9rj/17RXZ5PNDLVZ4NHSCgqgPM1MbAKpBh4rv0giMRInY1/loYj0JWkW9U/5blgAb2lqF6IQ1W39fUz52NRQSBiWzn56PAW31tI7+mGpSO9w1/PEdEJXq927mvRsFhzmxxLbAVFsWFCAOpBLRQe7Nkn2cHNIkGdz082gTfx8q7PM4QEAtn0XFCOR2wmg8p4oUtcFX+6Aue7yQkE6dz8bjYC4hZKuk69rACntU8YQl3xiHm0fk9zmF0GG4i/fE40Qyno5Y5FAzJ6DJr0O83sYNw4XY55e9qOqTpWjq4lyWgiobwkvvdA+AuODBX/aYJZqM7NBxsElC5mz1x8FcZSNGwtT7rGeDn+dvjelYUOobniri7xx8+t01VPX7SBDu0Dpme/opD+d8MrFzER+DiHpyg1SESPApiS3ITT0CSK/khZ5KyIPGwmnzKj3SYuprCtmc9Fk12Fimws+ChzdCdvVW5Amiz7T/8A7AowsDLlfl2EGjfoU0UNWVBNFfyaRjGobr6E6L8Q6Pg7+edcrioEnBJYpUlxQS0dgH/60FUPxBmB5hFUyvgVnzfPd5XFORtfvy+7UQz2PL8xBQwuLcx943a1mcGx67/DrzpHwEnc9FvTslmuKNqUKFkhkOT2jPf1ARGYHfYw8svduQDb1PN/Xm3BOR3ui8cREZhf8eNNA5UCDbzZa9lZUlIvL883LyeDr5GawK87Qlwq/Tu8N05Epq9TFz+dKAJmDl1rLm0SFDI7796uykOtTx4KGLwng6kC9Me7/5WgiZzxa+bSSSUaSKJx59NgFmPNkGDmmKgyr/U3crHoDB+2rYWczXYMjVX15W3Aa3nRmz4RjRq4mo4cuUHAbaC2f7+cKHBMWu6SddpLNLrlTBsVB6F8JFLyTUjIRB0UuCr8hsiKrPm9WgNqIdx/b38K89q4PXCboN1hr+PjdvEWeNSgFytvytwrhxyY76oeh/AoJyFW7kS+e2Q15TyVDy/CjBMOuSELEafPGk4Hjk5CkVW/mYCfvGQz3PIeBVPQPL+in468gwv4PM3cCssgw2Ovvvv1sioyylH/YP8ELzlXM4Y+l0K5pNbsT8KE5DRYN+ArBgjj6dmcFOPK2B18/BUKx8FWau/N62MTAGv1uHfOqVhQGCb1e5n8J5ki7bGm5w0SLGZb/zK4EneLDtCaXk86rtoVjrPFQyVmOY8Ocb8v7VYibj14pDKft7XYseSQLrXf1EqvRnCfV9EaNljED9JTsk5OxOEExQT63LKQY42/PTx5Ti0TmnBs5/qBnPzlrnLnUngUNH7zU+OhKx6OPMOfOmGKxeuKu6PSAGj/eyGbMUk1BNZsCtJdgCyw2iBnok1wD7/fmesegIq2oE7GFBMB8ln/1beXKXBA/FD91N/kVD4U1VWErYQ+hTS3dyTosHo6iCfi0YMslnW/2psTYJPM/6pN1RrQSwYi5KZsKjWMIWvfDADyrMEB+gzeJDKrlIDehyqM2NSuFPTBYoZnG0KPgRoedhV3TZMRPVIdIHCuEM+swMmPjOB8GNeuK98isEbBzh3O77qBGSjYiSOpUEbk+Gpa2eJ6HSD67/km3TwuT54OroqEeLDLmKEUsgo1+CyY/PnUTBWwadtdFPhjdRHvsQAAvorr+kadYLxu/7fKc2c1cB+8u77K7ZERFWQKb3H3Ar+bE+5Yr1a4AO9NZ1PFYOuChYc6WLwxuBr8p05wTT4+DHwT7AKGTlOsV2V82Dwj4psvMCjNvCNM5MyacChP63j6lcj6OAVphvi38zwP/fEOS4NMhJob1DVxzcDjwg/LsagHHZxCmzdaY5Hoaet1Th424FN7mLndFkmFN298FeNBY+YD2I/bQtnwW2t7N2bx4uhziPUt0UpDn0h6f13wmAQmk5+KJxVqAftErAJkEhAWv8OL3No94PqqcC4wOBsmD1j9t/zWQriS6VHitYgsEy6GqV+uR7mvBPNBVOxKLqzdKispBzeHJB29DNugJDZg3sfBEShUUrNxPyXJ7A7dzPEaaAAHizNzod8wqEvvzkLZG77QUtxqcGbb3Xw8JEa/eUGDnEUjTgvGpZAUDlLuA+iQe39Y5+nN6PQ1ocQQz67YZDvsI+/p9sEMzY6NhCfgGqeKfF3jvtCz5MMIY75NrCMozW9ZMejm+qj26lVo3Bg+kaXEDUEXF+JvhOaIqDJyzc8U4c6wYW1a+ZmPoIraY7bt3SJyPKvdN0dLSokMzWZwzYJMAJVPNk9WNQTCibt+W3QyswV+Ha+HGbr3hW00DDIYZ/xycy0FHB/KpFvfhtB94blyCcBDBq42+87ZpEI+84cqnSziQWLsI/2vzwwiL3u7h77/WPA4UytXX3cBpWmz5JUpQnoaqxt9b+sdNCS5az7RKCCtjJLWbY6I78qBxZKd2WCdu/BpUvLCCrUx7S6cHGohtJyeeoNHi5HyniKe7aAfYt+40UjLDolhjWLMk+H3a96z2VM1sFxO+9zR+zjkZG3iMdMTybkTGjj+ELrga8S53/WJA6Z965XZU33g4xlUfC7tiYIlmgWihdIQF8Dh+zstuhAqCafYGfwfzObt4bhdRLqpslpFy6QwHDr+GSDdDOg2cKbtJ8YFFm030GkohlmA37aHX9bBT8l5pIkiuNR1457694yYxBoaX/u04tkEGe/EdomRUAqMfHFV5saIXTRKj8HGPvi2fCtIiYOLSmp6m6G0sHTjxpqak+EdenZVYvrZLRFXf3qyuC9278fJCGdKDASiNvgkaSgadM7LqvTdNBnX9GNr6QC1XLXoUPJJHRQZOWK7sAQyM6O/1K7mw0xnof36ZUmoJgffiyHGP7yea+hxru+JIj2xNWIPSSiWmkDEl0iFkZr105LqWeBcaCKUd1OHBp4VnSRZTsOFvfZhsSJE+Dkha2lnBUsmlJeXxDBMJ5j26bgzkoF3cn3gpZSRKRiw5/gwvCCnXFvvZclK6GyQ9wxLzEKPRoW1Nts6ofOl5xZDodL4dWhxoTvtRS0euiHGu8ABup4883x5Epge68uJ9yARTvDeilWtFowxb7kuCfZAh1jmvoYoRjElIJpchItg3gUy7pFigN9dLHY+10U0t/pzu9qS4flBKH5EOtW+OR2sWWCSEYc2+Nv7ryjw8HL8+mksXwoGdYv+UQhoSif1acGiQzf4X6+FvauAHgbLiwvKJARaWgf17U9keAnkvTVPboRDIKiNIYAh07TVy8c2zkKQdhXG5c6adA8KHY48hQJ3ZF/9lqthQznzn08InXTF17poInHbzFIfXt4x/7RHpjhvX1HENcKXbrGEQQxMoo13ceasUoH+esOr87GlILExrtX59xIaLp1hnVZbxBefHpFfcCPYDsFt3dbJAG9ZENd5lY42Fqx6pL80AQq7w/9dY7DovaIk7a9/qPgmlks7HSyEjg3+kJx+kSUQvsjJzc4ConzrBIyZtWA7ddJic0hoMbEjjieHSNwJTX8CGJrg54jxMuCiQmobld/YxN/D/TqHfsSK1sMN25WSvmkktALnruXI8XGoCfzzTu58jywLlOPuiVLQKfajPYZbbcC/XnzLp4jyfB+4xD5BhaDts8pzrVfpoPwWzAY6s4Gtp4ekG8kIxa9Pm+TDDq8U/Q0xknWw3SZmX8iYw61I+sqPmgUrv9e3Ms5VAOzB7xSyb0EdEtCovBPP8Ojo3zpLH5l8IHbLuizCQ7R/Z5+XkvoAlfv99JLbeXgSzv47f1rIprg98aKb9Jg0ZIemJpRBEwxfb+/C+JRk7eCMc/hMiiRC3/0sgABa1esy9e4aCSZS8qQ0KbC6czUSxIMziGc3CNEWseiA0o8bY+XaOD5617IhYctwFKPdxRcYHgBx40zZDkG5w9z2qp5NUJK1QmWrcMExDR+1srQoAd+NLmJvgqqhU0dN5mkvWQUQMwJ+NTQAEGUQiKppw72XBh39dOJQ8piRIs7HslwY+OS6duRJKgOMvOT0sCgI8+d16cQHcwrlg/P8yKwNX/j/pZOQi08BrG7/vYAi/3lljcjjP5DTJf2+pLRtOSlwUnTUdCW+cp+OCkDdNtyk2MpRFSR8848NbIe2oz2KNqLpYIXj9aZlrhYxM79cF3ubRQIngvqejBQCPnGRVayDN9JCRHN5iijw3zNjz86hT5gdux5B4WJjDymKiVE+CjA/6TntFtWFmRl9T4r78UgNh8tr5WyIUADxmW7LlXD5z2FG7atCahMIHH5W8IA6Eo/fslpSQVuk5zzTo8TkMbK64/kjjDYcWWuUFObAN67V0UJATikLXiVcNcxE9aTOUhP/9aADMvFwUPBccgUW2f17NgAXOxl2ruujaCmxqsp0jABBczaug0nJwLPKHO+UFoD3CkozIv1xSAfNi3NO5aM/G5kxhyKqYL2F/c/JmWTEYWvrYRvmA6/+Z7EH3hSAQlfym3wTSTk2640oDQVAXNx3MtctVRwOdVYfdIQh/5ztR4eT+6A7CuNl9kupoK/1M1eEVsCepVEqpHKq4UugZTVXzdfQG89dxENxSBves/CsRkC3D0n0nK/tQ2uYofvb2hgkd2NkkdNzKOwdyi8M1qOAheLjEVaDUnIYzOowFCAAI+5wzFP8qkQnRxb+sYCi74bSODYZLKgvFroyHXDStDB1fpkiMehFwsKHfrYFAY3f2pt7aNB7NA+5cv8GHRdLSmITXcUbg0IVwz8jIWCaAx2pYaIToq8cz1oTIbei2sX4wNaIYN/cvD7IgbRzf97rM6eDG4a//GbNbXCuyk2ye0rGPRtp47XAY5R+Ppd6IieRgsUTJPVjC6RkPN4v/pc6iiEHBYMFXdvAfHO7HA9FiISWe1nUufrBUfM0iR+sxmCnOQ+/okio7rhx8/srtDh663wLz9MMqB1j+y7zGYyUnIwCD8oTILRKKHWU/mNYNxbwnFZBIuazq3M/GT0bQXb0A6BjyWQov47gS5ARsquO1K9bg7BBb/2C28TKmHY/wJy/JCAhm9f+2n9nQrZ27d1SjTKwVTZuW5BFYe2Z8ptd2gRgXiIPXP2aBEUKNZ4VR7FooO5BndJ5HioPrNz5MWRdKi6c/Wu1AcskteQLGA1G4ZIDlNH534acJwUM60kJyBLygjGQf85fB3vHbdxqAPXt0VKaw9xaFH/Lz4+nQ4chh+0uNgiYJf8eMghITJa3OVgfkukEKYF7p5uyKDAV0/mbCevaOTKbLXkHJYCp/xku3Z3FwH7oqtZtxAjL6dFSyvvtcLJwVO/X/jXQlJsba5MKAYJbKj5OD9tBW7uQd13JQ2A+TospBOHQbv87XSUauiws+ss5vmVagj7+nJNeI2EaPqz8mLnR2EzNvbcxs0KiJSujhIbJaJs3Yl3qo8GQbnfxIfpeiXsnjy1KMTIIyWiUWottBCuh4ml/xSlQtnXC266V6NRjXgqb++RKnBQ2cJffkUDtanzs/LEKBSgwIT9EDgKZ7v+Gry+nQ2nnMPuDl4iom33hrtO3lngtqjiGRHRBJXJ57f/1cei6SiXu6+iGf6bKz6T2p8CDxQ6dHgXKOjMW63t/OhRaHLixS31YsGiI74m6CgR6X3Lfond2QO/jHDIN7UV2sR7D+vNkNCuQ8UFt0WbQa0wsPzaf42QVTmWqXM0HjWdoT/C66QDnfh16NmhNmh57S92PjIe+cSccrm+ZwQMdHgbPjLVwEUh/s6tkAS0I5iD38dgBJCLyvxUXAm89T47n2WVgOYCvI794ewC92s7ukibLTC14mcx+pyIBK9+3H5N7YONL4bsn84hOGepl/ZFhYLg7eASk+MokAkz1NkdCGbxFYbPvIloz/59gxNqo9B5U7d0MgnBMc9DPeGTRLTjh59JXtYovNaeU3GZLgPXCOanI78JiM1sa9etFQZvawauuTWUw4UMxSxZDwKKLKg4Lr9Gh7GdoXp91XUw9fRgoaIHCdWGcYv92+qDAzdv3w0LjgbNdcvL9EwKklzY5mZfQ0DoXq8Qs8yAIuvf7k9fYJGFWe3rhWM9oOSj2s2eSoAOF5YPc7Uk5GmZ+7tjRxY4WHEc9Simwkncl01/tjgkf1VaVFuyBIper0zum6qHF6Hv8nAfo9CnU8wWqYw9H5ISrheezYXMow61t4XJqLIzRw83lQLLL6U3rFtz4GBUPq/NZjwS0tLZvGuOgaOrRWvWzxF83dof+m0Six58YDYx3E2GM8/Djo7npwBT9dsbq58x6Pyb/N1NwqPQN2XyuS+nDXCyKk27ZEnoi3kkn7gNHaS4f4SJHW6E1eDgVeN4hleGLzxhmkuEkDSNaJtmBg/s7y6ufYhBUgZnXtnH98Ou9KSEQG8qDIxsWa5FUlD/oGOC27FCGJnVPnczoB5eUTcj+Bl7bvdZ9+YkN4JdEsJHCfubIWDkHO6OLBa94Ph17bnhABDU+ZVf7ysEB5Q1kW2UgA70t7x8u9YDW1J7zPEOPpDCriRAkCajjN79X/U/D4Nld9+1p+M0UA6v3VvEnoAeCXIacd1BsIx31+2QxsL3dJ5yJykscvS8NxJig4VLleysYZaNMDfAnZ5VjEWvxZxvX0iigxLOnNk8phZe7dkUTmQ8f+s4i1oAw6PNlYL3f7NBoMhfeOCsLwH5zOWWZDO8Q3dm/1DIoUhIvP5ZedKYhJjeXdW+vtAOIuqp0rcONIPB8VMH+z/gkaVbVp8McRDmh5V2Hr7UBLa5uNzMkwnI9y/Ze4rh18cJ13ZfZ/jvVqrt3jEG31bdM5RiDxkFZakNa+wQDfa8HQivYOS9I/aJj8oQw+s/+3w3ZfRkYQE5Z6OMgLwL/JZSHmCg6LOt1PhxH6D7Mvsb9mLRlSaKEF35BZC6JPEhRB+4+cfBkssWh9imZoyEPyWByg+EqOF1cEiX2CxqjEHjzyeyxTT9wP7ZkvRATzq4h97YtmBwWl+itKqFVyKk6Y4EJ6aVgQfrXJttFONOPeup223FuO9Hxbt4K0PA77ScE3MGGZ1hEzQbVq8G+9dc/3Z/aIbzuQUbL4WjUc+Rr2xf8vrgm0x6aHdlAYT2XmbfDKcgJtYWmpdmPYyu83lxr1AheEvTfowQi7Y3xlT9R1IhILpCvGOOCDa/lIyUS+LRUvIDu8uDdJj7yTnOx0qAzBJC2bdGErIeeaSKN2kHnkRvfPZBBMb42M4dgEfF73cYFDC4yyQ5M2/ZMBJEx52ef/sQg3L6pUtkt+mwMKZxtCiiGu48yHbwNWFw9fYhqROWvWDyzPTula4IWJGLUdKZIKPhceJkCyMn8eMmdw/01sFmNn2JowaDXn6hluhWDQIKe6B+1KIIfIb7PXhQAhIRSlbVrB6Fmzq1V7UEiuG5H88fozlG/3ic33zEQwed7y/z+AppcEN12V5Oi4I4/+/ovOOp/N8/rihkRUYhKZkRIknURfZoKBEVlRFNmUXZ8xzb4RzZezv25n3sfQ5llJkPskJJVup3vr9/73M/7vt+3O/rel3P5+Nxn/v2ZjVxaqZAz8W+En2WaqAEap4/nIdHOoMPWM/qDMDO7Yi8Jpki4NnftXaMyhX2gYblaSeoPnsmTSPFxgXYOnf/+neEoRfvLzI/sO6HBox0kAd7MaT626zNuMUivTI9fIj0ByiXEzzuIVYKNLsSPxwsqZwmp3XcTGkA7H5116uq1cHFJ/6Nr7pxKAoT6dTQWAAXWCj2t6TqwdNVwOxiSjBik2OR1aR63GnT5Tvyj8tB9xfZXCI6FvXlPH9rvpYMx5dqImSMcmHld9YvQ44wVFCgcCBUqBJCRks1XJUqQKlwIvI0fwgSe/P2zC/1Wrii+CyXbjgT1soixzTMQhHlnzSzoG8hFLGkhx/jKYHtiVQV2bZg5F16+9B183AwdCJx0/Y3QecIr9l4RwR6f1zb5fxyD6yPxddHUHnMqXCOQQlPQI5pZcXz00RY5HuSObJeBr1tYOoeHoyMQy54vVek+t1d5jsBWbVAT/YVIf0Xi47c2r3y6SaCB9qmLfqZb+Dz0gllluMRKKibz8B8MhqCr6dsTcZkgMmXAcVp9QhkNe9vfutYODiaV4q2Xs0ExetFDtITEcj3yklcE1sUvFd/9fKUQiWI5ckxsDtHoM2VOOzvwDw4tlvUc9KlDF70/FQL5Mcg55tThvnlLTB0N6epgTUdYsLoyXdw0ajHGaYfHxiABMrBi+bbyUBY4SXMKMeg2zweC/IsA1DUbHBO4HcaNFf2u3cqxaDxqhd3arkioPoo5hh3WREcmi+ska+PQHKvJb7L9SbDP/0Pi//KiuEbR6HuefEwFBR2mA2b0gqIWGFQ/yMX3I4e9fJWwqF9Q5XM11o6YCPAaVm2AkGG9qSg7cNY5Nv6xIzpwwCYG9cVzpXWgClLd2wNOw6Z35pdYXgfCSO3pB+Z3vgAu2ZCf1/5RyCxMs6yiYfVMMfS+j3T2hVCxJVD/UxCEBYWRT1u+YPdxqzC+Uel4LGLE7d/HYl+aH759dkOgXnhQBi7aw58LpQ7d+1NBFJ6/OcOQa0fXDcy5C78q4B/LOetBvpikZ9q7sI7egIoNuizsL5DcF4mgGeyJBx5vDT9GMTdAe1xipXlr2vAbkF57VBQDJqmnWIpvD4A7uaO52Sf1kBmaqDLThEObTleLw80bIIDWtmP5ShN0G4l8CMziMpCHY66LvUtwNHs6hm17QzoCz3bXf9o9PW/U5fqX7bBz1Tj+JvU/ekk1kmeHTikcvMsZt06AWxt/ri/OEmCvC5fzxnOcHQ1KxZ3tIoCs/T11iWOJOgS3h+VNIhHYel7oWOLJXD5oAk+aiEVGjptLKxKghGHMetmuWYstNz7va2dWgxsTaUv82fC0UUeVfN2+ibIjt40jyalgLBgEBNveiTC21MsnIoJsCwywMEdTIJG2ct5gcnhSNpyhEPGigJ2xCRV/eUSEO75feyyCgH9m+mRvEyh+l7+xNMG8WogDeollF+MQKPRP12stcrBprW9euR0KTw3/q4c9QaLaFpCyz3W+2Dv6afEn9oNYNhjdx0zRkA7nUMW86VkOIC3DdJWIsDn1DcNCqkEdLe5fPie3ABk4JVzCanlIDk8av33PxyKOWRxhvywFyKPWY9aU/mk0fq8/OkaAvqZEli1dLQUhvAqBYafKmDL9HwW4yAG/RZIM0p/GQlq1ts/Ta3LoUfBQvguta6SH3pfKNCpgYYDZ9mtdBshoyDB7utoKFp91iOu3UoCk6kYF+koZ2An67O9fR6JzsxkDlXqtsL9xPO+1h+bYLOJ8YdfajSq2a659edwMjiI3XXbsqoGbuMQ5iK3MKQ/c8PUvaYY3uoRGdyXiOBz5WmcTiUGzUlJU9h5UqDPWuUWK64MvBM9+CpZwpDHGz1zTuo6cXi/0AhsJAFDzH02u2QMah4/UmbaOgAyg9hZ5++pkP75623i52iU9/TYtQ9KdaDt6oCZ6G0CpjOvWLS+hKHBRlkVU8tOeN7WcuQrYw6ss7cFtX2MRfFfl4j+VM7hVKsW1NYsALv80sOi2QSkrSe2nNZeDOk83wI0/rrCsf5TBnweGPTX+yP33fZk6HxZXL8sngIWo2edMVZhyOo45eg6pR8uNQ8d45Gog+yHZEba+hh07PSTdZTVDx1FQa3sXTUgJ8chHEwTi+by13ufPyGBuOwHvn/BtTD42DGNUhmBVIpUns8lpICtrM6/LaMmSJKl3fPtCkUzYhUR44YDUM6GfW+t1gQ/Hc89NHDHIYz22TkRwyiIOXGEB3/XF9ZiUxNLoiLQVOifP2vOpZAcuayc24WAZ8nxBjYtGK0lXkzk9K0HFLzgVH8qESatQv+qrYchpjLeQFbnAaj79S3zuWwF0BbdC7cyxKEn97ZyhcYGoG3H+2OVTQK8qGc8F18bjWTJV47sxVGAcXK6onvECQr3KoL7cHg0P9jMe1elCz5aXPs1mlgPJg8W+7L18MheqJFu4C0RDmksPvkr0ggP81GWVz0GGWcy/FGv6QF3r9yDL76mQ7XTjWXVEapPdYjoTciQoXvc30pmrg4+5S7UNfUQ0F+oUCnc6oLY/aPxxbJpEL9i9Ur3PB4pqfi2OPj1gLM2puqSSgpg/RIunhvDo1gOMfmrvu1QasGSiKPmyfRrqvolxCD/mdDMhOQKiDl22Pn8QgPkHcX8S+rBIB3nkxZ6zAQgL1XgTlH5MNvCUr6nLBw9wfacqOErh1vv+09+pSmADW16Th4jDKL00pJEbg2A9S+2gcFpHGw/ZBB/jschStE6Ye81Bbr/Jju7UHl19HSpot4hAkq7UBPuf4cCmXspbrotCNabnzKVqxLQa6Ra+XSzH5w0ZNA+RRe4c0dLX8YsBn3RY/SJ7eqET3Q8XG9WK4D94cfy07WxaPVO4+hXiY+QX7ajzG9RBzwbreX5c1EoPunzG/t9zZC+Ojh0oD8bjtNXz6maRKHCNouAmZAU8IpkpZslFAJnfD/pdkUouurEZaEZnw6Q41f7kSkELleEQwNjCPJS2+I/Fk4GYhPN/CXDUihVEsyc6SKg80TFU1zv+oAQY/BD3wCB6j46VY5BApqpOjxeHNgCoqcK8dyDRFDyncrasotGG2kfl4h0jSDJHtt+ZKQBlE7eaqK0hiPbMblWbv0eOGYZSfLOLIFHL+v35XzEI1rl9IpDnE0QqnBr4qdSKTA41Mbu3olE6f3PNfc/KwWbd9ucrx2roSzMG+8UFoyi6vd09yQqwELVQoVLIAFU30aGcBAxiPdVFG4hEUGM7widghoJ/FRY/3lCBGr0GBpfo9aVwqPDdXEZxWB/tc379WcCekjAMbYX9wJe7UWA2ZUG8FJ4tCs6QkA1DNLEA+/JcMeOud9crRFSf9/qCmQioNl9Rxpl77WDelQdu+yJUvg7knwwlyEGnRXDDEk4x0Dg+9P7toVLYWvE/4TCXjiKFQ56Y53cBl2krEgb5yp4RTh74mgQDikvarTKy30EDot0+G5RCtHGCZiMnih0seHLwKnoOug7dUQtejITZNTD3fx4w1EWVqOHyWkAVgRWcb9FXeDxp+j5BBMcOuFnPcNd2AnHDlfQX7lBBMczk6GrnrHoseILuvvkKGgXtdWlI+EgTi4i8KldBGKXF5SgS8WBwulAm3saRRC3/k1BWSACeSUethRu7AFZsTzuqupGYO81ukNPIKB0wey/7wPyYN/cwN6GRhp0XPcuT+bDou9/lEKKfSoA78lLwxtUA7QlGCmBjxhUlH/OMu6ODxy1tGvGMVE5ttm9Vtg5Ek0Rx+leXgoBRp+G8UueZdDDg2F3oI1EDX30DOSzxfAw2ndQx6sK2q5PCH+owiD9T+L2b7KjIQIvmnaiAYEHc5PXV9UIJKz+5rEvxQdKPjbkGu4EwLPeLzG//SKR5hjDwonIFghVXy1YDKoDq3mO7/vZopH/lYO3MO59cEN1auDheBXE2dSwb18kIOZfdEs3N4mwIzaTIzXRBH9N9g9KVWPQ4oC/7sQuBVQutITKeqSBDPpzPO0YHhlUDfLxB7bBIT0k4hqcDYsj5W7FPjj0XycW4+1dAq8suss4+5OBJ//eh9wlDGpgUc5Jnm4HO2OtZ0E81YDdXtdvXo1BjwMdakX9GyHiXAaiVKbCs0NTKnFF4WgjUN5PgNwLdzR1Vb4UNMCEhOdhQy4CkkzxiZt16AP7pYPm2REVoN0VefgK1XMZbsY1tXuWQurY5XWn1ki4JrSVmvYmGNklNxio0LXB29Th2iybaljUKbEfd8Ohhyv/7XPdboGwzxY6q6RS+Kx+muNUVTRqDiL0y6j3QpIH7hd7dCl4fjnN3dhGQC8/yzCGBg8AN8ld5b/hBpBk8fx67ggOTfy4PRa5ngeYta0vTSdq4XpRucPJH8Fot4blBr1XL+h89/DSZK6AHdFY3WfVBGRRnHXww14YsB6VZ32gQYIS47yq75QI5B5+km6BKRsqhlVmRMLrIJqfa1j6ExZtjOT6vj3TAUth6v0Z1zNBS7rMtzAkBrXh+bix7T3A9Mstbni6CLB0fvS/mQmIrbKmQv03gjsv/6xFGmZCPYvguW/2ESiz0VKfYaELLn448UtauhFu1aWYqVbgUVXnr9eHJfphet/vxm9i9SCyo7awTolFn870/xEfD4SqMCvjN17xsKxt0qF5NxKV6NofY2SrgCcVRjQM7USYjvfbDcdi0NuW9bjIwi5I3v4cUMoeB9vk1PBvR/CotiLuZBmV529z2PnO+8bCzIcfmSMHcEiY4VrMu/wi4Dp4OyNOpB5anI/c6RnHoAe8Ji0vGZMh4GarVY1UKUzhJKEvKAxJPDcJ3R1IgJOqBTDenA3d7mzE+3ThyP3fokiFDQEcSg/WplTngMBdDlqd0HD00vBt+L/JGjgs9fgIp/MH2CHyMU+cDEWGOSuhJ9uawe/7gme3ayYYPbMlXfSNQn0FwU+XKAUQijZZu93L4JR//a0WBixiKWh6rDjXCz0zPqpSnURg9iXHGw4TUM7dQ2skaq5efjNc6v2xDu6+aFnxFo9A0i8VAuWo6/5yifPHb2qe52rxjsX8waMC9VenjLyJIEHDeLBuLQ3aFmMWZdowqIR/s9N3qwe2ac8sl1rVQ/CarVT0fgI6oX1Oocq4EFg1s9on/laAo2W2fD0mGMUP/Bne+d4CqipRWkyxmbDv7zdF7PVopFJxXJMi3Qn8BhfOfv9QCMLGAwfd6mJR5sc11oKNDrj0OuDld8kaKC3DhZlFxqIDG5j02ccDYFTwSX/mXSk8On7JuuwRDn2+z9q8NVAKs0f/7DgGFkHfHZWZEqovtP518MXiy+B13amTUp3lcCd3R6+VG4Ny+vX1Le6UwrwXzbtbC01Q5S/34oQYFi2mWtbrRTTAFUclR5qrCNKbeM13boYj4bF43x8L/bDc9GApMLUB/trZdrYRYlC/tNv3qikCqL3a/+v6l2RIPvgfB5dzOKp6Oy3FzEqB8IktYcJFqueS5F9Wr+LRnrp0puIGGXiH+1LGrqTAU3L/ddX/vffJcGrkWX0FcHVMRVT/jYPLb/15R/hDkOO//hEvwRJYCDNa1gsNg6GrNetz74MRvaMM26P+NAj+Z+M2BTkQKJhXxsIRigY5za71T1BA04uxV6a/AOT2XWLdkcGjsi31OtVLZJA6mSdVfwlBQN13sydUnvEnSRyyDymBk0aarecsa+CJHNvkFD0WvXIf4HnqUwqJrhYv6+yrgfO8x0LHWSx6WioppUXl8k8M704dnvgANwJqyjS1o1D449eabdJtYOlNrn17uwQC+48avtfGoZ82LI12V6tBxUXR9wJXKWTrbZ8ypw9B+XdURxnvN8NyVoRF6BqC1+YXGfISotDlK5v9Rhed4FjnrZX3wgUgLH1yUOJ8FAKOzZwAiUKQX7KgaXxXCM4hbwtVu4LReGrfZ62v/fC086SWvlwFiBascUkExqAb9A9VJ09/hFF8zKV5s2AIFZhqbZKORvMfyCcjLMlgFn62CfeyFDABm/x/DhAQJ2H0QcOzPnDZeB82d7IRMFkWfokCBKTqe2XI7lo5bE4ez/UIa4RuBhfPHWUM2ngi57HoNwD6xRlV96Zy4L/LYhNJPDgUeEbbOyk0Fd50yppaZDmBYtxMWxpbKDqp+jZ/nKYYWPPqpgx4aqBHKvleIXXOhlKWr8w198DJdHbeDrEy6KBrellL9d9i+oW0U+k9MESr43ZrtpTqBc35YRkEdOpk6n/k+gRgfR4cRctBnXdRmRMrG2HoQ+z5wIYNErCOGRzg/5UGJ+VOiH8XjUS/PpJVyRciIXOeDoN2smFyLY/e+UME+mIecZmJev2H2bM+eXHXAbZ7/4VwDRwaqf/Cwcg4ADv8lZlfztXCo6OdXo+vxqD/tsLXjBcyoVuy+dFiXCmQpgQc/flCEN4vyNrdtQ+ml5VvafiWgoRwzfFnRwmILkzvZ6tLJ+jG6A+E+1B9UH0x+95WLFJc/bon5NcC+wz6KlmS8yBCblpZ73//z3LhsqtJp8BK7uG0Iv1K+LL0duO/FTxyte8ULucYgMR7hac2PCIho7t3b+5cDPKTJ8kTMxNBrDPM3EnUCcqvTbXxEcIQ3QOpIhqdNuDMoXlzuiAQFnS44sU6cCiyf2SInF4G1T6HNi5dyILYd7QHrDgwSFZVlGijOABJjm49NnlVIGdkN3iqC4ckrgkxC/xuh3+Yaf3smnJgvHGrm9uV6oOPaAOvXK4CrdbObUO2VKB7NMCxnYRFarIRez+pnHDc/8dXmnt10JNgrK70XwwiH9kR8ePPgRoRlo06oxpIailI4y7CIpPQh509V7IhVn+2SsigCda7fB4+nMCiiWvT6AnVP3dT2Z/WyjfBf4Pvv8h8C6XO2bu2o0fb4InM+QCmmVpgOftf+68PVH98X8GbYRAOprM+V82p3L3EWl6E74tAn0bGBGg4i+GYoHBCVQ0B6mlEbA3sg9H3X/5Xg4zLQDBV/x/fy3B4MzCk466ORUKCTZ/a3fvBu2P0Vu9IE9A+FBL8rhaLyhaDbstfyQW99Jv5s65EmFPyUQvxxqL5t9y6pr0Ixg69K6NhbgK+PYv2Kd0IZO+q6+I2TIG2icEp3FYNaNWiDze08IhPWOzsn0M1cMBw32b92Vx433BneNI3BCm437/PyN4GLUcvc+dYUz3AsmqN9SQOkUkMSq7HG0CdeB173TMKCDn/HmUTwpHJYN7BanwlEC4ux0jt5AHW6kLQkA4WRRwkfLkY0gNOKilWX7giIctgzpbDjYAY2VQj72+XwCqjMtZJsxHIbn1pWU+onJOF+fn0RC9crPswM7KVBY217N/9qPlc4nBuUkGrHvguGiKLo9VwKc0hKd8gHHHNdDHhqR5y0JBcIsFYAjUBvqu4jAgkE3LtapLPAEiyDm1+FMmClaX9dxipfSQkTntogeoVk+vFaVcwuUBH8rEl/8AgwX3fZJxs+sBGWXy+oTserER0GpjGCcjL+oq80Ys+YDpsiP6oxYG6KE5Jgp+AoviNuWIbS8HjjbrADxHqfJ9WNmIiBqMjL1+m/BFohJkw9se8R5sAo0u8W0H1lJbf+w2EbueDa028b92DABD6PR/B9z0YNc3d2Pf8fD5wbOFjzRQaQNvyRe54bTA6cHLbPJulC4ScbgY9O1cCTMb5/hrGeKTvMVdCPEDNAT2HarFEItQ89FzovRGDjD7Efh5TJIG96bfV0iM1EMFRqtF4NBKRAmTXrr/ug6fXUv0neBshOHTmZ+wyAV3LdkmoNi+C70/pPSpN4+BnPJ/KFhMWOZiqy/zu7IVfETU2OZU4uMcR3qJDIiCbsFWGRLZyYOkJz9GkTwZTN6/beGYMsvH+zBMsXAW0ilU2/IpV8OebLHcwtQ6vaq7Ezbj1wj6tsR7+U02Qydr/bJfqg9/vNXe0KyB4Epv7Iz2tBIJn9MMyHkUgTyVWDHdoDyiU3NS3utAAuzaKZ8wiCOjsavShLuEM2It4lzm68RoosZ81mPqwSNlsiT2JvwgSKW/EYIgECzfun4mlwaIuXMz8g+vtgKcdOmbrGQCcj1/9c4iIQc4avRYOGZ3wiP2GuYlkDMxGuX5fO45HA+PGI3d+VsBt5tMnDGabwE/TkEbmEwYd9fMpazhQDAe5jD68asuG4b50pgMWwUjrgqSKd3kZfJZy/euamAprg+NiLJPBSPy+LkuP+ABkyJNNvi7EQ3bsqt7mvhh0bRlddJD/CMtn4EfUvxQw5Qxb+dQXhfKd5mRz1tog7mbWeXN1BNnCS7mPlWPQzdiYCRvVDGj4GKp9bJoIp5b6E2wLQhDzPm8PkxMIGNM+9yzxx8GmEK123MdwxMh8XnePyoWWZiehozcDuCnyvz9MYZBdnG7x8U8lcOpF/FdF7WSYoR3k2/8iGLH/G1Z+tDgAJ+mLYuho64GY1aQ+T4hGv+4KbXZodkDRZ7eqwsFiWHs7PnXpfCzazHvq/qmwBPh4Ao4k9CD4b2p4UeYPBpmpiOXv7vRBP3/hI7f3DcBv66niyUtARaZG1RpGnWDaeFmVdbAE2PnltQ6PxSLRLl2zg1mx4PSdndKcVgYrlkGyD8fDkTWafHSvpAf6138vuJ3NgLpMGV/rBAK6va4fPq5IgAZRpdKlfh9YvtM+st8xHHnOG9xJYm8BtDf49pp1NVzzhKWhI9HIw4TvquVcP3zEyapssmXCVHtnnklqDGKuvFxeRhyAx7fuX7HXroKXme7feKietWoLHKNjnbBkKb7C4UACm2vER8/jYtF6m9a7l7dywbj+XuMrUeq6fFf4wuaBRUxRB66FO5RB6+52Yda3JmBPZj8n3hCM3gQG/Qkd7YKrbvpYXHwxlNa11E7V4ZF1x2UtO9F2cGLlk2jrTIMFibdyvnM4dEr73aunAh2AEz2X857Kt08JUoPPOGJR+eMSMYnRKvA+LlG8VIeA8oui6cMViujszzmv+hHBanjRptbBGW4sMz165ROMlOj5wh4MVcNUwfMqfdoaILMqf3P0DkHHTbCfPQ8WwfR73g9k3jhwddFj430djDAV11xKVvrBwE01wsE4AT7Gn1jnw1H74hPnnFA2lTNDmftbFBrhyPWhjKx1DLpyaGQyOoQMz058MhHEkoCzS3i/TS0B/fTNSHuYSwGCl8qreZliOKNVlOa0jUcnVlorpXqb4fH1dfHktApAMb98ZtajkAbhy+nQIz1g6+df8bc4Ax4YYh+ccCWgxaHxDNd7fZDbpLJyn+odV2iWbJXGCOi0cINFz2gP5P5HxD7vLQbOYJoFcjkBfUsd4QnnLAd9e+4+dREcXDq9ujtah0UjTtP5XmVOICNJPxLLkAn7Tc5aSchGIdtKTenyI6WgvLnA9Fe2CS7GXx/CUe/DkSt/V4oW08FkJny/pTk1r3b7RGfZQ9C50L97es2toE92f4w5Ww6k+bA6FXMcSiulDbp/iAwZQVtSH+qKIeXMrRZHKkd5Zn+K2fqFh/VTGYHpYdTzCrRu3ieGox7mmKT/PW9jnPjkVOKzangyhF36NxiDRCo3d/yUymGS/ISgKIOHW0rhOTV/gpHg626JiUPt0Lv9XR4K6mAii2V31ygG9Y6y+ChpVgL2Ce+cCrUeijlbEgWPYVFC3eaUzVEKNN8TvzVytxHir3sOdk/hkUP6lpeQXissqDOwJq1FA2lW6uxpbhzCmhvvTbSQYHYwn355AUHQ3U89o9sRqMXgjEjS/Wwo+lLGyP6uAt5rRTeXp2PQ+lK9uNi9ZpBvEJMy86mEtes2v89JR6Hpaz8w2kZkmKc9H5IJCAw9W5/zDhLQJvnoUc2HrbC+b5BTnT4c7u+bkttOjkbx9IM/qgtJcOJXrTtPAAkaH3iTD76MRJGZUsp/t0shcnV+M+EkCcxqw/o3RLFo7pMSk4N2MWg33BZ7l5MEMoeOxx+4FowkIwqZ9ycMgNJXxChvgsDGTt+GaTEa9fQQAnROl8M1j8XHhWeb4JxaXX/DYQxyHgpZsdDvBrMnB4+J7ZAgwDdaXe4fHhUuWRRniBYDuaj2DM42ArzPG06a92HQ11FxQeakILiWu+Rn8x8Ckcpa1SKTSGTKqXZVeP9H8G1IVK9zzIX8LLybqGg0Wr04tPtBvx/QVymDd3658EpS8EPnq1jEuKNFeslMgUK3xnf/2iJA0y5ckRdPQNNXChmzC/yB8QT7lZ2eKii4aRdsExWJytnz3RcVP8KD6M+mx3RjATfnEeCYG4VcjW+rMmhUwttfyxc6xWOg7K2u675JDKLvkCvHRfaDFaPuntefBvBtJkUPH6T6eHKThnB+D1gnXRwwFkAQv1p0IXoIjybeu7P4ZUTCT9EcjP1yKQTiK8MY30QgD0xLmMbzCgidk5HRaq6CKbbi2wfzMYhG+cqoYGs/nD4gfPLhVBOsnXGrHEii8vz8t4FpkwL4VKkdbnQpBpwj6+6K4YJRPJQvXR4oAZ4anq/ix5vAccflYPo/DGrZtesxkxsAZ5VXxy9xVkI0Y7uG4g4O1ZWfmxB6VAJSMvsY/tXXg9vLUu0RDLX+ZfYNltvkg0pV+r3Kg3Uwo9CG7G9iURVz6mfai/2gPdigbowQSJkbtfanxyLBhA2XgeBGsMa8/n3Dh0TlzPs3OgPC0bVXfx4n2jnCIRWBVXrTBniFs5X01YtCPcu3Pxmxk6FBWtmlToTqZaK0MsPHCIiSN3+WLf0tnA9rOyl8thjOKxlerauMRMY7zcOpNcVgYMnUwsuNoMFl1PA5Kxal6KhY2L5GoHZo+TylqAaeEZaq3tJFoPHmbSXnHjKox16RlS5C4H7k3XHmTgJytO8/Uf+zH7Jcwy7f0GuCZwlHhoLiY1Dh5OdP5Ne1kFMSPkvYywLcKNvoqeowlOf5QKOqnAxRlK6MywxJwD2od/I3NffIJpTThl6lcPFM6X94VTwkW0Xbuuhi0Sx3xaw8lEKve5jFccMEUNN199c5gEUKr87M3QmjQN9JyvGGQ9R1PPBlNMQdjzpuCdwjP0LwSEi0fTgJQZRU3Ddjnwik9JoiIPKjBAgGHLVBE6Xw4EGVqM8RLAqeDbbo8OmAUNMRvoyJMJC0pvE4QopBEnRinv2HKPDb4V08LgFBzo87/r8/41Gk/fhyp30jLC35L8coZkNI6QJD1YEI5ONauHdvtxuCxS8k/HRIgWfqmPbTjwgo5/AL/vHYMqBfaxhOo97PsXuxal89sei25XMzp9R6iCvT+PP2eB5ouJ2oFR8JQyEhj/wnlYtBXYbto9xwEjwftX/pOY9BLuB1Uau2H+wm+laKuEggdL8xVa8hBh3gYK/+8K0MunSKBzR2SuC/qwPPLq0Fo6CT4tX6Hb0wcG6k8JsuCc4fFhE0YCAgyXhD2jqFVlAkq1l7ttSAzimNQqv30eiILPHyXWIHcPapXvrtlwcHdosc2Nap/njjyvDkZh4ITAjGtR6MheMpxEE9S2qOJTO4icuWguqxJ+ZZvyOhO9pGLYcLi3yz8z5fayiCe9qq17DstXCt7SQRDIJR0V+jZGc9IrRjBySkTevAkXGRQdM6GOl1iP5+ZNENou6sxcwfqd6pL3aIfRePRkxlom+jCvjh+6vGXDMTfKKEbt0QD0HbEv1Z7+Q+gmd319yvzEpwdbp957FCNDLKkgxxOPsRmn+7y8rpEsHM25dt8VMUYjxwqbMW0oGYbLm7Lh0JgWJyBAnhUBQ7GaRX19oDfbI3f6AkAvxmfPAncg2PNvZzPht9nwut4iGViTMVYK9H/oYCsCjOgdjs+LgYnlaVnhL73gSHoGedVT0YXfeO0Bwfo8BFj939d5lJEP2e2cZdHo9MIhfav1Q2QbjtAMVrrhhuHqw9wXY2CpF1Drz/ntMH9V4/WQPlHWGghbckVI6AxrtaEuV4+uD1swMjtJ+bwEhv8vCFbwT07w824s7fbqBb6xOQVaoChm+32oey8agtUyjYkppHa1yegiGYJLCSyy7hE41Ed1aSl2RtyfB8epHHnC8Ihkw8G+bIBMTzIPGOnGQPsHN1aV+ey4ArN+Rl5orwiN9CW0y7tgxITdNHvGcCQF1vve+FPgaJHHId1Z0ph95Ft/iGgGwgiv3xfWeIQULyC3/qzvSC2aCP7GOzOAgKb2KNrCegZueLksPDzfDaYCHpEX0TtOloq9b+i0IKjdKfxBSbYS3Wr2+QMRCCVmdr1A9HoVdh2tYO51qBttfzeF43gjKWT4cbGHCI4nsVYcdJQOKy9M+axgH7E+e/qvSR6M1fz6DKC2TgHw/Zm31fBQuKHeeHmQkoWaTQfmquDxYGp04c1UkGoc9Waz9XCIhNNMT5Z2U+0L3w2md1qQHYKiKOmihiUTqfofs53jIInGBbIR6phKlWpaHLFcHoXs5zyfSOMvBvRkTMhSbYqv0RxxKBRc4DkVJqtQOgeQK3r+lpMQia8c5f3YpGiSstYipfemDlqd4zb8d8YDOQT0skEtCB65QRrfgi2AlfIl8aTQbMA9eld9S8WvhsYrRBaQczbntHbasq8GU48e2zVgx6Ln02y2mvhppv+lX8k6nQL3xH+J1GGOoVaBnXHOoGhXXn8CBJJ7jOhuquxeJR2NF9E9eeNwOvjrT9TjwRLkxnWxSoRSERIW8uLSiEihMP717+lQjWKc1x9NT+KrvxBbew7gSfl97j7uvgoHCBPmZdOwrV8tLOv2xshvMaUUNVL6KBK+CSzKpTFBKjm40tMeyGiz/v2hw5nQNtLaoJ5y3wSOm9OtP/vv/yofPqG/OiXDh7/Wmzf14MmvpxuIGJKQeknH1y5BbrgFftNSbkCQZ98Akou/27BeQk4rMEVBqhzvCdb8JcNCp1OLpYjO0Ff5sAWrpxf3huzkPcz01AWZOXHr4xSAUntXsxkz/x4L/fbmNdPBQ1iv5grI4rgy1xj8tnh5og+vHU2pAqFmlxEfPnU8jAdHE5m4uzEFqltZWrt/BIrLHu93ZTO0hkN1cjZzy8O+dwpfRGDBqx15GxvN4H/gZp538yVAHWhGd7fI6AClkYFEcku8A2XvHak8QmcN5fmrGEYtEVkly/15l62P5Q+uINHwLNhGLu+KgwlHVnLGGAmwKUpLlbf+rL4dt2TQ4DlUO2bjqKtAY0QI+F2jXm9/7w+qEMiaUjHDGfPGF5/0cVpBxOSFh62gg66gkPuLup8+vuYZg2IYNfMYVt70IIMDyu2uI5RECyksyXv6aXgiOv+MeAX0XAYDm2tXMZi3IelB8O9CDBvmPs57l66iHJ+sJCoFYkqhT7QTnNWwif2TkGje80gmflqtLqBSyyzjRkkBYug0HJY2ky3cWwT1FExCQpGNmyKUQE3aeAdotq4cx6A4gLRrYFReHRvIGkkZt8AdjPP71eFF8D72JIOw/OUufUWIR7t0gV7NKJH2LnqIFbIr0U/sYQ5GL2toT3Ww5MarGKENiq4b3rF5UqqqeE70h+HeCqgLApA3br2VJIufGkrsAXgyhetRN5p7vg7Bl+j47RarCqUZt1vIdHi9yvtvbxUmDj5Z+VqhoS5A1rJp1IIqCFrJ5T0pg+OHKixOFOcQ5gwyMEykYJqOv6ygOt2V6Q8vLRicE5gmXsdJAkK9WbgiRVvHI7QUbvtrABtd4OecqJzx/Ho0mB4qXq0GxI4zApiFH3A+0o1fTvmRh0+16menQBHs5/F3oYlN0I2y+WjMpx4cjO+HG3CrW+R3i9yE+ONEHjFzNWoRBq/3rNPS1vr4EPlUNcf6nz1oNP+G4MbShya3u8KjZTBMUSnxIL+GvB3pF5j4YGiy5ft18ijiAIP3YK5GQLQYOtQcxROwLRJjof0f3aBSp6RgVir5OhPjpiVmAWj2adFtd088sgVu/jhLByMjga28TQe2OR+Gtleh0VEvgQCy1ZFBGc2GcfkXskEqmlfS+/oVYMzp/4SryOF0B7a8VMYx0GDZWn+H3op/q5l/dsPw+CpnkNaR5VKg98OktQYOgGvi8J2U1PyiFbR4lTTgGPgl4EdF437YCp4lkb75FEePDop+gLrViksSKwT+4lGb65cP01ZG+EHpn0N7rjBETCH+Oh7PVBYM7Vu2sncmHZ2sbgOifVl/OaHpgk94NrQn5HqCkR4jZ7L3T+jUFmR7r8SvL7ION3mMGfpEKYlH/n7M5HQFW3lr9Os1GgkrH3XKRqJUzGWnExlRKQwiEFRjsXMgj8seO/dr0STGtmY/kaCMh60DM5U44MP4nVNLZ1FSB+ny/Tj8q3i8+uGIeMlUK8dPWd/70fesHxpexPHWo+0NXufF5MBrHN5awucyL4Lbix3MSEIZFJFuzoo15QjmBC53oREHXlRL8yEZD3hLazoRMZlg4Kzom01cF3n4AWfSovSRxWNXH+1w/+S009QnQlcLjCqRlJx6Am+XcLbX/L4cCj2j9sVH7zfVbm8vA+BpWvxZiJivfAP5frmpzZ2aDGvYFJpM7Z+E/BTEo3B8AvcPXVo4UG4NT9+CCejEMyzBi5ZN5ioNke1tZnbwJbNikOZsNgpHgiKUQ6rxtUeHw0Op74gI7yi3O2xwnoY2Lv8l3lTvB8qlvFqhgKO/NjB8vOxKLYmYL8WFIvJIdG7EuPywRJltG4d/QE9Jhl9FZ1TSGkKPR8Uf1bBSumvqbex7HobFGdYMqbHjB/SH/6AhnBky0v+xTqdeo6cgS/W++Bxb6XHVGnneDe0VAsxzwe1dnnfA1+3gIvxd+gg28qAR+31N+8GoV4XVb1+lkoVJ4/e3OjtR6+T0prnMwnoOyrRtb7n9YAw3h177mISBCVxp350hmCXtVHafStdcHbt8GDB2gaQIhzi/uoHB4Nd1yInD7cC6/G1B1P2ZDAzS+1x3UFj44F0aZq9paBoniCWsa3cMDPRr4NpwSjDa/bAV/JMeDHWOT06G4KSFZ58947HoGkblt5kg5XQJUGzOtHFoPwnXNX6KawKKLacuMyby+c7Hl5UNunCUxC6BKVqcevEWlyKE/vhc8//4Wv5pTBWM+5wd4ZAuoo9H/nHtQLHCm0L1+GVkBKlabrgT08Ypc2UZHO64AaDGX5P2o+pJbFnVp0i0UZnh2qpTf6YIdwJH7zIgJHhVc6amwEdES62G7/91KIG++YZx+thWHJEL7dk1i08stgym+gFQIyhYzv2MVBGCZfim07GhkGsiKhV2Ugoo3Sj4+kQoFTQmLjMyz6/baNv5BvAE67kfECMgWw5h75jrKEQ1txfyKDKX3w1vvkHiOpBuYUDk38FKB6BzBk2pWT4I/Pv9P62Gr4othqnPM2EvFd+HxUZ7YCkrXUFa0mcRCjoMGlfjMEPek7qiTS2QsBttN0zgnVoP2UWSnnAAF55pv9UCRngvj0083KcyT4Yl7zTJTK+WkzPfxXhNvhrBRF/X/PuX3/WcDmMo1DM/bdeab2fSBnL3fNSyYNZHn3nU2iXs+IJxmsKd3w8PHrRgFqPqy+SnywfpqAwmZip+W9yFC3aPh+2JsIPmetGNWpeW6/KHSNTqgXFl8fLviYVg/9+qod7QPUuuJmHFqRagZXq1DdZ8VlwOhqI6rkHIVSHuRY3wsuBLOipX/h9yqhaXI+fFgEizJCLM3jucmw8a94y1QiFiZP/2X7/pmAZg1WVA9iiWBSmh8f1k/N6SKLpmX9YMTH87mLbogIo2zf1n+MIRjdL8PwegqDCt040Dcq70X0pj5d1M2G5hskJNpIQGVqro2Mzx1h2FVWbPhUNfDr2rLQ6EchV4KsheYmGXanHqXextYDiU6S5LBA9RoJsujItV7wu4Dd4l0KBy7P9eQpOgIK/5o6pXOTAiuhnaXG+AJI31JKGUjEI/cjXIsD1zrAZr14dRCbBcPufnFRSrEoqZP5h2NnORz/0a+wQ0OEGP4M77jPWJSsOLovbZeahwmue9NiCE6L39RoxQWjjtPrpUrvBuDe0xvXEtz9IaOexCPxGIdW7e4us7kSYe/St73zzxvgXc+bu4u3g9FFfOX4jEw3nO7MPH7mWQWsewblBq3iUe2FxawJ6pz6bDMuZcdNgsbLPNYpU8FIPxB3Pb82C8QUNO9XTzQB8+yA1c4eBhW89efT+FEIMb38LJ3sxRB26HDz0A4GlY2nv799mQIPHYhp90yzYWSN665uPR5Jd4txWtQSocf/tS2JMRcyWiZEoicwiHmH8+KUQTyw+Bmcax1xBs6aU4/z3ocj4yGWG60uffDi0rjn3kAGRJApM1rUnPThjDJpzcmGcO7tS2JyDnC1z//nyecYlPlCuMVjjQS0ti8+XibWwv27Yw+aKiKRAGu2xvXxYsAFPJ3SJ5bAJYPFX3urGLSYx54v2UmBAdyM0d2beKjTq5bSU8Ujj4te5hm/HOFY814wcZcE8kZz8Zo3otB+0ULPio1OEEqKVPW5UgtByYI2dQmxyBx/80VhXw7k9jqpXbdB0KpzmUwrgUEOtaw1DQu9MJuveIbR3AnkGja8s34RUIzaej2HCAX23lkGr614gXFXxR+deAICKS3NXME+uH3sC8bFjwha70STLXkIKLKB5qxsCAVYfA6OmUc3ABfeJrD0LAG93Wl231eQBqmvLiivylWC6H4vqLkaioRzDlpU2VdAydpVTUHvCrgem15hm49BLPIpLr06bRDg8u6H3xWqh11yqpOnzqmjjpy2G+Zt0KD7WnpxrQFO1AuZBU7gEPum1UjkUDFEhX9ZXxEsh/TLI9pRHRhkQSGyh4QkgKzj3S/ez8pArZwURMMVjjaecWmncxFB96CrntLPJqBhiZz9YxWMmB4GuA1bNsLR844f+qMrwLVZIr7jSAQSfPHm+dP7bbBpiOJ3VuvgzFu5/HM6OHRu+RY52qsH9g9VWzCaVAKTmwqzTRceOStMPxFfLACXQ9OFE7gy+BG2nWfpEoz8wz4Rb3CUQPhE48RXk2xgYrqzVLeJQY25ZvN8ZuWwO0a0T+0uB3ta28ZoPyzaPGot3cZJgC2+I4L54k2QruTqdXEwHDHEC9FXFrWD44namfSYLBg37WZslotBR8kfjryac4TubtdfHftJ4LjL0/flehQinvmRUlyMYNlnYdpFJR0O/SyNsGmLQEXjqa7dCq1gJuv+nSagHh7b7QsnseOQqYWDz2ZhD4w3Pqv9jzcP/E3POqu149Gtt19tBUeaYCdZafHEqhP05xdeonRHovhG/ZjJCy2gbplLE0D9vXr8VYu0ejRSbaOoHs7rhacKh20kU1Jhdc7m58QRAvLTPpptv1ENI1pV4qUrJHDS0JfRLgxFEZPGkZ9Z+yA8I8zepSkf+qUn5fX5CehVFMfLs8OBgOPPFeIUzQYz4m0excORqDOWmfkUTRXcScjZ2WGsAyfNkSN0LSEo6acafjq7Ar5evnkrT7QBahJLOzpOhaDob0tSYZeyIZmkby+WUgH5I598csVDEKrnTi3e1wdRWocOiyXVwvRzrNL7TwSkSnPxTV1bM5hYL15oV02BsUfvX0g6RKGI+wO/N5p7gO6V1kJOWDkYqBVZuI1T/bQ0QhblV4N1tSXn8cUE8C4pCn/sEYrSdwO0CFot8Krm+qlrvxrhj1S7vkJzFCJbTkU3M5YC04xEovGzXHBodAi+9jgYDZ5RZDJ52we2ldebCnRI8OrdhYcXBAnI67YRZaqsD/iYDFo57r8F9n3TjL4bBFROLnpvodQONwaW9S4m1IDyrqae4gIO/Z2yERjXI4PqgdpTlW/ygSh72+7fMAHhnmj0c3SVwPrGlR/quqUQ4RszwmhE9fTDFjRyrv2wknxsOyC6CPL+JJTmfohFZoa2fw/dzwQlp5nNSFsE939JgpYQFl21bZz/LUmBY6XSZwfvB4HrzIcitTo80vHvajJNbwJjMp+WVEXm/+ftg8hI1DJ/OMzXgwyCkYynMReywY+8SY6k8mHPZJSEI0sPdGcTcBfNEBQT1hgZo/Eo5dSut7ZiE4T+nmqzvFwGUtWiHw6PRSIuESm7s8xpoJh5TN6fpRGipmg3p7xD0P3U76qjX0mwpLA/dd/+QlDEG/1gZI1EsYUbLx5t90CjhzzDVG8VJF09p7VO5fzRiMe61VSPfiN18ABHaBMcPShZXZJOQEP5RUyBe4Xg8nU9j36YBILKpA9B1HWB8vZlp0giiDtU576XrAO7yVsvhNixiPlcc9yLF5VwNjDMLdwnB8asFl8YJYWgx8cOdDFu9IDbMbMSy+EaGKSTWRibwaM7Y5G8h3bJ8Gj13GbEaB6MLekcmJvEI4H/onq9yZ0weCktOCU4A5amUjGc5/Bo/Z+z7LNfxTDBGZqt6VkLkwSmgEwWLDKuevBT8GAH/NN9EVH2Oh2K+mV8pThj0duRe+bjRiWgGDSz02BWAfei7VV43YPRyNJvD66uToipFzevIhKB91izYMElPBo7V0xQH+uBUrsxhofPqv//OwUCH/FoIP7LnqLkR9j8UinY8I3qf/x9o5IzUShH4Dbd0FcyfF2xZf/tVAZfO406u79T9zfbfZ6lTYF0Ro+77oL1QHy/b5OeWg+3B/mz16ZLgVLBe3m+h+rXrHYfWa5Q/VTY2Tl6hQiSfveUqziq4MeF8BkGxWAk8sBST8O7C/wxL657J5EA3FJzCkdi0Tw3A8UMuqCgMoB4gbpdxp/NtcITj84cn9B2meyD+kqPc1YHyiHF87sFkep3ZkNuXIt1fdDRLRjRpVoPBk9Lutip23Hvfr4V4ymGX7/l7Vgv5wPZ+Ld206VgVFiZWvaehwyvKnbVr15pAo1K0l7wIgEFXTDPboEi2Dc3+61vvAmODLI5HWDAIqekRnHn8T6IzcoOWHmVDAkX+dXXqLytPB4lIyxAgSwTyj+OmDSoKMAPd03hUagQN7E6bQBm+X7fjmWvhD7ziuFBFI1ud5HlSj5VgS7b0buFDSWgMG37Z884FB1gqv/l+rIXKIsXf/LvVIKYyUtuFyo3KiqP7HmJl4GzFJvD014SHE0OV1/NCUa0OUdZDot0Qh+NnXyOJgl+vpAn9ByLRdwtG17f71I9SOzwo9cLTaBcb3x9M4Zan28l9Lp32yGRsnfs6sM0WLAKj9R4HIO45SaCiS9z4axYxX9elSRIFvJm3GbBIGu+Mf2P+XnwtY7VaOU9CdQKLj8Q18WijX89HZZuXbDkx8XiP1QJp78FOzB749HVyKl310NqoYwWn3NmrRpohPAHrrwORSnuzstY0wq4q68RuXQjCtZI0xlPzDAoMT7snstWGXT+yDsue6UKvHZLPYyp5z0t97w48GcVyJEraC98o65LWInpbBMWvf6sZnjy1QBcpuuU8ZwigqqbCf8zwCHPYR1LRuk+SNQ3KL8z1wSWXzmXYkQIqD9a+6IhZz9oKVrSlPLkgLJl+FhNSyzaSeZe33zVCx/vb7h4n6f20e7Ii/lxAvpsxEM83tkDR68qWaaXOMDR/YGfRPMIyJLx/HjPoV4IHXtm//BzMSwf74TtWTz612b02uVDBRy7iQvXuNcESS1AP8MXgjTmMvEX+puAV+bRCEtbDIzeW1LN041CH7ZvHj+TRT1+97WB/B8k2Nk/6+7diEd0LeeVXFrzofsTSXpbpwJENR7Mv7yJRaU3PI5/6yTBPf1VIiN3Iwj8OShw2TMSVVYUHjqXXQ4/3jltJbFXQW9ohNpQGRbhI6ViJLT7oPEEWQb/LBjalfkCZKjz9N1qD97tSy+o3WBft16MglPPXN+K0xLQTR6R7DeMmeBWwbHWRUkH+ru1ke9uYdHNBzlWlI8kKOstubYnnwNndk4Jr3yIRF635k302AZAa9o+8shEFlB7kH2UPgZhHgdWC13pA/dlxh4j2WAQ4ZS4qbpGQOfn9yJ3JBD83Z/8SpmhESovur+81ByOXMKjn5EyKoDscePY7FQpZC+ZOdeJhqB4iyWfs5AGp+bUrYfiEKjc2+299DYE0UkMiow05sE9XKlXITYR0irObAt0BaMLj2eF1E8S4ZGR1Ndn/8rA45PHQc01DNKRVFqio/odf4/pz28B9rDFtHhs/zo152+79QuH5cIb0Wtwir8UDqVbq/yqx6IFWz0hM+pcyxV+LVAkXwsrp0KfLw9R+1ejIcY1uBjUq3nd0nlrQI9e8OfISep5GbNm/jlRwLTW8a9qYhr0X+J61R6CR+NJA/nVOb0gNjkxlaFaBodqVMcPbONRZc7iN6/2bpgWG2TRUCiDag/nfkZ3PHI02kl+PI5Apt66d+ZlGbDFnP+yOhiBCp9psDFS+oHm/n7upH/JwOvDeX9yMgY9DJrOY/3dDcID9+S2OLNhsNenWf8+AZlK937UbikGaf5tzasTtdBTZsWWzRuMAnOn7pDHOuH2TOLm7fw0uLZ5S7MsNBZNPjMtkeLugx/CgavSB+uh/PzUbhUHgdrv+Zc+uDfBiU9VGRtVKbDPgEGTXjQK/cGdyMz1qoa6tMfPXtcXgy7GCq3sUuegI1dfDWsidAarcMnb18Co80AOv2I4St3M6BusbIG/Ehx/1mjKIc7eUrqaLxpJXvovLKbQEeh4beZ7AwLg/wBLFeiSeJwUmHc81W8bx4VkVUoRhWSUIjOjpAuhhCRUEskqRUaIkD2PdQ5n2Hvvvd3n2HulkKLoV1nJyIqe8/zrddzn+7q/1+f6vN+H0MZAN2GAQ+Ew+PxJWh98FfFQedyQB98DLPBhO0R0p6B978iZAtAXkNskx9TAY87XNIVqGPT8sm2LptYgWM50+YTKN0P9vsiri94k5KQXWjNzahBMKd/LWlgp0OUq4qw9RURGqUFH9QMKoDEv88yQSxI4oRrinCEG1ZxfTEz43QWWLVcXqqcIMBUXEGTnQ0ATJEauB4/7YLdyA/eSOwRi0ZNZ80ESiiqgYRza1w9/7Tcin55shDWFVd/A3yR0Ip0tJyO9B7auSiuyBNZB3YelFl8xEvolo6P9Y60f5Arj/A/8oYByeP8VKzoSmlFUiR/1okBY3c9nUlpV8IYuffeqNxZVqRoLqMkOwg2DDxp790oAF6rJLlNORCEbHV16QYNQ8cDlsbp7JegT+2t/nychusB7HzRie0BKtYpOW6ICQi/H8JSJk5DhZ/nX8g0ImgZnSsVWi6HwkNC/taFoxH5o/1nDrhzYJHzbZAyuhXbFXQnZt2GIZXyVbimTeo5Or69tUDpc77oW8egRETmY2y0eP4QFU33GimvTzWCYWLHmORmNwPZqDZfUMNRtSZ+cM66Aw5rHJHF1sQgzTZfP8qwXdn/fPvq5Jx7gV1XKvhASunX5rFJGegeQ6D+bvvzaBFn0+UECCnjEdf2349QhZ7i28DBj0rEOeEMFwoJMcegxR5ORjXUCTF4d6Ek0wQG/d29lo1UU0vBt1OccSwPphxRy/RIFHOKs6KySwlFpU+ZPrrZKiBH/NipLmwHjbthcc8EwZHxjrP5qcj80ZiR8/iNWC/ZyLxXwmyQ0O/Xvs9XrQUjWNsPxmjjCC5qPVgKmJFT/btNR2Kkc2h3ejAR71YMl19aaoEkouuTEu/UovBs0PorupjRHQ8VH0sDROCIqdTLkfbrXDA7vkqZWFQJB5R5TeStEI4XXuo+aq4vAmN1OW/5bGcSu/CinOYhBP7DBWXLJ7ZATHZR7USIK/JW9c4uex6IGK8k5TEwFPH8tUbG6UgtYjDXOuSQUlTMY3JjIqQBb3xH2Dbl6kFWpMntQEYpIjrnWov4DQHK8L9HiXAkiGle0s9aIyLyBGILl7IeoB8lZq2lJsNj8XCBjPwn9YDksF/21E7D/UdS8xrKgNJvUtp1BQB/DI3xP+5aDy+INlsrHCDQlF9Kq72BQ7uHHTYQTNWD8uV1TqqgOjhiPTRncxaCuMGmnkcpeODqU4S8SFgW31LgeG3QRkdiD4dWxhB6IPOpLd/8hDuSvzx7kvEBCp6sIFy4HtsGU8OiKbCgZvBTLyLjMGPROlm6yLYQMw2qB7lGTkZDS+l3nhQ0WpehVCezmtMJm7TUGUpY/LBHv7YuhiUFXZZYmaa0p4MawZYu/SgHXliP/nh/GoUONTm6/DJyBVW/i61Z0AiwaTjsHPcShTTGGtiuUXMDcw0QqHM+EWlUxDUaDMBQpIXvATr0Tts/ESCht50K5RE1G3i0CGp5OObhQmQfP5h+C/+ky4DkeNSG8GooerZztsvbNALy4gbZiShb4Weu70LCFo9nfQw+F1fuAx53vEjkvGp6dmnPtGiWhG3TLchaPvCE75X4n52EKvHbyyud3x6LDSn3/HJ7UQvQrM4cGt1oQSvjh11cQgTzGZzH1ht3QuvvD91BaAqSuFH8LxxORvcG6bvW7XnBsOPAIy9oMTiwCn5V6iUjC4qjvAH0J5A/zvA3GZUJSY4WRsWcomhl5RKzHVsJutKSHuEQzdGZ+I8q0Y5DBchfLXe9SsMCvsu8bKIPngY7ZLkKhyPbtWxe7hkEQYY9cOaiTDUsEe4tvl6jfSz40sy3UCoccr9QaS+eDkID6XSuEQ/vd/G9sFFSCl22360VCDrBLtF6snMEgf8v9x8JXMuFtJptMUlcBRHi1ahwvDUeM38TEp6yqwA9dI31gSoMLAoadXmLhqKR4nsImOgI/3rlmrNkiWMsc0/aYwCF1OY6/DX+6YJDvmEJtaQB4JD8VNsgiICy9iXJcSz+cH7nlj/etg+uGxUyff5FQLWGqLDQzABDL/jvKFo0gy5b23b4Wi5oP4yNkZDtAQS3M4KqUHxQ8mtP7tBiLvC7Df8vezSAvGrxzoKwAHL7l+cyIR6NDPT6K1SudEM4TWmrRXQcUTCYfbg6P2Bny91//0QTPBFvUvHNKIba47G78zSj0hN9QJSy8DCJeiHB4ZNfAtoR26kdhDJKd7850chyEstyhqv3WjZBEo/vfyUckdMEwiM1EowwY6JPiX2VEAGfU5Hw6CwYx039heJ/YBfxN463yOwlAZ849fsCIgJo5KTRf4vvAGJvT6R5VB7131X9XTFD7peSvWbduP9S4Lb7TMCDDYP6tD8d/kpBO5UevuLuDwFdZ+bLkSQlQyqMoCo4kpLw09+nRiRHw6TsYTSCUQ+18Yk2tTwxSN6C/aLZZAiyHrdfujcXBSTEx5YGlMJSzJOTGXF0J35UUx0/6kkHbM3mzdAKDirVsZWSDIiFYYO69FfX/EmkPrp04gkU7rF6N1Xk9kHvvj9GTSQLQXfRiogsjouOZX39GR1aA1VWrC1fCnYAQJH/8fVUokqF5pvv9Wi5EUGqi+vlKwZHuOIrTD0M9Gh29odLUPZ76+4NoVj5smf/7IvAdi8xKjReqWnqB8TDXUb+8Ojj0+XjXZjYJTU2EYGzu90Hy46BAoT5qLuNc37R+I6IO2vPYb2IdoKJucOBBiiNM2cd7h4/HooVo+d74A9WgqDAyOWCTDV6f6R6pdoWhpthPhz/qlkFlEHK6xOcPF4wbVLdsQtFFpX9iJrm9cJwh6Ibuk1Rwo3B76yeQkFnIkxdrVhUw+p0Pdy21Bt7FT8yGeWKQhr8uDdaPes53yDvSXgDb313mDr0NRaOfSwj2ORT4JTWreG0vAtZ/fRHPjMAia9fAp5HWrZD8R4T1FJEMFCPNQSPqe3lx6YvwCHV+lNQ9AuYt8qDx3UO1e/7U/l30Le+oTAOkcVnOp6EcrJ/UsfExRqA77iJnSB+q4Xe0vnIiOwUY/7hdsT6HQW6BMf3h34lQpmR4alGzEVgffJrjX4pC1r/lCjj7WmFqCs9S1lsGB069GhC4EIM+48osvWL6wMksYdiUeo5aTMNDB1oSYngyfW3tZRXsfWO+sU/FGawLbFc0lzHo2NuW62EG3TA2pP9+7UUyLIYX5rKWEBCNUPJbRpkCMN7r+iB7qwGaP56a5e0LRQFli/nuOv3wQV6p0pIpHUgnZqMTFknoS+8H49h+CpiHamk2HK+FhZ2Lr+YqscgnGBecskGB1bF7zL5360DQ8GUatQpRqTrjsLpSC2i99J/DKFPAZsQz8xURh8SE+MVrh1ogqPrbGUlrf9BhP/IgzBWH/kx19raFVIIy833l+foGyGU8fEcgD4MiZ78zzRn3Qf6S8JXv5GZ4HZn0w5WaL/wJbwUvyQFwFBBfutpMgIUz1QujR0joWrThTKxdDYQNHnCqTsyCzSbF8K2zEaittO6YX0MnsLYZdHzKKAWB7J/Yb2Q86r4x5MX1vgsmvsS7xl1zgjWMZ5edChFt2BBszb4UwiSdW7X6rXLgvad4X+N+KKqdbTz3iDUD9nb/1n0WaAS5sXs7CwERyNSqxP3JWj6EyKBNkT/N4PpsGEPJC0X/zv/yYGPqgJikXtbff4tBjvaCleIDPFo6Zzj6Tb4RRM4vv8lloQBYpqpsv4hCfBQFN4pTDdguPJawS68A4SfH3oTwRCC5Sftv2501cO/AxqGTgc3gfZ5ha9+NCOTSkbMm0hAJ/gqpbwp4qqFku1Ov9yAW3RjdKJ/ITwGFsgev6dsRTAaN+pa3RyKtz52OvPf6wTaG9wqrSR7wLbGP3hEgIbfuGtfw/Z3g2rTlryLsCGevWz79eRuPNoSfAQf171vfXNsPJvlCUpTKnp4pHnmWygaeDe6Gynl7W3P+NDD3tGqk9BCQTivxwET+AHjOEG4nJ5JhjpYcFbRNRLG7Gq4lUQPAV8S6ws/vD/QNclpt34mIyZaWZaolC4qExzTXE9NA2M3iybhlOBJ/L8+iEVsJ9a6NfEfEC4D47OjagWYMWuM1+Two3w7ae1nXtm84ww7Pouh95VhUsPnRrCKoH7ABZ0/3DFTBMwbbm49WqbmQ54lUrmkDkah38yfHSsGvdaXJuycG7dkZvP/8qxRc3o49JHI1QdW7AUa/nTC0Q0vWoOwrhob0LseS/c1wfJZjcpXav3Y7NRk4xwbQehrY9HQ6Cxg22utwzRFoponw47/WavhMVldgofrOVNgJpcsfw5HqSKbS+1cUEPtYzu2+VAr971aD1J5j0eXNtPBN7jK4ZDOnvbBAAcepcz57ohhUrsNOewY/CHfEQ+mFblFAglev21qUhPaLM7f9+VQF07doKu/GhMOfVW0bT2IYyh3I6NUzjoHuuCdHNoftwU+z+Xe9ajR648ibIaoyDDdfep1n39cCupq/aux7YpFtxvdMYVw1nKs6oO7wpRTY900Q/9Fj0LV97OM85q2Qc8yYZgPXBC9y+27eacShwIR3EeU27XDqIDE8s516H51CzNfvxCLOB7IvFHUaIbzX9tWVLQqshxuv/7gRia60MRN/Yrsh6cKAPvZlGhR+zXpWU0FEe7lPrD3V6sF/4pL5vsUAGFi6lLsbGYnKA37KCS4VgW0tbBZeJsP9iOurRZwYZG86qDjuVAvvb2LLrRyLoM7QuMfsVDj6tDcRY+OXAhePn1d8opsN17irPN6xRCKJN78Wo1J6YXTtropTYjWUqdxTxeeSkN0olkz/rB1uGVTHBbbXwZezvX77TWLR1BeOJwdmWuCRkALv0zNY0CbjL77lj0Huy6+ajieVwYshEXgZWAEi4/5RKVdCEe8BiRseLxAsMjK0Of0qgRFLvebtj1HozIXnc2fyW+CVXMyws2oTlNS1atRdxiFvs54zfOkYoO2LhefcJGB3OvGt8300osK0poZDLxiYtqQ7JNRDwB2jrmXq/Xxz4Xo2QOW0c3SmFpq76fBN6ORP3h4MUuy3Ysp+FQzVjvtaTSszYHbTtKo9EotoXgt8Re+6YPssxXJ9kQLNPwhihteJ6F2DhGb+9Rro7/e5dlq+CYR5D3Gn74Wj9Lpjb2ZkBoFJpW7pqDAZSu6nyeXWEtFdLRoO/aRCOMt9JIopG4Fp7PQx8yehSJsLe+PWkzpYZc/lUSI3wt/2zQIlz3DEP190hP/tINw9H6MzEloOn7s6R80DiCjlv/FQAdQOhcKNKdYMCOpvzq86R8YiPAZr+Ok2grrhO/7+rAlQWtqcF+odjVSV+lxS7XJAQqikplqUDC2lbCdqJcPRXccX68dHO8HKI9b4+nIlSL378zP7Ox6RcQ+2Cs9WgOrKllVcciOc6TO69OI+BrH4/sxR5hiEraHjH8ms+eAlz/CCppSEVI/bsItYdMG56Fmz2I1qWB75UnXuNwHpp8lHGfgPAk6gRGDicCWM3iy6GfyKiFpyP25e/tcNLxiXs1qcKyDXj+/mCNXLBj1H3AoP9oJY04fuDqoH7C2EZFFsSOil1vbjxDeOYPfeS7YyrhRwMRcnr1L7LrVrtaCLej9qSh2vMjcpwESwrPttREKB8bYSoWMIRg3C2JimKMDd/MpPk+r1M2NXrjLKVIAjJeSCorQzDL6K21TVxSB+z7DDXDNdcIeX9owBGxbmF7Paw/WJqKC8dn7x2hAociXGuVD3f5+tNX3vMSLSup5b0MDcBXWturzY0FIQahh+8XOQgBTmF39i02vAW1Xv3tTtWvgjOdgl8BCDXv1KkcQ+bYK1i/R/GirT4QKfPE/YQBSa7pJQ1TxdAW8q6V2ehJdDfyKnCOEpBhmtZxs6RA9A/C+ehPIgqu+ctW25S0dCbHGuuX4aXfBRpE41WtQf9G/xi21dIKA40k2Nw4JVgJZR/fEXZJjxLBT38A5DjBG+9l6b1RBsmmasvL8Uzg11O4Q2hSNB662if1IIhp47PNXfLgRbhZplgdYoZHCmQlTwLQUMnaOI/AZNoH1lnmnxFA5NdcXoGakOwjfjTEf8QiiE3LC6zxRB5eo8Vhw8KgL/I6eyr1G5JZvRhMDJh0FP0t/qigcNwOmIi3ZpVL54+eYGV+0U9fNXJCavTA2D4bFn7gnlTnB+J/b5J88YZPLhZkollR9sOJPrnN7HwpfT8VE/eCNQtudDE6mqWsi5e8RU9FE5sP6b1X76PQKl3j6kYCmB4FkSifWqZR5c5vrqtn8oCqnSZKzMibZAwMfE8ReqZMh7+NU2YgmLClwy/RiGqqAsA9sVdpUMt3scA4MvhCNfXRpWiRNNcJ77aOrdfxRQKnPVeRobhdKHP3BFfMyABUXRM0vTVF/sNfw+vxGOVu7nT4uM1cJsDcc+cmsjYMBYkW8kAp1qspAP1eoGL+WsI2VXC2HR9y1XnxcR4bTNGZnCs4F4hrbCzxOBwuujuipO4SjvMo3M69IBmBs61+/2sAQkBj8XjXaS0FmHdmd3t27wTNAPrRZrgM4HxqzZHwloft4Uc4BUB1/lbnZL3isF3uFR5fXGcOS9XNLPxd8N4lXjZ6cPUefQvrQFxRDQxYpjvouXR+BPm9n6VZt86Jl+IvgvE4eeS9njFmLqQauLl7a5swnMEpgIUw2RiAc3yyVQWQg1IfcukZfTgOWdda7N81AkHtNyl7WtG7aet/To3yZDL07S1GqKiPJ3J7ZjJyrBvEGRH9+XDNEO+Q6SnzAo8Nx5lsKJfogWT4o4h8cCSXOy6tE2Cb3X67Ev+68P2ndWfUpUamBoXwGtxkES8n27xHZ4Kw+UC/7sqxpEcIQQdkyGgEGPnXzGRxtroeZnWEVcfiZsrkgI5l8KRxHBVaYOfwug6mSPBm1iNsRceWYzlhuKSp+C3Pu6Orjwoc9+WqIKcm2zR1qlI1Hqb0Nc9tUROH1pgNX0dRO0G7ezuEXgkHGs/o79wVpg4TKzyZ5qBCOmIKGn+RiUS2fP5pJSA902Wy2bq75wJmX5purpCBQHYsKN1PfbenBGlkGmDkj8jwIIZQRULavxsoHq0XoToSRfXTKsfDFbfRqPR1pStcVzHGRQ9/49EuCRBjwbCt54ISxiStZc6YvrAv/y9zR8BRXgIdN35udNAuoQ+P1fyos80A3O1dlprwL6HfvD5xZDUX6/JeMTsUGwuXbGmk6oCmz6WcjZ8SQ0L9rz/PJKNRx+t7/+i3wCyCjqVC6wY9Dsq5eYce8uaKr/OukRFAcP0cclVR4ismK3CHesQKC1z7rrdUsBiMz2O8t9iUbv9Hn/Gh1DEO8dk531gAL7/RWWvGqjULMj/pnZ/DDcPugrwP+5CLJ6/1Rx5sSgmOjTJjpLMXA9+06FxzoFbty7ntP3Nhqpf9N9F+9aCsFZPA1l8qVwC2M4QC8dilgOt4fOSQ9C9kDZ0dfiCAIY/1h3Uj3xLtNptg/Xh+C/5d2n/lTvPwNePOGhBHRZKG3x4900yF0N/Wwhlg6B/I85B36HI1ehhs5vUnXguGbudbERQTJbboCufzgiHpK51N7eBUWnBIfKs8pg5XHBPM6aysMs27m/qTkKVFzgnipBoMjW0E+PJ6LcdWy8DwcO3iz/wu6mJUOOq636C5loJCgZ9zU1ewg0Pumt2Y5FwfMreNYlbQIyF7jws5HaCzsmvPViOwXA7dK/HwUTUGZDPysxMA/kCxlWToSlwqr2HQkXjjA08kqZ6zVygm+ciz0LR9JhjmNBi/Y5Dnn17T8daVoNenwngy8xVAKWMLmp5ULdwwv6EuN7ddB07Pe6qAiCW+kBOQNcEciKSaiUdyIGFh5MHUgzI0HqYJ3piz9RaODoESfp1QJQfizZaIFzAiuCrUcAlWO5/c5JhM70g+K9GxurtljI0XqvrUL1spGDFgqqFwfARrhdsHU9F7L/4CXOLJCQ0l5mEiklH8h9bb4LolTukl1N5vbHoA5bfmmmqCZoLsFoeXfWQRdn/Gr5hSikeaYusTeqBYw7bl2JYW+C56evD4gs41BN2j5DYtgQpEnEf5nbXwA3yjW+KoYREO6jwNnuzHbYOuiwj8xRBTIXPgY9lsEjLg+P7uX/OmGj/cahY7IN0NJakRu9hUf92rf3Zs7XQkz6lva5iFLg+jE1uG4RgapVvEaxTfWQLWL8nwWQIbEzPfDUj0j0eFqQi/BwAMIv/jeYH1kDHjU+ERXjJCR1xbDxbGkAsFoe0rypgyCzzzeu/joWTReetCzlK4eTjGlbpp2Z8Kb1Y6SqSSg6zmGRJuyQDhVRK7yfIhuhhK/bau9yOHLKXB6NZ6mAlmtrSnLXK2GFvshmzoi6l0rM7SUuxAJH8MnjOtplcEC17sI312hk2Rqh6ZNdBW9cf8hIz+SD4XkrTKsxdc9rn3+zTBgErkmNpf2noyAqmNHvpA21F1bHRL9frYOjdxHzlfhsuM9jcJb/bwSyjY6wMVpvh9beIxy3kzIhaJShVVwHj76QQNe4rQdS3+wvSPlVBphXHOeeXyehCP7ny6eXuyGLfYI1z70e5HDqcilsRCRNef+Lxw3B7Q0P3TaxGhgU6D6g9zsKFalJ7yT6twDFJ9FSXaUYKG/iRv3acejByM/krJNNIPOrV/r2QwpwcvJaPaDywIpJ4vTZxk7g6N64pR1XAa1GHsy60QQ0dojOcqa4DFQSyr4d16Hm1N5bkFccg2Sb7tc2tgzDWHWytQqVM6td14z//7vNbtHboQtWDfCpp9799rUqSPzKUKXNHYXkMxe7hE91gW6KzEqbQjzQTHMPFtITUJp7BGNsbj9ci/Y2+fibApf7f4bwM8ShvyJlYoXHsgBvHBRus9QIjWrla438GCSxe2RVgxPBiJmlPPEPBZb3ZHHvqM+voGUd/9OtD9LtOI274xMhxFXIjneJiLyr5W4VUXlGw/Zv7W52OgSd3X9WJpKEMCEPag20hiBGuip5p5UM+p8C25hfEtDOiXIWl9lGGHelqQlUpPLj5a+rxZ2R6F43/+fU8jxQL1pV2O1uhMLeMtG9egxiLjlR5zITArv6nT9lrhVC2bnbffW0WOTMIsIwrToCt3fpC4W306E543uvoCcOqROdHGzFQuGrlQDW/mskdC6Iuru+wCIn2beNHlLdIGLKur7dEw0FT43+xWUSkCX+7NzYi2p4/fvWgaY16hyuaibl+YWjlPtbORSpIhg9x3JE9FksqDgIHVRfD0PvK/0HdbEd8FqzNL3+YTgYcGNeGDHjkWiiwmM5vyY4YRA51mtEhjE9zocTk1GodQ1dm0yi5meG8cbTX1hw2W3d0umMRvhsJ4mB9lwIaWieyVZoAu92+6fu3GEo7QC/d2ZRNxieZM+s+FQM6bmq7G27BNRjvtAe/nAQLApNPoZ01oKiYVOquR4JZez0F3DU98OXTLafpynFMOjfYvLfKgllW11uu6vWC9JMleJDowi+KGT20QaSEJdf4uV6Zgr4FCSf9aNNgLKO7QbvMSziCD/bfn1/G3xLJscVH0AwXfhV9a1cDLq6tcHB+aUEtJ4f7rRTSIeWFKLkG7ZQlDdWVcqo1AW4tz4iw/cocPG7pM4JYQKK73S+H7vdDDUWs33q1B5z3Dr809U6GlUJnet7b1ADPpcWQw5t4UBEOMPRxxqD8HQc4eOeXcB2MwdL4KuH6FiKxJMjRPTzXBGlBN8IxkknWVeOUkBXQsS0wT0SvVJ0FxP61QU/x3RjVgpzQe6k1rUfgQTU7HlqzHmpG/gc+Yc6NihA1BG7m/eJiIr8bTI4TpPhGlvpxeK7DTCbu4upFMQiN19x6+FTHfA58GpcycdyGFHqVr8bhke0HgU3NA2TwPb6bXKRTAqwn/nh0y8Rhd6vyo0EfeoBrJ38ayupZugUd9xv4kH1F775iyUMHXAhxFZ/4Vk1bAnl0Nq8xKO00N4vpXodcE1EQ6r2RjVMX7yKbRyKRYXV0VylDN3QvNNra2dSAYYatlaVJkRkzNNTy6HXCTHTeh2K/WSwrBykaX2LR7HLgv8dxVBAY0PL9IERgsbS2r6aYCwSNI3qGEqNhRMfkxMCHHKgo0pHf30vCh0KnLBhLekCx+r3W9X+2TC+MV4sY05AB0s5VHEZhWDY2/HhQ3cxfHeyUToohkFfc+JjeIeHoHzDQqgIlw6Vxexdia14VJgi8dRvPg9Uzv3Z+6VQAOYSiR+VIjDopoaYnPW7YeBXzor2qGqGVbEnET/+i0Gim2e7lB+VQdRGnwidJAk+nQwPt5EIRSITwdGUV53QgmfP+JTnABSN3v2XnAmoSELXTspxCFal95nbXCDDnXMGC861BLRyMvjnRvEwdFl5NOd7lUPrp8MXi8/FIvP+C52Tph1QcIx94ldlDXi9F3odUIpH3hbNxrmDbSDmkxSdXNgMLLTOx7a6YxCKSUw0vEYGnJFKnk9IIng/h+8MalhUpaDP6hNZD7k69Uyzto2we8fhZUpHJCrWv7FPZbUTVC/SSty60AzW/7G38LUQkMwCq/xVuQZYps3U588tg7tHf/6UZI5ChR+05bx9a+EFp9InzU9ksD/hxpksH44c02hVOrm6ocynNkhVuQkWtn18zdIJyIcejx7a94LzyWiJXHEKPM7jWZLxJyGJsDNqZ7e74LGjVwmhsxn813dGy0IIaO6k68Zzpkbof0O7lHSOAMvvbOO8jSNRguiWZpxpDdTGnb9z8RsFnDWJ2oeORCDOq+6MRiGDMDrgOpJ2PBjMrjXEXlQmobflzLNwohPsLRutq/wCYMA7XtlamoD+u+4k7B3aD9/np15wG5XB6OnFnXs8JPQw3GhH+W8rcIZ8bkqLLAJFbMsh0UsxyD3zzJnSvBw4NlImz60XCSbxfgKxNmHIuLJm3/59RRDrynCZB18CgnJyFreiQxHve86Afd1VkN8srHhKiwKtDm/yHueEoROzvlr4a72gfi2VWftRLVwR/+tZVUxE2q1n/hyLyIHzsrFXQ94Ug0N9lPJkZhiiZ7den77UBAfxk2VuxythmL15o7IwCsXYtbmodA6CDn/6cYacIki8hTX/+o2ITui7pw4f7oKbv9mvydNkw7c2WWvdP3iktDJCyNVtBeZGud2b1jUwE/yeoepZDAp4l2zg79wNI9jbeyq0WXDM2eae3vD/51NqdqKvAfpnJTuUeIvglF5Lba54JLIVLsZbf2qG10vyJRy9GRBlPuxhcD8a+WnzJDscHAbp2uZ+SaMmuN8ieoe0EYsElNNrWPBl8FaaeMPhtj9MNzw9H7Udhoa8LPgs38VD2WiX3OpMKejgPEj4sCgUNrLv3efVHsAxt1f+HKsDQ6OXz+ZDiUhJ/yb/OisONHr0+Lq9mkBDz5XZ5Gg0Kq4QNhQx74GVrG4XIpXHWDm/CgeoEdGbf7TlE21NICBnkbeQj0DgvZpX/UIUWoP9io3PK2Dom8DZqoVCoBU8rNMZiEFHL/cdsc0iw3496WgO5hrIDL16WNkXi1K/P/dNlO2FgkGCL0WW6n0Vqeec44hIkFNF4wyVx/YFLGWX8mRAktX9DTN5EsrUwB1L+tMG7MaVv3DPc4Fl2pWnOjcW/WDW+U6f0Q1HSFe++zzOgfXZQw8EZwlIo+AY9yvxflhLqv0WoUYBdx6HzjSqz9rLd0zsfKiFOOxecmSBE6jL0BlxNkQgwzVcNTfVH4XeXq2S52yArbRTuskhVA4MsI7iFiuGTLdet33zNcBzpWuYWTwUSbmHiDWFdkGNY+r7u08bYPx4IHPZDQKiYZwoGMxsAqbP/nlc7RRqn2cgxoNR6AOX8fXoO12Qgy+86hhQCrEfvje+OUvN76CTS/bZAZjvzzbU9ymArP8a2G7QkZBnXXLWE7VacKF9cUl7pxrsKyiveYcxiC2F9M+OowJ6uFBJ0L9E8AkoU74THIrm2I91qK81AU54mLmhvgayC6sOmKxGISyq3mcU2QN6R9S4UpgbwKu87ZSyJRH5jAV8WCoaBgu1eo1qqQaQ2NE6J5sZg4hn7iU0sObBeddY+4XOOGgvkzYTbcIg3fMN+a5cXfCtsHXoeRoevrWkjdHv4NFFUInL828FLd+xARZpEvy7w/BOEBODEm6oroRsdcGpfzcMfnGmwIyDBJ+yGRFx3FQq2RbqATY2j9hP1PyqqDb+YJQlols+vfwfqc/JPJdmHC8eBEoBETPXTYlI/2hFASnKAcBRO/HEIgW2ktakJs1w6OOVGTXBMjJIL6aOcs2UwXH96rN63dGosi1hVz2uAwIHWVPcIhpAo0T8S8ABPJL1LIuO+JQDhxoioypTmsFRVlQ02iQMFXqY/0zR7oZLa5gdg1dlYH5zNcuxioCizH4IQiQZIMV8c56G6uNKqbfas6LRdLW+UJLFIDCxGOl61GVDYojAksITEmKbT7SI6u2GlI1YhUa5QPjV/FC5h4aIkvUYWphc62Hn0WMd5+l0UPI8ZH+OPQKlGzsqyxyuhasNO0JvqH7XfOjWAnMWBhV70xxTrEcwHnHo1pBQMgxIVzCtU/PYdvYzvxCuE17ahxbjk2qA79GrHi4q90od8bKgO1IBJ7hfqCrL5kC37dUr9aYYFMKgfLfbIhlwhuXbAtR7OJfhJlDEF4lcs7bYPhSWwmyvS2UEdZ4vLim6qzCHIiZaS/O9fKoPX/mrJSNFhuf2rMcZJcPR+imnRdkEBP6vhe/TPfMEYqkszQQ5Gj1ron/iE9sDWVvdCQH7amBZ+NYvaQUS+sG+XDl/ZQSyXYpbY6IqYfvu2pBfGg71PC0U+1CRC8Wn2LU/1/rBIbMfun4/MKje491/s9ID8IrPuprTl+pT52c8FLhIyKzaYoIsUQgSin9Pc09iQFmKIameyhVSfqkYNF4F5/zmvH92pML50quqNxLCkBPtwZ0Tiq1QeT5t34/HTRCfeT7C+m0MctI84nRiswdkynhDyAypcER999pmGBE9Oo1396A+J6tZsV6Faj0sdtlvJ1Gfs3UgMLUJkw2VFe0+LFQfvZDy7wBjUxhycEzmPLWVDw/ECq3MMxzB8K2KmkldKNJ/0Ux3c6EROLEPOOnik+DtD07T29QeeSTzMJO0hYB0gd3OvCwHzvG4t102ikasnTcaLt/sAIOhCn76E9ngvrPBlFqMR5Ffwv4+cWyE08ti9D4uZDA36D+3+jYK7XDdES6hni9B0BorzsoHxfz6p93ZUUgqfl2t/d0gta+7fxocLgPo6TYL4Cai9uR7B6zPpIHDJyOOrKlEIMkuPXq+FI7cGUxobHo7QPdfStILsXqoOj7R6PYPj2r8E0/iz/TB0KfB5xmlZOAQZKKfmyWhO76K/yHbPnDx/xpSLJwL/D7vHueOUHtfj71/XmkE+rzkfZveUuDCAse1B4E4lLJ2TP5BYAMEVTJdCqBrhE/O2t6efyKQkqBOHGG5GqzuS23fTI8GtVuTUgHL4eh4jXAwg04LXCf1Sj1jLIdJNsrZQA4csp5xa9sTqoVls/eqG+9z4YnQsHOeawRqbyv20kisgxNDeQKxYjlwWYnJ4BAmHK28UP3Ap90HfKIm42vN9bC7+eNx8SgJnTKNNW6m74a/tL+ETn4mUnmvgO6VCxGtihbkZcR0Q1xloJFeMAHyxC3GGiuIaCr9m/y8US+kpeU2Pg4sA9+qAjE9HJVbut/cvLRXA3LipWz3x3PgFYX3lzo1p639m0qYC+0QzsLdbPKhCTTJP0T/sMUi9TtTM9zyJRB7iJ0nQdIR4p/HP8g4jkErnJLnvYjNIPmXifteDQWezf3W89eJRvJCa3mv/9WB/F1J+R91gWD2hpOOfiMcSd72Obhq2gORCSlarNT8dX02urbGQUJ20+yTueqRsPmrVWQsvxF8Os83sfpFI/vbSUEG5mTwRzqE8uRi+Dpj0J9qikVWnGeEoxqoe2lOzvZZB4JHSmc31FcI6KtCiZ3r2QaQOaEm1EzvA2ptrjN22AhU/e56l01JFbDfNJVhD26GgUyXCC+9cLS/Ic/j2qN28NbSSDHULYfU+LTON8uxaHL952u7MArw7AakPtarB2zWOZleIRwi0Yvk3PhcDy+CeQPaXPCQNlHddpQmCn3G/ER3nLrBKdKC0V+YAofEZN+7lhORKstrTQ6hQaCT03bcfVgGT4tknfaSSEjlaTKr20wJKPPaaY66l0NI7T+BiJUwlPQ4wDudrhLY9qCS4b8SiLFPOxzYE4quPMvp5/1SAH9FUF34OgWOy15hmDHEIFmfr07HPlD79fTQn94DdbCZnkQmvAlFi0IfM/uOkOF98Vc53vNVcFFHhXn4UTQ6tv6YR2C3E5jcWPh2myvA4XPbKZplPGqk5Qopme+E2v28A9daI6G3am22kUxAP39wH5ViGYSkhvd963eyIK+JVeThKBGx8QXR7n4Zhmk/Vr+hMH9odiwMI0EMKk/lE8ug8mKSCIPI9H/1sNJ+gUXwMQbxnog6UThdCyGxp8bTqX3n5/BA+/ZqBHJ53VH89dkg9JyU4qucoIBvXbkiox8RLTxk3vcxahCK3XdL/7jmgXXSFTUnSRK6J/6Pkj/XDk28S6jsjztUtuYaHbDFI8pBYfbOG4XQ3dBsaYfPgWcqBWZOMhiUKNgXOSJRCvp0VsuXnGNgnI9XbeJmKCrvT+S7/ysFJFqSI3tHCsD6wHRkSU0kMlEwX7m62Q7GyalfdxVT4KpjzB3xh3g08a/6l/qfRghLtaxNm8uEn9wTTa5lUei6lMaOU2A1xLn9CPtXnAGvesNy2yvDkb6FXRYxrxU07cgySqxkiC/dz1ZDH4P8aT/sZyrshmuLAb8r/Ovg8sxXtaI6Iopgmd9vkj4Iyzw/RsbmyqH9ZTYNhxQJTUq3/vBkqAGTUYvX5+5nwvOj8j/X1DAoqNiTvkGuDdZj5S1zSQgq45lOij6KQcObGf9Ux8hgOH5JtdKRACF1N+dHyrBo+XrvfSuUBqw2GMODl5rh5aGXQTaLEcimM0D2HlsPBFCspltWskH6b+DBgVUiWuJfVDfz6wO5cWfb6S0KsI611jT+ICFM1NEmDu46EHwS0dufWg83azzMw42ouX68dYPXsxc+DZo5/k4Kgk/uovvIiIjOD5RbSB/IhfwnndrrEhRoxn3oyvcIQ58dNBqnX1fCvJqWIkNYHPSsi+V4fMegqcG9B+9wuWDz31HNc0LNsM9gOcFiDoPuKd155aU4Ar1KdWZxHZFQv89OXJSAQ8Vb+z1HC7LB0WQNI9WSCOLt5WxEaq9tJY2fOsXWBdu+B/9D+gjwI1u37NbwiGm+pVhVtxcSwvs93AKD4GnJ/OERTxIqOsPrtve2F7L4b3TbPiFDw+ks2yMdRGpvekrZDRXD45pnO0xcCMia9iULLBg0nWm/fl+LDIEzslKC1/LA6+HcvzUlLGJim+gl1/eA7BX6r8YWZKjPdaB/qEdCe3pbjr5NQ9DJz39F61YEcPSyjidg8UjeWnT6CVsV6DZ97bgSi4XLYd1tznThyOTLc2frmEEwaeoRT1YoAu/bGV9vGBGR+Uze36vrWZAz2OlMM+cPu4nnLwlGhCPZzy/NDx8YhIbXwm++36yH+on0OJcSEkrXEDjwbbIFLD7RGlsuNwNZAfEpauPQoj3dJT2HZnCNYHhl70gGl5O66reVo9HmSPX4nGQFTMk8vfqbuxlYjl+znfUKRTdyHPaFEXvACLuiqaVYBY9vq9r+eUREn3SHXxfa9cBg8OqJP/+SQGz+U/qMEAnVxFpt3NuqAEKwx8G6uRL4prHv+kYFtV80a3jL4nKheuJ89yrJEdx/PeWI68Igu/SvWDfxMlCZ6GDTIWYDFYDyXG+Foqx/8gJZLkNwrGPqZv2lRpBqSGd7UkhApTxc/gWW3fDol2Vw8stK0JGJZ8JTvU/XXWTJULEHmpMdadfPVYDjybzKOCkiMiNePCA3RwG10XaOCzkNsFvZOqNtj0NEZ1PDpUdtwPbEu/yhXAWwdrNjXl6LRRnPJOq+1/ZDRK5I/JdmP4jixcv38pHQdtKrIqGXnbCd9rmERCyDiMQOnE4wHp10vy6rbNMPuZdoFh4fpMDF7OC/9ssk9Cg3dDJWbhCuxd7R91u0B6OyAcZ8FhJiCt3mrvgbCXaZrid4rOqhJ4XYancGi3hFfjIos1bDh+bWMxeLG2D0X3jP0KNw9F5xfY2bvgqkOKQvRfXUgo/mrXi0ikGP+qRHbdzyoe147VnzvVJwYNA4vkL1U+KyzpbEWhn8VJAeVNZvBKMqJqa6jTBUzOaohzop0Cumayb7LBVeDZ8aTQim7oehBaWHpAbgWOo46O5QAHfdswitYlGoiiVnOdG7CqhjffXTXj3kdvroX4kIQ2un7rQNlzVD5M/ouqyuepj94Phx0D0KtagUbfrXd4EITwM2cLgSDrfdzp0yJqC+C570J5y7QPxOFiXnQBUYRZZ2if4joPrHTPq5KT2wma/s80y0GdiNGh+ny5AQC5tNVKdGE7i/bv86XlcGo/EFBaKNUWhe6LBJ575BCMw6LVaSGQWUD5e/jXwlopP83y08kxAINyquvMBXwRqjIGdWTzRKldC/tHxkCBzZ7/F835cK7oH3xNvvENH0mJs8vqUPvI4dff9vOgsOJd16Rr9OQjvm/SkzMZ1wh2YeE34nB8j3pAY+puPRfjrasRFsP7BsrxxKeNUI9evrH3RY4lDs6qttLQMEkt3tFtcmUuC1yO+oY5lUbjn6VOcb8wiYr2DJb95Q91z/3O3BpBi0sdcs5bLgCFVzfxyylBrgjOQ5+z/UObyS9kHK8H0xQGvIvW6dIngrFPBT/AAGYTwnmXAC7TBBir03XloIBd2XV4UmYpHxOevn3cojUE0r73NitBokK7guqAfgkBxnlwxdeSdovNOhM5GjgHYwEa/QgUdnQ9TEsz26gX05vmhAvQSO8EnnG1URUfDbkxnxRzrAvZ7TvNGvEK5tL6Qef4lHzo9z92R/tIGfSFpe96VMMFRTpN3XGYNYUoW+Omo1Q+X2RHH7MoKhCWQ6ey8KjSESa6FAIyTr3dnk+x0A720qyErPolD005jRjOFmyKh6JqaVigczc7U8ApVD6P5GxxYKdwBXE1Pw+3IEUwRm46dlscjVAPeh6UwXtNO5ZXYnxIDgqKuX5CQBPRVsmkv3aofIwYjLc5ezQev1Jr8lNx5hflRcfIAhAzOj8vUachrMgrvuaFo0Ov1xCii/W0HU2YfDxjIC1C7+sRoVikEZrC29V3kpcDf+gUluKhnSI68knp/DIoZTMUYeH4eBmY6RdPB1HTSp9UY3qceg9tiryz5fBsH/3aegyUs58GDU7bdbJxHFtW4P5bwpgyVfqyfDMYXwQaSHu48Tg6q10mu+hhYC74N79+z2N8K4G8fXuw8waJFdmBqTDmjlpF1T5XcA+jZ2mzezeCRuWeZx2YQCo8++jrGu4yDYuuO4PgsO2S55Xrzt2Qfskigwsp4I+l+KvnLtEtHGoW3D7KODsOl3Ed9OXwv7+XHPhT8RUQXRX1VUvgUkJ2hYQxjSwH8y5U5sNtVPE3nW1sY6IOzalaFUcgU8OpJalXeQgGx70m8PV1bDzeDOrAOTzfC9KXh9aiYcXarKtqA73gl8OG5/s2EKeLN3roUb4VETBSse5IjA4fdF6YAyMnRLSAj01EajOrxw+XvmericRFE4G1ALM7wd/3kmR6LLfWQ+1eedoOMtNdwlWQI8Y9PSy+YEdKGoZMqEsRGOv7wb/CykFAxH5MwUtCKp7KwWHyHTDExlnDvluHLIUSl5qn4iGsncJX1Jds6DpfIofoOdaihMHGb0f4dB3kXy552wFRBi0tRbv5gJ2vS7HYfCMCh72IJGgoYCT9PfF1y+4AvaP3yGSO+xaCfkuPnQCQqcbs8b/REeBuF3zgsMD2CRs8t//wYOt8GDVjkDLUsKCCX0XrRSiEHpYxKJFzdaATwrHfkHyHCMKPZJjMq3LpHtnO3RA7C1WFgkezIbvjTrrngjqld6GT57tB4GEhHpsk6YWuDCxctwzkSjsu6/ZxO5qqDpdyAzg0A9FPfcvG91PBw93F3lZHcsAv3Mo2siKnmwd++WwxebUES2d2N+LNwH5s7TtBaQCp8IzhsfZomIh5iDrfiQAnXuhxWXf1NAcpPNbCYrApVvTK57clYAl9fhLMtX1bB+Q0679BEG6WseNzQcb4JZH8oqc38BWBEmTiBdqr+zCn3cKesE4QPy6y6GVD9NeH7MOZmABByOvt9H7IafsV+5k6QosF9d8ILqLAH9mlpQPn4wDigO/9k/+VEF0vFFrZzjUWhvKjJ8ta8SihlDxhZfVEKi2zv09HwYetVR9I6juAmCZcsrJ8WL4VXNMVMKZxSa/GyzEDnaBl6lCcvj/8gw7Pl8kbISg466TR+2v0yGyov5Hx/7BgPrnzLxqzxY5N05Oyki3A6uV3JMSser4OCtuVTL7lh0NsXqqAp7GfRXsr3UDSeDitPVd2IyoSiqNjLH0qoaSmPGlrZ0KkD45y2/s91hyJJzSa3CrB6Y2Z+L8d/OgxeKSdWFXyOp95Bbsb3dDdaPVdy/65Bh/JA3YZyBiPhb04+mHuuDwabKnWnGEvD/oq+3XEdCzh5b3a96OsDlst9fBqq/m5d56TudxqO0KvGI7Ct1sPXE2vsmrhQ+9UvcEOOJRK+WFyR/i/RCE8UepBkLQFEVPhTGENH8PQ23HLs8+Eci7cQmNUBhQga+KxODFM8U05tKDsH8nrf34NkK+Hjv/u1cOSL6ZzhGYz9QCR5HniRdjELwYeJBe5p0GDI3mzjDSPsWuPev8bS6JMHg+thvXn8s4vmvbCBeZhhmYoa77nCTIUaQy++YXyx6Q6shf0pqGMIl35XtmjkC1xVamf1xsUgqqcBFYLce9McrRwWy8sBB+CyG2S0CCfCKVDibZ0B/quJA6QYejhrnZdO6RKBm8WDSbHM/qHDrFh3TKodje5eW6qk9OHTylW7zpX4wqXmqlFtdDvaX/tY83yOhWXHGh5sXBuHLnELp//clr1iMLWsLEV2/1XdmL6oMKuJ7Wxb8EOxrDi7KEwpF7/bGhp7XNcLv54yiDyezYFauGf5GRSJ7Icx9HqZ6kMpqc5nWyIfdBIZLV1vD0Tj/nzc8R/PgwoOoO/3HYuDQX0Gdxs1QFDC7eY5moRY+cB8QTHCPhC9Bb9hvjEcgcoK3b+7rTvDMrMmpNQmCgveyfg8x1H4PqZRmxXbBAw6lN4+r68DrxnmuQgUCssotNWHycoKy5RyFKaZKIHjJSux/hkOXdC6pog/1IBtCbNl1Twajkw+rzOmiUBZ5mlfGqwOcahC+VQ3BxEyWL3kzFhHZT+/ozVA5nC1NxjI/HdJpGfoOS8Wgk8x7tt1JHbDcrnG5LKwA4jI6RESoc/Umwy3c7YkfhObOejHvUWBA8vSbmwVYZHqq2VksvQ4qvE2Eo/5UQaL8KxazunCk9ixznDtqCFguxDeoC9eC+Jj9/v8CCKjgwkt+q8EamLARfHh5qwC+7U9KUDgfgY6r0exdxNeCm4yCRcxWEchvJFk45UegOu3oIDvRTJhsUZkKPloOLzTYeYYYIlCinnXG17VeKGh8sMn8GUHzyr+LHmMkFN5tyZyl6wBhbhsnJnpfAWsZKvtmh0N3JS/vcptWQ3fCbckK72LoPe/QHNIThr7T9BOsBjrg99OzAYdcSsCmfCJ6WQyP/vD+PVba0A31GyF5oVgsTPzyobdZIiCn/xpZFyopkCIhuX7xVhX0Lly6dEsVh5QdRQ/9PVIOctdEJfxMakC18MYgXAhFym/enrxwLx1qvR7RaF3yg37avwpe5RHI7dVszTZ9J5yXjsvD9ZMh7IQBcx43ASksRde1rfUAYemm7ZVXRdB3VdBjwIqEJGKvpujokqFou9cwIZp6T/qmzJZvopF6dWRvjzAZfon0NZ4vrANS/KqH68NohKGraAzSpM6zybt3giwkKL/wby6AC4NiLlc9HjJKAy6TP7ZsebVg1fZg3ISBun/uieslLebCn/pTSqnUuQq+Fr5C+oZBmnZ/+RwdO2GXlj26EF8H1us3noi8pPZm4Y5m2g51rmaXuzj464DDl24j/gIBde07ybo9MggPvknsnyI1wn/3nLwXBIlo+5HKUWe5NsCfK4uhi22C359vrvx8EoN0x1ZMkk6UghrQDfipU2CT/2Rdw0gYmuTm28N/HIAmkZtKz9QrYEjl0T/tzyR0tJpVjk2L6vtTkupky2Z4Hkvzr+NZOJIev0ITaN0Nz+ztDr2Cajhf3fpXb5SArv+12MBnZgJn235Bo/oAOHaqwUfWFIP+3akn0/yths85cy5rG2Ugu62/on4dg4o+3GXEmHVB/2MfDRe7dPDUbD+hRktEOr/jXp06PgS1YiZnlfjwIL26wFLvR0QHt3h9fuO6Qdz1g2xmRwH4a2zLj4wTkPDhVDYRz1yo0dPp49HOgmbWgyb6nzGI2dr0bKJHByhvn73jfZMM8xTHzVBqHmkotB0CXNlwNBqf0G1QB89UTy0HfQlDoobKPp5PsqEqEiv9GFcPaPPIR6eJMPQ11GXAOrQH9s5KJ6lFIxiYYF7U0ySigHkGC3uZfkieNNUjnsZCLyVc8+82Cd3Giftq3myEB5KCGu/cETgftJ3iexqFljGzgj6iPVAh8m6CzJAC/N8nHU6KEJFvknPmvAMFpk4+XJzQqAc7HmK5mSUWPUjeY/DX7YDw390D7g1l0OBLK/KqBI/O7K17pTu0QCklb5RNIgUEr5j6aC7j0NKeb9CszBA43RLGHtokw+pPHTqQJ6KGCt+fZRElYKH25cVqUjN4q+5jEeAORS36Jr4zs4Ng6NS5FX69CXQU7E9wtxHRyy66m7ZB1Pe7XuPrgimH+sHpqUv9BHS1Z++/uIFmGFfyFdZwCgBa3YRDeUFRqO/Ecqi0dxtI/iIKbfGWwEFjjm3l+7HIZmWKYjjZBqVdxdvXuUpA/KPOw5M9MajIjZ3e8UknLITd//PiUBT0hI67iToRkPLL5ROUyDpYuqufeGTLAUILLpyhiw9HId4PHqYotUGLqvQPzdRQ2Ifr/BsmHYt4009Gmw6RIbbnpcn8JzJ82NT64zQZjY7Tv5U+JjYE049OqmnNU6DnKy74QBYBMZ+MlJi7PwhFcqs8XgEIpj/e5ufAEdHfT2aa/LcL4DQN/5QC1ddou4v6LnmFIpLhfckN9Xp4OfK/Ds47nsr//eMpWckqs0iISCK74nPZo7RIdtlZRTJDycp2juMMe++9t/c59p5JpE2ZRWgofc/v9+/9uB/3fZ/rXPfr9XyeP07t2DN8NURr7p0YPByHVv5aHF1v7QB9F9Zzb8/VgpMXq4VjINWDfvNybYh2w8Z32/eHG9IBMYe6StAkoV7hzyOC77th/NnHsOSNQvDdDanpX8ShguWZv82vOkFnl1ECsxcObhFMe4JSOFR3TmtPU6ET5GOXVrio3LpQu7Tv7XssiugiME11DAGpAQqupNSBplmA2+9sEjrrtHfkQcoQrEjvV+n/kgZ7gZ8TM5uIyMRZ5sAbjgH4ryOZRc+tCOgtP1asehPRhPw4+3+69VBOc/sJ6TsF1s0Gz4myxiIFh8b5LWoPLnazr+3bxcGJEM4CDlUCepCQvbGh0QtMfFq7DILt4CXr9OjrXBLqKj30uT+nB8jX5sSipUkQp5x0lk8Mj2pz8G9UJVuBOVhXKIi7GebdTvf4cCWgf+9GhR8cHIfOCJMhcYd60Mwb5Sp6TkS5HvUD2rghGNY4mOJSWA6xm2Jhd0tJiP639Ac9+h7w2vlzR/hEHlxR+GtpMZaEtFU2VQ07x2DgedWkR10LyJnQsdqsEJFyt6r/3LsGmGblcMrJLALex5J0y4Ix6Nh8ltrN2WbQn94MLk3Jg4oflTdi3eKRUQR++/yZNrg02JFWTXan5ud0sbBzPGISoMzUYCjAOPfY88HtMjheeW7/l/8SkRhBPvrRIhl0FCRsg8ZzYOrb1eZCqkecbEMNlXdGIPJu1CWTB1XQOUT7KYMxGR1Rwmpe2s2H5xfxYUfLq4BidXwt5lU06sGRp18Wt8Hd27qhtOnhUCz3+AAkxaPlnIO+X+nrYdA24rhncDVo3Hv0YOxUNMoTjbh14fwksPmOfHQXIkJ2lvz26bs4pPXN8+6yaSGMWfJ8n3JPAz0RrKO8ZizyopNtjnQpAGx0Y/CGRiN8O3TCz8o7FnVx1nRJavdD+Bb27R+qRwj07cg4CRKQbHCsJMNEF+BPBfANj9ZDK+gFD3/EoYlTTrj5l4NgPPPGJ4zKIcIf3nw0PUNCS+9YGbadEUxvVmgr8deDn077L+PpBPRRpTnuhOIo8CopOr4SqAUzl+6op/uTkWyr6YUnJ8YhveUOv7R3I6i0m6mZmhNR1alrb+mZ6qHE+9CzuqoGYA2cvRUnFY2yr3sbpH7pBEO9V/U/Nx6AzztcZqo6DtU0V1TbinXCyVZhfiWGTnj8I+yO7TAW9cbdTZmtJ0NsXdmeknE+JFo5GdL2Y1CgQ6Cpwu0xOF1eUSvGRQEklO6uEUJCv3Se/3tkUgeHjE/MKFO9lqFc40rZixj0ufKS4/Mz3XAgh+l6z9l6eH+K+3PMDRwKZi39uj7ZA+0Pp0SLPiL4+O9MkJ4uHh2LOfKJt60f8sS+SsqIUGDkwtPxeFcC+vK4aEuHPhaa90XyiKa2wmhG8wexXgzKOqZTyB5dB4cVyCdOatTCqprvcfH5GJSq+crtDfc4vNUaOC7ckgAfZuik31PzSi2hp973azv0XHzVaxyQCU4BnKOOXxOQfKTZgq4AGe4u47KSRhJhN02AcvA6Bm0Eiv2Txk1A349neq/kU4HXgo2/9SUOVd4yu11T2QrVV8L+M9HLgQp/w0zlsTh0FFv8pyipBwb105w7/hXBBM/N5QxuPNJZ4GRZvD4OAY8a3mOSygCjg5H5YE5ATZn9at1zuWATW+zaLUYB1Vx9s3TBOFQ2LjR8amYEJiymibwbHSCM+XLmL18yCh95nO5n1wrtd+TWT1TkwBtKlhFFKQH5lhKupl3shJWSfwa5I8UQsknpMS5PRPs+OZ8JP1MJzPZCOd/UqkBuf3Nvil4U0g3O/RmNHwL3s0XRmH0ESHXxSfQtIiErOvpvFSxDEB4XL/9Msw7WgjjfHYsjIi4OVj730jYo0vhdTYmsh4WznMJbKB4d4+9HjeJ9oHl4n3V4VBsclfNR5bXDo3ekL5eXGqrB9oCemMObKrhekhosuxaNBPSfNDF9JUO+xO1f0XNx8LeS7WPcOga1ji+obQt2A5YrTF0nmQx839v5PE4modyFjJMZud0gvbU2X3w8B1a0uv41NOLQE8sjth+PNILyULZxEjU/ufmy9s9wxKCuNm+MeUA/SHoPCa5S90evOO/Ba1Yisgwhbcyv5kMor97opaQ2UNGz2ObxiUVP/VOqVPZVwohRZuNpjnqQVDWiu6Edhe787Fd8q9IMQkewf3x+t8AnvdL7Xw7Eo+QqKTbrlB7A/iykYbTOAd9xUinPzSRUzsQj8NmgB+7JRZSvX8iC3modrUTNJHRvbeGcBx2Cr3RtQxwnmoHl85XMQAcM0ow+nEIbXw/ESkK0bDwCUdNMyFSMRWVHchz8Lo6D4FQP8ym2h1DOypyas0xA6ca3XX9UjIH6f9KaQv1YmLGlIfxhJKFLwqOXI9sGYTNocDT3Awn+MGl//KJGQkHky0KLB9vh4Wi0YuLFCtB7va+jlpyAPoWdfkrSmIQDv6fsK6n58wQru3vydSLisgv7F1GeBmGtF2lfVjWC5fvfBwr+S0BMJnWhflfHYKllUISxIBm24nkPPCsnovd5BsXYzXYoSnr81Ym6j3hxtVk8JwYxZaVXcLVSOeT3N2k2iUrgOH/1cl43tb9O7ey6pzVAhBrKv0Z9X7/cbjXu/RONyrinli98oPaOXeWvTHkEzp8GDo30Un12z89XnLMbChVU5c1DiqH6b7riWRMc4sxUsulvGoUepaWuBPFgwD/48l20m4Qe6xVv9DGMwaVI2SgDS0+w4NbsNqIef03/yyS7mAwJD06oCFvXw/4sj0Yvam7Q0zXYRc8Mgnn7pYxeMwrgChM1tK+Q0JbWdMMjyR44btGgdzwxFHyZJSfXeJNQasbRhzOe2ZDyRfyy2Xw5PDupK2MWGYsk/oy8avk6CM5d5ffe7SsFAkn7RqILNQ8xav4j400g6uHPULtXC9pxd4XOLceh/Htplrovw4Dlntz7lwr1sL7J0F/Ug0XiiucG5IoQnCgXCXo/0Q7WQtP9fAMYNFJw8KnnwybI6NTIfb+XB4dyjczkauPQPprFP1rbg/Brx9v2vFg7vHz1vajfgoQKpiLCCl/UQbzXCWHBX63A3t99q4Ob2o/fDKeLtwvA6TvNd7pkPPwoExtv9otGYiPKxOA7laAoJd2i5ZoPxzjVL2ezxyB+2qoZ89oJuNm+yqVwJguyNuwFpgJwqL/D+uRt3wY42v/H3/FbB3gZpYksHYpB1XcJS4WaFDBMEDh7hD0fUjd692TZEtFDPW7dtpYeiFHrXR7ZJsNqsf/MCSU8Kjl+Umo/tY/4PKtuibSVwvS/1B2bSzg07BBZsjhWBapvM9RDDzVAFGfe6iRPDOILZerp4cwDJZcHXcauHXDF+EBqzvMYxMzHNiP5Mh+yyuZXzO7VQvbtQLO5n9FoyqLLiH+gF84LeX+4e7wAMAVK1+/u4dHnQAuVQuVKKHnj4bewUg3Lw4F+A6pRqOwj1pOjox9Sd/tesMwiMB5od5vQJqL2gcz9x/9VAf6O9GXhgFzw5PV4J3M2CgVNssXfXMuD5im2u7rmFUAfrfhNWy8Gdfs1ORR/GYZTbDsEHTMES7SWCZ17JORJw/1bvGkA/gV8PJC44g43yY3hXxOIKNZQJ4JXpQIYREuSq6kefONECOicjkINNb5VTJ59sHOkiFU3KQccZveSlH0IaMkq5/F/z0ZB6Lf0784ZBL+mCw+47xLR16CT83zHR2F/5kyN+i0yCGsGtjBxktCzhPHbnwwGoUil8ZsMKoWZpA62IWYSUowfua3OMwgZlbN/a1yKgcm/iVSxj4SmBGPiG8U7wFiJ1XFVEwvfeqPccjUTkNnhNcWDmpXwcmnT8rdCOaiRv5Ck5KOQSqBY+5/lCrAdvbXLcgPBw++vpWR5otBRa1iKf1YGv9R8Ar8dKYP9+x6k0QjEoA6luSg1tgGwL3h2yyCoHl53GjdUULmFofaNlDFtJTzT5p2OMK6HR2VcDLxsMYj3AptrXvsgfHesMm5hpcBz7OyLcR8imvU8M8fwow6EjfaV43gioOnwQ+n269HoOYuIHstIPTRiHn1q2HwCP8zGHns2RqO2Nu0BzWvtoCPsJ4k91ATzqkOz/Nvx6CdDi9up80NQmL9yPYZcD8Xll/O7n5GQS/fCJctjqRAdnd2MynIBQsZfxGMTULN0muBzzSKwkxf/T/RHKXw9OUokuEYjme6yL9eKcsGdd8IsmyYbbDmLWGcmYhBY1lnm+I7B0yzfbqEs6vxYj66eciIi1xM+D2wEBkD5Q9RfaZta2HZ/ZWhXREAMgULXK6j8Sfib+VboXCGw+n5SOpwUjfwDBs6cdugBflzxrFVOK6wKhj/nZ8Ajt/b22VO21LzVNKlpMy+Gi9/nPYN98SglN8sqQ7MHhg6KN8QcIENT3osE4ukk5DJru5xp1g3/0V5n/jDZAvK2BpcUqD3lmns+LiA8Cz6faahz7W2BGdYqcnFmPFov+ethdr0Fig+qcrNIdMBjSaFzFlQ+KY2SvttwvguGLd9tm/AgcDxznT7SG4f+JQRmCiwjkLG0OLGYXwm3bcPO05/HIO+YA0emL3SAjOd/fNXnKfBNo+xZys0ENMGp3GlsmwsF2m8/VfWlQ8Eb5YWf6zFoZoXlWUVeD/TLXnNviSLDZYLSuIRpEupISKz4Wz8IKw7HBm3+pgFO996qrS0ROfxnoKd2rA84GLFxEsktkCT/ofKXDR61t1mEWecOwMM0My6eayHgSnfsMl0tEc07MSadE8iHA6m5jZ+qG4BeMc7mpFgMKl/9s2NwIh/obt3upKVpBtPJHO2fA7FoySvjsaVIC8gGlxNYRMshOFGHV5ctDtEGJnBrbE2A2gnMAVxNPaxyR1r4N+GQg0Bx0QsJL6BbLLk1l3cfZPdtaFdmY5H2SOe7tqkJuPt17TzDKRzIXEr5XbeMQ3cwUmTnhVFY3k0yD3iSDawWYqJcZBJSk3tru34RgY32l+ks9iTY3puqxvUlICId3dK/rV7QXlBbLuCpgHOVF1OUWQnomafBi63cVvg6oCmKUe2Ag6RY22K+BHTkaVloXnIr6LNUD+jeyIDNAb36YwtxiFJr5fb9Ux/kRB/0+EMJBh66+I/ztQT0QSVKhGesGyg+L59jsaWwuqyptI+MQ3y2G6NWF9rB7ZrVLeV77vDskM7AqQzq9ZtZu0peDMMRbfsfIu+r4eaV6fi9w8lo4IZuaEx8FLQELrG+CGyH5cYNU2IcFomGtvFVDSMQuN/ucp2/Fv62ng2mzhDJGFycWJDoBcbd0PgLD3LAapK+hYWAR8cp2klPFxAccOBO9bjTAPaT+3C3VDCIEhxap+baA4L3Vq94u5WBAZ277tKlJDRuGUT/nacB/haxT8WOVkGOQcNnx4hYtCZysijEYRzCobozvPUh2CoYjRxSISB7I/tfFz6MgtJy1LzSpSboMtun0TpAQiJKTZw0v9qgbP3Hg6fSOJCkybvjTIlHQ4/rzLpoB+GbXYQdkbEKjlZX8Z0+RkQ4YYLZ98QOePCyzd5VtQlMXmS733FNQKX/DVGYZEfAp7ZUSNGrBRa+tmkonCCh66o/tlVKUuC1s5KHdE4b/DYpnFDYl4DGpDqdOaAYYucuP1r1y4K/0uq+Sp0xKK2wiT9loxz+7i9m1dxoA+zOKVfK4SjE2dUsG0XtC9JPaCjS7YD3O6pyB+LwyPjyHhv7YifsY2xiaO7wAgOJ9JwGh0SU7//f13XxTnAZ8pPYP0uBwDg5S92iRNQnUvdM6ekErLQc8CuicqkSmes//9gkxPlLtOes2hgc/G+4tEidBOP2Nlmf8ST0w9hh2Gu2D/gfpNKMS6eAyBvD1Ce5BDQkddhifLcHtt8b9U4L1IERIW+fTGoS0vbxaFJOrIMAY5YGAfpO4J2+71z3KQqN5T56Jq7dBGK/cyjlJTlwS7jijmtYHMrkSHo0190L4TPIaF6vBuZTzH9a0BCQHul4+Ukq112w9U4ppzTAu3zFqNhxDHpuc7pX6VY/aA6c/HzrbAawubP1MNERUeX54JGKQ83QbZvpjl1shJKJ2IU3CrEo4ZX9Yt8SGeYr67fY4guhmMl9nXcVg6ArbnCIBgFd20NbdqZG4EoSIPCZYdDE1C73FmcPqDmGnvP5mQAWPzKrGslJ6Jui+5+K+00gsMFtwF3bDJF8+hTerDgUEIKr7Ysfh6zAeLGiwxT4eIwpoz+egLbe/ps/tdMDXoTkTvkbTdT+lbdWtMSjCs3O4hZCFrzY97M1lMcD4rhnb2KvxyO/UxeWazaHAD/N+YxVrQyEJV339vqJSF0kJzchdRDcJDhcG+RzgJ6RNZuiS0K0QXvHqjd6ITtruK/7N4Jov6vWLAp49Nig+Kb0yzGI1bjqIvMhBXZGinv7BojoWmF8dsX9bqClK+NnG2yAuT1Dv1WDJGRw5zVmipoPv5KVv6qp1ICOeH1r2hweDc8IKZDze+BcWjrHN0wOPJP/WtuojEcXOLleFDAOwPTqOkN5J4I3BVKMZUQCEseHXl581AdZo0dJLxxz4Ybgpxxj6n66NcYd9n/RAPr/cSHDt/VQnpbBLXwuBg2q/dmvdK0N3imrMEq01cCfRdPcAL8E5M+RdG3lbzdImFlHypa3wd4X68iINzg08bxL4e2ZPGAxTVZJWq6DmWbsqjeVD4fdRKuF5/qgVdlYcciiGF7ZdvjndxMQW0apXz3qg1pxsSuzzaXg60Z7fI1AQPSMM+cxzVnAvf/aT/LLevAQFDn0xTce/XDdHvOxoYC2num+HqFS2PtTZrirgkXug42fT2b0wd/YRi7v7jaoanrI2oehctqVrenqrSKITlPMM9CqATqu8qok9mjkzklffITOE3p/WI8pfCwG96m+ehqfRPSfCD7ivU4l3OR/9LjRPQPOeBruU1uJRFJkw1C6hhJw9y0UuXKHAlwXjH9xJ0ahX7d/ah2baYXYhMLQ2YttcN7zv4rDxgloGR9fq+bYCAEgz15YXQk2bT6bfI4xiJ69P7pdeRLmY/ykXl8pBy3+AZYsHNX7NFs89aj+++TP971jYxGgyUt8MkL1Mv0m/7UQmzF4cE5Rk+EuDk4+zCDPuZJQfPP8OOExGYrlQixaTqYAnfCJyOAUDMrQKV86fWcYbhyOc7YVb4eL/AWuSRNEdM9ER+4erhsKfJzC+oQRtLZ3+wU9SkIxLpPwcv8AoHTmb83OFBjhraWtuE9EWoyqLa+nauAgQ2sMZ04oZG5+mJ74Lwbp28rlforshfW5cmUOh0o4IrfrbTCNRxNloVnR8+PAb3Vgu0Q8BAx5enJejeLRXYGYpdJFBAacuV9XL1Gg4UQS/eIeBr0//aOW9kgHEKde7wm2F0AUU+nVp9S5SQp8UPK94AkRsluLV50RnCx56zX3IBHdKBhneC7ZD49+tFy8EpkL4zTRW3pMBNSap6eiVdAET9Kd7xta5sCltF22OZpYZN9V9/1aTDe4hCSHd1jlQWDDVOqkdxJ6w8+aEWU3CB8i3m+tPHQHi++czs1/iCgm+cdwhSACV2aP9kH+Njjtn9/o8BSD/Hk+ZWgyUWCSePstuaQFurfN8K2/MUjfL7PjMtWzqv6QVTeKW+HL8K0qBhEsOn5B/UzNBtVjN43GE3rbwDWoObIzOhGJ298TkP6YC8LJ8u2ajI+ATvHwB1u5OPRoYMr/0B6CpjXslw73RzC2zccif5XqxZ38I+LZXcCc+euAQH8OUO6ceFv8MRGdOCAz4JPdCyynZR9+Okrlh0NuDF9Z8ejexW0BvUoKxEz+jvM5ieC4+s+un8qJqHvtuoWs5iQI53Xvrfq3gK3ZM3FRAxwK/nzIfYijHjjsrvCfnK8H7vJLjR/pY1EqfEqyPpMG41KnNJcOVoOXefqbirJ4FCkTlB603gvd+zLYj1QR4fkNl+1QFur89b8Wlf3MBXuB0tv85EjozDz6y1kvDuW6hLw/fL4PtM7/xeOo/njvdZeVsz8e7Q0+2//XdQIKzjBsmlwvB23h/c8OiSShTlGd4psqg9CEnuQPXq0GtTMPn962IqI6d66Cn5/GwObzqfmd6A6Ya1LSePeLgObKTH6yqE9C1TH7SCenWlh0x5k2+ieir7l9i55RTfBOToO9OwoHiaY/7ufkxyGvbNUwI7pCSF0jZBuNJsG8hd2NgNuxqNaD9CAtqBNmvzj9G9yPgOwV4r6zloiM1+huv88YAiNlBcy9v60wPpUVOVBIQiY79cd4GlvAe3F3mv4jGcBhhRH+xaNLQR9W1YlESP6WW8SS0AjdNkOaAi4JqIIOq7XD3QvmNku9DPz54Fj7KtioNAk9/PzpttLFSWBfLNK1ng2FMdYgFZu0ROR1IGbaJrwNyJW69e0SZPCJfrXd6xePsoOXDnupjsFRR4e3LQM1cCRLgvEXloQUeL4w/fjWAw5cT4zvr7WB7qsvbVkP8Mja44/DK/MokPySRt+JbwdFLU4lkVkM2gqpXHzG1w/JosfsdAKoXuz/iT74IwHR0Vyfa+vsh7Bzr6UeizTB6bnGUnMral8sp/zakcuB439EPM955cLcx5shEVtxSN1LmTNykwyckcwYg9FW6Nhs47CZwCKFC9vXdjXGQGnL4a1LdgZ8iHQ2l8gnovxchStBTgPQaPMyOPpaHvgLDi70lhPRYJrOL3aGPmAkFXMY3WuCOxRfpTlDPFr/j/2kjkQzCH7T3N70C4UNq7XXx2Ti0W0GN+Uc7T5wffxUy1+yFlTpjej5wvAojfmcefVsLzzqOSHSS0eBSx/l405L4dGr3eD9Ld3dIKkt9uf5/g6wHw5KJBKS0DtcZH52cTjk7+XYVhwugoRg9F2pDoukBc56cra3wZuUdQYGlhZIDzC1cihIQKY/qA3GPAJWbR9ywoerIVz9zgv4SUSFUrpr/ft6wcgtF6ldoMDV32xxM8QkdEj8kpm/Xheo5xoNYs0KAF/QNvGgPBHl+swlZxbXwsYxEcGPP9sgoFhqMiczChkKYHLcJkKAdDyW89zlVpiefK2JW8ci26dDF6N4u4DgduF69QACZgHGQrq7ONRjHnIpj3kS8i/8Eb7J1Akezld3zz7Hof0P+XW60sdgoWzgTd0lBMYaB85Ky5FQUO0t2QhzTxCcaz7Hq1AJWRZhZgxhiajHiMiqfaIfNCoMldkp5fBfYnL/Nj0Bzbw7XOpk0A3kzH3+H0xygHfK7b9E3SR00p0r8dpyM6gPd+rlcFNgo1VlbHo8FpGaVF0TYgagEBP/3P50HXBl263/miAgcpZY9LX4WmCOLPuZJpgEbqE0pxVvR6EQnrv3hCSpPhUxqZkqmgeWARmfnCoSkO5F8YXnpQjOz21MVfbnQvLZ2hEfRgxyd9YwvBNcDWOX3qg4RVRCENdo/+r5KFR+6/0nF2I/eFxZnxsIL4WYhaV0DzEimg2VYfox1Q21IoLhNFNNUFeZUZo3gkPXMPetPA2ofbrtaPuRHwfXOIQuv0shoqPH5QtnC59CO6eKRnBmB3zb5Tp56h4W9R2N0F052A620uGcoVUtIB1qNrfdHI8k3sgfmFLqhpTYZpEISg64TvSp09/AIfvRwTsVfu1gddH54rQTGdRE8hsTduJRA16fnjU+Eyz+O+un/TkKhAJO8SqVxyEo2bxyOmoY3lw7vMvJUQkfwk5K6x8goUcCojuevUkgmZZrVKpKBnYRhuar7xPQknIH2mXsBQt7ia9v81thv+zL6+bZ1DwZ+6ukONUJWD1XT8WHTcC5/YJgapeIAgIzefbukuGlps+jLFccKLHqqoabYZHBTjPX/opucOO0mXehcqlXxcNVvzocEncNuOPC1AWHmFpvK1mVg9VuxjWukETkt/32qr5cIag1hNu4nS+Ce5VF3+XOxaL4iiw1oG0C5v2Ks12RySB9SWG0oj8G9cpYcJpaTUB+Jjs+5RcZkjfNDRl2kxDHA5rodq0J+MpyUHTQnwK/Mz/6q3PgkWIJtuR+MhaKLL5nai8+B/eV+NIfRzHITonpGrcIDnzuhCYZTD6FvO+aoW1/E5BBCUO5Y3UJrFDiVJqONcLhvcWjj55EoaPvJM+ubz4CmYf4wBOMnZDR1qdKX4RFrQ3mFoTOYegYF/2MsUBguLTwhFWVhGxrOnFMDPkwL/mDS96kEFgkM5/KDcYi5hCSR9GZQsjy1yuc3quCcIJ+U4RtLFJbkJNioqNynoQKAb+Lgxlx48PFTgmI5vjpka9SCOR+/xwOU2gBezYxvWfRGPQvqjJSQpECB5pCA6LWmqAgt2nO6iwWvciNeeWe3wf0auHWd+ZawJE/Y1aIyqsutRgQe1sMf/Jz6bKPxEP/2SNO9WNRVB4Q5G6v6QTJ62mCUa15ILZTIe0mhEMGhNHWT5Xt8LPngUqiey5o3L/iLiRC5fMyTjU6cwQB+Z2nb95H4JSBV4qcTEDrKxe8Exx6YSgvcDcnuBaCEt+t3v+ehESfFQiL2Y1C+62Gs1G3HsLZuITskT0i+pD3ZOb20ChEEXhNHeY7IPetus71ZRJi+E9uTf1HP3Sl/XsXHtYO7Jcnrk55ENHUrv8hf8s+aDGIH2s1QHBBMvjm60A8Kjq2M+nxfgLolC3DMtoy4ZfQ1YW+39Qcaz5kKNg+Bn1/xOI92tLh+3LTzJ48EcXypx46EjAGzQxP/Jjt84HekTGJNoiIaulsVn/0jECXvqva7dcdsEoZrur+SqTyxp23GmWFQORcFFvirgMzi/P+SQ+ikbSG+m5U8SCUsyfonUmuBLN8hRw7dyISBsNZbgcKVCgtlW2+T4E1enQvxgiLvrWpKToUNMM37Bcn29pqiJN3YxNTj0cbSxJd80/LwZh8mybtVDp0tG0w2pZGI/bXqXtrb3sgRP2zt4dLMXzHi30eCExCfPu+brVl9cJrhqd9BfkI6jdKbDzX8EjuvfmHTI5BUFcm//H63AiNLY9Vbf4S0U2Dp/y62tlAK3ylp8C1DTQyhSP2u8UjDy7jZCyVf2TkL0U7s9bC3C5ehnaTgFTsF61vJXWA4J+Toxfk2kGPH1N2VRuDRj81qVRQ+f7++QXuHwIdEKBrSNzxx6AhE9sZ6W4ERzbJK0fJzbB818R0YguDCt8ZPJDsbQapd4fVq5aywE1kLlJ/IhZV3dDUjO4ZB7uFDFwvfQ1InB0r/aZMQKne4vKdl6shL2N1OFvyIWhvhlhiNaJQxympkOwv9aBlp33/0/MKSNPy1Za6G4toSkgO+kIN8LixwmY7vhlqrw59cNeNRf0WHWwh6+Pwxv58TLt2M5yTPnPUtA6P0jPyF3NvdsJF1ZTqlucF8FKLYNI2mYg+1LqxT7/sAhmeI96T3ygw1MCfrs+KQ4e+iHp6V3ZBiH/6NCqnwFs2jOKXehw6y9q2Lq5EgVnR1kuYhYewpnjIpm5fItosZI+NpPrbAfXH5xbEHoNP0E4ftykWMa3uvuGoG4CNrmS9+CeNwOrzOnZ7lYCCUpkiSRXtcIlm9dBJ2RD41ksnn8CbgHoeelbXdA+A+cOD2rZ5LXBtpfqBwRQRlTx5xPq8fxh27rQq15VSeYPr45bIAhH9+Vf9XNmxCxSO22wbMKaA2Bc6r5K3iag+lusl+tgLvCr75eVD26Dd7jnDcVoCGlm5LGqs2QCkFf+HizfIIHbz938Bb6KRAWcj09ujY2CEv7l9v7Uc1C5ybHuWEdH+XePAvGfNIDJlJ5/jUQOKPIFHU3Nj0S2ZtBxLETJkPTFlUbeg9gW7FdbUDIM2Gsbblz9Recm+7SNWCgPvevtLnh8noN3rp+rErNuh5xucGqkggvTbI1cvvk1Ax6QFuj8engDWhBjzlcpSqGwG1gEqdxHHl4UXf+XD1iVIq8BjIcpT7b7052ikYpOVon2jF7aHttjXTcrhCkvfd8fpJLRqoODk+2EMnrLLhnMb1IDD6su3EkNEtNbjbhKPaQIN76VUVsE6iDhgTlsvGItCBcczqq0LwMFCvPlaWzt85/0n9tUiFgmXJZBl+trhFucz6yWzdlij6PklnUxA0HMi2uHJGMBGoOVJUTKsECg2Y15EdC0y4kBNbStgfreVFLLEgcXXtSsug3HoFT7r6WPDCYinvz1cWJcDnYl0V1g2k9C6HJu71msKJA8e+3TGuQxMHEPHXudiUcXh406Es7UwUiLByH6xBAoc2OtO5kWhi215Wml2/bAz0PMhj9r7rwoezMkyE1Hf6rkQO/UhaFzyif1n2AKtvCpjylRuH//9LeSxYQ80SXLeb5VAcNW1mpZxHx4RdExqr/dWAttw0n9On7Jg0FqCVUQyBv1wzpnokh4GrX9YpRhqTlJOezbRfSGhlol1kpc9GQz0xQ1W7+SD+7xaMbLEotR3tudSWutB9Merr6cv5oGF7+6/xfvR6P6puI2xujqoM8xQsqf28ofcvD9Gp2JQw9nka+aXBgGuKPp78jWDvO19/V0hav4vfh24tzQGcVqBujBcBTp4XT/aPiLakyd8D03og+5H7L4RDXUwen6R8WMIAVWZwsXnUmMg98R4QYKmE3reRyXKGZNQWbkrpX9tENLtVm6INmFh+6NYaxM1z3tCmq/vcy8Fhn2Z5kMKdSCycYf9ZHYMeu1t/ne0tA1U+ZL05FqyIXng3kH/sHjUKWJ7PflbDnjTbdz3d0DQnXo0l78sDqk8VZWZFx6DC/cZ/S2iMmG35HL992ISOvz9+ELD3wlI62XSpDWlQDurs6xSCw4F1icFKJp3gxENP+ups22QrMBcO+yMQ5eEzz7vLBuG9ZwL5q+jyPBtLFPh6R8S+i1/NGhqcgxOaNwqH9zfCctWYtvB1J6yKBoYC48ahWO912NpIpogcr9d2P/9nlDf9iDr8PcemHPC1o7SZ0D3rL6XP5XTyMNaE/T+bRBIqqfepQFyR1seSMcloFMW0oE5W0Ngm5Ws/1yXAkvnVrnzXpJQtv7JZxqL+TB8jcm3+KYHSDHMM7/OiUWHY63oAkMzwPOX+JrGTCvgm7xYTJQTUHglpytluh1uFvl/Yk/Eg03Z2aDBEwlo+gczQbGqHqRI9kqumEZw55Lhtr4Wi/wSGNLFIhqAqcmiz/NhA0Qtp6Tz98WiYorzRsj4KDja9Maub1KgJmjj6MoiCTElJ0yNTlVBz3dD9a/kVpCSxJnu44hBEZ93Mq4WDcCrG5cCyqj5Y9p2kCmE+l7r5kk97V5qggGHg5xDaQj2hW6MRMzGociG1VcGT/vBh/jM0up4EzR8kFT4x0PlcActt8NfhiBz1+iloWgI/OvRCDXqISFg31ZwLyiBv2cMrStEckEuQSxALjcK9VoKjvAtdEIaQWuhZLkAeG1r7MfFcYhH9qmo/LsxSIu/Upfv4gGZLh9958aJSEDo3xe7sB5gy4mpCXueDyNZ3xuYFZKQ14WbWzf1yGC9V2j6MqICNIwb/KsfYJCcweOHShKTELiD17KMy4bbVRecxYJxyD07y1DvYQsU3dNvXZeqgDzzDHrTnHh0KOXKnadTraDPyHQ3kqUZmkX+UAz3x6MLh3WMrAUb4e89b/GVimyIdfMnSfyLReuKJZPK2e4Qa5V0TEeYAmIzT9LuUD30mnyXkJ1GP3zuPHVB1KkSHv45Z17zh4Ae+N4TYdCaBF++OhsHsxKIfbH4b94YR+XYr/yJMAwZtkkeWs9roEjKLr3nMAkJ0cunZVp0weV4zvRuQSzUMj18RqxMRP13tu/eqaHAD+Pky581yODVxRDkeCcRJSsP2fwyfApr7A1PBmebwaBRVc/aFotwnEs+tVq9sCmS3LLKRIC5PXZLgVdJaPKb0GvhL88hXNvHv8ejGmJNpPFcDFgkwx4RpaXQB8TNNLdR53LoduQ/pn4fjwqMFxZ1yj3B4uVFLnXtGjj/08H6tHsi0nVA8kcfNMOcCNfxZvFGYKOcU5TWjUeSJ+t+3w7tgad0LLjMHwSQjlwbbjBIQqZOqeoRtJ1gfI+DV9SuFTjG4uyfVGJRp5ZLJnZ/P1RFNmSE7FBgQIdHrAcREPO1Du30vEqIYhSOknNtgKcqZFEcTQxyfV1fW21cB34+l/o0rHFgjMdK7oVHI2H3rLUnGgie6MfkjWxXg94juxMaLQlIPUy0oPhOOuAPrmDkPZthe1ZQoEQgHp0m/23uILcBWeRVerVBOyS+O+z0h5pXmJvDBWqXhiG3jpndQKoVQuvbTFmWqfz5SbOzp6sfbJvSzr8/GQKvaRivgwE1VzHFHjM9jZAq+bGgMSIG7E5MlwveiEPuUhw9+bn90PfOW1eB0AZ3WoaD5GWJyEml/lGwSj+4xE50ibW0wWr1AAcfIwEJm+xsPBbzANqsLlfvX2Gg1Fk87FWFRZFJUp5PosehnbmZ19eyDg42vKGt2sSj6OFHtGX9j8AmLIJxo6kAroj0m72rwSItcU7TpwUdcM/xvlrMfiyIT5gY+93EoIGFG4E50y3AM63VvJEcB1tjzz/O7sajq9ybl/f9G4IkLtyZx+3VEC1+MCX8HQn1ldwXDqYhA3/Ci+DAA40QG3reLkICi/i0Et3qrIbgpykx9tUfCmxEHOutTyUhZqtA0gOGTtBR+7C1cjoWXkpoHctLSUQ1Luo2CfRdUPRy+KJHHRm6uK5/MHtEPd7CFJr+sg+Ymb9NmjiTQf7lgst4JQHd4suJMc2shGtbwV5NRWT4kXzJOU41Bn2QX/FqPFAJp1f/tE7FhgGvIivjM90olK7Zc3xzLJfaj/Wbj4Q7INrViHjaOA6tqsbrCRWXwOVoBn4vyUoInM3CRZVHIY/p3tsLUlQvm/3X09qaCs9Nk0+WUxLRQJO9uHNQLXzyOs/rQeWWBzTVJ5UxMei2yQnOla0xuHl5QrzaggJ/F+hdp7uJyEQAU8J9rBUKjHKPGbKR4Z3jSGxMYhzq6ZgjXl4bgtS12dcKzDXwpI3y7E419XtvpnVgv9AHoGbUX5BQBc2ncnebHfHI3WRLYj6rC6RoyiWNXpXBPUmspSoFh/LeXnJpF++C9wGDO3s8uaBcKYK9Fp2IdMJ42vddKQNvL/UcmVwMWPr69E4bRiES81yYmlw52LWTFK2oz8mjqRbANx+NlJbXt96X5EHjs6qLnzAp4PhZTZ5PJwaFMV20ukrsBvWFW0f/bubDv6JLxZ9xOJQx8IKLs6IbNk3uH3Cia4WWhndHSzJw6Pbzg5vFc80w+SlE/UNlLRToxH7Jfh6PzuNM2zfsh+HR7SMRDVR+UOY4GC76hYiKlCVOdKU0Uff7UuoT61g423I1tmk5BmlDmsHQKTJ0HyEpWutEw+zjMxs8tzAoUCChU3a5GxIeKLyPnCSDTS3+2Odmal4NtYmK7c+DVY6gnpX3zWAY++v9KbM4tO1TEX0pnwJyHHaXedpzoDiA3X72diKS43CZq6zsg+oHwpaNdOT//5+3w6N41Mt2597NuBG4kWe4phhABJnRstA/tMlo90M+ReDROAh2Mgjd0yDBZu6vk28OEVD2mVdl3BlDVL7KWnOkfo7SIF79Og8Saizdn9fVRoYQT9epH8fK4X5YJV8ONf/Tm1TNr8wOwp5iZEyiaBtMab4v8Q0goqU+r0ERoUrwUOV2/buRBmmHzB0fG8WgZdNyBiylD3w92cwbatPBy7qt9mwHdR8+Wm1OhGcCzyHWpNyaFphdMmkd8olDbduzn1KIRXACr7j9OqsZYvtMJwWko5HbNfK+lqvtwMB9QfoKTzz4HzWMy3+fgDwKwPtUWBYUmeha4g4R4ax/Hxt3UDxKrk3Q+Ha0HGhIb+WkddyhM+qxl+yVKPTzLn5CwoIMT1mnSgeTM+CMfRrf3wAMSgb52AW7YeD9oXKr26kJPN6c1slZI6EGJGh36FE3ND4o5PAYa4DdPs/0biwOzVsf3VgnjoFUZV33A+dWYHn9l+agHRHNik8eDFrvhkU+WdozgSQIY8wxXShNQtOY0taNtRK4/4qNgzUtFE4nvB+QJsWgrGJnQV7mfth/1+vu6dImaLp8SHLzKx7Bd7O33a198GKB7UtuUyN40dS4BHTiUeq5vAyji5MgPvdpyGIbgX34+V8HIhORgEPam2C7MVA3cGeuwzaBKtMjvzYMESk4ydGnsraD5va3sIBXrfAz+0CNc38CkueROedrT4HGkTdE6+IGeK57v79KC4v8B9Pf3pvKh8WUIX7177mwHKPMK1BC9Z0p6fdxzCGgMvBW9vb6fdj4rC3wYgmLei78nDx2DAH/Z+/ob4zlILR4PU42GINWizWehHmRwfnapC49vgVqNpIVJu9h0RKjR8oQNwXq9EPDTyc3gGxIwC+6BSySliYcxx4cgQ2edlevvXroUtvnO7xIRPZNXhdWTUZAi/VW/vGKBrjJMOjFBVTuUi//6u0VDt3Xic1LttXw9VyUInkUi8rNfGQut4+BQlCuxjJjJ6xUzg2UcJPQx5+Sp5dedkDxP4tCeUUKrHbuOM/ex6DEgN7Qu7Vd4KXdaH3hfhHIM89vbQ3gUNqGjaALphtMtU3PzxlFgGxbSUtgOQ6x+STO4YLIoJfWo1/NQQHpnd0bz6yxKEWw8sKjV11Qe/DA7YLj8eD2R4qdbRaHfka5zUQrUODXQE24PJ4M6hWd5K/yWCQYuqY41VsEHvn3DNVSyoHraFRa9e8YVHeIY1SCYRQy7SemKlRygER/i7X7HxFNV918uBj0CFJMlZqKqPOxfCzHKkvlE7L+ndKR1B6YQG/S6PzqYeMSKjW/moT2sr9f1efshZKGQwfmoR5SMg41KlcmIXnsvw2JKwiqaxw796zJUB7f9LOwIQEt8x6r+EjlQ3G6uwezMe5w+pjgBxHzBMRof5zb6Ok45DRcNobgGpB2ZtPLouYGQ1UDnhsmQcxKuAbvmwmeLzk2X13FIQ8asdGlwTHwfRlrYe9G9QVRGYYYNiLiMtKgzTfvgp8Zlcny2EawWE71TmxKRI6OKhvVsxOAoy9npGXJAfo5/phoaWoOvztppkWcAFX9m6kZ16PByK3lV8k4DgmwX67vliRDtVNlOncIBXIcda+lWmLQtxeSLws3yIAVkPljzFAFjEe/517uxaLGtubdK+kIwDzVd1q9CV4nVtIm/EpAM1xDF36cIMPj+ZOxgaYITqVed0y3xiCW3WQ+joAaGNyvU8fv1Qxpsd7RTQpRaLKO1lD5cS/EvF2OYxVrgvfFqqTOyST0McpuSyysA6pHDm0NsFfCreF/a1aqGNREMdF7fK4V/jROGN6Lqodj5rzprQ1x6HaG1+5TnjEIHvkWuHyoCvTP/LwyUEdCMZ4B/y3ajcLef8s0MyQKtIkr7dVuUfOkY0s/TDECrkZ2Cqyrt8BPK8ObZd1Y5M0gdG7lLBliJD8fvvO1Gr7YnZU6cBaLnEIZHMXiW4CkNvQoIQDBhbe+zL+G4hGXdqfet8Q+YOy0kt7do3pTzN1TPhV45MJ0I6JeqB8y+1MYBcM7QNPX+ROJloAE/75Y47vTBks83L1E/0Z4+iyas8w6HuXX/Vu5qDYJfENeRUWWGcA9OXZOjJiIjrcyHax5jsDADT7FKBRA39jR8l8TGDTCkpx99lAftHRNjpH1EWQpNYt7iBNQuNev9JAXFEivu5+7/rQS6I5Y0WU6JKIrTm2sz8aHwOifpgrfwU4YqhW48HOHiAYZxt7IdvdAQrA7Gb6Gw/VVEvOfB0noyjkXnintDqi4nt3vXpQM/flhd2UVMUiIPf5V0a9haKFvC7IPq4dv956PfvhHQgEFR+aHhqvA0OTeb2sZMpwvqO4+yR6DrsZ7CXCXkYHi4nDwae9D2AmdS3BrxSDZmqsrX2y6oWxd50TXBgXuPC60xxomIZUerjqv3Q4oWOwen39TDMvbJ57WuWHQqBrdGZfpCbh57lxzT3cV1J8wt9h3EYeupSn8hvtjoB1xoJIxNBTWS5R2eLyJSNpSrkzoYz6c/BwS/uM7GVIH3X4O/I5GNet9amQyGTb8WPctEClg4Xnw43AWFj2eiG1VvdoNMomctHc/BsLvu7zHzt/HIe5v9d2nLjaBX0+3xG4igh/Ov94P91P997ks3/cbPdCjbu1w6EMDfFBZjPi9l4R8G0sDFC53ws8BrmmHAx0QKNddlTqRiApS/5u5x1oJ/VrPY+Jk2yFGfeBAn1IMal4KcujP84HZ2PyjUoWJUOx0I6g6CotMm0Q2LkY2QLCY9bMAq1YoqSkpMO6IRtHRjJ/+9uXCm8uybjVpTSDbuElDUxODhIvjgNtiHFbo7W7I1jZA6+Fu31YdAjI/WzJa0FUBC5w/O7J2m6Dj1vWq778jERfxG8MtHBlqny2vtJRng9lhKYqeMxa9DxvrS2UeBim1Fwb3y0Jgetub/fIEEcmNJi1lbrfARJmQztVuLPz92FwtFRuHYl/ODEbM9oK00YZttx61Rxz+HcFyEtCq6xT6ju0FMbsXrW+166EqCzQffMaj5trcSyd88oFPoQgr2tkBj2tz9o5Mx6I6OWn9T93doFzGI8l4LRxofCqln2UloZ2RuAb/u6NwqaFthjCSA/fnWd1Hl0iI6/P4F3SSDN5OTO8vt+TAc50PC9b6GLT152URfVgXZBfpeK9VkIHz+nLnwalEFGg7YPgzigK/oydWTgfHwvK/Dxd+X0xE/o8rN+4VUL3mhyA3I6kREnut055ciEPK/Sec9yV0wYJKxLjFVBaw9SfYXqzBIR6FByvqLC1gJFPcHCCWCoSD4zYDsfFojA1jEtVCzXeC0Gk3BwSDzJbBT7qwSPmuia9JbiMMBZlI1L1vhbKu7VsyFnHI4SUjf4lDKrz/F3flYHIH3HTUmytpjEc8W73O5rNjcGnlxGEloXq4Q9h/9SENEV3kivx7Nqgbbnz4Keiz0wQ1VRzfRZySUIir0hzh0Bi0crJtnrtVBdqz5rQbw0Qkw92bq5nZCa/QMjrzuRgSjhGmFqQSEX3A46sgUQJyqjR+5SsYONn2lJOlOgaxPzHpmlTshZbIxFJcQwd0ztaxvUnHo4OscdliepOwdH/xuFVwHbgseaewGeLQ0gUe4uMv1PuK69i7nK+DIsW9jN9kIuKUUnitOE4Bl/YxSwO2JLi5nrXhX4hFim7nDG6y90JfKpZ/v00zvJH9dcA6Go+2Vd5InM2mXqcn662gfT6UXOlxoREioaDYF3IlByrA9zZDb5tLMQy8uJW9dSoGYaTS2jTCGiDmc66PhHUU6KvXjdUWxiJdOto+D+r5zrl3Z/RkWyEiIo1v/l4Mwt5+HW7q1A8JtNBTSFcA73KUREt4iEhR/q63Yn4PyKyr1M7fCgPRPPJSqi4eyb5iTNLrRCBbcCibZzoZBkxlY5s4MOjTm0G75Z0R8OZ3R1+KK6Fl57+Mym0iKm402PVYaQaWB/eK2NpaYZH9VcKb7lhU1lts7yHaBCuOq+ozja3AnZ6qcYaaG6I+h9geiI4DPklUMn0GQdWop3elBRGNtwzxVUiPAf2RvcIJ60ZwZ7TkVC0iISZTqe2r5mMQ5C4r4mvbAIk5eQRyAgnh7XIUhX53Ab2fdO5ubz68rk17q0eXhJy6fCvDFifAKoODR2u+BpKlsSIq+3BIX//7VUanXJDyiLp6awPB6a+NX5RvxyGx4g2NntxmUCpyYmMuKIH2kKpjOKl41Gq+eoPtfiP8tOnr6yp9CGXz12evisahLOIrp+qdUki1SYfDPxCEHFi2l+eLQS/uMdmNX2kDYbGzwnoPq+A6fwkOG56AJLrCvN8Vj8NhxoYLIeZV8N0iwDL1JgEt+CUkydKOwELpu+UrclnAdbbriDBDMvJ7WXwsMGoMTvpXuKdxItBrtSyZ8SQidplXJlaXhkDmxBHB6zm1UOdhLV1EJCGlb44mjq9bQDt4yunvRAv8GP774jFLAgrfGbv93K4Ggq1cHuVWZIHIlb9Sk34xyIhCn0sYbIFX01F+fvvcgYU7+G9pdhyyUZ+fRSwdYF8h92bsdRPIsfht3RXEoIGLiUWhK32g9fW0fkFdLoizv1p/PEBAb2enxc+ZjcBscYuD49FCGNA0f2u9j4TspPruZuJbwZrAu//rDRIcuMZ2RsgoASnOWOg9Le+CalVHOrVZBJoKZ2ldqNwlw0aeemJNAYrdnu4PtySYF01mTVLFoi2Dw9Pj8lTfzNyfeqaoFDwSWfVmf5JQ5w3tvOOPJuBMpk1wLIEMmJGCM9HbOOStp4f/2T4Bv98P+rM/JYM1Utws409CDZ98S+VVMXDmvPWKGH081KWen3rEh0UhAY/0K/aNAvPLrFO40WpIX9l1f/qJiPCfOUOeRI6CIh/+R45XNTRUazo2HSGhqLi21evkTBhqdd8lciOwVQyM6NqJR1UDZrY5aSSQ7e5K5RuMhSu0ojq57NS+buib+YQZB67NY3wOfiWwU9W169uPRwyeMzsHj1B5aZj/H+ljJrxN5eXSd6B6q3NToaRdHaTzruv5CUZA3dudNypNMajPTVHm3Y9R8MPWH38ZUATG8tNK62NE1PL45kFyRSMUzpnEG5xuBBn2UVYG5zi0IPjsIv0S1ddI8nilI7HAzPRmhbueiP4H5dXoEHicHJh3OJX//8dDCGWFaFBmkYiMSrwko6ioPigrhZBCVpRkhDg40zn23ntv3sfeHFKIkJCWskpGv/P9/XWuc1/nOvd9Pd+v5+v5fNzbGO9AlloqPMBUSZJ7kuBuTJF3YTIeme2dWflimA7b7T8ITC0JcIxD+aqyfySK4jmqEhI3BBX/qu37bqbC4zsXU+5ZktCMc1qNSu0Q5A++jSFXuULHr8wByhEScvzQ0XT34jCcmlyP+PekBG7eNWempBDQHqJFIPZlD/i74g1rbPKhu/OJR/wNCmIqTKXMUfrAjCDq74cvgafFjhXwiYJMb0Q7SZVWg/nnnfSiynzYq65UcMkdg+IbG47zH8uGDP9t85yxZphzLJDtuh+BHL4c2Cp+0Az2L7TjdItTIfHhNb4qdTxy98iTOH21APrVeC3yBJvAdI+Ut8GHMNRv9mul7EQkXHho13A4pQTUWG0WG3E4dG7Z6Yrely5QXBJbG7NKhbCX51Ue21GQYNZ/Sy9ftELYnf8Mw+SKge8iq8X4CAF5SIYD+tgCEX5p4yPiVfBLWYKL3ZSALhIcvs/saYHAvfmtwslN4NCp/BRR8WhMNvXYM5dM0GzxmAtmwoJK1bv67y0RyCxMTys5sQPOHq8SbOIvhUCVhh8bDNFoX4z5q1aeQTgUvzMctqcIwvdLXBR5H4NmHFai/zh0gcTjnyP3zFMgpeBtT5IaGf2RqaUJG/VCqcsNuR8/CiHRnKTmmkVBGiIby2cWS6HmK+Mj7LU6IH5yfHqdEI70uR4XWl5AIBo2w3NZqwEKnnkkeRRikX7D55mo2EbABuYaJNtVwZbo+9Hqr1gU/LuXplbnBvpMp0197meDkcTQ9fuuBITlVEicvNMJyUVbP7gPNkGexu6rB63JaDSygWvrSzTMLPvw2bQVg7axDG3jOg6d/kwaIsw0QzVbMJOlZyN0Zf+Zfp2KR6a2W14nVivghMxym8e5IhBK7l6qVg9HHDm8yVs90XDdSSSS8iYKundUdiS8cIgg3Gui8joUePcHrXtsN0N3ykmh/Sz0c4/NXk78RAWzXhnC0L0GkI1c6T02ikM3X7/4MHYTgd5LkzdRYjXQcPk9T0QWDj3jvvfZ628JKDLsMW21TAGDjs9rc2xhaC3kVsFl30E4krd5P6CqEjTOGHNFPqEgv5aWW7ucmiE2pfLczJkG4P8q42N7moBYteWHNSubgKnGpCO/IgWChCLMyq/h0G7hWydyPDrBRDR/79HzVUC6NTpU/JqMHvGYDblJN4PV/YWdichSeKcYdF/yFx45WBqfpm51QV+3iLRTjwsMc8zu16WQkVD1XY1rwj7AE3Abs7VKf54ryvZdEXg0bC5v1ZRVAFmi6h6TZxG8OavjF2aFQZdlljj+6mdAde7jrt3MJVBjzzwxYYRBLpdHh8S8WyFItlYi2zIQqs42hiekEdHxUWbZiehmOHZc1Zf/RjMw77Jxv+eER24qK7Ey0A6tpWxHmQyToeTrZUmnLyS01O7+qMI9Gmon3mpwd0bA0eL1ZH8CFj1xZsk8ep8ClrbSf7oN8SBsV7a/ygqLsMHvfXe1toAz+736A+ExcOKX0vtZHiKKKuy8l93fDcJ9SSVeybmwERK6fniBjGoFdi7D51rY2JU7nHSBCgwq18oP9kUg4bIT3UqPa4GhbWJihX59LuMRZvFwFDIsP5OhYFED9knona1qJXzknuBc7scgwb/2j2ISsmBMML1t8EIKcL78Gv+cGI5sdoc6OkoMQRqWuwwdRTA7PXRaJZmEkn4PGJ6qRkAejWY3kSRD/BtGTe9VHArahdONYGwAF9772TFsLeA0r3RI8CoWtR1c0XEULYfK6vSnL1PzgIb1Gza4hUF+m04jbrw0EGg/3vd3mwJy1fmzybVkVH7YYljwYz2Epj4cZF0sB5vz5QMYjiikTWHf0E5AMOQzfJ6dUA9UnzLVmREc6sjtPtq63gZc3pOG45+KgEKUk/SmklCOUs1g+uE8WLk6YRD3vRmKKvHVTJ1hCKPjd+pIxiAwmtxm0g7zg5zB3pEBqRhUEPPcoHi4F+60ZQyHHiOBb5SFAA+ioG+YKb/Hbc4gQW211L9cD/KFKOdgLR4FPbHVUv9ZDuePTQWePEaFydtDr7NbMEgZn8qvJDsIdldKyrm+ZMAH195cfBp9Lx1IEP+n2glvJFh3y6vmQ90KnFe/REYy3IohR3AtwDJ7Os5NoRCelPVs7AgR0Nk1EaWukD64NPFj/qZNBfB/XE3d9YuCHqlVhBbuoYHlelLEhnI+sI8Y7chh6Nf3hNm6FBeD+CEO+tcokPPf1TihEobGt9ynLPOoIMv79lfADoJ33+8GhNFzjcWf8i3Zpg2wQyNTc/pESIz6o+zhTER4Ts1zoS3J8Dj+tXaWawNcmtEZ89eJRFeSvPgxOh2g+qSdfXdcCsy+v3u1na5zSZDI6xRjPLzr08zMk6qBlDbMgBoNh/jsuM6k8QbDX35t7TznJkgZZY8VXsQj+UFO8xSuOpC6JhJWUVQLjCfP7LlSFYUS9Z2u1uTVwHdJnod7QxIhxUlTvHxfBBpOs5Q5NtcNzO0VWTmmTXDSaUcnm5GCCtr3C45kV4F/8ANqvV0cfPA9hz35MwKdsHYbjPGoh3dLhQJcu5rggNt49+hkJAqVovT8h+8FjTLXZ2fMECx8LCE/r45BgqP3T+RZdEFv0tKO4dscOLqlaponQ0bEzCEJTYEmQFrpja0Mj2FPhsDC8DksYm/7+KAgiAaHfvmKS77OgYmqf4/+tZPR/T33PPZG5UFXgRNnfRuCBxTdpcuvwpCc/k3rPtEh+MKjw6BNP4cTj7aVVZ9Fo9kXfy4U/aNBVq9DSL0GFZQzv7/kKItGwzbHn1A3goChU0UulFQM6mXikPAOj1baRjK5XdMhOW+Gw+Y2AtxywoROKgYZDn5V3KztgxbPtwsFGwgeDRtUtDPHoo7TB25s2PeAqKAW645tBKTErr3lPR6Dfg9k+K6f7oIIgVOlIfJ0nw0WPN/cJCPJLAUv7qtV8NUHiduIuoD4a7PIG8cwiCsj7/1YzRCsrTpc1dNuht3Ove+f+BNRbMe6mn9+C0TVXxhilqkHm6MDp3qUCIhBO4daqN4LpO/FRqdUY8H2hs0J1xQK8o1bPMXL0QJlOrnmJd8S4KEVS5AyPferHy42jH1qBzUNDhLmUhn4Mju0X3lKQncvH3ztd7QFPhd8vvPUNAY4k0jyPnQdAqwIV823i0Ag7fdAYlQVONxOfPeaJwzxz8V9vsXRBQqGkeTUOVf4lKY5w9hFRqSFz5rdd1sg5sLv0kXbKji69rNT9QMB8Ykf/zH1txn63Rg/+hyshnMPtVgjiAS0KZxWnPC9G/xVGscVXJ+C7vi7HtNtMuoKnm83O06DQZ0/hk4vE2HB9PdyB5mMKClztmOpdRBwNjPjT3Y2sFZed5DcikDOrysOmGFJUGjxx6z8bgEob3nKnArEofGKiPf3jg7B20tTccE/KZD1lk/mWSUJfZh7x1c2NghT7sF6aY4ZEJNfn3v8Hxn5qhBHa11JsJK3/p/BSCNImXxNa8LgkN44i8LyJgXqJq59bhyqhuU/+ceseHBoNW71bzWRnkeU/T4pN/NhdPMVs4twNGIw6Hy4XdUJ6nss3N3kqqDiVI2PxmA0slTcesloTINxxchCWyMEL5it/+unz8MBljvzDqsdEC4r9HM3PUcKjl8LdD9GRgXRokeZL3aCZdIfg8OPmoGi/YO9wZiM9l7/9uLQhRKQenVJVDC2CHy6LbCDTBiE+cfzwVqnFY75jvx1e4NgPh/3n2ESAZksrZ84p0SDgI/a1RLmuTA49nfwy0UK8nHQTZCtocIXG5Exrs81cF9Jhr9qAoee9E3RQiTSoEBsjnaHrse7FyvWl65FoBvuF4vM9vWCmN2s2dAWvefGMO3lC6KgzwXElGQWGpTzah5pdKHCyou1Q+fIFCQe04HdpD/Pn9GPDGNSlRCeuVakkkFAT4cPdi5fbYPCzJrOv2olwNCcfXToFAmV7T6x+OlLFpSF1Fwdf14NOtjzwZ4Pw9HkmeJTexdo4J5xv0/pVQHkxcaXKP+MRmfJ0moKrKkgU6skLPkCB0OhxULP8yPQFwXh1mqRfkhJfdUsUVAD102ZuC13x6LGxRVjtsoBYG4bL4rkrINO9HMXwyLdL6Es9wOss6CuL5XHvLkRPkq9XXPBhqOI46TYgz7NcC+Mw1rhYxEYcV719DPEo/rARCOkFgNn9p7jvfSjGHbhxson7bBo7ZG7qfYEDaJr/qQWCVHhn7K8ZbpCNNrUW+kwPZQOseR7mvNf80CGlFf83xwGBTNcKUw43wPc99NwTL1kkD/YETDDRt+Tk7gffs9SgTVv2PK9XxLoJw1MY2SikLGXZOCbcgTszIt799lFQOdudRUZeh/IPM/ud+EnDTb790nlYsogBSOz7yRXNKKI1WBY2TuA7DfagnMsAeRcKDUQR0JfueBU5OEOWJh4yO6uXgxDac4r69kkJND7xab1UQXUH//N5+dZC+/1VIjq98LRFaGXpp4XmyHcRuTIuUQEJp/b/B3ZCej54M1WpbYmuHYx6HemWiMkTSTc8HiCRV+wunFdZ1pBl30G4zRWDik1Q2annxARx5TpgxsqtRBlxcatyREDeU1i/9IkotD76n78OyYaqCZ/5zR4R4Xn78VYTNrIKF5rjtu+BEH0c7VR5+1GuJPEJVrFjkOUI6drCAJUIKyYyTkbN0IrZ4LvBVscclTLyJhgzAdDAy4P/fwMKPoFZ9QeYtClr1pMMrNlMOsxWxTv1ww1ozitW/phyHND5UJsRgvIzPFuZ7A0QOS78rP6R4jo7Kx9GWl3H3hO/Zz65lUORzGd2mKLMeht/b8FccVW6DkdKHlCqgxGdRe7axMIKIAteLXsMwIRdnpjNSuFLNUyxt0ncGi6QDlWJqAdjsu9Gnh4pwS+8LIYvNYioayAxHgxsWE4dGOfr65ZPRAz3m4aRRFR8KTIg6/YQbBWZVptKSsAL6fmNt2zMehVM89FW8ogbGs/t7Z0aYRUwh6GWT0K+vXQ2CBSdQievqzE2tqVwtV9f1e0XUiodJTkOxBKhdkrr2RGuSqhTPlchtxLPNomZxqw6g6C4R9dvn9BOeCCieCUTI5BzjLiT1waqkF5ebnjq3EzaO5UX9Opx6DBsVoXm4ctcJThVW+ZaTpoke29JjfxyFxB+u3v2XbgvLlXaHgKB1VnZGKszKNRmX1tQ8h8MmR1d9SMTDdCcJr06syVSCSWJjPqS+0Aa1jNefY0Fbrjrlt5rUajec2s1xS7Vpg3nVUTWMiE0aVT9Us4IlIaW1aNjUoAz2b7Cu/2BKh7vOvbPYsoZCBS4uPd1wq+nIdk0i6TIdTAY/QBMxEtPBC3kkwZgPqgn9KiLs0wmp/Fp/UjBpG8iH1jUTTQOX0lPN2pHD7tvMB8w5ORhIdGwy5iKuzstTG9sBMEG5ejQu8GR6DqBdaqIz00INM3mF40nc/gYOgnNjIKzTrP4ivaA43HX2YFLzRD6aWvNJocBR1v2Vc1GUgFasr+qf6xHDDJLW48F4dDeIyPSZJRI+gF04S5VhtgKGvs5J9+LDr8KSrup8YwOO/l8RO43gAl0b8yeF8TUNcE1FVm0+CM8H4ts4oEkLondOZZajQSvOLs9YdAn09G+Q9vpn3BhMeOGsFCRJsnqkNZn7fASOe+2xuUZlASrlR/wkZATAePMTel9MKhFoZun/JMuC9QUnsonoK2Blkil/yGYJgrOXW9KwnmuKxNbmSQkLHWV6kKIRp8qhmpt+SshLFmvy3vZDISH7g0EnyzHQxyJmV8nRG8njPPM5IkIY5/fUo+S8mgXXqcaHC4Cs5UHRi9KxeJ5v0VafPNrWBY6bN2TxgBc7rGyY+dRGQzNJaYMj0EMsYu2ov2idD62vzUuCARdfk3vbB2bIbT/MdS4kKKQG8gpfukFAENNDB5Hhwvh/0JqrKbPYVQKeGjcDEzDOXMTBR7nK2GnUdJjRe/FoHv9wK2XsFIFL+/3XJmoB5ODpPvF8VGgsIV5CtlikVGvgUG4jo0KMOqT9j+wMNG/cccghEZRZQ9dmq0GgB7YS8BneU4MMie/vmRJRbJ6T74cz2gDVrto/2yvAvhQ7jrekQMEWFSQ/VLt4dAZCrpRcFUCVgsvw5ubCeiXfaujvj1FkBiJpMDmk2gaxP27/gdImKVXSbEWqeBVOzajM90OQTLvZlOz4lEBb7nCxswtZCRoMcRzNwAsmsffb7YRaGWPY/nFo1bwGK+J4V2lt7rZkrQu14C8vLQ01BfawdBZ8dJ2+d1UHXly+xl72j0XUhXz/NxKQRxlko7MhdDdbhf+G1lDPLn8T6Cme6C435YFZV9LSD087MSMYOMBJ5xqx5cHwKO3bmjUxZVoPQ9MPvGdwI67UzIOmnUC4R9n9eE5bNggc8+OY3ez/f0rk+TDGkwsMjBSajIBOGqrwuTYhTUJVa/hQtDcKfpPw3NnAYQR2JsAW9xaP94toZWcDrMPdW/WEUqg1ytx8GKDRj0ulqUR8+gAXamtau0dBph/djKLx9vLNJ54dE6GdYO0W9DV1d5GyF3k7QnUJOEaqunCuBIHdjUKURk2ruAJq9R1vWCKFRP9X/KwpoJFRfeDwipkiF53QtLOYRBvsMpxdN0TqsWzor95kzn7qBa88miMDrHbd8edgqFv4mTg677m+HWhdLDbF149PHqy7e254ZhKC/aXrS0Eohq+tcq6L5b/1fFkR3XCvrX+3oFuJ7A6+fVd99MENBI6M1VE/dm4GcJvRzyuxkuhuknySgSkM6g0NlytXYQ+CQd+CKpHG5H++IG1kio6+JAudt3GogOxO7Y07kjQjz9I+kfCdHxJdX2bSs8khXjbhRNAeXFykv3DhLRiRql2r8nEGicOU9IW6mBkrggSn42FlUoaMZtEmngY35YKGs2HbYuqg1y+pLRESWNS6wSPaB9KP1nA1st7G9TMR7foSDBkW8sEh8HYMI9ZnRgHAPHRPifnf8Ug8jdN+yvsTUDWWGuR1qrHDgumvJwMuORB3d+OEahHihq4n+9hMpAy+VkREdDJPLLn1I8fKMbPvNxUibdsuB96FxiSxgFRSTmj2dW5oHkzo93IeoNsCHe8+6eTRhK6hnRGRtBIJ/D0iijmgPUj6WM/Ts4ZCCvzaHv2A2dbLFkv/dNsMi3vXu0jIKu742TEWZogZV5I1ziuxxI30oflyrCIxuZylNixv3AY8oQeGmEzrPiHEof6NwtoM+9mDpGgIZP+11nPyXDp96k3btbcai+qPwKx0QZHPeJ/sSlWAbL+w0z55XCkCTHkelk9XaY8D/Q9qC+BAKuLflFfSWhM/VCOM6FPhCSljZ8NlECHYUix3fR9XnkP+HA+jIbWL7mKMnZ10GHyCNbubMRSMHMqVTm2RAIlg4/3AqtBoGp731C7SRkNnbh4A3+VGg+EDjILx8JSSxfA33DotC8oQ3zSEAXpFR1NNw+ikDc2fmRswwF6Yyfc/s4Qs9fBquJs+RGOMDcdQve4VCr5fodRnMa6C6PsIvyF8IURZGftpuCnikEmRjL9IPO0R/+5nS/TFyfIuEEY5GuhST7lxkEJ3Os8d88SqDoUGNi7j48uj1cxLvzoRh+NPsJZ46UQTZB0NPkZRhyldg6IabXAz3nleaFjtP70bbXIz7OGDQsZo1p2JsHhVzyL9vqcuCWSOKHsGIMsi6wvmVFGgTl4xZHrA5QQe+RNlejXgySlDhhvEPntTN9u3Uqjz2GHUeWpCoTAqr+y5DLwN8Kdunzkt5cLYAREbLWqyYg9yL++qtdQzDXmuf0Si0LFNpPHu3TIqJDtvyXb3xvgweWC+b3V+thVTDAOb+RhGjcMeFjLuHAK4bVkXMvg49uedzPEQ5NKblnVea2wPyDQ5avWRJg142de7vOEVCs+WSBRUA/hJbu7KZJNsL3/o8fTJYpyGhQWNQprhOOHZCS/ooegRgnSutqjkY+nbu0Mpay4CeO3CnRRQWJeyMC6hYRCLkVGq0tIMhtTFx4JJEPJUJN7mbCOMTJxs7IYVwPAzv3snMmyqFTtsHeWgKLgggORXYFHZC0JRjXVRMA8uEtT9smolEJzQcbk0D3RR220PodBSbPKdg3h4Qhc0Mxp6nOMlDvvpvRfJUKuBf3hWkXwtBMYQufHL2X+2WOIdGCBqinfkk/rxaG0nZn2W0R+8EpKGotb5QKZjzYsPElCvq9bPOhTjUfxu9om+is5MO+m14an2PC0BG1kfCPejVw43XaWDVfNPSwt55VHsOgM9n1Mdg2Gjx1PBvf3R0L71r2G50zikaHxD5Mz74oBxoBQ1eQAtitY4qYagy6Zeu33FzRDyX7P5thl0tA/oOd+bWcGPRvL3/NudluGGJgzCrDNYDwbzcZ4icKcsMkfrEdGYCnA/sNUrCN8IRPUzC8lYI0GMXevw5vg88cVX2uVxJgaHfAwkIoEUXk9F8T7YkF8xeFT4tiCsBnhI9XlA+L5KQ8NTvKBmFdscOEh0AFhRrWd6ekKSiyRlvoSFAbFO9sukZJlkO6e5bWcSwRpYlKZ/xJHYCvtRdFPC+mge9jl/P6PyjIIXifZ79nK6i26p9eP1kLF/a9ZVXpIaDgWk1c5Z18SONKENoupMIP4h2bOeswxG0tOXWrshaeUA0W3gpXQ16L2q+ZlghkHE3tJOdXw/7Nq84WZyrBUKpC3Eo1EvWon3br+dINBV4nV0fsmkG/6wmv8BoF+btWmV6j90O3N3UN8dNUwKxKFnXIkBGPz5y23IcM8DQVx3OP10Nv+5baAwEM+i5zbZI7cggOfLhte0Y2GwII7JVxNURkp88Xd0+SBgepfrctTHEwG/hKPvY/CtIdylL9nUuDFoetNPnHcRD3JiskwIuMPtjzL7nH9UDVqHn8RFsFlMvvt2y7EYPcfrGcs5NrgnHdunHnynpQJHkanVbDIqnCipN55+l+LJ9w4qzIBZ1Q1PPQgoRUS94Eui00QqerrgA1ogKKOJ/qvj+BRXGNaqMMiR3gnXby3E2zSki7fcjsyyYJKXi7V4Vv9oFppZ3QkFEzPFKXHvlZHIOUB95bhBwagH6d359slKmwwxuZ/5jO1/yV2BKWM8Pw9FmJIYn6CGoZLS60/O89ZwqTbEVjBwiSQx5nPK+FwEPt8osc0chQMDtlVY4Gd04eSWOgz+n4XTLZEUNGX+6PB/8ht8Od14fJ932bYdB7wHtVh4QYUo5JfDHtgSfjam96flVDazqbxH+qFHStf5JF/WEPbO1nuLtmjoXB9en4cTof+S4Tnp/+PQhn7nVhVw8EQfz3Q3R7U9Ca8r74c3M0yLrnUiEkVgxp50MTHEaj0QtVvTP8e5pgJOlCvv9KKbQr1K2rX8CiXe5rbZkarvDnSqH6Q5MG8LSIkOyOJCAbwU7ipStBIMFw81H58TSYm84p7TqFRyki6iE+RWng9nPwXoNjEXBOqQfYNkci9TPWvSl/hiDFrsLemp6HrKe+/GD+TEDvpeT6nj/JBtG9Pq3KcXnQHPPvjoRmBNoetdhxZBoAdOnqw8jPdeCmqXVUa4OCAmJ3frIn10L829o9H/rw8AFT19BiFoUuXrcTizvYC9q7zaL4Gashex+Fxh8Ygxq22AbPedJ5ZuNFIf+uUph1FjSlzWARQcNxJHJvOzySg3t+ZfTff3mj7/mViK7WYfJFzKjw9yl7nWBOOZiJ+rSb+uDQWQrJdvtIC2zFGwkNZ1VCaoox084AHi3MOajJR/XAonoJTrUqA85p9b78X46k8zIZ7X1PBmnpwjE0RII66/epLxXoPWFC2j/ANxHi5tHND8oYuBJmwZ9mi0Xcij8v6Zj3gcZygUi9kTPwxHSlDq3GIMdDT9mJM1QoibfZPE3vY14xeiy39uPRe8X63w9PtYH76aW6JqEn8Mc4+XveFhE57Kr3d8KVwIeFnC573zTA1rsd9xPFoGvVJKGW/83ru88EN/rnhrPSETl9PDpBqmxTG2uDOyi5wwaDB9uHDN2DrURUU7Z6s3SrD87/lB/+zpwBjzjv8x0+FIsupJXEqahlgpeQ8sD5i1S42ZqLCNsRyF0t4FKrXwfcOYAOrIeUQGT8wVSe4Wj0Zkj48G39HpiWPHTlYlEdBLTLEK1PxSAPguyEmfoASAS4KW7ZlcOipQNP8hQF8R4/UMrWUAUGLASn0rJg4DosG5E0F450+X6fkhUbAAW3S++exJWC5lr4oilfLCoozUi7PtwHZs4PlldRIFyxTLgfv07Xf+BsBKU/FZocfjcPbaTAM6fDnZycUehBW2L2jvsg8GEMZsz7S+DMtekTAV4UlCn25Pch3YeAPB16lr1r4QSeV26jGo8czV4CJ12vk++Ve5L9quHXxs7tq3dxyDZAWENlrho8GiuuceZlQoCytNGrhxjE7tkQTCxuBwxv3rqAWTl8TnH/1fkfCXnvMnFWt4qDu3a72byHwkB+R/rF/r4olMqmaP92zzBAE8WJkzsTmM9q7jSnEVFZ2nOpVw7V0Mn54R6rJxVocRwjazqRiPdmlstLvxYoOGivFHGqBir/ihs3rhKQ/QHd7suNA1DPKEBgvlUPKlp345o+xKBto8suTgvFYM7E9j3vJhX2vr+7PLHzGs0pDpcooJfwfvN4fMGpUnhmqzmSeROPzsuHY4+LkGEs7dqpd2Np0K0oF3LWGofe+B7W3bbsgLgnBeOf3lBhII36y6MlGq3tbhKq56FB81mFKHJWAHz8MLt4q5KMsmjeJXjFDuA6YxbK/YAMxD91m5+I0cggZNrJs6AV+G5ZmLCn1kLCjxkV4zYiunP1pADHLXo/eU8WySovhnLGzJf4Uhwi+t5JjOZLh5zpyUO1jbVwwEmnIH8Yg3DSJYaJx6qA82/8p8qv9J6z4j3GlRmBLpl1sQ3qDsFJVjWHoRMVcOVO9K2AWyRUwj9OO0fnoInpGwlpjTXw5tunlyIkAnL8nVrmrIGFPqZwgdLeXDhw7pJAtiMOnbozu35OowV0hCUslopL4JXx9zr1KTya7cNJutvUQ+6TN7Rz8VRoEraoHI6PRDGiaQcPsdYDNrhZttIdwQT6UnnvVSQKQT/PvB2ngeTc6V9W0rngbdF0V4SXjEpCV73URGhANhzazYUpBqd11VoZTwoqWw3q82WLhfmtdMOM27XwqmuDVfkXFj2Y46veKzAEzV1zFbxiDeAWrmjbUUhCP1uSTy3O9sPJTotHVtuvoOTAYlcEcyzaP2+8s/WyG06x73/c59YIRvvN5ediKGhY/YNmys1auJeQsUzw9AfBYItr5ToRyIpqJJ32agAO73xzilCuhbjLLDo9MzGIwbz9gKw5Apv6BwIWP8sB2+V134BG7zP7VmpeibUDG9PoX7aPueDc7JZR/JuIUKZ/nN94ESzt3FSJQDh4s0DIDefDIKx7ln0/nftk/zjmNOwvhuXAr6r3E7FIdtvw7cSeBtC4XfF9H0MuaHwdTDpuh0XX/T0liox7QfWJ/FbyxUowCCol6eVQUHlFWUaI5SB0YxbiwjUaoU9bIZYrJQapFmjhvbN7Id9T9hAXYw6ofqRun6D3N/uPBXqGe1sh4VKm6ap8DFD1tuUcrQjopwqJmO5K19/harp1XSI8GRwadhslo+OdjAFOqa0w4hQYP57UAA+qGZIeviMg/4cel6Xq6bm1IDl+Mi0Xhoq5dzNLE1HCyPxkGHcL6AlcSgsyL4avtzG4m814RKxXl3ARiYK/IumPOvQr4eJvn9OKeBziydT6LnyAAOLZFqXXeaqhaO0C7QUPDmlL6nExnmgB16X3bKEVWXDS2F8wmc7vL9TivO5O0nnTkSFHmicZTHK0F5fY8OirW1nJmWc08Gh6qpCsUgfqX0e5u0rJyK7M0lpypAc+DU4OM1zyBDajXQ0izjFIJzzaiQDDgOlyiBFZ84SzgeZKr/0IKDdpxIc2hYBF+OG0gGINvBoPDdvgwKOKDfyRdA4anIzRPbvfqQkyn039rHhNQfi8Pfc7DREQPib+eSBfDvs8NV6w1eLQsiGVYWyrCTb+PqV9XiiH04dJ9U9u49BKfAfbN4Fm0Fw5lOAZXAMu3cIx+zbwyGzkoMmdU8+h/+hFad3iBmAz5vIiPcIjxvWF0MLzT2CoLHIt3rcR0g76lA9l4VHAqyMrtK5wqOHgoDKhTOD4ksBoFYxH9xY37rK9GQINt1o5DYSAKhnk+nmTiIr4q95IRLbDZPHA2fDvdSDnHeXx+hIJOQxZfTod3ARXUqtc55sqIYyNtT/kHhYVNjbtvznfBdNeHqJPxmuBrNsruelOQZiHi7Jv93WDycv5oLnTZWC795+MFpaCeiXGDLP21YPJd4fgx3+a4XjeN4UcTCTS5xIKy44sBdHSVgPXbzVwfeNwh9WpMCR/R4l5nW8Aqq88WysaLANa2Xq3qFsM4gh/T6D+pkHjOTEUqFoPGxr704rYo5HqkQXMeWor2Lxg/jCVXQLvrp2+M7lJQD421xfDV4bA+1Gai9DzCjCVLG0b/UtAkn4Of/tdSuC2stXfl7ur4NuW1Crm72tEXRXy4Dk5BBnBUs/VzyL44cNyt+K/aNQw/fig+TANjGz2TUSmN0EhW15O4KVoxOip1XbhShyMUjmXqAUJwH9IyeR5DxbZnQ//Kv5+CBqj2iuY1whgOxZ3mnCBiKYafXGfi7qAj/3TUlxGGWAVvxQ0XSQjAXH9l72C7SCaKZLSoP4C2I98tqodI6HWbNyjGVsEbYKDKvtWXkOWTFHHuQksMviXkN53lAgQ4defdaUCXA4YWl77ikUpDZcl5JOq4e5Dg7G8hSSQtjFrXdLDoKXYPcFGiQPgU/5YLvR7FZjNm9UrdlFQbgPWkkxuA7ua++iAby58+nZf8kI0Ed08q/35iWMHbP/78UMzOwnUm+vZSun5Jf/SVeSDZzPct01I731UDQcuMFhuHSOgGP2BTsGxAYjd8W4xvJYD/b2tZpjxGCSq4bKGlRqk58VZH7XRMuAf11R3LqIg+dHHn0SKacCrKCBZoF8FbTlvmw1zopFQ9+inFe0WKJ4vcqZeqwDeQ3a60nN4FKRRpytu1AacSKXC51gh7Dmm+ej8eRJ6I60RlRzaC98CjdXOhxbDXpwJdyedT8/alDRs/O0A9enaV3kuOHharX48TTcaPS16V5obnwwnW+dkVZ+FwtBEUVbz5yjk9DuI1tPZB2U8J3WuaCfCnSe6bcSdGLSCdxQ1rmwD/+DS9F1vK8AxZ6TWooSIZpV7RbMwXRDAXh2oJk/vA01RT4w0Keh8+oErdYvd0Bt0OVbAEcHRzb6A8kEKYlz+jc8dGoRbkcbjESEI9HlJJhQmCnrgc1PijNQQwBTkGdFzuUGohjwSSEITSv+uOmWnwOdRs6uCe+rgFUVi9t1ABHJwFPPKjG6EHSFx2ZS5JnBmWL0Qt4BFeKMfSt4aNBjETeZIs7TAWF41C0WLglg7Q3XOuRSDjVFGqe6ZGtjDSAtSVMSg0Lpwk74fj0C/4qd4lAwV5h5+7iopxqP/wrfZ7qsMw/C4vO/k/hLgfUNyx1nS50H4+d7/0gZA2pM3kdOnAQT9QzX2/I5By2pMA19a+6GtPtp5GovAZdenY3I/Kaiq9YumDP05Tur8muVTLAejBr7Ub2/wKHXuJEH2TTJwYz7r/3cxH+7ifps9uB2JvBW8WLLsWsATX8ElWY3A/6EP/vA6Hhkq+r6TMY2FyesMN8sd6HN3vLVIWh2LnkluJafq9UNgc8KV60QcbPXMmxZpxaC62kc58wUNkHx4pbccXwQespjaJv8otBi5VLuPjwayZ4edIpJq4WL4uwCtTDJaVRQwHvKvhVl+to4sGUTnGm98k2kUSmQUTjpr3AmFu4zPR7eTQOj63o8fzcmInJfu7RDfAnP31xQVg6ngqCf88jwfEZ25hH8V7dYCG/tOXLfjxILD7zd+rZt4NDyc/cOmoxmyqrfXDcNfQZ/xR2nKYwJqqLjBH6fXCvHxvz9dkWuGy/dvjzxIISCPB7vPxbsngKx0i1QPdxW4Xu257e8RhdjH5I8fK/MHZuFR7PKRCmDO2nKLPUJADC3yE9XkMmgU/hbnUl4LzMWr82KJGFRLKLV540OCSpEH3Iz7W2Ap/vBqUR8WSWBWpXn3VIPb6X9sz7ebQfXN1TMUBgxS5L1lVrZQBNu3DfkCTlbD4VOXBwvsMUhpGclE3UVAOonNWrNPgesBvXsUmrDoR+mSfkFKH7yIydZx8yyC3JrtxxFLMWj+r0ppTGg/dJiUlTSYVoCVAbtlM0ss8j3fL/vOYgD4B7iMq2awcGLzXOn4SgyycfaRfPOiDuaKU0gvUTFcUBE7y0X3o6JVWeueH3XwOGzJOz6+GNyZ7l8XC4hEwbfPWv716AO3ScXPkmVUiOXaxWTnEIPy7CaoD4X6Qb8kQZ/fJQUcVc5c4v9DQbudqJX2DZ2Qa+oVsyaIIGivPW9AERkJLRzzypVtBiSmh+WrqgA/z//GJejntecOTnCnvwxuv5r/mBX3Cha7dE5feR6GnOvzZRjvZIG2TXurbBGdUyw47EwIEQjzMQHOX26G+pxuA8xmDlhsXooOPI5HPEI75nH7e8GsfGX/uncJ8LFc2vszkIJorX4/cp3SIFth1lLzdjHoNOyJbxaJQMrf4zaZPrZCd0UE1DRUA0vxrdt714mI+mv1Cl9rLSxbJIjqKTSDwRqb9oPXUehxlH5/UXIXpOd1Nq17ITg3KGrVSM8RzaLora2PLVDHfe1LKj4ZQnlehmzqEtFJrVffsS+GgC1vFVP3NBfmWr8lCZeQ0Ozvot31Ln2AtfectjQuAfksdWfPrRhU4fnpU+OJGFiu+/YTv4Eg5zhTfvB1LHqhMbHrSVwVFIh6fGmoQnDdTCxAqDMCrVDM6lW0/eEMtWWGQ5QKNZav15tM8WhyLRuNno+APZIj96woBeDQ7v/+PpHu68EcLhPcEPBY+A7c2l0DdwXPHGn5315lqSWFlDaD+YmJl8nLSeD5fP7JcUcCsvu3Q/s+XQJzOfE5cW4I3J6f0MmVCUfzVcXacem9IBlPo1bvjgDP9Besd7tiUD56hHtzowN4c/TKwyJzQNPt4V6GLhL6tI+54V9IGzy4k+/iPlsMBlwec9wBRCSs1q+QlTMI5WvOCcpeOXBYMI/gJEdBRytZlRYSG2H5uc2FByJJ4LRy1pjnABb5O+0QTjR2QY0sr8fpCipgjuNvWVlQ0JMT7oux/DSwbqmVfe9XB0PVLfYKLyloX1lI5saHPnhZqr3NS6mCt6scaif5YxHTx3xNn589kFX234Et6SxYuro1H3+HgnpEWm7yHx8EURnJ54b0Puvy6ExzU10MOt/e7KdPS4Pe1+P4eYF6sLk1dZBvKBJhDMprbsgPwb3IyIkh2UfgZTfHYXgxGv29c03COmsISPkZe1cLqfA8oey1mh8R6Qb1xe0Za4NsaDLj6MyDlJGrN640kdDZYxoJX8tdgA5k/w73RkE25kIgmUBA3s52gW10Xo6gaOGmz1CAlRg18vMdBXnbrP9SZe2CpO++1m4PmiFVM/LtzhAZqasyLu4zyoIaUlHbq/tFUDt88TGrcwQKy3V5tVuTBva21C/SKTHwUmPWavYcBe0VSsdc5xgG3JHLy1a11ZDe1ys1VElE04lKgnech+ALM6Ek1iQL/ui5bRSMkJAh7xKXSWQHyArsdZwdy6f33skPvu3R6NCQ3541thagvTqhvG8zH55WTMTEJBDQV5ZdOkzsbaCk3nRilVoKBw5111XvIyE2F7Z7GY31IDL7Pr3sWh08FRdfMbTCojW71ntjLzrBZ8yxavhOPWScfvbffEg0ykgZqPbyaQWNUt+rAz9LgFXolkV1LhElDn3bYk5sgtA0btzRHFfY5E2M7NHAoVA56Qc5Ue3AcpVx7IKOC2AmtyKNxaNR16+SweEjafCB2eAuB74epGjb9+oSIlDKxjVv50AEMQdz4z2oddCVtFkePYtFsWWn6n/ElMFdxst5tcXFcK1fX6z4WBgyKNATtjEdBBrbnvU7shXwX5HCK9XYGMSOZw7vPNUHF/vXHn9dqYTuF3qvzn2KQWLH1Wsca1rgK3eK/HxMCUicO2Vy7CAR7d9fG673rh/6vuOuRTxLhcBjgDTpXGz37p9JVmE1vAh8bvB4dyyIFf0nyuEYiVj8JHvfq9Agt1DF9PCFJiAmXMoYe0JGHt2z3JsDjfDZeabnBv3/M5t/TZ3cxKIZ/U5x0lYuBPuqfpy/VgM7/5xvjUWHIcn4SupUYSPMe1T7Vennwofnaib1/Fhk3xGa+BxD5z3NfMXxVCq42gr5zLhikPjbR9M4UhcI0x7UyHI2wY1Hr5uenCUjmUv12e5vA+AiW9eyqWEZpD5e2XOKk4DGZLK22VoH4de5y7mudH12ydoqiClTULCbtyNfQBs4158wYzLOhr/pX17/tCchkgGjvt1UOvTvYXH14q4BtTcrrX9UI9HR/qNR+I4gkJgrHz7uXQhlOwzxdVt4FLVReTKsD8Hbur9ZaQ30nDzMtOpG51OvZwJ6RGcqvDZtPub7rRj+fngnl/AcjzptAnPqeNtg76Lzm5H6alAj7HtrQediA2NPY7u/vfCQ9Tf5XiXd745ePk3FFFTnrtVW1t4OE3E8WjMSLiAVsk9Y0ZWE/rtL0I1j6IeVpwccfdMDwFfM5ILoVwriJVlcXlDLged2FjF8jFi4b112uIWeL16NJ/Y+ZuoAGf183p24ZrBWiXDwfx6NxGOVi7rrO2GqljHN25oIHSyHb/LQe3iCWOLoCdYmqNbhmVvNDYfiXZl7v53GorhUL0GnrAFgyCy8vaxRCq53L4tP/YpBtCMhDJZSeZD3Vy9TargWbhxgD+kpxaCJrKvyE1c6ISf57aq8SixMrzc7ETyjUU+cbqRtOQ0ORvyMXJurB3nz3fddrMhIOloi4f70EBRc5/K7PFMLdfzvWY99JqKBf8u/Nwh1kE3eOT9F36uHfqm7VB+JRLj+X4dAqQRKy4o4+vYUw5GLbcPXD4Whrlt7Nu/RkqDt4dw5bQEq7C0NRw4NkSgAxaYQ0tPgK58qUwimEg6GKUtMSUegJvzVzqWHVDj09pNpsDYVGJGsXNFrHHLQ7q25croH0Nkx8+E/lVByic/IRIKCuOdkl3c3t0D7ke67bdnlMKKn5R4DBCSAM4h/tTkElJ2vbJm2+XAx12jSsYmI3k/5Rg57xYDvnySMk10diDKtXVDix6EhwnkVFoYu2HtWMVW3mwq75DZQ6Xo0esfkNRm6vw+WjjkY324rBusNvuc6QxS0S8qn/BItDBJ3TfKI9EeBZMjqyw+NOITdnXDxp18JHGe0ni4RbAKuBw0xYboYFNTx4jw2rgw+eqk/OR3kDGCmL773ShgSi1abOqtVDipXNSrF3hfDtzutHtTacFR7ocbcYLAfjLTfuZ06XgBCojN3IvhiEX5L5NlS3iCwWx6s5VmrgW+n3oQNnqWgvuz7e56218FNXYMcOeZqWJJf2zvNhUWI1dP+9Mcy2P5PrikgLw0Cmebyw+n3fSgUdtGXpx4ST7Ql3HiRAl4B2PNp1yLRr9zD+/80D4J3svp/h0Nc6PtbsuXwAQrqvNfbYXtxGCafue3+wVsE3x9Wi3H8R0Rlv7/qCJ8fhr7oI66Lf7MhT3VnrCSWgE4tuqjcPTsMjnnDr5XJmdCJc2MtpefX6Ep5MIdyK3AXv/87q1kLK8VhAqHedB7/1Smy+0ML3F88s5dZrA6kD15xZbxERM+C2Em3ogdhpiQwUftoKQhcU5LS1o1B/97ZTeueqgGrQjZG1ek62JNroW/uH4lOjjFd/nClB5TKu756N1BhS6HBwVmQgtYtpBIbcJ2AZU/VZVdphKyWQQ4CNho9Kd5tqk7PpwwdV+piVA2Uyacj1icYlOvecQ43HQhuitjco5k14Hbyxsg1RTzCe/+WUhKLAGnlC7f27iKDj7tal507HvVbT2ja9/vDOa5BE4GcXBiybbgTfQOP5qdKlY98QXCIbNS4bykDWhKXm97z4VHvnyTr/nuD8C/Y+kQZax0ElGYI692LQe/Eh7dTXvXQOUeAoZI1B9IfpO0xEYpBxlqac78WOiBFJS4Td7oMCnksOSvkolH6YsOTIJYeEJNo0Y7KS4X2yw7X7dljUI75q30HpPoApn9hnXWq4E+V8sFXXRQk/lmYROuqgn6jG2WC+/Kh6zfDjYerEUjyWZNM/2AZ9NkN5LGZNYOUlfk3u2IMSjhvZUlIK4bqbrtROd0SuPRG10RBCIOmnwUaDtB7C8Z85vFrpTIIsY5KZU4noevfF+91dRcDe53oVX7zOgj63qzy4uNrxD1cXeRlSJ/biVTuGzrNUEGgDL0MpqAXi24F53TqwZA39cbmqxI4uUcvu46+38wkpFn1nJOgSdCQe7cDgvvxXc9CP0aiCrNfZV7jxfAmb2KkXtof7pEO7InkwqDWWNMWHoY0YNvOZHltVgHEdbdNzrsRaDnzsdTCciacZyr/EOofCwO5NufiGul7Ztn/uuThAjgS+tX0fkgcvOlUypBTCENX1Oz2HjhNgyXdW9/O+NUD7RJvPP42vTd+n+uKu0EDjlMmZ3SDaqC4tLBaie4LWrvW1f8u0mAmtlHrUHotdHbuCGtfoKBCbrMDe261g2NGqYAoaw0strBcTWKKRp7VyYdW6PoK6ujJUwZCIczhpmKSBh6tbHR/2lveCjOjtOcsm1Ro+THde3eQiI5EiVz83VwKPUW4J5uWnqB7Kc5CUQODbB5XWetou8C2h/eTvod5MB5/djytGI8+LfEHrPyhQmWFlwx2KQVWh0N0F3/ikCu/8cKz7Ra4Nbybx+d3PWiKMahuPSUgpcitOanLdcDw8pRV32YFlIZVl2LXI1DamBI7q2sjXJSz3aculgP/ZGz/VNH7zysxi8mx6E5w5u171X2jFt6I9hwQIEejaC2pfdF/WsB3xP2hQnDV//eBa7eIqEZKyPbwvyEQMg8hrGykQcrJ577fG4nIp9klF/5SweSZx6HNRLpuKOLtzDQeIdUaAuMJeu7E1D67I14LY0MBcTla0ejDxUT/qX0USFJd4Jp73wCv5o/9vG+JRaNELd97+8rA7VBshKZqFey6VvvztmwY6tVZ4nn2rAxImgv96RKV0HN1LHz5ZhjCp+y7OiBUD3MGz//j/N4Aj5D2huWDSJSiZeUamtMIobG9FzY06qBpP6egCiMO+X9G39o4afDiNK3w2WQVWBy7d9a8mYwu/zt2q3t5CJ79cLD1eFMKaYUVv2fmCUjobWidVUYJjBcp4O4Y18CJWysbfToY9LVN6c/RnXL4Xme9IiQUD64muQ4j5WGI+tSY+d/jASAyPnj61DMZzKvTjXaWKEhH7/bzZPo8JGsk/FJoLQdBBvV9yp1EFL9l9p+RKh5Ues+Ua7iRYeeaY+zGGg7lm/zUuhPVCUwMV5aX7qYAiQ5A71+Skfhz2qhVCxY0mSdlg2wb4Sd3QWkjfd5E0h91Nc63gNxsBcH6RRGk/3XzXLpARLTtT8+Uq1tgkWn/ru+dpbDtpXj74BEi+vc9kVWcVABiPv6WTA4xkFB90ZMQgkEd52JZlMaHIPinxqLeSANgy23ZFQWI6PmshF4+JgPSatKOuVOrgPqiIlLpQCSasBJpz/nWDOri313lUsqgc1RrPPYFAUkrO3QMnx4CuTK2JjIqhCT7XAcug2gkmy2wm8I0BFSOjSlHhSIYPx+Q9P0NCdUbTTiqFiK4MrMWbK5ChX9ejA7wBYfeaNy4+FliAFiaDfZbhBcDVvN2o0hHDJLTaJxtBBfALs0qVd6k3/ezxMN9NXh0cuL3NJ6RBiuhkSVRxzOgtdLvUlYIBS2Vi/NNl7RAOnMVJftIM+T4O+ZHahBQW8TyvIhlC5h3vNj0yAiG9PFIHddBArofPCz9t2kIWPuPcBkN50JUS+pBiztEJApnvwu3dQHna7sjF8waoECvyKc7hIwCX/07qvBmCAzqskQXumPgimSWZz8HCbU7MOurSfUA+ysm9jn3Ulh4diTtLUcMSluvzLv2XxvkRp4XRwxlQHsRfyDIgYj0u/MNahdoUKxiHMEsUgHrZ97MX5+ORm8OXj9B0WsFwl2OjN4xAiwYML1hjCSiGwXS7x50NIMWwynH9r1UIO+PO7ntj0dnlMKimToHoZS/tiZogwpwsPvugZ8UJK+eSNx1rBx8dmW0XztEBAbuw2qfUjDIqTuvlukxDQadG0MXFchgVlA9yf2FjBbs7RqZP/aCUaTJAq95NZRqmE4dqqD3/K0Ncon3IEydvMlKuZ4CrrMCKwe8KIiDIu6kDfWwPfBvxlA0APa0rjzk1cEitjGSZlFqE/wcZeOtCULAOHdRKtQIh+rM+gy5pstBzeby3xrhDPi5M2zvkB+GAn8y5uqv0/X6dP7t/EgpsFS9JCSZY1Bi/2FailUV3B2wKGS6Wg0uZyD+SHY4yrwkxvLOPBtweo+08tmo8O6mG3OoVjgKnb7p8NiWBke/mdYYSzeDdiq75RY/GRWNtbdd0oyDQ3/KiWYSjTAlnHDk6iAWhT3Y+aNNTQZjDGX2Kp13WbOP1CuvRKF3f7vNj32kwfOD1qlZIdWQpBIzs2shGm3f+XWlwQ/BnManhHuR2eCRd4LqMIVFe3oVnTLyh8A93A+9vV0FCRdmlA2tScgV/2yR4U8DbIWClhkBgWFC7L7UoihkGd0XTRrKgqQL5XkPtBCE/hK7/PVGOOIz3lFk08HDK9l/+mqBBeAWdc6dRxSHnFLHiv5UhQDvC9fYM8ZUuP3weMXNATzSGzicrnBkEFZu75KcXH8J1tVBEXdLKEhFhfeHbAQCq9f7b1TfLgXBsEzvS+M4FE8dNGU9UQ9/bF6mtfSQIXLxWbINJhI9sjpYeiuEDCTmfjm+Z/4QOXxl1xcTHNqpoW85riHI5Aqsv+bSDBcwR3cJVJNQekl5/lJEGyx5ao7yhzZAdHDke7lXJDQivzSuGdYCx3iz7StPpcL5JaJezTYenfjEwyP7Hg83VK3nPzzDg/sqj9kQne8ue1838XxfApN11obTKBcOuCwzcttgUGPLAQ2j4mr4/J/bgGNWGdxsNr1m2R2BTvlph0ifK4UrGiZVr/80g2l4SN7B9TDkrq0HUultwEYYLW4qqIQJfrLyhxAS2tHw5eBu6oKe/wuHA3j87rrVa7CMQMIx7KztXJfAbc0jgLv/wEAYHi3OUk62QKWF7DiZLZLAnV2NqHsovUAc2lFF3C2iQHBRucuueZDAN43QKNW80EA6ymc8BVCzQNZAyrq5PpjA+vJ79MShzkAjTOA+J5PCQJ2rOYLQ5pjAqyskj/Km0UB8qAElJEjAQCpY42wmdpfAAb6BCUcygUBSHKLeM7G8QED3xL7hXZLA3MRuZRUMt0DI5XymO2KaQEr+syiseYvAS4JeHWYAlkBHu8zqXIadQDhWOR+sg5HAMqxE7nud0ECWT4ytiZ2UQC4dtbrHRZjAk8v3Z3azwkCGWF23KQq9QFl0Ru/XY5LA8BFBhPtLx0AOlOx01Ly7QDmMkwxOzpXAJtQcmnmXxkD7d+d0vMS6QCAxUe/XL5bAmA7x4u2UyEAgAKxOey2xQM5J94xTkJfAKJP8YQ9dpkDjcvR6SgqpQALgY6b4/IvAMKTcZakux0DBIlaMLOqRQJ3xfXE1xZXA2ZpcNikWqUBW2Y375pW3QJB7WkiHH4vAELGdeqUqskCKL1qF1LedQKXVp1Q584nA9MdrJTILwEAS+rLE5H5wQNckDajCpJDAjHfg6lbpyECE1uXfm5OhQNwSmNIX4ZbAJUyqx8H3wkAPVo5fmWWkQFG8qcxlopLAFQqVDmJErEAX+qLSfRm3QEgaTiw7W4rAxsD4kl5Hw0AZKcoMWYOSQAc0ppqUp5PAiGwcVThTs0AUqvCob0qyQNZkGSTdFIrAvt+yEbNTyUAoulXXxemyQI0cM5pOI5fAGHuaFzKZuEDB8VgoXsdxQC40fLANe4zAnwIpooK2v0DAhEDxNJqgQAZPfBBpapDAn1/0vaMnzUCHFOwARweqQHLtdoORupjAws7BTPK3yUCyD5qnp9aLQB9tVlxcRZjAXpCOaFTtykCfObHCbBGlQJHDFnGU6pfA70EBWWJYsUCG7IpQ63CWQJDQ20eq3YvAvEitWZrMzUAa5GIeQMeiQEnJgvSitpnAEjlx0zvg0EC6gMVhoNm4QN3mdPY5AJjAOcTKcH91x0DY+rbd25ePQB2RjCgjw5bA9PghWaLrr0DdcmDVTAy0QBqO2gke54nAWncOr7ilx0AlP4rqMf/CQFtb/JZqBZbAURAytDSZwUAisOUDw3+FQDkX8zH/rZHAtH2vQMt2xUAKrCroAzDCQOniwsMAYpXA5mjSmA==MgAAAACAAACAbQAAfCUAAM4mAACGJwAAticAANknAADVJwAADigAAE4oAAArKAAAZygAACkoAAAWKAAALygAAFYoAABmKAAAVigAAGUoAABrKAAAgSgAAHcoAABXKAAAVygAAFooAAB8KAAAVygAAHsoAAB1KAAATCgAAGEoAABLKAAAgCgAAGooAACQKAAAdCgAAGQoAABiKAAAZCgAAGEoAABAKAAAVygAAD8oAABWKAAASigAAPwnAADuJwAAwScAALgkAAAjIAAA/h8AAGYbAAA=eJx1nXm0z8X7wK8ta5HtqizXkn0pRVKRRChZkuVrjbIlhEKSbBVSWqiorIkkZYkv2feK0iIl0S4qKlkifuf83q+Xc+7z+937z5z5zLxnnnlm5plnv70LpPzv3/1lkrL4hUnZr2JSLi6XlJdWSMoOZZOy4hVJeV2JpPz38qRcS3lV1aScS//XKQ9nS8rnGLdSsaS8vHz6+eZR/+LSpBzGuOurJOUnzP85v3flu8GXMS7wF2PeMoxXrhTfV0rKqbmT8o3sSZmT8fby/Vl+n8LvnzDPC6zvBPBnZvxdzLee7/sVTMoOzLeI9gf5fktqUv7DuHfTPp7xujDOMb6fQ71w5aQsSL8NlPvZvwb0/ypXUu5mfxuyjw9S3sv8B/i+NOtczjyXMV5vzkk8H1vzJeU9jFeYdTzA/ky5JCnPsq5ijL+Y9Tdkv4bw3S/0Kw48vcH/ZOqX0e9pvp/AeF347inmm0D/1fx+PedmCOvtXD0p24KXz+j/MutaVi0pB1zA78zTn3ob+g3Om5R5PK/MJz47sP+ee++B5/+T0kl5H78PyJKUV7B/N4Kf5fQ/SL9L2P/FhZJyPO1vU5/JftwH3DUYryD158BHzuJJeY5xW9N+kPF35knKrqznJPjaRf158P0w44/k+0/5vjjrv5fxvQee/9cY70Pg/yp/Ut4A/Hk4b3v5vhTjP0T74/y+JpzfUpy/B/g9N/0vvygpmwHfNOb3XHWg3p/+b1COY7+bMV93xp/OfD3B523M9xzrk65IT5qAzxLgYQ/4z8q489nv7vS/tEhS3kX7Q5T5mW8R+F9I2Y/5T/D9RO5/Ub77lPXkov1f7u962jdQ7qLflxcnZUXw8x7tZ8ql/97vHOcY+NkE3cgCXFfy3UVXJuVI9ne0dIF+TcFPbX7vzHctoLedyqdfv+t1/eUZ/w3gycf3Zbn/L1D3fXmP9U5IYx3gtxHzFwWejszTjfNTmPvan/Jr8JWP8S7gPvbku7X8Pgv8/AD96Ag8p4C3Lf0KQh+O8s4eoXyOc/p9WF9r5vmB8Z+l32TgysK42ynrga+VrK9z0aQ8w/rmlkzKTxjnz6xJ2Qv8ZMqZlDf4PjHeQ7SPBr5G1C+nPpr70dz3EXieYp7fGM9z9STriufrKeYvzvp/4H6d5PvB9P+X8kRSpKQBTxr0pjbnsCT1qex7r/D++B75/kzJkZSvML/v30rel5bMez/fr6I8yPetmdf30u8v5vujwDGHcR7jPDQH/o3wM/fT7nvo+7cQ/mYZ+POcrOT7ttDDScAzmH2Yzfw16V+E8X5k/dPAb6Q3B9g/71+HQF+lt+LzHO9iJ+DPxPv6OP1Xs78LaZ/N+n72ngB/a8rmVdOvJzv7+RHjlZSvZf3zkuI8fTvDONK3jzifDwB3DeiZfFTkR+rz+5Dq//96XOd71IdzfoqBj8j/TGZ/N8mv0T6cdVwOfA8D3z7ofX7wX5bfFzJeWejdi3z/OPOPpN948F2M+fZCvw6z355Hz18v+QbaKzPu55zna6E7d/FdPb57CnxdCP0exDxTgOPqCunX3wg6JB5cv/xel3D+m0O/BvCdeH8HOHuDnzzg4wTfbabfUeA/Ajzy3ZEfX0b/7Ozn39QvYv9fZ9zq4H8273l95r8NfF9J+1z630T7ZOoPMt/PnD/P+UTodTHmn0D5LKX836XgXT5Q/m8x78m9aUn5CvCPA/4enI93GK8m63+Z+S8BnutpX8X3G5VH2P9N/H5DuL//sO/Kia/xPj/K+H1YXzfGPwf817A/94K/XMz3Ff2m0k/+K5X2KN/tZD+qcE72Mv9o9v0W6sqXyptTOYdz+X0240+Cnt/G/DO5n9/Sbwn95rG+Qbz/IxjveX4vDv73Q79aMe8Avu9Ov8rl0v9uP9vl/+T75AMvYf+lP9vpJx2S/kwCD52YZw3vSTXw15T9n0r/LMw/mvnWMG4WytnSN9rlZz+mnMx9/JL5lK9fpq58rbyt/Kbc5rzKb1Phr3enJWVO5W/Oz9TwnkvPpd+jWe9w5ukmn8A88fx4bi5l/1dD/0swbh7KY8q7nI+TwHUVvy+g/G/gH7pzn+QjlI+Ui5STvO/yiefoLx+5CPqyGXmjDOv5gv4XAL/yvvoh9QBNwLf4890Tj+LvVuZdx7ylGfc++n0K3MfkKxjnGeDfCV7fYl1DpRP0y+hdVr+xi/djBONtYL4+wKe8q/yrPLwZODcz/nrqkyiPA39L+Jeu/N5XfrVaeniF/x3W0wj8pbDPfcBTM+b7Bvilu+PU83BfX7Y/8N4p/WM9xTjf6gWW0/6NfBTtNeF3fLfie1YO+qccNZBxlDPuYf2nkQumF07Ko8JHOR38lGfcZpy/Y4z/J+UVtPs+f855fwQ4+7D+Voy7ie+2QCdKgV/x0ZH9f4Lfv8+UlNuVo5Hb5oLvY+D/XvDTj/pw2q9n3F6spyn8R1l+/1I5nf2vxvzS6Trszzq+z8m6LuX8qlc7Bf9yVvmP8W9hnM7e16AfVY5Vfp3B+6n+KI2yufJB0BvMUR/G9zWhD1lpr0H9feoVoG9D2adevFd3goeC0Ef1BgWoN2P9bQPfrvwh/94HeG7k99zgZQ/4lb5IVw5Tvy/Il69BX5QzlS/VF/uux/c+6hPlM6fJf1Dv5bsZ9L2ded8nQ0dr0X8U8DflfXlN/ANHNfDvedsH3J5Hz5/newHr8Jx7vuXv5OueYjz5O/UCgyjVF6gnUJ+vfl99fxXWX1q9Ov2rgudnlTf57iv27Wr1guxPT/orV0d5e3vmpFQvqp5U/ehQ+UXlRdpnlU8/vu961CfLt8mvyc/dCn6eZrwPKF/m/KbS/074z/fFL2UR2pU/lTuVQ1ex/pfA9xbgmEU9O99Xgt5VpKyQI/16F4LfdvanvgE83w59Hsm5zE55P/3U56jfUd+Tg++7QD/UD9VgHeqH1P+q9z0S9L8vcb4/Ve8Afgqz/nLQvaK076Z9ivp67o/8xX3AOQI45K/lq+WzKyj/QZ+Wun/Ap/7+L87XYuhsYfk81jsA/aZ6iCeoK798Q/8fmL8d9GwK8LYFvjlBbtR+81/GK65egPNSBfqg/uEv9l0+R75nFt9tY/5U7kNrzq/ypPKl8mZl7q/yqPKp8mol2kdQz89+naF+iPqBNOAE768Cz1nauzHfMfC8BbgPg58ijPebfJD4kP9jX9rR/pj6f8ZfzjgdwWvU/2tf0J5wC/j8kXrkp+Wz1c8pz0kX6gV5bx/6xjTqa5mvrvId+PD9rBnez7XcD+Ur5a32nJfV9I/3U/3rfO6vfGfkR9fIHzOe99j7e4j7MTXYdQrQX/2Peh/1QIP4/gH4vduAvwd0+mb5FeBpSntx6G8D2pUnXXfEh/Zg7cM3sh/ah31ffVcf5nff1185338LP/VO8JeNOG/Xaeem3Kk9kO+kH9r/poCfccCTuVx6OP4WPs6b9uAJtN/J/O8y/tN8fzv9cwJ/KuvTDhXtT9n4znd4s+8480nnm3EeD7NvQxm/Le3LGH8a+9Wcfa7DeZtBqT74N+UA9jtF+z/33PtcgfuhXjLqK0fDv8ovLuO+H/Ldpd/19KvDvG2AV/uJ9hLtJ02gf/8N9g3tHZ7/l5EbaiunsY6Z2teD/SXK08r3yvVrqCvfd2P8HsoNjP83+18Iet2O+T6kfRH3u0xaUs73vWZ+7bM3s193cK7d7z60y5fKj8qvHmD8uYynXVQ7qfbRDdxH9YvvsH/qGdXvOs9dgf/4GPj3cX6+odQvoz/yq/pC9Yj3gh/t39q9U1mn9m/1f+2BXz2g+j/xt5CyNKV4/IL5LmC8FOZpwf1SL6GeogznWf2E7+052n2HH+X77JzPr9TP0/4q97Me9Kc+5e/AM0b+ifNUgN9fpL6fdvWDUf83nfG1X2qv1H7Zi3pm9vdB1vmE94dzcBP7o39DLuD4S/sN69rPuDX4/lfG/4D9yqm/gPwu4x8CPx9AnxbQr7n2Pcbbzfjy2/LX8uNf0C6/Ln/+LvP9h3Fv57yuAD7puXQ+8ovV1RdSPso+rQEPe+X/GV854Qbo69O8D/O1t3qPaD8DXTuNHHeOeivG6cf4m/iuDHC+4PtMe/Oy6eFw/n3hvs1knO7cr4LUS/heg8+m4H8N5919UZ+Vjf2KdoNDwFca/C7hfO4Er134vSrwKV9LL5Wzla83c7+2queh/Czcb+/z/MCnaE9Trz0beUb9tnLJc8D1Av23aJ+iXb38RPXX8tf6tdAv2i/Wsf/6z8nP6D93o/wAv89gPWuBZ3ZSnD838TxpP9YPK/pffce7O4DxjlIfCv3qwXz/yB9T9mR/DsL//a7+hvHLg7+tyCPPeK+ppzBOLeSWayg/lP8HvgFBnlK+Oqj8B3yDKVOZ/ybmz8530vGz0LNb+b46509+Xz5T+8Uw3o3FjPOs8qn8M+ffc+89+CAD+0o+1ql/TS72Rz1WOX5Xj9UF/ikb57YT9+8x2j1vnj/tRJ4/7Sq9Pd/BvlIIvGg/+VX9Fvt7FPrxDt+VoBzG/vSAvzjB90uRN05Sfxz4P4PvO8Xv+jPexPcf8Y4fBw9Dwa/4En+9aBd/x7XH+m4ibyyHfnXlvKg/ywwe3+b7rKzvxmzp568kfwe+d4IX9ZT6A/TPk3492WjXP1N/Ev1MdnH+9TfZzv056PvJ7zezXvk3+Tb5OOU39W4/8t31Qf+m3naT/Djru5XxU3m/jwD/J4w3ke+lS9Ij6dU38l/sT2/wpZ1f+/4FrHes8o7n2PMHXo+wH/K38rsteJ/cX/Xd6rfvBB9v6ocHHtrof8W4nYDrM+0mtOuPp39eFvl47tNH3P+M/ICjPvpjftc/Zg7v9lv0e4z9bkJ/9aX9md/91D9a/+CoN9Y/Un9B7dXqF0oE+V75RnlH+eZu7kvbpEgpxTjXyl+C34/Zp1mspwP92gGXfqu+dx8wz07O10zg2EH9Xf0jwOefrGOA+mXG/wn8f854Y7Tngq9vma+x9mDOo/zKKeQr7cInqf9If/0OfF8GhvdFfxf9X8YyfjXwM4/6Nr5/hnIM8OdlPOnFfNq1bzyoXT34Z5wJ+BEv4ukg52kH+1NTvQ7nR7uH/js1y6dfh/47vju+N75H2k++kl+lfTv9C3D+/gN9/wL6PpV6T+3v7N+dwQ/L+9KC87NPvox71gj49qhvZX79LJVPtJ9pL9N+1pP2ddAP9Y7yofKf+gN5P3NxH/UP+pnz0pv2rsDzcfDv1s9YOUj/bvUD6gPUD7QFv+oTXlReYT71C2ND/EJh9ucs/aP/yxjt1dI74Pqccg7ff+99od6f7xayzgJ8Xwt5Q78D7cNPQd+fQV5qyD5uZX15wU8l+vdlvSPZ96zQR+Ut5TDlrvm0a79qxvzarfR/Vj/XgrI051093VbWoz65POtdDjyFmL8C/bvAD67K4H6q7/Cean/T/qv9TXvcldzf77SX8/txxt/Ke6B/6jzW10M/k7SklJ+Vv31c+yr0QL/h6E+s/Ui7kXakD2j/hPP+KWUXzt+T+gHAz8kXySfJH0X/Z++p9zML4/QG7n78Ppz93cH90a4pn/Yv8P0IPM/TPkM9LPvXiv3WD6IndfWP+6GPxr8YD2P8i/5n0n/9z36F/s+krv3iOPBov3gIfCwHT7Wpd2OeC7mfbaiXZNwjwL81LSn3Kc8H/FzF/Vuk/oJ9SGX+GL+jX0sn5tkD/CuYfxf4zsH6O9D+Pe0N4Qd2A99e7rX6hjzAdyH333gZ42e0r7aifpj6WOVn8HGA+nvwh/mBZ6D2Jeo3Uy9J/zbSMeb33ZmlX194f1LBj/aLwtRTwefbjK9dINrf17Kv6xm/L/ubh/YivGfqfdQDqf/R/15/mBvpr//9CcYb5X32fNMu/3OLfrPaHcCv/mv6rZWjXf+18Zx//cvO+4Frb2L/fDevoZ6V+fSf02/OOCj956K+Vzqpf6n6h5+YV72D/usHuK9PMF5uxp9CP+O/1NNE/cwEzqv+T9IB/Z+U25XXC1GOR36J9ijtVK/pf0Fde5T2qrm0q29qqP8xdeP0yvNeLACPvzDedM5zQ/Ret/N7O8bdpPykPyxwb2H+v9n/78Ff4QziS+6gPorxR1L6HtVlfPVij8KvLNa/j34vsf4YP3GU+6GdaAf3S3tRJvbnCr7/kfIP1uf98F4Yf+D9KEL9JHrAvqx7Fe3v+l4x/43Ar/y8ifOvnjnql6P/h34fp1if+BBP4mUf8yt/5mcdyp/Ko9JN9bj9g/7feDbj27RHL+F+fMd7vox5WwJHW85Pd/ijP5hnJPNeRfurwb9Lfy/9u+ayn9rvtedrv58LXdOO/jrwzeP+iHf1FxH/kxh/Gue6CnCsN36Se6PfvX74o8CP+p6oP/vG9wb5zLiP6H/xmP4i2u15b25hPuN3jds1jvcS4NP/Qr8L/TCWsf6m0Cf1jPN8J8C/9h/tPvpjVGd+7Rf6B2m/KMH82i+0G2i/SKNd/9BrKS/kPvxLfYf+edT1n9T+G/3Oe4Bv/WPUO41jHO3E2ofXs9/ZoUtnWO9l9BvA+7CIfSsHnbqUdvUDm/TXYX71A3F9/dQ/cR58F4wP1l/d90H/I/2O6gCf/kfSbel1jLeWv1tCXT5P/m4D9Fs/Vv1X2zN+XfVb8hm0+7425Lt51OfTrn/Pas6n75j6aN8z46d/Zj7jp1vzfaWgVxgCfd5P+2H699cuIH2gXX+KGHefh/n1Z3+C9m9ZR2P2V/9c/XK7yh+qlwQ/pcI+6J/7G+36+R+mrr76cPDfeBO6oP/Gw5xb7S7RHqO/gfKTfgfGR2Vn3vz0r629B/qkXS4jOq/9VrvtXs7PmHA+PA+ej6tZR0Z+XfL5xqOpXzIe1/i0GK+l/kf91WDq2l9zsZ5Z9P+Dfa7GfpZRvxr0F/pHqL9oT/sJzucI46Y5X4MYf2haUhahfwX1ep5P4NJ/95fAD7Xj/hm39Drn1filGF+mH4JxZpE+a6f/nf1V/6u+N8YLRX9S5SDzB8jf/00pfy+/vx68vMd+/MHvb4Jv5b/qlMp/yoMrge8nvtPOuYzvp2q3Ap/6jeQHPvXL+omaf0I983He76dpv4z2hsyvX/8M+Lzo369/aOfgJ6r+2XiF/8O/A7/3w3shHf2KdbzEeb2cd6iRfDff3+17Z7xP2fTrLxDyi5hvRDqnP/0D3iftxdCHw+BvKf3bA98Y5le+3RjkXOXbV9nXlYw/iVI/bOOHtdtOpm78sH5/BblPUzhn+v8ZT2u+AuNtR1E3Xsk4pm94H4xnUv93AfCoB1T/p73xKPPVT0vKLuBnrHSWfoM5r0WNz4Q+KVc8TV35Qvon3dOOJf3z/fPdM4+I75/nR3rqOfL86E9UR7s7fF5e5vHd0r4Z3y/fK+2avme+X9HfRT+YCpwP7QnS6Rhv2xh6s4dz5vnzPMpfy1evoF3+Or5PvkuNaa8M3oaoHwKfx7W/A/cg8HUd/fUPiPK0fMlc6vqzbWA9m9k3/dvUf0X94ETGj/4z+rEMBT7pvfT/fFybJevPZl4D4KhMXb+IBczjPTNfzSHPJ+UQ+v/mOTNeGLhjfLP2bfWn2rn1v8th3hztAMx/K+NW8H2nzE+/wtoZOC/qTbSHqz+J+XXMq7PL+DrueynmfZ1z9jbw7WbeS/heOUk/HfMHqJczj4D5A/R/1i6pH7T2yY+Y/4x+GvqnGc8MPTbeW/uL9piov1A+L8H6NvEuDDTuDz7T/CUDOB/SAe+9/oUlkFeGUHZGHpffLA2+9O+/knX8xvzGuxr/+kTQpzUGfzF+Vfuk/sF96KefsP7BUf41D8J49l/9rfdeOqD+NsrLjqP9MyO/M+lHRc6vcaEdffcpqwR/w/8Az2LPD/Lf7+xbEe3VjP8Q50+/mz/4Xn/aKxh/EvPt4bwPA7/aB9VrRn1ntK9Hf1jt9doHd/Kd9vvG1I/x3QLq2cHvUuD8mLIQ8so9wT6oXTCXcSGsX/9g6Wikn93hf9UDRv2f+Zz6Un+EeQeyvz8BV03g3aMenfG1a38X+JNv6R/t0dqpMysf8vvLQZ/cBv7lfFw0cMX46OHMN8z3FHq/KuiLzJdhHg31R2M4X1XhPytR1gMvkT7tp258xhTq2Zi/JfvSH/ws4l5KB2P+FPUq6lOMR+phfLn2dPO2BfvENs7fQOBZq58McJQDH8rxo8DHdYxvfLRxxTHeeAbfFdIekJaUxoOsZ/57WNf77OcW5h8Y6Kf0VPoZ7XsxnvEO6I9+KSvARybmifqbkYH/l7/WbmQclfy18NQJ9P1V2msb78P36vmzqF9X/6Vek/as5kfjfjYAziq0LwU/naE3vlfqM2dwHs5gd21J+3T9TIAvxv8NCvbbGE9hnEVP9v8Q498KHtQTlQb+m7gP3wK//qbKia8wXhrw6P9aT/0t8MR8E/vY/1rM34TvtMsPY/y3wKt87WbgfFj/FOia8d3y4fLfxnXLd8uHy3934XxV5/f6rEc/zaqcz2PM/wK/52W9+vOpD9Tf7xzwez+8F+/Sz/tRi/XoP6w/sf7Dp9jf7sz7CP3/Yn9j/GWU76K+9rwel/1X33+ScgN0wDhvf7ce48HHsL5t2mPBRzbWp31H/1/tPNp3jBfSPqS9SPtQE8bXf1H/tyfBj++B+sTnGP9L6l+zf/rBR/939UXqkWI8+EzmvYP1/gp9ugz4jesw74R+Ns+E+++9/4N27/8Q6LP+N7Opz1aO5v1W/9Rc+YP5FymnZOC/MoX33jht47OL6z/H+S/JuOaVbM/45pfRf3iydg7eZ/VJ6pfUNw2nv3xHQ+US+GT5j+LwjfohlaCu/1E71mP8zkDm/0F+i32dTv+N9FsJ/I8A3wTW+0xaUp4GPv2PlF/0Q9L/qDzvrf54+udNDPKr8VnKsfJf75uPg/aHuD+lgD/qY/UfvpjzUw36qN1gPfNVVZ6FXzQPzhzW1c7zyffGF+q3U5f5o37ee+T9+T/nk34/A19Gee/MX1Kf7/TzaEL/I+BH/wP9DsxHp//BXuZ7AnhH6W9rvhTeB+lmpKfKUzG/0DrGy8ivSXy9z/nqzPkZy3hVGL8P39dn/BaMPxr4ojyinNKV/cnJfYjxr419h7k/+rHF+NIreG8OcY7EWwr4169Au2N16Ol+4Puadz0NfORmnYdDfk3zalZB32R+zfug319Cp4y7NT5iQvAvcb+FM+aHjv7jw8G/8sM/ylHycUEf63jan+Yz3gp+l47or6B9cSnja1/U3rhC/y7mWcZ3RcGv9kH5irsDP6D973zeGr5Xf7Gb9/Et5p3Ovdqh/w/we371w9T/sjRwZaL9w7SkrAv8xg8aN9ib+2P8YGbOlX7R+knrH70V+neAeV9Rb8z6j7DetvTfBh3oCj7Ni7eTcc2P15X9ncL9mKRfOe1fVky/vrxl06+zbtAX6LevPkH9gflEzS/6F/3ML2o8tPHRxktvBb7M3Kui+v0xXxvoo/4f6pfUNxk/Vln9ION+nxQpFwL/B8w7DHjf5/vb9J8CvrP0i/E129OSUv2o/pT6B07hPa0AHtbRz3wlUX9uvgj16FdBT9W7DWbd5l8yXk+/aeP5zA+jv7hxS/qT6z/+Ou9hF+6ReVDVL7QCf/o9GMcZ4zenhThO4zevNn8b6zE+QH9w8xeZtyjmI9WvIuqXjY80fr9WeDe6025+sKn8ngt4jL9uqv6O9nsptftrf5KuxXz3hTlX+sVHf3nzAZgfwHwBR8Gv9Ow1/ZmoT2Cfd6QlpfLFEfTT3kPzoRViPeZLMz9aX/CrP41+NutpV086CPhegN5onz+C3OY7G99X4wKvpYzxgfM4F+YlyQd87bn/66BX5jlpyTnrQLv560pQms/ePFvPci8bga966BvuZv/l5+Wj+jOf/JT+PvL1EwO/v5x2z4d+RrXUn9OunSTaR7bTvwf9mhlXDH7Nn2reVPOormYc5ZcCQX5RnjEfkHmC9Af6kP3ZCb6VY6P82oZ6zL9vfIX6BvUPxrmqf+jMeZkLHI+wH/uVx4J+VD79tPH1wFWKc1ZS+Y/xv6Y+VX0X/bW/Xx/+f0WUV80vYF5R8wvcw/cH+f20elbOawrzx/jYy8Drm8G/Rvuc+STVj5oP0PyA+kuNMz8c/KN0SjnOfFB/wu9FOXcG8Jn3rAH4M6/pTNqzQu+e9v800L5Gfy74D+N91XPvNF8u9Zj/IJXx9UfRP0V/lU7GK7H/9YHDPOnr+L40745yYpQPzT9k3iHzEJnvbwjjqzdXj67+vAn8ne96fO/zMt9y8D2Zc3M753Mw51s/LfMxGv+VD7gu0I8ZvJnfWLpn3rOM6J/5f6SD0j/fp93+Hwbmlx4tYf19wNc94PMI9QbGV9DffAHmW4n5+ydCx5U38lOPcb76d74EfraFd2Q1+DEfhXkqzEuhXXoN/Fv8/xLmN9kIflvwewvqw6gbH6/9W3u49u8ofyt3L+X9U287lN9j/jb9M/TL0P9Y/4wl3N8GwP8O9SLqR9SbMP9H1PUfN99ylM/Np3IteN3IeJW4D9lZXyvOhfrljoxj/i3zKxk/YTyF8RNbUvhOOxj3VP7YfG/K9zG/wnLWa9466Zb5Y4w/M+5MfZnxZwdYr//3Jv4/HN8X3xX5RN8X9dfK5eqxU4DPvEX6DRqPdRHzL+T7J2kvzThjaY/8l3yX+fUqMt8e9Uvg4Q7Xx/fGJRmnZHyS/gytMvAfivnb91E3f5f5Bsw/YD6C72mXPmpnjPbFsZyPYuZ5SmE8/Wi4t6X47nbq5qtS3vkIOvYe6x7E+mbSX/15Nd7THpy/mD9sFuOYP0292EjOffRf1d9tIf30g9vP/arL7995/rkv+jepHzF/iXoS9SPmh72GecwTa37YGA9vnPy/1A8jXz3PuIfUP7Kf2uXN3+w5NH/zkZA/zvPo+TOueDp6+xhfrDypf6rxaOZZbsT3raHDvkPmL/iVcZQflCeUHyayL8ZDGo+if5j5/8z7Zx7A540jBf8zfJdZ52nzR3AuU6EP7q/+jerHzbMR82vcwHjmQUqjn3HAu8CPfhHi/x/j3ziPygFTzWPMOnpS9tI/zfg5/XAC3yQfpf4nxqeNCHFq5tcqADy+C9pv5Xvnc5/le80vsQf+cYF6FsrajJeH+czbaR7PNzjfbxrfDV7LIB/N1l+A76J+wXh16a30N/pz3837YB7HmC/d/y8wB/42+on3hb97CbjNb3NO/Tb4uVi7P/M8w/z+fxfzRwqH+SPl++WPlQeUA8y/Zt41/1+V+ddycz/m87t2lXr0lz+WH/YdHgn+V6YlpXxpF9rlT+uBn6sZ3/P4BfWT6iuBowHzLtQ+xf3Rb0M/Dv03/H9L+k14foyXTAt2B+0Q8q9H6e//n7ma8YoD/8OcJ/OPmI/E/CMxf2X8/zmN6XdavSj9rtW/mvfUuKgYL5W5YPp1HwP+0rQbX2BcwaPw78YXLOb++v8PllDXXyfGL2nn8v8P7mb8f4DvC/Nf0K6/lP5T+lPdD3yzuV/6Z+iXMQD69wr7/hPrzGE+L+BI5Zyar8r/y1YQfP7MPlfjPKzSH556K+OLQhxGdvXbzJsP+MSz+I36J/N9VuP+duR8ylfqBy9/eQPnaQTjXiMdAP7N7L961/Nxqoynv7l+6L2YL7P3kf3z/9OZR8L8tG/ynfGst3C+WrG+EcA3kvIQZR72x3hh44dj/hTfo+i35/tk/s4z0C39S5QHlDuMWzWOVfkjB/vTM4P83ObT36d9DPnyH+BTX9iU+c3TV9f3V78RxtMOexb4zUN1F/D4f/RqsP/Goysfac80Xl37kHpU7UTmB1LvJt8S+Rnld+V23wnl9z+Z33MT/9/lSuZ/kHGLQK/mA5/0Tjo4i7r08KoQNzJG/Yp2YOihedmiPqpOyOvquOZX6A9dV19dn37G5/l/ma5iHfH/M2lf1K64Dj5T+6L8iPzJccaRP9H/LCM/XvOTDeae6T8U85Np3/uc91773kbOr3kFzDNgfoFR4Em9T7TvTGNf9D/LzTnR/8z8OY7vfI6v3ncc32sHUv/r+9uHeQpBj31/+4MX/4+BeWT8/7cVoa+ToIvq29Sz/RL4/Rfpr//MadrVb18J/OpB1BdIL8znrf7A/w90inMU/aW/5vuYZ8L4qlPQBfU7/v+V3do3lNsZ70r4gczGXwd5RTnm/P+H8f/DUSqPKn9q1/wFuPTbqMH40f9Yv2P95J7nPsvXR34/yl8ngxx2mvdEvx79fc4A163Qq6Ksv1vwP/C920hdPctJ1vcj9zeF7/W/9P+5Cp9wmY9K+KJ/n359xk8pl1+svpD56oBP/Zv1L9LfSP+iB8HfKeqZtFeBf+0WPwCf/+dAO4b5LNr7zoI381uYX8m8Svp/TVe/wrn1XpmvaQbtV3M+z+eFT4qUPcwzjfOxA/j1Z1kBfubRXgM4c+ufRH/9f/X71Q/4Q9p3sN859HOj3hr8GL+u/4hx7JvUN6C/yshP3f8nZHzXIcY7Bf7Mk+t5vp/9ND/6n+hnXvQdh781HjkT+9eNsiXwbOD7ofCn/ehvnvBV1J/jftwF3OP5Lp/5s4I9NtrfTqQxHt8fpy5/anzJLephpRvBnq+d33yapTkfkf9SXyMf1pfzo94xL/C9wvloT78RwDOS9on+/2rOeyl+j/8fXP/ku4Kfsv7J/j9V/7/qL+yX/1/V+GDjgY0PNv+MfrXKNTF+egTvsvliox+p+SnNS2meym2Bn9X+rz/AQeDRn17/+taOSz3mR3sYPOjHcxK4jYuP8fKrQvyt/pHG324KeUfMQ7Ld/K6cX/OFTgcO8xffxr7FOFnlAeMtt7Fe9VPGX+ofpl9YzE+hvi8jP5z/AaDnNkp4nH2dd/TPVfjAUWZWdlYfyd6hKCFCGkYhypYZEsIXkYzMZMsuI1uDCNmrZEVWRpQVZZQ9+p3ze79eznHPz+/zzz33fe997nOfe+9zn/uM+6meJd7//tLmidL2GaL0U/LnMkXpWdLOfG9YLEpX54rS26SzC0Vp8cK0zxul1YtEacvcUTqc9hWB+1K+KH2H+uOAc+ahKH1NfMgPzR+lfwPvBO2Kkl4sCnzKX0zBOMivp96t1FH6Av3vIh0Ovo0YV3/qJ0pLPfr/MFWUpgO/daR1gfNpIlK+j6L/owXp/1HgF4jSqY9HaVfKSyWJ0p/4PhQ8zjK+hPR/FLiPOV76nxg/Sh/k+/7sUdoC/IfEonQl9ddRby30z5QzSmvS/3rSXOD7K+N6h3azoduD4LcxZZR2oN5454vyV8m/Qn/HctCe9fMf9H+C/rYw/g9of+iRKG0D/jHSs6yvrsmidDD9L3XegXcqW5Q2ZVwlaL8T+jRj3bxP+RHgpaQ8IfjfAP5M9tNg+vmI+etD+yf5/uwT4MH8J6PcdeD87wL+NfA8QT+TGN+LD91brwdpOcrbkK/EuNImjdIFzNPj0HeD80j5JPqvyHpxXTcgXcN8jQLv4dAjHv2coH0y+t9Fuy3po3Q19f9kf+yCLhOAlxr4b7EeWj4QpS8DpyrwM1H/a+g2h/H8TT555ijdCB5XKa/N+DuSfx1488F/B/3nYvx9WI/tXd/M36QHo7QG/S2h/XbWZ7U0UfopeHZ2/TL+vKyn7PJJ4Axj/srxfRvpueRR2pR+nme+voAu5Um/p/9J7L+kfE9Geoq0JfQ9TP5f8DwJ/L/53g/67Kb8OvR4A/q9T/0y4HmYvPROwT7YDrymjM/14XpwfXQC/pPU/4q0FnD+op834N+n4ctj+V4FOh4F7jnw/439lg/4FWNReoH57g3eW5jnjQ9HaU7gFk4cpSOBWwZ8C0OX7YznDvjmzBilC8hnobwo89Ma/v0W5RMovwj8k4zvBGkO6r1J+4zAly/KJ+WPTV33tGsL/ZpQ/gTr83PSVfCTTxjPZfhOP+DsAE426DcLepWCvmloP87zKyv90T4z530a6L2K9VGNfbaZcd+gfCz4jiGdTP/L2X8L4P97qD8DvBswvhj189H+A/Jfgl/ldFE6gnneTPuPweM6eMv3/mC+UlBeCLq3p/9r4LOC/t8B/iLgVGaddoF+If9/FXp6DiRl/75Df+kpvw7+HwC/PfBfTRilFdhfHeGb7Sj/mfO8IuW5GFd14L4OHj3Il2V+ClLvKdbbg+BzmfKXgT8Ofqac+CP86QfSLaT96ecR8aL+WOCNK3zveBzfnAfvHd8PCe4dn+N1fMmZn39IY9R7hvVTPZB/ldOUzwqx319hPr4GThH4w/eUp7cc+BnIv8a+XcZ465KPD30/gR7rgLuA9oeg74pYlDZiPJWUM8jnZz67Av8c5clp/xTwlrI+c9NPd/CvSr4J+IwDzgzKDzOfPfmu3JOG/muw/o7xvTHr9THod5Jy+eJkxit/HKO8Tv+L2YcHgV8SOAdZD/JR+WdX5LNfgN+N/CnGu47zTT5wDX60kn7rBefHAOB4jjxHu+nkZ5F/ifXzC/JLA+Z7KeN4DPyO0H824B4m34LxFYCu3VnnT5M2o78n4Zee67vhk6fJ74IfLaP+fvbPSM9P5qM883AZPBK7zuH7Lajf0fMb/ML70gryVRhfY86HoXxPANze0H8e/HAG87jQcbC+ytD/Eb4/A5xVlI9B3rkG/s8yviHeP1hPW6Uv+Wdpf4t29ZiXQcz3JMoncC58wTw4f87nHerf7574KvSfSfsq9HeCcvfHTPjEEdZ3fcpzMT+zaP8Q3zOQXmY9PA7980GnD8mvZdzej88E9+OazE8jyp+GfucorwX/SEP5X8gziSk/Dt6fKL/T33Hy9dAXNOP7CuTtPt5TwX8W5fWgxxfkl9D/n+Rre4+k/+7w89dYB0notxPzk4z9/hDrqzx028/8/st5VVS9BfDbsL4H0s9N0h3KPeyHgbTrw7qqyvcDpA2h70veYxl3GuUv+MNA8Arvx+3ZH+1I1Y+oN0nB95SknZkf76nenzLApzOSeo9qDP12kiZk/gdAryYBPd9mPvtQnoF2lWn3O/slO/SqR3/rwXs7dJoKXPmafO4bvsvfXnF/so/2km/rPYb1N5917Tnr+VoQvHZBnyTQ5Qr0Tc35Xhx4pVifiei/Nfz0EHCmsR49d2qy7zPT/gXyk1k/T0Kv9spH5NVH7WN93GD8e8lvZx2sRp7pSr/todda4HWjfjrwiyPfC/gVGLf3u0rkFwN/LuOVf4yi3mnwLwZ9j5G6r69A36rIpwsfi9Ks4KG+qDHzPgT4/9J+IvTvx7h/obyBdCC/i/keqtzO9wTeY+ivI/PxDPk/Pd84zz2XPa/ngN+Pgbyp/FkIeB/x/WX1EczDKPLNOa/7A68v/a/3fANeHfjQZtZHBvAoDt320W4f+a7gn1K+Db220M8/5A9DnzG0bw9dupB24PycHshB30PHRvC/1oxTPdlDjO99+j/BPsjJuonH+ngE+eM0cH8E3h/eD+AHdcCnNfV+Af8OzE9v+r/K+oyD/t6HleuU85TvtlFf+VR5Vfl0cixKj7JONzKu75iffPDHOM5dz5d3lPeZjxf4nov5r0J/Y2jXmXQs6Uj1TvDjAsBTz/gZ7bvC136TH6inZXxHoe8tvnsPqAQ9czC+KtR7VL5J+4Xwm4P0Nw28flV/Q34U7bqReo41Yn0l4PsQ9b/q11lfuVh/E1nfi5B/D/NdOeQsfFo5qSf7YzR4zBMu85cO+PNpP5jvdxhfMvcL7T+BDg1ZP3uRnxqT9x5ZAPy6INd3B/4BygcBfxjrowbfPyavPuVN4D8BvJ+AM5S8+hP1JepPijDOq+yPqsA/Rvt4rM/pjG9PLErzQ7f3mX/vh94HvR+up/8+7I8awBvA+q2q/pD5eZT5Vk96mPGPAf/RlKcAz+zAr0N+FfR1HTj/yt/K3crhXennLO2qA38Q53Ec89yA8c/j+w+0r06/GylfyLjqc54Npl5SzsOK0CE8/z4mvx44Q7w/5L0Xbk/o/i3ws0G/A/CVxuDzXZTEa0n9JNDPe6333PXULwu8rayPMuTL0v9m+Kn2gk3k90A/5XHl85+9v7EeDseiVL1scfJNaO/55bnVDjjnmQ/PrZPA9fx6j/XxCfk/GF81+N8y5UPa36G/psBfSfvt7Ff5Tl/wTAT+qdkfych7Th1hPT+kPMB8LoYe3cifYlwHwKev+k7aV2b8G6DrW5RfB88FjCsr+TzqkWm/jfn6Gry+Z97zMb4irA/P+bzAKQw98tD/bOkL/tmp53nk/acV68n7j/YV7SqfqQ9mvBXg/6Whg/r3f5SDuTd5zg6n3lHwz878vUs/L9LvIuBrT9S+qL1xCusnGf2rV42Dzp97D2I8VeGLnehvkveq4N7bn/VQhP7vUK792HuR9uNByMtzqfcVcFozf6H+UH3pUOAtcr6AOxA5aBD5z+FLpcHnOeWEQJ+mfu0A5erXlrNfHlY+gP5F4Z+X+R4PuldnPTYknxL+1NB7D9+/Ap8TrM9v1YvT/27t5eT/IL+D+VgJnBn0d179JPSZQXlx4D9BWoJ0OPWzq9eGDiuBX0j9CvRMSr29sSidQnlp5SLS5NpJ6f8O62s13x9lPy1U3wq8acz7HPiN93n10eqn1VeXg/4dwC8150QZ6KS+6zT7Vf2w/gZ56a8l/a/RDsz3pqyH66z3B+h3AnDTgn9N1mdbxvk798FZ6q/AqwjwZwI/h/pN6FKS7/9Bn7bk79BuPv1mA4+v9c8I1scA1vtS8PsC+V27y0ntVOy/O9wblcNCfX4rylewDyaCr3rfWcxPZvLNmLeq9F+A8lB/c1z8vY95nyLtBH/LAz/KTTqX9nU8P7Wf0J/3rNvsL++vayj33tqK8vP5/+/23s/i4L/eQ8L7x034aXg/vwXcXJnuxaOE+l/Wx0H2m/pH9ZFDmf8unh/aa6Sj+nrwmwpe3qOVP7Rva9e+QF77tv44n9H+GPD+pdzzyXNJe7Hnk/rDOPVCwFF/eJ71uC0Wpc9AjyTa/4P7aXnXL/C6sB860d9q/RHIr2FelpNqJ7D9cNaH51Ax6Ob5U0L7BGlPxreRcu3zpznX1ONrr1efNzbwP/keeO5Lz6Mr8N9J5HPS3yryexiH90v9I/SH0D9iOevnUe3+pE2Qf5SPq6k3Bt4O6LeBfG7yrwPvovoJytWHVoNuj8DP3qTeBdaP8zcHfrmMfifzfQrpGuZTO/Ql1ltHxlmWftQfvaIeBjyysF8KMj/6Z+iXoZ9GMfir/mm/8V3/NP3VLjC/i+A7X+mHcx/5Svut9tzQHqidUH8K5V/l3krQWfl3tn53rJcHqZ+K/rW3e//VDj8DfLvBX4d4b5b/QL8izM8i8uPoLx3tK7N/6/O9kucYeCxj/Pqt6Mei/4r6NvVw6t2qMT9FY1FagfJvaX/S+WW9eq72Ve8APcZxfukHqD1L+5X0/o722mvjM/8HKW9FegX470F/5Ys3aK+coXyh/eucdlX9aGjfh/X8sPZg9ZGUD+FekYx7hvfXhdQ/wLm6kn7zu96h3+x4936/Jf+Bfm25P09lHj6m/1TALwdc9RGTPB+Z/0ysyy6Mfznl8tt3yasHuEQ97//aN7Vnat+8ST4v628eeOUhf4byceA3Cvg1qLcJ/DIC72fpBr2HMf9T+d6T8cXzfGf+tStoZ9gZ3Gd3gscs8uWQd+LR/yTwSQP8mfJD4NfBvrIaP4Z49JMH/PQ/0+9M+Ur/s2nstymkU0kv0E952qcjv1H9uHyC/iror0P5EvArx/zWpd6RwN9N/0v9Lo+yXtUvZwBf/Zs+ZH/p39QL+L1JE1JPf6s88jfSl+hXfvcr53Mtzwf2Q3LK87D/1S82hj512B81WQ85kcOlW6PAPpsnsNNqn32SfTNee5T3BvW78D3vL4fJP0r94sF9yvtVP/0yGJ/+UvLxxeC/l/Fql3mVdkdZf5eYr4mkYxnnz/Q3mf0/Kdu94/gM+g1V/8F8aT/eSvlY8DtAeWntl+Cb0v0HnfTPKUo/n4OH565+kVtJz4CvdmPtyFsZZ3zO36Ssqxn616o/V04Cn8e4B6zTHz0Wpd7f1Pt7jyvEutQuqv15O3BLIW+Vpb+80OdZ+qsJfs8zT9XIN1e+J5+bND/pbOiRH3glmc996jXIN6HeBfAdhfw/WP0B8/cw+Ooff1A/1FiUqo9SP9WSfDHXFfRKSLsOrD/9EfVPbA0e+ieG+tDQ/+fffPfi63hSQ8/ytM/IeqtNu9XkQ39k/ZTz0n8x/TWAv9Z7e4F78dNPaThwjG8YAr9Xj6ycrHx8iPZlaNeN9VWLfKjf68t8VPA+Dd1GBXSUfueCuAv1F+KnvUX7i/aYS4xvJOvBdfEN61B6rw78PbVfvKmfF/AyMN788MHnoL/6YOWfb4Ezh/XShv2fjHSC9mfadwee9vzklKtf/JzzZBvzVhf49cFvZOBvp//de+oP4Tv56b8K8OXzddTHAE+/iYzkv6Vf4xEWQY/xjM/78UT4lPdkz8eenC/ee8P78ETuH7204wb28vC+cEv/a8a3GvnzG/jQE3zXf3E8894TePq3jQB/9/tL0Gcf8SLqq8sjv8/WH458csb3H+NWL/MR9D0eyIfKhf8yH8qH7cBT+772fu37ydkPe4Gvfl59fWn2k/4d+nvo3zERudl9Gu7PLPAj+eLDAX/sob4cfDxnH2V/bvL+Sf3Q36EN+KpX9x6YBPr1Au+m1L9G+Qbw60T5A5QX0++K+cvNvHdgfM2ga3r6i+P7PNpvZRw1wH+28hr1rsFvhgGnFfSf5/wBJzHtczCfzSh/QzsK/TxP/jH9nkjzkF5gvhojpzUiXQ59jL/JoV0U+vxGfh/7Rn3sfsbRmfHr16CfQ0XGq3/DZNr3ZlxPUS8d7bsir+ymfAPnRGrtMfDLadp9me+JgT+J/iXec73feu/qC/zw/nUFuO+jP/qB/Z6N+vqPn4GO+pEbP3QDeuqXHvqrX+K+stv5JT+R/quwX37xfk9+AuXeO7vpTwGea8h/wPi0Q8+PRelZ5lc9sfb7b4Cn/T6En5b1aZxMCe3E2pM4j+YyztAupx9Odeh/OPDPPct6+Yz697NbGYeVDf7qfcb4jb8Zj/bpi66/wD5tPJnrui/96V/9JfDSAO9lxn+evP7f+n3rJ/G59gD1WeRLMD+9lK+hRwHgnYKul1kfs1n/D2uP5p7amP2vf6z+Hsoh6ldXaZ/QL0c9AfC8F/1AeUbtSMZjMa5arkf6OwV9akOPQdKJdHTgX1Gc/aGfhfoM5RfllbvyC+tP+2sy+tcOa7xbPeSXP8D7CPUn0j41+Id2hz+g32DW1SDSgaSXgRfqHY1vuQqcaYxrKmlC8BsJfVbRb1voEfLfeZxfL1Cu/bwv/Du0L2hX+IbxKQ8oJ+QCT+WFcaz/saTrWW9fAl97vPGTeVmf+kNcpLw466EF89mG9sadvk/9c/Av/Wt7sb+TaB9nHLuYf/fTMeQy95v7SzuAcoF66nbQNzfyxwLKTwB/vPGQnAee657znu9s37v+isOh41feT2l3TDuAfrTAqcv6O2VcEeOqAX0KsL69bxYkn5rxtYTextcZb6f99Sj1O7HvNjD+U6QX1O/Rb3fw0h8p9GfVzzU541P/lJj66qHUP+nfoV9JB+b/AuNT/joBHZS/lMeaQxfloX7QORPtJ8J/z/F9Hf0Npv+ljLMUee3bS5j/lcDXXr4OehWAHompn0N7O3h+Dby6jEd//CHg34/1+yP5x8CvO+f5V/Qf2k+0myi/Tue7cU1ZlLMYv3FZ+sfqL3tbeY38FcrLM58/qc9kv9UGf+Ma/qL8Ev1NJ60MnzoDXnfAP7HnPPD2gW919oN2oXC83aF/ZejeWz0V/eu/o1+dfjz676g/6MN41SOoP5BfKr+OZr3IPysjf2sf016mfUx6S3/nIz/884pyM+v+Se0i4BHGt/zIvOpfVx35T3/1MD5Kf+DqtOvEfj9H+/D8GMV69Bx5D3p779gAvb2PqLecTn39RN4FfhPG9xvjeY70Y9affvXPkIb+9d7/ve97/29CfjD4GTeoneoE/bTV/qLcS34t9E/CeMbT/2j6V8/cmHxF3yHQD4Tx6l/XlvHoZ6d/3bRYlKrHOkb/6rGKwA9W6D8FP2vL+PP5DgPr7bbvJJAvBX3099H/R/vHVvhPV8ozgvdy1sen7Ocp6DHyAVf7fhv9AeWbjC87ePzBua7/z9v0I7/ULvsA86W9Vjttc85d9SvqW9SvbOe8GEC/o9UbUf8m+/5dxq09W/3cdPbHNNo/GYtS5dEi0O8d6hnnqr+H98m8wX3zTHB/8L5wgH6N7zO+fw5wnqNf4/vlg97npgOnPuUNwbcB7bJ6L4YO+g1p576iP6J2UvA2Ptt4beOzhSu8qtCpNflp8N2ppJnAN471MYL6h9lHxk0vof2rlB/XjsR33/sYBn3SwJf0B92tHTfQn4XvC6Rk/xh/dSCI/zJ+8Cjr2DhC4wdD+5l6waXGZ7K+XwjkWvVf8aH7Nvku58Ft7XzGt1N/APgNhQ6pwEv7rPda7bfFjFdlfL8jrxqPetL7E+PNBF2vkjeu3nh64+2LUp6A/o0r0E+9N/2XYTxt+K7f0iDStay35PA1/dNP6+dPvYXkN9DfGPpvzv05ge99UP8934cgb/y28dzGbxtv6f3E+8qz+pMC33daDkdJvBL0f531lVX7JXAuMj9Tmf/wfQ3Xg3K/91fvs/on5mD+4oC/Sf2Z9iL2jX7I6jd/U78Jf/PcTMQ4PD9/iEXpA3x3nt5lf5akP/V56vt6GZ/jPZ/Ud5x8v8l9qH92VvUkzM/95O6p1J/p+zvaZ4DfAvr3pf1mvn9Af0McH/Op/6/+WPpfqX/WTzD0DzyIvuIz9BgN6Gcp4+9D++Wcfw0pX0Z5eeZf/n4LPiYfv4T84ftGvnfk+0b1lAe0i0Gf3sy/76P4Po3vpPg+ivY79dPxjPfxvGXdJFMfiPzcnPGH/mz6udWgfkPGXxW4+Uh/BC/927JLT/L6t61h/4/nnH5JeyvjU+/agPH3oHxFEN9XgbzxfdoDbnjvpn0YR+T7TYeDd6B8v2kJ+MXFGF8gP91gvI9Q332s/kl5xPNKeUX5RH2T/qf6o+p/6nrUf9V4ZNfnEfi5frX7SfWvTcz4nua7cSDGf3xKf9qtjWd7E3xbM37f7aoIPX2/awDr+UXw2Q683uR/xx5knI7xOb4f1iXwH9OfTP8x5YWq6quQI5Qf/opFqfrbeOrfGX8L475IjasvB/3rMU/66/7kPcDzBHwWw0cuAucF9zfrRvthWfKD6X8u+0m95K+MQ/+NPu5v0s3s34S+78N6Mc7ae84Q8K/legd+KH+O4LzUfq0eV/u1frHx9eeB3vrHZoZ/pDbuRnsp8F4k/652Jfcp9DMeJYzP1359jXUh/zvLeBLQ/+Pgt4D0EnioL3I+nJ/G9P8S9NmJ/OI9fVOU3L2v1+B8fI20j/ZH0vTwx7bat8AvPfJDP+A/px6c8/pX5v84+1P5S/+5h6GP/tief/prO3/Jmf/wnanGwDee1Hh640prQb/h3Mu7qU+nXiLg+16f8djaK9cG+999Lx/oYfwB9NE/XH/xu/En9N8DfLbSz8vBeez5rJ+05/M09p/2x1XI4wnhL7dZ39oNfL9C//GS0OcT+Eb4Hov6QPWD6gsLgL9x256/nsf1wbcC/M84lBKkxqPUZ3y+YxG+X6H/gn4I+i/IT45Q/wPgzeT7XfmG+ikof5pz9EP1iZzX6m/20M9U4GxCXtQuMUL6016/xkMBv9rNfIZx5cYzyE9Hqd8F/mbSpdDPOEz9KqrCL9/Tn1N/WPIPIW8f154NfYy/vUl/tVg/6jf069TPU/3Gs8ZTkobxlVvgK3XJXyWv//Fdv9ogPrQG/ejvlF98Kdf/qRvnRSb69Z7vPe4L1m1m9mM72o8iX4l+KwC/WyxKPyJfkvq+x9gcem2kfTH1KfSn31lP8Yvd20/X2L39VYTuX2tfRd7QjlOU9f0M+TnUa68/GvhpX9Xeavxj6PdTh/rXaG+8gvELDVg/xi+0gT/5zuhBUuPr1eekp716ntn0PxT+4fuY2m+Ndzc+3LjwndQzPjwd9JjJvnyWdeg7YsZrqX9RH6P+5SDj70L9TtrF2D9/0n8m9l1e+ExZ+l8ZJfF6M07Pn/0Bf/4QvA6xnvUnd9yOV3oY358P/uz7k9rZXb/Gt64N5jm+7+uxn68Yp8H41Z9k0U6u3oP5NL5zJPtHv2v5lf7X6vffoL1+9Or35Tfyof3sj6mB/XUJ432desvVr1Puuzy+06P9MPSbfMT1SH4z8rH2x5TAv05/2/QnAO8d5H2foQ7wapHWJt1L+8+QJyaRTiTdpz8J+K8kvcP62Q/8jcxvEu3JQfxGUu231FeflBD46ntvQO8GjC8Z83eM/f468FMgP52Hnu04z12H4fqbC39xfbo/50P/WsDvRvsO1OvF/BovbPyw8cT6Zw9k37o/96jfAM4l7mPKjd7TfB9KfwDfFZkSi9Jy4Pc4fP8M9Z73fQPoUxz89LtQftf/ojrjv8l6rEp5aeZHO5f3d+PdXJeTmO844Cn39yXVf069kn50c5kf7eKTgRfax79jP3nvWUt5ucL3wlNfFcbPb2Dc6rVDffc40geYz1T0m8g857X3FO8n2ocOwp98p2F/8F5DGI9knFJe45/47vsovpcyk/H2IB/GF7emvAL72fMgfG/S90+7g4/xV/rz+16H9vIZ3pfVr3A+Ov/qc3y/0PdJW7Pu+lL+IvTTj/w/8P+H/jpD5+HszxPA0V9E/3fft9B/W3/pGbR/Hb1af/W2rOes0Oe68jv136a9759qF6/E+LcwPwvIN0I+1++5G/3Np9z3d74k9f0d9Q836N93b30H1/dvfc/Gd01858T3TbZCr33Kz9BlK/tnGPz6EnD1m79G/fC+vsR7IuOPH7wXVpK879cbf2a8mfFnlSnvhn77BvPYTj0P9drGorQNaUrf34Xu+st4fulP04Xx++6/9NZvX//zq4F87XvVytf96Tc57RdDB/VwE6B7DuDU57vvM3RhXm8gJ1zXv5Xxv8f+qkF99RCJwK8T519W5vV7+rsC/fV7aAQ9Qv+H877Pa3wF9ceRnx4ld/12Qn8e3+WS/4Xvc2mP9t2/8P3qfrQzHmkb8mg78geYvz/By3dA10If433SUd+4n+3Qx/Nd+6723lPkQ/1x+H6q8sBf+ulxXjwAfPX9vgeqn01b1tcU1u1J5mcQ9dtBf9+lae79M3if5nn2te826E9RNpCHlJOUi4qC36/I775vrr3K981930K/H+3a+v9s5/7l+/X6efWnfQbPS/jWP9gjmsl/WTD/0o/vs3r+rYbeKZj30uB3m3Re8N6F71n6fuWIWJTmRE7fTdpLP0LgnkUOCu9H+u9dBg/9905TbpxFdeiiHiSv/q2et9BphHZl32ng3DpKvZHa3SgfRr/ql+cxnpHkjV8wXsH4BfnwLPrtDfw48DS+YAj7byHtp2nf077DOI1fNZ7V96yUd5V/lYd9n6Mj+0G7Ux7WwS3W71rmP7FxFMbXUn7BuGHgG+dmfFs3yn03sbLnt/wY+pQN4jiNT9mofl27c8AfW0K/DXzvLN3U7yGfGK9uPPV643XA17hq61tP/+IqwNe/WH/jn7RbMZ7u+v8A33f91EeH72uc0p5Lfd8d8X1p3yM2Ltv7pfHZvq/1Bush/P+DzZwv3qt6MN+Tmf9CnM+FSd3nyr3h/dB74bfqT+BvpYA/RTqAj/pb3w1Sj6v+VruEdoXFyBcF9Weh38auF+a7JvTQ32oP5fpj6X/Viv17Pzn0Fe5Hxo2G8aS+e3iUczJ8/9D3In0/sjN4F9Kf0vObeThK+VzmpyZ4GF+wnfVXmPl9F/obVx3GWy/g/M8JHN8pVf/e0Xcz6Ve9mvbO8P8fQn+98H9NtrD+Z/q+Q6BfqgKf8H0g95P7LHw/4ijtE0Av7705OV9GeG/T/zaIT/D+4n1FPVlW/a9Zd4d8xybQV4byfzb2x17aL4PuW5Sv4VNlwM99tYl+w/2VBXru0G+JcXf1nYxA/qpF3vfhd8J/X4CudXyHVzsa/bVinvqR9/8GwvcAfCcgM+NJz/ifotz3u7V/N0N++4F566Me1/g++UIQH6H90fihauw744eMJzI+3nh44+NTcL6kp1x9mvzvZfjjedbjNt/hJq1D+2997430gvKg+nLWhfZ84/08f/Wf9F1C/Se126ynf9+tbkr/+fQfiEWp8cvh/Uv/KvXy+uOp3/Td5kOk4fvNHeF3paCLcuUU2od2aeMjfP9zBPCOqefQz8/9r/0XuNnRnzwPfN8f1b/Dd0h9f3QN+085Vz2gcm5T1tfXyEXhfe+i/u7guxw4x9kft8D/Jukm/TXy//9w1Z8+Bbyt/o9McJ9R/lfuN25O+b8k9Pd/YUJ/Nu/fw4N7uPMf/l+B94TL5HvCP/1fN//nTXt76B+gX8AsUuUB5QPlhYHyU+ZPvdUK6DWR+U8LXb0XpiYvf1I/o16mP3n1M7ehxy3SgtA5M+W+nzfhPv5p/wX3o1u00z/F95fHBXKX7y83o53xgsYPjtB/gPbN9Wvw/5Kg84vwhyL05/tRvidVh/rGvbwCvx1iPAT09X1K58n48bfhb1npz3dg3qR8B+Vx3mfop7J2Y84X7/0XyC8K3r/T//w/8o+Av36JpfSHB25Z6CM9pNNa8tJL/zP9ivVD0/+sOe30dypJ+SDgX+P8n0o6gfluCr7qX7zn+I5PEfiL8a3qN1tQ3lL/Fc5T/4cl/P8V78/6jyxHnvB9U+2uvmek/fVpytU/qXcK/38yjJevQjvfx2uvfYL9/pVxSuRz+l6e/4OlPYR+crO+7vcOTE/oMxv8f+d86Uc/YXzafva/9qGdsSg1/tT/i1ntOIG/iXlLBH2M02zP+a/ffxgPcAX4+nmvAO9T5MP/G1L+nsf+COM/PL+MP3e9GM9vvP8A9ffwJd99Cf9/yvdYfad1GfT1/52ywJfl2/mZp1SB/tv/4yrIOVDT/Rn4l+hvYnyq7wds0X6t/lD+BL21Y9YP9KufQp/xyFXSPYPxLcH7aw3hx8rTb6pHJl0ln/T9RP19+T4NfGsbf8L6Df9HTn/qCdznloP3Asb/tv65fPd+7X1bPnWR+XCdhP9X5bsogxnn3Xe2KTc+w7gM4zT8nz3jo2/CF9LSzjj1lfR3hnVyzXhQ4FU2Xlp7cXA/ycz6+RK+7Dsavp/Rhf73IL/OI+/+Nm5Hf0LjdtaxvjbrL6A9k3G1YP7kd/I/+eFF4IX/B+k7SL5/NB+8lzp/5JVPXgnu096vfZ/pKfiZ55PxUsZHvYz84/vRBaC38Zhbmdf97Nuk4LuJce4h1Z+wEHB8r9j/1/N/9VJRT/+kq/T/Y+DPWhn6buReo55CPzjv3/5v6Tjaex9NQvvw/678H6zJzM8p+JXv+sYP7C+N+O67bTPUz9Gf669VsA5df3FB3KxxtKep5/vovov+K+vQ99H937XV2n1IfR+gBOVtqb/F+H/oc7//rdC/cBf74zb4dSUdwHgzMj++n+b/Nfj/DN4Hk1C+y3s05W9rf/Q+BZ7bScsy3tHwkXLk1VtNhZ9MIzU+0fuy9mnt0q8xLu3T2oOeAR/9U/XPD/1zw/8/asx+0l+6CPQ/oz+WfILx+X9RtYD/BvykcCxKu7Oefd9N+3Z75ucdUu3d71P/MPnCwB/G+gn9t9aw348Yn4E8sYU09LPx/z19T/UKef/f0/gE/QOMU7jg+QQ/Wqz/FKn+zW8xbt8zNh7A/5nRf1d/Xf0w8qi/ov0Y+M8R8vKTleD3IPtqAHQpCH51kNdXqFegvADl6jPVb6rv9L0p38coD73OUk/5S32J/kn6K52gvA7lO7Wvkvo/Vb5v6rumN6nv+6aj2Q/f6f9I/prnA3CeIu87GP6fcfj/kP6fiu+D6L/su9b6Lfu+tfKV/2euflf/gtAepJ3I9x18T8v7SWr2k/cT5W7lbeVx3wNtwryqn9bOcQP85sCf5O9LwPcL8O2C/KL/6ZfeB8GnNHn1r94PX9MfDPrpN6QethblPaFHfe1N9O/7hOqb1UOrZ1Yfbfz1Qb4bd61+Pnx3ti5wUjxxb3++k2i/LSjX/16/+5zkfX/tfwDZ8FCveJx1nXf4z9X7+G2KZBNvvJAZGQmVPZKEkEpGVvFGlDJC2ckImYWMrLcRkhXqk52sRIWM7GSWke17Xb/n4/G7Lue6vP65r/M66z73uc99zrnv+9zPCekS/b/f6WIRHFUkgk+WiGCGbBHMCMwEXFMgglWzRPCp/BGsTrp8oQg+T3pr4QimzRHBXkUjuCtDBHcCN4FPUtovkyeCmen354IRfIP2dz8awfP8X436A2m/Q6YI/gJ+T5Fu8ngEZ1D/N9r7FfhX8QguJP8g+P/GeKZCr3zpI5gIur0qfqQ3PhLBctkjeIhxjYC+KRn3nLQRzEO91eCXJHcEXwCvpKTHkD+FdkfRb4mstE/5r8A/A+224f8Y9KlD/RrkPw2dlpC+yXjXMv5N5Fcl/yjzcizgixn08xDjzwRMC6wOfXM9FMHMtJ+bdGfaXwP+6Ui/80AEUz8WwZeYz47M+znokIv5qUY6O+0vIX2oJP8znqG0/w/po9SfmCuCBRnPA4xvCvjPhj9/Ac/v4O9U0HcO+S/R78a8EbwJ/sf4fy7tP54zglXENzP4Ue4x4C3q/50iglkeBF/wyMh4TjGeZ8jfB17/Mb6v4d+19L+UdHLab5kmgjfo923SQym/ifRA+j0JH7uOOsI/dah/LFkEZ0O/AsxnAvXzkx5P/32gw4+U/wT6t2D+SlNvEOU7Mu4vSb9Puh9wcvIIOj9TY7RPu0fB8xXW5++0/yh4bGR+y5F+jvY6UX8u42tF/034vyzp72l/MO3PZf7KQLdllE9JuWfh7xHgvxl8RpKuTvlNlE/Mek4OvSoiL65Rbh7lpoDPxdQRrMe6+4ty+5m/HPS/mH4fId2F/s/yf2b+T069E7TfCfp0zxfBseCTBvxm8v9ntFcMeAT+fJD10Ez5znrsR/1J8FcDyu+k3yLIx+cZzzvU7wx/N2b+jjL+v0kfJN0IPHoiV0qQ34P15PooQb/xzOcN1nd70megR2XKp2K9nCL9DvRT3rXPSDnyN8NvK+k/FeNJxfjqs17qArvRnvvPGfaDs8DJ0KEV9KsDff9lXC3BtxnrKy18WZt+l4DHPuC5JBGsSf0q8MFx6DIUvkpCv0NIX1He8H8m8HV/HwZ+X9HvKeB3jHN9qQi+HItgB9obRLkt9P9RBBKVo/28wG8Z3yj2re7QrQj8mIZyT4DPfGAZ1tcRxv8o6S2UP0077yNfSpM/EPxGkv8O83s8ZQRPAMvQTzbK7+d8UBO6Nng4grM8t4D/HmArxhtj/P+jXFb3L+ZpDfj9zHzEsz9MYlz/QP+U9HdQfGjvLcY7IWkEr4P3HvjB/aI7638pcvE//r8GHAj/fUx70+j/Cvx9NlUEP2TdPgzeO5i/wrTTAjqthq6pWX9fg7f0zm+/pBOTHsp4F8A/d6h/l/37SfBax/g3kp5Oug90msz/3WhvIv+Xpp/JpOfAv3OYt3q00xF8D9HOu8iTh/m/PO28CL2GQN+vKb8HOscz//OZ78KkbwOPgN8w+G407b5Hu3co93AsguOgyyrSdaHPp4kj+DuwNvI5wXUIP7xFuh38UsL9EfkykfQ2ypWCPrPkS+A6z2vgt5R6aUh3KXjveMV7PPuOciCB9rNzHl2kfILOayjXjvw3yH+c/J+g9xueb+hvOf8ng3+fgn/LAcsCtzHfSznfJWE+EjGfPUhXIb8qsDT9/w7MzPxdZJxVgPnB5xD15vF/AfaBCYynCXiMob0ewFmBPFY+T4COyudPOL+8SLkv6ScL6zMl/XUj/wz9PQWdzlO+EOmMlDtN/brsfwn8P4L6A8CzS7A+KlKuA/XHx+hP/EmPhm+eZ7/vBR6poWcl6n8k/9D+eeRBK/jnOPKrA/12BJaD/oWC88V88J+KHNsMP1yAr/sBD4Dfi/Q3SH4jvZ72v0QuLqLd9MiX1Yx3DPhL18+Zr8P0Xwb6JmN871G+OfxbkP3wOf6vTTvtmP8X6e8E+JVCDhen/0Hs1x/R/mDShZAfSxjvAvJ7sR/1g/7JKJ8YOdGW/KuM90nSvaj/Afg1A59G4P0+567VzhPte79OBkwa3Le975akvU85D+4K7vcpKO893/t9Z/bteO/jtNeU+R0LvXrSfl7yMzG/aRhfqpT35mcnvxLpM57nSb/H/BaBboWBGTynkX8B/jsPfqXAo4ryi/PoVuj9NOkF9JcFevWGL9X7xJO/Gvp3Yp1+zf89oc9N6QudPBdWAo/tnnf4/3Xau+15GfnbAdiS+X2XfjKTXkx7c6GD598DzF9q26PcGfgjT1wEv/RcR35K2s9Ge93AKytp73kn4ZcxpPN4f6e/dPCL9/a24PMz+cPpz/XlenN9/QZfpKNd5foq+MP9o53nMebB/eND9puB5JdCXpdnfFM839HPIMo9Q777p/vmcfLdP1sx/jXUdx4Xk98h/b31zkLHFbR/lXX7Ffk5yD8M/yRm3k/QbglgZ+Tzbc4jRZHT6n/UB7WNRfAG6TdJt4J+p+FP72spSF8hvwjrJ+a5g3Rf71nIz5ng/ZH3YPLdV2rSvvvNWvAvz/zt4P/3qHcH6P0sOfT0nrYX/p6GfE/O+PaTPxr+zg8/7QSP99mv2noPB687wFzkV2D8L6qfgH+PeM9Cvszl/4X8vwF+KEp7DRjfH5RrSHo/9Z2/jMyf+jznUfmsflI5rXzuEuh11VfVhD534cvxtHOH9ATk3y7G1xK8m9HODfArCT2fp7+9zMc59bfUSwz8D/7ITTuTOa9PYh1eJL2McagPaQ3MTr1a0O8o5+IejOsi6S7gt4d0DurlhW4DPF9B32rI8RvMawno8zv5WTwvgtcq+NP7qXKqNeP7hvzKyIeh9FeR9GzSvaF7afA9RTvtwaNDLIKLwe8L6J2P8h35fzdyoBrjHAB9PL94bvEcU4j5aeE9n/8vu6/RfnfWx2Dy/5SOyJ+yjD8D7V+mXEnGPxq+zkU/M5GnL9H+XvjN8/l8YHno0xe+cX8pBbwFHuoLB3KPnKOdhf69d/7vPvfPEvDrXO83pDtBn+2eD8mPZ32WID2J/esg6ZnM52bGexn8c5N/E3mvXncg7anHDPWXpSlfhfp7aTe9+h3wC/cP959k8G8P72Xg9737D/xTkH3PeXgX+n7H+Uu58wNp7Qfn4efltHuOdCPmt3Ysgg2pv5b2h9N/IdZnLvorTLoefOj+mYT23T+LM/7dnI8f8t4mfzDeh1iPG/n/P9rJBf5x/P8y9UdR/hH1BOQrr5Rffamfg3GNI7+p+mn4Zzrnp/AcNpz18wrle/H/DPVP1O+C/C3IuikP3W5Rfy3ruwL/p0SO3iZ/NuNVP/8D67Uq+KfjPKR+Yg7lq5HfiP0uL+Obyjiygmf5WATTMA7PVWXAJ6v7GPS8hJz+lfafo/5s9YvQay7tF6L8J7RzCPw+Jf0I859efT1pz0HPw6+ew58jfYZ0qD+axzhi0L8GeL0OvtVJzyKdjXRG+rsG/6+G/jPA/1vyTyJ/EnvfZ19PG+zv+Sk/Dnmwj/9/Bu+J9F+T/y9SvgjrXf1/QcerHQy8TgAPxiKoHbkl6+469b2/aycoCPQe38p1BR5tkSMvgU8B1ov60TaUb0T+P9Dja9orwLymZnxbkX/K5wTtJMjHtoFetCP4qz/9gf48P2ehfEbaXxOBRLfI7xOL4BzaWUv+08jp+ay3obR/gf3rWeRWG9L9qF+X9at8zAJ/XqT/l8E7Oemi0GUG+9N1+p/DOBrT3lbK5ebeqZ77DucA9fEl4Qf1HE8Cf6L+Gcbl/j1Nex38OYp231S/wv+VoP+H1O8D/ACY3H0XupRinDO8v5CORx6pnyiMfka9xV/wT2Xam+M5Rn0d6+ZD0t1JdwJP15vrr6HnUfI7ed9GPq1gnrowvzuQjx8C+wAvQd8lsQjO5fyh/j6e/GbQzXO4dmL9LUL5m4/8Ju5vzHcov5uSf5z5Vy/XCfnjvSqRdj/kQKhfb0u9y/TbjvRJ8isoD+l/lvYh9Rzw2zP0o/6hH/Mb+k/oN7ET+p6ORXA58KbnfdZDOeTzYOA51m9r+n+VfbESeM8h3Y78j5iXF4Pzf33Sp9DbtwDPguw/2kF2Q8+b4H8YemxifW+HHlUp/wvt3gYqv54lrRxTfg2DH9eCh3bZyeQ3hB8nUa8h48wBfcay3uLVSwILgt+X8IvrWP2k+pRCtO99tiL1etN+N+UL4+tOehf125B+ALq3Bdby/uv52Xs58ugu8y99pese0tK3BfT5i3N5Ke2R0DMJ9H8BvvmbdF3Pp5T3/u0+9yryNR/7VT3Owe4TJdgf30UevQOUzuO9z7B+BzMPHwEXQp9tyHv9tbpTfzbpH7EPSTfp+ALlasL3CdyLTwP1JykC/sWh1yn9hkhPRR6Whq6hHNX+9bJ2P/0IGH8u92v4cQzr5Cr03aTfC+OdDZzA/I9B/upfNJp0OvB7hf538f9K6KL9fyZyaw94bGAefiX9OfvLBOALgZ6oMfU/16+N/OPg+afrSv20/jfQoQX/D2Wc3ptSgN9C/Z9YR1nh7x8pV5XxaT/S3q/9KA3nO+nr/UT6Hqa9LdppgTOYnwTkm/vI/fYP940GjM/9o2YsgseQe/NZr5sZ3yDS4T1T/WQF+CoR664J4/gB/OT/GZwbXQfyf1X4W3vGDPj7fdr3POL5xPPKWNqPQx/fDP7RvrAO/mvO/68DF5PfHzybMm7l61LoeTjQV6i/UJ+xUP9K5JP+d/rj6X9XDn4tyflG+aq81e7xP9oL7R9bWd8rwS+XdizoNwx8hwJHMB/DyC/KumgOHftR/wbjV6/fl/F9Tlr9vv6Rw4H6R+ov+XagHwjPFzkZ98EIJEoOHncZX3fkyUf6k9F+M9rXf6mxfgz004v6teG71Np1KKfeUP+ZA6Tns+/oPyNd1OdIL+mkXflL5kG/lHPANuzv75D+lvJj6e8h5ZR6UehaH/5NRb11/P+N8w+et6m/VXss5bOC/w7kz0LPZ9AxD/Vb8/9q5q8f9XPSf3h+9Nyofbc5fLWUdVKP/SR5cC4ZDv7LKF8A/urJ+q+D/NF/Vb/W5p7fqa/+PgP4XUMebNe/h34HsF5eQu697X2A+rXofznzMx66zCF9VP8S5vskciSOdq9Cv0nw71v6fdH/IfBrQjol48kDHvngT88FOygXng/GqC8kvQi4Avx7Izf120lQbwi92gX6yFD/dRX67iR/Ov3lVL/E/epdYD3wP0v77q/up+6v35GvPiQZ+HZk3AVJj2S+j0PHaoznGvVjyNfuwA3Iz3TqK+HLZ0hfAL+ZzFMG8N5NfkP9PoDaz7Sb/UX/z7I+89H+V9oDmceb0Kcy7b8MvhVJ/8r8p0Pe6pdUk/+vAK/S32n6/4D6OelvOXIllDP7qF8Q/DYzz31jEXQf8Hy2hvXlPUP/ixaMX/3aVMp/zfxU4v+/2d/zQ8fK+h/cxy+gHe3PZjwJwE/Vx2vfDeizXnsf4zvFPLpenJej9D838MsNz3M/Zr03vyLjUB+4D7mrn73+pdqrXmF9DFafyPrYBD5Fqa/d6Qr8oT2qOPTKD3+0B4/TtJcH/vf86nlWv/e1zKv+Vfpb6V9VmfFkQ/5lzXbveD8n3VS/b+RhS9I1yE8bi+A6+nmV9j03qvedQXn1vy+Av3rkUH9c0ns29EqmfZP5fRm+GUR+Kco/Rv43nI+9N2RADnQg/xn1MdAzrX46tPex/lDUn0h+b8ovoL7vPsL3IGU4f5QFdoI+B4CJoPPv2puBKWjf/WAm8qKnfBr4T+ovqf/kFej3XSyC3gvD83EB9m39w08E/rXTkM+NwMN7cXLwaU75mbT/Ifj11z+Ldau/qu8dfN9QnfwizLvrWD+zpQHevlM6QvoO7Z30HgW+jVkvDdmPX9Pvifb6ay9j/5/G/KjnXgH9uma9F1/l2zzotYD7RWJgHO2uI39ZLILqN96Vjzj/HIE/fRdxFbyPML/6f+vvrf93C/Kb6odFf/oJeA70vVAR2t/BeNRH9wK/xJR/Dbn9hv7/2vO1U9Cf5xXPW74f8tz1uv4N8Kf+mw3AZzn0df38B313wA+en7ohP2fT7nzSp9XHcG7U3+Ms7eVlPKH+/0PlEvmr4Bf139MikCiecnvhS+26ob9xOcb/Hfew74GXtecin7Jxj1jvOxz678H8u/5Tgofnd/cD94dGzP9s6JnAeB/g/9q0m8D6fYt89deZSD9JOfXOb5If6p9/g94P098N8DnB+t/sezXoOIt2h5E/jXWXjXFNIV3L+xf7X2PoNof8MfSn/7d+38PBU//vBPh5GPua95Rp0NN3Cw31lwzeL/RjfpNBryaU/4T1uYn53gD8DzoXYNxpmN/q4PkgafWeLRlPHv03SHfyfMj5rSn026C/O/kHGVdMvw2g/muVmR/t21X4/xPW1239Kd0fGP9I6Oe7It8Z+b7oBeo/qP6edidRbjf0ycb5Yi7066bdh7Tr0fXpeq0Af/di/NmYjy3qqe7jXzUG/ixKOg3t6v/gOswG/tqTtS/Pg57al8eB34vw6ynOb5kYn+9NfX8avv8J9dXK+bW+j0R+9ud/7aXb1Pfzf2bWzQLokYX068xPd/BKwjjW0r/rYynt7UCfV5L6n0DvYYwjJ9D3jaF/dzna8/1aY/jnNfXk4OE93nuG/PeT7yBJH2fdXGecDRjf89D3H/bfpczDOPbRD+CP3ayn4do/SOu/mkK/fOj9J3AE83mM8cTBT28yrq/hjyPkH6Cdq8jpl2jnPPn66+vHXyuwL1yHD/YE9oayjEt+eYzzSDrWh/YX7S6hvqMA/Nza91CkM6v/Zb7P+K6V9IO08wjpTYx/N/9fIz2WeXXf+Iz8HOp/afeQ9hP4qS7la3Bu0t+rKeNJoL5+m6F9rDDzHwd+i6D3aPDKQL77723que/29zwGXrfgi+7QNY75XcL5Vr3WY8DBwN30/xftar+4CfyD9fcS/KEe6Dztv8r6UV85DHzOki7M+k9Lurd2UNKr4Iehnq/BvwTjT8G4GvN/ZvY76TWL/PPqU8BzIXQcTn/aGXxvq31B+5r2oa7MZ2gfysE85OK8on2oAPLgZcajX9dx5n8X6WPkP0m9IeDvexHfkfhuZJvvh6HvNOAW8G9De8Yz8H2RcQ30T/tc/37waA2dRzF/O5iffcBWhe7FW7ux7+fmc//QjvwT+PRkXej3q3xZD718h9GL8+JA1ov+H/pb6AcyNLhfea/qAn28X/m+60Hq+87L913n6Detemngu8yP+ux/A/38LehfAXx20r9+0uOD9em69Hzs+nRfrEV/8cjXGtBH/bX3lenU8/y7B373/O99QPnzL+M/Rf9V6a8g9HnA/x+59/+lrA/jBRg/YCj4GD8gfK/vO/798g/1z9HvdfD0/HwNemjPGg/9N9B/NviuAnK9ENB3NF/C3xV8Twn/9GQcewN7zavwu/ZH39f+qH4Vevl+5hD3y4Ws//zgrb27P+OpCt5NzAf/ouDj/u5+/xDlFoPPP4EfWzH9VZhP/eL0b3G99UH+aGdfy3lhHP17Xr9AvfrcH/tArwm0W1d7OXyg/8xR6Os7Iu17i/RjRr5u95ylnzTthfc9z6OtoG9X9SnguZN+NpAeoDwGnx7B+eJN+htHu95fvNfkJr8iafXvncFP/0/1+/qB6v9pPAfjO/xIeeM76C+/nXPdq8Yv8T0+8mGm61Q9OOtjGPLB/dR9NhH8qz5U/ehY6qsfDe/vF0l7j88KXsbp8J1POs8TgX/A5eD+r50pqf7ArIPCpH3XoF9VTdoxfs0t+Em7WHHw/4z+f0N+xNHPYeieG/r9qv+c+0pAH98t9uZ/3zMmp/77gV3O++9W+nF/vhT4XbtfF+U8rl1QO6H2wf70t8A4HdB5BvXPMr5BoN3C8yvzf4ZxnQW2gF+uqIdAPvi+3PeFvjN/WnlH+b3Bff53xqW/mO8JfmV/2sf5phbthv7Wtem3knpi/doYf3nG215/GNKdvc96PolFsJF+ifDzB5QfRLvNfeeo/cXzspB6izyfM/4faHcj8zED+uyHfkm9zzIfW0ivRt7fZZ9ZRVp96QXWre87fO/h+46y0MV9/yTya6T+BfCX+orX6PfpwL9ev/rWpPWvlz/kB/ljAflx3P8bqidHHj1OPw301/X8C36b7uMPqp9oEfjjK/i/EnTxnd8y9Sv38R/ZRn8nfN8DH3i/SAT/f+r7YfA1vozxZl6j3/7Aj9UP0/4A7i/LODet4Zz5N+MayvxdU78BHXfTvnJL/1D9RZVruT1fQBffr2U0vgv0mQc+u8j3/XYO+ikNvKT/ovdn6NPU+4t+4uTrX/s+sHvgb6tdX72y9v7b+i9C9/Lg9Rvzd472p1DP80xq+Olz0jeot1H+9J6rPyXzot7Fdxa+b62NvMlLf8Wh27dA310vIX2H/nbp/06+fPkN8kJ+fTMWwRPU8x2l78P1l9NOq11Wfy/9Q9tDR/2e9RN9yXM1/09Q/6Z/HvyXgX60M2pfLIF8HQpdldPdwGOQ7/60awT+SdVYX3eRY0/od8n8jKf/dfC9crAw5b4HH+kzEn6dq73X909A3wU3YXzvuH6Zj0dop9N94jttAw/jPJWHrs/od0T6e+0npF1vxsObAh6emwdon4WO46mv/Vq7dX3Gpf06PnifvYN+9I/+hPOR75BGIa99fzSLfpNTviX4NSOtv2Ia5ERB/VioNxm6ltOeyHzPBt9H+f8X5t132p4PF7J+PR+tgb//9h174M8TxqczLlPz++hnF0KXP2h3GvnLfcfB+sjJvjGK/3+DH/QHqq2+Cfk/BvxfY/9S36k+9JL+p+4b2vEZv+fv5aTVy30GPlnIV76sZB6VM8qXNL5X0v4pv+u/RLtfAMdxfvB9qfcJ7xfeNxL5Pj0WwQLQcznjeYD2E4PX5/qNqucl/0/k5xDwnML6PGl8ROrVAP8TnscZ5zHS1bVL6A9EfkvmTbu4flNLmR/jThlvynhUzen/bdZ/Z6D+IxnJnwj/GPcsjIdWAnpOApbS3q0fB/JxO3gbD0n//RPIk+qM8yTp5cyP/of6G6qv2Ub/rbmvxHmeZf9MSX3f9/murxn9hO/7muunTznf9/VhffnuvB9p76fag7QT9YfPtRfVBx/9OvXzVD9aE3n3L+PuoR2X/hfwv+/pJpD+k/nxPWI4jhy+T0t677ilR3byj4Kf7+F8L5dA2veY3ht2Iwe9nw3xvQnyuh7l3gR//WiM/6ffkPH/lE/Kpa9IK5/2sx69V+0lXR/8e7C/GIdmr+c3yo/QvgKeA9Rbah9nfa4Dn1fUg4G/cUOMP5SX8Wt/0e58Djy8x2hPMC6Qet1DtKN+tyzpS8C5nGd9X6P+Rb1LHHRS/+L7Xu2e2qG0f+oP05b/48Gvgfo06L09iHNhfItPKe95/WAQn0V/T/1AHwr8QfV/6wad9X+Loz3t+trzn/Beq/2ZfOOidGI8W9Wnw1fj2SfCOG09oI9xTbuT1v5XgfFt8J4E/sPIV1+v/j5TLILq742PZFwk4yTVJb8Y+QM41w7VHkK/7vtJKNdAPoS/vdf6nn805Vuz3kYxXuNczYI/nUf9D6YC9T/QH2GV65pxuh+7/4bydQP6Ut8fVWE/qcF4jS/8FWnfX91inQwh7fur3Miza9CtGvWld2gvUs+sftn7sPfjacH9eCl8XZRxqU9KRn3Ps55ztf963t0KffUf2478135eEnlu/EzjaRo/0/glh5jfFqwD95ME+DGMu3EN+bMDvjIO4RXkvefKE8hr/T30B8kOfZW/yl39OZW/xtM2vrbxti8xnkGsd+N2j2c8+0grH1ZRXvmwDP64BD1OMx79+y4Znxb+ugxfLQP67mkn9PndfTt4b7AZuj6l3tDzBfAG9HqNeVzJOvyF+t536usfRr7xWYwP6fvnTPoZIF9vgmdu4/NB1/bQX3+XP6n3AeW1h26DHwaARxg/2XhtiZxvzhl/eD4kW7uDcWy1P3SH/jWY95rAX2n3UeTRZfRc/wJ3+56a+ewNXVKQVo+nvls9+HT67wv9Rquf5P/09L+V+Tfe51jG1450V/Ub8Mcu5tH4tPqn9tY+pX6ftOdN34UbL8N4Ghdo3/hBxg3yHaP2Fe1+78ofgf2vMPTVbz70p68H3UaTrgL92mi/of+i4JnKdwXQx/fDxj/xHWBz8ocjj3Lyv/EyNoHf4VgE1bsdIj1GPynmYxf16njPB7/r0PN+98R28Ivn4NWUu+75jfVcgXmcDlwB/v2Y15zAVcjvleQfhX4HGF9h6LQd/L1fea/ynjWJ/EKMqwnz7/sL44PoT+952nO28eMusC9M0P+KcS5i/b8HfrfAYx/j179U+7t29/A90hm/F0D+UvKbsn5Ssr9+Rr+JSF/UP5p+MrAe2kGHOOqH/jp94Zd96jdZ/4eBxjmoRH4m5KbxaysxXuPX+u5duRvK4+veK5iPVrSv/sW46H5fwPnYRfuTA/u29m7t2I/Dv9vppxKwFfO1n/WjvaN7LIJ9mD/9Fg7pv6WdjfnZzHrdB/yUfM+/r7M/zfS9Felr9B9+b8LvUOif4fu5NMgl7yF/kR/ai8P4J6/T/nva1eEj7ezfMK816Cdb8P79DnL7YfLzcZ6oRP9JyK9IP1ugwwzorz+lfg5h/CHj9VQL5JPxe/4GX+NudYV/vpA+yJcV0l1/EvCXfxfx/zxgbuYnHXgno9xc+ilD/eTIb+Osh/HV//87EPkDftO/oDjrTXvhBMbzJ/X30f7tWAR/gZ5dwa8D81kSurjPJKW//uCfBTxKIC/aUO57+C0X+Kh/Up8+mfmsjn7nafKnGx8Wuhrv33veWtbHFM/nwGnAFZ63OC8aD0h9vufLOPB9Xns5eD5L+1fBpxn0D98fxIP3NPQbTxtnBfx7Ml/679wGP9/XZkE+qYc3rtE07f/6LfH/QMpNJT+D8wvMCPQ9zS76bwCefRhHR/bfCdB/Pe1eob/FtJ+C+fO86Tk0H+M/q77F8y/rw++QDEAe6oe+lHNgX/D7Anm/Xn8aYDr6U1+jHmce9baCv/rn7MH7BvXPbdkf9cM5YDwQ2unAeukINL7dCtqbCP7GNV4BPt+wPufTv3pc4wS+QfthfB7j8iwEvweZ/3HIrYLkG79yH3FBirEuCwFTuR7hN/njMHQ+7nsp7n/er2bDB64H5fFK2mkL3sY3XwJf+32DS5yX0oN/mVgEp/l+DHon+B4YftR/Q38O/Td8H6UeqCP9+z5qJ/yr36/+wO94n6e895fQf1/56Pt55aPyMp608auMZ2V8ft9HGbfKOFa+lxrGetFv+1XabWN8tQgkmgT0PuQ9qA78OAz8h7i/M3/yzUTGY3wnv19QGf48Bn5VkWf6j7xA+4vJP0L9DNRXTieBntuYn67grx/PRc+XQfyOqexn2xj3LfC9rv4X+TKIeTSOg/EbPgP/H5Aznsc8f22P0T7Q/T+x9p7A79T3B75H0D6pXdLvMr0A/rXgzxPkaz/Xnr7C99i+BzE+gfo79XK0exd5cFK/B+07+r97/md9Lw78F4yH0dH4WKxL7ZDaH32/qf+WfluF/B4X/a1nvbbgXuP6O0b7benvGPOYh7TroQr1nmOdDA6+d9EcftK+E8arO8X8pmZ+i4F3T+hTh/GURq75vqoT+Dkfzo/fb5lsfELS+ltPpPw69yfW70LuBX5HQ/3Ibc5dft/G793oT6r/qX6nyvnevldlfWkX8T2f/DYkFkHfQaRjnj9g/Opz1fMm9r2P8b2gm+/9/X7KbNLPIc//0V/EfR7+8rsdylXl7F7aX8u8/0R5/aCNP+/7Mu1lvjPbQfmn0t87vmPwo+87tMv6HSDjSfs9oP3sb53hA+NDGS/KeC89jK/G/8oP51s+OOL3LMCzMPxZC+j3+H4Cj5H3iW+i/au6+kH964zXw/nD+EnGTRpJ2vhJ6T2XIRd8H16D+fB9gO8CHoNuvg+ID/wGjLOm/4D+AMpl5bTyuTHrdifjKcL4zvmOlPYXqXem/8/IN7623z0yPofxtq9Sz/fAvg/2+xON4d/11PO9VxLoM5J93bjB/VlvV0h/Sf8z6MfvH2n/Cr9noT1L+9VV6Ksd+2P604/F+JA1Gd8B/R6pr/+K/jz6sRQzfgp07xfoN5XPh423xjj085oKnjMYbxH9A5UPjCeMl6K/le93vyCtnW4/8st4U+WRJ36fYxf5X8Ovezh3/uv7BMZfHP6eDv8a/28aafVXnpeM5+a5qaXxZ8E7i37/0GG99kDOa37/0O+BLYL+rZDb/8FH+t8lo33fvb8C/iMYT0r9C4P4WMbLMt6B8bCMaxDGO3ib89179NsH/GLg/777HPtIv+B8oX1Ifbr2Ie1F+wP/V/VAVbWPIR+zkz8aeaw86MV47/eOPhPQuA/GgygAfp7nPd973m+tnw3yzO8q6H9pfG7jY8wO7ETGx9jpeQXoOcf4XrmY3zzgrb1JO5PfP7Ge3z95zPjuyDfjM8pvvj9ZSdrvcfwLHiPg/9AeU8vvdRofHn7Px7h8p2ocAO3/39LcvsAfYCz936Des/rf+x5VfTT0bws9jH8T6r/Uexn/aCf0HwOeE4F+58zvk3ru9Xxi/PD5yH/jF+WFnsYxSs35KQ+wC+2WBY+qnvP1F0TeLCNt/PY+QRx347d/B3/1ZBzh+1r95rzvhv5znrfTkH6c9bCC/kf5voD62tmnQ1/jlxm3TH2x8cv83ovfgbkAf/o9mBTg7buIlKSVZ8YH0D/IOB5+37En63kv5dqTjmP8YTx0z5lPwJ+bOa/7XY5NpP0+h/eG9LEIui9pf/O90uPw4QPBeybjPhnv6Uf6uct+6PuftZTzHZD2qUWMpxhyzu9WPQwebdUL+d6Z+n6/rAnryXgdxmk0PuP8IP6E8uBn7VvMx1vwQS3+v0l9798vs84uIv+8hxv3823gUu1r4OP3x/zemN8fm+v7QPCro/8X+XWpv5r+jV+/n/H3J/8M+GgP0549WP929qeZ7If6qemfpv3Od0va8bTfnWa9DmT/0q/A7z3qb6TeXzuA+v8RjM93t7c4H/elfd9d+946jKd7Fnua340Nvyebxni+wPB7euqv1Fspd9Vf9WV+/L6k8fsmqX8HX7875Psk/Wf0Z9SfxPisfj97LPUqwXf6b+ynvt/H8Hz7hX5bzM9jlF9P+3/Q3jXaN56G8TX8zqLxNTbAP35Pzv1mC+3NR277nZLw+yS+h8jn+Zb7l+8jvohFcCPzrZ/pt9q3kR9dgR8Az9NeVb9fAfyG/l6nfu7g/up99grz0897H/NUmPXQSH9h1uV60u73iT3fgs8t5n8m438D+obnDc93+rdsCuxq2tm0P3QGb+3iC+D3Cd6TwXs7cAntfEf5Jb6joP9H4bfi0O8f1qd+Ck8xHt8v+j5Me632W+09Fal/PTiHev40nl087XcAb+Pb9Q++q+J3Vvy+Shv48X5xVv3ugn67YZy8icyL9rdJpLW/hd9H8HtIxhstoz86eL8G37/I/Fxj/xhinGjq6a/8f0BeL854nHWdedTPxffAH9k9ZAmP3WPfdyLfZEll33eF7ESWikchjyVZI2vInn2XPSFrlkdFsitrEkLZ1e+c3/v16hzvc/r8c8+8Z+bOnTt37ty5c2c+5dNG/P9vYaoA1s4XwFfyB7B06gB+kiKA8wIQUZlyHyYNYCxwELB60QC+ljCAVxMEMHOap9tpEj+AGYDbnglgvuIBzAN9rxYgH5imBHSTnxN8R5PRDvRnyBPAh4UCmKxwABNBX+KUATyZO4ATqde9YACLpAtgEvDPjBfAOMqtol4EdGWEnt7UL0Q7K4oF8LO8AWxbMoDt4Vdd8H2TKIAtobMCePuCrz/9S0r/p9P+YMolyxHAskUCuJ3+j6N+UfhQBv7WY3xLJA5gQ9Ln6W8f6L1H+Ua0lxX6B+cM4F+U+xP4IfmjwXMM+gpnCuAW6N+RIYA/Uu4r8A+j/1Xo7176MeTZAI6Cr3WQpzTIZ6Hn6A/9PxsdwAn0fy/4V5POkiWAy8H/OvypSvu1wD/C8UkSwBm0v5h6v1I+N+1tZrxXwtdzyQN4Bpiddk5nJB8+RsOnrsDdUQHcA2wPf49SPyXyuQL+LQXffOh5D7xToN/xSUn9dYz3l8BbtHuS8TkC/51nBej/KvDnpf/lwD8DeiKQl9cY3+zkp4XOvLT/AfR8D6wRGcBi1N9Mu/sYtwLQ9xbjtz5rAEdDR1XyD1I/MXy7Rv0+tH8X+jdSrz34DoMvC+P3HPMzNXR1hc7l5N9Hf0zi+wb6tYv8oox3D9rtCnyWcrOjA1gFOfyF8asEvjOkUzNvlI/voPco9M1nXL4QUn8v6f60e5P+bkN+i4N3I3jrUG8f+OeDv5l6lvkwn/whwC+BXeHzfvr3A/jS0P515KMs7cXBnxPAFshhW+RlMeORjPRJ8HSA/q9IHwffcNLFkd8o5Dc9MAMwCno3Q9966l2CH+nBnxN+DaT9EtDfB/xr+P4L+FJCR07kKxZ8r4D/R/KXIJ+58z2NZwjt1XZ+oO8+hc73SacnfyrfvyP9ADktAX0j0IcJkMeqtJeT9AjG6xe+dyKdhP7MhF+NoWss+BLTvw2MW3Paf4P58A35rj9D6V/R6AC+hn7OA/1vkn+b8m9Afx3krz6wD/S1gr6W8OMgeMqhb0ez/kzG/viBetOxQ+LAPyV7ANOhp76ED98BT4C3KP1Obr+hvzx4F6cPYD3oPwt/k0H3cL53p58XkK+VrNc5aK99dABzUT8B7S/OHMCO9Psf6k9nPs6DjoGkX0W+LtCvEuiXNKS/Au8N9MMN6LoFnpLIaRn5QbvTyB9B/4dB10XKNaKeenAa8qHe3kx99XcP7J2EjEcT+DuP8YvE3joHvAGcAP0tGb/6wG/AOxn6rjMfUtC/b6FzMOWcX86rrciP8+sq9H5L+dzM58bQV5f58Yl6iXFOyviNo9269D8rMAfjo91xHvt7Jf16i/rxsGvexz5uCD+1R/tRvhr0LaW9euD/DvkrS72i5O+Hjl+wD5ryvRj4csC/qsyfXtD5BfOnG+Ok3au9+w944kjPgK9XoDcZcCfj/Q7lm1B+Ce1fhP6+rN8J+T6S8kuc/6TzQ08mypWEfymYD79DfxrydzJ/tmm/0o+p4Euq3U47hZGHb5CHBuo75OsK6ULQ8Rf8u5ErgBWoVyVbAKOhYzPzpxzpya4ztL+eeVuPdbAh89fxOES6Lekq0QGsCZ6dzO9dwPvQe5v+1mR8agAXIm/dwbcO+naR3ki6k/sS2otiXKvQ7oeM7yLkpT5ydIH0AsbnHPh+Bv8j6ick/1X48pDvE9X/8PkI8q294zzXPuiA/ZSSeRvWZ8vR27PBu4L0adofwPezzPNnqef+swzycwa8e8l/yPhfAl8i5KM85W9D3zrkUz0c1r8vsT5koF/P08508LnvnUu+drr2+Vv0fyT9L0H5+JRXfvcwPsqx8htHvx/D38OkZ1EuCv09FrzLKPc38zcR9tIv9Ksz/JlL/mfUV59/ph6Fv12ZP5/DD/XLbuovQ18P4/sG2vmedqohz9fAvwU4lPxO6MV3GY8z5I+i/RTus+DnQOxT7Yc22k3Q5/yoA31rWJfGQt/n2tfg+x9y/y78TkJ+P9KfIT+vUj8b+Yug/1PGdx9yEkG5ztT/ifWyE3Quov4Y+pUNu6a3/YCeQeTXZrwbQW98+tmO+bEDft+i3YHUXwY/5yHvpeDLJO0H8KeDn22YB5OxH7eQH4d+iwH/YdKZyB9Keh39Wgh9O8l3vxMLPM33I/RnGfxbCVwO7EF7laMDuJ1xnIo8ql/r0q/n4N858BbEPlBfJaX8AehVf3WBrmZ8fwH6JlK/APVq8X0y8/gD8g+CfxfyMIr1cj3l1zD/VgFXAufAJ/cz7m/c77xN/jBgc76XgO7XGf/OjFd7+t+F9C3oWQ19qaDnFvl5wZMCvVcDed3NOGbTv0X5GcBttLOQ/r+H/DivfnOfQn/m8j0KvpSEjkHMz/zk/8P3duAvS34M7Z5CT74MPz6kf+6vJjJP3Ge5v9qBfMxg/a7K+l+edkdg9zUHby/an0H9e+jlu8DB9CsT9M2hvy/xPTtympX59x72w33m4TXK1wN/b76XY5yOQO9L0DEK/XMXudMPNgPYh/5/R3/WYkeMgL63HQ/4u5N2dof0xzT4eRq8DZGPfMy3VPSjJnTlp3/ltDso/zLr3zrkqaF+O9d77AX3BzdZf37SLwPsBb6a0dBJ/xqS/yn924je3QT8g/xN1N+HXGjfXKLdtNC/Gn7nhL4uEfSL9Bjkthv6obb+MtqJQ54OAw8B58DXl2h3Fnz4CP6khf5PGL9xzMMmlMsIneuiA/it9jLtT2P+FWb9/QJ6/4KuYozvFupfQK+2Zl5/AUyJ3q8B3h7MZ+dDbsanHell9Cud84/0KPKboM9Gkb+Q+duC8bgLP36jf0sioAu4B5jC/oB/PnJYhO+/UD85860q5fKDfx/8dX3uj/zPIt/12f309/Bd+9T9dUHKp6bd5shDW9LX0R8PGNcG8PMn12Pk8kX9Ou7jwD8UvslP+ZuB8f6J9BbyJ2qXun+jfx2guzTtXiJfefmeeu8AP0E+xqBf1Cer9ROSLsD8+B/1EtAf/dsFkd+KyZ+mtw3130IfXSQdTf8ng+8e6cbQE6d/GPrTah+Dtx36YwH1I5lvDaFrOvUzu/9Bv95n/kbqb4T/FZDXOL6/Q/3JJZ/uzxvQP5p0btqfwfhfpV4+6K0J/gbgry+dpE+B5zD0ddSPyfc7jHdb0p5HhP3Pnn81g39h+/wA8hhFvVnQuZn8cshzaaD7nGzkN2T+em5R1vMezw8Zj8bAsZQ7Bn1z4PsnfJ9B+ifyqzD+72mP05+1pK8j3+spd4P0Tfp7ODRudYC7oF+/7yPKh/2/+mO7MV7aDfmAd9B/A6jXAjq+1n8DvZ6L9g/ts0ahn/8GfxPonYp8ZkZ/daH+YfC3QV8dBj4CTme+FkQ/vIDe+YF6tehPS/Lzg78H+A9Bn/u5bYxbT+h6wPir78cHIKIt7TYj7Xr5CfimkL7IersAet0/u2+e7Twlfwj6pYPnuZT7hfRg+BcBfYmQi/qM3zTm1SPwHIsOYB/yS1L/CPWPgLcw/MmLflpAP/KR3kl/ekNvOmAr8HR1f8p8eBZ8+rn0b/VmXr2pfQ4fRyFfyeH/YuiKJF1Zu5/6rj+uR4cLPl1vif79rE/XX4zfch3n+jeA6tOz9Eu7Piv960j/3C+F/T7fAr8k/xz0qH/zqo/ozznoC/vvx4G3JfVbUb+W/ifke6zyBtwBfYX1V5Hug1zpvz6JPB6jnb7QYzxDYuTD/fk69uvuz8/D/8bwpQrlSoH/dsi/Wh96qoD/QQAiDvD9KvuIjtQfHx1A7aWBngfBny+Q772uSyE/3U/I32X0VAzp49BbkfLvU/4P0tfoX1/0e3Lyh1OvO/wvQX53xm2Q9hvy3RD50m9yiLT+lCb072/96p4DkL8U/fQK+c2lg/aX/Yd/8CT8nQZ97stKh/andZkPCaH7S/YxiZGXlnzPQf3EtLMU/VGYfP0fLcmfQHo78uG51RLSaZ2fyMci4BLgM9SvBH3ZSJ/Q70H9TbT3PP2dAP77xqOwL1zBeFyDjneNb4E//cFr/MtNxn8D7XuOXwk723P848yPAtg5S6lfHnnIzHzKD/7inhOH4h20F7QnFntewfeDpOP0pyAf7Wj3EPVqY199oZ0DPAp86Hkm+PKCLy98yoi9NVU/MvW0wxcatwQ/KyHPf6I3tT+vec7muSf06h/Unr1D2vOVvNjLW5G/hLRXEPga+OMYP+dTEuhxnjVBPtWbVcgP689CjGs1zz1JLwrFZ12n3hv6+5GPsPwqt23Bfxb9f5z6l4EX4c9D7N0F4J1D/q/0vzXy3IVxiqQ/s5Gv5Nh7dZHLHeiL5eD7En1QGLxvk1+Y9icy7p+T34b1bhrtZyf/gvFr4H2F/nuu3YL+f6zeIT8X8rhLP2zIP6W+Vn+rz2MZr3bQrz1VmfZeoP+LGK8f0VtHgWfdJyAve6BjN9D1Zw7zx/PACdQ7BP23tUdJr4DeObTvufV248MoPw85eNO4COAJ6s+nf0vZFxpnUI15MoT86uiX18A/knKzkP97+EXy45eoTrkI8PTne0K+HwJeA/9kxu096M1Dui79m4B8dqZeZdL59PfS/ylA4+J+Brp+u24fQb5cv3Nhv5SgX8dp/zr0fUg9/Rr3kPd+4I+En/EYz030ozf80W79jvylyMtHnncxbzx338R89ZxuJd89l/ac2vPpDeTXI78idvZk7S3jRoDlOO8pBn1PkPc14HkZmAn8sa5v1D9H+jf0i3aq+/00yPcU+ON6c0l/M/q1B+1/R/9/59yzGvbX255DMT6d0bPJgd3Jr8783M84tKJ+EvRvDfgxm35NpFwD8osx3sWB/eDvFv2dlF9ovCvyXFV/H/mLkacnpIuAvwry8jJwPHi/hH/heJPwfL4Df/6Bv4s8Xwd/auToovEcrINtyB/IujzIcwLwnAZept976Pcl0kNp5xR0ef7RX/8h41sX+u+A7w/qpYQ/HyNfRUPyrPz2pvyvpNehb7LCb/2z+mP1z55BvrtTvwX1PY9Qv1dF/15BT/0KXOg40D/1SRe+P4F+11XX2VW04/p6DPqqUf5T8tu7P3LfD78uRQdwAWnjFtrSvnELdfXfQ+9o+Od5luP4gPr3gQfg9yX60ZT5mI7yd6h/3nhO+pWUdqNo51noa+d5K/iaM9/+on8r3P+Snwr86cE/nPLGHxinaPzBQvKXU69bNGna78R8qw/9njP/ZXwA8hJff4Dx16TbG39svAfpVdRviz3yq+fu5JdGvrQHK8En7UTjb+4yb36Fz1Ho11cpd579bQzlekO/+681tPc99CyDzljar0z7ytXQkLwdQr8l8NyFdiPQryP0C+q/1i9L+78zn56Bz8eAWTyPQa7Um2F9WpL+eK7rPsPz3cfYN2XY91YL+bffg699gXnIzwK9xmUbj228diLwX2G8b1IuPuu78f6Wt777HesvYn7t4/t55GmcdjLrUh3WFeO7nKcX0YcdkOPa8HUq/fM8LR/j+LN+Asqlgy7j6c5BxwLG/yfmc0vjJ5hvm6Hf84hmwNfhWwranwjf99Kv98GTlvZPIv+bAvBvvEZ95Gszct2WdTc+dBYA5lF+wa/crwzt7z9CPtznu7/fhPx5nul5Zwz0qU9GRAcwE/uBRPCpFuPbh/J3jAuj/9Pp313W0dPUa0T5SvB3t+dy0KvfLnz/w3sf+eBja+b7efphHKPxi9qV4fMV7ctT6IeefL8Hvmn6o+if9y668P1n6F+PPHge9Id2Pu3/jtx6flIdP5T+9x4B+Dd+8Azpf8B/H7pe8d5FKL7/HeidYXy45/OMr/ESZaC/CO13p/2F2DvuS90HTqe+8T/P0j/31+rP8P2dYcyzE6RzUq8U9DdEntfTfmfmh/FCv4G/CP3byfgb138PeSxk/Aj68FPkJpPnzrTrvNTvoR9E/8cu8Gt/FgW+jXxs8XyL8h/RjyukY7x3BmxkGjoywo9X0XMvGl9qPATz+i/42Bp9lpb+L6CeenIhcLz7buhT7vOA/wPSGVj3RvC9AuOvfd0I+e4JPY9ID0R/OL/Efx6+O7/6gN9z1/B5bG/9laRHhuxH4zc3huI4jU8bBn/OK0foAc8n3qM9/dX6sft4D4fy3h9aDZwEvr7w8SPST0gfgL6jjF959QL0uZ8bYDxjmqfbPc78mMP80m5NB9+1Xy+h/4yzD8fXz+B7S/iekX3MQuirbVw5eI1z9f6S9mZm+K8dWpr0VvKHQm9P+PU54x+HvNQHbyL05RT47/nWIvB6vuV5V33o1U45GbJPwvcmIqjXAfi1/iHSxrEavzqd8YqknSXkz6T/w8C/nfKOc37ky3MBzwM8L7gKf1MzH9MAo6DHe5pTaa8m7S0iPzP41cv6BR3/ZZ7PYbd4bhk+z5zH+nEIvv6B/bOG+rHeZ9E/CWzGeNSinnGR4XjJ/Mj1XvJXun4yPr+hD7ZRvjH4MyCfHbEHjE8zXs34tAjW/TGUbwncTn5H+FUMeTJ+aBfpl5Bv47/uk+/4ev/FczPP0Tw/G0D7xjdmp7259HOs8ku/EuufRt70255mn12Peve1h5nf94yjABq/1hf+6j/9EfxXoC879J3VXw/ev91/oV/Vi62x540HnheKS47H+LofOEq9/bRXiH41gj73M+5vwvvp1ei3Ue5vgJ7Pd2O91N/anLTxKyOhx/tXl+lne/CXRn7UIyVJ9/L+J+NfAPr7RQdQ+RvMeaT3jr6FH93I9z6E9yPU096POEV/elAvgfc66d9f+vWMR1Xf69/T3gGPft400BvJ+vUe87sT6argvcZ89h56NvSv99sTGO9A+mv6abx+LP3xnkl97IMPtfdC8SlFQ+dLoxmvufpnkbfxIft1vvHOzk/yR5GuQf9TYN9NY3wLoX9f0A+Dvn0Z/lRG/gt5r5D55DzoLb/pVz74t5J0YujbAZ7H2ONPjNuhXAnj8+lnHucP5eYCw/Z7Wf1UwJPMP88vj5B+ZDwq46H//WPau0r7SWhnI/ITw7q1mHYLgqcu/b+CXWvc3WXSxjfVxX44A2yMHGSF/vah8xPPUzw/eRN6XqeecVSeL43xPoD3laDjHPQfgv4p9PMg6S60tx37xfjnVcznXOCPBz2HgGWA+qtHheKPHyMPxh/Hopcbk18AOchKfjXa7Q+e/dBl/NIN+JbO+/XQ9R35/3XvaALjuwt9P5Z+jzJ+GTzh++y+Q6D/owP88V5td8Z3J/gXUv4S9E8wfsn9W+h9Cd+V8L6N8XzG942BT6foXwPtQN8VoJ3F5Ht/tyf4bzO/vc87ALu9KPn9sJPGQP+/fkHgW/qn6f9z8Ff97H029fNe9PsI4AD69cB4GujVD3KD+dce/uRlXLxHF74/p3+6EvR/hH7cSn39X/qx4kO34/cH8macr/G9/95PBm9u2nsXOvtT3/OJV0LnFJ5P3IT/eWm/LeN3C/p6Qd8W4CbjN5mfl0i3ZTwekR4NPTmiA1gbfL6DMMj9BeW1z3KCZ5Pnh/r/Ga8U0F819L5ADPsu3xnwfQH1/ynqqf9dD+7y3fM/4xI8/zN+8F3jn0LxhK8zb/UvDqZ9/Uh5GO8Nxo3R/07g836Q94K8JzQA+t2/uW8bAF73b9uxf54Dn/GDxq93Y77Pgg91wK9d6vriuuI5r+vLOPi7Ub8J7U+g/d20/wN2ShLaN75f+TF+/jZ0KD8XsceSgM93B2Yjv+4n3V+639wT8q/vp77xTfrXvd9g3KL3HIxfvBxa/1wPS3vOw/it0j4OxfOkZD0ZRP1o9af+XNINkLNsfHe/6rsLF0PvLtj/daF4QeNgjH9ZD/9fhL4NpKfBjxPIVx7494xyYPwk6+Vt5KILcjcW/hq/WRoY9o8Yp1nHfaX6g/6VoV/PA0vR36VCz5v1/6D/3R8Nxr4yPkh/+DzvszBeq+nXE/KzW9775aTjwJeF8V8KXe63jbvxfaTp5M8Hj/6BVtR/nvXF+3euv1Pg7+v6R6hXAzw9oecG/DQ+9R3ajw/+E8zL5cxT3xPwHYFcxl1oP8OXn2i/ButFLeClkH5OHR3AB3y/RTnvf5R1fQjte+eD/0Xfp/K+AfSs9j4b8vhf94C8v++9fd/ZSBjyj+oPdRyL+b4C/H+J791ofy3y34j113j4LeDPQP2vSBsPPx07Jop87/cnMx4beoyDjUf9B+T3gX9bkSf9w2H59RynM/LovY8KjLP+/nrwZzj82M/3Pb7vQj39M2vor/65Duxf1rAPfAT8w7g79jvGZRfEXnR+h9/T8Z2d3KH4LeO1jN/qS/1Y+OH60YXy+yj/GH6vNT4ROuag/zLCN/01+nMOMr7zqXfGuEf4G+X9pqxP02/czWPwHsQe0K+n/+eg7+uwfuQM6XfjcZL4bgr1xtPf+/rXWb+Nk0kNPAU0/s59ke9hGYc3F341oN15pO+STs54RQIran+AX7txLWnfuVlE/3yP4ZrvDIlX+fuPdxeMZ2hCu3cp531M71+Kz/jspMYBMr6dWD/3BSBiu3GonqPDj3Ccifcwf/HcC7wnvAfO+A/UH66fhfk1j/wp6N/dvvdAvvuPbMj7MvC4f3d+6j/RbxLDOOo/+Zn6d/UjU+8N2l/A+K+G7hXG6XkfEv3fD7vM8yzj4S9gf+rXNX5P/25Rxr9qNHRiD+ykP63R391Yd/tix+3wfiH6I633dsDXBfpfhl83wHfE82rvZyMXf7M+G2fYGnzjvM+BvKQD7xvGj6Gv5gErQY/vjFxn39YVvnq/fzbrp/5C7RT9iH/SXnzff3NfQn3Xuc/Rp397rmYcDPUjGd/eyMFM4/ho7zT21WDaPeA9JfKNcyvue2HwaRb61fhr462Nvy4Gfb73oj9OP90Y+Oe86M38yWVcKvjX0/977vOMH6LcB/RfO/sydA+l/1vRdwXUf947Y3zC9zeGoL+8x5Hf97xovwDp9tRX337l/hN82tfTkWf9YGH/l+eYxnt4vtkT+fD9xM+oP0s/rHEe2PsfGRfMejDe91toT/+U9wPrAO95Dmp8Hf170XfymB/61R5Q/n/kd2J+3wV/POr7Pkm76AC6L3Sf+Jhx6Eo6DWnjr6J935Hxc/8etg/fJ79/6J0E4wProLc6A/+Ezh/BV4zx6cE8KAu/jBcvjj07SrzIWQT8PShfaG8W+jo54zuV+dEJfumH1f9ajvW9FeuMfnT951fZ9wyjfjLvKdHeUvi/Cjib+XALPMZzGN9hvMdy6PgKep2/PSiXhvZu0J7vxfoOnvfHk4L/MuUqKVfk64/xnrH7bO+nt4D/3pd/ifyMxs/C/23GgyInFSnXxvgXvnv+P9T7K9rT8PODyKfpk09F6Jf80/+UHv2znHLbjT+BvqPMt6+pn8t9rufB8Nf7jY2Y367P3pt7QTsSO2aP8xx6O0KH/opf6f8k8KV3vwr9jbRnkL9i1N/lOar3pY3vpL2vWcfWMj6Zmf++36X+9v2uk8wr35kKvy91iXllPHf4/Zk40ivIH848Ls941oC+K57bQ0dXxrMX9pf3mr23ehn6jLsvBb5MlFtAfd8DcF5X8N4A9HeGHu3z4vD1AvnXyJ9Nfgzj5/uZjdHfngs18j0F8LzrfSb9pNBRin4eZjy1K73Hb/yy7wZ8rr0fej9gFPpjgfEnpI1X+5r13Pgu472M7/J9Iu2W8aH7j8bdGm9rXNwA/erwx3XXddg4ubPQe5T8/Mz32eS/A70/kn/O9zLID7+/WddxNf4R/uhncZ3Rv+L5pe+i+E6KejiS9meCZyP43zb+m3EdzfwyzkH7tBV2zT/gTUra94gfgXc99XxfsCv0f8r8Kg79x5F345t8Z/At1g/9M7G+Tw295Ywn8HzO93PBb7yE7//eo/4Q70+7v2G98j2Y1cxvz7cOu27SXvj9TP3CfYHKfyztK/eD0D9/I//nQvavdt4Z8HtvrDL6ynuS88F/T38c/HuD8Q/bjzsTP43/TfB9Q/6H8NP3/0pj71fy/CZk/zdxfru+Ar9Cfn5m/WoK/beQw28oNw79nQk/yEBgC89lGPf7jIP3+z1f9914z9XD78e7/rruug6fIl0ZfZZDu9r1Dz70pb/akQ18z8i4H/qn3TgF+h+Snu37ican8r0A4/8R/DfufRzzcQj53fRHGZfDOL3FeOxmvFP5jqPxu7T3GetLjHY8/SvF+MRnvXT/pn88lvbTqF+Mr6J/7r8qYh+M9L1Q2vH9vcf4y2Pox0Xk8Tp0uN8xnsT9kPsf11/X3eyh9Tc5eL6Bj9d9RwP6rkKf52w3gMZ/NTL+FLyN0He5SCuv3rdUbkfSP8+/PO/yfe2e8E/+1KCe/JFfHdDP+iXD/vYSnhvTrxt8b0D9P41PoB/ZjVOgvRjWv+L6b5lPI+i//kf9jvohW8C/9Oy/rsGXM56PGx8PPU2h7wTr4WHXX/1tnt9Tfx7tX2X++G6A80T/XIz3IqID2BA8f9KfZszvvcDfnce+TwZftNOP+W6D52Pw3/uPvh/k+0We2+o3047Wfl4B/66iRzznqaUdD1/nuv+lfGf9V9Dle8p1Kfcm9P8BfcYPxMIv3+f2/VzfzfUd3Q2Mz1z6/y3jmBpYx3j+hE/3f6v3BcBjfIVxFcZZvMr4daB8U+S8jHE+8Mfz3Xuhc95+ofWjJuPaj3b9vwbtE/mpnaJ94vt0BaC/LPV9n+4C5X1f33f1V1Pf/en7oX1pFuMH4H9soafxzSHt+x2xjHMv79WBx/i0cPyw8Q9DvJdnPDD1mzJ++rXC94ucb12Zl8a9eh4xnPTd6ABuQT8a5+55jv5L/Zbuq/Rf+h6d57bh81zfxV0KvvA7KVvQ/2mQ+/XAxvD3B+ATxquCcX6eb5F+7H6U8vs8X6P/kaz/S6C7IvmrkddVwKroc98B8T6i94acB0Xgv/uVGfTnNPPH/y/RLjYOOPy+hfHyzck3bt73yzpDt/Hq/p/KA/2RfH8CrMI4Zaf+PPpfETy+G78gpL+MQ0nHfFKfGa9p/OY0/Vghe1o72/2s9nZS1pdXqb+Ddl7w/hH5pWgnHK/6Fv1xn+a+yv3ZVfedxicxX3+H//ob9T9uZ35UZ/zW8j2H90lIF/B+Yejeku9Z9aJ994W+j/MB67P7Q8/VRnt/KHS+1pZxuQb8HbiGfWYU8hP2wzzn+ox9kRL+eT52CX3h+0/5yPcdKN9/Oul5EOkFjFtR0v+1b1d+3b/1oV52+OL+rTr0ZHO/wDzZDf0VowPo+e2v4DtjHBh2fRbajYc+973MleitU4xzEfSs/3PRDn5mZ35HAytAx2bw+h7rTMeH/Nn6w40LNz4E+bnJfPZcwfenytDfKdhT3qvsSHsP4I/yVpD8tSH5qxkdwFpA3/cc7f0qoO9x7oHOTfB3EvLr/wqdEx/j1BL50C7WTtY+1l+k/0h/knFY3sf3nv5I5NH7+hWwex6STko/jzj/KO/7RsZ1bqP/M6F3N/VnkK5I/hbw+78r4ffVPc97BbzPAGOAjq/vgxs/6jhXQp9PQP6LUq+h78dS3v9l8f9ajoBPu9K4Kv2/xldVY71sDx+Mt/b98//ya2tnNoDvzRi/52nPe7D+75Bxrca5Gt/qvRnf0/V9Xe9X+H6G72Zc9R4c+YND90+8j6I/ZQX9853y8Pvkw+mv8QXXyW/neka6MjAZ+DwvL4W+9VyhDP0fCJ3h9zx85yMR5Xt6HuJ4qX8Yp8bYr76zWpj57ry4Gh3A9cCltPeI9pPoPwV/Ju+f+H4weJoyHnmhX/3sexC+E+G7ELPAb/ztKNoxDvc6+dnRh/4/yHLaW8F4GBdnvHAy9JXv809yfwC/PqX9bPKX8bsa6t8s6nuf3/v9+nm83/8m9rP70q2M75/amaH7id5XrA6/JjHv9Ft6/6KF+yPkcSD0+953JO1nobzxmEcod4183//w3Y934Zvvf/wG/9Xvw6Db+/O36E9m+LAWf8pQ329h/p2FjnKhODzf5/XdfN/R973eA8zLkqx/ZRmPoa4zrH/e828a/2k6w/c/WtGPQdAfy/h7P9v349JqX6K3LsPn8Ps7vltwxfMl5YT+R9Af3xEIvx9wnHr6y/Xbe7/8MvPTeynGAbSCPt/z9n3v+vrFqK897Pua2svax0fpf2vaVR95fuJ9OO/HRQG9n9Qd/vh+hvEZvqNxm3GLot+x4PP9TN+/1e70HVztz3C8+b/vTZP2/Y5jjE+3Qk+3Xz7y6f57z8X3Re9wHvYZcjWTdAHv9yPPnv/87r0v6Dvq/we6b6GfWSjn+ORxfEg7TmH73XgC7XjjGY1vNL7Q9+Z6sn6+DcxDubPU7+V+Sb8b+rsN/Pf/hcLvThhfFeaPfIlDPyRg/Achv97zeZ5yxaAnvD4X9P4++5kxxpvBh8TeN0X/6H/u4vuHxm+wPup/bgo9+p9XQndFoP9zlov52xx72fgK46r9H6Ayvn9C+nnSrehvK/TZQmBrYGn66X34evQvM+vBJMbP/x3Nr76Cr3V9nwW6zobsYe9v+b9c/n9LctLDGX/fG/Ud0uboE98j/Zz55f9Ihv8/Mrweu07PgH7f//HevPHxP5C/jfmpX/UB7aSCvqWM30H6fxI71PNp/4/VuM4dpP3/G9/D9H1M7Zvn/L8Y0toFuZif2vf5kL/M8M3/z4lCfrXPe9JeXu188Huv33dNTrCf8/9owv9nGL5v8A/jYzxoIfTNecqXB/9r5BufUIb2w+tTQ+TZ9+Jm0f8G3i9zv4l8HWd/5P/bRYTum3oe/T32uefSe3z/Efy+G+F7hfrX5J/8Wk959ze+C+X/12SDnr+8f4V94r3m/qS93+x9S+9fJjYuEPgQ/Wxc9FT0Xzrav4P8eO5vPIDjUZL5Wlb51h8C/3w/2XNKzyV9P9l4Ye8Vhe8b5UXevwV/KsrrR1iFfBh/WIW08Vg5GW/v79bzvN77y/TvZ+gqCv63ocf/FfX/RG8anwg9/r+e/6vn/+xlpr2hyE3G6AD6znwP+Ou7JMah+z6Jfl79CfoX9Dfsp//GRfRmHP3fX//foC3zaSblvaeSGvn0fV3f033s/T3q+3+b7re0L7Q3oqDna/rt/zErD96/8VwzHB+Yje/ewzlAvueMnpe9iBz38F6q6wP89b679+B9XyKX/x8DH5vDJ/+fYgzz5QH9iqP8ddp/gH7OihzojzwGn91/7Y0OoP/PJX09ma89gKlo3/dftGsO0Z7jb3zkE9+7ZJxigGnpz2ryPe/y/7X1rxjfY3xR+H5qPO1F+FbIfQP4qkG3+mcd9dU/TdhfbCT/e/Tsp74PwvjrzxhPWvsyLL///n8P9Zejj6Oh0/+XGAZ9D5nvLdATP/Dd9y9vSp/nY9Dt/2z5bmIF0urJ94s83V/7Lz8+ZP7MQS6M13ee7If/HdEPCWhHf5/+ZuOjD4TijNahHwYwH/oDfT9Cu8j/V53pfUXw+/+q4fe3YsCjPzsX9oXvJfl+0nT45750A/mjsQe2ur+A/33h8wWg9uhw9pvVpJ/x1x5tA38dN8fR8fs/MqAzsHicdZ11tJbF88AvIA1Kd7x4kW5FQgRBQEUBCWkQCYELSCklEiJdkpdGRFopCSklLhcQ4YJFKaGggkiJhNTvnN/z+XgOz/ny/jNnn92dnZmdnd2dnd03NlHU//8mFwjgSdIjCgfwi+gAjssfwHpFA3iuWACbZAtgpycCWIH8kcUDOJV6RcC34PEAjqLcrdQBnE77V0kfJH9q+gAeSxvAt0knAV+FdAG8myaA/Uknpf4O6Iun/J/Q8xn5cZkDWK1IADeQn1AigFMo9zr8jKHc12UCWAO8XSj3C3yko/yanAHMUTCAzwAPFKI87e/MG8B14GmCfFODbz34bsLP8ZIBXA6+I9AxNVMAz5K/gPp5yK+XPYBlwL/k0QDWAk/DDAFMDH1rkfdq4FS+bwfWoF4b5PU57bxeOoCz6O9tfB+JfPeTzpElgLnyBHAlfE6C/tTIby71ZiD/LyhXJHkA10DPS9BRkvqL4b8T7Z1FP5qXCmBH5Pkq9YeTrkf6EvxNpL0/0PPEtLMReW+HvvvQ15fySyPQ+5Bx1At5n4G+P6A3O/3zCumtlH8beu7DX+esAYyGrjmkN0DHY/Bbl/qFUgXwSfrnVlLKUX4O9H1Luj/tH6XdVvRXBvjbkTGA70B/DO3lIX8i5f+m/mnkugD+atO/yWnnKcZDHPk5kU9t6p97BPrBs5f6Q8kflDuAl0nvBW9d0k9B35vw14Fx9yr0/0T/30Re39PO0JD+rkP+MfkCeBK6aid9kL5foCcjsChwCfllcgRwAfgngH8l9D1FuQrAqtjHw6SL0p93qF8KPn9BP688FsDLwNXgT03/z0Qv21CvFvUuA/tjH04ix09pPwvymU9/FYLeH7WvpFcwrmdQ/yL17qrPyaCf9o9iZ9KjPz9B9yLK50fPyzJ+s1BvMHAD/dcceVSl3cvAzNiLE9D3A/XSkd4C/fPBvzcSwN+AScDTg/wljLePwLOC/BzoR0vqtQLmgo+26Pc4+JtFvcLoezPyl4L3LfrjGfq9J+33wp6X4Ht7yp+lf7OgH43Iz0Y6K/xuon9/I/8+8+h7tDcI+uYjl8Gke8PfMurPpt0B5H8KffuZt9OAvw/5Xak/gvzS8B+NPT1D+V20+yT9Ph65XIe+4vTnEPCMSxFA54MLWR+kLzPwAv3wGO2mAG8/5DKUdN5cAXye77lJ/0r6LPU72t+M5+Lwnwj9voddGEH7W4C54et32mvE90bgy5wygF1o5yPo/oz8IvCr/hclrf6/in1qD+yK/dnJ+OoOPxH4GYS8+0FPCfojL3Qup1zxEg9+75P/f+fPIP8V6HkB2Jz2v4kEsAr1EtFvjdHfydib4+SnBJ/zbCHkms11GfmVkb/juzZ4X6fcz9DXivKbsN85+f4F9Y8lDmBLyuUgf4Pjn+8pkdMS5PYY+U8j36rQsQj4MuvHReDLTfl36ecSto/97AX9vckvQP4s5O66bDP20/VZZfRxH+Uq8z0lcniD/iivPae9yvRPGuQ7EFiG8VSJ8ruwJ6eQwx7SmeCrCPq7hPYLkF5A/mzsR0r1HjmmIt0C+hejv7tYT952fqa9xdT7jvTj1G/G/B4N3TmRXynkNwF6nkfPXAc4/8fwPSv43iQ9wvnX/oX/EqRnIt/w+HmO746TZPBzCvk8z/z1MnSE+zcndNyCPvddZcl3PzYF/ZqNvX2KeuOZX74iXQb7+STwF/AUo39WIvdo7M1Z9KMP6V7Y3a3U087OZvy2Y/13JAr6gBUYJ+/Q/8Oo14d0Lu0B/ek+JoZ26lO/FPJtR/0slKtI+7vA5/7yIvXO0v+56K8Wro8jAaxOucXkz9Fu0/4s8D9P/71Hfj3WUy21v+hffWBbxtEO+DuMfHvS/kDofJ/xN4z+34ueNqTeXeTfPqSP6ucg6MvM+rgG6wTHWXHKD3B/SPu1oecH2r9C+xcpf5H5ZSTymUn/JlB/PPro+KxCe08gj/PQ81//op+1yE8M/Zmp/y7pBNrfAP4b8H8C+zAaer6Eny7QX4PxsEO7Sz8UAH9Pxz/1aqHPl5DfGfCfBa5XzxgfL8BPX75noL1t7neYb0uzTh6oHQd/b/jZAr1R6Ot8+LuBvlwH/gN83/UNchtE/Y/kn/EfFwngXL5vczwjr8zQN4J812k/I5911P/KdTTpXrSbBXtSGnyTGY8toH8S42MR8vsbfYqH3rPwc49+7osdOux6jf5x3fM4/eP6557+H+Ad4CHoywPe09TPSfpe0QfbtT3peRn69mN/mtBPO+B3HfiHIZeJ6PNrkQDupX5x9DsWuV6j/FLKT6X8BddPjNM3kOdOyudCjk3BMwn8+enPdOj1Zua5o9BbH3obUO9z+LwN/kXUv8r65xD63An8b9J+YuRdA9gXeAB7NwV89aGzP+MjMfW/Ij8rMBP4G+M/uE36InQPwT5fgh7Xhd8ip7aMnzrsVwoiT+fXWbS/BrmMp35J5DOK8XERf+db2DH9oDOQ007s3Tm+x5G+Sv8XYr31B+VfAkbBz2zGfQH4mkt6EXRqLzICt9CO9qQ/+qN/owRwI3Lcj3wmge898EfB3ybo7c4+ZDZ0NHb9gf7vsJ+AE+jf2uhjAeRXTv8U+KvyfR7y2Ej6DvTlor13gecZdyfpn67YizzoQU/4q065Zoy/WuDdjVwTox8f6u8QYj9Ok9+QdufBb0/wbAP/JOTVifpTSBckP7z+7ow+xSKfeMbXDWAVyrVBHh8if/ffuZBfMvj4lXarUr4E9vh38o+y/xjkuE8SwIzkbwTfXuTZg3LrGR/LGC+ZwD8K+xah/HzWN6vIT4TcxgLdn7ofdX+6mPwi7kfA1wA5/+T8xvg8DB1VSNdDP9ZgP+Yi1yyOb+S/EP3+l3bjGb+j4fNF9CcBOvZAbz7oOMP3heh5P+j+CvpW8v0zYBXm33S0Nw54DHyfIqfq4ImGn7CfuAHycj4qi344X70Insm01wI614DnO/CfwC47/8yi/15FPi0ov8/1HPJ6jv44hf58iN68Ah/60XtgF9T/tdDRjPGdF/3PA7xCO//QfnL64zr92Rs8W+G/KfYjmnmhMeny8NOS8k2QR/pIANNCXyfscgywM/AN6qVnXfEzeH9n/Byk/hHK56b8JNuDj1rk/4z+PYr89kHPNfjL6jxJOgb9KUz/D0Bvv6JeR9pfxXrF9XZG9+naL/SilOtr5H+W9HvQo93/mfy/wF+TdEvK94WO/NBRkfXTEfIdr47TKfTDWeR2ju/6L7eQPxy9Lu3+EPrLkB5G/mbKFyX/KPb4PHQ1Jv0F9SrRf431X8NvbvR3C/lN6afNpIdQX3s3BbrbMR9Ppv114KsTCWAc9Cm/SMh/rD9N/9lxxkcr/dOkS1L/UfT6GPmpoGcm42Mp+tKR756D1IG/055jIe/PKdcB+qMY72uZl1KT73qsD/PjBvcVngfQ/hz0Wj/ox9h7/aD5sL9tkctB+GlG/i7k0Ax+h6AnK6DP+Wcz7c9H/j9iD06S7oXd6weMo14+2rlj/0UCqL+hj/xjBwuTvuF6C7v2PXYulvQt8rOid9nhrwdycf+RB33KgH4NQE7fQ19++rstcihIegH0rlP+wPXASrSXGrvhPvg78K7wfJTvJ8HXgv65B/9xtPdDgQfpqut5EOnHqd/V9T/98zfjP575rRp8fIx9X479ehF5PAG+gehnUegbA0yEPNWvyXzPDz3LkKf9mRH75jnkXea7ItTTv1WO9lMhr++grw39uZP+PUg6KfJtyvp4C+3MBH8X8Ofie2/keID24mivlnJlnLi/epf8foyHsdSLAIfB3xjsmfPKPepNp3/HYk9OU95ziccZH9sZ17+H/Atf00/Pac/ct8Gv8o6JBLAk/ZFBuwb+C4yXXtRPQr1PKO95Vw7Pe9EX/UvhcbOa+h+QHmzcCN/vUX8DchgC/pPA2/qBwJ8B+5PA99mUO6W/n31BFOnM6OWf6HcM7V2g3HH4nK//FPrmQm/4fG0U8n+Kcp+Tnuj6Er15mBy/Rq/VG/XJ/XlJ6pcC7qf+Xcp/RvkdnnuQ/wf8ao+1z9rrgsjhNvndqX9DPxPj51fadX2azv089e/D18POqU4w7p6AntmhdWQT+it8Tm58x9/of2/ScZQ7gnzasK78mu8joCue8bPe/Sr5Wejvy+TfYdymUr/0t9LeRL5/Sv8fRU+2Uz88H/3huQf5fSIBzEv7+g31r36CvDNTLwb6WyL/71h/VEae5aFHfWxO/YX4IYxXOO/5LPJPj9zXATsilzzQvxF+d4J/vHFEtJ8AvE5+F/T/GPNVb+Tq+X0r+BkOPQPg33P8iYzfmtDp+aX7xWjqGy9h/E8S8tWPmdi9WcBPyN8N3lOsnzOFxofjpQ76upD1QQ/qf6O9wn52xk6H45duMn7eYd7tDv7E8DMJ+o03M/6sIfltoDuecsOhOz3ySct8dJT6a4DF3f8y7jLSbiHoOkm+69wq7ufhaxX6tYz1mPEfabXP5M9Ffi9BVzb6T39oCuzhAb5r55wfRjJetiHXM5T/EHwd1d8C/5se47pmkm98VwboS0v5CvrNtDvUv0+/1oWu9cx/uSjXAPk3BOr3HQt9bemXf53nPafyHAX690cCGA09xgW8A6xO+cT46fq7jkQ+E8jX3mhfpqBf3aA3BjjKuA72rdNc9+vHQH9cP7lecv1UCT71Z9ufw+gn/dvGbSTQD8epV5r8WOzlQff/wEzwswB7s1t/Bfj/JD0HuX9sHBPwOnhqQl8NYEdgLuzkc84bwJHGITK/Z8O+jcM+eV57lXJp3A8zXtaB5xnwb0X/qwG3AZ+n/gf0507ksRi+5iH/odD7HnLMR34G+jcH9uAXvrfTzwf9ZbG7naHnEfJXgr878pzJ9+PY49bkb0XfC1Lun1CcQWbW+9+Qn519jOPsv7gE972ux6HP8/DPkMd19gPHoHc9/G2G/xvGH3k+EgEfeBxPxtO8S34z/UHoVXvSc6HnLnSWgw73yeI1LucH43ygr6n+U+N0oc/zhyf0C1M/vH69zHhyX+Y+bSb11VvjH8P6+6N+Cfp/hfGtyLc+/TeW/IXknyXdHr7Lus7RT4/8ypN+Glia/nkW+feg/XbU/wP+WlD/CO31x659aVw09auzPnN9ch08ro8rZ3wQTwnk3wD9L8v4dN0Sjq/8KxLAmti5XdoX6nckbZxj1ZD//SL6PR2YGPrahezbbORpfNpPpBuTX4Z0SuC/6hPz/gnKLdH/Tv5F9PMJ2j3EOiIR9K/1fAY9qsb43U352thX40c8h96G/BOwZ8btHSLt/s94V+Nfl4TiX5dC9wrppdxUxtcp9OZ76LkL/hu0/xfrzn3AV5gnltCfwz0voXwfvhdCv5+nX6/o/3Yeof0fkZf+9DPUq4T8NmEfnf/SUq404+tl9jueM6U2Xov+3x2K51mG3PaxvtiIfXddlIx810dn6K8lofhb7YP78e+A2ZFPPPy1YDy8T/4e6GmkH5jxcI32X4L+5NCrf1j5LSetnzgf5c8ZVwM+z6efd/9K+WqkjRf+VXrQj+Ho91D4b8n6ZCn9YJy049f1Xiztuu4z/rYi9qsG7amnSaDvFc/zyB9Ffz5CfiXkfUh/JeUeJT8b/qA7lOsEvd8i39PwZ1xsJBLAwehXCdKuX/vD5weUH49+5NQvA72rsH/61/8lXz97Yuj9hvGVnXI/YgdaU38C+q9f6G3kl2B8bMgf0BZ+Pb/9i/1fVeT8gus78ExCf/9mXrhLOz/Afzz23XsnrvOiPK9DH+oBXye/FfTE0+/GPa8kPzf8daRfZlH+GOnr9E98yD/5Fna8POlS0D0GvsZ4jgX9B0P3D7yPMMpzSuQ/DjgeuAc8G9k3FGLedhzNg/5y2Gf9f/pv9P9ljwSwj/5k+OpG+ymRWwqg49jxuxf57wF+DcxDuUuuV/WPIL9PoM/1o+vGVsblYX++QX/jgPuAe6m/Db7rIuedpN1/ev5v/IxxAJ7/P4ee9wOuQJ5Fqb+W+VN/bCva/5X8pyPwof8OPlrDRzLmT/VmrudayNf7Kd5H8X7KBugbxH7jKnbF8yDPw5sZH0V942wqwk8x6J5MvebkHyR9lfWv5+9zsIfuj5qRbg2eL5I9SO8Y6uu/0p+VHPm0J10OfvTPvUH6M/QqL3zchb571H+c9j+hvRvkF4W/ROCPJ/++51SMr4HYJ88dB5HWD+H5ufsNz9E9P3fclAuNn/HYrwTou8D3zsjjDHR8yvrSfdc6ys2n/7zPoj/hb+yH91sagm8e5R6H7mjgd56bU/8jxvU86v9A/ny+z7Qc+alcFyC/ya7fkccm6DUe0DjBFPSfccEVwG+88HHk1ygSQOPIwvFj0xi3L7BuiyWdFP5ug+9f4E3WY543z2Jcfwm9rmPbMb48X/JcaQdpz5eOML+cZ/7ZxHgc7T4OfOrtdeqpv+573O98aBy68S30n3FPpUP3fy55XkQ7J0iXRd57IgHUr7KbtP6VIdQboL0lnfQh+1/jxH+hfz4Gn+u6/tQ7BOzNOEtK+W6eD6L//ai3D3pfRG6vUn8hdsu4ywjljb9Mznhcx/q8A3TqHw6fl3uO/gLpdtjXVcqBdi6BP3x/zntzxpedigTQuFHjSBMop7/Dc6dPacfzp2H4j4wvz0na+HLHxwesq3/SD4I8+1P+EnrfANjL+7uslx8WRzMY/F2hp5pxv6RfJn8Y6T+pf4p0PO2dwI6dpR3jyMozLq/R3pf0fxv69w325x9hF6ppH9VHyvegvUfdDyMf91Oe23qO6/ltA9bDlcA7ln760X028oty30TaeO+U1CtJe7VJbySdh/lnN/xmdf1FfxfG7vTA7syBzt8Y/963Psz3XqE49oquG8A/1vsqyKMn49E4INexY8A/LWQPtY/1ye8H/cZdZ6K96diXzNi168xD4fXBPfCNxg6OBTYlPw98r3LfGjofPEL/uk+Pwx4X8/4M8jxAvRvQ9xr0HwF/Kb5Pon97IE/9E/oltO8r0Q/PhzwX+oj1p+dD9Zi39ad7T8H7CcYP1qO9rsjD+MFcfH+K8t7jq0H/eW7ufukQ8v6XfP1SMUD9TPqpEtD3zrTTAX7HI5/r0NsF/bhB2n3oxAD8d++kjf4y4z2Yb1wvJKXen/BXkfE1ATv5pXGz3k+An3jqeQ/qQ+yX8cznwH8APHfQP/eb4fvnhem/sP+kGvLXjzIQ+t6k/i3kV4f6HxhnA91VwV8K/jyX8V7MFff9yHcd8uwXCeAW5qts5FdgPfCBfEDv667X2L+uBS7B/riP7cJ47w/eTtBTzPga+tt7KGtdb4P/W/QmAaj/f7L9B179P5vh/33w618eQlo/s/7r2iH7qL2M834j9uAkemr8qff1J6Nn5X0Pg7Tj+yT9l9q4Dfj6hHzPZfsAPa/1nNb7N9678R5Ofdq7g343Cs0DBY0/DMUnG5ecEv3tir52A67yXBf+x4IvM1C/cxHqL3a/Bn8b4K+l/jXjnuF3svcVoO8R411Ddsn7C+OZf96F/nLAnN5Pov+7I2fvuXu/fSX4vb9fhXQ04yc98k0HzAg0HisVdBWC/+rw+yrttyTteuFHYEfyR4fiTdKA5xnknNbzU/dtpG9Cv+crc9DrRMjV8xXjJdx3hvejnjcOoh8u067nj8bnG49vfL5+prngbU75L/Vv038DmP9isFvJmGcPuX4lP1HID5bX+1fwuwY7UdQ4Ec/vGQ/GrW2h/47Qf97fPYz+FwTegT7v/San3gbgXf3U0Of5bRHS7i/qoK/ef5jhPfmQf6A8/a2fIJZ0OO6sB3hHIM8o8Bmv7P2CdsinPfXdP75JOsr7UiF/pvGuzi87wG98ziroNT6nIulnwF+J9AnwhM/XWrMe/8X1Jfm/679m/VwQ/O+jt57Dhs9fnzMeCjiW9r+G/8Pgqc94+G9fCH9nfY/C+B30aK/xC8oX/L35npb6xq0Zx5YF+p4l3/PCfKzLvD/r/ca9kQDqP/2N9HvGb7C+9dzd80/9SxcDEJWA3rwE/75nI31PF3qQTunzvqX3a72H+Sn5B6B7EXSsJu07Fj2ZH3wvQb+A7zt0xr40p1/vMP8bB32N8Wd8zFLG3yLoeIT29IOG/Z/dSa9HHt2YZ72/f9Lzb9bJsa5/vE+KvX6Ufl+EPTHevhz6Os04eP2+6N8Vvl8Dn/4Q/R9nSQ+Arl9Je36037hO6FsTeg/rlPGhQOO7R9L+PvAloz8qYL+rQqf3V1wXhteLJbG33kdwnTiL9H7kr/++LfPRbO/JgN/49+bUq4b8PwrAf/roe0ujyX8Her1/dx55dvf9BPTmNfTa96d8j2oMclM/1Uv9KEWBXyOP3uh7Q+8vwP9k5NiL9jPQP+H3WVqCz3daZmLvK3ruRnon/JaEr/D6x/l7IfLcTr73q4wP/IF+X2M8nn5A6m+Hn9msbyuS73z7GXQnAkYDr+png4+Xga2p35H2+yLXrfq3SDekff2Cd4DRjPd53leHP/dN3j/0PmJv7Lr3kvv6PoHrA/TvZ+RZCXl2Av8Mxqfxr0Ogy/1VvtD9gA6h+wEjQvcDqobuBxhXbbx6dej3fbBHaLcv9LV2nfyQ+xXh92Xuw6/xFcYj3/D9MPrJ94eqoa/au32MH98Bek1/fOh81nNZzzk9nz3F+JqEfZjLeHb8DwvF9xnvJ75x+mUe4r+N1T/J+NgFnjfI/we6F4KvGOWN43b967r3FPbZ8TOM9b3zX07k7fsTC+h3z6eMb/V86i/oMs7kFutZ38/yXUHjO/cCV/uOHO0u8b0c4JPkn4GfbOB7mnb+cr0WCeAf0OV5Qizwe/SjTQCiIsbNw99O2p/G+K9Mu6uAKZBfb+aZhbT/Mfyz/YmaAJ/JsV+rvceN3v7kOS14Xsc++L6C7yo0Ie37CpiDqGHAC+jrWMbnSOr5noPvPMSgn4Wxy75L5zt1vk+XgP1P5noIOa4hXc+4Rr4Pgu9D0J+C9r+g3d3Y08OUc38VA0wV2m9lYLy4fslE2vXLAffnlN/HeNwEf3ed7zyXN24P+XsutsW4AOq/Tf+uo71NwCTeYzB+l/Gah3aeQ47TjSch7fmf54Ge/xXDPrQl/x/fWXR9jd54n6YyfBem/FD06VHwFqf/n4W+7NTvRvkjlEtB/gXs8i7yTzK+N4bk5fhTnsrvJxT8iudlyDMe+XmfPQnyW8v3WPonP98n8P0o6aLgX4k8jCtMz3nKZuhNjvwyI5cptHcLundQfgV098QOZwH/AMbv6ZCf2vdB4rS7yKuzcSbQux/+3T97vuA++j7zaxvwe5/vH+8/MP5TsU5eHAlge9o7jr30fkmsfk39O8ZTuq9AXtmgz3dCjMt+IRRfEEd/Z0MO16IfrLfCeGL9yHz3/oLxAcYF+I6l8QFN4X8q7U6jPeNPUsD3TfgYjTy+I38G+Xmov5n5yPk3B/bJuJiR2I9R4DOupQf1d+KHqkh93/+4D1+eP/j+x1rKK9cnjf+Hv/cDELUdWBE5LkeOD7t36/iLhS7j2zzPXsr4qAt/vgNx1HXiQ+LfGhgPTdpzXe26cezad98r8R0T3y3p6voa+vswvk+AZ4T+Ocq/izx3MN/PJb+Q5xvg6WbcOvBz7GNO8FzBns2gHd/tbUp54xvmQL9xWZMeEp+1nPlhKuv8aUDfraxPfzlvOY8dI23/RLxPTPmqng9Bv+fy7lfdn3ajv41nMd4lBfz4Lu3SSAB9n9b3nd/AbuygnnGZJ53fmX9cR7oe/S/eDvt3Dr69x+55s/7CJsYLIy/to+8xD9PvgB5vgz7XE53Q11LewyKdgP04AHT/PVc7wng2HqStfhjqV4X/n9HPPxnf8z3/hp5LwCH000/eN6Md36d5lnq+U+P7QCVC7wQ9Rv3p9M/LfD+HXMtD3xj0vTHxAX+AR319Ezy5PC+Fj9X0X2f09lvw5qKdj8h/DfvTCjl5T9n7yd4f9Z3F7b6/6no8dK7an/RZ788YH+q4ov+S+r4K8/FS6PE83PNv5f4F9NdkPNgPWwIQ1QE4KBLAI/Axk/qzgGm9z+P7p6H3hNXbG+hfQfQ1A9+/1Z9O/0x1f6p9Yb+yhvxnsX++56L/7wb8Ov9uw66uQR5pqX8QvMXotwbMV33o/zHGY3pfk/78gPoR+FXvfb/kMPL33qf3PROjj3WgL03ofnvYD+p9pBXQ470k7y+sYv2UGvuQD9iTevl9fwN4n+8XQ/Hexn/fMn4A/dhjHD35WenPv0nbH/bTNNLvuf+nPz338hzM86890JUefiuTf4z0JOT7Jes+44GS+r4y/VUD+bqvae/5OfZU//eYkP/b+yvh9wWUv/eTDiBX7yl5P+kR6WLcpMOeLAVPBvuP/AbQbTzTFfh9G7zG5xeHj0fB57uNTbFTvt94U/+f9x5oNy/6Nxt7Ugu7u8/5MPT+n/tT3wH0/d374E0D/X31w0NfI9cF0LfVd0eQ78PmrXy0H6H/ljnvog+uJ39Fn7y3YVyC9zfKRALoOv+2/iDw+15cRfejQP1nCdj7r8A3HzpiGGePYS9iwJOOtPeFp0gv8hiBPH3/eg74XHe4DnH9EfZ3+f6n5wPaIePkpoLvVeQ8xPe3aPcLz5k8HzF+me9Z4Xe3+w/aq+R9QtJbab8x9T2f8v1Bz6fK0P6frBOX+16Bcc+e28KH77JuoL3jro+ZH4vCn+ezfdE73894lvXySeR3yzhV8E5nPGTH3pxjfHq/6hpp7z9eRr9Xk3+VdDTt9wtA1FPYgQWknf8891Yffc/e8+/VzD+V0j7Ih+9bXGc+KQ98FflNZhzuYX/vPZCU+F+bQ9826M2PnfT9Af/Pog90uf53P+D6vzjy/p7yzaB3Oe277/JewXnkEIX8w//H8SL2aojxSZ6ngf8byvtu8h7s8WXaPel6kHa7Gz9mfJH35DwvB39r9Mc4ed/Pc32wFztjHLrrhU+8r4+e3YQu7Vdr5O27Kb6jYrz+APj9mnZvsv+pSX33nb5343sPad1/hN7XGgcfvofivtN96Fbac/8pXfq1pGs4/BdGr5T3JuMuXT9in73P8jL94f4s/B6v7/Rupv4m+DX+agP506g/DP303p73+LwPdxd+rxpfBR77z/cOMnjfCD3RX+K4dDw6Xo1/9n1z3zWfznj1ffM9lI8FFlCfab8R+nOcdD31Evyd6JcGpLVDJ0g3Nb7DfST2oRD4fgm9W3mA9vw/B/8vx//PGUh7/n9OBex+eWA61hNPUj8Z7e4PxT9MpH459GsC+H9Dvq3ov93aI+1dJICvUH4b/a8ebAYaJ1GXdccx4zLdhxpfwnrGdWF4vah9fAs91E5qHy8xbiti/3ynPZ78AdS7B/6P6Z9U4D9Nvn4H31NMb3w0fAyh3hXoe9L3OrwH43sTzD9rwT+C/hwDjEOO66l3GvznjM+E/hSUm45+61/yPqX3J/UP6xfWT1wM+S5BXuPA7/8fDfT+Veh9IM+bPF/yXGm98QjM9xXhT/+sfln9tJWRh/eLp1A//P8XKUh73+0d30UxPpP1ge8D+/6e9zt8l/Mx2vN92wPor/c5K0Xgx3hq7YzrV/CvYjzof47GPurHqof9nUV++P16361fQf/6PrT3E7yv4P0E3xdzfx6OT38OesLvS7QHX/i8wHOE6p4PGv8HnnC8aVPmj/ddh5M23mU1eBvTH97L9R5HLPo3HRg+b24BP0W8j+45Bukh2EPPRXu4X0YP3F9V5bv7qsHwdxB9TgD2dd8G/nmRAOpP9R6K79s6PzuftGc8ZPb8mP7bD1RuxuemhN/fwPMW/Cal/oko6PceJvLP6f0m/68FfX6B9ltD39vg9X97/F8j7U8R62MHY8n3/342Gi9N/94GxntvA/31XHgoac+HPVf40/dJjbP2/xHQF/0cE5CL/o4t4DsP/+vQf/3/1aCnGfS86P9d6e+gff9Pxv85OcV4uef7t9Qrwnxz2XMg5Of7GeH4zhzoTQvqez+2KfJ3vRbWE9dzVZH7CfphsOPc+wHex9H/iL4c9PwZudc1vsV3I8jfxXosJ3pRxPdHwHcBfP6Ph/GKQ5GP99eNZ/J93nXQ7/13342oFroPH9a3kqwzBtP/vofu++i+l659dd/+a2j/vgj5X4avofBfG7n5/n34vR/jSccxXsLnX557qZ/6X7wPMRrYzvenwOt9xSzIc0vofrL3BL2n7P1k4x9H6q8NzWNvRgL4r/f46I82zp/SzTznOxbK/0na9f/tfiPf/7frxfj7Afp9J2Ch7827P/a+OvZH+T9L+75f5TvQEfTH+dy4qf/mdf1P8B/+n6fsvg+DXnpf7Bnw9XN9jv3Xz6x/eTH1XT/XYx6+5H1k8j3fLxza/zjf3EHfl4Df8F7P0WqC13dbKvF9J3Lr7vk9ad892ur7PdhX79l+E3pPvgf8DEJ+a6Ff/3Fh7Jf32ZayHs5N//TEnk1BvtHG/7ufZvxc9H4Rcvb+Vhfo32CchP+/EFofuS7y3QvHr/Fsxrn0C8W7jYEu46uNtza+Op5xPxm9extYNBTvaBzZItI5jT/x/jP1dlLO99WGRQJoXH0a+qUwcCvfG0FnFr7Xhr4O2G3f0y4OXd0YL3mp7/3EMcwX1aFvAfJY7/vAofdjd3vvEfno1/B9+zjW5/+936AfiH6si/6+xTq5K9D/e5gMPf5vwhX41N99zfMlyndkvL0Gf03Ar39Rf6P+xd/JVy7Kqb/xK9itN/meXb68H0W/3UQP2lDO+bwo69dy3mPUfw9MhfxiQvfeZyPPbui/6+Lw/2R6X2sY8/s09L0G8viZ+pugeyJ0+N5l2N/RGnpS07/6qefCj/EQF9Cv8PvzVWj/HPgGYX/8f4xdpP3/G9/3ewk5+77fXWAd14fQ73sraTyfC8VzdwCP77v7vobvafi+xhD02/fgn6J+2YIP1s+NPsajJ95/8z5cNPbL/+P1/3prOz7Zl7xL/TXGO5D/Mf1jvPmHofGk/XwN+rSj2s91jKeXQufWxn8k8N3/H/4RftxPHlJeD9lnfO77oNDtfDoN+eVwHjfe3f0n+U2YH33HpjTrG/+fozl6304/GvnNoc/zDM83PO8oDX7jyo0nd51vfO7r0NMCOtfrX0Uenk96LpY6dD4Z/v9e/2fQ/xf0/+f837nR4LkdWo+5PvP+quszx4f/5+I4cXy0oH3nEf+f2PmkG/rxOvi3Mg5rgX+W+2XofQl5VUBe6ZD/DeZR3xf8zPmX/riHHvt+ke8Z1YR/37d/m7TvLJfHXrsPCf8/8Fe034F2bkHvKv8/g/H1tPGl3ruk/gDoMZ57IOmG9F8849t47jjS+umMdzH+xfddjH/x/7QOMG78v63CntPR732Q52/ud7CP5UlPpF39LPqjJ8LXcuTkuwL6H3bjH/Dc3XeafZ/Zd018d2gZ49n4Uv3p+tf9v4W/qL8MfVcO2gP5r0f+cO89AvUPhN9f+hz5P037bcDnffRaypu08U0Pi9Odl+VBOtrTvvvfE9QbTfsnSe/Vjxj6P5h20Pu9/iv9uOZ7X4n2jb/riV77/1vGq2xn/vNdvZzQ5/t6+jv93wb/x8H/b7jEeUsD9jmHqN+I/CHwU4X+fws8Pek//3ezHND/39SPc4v+bgz+uSH/l/uChfBbA3t0nvb+DzCmONt4nH2dZbSWRdeAD13SSIsHD90pICUd0qDUi0hII6UiKJIiJY00SIN0CEoJSDcCwkEJCUWOpJRS71rffV3vWtxr+T1/9ppnZnbNnj21Z+7PX4j4v9+J3AFsliaAa/IFMH6yACYEJgBOzBHAXkkDeCVnALfkCuCMwgHMTflcwDzAtJR7kXqxrUe6dcEArshIPvzdzxbAnXkDeJryU6n/S/oAPiS/8UsBzJA9gOmovzt/AFtR79MCAbyG3KeLBPCbVAEsAv3b1H+HdOFEAVwLvR+gUxT+C6UNYN48ARyM3vZDPyf1f+T/ZIUC2B/YIn4Av4PPrdCPRf2kGQLYDPpfkr8FOVbB/w7+X086H+Uvpghg1dQB7Eb7r7R9XwlgT2By+KiHPH/Q/vX4vxzy/Ex6WLoAjgQetP2o/x7tdxT9XwVfN/S/HfmaUv4E9avCfwLo9Efen8k/Rv0n1O+DHaShfaagv0WZA7gZPL/Bz3Tstyzp16GfEzgdfgdmQQ7qbwB/T/JTk46C3xjK/U56JfbRDX2fjhXAv6ETG/qjyC+P3a2Cv2fgi/B/5O9J/Tm07yHoTSD/CvqKDX/tSS8AX0H0U4l27wcfLaATAf15WQO4HXrH5JP8mCQBvAP9s9CbQPsUo38XAR4AzoOO7TENfDND7VM8MoAj0HetlwPYnP5zkHZvCb5q1O9K+iX6w0H4f0b+TuS/EhXAX8g/Bf/d6d9f0X6R6GEW6Q3wtxR9z1a/4J9LujT6eRe9v0b6V9KNSeuHX4Tvi/DTFPn0a/q5Huj7W/Bsot41yv1q+yPfNWAt+yX8T6A9p8L3e8j3jPxH4NNffEg7dEI/Zel/ZYAR0NlG+2zn76X8P4i07Xkbf34K/PmRZzDt81WmAJ7Rf0J3PPyNxP6vJg/gY/xbU/TxKvLoh0qS/oV0evSpfxmFvptCvyn8jCd9AHp7SK9H7sPY9SHgGvRWCr6j0ftYYDXqR+Gf+sDvXOptgp9O8JeP9Eu0+zrq98GvJ48TwE+g1xn9vw++otRfCf0B9M+2yHcR+sugl5n6jisrqLeLco4vT6HXkPzO4NsHfwMSBDA9//eMF8Dp1F8BvXLw15P5SjzaNzPp7sB/aLdn4O+N/+rA/4+1J+h9kDCAZ6BzCjvJjhyLnKfAf0vkTY99ZkavQ4GpyF8G/WnQ7cQ4cRU5NmKnD7CP96HX9cUA5odeV/q/86PetKf+tj7+LjN0dvD/l9B/Hb7aMC63BsZAbwJ89Uf+b/m/FfxFgLcL9B9Sfyv6b0m9Y9CND3/tab+d9Icl6OU085lJ4F+G/N3Av5z0CfhfTf1VwFvQexf7G5M4gJNpj/iko+BvFv3tU/r1WOTZCBwNvTHAu44v4H8Av1Ohux85N8PfXOynEfLWp1w08j0kXRC9dqE/LCf/V+wzKf38JnzcJD8/fI8HT1Xk7Ej+j/wfF35qYF9fwP+juAG8hX5bUM7xqT/zMucri2inF+j/q/HLy/F7T8hvh7xrsZ8bpPvAzxPSQ6i3lH43DP3dg14Z2qcsdMrB50vkJ4S/P9DfMOjXgL/m2L/9oB7QflASv1ATvOVpzxHobyH0/wqtCyqjnzHQ3QP8nHLZwV+T9nQ8yYj9fAyet/Enk5jXtiQ9CPoDoV+Fel/TbgugXwu+r6LP2c6f0M9f6PUd+HkAf33NZ36TAjyxGf+i4Hc39BeQTgX+rNRPAL/xgWfAPwt6mdB3b+TpCB7nX/vQf1LoX8efDaL+RvjZC94e2G8x6H9Ef8iDfpag7zLQKUL/SQu+/PD/Cvr7E7qFyX8KnTHk38ce7Nf296rkt01JffhuR7qH6zHKv+D6l3R66udhfFtD+QH4pxrIp75dD2+lnduih1rI+z747+lPwB8LPXSknuPIRtId6Z+/UK84eMfTf66CV3sogT0VQB8JnVfBX2nwTKV+N+yra8jOMkGnnesN8I8l3Rz8PenfR+FjMvY00v7JvPoY87wtwI70r4vUH4wdXyJd0Xk2/a4y49ZV/PXr5PeCn/zoqwF87Yb//6CPl5CrGelo0rWxb9eF0cjperElfL0DfBtYDD3OYl4/A3gHmBP5NqP/j+C3LnwWpf0rMN7uon8OAe94+BhO/STgW8b/16lfkfoLkPc79HGN8i2pf4R6idHvBeS7TH4f+vt+9PI9+HvAt/5xO+vbGbRvb+gtBd8/1H8bfr5i/DoFXMT8sCF0SzNuHqLebeiNwz7nkv4BeB17ekq6FfbmOPU1/HwFv1Oxt83ws935Hf03MfY0C/ol0X8J5EmAvnZgN/FJlwL/bOrnsP9Qv1PIvrVn7bso8u3Hn2if2uVf2Mlo/OM6+P6CdELwpyWdDui6Zwntl510M+p/7D4Y8i/E/hcAnUemIv91+LnDPCYjfDXCXlqB9672Rf342MdI+PqcefEKyr3mOpX2ywef66ATl/zelK8HP8fAP5b0OPz5Sv0T6eS2H/1qInJs1N+R/5b7beDbSbnN6K8OdlUeuz2PHUfRfqng9xPa9QR2fRJYCrmyg/c9/Nk57RN/kZTyN/m/Pvo9wbxqMnrXvs5gz1vRb+XIANZCHvtLWfRxjPLuB7yrfaCfjxkf+wCPwO8F9/tIO89/Q39A/jT0aX+zfyVh/HQ/6WPor0J/R8GXEHy2R1bSN+lfNyh3g7T7uWnQfzTzjOXoJzv60z+mgD/9o/6yEeuShkD3ad2fLUv6J+gdw/9PJn8QfiGB6xH9AvY/Xb9E/kH83UH0435dKtp3I/qqA/7mjP/fOP9y34n60/CHL8KH+1DuP41zvon8MdiT+0OvwddM9HWX9ilM+4xxPoZ9R8HXDuTT7+i/w/7ntOtS8sP7V71pv/9EBnAo+mth/0e+HfB1TLuDjzr059nOf+lfhckfz/q5v/sW0EtNfgLaZwByfAaciD4SQ78E5ddgZ8fRzz7kqw2/UbRfNdrzU+RtSf2ilFtI+l36W0X4+9z9cPTXnfq1+f8k+j1L+1dAL7eARWmn7OBfjHzq9Rz46sDfINIpyU9G/61F+6ZEX/qz1KQ9J8rAvKwQ6Yyh84NPaI9e/H8KOo3Qw3r80yb4SEr6S8o1Rd+tXQ+ib9dZzp+/pb7zaOfPw/Gv0+HffjiL/Cn4v6nAT+w3yH+ScfFIACJi439G0j5v4A8qo+9Z4M9G++xl3NgDjO/82/5PefeZz7tOdD4XGcBJ8J+cdCPkzsr66y4wBXLoTxz36zo+Il9W9LcbvCXdd2I8Xox9uy+1nPYL709NZFx3f24C6ZzQr4f/vQQfA/nf/c7b9JdW1L9BOg78VYO/GqTt/1XQ/xb8XkHaoQDQ/dBF2GuXSOSAj0jyz+D3S0D/CXr8i/TvlB/kuQn+4K7rUeR9AoyivyWH76v8nxp8tehfuWgH+0UMdOwXtd3fxz/Eol0/RD813c9A3ofU0z/MQV970fdM90XgKx72nRs+vqbcz5EB3EL7x3heAt5BztvB3xJ+fnM+Ar55tM8F+ksK5BwG3S9db4Tmv/tIZyEdH7qfIJ9+qhL8foRemrn/ih43w/9y+u9Q2jUNdM/CX3r8Q3/sIB3pDx0Hob+eekXtd9R/gH25zzWd8WOb6zf8n+eAI0i3Qw+uG4qhv/D64Sb6OOB5A/0pk/6LdEH4fUQ6Hv5lF/VGu/6h3n3yK8JPJfjrTtr5qvMa5wn90etgYA/6QypgU8rVd/2Gvddl3lMKPhyfmiFfYfZd3OeLjb4XI9fH2FF78A8Ev/EFTaBjfEEX6EwPQMQlYAvqJ8WeljA/2E29G7EDOMT5Kv35HvnzmT+5v7+d/r2b9szAfO0hafdnHgFH0t77wf+S58PoZwPybwF/HMbDhMi/znNq9Pch9lKIdo3Aft3fdl9yLfZYmXRL6HdgXCqJ/XqOkwX9V8G/JosM4Bvuz4KnPP0mArtrBr+twTOJfjeEfriUelfQzw76r+dETZDb86Ly8JUWPooh1xlgN/fzwOt+7vfwv4L2SQy9LbRjEtLvwnc27G8Qel5Gue3Q1a9+Bl/618v09xXIe4526O18gHYtj31uAI/xFgnAHwGcAt1+1C+M/owbeMXzFNqvCPI5f4ihfd6Dz6r0rwrAAdBdAJ+u3123J4WO6/excZ/PH+y5Fflfw18m8J6AzmD4uxpaVxkP4/pqOfkb4SOa/vEM/muDLw58eY7SBvo32I86D5wIdJ27APw3SP8B/SvwE57/hsebTdRbjb7eolxf1+foeynQ8+TP4c/5huew4fPXUtjbE/AaXxNDfmv8UzzqHSUdB37yYH/V8Tsvex4I/QrImw6YBv0+BX9B+F6AHW2HTizynRe5fppJfddP56C3h3n6edLn0JvxTMWQrzj4KsPfy/SPLMCHlL+E/g/iz6Jd92IPD6D/AeX7hPYlNjC+jWF8eA25qoD3T+dLnh/Dr3Fz7aivf/Lc+gbzmLTwvy00fjqernE+TPvsc1+S9HHoOK5vdF8Mf7SM9v0PfOeCH885Fmt/5F+gfeOgF/VTALnygH8z7dQP/B+iT8cdx6PH5A9E3gFAzz2igQPwW9+5v+15v+sfxsu0/L8rMoDH0N9m5o/dyN9E2vXLIfTVDv6OkP4LPXj++w5yNibf899rzEtyUO578qeAz/iXnZ5Hwd84/JdxksbtGMdj/E5H5gee+7hP24b2HU3/qkT5QuCrT/ll1H8Z/M/IfwX9fYf+bOeayGH8YTfszX3G8P5iNurtJN94kcnw04DxfwNytYavUbSP87mW6Gso+DyfdH/c9Yv75O6Pf4886yg/EbqTaZ/57ruA1/3hmpR/yPpnnvwj3x3KGT9wGPs3fsB4gjr4o0LIs9V4B+aPP2MfZ4A9KV8DetXxt+dox/PAXZ4PwY/r68v034vuP6DfSYyjqykXCX/DQu1rexd1vxP/dRN4HXgW/E2oV490Ofz4G+Afgv6zwu8R5FqD/cxHvvGe4xi3g/3OgA/3G5ZR3/2B1dQ37mwWeKaSXkH7bqb+T/B/DTovwP9d+F4PvcrQH4Lfics4Xlg7hP+3aI/T2F0R8j8jvwx4PX+NoZznR3PgdxT1wvGtPULrGu3e9c0Z4w/Jr8J8qCzy9sIeUyDPFsd/0sZl62fC/uU0/IxAXwWwt4b4p9iMT3FdPzGe/W68JHiru38NdD8lD/baAvlboed3Qvv/XRy/gafR7yTatzN09KMp6G/2I/c37V9z4P8j6j2jnc9T7gX043mD5wP50J/xRbWNJ+D/DLRPBuTrhn96xXNh4/XIP8V8MT5wHPAN+MzKvMS4vXA831r664vwMxb8neBjNfOG9O5bkW/8ymX8f2fPiUh3IV2C/YXW1M+Bvm/D/0LKp0dfpZBzJvir4j/rSZ90ZvjbiDzX4Gsz6cXgcT/IfaKBof0i9fI2+D9z/xT+YtC/9wKMg/N+QG/seT7QfeZLlHf/ZRUwC+Of+zAf0b96A53POH9JR3+/Ct7L1MuAvubB/0nvEdCfqyH/+8ZPkR4FHx9hv41D8XW3aY/h4O9L//oTOvdJvwZ/bejvJ90PRi/R+JfvwbeQ/49T7gz5F6g/3LgB7G06/ObCL3SDzz7kbyLdBHvaAwzPj93PWO+6Hf99nPRX6LU/9j8C2Bf++qK/jpTLB95eyFHceED8Zm3kPIX9vMj/8dDvFeM8KNc5MoCrGAfWAGdCz3iJM/pTxoPK4C+Lv1uNPI5314FJsYdU4PsTfi/Dfwzjg3EK5Ul38LyGdt+HHubCz1b0dAq7L8f/v+MHc3teib3vxZ6SG5+G/bmv4j6L9zvcXxkN/Tc9D0eO6+jxG/Yl1gHrRJLv/Bp9Om91HrsRfsrlfJ5uGdKd4W8Z9Ua7n45/fYv8U+j3KnaaCz28D51+2HcZ4w6MM8W+3jSuifxd9Jdl5Ddgf2gD4+Qe1hfp4P8D/EVeyuUDOl53RC9N4Cs17fuA/JHo90XsIcJzVuxrEePxYuBF6BvHmiQygE+xh9Poaz78Fw/N3297zgd94w2qIP9j0r3hpxl0PV9xHZ8GPjugl3eBHYFtQ/FVrk8bAy8h30b0tRR+viVdCP5/pH5y8pPC52HPz9BHUsalmt4Xgf98xgtAdybyNAdfIfTzUuh8y/n49tC5cSP81yjkrxAJH9SbQj8tafwA/SoHfvst6m2Bf+OEjM8yXsv4rL7Mj3OTTug+ImnHrbz8Pxb9jyAdx3h++rP3gpKj397w2939aOrtR89l6L+lgU/QV37ka4T/cbx1PP7d8yL85QTjW9HfY+PH8Fff0h7XkX8J/C0L+dVRzGf0r67PXY+7Pr9Hex3Gfrzfkxl/4f2e6+zXp0Teavpn8j03Ow9fnpu9SHn3BW/+y/5gSvg3PnUF85maru/RTzzKHQJGIH9KyhtfOh46aaG/mP8HQ+8u+jG+qj7zl7/guy7p5MbX0n/Cft34Ie+dOS73D43Pxm8at6lfMH7T+47VqTcO/C28v4a+xmI385CjFuW8b5GK/2d5/8l7FPSPCNotDekO8F+J9fMz8P/BOtr1sfOvNMa9oJ8dpF3fnIKPDxkvJxpnQn3PMyox39Hf78R+csDfbtLGZ84Ar/GVqeiPFZA/IfyUB47DXtY5H6X/2G+ukbb/eK/L+J3w/a7R+Kc48Pc3ekodGt8j6VffOs6j3zb0v7bwFStkx8ZnHMbvPkCv3ie6SPvnhr7nvxvIfwB/u0N6bAv9C6QTUm8X/nAs8tVGb8PR8y30sQw91IG/PcwTlmC36m8P/sL+vZe066n22P9WYCvHX/pXDuRuYxwv6YXkV0PfQ+CnKumb8D+YfrUQfc4GzwnvkwYg4on3qylnfPx8oPcxxqGn77xfgv5fUY/4g+LGWSBXeeoVIG28VkXjF7GD6qSbgW8m/HvPuy71/gT/EfzvR/Tbl4HGuRs/777xDdqxIPyH43P2UC7vv7S/7X4L/+H9He/reH+nF+2flPmg96Dqgsf90eP0t2zYhfccHpO/LeQf1+lvXCcZp0555/nO771/a1xXXqD3b6vA/33vB5H+gXKu/x2PjK/TfofSbp7Th8/nN2Ef24CRlPO+tPsHC0L7CO4ftEPuz4wbJe09wPnwu4D8xPz/I9D7ad5LM774FHTu4t/vADvC3wXPIfAb74M/LniT4z/q4V8c91zvvGI8BfQzQ/9v9HWb/Kesr7xX7n3zXqHzk/qO/6wXF6LfWfjNGcCZQP3cYWBJ7LoseCPUb2QAWzCvugK9DuR/ZBwM9O0/9qfSlB9H+hl2vJX6L9BeueAjMWn32VOiX/f3VxofCJ/10Ecy+IvAHs9QvgnjaVz4aEW7FHe+G/JH+qmM4I9mPPoRvSUl/wPPN6m/4F/kf491Qzzyf3O9jfy5fB+D/HPgv0f7nyd90n0J+PmL/MXgM74oO/7iS/g7jz4OqE/weX7cH7vOBNzO/OWG/Zjy5Z3Xo8fB0O+AfbuuGOP+BPrNBb95gKUdN6hvXKXxtPcjA7gZ/vfjX0uAvzbt3dfzY/zCY9rnddJz4H8D453jS3yg44v3O7zXURy83u/wfpH3ijyH936R92u7g8f7td6TagLe+6TPGkcK/m3015WU2016M/hXM39YByxJfjz04/3sgYxTxi16P1v7eoidfkH+OGBx2uVt7LUE6ZXowfuBHYwP9v4A+enBPxz+3be7BZwXAK/lRwwALkEfV6gf3r91fv6U/N/4/y3k7Qe/3tftS773eFPSz2sjj+sY41GMP2nE+PcI+ID8T4v8/3yvRv6f0OtK+nkK6GxEX76LYDy5ceaHCj3P/3z0Wi//8/zndpzBHrJRP4n3b91Po96XnjPA3xukY8BvfJDzv5303+Oub91fcr2AXCWp1wz/PZm0+5/h/WP3QSdQ/xn8J4KfivDnvKA1+Izjc35wh/71EJje/TzkfdX7KejjG+ScjHxP8WunPW+Gv0Lkv035f+DHOJpO5KemfY1fz2L8FXz8DF95kasCBnMOfRr32Njz/FD849AI+AZ6DmS88yD892fQa8r8NTP5J8BX0nNn6aK/NcZFOy8E5kBO/Zr3J+fSvvq3I56HUe4w6cLUT03/LIz8XWnH7ujP/VT3V91vrQh/4futt7Gn1rTnZuRK57lwouf5l7505cP9d8/tf/XcGDmd50QxvzAO0nub3k81HjC+42vIfto6XuP/r+qHaF/jQe8A0+OfroG/Emnft3DcbRK6v+W5k/up7od95nzIuGzoN0de7x1ppz+gp4fGO7B+8N6RcdrGDyZEPx+gT+9nVyX/XfCmYP51lPrDfV8BfnwvxvdjvAfv/WrvVZ/EX3u/+i3vrTEvro/8PyPHatIrkecp7fSx8eW2n+MK/mK08fukS4NvFnzFQ/+XIgPofKmJcRPAW9ir63fPCTwfyER/cj/IfaJ8yLef9jcudCHlfO+lH/Q/AF8y9LQO+hVJrzX+zHNg35cIQMQx7PYA6SfGDcL/Dvz0WfydcVbun49z/sj/+eE/mrTntZ7fvgr9r/CXWZBzCPh/gM/w+0TeC+tGfe16ufaDvS2C/hf420+xo8PAv0P4xZs98fP408K/7z596f498nbxvhD5g7CXafCzAHv1XZh46LWH6yfotQfGNT6f+pvoX/dohy2kc9KuddGX70sNgY7vS12iXGXkG44+7jiegreK8wTjWcgfg30OpJ13uY9OeedvFfjf+c9p2iUedrWI/+doB8aPGjfgupj5eSvKTWJ8/kN/xfpjAPb/mPb2/YjpyJeVfOfV+qdhnr/Sf30XxPvWayID+Aj+m9Ke3jvrQvou/M2j/W8aX0+6Afkj8M+eH6SEnvFIl103QK87/uyIcWb4i6nAKcDzzs/xq45DRYHezxyGPO7/x7dfU/8H7K4yenlAfmXqb6N/eO9tqO8VUP8S/KSg3i/oPTb125H/C/3mErAqdua5QxT66c/8Osb4PPT30Dga0n/Sv33/I2PoHRDf//jB9xfwL1uQ033W8PtOd5BjDmnHL+N+00QG0PHL+WoG9JuF+Y/39WvAt/FUC9BffOMfQ+uiDYxj3q/vSfs6f54E/WfgC99nqE3a+U9c7DEWduv9koPGb4beP/E9lM7IYxy69798h83319z/9F6i+6Duf97E3n1H7RbQ99Pmob/jpK9CdwTt57zSeDbj29bDf/j9lWT0/7e9J4T/GEQ7ZATvMOAZ5p+nabfppN0PMr42HB821veFoHvlX/bP10J3JPnep91P+xpfvDsygMYXG28cY/yI63zwDTE+mfn+W8Dv2c++Tnt4blQSvncxHhXw/i1yGBcYvv/k+5e+d+n7l6WQrzLt6f1y49e9X16O/t7Z9+DwByfR/4eh99HyME92/7QD9v8t+u9Iugz8ef/wJeMWvG9M/4vHePlv56i7XW96/sz/R/Sf4BvM/ydcn5P+An80KuTnPR/+Hn1/Df7oAETkQx/2K+9T/u+eB/rd6/k/+podGcBfnb+h3+P4t1zYSQT4w+tP153O8/fib4/BR2Lnz8i/wnc3jPdA7weB4feT9Ce+o9SY9ixIfm/oe7/oMvJcAdai3kLvDzMeut+/kbTzr7Xg9X6A7xo6f/qU+dEa7C6s7360Tx/0sAc+voC/Wsx/fkevO9C37ex7c8YP+h7dTPWDfWY1/ox28p2qhciz2Hdqaa8VtEMR4FbqXw/d30ic6nl+LlPO+UV2/PNC9JKDdF30630B/Vwh0sa/7vNcC31eoj1HY5+7kLcWfiCV+0fAyugrD3xmQl/GWe2k3mn84AHSu21f+pXvquTz3Mvxmvbzvrz36EfTfiM9F4LP8PuZdRhv9+qHSJ8kvxN8dwAewA7eRC+L4SuBdkc7LKV/FsZf1aG850gJjW9nvPZcdWFoHr0V+Yy7930g3596AP5C0NsDngPYXybkdt9nLfO9IbTvfNf12i/5X8PfeOr5Xk015D9K+y/Abv9m/PwEfhfCxxnjWsH/Ifb7Nvwf9DzduCnqxSZ/Jvb6MXSdLz6Br/Pwnxb8A0k/8rwMesazeo7q+5E1Uj4vV1je2thDFuzrjZB9aAfO35zPOX+75PuPyHkb/L4vMw6/lI/2SML/s2jP9fS3HtRvSP/wfnB77KcOdmictO+P/05+C/Csp/4z9OR9H+8Bee/nV/h5Sr/w/uYj5+3Ifwy9FcHPHkcf7hcvh36U+yzwdQc5H/D/Q+A/4PMcrrl+1/hKyhk/Nxy/vRk+i3meCP3jtJfzrijjtRiPvdfWlnT4ftt77h8C7X/GA36Kv34zErridfzA3w+A79z4w1W+ZwTexNh5EmAq9N+Xdl0D3j6k36V+XeOLWBcvBPruxTP6X3/gQKDnkQloz9Pur6DvX4wPw1+7Pz2S/ATkZ6J/OZ7eZv7reyp/oK90pPdB9036xwT4uef5pe93Gf8OveXIk4z1aGrn1+g/kfu2vq9L/b34p2+pbxy957/ZvJ9LeifyJgO//td295023xF93fMj779Dx/h8z/sXk05knDP2/Q7t6b53OL74ffyH+0tn9JPIF95fWUZ6Tmj+2lz785zJ9bPv9zG+ZWWe7Pv619H/WurXo1wb5PI9viRA3+vzfb721K8Pf/Yj+4/xE873jZ/Ij31Mxh46U/8o7X/B+/GMO1OhuwB/43uw3v817uV7+PR9lBj81p/OE13/eb5gvK/+CjoN4a8z9HKCNwfwa+OY0WcL8H/u/Ujwt8PfDEQ+46MP0P99fySJ/ZO07+hOJr0av+E+5Wq/4xAZwAkRyAPMhR9MQ385CN+HgcZxeb/Xdzx8l/IR9rMEv+y52rKQPYb3u5ynev+ugvG41D9PeePBo/nf9yJyGLcD/bv4H+OK7pE23ui461XfrYwMYCvSUfTHSONuXb8VeB6f+H2nXfwn6fcngO4TGp/T0fcJ6A/H0UMM/Hem/ZrgN/2OiPd89CtFgb+F/Msy+o9+/1nI/1cw/hkYfu/I98gbOj9034C074FWhB/fC/V9UO89vwo/9vt2npeE4mW/wd5XYd+70L/vQ+dFHvezPf/2vNvz+zGkjV823tN4UOOXK+Fv/kHPOdGz7//8W9yo77jkQ17fT3kTfn3/rDL+uwzlS8HvJPRwlv4wg3qj+f8b9JHY+GvSvqfVgnRR9HUK+Jv7nL6PAz7j13N47wb+fB+zCn5oMelr1Dcu8NXQO3y+h/tvcW3Voef7F+4X+g6G71/4npvn47735v3F9b4/4bsYofnna4w3xomdg77rjyvI9Tt69p3NNLS/9wdqoudaQOPUMtJu+6Fju56i/hG/nwA0js35mPuHXZkHdAOuAk9b5K9h3BrtmNn9PfTl/pX7WTeQvyDj5y3KJULfZfVnof3+h8g1lPrnw+uhUPzgYeYzvs94hHRm6rdCr74rXRL+fKfec8Pe0P2c/KHg2wq9lPBRn3X+JvjviH6c/7f2Pq37m/Tby9jtaPBnoXxD3ydDPr+/09Z3APCbI4CeW/pehPdv23lPCboHkf8Z8g0x3oV6fn/B+csW310jrX+9A79R3qeFXjfw219yg38aco7CftpTfp/3OpHL98M9X/beh+fLnjfnCN3P9b5uVf0bcIrrMs+pfR/Xc1H+9ztVfp/qIv7iMfg990sJ/x2Y92zCjtswj/gbej3BP5t6Q9DHNvJrkN7i+AN0/Bhq3B/1SyG/7x/6vQq/YzEKPrzHa3yPcT2bPcf1foHnGu47YSez0cMB9Hko9J0fz19PUn4a6dbg+4r6voszlP6YinIJjL8i/33K/wm/X/q+C/rXjxzAzj0PzwG9behnbwAiDkPP+wq7gXuBxosNQW9bjd8kvYT8atircYV+n+EQ9pEBv5fVd5GZr2+Fn3Xw7/7Eef7PQfs1wr674PdigJ5vhN/lVA/6z3D8z1zGC+OPUhj3YlwB/FWj/WPDfyyg8Y5+/6C15++MA64f+lEu/J6V71z5/aVT7v8Yr8R8owHpcwGIiMavOH4u8b41aePVjWfPhnzTqGec7l3mh32MVwnFn3aAP8/J3b8sD9zD+OY+ZtfQeJcKesPgbwbt9Qd0ssJHIsrfpn4S7Ry87ufqX/QrxhnoX6LRr/eCTpN+h3KJ/P4McCfnY36npB3jU3vvPQN/gw/PnUbBz3Tj43w/jHLVyf87tB/7RPldt2KPd8kv6fk1eMfhR/x+h/FMxjdlg2/jm9Z53gdcjJzeIyyH/+tIed/j8P2Nc+h3PHyHv3fWyflA3ufrO09z/uR7gv19z4p8z2t9n8Tz3BnoLRnzIfc1lkDPexhT0F8y5u1+1ye7+6SMi/coF37/1Pdb53h+AX39ld9f8rtLxxkf/P5S+Ptk0fBbx/Nt9LYIfL5rU8f3D6C3HHkigb6jXBv+vPcWvg/n/Fh9O0/OZZyF7xcCXzaOAv78XqT7Y+6XuT+2nfLGi/te7Bnfv/PeItB3kf1eou+i+F0+v+Ph+yi58AdT8Dv74T898vt9Qr9L6HcKu7o+QTzHrfB4Vp/2eDUUB/MrfBjX30Q7Zb7p/aOW9MdWQL/jNYLyrdFXTfjsQb3kyPcy9uM7DOHzX+epxnn6Dqjvf3rf5oLjNXQi8A/T4cfvBv6IfTrPMO7EfVX3Wd1freL75N7PIu37a35PyHuZfldI+z7AfOAS/awU9I0j6os8vnPayTh96Ps+gu8iOD/1fNvvN3k/0O83eT+wJv2hOvbgfOyU77fD3zT3meE/hfd/Qt9nahD6PpPfE/RcOIr2ML7lJ+R1vRabdAPk9Lup/2CHhaDbEf2+jN/o6/4Q9V5BHwXp/+No5w7w5fsnKeA3GvrZGAecXzaIDKD3XrwHkwH9H2Z+dMB35o3b9H0A+x34wu8bjQz57/D7jicZP04AWwcg4ifS4e/N+B2a7LT3HvhZ6ftQjJNpaG/fdS0GnBt659XvY/pdzPD7EZPIP4s+92jvtNMu2tv3QDLAx0PS+ckvAOyMvRwOjXttnJ+oJ/CvZzzrSb3X4WeU+1rAA8Z1h+KH3V/uBV73lSdj/3dpL99DLE/+E+T/t7ja72jvYthHCeo3dx1P+9aE7xrAs0D9+NcBiNgNPAo/vk8cn37hO1zGB/keVwPKh9/h6eL3WRk/VgCPMo7kNb5buyJd3/h89PM6/iN8j8TvRWg32pH24/dWjaf+yfgn7OB/7xeQ9n5TOH7EeATjFMLv+/t9rWa0r/eOyyP/HMcTyvtOgu8jGKftvdxOzGOGUT/8/QrvGXm/yPPJueR7Tun5ZGnWI47PCfFTfj/4A+jXMM7WeGPvp4DvIrAc9uD9Ge+ter/S75BV8P4V9I2H60179gL/B7RbAeczlEtH+xhPZpxZeP/b+4neS/SeYjfj4ULxvz/on9Gv7/5dwI5HkPZdwBLuH4NXe9T+/qE/OX47njt++w6t+3y78fPOb8Lvzow0fgJ5RkH/OO3Wz/0R6N+j/mXo3iV9FPv13LC9+1Sh80O/1+7+jfc0ZlDf+Wht6Hm/aIDv6yN/IervJt84oveg+w9y7QLfRMdn8n1H1ziTmdhDJcZXv6/o94x9D1W9+A7cAfhQP75n6/tBnod5DrYef+T5RVTo/OIc82bf9zhP2vOts8yfjsBXe8bp0d7PC8UPbEEPKbGPxvDn+1s30P8j9N+TtO+IfeE5MnJWxi9lY1yuRFr7Owvfb6Dv+/A1yf6LvEuRow1wLfW/c9/BeH3wGd/yX5C/R7h4nH3defTX0/Y/8OYoY1QS9amQUkQZSshwkZmkbnKFIqRuUabITIMoMmZKKhEiikqiQqlIrozRYI5CpsR3rd/78bSW11p+73/2Oq9zzj57OvtM+5z3up3L/b/fiuYl+ELlEryiRQm+sVMJDtu1BIdKz2laguN2LMH9dynBO8tKsLX8O3cowa/l965XgkfA/4DyKxqX4EENS7CT/PbVSvBx7f8Bz9V7luBR0v+WP3+rEpylfue6JfjE9iX4U+jfrQR33rQEJ/jeVHq1/J7gds1KcKR2doK/qfZH4Pd66dfJ8yPtv4q/T8i7BXzHkd8Z8B5E/o32KsF5+Km3dQlWhH9H9Z+G73z139q9BCOfLch7SSPt4ucB+ef5/qf6PaXn4m9E9Iv+7cFy2nkNvVXQ8ar0evz/LN1EvZr42Fd7z0jftmUJrm1SgkPIczP6vwTfn/n+kPZb0ete4MPq98XnZvQ5UXuPggcrt0D788FH0Xm4cn3Un+N7xyolOJr83/D9APgeYUdnSE9A93nwrSlfgs+S7zmblOA+8HRIGp+TtinBW+QfKr8u/E9WKsGzyLk8+LL608l1/bYl2JiejiafDg3Qs10J3qudYfJ7S49Bx+rIhX0O0b93VG6q/N/Vn10C5XqAbWqW4ALlepPXXOmLwNvZZ4vNSvBr+vkKLLdHCfxCP+W032fzEuwFz0rpk+U/qvwG9PXibz4iry/Qcy/7vZK81sE3W/6fym9TtQTX0vPj2vlYfhf63o6+qtDf29rft0YJ/qj+xfr7fexjT/QPUn575W4m/8FpF/4a0mvI7w763YG8uqNrsvwx+LlU/Xn4XKDcrAolWI4cXqhYgj3RNwC/lWuX4LboPCL6q6UcP7gbvPPJ9372eja6r9OvLkEvcZRbCa5iz6dpd0d0ZVw4Rb3x6KvPf72Kr3rSg9FxL/u6AP/XwTuJfOvBOxXsCP+z+KtBfjeQS9f66OafLmVfw5TbKXZATpfqVwPh3xKexuhfRn5DC/2sM362B+/Cz5XaGUe+J5LPK76frN128tNvBpN7+s2L+DuSX+jj++Ps6U71D6O/FfxQB+V7wXcrBV6Jr1X63zT5x/AHR4NnwjuM/K5H97vk9pr6zdW/onoJDuQXLgcX4uuwLUpwLTk8hZ5byPcCfrGf8vXoYyM62uqfbcA/wcx3JqDnPv26me9Pobe38bSOcXi1cept7Z2rXDd6qct+huB/e3LrQv4zpSO/F+H5r3RndlCLndamj1XaacmO6ih/bZ0SnKO9Osq9oX7GpXvRt5q/W8g+XmQPJ+LzCuWnK/8C+y2nXEXwGu08of2l5D1J+jT6qUZ/K/BVhx6Hwr8B/kPkz2FHi/GzmD4ayD+SvtvA3xO+puRbGVyk/1eh7wt8/zV2pH537XfG5pnSDbW3Fb23kt4B3/8i//uND83R/Z70JhmH8f82PxV/fRV8bxofDma3c/nH69D5jvY20GcX8piI/uP5w/+wk8rq3YC+i/mvAeDvyvVE3+qyEjxG+cPVf0L6XPWWoON39NeN/yXXs+n/LHIYjb7+8B2m/FB4Wiuf+dZq34eBB8r/p3ndZPnV9Nv9tHMO+9hXe0v0x27kdDo4jBwzv8+8PvP8DZlP84/bSTeUroe/18inp37xDro6st+P2Pl48hysnePYZ1/p7+Ffwl7vVm84fmrIr6j8NvK/l38A/PPJs2PGD/2xHrmeJL2X8lvg/0Nyukb9Bcp35Z9jV9+Sa1PtX4n/X3f6O5/hbxN4r2J3x8NzIPkcxu5PAFfCczX8h+gfT2f+DO5MHmfyZ/fod19LPy3d0nixF1hN+1vBv1Z7F0gfj84t0feIeVHX2AX7vkr+veyhM7wfG0e/hG+g8lei9wN2N4D/bUR+sd8zyXcx/Q1kV4fwS7XIsy18sffU/5y/aU5/hxnflih3A//SDj9v829t8XO+7/PR11T+Wu3dj46myr9CP7PBw8j5Uf7qUn5vV+uuJmAf7TTB31Ho/xL+u9lRPeNtfXBHcKX6u5LHFHAhfc7U/uPkXV75P/TbU7K+1u7r+BuC3vH08Ifx9nvpy+irKv3eg582+H6F3Ms3/zv+A5S/VvlD5d+t/90Df9YnM/C/UXov8j4CfQv1r6PJYyf59+NzoPzehfnj5eiYSz6n+74i4xn6n5L/qva+gGcEuitorz//+778ndUfL78j//EAuhbwb7Wzfsf/IvDLrD+18xX63tOv18A7mx7rsus6YAP7Df3Is7P+cLH2BuD/YfIZh78JYA34vwLv0f45/OZx8Byi/TPY/bX4PEu6gXJT9P9nwX+Ra9ZHG33fkp3+IX0tfaQ/nYSfY8l5Jj7OVb4F+VYCV7Lvb/mvCurdJX0O/N/rbzPB/7Dv3ci/BbmfjL/jwEb0VNV4er16J5tH1kBH1tUZP+uxlzXZz9FuA+kT4kfJZw75D8J/V/ptk/GP/+1Jf+dq90j8fUkPm6j/qfzHpd+Pn6Hvz/n/ueT3GL1/g45++ttY9d63vj4N3Q+Z3//OPq5G33+y/jY+bEw+vzUKvs3R21j7PQv7e53JJft7o7X3qnq3gDvjr2/W9dJn4H8oPNl3HUnfO9DjcP3jfP1qc3Jfgo8H0fcRuRxOH2eh9zP4PuTfP0DXleyhn/KT9PuHSqDcLOmJ6F2o/nr1M9/M/PI4/vR4MPPo7vhbbvz6OPu6+H9Y/XX8Q6d8lx4ifx79t5S/D/1/ip6r0JP5SuYvzejzWO3WYV9vwVMH/sx/s//YHr7sP67jT3b1fZD+2EL6afazBz2fX1aCg+nvCfrqp38sgrcy/ZWZX4/XL2/NerTF3+mdFf+Dn6wvLyOvzZRbx17ux28H7Wc/MvuTu7CPr/mvAfrdJeDt2h+VfRV8nYz+qfD9QT+P+L6t9i6E/zztbaH8s+Ev+/P6by396EUw66B/l0C5W8CR4JHkvhb/9+D3oOwzk+/z+nu/wjoi6/Ha7PM18v1O/X3Jdwn9HBF/qv7pWY/pr2ezy13Ja1/y+1G7/+Qnu+vX69jht+zgJvb7En9/g/zj1c/+zd7o+1P/u5W9PlyYn3+TeTn7uEJ+U/J7Ah1NpA+GfwC8L0kvyvkP/Rb3z5qDlyr/MPnn3OgpcniD/IfS91p8rAO3yX4GOzhXOzvwLy/DPwo/j5FnI/nL6Ge6+ttp73/o6w7/u9K15c9Qvof85ejOvsOe9Jv9h9rS2R/d0Xj8CXyN+c+cY9TLPhl8c9h/e/h2gOdU9jyQPx6n/q/sNfv/degt+2FTlHuU/f1u/vKW9jZm/459z8LfJPhakkd99P9E/7+AP4Pzlcv5zQvqx58+o38/L/1O+r30L+o3VK8DO3/I9+fQvxI/h9DzKfJn6t8z0LOEHBpq5wR4q+RcEGzGT49A32r96Wr5n0sfk3mq9Vtn7Y+V/g4fme9tzP5Xzvfg30u/e1t+K+lm9DsO3B2/l2f/U/0+/HEXcEd4fkBfTfbR3PdNtX8t+11oPrAk84xaf6f3OvJ4hF3dwf6z/7IjembB+2ZZCfZG7zHkfizYETyZPedcch14JTvM+r8vvbfzfVP+qzI9n8wf5pyvJzg554bofU/5X+jpm/Tfwv5S9pvC3xTy+E7+QeRRCb7h/NEq7a7Sf3LOsgX//6N+/z667sHfD+yptvInwpf98UX8Q8bPecaRBuyivnZH5/wA/szfr0D3FvAPI797CucXhyrfy7iZdWjWH+3kZ91xMv3OJc+Z6C6Of83Rt5je39XeA/BXZFfZH8l+Syf0Pqf9Y7XbQ7oS/g8lv8b4uoY97p/9V+UX0Fv8693hlzyb0ee56q+Fvyn5v2AelH7aRf4z8MdOngab4f9I+H6TPgI8Cn33k8+jxtWa6Mv5xgrwc/SVkdMe5He4/nFZ/JryO6BvGvrX5hwKfJ58m6N3tHnayIyn/H/OW05VPucwP9HHZfZf1qIn+5sj+d+j6feYjEv2/TLelbffUAu8jT111f5S+I+D/2P416HnZ+V3QfccfuRF+fulf+TcRf2KOd8m9478dm345qOvB/84mn89KnzIr51zCPLohc5lLf5efv6uf69Xpv3q5NGQfS2Xvk254niVcexE6fX8yk/gD+CO9H+g/jwRnur0fH/mM/jO+ukX7d6AvjHZlwP/VYZf+I81n8q+d/bDryXvp42/WR89I72cft7NOTX8JyXuxfh2Iv19B9+p8FSKv2Tff9DTgpwjKN+fvntJHw0uyzlo/KXvF8FzCfsdzv5uBS/Xfl3tJ66gDTxX8V+D0N/dfPY07X3AT1Yg35rovRGeuexlM+3sr9118G+i/N7qP5p9/5x3Zx9D/n/5xd/ouRi/0QnfsZfG2jlCuiZ+RmT9mDgP8nkLvYkX2LqsBDfXL2ZkPo7vV6R3Q2+n7J+i49vED2n/E/Rm/b9t4fx8fcHur0v8lvp/so8zIzftzAU78Z8/oONQ9D1Jv6fqPx20u8H3h7I/qd6X+B2gnfirVwr9J/0p/We9+p+yj2dybsB/XGc+ci1Yp6wE+8hvjb822Q+H7wn0HcG//Qr//uivLL9o/wPVr0G+mY9nnv6cdj5C/1z+JPPo7OPMVK6c+ewM3+/Wn1/Sbjv1l8uvRW7jtF+BPz/PvKp/xkNwtfoX53wGXaerX4Vf/TT7lPTbE323xI9rN+u9rO+yHsz6cLjyWR8eZFwYoZ2srxorP116cuK99Kf19Jfz7swrZuknOf9+ybxlFjgRnJL5Nvu9E57BxtHz4/+MF/vK3w3+rdhB5jWZ54SOrD8Sj9eDX09c3tx/mD/mHCPxL3X0n0r8RCXlXyTXneB/XL0e9FNT/k3oPZodTMs6Dv7y7OJndlUfHVfR/wb+8xd2so38rIfuKuy/v6rd7L9P0P75+tEH7DnzsqPLSrCjeeQx0sPgeYA/OFJ7OdfbXf5q+nopcQH4H8deBsN3E7i9dqpknKa/RerfKD0o+13knvOfr/iRX40PdcnneN/vRl9T/iH72vfl3CnxhOxzAzoSV5Q4o8QX/an8nurvrfxy/FcyLr1pH6id8XI38i+XfXPl5yZOUv5EdtsMf5son3iX7Gt/CDZR7mH2MYL9zPP9tq3+Tu++6J1CDpuws6nwH4/eHchtHD62Q+/IzDezHlDudel2ZSVYTfog6cRL5pzsKvrK+emW9HM6umer34N/SXzO3vxT7LBof+3x14o8r9fPd4L/OfWjx9PYyy7o+cz661J4Py/sl1wMXy10nqwfzUBfW+naOYeVrhf/Sx+t4TtQ/3uJ/pbrv2X4vxOdY9EX+4hdJM4u9vEb/3lBxn/lZuB/PH5v1++6wXeP9m/0PftX2beqUYgvTDzhSOXGwn+o/MMSZwX+gI6tyb+4vp+gfn3y7aTd+8jxef4j64i36PcA/mwx+hL3sLfyF6i/Pfmkv8cOc557nvKJZziUf67OP1+WeDHt7a+dFsr3zjkufnflf5rGD6H3DPnD8X1I4lDJf3v0PpL5Mf9TWf01/Mte6l3FnhLXdwM5Z752ifaGqf8/6QcS7yS9kPzuJp+D8Vcd3sQjrCGvn81jtyKPSdo92Hrj4+yv4Gfubn/na7n0Y9obg75x9sf7J44v++DaH8b/t9Re9k0bkN883yfBvyX5t2Ffv9Pr9/IvynkPPJvrP0N9Px2/FdCR+J3Y81jfE2+xLPvn0pfxUy+T9x7qfYnf83JPAf1d9c8p+kn8U8aXq9lDT/30XLAt/gbwV9OVfxc9J2rvI3LNuNWS/8/40EL6XvC3+En8zDG/mQ2+DC6Frw/5ZZ6dfc3MswfhZ3jmXcqNwH/isnN/J/d5Ep+9El05L/tQuh78HemrGT7HqZ9zm5Xklfj8FdKPJ75I/3oZPAZdie98nxwSl5Lzsw78c85VE1+Y84EqyufcqQb6i+dPm5oPHK/99dlfz36v8fi+9Ft2kviNPX3PvOB9dGTekPVj1o2Vja/ZT3hM/6pKT2fAk/2wm8mtb+wRvsRPHkD/veW3iT+TLi99VuIO2E81cv6MfX/LDr6Qzn7LVPYdv9JVf/43+m7hf/pnnxqeKvR3Ze4npT+T77Hsq7F6OxXOA7L/n/lxB/UyPx4pP/3lFvqYiu9F7OMWes2+5vcZZ9Gf+wmfq380ehqR74HkvYt2H5TO/nhT9jUI/psTD0O+PezHdSXHs9HXC32J33xYvcRtZv48yngzAZ1rzPdzP2gUfTTSfvaXTpPugt7EO0/mn/eTfkZ/Thxve/Vuh3+h8olDekM68Ugz1XsGvj7sYUX0U9ivzn724eRTjLfOeWj2Z1sV7o0tkM79sbPRdRY+EweY86fEdw2mz8R5Jb5rrPo1s3+C/vP4pz0TV6f9W+FdJ/+UnFf7fimYfcLcW/wz+4PoPgN/D8qPv3hR/awvXs39o/gnMPe8lqL/irISTDxi4lsPyb2rxI2Z77ZkXw8qP4r+voRvQvwuv9Ra/S1zHzLni4X7pblXmvuYiQdPfHhH+BMf3kR/e4gfTFzMftpvzT/XlV5AXo9L1yrMP0cU/Pub6Hov8T30nvl31uV3aDfnI1mfPxz/AM8kcB/1x+t/Pyl3hP70Ff4myi/6tyXoPZQ/Psj3ExMHh8590Ncuce/S69OP2HN7cGP2OdE3nb5zf+q9jA/0d2T2DRLPkPkHOh7Tzu/ob8If3Y++PdhHH/zET/2ncL9qkn2cstxXzjqL/zwGXzlHeA08unDuM6Jw/rMh56roX59zcvIv7odnn/wT6b3Yb+afR2k388/cj+2mH+Z+bO7LfpHzCe1/B8+XiS8sxD82pI+X+f818PyWe8z4qUJ+1chtDjkOBU9I/IvyY3IPBd+Jb/tAe9dm3Y/OKvS7HH1bw7OyrAQH5r40/ebe02Llch8q5zc5r5lgfT0QfTPZSyffE+ebuN9N6edPcnuCPrJ+qWS+9Qa+5/s+Ff6d+OvEn8yGpz3+X835r3GrFf8zR/0GuXfi++/4PlX9z9C5HblOxf/Puf9Irxl3c86T851Lcp8cfZeRRzv1q/IP72tnE+nb4VtkvHtO/14s/XTuMWf/DDyHvseyn134o+7yzwITF3K68tXxfQd5PIj+J+hrEvh44rzQ/wK7mA5WTVwM/Ln/f7T+My77gfrHbPrbiI6q+tsB6HkK/f1yP9p6tW3mM77n3uVH6Ms+ScuyEmzNbt4mt5vo8yb2uwp9d9LPrYnPQP8V+D0bvSONn7W0f2Xmm8rfJj/31zv63lM7ExKfjM4PYof0+1DsmV0+l7hS/WWe9iaTR+KC78ffMYk7029yDrcwcdmJb8r8U/7SshJsmv1FfiXxUbuQV+KkPk98FX0Pwt8Y+M8kz9Hmv9knf4c+TmPvibvLeiPxdyvUPx+/ide7KPHV2ss5b/F899/sYRr6s849Cr5/2hevlfsasXftXm4fJu83dMj9YfPP4eD/sj+k3Qey/wjP3uxjpPq5f5h7d/MyXy2cx5yfc3L0v6N+9v+PUO+/8tfrl4nHXoquUdJZv2bdmnVs8vc3Pn/u+3d5NwK8hn8erv7Z/PcD2r+NP4yfHFk4B9+MvKqDDcDE2TZNfDSYOPivwU/1r2XwVc05Ru7pFd6DyDsROX9K/GzuS34CNqef9I+p4O7xB1l/sc+sx26Xrss+dzNfvx4drXPepf3EkyS+5KGck8KX/cibtZ/9yuxPJj56I5j46MR75T2CfvSyq3rZ/3kJvYvZ2Sr8z8j5GXqaFO5bTFO/Tu4RZ/2d+EvpxDGOhS/xjYnTWKZ/ZZ5ZPfv68P/O/zDjchulm+aeQ8Hffyx9UebRhfuNz0rnnmPeneiBr+L7E7Okf03cgHT2U1qzv+zbzCrED9+P3sRNjpZunPv95JP40Zx7d8f/g9q5yfeJyq8np/n0urXxM3H6C9jfNPwu0l5F+a3VL873Mg/sjP+xWX+DY8CT4CnD71H83Fm+v6v/T0HvWYl3ween8u/it3fIuxn8TTX0fKbfbAPvssL8+jD0bp57Y/Rxkvy8K3BC4s20vzX55H2hLoX1et4Xyvl8zuNzPr9Rez+XQLlPQOIod7FyFyRuBrwTX5ugb1hhvGirXuIJf86+Kfoex8+MzIPRm/6X/ph4+sRXJK4icRbD8f9f40f8+7b8c94BOcR85035HYwXWd/nXL6B77eYZ+d8fhC/fZP6V0r/SB+JO3gS3bmfvS35bst+5yWuJPEKuT+Z+YN6OU/N+ekjHMcT7G03eM/k3++F90flO5Dz2/I/lD8bfZuyrz21fyC7z/3oyvr3FvDdrl+OAm8DEw8zFL5a7OM4+J4jl2nklXnbh/g8M/ED/F3up2T9ei39Jj6nmX6bOJ3pic+h32ro2hRcrFzio/POROKkEx99r/HpHvCr3HfMviD6poA1zFfHwd9L/zofzP2j3EvKPDzx18V5zqjQD9/+0jn//irzpaw74M/9qXXKfUufd8lfxV76oiP36JYmvjnxKfSVc86cb2a/6hL+uTg+5/5S8f7HUuXmqd+EvU9Q/h101kx8HrnuQ/8z4bsPf9vKzz3NmtI7w/cx/t7I+2navYZ9nMEezkNfV3LYF/5v9LcLcy6dcyv2VyHxd+b1v2a/I+fQ/MVJ/M7P2Z8HG6E7/jjvf5yE/+zDZH9tUc6RtV+839haOvccjyLv59nNTeDSxBPAm33exAHk/m9b/q+xcv0TN4u+duS6R+4zmWftTr5P8xc3ovuzwj5lOf1tCDv4k/5yjyLv6uQ9ndzD/hodneHtlXGZPpqw++L7ETmHeFD779HP5tpbkjg1+vindzcG4fd6+PNuzdnwDM39KOWzP/dV7jdJZ76Z+ec59JD556/sb0v83EoeU8k/5/05D8j5QH31u8CXff3jc44C9kZ/L/CC3BdWPu9a5H5o7ovmfmhxPyf7PP2zf+J+Vt65eZZ/7Eb+tdF7Nv3fCM8g9N9m3F1HnnkP6yf5zWK/uQ8uP/dDv+N3o4d1Od+Er0vWu+i4Jv0X/ceiayE+92evY/GTexPzwWmF+xN9sl6RnsG+n6LPWfC/CI7Rf06VX1V6vH40Fsx7QhXIJ/dpx+mvH0iP1d8TR3s5+0s8bXH+nnn7FPz3Mm5nH+c86eznbEqunZSPnxhAv7n3XDvr1bwHST/r+MUv4Gsfv5h4Ovw/B76Mj8Snv4T+axN3w74+yP0C/WcxOVTV/ofyL6T/i+i1hnZGo+MFek2cU+Kb7ks/s77chj96nzzOzn3pjEfs4PCcW+N/T3rvS27d8x5l+of+9zS6JoPdyKcqey4HVgHX6g8LjQvPKn8AOS2Cv475ce6f7mIelfuni/mDb/NOX+7xJD6TfN8lj745Z6afmuylYt53yzhtfN1Zv8q+8+XksZg8Xuefc67+mnTu51xs/ZR7tcX7tj8U5h+n4C/7UZmHrsFnR/U+pb/EFe+r/WJ8cT319pQeAn9F9D+B3+wfZj8x+4d5V7KvcsX3JYv7ednnS/zK1+zyq9gnO2/IXz+J/8TvjIE/8Tuj5Z+uncyLD058dlkJrsTnMvaS+PEL2UN3cuwr3RX+3AesxS5zL7AV+7i3MJ/O/Pp/aR9f8fsvSGd/+TX9dpX5V/H+2qeJtyD/DfL7kV/uh+ReSO6J7IK/zdXP/ZrrM0+kj9w36JF4zpxHw599vqxf3s45EPzZz3sw62D6yf5ezg9zbvid/pL7RyPguyz3IcjlLek+/EXvvCMH5vxmHHtNv8h+bfrNq/Q+jNyzzs47q3snHi/3D9nnu9rPfsMdkSt/8DB5jOE/d8d3efmJfztNe02kT4Y/73fNzvt9seOcq5PvAP7kPflD5Kc/Jr78en428eVZh2X9kXVHU/K9Lu8j6W/ZT89+++Scj8GffZ3ifs/4nMvgP+87zGdn4xKfZpyKfleDxf3QrMPuQt9M9tJe+by/O6Fwvzj3ivtkPVXYry2+f7InOeZe94+5r0p+teBPfF72ZROftyzr+cRd+f5f7WxJfx+WleBHYJfIGX+Xq/co/7Ih+zrs71J2/SS7/lB6D+02o7+vwRHZX8fPO+YL+8Cf98biR74kj4ezL+X7N9pPvH7ecSi+37BK/14JTsD/dfKzb3iK/pb47cT/5Z5pee3NRv9pxte8H5N3Y9J/8/7LHPmbZ75jfL0j50z0ezfYHF3z6HOa9rIuOBwfWS9sQ+714K2q3fnZXzRebGKceEl++8SfZj838YXK5X3fojwip03zPkxZCdYvjAe5/7KKva5Ab9ZHuV83Qr/Muutwcsh6bIu8KyE9FL0LyaeG77mPnP3NMvn90ZW4+sTZJ77+Tv1/VPalzHcn03dD/vME7d7Mv9TCX0v4895x9gHyvnsF/rEm+m5K3K3x5Rn6zPuOddGf9x1rkkf2L2oYh7N/kfigxAVlH2O89vfNuKJ/Lct4mfkR/9gO3nPw8Qt4KP5z7p13BTrn/SfyStxT8X5S4ivOLcRZJL5iffSPv5bw/I99xJ7iD3bOfYC872Y/bXvwWvxeTD55b2vPvDsL/9R/eH9rnvFxmvyXzZem6l8XwtMq++Al8Nf+ffbzs3+feMjEr/VPnFvi32LfhXdT6sY+rSfX4+sO6afUz/sKdXIvUrnF9JT7LRnPc88l91vWs88fwVXwjFZ+AHmXz3sruZ9IvovYb95XeEX/yPsKp7Kf7J++kHUG+s7Hf/S/IeuM7IPBl3cDsk7J+mQRvZ8KT86Rb0bfOTv+/8vdmvsu8Gbd8WnW9yVQbjf9ZCv+7AF41pBHNfTOyf6U/rUb+8q7FM8Zp3I/fB6/k/9fyP8uJL4l68OB6Mz6MOvF0dInZb5feH/zMfaQ+Wvms5m/dmLXef8o/6dxafxP4qnY5yP6cfbbEs+b/Z3G+BpJLtvoT9uCW7OzSXm/j34vJId30Hd8IT76R3aUOOnER3+Q9/Tp533pvGc3hP+8UTrxFB+p30084CH6yXTpe7OfbzzMvczEn3Qnn2L848Xkn/skPcg192hG4y/vmNzB/22Jz9yLyPs095DXprkfKP2BctXVj98s+tPiflr22TYmjpx+hycOWbuvoK8+ehv4Plm6Efu6nX8cmXu87C3vhz2V83H6zD3yrN/yPlxr9pH34UZq53v95V5wSfbRcx6M3/roLfqPnO/mXDd053z3SPI5T/320s/yv++ol/i42eR3Mn524VcSH9fQ/lXHxPPh9wr954fMN8m/+B7jjYX4q7wrdjD6EifwiXTsLvG20+kz77UknvTjwj3AnP/lXazETef+S+Kn7+LvNoB7JJ43csx4y881AXMO0974eyeY85yc43Q1L6mX+GbwPXAgfzMGffXxXw3/tQrvQyROLfFpLZS7iL8pTx/v5f8d6DP7M1tJ532IvvxKzv0yjmX8yv8eHQpen7iVxA+w27z/nPegn877nOw+7zLcJ513G3Ju0p8+i+cnn/F3q8EX1E9c6gPmY3mX/Q30f0Qu1fO+TM7HpbM/9av13JHSE3OPQv9IfGbGrfx/UMavb/TnHTKvS3/F/0z63z3vFCvXkhyzf/QZuqfzF89qrwm7np/zOOnL1T+NvA8mnw/oI/PYofgdAmZ+mXnnFhmv8LUc3dvgbzD8o+BdCk7OfQx0Zfw4jh/4a/yAN/exc097Mv66mZePy7kmPpbmvgJ8+R+A4vv/z+hvif8/M+8oyS++21yMvzmBPyxX2KdLfORbiY/JfRb6uTX79frPSfrVmfDlHf8Hy0rwU/Ocr/TfjujYkb0k7nsaO8j7zhO1N0y5gdrJ+UIT7ee9oQN97xL649fpJ+/bHUS/F+lvrdDbEp6Zeb+CveV/L75DX/7/IvcX8r8wubdwvfZOp58V9JP1ctbJbX1/K3Gs2b9C32ryXwrfSvXX5/4Tu34n+cr/ID/viXeQ/hD9uV9ZO/eFtVsr6dy/RWfeJy5PDlXYz7f0dmHu10pXVP/9xDWQ43vSidPN+nMO+C06nsj5s/by7tIN+mPm138an++Cr77vDfHXRf7xYCPzvRY5v9L/LgIzr5+e+Fv0ZFwtxg+20m7uEXfj53Ymj7xv3YYe8r513q840bywh+/5X7C8r57z4G6J6yucBzY0Pud/RW7OPIG+Ghkvfmf3uRf8L/T1o4+LEr+Kz8HgF/rzmPgZ8sh7I//0vxt90F983+yvd820/0/vouU9nFY5V9beEejM/c9j6e24vNOn/Xbgr/Amfrev/vMufEPoJ3GtP9Ff3kPox14eZD9vFtZxmRfMIP+ttPsQ+jKvmKx+5hUt1P8RfZmX1MB35idj4c3+8n/Yy9HaOSD/l6OdZ8x/yvJ+Fvn2QPdi6dwPKN5nzv9D1kTfs/xbe98b4iP/E1Bcv2bdmvtDG9lnBf037xjk/YLWZSWYuLqjpBNvV3zvLe/AXSed/dHsh2Z/9EL8dcv/f+DzC+PJt8rdor3qYM4Z8n7GK+jdht76FP7/ci17ulk/uTr/B5B9Xe3vk/UtmPtyubfVKe+uk2fub+XdhfyvwgDpvL+wvPCe6DfSlfF/nX6Rd/i+JM+8w5f/2/ynezhtzesvUW6Ncs+Rd+7N5z5l7tMvkJ95YXt2MwMfl8h/ndxyDpnzx8SBzCwrwRfBnA+GvswDvsm4nfGNfobjJ+/Hxp/k/yTz/0aZP29nvFlCfvn/xZz7FM+Dcq/1iKzL8fWm/lfJeHUC/vM/j/l/x7zLuJl9ieL7jIPZ037So6Rzj7GDdi/P/+hIZ79mdSHutg1+8/91x7K3+fzzSWUlmHeJ8i7eF+hdpx+3SvyQ+fNb4Cboehn+Xvzn7lnXys89/PiDvNtdXbmzpIv/N1WT/fzK3vK+cd4lyflw3hfLvfWhibdF1+m5B4nfj/j9/emppfovwJf3re/GZ963XkZ/y9Tvp738n2PWF1lX5D2rrC86kee/wdr4zf+ktUFf/r8x9+iqFOZv70tnHpf5W849BmbdUTj/2LuwHluHvtxvz/2s7Ivlnlbir7rAPyh+HT3Zn5vMvuLf49cTPz046zF053868v8cuT/+CJh488SX38O+sy9a3C89DV0V6P036ecjH3zl/2FOVH+8/p/1etbvW9vPzPuKO9H76+j9Tf2Oed/GeLE9/KvpL/PvW/T3/K9o/md0tPbrK38Kv/QQevP+5HT9tg25PC+9efYByPcneDvj4yT05X7W+MRDZV9B+3+9Gy8//4N7tfp57yP38qYV3gPJ/zfkPYl50nlf6kTyGUSfuR/6lvxpWb+hp3nuQcjPffv4p/ir3G/O/G8NO87876/5YJn24RmAnimJdyX/vINQfP8g86/ENy/K/CHz/8L+xvf08QV+jzUeLLevMBbMuWPu418Gb+7zTsn+U/ZVwezfPpn9BeN3OfBNMP8PWIl/zrlwzolzPrwfuVXO/Zb4m5wfm9/1NK5kPpz50QJ2WVH+u3mngT6zf5n78XlnJvd3bkB+3icZIP28/DvoJ3bVGx+xt8S1JM4l8S1dcr+a/nJvLvfocn/uF3pYkvtVyv1WeD92OfgxmHdk855G3tf4tPC+xpv6X94XfKvwf5rF+JfMC/K+2m38T96vGCWd89+l2nsz8TDksUE6/yeReL4/0J33VtrxuxP1i+zj3gx/3v2rkvvz6B+feybw7wweGb+sfiP9M+fLOW9epZ3cX/5EHHT2ze8Gc16Z88v7yDPnlzlvHwDfo9nXBbcsK8FvEpcFz3Hke5X8c/BzAv+e94Gu5JcHgW1zHoTPg33vmfbp4zj2s2v2u3MPiV4y/0/8V96FSZxA3of5PxGjH6F4nH3defSWUxc38ChKGgylpyI/MjWolLlMGZOQscmUoUwhSslQFEUKIZQQKmSKp5BkiMpQiUiiZCqkKBHxvGu99+drLde7vPc/e53rnLPPns4+0z7n3n7ncv/3N7ZBCV65Uwnu3qQE61byvXoJfrxLCe7YrASv36EEL4BnwXYluLJxCa6Gd4tGJXit9Ed7lODnJVDuEHgvk35M+/9Fzx7qvQZ2g2/MNtrZrQTXwdNQ/S3VP0299vVLcKr65+70Tzof3bUEH0D/FvC9IP+XuiU4q6FyytfX/klbluD32n+vdgkuqVWC70qP1O5i+Ouqf3+NElwjXXnHEtxM+hr0R1/nVS7BSfB1l94Bf8duWoKHbF2CR6HrnKYluBW97eD7o/C+I92hSgmeRd+/4Xcv+pugvTroGyfdRvutapbgFerNwW+Z+nexr5PkX639Z7U3nn4vKivBAfh/kn6O2aIEG8AzFh3PyK9Hnuf7fqH2D9m9BI/U3lG+H63dI9C3nFyr0/cq7R2s3BTyPZMcO21Vgvtq/4NNSnAB+CH4vvwjtXsUOtrAe7j2t4S3A3lejY4h0r3p9blqyml/CDw/Kt9Q+a20s1D65aolWIv8d/H9Ou1fsnkJbgLPpeTxGfu4GT/ltHt8xRIcCN9x/MPj5UvwevocJP9HfmUz+jsev/fA34LeNtb+/9DbGH3j0ddEuZba/1p+DfpZh+8j4TmheQmOIbdd2cPt6Hpe/6gmf5L6VaU/ke6D/ovJ5Xf0vAx/a/3hc3b4KPnegr83+YtNYv/S8Se10D+RnQxTrjX899L/WvV+A7fHz9Pl8Mv/fLJ9CXaLX+aPqoOt4P+F/fTCT3n0XC6/I/ncqv3p5NoOnbXxd6l0F/UnklNN5Tuxjx7o29H3fcHl6h2G3qHso6X+8wr8FdBzJ3nvKv2S8h8p/6Lyz6NvvXQH+E/DX1Xt12W3LdjVnmBj9bfhn2uCtcDH2N9J2p+k/UXaO0/9xduW4DXKfSY9V/nKm5XgxeRwk3Kt6XeKdA/5A+qVYB/1e5Lvy/h6lv1dT7+X0d+e6h9C3x9LH88uyum3u/m+CDyPfR6Bji0a/JO+AerfyG+Pouc25NNLf74IXYfHLtW/iL2uUq+9dvopfxV5V5T+k/w24L8c/suD37K/Y8i/MXvpRw6d0DOAvJpIL1TvQOXOgX9+nRL8CN0HkMtU/G2O7jPofSm76qZ+541K8HVwHJjxobF278Hf3uS4nP6q8pvVwDczjpHfUu1nHtIGfY/oH2vp+yt0rdDePPWbGP/78CvV0HEp/3MufayDN/Olxeq3kz9NvRO085j2e5FnW/kHgt3h70seU8HW/G9H8v5O+bfps6P2W5FPp/+UYGfwE3SuUe9Z9nW/eq+yk7n0f716FaXHa7da/Lv5zSHglewx/eck/uM0+OdI/67918jnavLqRb+18HOmfvct/uP/T2FfP8tvpP7p2j8J/1+zi3OM05/S48bkP8v3meBb4C/wDaOfU/FzMno3QV979JzJXp+Vf6j8ndWbAFa3Pjgr4wN9/one+b7Pxt8k5T/0fYNys+Rvhb4dM17STwvw98wfyPtF85QXM5/V/1/G93rphfQ7mD5OIq92+F0k/xjpE+XvZ5z/RH5984ODlRvLnzTRDwayv3HyjyorwcfQ/4rvneEvh55bpR8g7+X4Owa/3envMu23ga8XO9yPPP/U37dT/0j9vbn8n8h/OXq7ondP8q/MvsZk/CDfq5S/kL39oN3TzZ+naK+D/rWX+ufj5w/62Uq5RuBo9O7d+J98Haa9UamP/+H820BwEJh5wwT20zrrCfU/x39L/n0v8F3fvyb/vennbPSfSB57o+fjjG/K3cfeD0T3yfrrEuWz3v0L/h7693HWnfX5ma3hm5j5qHH4YnbcFL4/Cv23Kb434KOW/DOz7qK/bclvH+NHY+31oP8K8G/Gn7VlJ2dLtyHPjsbjU8FTwHbsZwG+mpNDNfZ9etaP9JF55Rhyqc0+DiXvuugfjs65+t8U8nwVPRPN3ybBcwW5lZVAuQ3kuQGes7R7Evl1lX4k62jpk+WfLT1O/qna/1F+8/gl8nuR/Nul35jv/Ym+b83nbld/MP23pJ9nfV8GX23yGkh+20Wf4LvKzVB/DPlNwPdj4DPoPEX+/ODL/JX+xtJf9m9asJed4a+F/8sy3qL3Lfnv4+c+9tNduf/QVx/5M8tKsK/0rRnv4L82eqG3i/F5EL4PzLqcXsqR78HsuSp+N/J9V/wdBt8Z0l+aRz0q3ZH91CD328lvr6zX6fMJ9Ozm+4/a+Ub+t2D8VhP2ewv+Dle/g36yLvsA5LGcnbwsP/ZyBn9XiV8/WPvfgrehuyd6mpHHeOmMR3vpt3uDGa96qr8QHRPJcVH8sXnLQvSVkz5P/tH84xvoPZQeH6X/s9nfKxVKsAb/9hz5fEBuVdXfiZ7PpefIPfuZ2d+cp/5l/Os5+PgFf1l33qj8x/h6lTyjx/P4q2vIaxj6G/FPw6Wvlb+N+UFj+Wu1P4E8j9WfbtD+x+aj17OL2Pl89teN/BqR1zr0Zv42Aj/94LtDun72M9GzK/4zD58AXwPtz1P+aOXulf81esZqr6Xx/jHpyDv7l9urH70cBN4AX1f5S/F3PvyNlWslvYD8nmbvTdXra5y+VPtvsYdZ4K9gV/z0pL9vs0/GfzUlh0rsug78t+r/Y9F7L3v+CTwFfYvQl/VU1ldZb42Gvy7515V+RvkLpLuiL+vnzvi9k738YX43B9yJnDdobyl6Rio/CJ7Jzf//eH9Efz/1O5Pra/CuZ88Hmb+dr96uWYfrb/PJr5d6Vcmxl3Kf6r9XZh2H/un0n33JG30fpPyr9PuL/Efh/5H8mma+rr2sOy9jn2/R3wZyqwD/Fbv8s/2j+MM7SqBcRzD7U1XJZRa7OVD/zf7IV/hvh94Tsr+JvhP4s/7sYIrxY6j8PYwvG+HzIOmj458K64v58LyN/uvNdzbF7yr129PvjubjB+kP26j3DDgZvuybXul79k/v5k8mgiPBpdq7vwTK/QIuBa/Mfqb+EL8RPxL/0Ur77cAL8XlE9vnhWaW9L/jTIehcqPzh2tmWXe6N/1vw/5r+eyqY/YXHpLeLf4fvEPx3o+/u8dvy71Z+Enut4fta+s0++06F9X/2A7L+/0T/ugw98cPfwX+IedND8B8snX2OH4ybj4E9yKs1+VQxX7/Y99kbl+Ch8g8vK8GJ6NtK/9oi53PyL0fXaun7yOf9wnpmFDrrwr+SXmaZn8zO/iv6H0XXTso3k/+l9Dnk2Y4892AHXbIeh2c0envy3zkfuMt6/232fTV7yP7x/zMuSj8tfz39lkPXb9KvZH0M38nwV8RPW/J8Qb165DfbfKc5PlqT32R8NCorwS20P57ddeN/foUv65Vd4DuFfNfLz3qlO/x3Zl9X+mH43zP+n82PnYfu0fpPHfaZ9VAX/a+j/FuNK8PA89nn89rZKPtb8H8D/phzXOuj0zIfCr3kdSa+HlD+ZuX2RP8Z+P1T+XfVLy9/Lv2vBT+m38X0tTn5vpD5FDw96HcJ/peCX4Cvo+N0/r0BPtuAJ/KTn5iPvISu+/AzVHvVlX+Rfl8AO6PjVP2nIrgGnqdz/q6dQfhaJX1f/In541xwoHKj5I9Czye+f6q/fU6/+7GP/clrAHmtRv/d6s2nh9o5r+Ef6voe/7Yd2BT9f+pPS41bG6Q/hPd5+DLvuJ39/Ea/rcpK8O/9GHp5lf4+4e/u4AcbgVujvzb7O0I/KjPe5pysFn30J4+x6CmPv5eMWw3wNTXjGHpyHpbzsZyXtcDPZvzHauVmsNPd0XcpPG8r/65+NoX8htHrULCa7/ep/xn7eps8Y5+Vsr+S+Ufm6zmvDh76H6ZezfSDwvlRezDzoobkU8H8KvuV2b9cQH+96XN99k3gmab989E3GP+9Mq+C/xzy+on8Bqt3FP5yvp5z9XfoNefrc8yP78x+lvwD2c8N6C/6nw8L48U++sXp/GTGj9tyroT/r/F5kPxx8PZXL+P8Mfj7Sn/YwI5XJl4FvT+T19bo+i3nvdr7vKwEn8X/zJzvSz9d2D/O/sSb2o995fwydhb7ulF/yvxhW+nMH9KPsv5fB8+F5Lstf/Wk74fha2f6+0F7j+tXH9L3DepnvD+UHWU+kPH/k7ISXAhvzrP2If+Jxqv/kev25PCX8iP5hfvxkXiWxK/cCd8K8vxW+3VyXs3/n2D+O9N8vQZ57R95wvOz+lkffMkf/1f7T4Nvo/NX488+ka90HfRNp+/Z6Hsy63T2u5z+M08eWpgn5/zxV/TN0f5m7KOd/tEWPBp8XbnR2e+RLsZjNYe/Gfi7/Jnsp6Lv/xZH8hV/+FT0Lv05/upo/xvpnvR9O/u4m/28pt639H5K4h/YZ3N83YKPDfBlXzRxDQ+UQLn9Cvsnf4Ar8ZF10LTsD8rvSQ9vkO/N/O5XkWfOHcnvxuy3ZL4EX734T/2iO1icX3c2r7i+YD+D2c8g+ngy8Wb4HK/+w/JHqf+Z9BHqXy09HX1fSO8GT+ap2U9fhJ/t1H9Ufs7TH5HflPy6oX8r6bP4iefRl7idltpvyE8/Al/izrZK/1C+TP5d5kcHaHeJfnwLebyn/PM5Z9ZOdfrbm/72BfcBF9PDKvTMh2ea9GD03Ecf2Td7wDpvBP5upte1YJWCH/0z8VnwvwL/s+h8nD0+UdhfynnAYdp/VLvLwIvg35K/767du/WjLdX/jV1Xh3dfdOR8rXh+Uzv1pHfRX3cGvwKzT7As+1L4Waf+F+znS+1m/dcFnbuxt/jr+O9j5cd/V9XedH6gDX/xp3Z7qx+/XTfnM+pfZP8o+5y1s47W/qf08xP8I8yv2mS9z96il+gp+rnb+JK4s+J58WT1f4389Y+eid9B3wJ03W4f/3Hyy3nsXPlnwHOs+icn7qJwPnAq/e3NfiaAsd+28ORc/yHyz7n+ZO33Nt4fYJzsIx0//Dj9tDVP36D+QP2vOK6cTC6nga+jfz/1vlfurZwXWR/crL3byP8h+RXIqwK59/F9Iv4zDmY/M/ubu+GvYVkJPob+NTknYB+/oKche/oifk/9h+T3R1fW+YvRkXVUefUWSP8q3Yj8qvALR6lfJedI5h/7qpd4gJz/15O/KvGTiQdM/JH87eHNPll//muG9rNvMZQ/aZnzNfUvYj/Z/2iV8Yjfzf5xrYK8Z8G30vfp5tHdyS/xnZ8aRxLfeSh+Xtdu/MYb0omvXcZ+DoH/YXRsWVjfZ13fP/Ee8G9uPvg4fAdlfzbxq+z+ZHbYhty/UP5O/vYCeGeVleAQ6f2Uz3nrPHzcTz8v0vtbiatAb+LwH9KvPyqM20PYZwX1E/+UuKfK2tuef/sL3t/AzEcr8V9trPN+IN/Ekc/VblV4P6KvxfGf8rdG74noXZR4D/JZk/kkPifjf578TonzkD9T/R2kB2l/Vs67En9H/6eqX9wfukT5fomXxvfonE+ST9adWY9elfNN/qWi8WFT8Cx0rSG/jfn1tdI5/9sVvurqbQFm/NuWnBM3eB56O7HDnD/n3Pk56T3V2xYdidM7AZ4lsQ92X0P+JtJHwp9xbjm4Dv0PyT8Nvf9D17f6e+Jp0r/K4lfA3A+Yr980zjl5/BD6dmF32ZeZzj+fTX69tdshcdHaPZf9DEdf4t4SB5f4tx2MV7Xpp1zOJbP/iP7KYF/yyT2HxdZh/3YO+WHWXdId1RvGvnZLnCv5Z/9zRdbv7OMR9Yvxu9n/GFjYB0l8wMx/iU8bgf/Hs2+uXuKrbiS/N82vt+HnHpT/Mv+ceJeb6PNUcr5X/lPof5N9TjafyT2TjuY/76NrJX0n/vgV40Pim7eRrkc/d8P/UvQK70nk+wS+Nk+8Mb7GoK8res4Cx2TenHi/shIYkX0Icj4efRP0h6z/4+e3g6eh9k9E76DE5+Z+BL5GwJf7P/dIz0FX7heNkT8NrBS/jf/cgwkfa/j/Wuhfge814DGJx8v9MXaS9VvsJ/PX/2on9ycij3uUu1M72aeZ73vuaz3FnyY+7Wr2/CG5HAf/ceRTW3+vC9YBmyk3HP766N3B99ejv8ynrduzjs/6va3v07LPlzhReHIeuA7+9NeNyG/jyCfjifQz+D048eLZN5LfJf3F/OkO+e/Lv41896efg81Dns8+jfI5x+lB3jnvqYTe39lHPeNUbXS9rP2BxsMbwDeyTsn+PfubXoZe7XxAPw+R7y3gF+ibgP5Zud+m3bnkfDj6ysu/Ad7B+HlPegO6uifON+dQiccrgXJt9MO58A3O+Sd7nArPosSVo2cCf5O48k2MR4fT7zPkfonyG7I/i/61/OPP8M7G33c577Ae3UO929B9WPYHyLeechemPHwr6OkJ7V0uPUv6A/Pl7PMW93cnGP++ge9l7deGJ+edf5+DggPIrx+9LiXXN42Xt6E/+8XZPz4cvsSPvcf+W5PLEPY4P+cQ5N8KzH2H+NEW6Q/scnPjxTr8Re/n01/03zn0of8U9RKffgn95l5o7oPmnkbuZyw2nx1Jn4kXGIee4/mzZfg8V3pQxjd8zqSvd/ib6c3+yd818B+l/pv4O7KsBJ/gx4/LuK797bNvyI6OJef427lZD2tnOnr6wl8Fv8flXqf6mR+3kp9498S/v4r+idYDT9s32Ej69cQp8ddvojvn9EPYx3b65ZzMK/B1IvtbRF7xe/uAWYevQc//yHsmP3dF4gMTF5p4D/zN0N7zOZ9if9kfujfrJHbxh3HuBO1kvRE7PZjfzTwg93RyH3pz8qxKvyewhwvkN4V3T+3vnPM09pl5XW/pxzPPNS/LPdPe6j9EXwv5s9/h31Z/yD3bo9G7ce6JGI+6qn+X/AMSt4uu79T/jH+8I/MesEP2wXP+mn2dnM/qn99lX5WeKym3UnsXafZ08m+Fj/FZz+j/P6qf8eEP9rUPve5GLlmXH0D+iSesm3m9elPlV0Zv7j9mHM/9x0rkezA7uhMd95DDd9rP/Lap/K3pK+u5rO+y3ov/yX3I7FMN0J+zP7VM/cznNuEHFub+MrmNwf8B+M19lqH09x/0fIefA+E7Pft36DpNOucMA/jVYfSwZ/b98JP7b+Ev/jXz9OvKSjDx/suVj34Tb3ohfWSfNvGnzcyPTkhcPHqWF+w19pv5d+z3Q+Vb4OcM7YwDJ+uvFdH7HjleTn7P6i/z4M05ZM4f19B/J/XWS78CXyPfc776Ort6A6xLH8ejbwf6vwt9G5Nn9lvXK/dezrd2+id/eSfgHulG6Enc/DbyEz+/hH2swt9q/fkK9UfmfpJ6byROJeMzen+C72jpprlnRv6ZX2W+lfnVisSlaf/nwvj3HP/XFb/7y7+f/HP+lXOvxFHm/Cv7CdlfqGH+sh4/A8l3EHgDmHFlOPpm6v/3o3sU+zje9+PA9mDOuauYn1UDc79vB3ha8Bc3oLuy/PbwZ/2V9VbOy3ck3yH65Tz95BP8jcz+lPF6KbkV59m5P5F4+17SuT9RVftjwZ/NU4ahv5l2jkNf5r/9pHfP/iT95Rw69yk78Ge5L/a59O65X1lWgtkfGAdPRfR9rv8mHnM6/Lk/8z75vEXO9dhj+cTH6n9j6O0BMHq6yvxrafaXpC+Wn7i53IPsww5z//Gg+EWwMf93u/nPDPbdBT0j9NMP1L+cPqclbke5H+gr69Ff2M9U/Sv3+nLfYRi6cg9iBjneXFaCLel3Onwt8j4Evh/T/peJ94X/a/OxQ82PvpJupPxq+qmGjsXa2TLnXYmbTJwO/9MdP2/Sz0P0l/27r9G/gt2fiK7X4kfQV448M2/KfKqM/I+U3wbMuL+efSZeM+friedM/OYgfCUeoHpZCeb+5Zjso8dvSd+j/bPpaza850oPiP+D70py7A1Ohyfx7ol/n5z9pazv2dt16H8YvTXIN/vJOcfOvaacX9/H/qbAu8B4kvO77C9mPzH7i0+z3/jZPdW/G5/Z3+1IH5frpxdq7yv5Deh9Q85f8b0/+vLewFr85D2COvJzTv0HOJ59Jn6/+P7Dt+j5MvcP+YP/Zh6KvsS7RS7dEpeRfgb/fPQ2o5+jlT8/8zn2nX2KidLZr6iScyt4lqDzGvj7sJeV9HEvO879g0es2/LOyxLpvPfysfSJOU9gHw3os63110++b87edk+8FX4j78g/7z/ciJ4W5FfF/OCdxHkX4t8ulk4c3P7afRAdI/mZvCu0EF85V8o5U86X+sjfFL1zjO+TpOP/4+/j/3P//uHCvCLx2cvhr2O8eoqetlB+G+XPRvcR9JN5StXcb2ePK50rTKCHB+kv5205f8t5XPW8X6J85mez9ePMz8rk572r1tq7LPED+M/6aV92mHPO24yXeZ/paXKfEvtQvz2//T1/nPeW4rY/AEeBWfc8Qt6zsh9U8Cd72++6UfvlyXkg+y+Hn7xv9UfmMeR3E/3czm4WKLeV/Cv1/yPQm3PWxEtlPyz7ZJkHZr9sDfnuo91h8QfoS7zR1+Sfe3E/pX/S75fZF8l9RvrZQ/0G2uup3F15T0D59+NX2Fvet8r95pqJu5T/p/rz8L+PcXhvMO89PaL/Zn93oPYmoS/7pevZ47uJX8j9ydwfpIcWyvVn/9dlfZx4wcTRkk/ujeW+ZPF+yKfk1429Z59/rPqXmL+8ST4DpJ/K+RZ7GIneS7X3o/QU/uyS7GuBU7N/m3g18jmMv+qL3mPVX5v346R/Tzw2fr4v3Nubnvey6D/7YQ8HL36/t65YAX4H5p5h9odeTXxA7pniP/G70fflhfs7vyd+Cb4rjTd5p24B+hI/ckT4y3yMP8n5T3329kDiN+0Pxr5ybtAMf8vQf7l+Ny3nNfK/QE/iztYlDgB/N9BHzlNql5Vg9od74PdisC/YDb0Ncr8d3i34gU70cEfiG+h3T3zk/v1I8vkOHTuTf+53jtW/BuecinwexucG/nRn5XrhY3N4cr8z9zr7Zt1LfyPQnfi1xLMlfu3cgr/8Bt9b5v4AvurF7+a8CX1zzR+etM4cK90EfR3yrqV5Ve7hNyCnzHs3Uf4B8jxH/qL4RfJahZ9bs7/+L/OK58m/Kbk1AZvlHQZ4XsJXzk2yv5P4oK7KL2BvX8J/Nvm8wp987fsHmTfKvwB/uT+S+yS5P9LceJ11WTt2siT3owvvCnyf8336vY28Zvq+CzqWKl9R/7oncd/avYZ8vqSXZbmnpF7G0b/oK/PPftLf4OON+Af4d6SPbbRzAPvN/eH90Vcz8yv41mpvFTw11B+gfDn8Jb7yauXzfkXerXhRvbxfUS7nJfRZLX6b/WwGX63sH2j/U/Ruj5964LHkNF69S/i7S8Eheb9Bfkf+a1jWnznHBZ/S79trrwl630N/Y/Z3Mr+zh3T2L1dYj/Rj/03wt4P+8g66O/Kfc+J/E4+Hjqy3Ex+e8XOE77m/kvssx7K/Yvx04qbPlt+Aff5bHEfWT1MK66cq+s97iStFb8Os47K+L9h33imKnSfeP/H/uQ+wNfrG6b/z2M9I/LVUrrl0M/AP7eT+Qt5XOheevK80mH7+i//Edexo/2MZ+n4nv5+zjofnNPhfKcRDZT1dWf4B5JN1fs7Pst6/H92jwV2yr5L1svFzD/345fh/9D/F3z+I74mJn2dfHdnvcnZ+D3nfmPEe3Xkf+K6cV6I/8Szz0ZM4l9/5h8xLcr+4+P5ob/LNvmb2ObO/mXP5n9Qvns8vxU/uuTdDx1b0k33gHXNfER/v4v9h497qxFVLT9J/PkVPBenB6r9UOB97AV0LtZdzsnfZR+6N/EzPeT+xT/ST+J/E0Se+mrz68VuT4J+ovd2tD57UPw/D50r8tVEv78h8n/cA0L8r+8w+RwPpajkfgX/v7Acr9xs6877eweiZVnhvb0LuK+An58Bn0U/W7Q/yb09kn4j/GM9vJt4n7xgnPrEr+z0bbGe8SnzUkrISHPEv/q8Yf9xP/04c8pfW9TnfuL7wPs8Fxo127OZi/Ge/5gt6GQPvJOkj8f05+UTfb8D7E/66yX8OvkryE8/+hPwVGTfgzf35htqbDf6Q+KmsI9C9R+SuH+T9g3fErzSXf4H1fN4/yPp6Fph40cSHrrZ+yP2O3PfI/Y7+8hNfNYCcn1P/BfOnnMNNkc453I74yfvgwxIvhb7M+8eQ7yj4M//vlfe82NmynPOSc1v2P9P4sit9Z59nM353cfZ/4dsW/sPYa+5HJx4n9zrfZ7fP0lf2O7O/mfdSr4F/B3rr0fCf3/O+6tCsb9XPuyEZN4v3507jX17RzhnS3xT2X/M+30fkNI1/eJm/WAVvcf/nSfnx6znPin/vWoifzbp3R/qaSW6T6f3qzHtyvsG/5v3vu8gj95PznkYT/OS9jT3Rfxy8eceq+H7V6rw/J533NHI/o5d+XTPzVnwcyn+1yf3C3Jsi94ra70D/G9HfNeDKrH8L55k558w4Nj3vKue9H983I5+nsh4z7iTePOfjV5Jf7rU0Yld5z/Ms/izxYXlnJ++r/tu5ad4bnEV/iVtLHNu99N+WvVUl95PNdxP3Mpb8eyT+wDh2SfN/0pP3v29G98Xyt1A/8Tl5DyPvX/xFPnnfZxNyfF79Yrx84uh/oO/y2SAFNwbzPvx3yl2b97TJKe+nJv64t3ab8y+zpTsrn7i0OxL3m/gC41HGpcGpn3GavD6F59fclyb/r8i/f+ZliTfJPD/x6+Ynuf+Y+5A3Jf5e+ceUy/tyndVPvM8m0g/hf0nhXZAaiQ8OzHuX7OpE9Wvpj5fzRxXJ5zTl/iO/Vvbl6PcA/bce+R3Lv5+j/Ej95H309bbvmfV8zr8Th3QTeS6Et37WeeR/OXu7hT185vtU+M9n9zlvzT2sm+KPyfM69D6o/lXq/6Tdpeh4WDr3aVoW3mXNPYLcH825TM5jFifeMeOz/EvJ/SD5n/FPo+AfDeZ+8Qf6y3XW02+yl2HkthA9nymf84acQ+Q9wIOMux2UG4qeFfTxqv77LH5vCz3wb8Su/kfPef8268y89/t3Wv5+eR+PPO9R7iflfsRHd/7qZPl9jbet0ZP3QEZHrujukvg+4+ETec8s5zzsJfOuifKL869X4c39lAUZD/Cfe0aPkO84861+eX8195rgu1J7eX92NP4rx+/Tzxu5f+j7aPLYK3HI8VP8UjV0PJP95txXZd/b0VviExKv0Fv5/P/KJzmvJI8J5heNE9+VeZb2K8CbuLvE4SX+Lvv216t/qfaPhz/3L+rQc+5hZH1xrPziPdzsZx+lX06F/5Tcr1XutYL+cn8h94uuMn6tyzs77Gt/5TO/ynxqonTie8cqf0TitMzT2if+jD1kX3amcrdrP+/v5d29r6wPumr/K/zFX9+m/bwP1Uz/Oy/3CnKuCz5qXHoq94S1e17ed0ZPxpsaidNAf1905z7Vr8aBY9A3mD+/CbwFnJH4Z/JP/MCm9Jz/Z8j71+9qN+c937DHjvA19L1rzuVzfsD+l4BVwJvib/GV9ULWEzkfORHezGOL89cpxuvttHs5+beDL//vkvPvvFeY93968icVwGr8ZLPMn/XPd/mJ/QvjyTj9LfZ8e8YX6Q/Rm3t/r5m/dqLfa7XbifzrSOd9nseNO4nT3zbvpaE/+52tyDv/F3WS9IG5/6b9nvB8pv/nvdW8v5r3WLM+rk++7dR/QP85knyuYP9f08+y3DdR/0z2eGji++Vnn6MxfdTiR7pn/YD/EeiZo/362nlP+/F7ue8Uv3ca+fRSvy16ZmSfSrkT6bemcu2lT8++HX3fB44qjPN7lZVgXXq6OfO+vN8bf6F83uPI+cca9to669rMr9A/Vf191LsWzP8nncpePrVPMUY6/59UJe9f4Gc/3z/XXhf9ozNYKfGxOZ+A75ecl2kn7zXNYY8nk99KePvkPezcn+Anst+Ufdr+5tNzYqfmO3kv7qLC/YOu6lfPfQ/+aR67mgMOoofsJw7NubN2Mn72KZy75Hw85y/l9e8Z6nUrzGc74Hu0dn5H76n0V4a/3BNfzo/kfvg4/SPxVzlPSPzV9YX7b7kPl/tvie/7LPEO6M/75r/lvA++xN/URN8z7OndnD/Lz/ssXUrg7/+FelE6/w/1a86ntZP3sr4g/yXs79Ts90k/I3+wdH3tb6rcDOnnyS3v4I3HZxf8XZv4pdwXprf838uB7Hp14g+ko++sn7Ju6indCv6sv14rrMMOkF+Mr7rW+Jn47c3178zrTuIvD8n+I1gz8ezs5wL1825J3jF5nZ9MPH32v5Zm3yTnhOiJf35Y+cThxj/n/ymyfti5zHf1K9H7cZm/s7+NyG9j/SP9YW4JlBsqXVN/+Tr7i/DkvcOjjIe5l3GkdA/8N9Be9Jl3AvL/PR8br/M+xkfSL7Hvzckz/x8ygT3l/0Mu4T9yjzX3uPI+4Uv661Tw3sQPwDscv3kHOu8/t0dv/h+xgvJ1yCv/lziV/palP2k398wS15R3217lL4YoN0b/HW+cyDwz88ustyujZyW9Rl8XkO9B+vHx8N4tP/Fb9cFFOQfL+yXoqmHfJe8oJX4l+/PZP/g+8fjsJ/cXe+gnl4C5z7iR/pr/Jzs9cUD4y7wp54HTCvOnjoX1XdZ7Wd/N018Th7MsUHt5dzPvbcYPPZP33fTLe+j1NvaUe1IXoSv38VaQ85WJTzbfbZ+4O+mF8R9lJZj58kJ4/+Ln8v81+d+azfIOjfKHpL+jY+PMZ9Uv3ifJPZMPcl+1cL9/sv55H/pX5/9KC/H8+f+dq/jN4fpn8T2r+uSfd5fyfw15zzn7nfPyXgs6s/+ZeO/EA+Z/Ll6kn/yvY97/zDscmf9n3pn/icl8NPPQmfSRe6G35HwHfbuVlWAX+J/Ofgr+J5lfPA02gifvP5Wp3zLnZer3pP/j6Wsyux3Cfi7LeIXfvIOySD9sDd8HW/wTb+LIy9F/V/hao79/4lPIuy189eT/af63QP3sH10lf2P+5FPyyf7dUOWyj5f9u77o+4ycZyiX+Ms66Mv93OL9vdxnuapwr+UW8t9KuXMK71MkfiH/l5H/z8j8Kf+fMQ3ea9j57fpR4rRPIZ/ts6+r/b+yX6Peb9K5R5f3Sdfz34lT7px3/tlv/u/hktzvk+5Lfrm/txbM/b3c5yvGhyQuJO85nWdfY7Z+OFz7w/Gf/cLoNfuE0ffW+mvmmTWln0T/CONtY/QnXu4D7Y8vvE8ykhzy/4H5v478f8fivPeg/cOk8/5v3v/rBD5E/8X3xXK/oCK9fa4f5Z22KerlvCTv9p5eOD85kFyzL1vcr+2L/ye1MxT/m+b+CfuZmDjdnHOjN/e3E7+b97pyf7sReeV8bh/tZj/lLvociO76/NcT8K1ln/uSy0v62x6535/7ONrtrJ9kf7wJfs83P7gQnIOPY/O/0llvqp/97fTvumD6d/r7anJdlX3vjEvsszifzjz7W+3cn/kremrKH0r/p6if+Oti/GjOx3sXzslzPr7E+HGfecC9iQegh7PoO/cHNwE3xf/SEvj7/y7yPxi5P515VfZTi/Oru8l318TN0POojJfmV4krzz5R4uMqmu+0YEfn2J/L+yCNykow/y+Q8S3/L3CU9gaQT/4nsDE+815n3u/M+UviEU5Q/23lfibfA9R/UP8eUjiHbU4/w9G7qfG7k/R/cj6sfPF/ffP/EzlXzv/HJU4q8VGj+c9L0fOU8rmfnveHWsLbX7t/vz/E3uKX4qfin/KefN6Xn43PvC+f+Mm845i4yXvZ/2z2l3fKXzeejsn5mH51cf5nPXFMiV/i96ppt7f+cib8/wcaajf5eJx13Xf419MbP/CykmgZScOnPSgi2YTIFomQEaKSTUZGvkKZiaykkoqkRVaRFFEqUYiiYZXdNxkZv+v6vR/P73X1+l2/9z/3dV7nnPvc6+z73O/Pdyj3f38tapRg56YleG6zEvyiegme3KgEP9qyBIc1L8H/NCzByrVKcK56x+5WgldXK8E16l8jfdnuJXhdkxJss0cJnte4BCdKH7ZjCU6oWYLjwEvRecD2JdiurARboucfeB/cvAT/wl8F6VotS/CFTUuwCTgBfzvJ/2mnEly2Swn+KH08+gbVL8H/avcU+a3Jp8PWJThC/Q7bluCuu8JHXhdLtyKnOi1KcN96+IF/P3h/lv/ZdtrfpgTfIN+TyfEB9eZpvwG5rMXfW/hdrfxM6ZHKVyPfGuiqLv0R/ifT+/7w9mBP8+lnoHq94dvV981blWBb9TaA34Jz5F9Eb0+AL+F/a+2XY5/91LuTfg/Q3lh6vU3+CeS5v/xb0Xex/IbgcfI/gb+173+D26GvJXucTX6/0/9c9J1auQQXamcQ/p8n/wfprwG+3qKvgdqPHi9Tr6b2++o/1zYowfPgnyO9O3wt6qATHAvPIeyun+/DpZ/V335F32D63Ie9vYSeTvr3YPJ+Qfur0d1X+cPZ+xr1DkX/Eez9K/J9Q/3R6u+FvwPR8T24kDzXyH+trASvgbemdDd8XlmxBE8mj5crlOBx2t8Sf+do/3f1PlT+XfZ9Mzm9I/2z9s6mrxfx10X918jz381KcBw51VbvTfiX6G8DyOFhdMxA3+/62xT4f5OOPXyzs3ZCB/19r35N9U7U7i7Sl9DfWHxtA98o+d3I+3rtLVfuYvTdpPy32n0YvweXleAQ+r+SvA7Tfweh60twCLoaK9/S99b0W439HEVOPZWbon/NhX8OOB/8S7mT2csO6O4L/zT8HYff+sq/vFUJviL/OfbxIrscjt9q8j/V/5eAn4EztdNb/SXq1YbnbvnzjU9nouNk6VXyf9ikBPfy/RDjxT/s5zT2/ST+ytHXa/j5gj38Bf8hxqc36W9P9TLezKLHj/A3H/554Fx2mv4203zzJlhf/i7wPY7v6tJVq2ycvxt6p6c/oru38XUmfbxP/7/howL76Kk/10JPd+k/4L+M/UzE7xNZt+BvBXqWkes3yg8ml7fpcx9yawPuqb3n2PXZ2rvU+Hs0fpqh/0b0X6teXfS0Z6/V6Wlm7RJ8Q7lO1hcz6GUKeX6Bj8Xwfkoui6Q7keNX6o/X3oHwfo7eCRm3pJuWlWBV48M9+N1S+kvp4frfUOW/MA59Dr6Fvk3I7w/pytqbRz4d8H0CeDE6qtBP1n/L8b0Ffpqyj0r09iz5tKG3VdIdyP9EsCPYTbl+6LsTvA28QP6Xxu/LpUdJn4vOX7OeIe+DtfsC+XyI35XKbW39sSv+jtBe1hWtC+uLzC/bk98YeCbSx7XSD4C3Kn8U/BXrluBW4CmZ5+Qvtz79vlIJrpBep3+1ZN8Hw1uD/Jeicz18bfDdU/629Pscut5F/1fw7Ex+i7V3BTktKIFyd+F/x6oleKH27jEOrZXePetl7WccuFz67ZTT/kTtVEffn+oPUL4re1uL/3v0xzpZX0r/hf5j1X9P/aeNH5+T70z5B0m/As9E6Z+NF6vV3xKdC/C/F3ttA+4PfgPvfOPXX+ptkK6E/ifZ13BwGPit+mvI8wdyuZa8X0TfEOP54sL4WZf9LdAfngS7KtcSPxeYF0aAr2hnqnKHGk8WqT9JvR76043m7xvAk7PvI/+3rEs6+T5LOuv7Q+yLnpZ/mPTW8nfB/0zt7ksu12v/WePZaeofjv5XyWc75e9H315pl309nH2Y9If0/wz9fEH/ndldD/g2yP9O+fHay/rwKuPLm/TT2fd57GOy+s+RxzhwZ3z+E/rI4xEw+4httDdKvfd9PxS9O6qfeWdXeIebzyqzj0vxlf1GHXLswr7fIq+b4PsXvj20f5Zx6RvltkDHo1mfaW86OB4cm/W18aY3PHfC01H7c+nt1qyv6f1W+HfD/zPofos+so96RX+/nh3tpN2/8T9f+9dsUYLvyb+ffp5C7yD0XG98mSTd0Prxisw37HGw9IPkcTV6NuDzBPJcLP0R2BmfleT/5vtIfM2yfoieztBeB3BzcIP6a9H/pO+voutecnwU349m/6y9bvibjf5jtVcengfIfwG7nA++D/ZT72fy+hH8CbxNfn14G4DD0PEd/N8aD1vio2LmLfQ/bD35Fnzv468R+i/X/95R71X4e9FvK/0l68LX4HmeHaxjf9uptzM6G2unFfnNk18ePFq5uuqXR8dP+lkX9ldOez+o973x/SL4s25/Cj3F9fu97D/nDtl35vyhKJdH2Fcr8tlTe1spt4f0iQX6KsA7lf63oJ/v7A9+AKujY2985rykKfnfTP/3a/9T+b8qf4505rEaYC/095H/Cf6e1x+2poer0fug8l9aV+2S+cX65w7pp+i9Dzn2BVewryv0hyeMH52lnyOf0fAfzD4/g/ch/PW2fmpuHDpY+mN8dMRfY/KsQN9L1V9SvgQbgE3JuQXYnn0dBf6B7s3NP9871ziSfK7MOEJ+WW9+je7Hcs5HX1eTR/bDq9G7E/6zPs66uBY5ZBy+Gp8fgUfQ81D6+ZD8LlJ+jHTOF7Oe7EPPdZXLenOp+WsZ+Cg+vtRO1m8DtJ/12zhwKbzvKn9E5lFy/Ni6Zww5dtR/muF/P/b0Onw5Z8n57c3wP1rYX2b/mPPZnaTvz/pIujK9LoF3a+lPtH9Gzp3RPRkdc+nrPfT2V/909Q9HX+1aG/O5Jz6zPnyEPIv9s6L6a9hhFe0P1v5H9DtZvbN9Pw6+ZepnP5t97i7S7dD/ufOV5s5XxoPHwvcMek7P+az2xrPvnOuVB0fjM+d8H5o/6qC/i/QE/aeZ7y/BuzLjvfZam/8/jT0rPwx/w5V/DMw6tjz7OiX9w/cDyedh+ZPh3Rm+DfAvw99F6g/Neab6X7OPF40nVcCpyl8Bf+wu9wHDjTNDyP9c5T+E/4+cc6uf9d4sdK6W/lX+/uQ5xrjZxvjXEp5++ucv9rE/sqdJ8LycewX9uy96z0DPZr7P0f5A319C/6HG3X20P8r3Nei73H6/OjgfPadp5yffL6Pvaxps3N6s3OuAD+hfk9V/VfnfzZsDpI+Vv5/zkTHm3Z7Sx4VPcBF59aePKfR7FvpGy39f+XLsZR/yq8/+u4M7Kt/RuNQGf+f5/obxtzF8h7C3Helzqv7R0/g8gtw/Vf4/8HVGzjCwvu/75nwVvr3AEcaB6fB/hd7LlV8lfQz99TB+bUsOuQf4Tfm72FHu5cann6mf+6TcL+W+6Sfyu1r5b8Ab5DdE353s6iHf92YHNennEfraoL2jsi5SP+f/56A39wCH5fzT/NrJ98eU/xL+FeafU+mtEzwv5f5N+Zfhe0f7q+nzf/3DuUT6SfrHM/pj9skd8FOW9Ri6BsE/Xn4l7S9Df1nuq9HbU/qEjKtZt8fe4Gvp/KEh+U7IulD+xMx76n+c/Yb0beyjSlkJ3i79kvxn8NUbnQegZ0fyGUo+92rnNOl7lPsev1/Btzk9dKWHBeaH1vph+mNd+BuSxxHoOB6+hvCPNt/lfPIj82FtcngaXZdm30x+Z5HPUONjefnr1euGvqbG40bgIvm/yr+MvHJPtFj+f3M/pN4J+m/ueS/O+ou8btEvzjc+5v72Z+PHT+AEdPchn+7sL/dgx5DfX/Dn/vRyfOYeNecZ2xTmvcyDmf8WN9qY7xG+D0dH5vPhKa9c5vdH4V3r+9v0VCH2aFw/iHz2LYyv2X9mv5n9Z+4riveFuUdsrP8Pxe8jyq9lRyOUr0E//4G3Gblcm3MO9LXKei/nufDNpveXc3+oP34M/33k2Zm+5uaeF3/7Zl+g/HT9s7/y5dF7U+SK3oyfk9lFDXhuk35Terr6L9DHleh8zPjTo3A/fKt6mR/iP/EMvuI/sZX8Zfrv0eAccowfzdnobWoe7Sp9Z/b/vp/se+bd9P8byO/GnP84H8x5wg1Ztyv/IjrrkO8n7OF1+sr52ZvstR+5Xq/+O+S1UHqy+vXUy714M/lTjD/d8V1N+hz5t+Lrd3j7SVfB5zv6//qcw4EZL7cxb69Xv0y6kvoX5LwUnZuh7zP141/0vX7yHXhV7C7zqXpH4+Na9pH9e/bt1Qr79870My3nbfAMkT84663MN/iI/0Nxf5x9ce6P5qPnH/WL65NB+ksf7VfNeZlyOa9ZJ51znKrw1WBXteR3R99h7LsbuY5C1xrlhslfTj5bZx2VdT14kX6xpfpXarcZ/jL/Zd3ZSL3Y/0j6a8pOt0PfAP15hvxu8L9tXPgd/MW42p9dHgpuGns3X8wBa7KPb7XTGv9Povsd6YXo3Eb/fUv5dto7F3/VySX97W39s1780+inCv7ij3Gf9PHmw0uyfyn4Y03L/Gh9ttr+IPfb/dG1e/wu4L2KfO4ij1/Y8c3sZ1vlRxofuzbZOD/y28R+sL9+eQZ9vKvd+Pkdw26yn83+dQR6V8B/l3Qz9nUwvk5Rf7B6f6L/JvJuGrrhWU3+x5g/K5HbL/jJOXd/6du1d4J5oIL632c+QcePOecjx0/Y7yDt1i4rwaeMH2XS9cCcD/fN/QV5HOR7E3hOxW/uu3L/dWTuoUM/uT+Lj1XGg8j/J3zfAO8t0p+mf7L7oWCDnB+Q70L2ui85Fs8fppRAuR5g9m/7gLHvr8g39t2W/exQVoIT8TsC/edqf4D27yfnTbU/Er42+M++trjfvUS9Suz0R/AB8sn5W/w7iv6U0wv79+bo/pz+rrM+z3r8LXrYIv4x5Hoveibb5+e+YRf9u7L+d2T8eeR/g/858R/BZ/w3KqL3Bfg7qP9I1qclUO5M9X6VvoV8Z5k/f6aX3dDRTv29Cv4y8Z95T/6mxv9TzWMNyGOf7Mfit5H9n/Rc6XPJq2/Bb/YG+c9aL4wFj5R/U+6X9Muu5rHp5NCT/Fcaj1aBJ2lnivyzCvYznH5yPjIav/ELjp9wO/rfD9652u2melv1e5Nn/KiL/tPz2dl9+Mq65Cz4u6Pva/pfp/1O8F9Yb+Nyyf8Tvu3K0EU/VfCxl3Yyr9+pv3ZVf3P2dwb9Tolccx8l/3zj4Qnyt4dvHP6qqn+48rXx8Yv00co/rR9kHEj/b2vcuVu7V+jPXdR/Rv0rtLc/OnqRX85nP4O3VeE+tpz5Yxo95Nx9JDx7lZXgseyiFnhG7kfw3wn8DR/3Zp9lPXEUOTwufV/uq8Fp6BkXvxD6PQm9642L8UO+Bj+rtPeB9jM+ZLzYSnpr/HyXfU7uL9jvOOU/kS5vfLnMuPcn/L3iH6v+Q+gaDP5qvDsGnfs6135EPx0G3p7zjPhf4X93dMzDf9/s37Lu0H/6yX+KvR7DfuNn9pv0/JzHgzlPe1j9nH/PN47uY/3xW9bzxpX4d8Wf/D/yc1/5rXHvXnaZ+8vsB/v4fhY8eV9RjT3cTc/j5D8O/9/s5jDff2B/O5HTn/HbsX7up51N4I9/dBl4J/3ET/p3+v3MuPyY7+eoXzxX3wHslv6j3ezHXmA/L+H/UfRvMM43Ue4g+GuT95/4OZJ+jlD/XOPVpui+nV77yT+fPT0aqP4Nua8krwX0s954siL7xZwj5j4EHR3179PMO5vB21l6L+3nXcxycl+PzoXwbR+/NnT/pd1LpfuTT/f4MaA7/bfoz/Aauf8Lf86tbo/80LOZcmejexS88eddrv3mxr9R0rtK7wb/VfGbyXpK/ZxjPWo9dYp2lkrPU/8h339Bf94NvJ39D3yLlW+n3A/Sy9hls9yTg5XRO815wZX4fkD5benvbeehO9jn5P62au7Z8LEluj5Az+jcZyif8/2eBf+L+vp/A7Ae+CQ8/2GX8Q/JeVXOpxZIvw8W9T/U+L658pvFD0e50/Tfi3KPXLjfPgy9e8AzS3o8+TUKf/g/At1r2Pdnyn8KvpDzCfVH0sdR5PFk/EHNHy8aL3fNuVP8M+i5J/t4Vno1Ot6RHqjf1jFvzcbf8sjf+HCtfpf+vRTe+FN+jf73Cv6WBxj/H8y5NXnsQP/b4uc9dpZ3XiexzwOMq6vUbxt/VPQPQ8865Y43Dt6Kj8Hk0Rk/OR8dIP1q9sP0mfOH1vrPqdp7Eb4vyOlr9W83fp8ov37useg378tyL1xOO53xN4R8857mKe2dRT6Vle8P37PkPjb3X/R/F5h3YvHfeIbdd8s9D3vegP7f6G20egPlHyv/Znq/j17G5P467wPZz57KPy8d/+uj0Jv7utvIu6n0fto9F/4K0kPxPwZfWXdlHZb++xH6D7GOKJ7z534m9zGb+T4BfdlP7GNezX4j+4v4x7YFDwYbwXMqeeQerXh/Nlh/WIePnCPm/PBy/eM4dLbDz0nxu8LXbuQxw/dO9PsEvP+N3xfYXTsDyeu5zBPGqTsz/trXZN78AF0L6KM+freH5yb0Dafv2EP8MxbFPwidy6R301/bwtsS/R/kvSc+F4Jbor96zpfAlebxzLM5f4l/7QvGgQ+18278luS/nHMa9teWfh4gx5Hs8yTyKq5/zzL/TUP/Wcavqvg4R7o1+xrn+zPWx23IP+/V7tO/ehkHevheE739pCeT3wL014n/MfruVv6erP+U3wP/fyo3RHpH/F+YeZG88n6mUd6XKJ9z6+J5dtY3N5NL1jl5X3FTwT/+a/y3V+559vcmfG9ovwn6iuvN3Df/lPcFxpsKvh8v/SL59868ip5+WRfD/4v11ELjeNZZd6An+6Hsk/4hr5fId5T+saP8YdL3k2dd80WN3K9I551f7qdyL/Wzcjmfz7rjE3rvDH/WH9PYVVn8XaQ7ZH9d8DuOH3L8j1vSXxP44ge8XvmZ9HEJ+Z4cv1dwW/Rdhu68w+kI/ybq/cjOz1fvAvznXfAA9Yrvg7uxt/iLHgqeid4H2deW+GiB//o5xzcedDV+xN899wPz0DUfbE6Of8X/L+3mvtx+4iP6maNc/PSqWZ/uy85WsZ+V4HDl7iCflfh7NudO5BD/mo/yLjr+Gvg7H/6sF7L/yH7kQvJ9pawEB+f9JDxPk2878v7D9/jj18Tv6/jbI++s4d0h793YY+aVzDd5P1kv756bbMznH+S3Bbw74HsROiZpZ7z+XDvvcdB1pfYfsz8+V/518Nyada72bttlY3py33RJzj+Vu1i6jH1kvZj1Y9aTT5DfcPjiV7if8Sb+hUOtR29kfxXJZWH8a80/A8ivGXseQi5/Wo+sYXdPsdNv47+t/Y/haYSOluR7k+9LfX8cHKn+YnbZSz+eofy52m9svJgVPzbj9fnyc985mLy3gX8L+tnLfHpi5J77ePKshN+cy7Qnv2/QF/+Ws2P/+nn8W8ag9/SCX2EH9eOvcAd4O9iUfHJv/qz2c3/+Ffrjbxx/3PjrXqN+BflPq38v+5iV893C+VbOteJ/sRl5PqX8LPX/0n7eT+Xd1Gn6/wP4zHlmzjd7lJVgzjera380+reV3ifrMPVna+/jvPdGX/b9ee+Qd8pt1D/I+uZ86fhD9Mj9inXBavAa8E7yaICeLr6/oT9HDl/hM/4oG8hviPQl0Z/0+/rZofTfj/2Nk39x7t/l534s92I5Hy+P/63MH09qt5L0xMQfsB7dVv6O+KqC7pw/t0g6/knwP8jeZim3TH/8A/7YyyXKx49hjPGnVfwRsz8lt9wHjDV+DKXH+BPGfzDrig74zvnG75n/9Zf2GdfB+dpvof28b31F+7/nfDjng+CF1j9nqDc3/gWFd9wL2G9N9jVV+aPNNzPROd26LX7ti/FTnbx+Md78KP8n6ezPKhpvnsr6C/3R1xL981PwKPhzz9xQ+ZxLL835S+Jx4C/vAbuTa0P07c2e8l4474gTX+jMnN9p7wqwPXs+nNyuLSuHsBLIeulb9rW2oOd72X/e5x6a/ZJ6eZ/7F/leYp3wPDwj6H8M+p9D51T4y+BrZXzO/eOcxDuBP+ufx+mhiXTWP90TvyP7g5yLZn+K7ZFga/3nPnayOH6U8J2YdWreV7GH+A//a37J/cUD5LeV+bmmcndlHZt39+RSLeeC8o/Cf8Psv3NvDX858m2nv8Rf+Ub0bgpvc+n4Jbyb9Se5zQXzDndQzrPhOyf3w+yxEv7Hq/cq2BKdo+k379tjn/Pgj33Wgm/7vHeT/178D+ljOr13Jb970RN/0v8W/EpXyi/608TPZgn88Yf4PP6f6F+S+0r6W4GOA6WXsove+vU14EnsfGHGM3znffpDxq+8T8/7up20m3d2uZ9qr7069Pa38olvNTTxqcitFjhT/SnWR+ebH1+Q/gWexJ9JvJnEn7kr76mtFxaBZ7LvzO+JL3ZLzrv15z70f0pZCU7S0f7B57v00Cj+9fCskF8u/vb4u5x9rQWzXh9WWJ/3yjuPvH8xvyZewWVgFfLpi58fcy5eeF9RfE+Xd3avsqe8SzrJOHOO9P/iEGU9As4Eu2TdTy/FeT7+HX3QPyn7jbwXIP/frCfXx78B3hXqN6e3nuhpic9LpfNeK++3mkonPslO8F6X95+Zn7W/n353qfqT6H+2/APob47+cwR8k/DZ2nprVc7lpddqL+9rvpK/yjiwTv7j+JmYeCjKLSavQ+k3/iOHSN+Fv1HG5byryzu7vK/rqH98hu8T7aNyDtHI+Pty7j2V+zb+z+5/N4A/5/wB/zPNMzm3zTlu7hHzbn4X+BOXIu/oN5BrXXa0Dp6bM/6wnz7svQo5/JP1rfOr6G+y9I3oPDj+ZuTwHbquIv9f4cu7hN74z3uFjoXx8E3t3J3zmkL8rbx/rmz8WG+8aobPrJ9GxH+X3g6K37j08+RfNfee5JV+0lV+4kJ0My4nXkTiRDysfz2UfSu6Ez/gEvafeePS7HNznwxPdfb0NHvN+mUA/Q8G+4OJe9MLXdkX5n4q+8N+2hvFLhuDWY/MQNfawvuSQfpn7j8+1l7xfcPf6t/ue95h16CfSuwr5w1jC/uXPujYWXvT8k5Beh55dzVuHApP3uEXz71yTvt67p/pL37B8RPO+eZ89RcaRzYhhz/JbwvjQd4n/y8OjnIL8berdseyg0XhD725V1konfuWq+jzNfR/Bf9a9FXQbvwC4y94PP7+jb9bmXLarR//6uYbt3cB/LnfuZv95J58oPTN+G9m35r3pnmHWoV+F8e/Ou+l4H8dHf/ga0XOC81Pk9R/0H4vfpzx34wf1w+5r9LPO8IXe+zre+KL5Pw1/pfNsv8xvv4//jz0cYv24pfck3x6sZfZ5LI8+2X87SmdeCVzfG+Av+L95Tj0baOdE/POrnAe/pb84v75QvqunfOXnM/Kj3/6lVk/obsXPHmHf4D69djvWDDxOmrANyH7OXZ0R8aZxP+ivzJwFfyJ19Im/vp5/8ufI/4/iTeS+COJR7If+nJeF3+qrRIPF10PofsO/Tvrx4Xq/2p/NEH9+AdkfKlnXrwCf7k/ny8923w3kR0NkE48tX18z766uN/O/U/ue3L/86n270V31uU59zmb/RT9U+KXMjV+RdaLif+Uc8Q18tuRV9/CvN2dfI62/jvM+Jd9eoWMXyVQ7jsw9xd5R/khfg9LP8i76fgH4C9xPXqQ26H4X5T3qcbB/cC18d/L+xX1Em8tcRCak8tydPUAlyd+Ar5Hgx+S18LIz3x5Ov5GgIlfdHz8Y8ETwbPkb4a+unn3yb6G5Hzc/PE8OU8G897hkjL0GCe66q9v5t4ZfF/5vMf4nfyfN58/B16X+zB6WGc+2gr+3BNkvD489NBDE/DIrK/xe338d+V/go68x0y/r2P8Sf8/nLwTF+tAdjaffBJPs3388OD/kv1lXdMl90qZvzKvqbdUu9PxvSf73p397ZvzFP3vWvaR+EFn5JwC/vj338++8r4x7x275v6aXHNfmHOxcuy/YiHuX+IAZr+4IXad+AplJXhe4hsX7k87WK8MUi/vTF4F8x5lFfnuZHz8Et21pKepn/dxeReXODd5H7crvWV+PD3+xOT3AXkmLlAT9tLK+DU755fay3yS+aOF8eMI8jyeXHrAvzV+K4IzEpdJuS7oWUlOef+4MufY9Pv/87P+07oh7wcTx2sa+rN++wM9xfVUb/0n8cVqay/3nN+T3+fwrMh8qn7e62RdcUfhfiTv2KKfE/B7ceK3se/E2+kF/0vkWb8wb8S/Me+XE59mkH6c+DSJGzJEf6wLXhH/Rf3zDuX7g8V4IYn7eyW5JR5w4gDHz2YBunO/HP/Wq4wf46wL38u5hPKjle/ie198H0t/NykX/5pJiV+Q/SG9PQiOyntw9H+r3of4TZzf+DfNsT893TiwEB2foWME+8r5W1nuz9lT3t/l3d0o6bz/Kr47ib/yUHR9ze5nk0/8laZrv1biB+Z9HzpyjjiqwcZ0bad84u03Nq4mbmjiiOa8J+8O2pFH8f3Bsuw7rfMSJ/JX/CcO7jXk20s7d6h/ObtrnXUL+baQv868u3v2TdI53y1Pr1nn7wxfxq/H2Vf8h3+yjsr9/ihyu0u5Ieidx37qGU8agIu0c7hySwtxq7Kez/6zl/x70P0O+cWO6li/Ji7IPP3nR/QV40EcW1aC2b8X18uZBxIfoyH9n0zPOQ/Iecxgdn0kObQHE6d6sfHkc3r7hn3kfdBtvidOVO7RWsg/0Pg/Ivv3nDPFH1V7iVs8u+Cffiu6V5LfFPx0Ur6T/vBszil9n5n4+frNUHI5GZyU80n6yDuv/XO/ib472NMSfD9kPfM9e857wmvxn7hwLekr7wezX43/f+Jjxn85/sr5f4rLEp8Y311zj2J+T/yVm3N+jf6B7GF38miH/8QRLvo7DC/4U2R/2hZ//xovvvT9MnQsyHmHdm7D79jsS/Bzbxk+c46e9+Lob2vcKJ/3LOo3wX/ixyZu7JPWcYkfO1g6frrH4KMW/XbO+Tj6T835mXKL9PvF4IE5L0JH4gPk/xHyfwmJD/AEvFmfPQBOif+C+Xwg/VxMXjfkfSH+74m81G+c97fSM8l7g/QQ4+MKfP+Mn0PQk/iw52VfErtlL9knTs17a3Bd4rFnPE18ZrAuGH/66YXxJOe7M+jnFvwlrtfggn7n5b2N/ImFeGgdMu9JJx7SiYmfjd7fjBPxB4z/X032kXVf1oGJH1H8/4zu+k/+R+Nu81sr6T3Vr5f4kOrtXfB3iz53I6/Y597knPE8/0vwp/rF/ydYo//Fr+ZH80nxveAhiUOe9wPk/0sZftGd8Srj07rE3wUrmw8SB+wd/SLrvgvi51HYfx2O3yn6d/ZfiReXOHJ5P/O4+lVzX82eqmn3rcQHNt6Pj186Oj7M+2h23S1+rOSX90NFf+/4gcf/qBV6L1E+fp/5n4QP4i+s/Y6J28/+Ej8+ceNXwpv3C0/Tf+KPvARPTeV6me/Olt4591nar2E8qmyduYP0tuxv9/x/D/u/yXw7UDsv4/fKvMctK8G843nR/qUmeR+A38cSH1Q68TUTb7MufV2c9ynx52Zf8a+oiP+MS8XxapL8xLtM/IL15FuOXWfeHmO9kPcnOf9JvICH448dfvPuHd6cfyY+ceJGHh1/e/ljtN9Me7lHXp14QvFDoK/4kw2UniEd/8sR6I8fZvwvT2G/6bcVwcXGp8TtvzDvE8h3D/XfQccC5Y6EL+/VTzH+ni89Nf548R80Pk7zvZtyu8rfg12NzHkxvb9JfvG/i79d/O9+UX5r81/6Vfytr5ffhD0l3lLePyyi34nGjZ2M0xUTJzf6pY/cn9SD52703Uleo9F9l/Qp9DNMvXLqJf5GK/yfyj6zf7lGuarkv4x9HGL8bAsuiZ8huczIfKv/9k//x2cV6QXK5/+hEi8x/k3xP65YiH+2qfRy42Duh/Ne6Sr2kXmnCv5y35x3rInTnfesv+FnvXF+E/hyTnIV+I/yn2hnAfzV4C++n4v/cw3r0czbY9nFBfEvQM/D5qU3lGsfP0vj10jfN5Xuic7a7DNxmg5if4nPdB/7PjFxkqW/jx89u/sOnuyfjowfNHknLtn1+HmFPNuX4Q//Jyi3jv110T+f9P1w5avS06XsL/FpE6828evG5P9dco4unTgALeGtp70+6Ev8z5ybTVAu52Z14o8d/7u8D5LfMP4T5DM9+4Hol3zPy31X7BDM++Tm8OY95fPKJ35Z/r8u/1u3V+IEaq+xfrE5Op/IvTr6ct65o3qZf3Petsp91THk3ML6IXEPst49DZ6sh3/PO0/20CfxSNjDRdrPvLFE+/FDeh8s/h9D/qfhRunrjY+x59h33p+dk/9DZN9nS1dJ/CV2XSv/ywfPceQ73foh74YHsq+8B7wu75vJ9wv0Rs5V4yeR/ZT1Rt34f5qPLjXuDYifIf4T3ztxvfM/LYnvHT/vd8H9lE982qmF97ePmT8uar5xvS3k53/Ybkt8HvrMeiTrk7wfGUmeJ8HzlPR66TPp+3X20Fy7eb+xnfy8V1uPjiNyvpj3GOSaeGd5Z/gH+7mu8L4m7226s6u8I867rWb4+1f/7Ab2U2/HxLfGzy3qj5DupFziS71fiDOV+FJ1CvcNm+LjcvxNtR67Acy5c/TfOP9voX78C07I+WDOP3y/Qjr+W7UL55k/oDP/H5f3Cy/Rw+nG/7xfSPylxF1KHKa877iOPGeBiYefeGlnmZ87sqOjEk8v/vl5D6i9Tuh9m/zyfzMT4tebeSbjgP6feFfxo0gc+u19zzvvvO/edbeN24+/cYXC+mlT8+pcei2fdN6Xw5v3hvlfkF/iP0WuM3w/Tv9ejb9v5f+EjtXSif8Wv9mcIzxfBl/WHyXwPz+kudJliX+nvaHoS1zUFfBXY18H098W4GvK3Zx3X/DFL2sm/X1Gr8vAmurlffOSxEfJvkn9W9WfgN4l5vku0lnPJx5BzlMSryD7tUfpI+udR6TPQG/u1wbB87j+mPu2fuaz5uTcQDr/j7bAfJL/L5wvvRQ920onDufdzuN2y3oR/zvn/azxt23iTyi/Xc7f9Z+TtJ941Yez62J897wnbsN+8399/7C/z+C/jrxHJc4Y/U9T/wz1ZxjnRik/27yUe9+8s8r7qsvsPzKuxx++DfoT//VksEFhf5lzh0PyXq1w/rCCXd1SVoIrjZNrtJf/CUo85Pzf038TX5Jev4pfKjw34mOZ9ovzz0nG17wPybuQg+jxDuVzHlex4D+T+BMXZv9Kf98YXxJfLvHnks79/dbkU4y/k/Eq49Pj6k3V3o3qd6Gfd+W3970Bfd2X93/ar6lf5H7ieO0lnlzizBXjFebdeN6Rj8+6LvEzyvCFjv3haxH7yf0lPD3IM+f3s4yHV5DflWDitTU0X8TffR795/7qAPD2jDeJx4G+66TzLuwLMO/FBlkXDNfPX9d/N6efxNXPfXzifuf/j5bnfSj4uHL5f+EnzdcHkWv86n8A8z75X3gzvxyp/cSD+5S8WpJv4sVNcr5y5/9nfdjWeDfFOn8d+J365xg/8v+Wt2u/ET7y/8exi2L8yq/N//Fvjb9r/M8Woa+y7zfCdzX6sh+8QPoZ89W/+L/Z+cl89PWHZ13uq9l19oefoHtv+pmLv/yf7HvS+f/m1uTZkZzz/+GJXzes8L4k703yvqQb+nrHLynrwJxnk9cX1mX3KJfz4grGvy3AroX194j8f2/OZfD7F/neQv5vx29Lub/lT8x9Efp/zjlX4X3qr+i+NP7a6N9K/zvMOPK3/pf4nPGv+zJx76TjZ/d/ACT1NBV4nHXdedTOVfc/8FsUSoOplIZboTmkSaOQopKpQZQGmlCGpJ5ShlRCRShppFIhKlERkjSiiTQoUVIa6ZEm/db6Xa/3s1bXWt/rn73O55yzz57OtM8+5xq/b8n//w0/sABfqFuAdQ8uwCd3KcAjlZsnvVF6+Z4F2HH/AnzA95cOLcDZ2xbgTHAWeF+9AjywMvx1CrCv/N0PKsDuFQuwG/gJ/Peht9t2BVhn+wL8G/23af/XHQrwWfUH7ViA1eD5o7QAj8bvzP0KcPohBTgG3v/6fhT8g9C/H7pbHFCAZ1YtwC/R9+Q2Bdi4WgEegZ7y2t9xrwLsAc9l6g3D/3bqrSHfI5TbHr3j0HMD+sbhbyT6Fm9dgFOUH1y2AE8gn/NqFOAFvp8vfYv2u9H3A+CDYCX1K+HjV3AvsJn88hXgJ5cf0dcaHyvZz5novxg//0X/BdLHk8u+6p0qfbh0Q/Su2xlf2h9K3vtXKcDx8D2o/sHab0Y+y7T7A7hxqwI8WTtPkFNl9cvDPxreCtLD5P/j+2vSZ8FzI3oPJI8btd9O+XHab0EfVZRvJv9I9vm09E34a+f7hAYF2IVcp2i3HjpK4dtTvUny95Jezp6vqlWAPcHHlftI/guVCvBueA+UvwD+nug7jP3+Hj1LN9qnACtIHyf/HvIYsSt+4NsN/tnyr6Xvb9HTd48CHK78d9KV4H2NvldJn84uHy9fgPf5foP676u/FFwCPq9cA/X2RX896U3k0RyeRfTyC7or0G/3nQqwBr6ukO6m/nPkvi97nl+7AFtIj6uJ/90KcI72pmivjO+L0i/pI/b0Ij4eQv9c+P+Sfzy6jpZ/nvxbyXsK/UwFnwY/xOdC9bdFz/fav1r6T+P/d2Av+cPQNU39H/SDweSykH2/ia/tlX+DPQ4hn8wrnTNesLdzyX86fhaDvfF1nfqfG3+bm5dOBAdo7zT0ViSvl9Pv4b9T/S3wn4bPBtqptHsB1iKvM9H7k/pr9cfTzHNz5S/TTsbRGeipaLxtpf7p8nsqf0jNf9Nbwv6XkNtmdA6hn+70fg3YV/5/yb9Ee7ejb6z2pmmvH/mU4u8i1Qai7x/yuEG569Czb/0CPEV+C/BkcBR+L1JvMzv4DbxQ/UXG7+bommv8Lq/948ljHTw12Fll+EfR90byaaP9v/FTlx4j35nkE/meTy7ngYvMx98o30T998BZ6i8l/yfR/aPyg9Fdl/zvlN9c/V2sV1oqNxcfn9Df/sp/Kr3G+Hn03gV4j+8btD9J/mzfp6JvKv7eLICSttYF06QvVf4icvqCPqbST1X0/0jeGZ8/oofB6q0j99bwvU4Od6g/r1wBXkWuV4L99POn8btE/d7w7Uw+H8gfqb1P4G8n/zrj7yblqpHTb+kf+u/O4EO+H4nf1uwl88NA/I+irxvY35/VC/AxcuykXFP96zJyqQnPUuPTEuvHpWBH5Uag/x766qe949SvSH4dzGe74u9s6XHoHwhvGXLYXv0x9H8QOnvTX+aL+eRYRX9uqN4u4A7av938VFb9PvA9qv617ONhfLU1f3fH/ynscyO852o/9rlE/ZXkeq12tiGPzKcL1M98m/n1DemvwRL1P838Rl6nwD/c+PI7Pm6wHuzOLtdYH2Sc+pXeV+GrUuZb+P+xb/lCu1uk16J/MP3cLv91dHxIfsOVr6m9asazRfjbzD730t417PcK9vOR74f7fi49vKH+IHLpiP4rMl+T/4yi9XPW0xejrxX76KSdU7KOgr+M+XNM5ifp4+AbRX9l1ZsM7+XoXxZ5gNfQVyvlXobvMvL5wfqrHXnWtX+rDXZBb3Xyn0q+G7PPqvjv+vXop6FxYxJ975f5qkwB1gCfBPdA/3Hs5VLjwEfoO0L7va23+oBN4f8663/6/gz9M6wnTtG/9yS/U8mvmf6yPPtN+j6HPtuSey/2cD/8C3z/Xr096e9i7fYnj+/xc438D8ntPfiPY49d0b8SfRcbzy9hJ2vBC7S3u/S74Yf8zpVeTd/vK9cM/mfL/Ju+q/BbjnyGoH8CuR9Iv43wW4LeI+BtC8/16h/Cbq+g7yfIvyf+56GvIX2Wqr8Xeuerd7d2J2bdmf6j32Vd2MX39+Bfr789alzaUzvtybuh/ltbvdPgmYef09nvAnS0lJ4vv4/xrbb0YvKrTf6brHsWst9v5e+Bj3noewl9JdrP+u8k/a2Gfvqd+tlXvWL+PNr3Enx01H5//SHz7db4KCGfr9H1KT2eh4+t1M++vqb61dnboviLSgvwZuPKZP3nNuX7y98BXz3QNwM8wHrtdXjrk8N66WfZx4PS76l3H/4/xd8t+sdA40Br9B1jXVLd+PML/heTf0fzZ/wuHaTjf2mAvoHs9ibtjyC/o+n3GLCx/t0V/sPw/bB6D7LjJ7NeZn9V0Vcen320fwB8A4wzz2Zcld9Ju8+DW2vvAPinS8dPlnX00+oP139msre25FPL+FBPuw9rd394bs16kb57oftj6e/g702enehrOHrelT9KOvPX6dprLL8rvprEb5L9RNaB1k+xi9hJ7GNL9MAeK+P3JPk92G1XejiBHQ1G1zP6593SE9ln7PUZ9hW/Tfw5m8jzGvy8gu49yHeW8lPJp7L55GH2/hn+y2g3/qIp8ifiZ4j06fC18v3g+DfQu6/0ofAtR98a41n8jGezw9bK7+L7qPjLyOsr6Q+V/yh+SOlD6OPbAig5zPhynXRl9nNsqfro/5P9zGd/n5t/Yhexk9jHbvr7bfR6tfTQ+LHI/Qn16pD/ieR9M7pXobcLeyohn4rwLFJ/Bf1u0H7mlay7sh7L/HIf+X7p+yb12+N/RuSe9Qx+n9T++cbnl8ivMvoPJp8jjP9d8f8I/FfDm/3WanAQeIX6s81fa/GZ/Xb21/PI8zXtHEUOh5Df19qZgJ+/1R8u/xXp2uAuvh+Ov2PpdbT8P+nrDPJ71fjbzPqjFznEr9Nc+WbgSWD2y8uU+5B8vyTfsug9TP9bJj/74XLyy1mfbU2PrcE/0fcNebYhvyP1j8Hk94H+8J38scEr/zjjTjft7A2OZ08bzG91tfM7eY9lfzeRz43gbTlHgv8lcpsG3kLuj5u/9iCvLdrbGZ45yl0E33XkswGeu+HvSx5v4Ls6uTSF/z722NU42ZM8fmYHO+kXseun7VNekz8PrIaecuhYqf13yKczOrvCH/9RL9/fwd9j/CXd0fmg9eldYM7/XiHfk31vAR6k3mL8dUf/55lX6bkfPXfO+kA/qwBP/F8DpBtLH0b/B2qnP/yr2HMt8MrMZ9aHpxgnWoDPo+9A/LQh312l7yGf061rOsM3R3t/5xwo/or4a+RXIf8fSguwuXGipnHitZxTkn/2t1dqfzj8J7GbH9QrI//P9Cf1n9N+/NfxZ4/Cx3b4vV6770g3k78E/Dn+Dvb0XOQW/278pMq39T3nLzXZZ85fmqnfHDwJjL/sPf1pKTgevlPg/1W/uM/3n6Rbyv+P9d8v4I9gWfSPUv5I8+Y+GZ/J6xZ29zZ6Kjlvy/7kHnRdnHWi9ALy3cI+1hh3V4NZD5aw18lg9g2z2Mex2lsH30PaaYD+c+Mfyvm0dM63M95l/Mt4OB9/R5qvjwAbRv/x47CXnuzzH3Q/QE4HmX/qZ16Vzrz5Lnpr0P9j7PUBfC5hT7/D90/6GfqXSe+E3heVX4m+AaHPODqltABP0G5F/aK9dcYf8K5Bz1z0XsfuykrviZ5e7LU3WA0dw9A/gv2sMA8Ok8469QXwE3JrS46Han+B9uaD99LfrvrHnerHbxs/bvy3M8zH1+H3+fiZyOek0gKcEP+U+XKLdLH/Zbx0/DBd2EtL9C9Wb6usf/k/boN3kPSb6PzAuqqxesei6y323Yo+mys/Mv58cr5Wf+oHPgouU76b+kuU30c707K+w9dk/CQeYmv0j2ePTxXZ/bSMD+brlfTSkJ00yHkn+2qi/zzj++X0twL+T9FxJ72fRH/fk89ocBM5X8i+zkJXnYyrOZfGX2d2OVa5x9jXw/FvoD/xKqfja4D6441P/cEbwWWJV8n+En3z9J+z4T8b/5vo4bqcr8aPwh6nkkuFnB/Jv0x78cu8gN6D8f+yftUYPRukd1P/aPg6aj/z+tvo20z+b6P/69h91nfsoZfyjxufD2MHz2Z9r96txuPx6n+hv3wFZp90T/xxpQX4sf7xJT73wk8VsJx6nYv8NT+Rx53wrZP/NXrbkEe/nKskDoB99TU+LivaV2YfMRk/jfH9Z+Y3dDVF76vS66VPZkcHSJdXvx0668I/kf5/Jr/B4Ivoz7lbzttyHveKcq3xd2nmL3AzPlbH3y+dOJU50kPJa3TiotD3Fvlcyv66qdctfuv4Y6WHqP+neeZ3/N+F7srml7HknPieO0rwR06/Sec8u4P+exf7WIq+xA8tN658BF4f/tB1auLpwMuM13/JfydxU9ID4kdMvJPx7BT6nUS+nchnsvX3W+gZI/8k/McfH7/3BfQd//zU+F+tT3IemXntYXydib5HpA9V/3b9ahjYIX4G9tVUvz4Pvr/NH4kPuFX7Off5mHy/J/9G6DkKfCfnQeqvVn8t2Acdm7S/xnzUXvu3J54OPzvqF9uDM8HZ6cfs56MiP1A/+O/VHztk/1kUr7cD/fzp+w/K53z8LfbwHvrO1c6u9NeMXJqwh6OUW6v9W42fW+FnG/R9nP5ALmej56/sE7R/Pvw/GUc/B3MeWAn+HcFGme/gW2F+qYW/PtZXr6jfCt3NpeMPzfndGPLdFv0r6f80+p9In4cr/4b2b5GuSr7VwIvZ8ePwxR/0h/JZ98Y/VM7+9DrtPImPE9HxC3s9GL/V8Zv4hbbKny49W7mZ8O8Kb/xgH0TP+s+qyNe49QR7SLzoNfpveXrcCp+3wbd7kX9jiXrHoeenjM/xL2sv8T3baG91/P/amcD+9tVO9msXoT/+jQONa5/HjyN9j3KvWO9kP/uqdKMi/2f8njepF//ndezjZXo4xPgTf9sI/WWG/no5/uZq73Xr3cnG7+nksQO+Jmt/nnanSl+Cvvj3viXPc+THv5d4yMRHJl4y8Z9T5X+C706Rg/wO2v0I/fE7Hp/1i/Eo5+Nlis7HT8FXQ+mm0gvJ82j9uar8o6RzvtuX/AaBd5L3r+ST9dVzYNZXR+C/M33kHGiSdOL3dkbHn+AX+BzP/tPfjs28Tu814N+Jfb8o/wrlpyp3Grp+Qtej+lv2yW3MGx2iJ/LLOdcC65sf9fdOyq2QfxS5N6D3E8Dst3ZMXDB9lvH9cfT/gf5dzQ99s27DD7GXTARzfpDzhGu0f4H0aPVmZ57E75e+9zff3aH9Scbj/8Xt659z0HGecacN+5yIn4fVf0a5nK/nvD3n603JYyx6TlC/k/q19ccmpQW4WD+O33U9fqsaf/6mz9jDQPWyvlytP3+nvUeMO8vR9Tr8U+XvhJ6f1F+D3ofRvxP+P866S7sd0L+JvFZlX6fcUPZb7N8brHz8fG/L75z13h7/buez+NfgvQR9TYw3PfG1NX5mgm+y/8SHJh60vX79edZXxrsntfsYuroq92lpAT5Fv9mHvYy/PuzpanTeT44vxy7YV0d6iF8h+4ByObcFtwHnKZf9cPbHTeP/QX/WVeeCY7V7DP21kE7cW+LhLpQ+LOtO8GTtDVLvqaL9VfZb76NjamkBlgE3wL9efubTL4ybl+ecp/6/+S1XxPc98qcZAOoljpfeG9LPbPTkXkTuSeR+xJLE7bO73Beopf7Z6n2Oztx76az91833NeF7Rz+cIj2XPcwAc/7SO/EX+lsF/WiA9BnK1UncsH7bKf4o+llOrycq1yhxolk/G/82aW+l76fS/wHkflBpAb4pPQH+O7Q3mh03wl8neLNuyHrh16yT9PcH6OPurD+VO4b8nlf/Fe2dSZ9HKNfBvnMI+ztbenf9+ADj9wh6m0jfNfA3IeM3+VbPfS7tP2u8uNE6sar8b9WvQg+3R5+Z9/A1n/wXgUvJZw76tpgf67CTW+GvD//Z0gty3o+P29GX/fO5YGV4s49eRy/fgsdbv3+a+ZV9nw3v/uR9NX1sQ14VwE/ir8z+X38fDY4BbyCHu4xbF2vn7/j9jX85X22vvUcSFyJ/JDv6XbuX4Ws8+HDu/RTFI3+sfmvtDmE/2+OzMvkm/vMh3/uSY+JB428/Qv2cy1Rlv5NyP0i5xDXWMA70Me61osfEx3RA7zrpjeyi+PxlDHvPerNeaQHupP7f2t0r8ST654Ki+M+sZ+MHyP7/ZPjW6AfF8eGJi5xPj13Rewi+5+gfL2X9xr5ay8+9n4PR+ULWieST+4e5d3gFO8v9wyXGxcXgrfQzE50V9ctDci4N73T1d6P/+N9uRM8xiWMm99/RdSk+psP3s/zX6PEQ7SUe7id0X0T+X8P7i/r16GMH8nsaHR8kPo58B2o/cdKfJD4OPTnXKD7v+Iu8P0wcSlF8wp6+N875ivb30372X/GLzi+Ks/gYvk/BT8Dz4XnAuDUWvyPIoXrWD9LDis5Hm5Hfb9Z1H5cWYFf5R6LvYfbQEvwl/vecn9HHI4kzRMc8+p+WeIrc06KPHdETv3n86I+h61lwrXG7Vs5H0PFX/Nvs4i75d2inJzr6Gd9zv6atfnYb+Y42vmUfuhJciJ+F+uu8xPWS/07ob0V+T+R8Q3qh8WmyfnNh1ino+5kcM093BM8F55vX59Jvtdz/087c+F+ke8pvnzhB+TkfPd/3A4vOS9vAn/tgraUHoq8/OJu+22QfSb5f02/LyMH48DD82+J7sHp3Fd2/2Gx83Up6vfLxr8VPOVa9+Nu/gS9+vzPVn6l+7p/lvDzn5zP0y5yfT/R9XeLhi+b3w/DTEPxZfp3Ef6G/j/GlIXltD3877fdjx0caz+J/qFZagGu0f6P5cCj83+gvfykff+1k8mmedb/6N5PXOu0nXnkDub1qnzMRnb2NXy2tT3Le8hh55v7eevgTp91Y/rXy1+oX94JZp+V8MeeJOV98lXybo7ep/Jwz5nxxlfEl/Xu19JfqJ76+n/KRQ9vcNyX3r+IX1Y8TX1h8P+3Zontqx9PHduaJo3I+lngh+m+mXM5Lcj6S+MRR0q+xh/k55xWfer91853KnYaPgeQ3C55ryb23+kfA96Jxqp38E+Svou8vwW70kzjxCvR/a+IVpN9ER8v4E/XvA6SvTzwNOU4A9ybn6fL3N968CfZHx57Kx2+xQvncX8v8s5Q9Zv2W+1Vjcz+jVDvZt5u/Z8OTeNnEzyae9lz8b42vEvAP+qwv/wz+msyjvci7EfmO0G4z9jhFuTLoeyj3SJXP+coZ7DX7mh/xuR+5ZH+zi/Lbor9K7lslPgZ9PY3bD7KbQfL742cyfHXh/106+/PP2G326dmfr8+57P9xz/ki9DczDgwouo9yKtgj+KRXaX+I9Pzcd9O/RmZ/A1997ZbX3ojcr0Nvy9IC/BX/u8E3gd3lvsA24Ej6uSr80ONQ40UHesx7B3kHIX7v/olLY885931H+jftDNNfNpHvSDDjz5HmlSuNHzOUT5zkJvZcNvdOjEP9s39TP/7n3BPL/bDvM55a97ybe0rku9h649H4k7ST88256NoHvnl570N+LXwkXjjngAuyP4I355mdyXmI9i9lf3n/YmDOifF3E3soJY+r5Z+RczT6vZoec86S+O3G9JFznrPwcUXsQ/lt9fctxoGrpG/Rr7Iuz/nt4/DsWFqA1cG8D9Aq63H4qudelnI/5f6p+Xxk/MXSV+ofy8i7ivpn8j9lnKkD3zPkOj/+mdzLRn/el3m7AP6337vT+q1s4jXU30Z6g3IH0fNd6Ly3KD5uc1F83CP4P5s9npV7jOy5Tfzw9POqejfr343J/xLlGmmvPv5PYk/V4E3cSeJRJhWtJ7LO+CZxK/BfbH59O+eA0m/hd4D+NjL3NYruadUruh93rPn1Ku1U1S8uAdfhL3HR68z/uUdVfH+qs/HoUu2UJa+8S1Eu8xZ6zkNf4gv7lRZg3cTdoPMm9pXzxpxDFsf5lxrXa4EfWGckHjj70uxT5/In1COvnH/k3ON66QPQkf37fvhdB8/V6md9Hf9OJ9+zvk78f+L9438awf7qks/32TdlXmffW+N/NfxlyG2j+vtkP4W+r/DfNvcz7S8bqXeGcTb7g4nK59w85+kzE29Kr7m/sUU680tv/eUZ+vsPe8z5fi/jwwnwtcbnSvSXKp97Yg3k5z5735zbofMR4+gM7Y8k34lZz5UWYCv5ZeGrlPUhvt/U/tXkmnF9YdqH7wP48y5K3knJ+er0xGPkHDD3XHM/a6d/0/sS/d9MP58W2WX8JrHPL+lrEL4GgjnfyflH4gsSb5Dzjx/YT+5/DdV+L/THvs9R/3P1H2V/dfCbfdsLuddPHn2MB2usy5dp5zH87Uy/7djhB/Iflz9Mv07cX528E5P5F70Dsh/Ed+53jiP3exKna5zKuzGz2V/5+JXhq6/9nomjkx6k3jZ5/4P84v8ZLn0SOXRlV92lD8v7LuhbSX5vmQfGoeOrxD+RX95nmZP7dPj/XP3EVzbc/d/167GbA8G8C1ONnC9Gz4asT7TfQD+oVVqAicOM3zPxr29r95ycpyX+XP6j8F+VdbP0HPnn6LdlzfN7G6d31r+ewM8uNf7N367y7yfvp+nxUXoYlvWL8fdK8ig+TzqVPKv6Pph9r0bvD9bvl4Bvg8/Dn3GwXO5r0NMhGd/J48r4FaUn6T9TlK8Bz3Tj5+15n6+0AKdl3EVXs9zvw///JYd71B+ZOGfpd3K/DT0ZH3/QDzM+xp88Sj/Nexw5n0lc/7vwHAOWqJ/1ZdaVt+gPsxK/ofwT0tXxVzP3u4yPGdeX512L3OOznz0Rv7m/H/9Bbe3WyzpGuYXSq9G3yTi5SnpLzunZxS+RV86P6O+5vGco/yvlz6TvN4r6e8aBivpX7k0nviX3p8sqn/sAz8QOlevOPl6zn867RQulX0LP4ewq70il/+1HvlfgN/u/KvAnHnhX9pjzj92kEwc/SL8dip7ce9hB/grtdUFPzm8vj7+TXeWe/QFF96cXFUBJX/Bd64DEpybeKPFHO5LnG+Sbez0drd/yjmXu9xzk++PKN5AeRz5PGh8Sr7go63z5W4xHixJfT37l4W9nPMn+I/d5cn/nPuvp8WDijq5lX8ezy5yrFp+3lihfUbt5Ty3xAjl/OyxxTUXvkzSEfw397pH5K/Em5PUOOJF8877Ay/i5yjzdkt5yf7KC8Tf3UXJP5Xzljs59GzD7+LyfuRd64j8OXfFHfar/vSz/S/PHsdE/vmbJfy73tsk340fGjYwjuX93auJHcy5Dvs/GPyq9XH7eYboMf8XvzeUduqPgP8N4+zc6ZoK7o/st6c7xa+eefd4FQu8NiUvRbt7fXK79L7SX+Pe99M9/0PMF+s5jz3XJKfdvcu8m93C+jn8l9+LBMmDi1Nqzi/Xs7gewCv6u0z9yXvYjerrG31lagC+BmU/GZP9tPnkEfAgcxb5rkG8PMPu8rKOPyP16dpX4x7wfMV/+P/TdQ/449I2RPkf9htrPudND+vVfyk2X/j3+58Q3oqeJ+W6M9h+wPoqf+jN8x19dz3o274Tsk7iV3BPW/xNvlfiry5XLvYhXch5UWoDvs4/i84DYz3cZP+GJXyp+qvinNmYdkvv27PFe6ffwUfzuYTP8TyWvQfBlnns285/5qDr+i++P17ceit/noOwf1M97xoOyL0dP4u/yHkDeBxiLzzn6V13fX49/Kfft2d8G80nu569HXxPyjF1fgI7YdRvtL9Afv8fP/hl3tZ97BblPkPsGT5LXVsaPb7JfBmurv4b91cLH/ezvVPaQeyvfab+b9gfm/nXR+2J5b2xL7h8aj+/GV96XWgpfFfQUr3/yfsxo/NwbPzZ9ttD+APg/jn8seog/Xv+5Fv6J+HtAfscy/6Yv72Dl/av32f/BYN7lmi3/NvaXfegk7WQ/2sx4EP/vt1kfkv9n9LsS7J9zMvJZX1qAiT9KnPQK9jGLPG/3Pe90jFR+AzrOVz7vcuyY+DR8zQDXxp+Iv37s54Ocu+mPeyd+Gb7T8g6edjrKr6beTHrI+WbOOxM3mHjBpfQ3Ju+Dxb5zX0t7eV8m572535z3A7bDd97FOR/Mewa55xh/HvJLngDj3xtufpppnzMl94Dhq0/u16NvlPXZH/Dfwd+Zd5O+9L0FOW02vkxMHC84UTu10Rt9fybdknzG6B/3oS9xAonnGh3/Mljs34488s7CqiL73lZ/KU/OW9Cb8eF79w3zrsK75vsm6ud8cw65dJHuj7+b2UUP9StZbzdVf0oBlCxPXLp07v/F796evuOPvyP399HTS/mNWafDn/Xh/vRyTtaT5JP4lj/IoXj/9Zb0fvQzLv56+L/P+6LaPVh7W6v/ovXSrnkPI/sZ6WvYX8a3C/GzO/4OM25cz4BPzH4+7VlvPWic2xtcIn8342fiIRIfUS9xlMaDG8Bu2umTc9HSAnxIu09Zb7xEft/YN0S+xyc+0fh3Lnw18b0PO11NftXV757zS3rIe2YnsIvLtT8Kv/vKH4G/Htr/TPuLpZvav25M/KX8aeTxrnZzP2O0cfK+vJ+D3jfpqSq5/Sb/O/x9C55qfbCPcr3wk/sWLfSHnDMfg65r2UMT5fYh37/1qwvhz336p9TLvY6cY6ednF83lu6D32PxMRl9xfGBiQs8SP3i9/svINe849899+cS742uV5WvSD+HS+cece4Pl6Hf8Zn/tTeI/dQ2Xg7VT4eD2+eeHXusTD7HSD+Ye8BZd+I/54EZH3P/cEDiVXKvSfu/hR/z7oHs7v3Ez5Jn4iPWss/69BF/X/yA1c2X8Qe+l/tY6GqH7vjHEk/QJX7Jovs3w/IuIrvNO/eJx+gLb+67nALf57kfJD/v0XUnh5/A3EfJ/ZTcVzkh8Zv0l/9LyPv38Z9n3Rk/Wd4RiH/sUPgSt5w45sQvTzL/PGgdm/PWm+Mn1J96Szcwvn+HnpzPFcdhT4f/+rxfCu8u5NqEfMpr9/ysv9BTE/59zWefWBefp9xu8mvYH/ygnw0wHszd99/05P29/J9D4sS75f3Z3J8ues85frv48X4jh/jv9kLfO+BSdP4XnWvit2VH5bU7mH1XLPJv5nxjgvS2eXcKXB27zPmH8evd0gJcz5720O70ov1z9tMr2UcX+sz7kj2M5z/BvyLxD/K3s375gzwbGy9zvvBE0flCsX9tZPb7iY+Eb++8R1H03nbxe3GL4jeg/920X498Ex/7VPbF6Epc9KfavZH+5rDfkcqvI78X875l4pvwP1K6jv73FLxD8fd67sXRb87Lco6Wc7P8z8IW+PKu12LjV973WuF74imzz/on76/E75b7OInr1X78fp+hrzh+NO9sJJ56CXvYjnyyf8+9zuzjs3/Pedqe2s852zL2NUz5p8kp/zeU+9vlEvcv3Vg/25z3xtjLXfTxB/yj8Z/3NfKuxnPozPsaM8wXM8Ht5Cd+5KD4J6WfMI58hP8NReuLjdJ5Ty9+97xjWvx+ad5LTnzI84nXRt+AzGvBl/PrxO/5fmLmd+VXSU8rike6Ez2J3xho3GirX+V987yDd7jxfYJ1/xD2mP3AV+SVeOvi85xfjD+Vc59V+jTy3EV/Slxn4j0Tn9FA++fp54lfaE+/FdHdhl7OAEuyX839LXLZyvcV5PtUkf8v7zq+Ct5gfRF/ad7Vzzz9hfEj8ffx98eP/hp5xG+4W8YJ+K9WPv0m//Nzi/qnWFcd5XsH7MV/9Zf56W/wMXK+l/5zXjbA95yn5fys+P9Xsl/JPiXv1eb/NfJ/G/l/jeJ38fO/QbvT7xD05v8y4ocbjv9O8I9J/ETu5yi/2XyReSTzxyx4yrOnKfYJNfWz+Gva5v1bdhC/fwX8x38937oifuz4r/P/I9lP7F20f7qL3DbR69bkt5T+sr47XbpH4probzC+EsdyB3tLHEveM8l7knmnflzON7Sfe2ubsr7OfEO+d8dfArbK+yvozjy12XiwF/0tYN/l4/8g//W5B5z1YOZv6f8kPtf8GT/uA4lPThy3+SzjfvH/yw0t2m9kPxL/X+5Pxv+be5Tvks+ViePM/ZGi95HiN0y8aN6XvN/40Ig9HAneLD/32duzvxGxN3aS+ePmxN+iL/8f1EO5s4yrB+Mz967z/kbiwxL3cDf7SlzEWP1+D3iL97/16Okr3/OOad4vzft0eS9xLbp3xH8v/bsOmHVIOfmVSwsw7xvlvaNzcg9HfvH81ivnH/Dl3dy8o5v3c7+BL+uv6vj8Gx85j885/aKi8/rZ7Osc80fefcj/OW5mDy9Z9/TV/05D557muyvoYZL5/XT5XbST99HyXlrm+Y7sMe/wdJI+S34z66NO6LhFeqecT7CP47SbON77cz9YvfyvYt7NmUU/2Vd1T3xn3oUouj+U+8tZD2b9t4N2Z9n3dgCvUH6B/cyF6K6gXvm876M/n0h+o+Knzj7beJ1xPOP23vR/u/L5P7ac/57MTi/F/2fGqVb0l/fXass/G759pC/O/GPdvTD3DPP+Qt4zgjfvR+Q8K+dXX5pPE1/8Te7j4T/7l+xXsn/Je/xr1W9Pzu3A/G/dS8bj57WX9xdaJz616P5i7jPm/uIz+X+L0gJ8wzhYX34Z9vif6C/x95EP+vLOT/H7PnfnnC1xBVkHyM/7ycXnCyvo7968pxK/vXJ/kv+lxs/8D9rl0vl/of30jy7y60rn/4kSH5a4sO3Ze/Z/iftOvHfiwXPfrGXiNbN+Vf7d+Nvy3lfe6YX3evA48s+76cdI552LFuzhM/kryS3z78rMmxm/5ZfKXyQ//6+W/1vL+9h5VzT/r5r3RX/N+Q97+xDMu7RZX6+k78Rv5H9c8v8tt9FH3qUbJp341nH5/0r9pzk8T8DzpHqJo7osfhj5vdTvk//tIOcu6PwAfROyzlXvbfAe5aeAV5pPsm7pYT69Eoz+apLzR+aP6fIPwndbsIL5YbT8SvrT3rknRW//+x+Fonf08v8ad2l3hfk89rY0/iny3D5xfJmftd8TvJldPSB/P/aW/38swy5ezn0b82X8URdIV0u8mfEkcYz537LEM7Yh/9wHbsaeH5HeiVxyX6qJ8Wy8+n20+1/6utt4XNX4+Db5JJ7pHek3E0+v/VuKxpmcX75sfiqO740/4nDpi/WLzFM5X78MPdnH513YY+F/xXyY+2EPZZ5Exwf2o3nvMu8P1abPWezle3ycwA5yH204u32NXXwe/xD68v9dVY17xf7Lf9Rrrv+sgXc5/eZduLwTtxFcLH8WPIlPGqJ/L5Gf9xMui9+7FN/yryqAkgngSnBrdLYzLuT8OPe/OpBPzuuHk9MO6Ih/sil9Jc61+L3I89nzmWDeOch8s6Nxbz96vlL9htq/TLtl4Ruh/xyaeGP2eL9xJXFsVeQX288l0rGj7saDvJt7QmkBjsffNnn3htx3pcdp8ivRX+KqE2ed+OqF7L8iO2+RuIzc/9U/c+8o95By/6iEPF5mx73J69XcT0j8ZPwiueek/v15n0W7Ob+pFP940f8ztyLv63M/AH9D9YP8P/MN8kuNN/l/yz3U/yjxq6UFWPz/0Hl/t/j/kC+y3rkg7/CRSy3pvFM/G/9DEt8Zv479fPz4uU+R+xW36y8l6H1WOuvhB7M+RV/8K/kfwvhZ4l/ZHr2V4I+fJ+8X5F2Zb+Tn3Yo/yD/vAb4S/7DyDcjjcvLMO3/LpNMPftSvnlHvF3baVH4jdB+dd93J4+fEF5DvArDYv/lzaQHm3bBr4OmTeDl2Gf9o/KWp//8AkbwguXicdd159NfD9wfwQqWQIpSlPpWkooVkl2QJXwklqZQU0SZbWbNkCyWUorJlJ7JlKQqFFiQhSd/Kmm8osi+/c37vx9M5vc7x/ueeec3MnbvNne3OvB/duNz///ruWoL3bVWCW+9egvc3LMHlTUpwtx1KsIn8sduVYKtGJfhD7RL8pXEJ/rlzCdaR//cuJfjXbiW4tFoJrqteghO1X0P9x+GrCc8T0i82K8GhNUtwCHi8/Lu1cxd8w7R/hu+3NS3BQ7ctwQ/wt2+DEtxS/pIaJfib78dUKsE75N+ErvvI462tS/BN6Ue2wZf6Zdq5X37HqiV4OXmcID0d/hqbleA36J+jvWn4v4PculUuweOU+6h5CQ4m317a/4aeb4J/SJUSHEHPX0tPU26e+nPBLr6/An9//J2n3TPx9yJ4W60SHANe4vsi/N64RQkuI49L0bnbHiVYTXv1Y1/02ZR93E/ek9RfiI926ldQ/3Pt1qf/U7Xfmf0e5/v7dUtwZ/n1yPud+iX4oXY/wf9V7ON98AP5S+XvSz77gfuAB5P/Kfgdh79XtXMgPOfCO15+d+UPkN9X/ih8jqhYgmtalGAL/eEz/M1Vrp/2Gys/iNwOlL5eev1OJThc/Tb6WXP1X0PvPHJ8Xr3a6L0QfRew09j12eRzFPveTL9qJ/0IfX3CbpbXK8EvtbMZ/t/Szhb0tYI9TdXO+eg5WXuXKL8T+SxD3xhyXbFlCf4J3xDtjSC386Uf0X6/8iXYCL7H+dOrpdeS34d1SrAX+JX6ZZuWYEewL7hGew+n35LHOvb4LP7ma2+9cnWka/AP/fmFj8lhKXgHfP+rUIKTpTfOOID/Tur/zC+NZAd14D+SfU1gF6Pkl8k/kH+t5HtL9v8U+dyF32rof5JcztKf31dvFbrroucw9M5X/2d0PwbP7uo3I+9d1X9Q++XZwyL9/TJyHaf9Feq3Lsg/+oj8x7PL8b7voj/sKn8tPM/itzZ+fpI+BX09wBklUK4m+rqzn/boOlr9/fi3UWUl+JHvu7LvyfI/iX8Fuyl3Av3uhd6n4d8bH9+h/y/+9UXy624c+CnyhG+E8mdqvyv6d8FXb+U60dN69nGF/jQKPdPQsTn6h/Ibh2gvfqpqxlHt3Rp9a2ec9GPwHwX/CPx9If8a/X0Geg+Gfy79TFOvPHqnspOG8ofG3+HrcPOjY9HXgr3OI/+nfd8Tvkv1nznkdLP6P+BjJH94L3r/RP/D0q9knIj81ZsP/1Xq140/RudW6J/O/i/Fx2llJfgSOjcnv+XqDd9eefVfNF5My/iB37HyN9XfKoE38ecVyPVgcmkDPkHfm2t/Dbr74vNX8v9B+mb9b1LmWeAu5NSJ/e6Nzn3AXeVXx29fcl+r/q/keLByC/HfBX3VyP++HUtwJ/lfq9cN/5lvHYyfo6Vvlb9woxLM+HFRYfxYBd8M6RPxfZX+UZFfrgRWBrcht23YVVv2cDj5rYZvOPnN5r/7qzeNPWVed2zGK3CC9ieZL44k5xvIpxL9NmUXL0hfGDsgvyvQexY5Hx882n/T+HQ6Oioqt179OWXoB7eVX197A/jPq3xvzd/1h//f5Par+s+z/xfBifjpqlwf9T4h18r4b6H+puTTTPvPKD9I+7PVG5b5svnILOmj9Je5GQ/h6UifY/FzG/gi++pIPz3Js4N6lYyXi9HXkn/I+NQD3srqT1HvJHrfjz12VW4f/Gyt3JfoHoy/T9D1JPllPJwjvyl+229egnUyfstvS94N8FWVPj8l/ytLoNwssA+Y+XZ/fuWOrKusH6bh40DwMvKYjf49tN9Q/W8yvkvP137mx++gM/PkzI+Xy38O/YfQ9xfauYd9ZP6zC/rekl+Hv90JzDwo85+/zZvHqj+CPmvRzwj+/QP5feApZ7wbxz4yblaR/gP9LeBvBq4Af9J+1kOPaq8FPrM+2iPzMvnF9VFb84k96GeK/JPY3yLj8zB8tdRulaxvybMF+o9S/wn67AX/YvU2Iodm7LAG/zKfXB/VP57W/hzt30LfGVdmks/Rxo3bfD+Pvq/RXvxZ/Nvl5BH/doDx/3zpA6UPIq+r1b8GnAnPEnxONV781zhys/R/5G9N/z+TRw18HkN+PxivP/H9YX7gXvx/rv8+mv4M79noizn9Cn4df63+yelvxt3nwZ74eJq8z5feXP7L2utB7xk/vy74mfj/+P030dsWf3sh8FH8zYf3c/T345cy75wonfnnx/TRkZ1dwM5uV78u+5iNzy3ptwN8W/rehf1sj46J5Hwn+seDa9hl5nPHGpcH4Pd7dLyddTS8g8Gjsn8FfyX0naV/VZSelP0D+nrHOm0f/Ncmv03Y9yr20x3/leC/Qrsfou9d9M2LPyD/Mv64vfqbxr/Qd3OwPPksABdrf3d8PY/uetpvyh+P0P5H2u+N3gn4HUkP65V/Bf6F0nfi47TsH6GvPboHmidN1c568llt/vc/9PVkf/WU65X1Nvw/Kn8U/PtL7wsuYD+j2d8Ycrk7653M/6WX4PdG/F5Aj9tnf9T8rwM6Bku3Rs/56r+u3Quyf8gOK+D/Wf7nR98n4X9bfGyqvazT7kb/nvBm3pJ5zFXqrWF/E/ih19RvL/9e9tgSvA/8nh3dyN/eAN4M1tTe+/zHW/BWxN8KsHL2f4wTa9jJ0eR7Cr10ov/e4F/4naH+YPJZA09f7d2FjivAw/Hfgvzql5XgV/SX/Z16+J9Gn1eiN/19b3jmKT9H/Yba/V3/GIS+HdH3ODrOpJf4i81iD76/K31Q9O57+tWZ4I70lnVo1p/10DeL/7pa+enovR//lc0nLjAOPJB5ofybfH9K+5nH14Pvcfp+DJyq/+W8oTz7nUef2YdfgL7nlO/Crqrjoxd4hvnZ6WBfsC58M/AzRTs90V+FfTzNnnqitw1/1DT7c+oPQc8QfF6r/1xCnr/JP8Z43lz9Sup3zT6y9cJT6Mi+Y/YhO7OP7D9uQb5VwUPpY7Z23zaf+A2/8f8bZ/9O+8eT99fwX618K/b7Ob4WSA/C30j1t0y/jH8nr+r0Ui3jMvzbZvxXvzp5TCycj0wljyrk9pT0Iu0PJ5+99PN2ZSX4gHbKs9/p5gEbSd9J3tvD+5Ly34P747c5edaXbs8fZf68vf75SuQq/xn6+5/v52V/xzpprHQv/J4V/6D8Iun96HV7dph5b1P6w065F9n13dLZx3sL/grSH8O/m/R8/mEueDm5fCv/Z3h7Zd4HbqJ/v0L+4/TDmdL1ySfz7cy/X9d/XmYfWU9m3Zr91axn4z9uLPiR2Ncj5kUPgR3JaSPlHoDvVnr9xnj1HvrulP50kxLcXfpr+dvyC9uBO2T81v4O8P6qfA3ymsM+15dAuSHomCh9Rezd/Kgyetf5vhD/18F/VfahwO21d5n8nF8ebPx6Cp427PM08BbwL/20Mfv4G1/b6aeX028b7b0AbqZczgcnmR82V68ZOFL5i+jlQnA5OUxi/ydk3Yz+O/HTUvtz5a+Gbxn/My/jqPazTmgFZp0wmL2eC54NjsX/XvEfjTfkayR6ztBe9xIo9yb4Nv1nXftczkcK69v65hudld8HP+9kHsZvdcDf3dKN2E9X+1GvorupfpDzkDv12wH0Wlv6T/gboe9GMPtGD8kfRV+1cv5b2H9eV1aCbfGVc7vWOb9G90z1r2NPl2hnb9+rksd78A+TPlv5p5Q7Jnqmv6HGvb/4/T/Bc9H/E/39DF7HDx0TPw5vW7Cb9pqgvyZ7uQDeoeDDOaehr4H47pr5T/btpTvD/2LO+fF/MX2NNM+6Cawd/fErd4Bbam9n8m6v39zs+13SFfiHseyrb/bDjfcr8bdH5tf4iV+chf6H8FsXfASsp9zO+Mv+6Eh8raS/Y/WP8btuyNcv6N+VP75New2lMz5uw65rkttjGf/Uf9m4fQ5+rst4In0Rf7uO37tQO9mfP6ysBLdCfzd2Uk37M9HbKPv69PMf7Wd/ZzzYULns7xT3q7OPvVB+zjVznvkue6hEfh3Z62iwEn1Vwsc32l0NtpF/D7pvMz8ZAy5A9xnayzqqCvoeZe8V8b+C/Bcrt1z6O/UXkevv2ltBPwPV787+yjlHf9h4djr6O9FPR+0fI30a+QyLf4fvD+nX4v/NF3pod4H0/eTaR/mN1K+m3N7wZ//8W/Wyjz5O+exb/AlfM+k62Uezv5BzxXbKJX6lynYb0ldZ+p3sF/HLFfjfzA9HoW+A8nuC95Jfm8Q/sdv+2su8vDL9rMh5Db5WSl8b/cGTeKfEPz1Jvheyh5xvvAL/Uvp6WfsZH3san7JOel3+ZOWnkNMf+JuLnvngPPBh5TLvy3wv88Gcr0+MvWd9jZ+v0J/5QOYHmS9sKv8B/rAzeD7/uWP8Hzo6ZR8cPwO1dyj5vO17P+uFWtnPkT4t+8LmjwvQH/1H71knRP9l6m+m/k/yp6m/Ej/ZXy76nx/1z1PZ+e/ke4NyQypuSP9MfI3O+T57a6Wdhjn/Nv+YxV5Wpz/m3B996/SPH7TbFB2T5b+JjvO0m32sPvD9qN4vYB36vwC/g9D1vXGpFTyng1/An/2XxHckvvB0fnWyhdKlvjfR/jH8/bb0dJn83eT3468/05+/QH8r+SeST2dwIT/zPLqeTdxA/Ih2eqF3Gb3cmbgd6dPJoYn+1gZfUxLnKH9kYV2UdVLW4cX1XNZ5z+Ozg/6zDl9XlpVgxu9G0okvyv5e4ov2ZO8fWj/dDTbV3u3kcip6Z6OnAfuIP4ifODzjJfrKF9brWb8fmvk7/fZA36vs5OT4f/2+exbK0tdkHgPvgYVznPSvzfXPleiqKx3/kfi2ZYU4t6znzyGvZ9B3eeIyyOPy9HfpZ7Ju0v73xstn2M2h7Cvj5da+t4Z3Ajs7Cb4F7Gkiep6UPgf9N0jPB/9U7hv2PYe9zAbLyR+l/qn0/xm7G06uG6H/K/sdbyT+jTxG0n/x/Hk/6b7yf2RPd2jnLunM7zKuVvwX/9qL/97Y+PoUO7gG/bew/4z/q+Atx/+tU//JxAnRc+Ls5iVuj1zu0M6R8OyMnnb00UC6e/yj+fB3vi/XX06Cv5N1wQ3Z39XeDeifJX2/cpdopzv6P8Lfkm03xJv4su3Y/RR23QN/NyW+kz3Vov920i+h92rt53zke/7qZfX30z8Tn/yp9rKff4vxva75493g2+h8r3DecaN2n0n/Re9W2pnAjv9LPtnfzrr2RHaY/e3EQyVOqmohXmppYX6xI7rHqn+R+peBj/g+N+d/WS8mPgee69HfvKwEE0/wu/Kj2cfV+veR6E9cQUv1y9BbD6yv/ZWZT5HLUOV3h+cw+s+84/jMu+SPpb+W0pPJf3T2g7J/zR9tCr6Y9V7wqv+S9GDwOfQ9xF9uplztMvnxX/Sfc7PB7Guc9rvRz2Tynk4OXdB/ZwmU605vc6S3YB/L2PXIxEWR92PkvJ/5U/gfoPxo7ee86AR85dzoQ+nEK+Xco49+lvilVvhpmXFe/aPpZxPp+KX4qfinXvrTtfCtZ4dzEr9Grp/jbzj4nfxWxsP4xfjJ+Mcx9HMEupuVleDr5PE5+uahI3HfM9DXjj03UG8mfK3gTxzfFPg2p+/4j7bk3zrrTvI/Tv0r8dsfnunaGcHen0HXC8pn/yD7CeP5s03JdaFx5FV8/MIf36VcTXSMhv8l7Xdhh13B05Rbi9/j4P+SvBqy7+qx56xf5Femz43Zz2bm5YkLGQ+eqJ1ryW8hPf4F/2r1rob3CvRl/tJF/snhl74OJZ+dyK8yudWWXp95TOIL+PEmYNbJreWfha6lvie+dDffK6G/Tu4X5T4Fu3uBXZbhYzo8Pc0vRtNPzn2m5vwo51Xw/orvN9hXzrcGqpdzrpxvPU6/G6HnWvxl/789uu4nlzci55yDGp9+hucX8A30tC4rwSrwf8f+b8/5Nr86Bt7/wXsY+hN/n7izYjzao+zrXu1cpN5C8GV496bPrui6ifz+Mu/aWb9rADanv2El8E8ceeKI5pHjInJ5EMw+UuKzG5HfOey8cc4R0JP1VtZfHxXWX7O0u1B+O/BI+beyj1rZBzO/3Ap/q/DzeeafWa/rP9eja5X8ltKb5P6X8jlXbYzu2vLL8yfbJH5NepD2/0t/Fejv5pwvwndB7jtofwa720L9i/XX7dj1SvX6a+84/ifxU8X4iUbqnwdfZ/WXJJ6Z/HI+2pz8cj46OnGz2s/6YAftX6v8XvA/QS9N4K+P32Hqr1U/+/NT2N+F8CWObB94qvDPFyd+EL5mie/B/wVlJfgK+dWEfy/95Uvy3V96iXL36r9fZf9d+qOc//EfDdh3+v1A+M/R7rDoE58/4D/nejnPWwdfR/TnfkRdeKfAM0869+G2oqfckzte+8V45ezzbSP/IOlN0FUj+2qZfxp/7zXPyf3KA7XzAv3n/mjml6vZf/Y1s5+Z/c4lsQP0tYN3B+kTtN88/hQ8BZ6z5K9BX+L7V0snvv8B9L2Gv/baaY/+0/nX+b4Pkj4f/kNzbgvfm+rtj/4P+fMbykrwGXCW8j/rv2dnPyjxysaXlvjdgT7myH9B+62zPymdfdwpud9ifTMQ/ffwJ0vg+5a/KoP3EHY6GH2Jb2rAnr/CX9/E19DXY+jIvbboL+VTP/gSHzXI+J77FXOMR7lfcaHyf8KTeXbWF0uVr0V/mXe8o73EXyXuqrx04q+ez/fgRUfOeTtpvy5+O8v/Tvv3G+9P0C8PIc931duLf1mW87yM7+jNvefsSxbvP9dRL/ebs59bk3yK41/2I2vlPpT2zlXuTP4p+3VL2d8y8JPc91X/AOPfQcr3ZCd92WfizPrl/ig5/TfxhfzvGdqvif7Vhfll5pW16TPzy4HmbbkfsC88p9LfD/I7an+p8fZb8sn+TtYriScaLv8d/WMh+C44N/YAb84ns3+U88lN4n9zrmZ8yPl+I/b9kXnqauWy/m/oe85Fc88292v3JK9qiRtIPAT9JK4m41/ip1/PfqL9kh5gL/q4lDwbspf3M7/XXiv6zb5W9rOy37Ui+jD+7g2+ZP9tuHo5V+kCLhXH/s96gz6K8c3N8Pdi9s+ko48PpK9AR85jc057Mfpz/6Y+/eX+Te7jZH+wGJ+V/cEDfE/cduK4E7+d86ZxiT/kD3L+1AL9jdGV++qjsj6Sf3Hi78m/H/oPhu8P/fIR/uEm9nuk/vkJPEdJLyOfSfE/8idKfyp/Ln0ciq5z6Wlx4m/o9TD5j9DvIvlbWo/0xc/4xBPAvzF6Mg7sSV4/Zp+trATrgkfoL3W0dzT7vhje3elxPn3kPtQ+OW+j79zvuFl712d/RvlLsv+o/+0L/pV4T/X30J9zTnWj+UPOp1rifwj8uyn3YM7fzLveyvqn4P8G+J77Mw/SU1v6fSDrtPjDjNPytygrwRXk/Vf6JfrGkP8S9DXU7kfwVWNP1cGW8g+D7+jEiyQ+t7A/MCb7gYlnpofXc25b2B/LeP5dxmn0HUFOuZe1gPyH8O+5Fz5ZOvekdkF37kfdX5hn19HfExf8tXXUC7nvjZ8bla+Lz1fRPxn/z+sntfE9hXxew/+O+tUtsUvyr8Zf9jHungFen/cwnGt9YF65Bbo+QU/OtXKe9Tf+LlV/LX8+DN2nxl9rvxe8PfGTuKutyXcbdI9Wry361ko/r/2867G7/pH3PVrRW9PsW4MT0L+UfC7K/h391dB+4l3O1C8SD5P4l1O1t4X6Gf8yHt5UiF/L/enEsa2PP0i8Z+L24B9L/m9rf4x09Px4zm2lp8F3Jfxns6fF+DwXPzOij8SDoP9e/nN17mfSZwN+ryl9zEz8cCH++AXpxCHXLSvBrLdz7+ty/uF0/GSf/T79IfvtN8FzefSj3M7s5Uv992vwW/lf53wfvrmJE2cPk3K+hb6cv3cvzG+voa8e6OmCnvfYx0zj3qvgueyzj3KbgueS1wnavyLzI/0v84Kx0pkfvMseh6Njtv6S+38D8NXYPPXvvL8Af+ZbmX9lPpb9hzL58cu5x7gG/oXo+QDeQ9nB7ey0F34zL2pE/7m/URn9A9n/YLACe42+dtX+F+TYPOctsT8w+xXZn3g88do539T+1fDP4Ben85O5z9AQ/zuYzx9LfrWkxycuGr2zrXPXSY+D5wn6GAAOBH8nn6xHcp+nITk9Kd1Hf5pFXj3kt8r8Q7udfd+DPBNnMgH+Puxgec4xcz8Y/kb42Tn7NfhvRy7LyfF/5DU76x/9J3HnuV+ZuPQbyCP7xk2la7Cf9/XvNnlHA+yR8zr99hdwrnYP1z//QP+u2utMLnuj/xzrkf21/y54Q7MN6ft89w3pDH3voecI32dIf5/9Dn43cR8/wPcuOl4irx/Jfyvy7JT79YV7mWPI8yP6ecb8LXH5eWdgfOL38Z97sbknm/uxN7K3pep3TPyO/OOUvx09TcixPnzF+3vZX7pZOvdPLwHPxccu5H8keRwROWsv52i9lV+Jr6XGq/iX6YXzp6yX4v/a8jcVyeEJ/mbXnCfC9xa/eiX76QP/LPLoCG8v/P/APn6j7/7Gxcv0t5/xcTh/Msf8/nX29qv848pK8JDsv5Ln0Ny/J7dPtTsH/dm/7qH8g+jbKvIi/37kehY+Guj/10X/+E/cYE38H0Q/89E9L3HoiTeK/el3z4GZ/+6S/gd/lcRdkFPk2xl9J4Ir6f09/a0+/rKOGEie03N+Qd5PZFwt7G9ch++nlLtW+k70/YKv+eScc9wJ8nO/ZSf4muMv91uK5605h90cf9XZ34jMw8EJGZ/074n4O5895f5IOfKbnvmN79Wzv4y+nG/8kvsL2j+HPDYj17byc/59feKF6f36nM/kfj//8rvveSdgLHznRh+Jn2M3OR/rgL/Ehz6t3Ez5h2e/njxPir+R/kP/zv7Xn9K5n1N8/ybv3pxEX1m/P2ReMCDxQ/TVmz7OLoFyH4H75n4V+8u7hE3AqZkn0VdX8vvc95PxV5lfyTyq+B5AG/7+RrBdwT+sov/+xs26YPzLRPPtxP1PkH9V/DH9Dcu6CX1H6z/17ZstASeBu5NX1cTfwv++73lvsvguX4ecxye+g3x2B0eQx4OF87o7Cud4h9DvUPx/njjL+E35E+lvZ/14Qc0N+b+MvN8yDuee0gm5Pyb9CbkkbmcAOkaZzz3ke95zzP7szfxZxax3ybty4nsKcXvF95MOwd8z+DpYOvOQxL/egZ7dpBMHe7j28i5H1rP35/wx91ZyLyTnQIk/xf92yuf9uz6Jr5WumX1d6d65z0vu63IPm31kXTgh/iLvbhgnutFf4gNfJ8/R2rlA/kv0Ukafq/GT/aDsf52l/iqwHv8xNvfS2EHxfaAq5gWVwNxDPCX3vRNPga6cv/0Gz1r2tg3/833sj3zO4n/L2we6J+/+kEdv9d7EV8vCfYe8b5N3bX4vvG/Tx3h1HrpawZf+mPcc887je4X3HnMv80+wLPfy5T+Mnr6JP6C/MfEf+vN35HSC73erPzPvZDXbsL1dc//NuDwTX4Ok31L/qdyLB6uZf7wpv1/OobRT2XgzUnttyTH3Ffobr17M/Cj7TtKP8RNHsI+ce3/cZEM+c/79sf7/Te5151w++/Pma9XppSK9zMh4gd9P0b0cPCf3BsDZ4Gn0cVvGb/Uf0f6T7G1SzkeyDvkX/3AefS7Ju19g5hezyatBzseMv1/j/3XyyrtHZejZTfkmuU+mnZynt4W/+N5x3kEeJr8VeWTdkHcFE6+zJ/hk4iGV25v8r0FP09h17hcqfw9+OrHvK3JeK7+v9g9jnzWtv1aj4+28/ye/uN+SeODJ/Mu30okbXmN+sn3uaeb+L/3ew97Tv9Pf8z5p9okfxncZeed9rdz3/C7rRzDvceS9sty7jv/L/et69Lut9Cb8+5PS+5WV4Ev4uA+9uV9Xh/0nbjznbXtqvwN5HwfmvaC8Xz1Wv78dfA29B8nP+9I597w973DiJ/eLE3+XeLzcN+6s3sXoORb8Le9woffZzEv1h6wv6tFL7nNXsL64Xvu7o7tp4uZyzhQ96G+zc14oXSPxD3n/WvmDpHPffXP2+zO59CwrwdwfW8UeH2YXK6V/Zx9TjA+Nwa/JKXGWFyifeKrEleR97p7sIe/39pB+TLnE9V7MPloV4ny/wU/iyNZknor+JuR5Ajmvyvow56X0l3vUz6E777fn3Zrs7yc+I+/YTEVvxuXE6Wd8bsGeZyQ+pnDfJnGuefcl78PuRD7lzf96Zt/LPDBx9HmvJvezsw86Pu/Lm989nvcxcg5aWP9lXHkz90u0v7YEyr0DLjZen4Puk8k/78mPhWd/8u+p3byPtZacs36YrP/dDz6E7lfUz/5n9ruy/9Ui/qWsBHMemvPRXZQ/Sv728A7Ff1f+PedKsc93cl8bP5OzL0KfeX8s95Fns7vjzLuzf5f9jVrsY536GYeH5Py6EL+WeLbErxXjfuN33kXfEOPGFpmfoif31Ivz6cyzc97SMOvX3AfzfUrh/bO8f5P7z7kPXUd/THxK4lUyX9qJPeU9/Vno7B37YD+vsKuvjLePKn8L/Hn/Puun3B8unmflnCvvM7xPfovBXiXwz3xyFHrHgJsYH4dmfON3Bknfk/OKrN/kP5r4K+NUzj8PJ68f+e/zpPMe+VD8/2Ef9wB+dE3m09knQG/ej/gm8aW5twSu0M5liZfH1yR6TlxsY/SP409O4V+K939zr3UpeRbvt1bRbt4z7g5WRG9xfZJ1ydrC+zTfs+M69J/3aZaWlWD2c7M/21r92bmvAb6KzsR7Xseu8q7HGfjJPcId0P87vW2TfUv4b869T+XPyvtK6FtUiMsuvp99pfF+Mb10VX5N9vsyf4d3bOLY8o4Wen/0Pee9Od/d1n5P3u//Lucm8C8x/3w272tkv52cfuP/Llb/A/5refbH1RtHLnVy7xh8Rv2cj74BT6fcf9TepLxHSk+JLxvN/nfW7hz1c55cfL8v99hyfy3vK+ZdxebSz+e+Ab1ep72qvj/Cfo81Po6C/3F2soNyO6k/HT15j+pS9XMum/cKnsBve/I90LjwYeJ/lc/9ndwHWet77olMx1/uMx+R+1aF+817oaeF9pexp7Hqx39XLvjxvGdZy/zso8g999ESr8d+si7OermV9stpr3n2XeSXkU/uv9Qu3INJPOoX0u/l/Vffs37PufCKwv5N4nc+Uz//B/I+PFnf36V+S/QmTvsx+SPVz7y2Dzlmfpv3BROffxD7WqR+W/0797n2hC/vvCzOfZv0W3h6gO8pvyM6j1Sva94HNZ59lfeYsv+H//PYb+aX5+b+SuLr2d1u/PFo6+e8X5n48ar6X+LHE0+efa8B5JN3JrL/tVPmw/jpxt6fkJ979Xnfrvh+YeKKLwUHkVP+R+cU/jn3eBPnk/v7tfm/4ca32vB3Ia/i/YlrCvco1uM7eivL/9ion/EpdGecCv29fR+lnfy/QQX8D7RuGgAOAm/Hx1X6W94nzrnDUep3o7+c8+R/KPqjfzm+V5WVYPXcR8j7dtqLf4u/q5z4BePjs+A1+M/9hSO1f3nuVUpXR98/77/qF3n/Ne/BLtPv8z8Y9fSXrHOq4b8JucWfxn8enX0l8kq86cS8v8PeVgaicwX5bBe7ynsT8FXF37PkcQB6n5N+Af7f8XsRmPVDBfQ+rj/lPd0fci8C/rOM+3mX9+Ws++j7UnZzCZjz35wXz1b/n/NfMPLL/ebca84951Oyv0zuxXOX7I88p/4Q9O5BzjlPa0N/+2efXrlTs36B9yCwNdhBO9Wzf2H8Odv3yvi/kNz+U5jf5fx9FfoTr5J4lg7qHyn/UHCKfbLMW75h11nfTuPHWkuvp+9Hwb9zz5kcHoT3AOXzf2lj5Bfvt4xmh3mfo1/iq+F9W70P5X+Avqyzs75uw15/ynibc0F8/5zzYfaS/c+r2Gneh9uCvWde+RJ6NiHPj/XfZejqT3534mdr+I9X/szEiWr/Vv13LTgI/5flnJM/6AbmvdrT4ftc/3mjcA6Q96j+sG7L/fCB/Mw9Oe/FzwLtDQe7ZT3Lvjtq72r0rct9JHS1Jte8R5b3xx7Neg5dVdn3ory3aXz8C/4dpQ+E/4/ce8n9ioyXuX9Ob+nvZxjPch9/F+NP+nvvwn7RZ/h/B/7/KFcj7zuQ32fgKjBxAIk3TRzqRuSzfeZLeS8PzP/P/LewvzGncM6Q/Y4LjD9DwA/U/7KwPlwYfcjP+jD/b5h3EGPn/cmvjL1vnf1i6dOlL0ZP9g9uY+/dpdtnfab9xFHlveG8x34ievK+3gDt5x3Ju+j/Q/o9Nu8DwNdLfgf2fyz6Mj/OfDjz49zTaqhf5J2595XL/dpzyG+x7y3ZW+7XHsGvXQTvCZlfo38x/7ZV4uzJ5f3MR9B/X96rAXN/tlziZ8l5Qe5r8D+/6j95Pyvvgf2qnS70lX3DSwr7h10Sf0HOPxbud/7buyN5/6cd/eYdhgH6+6U5b0Jfi8RvSud8oV7OB3Pen/068r2Nfm5IXH/uMWR/zHyxPP39bZ8l58Ct0XUQeCU6Mo95Ev687zhVekThPce35Q9LvGv2E8kr9xPyHlPuJ+Td3oP/Zfwunk/Oip8k/5PJ/ezC++HxR1fgM+fNuR/4Pf0elfM8fvqzxGnm/g1/mvcqyoOT8v8A7Oki7XTHb/7vMHaX/ciM76/TX/Z7fyHHoZmfoS/xqM+jJ3GpL+R9QP7yQe1lPZT1zxboGZF7O9rvmfhv9ngm2BE/uY9/B31to34r6T7kWKdwLjacP8i8t/h/E/kfikroy7y3VuaDhflvJ/5qh9wPSxwh/jetuuH3lcqlP3yO3pyj3MDffaz+mfU2xP8HfbyXd+b0l/rgc+w18bH5f7v8r10l7eX/7S5JXJd2bywrwbyv0FN7eTfkJHw8Gfkm/ok883+6Oe/IftwI9GefLvuhK9n3TeolTmiB8jujO+vB8+B7QvoW/OT+X+IH8/8HzfT33N9LfHZj7R+Cn8RPXs8e38s6S//eETwWbJp448L/n+6E7yPA9vzbsWC30MW+Mn+tQc+Zt/Zj/9/SX94jzP8TnZH9k9z3yLlFmfa101i6DTk9DF/+PyP/L5D7XPn/yPy/wOXyc+8r+q+oP/eW35v8t2bXVXO/KPFH7Gev3JOQnzjBDujJuPF0zm+Ufxr+5fD0Svwluz2Evg4hj8xfcr/pZHrL/abcdxpMLhfB1wb9x+F/W/RnX7Sd/vJd7oejL/8PNC33YNR/mt5HZf83933lT+U/b4WnATxt8n4buvO/uWv5+7yHnP8HnVAC//w/aP4v9O+8P2X8SPxy1gGJT0s802n5v0ntv8a+8//D2Y/MPmT2F/P/wwP4u+w3Lk7cFb0OAl8G9819d359U3hyf+Wp/IEUftqD16L3RPOjHtZX++An86S38T0UPRPprTN7X1h4f3hq3lfDf/4vIO9Gjs//IClX/P/T4wv7T3k/P3FSiTNIfMHR/F459veA/Pz/0+vGr7xDWXx/sp3643PvxfxgkXbHovf0zE/Q8WvuJ8vfF7yMfHO/cEfzqd/Ub+D87W/5g9ln7ne0I8/cn+qX99TlZx5ZF3+f8cd/kPNy6VfJYT66jkj8Dfo75f2Awv9bJD7pbu3n/a3T2Ok46SvQP5b+jsFn/mcw/u7f3iW5SP27zRfOiN7kX0+fOTdshI9PjM85R7xP+/eCN9Nn3ok6MO/70X/e19hcfv5vrDk6E8e1H/7jd57Ne2XaeQ59n/KPt9DLMum84/h/JcYF53icdd159NfT9j/wikKDBhqI+mgQMmaMwiUy3FCmbmUWzakkN2lAKTJWhlKGZB6KMoSEiIwVySxxyUWllKH0Xev3fjyt5fVb9/3PXud1ztnT2WefaZ/zXlGr3P/7TW5aguVrl+CbzUtwRPUSvBK8Auy4awmObFyCtzYrwS93LsG7divBQ6Rv3LMEb96lBN/bpwTfalKC85S/VvoH6Vo7luDp6F2Er7bwvVO/BFfA+xM5Xla+avkSHIePRuS7Wn6XSiX4Cbxbqj9q7xJsuEMJ9tqpBI/E13bKl2tQAvfLP4UeZrcowb71SrAP2Alco/47ys+ij97VSnAr9W8g13l7lGClrUpwgPJdyPWpeifvXoKL8b9O/rvo3VilBG+Rf8aWJVgzfNcswb3Rn4n+0+gfCN/gvUrwV/UX1yjBZfL7aJ9R9DIMvkra80rp1trjEPAd9cvIV7VhCe6iXdbg43X8b5J/ku+3KdcI/crs+1ty9QDvINfD6O1Onq3ZxRT4N9salL8xdi9/bcUS7EZ/a6S/lL53O3To/2b2/Zh2Wrp9CfbHd0329THYBH9NwaHkOoN+zqDfmfpBf+V+VP839DYnx5cF/jf6vht+q2vHfeGfqV1mgU+BR9FHW/SOgXd/+r5B/pdblOA6+G8El6F/iHpHgr3xWx39q6Tbkudo9e/Q3v3034vA/uBMfB0NjlS/P3wVtMcH8J0lvwb4GT2PoZ/R4HT97yH1ZmrfVfzERHLMIV+xPxzC7oaT70n+49/a/1Hp2fQ3kr84UL9pr/6V6g9LPfjXyX8F/brbluACfNQj93z1u/LfdX1/U7nX5H+i/XqSvzF8Zej+XLUEl2j378gf/XYwXrRV7yb+4hvlJrGn6vAtUe8J/mFb/bU3/H3AA8nZSb1W0i3jJ+A/1vdpTf5OtxL7eY68V2n3/8a/0d9w+Hrrrz+pv6P628b/ZXxS/2T5g+htoHJNlbtfez1H/sXqVdWfd5dfnr3dS4617Hsw/EeqfwRYlZwtlT9I+WPJFz96KD3/on0eV/4y+V+g379uCfYDu9cpwXPYf7F/pF80Zz/HkXdv/I4mZw/6PVX/2cb306SfVL4XfD3BVvh6Qf3l5D2ffBXRG0G+RuR7Ev6ztWNz9lVe/XH0fi06v8HXzbjaS/3N1G+B/k74rYtuI3rcV/od/flq+ss85yn81da/PjZuNCX3g+S8Me0CXyf8rpb/APu4D9wdnx/i7w7lp8FzlvwT0LmcvI35mw34q6J+F/Xjn+Ov458rmU9sMG5sBOP/79+8BH8Hp5DzKnr8lN+8nN296/ul6N+I3+XkreF7I+13xTbSyo3JOK7cVfzbavqfgc6V9L9K/gpyrZR+hB6exe810tur/xX9HUzeuzJ/9n0WeB26vfjxnmC7tBP5Kyo/HZ7HyDFB/vG+3yI9kp6uzHiJ/ye08zL8bmiErnoXmG8cSD+H4v8Nepya+RU4ld++IPNC7d0B/y3w1Un5Zzcrwf/i/wXzktH4WYTf7sqv8718/BF77Jp5rP5zgH5W9AMb8FUP3dPAZuTTLcp9Ao4Ex7LfT/HzlfJNpI+T/y/8dSLPJfK7Jk0PB+N3AP3fKv9tDMQ/DMJ/X/RqGz93lf8VfV6K7lvscRP/VFF79lL+P8bDeuB/1TscP+V8v4Ydbwe2ou+W9PUQeCI6h8ifQt5Z8N2A7lP0P0273JJ5FHuvgo/W7K0V2Jo8h9JTTenZ5vFb+F4J/rb8733Gz6OlM17/g/5b4q8fseM/a5B/hXHgCOPUv8gxnv6/YEfz4LuW/P3KSnCm8peyx6u0Xx/1t5X/EH2VoX+J75PhGyj/F/Z1PXnGgvGDu/Nva+ljjvpL1T+PvBO0183gUu2R8WK6ecE12meG9N3y34avr/Qu2qE8/mtVLsEv5I+GpyH+3uRXHsXff+Fbh79n6HOs/NfBcfpHbf2jx/8aZ+kj/iT+ZQn9Z11/O762Ab9Q/3X83IPuTvD1kz9H+nf+aAh8e6M3vdBf04+31n516LM+PHWl/63+Ku3RV/6t+LgA/Vb87kAw87Ju9LuI/f7MDvrBMxb+9Lvl0umPu+L3PXbRWf1/ZZ2J/9bq/6x+Q/kL5Z+g/T83j2wnvVn8mf77UvTEvywgR2P9qqP8cvrtaPnz9Kdq8m/B5+sZP/CzQ+YLsS/2OcR89N/gT/HP8Qf8xgjpztLXwj8X/hvx1ZYdXBR7q1CC27O7F8Bn4Ftj/PwZ7AeeC+8y+v8SbAf/U/TbTbkb6KNyWQkuRn8LdlHBuJv5c1/5P2iH2vh5Gb5e7OcM48WDxuGHwRPpeyh8n8Czq/r942+M/8v1z2uUH6L8ZfCfzQ/Mof8N+HkUvsfVa+N7z4yP6Pzu+4Xk/TDrz7ISHMEuds18mHyPWBdvgv8+9pj9nxe132ztti3YTf9oS45/grfj92j0n+afbsFfH/kf4f98dncueB7YiD215w+GqDcMno/BD9lL1msHqDcX/fXkWi//EXiep7eT2fN58lfW/Hv9ScanY6wzepPzc/JPo+8X0b1Oejv6OzT7r/iozo53wn9XdnQE+9wPH9+gfyl+90b3BPkVMx6wl57oxy9vpZ8043fOU788fFOVb8w/LtZOr5G/CfonGu97G//7gcfCV5xPZ579pXQb/J0knfVz9h/30i/2BluAjbOOwk+ZfvSL9L7wrIP/dvooj99fyH8YPmeifxJ91yHfUvvbl9PrGOmsX4dn/1P+R+idrH0n0cdE8A7wfv3rbOVfQLcjO1hJ/uxfVGEX2b/IfkYLfAzC72fwdYD/GP5/N37kB/1nFv0M1D8uAQfS42z5md8+7vtVWR/Q5yb+IPPakfIzv+1lvnMk/XSXvkz+GPxUln9E5ML/SdIL5Bf3z7bRfufD95P5ccb/jexvA1hBf/s5+5Dq1dReO8j/lP+ZzZ8fhO5z0lk/3mG8ngZOAjNODOMXfsr+svQK/F/DHheCP+Dje+2fca66+ofFjyj3Bnvfnl+ZDn9f5U6gj/na5Qd8X0y/FdjzNPAK8A30TrGeHiN9qvR4/edG9tYvfGmnQ+V/rN4T2uMU8myNj83LSrC2ctdlPUs/zdjf+OwXKDeT/L+R70jpcuisgP9j8iwEe8M/HX8X46eJ+lMyz6X/u8j3MTt7hL3GPqrwiw3BMvBBeqjKvnZDryr6b8C/f1kJ1tcvzlb+GvwcoX+djG4HsB45z6aP6eo1I0/86WbSc9NPwPfx/41+kXGoFXgv/n7iPw7Ex7fSteE9hT+eSm//gP9b8s7A1wTp0+T/jn4r+mjPPz0MTyXlZrHrDfTZgrxr4ct55lHs42B8/XW+yd/WBGuAZ8G3Bb/1H/iuyflW9t/QP8v3C8kzWf+50b5b5aw/zM+vRP80+j2PnPHzddA7nL1cDv6e81v4945/Jnf2Pw7Ex0nSObforn++l/7AP7yNvw7KnS5/P379ZPltzGfeov9m+D5A/s7Sc/D/PfnGk2uFdGv2k/nVO+i1AV+Wn/PlnCfnfPly+PvTS86NjoSvCvn/ST/NzdN2BYfjZ4n0nerH/8QfVTK+DtPOy7Kexd9v6M+R/yq8c9jHYfR9Mzw3gc3wNxq946SH6i+x39vYzwLl6uFzS/Rvwc++6u9HTy/gf4b89eoNzTxO/9qNvi5Bb6n2X5P9G+1/KLna0Fcn+P+B36bqHSb9gPRc/WdeWQl+CU5B9wflG8FfPF8r+qv4scz/Wpuf7gbuAvaF70f7XmOyHmRP/eD/TfmcY/11voNe5g/T6e8T+vwAHzXI0VX9T+mxAv2N098fobeLpZvD28R8YKD5+zx2tBk9FP1b7CLn49vkfJ9fXo/vdvLPxtev6j+U/Rb8DSXPozmfgP8P+Vvgc4F0/MMA9lM8v20nvzP9PCn9QM5z0VvAf2X9sxCerHuOkf8U+eKfws+fYGX9bytwS/Bq5Zvj44DsD/teNfEL+JsMX0/89SfPrfxHR3axgn72V3+e/vy0eq9Jv0uOnJc/A1/O03N+/qDyJ/l+K3sah9+LjKc17CtVB1vB+7H+8wb+l0nPQD/7Yw/Cl32y7I/9LP29/HPoI3EOOd+aDn/Ot4aQf1vpXci3hBxj1D8R/mfxO5w/bJH5HXqZv38NX0/1z0G3O/yD4R8kXcm87UNwPnmPp7df1K9L31lPbQX/g9q3Jz/XEuwsP+f39cwLco5fPL/PuuM8dLP+KNpPO+nYUeJKjpFOvEn0/1rBvl6V/lV7TcHfp+pNll5Dn3crn/aZKp322Y69ZD2wvXT2v5slPkd+b/50lfp7m19fj17iS8aoP9Z8oRo7eEO5z9V/HL6cRzQ0z81++JXqXwVOIF/1xGXxe6/GTtAZTZ8dlV9Jf1PZ89qcr0jflfEz8Rzssyv+NslfIv8K7Zvzrx+065/S5ZQ7kD63y3waX5OkE3d0IP3uZJyokvlN4segvRbdnJ9Vk3932lt7ZH95k/VR4gAPlk7830L28AE4kT6zfrhae5Tjh7f3/Z/aL/vzy9DvCma/fon9v+Pt+90O7pD9o8p/x9O08t/x1cR3t8Q3Jc5D/c2yr6qdftdOOb9qpt2vp+eJWSfR72z6TtxS4phOhz/n6X+m3xqnX8LXbdblv+G3GI8yh3/oqfw+ZSXYBZ/384fV6P1E/H6e8x7y1ZIeRf9baL+1+GpIf+cYT6/FT7fEjSp3vnKrybcOP7PRfw78Vv7L6l0mXZMeb8PHfP7u4uz34PMc+Tfi/zT119BD4g8Pkj/X90fxt7/65RNXqf8PZj8rpcfQdwftfS86WZ83hu8d38fR7+P0d4r2+THzc+ktlK+c/Wn2Ult+R/33NvawOPMX9vsg+sfab2kLZj9/oPLHZPzE/4LE2eHvFfZaO/Moeq4vf7H5wB/4fE3+9/jboawEb0bvT3LcS/9zrMe2TzyicqOlE1+buNqBvie+9mr2UoldVMDHPHzcqX/cKL+P7xVzvk9fHcFOYAV0HjdfrkAvX1gPNUb/xezXgA8ptzs5Exeyf8Y//ux6+cPp79SyEhypPW5S/lR2ca30QPgyP65iX2IFPTyg3Az419Dvz/SSfZAu5G/AfhuCj2Tdor2XGE8y766rXOLDnkT3MHbZlZ/uJf9t/ec1cBB/UBW+6zIvw9+j2usn/LdW72V2PoP9Jk4rcYUfG1eOkm4N3/f624/4OR/dl7RvztsTb/QZfZ2qfXuj047dXKl8F/b9Ss5LlRsFHorecu2Z/jySvhIPt6isBJtpxx0TL4qfxEc2QT9xkomPHE++XeQ/jM5P+BtMnsvAVYlDzvirfffjH1qAi7M/iN5l5LnJ95zf3Yv/k31P3PMt5PtBv9jD9z+Ua4X/efKX6ud9pTenh4v42R3BkeynYs790W+VuEt6/HGPv8uzil3lXOIrfBynfs6pDpLujL8NxsfEd1/S6O/yJn47cduZT72L/kP4bZJ488L5ynL1h2Z/QHq18vux6x2120x4j8n8jX9+T3osPG+xn6X4Pkr/OUm/2EF7LuGPsm/+gXStQjxm4jN3RC/xmfuxv5zjna/9Fsp/md6Po5994Hk85/nknJh4HvznHkP2LbdTbkL2xSIv/GeSa67+Pxy+YeajB6t/g/r9yb8H/A/73kn9rI/jb8fTf1Xzs+xTJA4rcT2J80l8z9ns+iywHv1eql5/dC+G71J2nniXOuztJu34ILz3sJ/ahfjoxEVfBs7H/zR8HWl8+076Y/VH8utd6LMK/uJHsw4urn8bwZf9isxzcn5fpXC+XDnr68RZZP0H9gEz/zw79qp8Xfi2hH8je+sbewSz/7vU/H+sedtvhfO/Z4zn633vVYiP66A97pZeQP7WibeAf0v2dEL8vfZJXF7iijbRd+L0sv+W/bbieibxCZ3JkziFy9lHu9xjil+QHhr70f6D2PUAdCeDl5XAX/c/HpC+P+eV1qc/gh3VqwP/XmUl2ALcG6whf5Z0zsXeoKeJOd/D7wVg9odyHj4e35Xp7QPpl+RnXZX7TV+xnz+ku/L/byRuTnobfORexbdZl+hv2QdenfM26S2V3598y/H1p3beS3velfbTr9bh8yjp73P/wHiQfebE6ScO7MfEmxXu83TLeoZ/Wwv+DH5Fvj7mZd8YVw4i3+zEy+g/08CMq/3I95n+9gR4B/0nHnQP8rxL7rXgh+TJ+fki+sg5+nL9t5X8ofzicnKNoZ/5xqVHC/t78bPvk68Get8qn/iak/BzIph98q1yfp7zW3x9mntI6R/ms+mHWS91U39U/BN+jkl8HvrpX7lnle2M9Ldq8JeBua+X/YHK7G2Q73N9H4F+X3zPy/yLfp6n30Xsc5X8F6TPyjmr9fUT4GH4n5X99twLzPqNHeQ+15no9ck9wfRH6XPxnXizbuxzE/zF9dto6Y8S36R/1FK/Bj0+qH1Ol8690hHG5yfhX4+/rMuz/559+eJ51L3Kn1G4/3CcerkHkfsPd9v3bcm+2ptnHSw9KOd16v2Q8Qc/ud+Qew098J37DWOz3s+9HeuBQdmf158H6b9t6fdcdLalj3Xo15I+Ouc38DamjzkMtDc+bpX/UO6L8COPyT8+65bcTzBf/BZ/1yl/BH62pOe7yJe45MQjl2dfV9DPCv7hdvjSDtX/x/xqT3y1h3+F8X2TcaG+/r4ve6mi3jXkPlk/zP5GlxIo9zg4HvxI+cWZryaegx6vo9/smzKLcqvBD8wr5uuPK7P/X9j/aAN/4u8Sd9eYnJfSz136zUBwRc6j4X8F/onmQfegswi+nL+8g9HbE/+qPc/Vzq/Hr2V/iF7bJa4avQn4q2rdWQ3ciR2thH9K8bwA/Qvl/8gvddBuP0ln/TVIe53MzjqALyeOm36ulG6ee+b46Ivf4xLHBf+L9H+a9Fn80ATyJt5qgfqtyLFQ+ey/NNAfG9BPzo//RT+/8A97ZLzRfm+pn3PFnCfmvDH3oR5B93/FUT7Mvs9Rv5J2eEV+NXpMf3uDXXbN+TH8iRtvb7xfqb9eyJ/8Fvza6Qj8J64v8XyJ9xuW+DR8f4l+7qnVyrmp8Xx/8HB2+13il/GR+IL47/jzx7X/DPBg7dE38Srk20K79Zc+A78vJb5Jf39Z+kz5uU+YeODcNxzA/wyn7+gv8fi7qPc8/R2mXRcZNxI38xB7mIbfB6XTPmtzfybxGYXz1tNDHxykXWrk/ol61+WeCv+b9wFegf8Z+u7AHzRQfjG8T2d/i37foY/cpy3G1a5EP/FFQwpxRokvOhDdYdk3gn9b9F7Ubok3KN6vThxVxvvYW+4/Hib9KTp7Zvwk34nsN+8+5B2I2eTowJ4XKpc4/MTfZ/06AnwPvaxf1+kvx6K/C38S+27JPkbR453sqx1+LmbXv7LPgdJtyN3Aeud+etpR+qjEaZeVYN4jODpxDrkPQq+3gf+xPl4r/SY+m+Dna/57Cvnb43s33/OOxQnw9/J9ELt7CZ694D+Pvs9n12+jl/35cvxCm/h1el6VOPLE88lfTf+L8XcluolrnUL+q+HP/uOZ4DXZl8t7EBkv8VVe/+2AfiPtW5yH1sn5lP5TA95x2a/N+pH+Fmb9AeZ+7fdlJXgEPTWB9zf2dZfxagp4KnmzzjyLXXQn38X0cAs4i13tqt0ezj4l+k/hd0zimgrxHe9Kd8ZPc3KNpv/J5Mu8oh99PYf+Cvz9AQ4Gs1+7znj/Nf1vzz+NQWeK8tlfnSy9OHao324h/2Z+4in8X6R84pn/m3NN8iTe/3T1dyNHQ/gzX30v+4Tqj0Knp/H0a/kDyL9d5s/6+66+Jx4u8W8Pq1eRvY5Abx/pV5Vvrt+21/+z/ntTv3oL7EofiR9KvFri1xLPdn/hPlbuaT3JrnJfK/32AjD9ubz2yvsDa9Rvxf/F39TG/zp2e3DiKum/Bn9dx/da0h3l31tOOfVHSN/J7g5Abw/wfvwnDnQ79MslDo+89XN/nL29W1aCud+XeK+dyHsYeb+nz8Qf5N5+4pmK9/ff51/eUP91/TTxxzX1v9syb5JuyX5zX6w8ujl3ulj+k/xV8Z5h9t9uQ/d46cxjM399F/6j4N0pcc65f2j82hh/o/yvym/kX5qbZyTubCP8F9FPMc52mnIH8f8XGvfmZh9aft6TObLQ/7KevEX93L9r5vsQ9CvaXzg075fQf/bh5qi/b+qR6wz+rQ17PJHce7GXr5V/QLt0V+4R6V8zH+AfTkf3HPB3+cei96T2PFr/Ppf919VeNfW/xG0syftL8DxGL70S/5Fz8tx3yHoKvbzfMQPfB2XdW7hf8VjigdA5jtyv0u9I9v174lXQaUaemfbX14CHWb+eh95q/ugHMPHeP5D7hMyn2M/87B+R/y12U5Z+T96c/36t3fPuS2P8VaPHL7O/63vxfa2h0k9l/Z59LfAoeHvlfrjx5FP6yb3hrIsqSOf+0Lnmn8X4xavVH5x3ndhFzv/mo5d4pt1z71j6o7wvo3+248dyTzr3o8usRxqAO4J18TGtMP+4E6wn/3BwcOJH8FmXfLW091p2eZ9yp5JvBrsYRy/z5TfVns0Tv0e+r/m7+6R7aL+Mu9/hJ+PvVfC9Dea+Shf467O7OtK5nxE7H06e/sbfKuAk9LvQR6fEGbHXK3KOnv4vv47vnfHzDL/ZPv1Pe61AP+9BnaO98l5U3ofqpD+8Re7O0hPha2v+k7iQxInk/bQh8W+J201a//iF/F+gu0Z6dfyV8p/n/EN6lfw/wIfwexQ+psE/Sn+tH78q/3ntMYE9jgcnwt+Q/qaQ987Ecas/M/Hl8Cd++n3p3L/JfckR2u16drQfPI3ItaV+86J2uUT9xBP89V5cWQlmf2sVe22Dzr9zr4X9r0xcCn5/kt4Z/u7w5b7wjsar3HdpzV6OMz5szL0p+R9r7zr0/1L2H+G/iT4S51KMb9kHvoyrGWczvr6UuAPyvyid+P3d2Hf2zW+WX1V7vIpeznPnST/Cf1+ufYeAOdd9VH76ae5XPcI+WpLvYH4n+jgp5zuJ7yzMF/JeRd6naJh7o2DW+cPyvgJ6I9TPPcjcf8x4fDz9fpT72znfdP5wQeK+pHuxh3EF+897iceif4X52XBwBDo5P9kc3pyr35k4U/LlvCDnCNdrr5wnVIp9kyPxEruEvnrrfa+g3KH4v5a/+By8Abw494qNzznPznn383l/pQTKjQJngbmf3xX/ibs7rawEe5Lzf8VV9yTfXPVfBCN3zk9GKT9YOvtRi7TvdP7icnI8Jb2Uvr8zP7mAHjPPzDlRzg3OkS6eHzwgfx+wEXmm03/uteYdzCrw5D3MDcb93Ds93njXBn8D8HUx2B88iX6fY99vs7+8PzAt9zu05xByXZl7lehfyO/lvG8sPnP//W7j4lDjfH12nHvaeW8k70wNy32prH8Sd5t9ncI7Ff/M+T67vIEeD8r8ij5yPtZTe+e+0iL66ArvK4lLTTw+/WbdPt44NkS5x9B9LuM9Pt/Wvn/A+0XuY+Njm/iX3D/J+UIhfmdO4lZ9zztdeZ9rEH97Fzpnacdh8nsnnh5fO2vP3F/ZqHzeM70o8ViJv0o8O303Ryfjy4FlJZi42QOkE097s/6xMf2qEF/wAfo9cm+Cvl/O/N+48FHsr3AfZnP0VspPfxkD/7WJMyDPQnR6JD7YeiRxzcX+uRf5c876nvSXeY+M/Y3Tb28CX8v6JnEP5B4vnfO/Ddo17+rVI/+izL/Q21q7Zb1Qi/w7p93Y48Hsczn+cj/gRHqeSd6sMxO/t5YdtsB/e/T/NO/ajJyXSQ/POESuZfjZEj+7qb8J/1soXxn+UxOPSd7B+K4t3QN/z0i/To5npZ/NewDkPhz9kfT0c+5Z6h+TMu5Yjw1OP6f/TXn3Bl9t2cck+v7C91nKN835OvueknsA0l/lPh35R6Jfhz/8E/3z+ade2uUq5XKfKOe9OQcu3serzz+ek/mW9qid+9FN/05vB/h6qN8Mv1ln9mUnj6n/q3Z7i7y5X/+N9q3Jn09mF3eAOb9eJf8gcl+Cv+xjrdEee2S/Dx9HZf/ZeJvzpZ/Z4TaF9h2o/uqcr9DHCfzHJeTPPYPcL3gWvevlb88+887iMvOlttmnUW4D+XNulvvk3yReAP7Ly0qwt/ytEx9Bn8V47CXxb+qfqr1q5R3NxPnj+1ftvw5cn/egow/94QjjQPS4Wc6H8Jt7Cd3oew/yZd3YOf4Vv2PVr2j8zzuyeecz73s+lvt3uf8j/0/4jrTeTrzHveJBcp+jKf3fbpzeWTr3Yf7w/RRwk/50LP47ac+26Of9svHqb8Lfu+j9U37Gv8x3ss/QUf/PfkPing6UXkS+YeQv47c6KfcePueTfwL7HVJYr2R9kvcsz8Rf3t/Me5wT9J8fwOL70m9lX1m9EVmnxU9bv07VjrkvVo/99WV3M3OfWP4a6fv078zL3jbPu5c+TrHemQteB56Vc1h48l7orvjK+8E96Cvxmf/m/+MnRuLnV/znXGye9m9iPlMPrAv+BH/xfa4D8PM2+Qezz+ba4SL29WT6beZd6OX/AvL/AFl3dSTvt9rtdnxmfvERPt4rzDcao5v44t7oPZ93ePDzMbprs4+CztK8O298GZA4H3hWmLeV0UsjsDF6E9OuufeTuGr6+Vz+C7lvTY/X0+/n0o3yTgB5pqh/gfp5b/hr7VmBfHl/YY76eYch7y/k/aCx8rO/vRd+ivdb2/J3N2V+S29f5vyR3BXRT/zqwvyPRuLy0c97tqP0o9z3/RHenLdmvCverz9cv91Xu22rXN7/uYJdNKGHvLeW99WWs8+8m1lPft5ne1P//U77tcBX9str5X5LWQleCM9Mcg6T3w8/r+fdKDDr/2vA03IfWftn/zDv7mcfMfuH2XecJL+4/1gczzPOt8z9HfPGO3P/Qjrj5L38x2PxF+jl/f9xyk2Dv3P+fyD3Z7Vr3p9M3PSn0uXgX42v7ANk/d+W/R3DL47QDrkvNEf7552XmYkHQ/8W5TfwC02lc07WBd7O4NzCflPfnG9IV0wcGf2eAt/JYAcw+zNdykow934TT30GPB3Y13D8ZB23u/7xpH6TONpvtWf0U5d/yvwn86HMf3qwv7wrkHcG8r7AJ/Atpvfvd/k7vr700htsj/+8//uK/pr4j8R9ZP8n55c5t9w594WV25W9xa7vRvd89WPfn+cdAfnnyU/80v/6H5szy0rwWHii97wv/LbyK8BJ5M+7Fjl3zrsWU9RvkPHRfPEGdJbmvnHhPCXznbwDlve/NpKnnnQF9RN/8i28Pejt8MQbpr/KH5B4CnyuKKSjj5TPecoceBIPlPiguYXziDNyHzb7m/Tfg71HL5/F7ypfiT+6EJ4tpK9D/1Tzjp3BM3x/IO978M9ZZ+e9r9yTy3213GO7B/45eX+E/0ycXTf8rU/8HLs+P+1mvEgcVF12twG+7B+vUn8M++/GT+Qe4ke5b2M8XglWp6fD836Q9sm7kwvUy/uTOTd4Xrm8A5Tzg+f5j1fAcfxt4kv7lsBf97Vz/2WTdDv9P+vw4vo7+2l/oHuX9v8l/g29udppnvLL4S+ef2UcSz/PeJXxK/09/fwr7ZP73d/Qx9TEb8jPPd/cf51Of/smriT7U/xg1uMvOF+tbh7yfOF9/dzn7Eeu/egh9zvzzlb25xPv1Vj+MejtwE/vSY5B8Oc9wiuMW5vhM+8VXg7ff+A/gH0t4B868q838V9djTMt6ad7xlP+cVHuoWW/I/9P5nvebb1R/dYZL7PPKv9R9p848QvwM8Y+xSHyOxtPbwVfznuQiV8pjEt5D2dY9kvIOyHrAn7iKPq7Vn/dP/d5wNf5p7yHto5eXqGnd+EbhJ9m9FNf+pGc72dcoI+sc7K+ybth+T+EvBO4Hn9/Gh8ao79T3hMgb/G9wvi5+LdR9uOvzr05+Z+h/3XG68wPtWfeF/mQ/7oo75MmblB+5rUP5/6U/vRw4kcL91u+J1/uuSxktzXLSnBR3juH/9z0G/zl/4N6ZL6Kvz7wJ045938bKJ/9laPxmf2V0frrYH5kgHbK/kz2v98Es/+9Xv+6mr0+k/gJ+CehX4xHTpxy9kPu4f/iX3Jv8qbsf+a+A7s8mD4fx9/t+u89+umt0tmPnGj+OwkcCuZ+057Wn3kf9TH+O++dZ1xM3HDe28j8P+eTy8lzH3nHyl+lPY/I/lviy8g3uqwEKyUuR3pG3q+hl8ezf4Re3mnKu/25b1EOns3Vr8lueyif9wFnob/U+J+4ngflJ94n75tONc/MO6eJLyzu/4wv7APdEH9Hjvp5X0H/i/3O56dix0fAf5r2mWse/yI4kjz99O/NzQ8ukh4lv6Hy2Qf4h3T2A3vTT/aLbsffTexwQAmU6y7/Lum8b5t45zaJRzCOZl4aOtlvbA1/C/Xz/z2/GOezn7sQ/Rn0kv3UA/TDaom313+W5f5g9tOyf1WGf/D/ex9e/807epMTr5b5Bb3+O/4o90Hwn/8/bKle/v8w/4c4I/EVud9Ajhl537Bw3z334DN/OIlfyrvdJxbik9cn/kx+L/33PvTn0N+L4Cfs/UzlE/eQeJ/8P2TiH5Yav77P/X5y533JZ7TbZPiWsP/EXw1mbxmfx8I3AJ7uORfLO2D6V9Yvf5qv53+/uhnvGtBPzv9z7r9/zhfhX5P/L8L/DP2gDfnyfy1d8NuHfvP/LeV9vxisAv/s+G/+MO8sPoXPvN+X+/X5v7Xcs/9UOu8JZ93zr6yDs9+I3tDcX6av2+S/Ib0z/qrCl/juM9lHrxIod03+jxX93J/L+5S5R1ct51vSuS+V86OrtM8qcqd9tiVv2uf9shJ8nv/cDZ3L0d9Ve9+Nr1vYS97TyP89rYFva/Ity/yF/2rqe9r5H/Sf9wLzfv39xs956vfH3yW5d0eeNTk/or9zfD+Iv8o58F7wP0D+PXKOh35z+J9Cfy17SfxED+PlRvh76qe5B5K47uP4qWPBnG8Vz5/iJ7dmv6cW3n8fJn167kfkPhz4EJj/O869z/vwU45ck9HP/4Y0oPfE/8R/Lcr/Wqn/BP09p/776K2m55zX5Xwu8eT5f9bElef/WYvtk3ZZyz67sa9tct6V+Zf6XxTipzriM/FTF9N33gWbKv2CcoPhSzxA+JhJvvz/S/73Jf8Dczb5Bum/6d/70EcfdpT5ac4RM0/N/DTrz4wbaYfovys8ee+j+E7cZ/n/OnaY99820lfOlRL/8zx5nqXfFca9y9QfDO6Z9ZHxeAV4Cfg0fO8r9zQ+76enqux3qva/J+/MgP3lP8Decv8i9zFy/2IpfSV+a0fjeeK4XinE582CJ+dFD6iX/acGOcdL/KT6ecch7R/7m1j4/9a8U5Z3AvdWviK5cu79hPoT1J+d94XR/5N9VZBOvNpf/4eS+Hz+JPcPcx+xY/brykrwP/BvRe7D5Od/BfK/Nvl/gdyzL74PnXeM8k70hfrtauUaJ04Rv+3pJf8nstJ8YkHOx9FLfFwL+ZkP/fX/sfEP8Od/TIazp9zfyD5ZM3zuo/wy8D3ro6/U3wffLcC8j3ku+T9Q/lkw/+v7LP7z/2DD4Mv/hOX/wZrwJ3l/N+/x5v3dI+k9+yptpK9HP/cd8v553kPP++cTyV+DXS2kh7wfk/+tvBs8H8x7REv5q/wPZ/H/N7e3Pko8dzXj90PodM/+qvJ5ZyP/bzO1sC/+Qe7lFuaXmU9mfpn3LbNfkn3o/L/EjvIbFeZPn8jfnvzV8Z//d3sNnYPV/z+oVRM/eJx13Xf01+P7B/BQClFRpPnRMEooCZGRlRUKJWXkG5USWd/ITEpDhEppmJFIpZCdRCkkszSUUEKyMtLvnN/78XSO9znf9z/XuV/3uOZ93eu67/e8vUv9/6/lvgU4c5cCXL5fAe5TpwBH1C3Ae8FZ6n1QqwArlRTgj1UKcMcGBTiqfAEu3rMATy1bgM8cUIAv1i7AUvULoLl2Dti/AO/cqQAbb1eA7+xYgNMbFmBTdBwKHgP/msYF+FH1AnwePY3gOU/929H3STn8gNPI47oaBVhnnwKshf+p2l9EPhfWLMDZ2r+pUQG+h5+R8DXTbj3ybVQZlB6PjzHSE7W/GR9NtfsK+De5rFBvi/Rz8hvsXIAV5B+xVwGOa/hvuhvDt3537eFv7A4F+BA4hvz/xucy5StVUw+9JeR1S70CfF/6CnAd/f6wfQG+o1x1dP0J/z300Uj5dezofOlZlQqwk3LngZXwWZW9XV+hAPdQ78UmBXgz+7oFbMP+B5PHj9sW4HR0bpC+TTv37YZO8AV87ELPdeC9QPpjeBrCf8FWBdjS9z7SL4I14O2Cn5b0ELu/iP5WsMsu0t3o5wTy/gN8jfxO0v/OLSnA9mBPeKbrL9fT9+vkOBucpv12yr/M3sbRxyDtd0B/e7Ax+W0tf3v0jIb/WHReSf4v4+tw38/jLyayk1nSDysXf7Kt+reh8z/sc4t6peB/zPe56J9Krseyv2n02RX9e6h/OH0epP+eAc+Z8jdqbzN/VE75CvjtJ30fvX9CzqOlj8DvVfpT+m9v6dPpZyvl74f3V/QukO7GXhqqf6n07dI/q1+ZHl+vWIA34/9W/aE2va5H1x3sfz3+25F3DXJoL71Keh/11ijfVH4TfLdTri56GpDPaejdBR1t0Pkg/ofRS0NybaT8SO3/ovxW5HGeel20P4S8tpVfV/k/5D+ffg3OAs/FT+T1m/K7G09OZV9Ttkan8lO3KcBT0NHc+HIYWE7/PYh8J+FrJLqWs6cJ6k/U7hvon6H8g/hvWOnffB9Mzqcq/xn+v2YPreUPwc9e8M6Vjr+Of94F/wPBh9X/hv3vJl0J3dtrp6z637CHUvT+knoP4r+efn0ieb6Ov+HSg9G3Qvmd5I/S/pn4P5NdHMB/1cVvK/OXGehcv6v20DGNfFuT36nqNcJHI/59pO9PKLcr/CPp8wj66KD/LpU+Rfoa+BrvUYA/yS/R7vnyn5L+U/5K/PYnp7cyjzO+vEI+l/teSrlzyetr/nIluAL965XfFv03aa+59vpJn8MexvsePx///pb5x1p+/wf0rsHHIPlDwMHgfPI7izwyf2xCDhu1/ym/UDyuPQWOodcb1NtC37eiv6N6DaJvfCxWvwz72QZ8Ft23Zb7Gnn4nr3HS5dG/gvyWg/Fz52t/hn7zE/t8U35j9XdAz0Z6ORr+BehtRt4HgU3Br7Uzn30+qt4s9LVWP/OMvmDmI9XgrYO+O+lvKHh65pHmf+PBCeA38H/Cv5xBPi/iYz/yu1Z7r8nvj867ySfz08tKCjDz68xPS/PHZcBtwUP12z341brgXO33kT9Hf+gGnsAeFsmfid5N4OX4uVf/uVp7md/uAN6e9QU5LQLfQH8r9rc3e98L3IYdPEs+A/jFjAcP0+/tSSv/vvaPot8u6GoDztfeOnRdqX4v41VP8CD4zsDHO+x+f9+7o/MJ+AbDP0W7b/m+hn19x69s1u92os9jMo77foj6U+nvCPXHGx/GgWPBn/A1mD42o7c5+VbB79Psdz96nSW9UPvnGpdWs49V4DzlDwCPof+hsWf0Zn2xJ352kz6a/dZFTyfln9NOHfkj5JeybokcM3+pQd7vwpv+skA7HehtqH7bBXwNzLr3G/r+2Dqyjv7zJ/zT4P1NPyhDPj3p42hyuMj4WKdofTCZPk5kn7dk/YbujfjJ/GqK/GfJuww6VhfND+axr9n0Vkm5SfhZQm6vq/et9rfXv1aQ30rwYnQs0/65+Gjp+63o3T3+RXsf4O8G8t4sPZM8nwUvYYdN1P+RvfdQPuulpvIfkz6F/PtIn4z+B8n/QfV3pIc5+B1GLtXMK++S7qD8Bvo4jNye1X/W4fdS65/uYE9wX3JZq52/2MOb8G9gv53Y+wDfX1H+q8yP0NXa95Pp+1L5C8lzBrt+hPz+k/FBehH6T/e9O/lk3hz/mPn03fL3ND/4CX3N2MGV6OnIft/3fRV+VtHDLPKaDD7GH16B/vLSXfjH7aQby38cPZvA57T7Evy90LeE3jbHv2Ueot5++I//eBe/TfjXrdht5sN/xZ6Mx5eBl5DD2+pfVbSe/DTrNPkj8TUKfI09/Y7+TfCuVr8Weo9V/5n4Re3WRseB0g3l/97g3/RnPh/7jl23Jt/Y9/LSBXgkP96oTAGuxX8JuS2NXuH9jh29g95v8VFWf/uV/lqZfx4LHgMeqN3nwRnouRmsgf7ttH+09jtLf6HeU/rbruivAvZRvz1+u9rXi92M4T8qyz/Y98vY8UD98wP8Viff7vBP1T+y3ntD/mPoPA3/xxqfd2Nnr/NzzdlRG/TPlm4rnfnTnuxruXEj8//O8ldobxm4HvwTP2Xx8x67mMYP9aG/Tsrdq70t+s8L+J/H/5ZXvyL9tie/MujdCr+r8P+p/JvZa390d8l+Nfsa5PsY/P3pewP0fc2/9ETnXcqvlv8re62G3ugx+ruc/K4ml2vBhvQ1omj/sRk5ZL5alTyyj/q8fpR91Fn4naHeZ+S9hTw+NY/opfxt0jegsw75HgnfgpICbEd+8wug1P1gDzD7d1X5/T0y/pNH/Ovn7HUZuBR8T/77VQuwmvb21c6H7KQzedWUvln+Iehbhf5h2q0g/Tj+GpLHePw/gv6p+md3+E9Xvpv0+/S7RPou+cX73/do7xLwDf3/ppICfFP6OXqahe9NOZ+g3x2zHsRfmdgP/EfD20u6I/47sIuN/MhS9lGZPrdor4X2jiGf76XbsPv3lWsrnXH7oPh3/HfGR1P586T/A1/86S30ORd9Wd8clnVH9oeUf0z5KdrZjfwb09vfkT98Jyl3fgGUmgSO5w9yfpX98eyLrzI/Pon8LtbeGvycCM+R6PuV/exDvnuDJ2pvAPrnqV+On29Jn+nX3fmB9O+cL3RX/zvpjEM5v3jHuP2keVa/7D/Ln0ffM+O/yXE5/Bkf9jJ+3gXPz+oPwc8i9U80X38g81ztnyadddVb8JzBXu6Dp3L4NT7dyR+8Ypy/iD0MIYfoI/rpYnzuL/9ufJcmhzLg71nHw/ta5qf8RRv2PYD/fxLdA+l9Evril3ZnLzdo7yz5h0d+2t9OOy+QX2/0nud7Felb4e+Bv8xDboDnTfUPUu/G9Fd8Zf/uRvkL5Z8nvzf5V2ZXfbQfO/sV3RWN/x+Sw+/K1SDfPzMfhqeW+eFNmbfTXzn570ufjb+ztLuL/Ons7mz8Xan97Pu3BnuoP5a++pLTDeCi7L/it0VR/9w256f8a8avPfi3lepfj9472V8/5eaTX9ZTWV9lvdU761H7b6+yw2OUexIdu5tPvKLd0vKfRt/v/HXmFV3wcTX+69HX8eRXT35/7R2lvc7wnZP+Kv2H/nkQuLv+dbH6V8P7Knq+zTqMf5uCr2XqZxzKefZ+9HW7dPH5a1/4Hkf/9dJD4W1CHyfF7yuX/d+n+Mva/E4N5Wajvzp6N8b/S+e8rBv9L2RH3aWz7q+Kvxelr5PeIJ357Ar+sT08V+V8TntrjQMTrffGoiN+M/5yE34fyPkjfzVW/vuZb8o/zHi1yfc6+Mj6bTi8M9nFFHi7qX8pe3hPufPocX326fWnT9jZh+An2tkq+7f08Lf+8lL6KX+e9esW/vIydrI9/laR1wXmy7dl/coeaqH/Ff2rif6Vfe7MhztHL9o/Eh8j5B+D3lbqT0LfweodLp35T+almY9mvrqd9meTz6icTyu/W/ZZ+YdOsTvlqsp/KvZKX3XhX0U/C6W/Af9SPvPnOezuRbAXPL+g/xr2MB+9J/G3Z8L3Ef/SuQBKTQY/9v1H9ebqv8+go5z6v+fcBt4D9I++6I/8HkJvf3Ca/OH88yPoepqcu2V+pz/dCi5lf1kvNWe/3eTXIu+jc96T+Z9234xfwU/20zJfON349kb2u8j7Ce0Pw+8k6S7s9VB8f0/uOb+crb9vbRzorn9dDV9d42tt9DVLnBT8bfC3te+7KVdZfjt+76fsX0h/IH+m+VUXcAZYGv/38jej6bV2xsmc7+p/lcHLM0/U/kL2f4d2h4PZLx1JngPxOYU858PTTn96IPEUOZ8mv47SOytfir97nP4vIc8TlavBn5SVH38Y/3hI5uva36Tee75/Ti5VjE+fkOcO7OpJdGR9tSd82TfJPkr2Tw5kF4+zm+74ryl/ivYqqDdWO8+h73r4rwPfI9ff5A9SfpB2RoIL2fkV5PW77x18fxn+HsanbolbIa9Z0sfpb0vo8dqSAmyJjof44yfAhTm/I7/9cn4EbkdfLbT/MPyV6ech6Tvo4X32cb78nGduYn91jTddwDPQuQEdj5J3J/w+oJ2G6v/E/vfH923yT4D/Gn7pv+AT8hOPdB35T5DOuVk3+vxf8/529He3fjEc7ABPX/I7Ouso4+bDWafIz/wy88nML09nn5uMC4/yU+PBu8njO3r5HjyEHC9Ke/xCLXIqAYer/zD+LybPj9XLedNV/MOV4FPk8l/+ZbL2q7PTQeg/SfsdfH+F/M6RboS/qfR2dwGUmgPmfGo1//uh9Brtb4Pepuha7ftHmYfLH6L/zsv5i3ITi/arF6J3uHTiT25C70Z4htHzFek//GrixxJPdiX9/gx/Vf1mo/bXwT8y8yntdtVfT8j+p3J90Lcm8Zj4u0h7n9DX3uR8sPr70M9x6mc//VD5+5snHAAeGr+x/7/Lj9AvvsT31+gqjk9sBX9X9f/CV+I0qik3WT96kLz+zjrC9/nk90ZJAZ4S/qUzzxibc1713k6cgnSLzKvhXY7+cfT7G76rkON68uqM/p9iP/xYxu+P1N/JuLC/cocr10u5Gvr3j4mnRk/iQ/4Df4/sq0tXgL+F8SlxWIdLP6V+a+ll5HgZ/V0DHo+fE8Hl2nkw/pN/WZF5p/SExD/yx6/opy31h6nkWRn+xKv29n0t+T9MLg+CX5FHb/r9mPxmwLtRuW+004m/Opl8zpO+EX9LzFca4e9I+s06rpf+tUT58ehK/5iuXy8Fs79/B/zH8+fV8F89cdwZl4yb54PngZvU75j4NPS8RU73oCPr++OU/4B83ib/EfYXLsNfB/o4hD3dw680Vn9u+muR/cXufjcPif3d5ny3LrgYnfuibyi53MgvZd/tHPXba+8F+CtKP8V+FxqPfkHX5Kzr6H8O/Z+T/TN+oJlyif/8Ht5H8Z34kJ7sIfP9fvD0kH9o+g2+Okhfp3z2z79nfz+CF8K7Gt59yfNidpTzwZONu4enX6PvI/Z1esYl9S8wnj0E/2fOY8rBt7f50z7k+4D2ZsD3i/rtyK9S/C35d0fvDupfhe/En90vvzH8ie9dJL0TOn5Cf8bl9mDx+Jz40+wrX0P/beF/Cb2PKH8lfLskPkz9MtmXxse2+C2vf2d/chD/eIH2ry4pwLXKT8THadpfAF/84sX6w2b4EnebeNvE4x6n/v/yCxXlT9L+H+p/kH07+V/yj1+B4+U/gM6nybs5OtZnPY2+/Yr8Wvxczl8zP6yKvswPh6r/KH/0ND2MkR4E/3Ty6AF+CX9l9Zvzf88rv2fmZfh7Fv+r5P+YeE35u+D7afUyTrTB7wX8V+a93+NrR/rdnf+uDt5PXueT91r0Zn6U+VLmR9mfOUh+4kwTX3q4fa+26pXVnz+HP/tu/6zn1c/6exO9LFN/CTrHKD+Z3GNfie/eEf6d2XNlcDX4knLT6Ose9j1Wu4ep/5lx/w/y+4r+cz+rn/oD+LnB+K2ZdTC9bwX2oa8V8F+hXit6qid9C3kOIq+Z8A/OOhG9ZYwbPXKeCO6d+Fr29aXyo+HdmX9LePk74CLyrI/PxMllv/tc84fz0Rc/nv3A+PucP1bJ/Yn/MY/JfZNW9Pdx7qOoXyf+Jfwp35P8H80+XFEc2R3oy3lqzldz3rpL/ERJAY4DdzWfSD/sRy8TyC3x6zfBXxx/fFGR/8/5ytmJe9FO7n91LIBS88ApYOLkcq7dUvtzjF855z6Zf8r+/1nG+37oO8p85kiwvXlI18Rp575e/IP2P1Qf+6V6MJTF0p3ga2s8ag3W0W7unySeN/H9ifdPfH9n9taAXJrrP59qpzJ6rk1cMHo/Zr8bzZfvNI4lnuoL9d9Dx8/s5pS0S37LitbnF2l/R+33wlfuOZTR3jL0zwJ3Y69nGT96ql++pAAfQ9+O0lkfPqGfXZl5mvQ35JH4nZxb5Rxra/wkvmORfj6JnhPf8Wf2jaTXSA9Bdy96PZ4esj98jfzvyKNEve+lr9Desqz3cj5Bnreq3xRfzyr/TvRIXo3JJeet9XLeLf0evvr4/q70NPhyf3LXovjyxJs/Rh+Pg09nnVwUH36kfpT48MRTzEJv7jMm7rxG7ifCv13u4+V8hX6PJ5/HEy/K/qeSxxLrnd7GtU+l90DnT+T3jXbrGkf2S/xSSQE+Si6r0bkP/LPp81h2lbid1L+lAP6J36nIDppqZ0HiS8Buuc+lnZOkG8q/GZ25/7Ub/FWzL2kcmJ94af62S+JGpN+R/6V2v4TnNv12a/S1RW/m8cXz9zXaeynxicbLG9A5wbl1W/gmWk/dr/3ca835aPH91tyny/263Lera/ztnX4M/3fozHlvzmXewNda9K1kH7m/s0PObzMfId/L2XUl7WZ+uUR6ALk9kHuN0t8lXpa/fZCcL/N9ScZv840R9NeTPV6P7gbqr9FfH4c/88vcX8x9xbroqo2/S9ltN3AQf34l/bSCb3H2DdEzF33/zT62drOOjX/YRf4U/SFx0A3Rtxv6/yTnv+hlg/zE4+f+Y84Tcv/xXvQUx2Fmf6wme0hcceI+TkPH7ujL+uxBfi7rs+H8e/ncO8s5N37uLMFn1reZV6G/OD46582Jk/6CPa8EV4AfJQ6QP8o8P/P7zvRXmb+sAi7Rf+rLzz30Geh5Vzvb6Z/noecCfPwG76/KNyw6N8h5QvbHEn97d+6L5n4neZ6uP50BbqveF+Bq+ptAD/tnPo/+0ej5VntH0c/t6F9S5K/jv8uHf3Y1Rfu/6Ecr2Ecl+tmT/Y/KeYj8nI/kXGQsOnI+MrAASp3I/r6Xfg/dJ+h/3yY+lZx+IN/PtP9T4ljo52L5RyT+S35v5bui41f20pdf2SR9vPrZb8v+W/bjKpJPffgeznkn/T4uvT/7GJd5HvzZhx6u/XX84qdZfzf4d7n0xwpF8VHtySXjdvH8ZSy/PTT3kuirLHm8xK5Ks4vp5qtNcx6Hnl/533nSNaNX+HKPrpF6iU8eqt3B4FR0PpD9itwn8v0AcLj6G8l7HTl8AGZ8m6P8gUXnyzlvvjD7IWBHeCfIz3r8qJIC7EEeWa/flPPpxHOr/5R09hM36Cd1tNsRfdnvbwC2AO9A92j9/37wT/0v/WYBeY6mr4GxQ/33f81LJinXHn3X5j68eUqNovjWStlXy/wH/4/j6xTt5B2Zr7JuyPwIfa9Iv6X9zIt2gCdxM3Plb8+uvsPHYfxZ5vk5t/gaHYkjzflF8fwu87pG2d8xP6qO3tt9/1z/6S9dTf5C9/mXym/MPkbov6+lv+ccAd7i+/XZ7xxM3w/hJ/dr31Y+5+oZ14vP15/n/+byj+vtX2R/b2d+N/HvjeHvm/g8dOwp/2Lzhab4G4/+ijn3Qc8z9H+w8ruDS9E3gv624V9+yLkfPZ9SFB+/FPwMTJz8Xonfoc/Ed52kfintJi7jltyfRn/ON7MPk/PN7MfkXsiu8ovvh3R1ftJAv9sCz/3k1hN/9ye+i384N/M//H5Ff5XhqUB/7ew/DTa+DJF+Hcx+YQd+N+fGz+JvX/KqrVwL66+/c49Ov897DzXQnftpOV8th87+ReetVdTrDt9A3x8jn7Lk8xY7W67+c+h8Gv492NEO5PI9OEC/HaEfjwTXy++CrnX4STzHiqyf8Zt7A42K7hNUks58vpN2Xsx7IPRdXv/NPC3zs0XouZB+GqA3+xYt1DsiMPObnG+YN7YDa/Jfzyv3Wc7B8Xso+Yb/T/SrZ5S/HP6M38PQuwNYj518qp3i+Onu+u857PEafvUT5a+V/oh9fsOfnJ44JXwkfr8n//w6Pq5F3/55P4FdbAvmfGW+/LxHk/dpNqMj79PsnPV30Tx5tPrPFNlX7C329ZL9wM38di10f5T3ufTXi+FbX7T/k7jclxPXC89k+O/T/zaw+5ba/1j+Wv75A3LPPaEzwC8LoNRIMPfGz2B/4xJHn/0986RVOY9g37Nzbq7dvXL/oMg+Xy0pwMXaH5x1RuILtLdB+9ugO/G3ice9Rfvti+I+8v7UQPLLft+l6rWXvh+dFbSb89fLss+deAz09EDfpWDib7sV3b/qKh35Xq8/9AUH594M+k/lv2MXfRMPon+00/8e4l8Ww5v3rfY3/rdlJ73iV9B/BHuqDSb+NPGoue9XXbr4/ubB+ttX/NCoxAnQ30p4V6J3N+NUK/kHkseykgK8EP7f0TeOXPbMvER/WKf+3ewt95Hvks7+c+SV/hR5/iH9NrzzwLfAxEGOgv9t+Ptrfwt+TpJ/uHHmsLwnofzD/EMVfirvS+Vculf2q8F/zp1zPy5xXTmvzTiE//v06+J5/RvKX8Vec49ojfRaePbNuyTqV6KfnMcOTnwJvkux98SffMdvPQsexJ/9rf3s1xS/X5X3Furz51Xp4zl0Po6/2VnPJZ5Z/b20twJdeXfhHf21tPpPqp/7DJOkH4Wvu/7eFUyc0jbsvYLyOcfOufVf9N/VfksdcIb5ei3yr0AefYw7c6Qvlf954oPQV0n7LbWf+9qJz0i8RuIzjqev08ijlvJD8d+xpAA7BdJLDeUP0F9/MS5txH8Z9Teh+0b8H8Wep8FfG/4b+e/rwLzn0pJ/KL63mfPJxJclnizrzaH0k/jd5+gndpp1RuKOcr+wPPpzv/AU9O2tXPbpGvCvzdhfW/Vf0L/+C395/SPvV96s/eui/6L47sR7J767CX7bwHd83k+Rznoh64f+iS/N+038Ru7PbQX/6/C/VAp//Fru6+b+xcbM77Ney3sA2s/7g1l/ZD2S9cc6/uVbcC34DftYYv7WP/Pn7BuRZ/bfc576HvqGqN8SfQ1LCrARWBF/PbX/KjoPNB97Ivc/+dtp7C7zstdyn5r9rQHH4HNhzgf4jyHan8k/LqC/e4xPuQ+bc6BS2r8V/tK5R51zY/zX19+3KP+H+ldkPMy9HenNyiX+sjS9ziGnrFPjf06hj9xP2yvzBXQ8EruEJ3Hqg/E3BP0Zh+bKz/gT/9BLv4yfiH84KvPPxJskvjXvM+ZeMvi29tvlvnbxehWfFbI+z/mfcv1yfwCcHnrJI++YJj75hcwb6f1d9Xorn3ulubece6W/4WMMudxuftQZfCRxyCUFeBA8zaQvUD9xncvh74G/AegbpL0vwgd6Yl/ljD9DrU+uYecPJV6Yv5mo/iz66oafrJv68HNv5V0w+Dfpt4tzrlju3/RkX3gYunN/fTb+jsv7P+jNva0liQ/Q79r6nrjbz+QP498S99OInYxRPuvZa5S7gD/Iexq75l619JnSuX+auJ1hic8gt5wvHai/V45/BI+jr9Lkuav28p5Tzheb6Q+/kNcp6Mz8bDb5vEqva5XL+wYXJJ4662ryKg3fufTSEbzCeDkLPz/zh4kTG02OiQ9bbD6SuLWB5ikTyDfvG+Q9g+xTfC79pvl23yL5Tk38JHqjv2Pxkfito3K/Xbt5Z+8S5f+rfln1tmQ/Ned96t0dv0r/GVdbmhdcDl4G1s+8QH9Zpr07Ms9ivx3hy724DtKfKp/9rexrZZ9rJv1lPvag8pFjC3y2UK8c+s9WfiT+X9deV/3768yflH9e+Rukt8r9HXjyLkJT6ZwP5P5bH/Y3saQA7+fvuyj/jPnOkfS6IfddtVON3d6on1SXPkz+Nsafdug/hHzL536U9cN442M9ePLe7XT9O+/PjraefUs653XXJw616PzuZvO7/uQ4AHxX+chjMjlWoedncj+cPR3Nbo4By6Ovpv4evxk/+o//lL4v8efSz+W9usxvct828sn7ZOj7SL9OXFHeB9qafioqV3z+fzZ62/IjX2W+RT4v+p53mUqK4kPK0+uhvu+Y90Dl597Ednl3g34uwv8+9L598hM/KP9A9Hwjv75+0ZV9Llc/7+LlfYWr1F9MnqXRc5P+uX3259hfK3awK3w7KT+ffheAeRcy8T8/+t7SPG0weBN5vUt+C8EF4O7wvMm/TSDv3Ot+qSg+/kz5zdnD8sRBZP2hvUekV5PXHtJ5Xzvvn+U9tAbkkfj7M7Ivrv0XCuCfOMd7wc/4gTI5b0u/IMd98dE86xnpCVk/SMefxr+O0U7PxMdmn9/34vFmrn2Diomv015Z9auZHx2S/WB85n2kX/i3EfzMyeqvVK61/pO43cwHEr9bHF+euPLcP+zNPyUe8rrUp9+G5gf7gluMr3kv5VP+PPFB5XNfNfF64LHk+QP5fIS+07RbVb97Kv6SHa+1fjkp72joT5k/d+e/Es+YOMeeud+Y86vEs2j3bPm7ovcY7VaRvlu5xBfVMW7kffS8I3wY+6yLj/pg9uf642u37P8nTir7o76fkPMa8hmuP90gPUS573J+gv4b2PPgvFsH5t2PvB/cOO8gsJO8H5z7gXmXL/cEcz8w7yrm3OrzxB9L57zn7tybZfe5HzXR/CxxdRcnvpT+X2Gf03x/Vfo09rIN+7oDn4mTOU37uXef+/ar4M//B5zNPibxMzXh+UC5Xuz5dfJ4Fb15X6ZG5rv8Zta7WeemP+c+4yvy079vJ7/EqR4IJk71BPRNRN+x0lmnnQ/PNomXxO8V+PuCXOKnJu777/yn+Y9d6TP3fHO/N/P76ewy+7CZ308in37gXPLJeVD2TbOfWrx/OkD/yTtguX/6fPZjiv4vo/j8Ivclc3+ygXqZv84vmp+2oa/cD819hdyvyn2rz7R/Cfl1BbuB/ch9jv6ceIUN8B2b+ArynI6+KtJ7ye+D/3Xkmv/xyPu87yUuXf4G+p8jXYk//Ah/S+Hvnnhy9c/KPRbzhZrqf5z5BDru095euYdXNJ8Yiv+8s9XE98RL/YC+o3N/puj+4y78Xd5xyP8eZD6c+XH+/yHvjzwpP++Q5P2RxMWm3+c9obzPOZi8TwWHgO8kDob+FpPD+vhn9NbWXovs/yauSfsvZ1wip+HSOX/Ke1N9cq8n8VCJb7cu+EA/yfs//bJfknkhfPnfkWrZ34E375O8SB4fSx+rX7aFZ53+2TnnTOSbcWMluBM+Z+In900Tr5v9pvx/VP43Kv8DMBp/iT/K/1Yl/ij/XzXceJr3T8/Sv/N/Ly3l5z2LvHcxIPE78bO5F62d3J/oS55f46u4f8wvKcC9ct/Z+u7X+BH28qlxs3fik+GJv52p/GD+NP51KflspXzx+0ZzjLfZh/o1cey5/43f4dovC/+pWX8Yv2uCeQdvHPvLOFJT/dyDmK3+kwVQqhP4NngJe+xgXvAh+fTHz5PoH8m+T8PHbH7kFHTkPee879yEHRyMnk7684nay7sOQ9E/h78prX6v+B/2sxO77l5SgBWkd845tPYvgG80/gblfUX9PvrJOdq43E/Tbt5Pzv2tvJ+ceWnm2ZmXZn7dgNzqqZ//K8r/FI3Wb6qrl3OD/8L/Bblm/t2C/D9XLu9TZz6Zc+CH5d/K3m4Bbwan43+C/nZ7/Lh0a/T9oHzuDW+r3fw/0LvklzjPP9hD4j03R76+537nCvnZp72WvPbI+jzv5yWuHzxEfnX9o772O4rHOhme49B3uX5xJP0M9b2r+gdbX23WfhV8NEz8rXRJ9jOkX5A+hz12CMz8Ej+Jy+xL/xtyD0S5yXn/CF/d+I8t8Jc2XucdwuwjTia/43zPu86DSwow7z0vos8l2n8QPbeiZzq7uZFd5n9s8j5H1vNZ3+e8Luv74v9PKz6PGKw/3qkfDgN/TnxB0X2szvRUSftZN9VLXGPR/bpHivYPsp9wI7qvk34h963Vz/lq8f9J5H8m7mQfh5hfNgcPBWM/rfm7ifioxd8tg+8O7fWi98eUWy6/+D2EvJOQ/b1RJQUY/5/xIP6/Fb01w1d95ZvR70T9YgG/sZP+0Ab+xMWOyjvh6N2HfHPeehw7yrvfh8Of86qbMr6xr4bZX8i76rEzdOb/Oq5k773Bkew55+T75/8XweL/Xyw+f8m9kZzDLJbOuUvxeUzeN9w961x4877hpfi+iLxmom9v7RXvf+cdmsQrPCN/bO7FoL83PE3I/Q0w5005X7ok8dPo3D7rDeUWJN5c+kbzlMTfj8NX3kOvhP6r0Z+48AXq5/3QvCea/8XJ/dncp8392SX2r/ayrs07in/pv7PMN/PuYlnz0c3yE/+eePfEvyf+fHVJAdYG40fvSDww/7gzmHdvmyq3g+9t9b8Z/NEYfOU+Ru5pzIYn7w3dR3/5f5qM54+x/8vY0870MlB7teWvNz73ME/onjhs5fLeb97//dD33Ef9T979S9wKOeb/gZ5JvDi7uh+dT+e+qPbL0eed/McX8t8llz7qjTEePorP4vd/8+7v2+AV7HJh9tek6+V8h9/J/37l/mDu51wPf/28o6ydvDs1TL9oj+63wOPII3rM/6LlfeU98Zf3RnIfJ+eAue92Lf+YfcDq0rlPnXO5O7NOopf8v0u3kgKsUDQPnQzPFPZ+If1sjY667CPvprRJvF/eByCvv8zD8+7PC/r7PspfSH7x10vhfzn/n8rfN8HHjNwzVD73q0rn/J69TU78gfnnpca1csar/H/tavrYX/t/sZc95G/P3vOOevH76Tkfy7p/kXT2A15XL+/I515QX/V3wM+r6H9Uepz84vOz3IMbRb4f8odXwH8weQ5IPIX2co6Re+yjyD/7YlPB7Jdln2xs/m9Xe8u0k/9HnAtvzo9Xxj6zfsi4jb99pLtK5/3pUrl/RG45/19FHyuVfyDzhazD6e1b/utl5e5Uf0Lez827dfrTDeh7oii+MPGGR8vvxW4SP5tzvAvJ70ft597ZT/g4jv1urd73YN65WoO+1vRzBr/SKuMg/B3yfhG8P8Kb/d9V+X8x8EuwDX4eg7dD7tOWFGD2b59mP6P5qeJ4o4H0NRishd6b6alh1X/j+b3+v/GdQ+634Ptr6btyHwg9XcBO6Mj7fDk/3Dnx+9ZzOU+8MHJX/szcXyGfI/mbSr7n/5Fyf2gY//A+P9OeXvL/XIclPhhskfNpeDOfyvyqm/lWxqffCqAUsf3zPsy16g8kj9znGECuiZ8vvm++U+Yx4LY5x4idJZ5dft47qwBWArvDXy331XL/X/2LEudpPDmQnO6xXnjV97q+d1E++1mJj3xW/x1NXxtyLpL3geh7ve8j8Znz41bsK+9yTAZ7obul/lmJXx6q/gjt38Zecv5ZQf4x8YN5rybn/+zlmsTHoLtizhO3/zd/4+HP/fR50ifEjxXFayd+O+9n5Lw35785D24t/0Xz08S//0w/Z9FvM+PrQeBCMP9/2hp/x7DTZuwt8fP/y2+Mgr96/q+H3jeD+2Z+S74VyaUifibI/z950gpgeJx13Xf4z9X/P/B3Q8iulAa9m0i29NGOJu1FkyIZJdLS/lRGSWVmJLOoNLRFhaZChKIt0ZCKtBR9r+v3ut0/1/V5Xb/P65/HdZ7nnMc6j/M463HOa5c9S/7f75D9C/CYWgU4+IACHLR7AVauW4DVlfvpwAJ8orJytQuwUpUCvE35y5Uf1KAAt1GvSaMCfLxGAT5TWoCPSv+F/tnlCnAMvJ0bF+CUJgVYA90q9Qtw074FuLBhAa7brwB7q1cZH39KN9i5AO/AZyPpgfB1x8fl4Dj4y8v/cacCPAd8s1IBbo+vi+j3bnp9ZR/81yvAiuj9DF8vfHTA3yz0Wvnel/4m0N/KsgX4JfgVuFL+JfgaSQ8vqH8C/VSrU4CfgLuWL8AR6L+iHffC7wv4qAv/RPSugb8UnlfpeatqBbhAflvfnwLn0dM7FQtwO/T6at/7CqDkeHo8ATxd/bY1C/BssD/53qLPCmUK8CpwxrYFOIY8J+1VgCeDbcBl6r/F7majtz85OpH/0O0L8Bvfm0v/pH4D8oyi7w3KXaf+ffpPJ9/vl/5T/T32LsAh0tfR1730s3CPAnxS/QfpoSc9LK9egCvA5bsV4DR83ajeXO06B52R+LtNf2yC/xnot5d/uPo7yF+hn4ySv5d0I/p7X/2Z0keRr5vvw6Qra5/ZBVByB3iUejXg36g/9SbPy/gZTT8ns8dnYlf6U3t8naa9K5F/wi4FWI39v1pagNH7I/BF/9eodyL8vdhL7L85fNtqp4bkmwZ/Xd93Iu8aeqwC/+3oTpe/SX439c9ib5v1w3n60e3k2wP+OuT4lR0cwz629n05OSpI9ydPJf13W/Rn0t9V7ORu/aoFOFP/uhPf525TgI+Bn2xdgH3ldw8+/I5FN/I/wT8+CU4DP6WHbZV/Bp74qe3Zx64l+OAH/5SeQt6u6sWvjaeXM8l3OQQ/aPd57Gud/Ce3K8BH0KuE/kLt85D+3BKfg8ldW/3L1K8q/0/4W8q/S3veA1aSPyX2W+S/TwcXxb8aP2vB30e6CTk3pb2kp0hvTb9ryP9QaQE+CB5J3jO1xyJ8nSFdA76avu9DnhHwPYO/IVULsCm+moGN8ftjAZS8D09X3zvQc03+6XfttxDeM9nPn8azEnp/E9xJ+/xDXwvpM/b4lPyF6PVA7358lJHfzLg+W34D/bsL+avxT2XTPsrfKn+B8ex59R+GfyT9P4H9v0DduaS5/BfprzP7niFdiz7GVijALfCOMT9ppz0+g6+M8hOlm8H/MIIT+Y2dlHtB/cPJVY6eWpD3N/ZR33jUQzv1Ao9Wfrz2+AaeJ+HfDf3bSgvwbfRPY1+XqbcAvnnsqjk/1Aa+KvKnxX7gi53M0F5blK8kf6X22Uu9XtIfodsm47H+vV/GF/lT4P+3/ON3KMCa2vk59U/csQA/RWfPtDv9jdEfP2CX5fAR/1It8zXlx8JXXX4H431D/DVDpwo6GY+fwc8E+TXx30B7nK5/zFTvAvQ2oP8zuB6cnvEU/qPVX0HPmcefa9x6if3+C//TlJuOnxJyrzeetsLfIHTuwtc1xt8a8B+B7mXwbko7yn/d+Bn/sYj/qU8fH9H7THjOJU8D9Duyx6PTf6yXWsT/6Y/LyVlX+nHlv2N/F7CLj9nx6+q3Im8t/WiI71+DxfP7i9hb5vlvlBbgbPOcp/mbfWLf+Nhaurf+Pod8bYzbd5BzlPQe9HEOf3Y2uAu9fUC/rfE1KvJkfJf/gPQC8g+l7w3oP0g/nZSbDS7V3nONnw20Wx3tMw6+O+mzMz7ukH4D/se11/GlBXiq+hvhr6y9XtyqALuxy+ez/jEun4heR3q5yvgzFt0H6LlUuRngz76vg3ca+ivgb8du3ybfC+jdpNwm9vs9/WZ9cQv5FtHPAv2iPXqb8Xkzfa+j13vg3SH9U7oW/H2UHyZ9BHoX+n4IPBn/LvL9ReV6kPNIdtKIXV4rfYNy8zI/4vd7wLeW/f5JPz3J05Q+L4D/YPofRH8nKzeDvnaln73I9zd9DJU+H/6GxrMu+HpSfjX0/mAfj/jeB2yO/gD95i5we/ytot/tgo/ebqev8/Fztfwt4EJyXKR+9j3eJk/2P1ZLV2UvVcDK4G/s+4yi+dt1+Mj87SP03la+Pv6vId8/6H2B3zH43A/9PvBOhvd59thJ/tnG5x3Q+VD7DiPX11lfwV9Duo/2qQvvO/j4Ed719HO1/Prq36pc+uuL/N1GfGYedgU8Z/F3C8E51i+blIv9X0Uv6Qex/7H886f4vo09Tsy8XXt8KH8rfJ6g/iHwbybHQPh/UO5x87kd4VtP/wdprx7KXy3/ft+H0c8z7Pci67yl0mfJf8y4Ndo8sjV+P0H/AHjvo4/G+K2N/6H86z3ybyfnO9KX8Wtngh+h3xz+9I922nuR/F3x9zZ638LXSv8+W/lP8F+adYj2WKd939KePbXvzmDWY2ONu6/yQ9lfmUC+ruy5HT4H4OMM/aM+/zGUPGul+6ec8f0y9OYVQEkT8v2gXUbgtwM6b2jHt+D5IPtF8Byj/tPk/he9l1HudvWbm69l3283MOvJDdr9TfOKUvKupt9vjfub8fGs9Az4n8XPJfi/Dj/t8TdVe00BHwF3Q//70gLcl76zn5v922n0t4ZcZY0nLeQfLv9gentU+nf5J5Br++x/6J8PwfcAfM+r/xTYi/zp/7fpZ/2180HavxN6e2R+L/96+mhqftOQ32sm3YA+1+NnH3Z8H75nw78rfS3B11v0fp78TfB9QL4f2HFX/N/ve3XyHih9ofo3sPdu4IWl5MHfRu3UUfs8Ts6V+OjM3u+FtxM69dDfWX+81Pf7lDtQfm1+oQO/k/F2Kfqz2Odz9FQ/+9T0O4deetJ7K/w8Cf+95oNt6ek+6THyT9Kur8Ozjj2cAv9idPvpN/3B68gxzvj6EHi6+j/T24/WhYu171JwK+18emkBHoqPlvR7DX0X72usU/4u+RcbXzep96X1YEf8V8RvBbASmPX5JfDWo79l8GR/u438E8hbW7t3AYdYv/6oXNqjovwJ5P1GugI8z5J/OblfLbK3TuQ7nT3fhK9B7DT7K3PU/wf/69WfFf3JP9L3asarV5RfSX9t8b0e/uj3IPxmvyrzoVvUb8u/nMCP/5v/HILeGWDz+K/sy7O/7Ev0yvqfHrI/MVz/WZ51lfKr6fNS/LZQbzD7G4BeX/o/S/54/e0o+XPoo0R+NX7q/Ph34+co8q7LPFv9P/Tbf2ufrGPKFM3f/8T3JeRcQp426K8mx9XgMPiu1n+qFJ0rXJ7+zT4WyC8DrlXuIP3hdP2/ufTjOVfkb6qCj+I3+2+34a8vOguzTuA/z5Sen/0X7bUG/br80aPWlzXAmvBfWVqA3cHvM48p2l+9QDsepx1aq5/xKeuyA4v2J08yXk8lV/aJx9PfQna7dea78GcfZZX6ldQ7in3U1n8zH12gfauj/2jm5/BtYS9DlJ9Mf5fh63j0sw+fcXCK/b4zlbsFnpy3HYb/X+hhGHoPkO+K7E+Cr2ffX/ss4Q+Xgg+jc6n84vlq5rGz8bctfqdm30b91+Tvg+780gLcW/pI+PoWQMkMMPO/zBdfhm+UcbANuR4F57K3Y6wTrgKnpj3Y73p+7ljjX9Z5D6LzKfgJOAn/w6W34PdU+vhY/p70Vgo+Cu+x2vMi37O/8Dh8G9UfhN/PtMs90geyj6z3c26Tc5yc31TVL3aQvlj+L+wj53k5X20tP+d7bdhPF368cc6ptH9L9v+nfvxL5s34P0m9d7TbRPO17ZT7M3EV2usv+p+v/mT9pS/7/dl69VXlB2u/Vfjux37K4jP+tRs6XYv8a2vlMq68ov2yPnobvuwDfC/9Jf7PNp5dys7aSj+oPdJ/02+vIF/iHfqYH4/iN15J/8LPxfj9Gb8P0+OFsZfSAozfGBh/I38c/efc5hTpnOd0pd8axsV/zNM+YB89lV+j/mzzvXlZP9NHVe3/tXLvyP+YfX+adRWY/YsXzI/24cf6ge0jr3El64M58N9Ef7/pt2uzrsHP1vRdl1z9yLso8Qg5/6XvneDblb3vnv039buCnyWuBf8XGi/PA88F68tvwN6zvzQeX4MTB8Jucl58GD6fyP4SvR7qe85XphWd72X+m3nZq/Sf/dmsK7M/m/2fi7T3cHwPBVfA11j9P80zGmX/Ff4XyZP54hx+uJP8k6Ub0udkemiQ+vT9OL7vzj6c/Bro3qSd1qJzlPKnKP+d75kXnSp/uv2MzM8eynk3/T+a/Sp2cVDmCfSznX3jcmBZ8GP1xtHXYwVQ0pSdVkKvPP94Dr7ezL4p+jvQ3xSwPbw1ivb/s++/oGj//wV4zyZvW3h+zv4JfnZTb13W2fJrKz9W/eszb4c/+sq68uXsYypfR7+4tbQAv9UPE9+1TvtNxedw/nV3/eNX/X1ffNwefbDv4413a7X/CdJ34nM38mQf+zp8Z//6W/a6Qf59+stp5KiqPXfA74PkPYW97obuPug1Rv8A8v/Afz2ObmvytKTfiuyvGzhNuVbyBxvP7gN3z7pV+2/L3/5Legv+SuD5HD+ZV+xUNL/YrPx0fqSz73Pp9wD6mKrcJHQqpf/yTx+Ch4Hd6fMn87314I+B+Lgs+8PKH4N+XfpN/8359wp83E8Pt7D/W8HOyp2C/wb8y9sZ/6SfQqcn/bSS/6r0K/H36N+ZuBnjXeK56mv/eelviTuhn8TXvMy/Js4m8TXX6R+JLzuDv1jM/rYyvuWcbIr2XoC/dfj5AZyRuL/sL2i/ifJfkb6b/T+WOB31uqPzrvSnpQX4GbgEPI+cT+E757NPqJ/4qR2NH69ol0n0vIF8h8BXS/0S9bvgr1T9x3z/A54x+D6evnKu1zRxB4l/S7xl4grYT/ZHHtH/+6h3Kzz7JX7Q/LHUPGIuvm9Wvgx9bgfel/0++Y/gvxS9mepnfyLnS23B3/TznDO1MP69ln4uPVf91ebvWVc1z/yO/U3gv5qQ63J4zsu5GLtcLf1l4mDYT/x5/Htv+nsL/cP463/lXI/dNKP/60oL8GR++HrpXTKfoa/h7GmKcvfi53P0El83IusfdA7U/h+GT+mZ5F+nA/4I/hRIvo70PSTxofIfR687vS7H79foNCdfa/15Mb/RMft9+BvNr2afcCN6reVvrf0+0Y8qwrMT+0tcR+I5dk1cBP770c8T+H0r/Ur9xOesMu4kTifxOXXwv3vGJe05HP6K7G1O4g+Ub5z+Y3zbg3wd4ClHPxn/FtFDxsGMf3fCV/F/jH+/0c/n5Kijvw5Cv772STzDR5nvka+n+cY/5v2bwUPoszb7fxeslXEGnEGe3YKXnF9lPzLx674/zV//jZ867DF2mviB2Otj8M/3/Q7pevKHkrdczmHAgfBPxucvyp+Hzxvwl3j8vvX+m//E5ye+p7N2T3xP2axP6L8h2Bisjd7f5E38UuKZbqPf1fBdmPsC1r+Jn9zAH20hZ+bBN6s/W/kX4Z2VOHzt359e++dehnnADvj/OvMd5b/JPrf0l/rb1+AX4NzMl/D/Gv++P36ybzBKeyQ+upb0T/RzUvpJ+CXf3vrntdkPAUfLX5v4kNICvDDrMvmJ39yH3PuCX2mPdlkvFc13Mv+Jvz+NvnKvIPcNVkqXk38RfMdlviNdnV660Vvur1THX879c+6X8//jtX/2uxOvk3ie7H/fx96yD5o47PflT835L3670/9X0ifzt1lX1cs8gn2NYf/j4a2W+VTkLy3A5/mvs5Wbip+q5Llc/s2+vwl/9imjl+L7Potzr0C5K7IeJt88/mp//LSi12PAoYnfpafZ9DiJ3o+DrwtYuWi/ryx7GWTci5+bmfPdovizu6VXk2cf+mobu5Z+Vvnd6bdrzoX1n5y/jmQ3/0avIzyV6OdD9nGW78ukn8k9Hfo5Lvc6lKtcdP8o941y/+h140sJe3tD+UX8UF/0X2Nfr4KJR39a+4xD7+HMT6xnj4PvZv7pAeVWSP/A/iuRpzLYWr1a+Lsy+wi+v0r/8+nvltwXSzwbeeI/u5m3FsfB5/7SOfhJXMQO/EizA/7/+b/gJ/ETB7GfWfInsOd71F9I788r357cv0nvT+6OOf/O+RH50v5f0OuyInsor3+vlL5Eenr2P7XnY+Cj4Am5/+Q8qYf5997kGZp7XOb/21qn9aaPyfCPN7/JPaacs+R85Q36byF/rnTmaYlXShzTsfRWXfslPvwx7dajKD58fQGUXIXuMvIdzT5v0P/6wLsRv0Ppf7T2WQN/xt9zc56kfsaDz9GZlHhqfqWafpY4+sTPN8l5J/oLtE/uX+VeVrsD/vv7zvT3FP28j357fB6Nv5P1x8/JcSg7+RSenD/2164DjWeHZB7A7yU+bIN04gYzDzs98zX8lGqf0+jn0ozL0uXx/2Du9aH3HH0Mxd8Q+J7MeWPiptRPfMJd6CdOIfEJz+L7V3gewfdKsF9pAWZ/pa909le+9X0f+H+jvwnso5vyuR+Q+wI7kOdV6W/1n6b4T3zMqgIo2QBajpYcmHMv7bOX8XOR9jkPX8/lPITd/ASOxm/LrJ/MX5/L/RX8LeLvu2qX96XHqP9k0X2ex82/XyT/DaUFeCM4lrxbZX889qkdEsd7GfqJi6mr/qTsS2d9qH8vVi/r/y7wX5k4O3AP9N7U/wawp+cT78j/X0meSfrlTPy9kHMT7ZP1QNYHZ8hP/PAn+ve+4AqwXu450Md54Plg1k9/Zb8u8SnG0WvJv0B7/6D93y/axzsR/+X4tbW+x3+1g39T/FL2p8mX8/yc7+e8P/cLcz8393JzT7e9/jGIv18Nfg2WI/9k40LmcZOkM5/7X3Gx26B/jPx+4BLlqib+Qftk3zv74Ltpn6N1qDOlcx+kN/knkn+RdXDOBy7A313G08n642Tfz0D/Evppb5wcDT4D7qfff0vuavSQeLIS/Sn9rLh/PZTzfnItJ0/vxCHo/7kX14Y8uS+XffGq6hfvjz+S/Wsw8Xs30VfiY59X/wLzn0Nz/zb3lcBm+DhMfuKOEofUGP7Mn25m1zeBG+lpYubR9g9WsqtV4C34mpi4aPw2if1o3+OUqxV/zI4ynqyi9+/AqWBT/P5DnuO047HgqqyzpauznxvwOx/dFvzXWeT6Av+DEueo/tPk+FJ6h6yH+au+4Aj9PfekW/HrR4PV+fHcx7xB+19Ev5/nfIuepqG7RPo6dtuS/vopP5s9PYP/99jnvvjIvdku6B+W9TB5Lsg9LPWnaq8F+k/OtYYVnW9NZc+1SgvwD/4z9wfjR7O/Ms18J/fDrsbPYPb0Cj6q4m8We94K3i3SY5R7X79oya9fys5XZ35Pf7m/kDi+uuy/PPu/1DjerGi/qRd548d7SsePL5G+27xjIPgXPubKH5n7ovh+jP9tBG9r9Dqpd0j2D+HLPOcX6cx3DmPXk/DfSzrzh8SLxd8knizxY7/h73V8TESnS+JXlT8Cvbbs/Fn1B2qPxP+t1o8+Qa+i9fQK9Yerv1z9xKM3Qm9ixn/23VN7lCFH7vl/ljhA/WeU/tOJ/d6Jn53Nl3ZP/BQ5E29Tn7+uQv8P5B4F+u2MLznHq60/5PyuPnx7Jv7EOF8ff53hvxKM39ms/qP0PZ2+5ptf9FB/JP9Unt8aIZ13Giom7oY+F5D3UPx/jL+b0Xsg5xbsaxy7GacfDwXL0PM52R8Bf9E+me8N1r9yXp1z7NXSx+TeZ+iyt5yvVEjcR84J8v4M/hplvynvpMA7ib7K8R/P4a8hvqrTRy/2kXvXuY/dFP3/9S5Hd/pLv79EuQ34z/ztOPo6UL9rkHmKdsl7Fy/qF1cmjgX8LvEn8G6UnkfuP9jDKvl74q8b+b7XfkfCN5I/Pwp/9dhD9lkOh7dJ0fi/e9bt2v3KrHfx/R3Y0Tp0DPm+yv4FeL78xCNk/6w3v5/9s+ynrSktwJrG8d/Q2Sb3xHP+y+5ynyX+4Q34JpNzr8Rz5r6v+UIfdjZJul7W7/T6FPhy7vvB/xT+3qTnfennX2DOTxInlHOUnJ/snn1P9Hbhhz7Sfler/0zuRdLjzdrvBfjeTVxK7jvg72d2O5LdNOGflpA/9zVyjpz999zneCf7uvpD4qxvRP+1vIekXu6FJb6+M/4TPz5c/WvY6aP88of09y2594b/YHzPTpyt9F34bcLftYb3V/OAxL+9xL5y/zP3QfdGfyZ9vgzOArP/3RjebeB7Wrpy7o+zy/LkmCOd+0cHSm9P/tPw0V//ulW6BL3sl/2W8Rm96OUl36OffonXzPlu9sGz/6+/fYj+NRkns8+Ov5Zg8fskOS+4E507wJwntEOvClgVnMEeN+OrZ96LYA9n4a9/0b3YxFfnfuwC+niF/M+pn/dhnoL/jtz/g+cN9W8tgP/Eo7yXfoj+7/zDu/Qynb3Mwu/16J2W/Rp2fQ76p/ArU/Dxmfwb8XsXe/o852SJ35Sf/bCsZyZrh+yPzeaPLsq5o/VlQ/x+YX6Vc67i8620w+n08zp93iu9OPcZlZvOXvJ+0Jf08wWY+z+/009L85ZW4OXyT+IvTsFfK3psRK7F9He98aslvvtIZxws9l/xW6PTfvrdFvL/hX7uOZ7Mvk4CF5P7q6yjrSdLyV0O3rL4a8SfNASfV+5YcixPXDi+5konrnpkaQG2kB6SfV34i+9X724+uTf99Wdfj5nXv6T+GPXXp7/kPATM+WviMn72Pe+UzWr03/R70Ffi/sNPGenc8809+Nz3zX5c9unGspPs191P79m3rE6PK+GLf3gNnJpxIfFKuXfFbj9Ctw3+cv8j9z6W6S85nzgw8zHjfl10T4JnL/1tT3AX/aApmPOlLmDXovOm9/C1ij4TT7SE/7leehp7y35/3g8ZYb3+OngBOEC93Av/Hr3EoWR9OFN/GS6/u/F9jnTOZ3Mem/PZvL9YvP64FLwG/8v48+3Z4YfSFcjzN3s9Bt4h6C9KvDl9LQTfB3eT/0bOh6TzvkLOn/KeVt7Xyjs4ef+mOru5B1xELwfIv0B/bQ92yDtGyh1CrlL9ayl7TpzCL/xjQ/OTX6XvzLkPPW+lvSqo9zK+p9PHYnrdFb3lyvXnL54iXz981cv7i/SVeP991dtFe2ZdeVTirXPOA8+SAii5VDv9Kl0n7wupXzfzNv76BvxvsL5Zi/679P8Q/rIf8bXyO9NL9ic6kfti8CIw99JvgK8r+jmHui7vIGQ/N/5cuiH/VgH9jom7YDeNlV9D3tyjz32q3KNaZ7z/Cayde9Q5/7RfMAHMOx5Ncv+IHD/idy5/NIH+b9He2b8ZoHz613T6yH7NcOmcTw3O+o98Y3IvLPFL2qspvXeJH0T/I/018Sa5X9VY+hj8vE3enEsdon5JzivAjDfv5f0A85u8f3KQdBv66aD8EeQ/TP/K/Yln9cdmym1Lv4mv7S2ddfgFeReDnL3MKz4jT+ZpmZ/tCW/u1R6oP/VDvziesY7yWX+VWG/2R2cb6ZOUv5tfGJh3LsBz1H83cXP6ZeKDEi80Vv/ftuh+6hD5d+PnL/p7Hzwg8RAZd9UbTa4xuT+e+7fqTQAPp8ce2uPIovdH8t7Xcv1iY87jc48n71SWFmB1sB/5f4BvO/ir6AfVpccWnd8spZ8HtM/F6M9PfLH08colXuT+9Bf81aOHqfg7F1/70vtXiWuln68THwyuyv47PQ1T79vEK4M18VO8/h7Fz+Qdhhezn55zGOncN3kL/rXqV0s9cBD+s27JOibrl13NFzrQU3/pe/G1I/uqDu4Eds09I/XynkM/fNyT+bH83FOOPwz+8vaztgcrgHln6mPj5SfgTHi3J18D9tIz82J8HU++AebnveUvc364jXZsk/U/uEf2MdBZWRSfWUF+zsObaI+fc29P/qU5P2Ov880PVuR9OvxcoXzO2xLHcId01vdZz2d9f6f8V82X1xtnW5inXhJ/jb+c+26Fz7ek79Wvck+2+H7seP71spwbac+x+D9Jf2upHXKelfe9P8g8HYyfyvr8G/Wr4mspO6ml/Zbhpwo9dC2KozyavfRG/wt48r7dh/rTJv18jfE17xaXGP+2Bqfwzy/n/R38/oX/xP+X0f6DM67Lv8o64EH8Vy/qL+lPT9L/E9p7x5zPaN9v8v5l4h2L4lTnJA4I3iOz30Z/rdR/I3Gd8r9T/tfcAyktwI/Jvbf0nrl3kPkafcSvZ/8y8Xbxp08qn/i7OdZPJ+PnNenbcj6gf+Z+Qe4VdKTf+/mj69l5I+05SLmR+lXebco7Tnm/aRf8Zj54Cn7L53504lqVz7vmJ+b+ZPwb+xit/FPkzfu3eff2YvYV/zDXfCZxp1k//pD+m/m39sn92Nz3vFh+zmvLFsXv5d2g4viNzA/+815t7vnwP7nvdqrxPednr7Oz+olTIk/Okz8h55/s+3z0cv63V+IEcs9F+zQF31M+75fWx/9N5HtJ/tC898SfvZb1bPoH/f5kXvUjmHjcvL/7LLupg6+2ue9Dngr02VW/OVG7HJv3A/ATvz8A3byX+h2/m/c+mhbtn+V+dA31+pTKz/2a3Bvnvzrxt1vDv5lciZPbTC9Hq9+BPkbiL/PFWvKPVT/35wain3jUEYlX47eyL3MTOl/pr1eSczT7yT22SUXvfuR9y7z/MQF/efeh+D2IvCN/MHu9KvrO/nHeH8g7kGk37dOLPzgj54H4zfor86Tc+8s9wNz/q8ceupKr+P2P3BfrSK4J2ivv/18hvT/7GWU+OirtRf/15JcvLcDEN97Nv/TV/l+jd1b6o3nJXPVH+n44eXtrlyvINSrn9jkvpbeT0bsW/t+kJ2r38eC3+D5Y+83X//LORd6xz3sX/dBtVtS/40fPUT/vd/2u/Ie5D8P+TuRf837XR4kHpZ8jjfMH5T18+e/TW1uwHZjzuAv0/3L4Ol+6H/nK5n3yAih5AdwP/3m/c/vSAmwgvUT+cOXfB/Ouyj3s81LzlWvR3wZfpcbH03J+xW6O114t6GEkOftor7xr9wf+l2qPq3IvGJ3h0sfC152cOY/aC38HoPu78s+rf2vGX/k12eGe4NuJ3zDu5v3n7H/8BX/xfeaLlR9Anprpf2DG1/Xk/op9/A3v2exhed4r0J5DweFgzuOL78V2kF6S+XDeF8HP/uSeA2Ydcln8DvsbSP+rSguwHf0l/mbbvB+A78SzLdMehya+kL961jj8ILqvwZ/4hMQl3JL7K/S90Xj9HbwP4mN00ftb+X+eXYrOUy9hf2PIlfnQ3vKL78PmnuxafO6Y+zn0sxZ/O8c+zd/a5xxY+mn4cv/tE34899+y3ipDL9HD7fA8g/7Z7PqcxKkr9w5/P45fKn4HaljiZ3IvCb7j+aEh+udf/NUt8vPe4NC876M/nFi0jsz68UjydZM+SnoZ/ewhnfOSBrknJL9YH1mPZn45C38V2ddidpB7xnn3cDA/VPzecN7dy/ll3uPLO3yrtP9S+fvB9yt5erKvZfKb5R0j+S2Mj63BQ/J+YfZXzS+zTsu6bM/0L+23HT6XkvNe8l2jX+d9mkfIn/dLfiXvL0VxZ4kvH4FuFX7pK/pNvGh3/B5jnfcnO1uITvahf0R/ef5Ph/5qJP6n6F3B7dBP/PcbuZ9HzqqJv8FvDfwUn9/Er9cC4+//E3eAft5HyXspdyZuXvkP4I+ffAifU/mXXfCV/zHqrH0Stz8471TTU+L4z3d+kXXC2sQj5hw357tgNfguTNwC/j4r4i/vGxzMPvOuZbvcS9M/t4FvsXEk/0uT9+IyH3gv7zPIz/2ysuQ+G/2p+Mp74neqXwX9lokzg/9q/D+g/hvql4M/cV+5f5R9jpy3bWGXD8s/XHvk/tND7Hss2NE4uiT3m+nrSulmYOL7v8FfzvtyDnh77hPp73lHNffP7lZue/ysQ3e1/B2zP259/4Z9t+yv5Xy8vH6Rd+P+0n9yjny672eAHyduh563+P43uBl8GP99lN8r71KQN+/TJy4h75EWxyccIr8TeAV7y3vkHxTtTy0r2p/KeVjOx3Jedjv5i+/D7EePU/HXln5boVs2+0Dwz9GfauVdGXwcjf+cF+W9slvxl/OjX9VrI7+8dN4brGv+Xjnnp/AfnvUXfD3AFuw79wvyf0njwbz3kn3o7uYD5dRbIV0X/vnarzJ+sj+Z9/ziD+Mnc949Qv74/P8gfzNBekjej86+t3luWfbxOHnznlved3s/+5rwJS4552IluUeK/nv4uY5+q+ecPOdPxre8O1ocL/d87ovkHpv0A/jvy68drB+tJ0f+x2lF0f3aU83zrmZ/P+VdMnrM/mzOj74Em+Pr5/wfRu4XZH6DXt4Bzf9bjGQ/fdnVvujWAfdOXEbWc0XvYNyR95PkL5XOOxhHaZ+8B5Bz91Pps5V+m33LDfjN/88cIT/xsjPgGaR9JuPvS7BNzrlj/6UFeK1+fj34XO4BqNc255jaaTL6xfvD2RduRz9Zj+b/qrJezfp0I/2+pF98So5L0M//GlTOOiT3Dsi5h/lPKTiFfu5XPu/x16SP7BM1Rn8ZedbB1035vI+1G/taAxbvd96V9xmlB+L7TfXzrt8VuWeP3sPa99/8Rf7P6Xnp7+kx+8vZV84+c/fsDxk3c58o4+kB2qdt5pPoZx27Cf4R8h+DL/fij8n9P/a6Gt41iSfCb3G8bN6zyPsV8/TX1/WL96RfUv8B8p4PDgNzPzvvWu2I7gBwErqJh6+a/Tf29HDeLzD/+NE8PXGsib/K/e+fpA9NHAL+sx6pqF9UoJctYMaX1uplnMn4ck6p8ol75e+6Zx+dPH+z3374XUc/A/A9zL51zp8PzXoL3sRlZ18o5xvryZf/Abnc/mzicyqTq5H0tuxtHP7Pyv3k3ONTri39blUUZ5V5ROYP+V/GxFN+TK68H/wQ+5pgXtDIPOEy8o0vwS+9FI+/B6nXHFyDzruJH2V3M+ntHPsHeYd/W3qbJb9X0Xv8eT/vH/T2pMf8v9Ri9nk4eb6n/09zv4D+apYWYN6JOU/5Q7N/h37eF098+AD+vT+Y/4l5Pfc36XOLdqktP/GNeY8871/mvfK8f5n33V4ous+b9VvuFw1LPCQ8eQ9vHPt/kB7yf4/l8XWeeUcP/X46e9w78RU5nyotwBXSef86cdWJ453HPt6hnxuL4qdyPpbzsqNz35PfzXvFeZ847xocSX/F7xv8bT6/tfobEpchP3HPGc+b0GPet0q8c2Pfi9/HWqc/5n8pMj89mByJP868fqX0Njlf4Dey7it+XyTr1pxnFa9fW8I3IvcxpTO/mFVagBUTP5l9SflN9Z/tE4cOz/7s/CfpzN+L73dda9yviu+cdy7P+xb5f0LtsBlMO1RnZ+fD93T2r9XP/+Hl//Hyf3m12FfuUyd+Pv+vl3fZXlL/ev7n8LwjBd8H+Htd/Tv093Hy9+N/aoPZr6pDn/8o/4F+cQR5fpf/tfzG5F4lnfd/7tL+ea/32PjDnL8VxRXfKz/xxfm/l/z/y2v0mv9/GUje7K9syr1p+PM+QtZ/WQ/m/83y/tZ8dPM/EnmfuLP5/d/0mPiz2+UPUy/3aoZK5/8siv3+zepPwGfG/4z7+0pn/F+F7sr8D436e+H/A/zm/yw+4t/qsZ8Nxre8N/GL9Hj1j2NPec/iWOkJ8vOezkHqFe//FL+/lHeX8v7srua7B+XeINgZv9W0z425b8eOLsTPub7n3feci+X996/MO542D2kJXp77HPzpkew38eJ5h6h14iXosR5+q+X9kOxHZ99G+yySzjsRXcjTsGh+cL/8/A/UR8bTvF/UQX7i0PN/ltsp/3/49xopeJx13Xf4z9X/P3BJk6isrLxtktHUop1KSam0hxJCZSRUZDY1pIkS4dNHgySJ0i60aKj0UULRjtDU97p+r9u96+p1/Xr987jO85zzOI911uM8znkN26XU//vdtmsBDpV+tVEBDmlYgLc0LsCb6xfgNy0L8ODaBdgaPL5yAf7ZoACvLoBShzQpwD3gnda0AK+Db5HvZ2jvB/g37lyA321TgJP3LMD2zQvwiSoFOBO8XP1f9yjABvCepP2ztPeF9o9WvmqLAnwW3l57F2DDigW4N7g/OW1Qbzi5VIB/OPwrtd+oegFWU+4hdG6rvTvqFuCC3QrwA/Tuiv8+8K2F/0BwITnUqVCAr6LrrkoF+FHoIbc34X0WHU3ld5d+Cb7H6O1l6VfYw8HKXUY+1+2lXeXvJY93ybWVcg+gK3rcgI5u8LUuKcBZvjfF70Xyl9cpwDvJp47845RftgN6yxXg7uTaFvwR/0eDrcnnbfLdlZ6aNSvAh7VbU/4p6l2n3jPlC3AO2GfrAiy/ewFWAJfWK8B6VQvwJfTUkf6C/L6Gfyr5HUreS8lx0nYFeCU5l9u2AM9H7zXKn7FjAT5ILm+lP6n3F322Ap/E34v0Uo38qoMnyj8b3jHaexmdr0ufVqsAx/p+uvT12nmHHI7H57bkM508LiW/4eS7gFwfld8e3trGlTfoazv98yT9aRG5Lgbvo8f12p9dUoBz4VvIPqv4PkN/qIyvrfA/CF1lwf3Jc6fIQ3ovdrgPuo9FX+y8ovLT8buZ/g9Gzz3oOBB/b5Kfz6XWgTeCf9DvJTUL8PeM0/iKvQ2i33XgAPQeJr8uvi9hb6v0rz21v7pMAXaWH7u/Rf3Tjfvz4H2BvEfitze5zZdfBh2j5I9h339sX4B3SB+Fn13ZTa8aBbhkqwKcof421QpwlvLTfF+Hvrnam28celq6mfzv9adh2v1B+mT6b0fOjZTvCX836TvRNRzfw6IH8mqP7xXk2t73n+lpYeRND5+oXzHjp/zb5M9kP0/LH4LeHug6mN4myL+xpACvB28At9XOVsaPTsqfBM8T0mu0PxDee9nnL+RThnxagj+Qc332PZV8poBX6Z/baL86vZ9h3DkTLCN/G3zHLh8iv5nw1yPfOcrdJb+c/pd+k/7Sj7x2wefN9H4beBP4Dv72M++sVb+VdHNy6G3+vRK9c8sW4IHk115/uVy7/dG3Dfr/o39sNE7sJT1DfgXjW4n2Z9BDE/x1Zndj5X9jPKirnRPIsx24EZ0T8Hevdh/Az2RyzjzazXh9LHyL1L8445/5eZNxfyP4DnpO1D/bgx+r31C7zXYqwDbWV82lO+J/CP3uSp6PgS+j/xzt7I/eXfTvS8hnK/i2V64jOYyE/xLy3h1dc9Q/H74bjD8/oWOs8XCi/KW+d5T+QTsT4T+ZfXcAf2CnZejxKPZ2HHkeI91Z/Y7oWq+d+7RzFf531N9+ZYenwj+Hvl62vnwFvJUebs48QB4no6eM77+gZ6n2W8H7rXm4u/ZLBx++72QPWX8P0R+ehqeT9cS+6JvNvu6VnqteH3yWhf8948cB7PMB5V9E73j015feD303GG9eybyq/rfSg+AdwR5fUL8qOxtD/6/Se2XprOefI5c66HkS/h21X4U9tUHfQeQwS/6B5DUEHQeh63H2+zo5zFO+mXavlP8euort9Frly+uPU41b35mvj6SvWcaXJ8E72UnmoyuNX6XZ2VTzzxfoWEufK/D1tfQc+aPsfwbIf0k7g9G/rfwy4DbgBvRPNG5uBK9F18vg6ehbgu8NxpEO9FdHe8+TazX8P86+j/V9sfKPo7OD9u+Wfpu8Mi5s0j8fR0f09jY6WsO/J3u43feW2p8GT2/0Vk+/yLhIPs8b3++il71KCrAHusbqH23Y+V3pL+ztPuWa4m+U9B3aL2++KAeehs4f5PdDV1/wOfnN8F8i3YL9N0HHgeT3VJE9/sRes/94F71LwHfY6QBy6Gq82Rv8hvwuw9/+2mtBPm209yj6yuO7r/R20r9KH2P8OZu+7oXnWvz/xr7a09M5yg2W/7h+NxD/7+KvKfoOQE8r9nEj+V+OjuLxfWn0lvGPfVUBp7Knd6X/R05V0PUcO60q/Rb+3gGbkd9y9V8n7w+zviLnG9G3g3rt2ceO0r/I/0r6BvW+lz5Y+w9Kj0bnUONdG/mXGVdq4Pty6Qvhn0Nu55Lvb+h8m3xabv/P76+r94z+09y4uqtx8Ap42ipX1fzXhDyG0cMt6KvCvn5AR2XpM9GbfUMpesy8vi04T/mP4Z0v/bD2+6P/E/lXSk+Vn/l9Nb32sF7P/P4BuX4Ijoi/iHzeQ95GsBc4VP7b5qdPtbuQHHbH7+vm78u0f4T8d9EXP0w937NOfkj/6q29FeCD4OHkVYHdPJz1B/v4A30f0dtt8j9lT0fT71nqr1TvFHif1n538pio/jnk1JF+15L7Mu1dlHV+9jfs43DyuA7fJ2h/ZPw04MaSAnxS+/EXPK+9RuzxE+meBfC3f3SRdPyje5hvV5QuwPHSJ6BnG36Hi+C7DX+V8VPT+HUcOrqTQx/lW5ofW4D90bdIfhP13tLeYPLtg77pxo+J6P9duY3k9F92Vdf69GN09c3+jH3Xtg6fZpydoN2evp9LL0PhaUw/zxuXhuH7T+Wqy+9gXvlEfmNwD+3Xla4HTlN+E/4ms79N5HY0uo6Ef4DxtDfYQfunw99F+Y/U/7ikAFeSTyf2PE77G8lxMjkdQh/b+j49+232dRD8l5F7a/21lfyV5Ls8+wPrqOeyzgEXaX+19MD4B40312a/or1n2ceP6Il/uNh/eCo+V8SfB1Yjn7vUexEcp78Oy36DfV2gn2/MegN/d5t/Kyl/j/m3e/b38OX8IucZI9A32XpzEz4eln6IPM8uKcAzwKfYQy/lB1oXNQYfgT/jRS/2nHXYw+j8gX3Nk3+H733guYd8htBf8bp0Ev6/1W9nk8se1i+b4c+5wnh29oL0ieRRQq574Tv+1vhX2ypfCb9HSzfM+Q17GgqOgXcWvWf9u7917HztrcXHNebPstobo96b2d+wp+vIsz15LJYuh65F9LIY3qPU38IeurGT2dK7K7eOvHIOck72zey9t/F15+xLpcsqF79X/F3xh62Svhj+08D91duiHywmt7eM07X00/vpIXY2kn18EX969h/8oT3B2uQV/+gU9R/ET3V2MmnPf7ab9kLPS/DfIf8FdB2u3p3xN6oXv/UK7cV//aN5+Uh8X6PcqvBvfPsjflt6+JF+1uB3GbrfJ8cr1C+t/RrqVzNe/Sn9tPmhd+YTdA1UfwJ8/5P/gPSYIvuMXV4d/tjXLHo5V/497KOx/KrwVQaPAd/C52D9vXXGL/1lW/S3N55nPDpJOvPTGna9GlwF9s58w9531W6DnGfBHz/cdPreQg7ZH5WVvijnZOBx2n9A/hm+v8derie/zGubsl/B3zHysx59Dfx7nqeftfT3Ffgl+DT5LmOvFbU7w/hwCvoOYQ9dwLHorKL9uup1wseP8mepv4H8mqDnu+w/4l8pKcAjja8v5dwNvxXh/Qq+3uzkPvAY7dXL+k35nA+21j/Gs/Nz6bWp8tuzn2ba+4/v2V/+nPOl+I3YwSDyexw/beXHvh/M+Qx720W7f6H3CPJYjt7T8HeqcSL7r6baf0J+M/juyTm79WxD/awmOl5X/2vlO6JrnfR6+K43b/3bOfr57OF9dP6pf+5Jvof4PgF/jbQ/F30XyH+GnS3F/2/yB2V9l3UlfvuTX23yfRmdL6l3LvmdZ946F6xI3+21M9y6cj92P0J6Kv6y325lnKyMnnfhb1Z0LjlKvfulr9YvWsS/Rr45P24Lb0t83ar9ZzM/ku+t+D/bfvIN+Q9of190PUJvh5HPGfYHOSf7Cp6T1H+Z/I70/eTElcDzJft/H93vgSv1h7LkuTU+sm+6jP67oK+c8l3hba79D0qkcz5gf3Bt2jee/sbuN4JXo3Mx+BR+a6l3LPlPth6aQr+TpCtpL/60PuiPv+1o9DXM+EeOlcAr1L+I/M6mz/fJ8Sr9a7L15+30OIX+1ij3HvnUl/+7ftqFHcevH/93/OHxf1+g/exris+bVlqvvA3vfuBDOc+1vp2n/mP4PhD9H9HH7Tk/097Vyo8sKcA++B8lXY4+Rid+SH5D+d/B9xd8m5wjNcB3dfazRjtn4+cS5c+SH79R/EV3ZRySzvner/Sfc76c772MntXgGvAE9eN3j789/vjJ5H+VcSfrwD31h8wfZXLeh64R6Mk6+sbEBbDXWco3kQ9tqZHs/n/S+yo/1HgxDLydvBqRz1D4jtd+/J0tss6Ufga9OQ9P/53HP3A/O3qM/fYg9/v0mxFZ/5HzGPir0OtI+e3gu0P+xcaTI8i3i/QQ7a/CVyfzz+r4AdS/lPz3RE8P6R/Z0S11/pl/CH32lV825xXk8LB2nif/Wvrvf9G/xHhwkfzY1zPGkTnmx+so7nf1is+fh2W9YzzKOeBI89R26P2CvW0vvx89DQR/1f4v4BZwPvnsQZ/10VcV/Atd4+h1ROL4jA+P6R9D4Rsp/2v2/aj89fC96Xt3/GTf9ntRXEziZI7NeUX8MvrBDspl/fP3elb+GfDupP3DtfsqfhMvl/i4s8zfHxaNcxnfDtDOM2D/nCuwv230u7rkP4w9lM/6Gl1Hae9H9L4kf3vl0//bKd8t/vOSAvwg60b85Jw08sy+91Lp7H/vZ+/7qT9O+nX20w2+9er9io+78Xt57FP5vtL1479PfIZ61aRX53xD//pe/lfa+SnxPb6vwHfWYQfhP/GVFdhB4iwTX9m1AErdCc4Hh5QU4JeJj1S+F33vqL028N8nf7XyO8hvp/wJ4Hb2+YvBe5XfBT+d9d8O2Z8qdy36r5PulniKnMtm3WW8nC5/gPFyJvnfqb329NuQ3utkfanePO3n3CH7uezv4r+9G1+J69iEjpVF+5cKWZeRV+JXEmccP2PijxMHl7jS3/WbjonDRV+JflcbzDg6zvj1i/RW6l2E78rqv8bebtHOhMTJZfzWv461z7za+Lwjvmpaf5eAt8OT9XQf8jlC/xlLH+eyl/7Kxz99Ivgceb9Cn32Vb6vdUehvrX/UtY7dLX7YnOeidwD6BoKXazfzz83m0cw/h9FPV+Pvhdq91nzWOefQ+KmQcx7pnP9dQ/7LjVufZF6ln+zHOxTt17M/v0g7+2c8M77PkD7HfFIV/dmPH09+F6P/OHTXRM+AxO/hfy75jkbPG+jbx3p8P3Q8wH4Ha+cN64mX0HW17w+g70rr2xrROzomw7e19n/G/z6+VyGnp5Wfju7Z0o3RNzbnfcpfQL8/s/O/tNtc/fekc/76BH7noTtxRM3JZ1xJAd4HdmTH3+X8Tfu11B8L3/fwD2P/5bKPY3cL4+dt+k9+wud28h81HsYflnXhDsrP1V6znBvK/1r+InppZ9zf13pkqn5yoHptlW8L3yT8VzIeraHHq9D3ec5F8HeQfjpT+ZvwuRe+E/9wovRnmdf126/Z/ZSieN179O/Z8H1l/l1E7iPY993oaoieMomvLorb+wzfg+gn++JR5H0IOU+N/4c8fyCfr7SzOfJH/7PgTVlXyo//ch1+4seM/zL+6filK8Ef//Tx+senvh8n/Rh699T/bs3+JvpJ/JH+2kl+Q/zui7+u7OvGnLuhP/633dG3k3q1pOvGv4Cf2E/WW/FvHw3fFPB79lUZ/pXmrS/Az8EZRfv/G+KfYQfZ/3dldxnP57CXfeJ/M16sA+OnjH8ycfWzwB/BBdq/yniRdcTh6mX9kPiTzJuJQ0n8ye7sc4b8rFPH0c9488bjvn8vnXjCrBd3lc56cv/EZ9BfFf06+8jEg5zA/hvknBT/56J/BXxZzzVR/kf6W8F/kvXcZ8r/JH8q+f8F/3n6X138P6zfz1LuK/q9VH7WLVmvJM4t8W3/oddz8NOFfL+WfhG/NcnhWHQcg7/b9b/h8FbQT09Gf+Ip/8y+xXy3de4f6D+TrQvWyR+Orjvo63x2d3AcCviLPzx2Vzw/92Q/PcAl6ldjH68nrjP7hcQv534Z/WwAE+fyKXgF/jIvjNXuwpwfkdsDYMuMN9opR58L6Okm/ais+uvIZ6B1+RHGhzPJM/61uxOviZ6O7Ol08GP2fBI66ub+BXlHrkOVu1n7HdH1LjlPoY8J8hv53kY7F+QcGp6z6XV75R5D92Llp2p/GvhI7nkk7i33CZXfqgT99HUI+2+uXGvpt9VP/MFm9AxBf+IPysvP/P8GPPvCXwGe7tZ/Wys3Wn4z5xPjwFXicNonXgS+ruzjfe31Uf8/iYdmn6XYw+/43ZncHuJHmZH4GbA4Pq2y9AD5D2nvUXpI3MEl+m9937uwy4vByspdwO6nw3+edNaD8TdOla4lvV3i7+Ivsk7qZP1YhVzPATuq/z9yHpDz4+xz6Ks6efVE/xj6HgveCTYiv8Q7Zb7thp7EPy2hr3VgE3gT/7/U/PsyfF3QW9r8d2biYeNPBndJ/Kh5fxA9HCXdQbnMG8P/Zf54W/lZ6P6NHSQedFfrtcElBVgx50jkVcP3+Gn30G78s4/IH23cecY8crLyib8rD043fz2e8yXwrJzvsvfHc45v/DiIHA8G70HHh/jqCc+Zxrvn0NcaPbXR14Y+a+W83Xp3H3zvCyZe/3j9vR2Y88PEr5xtf/cNOs6Onxv+5okDZy8P01P8KYv1l+/xszc+4o+bj98y5LBv7gHFX0deZ5JX/INdpDvL/xXdObfZV3s94O2b9QU9xY6b4rtc7h/Avwe+LlF+q9wLJe8/tXcafZ8O1tLerMQrJh7K920S34q/Bvp9fXCJ+etT9H2pv/9G7h/Tw3DynYWO7RNfSB43Sy/B1xfxx8svj77+2ss9havABuSX+Mb0v8Q5ph8W+2Pip8k9uqczr7GXA4zf8U/lvkfOv+rHj597tsbT+TlnkK5KH7G/2F3s8LicT/p+Ze7jsLeMTz+jP/eWS8M/KPHJ7OMs4+rM3KNB5zvGm3fBn8FP5T9YUoCHavcadtKJ/npKLySnbxPPh77nzHu5lzOQ/eV+TeXE57Gz89RfjP7X5E8A7/F9DjnlfOfijAvZv8V/yt5yvlMj58PyB2e9KH0kvnO+fX0BlOoMfoCf+DNzH+ZD80sn6ZpZD9DHFOuenKdOoddL0XMJ2B28vvE/8/N9VON/5m9rfMq5dQV2NoH8d8i4BfYjx2XZj0jnPHk1vD9J92PvlyV+X/rQ+EfIL+e65xbdH5wcP6H8zfg4HD37yc94l/Hw3fR/9XbW3mH0eKP0efS+GzuYJt0g7zuQzzH4OUJ7VdjfpMQHK5948MTrZl/wKroTD584+Nw7TlxCcXzzPOPvs7nHkntB2r+ffbbF75fGn/GJh7Pf+rUASmGv1JnqdTO/9QDnWX8lrrYU/sahM/fpKsBfib3kPnhLfF0k/YVxPe9C3E+e/fT/JfB8j5+sr38yfrXKeSvCV+g/98u/jTzXoG8H6Yq5P6D9bzI/Smd9fhW+f8P3KunN9PyB8f5YfoRjsh6XH7lEHpHXGvjjn2qMrkbgOvWPNJ7Wx99v2juN/tvlvAz9Y8lxFHv7uqQAv8u5Frsbi567s94jx73AF+LHsR/Iuetm49A39PcTes5jf0exswOVr6j+m/Q6yfqsFzqe930xvivh43n6eUm/62j9dj/9Vo3/hZ121I+2o7/dEp9XUoBHoO939Zfl3QT9oTv5VJJelzgM+pwLDjbfZV/4M//FwKy34h9E/xnmz03kkfukJyZ+QTr7o+V5dyDrb/xdip8+2hlI/6+wu1fB18CL2V3iLXNPrfh+2ouJU9BeRfXqyf9vAZR617i8Dz3slPM6+sl7BB21twAfR+ovRySOljxuyflDzrfxX3zOtZm+HmKXleV3Jr/67KYe+BM8TeV3oM/cl39GuXO0n/i5zGOJn7tOfu595X7QMvpP/32b3/4vdjeTvefdnw7k1hD+nKNXhi/3a072fQ/05b5N4ptmsNe8XzRM+0u1+6bxaWbuveV9B/pqSy8r6Sv3n9bjpwV4GHrzPtMc67XiOMbE990Yf5/yPyYOgfza0Hf8c/HXzVXufXSPIMdFuQeMj6NLCnBL/BC+7xz+6TdxwsONJ9+Gf3LPOj/r++XS5cj1f4n3TFw8/qbpfzWUiz9uknQ189tMdv4ROvbE/+is83LfTjvx316Jvq/A3dQ/E5/xo+Y8Zjr6E2//NLnOBgfGn6B8bfPDION8D/mLcn5sXIw/oK1yuf//if6XOLjl0r0TZ0UvnaRPhOc19M1lPyeS6+icZ2r/dPZ7DXkeoNzB8c9kfMTPRcaBHvDnfmHuFd7FnnK/sC+9TJN/NL4G55zAujn3Pz8gx7rKZd+U9y7GGV9PRH/W2X9kP1h0X+P6+I/xt0X5JernvYPfcm5ZFA9VUgB/vytS/N5IZ/hbaL+nep20X838/AR7epM8x7C/Q+HJfvYS6cNyPsseToX3OPUSz59z+cQrF5/PrzKerQZH0k/2sVPhn0k+U6SPgv/f7pV11V5b9v0yu1gPfpv4QeWPTzw4/EOkl8u/mT1dQ/6X6r9Zl+beTu7x5P5Orazb4DmMPV0qf6jxKfG5l8J3s/b3oZ8y8veVHo3+Eew3ccqJA0h8c9Oi/Vr2caXy/pd6Jeh5Jvtn+MdY17RE12/00ir+mfjB0duZfcxXvy96N5L7xfDMUP498mit/fXGz9Pg/xw/34G/5rwf/c+ZT58HJxpPpuOjacZL+om+cn889wvuNk7kfkHuG5zJHrPvW8reEl9xr/XdhOyTpLfP+Q77X5C4GvPXf+M/xO8S5UqMf7kHfL/5+Ar9/2dyjJx3yrtM5LJVzk2K9jfZ12Sf85t6B7C/3A/JfZFuWZ8q3zN+18Rv43+x78/Cl3E+4/u/9eszyGcH31/U/qeJd6afO9Tvpd0drYeOSPy0+pegczU93kAOz8M3WrtXk+MfmX/kT5HehP/EX+wj/Qq+XlX+VuUHoy/+t5yXJf68lPq7y6/EP9NNfjX0bDJ/5n2rvHd1ae5nlBRgzcxz8ne2fsu9/uL7/rnfvyzvRBXd9x/I/vqT41XgfPLvjb68q3S4+aSl/LwHmTiavBeZeJqsF7J++C3+9Nzvjt363o/ePmZ/deh7FXsvkT6aHPIuSd4jyXsl12p/AnofBLfKOQv5rdVf8x7cXuzs08Sn0tfevuddueXyO+o/1+V+o3Yjv+nWyyvUv5AcMj/sbNzalPdQpNsVxacnLj1x6nl/I+f2a+ErPr+PXyjzwan4Xx//dfobukuBXdBzj/E0957fNs4dav57h/xXwtNSegM8k9hj7jW0MZ/kfkPij/+X8xrzReKPv1F+Ev3nPcO8vxp/30F5v0C567X/u3XBJ+By8Lz44fKeBBh5/y49Uf8eB19J0fr/NXIZlvsw+s/d0rvon6WK7iuerX7uwybuKPckcs6xzLn8ULCr/NHw3Uc/9+beNthPucRn3EQPJUVxpnl/M+egC6Rzfj1YuerkkfPURxPvqt/GrxR/0ynqn8ge9o5/xDiXe2rFcS05JxkO/7/FFbUkr9L0tbno/ZQ/cj/C+LMS/AJMXH0T+CZKtyC/0/NeFn7uwUfXkgJ8Qb3cV8r9pSHWY4n37p33eOHbop2Z7PsQ49nInFPjK+dXC/E9xjjUxvw/BJ521gvfsNMt6HkxcRvspoH8r9FXhn76K3+leeDZ3Bcj/5/w+yo5LKC/xFc+lfsw5F+JHnvBn3XTqiJ/evznfc0rX7Ln6ug+X/3h6Jvo+wjpR+CriJ/dzWu1wUfZf96V2gnMe1N1tD8bX0+DT4Fd8fOx9E6RS/wC6mc8iH8g/oKMD4k3SRxK4k7WoL8pvTQHc0+1Evneyl5zbjBaeiL7WWBe35EdtIA/8Ydn5R0Lehqi3bx3swG9vYv46Zr7JYlbYH9PgG+hL+c6F/zL+U7uDWddOjj31eM/0P7e6Cl+H2VyAZR6JPfcpD9K/6eXi7N+zT51z3/mJ64l8XfJ/yr2B1Yg35z/nJB3z4xfGc82FMUXJ574KO3n/tQs+J4EX8i6Wf9+13z0Fj0uAs8nt9zvyr2uxCEm/qn4fe5jEj+i3MLcOwITn5T4t6fyfha55P3DC9GXd5IaoPtA7T6CvwbsLu/DXF/0Pkz8qfGvJn46/tXE6fRAR/ncQ0H/auPNsdZ1iWdOHHPeQdxR+mf1Ex8wl/0+x25fxd8z+GhSUoA30s/D2s077y+Q+/PgArBXxkd0jcr7ZvgZoH4X685OudckfxL62mV+Rdca64e875H3qvOO9XbSec/6BevP4ver8651J+PdmWAL9pL9W/bFF+Pn5qwf8r4pecbPWIG+a+f+CntKXGPOvXO/cYp9bc67d8u9C/kjrUviR4//PPH9zYrGxdznz7lEk9w/I7esX2+Iv9a4e5N59mawFn5+sd5+XbnN0jlfKX6/Ku9WJb7/6twvznob3o/kT0PvYnY6uqQAa5DfL+azzeBA/SP36+up3w8/VdnBhfhPHEf8O7knmvuhWWflfYDO9Hc9PsrJ/w6+l8h/a/y0JN+e+R8Ccsj53irjYeadldJz0r/xlfdG8/5o1jeDyHcg+Ch9f5Zy1j9f5z544p3iP0XPzvEnoruu9hN/MqYASh2r/yb+ZCP5nSddP/FR5FHP99uz3o79k99N+l0f9L3CfvL+f3/rkxviZ2QfrdGf/drj6Mx7h9nX1UPvK/pv7oMNQM925LWBHT6B7qV5J7Jo/b4Gvj+1X/wezynKzcv7cEXxNSvYX+a7hvj/lJ18Dub92/rozHnfGPVraD/vCeWdqy7m2bw7dFfO1/NeEHxd4fvLOJh5p5T5NP72G+ljGj1mHXcdPHmfen/21wrMO9W90DOB/BvmHSn6rZf4IvAZ7bwAf/w7DRMXAsa/s0T+KfR+FTxDEh+BjgXZH9NzY+3kvc28w5nzwJz/Fe9Xso9pmzgL/bMzOJ+8p2S8ynlG5mn0vYn//eC5Aj2PxE9I/9mPZJ+Sfcmx6k0i35zb5Bwn5zets4+NH0M74/DXAnwFrA9///jftPsLul4h15HKJ572I+lvSgow71u10L+yTs+6PPdzesf/De+QrIezf0t8ZN53kJ/3wU7Ovdq8+6J/LpF/S87HtXsvubTR/uPyHwVfSNxf4sPoK+8t5z3mFfF3FN1fHyad+LFR+ncL8EF07oe+EdaVtY0Tw6VnwHdM3j1NnEHe7UP/FfQ/Vf4y7eb/Oab5Xtv++kP5+X+Ou6wHK2jvaPi3kP9083o/48Sj0vk/ml55L4M8ivdHiftLHOAD8etoP+975l3PxM/mfc+f9Z+65HOe/C9y/079UdrPOzT5n4bavicuM/etE5+ZdyMbKfdm3hNUP/dxcj8nfp/cz1lmvFtKHlvYUbXs14wX0/Cd85cztX+L9VRF68ZKYA34Lrf+e9367DLpA+VPs049lB2sL/L3nc9+sv/vz57zflTOf8eTb8aP7nl/NvtL/CYOLvFvC+0PyqAj/6fTEp7R8J+ifln47ma/X7LLD5T/hrxno6+F/py4nivNH82VL2GP3XIOZryMf/Rw8+kF5D8Tnub4e9X49jr4Glgq960S3whfTfo5K/5V+BeYB3Nulnce/8i6WrtbpBvJ/5w+yiUuV3u5z597GUP/5X7GYO0m/uch9lGbfe2VOCX4it8fmmtcyrndY/jJ/Y7D2PcR2tkZfavzfmviJchrT/LLe4+t9If4V29L3Cf6PtTf8t7SMumlWY/mXrt1yXhyyP3f/+g/4+l/Apj/A0r8VOKmOuofWT/1Jfc5xt0j2Xf0fSf8fyXOxvcTsk8z/5xFzmfBdw37SFxL/ES5V7Ze+43JNfcQN5HXRvo53PiXe4d90blBfu5l5l2HvPOQ8fUT9pC4jZXSiee42ffEyd8kvV3umfF/LgDvVL8n/Pnfn/zfT/4/7OC8DxF/ZOIZ6S3v7y9hP3m/az57y/tdfxm/5uUdDXJ8J/dp2dX37C7xMk/mvjL6vgTX5j6bcmuL7mPuRw7n0l/+zyv/7/UNe8z/e72s/VbK5T573mvpwP7+vmdedL98Ebq/Tlyc9nM/ZSJ5d9HOg9J537eq8fMw8voZ/h65j1V0HzP3CCeQf953m4juu9l53nnbXn7sJe+M5/y4h/7SL+tY9jie/E41/+V/I4r/T+JH40273B+Bpyz68m7d5OzHol/y2ax/fJ7zZ+kbtZ94ruzP8r8Dv5JP7vvlfey8l533sW+n1yfiPzVe5v7CweR/EHgImHdUHzQfZj2e+Tbx2Tk/GJH7SLnPm/jzf7H7D5Svk/eH4/9NHAd9538X8/994+kz538ZT+Jvupy+HpS/G3yDwLwPnfjcN+i7n3l6ofS18X/m/SR8H2++y/tJOdfO/yjk/xMSH1cOvT+z+8R95P5By6LzpvxPU/6f6Vz5v+R+pPR8+eeT727oH6Dco/AV/7/L0KL/eXnNeD0ocUP4yPtw8cslPn03csv/HMwugL/9K/G3xL8yG/4l5L4e3Fp+3mXN/YPi91lPpv/7zEs99cOp7GeN/tyD3FZKl5af9xVzP6U8PWR8fgD+EdIXKjdA/bxf8Bq99QPXJ77AeJ/3K/OeZe635f3QbxO3D+Y90X2MH4ezo/2kDyXf+Gvix8l5Zs5fLzReZP/RWbqV/rcT/WfdWiI9h/2Mx19TfB+ecyzy38V4MSHni+g4VLm8zzs3dp37tImPZm+JIz2RfaTfnAN/7pOs0c/jNy2l3iTlO9Hnc+wx5+45b895/Cf09xF+E89a0fjQV/7J7PGo/G+PdP7nbZty/2wn43nwb2u8SDxH4js+j3+Kvb4j/7Pco1P/M/R8RW9ls//Me1baX8quV8L/JHyfwL8CbAbPGfFH6n8594p/J+dhFcinDnyd4m/W/ufKrwTzTv1K9lEH3sxLma/a4TP97V567Up/ecdyG/WbZD1iP7YKvk/Rtxf+8r8xmd/ybnBJ4rsyb2n/y6J40C7q7cI+p+i/Z4HDwBsSX2M+bKtfHwfeAd/3xo+VuQfOjnJ+NCTvr+jX8bcnvrMm+dRIHBV5lJY/Dz9//79B0f30JcaD3cn9qPyfTuL7zA/fGT+zTs790e/p4zvwWzDvaV/Jvq9AR+a9bbVfHj95z60Nfj5jP03Z40W5lw3Pw+wn7/nmnnjuP+Z++O/k9ofvb0qXVT//43gT+fxXubz/OTjvD+E/70Qk3n85PV3BXlrIz/39+JeeVf8ldMbftKP1cX/t5p513mNcoN9Uli6V8yzyuifnXfl/CfJei5+rlZ+Drgb43w29+ysXf/9rWb/TT+5VZV2e9XruV92Er5HgJYk/hi//l5c4x4X6ceIcf8h349NAMOf5eb/6AOkv2WXu0SZurBu5XSOd+LFf9L/d0RF/60n0syH+a+3kvl7u52V/n/189vcj8FeLvXeHt6b0AuU7Kr8RnK3dTsaPvM+b99T2xf+LyuVdz2Nyf7ukAM9Wv1L8Z2Bl8DH1LyGv++i1tPRG9E8oilvOOiH+j9wPT9xt3mfI/fAv8F1V/v3K575r4rcTt32Q74nfzrv1Tzf+/+fHf/qL/ApZ54Ev5r6RceI941cN9fvkfStyeYJ8q8sfYvx9UX8cI54z70aM1K+uz7st6E18/0Dza3d2dil4GrkcZf8Tf+Q5xqvcLypdAn/2fdJbyKGG9h7JeW3+R056lv48G6zk+2nxj2u3tO/5n/M18vMuUN4DagVPB/2/kfEnfuWv8Zf///23/8WqAd/AvMud/bX0Wumaxo0n0Fldej66cl6R84tF6Mj5xf8BcaMUS3icdd151NfD+z/wQqKyVBKVuisi2uxrEZI+VIokSxSRrUW2ZAuRhCKUQlqp+Kgs0WKLCFmytIikKGVrI1u/c37vx/N7jvc5n/uf61zvmbnm2uaaec1cM/eEPUr9/78T9i3Ar+oX4CEHFuBlexdgd7+/rt7z+xdgr3oFeO5+6qt3+EEFuFeFAiyjXi/41oYFWKFWAZ5VtwBP1N87TQrw9HIF2G2fAmwH36ZRAY4tW4A/6PdcsAP+fkJvGrwF2K0B/tTvDfZXv7HyX+BND/B7RXzq/+vdC7BSSQF+C25Hf43w1xjcVz+b0Wu/SwGeBg5Wvgq8Un9P0der9PA0vMpO5ChfgLvDZ9Ffkx0KsIP+/iDPDPa5CL0t6N2/cwGWUb64WgHeBLatWoCPaDerSgE+tlcBDtfPav3fqr9m6k+hl0PRb7RbAR7HLufBJ8OPrwPyr7vA8+jnlW0KsOK2BdhdPysaF2CdkgK8DqylfT18NqKfJ+AN4Wvo4yd268Lvf4T3Uf8t+vqJv9TdvgBXkb81vd0PDgbjh6vQO0O/K+GH6e9y4+PGmgW4L/33IceN/O+jGgUYv76Cf76J7u/842r+sZ7+GunnXvIuM05nss+p4sN/wLfot5J+BlcuwHn89B74buz8rX5XgnuT+3H0Hy9dgAvIswN+euH/YfaPXRuLExXpfyg4H/+34/88/XfcsQBL8dNO8DHoHUOfk8Cm4OH4eJU95oCzwWn62R/+j7jUAD6enH+jU40/3EbOgfCH2OEf9Zuheyr5vyBvzZIC/BxeXr2q7L4InVn6a0L+B8oU4J76rQI/2vg4nb/O27UAz+Qf36F/Avwp7U+EN8JvWe2uMm7Po9dq+D+d/3b2++v4r668IfxB9O5iz1PZsx25RoP9xJNL1R8Gf1v5jvjcD50R7PkTWFm9i5QfXb0An6G3rvp9g37WmK82gqvB9eqX7ElefjrYOD1YPytq/Lv+u/R6H/sMhj9Nnkfwv7vyo7U/Eqyinw/UO9280QjcWESvoX7fIe8M5ccYf2PY7YzMP+BS9jpQvKpl/DSBt0HnEPqYzw8m4OsBejzF77fi41T4GPUmab83eq30f7L2D7Dbfsr/Iv9t9DOa/56B7qPw0to/gd6d2q8Wn1rSx73iUn1wMPiZ+NZHvLiR389IvKbf9vRSkR+3Y/9btD9EeVn9NxWv5yrP+irrqayv5uOvrfnlO3z8Sa4jjZ+h5B4O7ozPS7RflfFNz3XAoei0FLePxt/WSgX4Ef3Ogp/EXi/qp6HxsQz/36F3Ev6v0/5xfF9Fr6Px9Yz2A/hfZ3grfOzHP7/D72Hwvug/B18unq0AL6LXK8XXFfz4Gvra4Pdv8DeDvQaqNwfeRflVJQV4rd97w2/BZzn+NBx8lb81Vp71Tzn6OUpcWIn+u9ZNfxhX9ZSfFf7QecH8O5j+6tHXQ+Re4/fnyTGNnBfQ18Pkfwi9udpPh0/E3xq/t9X+efJMB2/N+lr5ZO1H899v+PtA/F+nXQX+8zb//Iz9OtPrBOPnWfrYiu7e5DmYXeeSZxR8k3rbo9dLPzvDr8dvO/W/YI9G9PFq0XxehR7/q7wMfrYHj9L/7eg/hN7+WU+hcxM6W8h1PDk34K83ff9qfJQ2PqYW8fG8dcUI+MX62aR94nTW90ehfxr938FvXkD3TfVuxn9j81db5Xez40r6ah1/oY8r0Xufn3yifAD9lNW+Cf7qZVyh95vxfhH/6SW+fYL+d+q/i/+V8E+VT9PPO8p3oJ98HzVWv6f6RxiXrdSbQj8T9T+J/FXptVpJAb6i/Frtu+D7huhJ+X34+cv4/Qe8VXni/pP6LY7/o/nPnHzfqP+d8iXi32J+Mi7rLXpeo79vwRXgFPLXVL8a+DI57+MHh5PveHprS49naX+f8Xxh7QIcAi/Ffz7zfXGG9l+bLy7Wfkf6fVSzQ0oKcJDyKfp/kf8/6fed6G8xul3oZZzy59n/MXLdrN5WeqlIf5v9fhi5X6bvH8jZEd2r+fML2i9Gfxv1fzZ++4G3odvV+D7HumStddowcWI5vdXCz8zMo+hn/bqXfo/E50/4KeFfVfG5F3w5+40XTx8H91Dvm6wfzP+f47c1/BL262p9Po1c+S76G38/Ks/+0ATjP/tD49i/HLmqof8J/En+Xob8+Q7J98eB6DcBr/L7RPBafv85PXVmt++V38Zv+qJbm/5m85NR7LOP9lO1v4p/Habd2co/UX4i+TLP36O8FDut1f7J+D9996C/JVnPoN8FX8utZ5vppxG71RcHB6GTdcw/5qf36fUDcE981Uf3Hfx9nH0L8j+9XQG2t05YCe+qn/70vhM632afgfw70X958Az8Nld/F/q4H5yHj2Xw0b6vdqaPBtrdz/9qZ52U73lx+gJyfGJcdVOvO/+/RnkT8fEeev7BevbGfP/6fYj63fWzN/udXPHf9bIezvr3SPF0V3IcZHwPxf9J+G0BNgfH6+cwejsc3BNcqr+T+c/39HIZPl9A/zrjLt9TNegj89MQdLKPGX+urXyR9dfj9NeHXR4DBxZAqS/BVuL3QP0PNd5P0n4H/VfQ/kn0m4BXiOcHGQf/8Idfsv4VD7fir3m+X/nHVO1OV34oe4wlV3P6qIhef3yPAzUvtSs+FhsvS8A9jIPO6JxFrvnwrNe31//l5M86qHj9c5n40ss81x2+Fb9rtHsN/evBdehfRP4R4JX4HqFdGfX/Ru8DeObfufznN3Ew+3xjsw+U8ZF9XvYthf+L/b5YvLmLvvP9/YT5/qmMG7C68bEQ37fo9w/rpEOyHi3Rn362F5e6Z/2l/WTwaXAi+Way21n46m78zKKPEfB8P7Yg95/wY/nptuQrrV1H/NfG12R276HeFvwt8XtV+thknH2i/YPmt2HgQ+AR6j+FfidyNxE//ou/fC/l+ynfU48onyDeDkZnb/PBa/Rzgfh9uvg0vQBKne/3iX4/g9y/0c94/GyBd1B+Jn+ZqHwiv66j/Gl4XfgWdtkIDmH3a7Xfz3jIfl72984i393Wb6PgvbPvSv9v0H8D7Q6l/8VZv5mvYpcO8NjnaHr7AT99tXsT/Y30eaF+P6bvkehtZK+uyluavx9V/iO57xJXzjS+pqufcXEz+GL2DRJf+PuH+CyOv4+Qp552w+HN6OsL/E2jn+fQKUPOQdnf9nst/vms8hXWA+PB99G5wjh4i73ngYP19xV+FpD7EfPeY/xnk/4ups9D1PtIPweg/yT9Zz97NHw6+y0vKcA3zRuvgR/mPIa+HuJHH2hfnX5PED96iKvH6qe08VaZPqaL67P5dc5H7uJ/2Z8eSq4e+BuA3g/6a8rPvlR+EX2sI/+26I8lf74rv9J+Pn3l+6ae9vuBn2ZdpZ/exvdnfu8Df0L5e+S+gH5W57yKfHuZP2bqfx6/uob/dRCfriH3kfzmT/Sz71mWXNn3TJzfEv/w+yf4fEk/M9lrFjgX7Km/ueRZxO+3yz4l+lkHnwBvxy96oH8SOruSdwu8rPI28DX4msDebYyDCsq/pL9++rlc+7X8cT14LDgGH7/h7yN6bkh/Zem7jXGzjJ/eot0p6C+w3voR/xvweX3Ol/lPQ7ANP2mIzzuM20Fg5vvs57xJ3uLvl37wu9AbAJ6tn0/x86z668nZjJ3L4K+98XWd+h+rv4d6b8DvJu869Wryv0n8qofxme+ODYl3/PkqdGrT80/0/DP5ToSPy749+Zvy7wX4b6T+OPR302/lrPvE07bKh+n3e3zGn9pm/4Z9DzUO8z17LTku0F/Wn8+hU5M+OvCng/C/3PfIev7zHLqV0f1d/1Xo7/18z+Onp/lmG/Syv3mnfrLPmf3NA/C1hd560tO8xAvt9su+hfJflVfmL1vxcWzmf/3P8fta9L8Tzz9T7zb4u+LiP+jtjr9R/PoBdOZb95zEvu+IH7+Q42X8vpzzHXkDJ9J7Gfj4nI+KX6vMWy3Um6D86nw/+L2bOFWS/RtytQVvYe+V8DHxD/Wfhuf78nf4ZONvH/3dTL7EmTezL84P2igvyz8GajcZ3lN/89Wfa31yfs4N6ac8us2z3sZ/b/xlPZH1xUh2zfrimqwT4C/rJ+dXNfjN2/le1k/2Ycqxf0vx93vrrVHqfcben+J3Cnql8fcq/U0XXzvy/4PUX2b8TykpwGPjj/h5mv3fYv8+8IeyP47u0fj8E/xS+QL4PPK0oI+sb3vgr6b6ndljo/jZlf92AfdC5wjlZdnnPnI/wa6XKO/D35MnUJwfUNn8Pb6kAGcaT23UG538HvqYJw7ezX5/wbPe/RP+BfvkXCvnXLuKnznfur8oH2ae+W4dfB1/XYr+k+R8Kv6L/wvZ7Xr4PPo8JftZ9HAq/Cl2SHrIOn5V2vwxGH/Je2lO/6cW5cE8qt25CF0CT95CBXLvAg7NeT551hsPvfKdr/+P6Hsh/Zyo/Fv2GY+/Pa2X9gCrgs351xzxco/kQ+BrnvbD4VWVl08+hfJq/O009t4263N4JePyAHR6Vvi3/Cvo+Qr0W/j9S+1/obda6h2qv374fz3jTbu2+luCv0rG12B6b0Wfo+jrxszP2l8DdtJPU/FgMz2diU7Og2bQxyv5/uSX92l/bkkBngd2Dq7eRPZ8GhyaPEjy9TQeeoCDxbO31evEb+4wnvrxw974uZP+rlN/eQGU2g/993NukO9t/nOc+Ngv37XZryJv5q1h/O8x9T5Cb2rOl4vWLzuy68/KX8n3v/K74dtlP5DeWyu/DL6t8qPxcZ1+sq79CP85756Z89Tk/8GfNJ83BbfS80v424t/9QefZacZyq/X7xH84Tx6GpY8Iv7WDbwYvIV/tsz5b85F6e8V8WkVf6um/JTkVZJzufXt3X7fNnkT+HsMveznZp93OP2UF29a+v1S/LTAX2vzz3Ho7maddSF8+4wf/lY36zf8T6efh9kv+xv18few8XmMcfYEeiexTx941ueL2Wdv8g/Hb0d+31f/c8Fe2lfOuQm77IxeL/z9Tj+f4bMS/trzt0na9cF/LfL/Kd68zu7X6+/knO+iX1d/5yT/Av/Z96xZtB/aBP3sX3Uxz64xT43UXzP+WMM4vxR/Z2Y+pq9rwLfBQdrP0d+e4Gww5wrH5fwUfix8LHnW0U/Og2tkH4n84/F9gLjVOPmq2tdUfzp/ucN68T3tj8/5L/vsCi7T36ZS+CV3f3pLfBvMfweB94Cd6KcVeZJ3VpyPlv2R+WD2RWbop4vx08+65F78/UWebtYDQ+i9Oz475vyVfqbCT9N+E/6/w++7+PlU/PgGH8PF6/hT/Guy9hfjb3DO++g3+YuzjLsO5DvCerUVPqai36WkAMvxv43KK8nPvQNcBOY78Ev1G7L7h/x5Kf5vFVcbo5dzl97whdbVA9UbBh+d89Oi87mc1w1JfrDxt0X5oegfkvNM/tufnh9Ubxvx7z31++Fn+6wb4EvZfW/t9oX3oP9l4tK87KuT/0/124Nl8fNB9le0f9G4fgnMefLinG/j+6P9/s3/4uzvFUCp30DilvqYvddV/zc/Lawnkv85lb6P5M/7GLdP5/ycf1zIz/J9ne/tIdlvIv95+n0Q/1eJ39/TZ4l2LZKfgb9d+dMm+DvqL8j5BHovJR+O/brRz2jz1g/my77Jr06ecvIm9X8CPOdVOcfKudUe5K/ALw9KfDW+jlHvBvzNy/hOfg3+SoyXB+h9NLyadjezyz30sZR8WXf/pN0ocAE7ZN9tekkBvhq9wN/F/zrrt3Xq/wrvQz//iDflxMWt8OQtfch+k3PeQJ9fan87/X3u9ynqLVU+SL+jyDOZnHXo5wLxKPGkC/za3E9J/qhx0Za+puR+kO+RX/nxTX5P/mNv8uzAP3YEj8t5UezFHlknN9f/TeQvZ9yXBZNn/lrOT8mfdXpL8uZcKfvxS5J3lfUl+vmOXcG/mqCXfNNu+Eo+yh3aL+T/s5J3A6+j3y/o73H0ivcX33B/JvncH1onlyX/pezbVbtO4u875Ouq3YbMl/CN8JwXv6r+6fT1HX3kPljuhw3IONR+TvKf9T8TXo//nJb8duVjsj7Cf/a/HqOfyUX7YbfgZzw+vsRnJfxdYbxdDu4Oxn716GcCOb/E/6HK1xq3yX/9yXrhdv3sbr54rKQAR4H12KsK+pvx/Q64Kvv14mUZceo6cGD0K26tNE9uTR5r4jt/yb77Y9mPor8r+cNcflKDHOdov9T6/oWck8CPTxwwfywGW9Pf79qv1W4bcSH7ILk/9TD9HAE+o903YDN2zX7uDfSf+0xXW39lPbAzPg6mv135U+5LVMq5rf7PEhfnoFs6577K3ybvsfSyjh91zTmF8s1gXXRW62eteHR88pTR+Yh8HbW7Dd0F4txu6i9hz5nkz/q0XM4PMp/le7soPzjnJuWVF5+f/EnvI/jZo4nzuX+gfQPxK+f7C3P+jl5rcXic+o2UryL/jfR5Jf5uhx/N/8ZYZ05G/3LyviC+PQ+eknMX7Tfw/0v5QffcY6H/Nvpfpt2puWeU/RL+2trvX6l3o/JSxts28PL4f4l8PY277P9fjc6o5M/Sy230mXyk5B99q31/cpfRvik+dhFPKsUu9LsAvSE5r9b+Z/WuzX6f9t+qdwg7rkf/28Sb7Euw50bluX90OD/NeMo4utV6Zzp4PngTPc3nvxXZKfvDFbRfTT/V6WWzcbCEfNX4ZWN0qsPf0v4p8WwiWE2/v9PvSvJeZV5vlnuX7DcWv5vArA+yf7Yw+Z70eYj5+170y4g3uV+R+xbzMz+UFGAndG7NfT7yNbBeOwBsCH7ODw61Hl9P7jHw7FeOZI8zzSOj4DuScyD4NXqV6GmS/n/CT/Jgfgb/ozz5MgvAD8GTlf9GrhL8dGbfzdkfY48ncm7E3z/I/kDyCrNuhye/axf8rjU/1eTfZ/DPDeLlafr/Ef362t/PXnfT61B48jRuZL9j4x+5f0ZvXcSnrKOK10/r6esk9mkJJg/wU+NpCb9IPn3y5zMv53y8jno708/Q3F9J/k32TZXvY/76mN2Tp5L8lB3R25e8x9Dz4/qr5Pdti/bZVtBvKeX7wLO/1z35R/S5mX7vgef8rqr15M7Gee5hfp39Jfgv9NCF/QZl/8D8dFjGGfxy7X4Xl2rSz5/6603uN7J+yb2r3CMgT/JRk1/yk/nj06Lvp3w3Xc8e+X7KurYBfUzI/j39noKfY9S7wXrmMf0tFH9rJB9S/Gsc/zKuO6A/n37WwlfDk5+dfO3kZ98gXiRPoIrxmXliPH/+EX8z6OVl9Hcl92XKK8aO5BspLjdLP8bDpNwTBLvxh/fM4z3pN/tO04r2nbZT/llJARbfu5qp/7uSd4LvB/Odo31x/mDyPccm/1K8qUrvufcxOPFcedbXV8Dn6+9ccv9o/dICvzm3nyGeJD4lXiU+LUU3+RDPsUvyxAeYv7NuvDPfF8b3vdq30774/s807bZH93b1W/G/7fnf7mDnfCfwv3fFl47GV/b/v8r+Cn0V569cmPuIuT9BH5Ny31Y/N6N/RfL/zS8Hsd9v+G1Ono3kvwH9Y/hjD/I1hed+/kHscy+/HAT+hV4/8SHxbbXfD9R/JX5RF38rjcf27Je8gK/Il3yBi5QfQx9NxIWm1iN74f/xovtNC+lxf/3X5m/F9/+zz/yL/vMOyWnZT1Xeifxt9L9RfH4KnTHo/q9zuDrsnntquZf2RfKj9fsAmPlqH+V5b+Ke3DfSPu9P5N7t8/jI/scG9Tfptzd+ck41Ap58rDuzfsf/RuVVxbvsGzxKD9vq/wj+0pKftgBzf6y5cXFH1t1F65+snwYoH2e8Z/30T/bzyXOO/rfAzzVvl8f/AP3vDl/En+bykxL1ky+d+3wd9Zf959xvPSj3++nlTfgbuf/Kv+qhX4v/ZD3ylfH2gHYHk/c7/lNe/RLj4mD9b0Z/Bf3N9nsf/tSQ/FPyHgG/eBmdY7P+zPyunx3AbdlzMX3lvZrG7Pm68Zx8oP3EwerizxL44/wr+9wH03fuZf+v37P/fVLyJXI/Ad6VfN8UvWeyq/XFX+o3pcfF7H0FO+1LH8dnPxOcpv4++b4i3wfgK3mfRPlK/a0A2+eeIL+pY11VJedCxktncp6f+yz4aWe+7539ef5cDt9r4API+3ju64Hnq/dc9Jd9QfT3Nn7eTf500f5x8oKyf7yGPDk3Pg5M/vks/jIb/ARsSa4yJQVYjfy5N3gF+arQY3n9foz/3I85Hb8j0BmMzjFF68+sN7P+zP716hzoGNdN8D+LfWbzv8n4GJ18waL7udPQzz3dfF9sImfyr/JeVpXkV6NbGt/Je9uevGex9zDydMh3eNYT/Cf3ppJ3nPtTTxCvjvrN0amefXj8dBVXvsF/7hM2yvlP9s2Uj839VvLlvkbicPLnE7dz36N4vz7vLp2Z/Hr91Mv5Hb1UZuea/Dvnfeuy7wrPvm0XevwD/+tznsPeye+sIj7slnOIfKeQvzv7P4y/S/F/MvqXlxTgZuO2J/yHfOewy0h6X5Xv9uzvJt+U3HW0u5Z/NxF3GoMHgnXzHY7fl/Iegjj0vfYL6GsqPa/RzxvabTXvJG+yOJ+yLrmOLHrH51Dy/wTPuyoV6O1Z9vs176H4zsl9qKPxeyy/y72p3vb7cv43KeslsDb+cz5/k++WnPvVLnrvamfxZjv0Ts65Kv7PNz9uorc/wK/ZZ3DyT/CXOPkp/8+4znr3qMSX3Geh97Pp92zjdVLyu3IvP+2yL8x+uR+TfeAX8P1/92OUJ694Grsmv7ibdcMg4+husPi+evC2Revnp+hvIvhw8g7Bc8iVfNiDze83w5P/ln2n7EO9T39L6T/r32/R3Um9ajlXLcpDS/7Zj/T3Lj97B9wp+/D6f54+sg7N+0/N+HsNdJrCF+S+WNanYB/jb1W+L/VTgv4z5Hw956f6G5F4Sr7rcr/Y92jifjn9tlN/Cn5uoJ9nkgetfP/kTWh/oPa9yLcev41yXzfvPGR/yvjuJf59iL8p6NUkd/QTfTWl/+ShXpfznbwTlXeA+EPeP9nT+Nox+WTGx2nZxzE+yimvT57ku9ycvBj4bfy1v9+r6u8v4zf7C9/mvkP24fnfduhknXQR+y1VP+vZA8BG4H+VT6aPz+kj+S170m/p5Bfjr1XOE+j3EXH1IvrL+cNU7Yvft8r92Wl53ww/94F5b+vv3EvR/xm51wXP99D36t2D/z31/wv9DaDfvM9ZnN8xS/y+Hd0fco+dfy5nj03WxRuST6D8APY+iR+2An9Rnvy/yf9jHuif/Wvz+kr4ebm/qL+8M3mO9Vrem6zr99b0/y75cv93gnjyFJhz7Jxf535A7gVMpL/Ew+jjKfRrwvO+Vw3jc7V+845Y3l993Lp0aPLzcx6nfTfrovO1f5+/5Hwy+ZXJq0yeZZnsTynPvYxuxu0Z+L+Gfaqz81j8708/Z5cUYE/xYzo5V6AzAD+3kCdx9dnsb8Hv11/sEf2PxV8Vesl7Y9dnf4VehhkXffMeat7Hwndz+D7atYF/YfyeKz7er/9F5KzDX+qCWVf019/W3N9i9wX6f18/I8X3HdTvn7wr/Se/5XWwKj0lv2FH43kVfv7QT+Xs7+gv78K1zD6S8gO0m573LYyf3N/8nV7763+R/pI//LRxXSl+RY7lyZ/mv+/nXQT+2hE//3Vus7/13yjw1ORpFuX/1dfuL+XjrFd+890zFv4xufIORfH7FAewa/F9idyjKMF/8Xq6WvJWjI+u4nX2R7fiN+8bDBG/Nyh/235f7vflPeDz0HtJP/fnfhN/yz7uYnHsOfbvaz27WlybAu9EjrH4ewocB05E71TxojXYHpygfAp9Topejfcd0D+TPfK+2AT8/0D+t9jtbfBC8q5Xb5R1Y/Tcn12i38nJj0U/33ML+WfLrGuS76V8mP57kbcn+Lbxfm7uX/GP9omf+Hox+7va5bt9RvJo8Vcv61583Jb8B/zdyr9y/z738bP/kfe3puZ9AjDvbxWfeySuZX1yovL32SP5XZcm/0q/r4gzw+B5/3Vf4+15cInxmPdj57LH5bm3w48PyzsO8LyP04md8334fd7v8vtD4K/oxX/XJC8HjP8uMV66F0Cpl8F2+Cu+n9SS/HnPdx59rqb3HrlHU3T+kXOPqeJTzj/GaD8y91/Rf5t9Ps2+LHqZJzM/9sHvBfzlUnTz/tqz6D8H5j20usrHimstMv+bR0/Qf03jMt+d+Q7N9+dLxk/O53Jel/O5tdZvySv8Eb5r7oFlv5rdNsA/yft77LsLuW5X7xv8dGfP2+ipSd4fTN43/zoYf9saDznneYJffsMvi/OPkj+avJAnzUcHkf8dfv8Kvv60fpya82z6rIHuYvLUpv8S/OzF/v/B/xf6e4j+HwD7ofsH+fNu2d9+fx+e/dodwewnPaf8LfotTS95b3QduZM/nnfZcp/9EnLmvmjeI/w1eae+p2ZFfzlfAB81HjIf7Uzec3I/DL/1s59p3OR+40z+kfgxK+uW5MOIp4k/G/DTkJx3wnNfKN8TZ4MbyHlD3gNSP+e4yS/JeW7eZ8++as5Z8077JvxsQz//IWdX+v5Lu6/1NxefFYzvX3MvBl95H7WG+qfk3ABcjt6i5LmyzyXku7mkAN9g/32Nx9I5p7JfOZYcpcXHc+lhnnoP5r5KAZQaAr4FLtI+/xehCdhGHMr/R3jIuq4FfnfJ/WX0j8r6Mfm4Re+vVM17obnXo3yN+sXru9z3yHvtycN9K/Ny/n8C++UeROLCtvq5NPeT8X82uq2M9z3Rz77mXernHaTcDx9C3o/h76j/DXwKfmKf2GWnvD+Q+5DZPyDnj/SQd4rL5L6deNPM+H4Tv+3F8XZgzcwj7F+B/XP+8U/eMyh6P+qJ5L1m/Okv94pzzzj3i/ePn7H/6OwzwvMu9vfg5+Jk3smuJS7Wy/vK+HsGP8mPXqKf5HEkP/qcvBuW9zbIPTj5aeaPe/E1kNwPJ79P/Hpef4tyXxz9Hub7v9XPe7h5/zbv3f6V/ovev/0Z/7fzv3b5wMD3Rvqf6TvgiNibfs4Tb88FK2Z8sX/uS+e7qir6uT+d/JPu4J1F+Sh5N+ge+j2/6P2gSuiXJU9F4+Vz/X9Arj/0P4h9LkHn4aL7cQP1/zE847d90fjthe4j1m9Dsn5QL/udp+c8nN5a8PfB6p2t/CxwTu674y//n2YcmP9Tk/9PM5J+mvm9vt8bZf++KD7skfzhjC9+n/yZyfBu6k0zvpaBr/g9+/SXqV8698XAvLMwmVxD+N094B7JR8n7UMm7gE/Df2nzxWW5dwdvr/8B9D/cOml+9MHft0k+Pn3m/yUMynygfu535b5X9v/a0fsB+ukLnk++rPc7+g4o/n4dYf13m3m8E7yGfrLfe2W+y5K/Cm9i/myUeZQ8tfh7+aJ1zf7sOkJ5J9+Ls5Mvl7y7lJN/AH6TT1xReWfxZLh6XcWj09jnk+SR5PuO3hso/0/269WrnnOwrDNz3lWUH5T7+fsaj2tzzpK8LP3c4PuxCT6rwY9G91Tx9TXr98uSf6K8MX8dql0z8nXHTwW/51wh5wwV+F/mx9xPXJl7ksrbap//T3Qn+fL/Rb43Pl4k33x6GU3+3uw3Xj+7sO9c9sl7n+MyLvnJz7lfKN7syf+Sp/kAOjl/yHlD/DH+V9d4rIy/tuaB7I9mfZl15RZyZ32Zd9hyT/8w5bmfvxM+L8x5Av3l/am8m/oqfu4lb53kAxa9j13XOiL5JzXpd6/s89HDt+TpZb14uHGce+Tv0s8K8WYHfHxs/F+d9Xvy2bK/hv/hGb85n8+9sqL3zebk/x1p95X1x9PwzfjL+6x5r3Uv5V9mPZd3lfB1Cf6L1xcVxesq+s97tXl/4y585/5IffF6Qu635P4l+9xSUoBv8pMHC6DUfuyS/w9VGz935t41/CLz79nJK0ZvS/Z36G9xvv/A5uqPsL68iH3zrnmp3O/Hx705F8ZPg6L8zdJ5p1G9e9Rb5Ls95/o558/5/gzzTs71c86f8/2bc37NLlnHZP1yYPJ9+cGt7HQlPTezPns+70yCC5Ufj/+V/ODA5K+j3zrvT6B7lviwGT93Fn2/Xo/uMPbJ/38qod/i99dzb3hY8uvguT+c/Oz8X4S8i5P3pz8Wjxeiu1D77A9/wz86oLNSv5343y70sUWcfJm+StTvSO7i/e/9ky9Ff1eyV+495ft1TuZPMN91+f9bw6wPss58gr6zvlzCvrvpdyl8TN5v5B/JSyt+L7sRPO8bNcg6Oe8nF90fKs4/2ov+ks84ix5uor+D6fNRsKH4kPfxEhfOS15d0f3frfT/IX3uYfxkv+ER9p6j36y/1+Mv89tw9DLPZX6rRl/F76zcoPwl9X/Tvkfyq/DfNN+VyatQP//PZwZ75RzzQfE155frxOPch8796HyfJD5NMq7mF8WrvDdcvG+S94eHq5/3b6/WT2fy/cMvTtf+N/Huz+Sjis8NwcwbefeyTN6dROdn9sn/hxplvIwE6/i9Nf2cqt092l2L7xfpp/h9+fz/rvvoP/fRsq78CJ2sO4v3tXKfIPcHkn9zV8aj/l6DzyZf/r9P/t9P3o/JfY3c43jE+jz3OZJHMEb9nEPm/2O+Rv6rjKMj8Tcq399F5zPF74vm/+/k/+5U198dOZ/U3y65t2q9+Lj2txRAqfeUvw7P/vt881PenSx+j7L4/clJRe9QLuc3yc/rm//Dmf0981Lidt4725l/5v547o23Z+/cHy8rPl6SfNh8x7L3VP7Qlx5O9vub9LM7e+XdseL7ky3ZJ/8XYB058v8BFuU+Jb4mlxTgA8nrVD/vPuWe2mvJ91Seeytj+OvM/zF/tOUHmUcuLoD/e18l762U0O9V9J15qQ/8O/SWse9Idm2Cjw/QP4Ic2c86Rjw7LO+7kOdkequlfSv2y/s3F/o999xzvz3//+HV5LPjsy/648WNceCW/D8u9ZaxT/5/xv25F4KfF9kneeTd4Fm/H8j/Dsv/hQC70v8/ReeffawnrmD/Z9HdhZzJG0m+9VH8Iu+nVibnf3M+xp6xV/E7UlvMl+9Zn2c9P4d+P7VuyjuMXyVfMfcDk2+Afhf2uo9+H+H32afKO2HZr1pE77m3tAGskPw8cme+yHyyTPlX5pPkqVyhn9eLvu/zXb9M//m+f5E8OW98C/2z1c//O8r/Qco58F/0k/9HXIE80cvB8J/Fl9ngLHCgOHEAee83/vM+d75Xlqif/xNTAf+f6v8m9R/1+307/Vu+B3I/ShzfmH1r/c8m/3X85uacq2u/q/bnK68Ib6O/gfn/cFmnap/38R5Ff17yRdS7RHkr66K16HfN+UnuF4gbOX84W73d+O/hxsfpxk/2JXviY4Lfnyb3E/Q4VfucS+f9ibxHkfPpvF+U94puhPcj//PWTX3xfVH2XZP/Y17Je5aH2OdJfv8JxltH42975VXwk7yfL3OeBib/5wTrvcSlPYznD9nv8uxr+45epN5h/Luy+F8l70bz8+SPbKDf2WD93D8jZ+Jjhwb/5iPxcmr+vxaY9xrfUX8Uvh4D14t/lbXPu+616CH37kYG8o+G4LPmm5xPdytaf63TLvnPZ+gv5zId2CHnNfHvxfQeP49/12GnBvAn1fuA/n8w7vL/ItbCZ+e+B77znT64KA8/3+e1+dEVRd/pb+f/YsKfQTfnz8lfTN5i8hhzfv4M/t9TfwflNfN+ifFbRxw6FL4q76uI39mnn8zO2a/P+WzOY6dmXs/9aPF7gfhXvJ7K/y8ojov5/wXZj83+7Ej+e3jykfj/bvQ2hz7vg/8/+9QZU3icdd13+NfT+wfwTxRSRruU+mgoLSt7hBBCMrJC2UmkgaRJQqQkoSVCZERZFZUoMrIKUUaUEMoW+V3X7/14fq/L+7q8/7mv8zrn3Ode5z7rPuc9v17J//++blqAj+1cgHvvXoDHVSrAsVsX4FvlCrD1HgXYv3YBDgCHVyvAdfDNqFKATzcvwNt2KcCd1O/dqABfa1aAg7R39q4FWLdyAT6k3DJ4V8D3oO+X71SAH8hfKb9jwwLs20S72l8GfiV/z/CvXD30fAF/n5YF+E6LAvxptwKcpN5zYAvlxyu3cdsCrL5dAXaoin7lutYtwLbgvQ0K8BP5k2oWYMPGBVgGXRfgb9IO6KfHt+HZBj0nq/+x8jfR7x3oq0IOY+F9R/vLlT/c912U74mOv6UvwVczcjuT3dxIv4+h72H4qrOPvvTbZYsCvBxdnaWnyp9bvgBfBBvJPw/ddX3viM725Fsfffuitxr63qHv2uh8gpyfge929nYS/Q5S/mDl9lfuUfV7S5eSd486BTge/yfAt45dd5Sega7R5PI3+xqvnUPxXwV/0/Wj3+V/onw99lUfnh+V66T+IRUL8Fvtvkt+v5NPuVoF+JB0n9ICXKt+A3SX4K++9I3k3ZneriWPA7V/Mf4fpY9Z4GywG3yPxj/A82SFAtyG/CtsXoC9q6MPPJw+625ZgDuC35YtwCPkj4J3hPRIcu8B/6X0+xE9HiR/Jf7e0n9W1CjAJdJXw/chepaDw+n/NPnz0dV3mwJcTK7faP9m+jxSu/Eb9cnza/m10VcHng/g+VN/PVH+Rn7gD/i76G/j0HMq/3C/+tfQx97aqSBdTv3y8D2PvkH4P5j9ncDvTiafbch7AT5abF+Ax7HPk+l9kPS+6Lod/Tuj40X5C9hD9LMNe28h/2b2uKX0M+pXRt8s+o297QLPpdIvG886qfeS9GTyaUN/p6h3GP5uYd+zM15o/zPyOA7/5cnlHPUqSA8n3x+kS9TvgI7FyVfvK+18L71e/kXKd2evA0rxIf9uertfvRO1cw75HGZcbwPO5M8XwbsNvzGM36gMz5fqV+Of4pfir6qRT2P6mSa/qXTGj6N2LMAe6QfSP6J/re8N8LeF9Brpeux5R7Au+Iv8Zei+mP6a+/6R9lvyPz+h61nfp+h/9/o+GYy+l5HjB+x7GXgwe5mn/lD9p7X235Weqf512p+Ir/fY9zD81+S/m+DjGunZ9Pojef8ArgefoJ/J5PEZO+uCjoPxWcL/bye9jPy/Un8Oe+7Az7SpX4D9tT+XPC4h1y76a1/678ufzIHvq4yT+DtZ/jD2tws8m5PfR+xtZ+0cj95p8i/C14tgf/Ltot7VW6kPtqSn8+TfxD/OAG8GR2mvlnJt0N+MPDM+XkReI8j1TOUnyT8cvkfMg46Q/oscZqt/lfGjU2kB3hA/xX81Vj5+8EP4byO/TcqVZU/7Rn/k8hH72p58Tif/yuxpLjwN4m/oYQJ93gdugmdL+I9gB5mv383+mtD/YfzpEuuDp42Pl7L/cezqAXz11f5O7LG97/3A3bT/J3lcQq+14Pta/e7pv/E7ymceuJf0Bv7tDPwPJY9p8E3QnyeBE8GK8D8A32fwXZ7xh/y+I+914FPsp5X699P/feCv2m2T+Q/57O37ofBWlJ/5/Fzf9816iH5m6lczwPX8yN3Kd0d3O/SswM8Y6Y3sarXyz2S8o5+F5Pcb+A35tVZuEL2/lfmz9h5nHzvwd3XAi/TPo5Wfrl9M44c20/+3xfd2ymWePxWdT6NvLXtrQ74Hkdv34C74OxW+Kb5/hP8Npfhh3xXQP0X6ZnrdJF28vlhuPD2R3D+Wrqq9P8lnT/RuwM9Z6v+k/24Ad8PnF/S7yXx3CTldrL81gm8G+7lJ/xmp3WryJ+rX4/B1r3R3/PQ338u8bwDYHp1l8L8ZeCy974++FuhuCTYHYx/HkcuyrGvY+UXsI/PW+8n1QnSPp6cW+v8H6v/MztcqdzB7OQR8Ff3V2cnL+uMselggfad2X5PeV72dyf8tdNbj7x5WfqX5+RHw7xO/q3wf9NWRvhZft8D7GD1cTf9LrH+Op7eXNivAjpkfGk/GqLdWegT+O/Jr5eEfp58tJd/l2v+FffxP3vR/vfzsb2S/I+uUfdhXs8wH8ft2xkf2fgv6h0tXx99Y86qn0bcYHT3Ql3Vj9cx7pDOP/06/Hpx+ATaWf7bx8Al8nSP9KXoPJI+m9NWJ/X8oPZbe31f/FbALObRBV2N63xl8Q/tzyaNi+oPvx9JfWfZ1te819aNH2ccY/HTT7oXy7yb/6b4PQ89i5beA/y9+s535x0T515LvauPZM/hYpD/NRe8I+rpQvUbobAn/0NICvAH8QD+qiL6n9I+fyXlO5ES+R8N/lPIN2cmu2Q8pgJJz8D1DumbmL/gvi6734Kupfl363oedZb2Ufa2R0ndJN2fvPdnvCHLbVv5h5HAv+VXlz6qDY+D7gT6GwXes9GjwMvZfhn1tYgfj1B8CfxP9uQXYjZ/fCh0j2X9N9aahdwv8d5duTK736K/HyL+NXPvhrwP4Cv5nwLsbe6wWfOo/kPU/eB59jINnTGkBLsLfP/TUBb5h+LkR3Fr9VeRzAz6z3/COdC36P0a7ba1L9pf+Lus0/vIL6Xb8aR16yPov676sN7L+G4D/f5SfT59XK78NebZC11HGmbnSv6Mn+h+p/bulsy/wd+YV2sv+wET9cTq5VYP3TPLrof++oH/tTU4T2M9t5LqB3jYnh8/BI+HNuJNxaAL9Tcffjujph97W5HO9/r07fF+bj9xAPlvhd4/sl7H3ofK3g6+v9s/F/3X4+x49FdnjGZk/omcI+31W+ZH4aYy+Nui/CpxfhO9888Na6g1H14/kOJp8R4ET5DfK/Ay9GV/6xZ+grwO7r6T959G7pfJ/8BtZV2admfXld+wt/aYnPU7B73Lj4Vh89fd9VvZXiuwxdnoZ+k5C79z4X3rP/HVY5tvafxv9j7CvS+jvefmt4HsM/cfm/ATeb6VX4nMsvn/L/h98B6u/pXXFHfz3EvT3Vb+98fpE3zfpz79KX6B+5i1Z52X+sq/2s2+4Dr8/aP/vzDvRXz/7SOQ81ng3if8pJ//8nAdlPqEfz1evAfku1t5d7KNv1nH0s2/219nLdHQ+jr4LtL8WzL7mUHhmk8cssKf55yh0TiotwNboz/zpc+3vpHxJzjlyDqidvfA10bj7AT80QP7P+CsXeeNnJvvZjX9qCe4KXqfcGvOF7vj/Svpa9B3Ev8Sf/KM/PSt/R+uhx9EZv/Sc/CvZw1HaqyP9Z+w5+/7o2lM666u3+Y+cz+Vc7lL22Z9cz6Sf7Fv9Ab6pPz1Ar0/T2545n0BH/HEf9vgs/Beh69UCKLkanEf+f5YW4KfmCSvB6ep3Q/eTOa/MPBx9NemvFvgYOh6S31P73+tHnfCf+f/o+Ed8ZD50vPrZ719EvzXo4TPtLNduHXJ+TPlO8vc3L5qq/wwpgJJp0v3YY/usV/SDJuirQS+f4bupdj6T/wH+7tHejVlPst/O2X/A97PWs3+S7xj4M7+/TXoL+Cax51vVr5nxMP1P+Z2y3pS/P/pqGk8PUa41+Cx+Ls/5KLo+0U/Hw/cXOVVSL+vzLejjvgIoeYQ9ldN+c/JsTJ/3kNN48ET5D6DjU/x+E7+T8w79crR+N4GfH6j87vA1iJ/QX5bDs4h/fxXMftS58n9hH01KC7AZeLj25/LPh9HXmfislfM3/GZ/MXLN/uI+1k3vZt+9aB1bh79sRZ4t2M0Z4K7wnyp/sPRf2b8zf8z6uxF9f03/59Brc3Y9SLnryb8T+uaVKcALwAuVu5PeM77dqb0n8fcSe1iLrg346iT/Yvnt8X2ucj+jbwvf+2nv9czf1T+e/utkf15/qs/+T2VfU7V7P/gS+eyYfWn0Z51zCX19Tl5Vc/6p/Zvk38Uf5nzzziL/eEspujNf4+dq01/mDTl/jB4zf6gjf072saXr4e8J40MP+jqAfe+p/UcTt5D9PvwNJr9R7C5xOy9IL0Bfzi9zbplzzE3ab8IfDAQHgVeiv/h8LudyjeHfLvsRyk3V34aTx0r0/IKOT+G5F7+78KcrfT+aPU2Wfwv9H4n+hujfjL4zn8864WHlsz6ol/gNdrDA/Pks/P2iXuIbrlT+V+mBO/87/zTlE/+wjv8sVe4KdB9PPsfhqzx5vKDew9rva36yH3gCOZ2Dz9+19w/9l9VOF/xdot9/ZJw7Bp1bZfwkz86Zj7Lfw9H5fYN/81F1x3/z00m/XKb9SujZDX/7wHsq/nrid0nW09aDd4Jj8DlI/vrEdWhvs8Qrse/qWe+Sx6nGy0raL/X9EvBc+vtW/T7GkwnonKCdu9R/Wfl56FoPzyr0zXcesQM/ekD2rcl/e/raFqyc+DD6PZ5/PQ5chN+XyWs0uZ/E72Y9dkvmgdrbDP3X0UMD9OfcL/sdP2YenPNj/n4wue6S9Tz63kN3J/BI7TwB/1PonQlepr83J6dj+It17K98xjP4l5Lfxvg99J9MP2WN1zk3mQNPy5wD7Pxv/sJve/hzTtsP3lbKd5O/g/HhcPprZZ4ROQ/mf39Wr4/0NfivjM/sD9dQL/vDb0pvUu4ZerxM/THmk63x0075oYn7wu925HQZ+vbM/JjdvEividNpD/+R/O35pQW4k/6S8+U6+vun/Ow9+Kys/kXoPR68GPxTe/3gaw9f4ty+BJvLv5D8q4DZPx7JPr7jpyaTU+L7lmQ/jTyL49uKzx8SJ5X5zxf807f2+dpaD9ZV/mP6b6Pdgb43U/8k87NVmR/je7Psf9PfSHA+2I/dPYferPdfQ+970Td/9RU/FP3/Lx5Cf1wNTvO9B/oOIr8a6O8Iz7bso6N+ObC0AC8qgJIP0dMg8VQ5J6D/FfDXZz/D4B8t/x/4t896AV/N6Ol4cnqYPiroN1O1m/Vk9Fkm8y94zwNzPnIzeeWcJOcjC+Xv4vtf+D2yKP4q8VaJv3oG/m7Sr+CzVuxMe53o5wv+byp7epUccq6RuNfi843sh2R/ZLJ+nP2Rzuhdww8PA0fA9zZ87xofDzQOZR9oUdYn8H+N3rfJoxc6H5F/Iv9xDf5v9v1N+G6mx4vQ/wW/uADfmd/fr3zWbz/6Pl57ZyX+GP+n0NNE6Wnxn/pLJXDn7HfRW+JLxmVcR/9p6HtH+cRbvi39K/vIeJHxI+NJ9sHfyHkF+heXqp/9PPOdS7OvnfkM+VVU7jXtHYWOTvgbSZ9bsp+npW9Vb6p0O/KaaT68PPFt5L8hfi3ncOr31a9eYScjivYPXimKj/4DfVujP/ux2Z/Nfm0j9XvR+xTyf5kfXJp9XXi/L4CSo8m3a9Zh9DVVu9uDLRMvTL6Ra+Sc/a2ca29FX8Xn2735xZxLNKfPddrfIfbge23pL5V/gzwfooeXwcRBViTPpugcYrxsyv4G5PyfvzyM3O6m/+LzlO/13/vh/53f6SF/C/W2TXw0++2u3jx+YFfy2s38PXHL7yTuR/2dcm8Bva/G3+d8n/9JHEaJfpL4i4ba3YjexKVPVn+x8tnXnoz/7A80yfm2eeFP6HgRnS/Cdyv5JT5unvxROX/PPQl0HYqe9OvEbSXOJ/37OfheRVeLxNVnf5z+Fqt/jHRp4ufY8yvqvWiekniO3+DPefH/zo+1/6t+8w86W2WfH/571a+Ev+8yD8H/m+zvDbA/e7mdXovnRxt9z/h5K7+6B/lPKy3A4RmX+dfsZ89DTxX1JxRAyQjwXPCqzLtzXpa4FPS8jf7XtfuKftoucVjyz9AvTwNPB1+E/4Ps98ZvFO3/5FwscZhXFJ2TbcU/HUKPn5D/azkHlL4Z/vfJcW/2PdV86iGwGz3dqf6nxvPh6o3mTyrTbyf9awfrq8RbTkHfEu2XNz5cKf1g1tPGyxvJbTB+Pifvg9hDV36tl3JT0HMe/Y+ih/vMd6bJf0T5xPeOI8dm9H8IerKP9gj7zz7a5r6XA8uCc+X/QO9ryWu59KPoT/xK7j30V+8I+r1G+RHk1lV+L/KJ/WXdk3VQ1j+V0Psxu1ya+D/5b8L7NfgW+Be888h/Plgl+7/a6QvvKvxNA39OfIJ++x26d6SnOfAcRy81tHdVaQEm/mWv+HX2eU/Df9NxBLyzyOMY5brjbwv4nibHU5S/FH17mr+flPhRcmxddN/oTu21TjyC/MQjdtFuI/kD5F+I3jq531AUH5n4vpX4THzf+fL31d8Sz/+L/nUF/Kv51z9zzyHnoDn/I//MR1tIN6O/H+h1HdgYHRvJ53N4T1H+Bu2PyPldaQFeC/bB38yMN4kz1/7+6DuCfjbqX39nfq3/9EDHJcpnPpJ7Grmf0ZN8h2r3YDD7n3fzP7P5gbXZh1Vue/zlfl/u++V+X1101UTHl/zUOulHyX89et9M/DT9/YreH32/lL4n4b+29XgreN9TrnnR/YLzSgvwBenZ6N2MXTdKfCM/m3iabfB/s+/DwXronYS+h/E9pQBKnkR/7tu0QdchicPNPq72n875OLlNV/839UsTLy/9gPo7aL9B1hXyE0/dKPsHmS/B/036b+KHiuIoEq9RO/cTwo/vu8HXI/NP8ujDTjbL/prx7eLsc+qPib/Ofmz2ac+G7/Dc76XXp8CZ4IPk/ZpxdXpRHP0KdHYg96xv1yR+U/57xsON6r0vfQH7uZF+jlPvt5wPsr9H8HWs/P2sVz6SP19/fAm8kp/YUfny6GtC7gvRuSHjf8Yn6UHZv4A/+9d96OMCeLJ/fbv+nfnKkeSe/av6+udg+noLPT2yv0aft4OjwazDriCvHmBPcHv4E3+cOLCssyqzv8StJ1498exr8NuIXeylfiXlmqg/m/7no6dy7o/iJ/FGq/GTfdnEHy2QnqHc+bkXEP6lm8O/Qfvl1D+CP/zOuLAO3Kh8A/puCDYCp+c8EP7MP8fmHCbnO8ptzl7fDz3aP9x8o4V5wa5g+5zX0ddcsDa53Jj4sZx75f48unOfexV5fg5+AQ5DT+6h9qbv2zN/RH/mndcpdx17yPwz94ESr1lDf9ud/seZd3+Qc0fjZ135+6nfFj0jc/8r8wPyOjXzdfS0Jefz0bVO+iN+YD75rMv+C3is9cHr0r9bb9yk3cj/9ay/tbdS/sLEHdHfOfjpAZ4NZj0RfSxA3zr89Mr5OX+6O7zzpZ8gzwvRm328vXyP/34avt9yn0h/+5Q87yqA/933T9xPB+2/Il0159H8d2v4z2cvz2u/ceLt1HvW+HMRvd9hHLw86/rsc+L/cfi3TvwP/7sicqDnO/HZ2P7DnsaZLvj8A76LE6ed/UD4G6J/PXoyfmQ8yfixjr2cRG+94Is/TbzMwWDiaSrBk/XaB/zecvpI/Psa9HwNrgZzT3cb/F1HTiPs78yUfiTxPOiZFj+T+93sdSP4R+KAtf8T+p6ltytzPzD3X9DbM/MueluR+S/7G2zcLEPf28DzOv/5Bvgm2F1+belB/Nfb6jfBzxvklvOonE9VyP4AumKfsdfY5+bsLnHUFegp8dMHqX82+BQ6ZuMv8RiJz8g+9Q9F/uku84LvyC3xE9dkPPQ957w53x2LvkPZzfXwZT9ukfFzcvq3+qclvse8I/den5bOeeMcel9aWoDPSvfP/m/GvewL8d9Xof/p7Avh+xnpz/O+hPSR6q0pmn/29n0wfXcGt0r8Ivsr4f/L6+9T0JX5a+at5cgr89f15PIkeWyj/dfRdzp9dgTPo/8Xsq9AXpfZBygT/5fxjl7n64dtc16beHP0jDdOjwPro/cH/WNI5sOJJ0HfEOnXyeUu9Cee7ADpbvg9PPGc8hP/NTrxcrmfTX+xp8Q9Z793t5xv8KuJl31dOvdpJtHH/85/4M/5zwLru8SlZDweA/917ONKcukDZl31uvIz42/x+1Lio7Kezf6odrbWv3N/K/ufuceV85qq+lX2bVZlnw3eB7MfqXx1cGPkrFziP77JewLoLOWfDtRubXY0Bj95DyT3rm/Q3v74uznnjewh9xhLcn/D/GMCOMD4PQveo/FTRv71WV+h+z70/KJ/XaZe3oM4UPvd2PdB0rl/8wn9Jx6iIvq6oX+9dr/z/Zv4cfKpQz4L2dVd6FpPnuVzbwesAE5XfzJ/14EfzLphRuJ74v+1fxk574X+S3MfFbyKPHYl38vI7xF4ch/nJ/WXkuev+LqHvb2TdUZpAa5C103q7QL/YUXnGl8mvkT/WFQCL9g5/SznWfBvR2/P5x4q+az1PfH6OyVeTHt5v6eD8p3xmf47Ff9TwLyT1R8/J7KbvJN1nPQA+XkfaiB4Cph75bn/l3t/mQdl/rMlfp7nJyeWKA9/CXlvUO53sCa+M38+L/sBuZ+c+Sr+N+OnxtpP+lP9081fz83+DT5fhS/3w7prtzhO6ih2HT+9tfYnym/Ofh9g75usD6vR7yTzrtfyjoD+1pY+f1J/A/gzOC7rfX6tLXgEeI/8r9D3JbgazH2Wv8h9K36pE/ofRd888+OR+nlPchgvvwl9Py59uvoH0u8h+u1uYEuwDPmfmnsl7GIjuQ1Wf6n26iZev7QAL5Z/Fvuowv8fj6/415wX5zw+8SR5XybvSZyEjy/Mr/O+RH/+KPdccn6a+y0TyLNs7k+xt7+zjsg9bfLZXfs9Mj+i99nyr5C+FP5j6WUX7S/QzvHKT8z+FT6742Ni7n8pl/dgLig6P8096FvIPe8dTZGuoL3MC2/EV9vcQ8q+blF8yIbEP0sn7vasxCMqf5r+MCl4wM3Q1xnf2SedoH72R58kr8z/6vjeDv//da+oGf1nXzX7qdlvHUU/K+HP+mch/baF/yvp1eAacHDuW+deMHldgo86eZ9Qv6oHvq/9q/CT+0a1s9+d+DbymS29g/zcY/pYflPyPJD8r857begqflcj776UoG8B/WWf+2T1ct839xJzj3iW8S73hzeWFuDPebdGev+8n1R0X2sUvIsTh8o/bwK/RWdj/NVHV1XlM/53l3+bcb88uDWY8+sOyneFt1/WP9Lv4acz/jYjz9w/q4H+A9TrkzgI8Cr2l7i5vvx33sf4BD1j2Mty6cQRD+Ef6+G/clEcwEj+tBr8t0t3yTsX6g1mx7kvk/sxZxnfZvKfL4E94dsbPTl33Uc656/Z50xc4eW+J76wHX/0OTl9BlYmnwPQ1Sbx/vDlfG+08WeGeokbTnzkpsRl0Ff2ybLfl/vQ7+XdCf0s96Ona/+Z7EPmPgz5NMj9FHawH/lkn+0ldF2t3ZPRO4B9tNVeBfaf91pyLpr4p57mJ9l3TzzUbHa1K3q+wP8c6VbkvrYASnqjvxL9X4uuQ9BbC5/d8N+myO9cG37p7wzpf3KPI/cZ815E4h3BEeaHdemxBn/4oH6QdXAr8jldvQONAxvZV3v0XpD1XPgll9x/mpT9J3Z8a84tsk9sPtWanC+XvpV9tJWuh46DpMfDk7iHRcoXxz+M1R8TN5d4gJy/30R/W+W8S7nh0vfjL3GTuSeV+1FDiuLLB0kPzP0v6ezTNZe+OPFP9L154uTYS2/8fEGv24GNiuyvAvt4Rf2K0qfon0/mfBK+3DO8XP7b+se2+Pwp943ZX6/EN8vvnf0E7XdjN3kXdgk+8z7s8+wl9z+uUP6txA+TfxvyHpD7Y+zp2LxvAv4tfnCp+jm3yfuKnfO+Fn5XsJcDcp6sXgv5+yXuFrwj53W5X4afp6TfVy7xAzl/zXlr1s/7yG9qfOgSO9ffss47Bv4rst+K/13h25c+F5oXvJL7VNoZSh+P5B1H6XHkn3XGKPiG5n5W4u+lb5efdcsk+XtqJ/eLWurPq+Of6OVrdv1y5ANf4hN+UT9xCnWzHkl/yL699nIeUEH9FurnPd6jlT+TfPKORfH7FTmfy7nQYdJfZv+CP5yZ+ya5Z5b3buFrrv3i+KUX8p5g7pNpZzL8D1m/TAVXwz+H/gfic/fsJ+D3wrxPyh/cY118LHgfPE+wp9h17L0q/STuqaP2qhf5v2Hw5z3lC7Wf93m2wl/ixLeWLoe/m9j3HfBeCl/ZvINr3+pbsLX8B/8jPnARP3dZ3uHgP27MvVTnfkegL3Y5BfxN/62OvpP1h/jx3+A7NPHNxpU16CoeX/YrLcAjc36tXm/20Vr9xNkdDC4l/7wb8D26it8PyH3NPfKeInnk/dlK9Pul8fH73AOIvfLXHfG/Sv28bzdQu+k/O+Ar/ecN85G3wPjT+NEXE19GLqeBZdDRTL3/ivMtvl95i+/fkk/WDzX5r8x/Mi/6x3q/Djk+g56X4HtJudy/PcI88Bb5b+p3z0vvofxv2l/C3lqQ02T+KPd9tmMvlcDE12f/KfuR2Z/MOyzZnxxIHtk/r5jz/qxP+dMG0nln/SrpK8l7DjuYmXU0+/hY/hnsriq6hyd+Q3/uiK7i859z8b8p92hyr17+ZbnXRC/HZL8962/9fzz7HKH9R/HfO+ty8O7sP+S+V9V/4xlV6d94qpHvseTXRPo0/J2nfNaDB6H/Hvq9j1/KewevksMo8qtJr8ego5p01jczfM964C3572Ydmf0T7TfV/k74v9L86iHjzk70twP8e9FfK/A18s39kIWlBVg97Wfdo/0zlF+acZ495f23j8k18a15/zvjxZLEW5FLS3L6Kvf3jWd5nzfvneSdkz7sIu9YFb9fNQbfVaSfTz+jn7f012fQnXsEO8vfI+8/Z38Xv/3xN9R4+G7RO2CJP2xH/xk3pheNH9sWzasr5h0V8sp7cXOMe3lH7mv0vUe+bdGVfrkreAe8ffDVvuj+/bf6XWvw0NzTVO9G9nYBOz8QrK79cQVQ0h1cCJ6VOH36HU8/eWcs7+tcg79Z2ntDvWbK9bA/kPEz42bWP8Ptl3TE/83Sd8k/mfyXq/+3/CH6yx/s+gz6eJCdbJn4CPbWFb0dpS9J/Ay9L8y98JzjwV9Fv6qU+NvsN2R+yX6zvsx6M3FDea+sXcYt8LPsT9HXRP18E/+UeNlrye85/L2a8T7xhPjJOrJP0XpyBvt/HPye/f0NZj/69tyDVy/71Vf/x/7uvtIfoX85+DF4NP6nlagH5j2ivI86M+fbeR+D3B/O/rD5ybngoLynQ37PZv2K72vRdYb69xo/V7HjXvr7A+Q3OOfhxscT9cfs51bnN37Ur08yD31Q/aHkk/8tKH7/6JC87170Dl0Z9cuQe+6Jl0ifSv73mn+8RK7P84el5Jv3BvMOYd4dzPnOz/Jr0HPeIcp+UTn9KfcTtwAvgr913jeC/xDpG/iny+Hviu8VuQcqP+8yVVUv7zM1KnpfJO9lZH4X/5b5eC/1Mk/P+9Yr2cWKvNOkXN6jPJJ+p7CzlokzVH9Pem0J7pj/o0FHzvPbs4+c8x+SeG16zfuF9+uvzXK+w+7y/mE5/qG5/Cnay3t0eaduMvzn67cnoH/rjOvsqxb5lfc9caOL5C8yXlUCb8o4Rh+JZ1zBrhPnWJv8zya/Z7I/Qb4n0O/upQXYDZ4x+uH26je0fhqEvm3U75x7gIm/l74+94hy/569v0/O++gHw+R3J8/Ez+0p3SHzYf29Cvyv4fs38rmA/BOXcRP8Q+TfZ77zcd7dIO8T8r5T0f559tNzn6kXu1kh/1Z0zCa/G8jny+yHFd0vy32y3C+rhY7cL7si77OQ+9HaOVf/X4mevKeVe9r1tF825+/kl/O/N9CZ+/HZT3tLf8j9+Pz/wGnafTznovDlf3vyfz255zo272Pifx6/d7LyC5VvqT/k/8Ly/2E34G89/j/WT4rv13zC7yVO9mPpvM+/OfzZT8w+43653xP/4vuQxImjZzT+c5//H+0/AX/eg9jH97wLkfsriZ/aS7kH0ZN7iHnf+AUw7xznfeNR1s85Fyo+L2rHfrbL/amsv9T/iv7b4esY8A7yuta8ph+Y8SH3199Fd/E6uQf72CL7MznP9T37n0+T36fqjcN/3svfkr53QE/2jWbDl/dILgRXs+9T4N/D/PHVxHXAMynn5frH2JzjKXcWPAPIrx597kC+2V+5Dv691RuW+5J5JwjM/nHuK2b9lPtLZcBvwLz/3BL/T9FL18yftJf95dxLe6pIvnnvOO/i5N2f/L9C1kU5P1hdWoBXKPey9heCG7W/JPGJWa8lHlU7D/zH+5SvGB+zP7A/v3UAOFb5FxMPnXMp/NbSXu7J575lXXznPmbuXy4jl/UFUELdJUt938e4dwOYeOa8r3Ucf3x84mrA3B95jb77gnXVG4y+K9Gd/7ebRV/Xs+8jybPEOJT/mVomv1bifei/hvR99JX1V8657wWfTD+AP/dZ8w5M3n/ZMetG/bctvt5PfCa/uhy8UrtZX1ehtw/hqYvOxewj9wbqFfF/T94HY1fZb0sc9OXs5VbpgRm38FETnT/rLz/U/zf+yPsB9t0GvhqlBZh4vsbs4DP9+nMw93X2JL+e+GolXVb+Gv7wa/Az40veN8p513+9o1KrSJ/Rb0fy6a6dvPfcnB7a532M+Kecc5ivjNP+VPOfdda5z4Cd1d/E3nP+W/z/HIk3SvxR4pFelp/z5P7ggJwvJ26PXrNfnPOYnvjrwn4zL8k93WX0u2/mfWD2D/uRy2F57yrjt/p5vzXzuczviuNxF7O/o/FV/H78hxzG4Iw/vu+e+T37SjxL4lvy/yx3J/6dfexunpP45P7kk/fzDs39TPJ5SfVHwby/UKpcK3SvQl8F+vqJHOZo/yv5qxIvnPk8e8o723+w87yzXQX/ua+Ze5xZR+7Bbz2Bj7ynmPc311j/HKz+Mv0hcYCJj0w8ZOIj71D/Dvw+D36U+5vgCDDnv+3jB3IPN+fT+Mn/A/2R+9LaS3xoV/0n+/MP+V4t+9L4y/3et6UHspsP8JH4tN3JNXHB5xa9N/II/Uzid+qbh/Si/y/IZyC9fa69A9GX+O0H1c87d4nnbpq4TH7i6sTxoLcDfeQd2/bSeb827yZcEn9Hj3k/4Sf2dzS7yTv0J+ofc/mbmvzQLDDxXbm/mXjaWfg/Cv5f+KUF+m3uOeR+w1L6bknu8xJ/if9W5mdrfN9L+iP2MYhc76OPTxLfGvtkL/mfzYnSH6p/Fvvr4HsfMPf0FyTuHT15pyb3V38pgBJqLvkMbEI+XdlHzn27See94dn8be5dNUw8Mz2szLla4ujUOzH+PfETmafmXA69mfcXx/1kftObvjJONyXfjNeDyOOU0gK8gLyGKp91Wf6PcX3ue2s/59OJt8i8OefTH+qvbfmlVew3+4BXaD/rsh7SE+Tnf3fzP7w/SOd/ShqbF11l3yTvtD0a/01+2/IPeXcq96MX6x9vs9Pz8LuIHorj+bJua47/d9nPBWD+j7gsebwrfTR8ucd+pvwv8z6274+Rf+J3y/DvifOpRg+J7/mefd0N3gWer1ziL3Lvsvg+Zu5/5b5X7n+1kP8cvT0L9mJn+T/Y7fJ/xeR6v3J5JzzvuuZdka5F77seh7/90bFr4lLl/0AuyzM/5J/3wX9Z41v+zzv/8/1h9u8Tz5BzM/rI+xlTtT8v95XhuTD3U9XP/dw/Er8tPUT7l2b+knlt0f37izLeFt2fGUOeu2R/Mu/+gAfT5w+5p8VeEn+50Xwi734dVIo++CvoHy+z865gzrN2Aw/DT1v5+f+g2/TvRfzGefSd/1H5NHab80L6bsj/3ILupvIbso958psab54wDj2ZOJjEfWQ/C97LyWkOfGsT74CexMn9JZ245ownGWfyPzG5zzvK+jL3eheTf/a18/+Nb5UWYPa3c5/uAePrQuncL2+ZfdesA+F/MPzzZ7nfmf/brY2+J9TL/4ktyT1p9f8P1yMDH3icdd13+NfT/z/wSiFaIkLq3Y6GyCYlOyplltCQ0bCLUFFZfbUzEhWRyIii7KxSMhpkFDIyQ2aT33X9Xrf757o+r+v6vP55XOd5znmcxzqPsx7nvCZsV+r//6ZUKcARexfghU0LcEgBlJoKbgQfblCAlXYqwD0rFeAJ9QvwCvWX1yjAf8G+uxVgM+WalC/ATjsW4NeVtQN/Dfkjdy7AV/YpwDrw36Lcy43QWa8AV+1bgHOVH90E3fIr7F+A/dF1WUOwWgEe3KwAL98d/fCvhffJ/Qrw3IoFWF/9btJfNi7AD+sW4EpwR/TeBn/vyAF9N2inhnaGo3cKPuaB8+Efrvxo5ab7vhv8/yq/E/zrlW8D//G7FGBLeh+8QwFuS7431CnAw/C33V4FOIT8mqpXQXuv4KeF9Ef4/Qe+q9DzoPrjyGUiubeoXYD18FGuVgFuRn/ZcgV4v/q3o+9b+dPh/4F+OmxfgO3B2N058FdV/3vpOfJvQG8V7ffD58c1C7Bz8wJcyJ6HKddfegQ5t1K+A/gJ/BvJ/wjpydIN1fsI/Z+rt4AdnoLeNeipTG4z5V+xRwE+SB6L6fNs/Wov+H/H72m7FuAj8B1Fzx+R4xztXamd2dIt1G+gXCfwSnb4CP18ib9p/Ms1yq3B3zfK3+37HujbQL47o+t87ZWB7wPpq5RfAF4C39vwbZKOviexg+roq61eXfoeDX9X9rsIv1epv5A+upPvyOoFWIfcRkkPw9+x5HuS/EbwzsDfB9rbRvsrpE9jD83R9ylYBr5L0X89v/kVPc+IHrWzkT02Rvfl4NHyf4RvPvw343Mi/k72/TvfW+jPF6F3Kb/cBx1b5d+s3l/0fpH0A+TQXvt38Sfvsq/vwq/8lsp/pv2P8XcY/ptvU4BPlSnAadILlateoQCP3LYAb4PvV7Aneveijxu1Pwv+swug1PCSAhwjnf6xQn/7DDwL7Es+E/TLb/i1/4sfkD+CvneFb0/167Cfk4wnJyn3jfH2F/mHSl+M7sOkj4K/svH9GPq5Ft+nkE8X/WOM+geBtcljvXq/go+gZx48LfiVA8Gj0Pky/Z0I3zfau0B7XdC/D/nfBI4lh1XyO5JX+v+n6i+ln4V7FuD22ts++PSffsa3fcjlGHi2ks+h6FoAToD/Z/VPxNd69erBP1h7V/H7i8wjnsb/Uvln47+Uer9o51L81VT+bvKcrd810n4H/ecO9V41/v1DTmXgrQPPK+rvgr8Z8P6gfi/8fY6fTuztVPA0cKnynbUzADwLvuPUf5ZcDyHnytKZ/zXmDzeib7R+0JN8GpfgF2wKVsH/KPJfDu9K6froa8pv1CldgM2k3yX3I8lnFv/wjnZ7sZ9dyPMqcKbxYQk+y+k/I81Dq9PHhfJH6hcfkPtWfD6A/3PQUQ+9K8n/EOllmUfrb219b8k+XlP+QN8/gvfjzE/0j53AquAB9DVevefByfA1pb8LyGsM2JN+tqL7tpICvAXcFr1faP8y9tKE/K4FZ5PPA+yiuvKna/cU/M0zvq5D1yny96b/evz3cnKtLT0Wvqbs4RH8Xii9K/xb6S3j6hbpJvL3rlqA+4BV0Hsk+nfHbzf6LQV+j75z8FvN+HsU+xiu3DLrouXgMOPlZPTUM/99VTsnlRTgOPYwizyezPxQvbfkdyO3yfifRW9D2XkF9jCCn1qq/I7wbUDvCu1Mx/dB+kfGx4yLA+VnfJxqPDgx8258DkTfC/RVQ/kB8Owr3UL+DPJvJt0781D6GIGOH7Q3Rf1O+DqEHLvRx/ba/4i8d+U/5sPzuPyq7PemkgIcDM4hj5vJbwP+mqo/gfxm8W8T6PtddBzJvrbHb3P5X9DfLvQzXv3a9HIivkvFvpXPui/rwHPR1xBsSh4HaK+L9Jb4e/jei12i/wF2+5Z2p0kfKH8svTzLf3RCz0Pw30U+G43DDcjnb+UfBRdmPSb/bfX/lL4M3c/EH8qPPvrh80LtRz/r+fUF2j/b/C/zgQP5tWPZyYvouZ0cs+5cXrT+7A9/P+kGWadq/0XymUF/D/t+NjkPkt+Jv+nq+3TlBst/Db8Zb1+RHi3/Pvr4Sf5tvtckn9hl7PFZ6UXSZdj/0HyPntl/Q+uDK8n/evo8Q/mu0qXJbyH6Dyff2vg/zffYZSXt7+v7p+xuoP52GXmsKarXwzzqKeX7aX+tcq9bL9xNHkfy9/34na+Vmyg/48YH+DnAemcK+tdYF6yQn/XYVPl9+MfXyLG3dE3012Z3teitGXkcFvtgj8+y053w2Y38y6LnAPWfU6++/FvpqzX9/Gf+lvlE5u3oP1R6vv7Wl1zuVL6s9v/AX0frk/7gNHTsw74eZPd/yW+qnazXv2MXpdUbxp5+ynyIvreA/2aeqfy96PoUzP7dNPQ353/WGQceV+5b8lkh/bT2bjZ+jMLfMeR7R+RDvx+Sw53ks9k8rj/5dYDveP3vWvUO059Phe8F85c/6beS+h+ib6D55Mvw/KKd/eF/mX3fGj8vPY4dxC/fLB2//CT8j6vXx/dj4L1K/m3Gvdn4/Djju/wu7PlMcAK5HU7+76o3yrh7O1hJO22Mt8vKFuB7+sNA8j1Pf71avxgATqX/W+h7FHmOxc946RnsqS28/8cOp+LjO377Z/gW8teN2MVSerlWP/xe+ib83aP9M+itvXrva38XettTe72tBzZmf5Lc9lO/rHQT8j1T/zgD3F+5xvK3w+84+A7Vbjv9by92/ypYE+yD30vQEz+xE3q74iPr8hLtrtI/WtHzcvbZyfffsh+c/WL425DfevY0JPMM9XpZf3WVni9dh/38iq8z8VuL//yHvb8ITpI/FP+36l9H8hvl4VlOfy3ZVxN2Ff8bf3w+efyMz+7St+KvGflUJv+T0H8f/Yxl14fIfx7fs9F3Bru8Tv4l6F+sfnv0fQ5Pb/ZZV/03le9OHs/EnvDXnf2fB3YDp6K/G3z30f8EcnpK+9VLCvAr/mFP6b3lZ/+hNblk36GH/GXoeQp9m7VzCfvZjr1cDs8y/noJeTxFD+v5zWpZz6g/Sb+4B/zLeHOa9q6jtxnwXC99I/ntln5PLw3QMR/++tq9U7td9IsX1S+nvVe0l3nfKeSwxfixFdwMtmGHzZT/Xv1XtX8g+e2j//zMzzyk3r7wZ789664x/OtT8gf4foP0NupXRv8P9DYX/5+Rx0vK9WV/T4JT8Fs5++rsvzs4C/2/4Osd9FwtfyB++kU++m3X7LtJ70Men5D/p+BqsKX6s/nz9eSzMvv6Of/Q3mfgavAs/H6vXgl+j/f9dPI5BP7sg+yov85D33rzvznx8/gfjr438HMnvK9LvyX/d+P5++hOf07//VS6i/56Ozlm/+N69DfKuYj079LnlRTgfdo/InaE/vLoboGOfvxzzuFa4W8/sDlYml1dwF+M41e28LdD0Zf9s+w3Zh/yE/mP67fb4v8b/eM3/W8+fb+ovdr4/wie58z3/0DvXOl+6j+Fnlv49TNK0IOu/dGV/cgV5HMX/cfeY/9N+cth5NkC3vPZyWr4N2q/W857wPPAjvBPN14MybpYun7Ol+CvC9YDs56vyJ+9m/Nj6fLq14DvMrA7uCnjPTn0xvdF5HoZ/CdYt3Tip69Uvhb7vSfnW77fT14l8nM+djt5nJL9aunz0Jvzhg99b47+R+Gdip6Z0kewn+XSv/GXp9PPE/JH4Osd+r0Lf7GvKsr/k/W3/t0Svpxfvaf9r+E7TP31+M0+z+9g9nm2mL9szfxZ/9qH/B80L5qJvs3ml0/o76PNg6qje570veQ7Rn+4Wj++BmwM//tFfnGI7/GPu2deor3B8udL/8HejlLu78Q/kM8B2jtD/rfk+LH6q/mFd+H5VHpb8hzKH+d84xT2UDb7TCXqsbOG4CXan0r+q7R7PPln/2Qzua+W35EdZ//kB/KbSc+v6B+nwD9TvZ7oOVG6EXudpN6f9DONfO5Vv4r5z0Byqiz9CH4X6V/Pqb+H/Gnwf6e9M8l3Mj/zEXqmsYcl8A1V7lj2WZNfPwnfe0qvUW4NeVXUfmn9YVvyqQr/R+CTOT/WXsarqujJOFaffb0Ef33+c+/oXf++zniyIznsAG8f/I+ij+wPTELXq2Dxftho5bJ+GiUde8g+W9ZPH7Kn4+ntUOWP137O/RqCf2Wcl5/z6ZxL32u8yvn0Bng78yvpb13Aw9FzCPpeR9fExKfQ16icjys/Q/vXo2uK9k+T/lH7F+lPr4EtMx9XfrL+84by7fCfeJK+ykVv0WP01818/W/r+Lf1p73V68+uHmcPZei7nvrj8XOU/GuM3+2lGyvfGRyrPx+Y80P090icEvge+dzJXl/1/WzzlcTP/IG+cux3d/059n9pSQH+gM6/+K+l8nNevFL9nCfn/HghOn+XrsjfbcDf9Oxna7dr5lXk8yN5/wD+zI9WUL6h9g5CX+ICPgUH03dv8/CLwL7aPYt9ds9+beYV6J2X80PfS6dfggclDgD/ma9mfnqc/j9RP7sbzD53e/2+A7iJfrPffQz866SPQPeViQ/TH5eC67U/SD/qWFKAtdDfRv416s/VX7PuvhMfn+D/WPb9U+bD9DkG/rX0+Yv8hfrZKuWy/7ZEey2K9uNOo89XlL8Nf9nv/om+OtL3t+onPuhH30fCn3nwRfJXkGfOXXIec7H8d8j1BfTcm/gl/L1ILw+R02v8y4Pk+Y38iuRfl78+Fb41iS/Lfp3x61H2fZj2WvJv1fBxMPoGsO+26u2f9T38i/ib9vjoSG4bpBNPlviyxJtdRt5XG9f2BB8Ed4P/PP6isvQB6H0DfVPI44TEOdF/18QXae9G9MxK/Gb2D83/Vpr3nSyd8WQ4f9Mv/kz7ZeHPPtU/+kn2S2qTwxD0XZW4ROlz8fM2//ghuBqeKdpbwn4Op9+3pf+Wn33PnfHZg7yz/zm3aH2W9dozmaeQb+JOEo+yPfx/wtcz56fgEvk9rB8fgP87+VvJ90l21QrdbdhnFfLtof2b1espvRP5rCSXe9jfreA96B+JvszfMp+b9j/k8yo57i5/MfrHZZ5JPn3IY0vR/GAP9p95Qh3tbkVH4oDfYR8t9fd34alBHr2VWwXfLHbWFVyPvmboHWv++H78iH56qHHpNPPGkfI7qd+6aD5bjvyfxs8u/MMX8F2d85Wc75egEzyU3G+F70bjyQTy+IP9XKv+Pvjt6Hu57CNqP/sn63Kuyy6uYT+N1Mv+Rubh2d+4gT0MBk9HZ+LQNuHvIfU3S9+Q+C7yOQfsCj6Pjmbaj3+Ov/6PfzY+NMi5HDsfgr676Pco48yf9DW8wX/z+yH+B7LXufHD9PESWIXd1ADbw/9l4uMT/5j5Dn7fs3/dXX4z7X2j/ePpaRo+Hs35Ofu7CKxHrrXlP1gA/4k/noKvTdn/o9+vtbuf/HnqH0we6xMHjp6G5Lyd8WdbcIryi8g/+13/y062GJ92BrNP8lv45C9aGzcays96+gLyPR89D9Bj1i8nsede8nfVT7P+eSXzSfKYhI6H9Y+/9dtFJQW4Fhwk/yTtnQyu4Q+z3nuPXXRLvyyAUvXpfxX5z6a32NGX6LuAvY5G9365b5H1ALlfRQ7pp+mfv1h3fKX9xIHdTh4jE0+Y+FHyvRV9z7GLKYl7lr4i9xPMXx/X/if0ewz8OX/PuWnO4XP+vkW9beFtov5Y+JfRe+IYcg59OvyZZ6W9yfTZSf88Hb6ZxpFjtf+8/JvhrQlv55zzxP+j61Tp7MM/pv7Hud9A/2XwUx9d6/SHHeA9iryGoXeM8nfCs6904hieKSnAX+X/Jv+5xIEnng4ft2j3QPI71nh5Ej+zWb0e2p8N36fgt/Q1RrnZYOLyOmrnSvhPINfRio0Dj/N9O34/9n+I/hT735R5YfarjcdllL/P9yvw9Q77zflMS/ORI+F5qugc8znj6Wvo747+H/H/Bfuqwk+skY7997Wu/jXx9uRxTuIz0XuNceZK9T9I3DD9/0t/WVeeqX9OMJ/+HLwLHK/ckfpnS3Bp/Ir+MwL+uvEv0m9kfVVSgAvBa9hB4vSXZt9fe9vQ1zv4Lz4P2ku98zN+0nM1eObrb3OUe1d6CfgOmP3d89H1JLs4Dn215R/D/3cETwFvxF8Tdpu4hkuy7w0eQD975X6F9Bz6W4vuD9jZieRQU/+upb1zs29mnN1EPo8Yl3NOOkP6PflX89/92UXirBNf3Ro927O/8uAi+W+w9/XSQ9h14/jnkgI8Tf4kcpyhf6zT/r74KZ84KOm/+Y8dwAXGv/MzPvIHiW9NXOue5HsvfImferAofuom87XL4N0AvpF4W3p+mj5+Ju870Pec+n31rxfJ6xntz6W/XeF5Ff+96Ht39lsdPCpxs+RzZeKNwcPwOxM9r7GratlvKIoT3DX7vPJPMB5Xhf9fcntMv5zOXuvkPgW594NnOf6ao3+ceeGr+BtiPK+g/W/5lRvVPx0dY9DfoaQAn5b/Fnn1V64H//gZu3pMO9+S76P43yvzMPLrCf7OP76cOFT6XSd/D/nL2McOOe9K/Jv+0FG93GM5Gz2f+/4lPJ9J5z7qSPJ6Hlylfr/E0ZFfden7iuKXL2WvWde/XLS+30N7ibPNOV/O9x6i7+PY3QL+LeeH80oKMOfFI6RHkP95ym3NvSvlfkLv88p3U64mfbdH/zr5HfBRkZ2VyrrF9/sS35t7B+xvIn9zjvSxuUdHP0fAv5ndtJRO/OP99mP+xfd+xo+56Hsi8STkvkB78xKfRX5fobuCdPaLEk+Y+MLXyWk7+qnO3x5Nnoezg/Ppp5zyGS8WkUfir+7Xzjr5FfWTN+S/ZDwahK8hYNavI/jXn8jvjtwHwt8x/M6bibsmjxOzT1wApXqAVytXIn8of3E7+sYXxdPkfDbnsjmnnZn4zqxflE+c5Rnkcwe9NsTvBOnEV96U/R/wc/I6Uf0R9Hk7uBd57wtf+tegnJ9lvxr+Drlv4fsg7ZdW/xr1M088jnwqJP5G/hPyc5+xofx/4VtGPsvB3D+pSx91EicAz2X0eZz+/hn/lzjKV8l3Cf0+Zpz6N3Gt+s8w84VlOQ8ouv93nf7c3Ty9G7gFnuxPPwdmfzr71evZ487wVtZO4lezr9UWP//knFs6682x5H8Vepvibxn6OmfdQp6vw1Ne/mB6WcXe9pN/ObvZhM6N2nkJf/9qf3/lK5DzlKL4ueHG5dzf65zzgsTV8tP7S1eBrzN8vTI+yZ+Nv6z/Pya/s/GX+9s/5Z4VvXfR/95HX+4H532Cr7WX+8H7obseWDfx0omHJLenE1fCnstp7zr6zv3gI/C5n/bfMn6vQMc6MPcQOtJP7rcfRB+5314392HBVeg5L/ddlOsZ+uTnfvpK3xtJ555n7nf+Z9yjt4yHeb9gJf/6EfghWDr3VxJPBm8V7XeHvwJ7rUgO18ivSD6bzBvbZ99I/1gIf+JjXtDu/vKbZP6J3spg5teZb6/S/3dU/oui+Jve/Ec7+tiTPnM/7mH8XWj8vBj8W/kr9Pt6Oa9JGv+N+K0G4BnksFH9ewqg1Pb0Xx48AD8jtLecvWW+90TOi8gv95I7gN8lLkq7fcAr8bc7fc+F78Lc50ZXK/jrkd/tyk2Hf6P8y/W3rMuyTutB3tX0p2L/8Db9f5f7PeCPYOI4N+tPrc1D1/IP49H5iX5RDdwNnI3en81r6sJ7qf6/Ju+MGBezX1lTOu+rvATfYPm5Z9Qg96+NB9+j9xX215X9PMge1uj32bd+Wf0+2b8i/8T13ah+ztW6mMedBeY9gfns94bciyP/4eifl/cH6L268j9o54ai87Wct+1MPydaH+UeWe6P5fw589rMZzPfvY2e+2c/U37x/nwD+LJ+e8s882jymYve+vQ2E55t1cv9+cz3co7xO/w7FcX/3AZuVD7napOtX76C75nc9yaXI/F/NTpPgj/neGuKzvv2YSc3oTP33jN/3Yl+u7LvzuyrceKBtFNL/gn63Qvxk5lno3u0/OL46WH0fyo8VfCb+8K7a+//Yt855856mT2Mo7cz1R+T+FR6eQbcX/0/yCPryTaJV01cEJj78fHruSef+/Fn8H85/zpLOvfnauK3LX5eQ9+T6M85xbnwncp+cr/4Fv4r8XGJizsVfRPI+QX4u5FH9qO/Mz70lR+7WE+/h/APuXd0sHQN5RbzCzPopyM8k3P/hf7GJs5MvcnoP4x/m5t7GtI9yb34PaO72Gd59OV9n3r8Vt73yXs/ncn9h7yXAO9idOzNH63mp5qrl3cGch++SRGduR//LHxr4S++H3ODdJvcjyTvnCefh773tHsv/hJPkfcJEneWOLS8T1C8/su6r0fO3/ijTSUFuKXkv+mualwbxC6vB7O//GfR+y+Jt0t8Xc7fmyvfEZ85bx6rX80xfs/Jvjn7yLlW4hiPIp9f2Ofl6L0CHKKdXuS33PyzivwP5Z+A/1f5vW+Ng7uzj2fzjgq9zlGulPQ1ub/LbuNPb4U/7zvEnyzNurfIv2S+kvlM5jv91F9NfsXvcnQin59976L9R7Ie1X9Wkd9qcDH9TaSvzP9vVq/4/Z3i/pp+PD33m0rhB7wQzPs5Xcjtcu2Njnzxt4Xex+YdG/QcnngB5beSVyv5X5D/NP37F+18Dyb+rQl7eYicrs4+AjkWz39Pyz5yxu+iee3p8qfLz75/1uW57/hMzuH5p/fMu9ron73Q8x6/8ic8S/ibVuQ7K+/OgC21fy54dEkBDjQv6AdeSE5r8Re/slfiUnM/OvEdYOL47yLfEzP+gBmnf4xf4j+W5f4F/sfDn/u0mcdsZ3zJfHCi+cpJ5JVzoJz/5P2L1fh9idx2w8dK+j/T9wr4T5xR9g+zb5h71Nk/bF0Ud5T5UuKPyvJP/6Aj5+AdEt+fuFewGvqvyP0adtUq51L8aeIRu9BL4o9r0vMx8F9L3pFX9vUyf66I/4uzPien2P8Q/FTIulT/zfrtB/5xQEkBTgUT75V12yUF8J/1XNZxOddeAZ6Kz1sS7517VexhBDmty/6V9OzEQUnnPZYq6s/IuT95dIdvaN6D47euy767+tfnPI18fpTfHH3ns9sbwTcTL6vcUt8/if/lP+5X7kr9uz9YHH9zBP/VMnG24JEZP8gr+zF12cVq+euUbwIOLYo33NV424A8Zsfvk+94/W/vrKfyPoT2tsFH+8Qjhk/48u7kNOWyz5R36M4qgFIfgVPAQ3N/NfFs2rsff5vR9yX/WjnrY/6wZubvvs9Jv2Ifj+DzpczP+ZWcU+b+Wnnyyvwp86nH0Jf7aqdoL/fY7iDf8P9k/CKYdzhPJt92YO47JL5nWtH7IQ8WxQflfLQtOnI+mvPSBcpnfZk4m8fRcS35/sVe3qPnv6WbJ/6p6P5h7t9uJc+y5FM1cczoy/upeS91gPS25Hulfp91ft5Lmwj/Bfrr++bFZcmpMfnfod4vaRd9Q3N/Ne/BkXfeh/g07+LAfzF8R7KHU9HXQntnk+vBOYeK/yHXxvA+xh7vwf899Jb3jPK+0c05X0VfA/LOuxi5/3Ih/XTXfhXznKp5XyT3pbLuzX0JdE7EX+KTlxh/xmT+pN5r6Ppa+VX0PYX93x+oXNbnl1kXrVS+Dn5mon+F9j6UX4uffizn5/EvYN47exT+xDUem/00/DZnTw/kXp56o+hhGPk+x27qmHf3ASdl3cveXiqAUkeoX71o/XtuSQFmHZz1bzX9L/FnF9P3WfIvLNrv6E0OF8Kf89ObpLdR7nL8tyP3Gsb9xvi8Ku8f8Fvz+Lm8g5z9uZy7Z100Fv+Lc88B38PxNwzM/PtD49UROe/JPX7pvJec/dEr6GVG7oflnCXvhaL/EXzmPYMjzZ9yXzr3o59ibwvw87v2jsn7sOYRP7KL7Ksm3jjvyuad2W/YY96XrQP/w/Dcj4+/cn8OPYnryP5k4jvuS9x77k9Kvy29P/m/nvv68Vvk1ww9TeGbqf336ffbxM2oVx3+zuSRd5XynlLuE49W/w52kfdlF8PfUPlz9McNedeEPD7O+3AlBVgR/Cfn2uivZt6/K7gbOBD+r/A3vtF/4y9D/sP4y2HaH6X8cOm5xpd5mdfhdxP6pppfXaN/3Jz5CPlvLIr/Hqk/d9b+6/pD19z7kH6D/L4nn+j3viL9rpQeQ65/kHfee9gh5ytgW/Z0HTs6F93n5FxNf7tWfg3yfBP+atZ3u5Dv6eSXuN+Z5JR44K7w5X28SXmnIuNY7I98dsg5QOxb/b8Sv6P+Gvp/Ej3Z59qiH2d/a1HifsE/6X8o+n9OvAN89cmzNPr3kx6N3qr6adafiV8vjj/O/Lkt+3jCOPWWcicmfoj/7Jk4RXLI+J241LIZD9G/S+6flhRg3bxPDO5MXrXyPhw5Pq7+Ivja8VtZ3xbvz+f94GPgWx59or80PNlnuSPvPbLf25TfJvsS2T9Tfzt2U4nesk5O/NE4cukPXk5f92WfCr15r/Jw6fnkU7zeyDqkg/wSdvM2+K75exV6qJX7DXk3EXwTHzm3z/tg9+d9f+l67HkW+UUOlTI+6ZeJL3tZugN6r6Kfyuplnv9N7vfl3Y34f+08RH85xzxcfvZ/HpZ/gv4bP99WunfOS/iLr7U7CH33wrcBfy/yW/XxMSzxksaD5XmXh/zG03/i6Z/JOQw8ia8fxC7Kqv8WO0g83C++51y7TPpl4guVuwT+XRJ/nfur6k1Q7hP0xP520J8OTVwBunN/t73x/Wx0NSO/RokPNq+cKH8xOhZkfRz58GvLwGGJRy66D5Z7+K0Tn4qu3E+I/Abnnq78WfjJe/XR7976363ql1LuR/1jHv1vk3hk9ZbLH2Be8r/ecTuM/HpBPxQ8xPd19o02k3/xfcTEP9ZKPE1R/GPWt1nPZ30/HD+J6zxTvX2l5ya+iD28rr2cB3bNPLjyf/PdP/2UnZW2nsx9iNyX6Jfz4+xHaL+B8SDvVe1IXjtU+m+6q2p/CXt6DJ3vSjfN+wBgO+WbJL5e+63Qn/PInFdmf+AO9jZXvS2+nw7fLfx33vG8Je840/9Z6ncB807vn3l/iH4rpT9kHq3+JPjaZV+YfNrnvn3RufAs7eR8uAr/kH2D7COcxF4WsLO57GRD4v/pK+89VSOXt8nhanzM0b9zb2AYOj5Bf+4fbtAPWknnnZOJ+LkIvsrWe7G/NxKPC/84eioP/yLl98h8oqQAz1Z/G/OavJ+dd7Ozf/+L8eNj32v5/gh4CPktpJe25Dgi95/Z89tgzl/yvn4f9OTdgrxjcBv62pl/fJD7+NKbpPdnzwvpI/+Hkf+/aJ+4XHzknfLELw6h39GJM805l/oTJUews77SD5NH/o9jYPwy/pfkfmbeL8Hnc+jIOqRN+jd5Jm5je/Jrkff1+PnW8O2i/u78W87hz+YH4t8W2A/Jewx57+xw+RXYW43EQbOnxGsP0v+GgoPBdfJnoWd27qGBz6N/qvF9Cng6/Zajrx/0nxeNE7G/Z+XvIn189lP4yxXo70Vema/dAg5Wfin5JK5qa+5RK5f3BHKudqf83F893vg5NON70fs+dYvi9i5nl79pv/h/i4r982uJz0y8ITs6R/5sfiH/9zFCujb+c96Z/fqchz6R9UTR/kU7/D6OzrfMW/8ybz1Deh082T/IfkFxfNO29N3WvOEn+1XZP6sAX2/wFfaZ/bP7Ek8JLsbfD9q7Kef9+Em8Y1P85D2yvE+2Cl95n+zcxPPlHmhJAZaQS9bnWY8fknczc35QFO99Kjy5f5PzlJyv5LylIfvYrej+QnXpvBfeTv8rfl8x4/Lj+kcteijurz8rn7iG79lpxmHdvdTXYO7fdPwf9JeCL+dDeS94R/RPp4/8j07Ot+fA2wn/K7Lfhu7yCMl+ffbnc1+/Ornnfdjc33+PvHKOkvOTgbmfXlKAWT/3I5e26f/y3wcTb5z++zJ6yyaeHh1N5e+N7z7wv4X/xAM9zC/3zbm49Ge5z8t/vMlvPSa/Dfx98XMtfEfjdzN6ZuH7THTWxfel8hPvnDjo4v9rayd/unXXRvn3oPdX9nUge2mq/HXo24u/rwGeio78f0XxeirrrHqZP+V+RNG79Xl/KPFHfXLfzvp8h4zf+nfr7L+T1yR4xuc9xOz/5N4+PX7BL50vnXex+kX+9LE060P2nP9nKn5XZ4JyeX9vkPncVDD3FyZlvkduv/Hzo8w/s57PeuDanEf6fqj2m/Gv+T+qsuZzH+R9Cvw9CuZ/XnKuM5G/rQmWJt/EK95Jvp3g2znvMdLfOv5zg3nIvXlHLPdPzb/yPu/T2pkkvyz/+Sw+BuB3pPbm8L/n43dt1jnqTywpwNvZUfH7SrGXauiIPcV+rtf+DuQX+1kK/yD116J7sPQH6Fhpftwi8dPsfWXmT/pL7lGclXuU8PfX3waAfem5Suazibtmx99rJ++zF78f/iS9ZfxvyK80APNOUN4HmqTftcdPU+m835J3b/I+Uyv85n2mX8nlZP7jnqxTEz+vvUrGpc7SnbIegT/n7MXn64/Rz9v64UfS5dGbd6XaqJ93MN5Xv39JAWZfLv9bk/25lux3kX53hHTe934YvyvMTx/NO4Tyy+U8j/wfKIBSB2SdKD9xY/kft8SP5V2pSomDlr4145PyOc99mr7vyXsl6H5cugs+D837qfSTdx/3kM55cP5fKf+r1EQ7+X+lK/LeNr+S++Tv09Mj5N1WulriJ/H/OrtYSz75f7DF8nvq3z8p1016APprFq2bs47OeyEj4//AxcrlvZE94Uv88WD+K+ufZeS+J/ouJ49L824FvmYrNznnj+ivgZ4F5LrROHt34ryz3w/fIvmPqj8v59HaeYddPUL/+X/OncD8P2f+rzP/r5X/08r/ayVuuZ/0v4nbAfP/mOtzDpP5oO9P6T81Swow/9ua/3HN/dTa+nUJWAu8QP6NxrXcW819kdwTWUYeFZV/LfGb+M+7jNXyfqX0wTlno48R8Od/XvL/LrkPNo7/yH2x3A+7L/MDfC9LPKd03te/Puvy+Ff5mR/lHbPMjzJfyv2m3GuqxI/kflPei8/78ROzDwu+gO8e6vUE837/Cu1OUb4DuXQgv7vZezv9ayl8s/B/JnqzTjgj7zfIz/8/5H8fLso8MfEl6uX/a/L/THkH5hPt5932j8kr77k/wZ9cqPyDuY+g/cnkk/jpg+lvZ/L8Rv/7Ft1n6YensKfs7+f/3DIPzX7vCPopA2/O72Ylfp/d/Gbe10C5+fh5I3HC7OKLIn+a9/Xzrv6P+Mv7+jkPy/nY/kX3gVvx72X0o9Z5zw2e3vxzHzD/L/1F7t/DNwrMPOnDxPvym++Cc/CR+6F3sZecLyTuO+cMuXf7mPLF928/xd9n6Jmpndfp+1vzgVvAUfC30T++Zm+nmb+VgOtyzkrei3Nuja42ia8179leP8493PyPTGv2M8243pw/yjr1D+NHaXZbBnww7cvfzffN5LFF+9k3/Yo95x3+vH8ynF0NBd8ix3LoW8vfJS7lT/TeDV/eY9wb/YmDSvzT3fiZCOacLPGBLZQfIJ3/9zxH/bw330s/zftw+b/SxB8G7wn6a86f3if/evKn6E+96H93frV+zuHZy0D5lfTnionTzfkPOV5KLgcpfxf51SP/qvTe3DprPvrPVP9/nct2yf2x3O+HZ0z+/1t7WU8uTPwz+18N7q3dxrmXwW7uYN/ZDx2Y+4rof75o/pR506vSmT/lvfgdwdyTzb3ZvM8Vf/yBdN7nOhlda4vO9xuhM/fZcs/tOvznvtvR5DOBfVwtnfdPsl9UHF+c/a8y6m2T/9ECEx9f/F55cXxac/aSeV/mgSdkHksuI/Kufwn6lf9/XLYYB3icdd151NdD/z/wK1opWrVIrkhKC8lOuiVroshWSXd2ZQlZilQSKrJlF4pKtugOWSqFhEKlTYksZW2RItv3nN/n8bzPuT/n/K5/Xmc+M/Pa5zXznnnNXF/sUfL//v5oUoAt9izAh/cuwDNqFOD1fn++cgFWaVGAB1UowFObFuCHjQtwSLMCvLlcAb6PzoDmBXj4PgW42u/7tSzAb2oW4JetCrB8xQIcVaYAyyo/gr+jqxfgBr+fhI939y3As8nVH/4tjQpwgfqP6xfgJ+BjdQqwDP63kvsf8pYjX1/051cqwNl+77ZdAd6t/T57FeCe6O9UrwBrk39E+QK8HRwJvofvn3cvwJq7FGAb/JeiN2GnAuzaoABfJ//B5NsB/0vAEv2+Q/9B7euQ9331c+j/A+Xa6h+IftWP2r4Av9Hu0GoF+DT5h+o3HmzGf6rT38XsX195SMMCnIX/KXULcAO5r0J3ofqf/d6IfC/RWx/6bkDfi/B3pPI16p/3+xr9HodnLDr38osB6u9R3p0ejsHffvodrfyXciP62aD9KHSbkXcU/vvSz1B0oref+NPPgcbjnvC3A3fQ/lr6v5x+NuxYgI2Nu8nqtyffNP3P5g/74ut2/ceQZy07Pa58oPZz4e8M/9QdCvA39m+vfTvwSPAudC+Etxr+q21bgD3hP43fnwqeAd7Lbocb//PhaaN8ED3PL1uAt4lDNdmhVP2gquSG7yfjeSd6uMB4/Ex8qap/O/I1VX5S+TX23EC/zxqX3+1WgLPp6Qvtv8LvInjK42Mf+r+4AEo+Aq9Qf4H2i8l9t/JQ5RL6O9N4Gq3fQeJRZ/J3Il8F/BxCH1OVR5CnRL9f2W2z8uvk+Q28Dh93of+peL6Z392rfCd7dzMen8TnOPAt+MsnvuJ3lPFxJf1ev2sBzhEnx/GPo+jhAnKvJ8+RpQX4Hvtu0O8QeK8lx1H03xiemejP0e5c8n0oHhxET7vtXIC/obuCfdeiPxW+yvg/uUoBblZ/Bnt0xF8t8+sR8C3jx0/j554CKHkQ7AFOoN/f2ONN7S/D/xvo18bPF+qr1yrAxeQ/XLxpC27S/yJ6WsN+U/nF/ez3uP5Dxb97xa/p5ChLvkr09mtpAd6M77HgDHT/jc9p5o9Z6O8Nb1N4y/OzW+izC/29Rm+r/X4D+12B778ynsE6+Ktr3dGUn/Q0396h33vsuwqdLcpn0NPV4A/4fYgcw+hnpXg5RhxtLc7sT55y/Gmr+HEaeDH+X8VHA3ZuoDwY/ieNt67qr0XnDfUT+W9rcAL4LTxX8s/V9H6V8jfqf+Evv/Cf2KFj1h/6raSHS4zrDvyvQuIuez+h3dv0Vb60AKfS/+raBXiqflnfxF82igefsONY9Mfzkz/50zn4GMluD6CXdWrWp2XRr4Xerfi+DexC7hP5S2ft6pJ/e3SOxN/5/L2t9k35y17g4eQZo/0B9PGuclf926Pfz3p1NH6PRa8q+k/j/0i/367/leStBd6Gn1nkbxD70dtp9FkfP3PUt1Iepv4N/Vfg53Xlm9Xvq/1n6lvh/3l8fIPfCvhpL770BX/nx13pow1//oD+5pkvamt3GnkbKrdBf7HyZeLTjsbhS35fya6Ps+e9+L0av/3J/wl8k/C/P/u1x38N8+m4rHO0y3wwiX8eR45G6A1EvzN8a5XLs8fu7P8j/Jv0/1v8600/h+J3vLj8pnhSER/NxYcLsz4Wfz6Gv454Vw+sbz3zAv4/MX6O5l+LlMvoP5B+LqXXmvSwP/76lxbgo/gs/v5abj7sQQ9/KGd83ioe/Ij+h1lPZ37jN1PQzXdYqf5v4/cy9ZOzzgHHwPcT/Tzo91fJv414uYu4XD/rPO1f1m5N1pPoT8Hfdvj/iH6qi3NfoLMcnubqd8h3A//bkd2nwvsaP+6kPnHysqLvhdbqe/L/l/D5BD1cB9+55KsJngeuV9+C/z4B74LEOfI9SX9l8L2FXGfR/2jfAy20u17/hfzzFf44Eb0Xld/Bf3Xz8/fgUPAych/G38ehU54e98Hf/ew/1Tj6hT4+xkcneG7Hz1btr8P/1+abyWmv3XvqvzK+hhi3Z4lTHxsXt8OfONwYf0eSbwv+7zPuNuv3JX18C+9P+J7LDuPQPyHxDP4J2Ydhj+Hs+Qq8FcjzZ77btf9c/47wXa//VHxNY9f/KF+h/k74/timAJ+BN/H+U/jX8b8vje/HyXclf56XfRflltrfa7zNLS3A98CL6WGW9ckr9LgfOffEx2jj7XD9DlXejpxvi0cV/H6w3+fivy37biLHZfzodvzvbnw/h59D8TGLfr4iVwX6e5Nf3sT+Dehzq/j7O/gG+n/Qw2D2fkE8yPj4zLi6Ufvr8blcub/y1fDshZ+5ypPp92Dzx2D853tqo/jawPgarrwtPZ9RACXPg0vBcyOP77UPyPlZaQG2pYd1xvu+9P4xfU/M/E1vK/FTz/q0Ofnvxfdu7B0/6sg+b4tfnxuX7yofwz5/4udl8mxVPiT7gdrfAf8+8I9T/yf9f6j/Kr/n+288/8g+VEN81UO/Iv0frb5R/J39lrPHFcZxQ+0Wwd+Knn81DhspX5HxzS8XZX2pvgP9rTF+5tDjWuWf0XmLXEPYYw15N7FLDeXK+q/Wvjk5Fxjv2S/6gR3O4c/D+edO8FXD7/Hk78rf8x3XwPp+EHlqi4+19f8RvarozabPEYHoHaJ9RftRV4FLxIOsY1/VflD2BfTLfube9DUDvxeWwhv/4ffF4/Kd7M+x77vq36LnpvTXBT8zyHuj8unwDDEfzmWvp5T74G83v2fe6YSfM9B/WfnqzIP6NWaf7NP87vfz2WFv9V2N7+xrDiDPg+qzP5J1cfZHsj6ezm9ng3eIwzW062y9WxfcBp819a9pvs4+ynr1n+N7MDxLzZ9H69cq+5vkfx88iH7n47e68V9LXJoBfsMej8G/h/YlTf4X/0Ll7CvON092Zd/sp1wovt4afrTf1e+lYOJw66xzxM9T8XOq8XKW8rfi5SWJb/i9CX89+EsH/E9UXq4+65Hn8Puy/lmfdDBuEgeKx/8f2rfF79/G4Ur4x6p/k11O51/D1cc/l4Nl+Uf8dRG6VfF/Fzr3i28zs+5U3zPfbeo3o98151bob8l5jvl+Nr0ekn1p7Tvk+1d5e3pfZ3w1sJ6pot9u2nXHx/v8tEn0if5E8t/Nr7NebQ/PHvDX8j18MTsPxG8f7b7lz33p7Ti/f5rzCv2OQPdO5Rfx9yj51uDvGfHuCPVL0G+gPJn9M79Opf/EtVbgquybGJdL0T9KuZN2s8SPA+ntH/ClfF/k3Cv7Bfj8EbwJv++pz/nnYex/Jf6vApeg+zP+s19/BP/8wHyT/ftV5Mv+zR/6f69/ZfTri4ut7VO21G44eSrj99VS7ZQ308fbxvkN4Hf4uom9n86+EH+7kX6mkzdx/XL0dsH/IPyfAd/z7LdO//vhfQFsxB9y3vePcdlefQl/u4G+sj5dk+8K/bNefc/6qI5+h9PTWvxkfs7+0jzxM/tLa53/PAdmnyr7U6ebN3aCbzB9NaePBuorgttqtwv+TrLerYrP6mDmzz/5zbbodqTv5vn+Z/+n/N6CfGfBn3Pb7G9mv7Ov+quN/0eta27FXxv47zBvdi5an75DvrX0n++dUVlPZx1jvO8CzjHfLdF/o/5r8fMt/7iBf2b+3YP8y/l3g+y/WLf+xu7XZl7K/hF67fC9q99H8s+x5tvMb5/B00m7fD8vKy3AfEdnfuqpfpB+vZQPIt9K+p5DH9O125s8w+jt9fixdmXx8471dNZZnfnLReSvn/MneN5H72D0Dze+9wPvg6cS+R8z7zwArrX+HZbxym/n5lyZn7RjrxusFwbmXBb/2c//nlx/61+RXF/q/xN9NgcvoZfv8D8YH3frPwj9j/BfXvzOOet0/E6mnzXWG8/Cc41yO/0HZn0i7k5WPgr/49kzeRuTlZvHfqUFmO+H4vOft8jfXf9TyP0s/FWtz/7mF6fr/wz/G5b9c3Fqs/j0E3r5fniKXqcmzwD+i4yPOuhcZH20IOc95O0L34HaDcDHXezSlX27kuN6+sv+Yrnsa5C3DTlHGb9LtevOvz5in8Tnk+HPedRycmzLvuX1+4R/XUDew8xHR4B7+b0B/nP+e45yBeWc/2Y/8ZXsx4h32W8sy94TjbuvtKug/w7Gzc7g6/h4ml2qkvs9dDbDd2Dyj7SbS393098J6CQ+dYE/8Snxapjymfl+1S/5SU+q/wv9Q83vW/lH8gNGg8kTSH7AMvHzTOOqF7vk3OJL8Wkduu3Il/Ot/4g7XcjRFN+xUyV898Pvw/T3qfKe+D2XHoeje4D6zFsV+Efms8xjz6N/uvJzyq/leyDf68rr6Wly1kf84VZxdhrYGh9PZX8b/ge0v4X8Z7Pny+rfpNft+P9t6H9Lf9XQXcE/nvH7I/hrof1u8I82//c1ro9K3hg8i6xH2uq3q9+z33+H8X2p/p3gex2/r5Wio5x8kOR/bDGefgP70Mv0ovPZU+n1H/rPee3NiYvqi/cP74H3H3YuYd9xyUOg327w7Z3zePqrR66R5Mx37RPozeHXybcayY9uzf688h7qe+Q8G73kjz0F31HgS2BxXuHP+D4i8V/8qwz/XPsd7fn3auPpFn7Qhh2z/xG/ezN5PfCOTf6O8dSU3mbja5N2xecJOWdYpv448h4LHgP+gN5E+Cew06nwHU+eu6ybX4P/Q79PIV+tovO15cr7kHdb7fvTdz90P+NfR9B/zrXWa3e3+uL80+Sdlsv5PHzn08tJydck/574KYefSsZHefReQT/zUjtwiPafiNtLyfciO9wN/yr4z/R9MhBf99JPJf5ZP+tj8mzWvy3+y6C7WPlY7b9kl5Oy7qOfj/A/njzN1f9HfDsL/Yf8/jN8p+ZchH6/Ee++JMfAzDfqGyr/Tq5L832tfiP/WQPvj/yrM3+Zwf+z7noenJTxlX0Jer0RbNLkf+vz+538c5/ED3RvAYfgM+d7yV9I3kLyGB4vmv8z32f+T3wtp/898F7Injl/r0IfL2p/LD4+YJ98357LbjXEkU+Vj8VXZeXK9DMXvRkl+oM3gFvRv1n8WSLubEVvFL5eaPC/8jUqLcDX8DebXgfws1nKQ8kzkl/fAe5Gvsk5T+I/ybdL/t1m9X/j50dyFufjPWE+OgDeY7U/gH/sS//Ji26tfB79JD/jwJyfw5P9jWf0ew6cBOZ8elf0ZpE3+xiDjJ8y9NvL+BhDrqHJL0h+HnqN0e+s/vTsTybPDZ8L8v1vftkeHENPB+Ij82M95bboZz/xV/2uS/w3Pyffb0ryA8A+YM3EN/pcCm5Ini//6IBu1tnV6LsJ/ovzW8YaPwvZN/vqiddLlLP/XYe/Jw5uoq8bjIcp9HkO+dqUFuBM9Otm/czvkked+XVEvuf1H0+OnHeWt/5LfuGLRfm557PvC+qfhv8i9HeG/yd8vYPf25Lnk/m2KC5+zD5ZN/TC76bED+Xb+V9v4+8S8EP2Sd7v9Ob/K2el6Fu8vBbM91u+584xX5TjZ0eTrwr/z7ln1tXF6+2Wvh/u0u8E34HvZ33OH37J95/+U8g/VNwpy4/KgckrO018WZpzLeWcv3U0nleQP/nQ59LPWO0Sr3ZWPpt8M9i/Cv+pDB7MDrvn3BTMflX2qZ7E7xX0s4w8g7Keod914HLwWe2bwdcSbA4+FH2z26W+44aAyWPfnX8eE7+k71H88036yLlH8flpRftx2RfNPunO7NPEvkX2VbPPWi/52Pwm9xVyzpf7HeP42dna70y+x/nnQfxnBb4uzX4n+6zN/MIuNxkPZbJOMv7eIU9N8aO6/u8of4GvW/Rbib/L8P8YuQag/4j+54n78at/yJn8+sbWAzmfbaSc9eMYv9+ifc4dZio/xX/W8OPvwJyvv5TvFHByzufwfwn5tvv/3M/J/Z6sGw8X/3O/56ic95O7KvvkvOkh88J76B5rH2BU8tntP12QvGPl29EbZNyuZL/cL8l9kzLiwjXo3Im/4fBdzv4rrXPzHXwV/d5jPA0BT7GeGIn+NP5bG9wzcQL9m9k/5zonGnfP6Z919fXa36m8RLkh+9VIXqHy+Tlfwk/yAc6HN/ebjjT+poP/mCe2wUd//j2T3J/6Hq4N/0fabxIHPlF+mDyb2PMY42Zd4ov6MuRvRt8vJi8n5+PkvRDfZ6L/Cv6L9xuyD/Fr9MWud+X+UvK++N9M4zL56RPxk/z0G61vHgQHgtfi9yTriewHbM79FPxOor8LyV/8fcg9S6aJ26/h8yL85H7Edvjul33X7Ofwqw70ejzYW/tu/HkLPnfJ/gE8A/D1SvStnPX7meg3UR4E/1L8Ty8twOSdXkO+O3L/kTx9+Md443cV+n+idy//W0ghif//Id8L9H4bPSX+T1Z+Hkze+jD+3g/fU7K/GHny/cHfJiZfgj/tzD8OJt/x4L/B5BfdQq87Jf+Nfrcj/xni8X34f5R+upH/FfXJM9oX3muyfidX1rNZ3yb/oB9/zfp7ZO4BZn4mzwn8sIb6vfBXMfcm0V9CTw8mP9fvByX/lN5b4m+K/ifhZwH8zfTP+UTOJXJO0Ub73Kc7rehe3QL2qcIuKxJvyFsL/kbWIxv5V0Plhej8nf0/sKV4/wp+3tGvf+Yt5b/yfWM+2QncBV//Qr9L4hZ5Yt/X1C9L/qr6/tknob8B4uVB+DrOeHmWPWtrn/teuQd2vnInejvZuDkF7EVvXfh38idWq1/Kz7paX/RJvlPiLTmrZv7ld18lf027puJL7uftxp9/wF89dM+k36rWkw8nf5C9sn7dNt+/uQ+S/MLoTXnf3P+1/uhLXxvNwy+rX4neFeqHiz8r1T9H/m3w93TuEaJ/Fvmey3cevV5Fvtxbz331rAuTv3EN+3wJtjIecy9hsvGRezPF92mqii/VwJr8+Dn0iu8Dxl/iH2/Bl+/1B8XvJ9SfYn2T+9U9yJn4W8F64iy/55524u/++o8D9yfHHfypmvjeqbQAd8o+LH628/ve7HafeST3cr/hH4PJ2TT3XXIO7Hsv+4yrlL+mnxPg74Hfjsp3k38D/Wyllxa5L5J88CJ8Xyifmfvh7Jp7/LkHvg6969nrNn7XT7kJ/m/gv7/g/zT6S37jAebFuegu9n3UAZ/n09cb5FhrvLcuOj/Nd3i+u69C51zxtDp8NfC1OueAxscnYPH9peR/Ju/zNviT/7kAnfuVH0XvFfp8Wr8PyPcheJF+q42X5F9+pTwVn2vFgz6ZN5P3Rv/96OdD/e/PuTD7PW58b4CvcfjH3xv6r2WnKblvkP2P5C2A26KT8/M6yU+jrwroJ7/oFv2eQfdL8uWeX851c56b897xyq+i9zI4FWxS5L+5R7WqaLwssC4ZZpx9mfNh/afwmyPoab743zLnY/DshZ9W5rPc339R/Ghv/sh+6vrkXdL7nTm3MH4eU96R/67FX/ui/LvbzZsd8fEq/NPoP++DdEO/K5h3Qsbl/hS7dOePDZS/YI9J2j8ef479xa1G5Ggtns+gv07mw8HJr8r7HPDkPtol4D36PQCuo88b6Pct+HL+vIm9s2+Rfb3sX1Rit+QhDid/9gFuJecisJt21+jfV/y+ArwSrIn/7B/O4Bdj4vfJ3zbeT05cA59O/kfR+xSj8ZF3KrKuzXr2I3G0OvwTCqDkA+1+Vz4f/uw/5bxrRfKA+dcc8bsPuf7hD4n/lfLdkvWn8TIZ/t3ZJ9+XyfvvmXPC3PsC+5XiW/2t+Dtev69z/si/PhbfPgIXiP/XaXc0/a8k1/nwfgsmfyp5U8fT/0/kaWz8XJm8OeP1a/r5Sf+B8Ufz0fycx5G7p3mtR/Jtc96oPvfCvmTH3A/Lvfuc6+WcL+d799H/v4z/njnHwc8Qfpf93OwX/Kmcffuc5xTv399iPC1D//zkR8D/uvFzeNYt9NUheYL8YS04gZzd+cfr/Lu779iN9jGTx/IxfhaAP5hfdiHHAfj5it5+LDqHfoy/jsm+JtgU/V1zHpV4CW9P8v/Gr66m99bwnqX+L3r/E9wHnnn0u5Z+vgOv8520Rvl4/pTv3UH4qYa/o/hH8tDWsfcK+nmW/52T/SLtqhgfz4pn0+l5GX/Ym71vxfcE5RHKGacvZzzx62bg2eh9Lr63V/6Jfj6kr4usi7Lfdw99Jp+7C35fRf8xcKb6E0sL8O3s8+Q+P/wTxLtHwUH8L+cKn+a8Qn3uM3Rhv2bq8z37L/bfJveH9bvMPH8JWDV5gAVQ0sS8lnc+8r7HIewzyfriafDz7L/D9wz/r4KfC+E/wfgbhY+y5Mv7OV+bj/PdOiDfG/rPwtdr4vc08A31y/nhjNwPy7lMzqf4z0B2yf5FXe32pc8n4LmEHi+n35wX/o2vnBu+rn/ur5Whl/3BDdm/Z4+Mu9+LxmPWB/lezDoh64Pa4s7i3D8CT9a+v/HQW/sblR+l367JLyZX+4wv9acZD/kezHlN8tevZtec0+S7MPnv/YzLK3O+jv6ZuV+SfKF816n/hR4r0Md/8xSK8hN2h/db+HrzxxeS/2p8fkD+VfAcp/157HcOeHzuN2l3HnzZr1yfe0/i1zbm9R3Y8Rn+OA/+4vfssl+Q/YGP4RuW+Tn5WexxBL8aQe9PwZ95Lfc/buC/t5UWYM6Pi+8z5DvkTPW5n19Rv4nw9KG/V9l1jn6PKO+h3QnGc9PMf8Zx4lPylz/TPueKbfnJxuRZxq/poRz6j8J/LX6TH7QX+1+F7uXizJXKb6LfkL+0sc5rKY7sGr3hr0fW++S8FJ8T4P0qeTnsmfsXdYrepSj+vupVQg7wmtzz4A/5vm4BNst5Hz4m5b213Pswnt4g/yx8LQXfAlsl35LcL1gX1C56760v/PWMwyOS708f2Xc6Cj8XJx+ZPR42nx5n3l4g/hxDTyeIx8XvHgzl/3ey1534qA9/Xfhr+D3nK6fg5+Xc/1HuoDwtecHwv23+Xl9agFcbP1fiZ0f+2gbdZskHY9+c/4/lN+fiq1ny//jneX7vYP3bPO9z2T+4HP/r0H8fn7vibyE77ZZ7iLlfw54l5p/1ym3pdwn6p9DjOvrP+vYSdNaz+3zjblbeh/B78u+fyD019Ovy/+vpp47yv9QfSH+V2WnfnKMkPiuvSf6Z8XuG/smfGk5/uSeW921ewF/e97sWny3JsYvxNyX+knPA3J/nH/34c93EE/iL7zUnD/Mj+MfkPqh2Q9kv+4fF5/+5x5V89o7wJT9ibuihf65xM1j9eUXr32+Sh5X7MPpfjv4x+DseX5eIP8l3y3os67OJYMO8/0Hu++BL/mit7J+Tb5j4MYffJb92NLpL0W3FXgPg/aAASv7KvVDj69a87+j3R8m5NPeJ1B8rrv6a+ynkzzsGG4y3EnYuA9bSviJ7d9Eu70FlndLF+M67UQ8XnT/+rnweeT7LuWL2543b7GuMKS3Ay3Nejf+h8NwEzlY/0ni+wbpnJ+OoB3qZLzN/Zj7N+xuvmi+i31J62QOfv7Fz7tNl//VH9s394OT1jc57tPovtX5tT97FWc/m/kTul4LZ502e4ojSApyV+1N5XxGf1dnnGvydI349hN5z+Ml8NY5eNrDPA/T7R+71Kx+e91/o5y7wCn76iP5t2GOy37fiI++7luJ3DfxjjJ/N5JnCXg/xr+HKWS89yx9XJc+af8c///tuKH3k3YeS3F+DryI7Pmj83Jn7EeL+p/TdCb68B1eOPsvm/iiY/Np74Jvhu721+u/x0YNdL1BeZPzPU/6cfN+T9zF8ZH18PX31B68Dz9Mu5/c5t58Ef87ve7LLm/ptzHtg2uf8MOeGOUdcQj/fW9esBX8AP2ePJ8XP9fxse/FgOv872e9twYn8YAs+N6C/DT2ervy7+txz35E85/K31vC/qvwjfTTWLt8HY9i/PXy7mW+n0Pd12TcpytNqnPer9bueXgaAddXneynfUdHborzfh7+cx5yIbjv8/5D3z8CfwEfgu59/Jv9hdFEexI34/xOszi9nw7+v+LoN/9+Mn7z78R/6/Y3eFsLbNe8za/89PNnvXaJfC/47KnnI+Et+/UMFUFKJH16q3JOexxgvxe9D5P7SqeLHQvReFz/31f5ccs/OuyPkLJf5D7/rM98r75n8Df7Yq7QAZ4p/ue/Smz+Otm6rknt+uR/E//8k3965h5b7qeLzDuxSBZ68hzsP/vHmr2Xa75f7RNkXp+eyRffXOpI37x520C95cMnL+if7n/z1ybyXQW8Lta8oPvSAv5X4Ev2+Jv4em/Oponyz5KHN0b/43u0K/C7M/rX6Cvo96vcbs/+K38P4YaXsg6pfIK7MB+eBeQehru/t6WDeLcv7lGdZP/QSF6olLwT+vC9ah3x5XzTvjeY9iNzrGo/fE7OOL4CSvmDeAT4493DY+3T0+9NP7q/smXyW+Efyz9D7gj/vKO4W72/1z/ofn82yLiLnO7mfgK8b8Z18tdh1FX3FvlfTzyb6a5zvsZzPGr8H4D/vw63BX76/hxdAycHse63yzMyPxuNk4z7v2yW/dKV5421wBRi/y/r8O/rcPuuO5A/Bl/3R4nyf+eJZC/w/i//6+P+F/urnXoh2ed+1LLu2oJ/XkidFv43Az8BF4t29OS9Cryx9NM95IXk+LXp/YDv9vkY/+VCDlf/O/U72+854ST5Zzo9/Tn5tCf7A3EseCV819n8YnaH8Od+l68XHacpTSwvwoez/mZ+L3z8ckn1++D4SN3ubL77O/Ub85x5A8v53Tr5O8n/5Zd5VaJb3BfjLodqPpO+ZyY81Pwwn74v6j1eeQe4Xc44GrkoehXXzMvN6e/ZphP6H6nfH30B+vic9z8x8nXfCwNy3HYDedslDRDf71SeI11Xp82ww7+O25z85vx7LXvOSdw7v3tofD1/yO47k/3n/9GzjtXPy7+E7AL9n55xG//v0vzn76drl/d3cq81+aAf+cFj2Z/0ee8bevZJ/yS+SV3Vgqd9z3pl8eXq7Qjy9i32T1zMheS/4T35PS/JeiJ/W6H9r/GQ/LPtjzZXnFeU/Je8peVD5/xd5N7Ay/rfio0e+E+h9F3r7AH/JT887qsXzc+L3MfzpKPBoMPF8Z+M778UfC/8V5E3+R94rmqPcPfk3ub8P1ktedd4Psf6px655hzHvLzbkn3n3N+ctef83+ZZb6SH/xyT5l/PwW0F9znWuVJ/7Z8mbXU1P76K/LO+i6N8v+ZiZP62Pfs/5S/LyyP+878JdydndOcTkvHeQuCGOHMQ/NmadJD7uL/4dk/FIf3fgqxe6yYO7IOtnev8FvXbKvekz+xvJM8t6MPsPjxdAyYSsD5SH6/8I/52efQ76ekL/1c6H25F7avxb/ZPo/5LzoeTT4SfxIe9yF+t5J3G1W96BUB5Njp6lBbhFeRI+S4vuh9Sin+L7193I+zn8Q+Fble9dfCUP6Bz8bsT/O+j1Ma/XzTqgKJ8v+o49sr+UvJRj4Eu+SvJUqlif/Lvi/8qZ/fve5Luavf7Ie3r8f5H2eU+j+H2rlvzy49xDs54ZB38b3z3d4Mt9qdyP2pXfFr9b/GzeK6OXvEec94qfUf7a+rsB+boYR3WSz2o+Gql8K/0mf/ot/jkLnJl7gvTyHP72p58R6LyX95v55TXJ901+TO5v8/esNyvSb94XOpW+6uHvffTG535q8sGzP4p+/j9NN+XB/OPf7DOCfk5R3kju762jdsz5OP/rZvxdXgD//f7I/Yrkl2Rf4WHy/UNfX2ee54eHkO9qeGbHruJL8q9LrG+qw9+dfRcX7ef8Y53QSzn7Pg8Yz3m/6wfrsQvQ3US+3HPNe7+53zoZGxnHuX+f8fyo+PQI/axTvgn+i/jbBeDZ5qmryD+D//33u1+8PjznL3n3jj7HkuMk9fleH5bvRvUt0B/Mfxbwm770N5L+Hsi9PuV8vx6H3v7GZ1N492DPw/B/Ev3Vpo962R/P/hv8eb8w7xmegE7u1Z8D/huslnc44WnC/smf/g5/j+R+cdE7FLPV59zhLfLn/GExeXbkNzl3yDnEkqyXyP+A+j+Ua2V8kCfvT11M/vx/rRv5X/6/0KCi+135/1SN+U/u++Z+bxnjIeNlDv4OzftAxmvOd1/J/89T7q3989r3zjtzwYffnE/kHcAT+H++37qD08B8x+XdoMusO7YWvSN0Of94IOeCygei/3D+r1/uTeQ7g35yf606mDyQSfoPFD8H5X1efpP7U8nvzPv08/XP+/S/kT/z6j/Zv8z+Hf+Ybl7P//FKfkfynhaj/6py4uAOyS+GL3lw7ZPPKh+xof2lm8C2+L+NffMeRPL7f0p+Df4TB5aRL+N/e/rOe6Ib8ZP56Hf9k3dxNr5vVl/8btzd5FyS+9Lm3wtKC/B++jkGvhr2Q8bB+4s4sTHn7OJh1qcdxL9j1VfmT1XATfws9yffMr/1J2/2Vd7K/njR/d53wbzfmvtmycsrztfL91O+l+6Fb25RfSN4r81759nnNw5Gaz/EOO+c93Pp73btK/CTP7UvPi/5UfkO8o2lz+z/bxGnatF38vergHPg/wX90fg+x+9/J6+If7aDP/opLx7l/7/kXOF0dnmGnXZCvx9/K6WH59H5A/6zkz+n3F057+f+yB9yTzz3w5/A9yjrjw/QKz5fOTPxDf03tds+92PoM+8WLVLOOzdnZn8V7AoeCn/eD1+e/QT98t7J/ubL/dGfaHzknH+F+J//k/qAcvaJJ4vn2xgf/cxzeUc7793k/0ccotyK/pI3m32d7PNkfyfvFeQdg3vIl7yMNQVQMgy8GpyW9QF8+f9lyePM/dP8P8SReS8AP/l/iefmPDvvUiTPMveDxL/8v9PHlC/hv8NLQfLNwHcL+n0E/SP43QHaVVaf/1d2mt/z/+SmqE++cPKHk0/cI/e02OMqeGrQQ9bTTfjVSHp9IfM0/lvqN48+OqPTHf1x1kM3iqOPKuee+zDxOfdivoAv95fy/m7eva+hnPfva/KrvK862Tp1eN4vob/sX+e7OnlMm6yncx+1+H3MIfrnvCPjs53+26qfk3eAyJd70F/lu0e/B7P/j5+R1g9vgSPoOf8feJL2n/hOyjuauUddvrQAk3+Z/zOX/MsTjb/hxscIsBL8A8IPu9ZX/p79H6fvnB/kPCHnBzn/ral9ztF35P95rzn7Wvl/I8vRb85+K3KPRZx8LucLyp3QL35/J+815v8l9tK+sfpJ+Hux6Pwn/z8175vlPbOp+P4ELBHXngEniG/b4H9n8T7nwdflfZK8l6HfRr83Uv6Dfywxf64AB8KT/29S2Xh+WdyoQn9Vkn9uvrqc3IuVh+SdlqLv/ewDbJv1c/4/B/oV/X5z8o3pK+d5n5qnN+B/KfvdxK/yf4RrZv/EenAWuNp68eXs/5Mr5+DF59+X43shPi5ir1PYu7vfkz8yUf+89/lM1p/g++Q6iv4G516odeEQ5T3Rf8L4+ZudR+T/9+C/vvXKFnzurJz8yNPyf2NKC3BX+P9O/jK/yDthxf4xX/93xZWPlPN/dnJ/7u7s+6Ob97cuMn4vzjqKn+R+XAvxpmPe5wBrZ/+U3vL/CfP/CvP/CVuJN13Jd5nyFPp/kb3y7lq+M/N92Zc/5tzhW36W84fi9+yTH9lK/R7o7Widt6dy3v/53njI+WP+D178L/+fI36XPIz94P857w3gI/8v8AXxIedLHYvOmXK+9K3xel3eF8q9ff2/1C/r9ezb1kx+c85NwLzbk/3Z4v8/czd7taOv5O8szn5a0foy7xrn/ycVv2/ch9/1BvvTb3N4dsn9PHzkfcST0N8C3xvwZ5ycAv+p8JVXTj7EDsoNxZv8H7Li/z/2f+vmIqB4nHXdd/jX0/8/8LdCSaFEaehd0kAqn7JSKCMrO1JpoBDJiI/Z+Iiyi5ZQZBVFS2WUlCJ7pxShSLJDSN/r+r1u9891eV2/z+ufx3VeZzzmeZz1OOc5aZeS//e7e58CHN2gAA9vWoDzqxbgl2CVigW4h3IflRbgvbsX4IfSD6j/dIUCHLtnAf62bQE+36QAJyjfCf7DtDtfunmdAmwG7lO/AC/TfoU9CnA2Pq7cqwCP2rsAR23/T77OkD9X/g74utD/kyoXYGP4W1QqwOsbFmD3KgW4fbMCvE47j4Dj8XkU/k7YtQA/1947wSu/TfkCvAB9tbcrwD7yq5HXe+o9qVzb/QrwavLYXfv3NC7AX5oXYJWdCvASemu5QwGerNztNQuwPbiD/7/X3jTye3LnAtxf/VnoeJveu5LPO9KVyHMD+S0g10r7FuAp6NuI/7fo4epGBbgIfK92AXah53ro+xt9neEdSg7vqzdH+1PQ3Q6eavipqZ1p5P2SdoZIN6LfO6sV4KZ6BXhRjQLcTf1v2EPDcgV4Jjwd2EEJuJ48/iaHhtov1U4HsCP631b+BXRtj9+V8geTY5dt0LVVAdah56nS29DHcvW/ql6AL5PPTejvDd/V5HOc/H3x+5T8f0lXg79MLXyCtclpIfu4m/2OBB8hjwu0f57+sQFdT8kfo3+fiP8t8PXUbg/y6678WvJ7j74ewO+z7GoN2Fi5Ftobwa8cvFsB9tPPvtD+NeSxHTv+FV2/gc/vWIDHkM+B+GyjnQP1qyn4OEi6JfpaSrcADwDPRl8n/rMzGLku4R/W6d//JofD0NUe/Svwdbj+8wR7WMWOblIv/qM7+3+Xf7lRvf/gZ5ryW6PvMv3zBvqvKd1Ie3PYwzXwbtBPG6NzC72Pw1cJetdof4b/1yn/LjmeiL8m9NoUHI+vJuo/qv5r/n9Muib+ToL/RPBM9nAxfu+k/wrgGvV3Zr+P6T+z0PW4dO3I0/+92d0i8rtN/Xb0usT/baUznoxmD6MC6xbgNPXr8DelYGv2sAG/M+D/E38f+f9F9b+X/wr7fRcdE+R3Jo+++v2p6j9IfpeTR3v0TsZnM/o5J/3K/z2lL5Uuw2/WYM8rtHcS/b1LnuXodxB4KTp7o2eY8hPMA/6EfwN5NsTnd8aDkcq31f5Q9nW7dnfBfyXpiuj7mB4WqH8Pf/6YcbGc9p6Tn/lH5h2Zh0xCXzv9pjc5d+APa6n/cWkBrpZexq4eQu8A/WoJuj6SP0T+jfxRW/+/Sl7t8HM5+i8kpz5gJ/Vf1n9n0/91GTfRv5K9PYLvVvhM/6tOfgPgLwf/tvIvppda8k9gR82lP9i6ACeAjxnvxqLvF/4k/n+l9g5U/2r4J4HPqteAft/jv/8ip81gFXSu1W8u5Qc3kMcx9FiKnrbk8z46p6HnO+2cKP2jfrpY/+lQWoDxCxvIrwL5ZH6U+VDmRy/Ib0T/f/t/LvqmaX80/S6F/xny6Sd/A7qbaqeydi8ln174qw/OwN+fGV/JbyH6mxs/ttH+VuS0IHIHD5F/iP68FJ0nSB8V+UsfwE+UZ2dvanchvbxq3D+Ff5mDz9/JYz36tlE+/Xe98WoDeDg5/Ef/OFS7u7KDltJb09PL2u2hfBVy2ZP8biWP/+hXtemhrv5znH6/Q2kBtoM/89GT8dkv/lH7u5Bj5hXL8ZN5xRTtP8UfPg1OAx9ER3v0HQtOxNcZ9HMP/g5B/yj98yH8jSCP1+E9Q/5g+Qvxt7N25mV8Re9meN+X341+f8PvCPr8yrj3Cni+/MrkM40fOA7922d9QZ4noSvzj4fVf4k93Eu/Y8ilmvIX8AdDpTuw9/7kfzn7HKveqfiprnw58q5JTrfj5zn4y6o/3bj0rHZmkeca6TbKH6NfHAr/A/gZm/UWeTwT/2v82RVsRb7ttN/AvPZx+F+Hb5X6++gXe4F7J42eXvTWXvpm/bip+nuga6/Yh/J1lP8AXVnfnIn+rG9+Uv5H8pxBXjdkHSn/GXQPx1/WF7ej92R6yHroOvVmZ/1AjpnXN2D/fcjnTf2sEn/cM+tr9O8MTuenMv50Nz5+h77so1RS/xfrtW3Uq678N+Q2CL3/1l7fRv+kb4j5w57ofgs/1eTv3eif6eQPlb6YfA7VD/pKX0S+U/S3rug9Qf4e6j/FL0wFp4CvqX8Euz+RXr/Ex4voLdHejuyhOjm/KX+U+neDP5PH/uR5JL0eBR4B/kV+v0lnv+JX6RsyPpq3bSKnndWbjM7d41fg+xCcjb+Z9NmKXC9T7xv5DczLziLfb/H3EDyxj/X8ynz20E57z+mX+yk/HP7R6C8feeBvD+k66Lg146/6veA/Petvfu985e6ih8wvz4F/Cb1ei9/7lVutvevgyz7MMeg7Fz0V9N+LpRfDvxu+24DbKbdEfvzzZvpfIN0aP/G/l4FP65+HyM/6NevVrF/fNz7WLS3AVvRfKn2Z/J20uxe/coT22+C7fPZBtf+2eVJH9dext2/Ae8HH8bmcvj82blyG7oHk3w79FaUXwDtV+22NT+3AUeq3j78l10b4Ww7uJ38AvJXpd5D0au1Mp69zjdvfgpvp513+8QPwArCs9gcaD64g943afRX/H5FfE3Rl3tWf/czz/2x231g7I9Xfiv2WgFvQewQ8I8j7AnLbTE+fkWdX8t8aHZ2yT4q/a5Ufrnwrct5L/gL0nCD/V/R3RX8JOjJ/uA0/6+nvQH7/dfhPx+dtmX8V+b/4w9+1+7X5xL78TGX+dDvyr0uv9cDY15vg8eRyBLq+wM/H8K+RPlL+CZlvyj/AuHc9+peSw5H4G6X/HCR/jPS32f9mL59GvtJjyPdO/uRG+B8lxyrKn46eakXnBy9l/9d6pbx+WZM+P0HfG2UKsEbWU2ULcIX8QfBn3n4XOrJ/0ZD8y9HLleh5AX2PZX6d/SHjzdPqt4JvAfiQ8bYPfk7G7x1gM/y9rP3h+JqPz/iHpcp/zi6+AL8EW9PreOujB8EJ4LnZf85+CXoXwLecfN+2X/FT1jEZ3+DfnT0O0161onlA5vO36rdrpFewj834uko/6Q3/7/DcTG4foKO29B/yp/l/K3psRU9L6Pdo/vWOnDMVyXcJunujtwy5NUXfGegexy7WoX8jee0o3Rj+rcj/Cu03Yh8NwR3QNaDZP/Gdm3ERPR8kbf43EfwJXJd9YnKrqF/dYxy7Bn0vlRbgSH5yR3Jrlv23Bv+kbzK9N9f/yxoPu5nHFO9vToS/S+TBnuqo31f52Hfkvhzcmj7LK99MuVLpFwugpAf4H7A6+T1s/PmQvjqT31noW0Yem/F9G/qqyu/Ab67k91eBA3JexJ+1YB+Dpetnfoy/7J+/yx4zH8l+5MP8wo3kPR29W8i9BB0VwbX4aMRuZ4Azwfifh9Lf2cWJWS9ovxu7zf5/J3xl//9ZdrGf8u8pfxb6m6O3Fv1+ys7n4Lcz+qtF7tLL6Gcz+3lb+X7wt5LfAL5y8P1Nnk/Qzx/qt6SX6RX+WX+k+c808Bf63gO9Ne1/Hc7vldNf62l/lnLPFu0bHIeeK7Q7EdwL/tvJ5Td6/RD/d/h/JXnfmfmj/GNyPpP1Hnr2gP9d/upi9XYnj0b0PUO9nvivpvwV5Jtz+wvQ/4Xx7zh20YG8z6P/GuRawf8Pk3fmJ9/zzw/zywebh5VHx3T1x4A70++n8i9E/0xyrY3Ol7S/XWkB/p15J5j4hBrkUg39V9DjSeT5CL18od3v0XkbfD9LT8m5r/74GTrPJ78z4dsu+37kW974djD8O5PTU/Jnwp/znZz3nC5/LH1kn/o7dG4GM//YX7uZf2Q+0pl/a4TeDvxwZ/J9W7tXKf+O9F3035E+m5j3Tkbvu/B3Ml7exQ7Pkn6LHBrzz820/5d23tD+ZP6uLrpXkeMT+L9S/mPa7UHeddX/0bhVk36K1zNTzD9nZd+SPC+Bp7J6OdcZBW/Od9aT72L0H5R9e/Vbw5N1//XKP6d+/MJFkUf2+eXfJn9I4lLQV4Z8XymAkq7gaPDNff7Jd+RQQ7oZujKPf0N7vdnvR/AXjy+rySvjzLbsJuPiYPTupn6J8XssOxkAvpjztKLzjWbk/If2esBTRX+7Rr2fyfdw/vdTfuNf+tOR+GmH7/bwPA7uq/31RfOhefDP4j+GZX8v8RPZh4D/KP1xTtY5ReevY/m3G9Xvyl9sYp99jSc9pL83/g9lZ1lfdlM/68ysL/eG9274ci7/kvJn0cfn8iPnnB9cyh6O1y92Io9u2cfiDx+xTummn20v/0PyP4Jf/Uj6eXjGo3ey8regr0X2v9HXQP4cek78RHF80hPavUf6QfZ1tnrbw/eV9ruQ3x/82m7srxd8J5Bf4jbO0P7R9NEh6wHj3Cvk8QF8l5HLcHxfIT0s+xGJ+9Huy+x0I/0Np+/T9a+HjXPxr0drL/PLecaJwdofyb6HgR3xeSA5VAd/Ru8v6JxHvk3prT+/2QK9+5LHxFJQvYfBB8mvj/nGrjnHN1+sov+Uxs+C8+lzqvanKz9cv+1mnGgVv4KvwdIdyfEP+i2PvtPhn4WPi8j3Gvh6ZB6GjtPQ9yv7yDlYNeNhzsPq0H8389guYNX0f/3mce38xZ7Ksc8K0pXgH+n/hugbgr7O5NEUHY/Jn8suck7xvvRR8M8i/3fZxVx6GaO9kdo/lHy2kn+m/MbktZt4r0ngHeiowj5KlO8Ve2FP8c/xx/HPv0h34C8eQedN6Fyi3LbwDQePU+416Yv0j/P02/eQk/i6G41HQ8B5WW/C/7H5wSrwzMxD6b8mfMPxt4jer9T+Qex9P3S/gu7h6q9gt+fpN6+zjwrwlzN+boW+MmDmFzvJ39s40J0dxW/2Qu/59LaJPsdJX69/rCOnf6Fvdc5n+Y/4keXo7Iu/P+j/IXZ5inqb5I+I/838gx1OVf6GrNvAS/jjH4rG803km/H+APZzLr00ILd+BVBykPZf5x9+YkfV+IdB+DzE+HUNOZyKzm/Q/yq/fZl+vC3YTv9aa3w+xbg8Sbqt/Pn6993obUovbeh/N/z8knlb4gT2+Se/GXfPIM/D2dnx+tPtpQWY+LJb5B9lvDgSzHl/g8xXyONkenxeOvHG2Xc7XntttJ/9t2XqZf66Y+TNPj/LuSa55ny8kfqr6bsp+Cu8vyYOUr/pTL9D0fcqOoZmPQf/efBlf8dwVvIlPcQfJF74YP1mVdb9RefT98PXAx23o/8v+ZlPfw3/ZfC/Kv97eNOvjud/72BfQ8jrJrCmfval8tmXXM5+BrGPFUX7J3uT10LjT/ZPxrDrUeAg9RIH3ZA8uquXeVLitx/F71f+74iubzL/wO/x2q1ADlmvVvJ/4rE+UL4q/uvof/P4sVXonISvxO98C//X7DfxO4l72Qe+A82fm6NvOf8aP1uPHp/TXj3jQn1wD3CQ/PX86Wx0fSt9KPoqJz6H/Eegt3/2QejvHHCpejl/HJU4LvWPI5ft8LeYvNaT6030UTn3I9Qfrd4C8hgjnf27fytXCf0V0XesDnIG/jrDUxn+B+GfmXOhxMejI/HCj7PLZuT7FPrWpT9k/z3x5ejcl1y6J74bnR+ofwW73DHxP9Knof9S9thJu8fm/kbsC7+JT+9ftB7KuflAMOfmBya+KfvV2T/U/p/yi8ejjFPvkd/B/McAcjpIemr2Z80PWvOjddh3G+0ejr9J5P9ozhXgzzzyUPyepV5T9vUreSUO5h79/S50nouenMM9i45jyOdI8kpcTuJ01mZ+S7+HGF/agNspf4j2KpDPO+j6EuxILqeB2Y+/NvdUyPuNxBOgM+dz6e/p/4PYc/r/EOlR6P2WPBZl/g9vWe32LC3Aa7K+UD7j8zL4Jqh/nv//VH4T/lfIb2J+ch+/vpR+j0LPOfzSy7lXkvMb9N+Arnb0l/OhZ4vuU+R+xU6Jp098sfq7Zj6gXPnsJ+JnvnoX4/dx+rre/ztkPsW+Vspfi/6W8OzInnN/ZDh+WxWdLz5BXmcq3ynrypzH535K4j/YYW1+ajj8O5kXVNbeVHT8hb/E/V2K/4ONv+fnfIhf2AjuCtZWfzF5fM8PNNN+ffUXlxbgm/Dvmn1W9NckhxZgX/4x8bGz2efu+J4r3STx09IT5I+jr1vw/zV+5ii/H/qe0H7Wg1kfZr24WflP2M/YzDPZ6+/KH639Y8BHyb9V9rO0l/tuiRM6Bf72uW+T/UTtnEp+iYvPedODyv8p/2nrneyzTk08e84f6H8X9lVL+mV09EPfDejbJn4Q/39LnyM/89vMd3czvl/Nju/lLx7KPlriWaUPkL5Nuzfj51H8N8s8hHzuL4CSz8A7wKtyf8m8OPFOi8kr8b3PkWfiy2uabya+fJl26qOrET+zRf4nmb/nvkDi1Ir0szjx8Yl/UX4w+4zfzT5O/O9e6B/IbgeAx6ifuMxu+stc+G4nn99y7pV4NbCi8s9Zj55O/xut1z6UfzJ5PKT/7gcmrjX7gV+A2S88Ef5y9D2e3rIP/Gr2F/HTCNyRHCaRQ9Yje9PfYdk/Un8e/W3h36LPtco9Qz77kdcW7V6f+Fb+cbZxfU/pJ8jxPv35V/VOQcde6o9UvoJ+/Zl2lukfHdFfPutzdI3Wznb6RfQ2Jvtw+NtV/qXs7zr+/4Lsl5JbC+ln0Lkq8bnoew9sSX9HKzejtACv1O4P0pkXN2Tf18rfU7p99nntl34NrgssWj/UK1r/Zf0wg96mgdPB6uTVlLwOzn6F/tOHfU3hX5qj6xKwG3n8Sf6Zr2Uel/jl14xP55PLnKLx40Pyr4Lf99F9Of3cXLRvt1vR/l0L/Ezkd1+3nngUX4lXTzzk2fh7lfy6Jn5ffuLUX5Gf+565//mWdnP/8275I8AtyrXFX0v8PQROBO8gnyP4nx2s646SPibxBAVQcjGYfYFB2u+l/CTyTzzFT7k/Lj/nButybxD9iVdcA9bAf+IX/7suo49++E988DXs4wXlxmrnZvV3STxH4tSkX9PeTfTZGXzPPtV56v+pvSGxN/aX/bsr5E/H99jM43PepL9sy66u009zv/Vg/Nwpf0XOufD3o/7/U9Z3WZ/Q8xelBZj95jrSw6Rr889Xofe3nAPnfiF+E0eR+xdvKn9o7h+gc08w52kn4yfndAPlD4L/afi3oZ+r6CvnVblXf7n27sh9Ffa1zPp3SwGULKenceDZ7LYr2AWszE7XoqsMOjfoJxPxN4zfG4HeD3NfIffXzLt/kM55T853PjMejeAHcp45RH7iunKPsnzRfcrs496SeAh0j0/8Bfs6jV5G535z9o+N7x3RWYW8/jufZn+XgB21O5F9VcBP5qtf098D6KtIbjuzuy2JS4S/j/Rk5fvgZyp9VuB3T8u+t/nGVzlfxW/uO+U+VOL/TiktwKXm4adKH4Dui/1/gnQf6bxvsQf5nQHf7zlvlm7AH2xhBz2zXks8JTsbD54BdpL/GH3mPYriePvcq49/LL5fPxm/2d/6Tf4jkSd7XqvdC6T3z/ikXvYXs9+Y/cWsf/677qHfrH+WoX8y+e1lfDw49ySyvmFPXyYeBv7c58n9nhFF93vOYZ+r8Lm3/j0aPaPo6058VLYP0DDvR9DPOYnLYt+14a9l3lFVueXqTyHHRfrlZYlvyfyIfN40P3gLfIed/wH/3NwHA6/F19+5f1kAJa+Bm7NfSR+nkl+NrPukn9c/Vmt3Er4SL92p6P5Q7gUdyE67k9cH6lc1v9/d/+eTT+bXie/MeUD2/xNPlvigcdpJfNAl9NYXHJN1XM5X0Jd46LTXWftl4Guu/IDcSyP/kfQfO4jer1P+4cSrSLdi//uS/6f6a+6trcV/5tef63+35xyD//kk+/DqrVNvnPFwuvqjMx9Vfj1+KuDvHPkv5T0A/j7nB5vlf4Cv3BM9LfGZ6O+B/2Hw/AR/T/QOYMfds28D/77+z7sG/2bHuT88nb6y//4KPNl/n0x/65V7Uvoz+YlziP6iz+hvHLwPsO+PzH93lz/NeV/OG88i38S3LlE/64pXpL+Ht3tpAd7PrrpJxz9+xB8PynsqYG905t7DQvzX1c/KkE/xe0J5Z6g3+benn36J86afvA80Ab7uYA14x+V+mv8P0G/nw39t4inNT17F9/i895Lzaen9lS9B77Xouz7398jng5wHZf7HL/aN3cifqX7eFch7Aqeg/xn5Pya+2bxpl8zz2cPv/Ms78PfMPRVyXJ24dPVznyz3Da+UrqlfXyWde0e5X5T4sAnwTdT/DzK+3Ca/P33VCD/kVUZ7J0vnPsrLiWch38fx3U37Vcl3JP131j8uZD8b4VtQWoAL6Tnx+XuSf0Pwa/n9yCf3K3/ix3O/Mvctd1OvBvhU7l1n/IL38twLQm/9+Ft++/rcr9V+CfonkucYcs69iPTnxtpryG6PJLeDyKk6uu4l34xnobMrfi/LvZ+c56LvIuNNFfA5+1N9tH8bf5p99U3Gz+y3X6PdYcr3MH6vkn60aF1XvN4blvEMvweS4xm5L6B/3A3/QPb8MfpHk98Fiackv6ukf2QvB/C7X5N/4tuXmG+dmnvs6F+Lrrb6w/boaCd9fPjFx2D98iDljkRfKX6+RH/uA0SPo7KfLD9xQ2voL/Fl/XP/3/9/FvEfvlsX8b+bft8g55nw1tC/2pYWYE/t19cfPpNf2/9PouNv9D+W89zELfAfF+f+t3INzP9fZseLwHPlD9T/p2f+Lb1S+9/HX4ODEweO//nsoSq8Y4ruK39Br2vAvOdTRv2cH22Ef7fs85BTa3g/L8LbRv9/kfyz3rgX3swT8r7LreRaIfdIsv6Uf03eLZA+D//vsM8/c+9Eelrev+NPqxfF9eV9i5zX5PymF/uelfkz+tvhfxQ8uQ90CHm2Bg8Hd5d/t/YXo7sBOkYl3or/OEG5M+kh90Bb8E85BzpUvUdiX/6fSS/nJ86QfC8pgJKHwOxz7JP7Z/rjqcGXOGLpnJs1US7nZyPgO4y8yiWeT7pn4ifII/dCX2CH5+R+Lr1X5H9yX/TcnK+YP270/2h0nE0/n1v//0qvLyjXRP5I/GZdPxt/Wd/nfYfYW951yPt2x5cWYFN+8lR8XqKd9vRzBPiv1EfPz/idTY4t0Xtl1u/sehw7G+z/X3Lv17iQuLKB6GxFv7mP+XnRvcyjlTsQvvinOfQT/7Q9fjKvHKrcXtq/mb85hz775H027Z+k/++SeBzyvijno/ifBj5OLkvld8Z37knUxX/fnPNptw19PJX31tQ/m3/LOdD2+Ev8U/G7CzkPyfnHVeRzGv1USpwmev7Cz3j6fj/7hPioC389cA8w9w+uzPiq/DHo3xZ9uU+T+zW5b1Md3/egN/FpiVdLfNoz8dvw5R5Qzg+zr/gqPRfvL2ZdcB04oWidMMT49B74LngoeurkfqbylfmxXvST+X3m9R3NvzK/X1QAJReAw8Fp7HkIPAsT96adLuzzC/5zMrmflv2t6J184heXSe+T+6L0nHc/R9PPVehfaV76ZGkB9gv/eV8jeLX3IDvP/dPJ7Kq19nKvcZx0zlsT/5J4uJy/1rd+6MAOrpauj591uReh3oXay/5hNfLpwv7uRPex8E23/v0h8yj+pqv2nlX+Svk3qlcr51/qd1Qv9+RzP/7K7NeYNxffj7+FPLfnRyrmPTJ48u5W4peOl877QnPw9ys9fJJ4q+y/GC/2yjvE0qOzn01euZ/4buZF6rfM/b3SApyh3vfwl7WvvT/9DGO3J+b9PePOW2AP/W9+9gvU20W7XXI/hp1Ef7mnEP19Sn6L4Vts/Omc+87wV+V/9k4caOZb2d+Arx157yl/K/z3hHdxznXTjvwx+vc36KiLjkPpIftYF6t3Q+LBpN/Bf+bdW+svLXI/Ej3ZXyl+/7j43mnxft/++kvL9CP29Yf6A+hja3QOlK6Q8xf4865d7n99UhR/swpcCX6Z9xnYx+voqkdOv5NDo6z/+c3f+I9jyK+i/09XriF/Phn+zeS3D36L778OR09F8i5PDmcr/wk6Dsm7PbFL9XNvNPdF8w5d7o8lbj1x7MXvo66Br3XiGfC/Cp3z8TOXnfUg7/V538P8sQy/XRbsj54W9HUPuSX+pRv5tDU+rSDH5eBM9DQkn455zy/3Cor2p+/TbuLUEw9yc/ZFwT6xU+1VQv909Rahtwn5byqKL7pT/zlH/ffJ9Th0HJDzcfI9nNxyLlJ8XtIAzPtnE/ihFurfoP/ez04HSK/O/Qnr0aXgK2DeR3wbXbXIozs+y/MPOVcYiL/E1+V8YSP/OjXnImDX3O9nH2c0/f/T355frwvPK9qfl/s5eX8t5x3oeC/vN/EH2Yc9Uzr7sSXo66fevMQ3Zf8Y/kPgaQ0mzvUt+k/c9BOJZ9De8ug/945yfoC+VfJvz30ydOW892jl867UkeCvWS/RV3f9cEz2F7Qznl+pmPUMOruQ30Xk/WXi/tGxNPSbH91ETiuks24fkP1cdnG+dn5O/Cb5PUjPz8H/CPy96SPvHvSCZ4T87Cd/kftq7Pcr+q6K/l3hyXsJd6t/feLxs66nh2byG+tXtcDa4AOJz8BPh5wv4HMKeb5jfjTFvKgVmPdn5/Fn88GK6KhOPon/SdzPev008T95vzjryQ/Rk/uwhymfdUwd6axfztPfdvJ/cfzvBvK+NOdi8HXI+Z92c+8q/m8Q+l8l/6P4qVn6w8lF5zfXqTeVXHpqf2b8tfndLHA5/g/L/i57K4P+zL/ynkHeN9hX/1iHn43Gs8Xo36Lc69kfNV5tJKeL2XeTvLfxP+JqN2X/RHt5H3un7OfiM+82n0R/xe83J/71OPUS/5p42HxPojE8r2U/lnzuIq8p6g+XXki+7fijvBuWuLG/1S9r3rIVeDr/cbH6A/KeApj7JVfiL/E358KTOJzE39zC/1TB7zP0uF3evyL/3zIuJ05B+U25F8y+Wsl/LPdA8D0KXbGz2Ndr2X9l5zvh87isI62HS//H+rj4ewX5jsGz5DeOXZzJHvL+zGL5j9BH4mOfTzyL/OL7bbnX9rb+9ZH2O5H/vezxIuXr8Xuj4ZlBz13JJ3YVe+pqf+fmnL/nfSD9ajr4In7m0+c8cKL28j7gIfSXeNY19Nos8c/o7o/vjeg9LvHe+H9LOnGw49H3YdYbuY+v3GDp/urvAv+55JD3TfZkzzvJbyDdkT7y/m/izvIdgrzj04j8c7+rsfTs+LHsd2ZfAD235Zw2833tvYy/Y6WvLcJXvL+/QTrjwTelBbgp7w+R68Dsi+c9UHgmWC/OsD7PO8B5/3e2ftWFnrqCnci5P3tYQX5XSN8rfyn6xpD3a/huq/1qmfcpn3H04KL7Bzk/raXcXdIvZDzTr1+Ujj3n3vys3EdNnEjGX/p6gXzb4WNV4lfJbWXi6HI/CR+J29428ehF96/znmDOcxfzg3lfcJJ2Y6cPsIfY6wH0dSZ5Lc58If6b//wVXQvR81DOabW7E3iycv/d30PPBHhvlD4s6y//19Jv8n2hxEXmewk/GLeWWAfdT97ZL8/9wnyXZEf2uoa/XAt+BT6Dv9alBdiPXvfWD/Ndirb8S743tLXyw8g33/UYB2++79FS+wvUr8bPVS5676AWvmaQx974viLvW+C3HPgDOq5P/Af9tiTHG3LumPFNOt8L2SHvWUnPwG/i6uvm3Qbyy/svee8l778sTHyc/pW4mO78+0z0v0nfNbX3lnTsqxe+8s7vXfxj3vtN/dRrWVT/Z/5jROJI2O8H9HM2erPfn3OA19Bfwm6vI8enst4ihy3G7UX4OjHvh8jvQe5fa+d29XeHP+eXrcB3Mm6wl0WZFyX+1Hg/XP3Hcu+OPDrHb+c9DHi/Rk9Z/fkX6b7qPaqdLjmHUn+u/hD/9Yty/6KvZdo7Vnof+HK+me/+1OUnXtP/8/2f/en17qLz/xL5i7Tf3P8XaW+HvJ8nvQn8Ju9C5H078lpGjnlnLfOAh9SbBOae9hvsIPdTRtFv7qm00f60vIuv/Hh6zHv3G7GTewLE8N/3RN7HX9YPpeTXlP3ejJ4F7G8ZmDiFAeqvzj1aeHvn/jP6E3dfvD/0Cns8w75QRzDvNeVeU76LsgK+qxP/oz/tnHNj5XN/L/cncm/iSDDvz7/Pf/fX/jjpD+FPPGviWxPvuhF/7emjEr2/Cv80/H2Ev/cJfin5foS+vNu8RHt9yem53KNnL4eT7w+5p5/3OfBzonqJJ0z81438wTHaq5/9g6L95RVZr4P34ifvhuxIDv/r/ZA5eafH+j7vhzRK3CiYuPPsL+6E/ryj05v+Z4Y/+s5+aPZH79BOH/q4EGxMf5fjYzm5xS7yzuxRiT8tikdMnGK+HzCEvs7JvTP0daCvxuS7Hv6b4B1LftsYX08G837tUPzem3k5fjKvvAJ9N+T+GnpmoH914rf4l8vQXQLmfa/ERx4FHg3+oP3n+Y+Hc15Dvp3k38kvZdwfnXt79LMfeTfH13r9/dPYqfY6kEfZnONqZxz6j8g7PNJvKFfD/1eqn/elpqhf3XzsRHR20N+yfh6ufOLw7yaXxONnv26wecJ65U6S/w17znfQ8q7j8frv3ujL9z9nKvc7/FPpbx5+VoLjtf9JzifVWySd/dkZ9FU/40/uLWUeqT8uAhOvl/i8xB/MKYo/eDnxCeTRFV/7kle93F+A/xZwKLhI+bnovkc7l+Z+KTw12EUT9ZqCk5VrknuR5FEn9zzZ13v4jjwXg2ehfwm/9HPefYBvCzm/QR5XaD/fG8j3vW4gl+vBvM/4b3ifTH9NPK3/8z3F++k375k8lXWR9L/VfzP3fJXfkHkV/5f14G3Sbcj/bfOVvDN5at4dkP+p/JHmmXeDtyr3tv49lv99R7oLfc1Fz87sN/vmj+R+TN7dVj7vqJ0sne/f5Hw659U5n25N39Fr3ZyTan+j+vPxF7v4Gf1ZP25OXByY+NW815L1VeKUEp/Ulv6H5p1z6/yyGQ+zL6h8DfaU9896Sef7fPleX77Ptwg/eZcydhL7OFX+jAIo6cY/5n3tndn/3+CJxpfEee/DPyUupKdxJu+GnU3/38J/Af3nvZCVxuf7+LGr6W1Q9uvJLe8dvs9O++V9EXQ01h/7GF+GJP4Tf6cmLghfub+Y/b5DtX8//nZA39vGz0459ywtwMrq597mS/pF4rhuVH8bfjvfuSzJ+Qw67jMvzDvsjRPvrv0jE1eW9wHAavIHFO3rHsg/3Mfen9E/8l5D3q+Zo53ch048XOLzPkdfjXx3TXsz5deCP+9xFb9/m/inofirZJ5ys/TC7P9rN/HPiQdO/O8X5m0HsJt3yecpen+T/VTVzmDlSnM/Vv/IuJzxeiH+8l2ovFeRfal8f6n4+6bF+415H+zwxP9mHxL+fB9mJH7ynZh8H2aTfrVUfva1F8Gffb989+sRfmJu4mfxk/e+8/53c/yUlX+89n9nz9lH/Ip95nsix6u/Jecf/GNn/7/FP7xIfk8X3cvPPf3czy9lP3ugd536n6f/5fwL3AwO1P62OW/HR95BWau91cr/mHvd9Jz73x1KC7AfWJo4k8T309ef6N018WyJb9Re5s39844LeRV/3zjv/+cee96tH0x+xe/X19Z/32Dni8HvEl/IHlorn/uz3yV+K/0OfflOeqXsv+NvPr6qoiPv77bN/T9+crvsQ6n/eAGU/OX/YdKPRQ9F779knzf9p1vi8PK+UdH7m7mPdzB4Av+b+3n12N+WfLeEnC/CR873R6DvVn4471ctZB8T8f+SftIV/nwfNHFFxfFGJ7G/Cew48Y7x/9fD9yU9XJs4mpzfk0e+J9km9xHUz3eVMu7tiK+Mf8vQXzH7NOS3XH78TfxP3inM+y3/B4dW/S94nHXdd/jX0/8/8BJFRtqk8VYpSoOEojQlbaJhrxZlj4SGEkpmKIqKKErIHmkYZXyQUFbmJ3uG8im/6/q9bvfvdXldl9c/j+s8zzmP81jncdbjnNd/ti31/3+HbVeAO1ctwFP2LsBX9yrApk0K8IhmBdh1vwIcWKsAR+1RgAOkpzUvwLPqF2D/BgW4474FuKv6RypfU3uvNCrAcvsX4Mi6BVgCT33pCcotVe836f8qt11jeLVbFv1dlR+o/eNKF+At4M3KnyG/faUCvBT+meq3bFqAd/l+ovb6ktcj+Lxk9wJ8vXoBNmpYgPcpv4Xc7sPXynoF+Dx6L69RgPOlb4P/O3poV7EAv6W/46vgQztb1O+nfl/8PYC/D8sV4HrfL0f3ofL3kb4MvE/5x7R/p3onyP9pnwJ8V/33yxfgUeq9JX05+2gi3RsfoyoX4Fj0n4Kfi3y/VHuV8DNEe4vpYRj9P8V+dtu1AK/foQA37FSAv8A/SfkV6k+m3/Ho20/9P8GR6h0I/01lC7Aqum6U3pd87qeXA8F39bdu2rm8QgGejr6q8D+o/RPqFOAc+PeoWYB3y59bAKXW+3659Gbyf2oXdLHjo9jPveifhv9f8L+j9vcj34XaPUL+SOlX2f/d8JVWvqVyU6RnyW+L34bw/4W+H9l9HfbztPLzpJ/ST7rh9zbt74D+ndnP0eT9tvp3wz9Z+XnoGkze16KvmvpLwd3AY9F7xm4FOASeQdI3qN+QXl+l1xbyN5HPh9Lv4/tj6S/Y7Ub+oZt+P4o/bILe0dodQk+L1buaXPZRvjk4l9zqks8P/Npr4O7sZBp6zuHvR4C3a28beKqp9161ArwGve3gXwVPa3SNQedE9G9Lv23wvYNy76H/dOU/kF4g/7/0vQe6/tLu7fBUlf+wfvkTve9Pf2fIr0Tfy/mXk+i1sfbG7FyAo8ErwN/odzZ5pV/Okp4M/8G+f0Xf9eHdg/29i/8H5H9Fz+ew103o+g3cCN4AzybwIPTcQV6ryf98eq9BbzWkT0LfregrTx+D1H8Xvlroqwkuh+dp9X/hNybwm+/QzwPsYy/47/e9H/zt8dsDviXaf0v53eU/un0B7sRvzjZOPC9/DLyHSO8E3yTpC8Ff0fuZ9t8n/4PI82r01zaODGYvc/XfFfrvdezjYHLfmb6WoPs49ver/P3Yyy3GqXrpt/KfMP4+Dr5IzgPReyX7Hgu+ot6h9PsRukbC25N8xkp3wEcd6T4lBXgh/VRn/y+T2zrjwXxyXW98+Qzchzx7oe9e9j4n/kG5KvDVhm8aWAvcOeMh+CX6vpVej77Hlb8YH4+iawH9Zb5VUf1Gyp0qPVX/355eb5HuRo4v09tD0pk/XUC+3/Aro/WHbTL+kUM9/P6p3gry+Ap9q/W3BeDx7GUr/vY3v9sN/K12AV6OnrPgL4+OH80TR8lvif8r6GMA+7sF/W3o5Xx0D4PnVvljyPsr8vok8w70X6i/XETuZ4Hvk8dGfA9Urzt8zdRvrt82A5uCdeSfTS+tdyzAdfSzGL3djCt1yaG79Ex0xM63J8+30fsG/F+g60ny+kT+HfgftWcBTtPv9qKfLvD34n9OUL8pfndTfwK9/a7/Xou+L9Bfhf1+zV7Og7cq+jbwn5nHvArWln81fb1GrtPl76/9Idpp6PtQ6SbyTzXePcPPVYq/I6/zyeMc9RuQ5+fs6VLyewz9/fix3vBP5m+mgLfD20H5h9Kf6fUi34cZ3w7wvRe6dyPvQehYpf6hyjcnj0nxf+bFbeS/qvy18ufi91x0/cj+DkBHJfqrDm9P7bZWfx56DufH50rHXw0rU4D7k9Mu0h+Q35HGjx/46f2U+1D+C/zCUjDjVyf5tdhnF/aQde076BtHftXU+1n+fsr30L/up5+5YNZr95D7AHZQTb+eqn4z/mNISQEuUe8i+ZMy3wGvBWvBu416ZcCJ7H+rdq6Wjl1/oF7mjy3p9zj8tZC+QvubyfUUcv6Cfsaj80H99Q9y/wOeJtr/kTw66yeHg0+qdw+5tFP//9az9NMBXyuzjud/s37rzl83R+9E/I3H3+383hH8wO7aX63ct+TSG72ltVeX/Y7kFxfj9zXpMvC/if7R8PVU7gL0PF7U/49iPzsodx1/tpd2G4APw3cGeXyHnqm+dyafXvrbTVn3k+tg9G3HP25Cx3rldkFHS/jmo+dW5Trp7xeS85HwXoWPacpfxf7n+r4W3krqn6NfPw9uZl/PZX9Fe3uia6T23pVui76B2ruDPP4gjxXqH6L8j1lfaP8F/mkn9bP/8hL5/R38me/D85zyJ7C7rtLdld8W/avY03x6WABmfnoofo8mlwna/0b77ZQbCX5NzgfLz7oi89oXY2/K/61/XcvODyLn3fH/GXqeJ5d3pJ/AZ1307QmWgJ3hX1NSgJkvbWX/z2S8YL+N0VeFf5qU+Yv+mflmN/y9pX7mN1WkM8/J/GaZ+i/Du4S/Pl5+T/65Kb/UDPxa+13gn4rfpfzY5/LHa+9c/BXvn7bVf7YhtwuL5sdXGK+nsIuO9HFM5nH4/pS9noGe2fh9qABK3QKuJd/e+K5g3fRRxj/p39V/2Pc52st6MPzMYp8b6WdX7a+U3wa/W9Wvw972RPe+7O1Z49QM5W9Xf7Hvj4O70M+O6JqFjxXwZV2ynPz3YG8Vle/FftdJd856V/lh6r+S/WT6b0zv3aXHkMMx4A/aX0mPy+jve3Y1DP2vm69sm/0G/N+SdYD2P0TXpeAW+F+k/yr8b52SAryM/K8ht8/pb6L8h9Uvm/kc/i4ij+/QXT16lH84Oq+l1zt9vxh/u/v+mXqxl5eUa259ur9y56HjW/R9on+/is9v1N8W/pt9fxrMfDfz22vo5R7t30vfleU3iD9XfxP5t0DfCvr8zTjzA36nom8MvY0G66HvW/1t0TYF2FY7s80fz6CfT/WnlvT2MjnPUn6frMvQ/wr+fsb/gfxuKf0s67xZ2q+On3tKCnA9+m/F3xL0XAqWpu8J8JeD71R6aZ31Mfrba78Vvg8Av1T/BuWn+J79gGvUPw59b8K/lR1sSv/gL7c3f/pOejm8d+L7XnCZ+rXhf4u/aG3d94z52zh89aK3nuDD+sdG9nGt8fdG3wdlH4B8/6aPpezhd/Krgf5q1p0fore69OycTxRAqbvB88Gh2QfN/JH9HcXfn0+OG9nnHPL7NfNA9GX/sVXOfXzP/uOB5D+LfKYrf0HG/fRvfL5ODpu1V3z+lHOnt5U7Df1T9fMT8DWLfDYZ315jHx/Qc4f4p+wb6MfV6KU8+Q3z/Xz1+pD/cPi309/LgWXB09j/t/S5RPo19PXW/mD+55ICKNWKwl5gP/Oy/yl9OD4ehq8xvo8mz7fJbRr8PdjtTeho5/tpYObT48G/ybUUOXyEvo+M20cW+cvO9NtLvcOlr8v+tH2N98A14NvwT7Zf1Zn+98Pvnuofhq/+8E9VLvO1DujpBN6HzkPJ6WT9rkrRfCzzrzv13x/A4vF/TuyHncxkj/3QOZk9z835MPkfq73x7Ked7zXYUVPtH4LOEfrNp/g9j3w2kGc3+X+QV/xzN+Wz7/AIvTTR3k7ofBW+36Q7se9n2OuUnC+D63L+avxYBP8a+cPY31by+ht8Bn3d8TVIuQ3wtZR/J3oG60+lybm19jaq10a/P9r49bP1es53J+B3P/wOoN/3yesv8t8CnoP/Q9T/Rv/pzu/l3LF3/DN8FdWrRg7Nye+EjKPk8oZxrgz9zMdP/Zxz4usK7XRkPx3AieQWP3a687EW7G6S9BIw516PGkcWgTm/SXxD4hrqw5t9oHH4m4yuzAfuke6e81H4btV/R0mvzLwdno7qPSJ/a0kB7qrc9eaj90sfCNbUbvZXX9Lu0ezqPvo9KfN/8v0W/+nnN2nvQXRshm+Cefr18LzxL+v/jui4BP3Zr8z+ZQX2kv3L95RP/7tKe+l/FeC9Hz/l0PUYOFp/mICe9+K/4b8bvsfVv1N7ZZRfbdzuwr7WSNdU/1ny/ibnbtI/az/zl8xb5kmvI+eV8fslBXgweBz8n7Orz8D/sb9m2tve+NMsctBuVfRfrP/3BXfkjz7PfIa//I0cHuEHztQ/e+rX08E15rfZb/9M+2/yI29lvoe+hvJrs4O9pdsXnY+fkfmX74nfWJ5zJe09he4Wyu+UeBD8NaWftfD2Mq78rl4z/P2e83f+v3HWbdaf2QdqQm9noqMEXVfpH0+Q27jsq6P/aen75Q9kVy/A+7d09mUrav9F+n0Onr3RfVfON4r2Jxab9+2L37n6aVX5B+DnMPQ0yz4DPt4kj6N9/4a8Ksi/jDzLqj9W+ezPVzYvWKr/P0pev2QfTP2fpbOPso78hqK7btYz+H6NfmviL3EKFcmrlfxS7Pkecn2dfGqivxP7OJr+auBvqP6V9X31ovX9GvQdhf7e4Bjt7Kv8dPqtjO7Enbwp3ZY/+0L7m9GzA312zXmk/OH8VXn5E/nHGdofAF5HjtfgZ4hy15Dn2YlXgLcNem5Xb2XOr9CT8/Sct3dSf5ryhzb6Jx+vJP4s66ecp5NL5gcn57yfXCapf5n65ckn+9MT6S3nBxmXMx5nvP4m8s3+u3Ybhj54+qi/DTp2l97C3k7mV1+OfNjx6fCuYt93ZT8wdgb/Av1tIXgyPnbM+oxeFmUeIz024z9/2BPMeqIMuW/IvgTYnZ+ozG7XwPtcztnR+x362+ofH8jvDd6a82/672kceFv6VfL4VH/aBj/Zl7tauvh8YzZ6jtW/TmLP/8HPg8r1kb8RvQ2lH+Wvukp/gJ7S6HkX/vnafzT7//h9XP7RWV+UFGD8/xzzq1nwtaKP7MvPtx4/jh7ns4/E4dzLP++o/rPxP/T2I3u+Cn0/ZFwlt/oZh+QX95fMt4+kn0sSr8derkJ/V/VnF8X//ifnbdpbwz+sQec47ZRlv9fTz7mJq2Vni+W/it5R+K2of82kn4HoS3ztAnaU+NqJ9PAgeKP6q/G3rfon5XxG/16E35xn5JxjB/bQOOdf5f5JX/H59mryb6V+zh37o38Q+QwDJ5BTdXxfpv3s23+S81j0beEvjiH/cmD87YXWK4v0o4bS8aebyH8uOdwD3wbyuR9dL+CnPHs9nX4WFkCpc8D3wdP1q2bGz6bgLvS7mv1ovtS3YGX622K9WEO9k/mdg9U7OPHV7P1hctrF+Hl+4g/Iv23Or8Bt6OMa41kncp0pXVc7gxCY/bJ9pFsmfs287y31ziSvLcq3TrysdjuDVcnzv+YrtTNeSr+43z/bT3u9+Lvm6R/0kXPjvdAxAf891e8BdlT/Lfm9yHeZ70vBBehfSn5Ha/943y9hf5fJ/xVf32d9hf7h+B+bOFRyfzTrLd/LJD4ncRT4G0WfmZftGDlr/z39dTvwZfY1mDxexN9ZynfLfhv8Z9BX9hlvK9pnHJTzNfU/xe9g9vERu/wE/Bhcj++l+t2liafIelj7M9n7HHCI/MraK76PkHsKNeBrwx8/DLYFd0i8HH7PxE/i1xaSf1/jxjB+Zwt/lvXhbsafjyNH489S9tOUvvbWX/cBT0dfK/q7MfuVicNjH32191nWE+jL/s+Z5FeRfPprL/HQD6q/ABzGP7+lnTPJ7z3tlSmKj9mOvq5mh6Wlm6Ong3YTl5V5R+KzhpL3k+o/pv9OTryg9nuqf3HiJ9Q/Ad0ngSeCX5HfPPbcG56Dcp8l81122xwcZH65gX6fNL8fLv2C/r1e+zPYW+Kmt8/5h/w60uUTz6zc2dI3sJ8bwXr0nfPKK3OfpWj+cRZ6zuSXvsBP4pQq0c9afNeUPxneG8ClOTfMuKr9HvS0O3qPTfxb0XpvKXpyDyT3P86hpzn8yjj1E2dXC/4pJfimp8yL/ya/zOsSf5H7BYm/aKR+zl1uNG7m/OW9nOOSXznt98k6hb31gneM9P7oa2I++SS76ouvHonvA3M+3S7rl8QT2S/K/Y7d8Xkx/dyBrt/JL/cMdpafuKnES32Yc4Tcnyjaz99Zemjip/W/SvieSL/LMz/mby7jt+dJ5/5LM3gP0V5r8Ez03cmv5bwl5zHZnx+hP60ix7Olj0TPWu0u0c4p+uFI+CeRy0/kfDv5vCh/Bn/1unnbG2DOMRprryf/vK/0GfRxBr1GriuzH0A+jeH5GH1t0P1iziPRPyL2nfkm+/2V/JeZZ2wDZr93PHtbrv5S9nsF/hrQ1+nG7cr8eVX0X1YApQaCC/jf+fLfj97JMfGC6V9X4XNP9t4g59M5/yKf23xfh/6n6Tv7Dp1yT6Jo/6FU4u7o5TL2dajyvawXV+gnrcyvD5E/gt5uw8+H5J14szaJz5W/kFzv0P727K6G9DPoTfxoX/3lWd/3yL0h+R/Kz3le4iESzzFYezPQkzjujeR7b0kB9kRnZf0l8eHT8HslvOPAmpnnKr83WA3sTz8H0cf+2n8FPXeh/xH2/Jb8xHXnvs9w9RvSW6Oi/ZXx7C/nGAvl5xzj3gIodTC/doZ0u8Qr0t8c7XXRv+dLP0ufz4DPgV1z/iL9CDxjpZflHNT4XA+sgY6X0PscvZ6U9WvW5/zJF7k3knsy0jsnvqykAMvn3F66Z+7/6b8fJ04kcRjqZ79yEPobZF838zP05X7ppeZD2afejv8vC2ZeUg/+Jbm/RV7Ts6+Bv5vMd/rrX8eAeyiXdedx+ucj0q3UX6+/5jyljPQE9MWvx89309/j35/KuQo+F6N/OvvP/b7Buddn/dwv8WXw328esZgc12n/efU26DfPSrdA/3zf96SXedIfx99lfQTvXtKnZf+bv/08917wvxb9z5Pnl/J30v46+Sebbyf+6hX29Rn+fuHXj1X/CnRfHr9MfpkPZp6Y/e3Eda5Db73EO8LfkfyybzKenrJ/kvbT7puV/9n+isRnwfdf6Q3sdWT2B9BzS9bZ8Lclv9rkWxPMfPJT/XWiddHckgKcv/8/+R2jfOQR/hMP/HLWw+j6MvFX/Hfr3Ieih1LwVaG/Evnf8689tb+e/n6m9y+kl5F7eeWfwMcA+C/K/pH+nLj7xOEn/n6e+jn/Tzxf3dxHYK+v0OsC/P2tfPzBzUX+Iv4h8+N5+tUSMPPlq/FRfP/4Ne3cl3lKzlXRcbzyw4Of/uaDd8FzpXK5H76YPeR+eF3yP4v8T0//xU8b85ncb8/9gNL4v9L8YRxY0/dl8O/A3nZWfyL6P48flU48dPpT+k/mpeejf6b235Bfkf5GZ12Fn7LwJ14ucXSJm0u82Eva/QXdOR/P/Zh1+uu1+JiQOOfsX5BP5PI8e4l86tP33zm/TzxP7j9q79PEx+C3K/pb5D4PmHV6g6L5X+59ZN63DP4l2QdTfpn07fIrGC9qkEsf/moG+21ivF9lHtpUukLi38llJ3a/s/VA9t3X6K+5x5b9suyPnc0f1wZbk/dQcqia9yay7wLmnGhK/DZ8Ode7Vfq/+Psb3q2J14PngMSL0GNxPPr19HcpO5sinXX4E/h7MnHCWQ/lHgU4hL00STwi+7g093DRc7DyF+V8jb3kXmbxfc3aWY/n3l/2VcGvc35Mrz+CFTJfZ1fvoH9nfEc/56OndcZzfN+G/kvg6Se9RXsHZH9NvdjrHfhIfGhZ9Ncrun+xQro/efel7z45h8z8xf5L4jj3k14V+9FfT0TXSeAn8A3KvnPO1RN/i59zyWUE+DL7aZV7QPANYWcj5XfIORW7vk25JtJZHy1KPEbixKR3IZ/6+t3k0JV9l9y3grc0vH+C3yl3t/o7ktss6dzXnJV7p9Izpf+H/7rqDWUPL/JvZ+V+Hrl/zw4+Uj7z9Q2JH9Evvkw8q/yc++YcuAI7zvlvc3JdULRuyvsIH5H3JnaW+dJOuZ+be5m+j5aOPY9V/3rtTAHns59rjGuJQ71J++PgH43eXvi/AJ1dlcv5TgX97Oj0K/J7H95v4Nk+8zL0rc09vayf9Yd7c/+ffc+Vjv3el3z6epr/Oh0/2dfbA7/D4ofZR4/cyyKftfQ3QPpU8nne9yVg4hUfyDieeCJy6aFc9gt6ay/7FL2kx2s/6/GxYPYrJsj/lT1tAn8B3yTHy9DbF2wOf+4pjEJvU/jOR991+s+R+kPWux35lxfk725e+r1x8Hnl+me8w9euRePsAPL4EF8fgKuND7nnMUW567LfgK8G7Cj3JJ5VrqV+dEnmP5nPqDcaXfewr5lF/f805dL/vyfvzJtmF8XX34zu2uiYJn0w+dweOyuidwn7H4u+G4riLb/R/nnk2opej+SH7837CeZ1jXMPJvHnOe9g9zub1/aFN+vD5/WfxDHkHZ2sL0vTW955qCZ9vHId0dMJ7Jw4utwTMi86ljx2xX/e5zkH/Q/CP1z6BXEInUsKMHroJL216F7JOeRbfL+kA3tvD37A/00q2m/M/uMm9W8tym+f94cKoFQf9O8v/6LcR2ZPU5Vfq/x54BLjxb7kcRz6c58y9y33hu9C/qyV8iXxO+xvgfwB6k9Hz5/y/5d1W+7Dg8vRN8i+VWewW97byX0RfnsjveZ+ad5DeRI9z+ReInsuQf+Ef5lfxD9Xz76a9sbA/1PiA/ijRvSW+dcXmb+z233R1xjMPnnO2fJuVN6RyvtR5dDzK3q68z895H/t/lbuR+W+VO5Hzc/+iXYaxh/lfBg/n/veJvXAKfpn5n+V0dOf/I6jl6m+VzP+DUPfsdrvyj5+SLwr++1eUoCJzzyIfs/WXlX+vzaY9xbyzsIQ/j7vMlyX+WX0JR17SnxH4qMb6revons5fmvn/Q14V/FPPaQvhedy+vxU+Rbp99p7A/7/gHO1syd9XqV83htqir/pWb/T557gf/ifw3K+k/hz8s08LOer/dlnDX4071uckvsz5FQt92XUXyR9k3aPBNvS9+icF/Kjzymfe3i5f3cveWYfqSr4Ef3uqj8uJJezlH+RPIrfb3iLHnJesyjjH3nlHbipRePZZN9jZ7GvctrdDmxIvxflXqzx4WTj2yPknPfhZsCb/Y5qWS/l/r/1a1/9NuvuxLcdQR6n4+cc9RMveEpRXNc0407eb8t7Q3l/KO8RrVJ+i/KD2c1i6T/x9w7/MZF+a4Gb5U/gv3Ifei/j6wHwj9B+7v3MYl9rsz6jzzW57wXvqdnnNt4krnJk0fsRa9hHcVxAE/U/JtfEP5SAiU/+07wy777kHZi8/3J/0b5c9unqkuOe+JuQ9S/6N+V8nP5+8n20dA/5VdGT84Rz8XNA7nuYV/zbO6ZP+H6Y7+/k/Bg/S4rihW/mj85SP/uGzdCRd6L6Zf1FX8fwr3dI5/7DePabd5n+ks77TCvzLhg4vaQAy2u3RuLTck8TnXexn+W55yrdU/nf8PcYeXZCf+KEXiPfSdo7Gl0X8wfZR7tb/UvMe++Xvgq+neh7feIcEq+W+0boWUaeC/DxGf4Pzn0A/K803mReNoG+ExeR+z4LyDfvAeSdgMQfP5H3b/ilzCObS2f+eBR6d9SPct98hPqt+euW6H8lcSDqt6D3luAB4GHk/zV7epsfPMz4lDjriuipBO4KVst5N3zfsN/Hs67M+S/7XUlfsePYb+6fTcHfAv6hLPxn8k95n3cXdGb+Xo5dPZnzg6x/8X8leaT/zjEf+kO9WfidDS6GZx78i81vyqCjCboe2/ef7YWOzHdDT84t+2i/XNE5Zs4Vc554jfq5vzaU/6hn/XCX9rqgow77e4hcm+knY/D/qvx+7Cbvn76E3lL6y7tgzo9y/y3xJpdnXATHpn/qX3fnvqt0xukDjCddwBZgLfTXVr4EzH3f7MNdZly+APw8968yPmZ+CL6Gjy7qHwFv3lGswc4OkF+HXCsaN3SnUoPI7wn670BendhB3tu8jr32yfiZcUT53Lc9iTxW4CP3/xJXnHjixBvnfvvlRftlWYdk/TGZPeR9oA9if+hfyK7/1P9maifx/Wty74Fee2e8x984/SXrouL1Ulf+I+8qdpH+kf0+w/99U1KAHaTrZ/+jaH3yGHlknZJxf6jvo8inA/6L36voj+468lviZ1ji4Xw/gXzGs4ca6Ms8oXriXWOn6ucdmfpF8fmZv2U+l/lb3kXMffUzi95HfAHdp2Z+nziZvE/A/hJ3PJX9r1D/e/6hGztopt2nwM3su7d21tFf3rNrgp5eOb/i3/Me3nj1nyKP/uy3XeYx5Ds070WRz3nyx+X9cHI/K/MF/NXKuwSZX+JzUOLXE7+Zfe2c0yZ+Df1VSgrwCv3xGu131v5F8nOPKu/MfWf8uR/Me5d/ofcI5Tfj/6LEC5HP0sRXZR9WOvf2Xyu6L5X7Uzfgb1ruTcA/kny2kMdH+tMKsDh+vrvv3dWfpv4o9E2X7iF/Igd3mfy8O3wu+t9QLu8PX5rzH+nnEk+X+GvzmjwkUhyv2E3/+tb8LPdH847a4ejrnnidrBelc66Y88TrlE/89CJ0VzGuVOUPHkRn7r2Uh2+3xCcnDilxEejaKfF8uR/JzhJflHijzJ9yHz7ncLkv/4P8w/Xff3unsjG7G00fc9Q/EH9PJr6HXX+HrrzPu7CkAAca32aj403yGq2/XgH24z9yz+zQ8JnxI+ND1j9F73vlXa/2mV/xO/19T3zakbkfn/gn8u6U8xT4v0NX7u0W3+cdZrxoQT9PZb8K/oPYVzN23TzvB2hnObtbAuZcK+9jf5/zfHLL+03z8j4C+59G/ukP6Qfp/1XQm3ll1ofr8/8KsWf6HqD92Gvst3qR/eY9ipyn5H30g9jPz+xjM77/ApuQ1w34qUg/benhsLwnYPzYSu55Ty/v5w3Rvzqh61ZyOgI/c31/XbnHpOPPaqDvePI/Ecz/KOQ9vNzvrpF7Vpk/kW/eUz8x50nkd3dJAZalnw74bwf/OzlXI9864LvaOZt91U3cvvR7iQfI+zy57wVvP/RlPzz74+2Vz/74K8ofSx798u4tODFxLWDu8V2V+/vq/4merK9W5v5Q4rMzn2JfXfM+LP/zkfwPlT8yfpXeKoOz9d9zyPfNxJ8mHiLx6fgbVVKApclnhfF4IPo+Mx9vDH4O5n2Pu+lnFpj/+xic+Zv28y578fnDH/I3gX+CU8ntYXrtRm5X0MMf0svQm/jYpUX0Z/+2dOL6yK+t9h8l70XKt8i6mP84kb+6lF2OAn9S7gH0vgFutI9XH5/F66WsoxbTxyHoyXsVeR9kpPy6+DlR/meZ15PvLbmPgY/2eY8X3y9obzX9jAFHZN4Wf0zOu8IzXP5z7PpG8CYw9wMbFcUlNkj8OfvLuzedwVL6ed7B+YA9vYbuZ/Bfnj7qmP+1UK6WdN73rIS/O/F7gf2x3P9YzT/mPDnnzbnn/7D6j4Dvm091y3hu/2NU/gcDv53xOVx7p/p+VtH+/dXkeiW7zbvK+f+b7cljBzD3d2Kfc/TXA/Tvw/SjuYkP127e0888b3bmW/jNfmX2LyvKvzjvE6qf+LQZme+j/2LtXZxzWPq9kL3/JH+Y8eME5W6Rvhm8l73vD39r6/6cL2b/JedBN+b/QHL/mh5zn3szfR2b92IST6v/3kSvg8jtIfgTR/IIuS8CHwZnZF5fUoAXsd9G+n/eQcx6Yin91JTOumOF9geDuYd5YO7P4qcjfsrCm/c1i++jVUzcXOJbkoYv+8A5//rQecIEelqV9YX6P7CvR43L+f+l7AOPyPv6+mf+3yr3b+6E72b4FsvfQp93Gr/+7X8avjUf+4Pdfyd9Kvof/pd7E3vT3wMlBTjJ923yzjZ6Kqv3PzDvEi5B/4/kcgX5/Zx7WPA3ps9aWTfr38Pg/5O8Ew+4gb7elm6qvT459yp6325B4lWk3zd/OR//eY8r73TN0V7e6ypeL2X+uTrjGL1lPp7z3Jy3HUjuB4Ets17JPaqsO5SvQx75P4IP2f2/jfPf699f42c4OW+L/n3I+0l2eq70H9kHd971vnOwrtKbsv+n/9dgZ3tIn43eAca3PtrtmLg4+u1qPXVI7CznJugrn/sI9L07vvrAsxVdjXzvDM9A7Q3PvWnwCPq9POtR9l4190f0t/y/Re5r5x730oyP6Mt502D4ch6V86e8T/qscr2Vyzul3/m+k+8Xs8+R5JD3ocrxi3m//4m874Ge7Ddm/7En+azG38mZ52QdQf5/s9vHcx6q/f3he9P669D4L/07740fT9+Zp5+Q8YB/+R/+sy+1WXoM/GvZ83Tpbuz3SvRVzH1P+qyQ+yDks7v6L7O/UjlPRN95ubcOz63qzyi6j5j7ibmvmP/PKx4vct9qFXrzvweJayuOd+vGvvfSjxuAx5vPEFepL8DqiXfCfy16bg/vHHTm/fKnMz9HT94ZzvuVbeB7zzyjrXTe+53MrtZq7yX83J/7PejP+7O3Zv8t+zrkkf3zA7M+QE87fuko9XNPvin53IyeUfC+hL8ZRevBN6RzHpf1S+JOE7+UeKbELy0tistPnH57+PpofyT7TjznSfD1hX9b/mMdf5p43EP0j+w/Jw4r56F5DyXvoySe9uSsN31/2/jcJnGP2W8vOl8qA+Z8aXbOq/m9/C/Ctdk/KdEOej+V3pr4ZePbNnmfSfqsnJfo7//3Hpl6P2n/f/S5o/p57zHvO04yvq7I/5OBeQdsOftLHFVx/FT8a+7X7CP/dfY3Wb2vE28vv2b2x/P/HvQyAP0Pob8LfV9DXhdq72Pp/D9J/o+kknbzfkjez8j/Yz7NjvJ+xvzoN/EW5NMu/Y0/Snxj1hdvouNR/it2VGw/j7Lnn3MfMO0lHib7w+SX/e7DySfvqeZ91by3+nnuO5Fb9r+zH94588/M0/WT7A98kv0r+V/B3y/3afF/SOLX2VF58Ev1Jmj/4MSJqb9X/Kv0s/Sa//3J+dn35Jf3DLOvmXjeh9Cd98naozPvkz3JvnJOWXw+eQo9jZU+RDrxqRuNS8f5fif6umT/K/tz9H4amPcDNuiPj6nfTv/ZJfcIpI/JfYCsR/J+h/nRJHpOXFret1lnPM7/L34gfQF8uc/XKPyQ1zTy7cjePzV/fF56G3zeZ74xkN98Vzr++gzj4BSwVeKTi+4hJT7j56L4jB/Zf+65FN9vqaW/DAGHgvkfprXaPROcCW6vfv63YT/yzv83vI3/HfGVe0F5f6YBeh8zfs7IuQM5/9/5Iv28Qo9r6OUY+WvI4V0w84Jn8J+49SaJh2JPJ0kvRHf2VxOP/Ff2iaQvV34KfDfBPyX/+5n9f3BR0Xl+/kezY97z1d718F1RtN96M/wvSefd1LwblPdUM68c73vmldn/raBf5p2r27Ub+x9HP2XQt73xeqX67djzyXlvJ3yo/xN77gy+Tp9tMm+kly7G3+Xgduwm52U5P8t5Wt6PWyN/lnSZ9Evt552au8HVyie+fwb+Zibug75/xc/b/McifvQRsA36+sv/GBwANkl8Cn3f4Hv+byr/LzWTv8j9vwa5D5T4Jfp5X7s/oG8he6iU/7+ll8TZdGGfR2nvLXjXaG838sz/Lp9nHF1hnOyFv9+0fzA8B4Ij0H9K9l3RVfz/17dnflF0zy/3+/Lubd67/TJ+Xv0PjGe5t1JPOv8vlTi4N/CT+wnp5zf6nvnW9Nwzlp//5RoCf95Ly3twj/MH+V+DVfxj/MXR/G0V/rM5/Pn/grnGjY7gu/zVZ/Adp/3Y0wjtvpr3H8gt8/rq6M75/Zf09aP8evpT4tN+0+9+BX8Bs/93pfIVtN8IP4nTGa6/5n3Q+ujrj47cd8v9t9JF99/yfuJC7e3K/irKP47dDQTPyf6z8vk/yvXoe48/G6E/X+D7afl/huzb4v+xAih1EzgUHKff/D+0aex/eJx13Xn019P2P/CSkkohiZI+UVSShKKoZI6bsZQGiSbJVLgkIZQGqSQqUikN15CMoaSMiQZzKGWep4hc/db6vR9Pa33fa933P3ud1zlnnz2dfaZ9zntIvVL//zf1gAI8oX4BdmhagOt2LcDHlWt7UAFWOrgAG9QswIE1CrBlgwK8v1EB/rhPAf68bwE+vV8BPqH+ZfDWBO9Gx9Xa6aR8Rfie278Ab2xcgF/vWYDn1SrAoQcW4MHye5UrwCW7FGAf6Z3R+UtZeHcrwO92LsAzyeHavQtwCNixYQHu16QAd61agEdVka+dyvh7tW4Bfoivp/C5Fj+v1SnAO6RLafdz+PdR/hr0riOPK+FfpNpO6JpGD89LD0PPDeBUdB5Kjs3RX5+822pvCf2fq173HQuwIjn9qv2LyPNHdD+n/DT1L9DOp/hvB47X3mP4uRO9U7X/X/prU1KArcDWYAXy+Eu7v5PXlfDV0v7VOxTgVfjuJj1cuc6lC7AyvY+QfhKczT7GaGdh9QI8HB+XwdMC/X/T94/scDv5S+g3+iwvf1419PveA3+z5O9BP03x2wPsjr/xuxfgJvr4bq9SKhTAzfj6ll4uJYfl5P8Oe3kbPJIc14DXVyrAHcE2+D4AP/dVLsCBZQqwLDgL/jPJ70f987PtC3C2/H+TVyXy+5a9XI2f08jvT3obo90l6neUf7Lvd9PbB+i/Bv6r4D+d/CbLbxm/hq/rpQ+Hfwy/tYGfu44/64y+a+jvavxtAK9jL8+T63XwX+X7cPppQD6t6e0M8Hdy+IncTyLX7XYqwD/k/8L/VYk9+f4w/q7WP4+MnNjB2/JP5t9bk++h2puNznvIrwr5LQA/Au+E/z78TZSeK3269tIPzpDeDb3lyXuF8l3UvwV960oK8Dx+8i7ybIC+NuhuC7aoWICPkcNy+OrwX0ul30LP+7XRpV8/XAClTpM+lb/riL5DK6jH3v5rXPgOnm/BGuysObpO0u4b2l2e8YP+xsJ/MHkczP72Ve977dVR/zP1G9FPE+02Y68PqN+S3cyH/5PtCrA/fP8qX4C3w9dauWnSb+D/HuW/1d/Phv9e9J+t3j3af0/5TvBfz86+oLfb5V9PPlPUr6g/rNS/1pF3O/Zyafxk/Jd6x8ivLP9R/etP8prJXk9iBy9JV6LnqvBdr/wQ7ZdhT0t83156Evl0YGfRz2TlPoVvqHRferpSu7/Afz95HIj+leS1F/wrybM3P3Mef19auzfTb01wDf02Mn6uQe8L5PQ9/3GG9g/Un9aAj/I/z8j/23ixB7rvwuc8/N2FrxvQuxUfL5L/C/hZgN4+0lPRdy35H6P9vcH0z7L0dbr0+fBX0341fqG7/H3Y443ouaSkAB/RP/pL74uP29A/jB7moLOr/nuXervFjujhLHS8Ak8T/FRR/xnpu9E/Cezme33yKZ4v9NHOqfjrAt8I9PVR/in62ZU/HYGOpcqdiP9Z+tc2dlDBfKADfZ7pe1XzjPbS0+XHbm5DT7H99NGv31RvuXR/8ptBH1/qlx/A1zzzDPobpb1xJQX4CXnsknEr4w/+f5deIb2j9HD4/wPewp5WwPdv+K4j/83q36V+DfKbrfwk8vqVH7pdua+Cz3xjCvkvkr6UnteaL1Q3f9gZfyeS34XmC4vR20/6fPi67FGAS9jBx+T1PjrvNf4crP5MeloD/x/4O1f9DfSS+csq48sW/KyRPj/+Tf+sDu9x5Ddc+hzy7c9PdZK+CL6MPxl3lkpn/PmFXbxKXktDh/ZvYk8djEOvSUc/T8I7G19z4b8Jf/Eblyr/tnbP0l4N8qubdZV2u6l/lv5zJjhE/qNgG/ramz660lf0szf9VykpwEVge/VH0M+16HoeHyexzzv5y3bs8Gz9r4tyG4yXF6j/iXRN/P7GP9ytf+/Lfm9nL0vlL1L+WPrYl3xi96uK7P9DcCP5j0VPY/J/Qv3d2cP+0k3QWR3/95HPBfBNl876eIn56HPgl+Yf88m3E/nfQX814VnDPmfqj7WkX1euDfl+SJ7rwI/AM7U/k3200N5Q/eFy/FzOLnrBu6Px8lv5y+jjPfLuSr7LtZ9+crL+OYdczmV/N8PbX/sTlftauWvp5Sjy70mfWe+8Zb7wA7p/Aoehpwb76q389to7F/+N0dtN+SeVe4M8J2j/GXLYLH9X5V9X/wffrzGeZv2f+e/n/GMt8riW/P7Ed9aHV+kv3dG3Vb/IOFg8/h3PXu7H13HSu8jfwm+dlXHF9+wfLMLfZ9rpzA89AN9J2uutfmt83Q/erv6r/GrxfLEPut9hN2+DF5FfC/OGE+C5XD++hlyboGsgOprxj83VH6ncfO1NJd+r2Fd187332M8g/e808u4RurSzFb7a9POHdPbTjs96OvNZdM/UD5ahL/5ze/gHk8sQdvSp9m/jTx9Bf0X2fC79rJFfEz0dtfNh/Cv5Xckv1VBunfwb6LED/GeT45Pwd+C/zgLPBEejrwV65uP3K3g+J9/Xs29g3jgEHK/+ysxb6esO4/tb8ZPy9yPXDco9j4/3fR9A/jeR4yz5o+mtPr/2sHJ18Jf1ZdaVtaWzvmwG/yb15oOnqt9bvZvQewT6OsmPv9tVvfi3d+Tfxz46KDdNer789zLfUH+C9JvwzGcvk8m/Ov2tkh7Mf98I//2+/0U/r+l/a8jpdekFyl1Bbt+Sy5XSO8v/mP/4TvpV7byOvhPo80TwGHA5flbh51rpBfzTreoPh+8U8n1VudmZx6h/tvb/yz6vV/8b9tBZuYfYRfb5LuV/G/ADl0nfo52/yfdddL0DroG3Bv7/QmcL8n5QO52U68XeO4OT6Lc7eV5r/dBDup56p+pfK4xb15cU4N7yBxb5qyN934y/T/iHn8wTZknfSn7jsp+P3gbk9Iv0UPQMA68Dr2A/m/mzzHsyD8r85wn63sH3Rtr/O/Ml8quAr+wDrTV+HMp/dUHXYdLDM09gt3dqbzk9jEbfzOzXkMu97Huk+h3J9WywE5h58ybj9dnk3MP3KeqfIr+LdMbFmvR7NPraguvs/36PnlLGzV34ydHs8Dl6+cN4N5FfyDzpNflNlJ+D70vIrzN5TOdvs26fAd4q/2313gJ/14/OIv+HjfdHwnsteT6Iv230t5x9tcz6U/7+6G3FL03XTi3t38Pud5D+W35l6afw9zw5ty0pwA30uzt6O5Pjv3yfCN6O3gvg/ZHc+mf9S75TfW8gfYL+kfOEnC9sH72pP1+7X8e/y18fO9Z+J/jvRcdRWV/wN4ezm5zbPQZ/08yX4D9G/X7K3W/+cADYD/3XkUuJ7zV9ryM9UX47ensFfXvR00n4f5ndfo6+EexhIXmUti7JeinrqeyPLEX/pfBfSF6vkc/F5Jt1y3j97FDpB/jTrfD0BzM+TdN+afTdJr2U/U6WbkB+1aVH53ypAEp9Dz7Nv/RTvoN+eRH76wcOLppffh55Zh6A/5fgvQKcB67C1zjjakXyq4aPy9W/2/rkOvDf+D9Efm/1c667TrnMRyvknIReX+S/l6lfvN6tg/4W5LdY/z64pAC/op+u+H8h+7rauwjcDP9o/fs2cA45zQX3wu8keEpyfq79Tey1Fbr7onO9/Jy/Xlh0Dtst+5PGz73Y+XfmB7vA0y37X+q9Rl5HwL+avaxk1z9Lv4u/WeSX85870NE057Ha+4bdxC/MyHmC8aCdeft86bY5X9bf1pZCL/rqw1/JuLvCPsSF0seofxD+h5FzY+nXyOc55c/BfzXpF/W/K/D3ELpLlDtC/V/gTVzAc9odxn+9q157/JZhP4OUW4+f7cjtQd/rqn8H+1vALhZp/yz5k/m1vcBu7OVBdP+NvlfRu0D7Hel3mHI3wz8g+9/yN5rffMJOhmpnBvkX70+fr1zGj6Xmj8vAF8BHtZvxuSH7qE+OD2a/l71l33EbfzwSfe19j/9+Ch8d8Zv4kUeK7Ltc9vHiv9QvPv+5Wvm36PEc9rNZ+3tFrvrTKvyfLH9q9pvTr+V3037iLRKHcSp8icfoRC5vwL8Xh/2C+ofzo3fmHNJ4+onyZfF1B3yfa/9V6Rnq3Ya+W8xXY78D8dsCXV3ptaX0U/ANUf9Icl4mfXTO/cwDKvDP16BrE780J/s2YOPsMxl/vs9+R9qLH5Xuq73i8XZv88ah8hOvkfOVBeiZQ1530HPOr9YZD2fz3x9JX6XcDvzWUdrrIP1f+rmCPzlS/v7Sf8l/s0R5/XwSvHXR8yn+Z0ifgO8/1X8x62t6acc+mit/q/QgdjQw52AZJ8w/uoNdwfXpf+zhCPWmoPPqzPONCzXAC+DN+WU95X5G53UZd/Sv7vQyRnsz6PMZ/GzR/rH81u3kd4ryFyu/Qvpq+MZpP/PCNfC9QY930/+G9Hf5k9jPE9E/+fXUr96Xvkw7JdI/qv+C77HP4vVa1nHX4X8Qen6IHabfkNNuxoWq4K7gb9mPUT/7zs2lj9Nezi1zXpnzzOGZv9LnBPL7WvrixBNp7yB+92vp1fR8GvtcoJ1B5Dpb/Sn03gD+Vui+kXxX6i//Qd9m5bur3wE9W4wT5dSrDG5Q/mV6+wye3XLOCv9d5hWvg63I5zR2dTo4k57LofMpfvlx49aXvtfCz3X4viPrO/aY87jF5FOVn21rPtQPnWPQfXnOR+H9Xv7+8N0m/wzfr0P/r/S5KvNC/WUG+ZSBv1LmZ/xwV/nHoLue/GXaa6OdOey6P/z7o+Nhek48Yg3lRyl/mvLNSgpwJjpvBedoL/FPlxXFQSX+aZz+nvinxEMl/mmzfvML+Kb54nJ8Lcn+MzpLS69H5yj8jFI+40Mp/E2kj8SZVFE+8SaH029L8AjwQfRVZ78518i6NfE9s9D7TuLp+NFZ9LOVvaxHX86xMz9ZpJ3EIfRkx4PlV0ZPQ+P4YOVO0f41RfFh/eG/B51v4ree8iNKgej7mr3E75dk3pfzfeuWt8Eq2pktvxz+24Bz0bMDvhIvm/jZa7OvoJ0Z+udMcDN/+xl6EheXeLiqvh9QtH+XfbvH4Mn+XRnp3bV3CPrrSX/DX2QfYxF5Zx+ja+KB1cs67i7tXyr9HLgYPAb/XfBzTuYd7PE9/NTI/i85NUTXuUX+4WL43mAH8RdN1U8cbXH87AblH2VXL8HTBB1lyS3nt5vYwwL89eRvzgeXkuf78P9lvDqT/uspVxHezGcyvzmpaH5TRf9akjgK8AP4s77tq/47Wb9lfWNc2wA+jP8L5f9EriMTHyJdNvtD5DHJ92/VG6T9W33/iN1+rt6HyvU2Lvyhn5+oXBP6G6w/tFRvqHT6aeLOfyO/6uR2ifqL5N+r/LLQj76y7LYU/Avx/xX6VqBrJrwP5pwg8WSqxy/EX/SQfwX7GwNvNe2sz/6OcXU5OV7CzsvLr6ReGfp+nn6Pzf4+/WadeiQ+sz792vdTtbuMHn+Fb4N5xTztfCx9X/pZ+r9+XJG9Pp84Tnz3Axfo//uon3n33ejKejP+uwF7rg++Z/x+DX07GPdes7+ROOu35X9hPpM463nSa+VfQj45X52GjtfpP/FOW7J/b3x8V/4jWR8od1TGodxf4K8+jj7038fw14/8+4IXJp6H/CqQ70HSE3I+h/7s14xjT9nHGRV5mg/swT7LJb6Q/S71vZn6j5NHH+lX6WcE2K6kAGvgrzK5rULHDPW+wu9A8SVlwE/I6+usnxIXjd6cU+V8Kvvl2T/Pfnri8zY4j1kPrtRfsz/Ym/+7jVx2ynisvWf5hbHyd5fuJT/ry6Nyziud9eV8fn8/8OPEk8DXG397oedCeF6If+GvMr8vl/s39FsRP4lbL45nXwzf4/C9rb3V0h3lf0lf27Keg3+XzCPJ9znlD8z+MXl1Ie9yyr+j/ePVWwJeq3z2p3I+mfPInE9uQedw/Iwh18rwjND+/vpPHXLZT/obdOaeygb9bt+MJ+S9E394kna+036p2C16s/+Y/cjsP+YezSTwS+U/U/5yeAeBA8HG6DmY/R0GLiSXc7UzCznDwMP51zb0M4NczifHAez86JxnsNe/yGcbf7Gr9v9NHr9qN/E/ZbX/Nv9wNHsehe9n2E8L7eR8apnxMudTj2j/Sn7tR7A1+X6g/Bf0kfV2xp/fyGVf4+g+4IfK3Qd/A/Kem3tqoZe/HA3uq70vtb8InpfQezw85dGTuPPEmyc+dKfwz1+9At9hOfdM/L/6eybuJPsyiUdgr4eodyp9jIH/rsxv6HkrmDjLxNWcXFKAdclrKb4S97Rj7vMkXjT7AMbLivS+k/ST+B1PvkuNjxtyvpm4Cu1k/7+1dg5Sv1n0A74O3pD9f/acuIHnpL+Ep/j+zBbtrJG+0bixALwcTDzeBHTuQr7f6KdPSi8vKcA36OdedCS+vZt+0xC+xei5Cf1j9Y9u5HK79IHsIXZ3rHnZDPpuk3NZ86GF7HYC+/wRnU3g+1p+U+lryfcQ9XMetgS/2+f+C/1/T391pcuQ45nSH6rfS/3tcr6cdQr5xF9kfE9cTDP1E7ee+df1/NGH7HisesflfMZ8I/3uzsRPon9/6b+1Xwu/z7KPsvR9A7gR7EO+Od+5hN3lnCfnO7kflftQuR81GH2/Gx9Wo+N+/WMpubzLHu7A9+FgK/r5CR2P5byAHczN/dbcx4VvpPRM/NVnD6eCV8BzZe7X4WOE9OXarwZ//O3L7O4U64UO8idl/av9e+A7Gr616J2l3Cz6qqt+felz2eX+0hco/zR+FmZ/DP5H2MeT5uMrM16Yp/ci/3Po+/vcpyiKB15g3DtAO6Xp4+XcD8P3wTnvzzlG9k/1q1bwF5/PrmEXtaXb4mu0+i8lXlP9D8jt+MSHaH8K/eX+cO4jLCkpwE3oPRt9a7V3ifQj+Low97vjv7N/pVwp9JVLvKd551zlpuY8NPND/I7XL3Iu0Qr+s/D1G3wPav+B7E8X8TOfv+wd/5/7auA5+HgJnuwfP239lv6Q/eOT0dNNP/w480L0XWW8GKbeq8bHp7O/wH57spvpib9jbz/AeyM7bGp+9pb8X/jvF/iPnYvO11607llOrieg9xb0bSGf3xM3k3UvO6mN3v6ZV5ND/OcZ2l+Iv5/h2Zr7k+w/9veXdOxvHvlWjH2XFOAx5NiXPHKvNfuZ2b/cwF/8nfNx+zy/oWcwunMP5a6i+89ZF2Q9kPXCOezjzv3/L3395N+Hv81pD5xKn+3RN5nc22V/nXx/TDwKfT0GdkFn19RnZx/7Pi77yDkP8H2KcuPlT5P/o/6zBR//tX9wGP7q5dyHPHIf4UP5DymfeJML2Ol27ONleplN/j+wwxE5n4q/RtesxPnCV4X/2QmsBs897OMV9n4uO+4O7gF/NfgST3UZ/TysvYxPDcDR5DyCfX2Y+xFF8UWJb//M/CDxYX+z/5yvHQnvNHwen/cp0Pe8/nNp4vP15y7k9zt6D0DPuZk/4n+G8oca1w+ix2Pgb559rdzHLynAPdXP+upv/GWdlfXVEez1Gv1sMDge3vH4KkPOWWf2094b2mvm+0Dlc759LP+3xfxqAvoTP9ocX5flfM/8KPfPcv5xEX5zDpLzj9w/rA7/P/cP1Z+f/YXEn9BPA/AN9pxzyZxXtkbfd+RwILxfZ34kfzH7qMEuzss8LOcriWsDz8/5iPz4xRtzz1T+ouxn0n/2+z5H5wXa/1Q6+4UDsh8v/yd63qadHZV/Fv7sD/+Bj+wTZ3/4OvaZ+5vlwdzffJbcc/57L3qvIa+H9efR+Oqjv4xUv0PWd+DaxLHTb+JCc76W+/NnoG8se95NOznvT3zhQeTeGDwQzP3ODfRWKXE10omnbmp8uYsfXb3L/6WzhL2Ow/d4sEbi7Nhd5i2Jt1iG/qPhX6X8S+gblfvP/Edb9O0mvaPyiTdrZFxN/1yh/sjwJ/8R5XMO+id5Nj3w//L1s/52S9Yp8GUfYPfcn4J/J3aWedJN6R9F5105B/uYfjrTW86/N8rvlftG9i8Wo+9Q8APwEfRuxF/OrW6Fv3ZJAXZij4eQ363Zb2b335Jb4mwHwH997hUl/t94mf2EL+jrJnb9QPgkv9yf/9r3xI/kPv2h7OmrAijFPEoNYteZt3TUv89iB//cn0Xv9+T4KLonKp99v8Xk0pL+pyiXOMnExWf/fZj6B7D7T63DGxpPZpNfR3TmXKeD9FTyHI3/utEn/Dejpy5/u9A8I/PG6eznc+03JvdmObcAa5P7iexmT3J4Rjt7ajfveeSdj33wexL80zPfl26U+bn19sCsRxIXLD2u6H56zaL76aXRsx04smg9XV5/OcA8Me8lbUn8Wt4H8v16cthd/rYEeLOL0uBn9PdZ5uXZH2e3UzN+0mdTcuyA7j3wd6B2n0j8UM45sr5mT6PRfxW57ZX9d/QuYz/N2fux2llRUoBD9d/f8o5JzrfJ/5fEs6NneNbn+Nsz71awgwHar0U+v6uX+MrEW97Dv9SX3g8fz0b+5LUR/7m3tDHvuaA/8eL9tbNz3s/IvCD2YT5UDX8/oPs8/O2ufiP1R9Fbxt9bs5+jvbn0l3e3ns5+ee7ZwvdN9gcTZwl/Q/z3w9d49G2Qf6fyN0Q+xvvtE/9s/OtUtM81Ju+Asd+y6hev3x/PO1vyq2YenfhYdjPEPsvB/MvK+Fkw92R2pvfckzlMftXcN6LPebGXrOfIOe9HJR57jfXtEezqZ/VHo+9i8vgGX/PI8wT6/Ur7O6Jvqv5wQvbv2Md09WaA1dQ7Rf9qD44yQDyR/h/7J8ct+Fme+LPEl8U+8DUz8fHav4LdX5t7lvQxAX/fgmXge5f8Ml+ua3wcBv4T72e8/Q38Ne9k5NyfPrfL/iH6Eh/fUXt1fL8679Ch7xX4huZdLvBHcunNH7bkXzZqN/d5W7KLA+F7hr5Xaf/lrCdjF8q3Z185n34ErIafnFefyZ73014Ndtwv6zvp3AvLPbGX2M+/fH9Q/cb4PUG5zKcSZ9S2aL41nj7et2/ZTnooOW5Gb+K7E9d9jfbOT/wlfZ8D704532Wv/2ufaQ78A81zH4A/8atD+Ysb2eez0keTT2P+rX3OMRJPRg8DEt+HvrzLlnjFvKeTdctX2n+T/mqWFGBD31fm/bHEN7On3Mtqxp6OxP8n0hvAufpJ59yfRu/eRecGj+d9JuVb5V5t7htnfW1e1Zkf7AIuS5wEfz0abIzOW9CXuIGPEpeU+/3wfyT9sfzEEZTIz7ub3+Lv4pICTHzPc+j9d+RCjg/Q5xnKZ5+ieH+idu51Jq5H/fTHifJ3M0/POxN5/2xX9vKw/j1IuUu0dxB7yP3I3HPI/YbcX7oKnFV0v/EG/fMb49iqIv+TexV5jyHx333Ip/h8OOfCl2m/Pbra5/yhKH4p+wUdwod07qfUy34Ae31ZudK5f6R8G/q5ULnEb3fEV+5fnC29MPfD9J+KWU/q5zXVz7sSiXupov3PlG/GXw1Cx2TjWPe8nyKddWrx+rQ4vmKV9hNnsYfxp3vO6/mbxH9PsB/yaFGc9Nqi+LHoIXFkkX81/i3354rjC/OeyHnkkfnXvLx/kPvPuS+u/TI5v5I/gj0Uv69Qif/Ie4p3oHdA4l3JLfcmjyenU+GpwC90y71N7ZXT/h/4uw98Wv8pyb0vergk+xHwxn5qs5dt9NCIf8p7bZlfVdF+5lebyeOivC8FNmJH2R/Pu6yj1RtrnXhQ0Xw88YuZr/+U+zHGw5HgRcaR3vjZkd99Mff4yGFL7meTZ9556qG9vO+0c+JX0XO69IP4Lcde2yQepKQAO8tvxL8eAMZOG2b8Mi/KPtqo7GPDdyK63lFvjPnh0KyPrLcSH7Uo60n03gxfrn1/BNYip9n6zyB2V/z+XfYzcj8m+x25H3NQ/HveZVEu7/v9r32pvJd3k/abpv+on/ivXubT94PXw5vzx19LCjDnSTlfyjs+PfO+Wu5v0Nen6DiMPr9Xbxo95Xwt9xbzjtoidOU9tZP0h9zTfIDdJL7l58SFqv+LdA/41+A/9+yL79f/QH9D2PdX/MUhia/HV95jGqF+/NWhxrfEObSSTpxDl6L5d8a/7dSP/f6lnZvB2O9N9Jp70ycnvgX9B5rfZJ+xsXT2G1sn3o/+TieXruSY+0F5b6x8znPR14M+FxZAqalgzpO2p5+qiZ+EZ9+i+8m60T/3lHuR16nGp9zfeB+ek9D/Jv87qaQAV0m3VO71+Bvplvzg63n/IO+70MNH2sl690by/tD3MkX+Y2LGL7C1/nMzeADGumddQ/55z+UM42ni306XzvsIR2lvCnofQsdq+SPJp3fOL+kx8b051807xsX3VfrqD9PQf4t0g5xv8EuJzzku8dw5H878lh8vfp/uef1uIDgp74HivzS/sh1YCqyd95PzfoZ09pGyf3QOPrZKdwdfQf/hxs3z1f+ePPI+7inoSrxB7q81kf+W/jcRXIHf7/CZ8+wKef8i8XC5X6Rew7x7Z776Re6pwfdX7iVlHYv+1zIO5V4D+lbI38M4MjPzMjDr86Xs9yLprLdyf7A8/OXJdaX1682JM+IXS/GDidtM/FDiXYvj8/K+9WX4PS7jWkkB9tTexeyhUd73UW4s+tbT/1z5ZxnP3st+G/93VNZn6LmfvHZkry3BUup9wz7X8cf7gnXBA/BfC/87kdPd0t8lfoI8837hGvRMU3+HnGNkPk3f/dU/kj9IXEBxvMAw66/HfF8IrmZ/Dej3sJwP51yZ/PLe65Py8+5rafQNR//76Dk28lZ+Q+7jq5f3ZOvT/3H0sbN6xe8w5v2QvBuSd0Raom8Kv7GncrehJ+9v/ZT3U+j3Z+lF6M37u3l39yxwH+38TD6ZB1UGe6B/MP8wDH+3J34R/vt9P1a/zLyhEvo2639fKN8996PZ9/vxf/Se8/zU36L9SeT9h3TiU3PufTj5DtFf/jkHJ49r5O+d+K7cj855I/o2st8J5P8Hf1gr+yhg9tlz/pX9sTrpd0X7q7vjK/usPdH/Inmeo17eG3gocaW5J6R8G+UT3zWMfB/STzKO35vzb/PxGuRyPDupk/hadvCH8lO0vxb+Puwj9z6K74PkvkfugezGD2YfZyD6xmT/MH4O/sSZZr0zOX449oPut3KPGZ2tcw6Ev+ns6D5wF/pdzZ5zn2Y6fh+V/wL8S8EHE68rP+8Z9C561yD3re43Xzoj8czklfet8/8D69A9mR3n/wdamj98rP6R0ouz3jXPW08+iSeuQH5ZV+VdpNyLyPtIZ8LXJOtX49f58J9Ib5Nzb1n/fAXdk/HdhN9+E8y9uIvJf0D8e9H51Tj2MBj9LRMvjr7zpHuAPcE5uT+p/24qukc0PPvB5Jz+kv6U/YzEO+ceVfH9qfjnKf9jHjUNnxcp3x/clvHCfsBP/FLeBXuDfjeS6yr5mU9crVzetyq+RxR93lBSgC/rt2WL4rc7qz80+3+hX/2+BVDqBHocK3164vPor7p2sk7dlPM542mLnFeh/1P8dWJPbeDpq/3f6beK8aoquBGsl/eQiuJJEl8yjHyq2bfPfZ2Pc46JvltyjwPd/8o9Hf0jcSvBv3/Gqezvq591XdZ5z8DfTX7mJRXIYW948t72e+Sb/ZnId4n+tI5dZ5+wrfwG7ONi/bC+dN4fq+p7/jdjGzry/xn3wpfxN+Nx1bzfwn8sB5cl/ghfmRcuzDsD0iU5v5RuDk7Pfhx69jS+VQf3AL/M/ql5zVLj6sG+P6V+2/CX/QVy2qTcav6rvHG4t/FkUOKP8+4tPed+TN7XHAXfDPheYXdNtV+JPPJuUB/0NCfHxFe3l76FP2jBfh4y3qS/zpd+UfsXsN/zwV7gDXkvg7/cmv0b9OX89wPjyzz6XUj/JfSb+KPcF8p9osSf9ch+MLgWH3+irza53UT/dRLPqP1d+ftdwBrofCzvdCiX+0O5T5T5WfzTwXm3Ad/v5bwd/RPw86Xv2f94IfcylDuVHcyFv4d5z7lg3g/O+wnV+Jvcj887dbkfX528zlR/sfQeyvein4r0Pjn2nvvnBVDqT9/z7uAN8N+q/9+a/YT8Dxz+OuXeEzl1lk58Whf8nwN2BW/U73M/P/paqX7u5+d940H0Xj/vhMX/JW4N7GMczP5IdfYXOyy2vyPwt4zdtkPfLPKvlPiCxDMXxY9ukr4v8QCJU038Nb+wST/OuX3uY+XdnT/A7hln0Xeh8ok7SDxC3tF+jb3fRc9n6wdXJx4r65zEE9Dvyey0Ue6n5Zww+z6Z3xW915L3XHrCV5a8m+lX29PTf/K+Kr4m4atK0XpsBH/4gHQfdByLjtzLL/7/xfHyE2+T+JvW9JX/x3tcuh/99wWfItff0P82PGewo9XouBxd2RfPPnn2x/O+SNOs5/TPvC9SGd6dwYPo6SH07mV8qAVeyU4SfzI2+zH0/VHmr9nf1H7e6/8R3WOl8x5B9p+HsJ93pLM/tbVofyrxlYdEH+ZHt6Fjo/w6/NnLmTfiY4n87dG7kJ0eRR+5Zz286D5QPfs4N+d9kNxvw+8I6bxP8x/zlryDOzHv/slvzV8NordLwF/Tb9XL/27d4fsM9afju15JAZ5Ifs1yH4r9jKOH2vhdjY4lWQ9n/cSeWuPnPf2pUtbf8CyV/xZ73UR+a6WPzTyMv2qde6dg5qf35J0c8n3W9ynpn+ifAC4FB+f9O/LuDvYkz9Po5znzgcVg7j/kncY1+vtqMOuIjnn/D315330k/mtl/4Y95Fz0QPAG9X6S/l//w5K4uMTDtUBf35y/6pd5J/Ng8t0h58/orc1PlSHfR+JPc3/MOqL4/13K0u/pYM6Dc/6b/53MvPvzAvjn/tg+yrcjn8QjJA6hPPm0xncbcO/sQ/I3+R+V/B9R37z/wT7/Lb8r/P/J+yn4vT373trblPdHtNcx96rYzUzyu1H5bzMfI//K6M++RC+wYwm64amr/R7o2ynnEVnf6p+twPvA/F/eaHobmX0m8n4V/qe0NxL9z0pXgr9c9omyP5r3nfK+l3TObYvPcw9F/2Hhg70MSfylej1yXq+dCvST+VNHeFubL/2Z++7k8XreDUTvafLX03fuER/n+x3o72m+cga8p+V8HL6huSeR+3HwtIFnNL8UPzpKemf4ny4pwCm5fwXOkV8rcsD3k4nT0T+K/1+nPXr3YT959zrr0OL3r7fxV93gbcgec5+7+P35/F/aVvXzv2B536cFeprLX5v7bfBlvdI956DZd0b/VvjHqT/XfGEeONz8I/exY29D4Ml4nPXZIebLeUez+P8Q7jPfy//wtNKPcn5/Dn2963tP7cxD//Dct869Q+3XU+6nvHuMzuL3U5qZX1ain1LgdPRn/XUbfOP0z/z/St4lvld+D+3tnfgo+L5AV/5/NO8H5Lwp508/KFdV+63YR1l+qSE/UVl7h2rvZ/4p7xutJq99yDfnQlf4vh36t+m/28H3t3Qj8mmHv8Q9lDb+DlB/dEkBjgFXKJ/7f79qP+f8exhnEn8+2bhcM3Hc5HNQ7gHq79eA2d/Ofvci/GffMPuI2T9cpD/vh65/safEJx5LbieB2Y95lj4OI/cB5J7/e0qc0+lF8UG/5J21xMtIV8h6hxxeIt9TpXeUf7fyL8vf3ng9TbqJcuXRPwA/x5Sgryi+Zgf0NvS9J/+S/0vJvDb3uXLPK/PbOfrHm1nPw9Ob/TZE3wKw+H3fCnmPKvHr4pT7qj+A/i8B12d8yvsjRfFGxefViTdK/NHY7HuiN/fEc+8k91By/yT/d5/z1q7am4j/V9nDK2AF/K/T3nn0v8E4lvt2uV+3Xn/6S719+b/j0HML/d2c/6mOXyS/vNeVd7zyblf2F/4f8XwLF3icdd151M9F/z/wKxEKRQqF+0KFJKJFWlWKUEQpSlIiSqGFSoss7eWWulOWNmWNCi1aVBJSSZsWIq2kfV98z/l9Hs/fOffnnPv653XmMzOvfV4z75nXzHVzzZL/93creAtYv2EBXl2lAK8DK+9YgDftW4CXNCjAy3cvwHfqF2AN9W3qFuD28H1TpwB7tyjAIdqv1n8jfIdrX7dWAd4MT9s9CnA/9b9q/+eeBdhV/cfN4YH/CHAz+hv0f3m7AnwRPKdiAZ7YqABn7VSAFZsW4MC9C/A4/J+Pv0HglnoFuFj9gF0LcGiTAjwL3W3x9yB9P4z/Ec0KsIn6Tvi5yu/TtNtH/Y+VC/AV5W574WO/AjxY+0PJ81LjApxAjkn0taPyo+rnKc8jTzvlucov4ac1ufdSvxP9XkTeT9nnff6wB3rH469ChQJ8An8H4f8E+C8tLcAyfn9+nwKsqf6knQuwM9gFvAa+v+l3Ff95EzyDHe4vW4Czy2mn/DU6J2l3Ang+PV+B/9fQWwEuB7fQ40c7kK9qAQ4sX4AT8Pcxv7wN/vX0dD/5hhh3g8Gh4B788XD2r0I/p6PTH54n2Otd4+tJdvoS/nPRvxa//ZRbkv9YeL9U/we+y7BvC3jOpJfdtL+F/5+7PbzgNfRRFr7y5H5Yebpx2I9+x/KXpepvA+vBf7f+6/D7APp7q+9K7iPp47oCKKmJ3zX8szW8tZUPJtd5+DkVnQb0ez35H+Y3V7FHV/Qb698OX58ofwJPO/K1r1SAx4Fv8J+V+P8T/V76fah8VOJv7QK8aJcCvFT5IPVN+Meb8F6FnxbqbxYfDvH7NO1/J8926M1S/gcfO+nfqwBKFoHjwYfp53D6WKn93DIF2Ip85bYpwA3gtaUF2A+d/YzfWtsW4Bx8lqfPU2sU4EX464JeN/TOS9zg93XE04HavyZeHYdec/GhDvtcQD/9yXMtfAvxf7P4l/g4NfpRfyz+O/yrADuBe8E3zPj8Fb8fotdW/4nKp+O3tFoBNlP/bmkBvqx/Rfxdyr+Zs6SNcg3xpwv5PtW+OfzjjJc16t9H/0LyvWWcVMD/DOP5RHjW0+8b7DNC/4/hH4aPffC/2fhpz8/agS9rdxH7jGWXO+CtFjz4bQL/Onx1U18qXs3xexv8HKx9Y/WbtX9Au2fxtwb9u7UfQc4y6u8j7zh2f4U+ptPfAO2b0dtv6M8mxwHw3qo8UP1J+tc2P+4OLtWuPn5bkH8Evk8FE18aVIfXvDGGQ2wk91rx4vYCKOkJjiotwPfgH0K+C8wPb8N/JXyv0sMysBt/6cxu9elhifXQ+fT3FjoN4d2U8ad9ZfAbctUhR31xIOu1S4yLEdanu+B3sfG10Dh8D/5d1XcTN7dTXwJ+B/8p5q2u6L/LXmvBiugfif4ydq6s/xz+M828Mkt5K7km4/cA5Y/J14R+NtDX3Iwv5RvoP/E5cTlxupf6puR9h98crvxNxqf5dTh/uBmed8nRij6W69cP/dfJd6Tfm5GrJTgdvmvMOx/h/yrlQ/G5sLQAu4mjp4hjb/HvQebFkWB1fJVq1wG/y/lbO3Qaqe/CrzqDr6CzHp6e5HlmtwI8W/866C+gn4pZD6Iznf6+Jefp2jXx+wT2e8O8dhdYCRyL/k/mr17o7sJfB7DfAeaLA9Dtbbw+zR/PoM+m9DCJXsfjo5Lxfwf/bMpfLiDfBuuZf9RPJc9z+p8tHl2b+EcPlel3OP/fBp4TtXtUfXnx4Ujy7qD/L/BfTd4zSwvwUHp8CJ456F+k31P0sKv+S9C9EmxufmtAjgHG70DwNP0WkL+puPoSvbyh3RT6nWbdUYZ+jlbeAP8K8q8EL2OHC+F/A56TyPNL1qf0cwv/26u0AG9W/gb+O/jHWP55PXgf/IuNi/f5QW32Pj7zA37yvTYT3pn8czL9luCzNf565vtDOeP9RfPBGPxXV99PeQE5v9C/gfh6on4dwazPfzAuj+IfDfW/X/1d+J3O7jejd7n65fzlPvyXg+cw/O4uftUG64C/wtNf/6uzbkIn6/se8G0FH9H+M/Wrjccr2Gk0uBCeYeLjE/q/7PdR7NPBvPCzuPQ9/TTVrjp/3hncBVyr/peU2fEWcv8Mvkyuscrf8K+38v1c9F37tHK+bytr/y+/H0n+3uqvUZ7DTvfwg1WZf6yH1hhnzZQX4+c2+MeBt4Pr4fuLvQbx+z+VH8fPjcbr59o/kX0cfJzI/zrTVyfln8n7IrxHwjtBPLqCvc5R7mBeq2j8t8f/o8ZdWXhvMp/HT79g3zbo/OX3F/G7nP+/6vcppQXYHX+T0JnIXhvoez393my9cBO4Wjy4hrzj6Kce/A3oZ0vWN+wyA98nK2f91Y1/jcDPE/zssXw/00979qiHvxLjuIffs67NOjfr2yvE1ZbZZzCu9sTfk8bPcxlH4Fn6r4O3jXG3Ub8fwZHskvnxOuVX0dmBXVuzz2v85lHy3eP3A9jpPPJ+nPUlf54t7r6oXEf9nqUFeDs8L8AzT/1d5q1V5o+7lZdnvqSXXvR5H3t8hc+B+F9gnfAk2Ej7xfTzlXIjdH9RPgy9YexwN/8Yj2499Vvtg76u3VL9W6E3Dh8HKl+R7z3xcYZxkH3FE/L9QO6Zfr+BHhuxzwjx4JrEB/yvYp9NxtEX2h9iHPSHfwd6fBOcxj/HaP8Y/VxD3p2zLta/m/FU17hIPK6L/sfGTRN8nMf+JfoPRO918g0B31N/Fn3NFH9G0eNU/JaQ+3N+2wid5uAp5otB5HiY3pfj73q/byTv8dmHRv8Y+qxP74+jewb/WoyfF8FK9HSI+kXs+7XfHzUOK2T9SP638dsTvXvp4VB+dSB8ZfnX/pmP9D9f+8uM661gn8x7+h+h3Sf5fqaPJeD3+PxU++7kOhk8JfsN8H/Bnu3E+aH6f6D/peSqbT1yXL73lffL95Bxfzz5b6DnPvofje/fyPtp1rn4uBy93n7/nH7+0b613wejX0L/ZcX/MeT4gB/vqn8P/X6H/xzrkEqJ0+qb8puh6E0nX3lyreC/FcnTC9+N2PMccaSh8h3wbtT/M/Be/rwWvXnav+87Yl6++/BXA573yXOZckX2n8c/euOnivg2FP+96KMqu5yu3FT/nsZnV3I9WFqAd/Kn3vi9Bp1W+Gql/zJy/Sj+LTV/XUy+87IfpXw9vKfir4Q9ttLvDsr3sHOfzNP4O0v5R3xkv3w++bOfnv3zZeQZQP4vlAfT5xf0Pk2c7mEc3I5Oi+zX4GsMfWzO/obfu5PvS/IeBP8K+PfG3+PatcT/MvPmSHrZFexEvzvSy3n4zvr+dX5SSXz5W5z+B6zJT15SPlU53z+H4+dV4+YK9SvoaTL9PUAfD6HzFf/6jD2+Vr8VnUbl/pt+GfKfZZ7pDv6BziP0OQs8Sbz9TX0X+vyBXg4Qx+Pfm/M9UbT+KUe/t+OzDj9pDt9g5cHsW4temiiXhb8qfee7dYH4Pwu9c9mvkf5b2Xdkvg/wd5l2xfu5exk32c+5G3+L8L8fvf8G/goOR/8k8bcLuDlxMud37FIv5zvw7sA/2/r9Hfpon3GHnyvx9w++f7I+vF/7+7Qfpv0B9N8g+NnrMO1fQ2+i+uv4z2rrmlrgWPWd+dM+6D4B/zByfEAfk8XRv9E7KH4MX/ati/ezBxi/h8F7nvJQ9QsLoORp9itltz3RP42+8119R2kB9lXfiz+fDq7T7h/1jxgPf7F7eeOyGn1O5G9vs+8EcIX2V4i/2Tc7CP3e+pdjv03aX8I/F6vfmn39zJOxU8YvfDuA24L/0MOV1otjwX/Du0P2P9jlbXg/VW6uPvHyfXJ/i58y8FxjXv0ZPxdrv3PWf5nX4L/OeF+v/XXsPhLMPnA97S8kTwP0v4Z/Veyr3+ngfHBL5nf+vxzesuDzxl9V9R2ybjM/raG/jc7jF/LTa/nvzeifZb5+KvML/dWF/9/o5fxuFf5rkmc2vx3Lb47hJ9PV7ybejdN/D/yeAf8w66vb8h1A35ey3+DkO8Sv8ZPzs6rw719UP0//04z/pcbx2KzT0f9f68pd6C/zaebXp7TL/Hql/YyBOecpgJJ99J9rfLyCTvbFj0B/A30Ow39j9Lfwz1P55yR0h7DPPfqvJP+H+jW13lqA7+/QXaD9U/Q/kX42iXv96a2N8gnZn/T7DeRfgo/n4LvJ7/GLzvo9Dv7JP9bBM0p5Bf3U5pdDlH/Vrjw9TUCvrXLx+eFw42UP/rMn2C/rbu1z7vmb35cp16GnfcgxgBwvwt+ev1QQR/N9nO/mzMtZn72WfRP6eYP+m4Mrs57Fx3LrnVfEtxrZJ875J/99jv+uQT/+/4zx09S8sy+Y/a4zydOLf4zG9zPoLGSPHvR7ZfKXlN80P1Yg53B2eo99H7T+GiqODFN+R/u65r3aYB1wCfl3wV8n5Sbwjsv5C/lbkHer9snPOj/ranrpCU7UfnzGD/yXKP+HfU9h30OUk2f3jvKzxvcuYA/6q46/o/nfqeRuq/w+PH3poW2RP5cpwh+8S8v8N/5Rfh9MnlrkH6V8L396IfutOQeAvxJ9dOK/E+hzjXazsr8EDhJPNuF7H3atie+l7FMT/v70X4s/Lco+NvvMVm5J/1eJ52fyoz/wP9r88VZRPkVD/j3LOJkBroH3Z3z1gv9E/DSjv2fp63H1BymfSX91kyeZ8wn0ryXfYeJhTfQOV75H/3roNQAX4+9teL42/3a1zj8J7KN/ztEvSf6h8tPoP0j++8GO7PlqzhmyvwPfz+yT7/kK7FoR7APOY69S/TL/34Xvisnf8F2yFvwAPDX7Uea3/Yzr9ex4Kfvfi9+Msx+VX1LfurQAt8P3A/D1x/87GV/4eld5u+Sn6F8PrA/+K/5RACV9+bHps6SR/qPFvzHgqKL56grzesvU+z35ufHX8vyrWvKu6K+y+Tj5ow8r35r8B/0P5ZdPwTuZ/17uvLuO8nTlNvAfjG7WY4fANw6eZ8WTReLM38p1M1/Btz24BazFT5I3uS9+V8K/Mfub9Pog+UqMg9r0+73vixL8/a58tP71jJe9xM98R6xVv5o+x+tf0fj5jT4G43NH5Yf0b4l+RePmEfw3Nc47qp9FnlP4Y0P4LqDfO9Ufi/4d5O2gf3n4u+DzdfLsi598l/Si7/X4y/g7I/k/6DwC/yh23U58PB+ecsqN8FuRPueQbxa8N+Fvi/bZRz2L/rLOTV7ALfgtMf7qkP9N8SX7htkPXqH9IuuSVfA8ofwB+jca92sNvJfNQ0P4S2X6a+D3rvBOJd/d9LGfeXsNuCjn6uT4D/0m36Gc/mdr3wfMPkH2Oe8HD9d+OHlPJP935Pks34/KR5LvXfrKOdMj9P2n+uL9oN35yUH0+K54ugJcDk5Rn3P7G5WLz++vN14XglXwNz/5fck/pO+34ZmRfF56n2PcjlL+DZ2T9U/ew//Pg0D/KnTngqeDbXN/Qf/X0b0E3g+zvkX3g+ST8YeR5N6NfrN/cSk7ZJ94vvXKlqwfjN/4w/X87gL4blFeqVyVvp8l3+PGx2b9E89jh5/yPUG/n2TfBRxRoj17LzL/32QdfTY6K8n/oXX/OX7fjZ9u0P899DvQX3n0H9O/XPIv+e1qeumo/i/x/iHx/xv9n6THfYzPo5X7q38z5z/iy1z62Gj+epX8O5n3J/t9feyFjxWlBfiL/tWtn9brn/2YD4r2t8eRt1LK5NwffwPjh/RXBf81tJuofxt2u4Y//oXfW8j3IPrZF/8487vyKnrNuVrO2XK+NtR4+wJfQ5S/1P8eehlGj5eD3TL/Jz+bH2e+y/z2oXgyEl97gIPQn8e+ye9/kp33zPlgzs1LC7C59Ux37Tso3599POMh57uZf15TX65oPupDvnPAx8jxN/3uT84LwSn5fsJ/GXjOBbdj7zXoV+Yv3cDkgbXN/Qv22Z68d9LfDrmnwS/qZz+SnUYo/ybezBD3ZoJXZX8QnvL4eQ69v+A9tQBKxoFzwHPosRp7TCPfAuWT4U8+b/J8u7BX8n2nkedt9LMvf6D4m/PxbZPvpN3b6geRr6FxXhffP7HPVvRr0u8W5XX0/JP132J+/Tx4jf4PleLDvnY9v9+Z8518V+X+CX5fzD0d4+oz9V3s3/QkT/Krk1ed+Jp4W4P/5lxxb7/nnshdyQ8zPzTTfhT93pm8EbAXv2qE/+RFJk/yCrBc8iiK7jvlHtTd8GT+y7yXvPnMf2Pw+xD7f4y/pfA/Sl9t2PVM46cL/j7gL81z/ofe5pxPofue8TaA3s/Q/1Z0Tqb/o7T/J/E930055wWTv90t373sWIF/PIOPbuLCjuLGPeLdIvUPkvvt7G/m3BF/vxiPNeh9du4r4a8df/meftorZ/wOTr4EfYwFn9f/UfJuwPeA3CMAh7JPGfr9jRw532hhXD3JLpdrtxj+U/hfPf3eVB6E7ij9V0d/yhckn4v93zIecs8w688m9DLSd0QneqiNjwnsk3sa45VzT+Mm9kheYnG+4rE5h2Tv44ruv5Wwz0noXWz91zf5dckr5F/JE00eZ/ZLsn+SPOLkDy8Rl3rz83r86Sv09jVevhR/vgJnJ1/LfF8heXTka4y/j8yf2f+eKT7/qn6p/YYv6fd++2eD4GtPjob8eSC/yProaP59PL5zj+lF/Wvgb3f9N5FrOP1uJE917T5Tvkz7BeDJyQctuge5hN6Wgs/R64v0M5Y+qvDP6eLk9jlvMp5OJOcV8G9UTp7uGbnPx49uw88J+D0R7ASu4Qdr4cs+RvYvkj8/P/nvxsV2YB/4p/C303Lenn0x8nU2fy1kxyfBg+kn52qX4X8F+qXo9y8twNybbUuPFXI+RD/Lk8+K3hb1n+m/EawDTss9QvTyHb5SvMn3d/ziB3wmXyp+ch//mmddOUX5cPTfENceMb46kSvzQUv6GJV7V/qV1a689XVzceZ2+h5mnPY3/ocqn0f/d2Y9xr8WK5+bPGjj61Xzyffon8bed5NzNfqng2+BxyafLfcr/Z7zjReyv6Ldecrt6TPnTT8aV40Tb3NvPPcr1c837qfzv5/0z7y4mv9VV+6q/iZx/RewET1+SQ+byP1V8rrx8UPO0dmvuvYj+duv5JlsPrlAHB8IZv/wM+Wca9fNPfKc/xv3vZQvRv/f9JD8mMf9vgbe5Ec+xq9Gg/PAxLcj8Dka/E/WO8l/Fn9vEnePAq9mx+Hi5f3o1+Lnp7DP0/S9kr7vzX3P3M9RbgjfJeRM/vd35o/cI8j9gdwPyn5N9nF+9/sr6Nfif3/xv5w/JX5W4c/96KVvzuno46B89+P3Wfq5Xnm+9ftmeJPPnn3i/fhd8j4WKzfOfWH9Ep+G5PyMvl7iHzuS+xX9Z5NzW3q/UP8K/Pdi+KflPIafFn+fD8+9Tf1fNz+MI1+5jA/9zs/8T7/PmP/30P9t5Tvw/13yMunxSfZqof31yfcB59L/DO2+zH0DcW0W2B2cpt+Oyc+n52fIv4/yKclHJMd32X8vOm/K+dNO+EtewvXiSnF+Qj3xNfshq/NOB/3+Sr97ofsWvC21n6D+e/AL+v8A/uQX9QXfVn8X/VcjfxX22px1nPIJxs18caS+8boh/iJuHsGP6+Y+OPz/JC+JvvZix9/x941xVfz+x7Xwbwt/7j/kPkTuPwwQv8vq943x9Sn8yXvaFv3kPXVS/oS8v9PLafo9A+b+1g3av6td7m99SH/rwbW5B6J/O/o6DrytAEqOVT6Cf39PrqeLzyP4S3NxZj+wAXtmvT2ktACTR5b8sZP9fpV1WQvjaxn/mZT3R9BLnkPe1xiQ+1XsO1E5cbOv7+EG4GO+l79j51JyTss9Uvpej94k9liB7q/Kud+Y++WnWvfUA5MnMku8ynsMzdDdO/bjP7mX+UnOf9OeXm7I+bL6Ffy3Z2kBPoGPvvR3Afk/zvot83nR/FrMf/hOfkzyuy7Kd1fuY+O3+Pz/nuSZKD9I/uL9lR7J/2Wvpfi7HN/Jf24Qv4S3u36fg8lHyzo664fkpz3HroeZXxYp35tzt/gB/u4yfk5Qzrr0uey7Zz8Lfzep3xdsAlY3Hn/PuzHJRzFeLlWf7/5PwGP5Q/YFsu/8IH4yv12R89/k6xl3L9Jj7mm1yb04cWgwPbbN/Vz8LUB3GXpHse8W+tgu9yHVP6ZcrM/DivJ/P7E+yrxaPN9ehq9l+l2X9XveUcq9z9ICvI3/5ftlnPjwDTzJ48h5+Nl+z/7BPTn3M3468sdO4GDz8076Z//9QHqtxA7Jbz0n61P1L+X8D/6j/J7zokPU361+b3L35+df0+fd5KtEf/34zQ3sfRD+ysKXc9da8OQ8Nv6/Dfqx0xnG/yX0uXPy/qxvz839HH7ZAd13yNMM/neyb5N82eTnKf9O32fDf2f2y43PmqUF+JA4V0P5U/wW309tSO7cUy3NfQn19+Ez+VTnNPlvvj+Eb5X6OcrJ530u+cG5/5/1N3qT0Mv6K/dAP8JX7ofOVD8g+8m5T6Z8Pfwn4/cwv1czDmvk/QbxsTWYfdKR5HnA98omv4/nD2Pw8zz+Xtd+cvZXc0+S/MMSn9k9/nSS9gvUPwNfJ/YdblxfDh6a9bf6nHe1MS7/UL4v+6jo14b/wKyjc+++6D2wtcZB3q8btf1/9xutfFjeX0r+OdiYvpqjl/mwfe4D0l/mx3X2W65SvkX9HfBXx39364sScCF7X62+NPnU4HD6vcv4zL5E9it+5/+L9Z+oX1f9jiD/v8Tz3Kccl/Ug/pLv/Yl+n+393/VfGt9P0V9V88gU+umU7170ivOEToAv32tjcp8N/o2+r3OP6V76z3nhQvPPU+BMfF5Gf6Pzrgy/6Sbe51x8f/G6JdgTvwdlvY6/B8Bt8F+Zfg/lt834x75g7lMNZc9SfvCs+DoBnx3g60Bvi+jlW/x/a71ZIfceyXFd1nuZL/CzznxQgz0vZJ/cj/xJ+xbqP7Cun0GfS5Ofgf7QvA9iHOU9jbwbkPyZx8HkzySf5o6sk4ruVeb9gY785if6foOe817NxeJbzt8+Rb8NedbSzz30fK9yZ/juZP/tSwuwP/k3wL83/vZK3i76Pypv1m80+puU835hT/NrvvOKv++Sb7cG3hfQn5b8S+vmrKOL88OrmF9zjlya9TP6WS8kn38M+u30z/3NvF/TSfu8X1OVfXvy49nkzP2Jrvhaz68ehif3p7rj/4HcN8p5j/oL1e+c/Az2OI7//ZV1eeYX83juB14unk22jmub77/k6xblp7QuylN5jF1+wlcN68dW+tdM/C66r/Jj9kfFhVvpbZJxcGfy+f2efI17yXEy/de2D1ODfrrlPZe8X4Ov2/XLd+84+lslXuS+9tXi1wz4H2eX3M/Kfa2cXx9i/LQGGxg/eV8j+3PfiAPZp0t8PkBcOoNfjOBfud8+u7QAR6K7jfIm8jSiv4Y5xwOzH/M9vr8DK2ecgFX4Zzt6Lgtv9r8PwdcF9Jh17474e5n+hub9FfobQz+51/8duxff7/8274GBW8Dr8h4ivt5Et2fsoX/eT6ukfd5Ry/tpV1m3rQU/wucDuT9s3hjEXrkHm/uvye+uz+9b8a/kezcuLcDnjLOO9PQSPuYV3UvLe395n++H7IvTzzb86EL++6n5eYl5uYP9qb7Z/4TvBXofnXe/6Gew9VjO08eofzLfF/Q9PN+hOdeH/yP98t7RC/icrXyG+Xhbfjw392Tpb3OR/b6n76H6HwNfNfVvZh+Uvt5ht+Svvxs7qj+KvteJo3+VFuAC9rko+4rwJz/irdxvMg4Gwv8T/PPVJ/9qEP3+ws7JN867Ue+wd/H7Ua3opwc+js89Dnr6iH+8B+6QdRz95T2UvI/Sr+h9lNHG9RhwLHg1PNkvyL3LjkX503lvsxn4l9/z/mYV46tq9onR75j4qtyL3DmH3xO9hvk+Z5+J5pvE+yn8cxI4A0z+/1z9J+W+JLgk+avm1Yf532nKB6D/iLhZP/n1yvex+yh6bYzvJey9MHkw7Be/PpPd49+Ls5/j94/w+0vOz0oLcHv6fZV9hqrvCn99cbJC0fom+y79wPOK9mGeoo/o+yX0uyj3gDfrqC1F66jkT2bf8xByZv9qJr9tn7wQest93am51wxOAfPdfxx6uTd2Se5RFr3/E3+Ov/fK+2r465H3eYzPi3K/1fy1E/ghfrPO6mo9ku/M24q+L3uZv54tgJLzwUPVV4Uv93tz3zf3e6fQd95NyTsqeT/l/OTt0H/x+9sDsh9sXDwlzrTMvUrrobwfM1k578r8Bn/eJdlED3mfJPtjXekxeam701/HzGfmlbHZT1Gf/e3sazdVzv72InxVZ5fbsm+Y+1PG1/t5P4n/9k5+HP1Oxe/3+Mx7WD3YK3k3xfk4S3P/gN7Hg3n/qAx+V7JH3vFeid4w/C2B7y7j/zLy/SiejGD/7D99k/Upv5qUe1f0n/Ok8Rmv7HqH8sicP+R7Kffz8NGM/v7BT979+zz58fhP3tdd5OsN3+TcR8BP1uud+csLuR+svh+/Ohy+vJ+0iX3Lafc+mPfk/5dcnfHXmh4m5T6M8tX0W/z+9UrrrLyvWjXrbXqopnwb/ZwuLuW+Rhd6zP22g8WXg8BWYMvkS/h+qpB1JLhM/+L71g/mnSP85R3a3Hspfv/of83bf2h/sPa34/8H4yH7lf2VPyTvfux3KLq5r5T7S8+zf+4vLWOfHuDe4GZ8rDB+ZsE/FlxNvsHm1YO1/5Y/nEW+vuxye/LjyZvzv7yHlvfRTrB/kffRXhR3kn94Fj3lfejkgzfNfhr5sr+c9yduoa/kX+f9iSP56xHgJv71Fjnznn7e1889/ryv/5e4tsH43lk553W3JO/ZvJe85Fo5P8bvdfhJXN9HfQ/rgQ259wDmPn7ymZLnlLymR/E3O/c1i+4Bf49eH/HpFXJ+TP68b7mZf61NfpPyA/RR/G5bJfPFTPXJu90VrJk8XPXPk68hvvoW3V/I/49IHmT+j0T+f8QU+pgKHuj33K/NecWM3B+kh5xf3AVfGe2SD3E4+sX5Dy/Qz6d5f088yHdPv9IC7JN3WMxrK/3+rfbb4OPNvD+V9ZLfc/8y519nG5c5B8v5V6vkt2b/Dr68/3KLdfXV5L9S/WnwtEMv8ezhvFcCf2/+u4lfH539V/rL+rB19gPAgfrvhv5QcAiYcXVY8jjx0QS+8eS5AP2WYAuwC/nKGHfbgn/nnYK8v8KuXyUvIHm3+Mv5Sc5NTsD/b1nPG1e9wM+1y/7AY/on/ibuTgSL76fnnDP3fivS60zx4UZy5J5/9kUyHtskj458eTftXf5S/H7a/3o3LPmb9dFPXl7y9PL++c4Z9/DnnmqDxC/yjCgtwCvBS/D7LrvGbx+gr3vRz/385eCyfI/rN0X86qw8OfMB/vL/F3IPOv+HIfmLs8xPK/WfDv8B6qeJfw+DeZ9iT/gvyfsg+p2T/Qz4cn+zLj5yfzP3OSeLd8/C2509biR/8rf68s+s35K/VQ7d7cDcF4498l5L3m+Zk3fAki+C/4X4/Vr/Z9lnQAGU9NM/7023SP5Yzkfybgf75/7gc/w17/7mHeC91N9I/2X0m8MPz6X/r8TTzLtfg9PwcTh/eVacawxP8h1/gD/54JUyn6nP/cHlYO4P5j7hy+Lx9fQ5SHmr8r659wM2LXpfP+9StgdPsv75F/km8Yfkyd7HX5IfPpUdsq8zkxzZ32nLXg/h90n2ODb34tDNvnL2mbO/fJTxnfdEz9f/T/SL72efkHOx5J9ZTx6l/Bq8lfC3hL5y/jxBebvkW5DnCfzm/5nl/Dd5A7l3N4Oejk6+Fn2tMe7/UV8u95nxk/sgyVfL+96X4etS+PbJPg958n7zCzmXVs69vZyfXAQOQD/nKRvQ+1P7Jfg8Cv2nSwvwKfA0/jdBv2H0NZScF4PD6Le5ftm/zH7m59nfNy/djp+GOW+h3476d6XfZvhLvvZ48j6WvHrjqRL8v4jvo6zD5uO7ivi4nn886/cO4ln+v0Typ1cpH5b71vk+KICSh8CRYCt0s3/xZ9bnYPYz7uX/eTc391rqs29Z8THnnM8U/T+OV+0XdCR/z/il+nn0dTC7tMj+Hfv2tN5doP405apF67ms77LemwT/z8p5r+c1+xhHJH/W+H0pchvn2afeI/da6Ot5ergff235zTaZx/OeCPzr+OP3Rf8H4M3kH9PvYnH5xLzPwD/PzPob3iF5r0P/H/hj8pCL84+Tt/gSfyvOX1wL3xHa/1BagA8mv4x/9IZ/iv7z1P/OnyfS16/KO6M3qWh/KP9/r6r+uUd5bfJt9LuY/v5D78nHe5V8pfTzH+eP1egh764cBf5Kr6+z8wow81zeV8n/WRuvfCZ+8t5O8nrzrsh08EP2ybvwxe/F/+X33cmf/y+V/zf1jPjUCv7E3Tn0U6Poe2L75EXgrxZ8yWtPnnvy278Qf3bg19uD2bdIPmjmy8yjye/Je1Wx57bZL8NHP/5VmZy3wtdO+2/JOSTv5fDjf4ce+wzXbpLz7uR/5J54/DP3yeOfc3Pum/Fg/ZfzuwnWTXeCd4BT8feB+bFRaQHWznudOa9Rv2fsr7ycPbJvtS17X65fvvdy33UqeHzRfdg/4E0ezqnkyz7/avrIvmz2abM/G7+ZmzyZ/+E/7+f7iT/MNn4600cHsLX4Ux6es8SH3mAfcCr77OJ7aFfwQP3WsUf+31Le3cz/Y6qGfua1vLeQeS3x9QX98n9Kcg6e/1eyQFxKXuXz6Ob9gq/y/82s24+FrxU6Od+4Ur+G5Mr5RvIr8/8Tt887Puof0T/vb3QAT8v+D/oXggfk/AwsEd/y3VL8PTPDumAWmPVP1kPJvzku+fZ+vzv7Q7m/gd9q6L4rPub/l+b/lp5WWoDJ/7kQf/n/i4PAnA/n/3+sw1/+D0jyPtfn/8+Y5/rjrx//bMgu0c/O6M9J/n3OT0Iv97H0v0d97n0Vv99TnB+b/9uyEcx3bfJDkhfSHf6cp+ScJecqfeFfJv7the4P9JP87Lx/2hDM+6dt+Vn2vxM/PlKf9wdmm48GgrOtX0ar32A8bldagCfjt2Xed6DXpXnnFDyafvMeVvmi7+DsQzTSP+8S7JR9Dfj3oLfbwdvA5Ht3p//kt7UAk99W1ny5LVgJf/m/Y3kHJf9vN/ldr9BfI/PJNvA9nvNE+q9s/ZI8iLbKeR9tDn+dBZ4qnp8Pf3P8j0i+Lrhb8kP1m09fVfA5NfdPyNOMX+Qdvry/V/z/a/c0jvJ/bK9jjwrmubfQr8cOE8mb90sz3hJPj9Nvgzj5GT7zvkDei8v7cfX9Hv0sMj+XwU/mweynb0g+EP0mDiX+7Mc/k4c7U/xKHm7ee8n7LwvovTP9/WZ8fElf4/G/e/LP+MmrOXfMOijvC7BP/t9f5qPkF2wwv75G7rnkjf2/xv+1YP4PVt6/GM2fyonfe9P32egXfz80Zod8R5xh3jwTzP5i3sfO+Mh4yPjI+03Ditbzn9PDfdnvKLpflXGa/eODjP/1OS9Ovr32x+A//8ekFf3NV1+T/FvR+UI5eT3Jb35F3NoXTL7zLO1n5zuUv2f/5Cj8HQMeDeb/Du9vPZW875bKyf/+VPyaAm4p1Z8+v+Efyf9sxt+S/zmL/ivgd5X1X75P27FHvosfybtz9Jv8h+q+i5IHkfyHuuyX9chC5fnon6h9ZXZ7iX3yPmzuuz+VPDF2bK3/Mfz1UPpMHsELyn/4buqc84K8v5L3VcST5NkmDif+LvV77rvkfHVf9B/Nd2PO1fGb88Q98j6fuHCecu4bfGF9kPkn++uZh/oYV8nP/THnwvT/f/fXDrd4nHXdedTXwxs38BQpKpK060ZaJES2RKEQKmsolXZZipRElCJERZQsZSuECEmyb5WEhCxpkRKRJVsRnnOe7+v9O+f5nvPc/1xnvjNz7XPNfGaumXtG9VL/929xjQJs36gA++1TgLvWL8CGyg9VLcAzmhTgCXsV4JC9C3AtPI8eUIDf1SnA+uBxDQvwaf3vr12AJQ0KcItyowNB9G9Ie/3bqb9Vv9u0+xDdm9S/UVKAL+CrHX4X7luAg8m1rHEBViLHM/ovqluAE/x+oX7H7VeAl6N/OL0NrFeAdeB9qQBKbdVuqPJn6u/drQDX1yrAP8ixD/zN8bty9wJcBb4D39PoPY+v+uCOTQuw4Z4FeAs8R7HfEO1671GAF8M3m51+Qv+9SuiVLcAf9XsD/graVwJ3Avdmp1XxC/3K0/Ovyu3J25HdPihTgAvovxr5nuIXT8N7KTzTty/A/3YswDPpdaP6Ofy7i/6zlevvX4APkL8nvIfQwyHwjNyF/BULsAN5xuLvgl0LsJ1+W8sXYBn+2oXfnax+Hjtsq/5S8jdH72b4S+Ev/h7/3159/L8P/Efwo7fJuQbelfq/Qd/d9X9T+bqSAlyl3xnwxD9v0v4b7VfzhzL4Wxc/5y8n0dNP/ONndplL/nfKFeCB8D2o/Qn4PFZ5P3gXVC7AW6oU4MPgjfylKfsvYafTtV+D3oICKHU32B88j38cov8J7PgBvY2n7x4VCvAJ+HZEZz35vsDnIvKs5a8/6j8Nvnb0c0+1Amyrf2P6GAF/250LsDL7/hZ/078legeS/xn8Pyz+/Ib+YfhpqvwZP/kUvJW+58LfC94Rfr828ZBfnKndHuR6k/3/1f5E/TegV07/O9jjRfx/QM7J8V/joaJ+DxqfvdA5yXh6iX12A3ur34k/PEQP08AN9PE3/ffQfp1yFfo/kFzHRF7yLKPfQ/jjQWAz8GpynF5SgIfCuwj/V9JPxt/t8Gf8ZTz2Ee+GkmMn5Qboz61ZgP/Avze81ejvMnprAv/t5J5L3vv40xi/v6fdOvQbwt8Y3Bdcpv0v8B+oXB78NHjEi+bmma+VN7F3BfIegZ/b6OMq9XXJtZfyz+x9GvvMM17OE6eXmf+m0H+J/pfC3wf+vvR0LL5O5WfHKHchx93ononezfA9qVyGP9WEv7TyKfqdwG510btM/5nsd5/6Hci1nv98rf9V5LgP/pKsC9i3KX/qatyuK8Ef+80nR0P2GM1em/BTwfrlV/jPzvoHf6+wz/foDsN/K/h35z81wevI/wK6q/U/QPsF5NmVfBdp322HAtwFXKX/aPG03k4FONR80Rc/fcXHM8DTwczT91lv/FhSgJlHMn9Mpb8/lNuAvfHbY5sCrETuk/z+Hv3NI19dv39OzzOUd8bPZHAs+XZA51X+OwN8DDwU/2u0/wpcsl0BDmWv6tZr1ar+v3S/B/8Tn/trvx9+38f/KP4wil5uRLcmOfqZ334g/wfsMYj9pqE7m99UzbqGf56G3qXaPwfvcegvE082+P0q7VvwvzP8fqrfP9dvkfrZfj+Nv9SkvxfxsYg8P2k/grxrjd8R7DAWfEX99ugOhv/mrL/QuUP9X+pXk+NAdDehV8N4vsA4HwBP5r8+9Hq48kD4z6a/i8W1u9DpDP9L9HAu/+4CroSnuf6djJt70N8dHEgvz5K3Hr7e9ftN8Mzz+3noDecPVeD/FV8jyP8OOy8l/83i0i3gw+xzQtYp/PpneMYnLoIb+dUPYOJ34nkz680VxkXWY/MTZ303DSuAUo+h+xf7X218XEF//en/MvifUt4p6036elr5dfWrlE9jr0b00Mh8lLjfR3kC/ZWQ5yD9Zyp3Q38N+aqw4yB4bte/Ofle8/thygcb/5kHO+Nzt3xn6H+e+a49vg5WXoCfB+mzp/LW+E++v9jvcn7+g+/Aatr/W1KAj5Lra3pO/K3Ob2bgvwO/G8s+w+D9FP8LzZNn6F9Pv9v0OyHxR//HyDMp63P9jtX+Q/wtAVey36vaD4d/Nvq3JE7qf6f6F5QnmZ9O4r9Lxf1PwI/BM/HZXPy8Bf2x4Lvo/Gj+qZE4bv10F/6eh+9pcC74Nvu8YH4ri/+Tjb/r1M83bz8F39f8rQ7/uZZ9buMfnYzjx8i3g/JP8F5FD4nP9en/J3p6XPkX9Ufz6534zX7izOnqt8H3IHCA8deBHW+3fumFj3e3LcAK8BzKf5fwm6XgIvja0+fIkgLcRA+byXEsf/1PfDqL3Y7MPhJ+iueF6L8z+Y5WX4ddf9WuLH/ZFrwT3sngv8bbuezUBZyHz52N97fJX1m5LDql+M2b9D9PXCoN/0W+v7r4vTW829Lfe/TXS30zeAbpfxy+d7KOa618JTzj8bGcP92k/wD4FmbeAPtrP5Kez2GvB+n/Zb+vNL5fYO/q+u1pHriHfmsYzzXBI7QbiP938TNE+/HKJeT/kL6XgovoK/uT0XNL8Hv6epl/XmP8dgcPFy/bkD/ftePQPQEf+b69swBKvQZffXo9lfztjbusq0ez9w/4H2Z8/EH/22v/svrPyHMufmaTY7LyC+JB1m9Zz2X9NjvzEfyNzdP/aN/GerEluX7Qv5L6t32vX2D8D2a/n/Gx0fj8U/+30FtFP1/rV2KeWKdcOn5OL2O0f9J46oP/teJaKXp6hh/egH7xvsZQ9LeD/0t+Px7d1ep3VH8hev+WLsA2/LkTfLfyl6ngOPB1/LWFtxw9Hore++iUN380wPcD9LUde9wm/tcTd8uBx+lfk9zHwbNH1gvGx4viShV2ba/+X/73g/iY/bRdjbMG4l3Wz21TRvcV+pmIv0ngHWAD/Of7fz+/N6eX0eg/yu5NjM+sC0boX1m5R7732PUD+v8E3+38fonxuAv5N5QU4EZy3KHfZVmnkjffm9kvTvxppV8b8mffdWd4bjZfH0wfXY2H05Tv4j9/GKe/gbdmPwrdZtqvQe8r+jlcOecXE7P+QT/7KU2yT4G/7K+8Tb87oNMRf0eY3/bnN+eXkJMfloM/8Xc79YnDib/T+Nc92Qdnt37sXFU8W8Y+Tfjv4erz/ZV9mo/wPwv+k9A9GWwHTlC/UHzbOXYRn/cm3xZ+d7dxNQ69v+mzs35j8fOB8fQa/KXzPa7f6/hcp/5heuqr3AQ/d9F/O/2O168BO0xUfp//LAYPY58/6Wsb8n6P35H0fErip/ngGHjHsV8l7Vuz71/i5GawFv18zR5bY0dxIvFyE31Oxtfh9PWm/s/zvxfBB8jxBX1+ha/vjJ8bjc9G9NpR/Xrlh/l3x+yv4v9O7a7H3/05v8HPYviPFX/74a+J9dR0/YdkP5R838O/S/DTxx3suSO/mZXzjHzfwd+bfb+E73T6Ko//I/V/QL8H2Ost+J7Q/i9ytKXH+eS71PrzBeuy58HD+c8A88rOWRcZ793Vr8TfbeiNBX/G3yP00w9fjyr/SR8N2bMjvZ4FblH/ifLR9DWQHDfz/w7s9SB+ZuY7QnksecuaF69Cry/8PUoKsHT23fn1cvjPMV5X+f1R/c7Az0/i1RB8bAfPIu0f49dTwEfAWvT5sfj1Cf201+8XevwUvJ4+y5HvLv6R9cf22k1l78fV98j3CT7/BX8n30zy7e73EuPnev6R+XwP7aeXFOBVyr20/xDfUzOP4Sfr9XbRp/YT8/3OH/I9m+/cVln/4us0/r+jdm3o4y34huO3OT6moX+Feas8WBXe79nvdOPnEXraF/4p8N9Nv/2z/6D/LeoTH25BdxQ/OEV95L8CP8/DV599+ovnXf3+D77eoZ9Z+Nrq9y7aLVT/ofqnxZmc94+kj+/Z73X0q+D3Wfq8QzxaWII/+r5Jv3fhu7bo3GYE/ruIBx2z/wL/dbGH9chhYG12yPlVI+PyHHq4CPyNnldb768BvwJ76T9H+3vhTR7JTPrpTb4zwezHHZLvBfJdTu5+yh9q95DvspE5f1PO99ms+JU4UwWsSj+bs15IXBLPRun/K/2dzR7z2flH/A/EV1VwT/PoSO32tK7dlv0fFV9m6T+SnubF/4yXZ/jn8fg/Wr/VymvxM4Ld3iH/k9p11b9zCf7BZ9n9RPRf4/+PojsJnpfo53D+O5bdVpk/ryHfLP1Kscd/8J2Nflnz0zf0eLH6rO8eMr6z35/vniP0vw69VfqNVn5X+8PE567wHKr8edZZRft5dynPUG5AH/dkPUa/ZXN+If71J3/2x97G33z13Z3rlrBzuXwf86+l8F4LliPPk/g5K/s75Mp56SP4uxjdvvhorf5i43MlPD+zQ132+9764SHtj9W/Ivufbz48BT/3FeVnzTGe56lfaL/maXSK9z0WKee8tAt5m2Q/yfiaQs72+Mt+bEPlwfq3Zu8a6s+h707KP2X9pfwNfVQhb/bnn1T/Kn9tqT75YEeqj56j333pdaV1yTh8rc7+Hvu20O5IcHr2e/hl5vkB4MH09xz6v+CzMv8/Bp0y9g+2zb4I/dRjn8nwvUC/s/DdDX83wrsJP1tKCnCI/sn/uBzdrFeS/zFCvJ3h9+qJT/RUTX0vsA67NtU/cWWQ9vHD+N8m4+UXcAv/yX7Z4/S0O/5G5zte+XZ2eV6cbYJuN/BX/rMW3mOKzssnwzcHvj3xdwr9fMJ+dYzvv+j5Uvhz3v+weeVWdIbR/3T+kf2qN9DbPfk/We+Lk3Ph60HujfrPx1/x9+Mk8119frc3eK7fF/jeG0gPE0sK8D/4ZySfKeuQ4MdvLfzmXLq0fkPVL6Sf2vywcvbV1C8xH/3EThuTHwZP9gmTD3l8zv3pJ/P35oxz7TJ/P1gApT4Hcz64L/s+RL6pfv8d3ePY5371y/1+LziHv75G/2+Ar4M14D8X/y+nH/vfT1/HGrf9ybGJ/Kfipwa//YvdloPHwrdV+XR63NHvV5C/jfF7svFzEph8qPL4a4VeXXp8XHkQvxtoHbET/V+U8xHxNHkTHcn3hfoq+LmTvgbA30f7+4ybWWDya3vyj3e034jf1vAthr8v+XfGRyVwF+2n4ud99KeQay90Xo99/f5f8hnzPWx8ZN46wPrtZvrdXbxdYZzmvGGM+mvpfzjYMPu24ltP8i3w+9U5l0v+oPl0FfiU+bY0PpdaF++BzzfJWRr9q/PdzG7DlO/VbhD5z6PX4u+E/9++8CT4W/PXWvz3OOUW2l+Nz6NznhI9ZvyKOwPQrY2ft9l3pe+D7KMW75+O8t290bx/nfLF6O3Mf09NHhO+7qHnC+hjV+O2Clgr86XxkvzrfKeNUX+Y+NZf+Tfzx4PkG8avB5bSH0z8uRb97O+WxVf2d39n38foqZ7xujV56znHTj6a9k+if4PvjtHg9mmvfhP/24/+N6B/l/FXid4eMV+cA94IjtbuKfZ6DP7G+P+WPp/H93fKD2n/JfrjitaFyZ+4DJ3pYBlwA/lznrcCnpzrJX8i30PHZ3/W+Pma/rfwr0rkXozPrK/O12+e8501fn8f/h/Mx+vJ/St8b5L/xvg7eifS85Hqn8n84/dtweXG39fkHQh2Yd8+5E/8yPfCAX6/Ff4j+WN99j8x9zf4ywz4kte1W0kB9iDnY+btivDP8z2Q/II+WRckfyr5g+i3FC+HoXOKcTpGfc7/bqD/nP/9le9odP+C/wDyHpp8TP60DVgGvEC/WvSb+Jr94Tn4/9z465VzbOWN9DOfvMmTvSV5Geo/Js/cjEflPXO+Au98sCb9L1Y/RHkUvC/gcxL9b5/9DvKeBs8i9H/hl/m+zPdmvi8XZX+cHTuxw3L15XOup98odM6jn/ri7n7iQE/2OUT9JeJi4v1O7H0h+fqjN8P8dxa7XgmuNX8nL228dcbZOb8R79fQ71narzE+PjMuKoNP8act2n/MX3IfI/c0zqDfpepzPyP3Mk5X/yX+pyq30P4z8tUg/1r+sQ6cA9/79Pqs8fe09m+wawf2/IE8VfV7IvmM5rPx/KJ59k/pfzh+ss88N/N38quzPwxmnv03/mP9Movef1bO/aFR+d5Lvr3+F+m/UfzbJufa8OR88aoSv/OLc9ilE30m/zP7JskDTX5RFeMx9y+S/7cy+1T0k7yn6vzsBu1L89u2yo3w9wD++mT/L3nBytXJ14K9GtD79uw7WP3ByavS/0PtWpMv+cDjwI/oL98HE5O3Bd9Pmd/1Hyp+3aHdYeCD6GV9PUs56+ustxtYl97rO6OR8mPkX5b9mdzvIc8JGb/oD826G53b2Gdb9DYn/wLsmfyjfP/4/aycZ8Of/JHkjVRUTv5I9/in+p+yT08/v5UU4CbwV7Cl+pPoPd+/s8SJfP/2sx7YG39fKM9AvxR/WwwO0u80+uqlfBC/mmA83Oz32fle1/5lcjc1fj+l3yvo9zz6OlX7y6wn3kueBD7rke8I89kO+h9VUoArci9J3B8tjlU2Tt5ln8v8nridOJ74XUncOEe78+n/efw/gX6+Iz9Tzv2DSuxXN+sNdnxO+TpxMeu3tvjK+f2R9Hp7zs34cW/87Z3vC+Xb4WmvnPn+CjD5O1kPJA+2F7lyH+IT5d+SL4Tf6vrnfLQfPi/Ifr76sxP/4HuJfd5Qn/y/X3M/CT/jtBtFv4eJf4u1e9X4yHnGNfz7arBsvuvzfZn7nObFVfTwN/p/0293cW+D8s3s+Sd+DoJ3KT6H6D8V/kb0+Aj/yTnsGPP3aHAF/lcUff9m3Zrv3qxfe2mfPIH/rEeSn16Rf+4GPgK2yPmsfi3hHZz9LvZsSh8Hg8XnIAtzL60oH+dD+G7Xfop1Yua73lk/kG9fcpxIb7kf1IldDjZvPQz/SeQbqf809Bqxx49F+SHvgU20qw3/PuJZ8igHKief8g70pxvfE5Vrov8Nv1tOnjnwP8s+t4lzY3O+rv1z6Ndi94H0+Z7yUPivsz7dxjgbqbxd4rv10+9g8ni6q381959yf4m9ZmadIa510u9T/Ce/Ofe3kr//RfIQ1Fdjlxbo7wWuQ38zejlvuD55tjnfMG/UBbsZP7Oyv0wfk8Dk0ySPZjJ9LOQH/8FbQv/nms87g0PI/Rn+O+t3XVH+5+PqZ9DPCHT2Sp6r9jkfvx3dZ/B3hP4PlBTgOeS6X/lV5XLaN8n9QeVHyZ9xenXuLdJnv5yz4K9B7g8aH9lfKb7Pk3s+W7OPYf7NudqH1gH5Xj5ePMg47Vd0f2O37O8lL8x8nP2FnIscRj9btZur/F/O+7T7J997yivIk/t2ube7H/seJa7k3uWRuc8O/wZxpT26Z4sDHbK/WlKAVxvXLY3zr9jvXPqYDT4H7kOfQ3xXNjMPvcVPP8r9fnhXgBv8/i5+LwFHgvewV77fbzLf5Dz2cnbK/m3WT81zn6loPfVI3psA4897Jm9DeXG+D8SZ3EOZmXmJfG+Qvw56d9Dr/co5/z6N/tr4Pefpn+TecfIF+VN5ev/SeqcpPMOy/tGvk/Yzc55StB7JemX/zD/0kXVn1qFZf67Vfih839H/5uSp0NPJ6AxGJ+9fjPH7bjlvgyf7t0Oz35l7NOrLJH+UXjvQ61fKf9Db53k/IecIYPI968Ob76+j6PUssA1/mcDvq8N3HD5a4v8SfA7KuCP/3vR/BXpH0M9e6h83XqfAM53e12ufvLrcf8p9qNx/yv5f1ofbmT8eNr7Ls1sr9v+DXH8mzud8O/me+J1Ijk38+xdwc/K5tX+WXpInmDzt5GefYT3QVPtR5pFj8DfI+P9U3Dkw7zSoL+f33AtoqZx7A13oM/m9n4C7ky/7f8n3z/7fUvXH4ft48FHzaPLlfsj5F39awn9q0Xc5/nFS7nsqn88/c99lWs4t8x5C7mfT9wnxQ3Kej78LtW+SvEH9kr9+Mv6as0NN8Trjd73+jfnLqORHqh9IP3Ots5egm/OvA/n7ldn/od8dyTdAeRo7fJz1Dz634Y/x01OVB4WOcZNxfSd8Gd+v239cmPNvei5D/tElBXix+Pcp/Lmfmv2OxvmeZYeJ8P9CX/Pwl3G9W9F6Jvdb9ii63zJBPM26L+vAYfB/y75Twcrq855OOfG0jN9zb24AuI4/bM2+t/E6BP3kC+Z7I/faH6Wfs423j/CXe1C5/3S5/auX+P1g9p4NX3F+47nwDKPPnvgfZt3VQznrxEP0X65f8im241+/85vJ2ief/Svwft/jv4Nn4zfruXLJD/L9UUe5Fv4b8psjwS/4U83k17DnEPiW4Pch9ttofb4tf3qPf5VSX0+/CvivyA+XkG8Kvb6Hr9/h70r/uTe9B7/OfersT48Rv3/PvVHl5O89bty3Ybcv+PNi/L5pfOXefBX0Lyb/ZniX4uNb9Ftlf015SN53yD0H9G+gn/hJS/GkTd6foY+H1PfEzyHq98u9IeuJCeLQ+7GLddVg8PK8c5D8Vfacxr5zlXdXv4F+ktezr/GQ+2+TjN+J4B/ozqSf5G8kb+Me9cnfKEeu5Dc/Z368O/kXuc+VvMbkT6vvLH7n/aHP2O8f9nsl+4C5D4veBvzfmv0c8l4Af/LLc691C3mK77c+SG89tV9Pf735d/J/W4HvlKCDv0PZY3b2GZS3Td4gu94DFn+fjuLPw8H+mUeT/y1uXspPrlbO+yVTxIPkVUzK+0bovCtu3M0O/czzpdHvxh+7gvcWQKke6Hyu3/b0twmf0/D3Sc5/tTuY/cbT77fKud/9nfK7uf+TdxmsK/IdfWLe4cn+WPbh6b0S+q/i52XwNTDxvSf/yns0x+QeiPoGxtsJ8E7JPWj0u/p9/5z78q9Lk7dKv2/C39j4upJ+K4qXV7HHPvzkZPj7+N4dL36dbP5oCv8POf/IOSV9dWD/SQXwv3uu76OT+yBbxd3x+lWjn8zn2b/KvtWP4nX2r76hn/V5h45+muHnK3hzH/9ndp1Av6fTx11ZF5OzunY7Zv7Le0HWedXU72v+75/9Z+0+Uu6qnHdIHoQv+xRz6P8NcDZ4oP5viXsV6Xkhu6xSX0f7ttYd2a/N/uxy/K1n1+Qf7qy+Y97fod9Nxt+z6E0oOu/IuXo39rmaPyTvrmLOMdl/ZtG7fXnHL+/3nVNSgGvwU5x//hL+2rHLHPEj70j21T/vYhS/l/EA/hrA00v5hZwD0Esz8Sv3sXL/qrl4OSDt8Tkv71Nl/UrvV+b9kOTh8ZfLwSHg/YlH4tp59PIz/ufRz+PaNcfPVvTu5AfXsu8u9LYz/Nk/KEtvyfuZIR70xf9//L+CcbWfeFlBf2orNVq71coN6aE9/q8oKcB2ytXQW4S/3fhn9vkb8Jd/2fN7cfA78HVytzb/bRLvz81+A/x57yf5+cnXT37+1+JB3j34GB/dyD9feXrOxbXP+zB9Ms6zf4feG/x7Vfalkt8pXjbM/gm+D2O3E83Tc9jvzZICnFZ0PzbvezUTv/aH/4K8e5N9AuuFa5LvqPw++f/LflrOldk/59v7sE8ncAL/SVwfYH3WHb4OeT+D/hbA9xX/eSB5XNofZN68nh1Lc6g1+DmD3MXvDC3EX/b7psCXfcCcn/6JXm18v6/fG2lfdG+pH7q5v7QZ/rv93kP8y3tIHYzLI8FORefF02If5ezPZf92NP4a46tdzs+z/4G/n8AfwbxHOof/7Eu+s3MPkD+MZre8r/SFOPYj+eM39/Pji4r851Pj6RfzZwX2yDl93jsdrXwUOQ7Sv7bx2whMfJqKfs/sO/g9+VC5X1BbXNkd7CBe7Zn938xH4DPgCHK9ZD38Iv/aB/68L9AN/eTVxe93yPs0yU+ix3K5p5Xvn+RVgXfjczx8eX819/7z/uox8F9NL5fhK3F8rfpX/P5F7ITf5Me3po8WuSdm/DSLfbXPu2Cd2fEG+r1I+570mXcqsz7Oflf2v+5SnzyL4+E/Xv+15qfc1018zznuEvpMfF9p3M0HPwdfR3+VeJ/3V3PO9Qr+817z0/w07znn/ebGmS/N22XYL/tKyYdJfkzyZZJ/fh5/+oR+m+Ljb/36iud7iWP9sh7G/3DlCvDMLsrPmE6+3C/ZoP2juc/JPi3w9X0BlDpE/8r0mXfwvmOX2ujnXnjGWcbXHep3Fp+PFVdO5sc7534mvc03vnMOuwv+poDJd8o+fPKTs1/2J/0Wv0ed9XET8Hvwhnz/Ji9R/7fzDkDe7xCf29P/0OQJgOP4027G5c3kPAufW/jD3/DmnnbuZz+mfSV270wPF8B/sHh6CHgoOCDnjexyY84jwDuSH4uv/dCrwR/qJ88h+fnojVU+hr7vpc/V6ndB9xD4NpiPWpKjiXl4ad47Yv9d6Snv2SQPZhZ7dGb3q/y+Je8rwLcCLH7Prvi+TnV0upJ/bb634OtFv7skf6hofyz7YneLb3+w12ry/q78Ye4fZV84+eDssYZ//qH8J30eVZTflHzS7cGO4FL2uYS9L0k+IT4OzT26Aij1GDgGvI8+x+W7C6xqHv+KHrOerEt/degr981y3yj3jx7QPveP8h7EYn5wgnLiwgGZr9A7n56r5v0vdP4l7wRyTk5+tnL29bPPn/39q8SvoYlj4uC3eQeBXdai93a+K9h/UO7X0Ne1yrl3n32Pd8h/Q/J14XnfvDBHv7zPkvdapulfLfl99Lc0+5/ssQXevO/ZiX2H6V/R79nfeEU5eRddwE5g3kcsfh+tHph3hlrkO4d8F/p9Cvpt6fXLAijFjUrdmPszxm/Ga8ZvHePnbfPNFn49X3ly8mHIcx975Rwj5xfdxN+1GdfKyb++MPd8c96NTu6/3sIe/Y3bScp5v/MU/rSDeXyz9dz5+udcsTw75R2yzeidA8+TOU8oOofbzbzeXLtqyl+y/2R07wS3I8/T6o+jr7Fg8i8r4++wEu3QO1x5kP6t+Nux7FWXP7VW/iDn1eh+7pxmF/2Psb6sgb/k6Sc/v5n57UHz6P7wP6L/NPs3Z9B/beVq9He49cVg/deBNdW3Yve8i5B3rrLfs0vR+iTv846gpzLi0jO+S/P+Wxf1Oa+cAF9H81POL/MdchO776r9K9kfZc/B4s5N+K6uPv/3YT2/W533YIzPFvS/LO9egReiW4M+zhWfnuSPY/hTRf6+wLjopn/uwazUbwz+x5QUYJO8T4hOzpkm8pe8z7su+WxF827O445m/5ZgK/B87fM+4AJ8t2GnvA9YCr/r8XsZff7APo2Tv8H+XZN/kvu9+Ex+WPLFkh92F7p96aEXWEp97hu/k3dpxfHuua8j4M3Ez2jl5MHdg58V+Mh78BfnfnHuR+JjV/TzfZL3P+vx233oO++B5n2h5LOWYa+8L9RNux3Qq2B8TOG/s3O/2+8Lc85InuL7npP4UUX8nc+/kh+VfKnkR32C3yOyv4xOE/1z7n+N30/SLuv1vLeQ9xfyXuE9mU/En//fPZ436G0T/L+qPzf326yfGuf7Aj9b6fN3/raRXlbxx4fo5Rl0832S/cNq6LcoGq8Zv4vQf8H8kvcYqyh/n/s/xsct/KYbf7iS/f4ynoblfnRJAX6tf+4fdw9d9pud70P+dqnxOJ5/Z3/rCfQnkueZ7BfqX3x/4k/jMPGvL36z7mnBXnmfLnk3B6P7Lb7vzfsD7NGd/domzwq9VuJq3u+93Xok7/fmPaiss1bon/ehZtFPaX61Cf95v6Sa+JJ3T78y3+T896LM5/zow4y/rI/Y5cK8x4Pv/H+Dfuj3AXuDef/zSuP3f+/KFZ3rroxf5R05vy/B33jzaSdwLlidPg8kT32wKZi8/xGZf8Frwd/Uf5PvaXzmHaq8P/UEebbJualyVeNrT3At/WT9civ9HMOuk8jfWjn3gV5Df1juJdNH27z/o75L8hX5b1l+toa/XEPu4WCLxHPyVhPXi++nJF/xePbKPfbcX6+j/kj+fQSY/Pwt8Ndgj/HwL8Zf/6J9k3w3VUW/q/F1CXgNunk/dBvta8A3rih+7shued867123hedMfn1rSQHm/xD8zV7ZL8o+Um/zydCc38GX97pexE/uVw4xX2zAR94/yP9reoXe79XvJeUuOY/LeQB+X6ane/l/7jPnfvNSeP53vzn5F+i9Y36oQj+DxIO8A3+Zct6D/9vvf2UfCP6O6OV9tKfwle+B/H+J5KtnXXJw4hj619BPzi2XJd7lOxXsjt4sePZO/E2+jv55j2m28gz7G/k/Wfk/dZckv4pd807Db8rx7+98D800bzXKvSawas7VkhdXtL45nvwDjbvEu/LJ3y8632qbfCjjezm9n67+S+WPiu7/5N5PWd8nWS9dhF7eHz+Gfk/OPa+idwVyvvy/+3X8v7Zyb+Wmye/P/rE4M1n5I/zs4Pe/zc9b0H8efw2tPypo/yr/mJr7ataNx6kvPh/YLfeKlfOueea/+Fv8r/j90dxXzjnzoKLz5u785096TJ7K7vDX5r9rsq8H5v8i1rYu+Ij/5X7mzfRffL9zS9E9zw/oa0nOxeh3KP1UJs+P6cfPTjO+Ts29Jn6Rdy/yPlLOTfJdmfeUH9duJnp5/yzriQH6512Hf/P9BE/ypfoV7b/uje+a9FfXeMm+x9HKbfTvyn6X0uslyQPK/o/yObmnnHPefF+x33/q/wXvxEfWLU/lfnnec2SfM/nnhfQ8kT8nH+Qg/B0INgOzv5z/N/Nd7ivjryr5k4/yIv3ED3K/N/sJeV8++wzHqi++T5nvmbyv0AP+Eng7or+Evern/wMo11POfYWXzeevg3ujPzL5b/R7FL+YhJ+855f/X3aC8nDyZH/mH/sSP9PvEPbZrN1i+j+dPyQPNPmfe2h/OL3nfHefnG+x17LMA+LXfdoNL/r+yPdIvj92gf8L42qyOHm0+lut9yeCTbJey3wkfp2H3q95Jzfn0fj+kr5b0ENf+Gtpn3P2hvwq5+tjyJX3eG7K/Uz1lxufy/j36ORVwz82+9vqeyvnfuEE9kl+ZN4hS37kQvHvIXSX8q96+ue9+HboZv8j78evJ/90dh5O3z+SN/c+3iN38gJz/6O4nHajyf8v/Mm/GGceqqLfCHSSV5j1UtZH0+k/34E5p8/9+Xv070SeseL0XPptiv7+4AHge/neKinA1eBbYN7Nmih+T04eMdgSvYvwk3ypb5XzXsSNkR++m5Q34v8g8uadqMr4WlYUrxLH+uUcVP2l+L2fnnLv9rrkq2ifvIW8g5j8hVOsv7O/0V75d/1fF1dyTyz3wnrh/4d8P5N/O/x+lPcfsi5Xn3zA7BctMC/Ot64ofr8l799s4S/dreduhO858fI1+h5Cz+/ib6r5L/+372zytNJ+OX/J/3k+Lflh6L8l3uTdg7yDkPVZHfp6m5y1lVvSX2txe7j4dJt2D+ifPI78H9Xi/5+6UP8F/GoDuJpeHk7+FtgRbE3+lvp/kbxU5Sey/+73IexxPf/O/9fcNe/X2p+aTb7n8z5GSQEOFrfPyP9pLjo/yHf39cr5/l7Hbz8Wp/Nux+70n33D/N/BvK+Y9xaTr96N/jpr90/27/IuWr6P6O+ufN/xu7xH0x4/T8CX/29XE3yaH+1LP0vo4wMw+yT1cv8Yf/1zjwKd0vTzdvazwFfBLfh9RPyP/kuT6wpwu9z/gL8ZPT+R902y/6++Db3l/H8fftkI3IH+8r7DySUFmHP//eHL+f8lyY8TFzop35w8XfLk/16vVP4l7wPwh0n4yf8/bJzzHfNSdXhrgHn/q/h+d/H6s5nx+rDfF6M/gZ5ybyLvX+Z8NPcnbuIPg/j3hfDkez77VSOK9q3y/xEaiCc90dlbeYfcTyF/3o27UTnvx13BP9eht7zoPP8J30tPgrWM/xOzr85ueVdgVO7TZz2H3/Pooy7+1hWNz0Hofquc8Vmu6H7kZ0X3JDug9xL5atLvKbnvx6+T93Abf09e8QrxpLPvxPrs8Dv75v8B5Z3s4vex837JbP4dv36FfP8H9qMTkXicdd151NbT+j/wRMnUSGniKdIgFJGxIhkqomSKoqiklAhRqYwdTYoklDGUKYQGQ4ai0ZDxZIyQ6JhT0Xet3/16n7W61+88/7zXfvZn731N+9rTtfe92z6l/t/fTvsX8NayBWx8QAF/3qGA2+xUwF+kZyk3v1IB+yr3ovS0Awu4Q7UCPta4gN2Uu6VJAZtIv6G9sfsW8BPpViUFbAF3bFjATxsVsG3FAjYqV8B9YRffbbd7AZfWLWAZ6cXaaYu+9vCm+gW8Hv31di3gceq7Ev8vS+9apYCrti/gF/gZit/DKhRwhXIXqn8h/iqWL2Bl/6/vu2vJZ3q9An6mvnHqH6b8w/LH+v+nvhsqfwP6WpFTmZ0L+LT8L/F9G/n0R0d58hlHn0v8/012cA35b65TwLY1CtgODiG//uirrL4vlDsEnWfuWcAO9FILLmePTWsXcBR5t0XHL+Qzi34+Jf/P4ATffVuzgI32KODUqtLq/w4/x6GrJjlu09T/2XVdcjxZvYdr//zqBWzVoIAvqr8Gfp/0/8+111U9O5JPJ/XfjI812n9G+yvQ9Zv61u9dwPfpr4/69yCfR5S/F32PkecbtQq4SX3HyF9FP8cr/4rybeUvkD4h/c73J8pvLL1Bfn/0zMDv6+nv6D/K9zfR/znk8ZHvrqqMb/X33w39vj+aPpurfx75ldBLo6L+34LeI6/I80fpnXcs4Br/LyV9n/q746e1/DHk/8B+BWxKb+fp55vwN1L9D2xbwBuVnyj/aPr9Dr/fw23wu4S8tqG/Lfj4B45kP7P0z3nwYva/AN2PoncB+fQml9vRV72kgNeR6xT9+ULlv0Rved93xvcE9K9RX2fy6qn89fJnoud9cp2i/NvwHHqvoZ5h2mtE/1PQcYH8AfKrkE8N+q8Jh/Fvo8ln8V4FvAq+zc8tYk/v+/+O6DlcO4+h/0/+bANchN7W5PED+62j3NvxA+SxXZkC9oBPblfAV9nDcOUO9/0i/HXG/2v0Vw+/c3zfCr0rSgr4H36o2L/eTu4byGeIcWCx76rxVxPwVcl4sET7G3cp4CZ4su9Ol/+3dDXy3hf/N0tfqNxP2juLv90WPxXY5TXk3Ve9/0gfza674XcHfCxWf3ntHaO+I8jvTvkDjB+30dcw31XWzgDymYe+bvGn5FdO/rPG6ZX6aX/6+kX+KuXHG79f0/5S9r9Ffc3h8fJ34a8uJqfzpJeTS13lp8vfW/oV5VtIH4buo8n3G/LrL/00uymPjzLorcyubywp4A2wIXmvVe9kdO+u3AzynMzuqkg/TS4zyfdO4/uL7ORC8r8JfY/I/5Zfa64//u27Luz1UnIfxB7GoqsbfzOQ3R5BbqXQ8Td/cJh6Nksvk/+K/vUK+QzB54nk+4B+2w6+ho6n8Xcuvz+FH3ic/V0u/2H8/MKP/wrPI8edtXsIfl9Ez47k+S5+vpfuRy8d1P8Ze/udHdwrvwf6G9LPff5/IjldIL+p+i+DZ2mnDv1UiX7IZTT/uVb+R/huTC5V6edx9B1jXBkDtysp4Hr1jcVvXekfyeE19K5R/w7qvZD91vJ9J+PlnfiqQp4XqOcJ/X8L+3tM+p+sR9D9p/ZW0t917GPENgWcDS+Da+lvlXrvZ481Y5fkWzXzTnxX1P4+yj/JrkpLn6/8R8rH374pv5b87eVXVO979PKB77ejnxbsviU8mxwzr1nMPzzCji8h71O1txN6l5LHm+zkSfo9h1/qpN63yfMr312Lrh/1g3Wwp/Zb8ectYRO4jfK/m1/djv4dpNvR7y70NUj6LfV+ht5D6bkVvJ5/3Z989sN3L3gLrCo/88n56GoonfnmcvZ2ifZvRs9A/eh26bO0X5Wd9qG/Iez33/S2mj+7Qvvf+D5+M+uD+M9e9He+/1dmx8/Kjz3Fvur5Lva1Dh/3y1+Nnw7yf0L/XPmns48R9H+b+ptm3Z75Mf6v018egc/S4yfKl+UXrlb+YfS8Jf847U8nv7+kj8FnG/70eFiF/HZVTzPp+9hxS/W0Vv8b6pucfQj5Tclvk/93197j6n0Vf8v436VwCbzSdzPVX1//qKmev+Hp6D4Ndoa3JV/7y9C1LX++TPvbW19cBldr/332X9X3nfiZb80/30t/5p/Wks8b0l/Q66H8f8bTtugZyz4OMX84FDaHB+F/LvueAxvRR2P1/ag/zeY3dmdfB7LDn9nTeQ23/v+H7CX7Tn+g6wv1nUt+pfmLfur/DV6Dv53IpwU+f5Wegf6HfJd5dfavemX80t4YOBo+rdx043L3zBP8P/OMn/Xv67K+ly4lP37wX/TdVvl+5P8oe5kBZ8Ks81ubnz6k/sH4/076evrYm19uV1LACfrHEnJ5Q/4j/t9N//ja+mEP9eyF3jXovVx//00/aEkfvZVvhd+j4KPwT/ll6HcZ+y0r/Rj93oS/c9j/PP6wIf4u1e4v5NaB3Y1G3134Gkyvh+G3jvp/0V8maf8O6YvkN1NusHYeZJ9z1D9Vu93p41DfrVD+KvbWiNyW4r8D+stptza8Ubma+GiA7xv8/yjpGvKPYw91SwoYP7mP+q/W3x9U/kf9bTP5V0fvV+i/rWg/Zx/2fiU83fx6uvYf5t9fxFcv+KD8PtobT27Ps/v62m/Dvirav6oAGyjfhlzuppf/wOXstLz5xxT07kgfB2Z/1/9Phdnf+R4dlY1bl6N7rXR/cmhFfrtmv4R8Ryn/pfoakF8T9PyadbpyL2i/Fjm8Sx+b8Jdx6Ed+5HP8vUjfi0oXcDfpXdnfcebL+6vvwazzlT8KHX9Ld6Xvt8j/XOnN8o/0/ZvyO8u/Ar8HsuPXtH86eV0F58IB9Jf9xJL4C/TF/9xPn5knt4SZ1+xt3LpO+/8YZ75A3yj9a6l6b5aO/g/iT5rBqez3Bd8fDs/E9xPobaG9s/E7Fv2v0mNH7R9GH6+jc7T0Eb4bQj/V8dUXHin/dvaT+XjLnC/IH5H9YvLsF31l/Jd/Pv2vL5rfdGbXM/m9TjkHwU/GlceKxpXsH2/SP5eQ+wL2u0L7L6An488QeBx6Mt/N/Dfz4cyPK5vPrFDuK+uNSdq/Ab3XwBFwHD67G++uhafErvDfswClSjIvQ0c9/Jc1fm8Pm5jHjUHPtfzRd/p1G/yM1f6Rxpd3sl/qu6+lG5vvTCO3k9E5nJxbsddTzKs6wM/ROYr9PEVODZWfmvUv/5T9lOy37Es//0LvofrTc/guRU4Z3zOuP4f+jO+R6xPoaW98j5yXsN+a2t8BX49Jl8bfzJICTkTPLdo7I+sJ8rkGnqv92fpTpaB6z9P+0exvSvqv/Jb4r0E+V/h+g/HqXPrpwx9si8+y9PWO+qpL78kvzyOH29nTTvi4Ex9N/f9S9p3znJzv5HxiV/aT86Oq6PtBfTk/Kq29cuqti99d4+/Z7afmRWuzX6+dhvgrq99di5/e8pv6Pv16ofobkt+GzAvo4ybyzP7q7fzGf/z/Z5j92qy/F6Ozgv+Px9+55DOZHD7I/qz2RqG3r355LPlsJ3909kPwl3X9U03///SEzuwfX8P+2+DzJP3vaeni84P09/Tvc9DVjj7Lo2ey/CfwN4E8j8ffssyzC1BqmnbnSu+i/fLZ/5DO/sfD0sXr4cz/TlL/qcpnvfEM+hbLr0Yef+gX2Ydqnv1f43NX49Yq6cXqvRHWy/4HfJd84z++Rfdw6U7k0Z6/v1M9T5nvX6P9C/DVlv6+hoeTb2lym5JzR/56iPJ/8pt/wQ3wJeXr4v9dfq+3cXwQfT9EntPhw7Avfn6UfjL7DNp9Xf0Ts38kfavv3pOuqF9kn+df+kv2dxrgrzG8nP2NJpeKOa9Bb0Xyq0f+Y4v8cdpfoP4p9DEMHu/749jHOv5jofy10i3xf7Lxphp6TpJ+JX4QvSPQP6+kgG18X0n/mEhvt8Gs30eZt+0df5t1DPprk9dFcInvp5DLDtq5Trn91DuIfH5j1xfl/BR/++V8iX4akUtX9V+vvhvYy636z43S2/t+sfqfZucN+bPj9ZMG+L8l6434DdiDPs+Hf2UfUvmcp+V8LfELOV87Uf3LyX8qe3wRVs26XX0HKD9curryc/CzjH7+zP6//vMQPf+A/53J+X7jdgv8PWUdcyj5zrWunAOX5dxY/fO1f0Pjrel8SH4f9M+Of4G3ZPzSrwcYHwahv7R61tLnAfYxqpJzFfxO4e/uosfvyT/nQ4vQN8v3FWDil3Lek/OfnAftxE8U74dlnyz7YUOtp+rCqXB5+p/x6xd6G1lSwLH0P4vdVfH9TOmDtZ/4kMSFHEwuOd8Zpb6h+HmJnr+gp4vwt5P8HeEP2t8x6271npL9bfrZiP9a/PIY6ZfV8zK9vQoTX1U/81/yWAn7wqfQN5zeLk3/zXk0em6UPjLzyMRN4D/2eYbyd/sudro9Pi7D7z7k/FfWH0XymaS91uh/iT1WNY6PVL6G9sezx87ZN2ev76u/nHI90XOc777L+Mkv/YTOd3z3s/KDyXV/5UZnP5d80m97oDf9+UL9twQ9b1in7CX9DfqbGQ9OZadXsuuH0XcCeZ5LPvPIa2D8PXttzr+/pdwp6P9EucRXzLY+PFb7/fT/gfjLOfjuia9iH/3IqbL0zep7Hz39sx8Id1V/zs8O518PgzlP+xN/ifeZA/dA/zh+Zzi5nk3/LRPfoj/cg/+1WXej/zL0DVDvGZnH09+f/O3l6F6knR+U3025/tKJ+5yOvuaJK/Rd7CHn61fh/0o4lD1fgo472NMz5Ps6+axQz2uwNHmWUn6u9FL62JjzXf1hPHp70Hcz7X2Ljj45J5a/JzvpKX1V5Jg4PvIq3p9rrf0HjQNfwpy3raefLeYN/8Ch6s/+WfbLsn82k34HZr2qva70OVL6Ff72dP3ofvPNC+Rvl/iJnJsmDlX+XP1uPbvalx5u137NzK/ReQA5XJX9M/PSl+XvQP7t6SfxXyv0/xnS1bQ3mDyayL9ael7icNnHsTkHJ4+ymQfRx5f+3wAdR+HvD/LaF92v++53+X3IZTO5nKTdxur/QL8aah23UnoV/Q01v7kf/orOffCfc59r8TUEnpf425ICTlXudenl6Oyp3oawAz1nHH6efbXGx7HwGPnDlKvJTrLOPVT7fc0nmsePk8vJ8isn7st3xftVb8JttPcVef+K/6xDEj89RP7j2XdW773s4R/pl7K+Z7/9yX+Z/EvVO7+U7+BguDnxv8bn6+lhjXTOmb/mD/pKTzceHEoOX7K/O9Azk5xmxP59NyzxYBmv2M/3+P0avyVwMHkdx+7awEbkcLZ6B5Lbzdofo/7btH+j8TT7vjWUy35wz/hP5b+uuHV9R+LvB37j2JIC/kMeq9hrSebr+m/i8ToWrWufQ+9F+P8Y/3XQk3V9jXyv3z+j3OfafVz5x9jfMu3/LP9R+YmvTVztLONZ4mtnFc23T8Dvuuz/6E8f6BfH8ocV0PkuuxmEjjborJj4JO09UxTnm/a/5g9Xw8/hI+rpwf66Jy7JfO0N+ZvTH9jLZfrfW/Rf33g1RD+PPzodHYlnSnzTYpj4pp45vybXrJ+znn6Ffc0n/97stDp6FtNvGfR+wt6Okr83jF8Zp57Mh89F/0Ry78wu/kj8i/nAmux/Zb8z8XDaPzvx6+qfn/hQfMUfxT99qf4BiReH5/v+FvUnfrgJefZIPEfOX4v2XRbqR/F7nXy/xvfN+OdmWZ+SZ194MfxE+abs7wDYjzwHwuL1QlnpD8h7uvlI4jZryS+n/VeSbx6T9VDWQUvRX1p92Td5UnqB/ftX4WuwG3qW89sttL9CeiP6m5DHYli8n/c6ff2cuHW4WvuN0fuMcgPo4z76/9D3p2XdmfFH/d3o6wvlDkz8ZOZn9Po7vkcaH65V/2X+v2fRejnr4xnou5Wcr5NemvGmAKWu1u+/ML/dyD5zH2ELu/gH5r5C38Q98EPvo/9i7T+InsSrLFLugMQR6H8dyWkjfu/3/emJ7838i1yeVf8e/OLH/PirsG32R/CZeIgy+vlc6UHkOS5xhvzxtuSb+2Fz0TMS5v7Se/zdIfR4MGyl3ZwbXUrfszKO4OPy7K8Y525JfA75v5r7APh5hp4SH5z7XndoL/e+jlR+OPlVw9etuWeCnt2Vq0Af2YfZV/mc99+feICcH6A/8+q34UTz8WMSn2a8G4yPvdjXPHTOZJdt2eVP0k3R0Yd9LWFf5aUPlP98/Jt+dVXixNFbvB94IPprk1/ibzMeZbzK/LsW+c0nt9rSl6qvtvlMTZj7i1Pl5zwk8aE5J3la+zf7/iaY/eTKsTt8XZn9VOXboXcs+ZZJvGvmU/LrGlfKyR+hnsQ/1ND/hiduE//zpO/WXxLfVsL+Ou63NX+Z71dQvnXil7SbfcAN5JD9v+gj+tmsvugn8cY5P0g88iL57fWf2Yn3ZGdnyJ+j3e70NkB+hcSnFvnf+OP432r8y7jENbDTxL9cVlLAr/Svh9GZ88mT9YcO8ADz1z8S/6S9u+htLcx88FP9YRi/e7Lyg7Nfp93RcCH5PIL/06Q/hjvnfgF5zdO/T1TffOkW2b+kv3Xs8HD/b09+dxsf7oL3wHXkPMZ+59n82wzpbuj4N34+hjWNzxfQe3l83ck/V5B+Hn/N6OM+cnpCuhU6v8HXF9q7NXELyjdCVwvjf3nf5/z5au3VYEfVc1+J/BIH/lTO/dXfW/3z2OdceGviSNWf+MZ2OS/jrxLn+BK7S/z4EPVvZGcvk/dLcBv4QO5H85tZ1/0jnfXdu7Ef318r/az27qH3rF+ynsn6pSF+sm/7pu+b5T4Zf/17/Dc6bkj8sHbv8/8PyeHpzL/ZxfewU85hsr7jv9fT+2z0jEbPhfpXL3hG9om1/77+/SS/OwJ/08m/k/6wP7wy8aTo/sx+1Sr4KWySdQd7XwBHw7u1n/uHV6H3dfTk/uF69taLfO7lHzY12Zqe0NeOPd+T+Re5fcX/JA4j8Rd11PssPCX3vdE3XPmv4U/q3933Y9A3Gt4C75a/kD39r32qefxyzgUfKilgzgs/yzogcfPwbfm/mS/ORff6xFvm/ltRPPxy6QkZT9hLtcwX2W/iy/Yl31boXUgOr+b8kzzuyr5kUXzhTQUo9QLsDkfkfnz2k9Rfyv87JL7JvGoX+t0Z7i3/NP39LXT8SL8j8XMXvzY78RW5L0o+WdcuRG/x+jbnNzm3eZS8c37TsqSAeR9hPX3nnYSV+mvxujz3eBOvdKT6E7f0O/nnvkVF9b2X/Sn0jsn5Pzksgt+opwF9bZe4Hu3/pvzzoTPt5xw096eyr5X4R+Vz/vyS9m8j1wmwhfId9NeT4Mm7bc1f8f5ocTzQHONB4tf7oTvxpZfSz9G+ryR9qvY/4HfP4ofPgLXw09H3ia/qrP98Lr+9/vCj7xqW4AMdH+LnY/gRfCznaPTwMXuZRG77Zv5tvN+Jneb+z2/4S9zqQniC+epf9DVM/0gc62r6/lN+dXKtAbPv/Br5J+5nNLqyX5j9wTrk2gk+I//MxCex3xW+f1T/+1l6D3TVhnvC3Df8VX0518k5T853Mm/LfC3zuZm5X6v85dkHz/4nehM3Mok+n1X+b/p7ET05958vfUjur+pP22p/Dfoe0P6R7OIo2ALelfWOdO5H/lR0T3Kf3B/yfUP2sy35/mx8yPo092Ny/y/nQ4k7aaKfNPf9IPrNvtxt8rM/N4C/WqXdT+Hl+PyFPH4wLk+VPibrevJ/N+dAys1S/9eZN5Nn7tvnfv2ykgL+rd0jzFPKZX2s/CXxm1n/4W+s8g3Uu7d6ttBPcfz4VPx3yflG0Xoz+66JX3qZP+jML/2e8dJ3j5Hr9fjrov+1Vf996t0Lv5Pp62XyecH4k/jnudKJf96o34/JeqAoXuJg42feBzleewdE/ux3X366MbyevVzn+xPS38j5lpx/6M9nworw8ZxPsd/n+dnnpKejZx1+Vqp3HflflviD/xH3vyDx/PTfV31XwI/Q9wA+ZqT/5P2HxDey2+HwUu38pnw3fjfxXYt815n++7H3jVknmX98nXdYjE+v0VM/drIm5zLkkX5e3L8rKbd/4hukEy/wM/p2ZjcNzMemsreB5lur4UjYM/E05LgJbmYPb5LPUP3/6sSVSf/m+2r4yzh+GX823/dv09/f2tuQ/Vv8vc4u+mXcpZ/sXyTeaEnmR9pdSP6Jt1wAE4/5q++yzsh5QDn1V9N+5q25/1sWf9k//yHxN/zy5NyT8n3eO7gn92KkJ6O/eH8v+3obEq9HX4lXeyfv88j/wnrhaX7mMbgw96/Z4+Pk/HLOUzLfYZdLzbuqSHckn4fN9/Nu01M5ByafQeSxG3pOY7+fk//75PMBXAlfwM+Z9HoPbMU+cn+wZeK3E8+auGTyeyfxd7kvnnvD6LvEeLCffrGLecwMchxv32Mkv3g7Pk7Ff/msSzPOwSXxI9n/pNe72VkzdPz3fntRfHf2M2tlPFVf/H3iV4ZnXQ1P0M4E9WQ/ebTvsx7N/vJtuTciPct6Iu+vtEL/cna2Sv5b6Lk48Vro3xZ+SB/ZD8i6smbu95Jf7jMkXmgY+g5OXAz9Jq67ON4785NL834QzPxkQtaP6Bql3A3xj/pD9mmzP1sL/Yfyz12NS7+r71v0XSG/JTrqZf6ReO+i/aiV5HUH+WZfMPuB9bX/Jvq2I4+u9POI/AqJv8h7PMo/m3GMfLNflv2z1ezzruxfsO/EOX0vfZB6+2Z/Wrl+VbfOH6rcoTlfSBxH0f7zLP4j42LVxJ8l/pleR8Ml7KW3/CviD+pvzW/OtbMeGkg+OefOfc/i95VyH/R09lwbnZ2le+Z8R/nc78o9kNz/2Iv/qAPzjta4vI+Ini3o/zn7+Zl/kdu78v/KPeScv5P7cfR/sf93Uf9e/n+4+o7VXu4nJm6zfe6fZJ/d9x8U3V/Nu4eJ38l7F9mPzf2L89VfXr8svie6PvE0/Md9MOfW1ZU/wHpjVO4d6odfZx+Kvf3Kz1bjp79nvz303xv47ZzTPUc+F9HLqTkX9P3b5LGW3vfLelK6m3TinhIXnHjhquq/qmjf/3PtZD35eb2t+ZmQdwHkH8Kv5D26oeprk/f9zKcSB3mi8TbxkEeQT97/+yrrV3Kejf/Me3vrX/tk/8t87pTsa9Hv0firYH7Y2DzhKPVMpb9n6O9y6U7ZR1L+zdzHVu8W8piW+505L+d3ct+ohfymvq+Nn8RHDCGvjDe14XPmb8Pxl/PavAeX+I5dlC+t/QvgN/p/4qnONN+YDZ+D/+BzO/2zNJxnftMe3xelP+I/+8zZX877IXmP61jf5f2QXvrnzcp1YX998DtM/kHSj2d8T1yU/Iw/a9R7Ze5PsadScAH+H1RPW3bVDraH8UPZzz6NPHOOnfnGzapfBZlrqRP5g555t5Jdtdtt6/K1s97VD06kpzbouy/2p+KLzBOPlX94SQH3INcjpJsk/ps8a+NnduYTmR/QZz90Nss5TeJDpBPP+bJ2t0H/ZP2qOvoHmqc9mvszicuDe9BXu/hhfm9G7rdKJ35kh8SVau8AmPuuxfcvPqOv36XPlJ/75rl/fkLi6zMu0mvGt7wPeTi76W58397430i55fzyWeT6St5jyflSvpf/t/nUQfLTfw5DX+IlEx9ZHI86CP+J//og8b7kN0b/vTbxikXn2znvzvn2tvQ1SLulcx9Nft47zPuHs6Xz/uEu5osZHzJe7ILevGtbO3GRiZNC/z34z/2TO5TPPYLByp3N/lf6fzv0JZ48cebZh0+8+QR+K/sCuT+Q/YE+7LajclXI57m8r8RurzOuXg+zn3KA/DbkGz1Gf+3QXRcduZ/2VdF6IeuI3vjPeqJeURzQOPwmHmhyAUq9Qn4XS58a/2dcq0VP58ON6t3IXj5H5+qSAg5R32lF43/2kxeSz5n6xxnw/tz/JP//de9mUva7fb8ne22Z+245n8n9mqJ5bua3H+t/tWAlfuww9X+Ivwdzfyzn1uSzP/t8Qz9tIr1XzpnRc2vmSfTwUuxbuanK/eW7nWPf7D3v6s2Qfi3xvexvfuJbyf0+9J/Ln8zFX3t8nBh9kOsZiaf3Xd7n2UJ+t7H/vB+4Jz6K4xvW4vedzPOND4mbuzTnvbl/jf+OsDrM/f3f9ZeG6O5RUsDNieekx3/Bj+i5E/n0Rk/eQ5hrP2y5/nWOdfvc3AvNfXrf573xvD+e91ry/njiHfPueN4hz/vj3xuPp+d9CO32hFv4yz/RMV5/ax87JY9q6s97B5n/zCh6NyrvSDXHTxvziOz77iz9ddH5Ss5VurLDnK+cqr1/y0/88m7429F+zUDldpBel3g29rIk9wfRd5L8dfrbp/Aqcu9MPt3xfz7sAadEP+w1canF8apfZv6ac1f05x26xHckruM0eAj59YS5d5x96uxfHI/f7XOfQTr3l25X/ySYuN9e2r+E31ul3D7693T6n8g+jiPvh8jxwOxPkMdDsIt+kXXkfQUo9TEcCF/Ou6S5v6w/90mca+73+/9E6aNz7xF/4/WXyeQ2HtZSzzb8Tyn4AXv4hv4/IpejE5+V8/jE35B/zhdy3pDzhe20P47cNrLvxC9kPDoIv3tKZ16XeMG9cy9Ie4knTFzG2fT0EbnvgL7W1otXxt7R30F+9qcuzv6Uep/MPU105V5hHfmX53xHu3n3Zyx68/7PqdrvI31RxlXtd6TfxL1mn3yp/O7+3xX/5fWfWejIvvUU9Mf+8/sDM9ndOPPS8fAv9vKfov2/Uuw8/Sfvpz6Sdwul39ROL/OKnnCmanpLj2I//30nsuh9zcu1Ow49k/m7rtrvkn1LfuIPmHvGl/BX/WE/WJddbPJd9eyHoOMu6V2Mr3m362T2n/e77qC/Sfn9iLy7AsvhZ17epWDf/8bfacbnCvzffN+tyv69/yfOZazx+Oq8L0o/7bKu9d14+duj60jlpsD66E+8YOIH805iX/JuxP5a5x3izNfl30r+ZfHVL/t/uU+c91OyTy4/77/vo906uU+Y93vp90Xl27LnSqEz8e/80s346i29v3aORN8WdtOdfZZW/1D9d2TOOTL+098l+F+aeEt4K/m21B8Sd7Qg+1f/Y/6wVjrziL/x+xM93qu+M7J/Jf/I3NOT7iV/KfvMuVk38sr7Zdk/L4Xua9GR/eX3fN+DXD/JOyrayzhQwu+cnv6S+zTsJ3FNk6XzfsUG/Gbftws//zz639L+8dpdp/4FiW+n1xr0mnj6J9Hbgn7bae8O6R0y/8i9Yu08rb5m9J/zxNU5f6XvY9GX94DzPnDeC876YSZ9bYLLE1/nuzL631DrxB2ls+9ah1wawmftDyb+6Gj7PSvNe0+UTvzSaeYXeZ++F71Xyv1n/r0W+SQueoH0zbk3lXcTyGlozl/063dzP5d9537KbtrNu3zl2Ul+f+kt/FbN/W/97CTyy++h5B3jvF+c+k5LvD+8xHf5faUT+Mfse9yQd8DIYRJ6c45/Az4akE/xfm/2gZfJ38c4VUY7W7RzcN5xQ3/Wl6ezr8S3HCr9OHqeS5wpeqoql/exh0tHf6v4rcH0tgL9lRPfyj5vzPsA7DjxinmvKu9XnU8eeb8q8cdfoOvznEPQ/53sLfF/iQdM/N9Y4/fozI/ZY/a3d8P/CerdNe+raT/xVJPQmzirjnn/tKSAlWBr5c/Eb95Lzfs1+Z2DvF9Tk95uUn/e7zsz8cnqXWJeUJ9+96CHV+XP5XfmJJ5M/jTpqfAe4+dH5F3ZuNyJPVSS/ky6Q+5T0vPBMHFED2U9B88pev+up3ZzLjJKvTkfmUZeiYMagb/EP70svYjf/gV+r75T9YfL+IFHpb+T35heu5Lzvto9Lf6Gfv+Td0zkP6U/fJz7VeT2ND2V8V3x70vMZu//JM6Zv41fLpf7zvI74v8d9CU+I/EaZ+BjNvoq0uvH+lcj9Oc9w0q+W5z7wTmf8/960m/Jz+9J5felHkR/fl8q74W9x0+ups+HtJ/9zF7qT7zxMuns92f//yT6zP7/X/SW9yRaSCdOPO/v9VP+qKyr0Dcs7zHDOfr/C/ibHv+j3Pfo6iA/v/+S331phK/8/ssnmR/iK+v1/dlPFfZ1F711Zccna+d73+f+Zw315f7nIPTdg77ca34+7zuzu/3Vn981WaP9vMu9PPFn6tkWH7HP/N5J3sO6J+8zJ566pIBH5J6h9h9FzyPaLee7vjmfL0CpB+Gj2pulvTvNK97hv85Rz/k5jyf3X8wDzuZ/rmWXE9FTSr1b/H+58jeRZxNyz+8YVMz7qPpb9vcy/9lJ/krz2ux/5L2FvK9Qg7+rBZtpP+/TPYz+L9V/AfvN+/O18j5kznX5k5XK5/cbuhb9jkPWl4eUFHBU4ri0/0jiKYr8fcaBvD+XezmD4DSY9z2aknfeuR1DPnfxO08Yj/P+7ZPwRvK6ov7W/JWh5wqxL3Rvg+71+kuPplvXl/pvKr91/Y/4f2P0/MFPnCS/m/VrV3iRfZ5J7DfvrefeVN5hz/3Sqr6vBqfA3Pva1nhyr3E775odjP7Z2Z/JOkT+krwPhu/EL+adg8xfSrOHvLuU95jm+v5M+kkc/1nS8V//jVdTb+LZ8j5pzj3OgjkPyXoj7zk/7/u885z7IVPYU953/9B8s1Xe19UvfoI/wk34j7+6usifxX8NLilgG3K8Qjr70O9mXgFzXzW/J1lbf3s95wns8QbtTbDe2o19TIKVEgeS/Xz6PiH7Ojn/ZI/T9Ivv8n4kedygfJe8d4Cuv+P/tJ97Rz+jt2rOp9HbX/nEF9ZExwrfx65j5+uyn0cudf/H+PVTSQFzb7853B+dq+ijRPu5J5X3QaqSd86X6uD/Xt/1Zbf9zSsSXzMt8fL6fxl4SdH7EXlvLuuBvEeX9+c2Z96XdUPeMch+G39yB5yW36Glz7wrODXnKfLzvmB+LyK/H5Hfk7haekQB/nv+P43cm+W+T+YneT+gaL9uDf3tnnd44Q+JH+GPz4f3wcNy39j48Qm+65LHGOXHFZ1H5HyiLPlebL3ZDw5QPvdp8rutTeDxiceg/wqJb0Z3RelDcr+6pIB5TzbvzGZ+mPt5eQc39/RyP69/7AI2zn6q/BHs/iPrqNx7nqj+H/TPvMf3nXTOR46w3ruGPV4gfavv56A3fnyl/hE/Xvwea945+UN6Nf5G0NdIOJEd5PcU855T4n0T37s3veV9q7x3lfet/oP/M+EG9GT8yf5P1hfD4jfl593YAehNPGjiP9exq2HsY6l+VJ99vFiAUn3h3bArffUpkQ8bGD9KtHd/7mvDR7OO1H7ehci9nNzTyfnhRPI91bi3Te5Doy+/q9kg8ZfZR9W/8/7BefAn/T+/d5zflU6c2ifay/lQzglO9/1I8j9D/ceTW+6NF79/9WDmFei7RzuJj/mJ/vJ7RmXV0xf/S/C9KPEs6N2gfO5llZOf+1q5p5XzkwPyLmrer2F/XfA3DX1jEwee91nIY6BxoH/8gPqK3xftVPTOaH3fz8k9ePQ8i7+821yP3eRdraxvmyuf+97PoKMp+s+m19wj6JLfgSSPd/i7vXOfRXq99hNfVUW6cdZ50q3xl3XrIewn7xOUyb3O7NOx5xmRn/GhJ/k2VW/uX+R3HxLHn999yPpgT/OH58w/8r5Uft828a5L0JP4psS/xl/kPdW/+dH4j8QfFb9fupq8P0k/Ud9L2vtUern+tjn9ln7ye62byGcD+v+Cz2uvI/4am5euZe9/qS+/b9U/7xIUnU+PZzeJS0qcUu7TX6j/5dykl/TlidvO/Yfcp4o8lc/78fupdyo9vZD323yf/cHi+5f/BwI6AZZ4nHXdedTXw/s/8ERJG8pSSd1RUYlKyRLSouxr2WVvQ0RSSpE1ShJl+RQiRYgKUbKUJVnKliVpkz6otNmS3zm/9+P5Pcf7nM/9z3Wu98xcc21zzbxmrpn7/PKl/v/fhF0KcN2OBXhjgwKsVt/vBxTgvfsV4OtNCrCkXAHWAldsX4C/7FuA39YtwEX7F2BT7Y9tWoCfKn+uYQGeDd7RuAArFUCp0eAK8BTty+5VgMfh9xb45fC5ZQrwj6oFeD955zQrwJr4fE+/C+sV4DH4vLpOAe4MVgFP0f7zigX4Mb4qgKXpYxN+2u9agE/XKMAt+mtfpQArgj/rfwT9loZXJc8U7S7DX0W/T6fH/f2+lb0W7VmAg3cvwG9rFeA96nWml1fRXRP56f/i2gX4o/Lxyv+m/4fQPYF9P0h75Tfxn8FlC3Cd3z+mvwElBfjVHgW4kJ6mNSrA9+nxV4p9D/7KPgXYpQBKDQVfBcfR88gdCvBecAT4LL5OYM/jwRPBz8n/OHnO0F/0MJR9RnPQB8AxYCX6mEjfj+xdgPXY6QX0z9u5AIfTz147FeDJ+nubfe/Xbyv+Olz7+MMmsBd+R9PfSfDt2PtmfjaM/puy/wb6qA+fxU6H6q+a/jqhO1F5E/y15m8j9XcxvD/8fe236qez8lPRP0j5buy7hP7ewm9L/H8gvvwD30f768m/TH9HoN+D/h+izzK7FeCryldUL8C+2q2EdyFf7HQlfiah05v9B5UUYCd0fzQetqg3FF7TOPoUn8+hW4o824BN+cPOyo/gF5XpoRV8mPLb4ieRG58Hku92/lZPv/epdyL5bjTeBoODwL3pdT/xshHYGGyi35fRvxH+Kru8AfYkT3n894CvUL+J8VgGLAveo/9F6k+D78A/xpCzBnw7fnWeeNwl8xT7Twengb3jr9pNVb8PuK/yhurPF0e3Gscd8P8C+bdRP/PmF/Q7Az/3GTdvof8T+51Irhp+v4OfnGN8VmWvo9G/mtzd0O/Nrj3Qn4Kffhnf9PMwOYeZ319R/gC/vYw8o+Gt0X/X/HUmOBS8hf/vp11VfK3F72z4Tvh7CZyBv8XKt8dPZXrqUVk5vdy7HTrm8Vf9fjB5u+jvIPib9N8VPoT8J4hrw61zhqh3q3nnYXF/x5ICPF15P/54EnvNNk6fx//Z5G+Hj0MT1+hvmfG6hJyfwV8nR2f+tTv6T6C3UPuX+f+rgeS4F3912fVe8l6Gj47otSfPVnR/qlaAk5V3RfcK+n8U3JE/PmXcLqSH0erP0/8R+i+j/5bmr6/x3029HuxeIeOC/22Hbmv23RY+H7069H0v/R1Cfw3RuZA+rgXvotduGT/WATeWkDPjkP82Id8B4C/8Y5Xynvh/jr3PIu88+Dz+2htfZ/DzSdqvZd816t9cND89zy570ve26F+t/SR6uwrdN9V/Tvka66Khytfhdxx6vck9CrxOvUv1f5n+2sPvAEfR3zMFUKqruNAN/Aj9o9mrJ/23h5/Nv74QLx81r9xJD3/hf0/zY0vjsEnNAnweH6W1ex/9svxzPPrb8+d/6LkUfKDyJfzhB3JfT94PlN8l3tblFyPxuwf/GlIUd16CN6LnvvyrHD6vgz/JTmPNG0/BG2QdRw9L/F6Xvo/B377wxvzlM/2dj88X6f8K8e1y8ErwQvr9SLsZWXegNwadk9U/FVyr/inad+TfHcDD9DuW/u4kX136Lwd+lfFrXPyk332sj1eif3zmC/Rihx/op5q4/LF+1/C/Jer3J1dF9Q9G7+nMT+x2Hbp9yTeefu8zvj5UPlr5Sv2N0v854Ifss43249DvhZ/a+m+Mn/Xmy32Ut7O+fFz7U0sK8FX0T1BeXfnYbQpwIPiR/q5C/2X1V8H3x99rxs834tp87f5gx4r8+3b1H6WHH8j9bdbHxsM15OgN9tT+DHxfy49bGQclyucaz9fT7zL9PUMfF+DrT/0+IN53VX4Ue/+kvBr6t9HPD/w242t/v58LlmGPhvpvAC5Hb4F2s/lRefzFv1+KfsKf+t8pH43/3cjb2Dw1Qv8r6WcUO40AB+DjcuPhWHI/xD4v63cn/Of7Lt97+b5bJ942Fh/Xwm/g/8+w/3vm5bL4/yLjx3j9hf0bsPsW8ryhPHGsrDjdX//PsM8ksA59vIVOP/HwW/B6cLb2p+q3Rr47+Mt8/T9vPL5Q9P2yM/rn0tsr5u2z4McqP0z9NvqrjL/e7DlHeVf99Kb3u/T/UwGUMk2UugH8m51GKqhCP2+UFOAZ6C0l16P4XwK/A/3r+EM1eqkOTsLH3vzjTvNeXfhg8pxu/j/duqwTfC9yNsfnDP29g+4qeAXjOfsT2a/Id29L8s32+2fwG5Tnu3W8/loUfb9+UuR38cPT8L+AvbeB11VvrXi2g+/N2ew0Ed3j+fel/GeJ9pl3G6nXirz9zEM9/f659jWtP1aQqxV9vKc838/T+cvx7Hgl/Y0Qf2rqZwz8bOXj+EVzdm5hfdIan5XBx/H/JXx11n/G29PgScr/oZ9m4st15GoCz35LF+PyK/bro/1Z6M9UHn21ZsfzlM8h12/4+0X9P5WfVlKALdXrb9x9Bw5Uf4H6I/S/FH4XvytBZyh8KXqT2b0KvTfG50fk3x39fL/ne/4D9D8h99/0fp7+b8Lf8eofqf4qdjqA/aay5zHG84vwUfRxN/84An97o/+Z+P86vxpOrtnwvbX/m3yPxy/JcTr53vP9O8268y/+mvVoI+O7ivhX2fgbgc4f+OuCr6f8fit5p4oX32hfKfua5B9Av2XJ963+L8ff1/n+o595+hup/TXi1v76v8H8+Br9HI/e+MRB8aCJ9vk+yXdJb/3k++RP+jsh8ye+ppCjk/nwd3r6DayN3jH849js0/KTkpTTZ0fwDO1H6Od89S/YtgDXlS7ArC/uwt/h7PuH+bgU+s9CbwT/Ai8jXy/6GKe/3eAtyfdb5jP0j9Hf9spfpO8h+J4GH0yPG8WVnei5Jb4uBDeUFODOqQ9vy38Him9VxZ0O9HGC/g/nP83Ne0fAX2TfVeaDH8HzxOlt8n1Hr5/le5t+P4evMj6eBhf6/VPwP/yqI/87nl26k29v4znr6oeVZ339C71cw68bk3sS++xN31/TT/Z1FqO/ktzLwenaj0l8pK/3tC9v/t8GH6PJtYvyO8WB7vSzkD3bK9855yT5/oafSY59jOOy7NMQv/vo7zX6Xoa/bdj3j5ICXK99X/I/77tkDPi1dehRygeLe88bX9XocVLW5dYz+4IPG6/vkqcK/XTgp1Xh17PnBey7nl8NyX4qPX9B7+3Iuy275vst54dt0L2l6DyxqriyC5hzznX0WYvc48CrE+fo/z/oPQQmrowMP+r3Qe8j7b7J+oG+dvD7avU74P8ocWkH46Y8OE/5RHptbHy9Qo7TY0dwEX7Opv8dEv/p84Hsu+LzMOWnsvd35o/B4sxd9Fwz+234/4o8dbL/y9/7wHOesyj0ydNV+S5Zv9Jjc/3W4Oen8avm5BmDn0/Zc7j1ZHX8PEM/v9LrZHgL9Ptod5b6u6P/fc6z0TsA7GwcTdV/PfP9/JIC3IZ8Z+T823wwE/0ryHeD/pvq5zJ4sf7Poc9y+Dwc/c36f45cn2r/s/rHa9+GPI+he6b+ZvOfNeL6bconkOdN5S34y4Fg15wrgRfxr+zTFO/PjGWfx7QfB07Db3vrg9PhlYzTr7O+Mh5PU76ef3+l/BLj/zJwG/q4Qvlr+Lkk8RKfjfD3ZfZLlc9Uf7+sL+D96KeOem/jJ/uL2d+6r2h/sal2r+T8gj6e50erSwow+yd10btY+/bWV/X57UTjcT5/eAJ/75JjcfZJtM952bba14ZPwW/2n8pp1xN+q/YtjLuW4EHgPPI/qN2p5LlP+y78rIu4fj74vniwW84/8VWZnpagO0b//6WvFcqf1H8/9qmQcz9+8zB+6md+w9dD8Fb0VV37tvDx+P3JfHuy8kP1fzC4if5yTnecuPu4cTmYfVqRr3NJAd6OvzvBnuo/SJ4jwVfJeZz+XzZf5xzxQ/1eyr9PV/8d9b/K/hv9nZJ9bP5xQ/J11P+b/v8Bt4L7aX8Wef4DLlM+nN4a/I/10f38uYm4uYn+3qPf9fg8y/hPHDmIPb+kv7nw/1qnPGl8VdTPAPbeTvvi88l5yg/FX03tVyS+apf9ssfE6+rKp+vnMPTeRT/zXzd89dH+UnK9Qb91yb1OPyPgU+nnHvJ31244fD5/7UD+gfBv9T+S/RfDb1T+F/r3KT+Lv50JtiBPvq8eFY8fBzNPJj7HTzPe71f+3+yfmL/vBKuQo270KV4/Cp6i3lT6ncav7mGfqfDsx5xtvPUBn058Uf4ge35Pn7dEP/kOhi9Vfpz1RPLc/luC36yPs5+b8wrlWd9mvZv1bV/0Tqf3U8GZ/GNX/t5X/zPVz3xzsvXtKeCp4Nf0nu/673M+5PeW9LfBeDwTvXXwxIMH6b0X+14BltP+Md8fz/nuaI3Pg7X/Rv0JFf4tx2ztK7LHXubf0iUFeDt+H2bv5DkdB98evxX45XL6XM8OG8CZ5v+N8JXZL4e/qf0d5pXP6eux+GfyUJJPmDxC/n8b/MTk5aG7kf0OY6+e6MxCdx56Nxv/Hc3bIwug1NHwnPfm/LcHOjn/vVp87MKub1vvL8RfM/F6Mr9cwD+y/juQP75F/hvIc57xuoa91iZ/hJxDsj9mXG3K/gD//Q/634mHi8ElYG/8TsPfHux5Sc4ttf/Q/NgZ/Y/9/nXWh+htVm8T2A39b/jzLP6X76dPtX/bfkm+I5vC36DnGvz/YnIu4ef5/h9BH1fST85Tkz/UGz/XgKWSP0CeQ+h/If0vALNOL16fnIu/rFNWk+9I4+wI8GTtL9fvz+BP4C/a9+MPXfHTtqQA38v6jDw7JF8w85Pyk+Hls2+h/mzlL+D/A+u3j8DV+HtK/8knm0/+zeh9wJ9fwvc8eGP0r2Cf5DUsAWvz/w+tf96wL3Qt+9+q/VHatwFbg58kH4Z/PpvzFPPw5pw3/o9zmWHG9578rhG7b0WnR+YX5dcp/xP/++BvFrv34yd9wN353778cjO+62U8Zp+Kvo+yLrgGnvi4DzlfpJdbEm/Qvx/dUWDx+etG/D+U/Wnx6BP4cvPDFfZfTjB+Dsy+JHkPoZfuxtOZ7NeSXg/E5yHw+fh7hH0aJd8L3aPgneh1Ar6eAmuoV11/t8Bv0a4K/b/Ob2bwo5/8/oX4sYI+O5D3cPRy/nGQ+aca/m8xXhvxj+UlBVgb/FOcHsDPbmXv78yPF9snGo3eA/Q/I/kJ8Kz/65tfVoCrwaPJu178fIY/JI+kCf1/I95Ux8+exvMm/a0ib2d4c/qdme8j/jIcvzdmHCh/QP1R4F70G//vIJ49wK+TT3RV9Mev26A/JPk22hefl+ccfary6eS9m/1yzv0EvES/l1unZB2Z7+Ct9Hk8fZY2bx/KPz+nn9/Qa0SP2a/4mH/N5191wCPp/wL8L9Xubv60F3vdknwV5TcrPyP5D/j6Mfn8+BmIv9rWl53ReY2e7sfv5eQ7kZ//CJ+T+FIApS4xvuvx0/rgXerVyP6V/qfqfxP/ftY88Bs5cr74J3+uLv5vgfch1+78sxX+VtJr1mtv5T4DPruBHdjp5OTrsnvG8+P4uzDnN/n+pqeLlSc/4AH4Bfzw7nyfqH+H8dFNP9fh8wL2ukJcaE6+HbK+pNcx9Hkr/B/tZ6L/Vs6X6W0jOFF/2Z+4Fh87od+K3j+mj2Ho5vuzNbn/ZJesE7M+LN6/+Rv/l5I/+Xanxx/w2w69WuJP9tVy/rYYvV7iYc7hst/2nfLkP68i10/J79R/S/3fB/7KX37E91VF6+esp7N+vpNdOvO/4v3VZeLxAX5fDn9Z+w34G0xv77HD++C34sh34GKwBD+/aJ/vy+S9X6P/MuzXp6QA96On1blfofwF+rmZ3D20P568ncBrra9OT34bey0Hr+dPj7PDSvz+AN6EvymJP+r39fuN+Lhd+VTxr5W4l/O0l+jnSu1uFj9OwPf94Hfor8LPA/jcTj+nkPdK+miL7mf8uxe5LzCv1CJ37N+E3w5j1yvRL5f8UPPZ0pyfm18aoDMj+aHga2DycVfiv3buM/k966eB4vOu6E8yPibj/0bxowE5BsJz/rUWLE3uRfjKOe5Q/SevcWj24fCRff+cA+yt3+z/5/5X7n01oqfc/3rR+Omg33nkH6U8+ayf67c9fpPf+m7uHaC/Czl+Tv4WegPEkQ/Fnwdz/mPcnWXeukF8v5q+z0V3HnnnoJf7f2P433h6+gJeK/nZ2ZfPeSx612pfX/w6lh8lb+PunEOTP3kJyVdYT89Ls57GVz9+8aX6V4lrR2UdQF+r1Mu59rbKR5Ij59spPxH/OQ//QHn8eqL+/uFfVcl3OP/POmotPj/C/8/aF8eNT7LfzC7Jtx5IHwP5RzPjaUrun/L/ZewwNucd7NCB/rYkzwi9pfh7Hz/j9V98nptz3pfJO8h+4gFgN/x3RX9A8g8KoFRvsCc/ewo/md+G4yfnR/fAM69NKDo/el5cfTL7KOah5A83ZK98f+8Hv135lyUFODb7v+TN+WkN65/r2H8yfR6sPONjUb6Lcn+J/a/G/6B8d+fcXfsr0N2TfQejNyD7Y/C3c56WfVn0O9L7MWDycp5VfwM9J09uPf4X6O9A9Ofqr53xuEz7lvCc0/cpOqfPPbzfwb/Z6eLkzxufS8S5FeAWeqmB/svgDPA19A/n/yeTYwD71Ml5mN+7i2ND2Otu9qivfkvrwu/Ai9hjWMY/+SviK/kOb1kPjUH/Qvw1ML7OpPeX+OFzYM5N3si+DjqPkOcq/C8z7m8yjsv6fSn/eFO8nkWvy9G/RHkX7WeR59ysL3I/hb1zfpLzhdLJj7ee+c38Pku919Ffm/vN4so/+s/30VviXVfwcHI8ovx77bZNvq/2yZ9bhd/sD9+d7yH8J/9jbO7N0X/yP+7Dd/YjR8HH5x5E7lfCy9Bj1lc/i2fJuy/Ox3/D72+Cs8FLlS+yf3MTuZqI7/dl/Zt8BHz8pf82+C9H7mfZbwE+vwn/2l8KX+l7vo/21e331wCfYIe7k3/A/5KXmTzN5GeejJ+sf2eSK9+3V9JPJePqHPgG9Svx64rgWv2sTfzHz8Tkt8Jvwt91uQ9MP9tmHyXnjX7fqL8L/P45+teLR9l3zj509p9z/lPJ+K0M5vynNrlqgf3JsVfyxbJ+A1ez/0T8nK3dcyUFOJJ+Mn+fhZ/kCRTft53CPhPAvuxbRnnyQ5IX8hQ7Jz9kAb5W4Odl3zcXKh9ELyP56R7wNfR+uX62Ne6SV7Mr+/Q17raQqw35v8x5ufiee+bF652PjPu7xf3cn6msv+for7q4ODT7q/j4y3jMefVYfP/C/oeqX4r8Y5Mvyv4HifeJ/y3Alfi/Vnxdyy6f4H8i/g/OuSE+K7DTfXlXQH/F96Oewt+lmWeSP6X+N9knpb+JYB16+p3/zCBv7qXnnnrupw8j/53wXem1FvsNtf6qyf/qwf+hz6nk+Rid0UX3jz4pOr8cD++XfBr8TIBn370F/mvx5ynKc1/xLPUuMr6rGtctyPsJfJD5aTD4HPucT95e+D2KHMfy05bon4C/q3JfBt136Kk4b6um+tfDe5QU4L74PgCdEu0rJJ8Q/iz7NaXf7OtmP7dN3m9IfrZx00L9vOOQ+0f9jZdfyb2v9e1Y/I0Ur3biz1vxu3/u0Yp35fGXPLzk373q+7mpODNcf2X4T9ZFWQ9lvZT8z3bGxcPiRDl6eiXvlBjXl+S7Bl4z+Wjs3zH7f+JX8sleJfdKcDd+3MB46kbfw/DZi36a4TffzfGXs+n/r+Qr8et5xnn8Oufz5TNvk/Mv8fZW9Uobtz3ov7L+s99XGd+T+O+j8Ox/PJN8DPp5VjzqFf/mz2eD77D3ntn3MZ6b4T953lvw/y67XkTO5Hf/rTzv9nSm77zn82j8U7/d6G0E+9bNfRRxs2zaq5f7O5vsX73GP3J/LOeLd9JXvic+NB5m5/uXfuvR22J4FfT31d8Z7NGWXueDp4gPq8hRhn99rbxb0fo169kX8JP7GI+hn3XBC/qfQB/Jx30KnvXr8/xlB79XAO/K9wW52vPjdmDGb86VP0Zvifj0K/yJ3CtLHnTe58BP8q3zzlRtMO9LtTfed8bPE/R5Dzz7dQPoayJ8uv43oVOG/bP/e7PyQfj9Vvlm9avg70Xyt2P3i9AfqF7x/cLcK8z5wXLjZax4VDf7BPDK2o3NfeasG7TvV1KApfF9Hbxa3r+xXugOXs1+F2aeync//bRDpx76yUs9HD9L+NPD8OQDJz84+cIXKc87KQ3pK+ujccrzXkreT3lEed5Pyfs2yc9MvmbyMx+zfh4EnkKfN+e+MfsczT4n6a+O9u3NL9Ff9Lk0+QPGd1uwDZj1ZztxYbXx2VA8yz3Br8W7xfDf+cXP5NtFXO4l/q2jz3/iZ/hrkPc6+FPerxhN33lH4kf8J38o7zfl3aZvtM/7X4+bzx7LPUX02mq/Wf818Hcv/M6ch4rPT8DfND77oz9F/X3JVZP/9GKHufzxkrw/pd6mrAfpdbZ6b4DTkocoPm+l3+wPZr+wm/n2Gt8de4i/3bVfYlz8F//fwrdjnwbkW4i/R9A5XPkT/G0iebdDJ/lv1+BrsPLd8Bf9bqCPZfmO1X4Z/nOuXw+ckPft8L9RvNxKb5+XFOBA7QfoL+umvDcxF3/zCqBUK/bI/eantJ/LDl+DbfB5dPI3yJX3uHJfJfdTfrM+yHtQeSfqxeTr42+h8gPx2Zd+yhq/FynfXvt8Tz7Kvz40ji5kv6xTz0nebIN/t8v35wfkHQb+nfuG+O/O3scmDw2dPvifr7921u9twU7aN8BX1tHhL+vng6xfJ4MzyHtk7n3kXhq95z7niehXQW85+nvSR84Hsr7Lui7rvOn5PjO+cv8y9zGTB7klebvafYrPavibXgCluoPXgXvh90xxeTp4EziMf03Hb196/yz3L7O/S3/JW/xVvzmfHpD9DeMj8Sz5W3n/rRKY99/yHly95Fsm35p+kyeU9+tOI0/er8v96qb4f4fdS6zXyuFzIL3eCA5KHM17BvxqJPgSOU9jn7w/9LT+euJnOPmL88tqFuWZfeF7d6L183G5x4X+6+Sdkfv7+Mr9y4E5LzCPDYb3p7cjyTM0+3HZD4J3MJ80KynAA8A5+NsRv4fTa95JG6v9XTlPzrxP/gfxP1+7ZsZDp+T7wHOvNd8JOS/N98GT5uucU28Bc07dxnfPLezzGXwC/XQzrjYbZ0eKdxuTb8Y+yX+KvZL/1ED/i/X7MDzvKq7A92p2yrlx9lcWlxTgJezwKTzvqObc7wX+mHPC4/Sf75Oj/Z7vlHyffGL8LwQ/BnM+0phe3hUXXkfnl9y/U557x22Tj5D7OcZr8v7eY5/k/+XeVuJl8f2tx603WuB7HP6uUb4rO15IbyOU9879QuU/6q8J++xPP9FH9NTXeiD66k++G8Bt2f9Hfptz0YNzbx3MOWkl8XBB8lfgyY9/OfNW9v1zDg5PXnbysTfmvC775/hOHugv8L/IP4dddtB+ZPrT/nbfV7fRx9N5X0P7ifS1Wb3y9PUGfZ5qvTIq+QHiwQ/6K86f/wKePPrs/+bds9niWUX8tCDvA+gvxkcj/Od93LwPuCDv0CW/QLza27x3CPxZ/SW+v+v3xPnE937of8Aej6N/b+5fJu9HnKjED3dRvmvO55IfTT+PKK9Mnjn0XAn+on5bs1/8dUf+nfnjdN+jWadNEz+X4WM9fvciT/IIcz623vw7iB6mlxRg8ps+JF9zdviKnNfqP+daOc/KuePPytdot2/yC+C/Zv9Kf/dkPR/+yfuS8fgtvcQPvlKedwEHZD5J/hj/qECvb+h3N/G9qvoP0s9g9h2XdVH0ZL/jJ+PqZ3A4/rtrn3ekTqP3vB+1l997qL8k+7n6Pyrrj6yP2Tv3HBqo/5jyWeLlj/k+1D75Kz+xR/JX8j5k3oUcCc/7kIPxvzb+TH+5H/dc3lvhD8cbv7kfmfPdrBebs2N55d/z97wbtzdYG7+537jc/Jh7jrnf2FW8zL3S+WDyFl9hr+QdlEs+Bn6yrs67KMXr6zXWO2vBfJ8/n/wH9BYaJzP53bjYD7/xm/jT1ei/I55vzLsH2UdS/8D4Jf5yfpj4WUH8mIuvDurnfbR76GFp7oXyhx3wmbyo3D9fjt/Hkl8dfeCnc/JytfvYeMn7N12Nt7znlv3Ve/w+Asz9+7yP1ybr+6L38qrz57wPNlf/74DZV8h+Qi34VvJejr+9sk9HH+cpz3uluTeb90wPpr+l2l+E70X6vT3jI/Mdu12ZdSP770Se+Ef8pa3yduJWM3FjXfZn2PcT/f2ee1v6mYXfPY2fmuBR/CHvDy1BP+fP4/nZLuyzXlyvbf1YC5xCT2XJX19/iTd536AfOlmXZp2a9WnydpKvk/e5m6M307jO+yN5jyTvh+5hvp2b/B/rxTvVP6akAMfh6xb2n0RfDcW1TsnL4UfN0H9Uu0n8t0ryMPA/mb7eUn4a/v7S//+tL8gzK/fj6D/5HHONg7fBzIfVtN89++FZ/+V+ivl8FjgbrJb9X/pe/j/Wl8flXh9YK/tB+N2P/LtmfQwfQP525KwHfzb5j1mfqT9Hf8mHz/vQH4vf29PHieq/m/Nd8+fQ7FfQ/xTy5b3Nz5KvzI45v3skeef85GD2mYCfGXlXEB8Ntd+P/J3zbkwJvsFF2l9uPhrJHslTqKL/u43/MdZZNXMvPfdX8z0D38ReDfO+SPLyydkX3jb3A9T/Ku97oNcaf/n/FB+JL1lv9ydf/Dn+HX8fxD4NrH/y7lhD+K74e8+6OPknxfePK4s3yStMnmHev/iDXX7D/zHZ79F/9l+y73k2ebPP04pc5envB/It4B+JtyepX0f5gMxv4uo51k2byZfzx7w3cETiIXpl8v6OesnHTL5m1u+dzB89/V6JPHmvZUd4e/zXYYcm6C0oKcDZ6nWk3yszvxsfLfF5Ff7fR38V/Bp8n8of++P/IfiN5o0fxKcO+Hiff9+Gn/q5d5b7rXl/IO92sedh6h2V+2/iXNYb+f8e59DfztlP4K+94EPobS7+GoI7areHeHMZ/ykNTmKvq8nf2u/Jj1uE/0YlBbgF3CgevIR+Z/6R9x3K5/5J8nXoJfkp9fWT+Jv3dP7x+9ngytzH4O8z9f8KOBT/uVeY+0jF9wur5T03/PZEt2z2R9Bbyf7Hk+8idF9U/gG/mmQ+7E7OZubTTX7fDJbOfm/219BL/nre13u4AEqNAZeDldDPeXnu5ebd1dyzbCRubuI3J/GjA/KeROIlvRafj+b+Ru5tNM3+q/5+pa+cL9QnT84ZypUUYP6vR95Dnaif5KPmu2XXrAO0H2Y+fhzdvcWDvAf8kPK8a1D83sHB+su7Lj9kPzn5/8bDteLA+Nx3z/sP7BX7NILn/toF9NEFLP6+y/n7auM85/AV6TfnYk8n3wufOR97J+9Gk2c0PY8Fk68wjJ/lPCrnT9eSvyw6Gfe553eQ+aUF2Bw8Dn+b4d2yv5P3V/R/ufE9x/q9j3jRlJw3574Xf74q697kxxdAqVvBb8Cc51+Q90DYbVFJAb6Q/B3y5F5J7pnkfkkn/pD3N/Iexxx8XCNe789et8HrFt2/n4qPTeL0Ptn/znqbPt7POpB/tOVPHfOdar1fUb2jkheVfbvsW+R+Gv7rWl99aL8u/pX1Q9YN7ye/iny/478d/7wv59jJD/f79egX++9/1R9Dr+vIOTfvE+K7hvVJHfX70t/wvC+lXfI9c999BH2s5j9Hm093zPqQXMfQUwfw59x/5387oX+pdqPzfh/7PJe8PO1y/jeFf96EnyZ5Jyjvt+n//76Xzc8XoP9F+FJ+CHpXZT4D3wRfUd5K+/yfkS74+4yeD9H/Qngl5Xfk/oTyzvRVnt7XwN9WPsy4GQ4W3/fOe+t5fz37aZmfD8/3kHVE/l/Sndo9a92Uc9acr16f++Dsn//XtVB8yP9v6cF+W9m/Kngq+h8l3wi95KEm/3RXcS/v7C+mp7yv/zP7zck5Zfad8TNGu7nk/5V+V2jfzHwzinwb2Wsn/Uzw+3L4k/Dch8+7IXkvJO+JZJ2xs/nkJXZ5GZysfv5fV/6PVynjJXmgC/lj/o/AEdrl/wdM45/nkmtBvjeSf5z3vbPfrZ+8Vz0Z/SvBO3KPDRzCnv2S31GUf7dW/+3MI/m/FVlf5v9a5Pf8v4sz874G/WRfdQA/zv+Lyb5Y7gV8qd/sz5TKvh44lb1zvzffnzWLvkPz/Tkh51fo/qHeHnk/mL8fyi41+W93+vhEfD0MnWqRO+er4lPeu1nb8N98TKS3t8TZ3+Ez0S/e32ivn6Hw39g3+5rZ58z3a/IyLgOTr5E8jRrmm4fZ5y74hznf40/va9cfbKb8dfZ/m/0alBTgE7lvY3zGTuvQm5f7ETkfy/2w5GvQ/7X0lzzwqslbVd64aH97Lvw4esz7GXk34zh85vy4K/2tpufc50x+bvZHt0l+sXrZH13CPzZol/eVxmvfNvcK6Ct5tPm+y73WIXnPoeh+63Dj5a/cwzA+rqKnU+Dd1c95SM4/zjF+F1kHPyR+3az9cPLn3d9zowf+1Na6Kvtj3/D/fnnvK/dZwKHkf4R+s99don3y/bN/nfOwdeBa8CH6+T77N+q3QGdf/e9v/OX/u9Qp+j8v2e/KPlj+D03+32beK0p+WXv6T/5L3sM7PXk3Re/jnan/W8TnNfDcn5/BD4/Uz8a8f5v8zORboNex6J20I/HdEZ7vh47a535w7gU/mLwT5aPy/jF9PIOPfY3PP5PXnXysovvnOX+vqF1d/OZ+0w3WC3/yiwpg/h9M8mFzHyP5svk+uDjj3e8HJQ9c+X38d2TyQMB/8j5A3t8ld8Wi921n8ctHcz6jft63zbuWec8y9zazPzWLXfuKY+fn/1zkPr7vjfwf2DPAvJ+T/xdxhfpfZf8492vFw17oXgnm/wJelPd0yFHBOM764Xbz9sXx89zvTH5vvtvJl/tSOX84uOi7Md+R+X4c5Htoc86hS+B5zwjM93zOabO+TD548sSzPz2N/ncTL94Wl3bf6d98dqKPDeJcm+C5L5P/pwZujB6zvkpeFj6zz5H38+bRay31h4t3uZ9YfC8x65GsP/KufX2/J+/plZzPVfx3u4/MY6Xxk++F5sZRviNqJL+KPIvEkRVg3h3slftiOf9EvxR58v+Ec49nGr7y/Vsq/9eEPraBv5r7f7k/nP3pov32k9gl5+4nwzP/vM4vB+JnZs6Rki+YeyTgCewxLu87FJ0fHk6fOUfcz3g4tugefO6/l8VPmdyDAjfk/CX/PyPvj8KT972L3/P90NF4WwvP/eXT6Dfn+bn/cS95OmQf2Xok92XG5F0Z+nkQnu+hfvz6hrwPh/8X+VPyYZPXVZzvdSR95V261vD837DP+W/iXvPc/wbv5T+Tk0eY9zzQ38G65Et2vTHn+UX53330f2zOYZRPFl//Q6+Zp9bTX+uy/5Zvf3ju013B3pf4fTr4hH7y/z3Oo6/8f4/8v48j6OMP88qG7G/l/pL1afG7yjnf+Ju9zidf/v/btvjfg/9ego+v1HsT/1X5xc7gI8bzkfQ8Tzxsgc8P4CPxn/PCpkXvZ23A37PGx5bkrQVm/Ws9swYcBeZ9qh/Y5SLwQjDvVdxcUoBLxaVl4Prky1mfZP9iiHbZXxnCXxtnPxFeJnEQvzXBNuzTPPe3jc9a4DLj41flS+GDDvj373l/50z95v965jw275HVp796YPb/sh/4/wBlLhv5eJx13XnU18P7P/A2ZSuVNaI7ikTJvqWNFmsioc0WpRBtKEuFUmm1ZUsUKaEsUSTZigrZK4VPZCtJiEK/c37vx/Nzzud9zvf+5zrznplrn2vmNXPN3K13KPX//84Ad965AB+pW4C19irAuQcU4Hb1C3B9gwJsvV8Bvl6jAJ/avwAf1W6E/qfsW4DH1CnAfvUKcOueBXjyIQXYoVoBPnloAT4P3+XoH3BQAbY/rAA37FaAx8LXV/sV+j++XQGO8fsN+P4M/L0cObbRXnkP8ncrgFLLydcSbEO+1yoX4NE7FuDbys/g98GKBdgY31V2KcDz8HvpTgXYRft31ffF/9gDC/Aw/AyvTV715ehrnP5PlhTgkoPxsXsB/kj+V6oX4Ab0h+J7CPgxes/qP3zbAjyLvDvT20L6P6VCAb4I/xXkvRh/J29fgFP0a6X8jv7NyxfgCvRPVG6F/gR436O/r8n3L34+3LsAx9JDvVoFeKf6ruRtwE92UR5B/ouVOwc//Vbijy+ULcAq4Kwyytp3xN918N2k/3T056A7mF7X8/+7yf8hefaG5wPlq+jr/KoFOLNSAd4AzzD1t/K3qfxjIjzD8XMIv2hMn7vh70T9l9UswH3RXa5cA5+l9imAKX5/AtxC/m7G96+7FuAG8C98fK1+nXG+HpyCnyb4bww2Aifhf5V4tBJ80PiYjn5T/vYEfhsrX0T/K+nvS7CXdiv551Z8zsLPjfqdyT6l6esvet9Kn2/T9+fG7zx4u+C/t/rf/H4J/J/zz8uVt+W/x/PD7ZQ3oNMVf/fA05Lcd+Ez8eoh8Stxa1v2bab/v8ql4W1H/rns+TK8B6rfU/sh+P2M/G+DT2m/RHx9D1wMXgtPL3LVxMfH6J5Pv48aV5fA10i7Y9RPKl2AF4EDwObkv4F9ltPnEWB3/tNYXLmQ/poot9HuXvHrA/THKdfG50x+N5Bd15FvN/HhcPrbxjxYHpyH/sPadYVvFP3dpHxR5k/tq+OjJvnGmjcfNA7n7VGAVdnnRPI/Sb7D6P1u9U3J+43yNPptiP43ynuAQ9G9XvsLoj/wAPPBcPTe0u85cp6cuAr/ZvGgKb/+kRyP4HM2//iNHI357+Ho1w+/7FWX/h7nH//hn+XVD2K/3dSPMJ/sx34jlR+F9wL9O5JnV/RnZD2Cr+fV1wSfxN9g/W/Qrzy5qpG/qvluGr1eoLxMeYD42J5++ivfis4P4n5LcaYF+CT5BotrrfH5TsX/lb+j35/A7+f861P1E/jvJvxXoZcX6XMLf+8u7v6tXJadO5p3O4Fz+HM59Zvo/Tv+cz39nIaP5uRrAZ7Kvybj4wX2nAWWxefeYCvj42b6vI2/PU2+Z9jnAvo8H/026iuKmwPAUeLpLfD3g39ySQF2sP47G74K9DuUvJ/7fSN+rjBeF+LrXXCF+uPo9Ql6mgI2h+dP9P4Ch9HvSZlXyPOAcXErflpFH8r3q79Y+1PUd49/438du49Q38h3wT3scSo/2o7+RvO3I6sU4BjlplmvG+//4rc5/MfC8zh59+fXXen9CePnC/FhLbgSvE7/4dZXVej5Af7clrzV+NWr+NlDeaj+y8lfW/vbtJtOvu3Ub8XXCvAVcjzML2eAE8C/1H9KH43gP9d8soW+G+D7IuPhWPA68aeSfrvR/zfqj6Ofu+jvBX40Hv919G+hvAa9bbPe0/9A+OqCndBZjf8FxnUF/ncH/b/Inr3gH5h5S/8d0Xs78zN+7oG3Bf1uS58jwA/x93XW0+L1YvXXKo9lvxbGQ0twFD7noPMo/Z8INgfrw1c16xLt1+L3G/7/s7i1B3nbKu+D/i/iywnkvxLcSf+d+PUcfncBmPXlGPPBz+ifQ5+fZL2Q9Sc/ybp7RdYfxl0FfrcN+GPmMfJeh+5E8bseea60Hh9J7z2UD9Z/R/NL9BH9jCH/dPruh/+sP47B/1J4O6D3gXJP9RW1v4w8PaJf+nmLv23Bz3/yvUUPs/G3Gf4byfe9cXMVfLsorzW/7ITf8dp/iY9Z9FQH/QElBfimcTAfbI/fv7T/AKwEbzP1ZfxeFjwW/X/w8wh5epLnbHzsRb/fm5de1+4f4/23+J9+5xgv7/LHcfS7iP42gVm3/4HPu9G7T//L2LMM+ePf8ev4+Un5vqX/u+h/IH//gnyLjNf78V8Gndfx14j//5D9EvK1RP9F/viB/u3JPTPrU3o9V/zLeMv4upK+5/v9Yng2ss/++r/Bv37Meop+Nur/JvleVP959q/gy3fjvkXfj5vhPVr7n+H5SP0Ccau0fs2Nr7n4e934nUvvp6E3Vf32xvt24AD19ennUfgPNO5+Ml8Oga8eez/t99Poe5b6vdljB/w9Cf8E+BuZz/Kd+zV/7UJ/J7Dr0+q/tZ5ayv6/kLeP9gu1uxR+7JSaAv4FXkZ/k62bHwePpe+H6OdZ67my+Nqi3Ik96pLnbP36Zx2tfjn/v0m7KzNP4f9y9ukGliXHSPqa5/fXwDfBuuSbIK6fRy/N4f8DLGe9OIL/3oGP3dAvHs8Z51PUTyD3feTOOuNW7V9l31PQW2Y8bKvdVfxnO3xWs577iF1vxvdl7LZEeSN8G7UfAt5jP/JP9VOtLy8XB/5AfwP7jTa/LdTuDfwO0L+NeHwm2Besyz/W0Vc98vRmz5fY90B+fwpYFxxAP92MmzL4vkz5HPbdID6sB3vjs6n6bugvhm8MPLXY/yffewvIcz+H76r9Hvh8hz7qwXcm+x5Db+fS0yD6OVj719j/bvF4rvG6QXm+9oP51y3gJvSni3dPgf3xeST5htuPOVX7+5SXoD8/+1va74j/k8h/qXJz5SlF+yNDsr/h91L8rHbW1/qXxldj5Vb6P2c8tLXPtB19Z337r/3cV8CXtauLzjb0URY8BR+V8PsK+Trh81D+96L6Pvz5beuMztq9pP4r/pjv7mXsXQf/L+RcAN1ZyhP59xclBdie/B8p3w7PmeiennhvnjiEfdbwt2OM22+V5+DndP56kPIgduyD/u3m9zf8nvX0OvxvQ88v42cD+Y/P+Nb/K/0yz/TK9w2/fp/c16sfj34D+q9Mn0Ph37do/3Ax/Nk/bKL+G+0b0t+V7PUJOm/Af4L6Ndp/lPmavrYlX5nse5Mv67tX2K+6/jXwe5LyHP3P1X4/+Dux1/XgUPVr6PVQ9qnBfmPVD8v3K7tv1P4b8DX81UG/kXYnk3Nh0f5i9hOvNw9Uhr8fu2Rfphd/3gW+asZNa3xNEx8XsO8h1m0PG2/PZL2OXk1y7wvWAuvqv0Rc6slP3hXP5ulftaQAz8PPauVy+r9kPp4O/mG8TFU/Er3x9DZKuRn7ZL/vOXKfjc556I/G31Ty7Qj/tKyX9KtDf/P4yaP6txHf94r/4LMM+k+bV5+wjnsMPEj9Lll/46MlOi3gr2G+e9XvNZWf5o8T8dmO/B/wh0nZX0XvTuuEs82Pe9HfFvb8B/wbbECeQ42vU+jxMOVf8bcK/XzX/ISvCfCfwd6HmH9PV/5Bu7L869mic6Q56B8jXn+P/zv9vjr75eaP6eCT4Ff0sZw/f5F1DP+4G99TwI70W5b+Pjb+7rQuuy37kPA2yvqavY8HG4LjyT+N33eHvwM9tsz5Br1VN/7K08tk9Jvi52zt7888yn9uKYBSPfnFMdajTdQfpP0meD+Gry3879PH/7VPNQp/64ybN/HxBnwZVxlnq+HN+Mr3Rc6pflV/HP+8g7+9ww5T2X9Vzs/UPwZOAWvrfw3/6AluTZyi/5olBVgCVuP/vfBXhz93R+87esx8tdC6o4P6a6w/Hsv5g/nlbfF9Bj9tjP6KrAeTb5HzL/zn/DDnhTfz74Xw5zwz55s575wLzwrz4aqcF2e/OOeH4stF+Q5k5xrwDirBH7kX8J+u6peh0yr7D/DnfD7zTeahy8mR+aic33Oedx05pitfrP4W5Vrs8RX+k+/wZM7H+XMD+su59E343UTON/GX/IrkU8xQ3pZ+bzT/9c08QJ+7wveZ+F0anM9/dlP/GHojwdnmg2r00NL42lH8SV5A7HUnvx1Bj6OVf4M/643KylmHTNZ/q7jaBf8jjN+vs68M78lZ9/HTt+h3RkkBTqTnf7I/T79z2Ke3+n7GV3X1b8P7HXx3Kz+hfn6+j+hjoPHyIf6HaZ916V0554Bvovj5adap6D8Gfyd+21//jsrnw99ZPL4QXEg//xHPbmSvm8AbwO3Qf4g+LjKvDKC/kfzwFO1PNj/kXOhD8l4uXjzCrjkX+jjni/Q7Hr/RV/TTFL2cD1QoOh84h/8PI1/2aY9X/w4590EvftBZu+b8JvlPp/On7B/fqn1N8k7OeQ39LyJ/U/xdoH/G52rj4oDkL2We1f4I8fKTrE99/+V8cix7jcF/1jdjlV+izx3Q65/zK+Xe+d4k32XG8Tj1v/LH0fxmFPg1vDnHPB3enHMOpL/ZxkVt+I/AXxP8T7H+Ogne9eLr3fCeIy605eeL2ONh4/epAijVUfkodPdgn13Qa5r4iO/e6PfL/i04H72cD5WIDxXA8uAv8K0XH2/kX4dnXYD+F/xzQs4Hsg+lvrr2P6K3gh6S/9KDHrZLPoZ1QvaXB/H3a7SryD9OQ68dfZ6Obtvsx7HLXsl/Mq+sKynAYeRbzZ6b6f8m/r0peUT6tcBHK/PHX+q/5z/fwduEPrIvMFFceNc6soZxMIO8WX/lPCHrrnnkL9F/of5b0J9JvmV+r46Pquj/wB8fIv+Nxtn07Beyx0PkXc/vyqE/jr4bWT80BIepH4n/l42n99Ne+RP2+Qa/a4zDb5X7kvfcovX8Ivb/KPsL+D8Tvr7icPnsn/L/89A/Dp0TEi/gG4TOheBn9DOZ3R8lfxv+3gG+O/HbnV6v5wdHwbM/+uPyvZK8vIxPettFHJsFXov/+4zHxuAGfGR/50jx/R3lH/jPAvxvYM/s464Am/OfC42HTuAu9HgI+lP4z5n8rBSY8+2mvodXiOPH08v1+g/Hd31wBPgM/o42zq7NeTx7bFXuR97kFV5OPwszPsSt98APwC/wMYl/dBdXLsp+B/33Z7/x4nDb5NVmfY7u1eat9uAI8ie/NXmExftbdYr2j08EB8N/WdH30YnJ78FHzjNe1a+ddsm/bandWvAE7ZO/fW9JAR6Pj/d3/V9+ahrfPdllFr2t1L+/uPmxfg+An+LzAHrdH+wpHh6ZfRB0D9M++Vxj8n2G39boXazdHfR7n/F8L9jNODsx+3T0cSB5bk8+l3KPfF+Dyff+Rr9vjI+P+MmHYCP1/fE7ALwZ7EHfrylPM/+9mPyxfK+gmzyKpfQ7OPmjye9RfsE68Dv6yL74NPqoon32vw7kv8nT6UWe5OkkfybxL3k0yZ95mt3LZN5Rzv7lXezxhPIw+n2L/drS1wDtRhtHb+H3LfTHs9fbysmXKBEvH+Q/38H3h/bz+Nul+J6v/Cf8Zxt39cD6YPKpl4GP59xM/K2q/yz+/RK4Fl/7q3/TfvMU8HzwLO3mwb8vfzg9413/yiUFGHvlvCPnG0fgJ/ciupGzHv3m/DDnhs+IszP0b+P3tuzzCb7OQP9p7cvAO5yfJr98RvYz4xfsM0T/qez5ODgEvfnZfzcea7NbzomvhT/5k1XAq6xnbkeveLxtIkePnM/i/xPz0E3w3oe/EeT5kB1eMh4357wbP60yL+H/jdifv+yYfQ/+n3XpbPGsnfF1Drg7ProZD8mfOJQd+8HfnT4/peeryTM490/MpznXe0G8yPle9v22x/8O4E/0s8y4PQT/S/ExLXmA/Dr7BdlPOIn9muR8jjzNs7+U+QR/G+j/HvDGnJ+ZD/MdVxs/v6N/NfvmO24H/OQ8I+uzvugdj7/X4F+Z/BrtL4U/68ucz+Rc5jx6zfnMA9YP2T+fULR//iL+mhpnJ4IZlxnPb8K7XfIn2LdWvgP9nnsfU3J+xe6TwWFF93EO5T9P516P309i36v4z4L4j/I/6Mzgn8+Ch9Hf39Ff8rnobw37ds75ivVUOX5bKXmg2h8nLvdWfqKkAH9Qfgv/o5TfhH8s/j8T3yfjoxN9D2a/LfzmXHocpbwNPSxi1/o5D/B7LfpfaP/kD/uw67K+Q/8g8eEw/U5gpyXs04e8y7U7TZwqS46a/LY9vAN8R5VEf+zyH/0fwn/y/vqaL74Fj873KnzN0T8J3A+8lJ8OhO8hdrpJ+Qty7Ay2yfcmOZ/Pfq94tZh/NFDeO/l9+X4l10z+/wj5y8F/O7x/onOk/gvTjv2Tx/6S9jnfyXlOznf+UG5dUoDD4Xs24yj5QcbLnuL6JOUP+cvv/K9r8pEzP+R80XhYDC4CL899PPw8K66Uh/9B/nUz/5+Ez0XgHzknNJ9ln6mdcvabzuLv2Z+5QTnnL3ON+73o72h4bifPf/jNILA3mPzQc+g7eZvJ48z9gm34zeqc32bfH6wsnhzAj6vCc6j+x9LXDvi+L/MsPe8snrdQ3xxsTT+fJN5kPzH5zUXnG7/Al/ON1tpfxh+XGIdjlP+hp9PY7ejcP1B+iP7WWp8cqf15ycPNPrv2Jeq/UL4AP9XQe0v9dfBdi/8a/DJ502PFjwv1fxq+iso3kD/n49n/+Bdf3xbthzzFv7NvGT+bn/xd/nAH+L31TG/wT/5xCL12T/4B+7emtzXsf5V+yW8fiP4D/HV7vyf/r24JuY2TA5XP0P5dcTn72dnfTn5G8X74NOuL5GdsFZ+yb1S8nzSLXOP5yzM5Z8LfdPE0eQd/JW9QffLz12d/lH6Sf/VA4ox2ySfM+uFL+npVu1XKk5IfS69n5n6j8j3qn+APl+YeEzptk7+R/afcuzHfVaafrId6g13BrJvO/D/uP43X/yd0j835DTrZ196LX26Cb2/ls/n/A8b7KHb61zwyEP/vGbcz9DvL+LmLvn9K/kXiCTrt8Pe98fRj0T519qdnip8zwBP8vgj+3HvLPbjOYO6/jbHef1+8ynx+D/5r8+vvzdu5b5V8r7/If3juS9Hjtfo/ad2Z/Z0PzDe5X/av9XVt8/oi8Xqo9lXhy/2Obdizgv5/hy/ttyjfwD4noP+eft3p5Rj6zbrgSnRaxv7w535dOfVV6W0P/Y8wHuux66fqu6HzI36qss/+5pPxOefK/Zjcv6PXnA/1QH9NzruLzu/bkus1+jkY/6Pjn+w3HN5q5K2b7+XkcxSdOz0CfpT9FuWcQ01Uzjhb5/f66L+M/pfJG6KPZdrnvYTB9LEy98rAn8jzm3Vl8o2a0tdG9aXEh7PUl1E+l3wNi9bvWc/ne68T/cZuscux+X5V/zz5cq9udtH8t1/u9RifmQ9zn/Hw5L/m/q3+1e0rPChufJT7RMbPJvPBkcbJhKJ9gDLG31iwgd+X8Y/kQyRPInkR26tfLF7XVP9D1uH43ZJ7NvCWjh+p/4pfn8tuNxZAqS/9Xkf/L9HdGZ3kN8+nj7vhf0X9ZvgvMX5GwT+UnEu0e9j4G4nOZv6d87BG2j+uXSV6rqJ94uax4vTMojj6Ve5V43938r+W82L8b86+lvIk9LfPeTm4LViPH+/JH6/AX/Wcv2Z88I+tJQWYe60H5P619fpsfG5i79xvrIWvxOcN2Z8p8q8N/Ct+Fv96ln9UTH619dJA/Of8Nue1Ob8dpX+l3LvEd0f+1S3xx/jK+jDnJ/XUDzFfPGieqiieV1JfyrpmEnuVVq6S85GifJrcpz1D/Z786Hztbsg9/az/2CH3WXLOvTv9/8XeI8xfpbK+TX67+Ja8vHw35Dzvdfp/lN4rgfHfReq7wHO4dcRfuedO7tzvaUe+uepz3p3z76rJV8HHOfDdDC5jv3O13zfvH4DJ96iQ90bYo634dyp7zWX3E9G/RfusT39F/0f6yr569tmzv74rupk/F6OfOP0We42Ef6zyC9Gv9c7Q3CfUr7z6WvHXkgIcDdZhr0vhmwmOAq/Iuwj4Ls5fzHlMzml2zn0M64RH0G+e+wz0OM54bqH9KeLZQvhr4LcC/dxqXE5JfM+7A+o38c8rEh+V59L/QcZjX3FpsPmqOvoHa49MqdXgN374HN93kOMW+OL/ZdntHN91u9PblUX5t+OSv1r0/sQP6P+Ye5/sPFX/DvT/AfnuzDoA/S/5ywf8qlnO5bL/q3/y/bJfnP3hF8k7x7zRR7kEf32Sz80+VysfhR5xSlUwPpArNZMecq/z9tzL0iD3OytbD5/EL6bQe3v1R5H3JXq5jR1PwH/2nzpoX4ec2X+aBv9adt+Y+4T0l32/ivl+NX7PUj+f/T/F/8fwreCH++b9FfU78f8v1I8iT+6vX4beOfA3Lrpfl/t2uV+Xc8VmReeKua99i+/F98XVJWBj+nmYvGeAK/F/FX1mX7Zm4iV62Z/N/Fqc/3lI7J+8DvjmwV+RfF3ofY757WL8ltU+42kQeETx/CK+tWf3Q/nZKfiea33RRPkV5YOy38Qe6zhq7sGdkfspxu3S5Ntrn/sZvZUb4msn89Tv2l9O/pwXN1TuTT8P4P9D8rU2fi7gDyX0ch67bTUfvs7eXXK/HP5D8N8Df7fh/0XtByiP5iefiE/fqf805xC5Z8Ie14Nt1B+M3rf0XcKOC8iT+w3rxZOfwc/If4v+G5NvTm/57l8IDmXXjujnvYPs71+I79/8fjj8yS/ajby7guXF2/PJ11X5aHJ9zo7V0b/dfFdJHDneeM38mnk583Hm63w/5T7RP+TdPfcC1U9i55z7DFDupL4/+18PDsh+Rc5Zsx8GvgfmHDL3vzfCm/vfed+gj/h1Td7X4odX5H6b+bYHPa1SzjtE8bcBuR/InvG/3BtI3lpxPtut+Mu7XvmOz/7BUvU74r9+7v3RT0985bs//fP9v8b+41385zmwKf/pm/cPwJHk+lJ9Hf53AHgguA9+825Y7n/nnbu8b/ccf8l3RL4bfuYPXfhLtbxfknzvjA98Vc93uPJDmS/En67gK8bZ4fR0nnVJvi/6i7/bZH4yflaBTcm/F/0+Bd+j6vfP/j79PovudPBtdtgd/v35y2cFUOpqsIN4lv3GJeTL98ZO8Ce/IvHz8qL4+RE8JfxqiPF6Kfv9yl5j4NlQlB+2XvlYelpsHOyV+/rkGmEddSiY9y9z3lWavoeQJ/sbu1g3vWt++QC+A/Dfjz1uME7mi5+tyPmudd9C8E3jvx56HayPD6G/5GOswv9h5rsjwOV+H8k+Zxrv9envUPAA/tWbftbQT9bJWR/nfYzb4Mu7GEfT/8X4qkZfJeqTv3Aufz7MOPos90XU30LuQ3Ofl56aZf0A/87k6gL/f/B3R/LTSgpwlnlgHXwN6bu1eex0sCv7dTMe72X372LPvCeYcxv2vC7vcSm30z/z2WjxOeezextPByafid3/zvsA/OninJcnPuk/F74D+fMryoPxP9R4mJrvN/ia5n0W+vg4+oP/96zPxa3Rfr9WuzvzfZXzqXxv0/uH6i83PnrRV87h7lI/nL8tyT0F5XbofZX3H/hBE+N9MT5e5j+z824QWCHfQezRCV8V8VE++5HoDlSfdx+zv3Ey/jvlnhy8Of/YaN3zS96JSL4f+8ymvwnsl/tArfRfyx7Z9yneD3og+VPGWVVwLTnW5byOvrbQT853GtDbNuDorFPy/oi49KI43YJeK+Iv4+k18P7kq6l/yu9L4z/4r5T8MnxdpJxztmH0+y75j8u6J+dR+Ct+jzbv1L6gvFr83EpPg8B8/15gfO2We0bGb/JPXqXP54374Yl35ByX9Qy+c+/1Evxt0O5m5bwf+w/6zRLP8l0NngpPzs0nWQd0VJ/1Rd5xqZLzGvopm/nZfNU++eBZP7PPTehUhmdm9vvxd4X4eCW42ng7HP1e8I7Qvim/zvlG9BH9zMh7oPjrg96buU+o/bbw3WG8VCXHDfz5Qe1b5dwT/uL3Aerw36Hk28v8d17yg8TfzuJCQ/RzP2a++PctOr/mnQ34c798CX3knvl/75eTrw36o8C8f9uePt7Id6940w2+v/D/M9hM/L5G/4u1P9W8/6D56pO8G0W+nJ/mPDXfUa/W/t/2XcClic/iQrXk6dPzntn/IO9geDso53xieb7r8PE5OIZ8dbV/AJ0G9LGAnnc17pJ/s4ffP8JnL+Mz++9PKY9Mvir6//LTmezfDn8531lDj3PwkfOet9Vvzz451+jCP+7K+UDRuxcTkx+c+zvid97rfER93v8qT795/yvvgbWmr5wL5v30nA+elnukysmfWMZ+yZ94PPvz2i9X/6b4MhX8nH9tJedlpfCF/kjl2vDtw17r2ae/cm/2+Yw+k2eZ/NbkWZ4rrtxgfhkA5n7zMvH2ffpfrtyCHxxs3+9WfnSU8h7kzPvv/+SdiqJ3lLPey/rv0aL13zD+dwK8OxhHtcDfi85fcx6b89e67J18lCrgLsbRLvTdlP7fyr058HXzURN+nO//vDuW+Hgl/zkZXMpeDY2Hjn5vD+ad2FP502zx5V1y7Uf/R9P3RUXzdd5vGQ//KO1ez/1l7ccXQKke4K9gG/2vp58j4O3C72bnfA9fd2R/EN7c52omvtYrKcAGYOXcY6Xfpfr1hX+j8fsrP8l9qNyTGoW/Sfj7nr4vMU8cpX6O8boE/rxnPCTfO/Rdml72B3M/IPPY2ryPkPsOeX+g6D2U0/HxGvtckX1NePqidz75D6e/7B9lPyn7R9N8H87JuoP/3wp/3g87Fx9zlfN+WPG6f5HypfTRXfvv0P2Xv/TQPt/fx+qX7+430P/U+Lsv7/Ipd8s7UgXw3/zJ3HfN/P09uZJn2Ic9k/+yQlzYBf2u9JT3WYr/f8JtuYcMX3/xK++8DVDOO2+/4ns1uJi8yV85Xfuso09VzvdpqdD3fZZ9jOxfHFa079CgaP/hFv66D/6OtI7M99xNxk/yYsfjO++z9oDvLXH5CuVquf8O31X4fzXvsOmfvLJV/K34fe28p5z3lfNeX95XfozeXgaLz78vyPsW5Mj/HTiffgaZfwbT+0DlvM/9KP/P+3r5fwp5Xy/3XJugWyd+S56O6OY+Rv7/w0Hq25gP8w5ZD/Nfe/L+XFKAq/HRSv+8X9tV/Mr981H0k/vnjdB/jR3y3n/e999oXkn8SzxM/FsCX/Lmk0ef/PkGuZdj3PUE815QZfirgH/nnfzky+Y9LPh6F/H/kvmnBvn3AYeR/8Lc++L/1cDsW/SBrwT+lehl/2HvvN9bNA/8TN4vrSt6sstG9p+U/QDxIevJrDejn/bwzyRvbe3yPkTb5MfRS7/kSeb9QvWTM69lXsbfOcZdu6J76XlP+TVy9devPDu8w755Z/1M+Kv4/eTcN8P398mn1u7B7D+xf/Ku91FO/vXz/C7v7T1hvZL8wxWZl/LunN/zPlu+v/Ld1U858fuZ7FvQUz96yfxe/B5F4nzyx58t+i6IPbPPnvyANTk/xm/yA4r3m5Knk/eZ7sHv7eJrvjeW5v2OrO/B5cnnzH5nSQF+ne9ofpL3hYYaD2Xw+zQ9vsne2Q9oot00/pD9gTPhzf+BKP7/D2XNL/l/DdON76b8a6x4cjg+8x5h3jHfT79GWY+y02Z6eiPvBhlnVfU7KPcts/9knVC8n5v938/zHQlmP3huzqPw3R38Rf3xuXfATy8DX8/60LzSENwCvqp+gfhdCb4+7Hab+pnW+3mH+0lw59zjF7+SV1dGuYH6fvSV+zydwbw/fWjew8BHZ/72NP1eQ79Nrfs+pcfP8o4Hv78m+/Bg4vxMeCeCub8xi5/MEWcfQO9G5avV72rcdMbHl7kHkO8H/j7Ld9gQ5Zxf5/8j5P9P5P9RJM/2DfraNd9j/OEJ/pP/R5H/m5D/V5F83FX00T3viwTiL3E933W9zB85f8v5xM700g4f//2+yXv/uddVdD8t+Sql9auI70vEj6vtR7S07v6Nf+b/OCzlT7+JQyXw5/9CHMnuR4Glsj+J35n0ukr/EWD+n9gR6H2T9Sv9Jl/wy+RL4jvvS75Pj3+LO8flPrr+eQ827wfk3YBmeadP/T/8528w/58n/6+nonnvorzTo1w/73Hk3Z3klfGD/P+j3FvLPbbfwOWRX/w7Esz7kuPYtxW+ypgnTlHO98wC4+FJcbKy8gx87Q72pbdx4vBzymeJN7/C/zP6W7KOxWf+v0nyM1+mz6X0nXsq+f8R0/h33l2dqP298OX/AxXf9+iYdZH5IecNPekj73hm/T2dPS5MPIid+Mc19N9Pu83GZ/KsW9JPCzAPguf/2Vzr5wtz31o5/58v+xPZlziKv2d/Iu8D/2L9nXeCs175Hd3n2O8P5ZNzvxDdvAu+knx3w/+GuPaYuLYTmDz4xfx/ETg157fZ/4W/R1He2JC8/1G075R4lfi0yXjZDI4kV+b30zLu6aeiOHE//eX7tyF8yVfN9+//lVf+k/6d+euL/G4tOveoP52+LqCP2/hTB+0Xkzv5ZL34TfK7v815B3z3alcr62P0838m7sZ/3kNMPteD+EpeV6fc/yZXtdwLZvfyyQ+hv/X43BneeeAP/KuW+H2i+PIz/FvU/8nv8//gsj7Yg/73zH08fjIt7+lZzx2cfrnPjd+j+O3ckgK8X/nSjFNyX8cv7qLXvDee/zewnfrv8Nk478cZX83AVcbXY7Ff8tBznoKvZ/Q/kv6/xc/RyhvUJ98n+T95PzTvV1VKPkHOJdl3gfobld82rtbQ3yc5j7E+TB7SU8rJR7oCvUH0P9P6o07eJyvaf85+dFXjsyG8b7DXjdkX4medc0/C79mvyP7EbiXkyv6qdhfnfIye8y5mn6L3mQcVQKnJ4MPsuRn+m3KfHjwDve3he8j80RqfN/Lj7Ec+mvewcx8Af6vg3898u4r/nK7+5NxPzvpHfe6DJ//lM+uB0/y+Mnnd+g/MehlfY7IuUn8wu00Ec3/jiOwfFkCpnuBKcCt58r5sDXLmHmvur2a/MN+V3xfFo7r84l7x7Sr+k/dkOmhfMXoyPuehexC+V+e8QPlDesh7tnnfdlbR+7Z7iy8nZn8q3+PKeR8pefbF+fXJq8j3bfIt3ld/vfrv6esL423HvL+ifd5JzrvIo7O/xv5573IgWKFoPyv50VPoO37wuHLyo7PfvKooXg3hJz/kHV/jJ+9xzM58VPQ+Rw38HZL/y0A/A3P+pH44fvP/G88mf96nzf2ZvKv9J7g/v11VlCc5rWhfY0z2/4vex3jZ+n9u3nURf/J+Yvw995f2hzf3lzbyp+Xi4u7KC7SrxQ/z3Xl08tXgbYffefw33+G3oVeOf+Q7/mrjYUi+n4r+f0T+n0T+f8S3+JiafAvlevh/yfon92CK779M8L2fdwyaFb1ncDS9n1ZSgOew8x3kTVzL/2spjm/vJn+9yF+76Fecr5E8jnvV5/2f5NvmHaBJ5P865+vs0gjM91aXzP/8+krl7bOPolwNXz/AWy76gb+X8XkPfU3Uv7/6b82Le9LLDuqfJs8B5o8VyWuEf3X45qfF99c28Z/kkdxHjpxHT9Z/vXVz4mDu13VE9x92y/8Tz/8PHwrv7eAwcHt6bq38BTneNR7vU9+e3e7JO2bs9UryH+htJT57KB+k/9S875t7k+Ram/1V3wenav8O+Y/hb83E09v1q1x0v/xT+su7xnnnuLf6h9g//jQh+/vofy3+lzPu/vteSEkBbkleae7Ls9829FHauuoXfOXdt3ynnK1+W+NzL/PBberrZ32P/+T3L8Bv7uXWzvyu3I4f7rvt/+ItpteL/u7R7l7woZyrwptz1XXKOXd9ye95l/Q68WK2eDXAenuy+Pd7/g85/saxz3F+r6z91fRXvL57HP7S7NdTOe/f9cp7IskD4D+Tc79D/XH8eRC+Kiu3AZ/S//8B1X8Cj3icdd13+NfTGz/wiCQNs6X0MSvRIEVCRLasr1EySmUrIaFCi4qoRBooZGSVrKiksprKahBRopAiu991/d6Pp+vy/l2/zz/3dd7nde597rPucz699y31f/96HFiAnxwA1i/ATXUKcHf1L+1TgF82KMB6+xXgW9o9X68Arz+oAAcUQKmPqhbgH+Dt2p9VswAvql2AE+A5v1EB1tmuAHfetQBrK9/ru+O3L8BW4P747aL9APjvBO8CP8Pnx+R5dn946hbgGPVt8bUE3jvBV+EfsxX5wBr460J/z+5VgJ/uWYC7KHcjf809CnBZjQJcAVbDz0b2eRe+yg0LcBj4+u4F+Bx8j9UqwPb0f135AjySvt6tVIDb4n9bdHqRdzV9DIfv8QIo1RHsA7bAT0vfX0SOS8Az0C+3UwG+Bf/2yr9q36RyAc4Hr6Hva+M/+P+kbAH2V55Enk/JswCczj494G9XvQBP2a0AO5UU4Df89gr6vjyQfT7kB8/x1/3ouTbYGn+7+f4w7Vspz8PHEvQ+At+oVoA96eMB7VriZ6RyP/Jdu0MBVqpYgBXBSfibrd1f+ueJ4GT2m6JfvAROBk+Gfxr5DlZ+Q/lWeEag/wA69ys/xf/WkvOkIvoXo7+WPc/E78P85Xj6u599XgEXotMG/pv2LsD+9LZS/V38N/a+Fv5H9Zcr6PfD9B9+XsP3j2i/O3+tDt6n3Y3ot9+xAEfzuzf07xfSP/ndO/iqotxJ+6/8/qfvbyH/VegMFTeGgWeyw0X8t6t+8S2+W9DHBb4bwx+PoOdv+N8i8l1dpQA7wNMe3As/L1UowGbat4e3Eft0xtdI9T8od4S/q351eeI+O4zW/hb6uxlsqL4F/6gPb3/yDoZvhPpz6W9H3z1Gr5+hP4t9BymXFicGK++sv6xDdyfl3vB8uk0BPrktvsgxTPt72KuS9nvRz9v8/Czl+crL2Wkx/N/ymyH6XUv953T41tBLuzIFuD+7bAXfwew3HmwM/lQ07k72/ff0lPH3Yv5Yi37/pK876Hea9tvjt9suBfie9rX0y6PBg42fx9HTTuL5m+UKsBL9Jx4sQ+90+mxGP8fBP0x9f3J/Hzvh71X6P0T9a9pHPyfxl5PBxPnB5H1Pv56pn8wnb/xt5s4F+IF+3VT9JPr4mX88Yfw+hZ+U9d1N4tKb+uU89plAP/fid45yE+XvyNfLvOZ/5G6Gj6PpZwl9LmXvWvzlCPR70cs65UN81zrxE/6z+X135W7aHU9f0feLwcde8+G7nl8NofcS9dey/zx67Oq76einf/cB90Qn/fvq0gVYGpy1dQG2ZZ+djIfva78PfW+vfksBlFoqLl3Lzp+y+yj+ulG7p+F5Hn+LxcMf2W2Jch/2upn+n6SHW5WnaD+b/86m/wd91xR/f9Pnc/R2kfrflIezS3n0HqbPC9i/pbjxGnqr+EkP+i+nX/bMuA2+67u27PKbcjvlz/B3HLnLa/covpai/yZ5f+aXj6j/TP0HsQs5J+uv5yW+0udn4FLwPP3gXXaaDV6Bn5Xqb1YeaV77IDiA/D0yP6e/J5RPxt8V9L2Wfe7G37vkuEbcqq1fXEz/e/i+B71cnvkue+8I/7v89g/016N/GfmnoNdZfXl2qA//PPVv6g+3gVXI97K4srdxvT09L8D/SvROgO9y5ZXwPMl/FogbTyh/gr9L+d+p+LvDfKBG8JF3LfnP9N2f2ke/+/r9NfJF3+fojxOib/haxX8yr4H/Avx3Ul9N/28NzzX8J/ORC8WvQeierXwsPe2KvzX0Md134/B/Cb774reT72/y/RXGz1fp7UrltuxTPN5VVN5D/WT+ezc5X1Q+FN1PxKVz9eNG/OHYzG/433b8YKbyYeTI+ngb+LJOzvq4C7/ZlR5voMd69PMVflaBX4IH0/8v/OEecWOT8tPkeQi/mefeRQ/H0O/14vIssHPRPHcUvrbQw3Hsuwr+nsoPlxTgbcqL4L/VuNwTXFE0/yzP366MPcEr1V+I/yX8qTO9HEWORsaPH+jxKfAudHaBvyv/PY9cI5V3x/d47fbX7i72Sjw5Ad1H8DFe+z2VL9fudX4Y/+vv99g7frBJ+9X8ZQ/lE9lptvZ/mc8MwccFvvuCfhvguz44A/7L0DsS3/3A66JP+t29aF01kJ1nodNa/Nxs3H9H+Xt2eoHfz0F/qn5SE38TMt9TrkNfrcnXjx8twt9F5FyA/mZ8fcves+invPY3wldT+9Jg4vTwxEe/94evNf28pd9M9d3HvluG3zf8Xol8n6hfrv5o/e068EnyXIL/hcavDeC9aQ92s/5YQa6OyneTdzf07yPPLfDuT/7fjRtrtTtE+b3MM/nfnvhtRd457J/4Nbcojr1HP+eJN2fAd65yNe2vxuda/H3IHtuoP8B66nNx9wvwHt/3Nb4ttK45iHw9wa393p3+tlIeiM45/C3z9xrkTXzeX/+pyi4/0NMe9LEjf54K1ib3V/gro9wYPxXR/RL+qvrLs+hvFi8nqO8lnp9WUoDr2b0cfKvY91j8/YzeR+q/Ub/J78dl/Zr9S/Oh+EUD9Ymfh7HbM+rjd2+r7yYevE5vw8ADM19AfzN9bWLvS8j3lbjeRj8fIp68rL62dfMz7Hei+DgeH9WN17/xg6fRr0X/H/m9GdjK75cVxY/f6GcqeB9+vyb/xux/oXslfWRfuxk5/0a/Kfw36E8/k+NG5b74mEH+F817XwDHoDvW+FQX3UP4S3P0r9PvdjZu1uTPa/C7Z0kBVkPncPJeR76G+vMy9mqgvEZ9xtfD4Sv2jx/p65LEm6L9u4XqK+L3H/h+V7+cXnrT4wrlk+nnMPrYE/4e8L+tfiF/mCBOLFCuj88G7HEuekPE4dXKQ313Gflvh38yfu8Qz/qAg313evZfd/yv/Ify00bw78Wvty4pwAH42aL+E3ZZDm6Pv174uJc9xolb1cnXEN/VxdM/6Cn7sDWyfuL3W+knE+npC/jnodcbXEfOTvBPV+5HvhnKr/CPLuajXcH+vntVfWXyVwWrgE/xi+w/v4/Pc/l59p8b8fd2/OYF/eEv9XPo4xrtL0w/VP+4+P22fZ4Kyn3Q6cvvrqa3z7R/ln8fQp4z6fPK7GcpP0NPmd9lvnc6+hXZJf41Ev+vwD8BX1vzp+L1SXPyNQO3E6/PQq+Z8bAvWJ2/1MffGegvEx9qkHdE9tfofxG6Vys3wP94fnO3+huUq0Yf5B8J3/3wv4//O5Wf1p921j+yP9GBP21rHCmjH7Sir8/VH8s+o0oKcH3mc+LdgvRb4+UI+l2E3v+soyaxf0/yXWS90hecBPYk1y70nf3fruSfhv/4S/znBvJ+Dv82+meJcX1b5V3Jt5Zdt9F/RoIZP+srT2XXAzMvzPrHfOSzzGv1qznoNxU3WuP/XfH1PHju4Y/V8D2K/srA/x493MDfKpJ3kvp3tPvTdyvVf5NzIvb82Lg+xvcv4m9f/vYd++ynPIIdepUUYE/wanp5Ccz5XMvsG5JnAzpd+dXu+M+534v4H1j+v3IOVp7g+7/ZfwvYgz5r4/9s8naiz+zjVuT/34lLmUdk/vBk9p/Yfxr5p4Ox1xLyrPf9B+iVRu9j/eMRcfUT5bvUv2xe+gS5X7EO+5/60exTjf4yH838M/r6Ev3L+PFN5P+VXPvD9xM9Pky/s+m/TtZL7Pap78cVQCnmKrUCbEx/G9AbCjY139kbX3/rz3+C6/XPrG+/Mj6vBP/dHwC3p/8vrb9a6GcV8Ltf1vO+TxxM/PuRv6xnt7OUu5HzM/z8/86x/9C/G/u+E/+qmn7OXgfwhy2JQ/g5jb3agq3BxIM79eem7NCaP/Un3wz6PBU/o/TTtvjZh2Ga8rsL+W/2Ey8yrpxP34l/Od99in7vNz49o3y27442PtXDXzN27JBzXPFgLDiUfkfhYw/4GovzrenzHPz9QJ/bsetjOV/PfJ6e2tP3evEk+ydD9Y8O9No18/u0x/dj/PNN9S+wz1jtOtPzGP3zXPz1FOfq6797Kc/PPDt5CvjL+V85/as3uU4h93PkOcv3leDtZpzchjyPsX8T/O3LL/YDr0TnhqLx/3rlPdB/jv2+52cPodMZ/kHs1lT/Gqic8aE6e1YDq4I/of8avb0OTgUr0M824tts/aQsvkrAf9jnUPpoxm9KsU/6Zc7Lcn42RvkgcWO474aCm9hlB3K9B19VcuU8NOej36Dfhl42K/fntzlX+JUcpbM+gn8WOIz/5vx5Bb0vB/vzw4bZH9afJmo3w3yzAfkmwfsseHzyA3LeDF9b/WKt8nD81ibf84mr5HoXf33VD4V3Jb+fkfMA/NVi96v4/2KwATrHwXMbPL+CDenvZ/6Z/KfJ6LcUl3MOe7T5zz/qj4B3HH7WkfsP9duq3x/fq9Ddjn2y39ik6PynHH2s078awV+BPF9ov1L//Rafe/K3zCduoodzwOSjJf9so/7WXtzOPGOA+rPhfQmfxeffj8FXBb81lAcoN8h6GjwQ7E+OdWAFevtIf5umPJLf3YSPLfr/+pxHkX8bfLXGZ2X9dy/yXI7fk+j3iuyvoledP8dfHs/5AX2+xb9OgK8V/Tfm10vAg7Mfjr9ba/9Xnib4W6p8k/6QPIecsx8Nf3t0G9PDnJxXqU/+33D8Jw8w+X9dyJtxJ+NQxp+l+s++ymWUsz9Zmd7HstsI/v8U+WL/qvDPSf9T3xXf8/C9Dzpf43M3+r9QPE6+Z/I7b4VnOfhqzgeL9uO/UP4Lvg/psZ/+3RfsAybPYmfz8u/Y+U5+dELR+eVx5PsN/ez/bJd5X/qt8g7wtDN+HgXfrukXyXcpii+JN8n36Im/j8WlXsoVMn8CT0LvWevDw5J/ob8kj/Ma5Yw3g4y/Q80rptPj7tq3SL4B/lbT0zB+3Ry+a+B/HNxa+yr8+5uMl+RqGPn52yAw87nM3+6n/1fIeXbyorQ/PflMyV/V7hz9/2/0j/b7Rcp/+f4M8S9x4nRx8Lzk75JvFDgO3I7/Ju8zcawNPaa//2LeuoD+7tC+B36a4udz85LO5P8Uvo70n/5dnN+7h/nY3r5fTc85Xzsa/ZZg1Zz3q/8QXy20Hyyevk/+e30/FHyWngai/yL9bY+/I8k1W/0M5RHs96T+eab65JvcTi/fm28v1G4tvpMf9Kj4kzyh9/FzAvzF+/f7sfMO5LkC/dfI/3z1//KdPNHwf5f+VNY6ZTE5L1RfA/1yfn8Qv23QOxS+4cnLQf9I9ckLbYnfd5K/pn6E+Pkn/fwF3uC7U7V/jT82F5/GwtdEPOpJf42V905+Ffnv5kcHkKM3fK34Z2P+XJmfZvxqxn6Hg5Xx15Lekyd8Knpv4a8d/fel3/X60eP6X/aDBrDrRPA++nuLfk4Vz5NHumviMXqHGE+eNC7/hv9e7LeeXTLe/A7/1OxfiMdV4P2WfK3oqTP6vf1+G1gO/iPFg8X4qKX8D/38zr6D4X8Yvbk5Z2G38jmPYe8l+Lsk+YLwjTM//5R+V9DvAuP+fLAM/ueSN+dOOY9al3P7Aii1GhQGSq0Tl6qRp1nypJXfJn/6+xb4Ew/S/4vljR5WkHcRf6lKvoXK9+a8kf7/yb618iPpH74/kzxdcs8AvoPIe6Pyq/zmUPp9mL6fwv+JJQX4h/pj2PU7v3cjV86nDjNuL0rcBedkHoD+UehnHpp1yn34Tz84hV7i/3X024H0P7IA/s0vPd/vH/L/PZXfVp/8zhPAE8Hkd97Jfrfipy44Bf/lyN+dnqaIJzPwmXnRp76/Cr4B/HNX/Jyg/x8N5lzwJ3xvBHOu+5D2t9HnMPa+Pee8/OMF/f15cHjyUuDJOvRedhsSvwT3Yr+5xp2P9deL4RmG3zvIPzz73/CvyfoUvtXKmxr+l6839ctxGUdzfm88HGOcbqi8HL0zjEu76udtxesr6Kce++wCHgBOIvcacv0AX2/9cS36nX3fCZxvfnJP8pvQ70KOjeiPh/9g9i3LT58SH77lD1+z2wb6/Jx/jMJ/8rmT351879f571b84gB8lFb+IPNNes0+3DJ8Zj10B3lW4XNLSQHWJv9l0Ts/G0hfQ/A1j5zf87cB7L81+25A/2cwecaV9I/L+FdDdN4HL4X3d3bJfCfzoORHbxYvfwd/Ax/K+GE9NgosBXaiz67seh3YDVxNvx3hO8w69Hzj2w/aN8m9pNxHAR9nv37svTu75b7OO+x9jPiW86RHc36Z/DT7Wcn/H2+/Luvj2sm/8n1f7Y9XHk/eW8BfwBb4OzLrLPb4AT9/KjdVn/shj8B/lfZDyfWe+hPwcwr5voWvg9/vC17+8ah4+w6/rMsfc9+wnPlkeXAHsKn6k+jzfH6/BrwXnSn4Op09z8PPyfQznT3/5NfLwGNy/44/NhVX6yq/QA992WMxf5vPXm20L4uf5HddSC/J7+onntYv2hdIPH6AfnI+m/Pa43yf/dDsj47yXfZHs6+Q9WnybJJf8xz8S/n93dF7zt/o+0x6Sn88KfllWVexbxPld9B/yO/n0/+z6F9PvoXixbngArCH7+vwr8b4G4T+c/hfLO6vZuetlMfSS85vds65A3w5v8n6Pev2Leyc9XvyuZPf3Zk+k9/9ivHiZTB5kKfm/gn8e8Iz1zz9LOXJ6pfxq0nKFXIeRN7D2PsG+sv5+XpxqbvfRxsfn8X/BfylGv2NMk4MhDd5AGPga4T/IVmfiX8V8HUKOWOHiQXw7z3m9mDuM5/PH9bQ27nK43J/hl0ezH0gclzH/zonPy/5fejOzP4ye9c2riQftRL/bK5//qVfTgbXZ98s89KcZ6KzIfcz6bMSvfzIfkOUL+NPN+a+I7kqoD9f/8o9xV/MD3Jf8Vp8/yTubfH785mf0ftD4LD4C3rb8O/S4DPsnfsWOX++NuMdfsuqH2HcPxS8H3yWP/yQ9Qi7bW+dkfzRaUX3z4rv592deTxYld5/0j75ErexZxX2LJ38CXw21j7njcnXHs0eR+aeCv3kXu0f+K+ofjf8vwP/+8rV6X2C7z7J/lHuJYLL+EPuF82FvxG4f+7RaJ98zeRvvkY/yd+szj6LfTcu+VfqD895ObzJt8v6byv+VAp8PXm76L2TfaWs38Fj0J1JntLGva3Nx27I+VzydZRvzn5S9s/oawm4GNyL/ufqb0uyP0P+5J8dkbwS9ROt35N/VvxeQN4R6Jf1pf51KHitfpb7Ml/R5yL6rUuO5BMPga8DuA0/H80/D1YeSw+HKOdeYaWifLir+eMZyX/H143mAd3By+inN7x1wLrgYHauYZ+hLbwlyveoz32/3AOsYT6U+4DZ78w+6BC//0R/b2Xfgj2vUn+Hcu6VZx6b+Wvumd+e+83iTtaD7+q3VYrO/zIO5/zvC+3ON15kvyr7U3v5vpP2F6D/ovabzZ9W8Mt7cg+U/k8k3xC/f+67EvUbky+MzkvKGT92jj3VX0Cf3dl7YAGUugl8HZyh/k56vwt8XPtdyLdZ/zxbvxwfmHNOevkSbEGeXROvlJNvkPyDF/n7geRJfmwj/WNZ4g5+rwZHge2SZ0Zvu9H/JOXn9Z9v6WcnfB8gnjyc+KL/Hur3W3w3Ef8D+c9kcFPup7FT5mP7w9NbOfO10ei8nPmV8ag0+55gXvUT/TeBJ/PpS/h3i+QDw7Mk54Hk2x6e9caLSuz3NHmOYNcZ4ugr9JfzzZxrZh2X9VtrfDRXfyB+PuB/45Q/zfjJ3k19f3LuB+Z8QTzK/fzVJQVYGp1fcx8s+8/6T+57vIzO6eqTd/9x7v/Rd/LvT4M37+GUBc+hn/Tr88B14t8h+M75cs6Vb8w7NnlfRTx8DPyRfKvI29z3h4OL4Mv5zSu5z5R1ELg58Z0+DwHXFu3PXK198tr/Il/yjxfzh4b4udp3b/CfnIsdzu7F95Mb6K8/g7uLn7O1e4n+p4CzwUuT30CeSfBnf/vX5BeKL23pL/GmZs4Jcz7Pvn+RJ+8brDXe5Lwk9+1yv64ju2YdvqJo/T1Zf9vZPPwq8Er8vZz5OHic+ovVj8x5MLlnoT8b/nfwO158Weu7b8hXpuhcd1vl3D8oS76a5D/Yeura9APyjKfX5FOVYce3xJUa+J2u/Jbyq/Sde+yl8Z/8o63g/Zj9PwGznq8M3yxy7pY4Rp7zcz8WPC/3+OEfw6/Hgt3BRjkHIO9F+CyrnHhyv3lR8hraFOU3TKLnvP/RJ3no/PEm+q2b9zvAa+mhRL89WD/Lu0cH5v5F7i/nHiOYdxNORDf3mx9Ef3beVzL+Hev3Wex5Ovtmv+1a8jwI7970l/PXqvzwFv0o+5G7Kz+F/z45d03+Cr/M/YPrlD/Nu0D0nfXcRPiOoofe9HULeAI/Ojz34sSLBsnvVb5Q++fIs1POO/D5Fz5Pst4akPkiPHfkHIc/9aDfefSf+14T0ZuV++fgFvT/Jx4nb2u43w+nn7X8qQ842feL4K9G7sfYoVzOydi3TvwL3Fr7E9E7VjyZAP5s/BuXvAn63t+8olbOM8n7FP/pz0+eSL4tOXK/9xPyJA8h+QcLyFUB3JD8MPhzPyR8FOeLVhSv7izRDnwx96gLoNQw8C79O+diL+QcGZ8z+dvxybPiD//uL6Gb/aV29P46/b4KNiRfR3GpjX78Nf8cnf1X3y8XX5aCG3L+kLxD/pn7YcPwV4E9n2G/NuBlyf/mH4P1z+/0ryPjv8nLSv6PODA3+8fa9wVPAbfD/xz6HJB5sPi8HH/L+cMX5tV/0Put8D+s/Aj4KNiEn2zUXxZq/zN8uec6Ft2815a8939yfxG+N3KvW/98kR5/NV59r59vrX17/PegzzP0++TJJz/+uuwTkqf4Pakfrd9+AnuJr3mn8E18nQdPd/h31P7VvGOS/C32OYx/ZV6/E3kHkaNr5s/4eQ2dg3LPIO/D8LfjwGPBvC+Vd3+Sv5z3gHL+vDf/3gdcLI7/lXMRvw/nfw/z14Hqu5C7g/JE8h0cPy9aL6c/5Py0TQGUuhWcBub8Pe8lvswPOtJP3k/8Bb+bwI3gcvrq7/tZedco9/oa/leu+4vkm4ffg/nbLyUFeE3yOrQfR56XMp/KvXH2+U68S/79cP33A/b+AN65/Ot95V/Rfwe/HylP4w8N+Nke2rUE815Xd/i/1u+SR/as/pc4Xhc/yesejd5w+n9EfDwb/an0e49y8iuK38e5n36OEl8qiyutlX9nv15F5905/+6s/m/+lHVbzdBF73pyPeD3G5Q7+T7vjSXf/sDke7LPYPHwIONiU3ZKnmH2d38By6EzHX+ryV8t7+XQ1yj0BsG/N7+Kv9yb9an+elXyAPGxTdZvRfcLdkQ/eW/N8LuK3t5AP/f5dxAfG+feF5h3APpoVw7+dTnnZr8bzY+6g3nvrLn+3i77WfFP/pf8j1V5nzB5Lugmf/7H3Bvhd3kX6rG8r5R7Jznn5D+7wbOc3rqI8x3pe0ffT/ZdHfocmvs8yc8QH77z+wb9qqzv30ZvRNbX5H839/PFh+ngTLBj4g/+8j7WZezbHF//v3evVsB/ZPIt6LG3+tL43wW97DvupPwx/XUvgH/zvF4DL8bfz9alF9DffLBuvf/SD92T8l4b+vXp4zd2b1C0v9OFvDvxr4vgmZo4nP1e8G4w7zE9mXx0cCJ/nUDe2vpH7t+N5b+5f9ck9zX1s7wHkPv/ebfvpiI/j3/nvZZL+UX2X+sln0i5o/q833KA+pf8nvuY5ZMnj98u5O0KHkueOfEP+iub/Cfy30u+m/FZxfct4J+uvIR8a8SBRcpL1X+I7pvgGcbBi3JPLXlm+H+y6D5Pd/G5PLn/wGf2fwbzs7yrnLzondW/p/1i/ByQvKPs/6BXXf1p2rdNfNAveokTr4n/uR/Wi1/WIX/uyb2f/MLk37DTufBvq/7V5KflXpT9ubrkf4/ctXIeoP3CjM/4OzDv39T9L/2yOb9J/oD6itpPMP96ElxlPpf9nCn2Z/OO62Qw77gmH/Zl+P5RXob/vF+4MOcX2uX9wl/4y+ace2rXjn9n/doWX4fyn6xf/8l9Q+1vRi/7b8frb9PEmcrsdwc9Fr+Pe37R+2Eb4M9+2SF5/xf/h/Dro5MfrbyT7zsaL/uLC9Rcqg75ftPfNoO94JlED6eaX13Kbl/lPZPc8+N/eU+jBXlzPynvQeZ9yImxW+Sh/5f493klBfgj+caIF2PB57Leh39dzi3Fv57840v85nw/+2Uv+f1G8r2r3Uz43wZvSR4FfeyuXcfcl9M+79rlnbu8o5T3k9aQ5z2whf52RfbP8D+b/h9FvxR6I42fD4HNwdr853/sW5Oen6afCfyvie/zrmIbfH4S/ZN/dd414t95vyLvEp+jfl/jeN4nznt5R+M3+9Qb6WEmWCH3P+HLeyK5H/NazgO1z/2YvCdX/P5m3pe7L/vsuS+v/FTun8K/Sr+7Mfco6Od89dmPPZNev8BvmfiH774VHx/kfz9lPq1jZf868767+UfeH+yjnPnXBclv5v9T0B+GfvF6POv00/A/BZ3MF7Yjf8W8L6Z98vCr5n4NPRxJnkXieN4Dvpw+cn7/he+K7182EhefyHml8sjcnzI/+Zt/P8G+jfGX9xvyXsMO5El+1ov0Owgfzfnbg7k/wJ9z7rdQ/M/533B2H03/e/nuVPTuY9818JYTJ69mh2XaZX98uXL2x29B/zTz0mvoO/s3U9DP+v4feK4h/570MQPdt8DsB52fe/XK+7BT9mH2pL8q/KI2uUqKzmemmNdmHznnMzXxk3fuGopved+uctG94+T7t8z5fgGU6gGuBTMOHcOeuW/8KD3XYr+fxLvkZW0AW2T9pD/dzv638qO8K/e3/rPOuv+v5EOQ51T0cs6X871b8j4P/V6TeRKBbs36lLwZTz733T34a658JXvknZ5u7JDzouJ3kHN+lH2mafzpAeVR8A2mx6e1707+7AM2y348OIV/Hpv3J/jL08kvy/93wFfOEzrkvAj9U+BbzL8eZq+8N5B3Bjop552Y4vdhtme/8uDw3Psk31D95m/03qT/vO87puh+Te7b5P3KN0sKsBr4UPbRfL+GfXKvPffcsz5fnvxZcBmY+5hf5Tws8574A/o30nfu2RTfr8m5dCf0i8+nV4pXyRNZk3dwk/+On699/4V4s3Pmn/S1mP8flTwY9c3w9Wjy+PjZfvSQc8Xxmc9kPML/5+yW9+nyXl3up/1O34vx9RF9/Jl+oDwDfDrvP+Ej7xecg7+8Y5D3C7JvP40+sm+f/YPG6Jelt3HG0bzfE/9eRf8r+efXyp3Mn67Tv+5OnFWfvK4bEi/4b+aPDxjftsXfbsarM+O/4kve+817wHXo/wh0jwSTt5f83zuSx4PuOer/gP8h/D8hbn6U/BXfJX8l794/TU/JZ7m+aL2R94vz/y8y3yqDj+Q9r8r5QgGUulJcmQ7mHGIf8WFizu+zf0X+muLyFvjL0Wc/9XOV877yhK3+y/fA5GPxo8HKDciT/OTkcXaFrzL+j+M/venpHu3yPtNvxs/k4+Y99Lx/nve78173XHzl/5ucmDwG9L/BT+7XVuIv9YxTece1Fz7m6dddcw9dPHgQ/2XE3QHJj9Rf0r9zfzb5H7k/u0Pyn/Cd/xeQez318Pcte3YCr+JHG9RvpX+9id+ck5RT/xX58m5u3tHN/OKh7EtmHwo/iW9jlZNvd2beV0n+jviX9/w+hm8b9Iv/X07uSf+ZdQB7fW9ceajoHbzlyU8ER5CzHvpt+cO8jIv465f7u+jnPfrcI8794T7ibb/cGwYnwvOEceEqfD+e/W78n6M/rRSnloOj846Ndtm3ewI/z+BjQtG7zQf5fqL6S9TPzH1Bevyevp9Dfwm/Kn7fYZL6B8AHwS/gy/3e5D0lHyrz68b8/yz7EBNyD9B3HeijPZj3Tivhfyb/ODl+gs6a2FHc3Dr3PXM/gX7L536p+XUN/aA+OsnPTF5m/bw3qX6pdpPp8enkleFvD36V/7tTS/mC3E/l/3202175I/7zNnpf4XOfvP8AX334GoBz2ecpeLIvkvE/+yW5B7FJu1r0XYq+eqt/Qv31+vd18FeCv3h/vKty9smTv/wE+yR/OfnMP5BrAz/5HWypf2Tfpq+4+SC5nyZPJXpvmfgQv4R/qbiae8Mrco5KvsfVZ38x/28h/5/jPn6Xe2JDiu6J5V293K8rfl+vfIkyWIc+/sn9EnGlBv52U847LCuzf46fB/K+A/nynnve2yy+X5P78v3Ep5W5ZwVfl6L/l/cbfDsX3W/K+6DJR0n+Se7NtkIn8+DV4AHJy1B+IffA4F9qP2JXv4+wDzE/+Tra18z9R99l/tWrAP6f/79RFf6u5k9zwMPVD9I+cbksPRTH5xPJl3d054lPj6vvrn/0U79Z/5igPv/3oDt6C+gv+ZnTxMvpYB3+Xh6+TSUFuBFsyc5HwZd7IgvRy/8fHJfxy3ypHViFfT+ln7yX8m3ur+a9r4zv9JJ1UdZJG7Pep6+62Rcp+v8gHxpnrwQ/A+vm/ZDMC9G/HL0dlP8RV6oqJ48oceBZ/pL3JRK3R9JP9udbgSeCfyc+6v9f69cjxPPx+udRGTfJexV9HZz7heY/z8C3Vjn7CVk/9hXHs37MenJZ/t8T2A0/b+V8Bx95v34i/8r/N/hOeZDvDjL/vVX9Sei2ZKe8h5D3DzbhYwx58n/0euf+MP1PRuc78g2kl4X0NTHrNHI/AP+V7NIK/0Pj//CPzv+b1O7D/B+r5DPTy2p6aY7/Zupf1a9vx/93yT+GP+95dgTzzmcb7fPubM45c745KPcn+GP2bbKf8412mb9mv/3P5JehXybv52q3NfiL76uS9wf8Z18i+TfJ30neTmfl5O+Uoo/c770G3vnJfzWeNNZvuhfdh8771jnnWkTu2/nPWey9lP13yLoTf3vk3XL9/WTwMvUd8HsJ2B7M/cvcC8594Dn03Rf9X9l3M7iV+Hib+tlF+X/JB8z+QfKjYrfkg3XOOyVF85O8E5p5ygD+n7yY5Ms0of8v1c9G529y7Eq+jdbjeU/mevrJ/99qSZ5Z4CbznB+yTsp4q11l9uqG/4/YZwf2+QW81/cDxMd9wHPIPxn+RcqXixsLlK/nB1egX9xPZuJ/J/PivLMxOe+F4DPnN7W1y3iV8alD8t+swxcVveecfNA58M0G57J/8r3zf2JuTn4uerfh/993cwK1z/vCPdm/bfZR1efd4bw3nO9Tn/OsnHPNgj/nXSUlBbgX+Jn4kPl27j+tzD10cWoa/VRkt3HgH/yzq+/ynlLGv0VF7yvl3evTfF+l6P+x/F7Ef/H5XN28r5u8reTXqD+F3cey1wLjQfIBOpgfZ945h7x572CTflPC74vfoViTd+PznkrWOcq7GRc+ps8HwdFF+++J1zmPyPlD1jfR+wTlqfx/IX1fqn4E+9Vg56mJC/wseXbJryuXd2f8/rXvZqjfhfy14Ml7mhMzrqDXjl8+5vfs3+Y9tkvJk//bm/fZsq/eM/zRW8W8J5X9JPpubB5aPfsPOd9RP0+7nM81w2/sEjtlfDs+9qj3Xz4O4J/D+PVG65yJ9FAv6wF49wX3A/P/qd6m3/h1JXqKf5+ae6H4eSj5p+i/Ir7k/2vl/+Xk/2tNFr/z/9OW5Twz+fH6y1uJ3/jblZ0OUL8h8+HcC0G/PPt38v09vq/PjpPoI/dons94o/2l/HNxSQHertwm+dL4fiDnpuTrnvNZ8uf/CibPKe+7zFefPP3cM0l+/pu5v4TuG1kPqL9CfCiOI8m/GwHfGt9PRS//B66m8aEG+Ic4Md33/we0UB01eJx13Xn019P2P/AipVETGYpPUhokIspMkm6Ja4qIUhQpQyFDpoqiyNCkIkWhIqVSIlPJeFHKUGQqNJi6N1P81vq9H8+7lvd33c8/e+33OWefPZ19zuucfc6na91S///vw5ICXLlnAT59QAH2rlmADcoVYO2GBXjO/gXYtFoBNgOPbFKAxytfU6YAJ+xQgBPh1zYuwDcqF+AnVQrwc/BT/b+Fv7H6/Q4+QfnP9QtwF/j96N4Hv3S3Amy7dwH2gW9Er4X2JzUrwBuaFmCX5gVYrU4BXk6uB0sKsPx+BVilfAH22r4Ad6SvA9Sf16AAR+9bgKf5/VP93Ob3g/R/cuTRf396n6t+Y/IdQr/vonco/HL0yh5YgKfg7zztTlK/mf5u3KMANym/FV4BvRH01Ez5SHa8Ar6GfnYHm6N7Pv1fVbUAV9LXT2ULcLB6FfnbeHyfW7sA/1T+tfIm+Bis/BrlXXcswHe078OfytNfFfqMX64EdyLfxzsV4OJG6NLXevRPwG9H9Pvx87OVr+KvZ6LTAj+7Kf8XPZ2qv8b42aS8R/UCnMbOd/Kfz/U3EDyYXPWit4wP5Ufi/7p9CvAB5a+UFOAj/H482IE9lm8H57/Hg1XxWxX9ueT4kj9/xL/GqL8Cnfrw37S7hr/sAD5j/P+ivAW/2Wh8Pga2YO+34N8Y95fjYz7+n2fPmcbHSfQ7Cv+PkneS+hmHjeinHH6PQHeFdh+A6/H7PvxI9ZbDL6Xviugfww5V6efC0gV4Jfg0eBE66/H3F7t2oN9m2r9EP+cYBy/DD9f/U+idUrEAb4Ify/8n8sdZ+HoQfg5+z9ilAL/YtQDfqVWAf9BT3b0K8DD1vtVuHf6m8//h6J9iHCRe3Gk81VE+rAK69L/a+DqG/Dfp90Tlremjhn5f4RdtlQ9jv0Y7F2CD4Phrwx/+o/0N5Hlef63JfRm6M9hjDH86qBL+tb8Ef5fBj4fPIV8beBf2OUs87QQ+uXsBvspvB4ons2oU4Grtdma/19n9Hf01QP829XrUK8Dq+K6D7wPJ14d/PqL9TezSRPkadl0NfgZ+Rx8bjesT6XWJ9s+it4k8tfnlZvga8j3Hvr34wYvwReh/Ip7/C71/a/cZObqy35j4XfwYXld86MtPLtD+ZPpppp9z1e+B3uHof0C+oeTbE+yHDvco1Q/cDF6Mj5nwc9nlRvhF7NfJ78/r71L8vMA/b2e/3vT3LP9sqP4T4F3s1Vu/a/l/JXJvn/laf/uo39x4PCPyoPdY1gfo/aK8I/vfpfwd47Ue+31mHvpDv9P43ePgzcZhPXLOR+9y/dwKjqKft5S3Vf8N+EP4fFk8quH3n/nLT+j8Jf5s4JdbyDsX/YPxeTz7V2L/3vRTn/+8rnwIOm3JP0/9z+n3bvotr/3u6t+s/Wn42ab8PfqbbZx/CJ+k/Hh4K/q9Xvt78d2T/BfAB/KPLdp/Z376CnwUzDiYzq/epa9G5tHblD9jvM4G54Bvkn+Ifr/jb6eR9xblg9D7QD+3wl+m/1P4dyt0JtPj9MRH8fU3+sm6oJv+vmbPz8H14mRN9J8T37rgays/upL/9GO/ffT3b/VqoL+dddcpyj9p8Hf6e1uPjWOfMWDie2vrt836/dH8ulT7PYyL2uDu4CJ8TCLvqfi5U3lV7d/F/37on8nPJrJ/S/JfyY/LwndSfya8NvrXaf8SfLx43B7sAJajv/eyvtHfIfwm6/O66NWjj070d5nyn0q0z3qHPz+ivBn5M44W6S/j5ypyvAhmPhun39fE6/74raLeBu2/yHcr/5rGPiP1e576a42Pvvg4lH+vptcj2GE3evtQ+Qb0amrfwDr3HeUP08dx2g+gp3ro/BMfz8D74nsFfKPx3gP8GtyGfmvj7Rt8toW/ip/nTWBXGYdNtM937tG+z34xrraCN+KrHf73zLoY3fPw2ZNc0xIHE1fAfdnrEPHhLvVvJF++jy9WL+v0fB/vrPxK8lbEx1D4WuvdTeCO4CT07xU3tuD7fnhV/J2Irwn010O9fY2/tfx1knVYO/5yFP6+o6cZ5H+RHDUyfs2Hu5LrPfg++LudvseIM6XBjehPt64fpZ83Eve172A+7Iivoex7jv5fId/zYL5beijvZr7pA+a7p7vySuQfbF74HRxI//X09yo+7qbHfB/8UFKA/ej1e/gD6N9A/oP1e4vx+rn2j2Sc0msfeh6VcvjxRfE+8X0i/iaAN5LnZPpqqP7P2n/OL17Qvrrxca64310cuUa/O5L7B+3Kw59m71n6W0q+dfS3Izs24t8/K78937H0M4ZdauhvCX6eQH8Gv3wFXlb/a9E5gpytyPlK9gmUD/B7/OcA5cX+s069dujHf34zf3+lPH4U/+mjfl/wYHI8rTzxvaJ+/5E4qXwn680qYGWwJ323oN8y6O4i3h1Mvksyf9LPRdplfdLdd9k+4Nn4fJ7f/cLea+n9S/AS9itjvv7Q+nR6SQHeq31/8eg2sBR9Xch/9za+9zXv1gcrKO+r3QdgbeNjIvwp9t9Hv13gC7M+FW/2AJdkXwX9M7XrZ3xcBPZWbyf6ex3eml5n09/KfM+zy1fs8IvxU5tem5kXV1mfNsLfcuP6Se2Gon8W+o3Zq4tx8iU7lsN/5s/MmzXUq6e8hfKMnwf09272n5Vnf7mr8vLG4370XV6c+rf6OytvQ99bjOvEkcSPBuSfyS87m4cn6386/5qZfXR89Cb/C/x7d+2z/u9GzgHWH/vzy3/BuysfZj6Zrr9jwIb0uhu/+JPfL9X/T+otEPe+Rn8he+f79wrjfQi4P/m/op8f+Pfr+Poe3pwdK9Dv/vR1ffa/4BOsZ14k/3j6Pgf/e5GvE34X6uftzAfGZb7/L4fn+38av22B3n7G3+7K/w3POrkJfSR+vqS/5vgoXl9fIz5cDS4Dj0gcNr7Kq/+C9q+z//u+L8bhb71+3oLX4jfbjK8q9PsZellfPwo/mD6nGR/LxaM36e9Gct6jfkf0TwLv5ged+clIcWgueBY4An+twG7gRfFb43UAeZqi2w8ftfBXmn66+f037afAjyopwArZVzC+OrDP4AIotYDf9OfnC43XTeg1QG+e8Z/9rTP4x8H478T/T0O/O3mHg3eSYwL5PsTX1/Dp7HEA+c7hj2vw9xy+6tD/FPqZh84j4tCj/KOD9ez5+J+t3pqsN9itIv6v5L/f67+/9Votesn3Y/gt/h4cDM880Ax/Y/A1Xr8t8NfT+uEh9M6h7xfJtz37Zt39AL+qgd9K9DmPnNvA2vS4qqQA851Wjv7yfXZP5nNwMbgH+05Sfxg7vM1/jst3R+ZN9b8iR3XyXW/8LOIXC9mhHf3MN94f0H5/dNfT01x234/ex8ZO+tlCP83p62j0D4IfKS6Wp79j4F2030X7o/X/3+9s/U9ktxHaj2TPnenvWf7/H36zBVyd8ynxaSk9fJD9+eyva/8QP3wKrETOYez7Njpz0FlMvuyLZT8s+2UXKP8C/X+hl+/L0cpzntCR/NuTsz3+RvKb1/Bd0/z6HfnL4Ws2e77L/66lv+/E/7ro/YrPf2q/iv2X4m9kzrHVP4o+3sPfIvr4GP+jrJea4PtpsET/14k7W8HHwTrot+C/h4JtyDecH7THfxvz9yP4v1v/+6j3IH8fxU+nwvdirzfwea55aBZ9bSLXM/A32Sf71Rutjwbhryl7HYH+xfyxc85dwQvo8UvybgfeCg41z63lL32yf5fvNvZ5hty99HNZzl+iP/xOyPlRvs+UZz94pN97ZZ9TeQPtp+o383v861hxZ1fyv8o+t5F/R+1nsvtEclfRX4+ieXOx8syfp9HvZfoZVACljiHnR+y3SVyPft9DJ/uP2XfMPuSU7A/Q615gRfBx9R7UX+bf7vD6iU/0fyX5jjPeEn+G5NzROLoNnvPeWvR1PPo3qXcPfdzDHoPhy+Dv8e+Tsl9qnV0r5zCJj+aDTsZvT/E19n2f/n/nB8vhfbXfwe/36r8MvBT9fc0+x6F/AfwG7ZeZn/rSZ39yHk3+Kfx8K75/Bd8jZ2XlFbWflziA/4/UK6e/BupNp//sv3XT3/fxA+0/Je/Pxk++i/P9chD+9webg0/Rx0px42HwMfGjJfvswR9fFKd2h2c/e4rxvYxeH4Hfho9D8bWMXM2VP6R9zoVyHpTzov7K/6C/9vj+iJ9kv+lH5VXY7Qd4Nf78Bnna6qeR+fZ++u1m/uoOLsVv9qE38/eckxafj/5I/zup/36+8/A/Gr0h+h0KjkxeivF9BfsvMB6zvtyDv+c8civ9nKa8Hr2s9vtP5Dpf+c9F64WsIx7P/of5dLV+P2KHJkXx701yP4qPPbVfhO4ovz+t3m85n+Avb9LTa+plfTED37XU35Xd7oCPyvevONmIHz2R8UqPq9DtjN4T6J9gfdGK/fbjP2+jk/OBvdT/XD9b4NMLoFQvfjAcnnyAJc4/vnSO3Qx+If2tUP9K8GnwBvVqFsXfxOPE3zN8T1bnN6fB98Z/T3y14ictwReTbyZeHZD1oHj9Hv52Y7+d6HOZ/YCRypei118c7gfORP82eliJ/t70vaP295nXHuVHJ6h3Mfk+wP8x7FOHXq5Qr7/5oTn9vGycnId+xtMY/rVFfMn4Gq3fp8j3GnlvyfpfXGtAjkHZd8n40W91vz+Scz31m+HvRePwGuW3a/+Q3ytr/4P4H/tk/6GldlmnZD/iI+NnHD4X8deD6O8n/rJR/NoA/hO9depfSI5P6HWO9rcWrfuW0dMOGX/kyzq0cfKI1Juq/2lgf+uH5+j34ZICLMvvJsHPpr+c7+RcJ+c8R+v/3uSX8I+zzK974Kcru3fX7wbxrDL5ZliPfpPvBvh6eHv6X4ufr9F9T//Zf8q+ffahsv90mt/76+9H+lrO/o+I/wP095vxu0j5t8bTRei1IH/ya4eWFGAV9ZrTxy7xU3J/g4+V8O1ix5wH8ItPjY8q2lcz3kai3wVeTfucm86hn7H8pCH9/Km/beD+ya9gzwr8r3fivn778Y/H1J8K7km/7fT/sfZv0OsZ6NxL35OyngAfBKfT7+n4n43/89Ctgv+O6N4jzlWm30r4PEJ51v0n8L+s/5N/18P4TB5e8u/GF+Vf35Lvn+TT6fdV8GVwKTqvw18Cs++a/cSH+P8P4B3Z70K/CXmm0MNN5M759S/4+g38FUy+17fJj0B3st9/1f8m/Ozt98rs9Qr9tDWftANPBK8qyudNnu/e4nnyfS8id/H3Xc5vHzaeHjTOlvDzn9mras5P8Jn8k5yn/8rvs466Qj9ZRz2Q/Wvl4+G/o7eRP9S07nyjpAD3pa+dxNeqYBXwyeRb43NnfF2e9R0+ZhiP+8FXFkCpv+B1yf+y9jOsl35nj5PxMxvdq/ze1/jI/vnion307J9/z6+WsMvd+ol/9cH/MPL+Rt+DtK9lPTVAu205b9b/UdbtR4NTxb9qyQfVz5PkPZ8cd6L/On/KOub/rF/Ub5lza/gC9o0+o9/L4NFv9Zx/+K59h7+cnTxT5Xeya3E+//v0kvzKP8STNejne+oTfOd7q0fyP+nrAuPjVvHmMeN4Bvv01t9M+F/6q29+bQI2AJNX/gB9ZF/1R3Syv/pHSQH+Bv4OHob/o/hNHX53LT4T7yvRy0Hiyr/Ew/2T71N0rppz1iHs06UA/rsOL15/H0ZPya+cRr/Jr9zKXrOV/84/1/CfU+n7n+B883Qt9N9Sv6/239NP9of74mdH/lEOLA9mPzXfNbPhOZ/Iec0q8J6i85tG1j3zxfEr0F2nfS363YDfYfzvWuUl8OvFr7r00Zn9L+cPldCvRr6Pwc6JL+z3Cvhh8ovE50/xdYN+NqA/qwBKjQTPAT8l12r+nfPCBfzpXPZpZ10h7JbqzT5D+Wf2yXK+nPPm5Gc0F0828vOdSwow92u+Fb9PQOcreMucP+LvCf5xDvrZT4ifLAa308+u9H87/uez/1Tjsyd+sw6+mr9+KZ5cQr669DqYHZ+A10Kvrv62y7knub6mv9/IdW32O43Td9G/k91v50cVrNOfRL+3fvP9uhh+KVjHeHsv+6F+35z9ZfpL3PqE/hK/DjPfPEYvbfC7JesM/Azjt8fnfFz5seb7o8ErwW7Jb9Vv8lb7iE9X89/sh72SvFtwCvmL/SV+1DHny/S2AD/D4aOTP2k8X0Hul+AZ/zWNp3vExSfguVc0W781cn4nHk1PPin953wi7XL/aAI5H2Cfb7OOZv/czzgJ/6fzy9zXyPlJzk0+Nt5zfpK8o/L6GYePF5WPhVdQnjymxcr30t/J+Mv3xlnkvjn7cfS+HD5c+9P5zQL8fQMvjd6T4u0N9DIPXjPnefz1F/HowcTbnCuwR+7h3c1OWd9nfTSpaJ2U9VEl8bMbvofpN/crz9buhuQXww83Xgf7nrldXDxEvSPZr4H+Bmp3DH//Cv0zcx6B347sUR79m/jDtTlfLcofuo+/jqOPnvBT1T9L/PhP8qn5x+DEb/ytUX8r/vZiv3bi86fJq0avJPv7+BuKfvJ8L2bf8fSb/fOJ8Crw3H8aSo+Diu4/HYKfDvxijvZj6OcF7ZMX1j3+rDx5Ga+hczL8cfx3Tv4tO7yfdbv+cy/n4txbpIfx6N9gPuhMTyfm/EW9A7Ubpv/xxslr+b4uWl9mvfkFOSpnHwc/K8TP3H/6GP9TyHOg+u/j7znjZRE4V5x+LPkQ/KZx1oPaL0/8+h/nc9n/6kS+9fR3k/l0sv5X4O98dO/J/T902pD3Sna/UD9jyLeM3lbjryr91Vf+WL7T0B2Ej9Px9w/+ekfuRYv/2c+rk/0H9pjh93/Q52/WG3Osw6oUxZsfwWrkubHoOz73VJP3nDzo5D9XzvoOvJl81xXdf8n5fu6/ZH+nV5H9x+OncvZHlSevdGd6egq/c8k3vqQAP808rl7OR8Ymj6Uo/3peAZQaCnZl55xf9sL/ReCB/OMT9ZYaN0vAnfFzO3lbW09el+9n7X9HfzI+Tme/bfQ/HP4Xe5VKfho+/iBfT/1eRO628Hvpr6b+f6f3Xch/n/Lkw9xr3I/kX9vYYS/95z5T7jsN5J8tM9/SR1N85Zz9Evhy8AL23JD8C/ysNe91zPoEvVGJl7lnD2+v/0/4XV96Xw3fSX+rsg+m/s30M478N+nnJXAJ/hpq1zj+mntb0SP95DyxftF5Y84X6xi3uXe2J3yF/tepX42+Jul/e/rO/ZNO/Cb3TzJP/cEvtoHV8bVe/7eid072Y7XrgP559HaSdhPop7r2n/GHz8G14CT0PhefziDHevh88vWirwPVn5h7duzfR/w8iF0vzvyW8Zn7BvitJx49pf1i6+nLM+7wf3/uv+Z+AXke4a/7a3+c9URZ/eS+cHt6+pB9G8JroPeX9pvx/YPyT+EP0ceh1ifL2GcpmPXnUeh/jN6h1lkts/5S3in5lPSY/a3P8HM2fV2V+6Pod9H/xOR1G7/3ofcu/1jF/7sW5U+d7fvo59wfVi/z00j03mbn18m3Oedd9HEruFr9a/nbL9YDU60fLhCvkic4MPcL8DWCnV7AR76v8109Dp/5vs7+4dR877F/99xH4S/Jv3iDPzWI/q3b6tJjQ/gk7a+wvu+XPBz8PaR8sPi6Al8/ik+D8q4H+e9CN+9KjAffER+n8IuN9Dwx96lLCvB3/QxBN/vnyVdL/lry2f5Bvpb0vlh8OQx+a9ZR6Hfmdz3oOXn8LXJPGD465wLoL+Rf2S+8BmxPP7P5y1hwHZhxVtn69XR62sqPjuUPVxVAqaVgH/CW7F+ya9ZH+b7N+mgWugPotan6z9Hf2uQbs2vu8eT+ztXo5Vw659Q5n05+zgT2L4GfSl85T0k+Rx1+1h2e/YKZxkH2DX7Ex1TzQdZ3s8GW7PeR8fYxmPdPTkBnDPuUxU/OSXN/c5N2V4jLS9kv729U5k87gVXA5G9clvv9Recjua9bzff/vujerd4X+T7zPTjTOcVMeG+wPXm/QC/rosH0/yH9nfM/9iFvE++HgyPAvflf8hOTN3e1cbKMvj40bt/BzyiwF7hO+Vbjdz382rwbgO4l/H6J/n5gh825b84vEv8zHxTnH+a7IN85D6Ob8T9Ivxn/jXM+m/dh6KcDejn/aJ77JNm3yPrJ+OiW/XB++4Ty5/lXhaL7xblv/JPyucl3xf8p2vcl/3k5Z9PPHcpniUfLsp+v3p3KhxXAf987WQSf1uTv/A1mzxE598dP7ifeqjz3FHM/cbHx/G3yo4zTjfTwjHh1Orvebjw10n/uL+S+wnx4vj++J/+DuUdnfL2R/Xj2uQM8Ex9j8bc9PPfRnyLPFfibj98F4Nvm+7n4G8s/52k3LnEAf7l3mPeXks+S95d2xe/JeVcFnvv//Uv9Xe5ifWxEfwV5q5OnX+Y35VX121m/5fL9qd9L2W8FuufnfF88TNzPPPBM8oPQz33om8i/jH/lPtqc3BfKfXn0XxXfXgZfAjtnv5X/JF/6bfRKo7+Kvj4A3weTb7APet/TR+67fZX7J/z1SPK9qd1/1K9A3mX8s6v58Av+Mtn6aGnWgfgbhL+fxMtp4sD+6nfNOY842Mf66M8CKHUZfJ31XvZVi/db56r3LDgP7Mne9fC7V+41GV9dc5+FX+d9sa/wVyv3U/GZ++15Tyz32xfyj2/Z/S381qXn+X5fAD4LTs/6Fz9DwOJ9urYlBfia/vLuR95neVM/X/q9LPws9ttm3H/s9974vTDrHf0mP7KF+efe7F8nH0D9DvzgzczvRfs62efJ+cDtRe9R3YWP43KfIPcl0Ouq/NWMT/2tU94y76Ghn/227L89n/FOv8uUl4GX0l/Z5OPm+6CEfH7P90D2fbNPmf3gnZRvos9djZPdwBdyL9V6IPeNci40NPcd6f06cBv95x72zvFz9oj8ef/vZfsi2bcrfp8vefeJl4mfmT/+ND6Tp/cV+yVP717jY3NJAR6q/v7o36FdY/y0xV8d/pn7cLkftyz5cMZB8v2r0mM1MPd35tB33k0cXeTvyY9OfkPypJMffYV1S96rPJW/P5r1Re55o5/3kDK+sr4fW1KAHa1/sr6fkfWBdtPY61z6mU4/2Q95Aj5G/xP9Xg//ua+V+1kPW9ddRF+5D/icfrrQ59jcBy8abxXMH6XAhfSVd5h6io9drEOa5LuR/rqYP8rkPTTtR+R+N3lK0NtNvezfVdD+evo9U3x+Q/uj+FPusRXfX7ufPe8D44/19Hcf+lvY8c3ss5H/RfUPpa+X4M/hpyZ/3xncBUyeRd6jKb4/l/y3ZfzjF+1G1f57/XLsmXcdir8PB+X7UP3sSyZ/7TT++zb4ojzvvHez3vjKO6GHFZ0/PsSuJeyUfLXDc7+Kvn/k15/xk3fxOSvvApLzBfo+KudD5F0ivmTf5eXsr9gPvBT8kf37k3OF+JV7biXiV+65lSXXCHFhB3hP9n6IfbJvcChYG383in/Z192DHC3510byVM68o95n2mf+KJ18tqL3WcvQW/bHcg/z5uS38bvk6Y7H7xZ+9Kp+a9PXOPItgf9ZUoB30/MX5qvH0H3Pumt+7j8VfW9tFg9ybvpW0XlqI/b9kN1nkuc78uTdlLyXkvdUhvP/x/IeUfar8s5Q9r/w/RL/GEvvr+KvuvYXFr0/UQq9nJ8/Ba7h3zk//1/7MlfR/zviZ1m/F99Pzvo9+ZjJ08x6vjQ7neX3lcZRGfznfYgmYGMw7+ueTb95zzTvneb9o7ybuLTofGi19tn/z35/9v+n6H8yfbfPuNI+77sd7/eS5HeyR87bxyvPd/vNuZdNP/VLCvBh/jEJPCTrOONygXatk4eHv/9YD49RXkb8GZvzV/NZRXCV8h2UlyPPDmBZ8LDct2PfD8Dn+Elt/D9clBeRPInkRzRkn4yD5JMdof+8r9QezPtKeS9nv+QJ85/ke9+t//++G6Y87z0/kPNTcXFqSQFmXZD9kd2tj3YF14HHJC816wt0T8F3zqfvMz6OMc8X378+Qvv9ch8PnQ/QmUvOR3N/hTz3kWc1f5yjfZ/EM/x973t0M7gpeb75Huf3ySdY4/dWRfe/cu8refDZP1yY7zH85J2p2D/+mbyz4ny0pn5vBha/x10l74pmPxGfvXI+w692p+ej4RerN1r7E+AL4XkPqhN/yzsZZ8Hvx/8D5Mt7pj/hP/lH2V/NO9jdwLx/fYj2lelvI/legH+a+6l5ryN5EOgPN57mketxMO8BVUu+lPaJl4mPuX+R8/bk5eb+xTjxa23u15onSvG/w3Oek/NR68/xyWNBP+dJyUNM/uHmorz8h+Cv4K+W74GN9ge+A6uiX9G66+K8M6j/5AHWyf0C65YN1jHJI9zeeH0v95GTf0neW/DVNO9Q8sO8094r+xngT0X5ffWtX/J+Vd6tyvtFfei3qnF6KXwgfgawZ94z2sZOG+ivPL7yLk/e6ZnFvzqaDzqAy9jrA/obyB6v5b4VOrco35f/PKa8Hb564+dZdOeHfkkBDiPnvuTPe85X5z4h/q6l/9bsPBqeeNYu533638JuGb/jxP0h8LxH/TA9dDEfnQvWYIfDMn+GP3zlvbFa5C+nv9yPXFB0PzLvbz2WfAf6yXssx/HnvMu+A/x5/t2mpADvBasnT0f7fNdm3I9O/eS55D01cfqZvDcZful1BD96Fr4g++PGU+5l3ZPzyryfknUp/ttod4zyfYyHBsmDy/4A/hbw1/rwEeTLO+XJTzyE3ZOn2I/eBxt/u7JP1o9N6C/5/Xk3uSk+T1FeMf+fQlyoCz8avbwruTVxC/4ivucljwb9H9gh9+jfFX9fVV6HHEOyXi26l7Wj8Z3v0+L76nkfsVLyK/POQ9Yzyj9CfzJ8ufbf5B4N+fN+WGn+n3fE8n7YnOxHg5X4w/2Zb8iX/P7N2j2c82183cKeO+beAP7uSz5H8uzBbtrfwu9u5je3Jr8B3eTr5P2v5O30yfcF/8x7e5/t8Pf+B/C3rCtyby/riwn6/Q+/a239NZkceRch7yRcy3610O+h37yzVU48zntbP1tff0yO15Jfp/8n1H8crBV/y36X9Xb2jfL/A5rj+1L0tqf/vD/UCf364tU+YN4D7a68NTnyPt/Z/CXv2+a93h31M0S95F/1J9ez6uecL+d7Oc+br3wRP8z5XtbFU/BxIv6zTk6+Um98F+/P1SwpwNzrWIf+8cq3sH/LrF/Vy/p8sfi/RNx/Cr2Wxv8e/OkT64bj+MlmdJIfchY+y5Aj+tucdzmNzz/AOfjLewCTwfX2j/I+QN4jqIa/UtnvSnxUvsm46oN+Ge3PxN+J5DhVPMr743m/qj+58o5VL/5xi3h4FThE/LwO/f+VV5fx2TT7Mey6gl5zvlLCj+uC14j3X9JvifZt1P8T/VbxJ3rJOcDz8OR/v00vTflPB+N4XvKl0CsLH554ob8j+dMN5D+L/H+SI+uGrBeynsj6bgx+RmffDr0eOc9ll274mMzPPqTfVtnv109//C/M+y/i8y7g1+bvRvgbXpSXdxc8+Xn30O/C7Ncm3xP9RuaDhmBj8DL85HzxLu1yvtiAfdri91d6aJd3EJRvQG/T/1jfZ1z8SV/d2Sn5dckP+Ba8Fky+QPb3805O8fvUrYzbG/A3vKQA8/5SafK9xH67oHsV/rfkPMc65nn676XeZuPtNXb/Hr4KPx/me4K/5Z3FvA+V85O8K3Ni9j/pJ+8sJZ8n/2/nhZzv4m9t7uXj80T9XUf+66MH8E7lPXO/gn9ekncexK/q5req4BbyN8HH43kvi7zZd3wJf3nfcRy6z+aeH3ig8uSP1y7KHy9NX6Xyvkfuj+C3DP/J//uqAC/R/wjroTvBO/LOCH2dwC/2zLsy9D+CffK++Mu511SUZz/FuDwNfy/QU2n1E0/2yzlL1mnKs2//Gpj9/OzjT2LPcfR6CH3lfaC30Wunn+Z5Lxzf19DXr9YfW8WJIbm/zP/Oyz138LqMJ+3yTmzx92hD888eeZci8yX/qZH3Oegl9xiynl2S98sDtc/7ayXJB1f/I/Jup3wausPBzujn++BZes156376SX5BRXoo9v/c7+yU9Z3yvKeb93MHllLPuMq91s/A7cW7I9nhKDB5wE/j56TcU4Yvy/c4PS8hz8HJK8n8kfwt/W/HD7qo1918tYBdL4Dn/8F0zLvb4QOeey/Lzde5F5R7Qv+9H8S+E30XPQgemnuyyWcHV5uPBrJH/j9G9h+fK9p/7EF/1+d7Vvk92ie/KPkCySc+jr+syf1G7U4Eb9S+IfvuCzbK/WLjr67vlRJwb/AdfvIN/xpD73PJPSn3d/G/AR/Je/k07w/pJ+8i1VAv67O8i70SnEJfeR/man7WTny5l/3y/wcvMC4X4utB/Ma/7mbXg8WFFuCx6v/Kvt8l35A/Xpr7zfjIe7J5X/bGovyq60sK8DqwdN7PyPtS+utEj/n/axX83pU+j833Zdan5P8Sf63zvgz5cl8797gnKJ+L/9p534VfXGIcLiHPB+bX5cnjpY+8F3ogfzkAbAZeqXwP8TLfzXv7Ds/36wzjbja5D8r3DPnb4+dY9t9O/Hsr5/zoz/bdeAlYBv/1+NOovKdDzjXk722+uAScWOvv5bmvU5becj5+Kf5zz/9M+FP4zPlN1gebyTcVnvXBIfSR+4rZB8r+T/Wi90xnWT8PzXlOUT5w8oMHad/feM39v/9zP9D6rDG+//R99k72v4yna/Sf74Hk883h712T3wT2y/ed8qni887olE7+UfIB6Tf3s3Nv+yby5P7WAOO3k37qF333v1WinPxj8v/kyJF9smOUt+VfJ+TdZXwsRP8n+rjAumqh+S/5sV+yz59+/xrePvdzyZ08vuXw/P+CA8ib7+Y38Lm78vxfzOzXFP9/zM7G9ZfwkfS9in6b63dd8vmNh1a5vys+DRQnO8LzDuedxlNFcfwueOLfWP6T+Tj3fRrCJ6J3Ys77jd/kubXGz8X435x7ufibxV5PgdX0/yu5km+V74bi74lS+q8I/gzuRB/Li+xzlXaxz5ElBdidPnIOfYj6Ob8vflcp9weqJP8Hf5Xg32f+YO+/wO7ob8d+H5uPzrVuOi3n1blHAK/ELxarNyP5JeLFu/y7LD6mK/+E/+TcPOfgX6L/qN8X5f1O8Sr/36Z+0bh7GyxNXxeIzyvZ7XzwZnAz/29Df/n/Fhfyj830UhO/XdjraP2/jq+jzEvF9x8G5NyAPO/AX9Xfbvz6EXL9kfU+/lehn/VbR+uF3Ocfxp5ZX9Wj59znH43/c/POHf96mn/XEN/aqpfvsQH08AV75L58/n9p/r/bVPb9FZwo/uyo/mj1R4Htk2ek/UByZjxdJn5crTz394vfDz8+7wvSZ2/x41sw///ngPy/CfZ7A/030S/+/2nJL8s+7EbjYRO4AexofE0wH9xhnq7NH5dnP4W/5N52N3jub+f/lOT/lkxN3pnym9HNOcwn5G2j/CTtOoB5tzzv+75JvuT95x5A8v+L78vnHn3On1/K/qF1VfF7szmvmcM+ncSjWbl/lfMR9DIf5/+LT/L93hfcmPtS+Z7gt6NyDl50frs0791nPUi+Rvr/Ed1fs06CH573qvj7VuVHG09HKM98kv9ve03eI+d/v5Pn5XxPqZ//P1Ji/KzEz0HaN9V+gfGyr/n7KOMk7/5lvyPnZbn3eQN5n+XfrfjFXua3YbmPqP0X6uf/TOT9xJz39lD+jPp7KC+lfLp2t+H/fvUn88+j+E1L+K7a5T263CfN9+Gs5M+hm3dlkxeT92XLmE/y/wmHaJf/T/id8Xpt0Tt9eb82/z8l/y8l/z9lKfz/AdPI87d4nHXdefTXw/cH8MrSoiJbUfJJ+VqKlCWRkGT9lkgKiSJFRSl7SUhJQoVCRQqVLe1EliSiLElZQtZkL4XK75zf+/F0jvc53/c/98x7trvNnZk7d+b1Z/VS///77x4F+EStAuzQoAAf8f9EcBL4YP0CbFFSgDUOLMDjahTgHepvk/b2L8DzlD+jYQH23KUAe4OXgff9pwDvLF2AU8Crty3AYXUL8LsqBVhrnwKcW74Az9H/dnsWYEXwyf0K8IWDCvCDqgW41P9/gWvQt+NWBTi9LPylJylXETwM/fPq6Ff9C7XfBTwJHlcr/+TeBXh5vQJsh0/nqP+8/rYHu4OXwr8Tfv2G3ivVr4S/35Wgy/8LyOdq/BtZqQDvwN/t8Le7/j+oUICPghv1u1z7Q+nPbeDJe8HjgAJsia4W6K27awH2ge9o6RHgXPjVJP9ygeovB9vC43t0zYDPC/j5jvSROxfgPOUHbV+Ab+j/aXSNVu95eF+H/uPLFeAr+xZg4+0KcCK6qsHvN/W+lL4VntW034FeVpWuCu8S+vC59p6jT2/B91nj7R18WQr+pP3PdyzAU3YowAE7FWAT+Bym/HX6aYPPxxovP0uPp0c/SV+M3vn4ciB9eUn60IP+Xf/Buv+utx5/j5P/i/6bS28P/wk1C/Bq9B+hfm/5fxpP1eD7NrlUI9/59PUo/J0rPUv5p3YvwD31XxO8DJ8bsh+xM2WN8wulR+m/Dnm9qd2x+m9Bv7aX/x3+D5fedbcCfA89L8aOomM1vDtXLsBlyk2U/yp8ntbeQ/RnvfRl8ruDPcBV6DsDvtuT11L51aXbkedV+N8I/Bv8Wn8/0Pv3wUXafQx9j4K7G/8Pwa8yed6Cnufkj8a/seRf3v8N6NG79Kei8TQAPcP02xz+r8N/iXLD6X2J+tcbv4/Jz7wxQ/1+9HEA2B+8Uz+7wP/8/2HfXzK/XaTdXdXrq/116Gqqfml83U1+e/PC2eA5YBX866D9ocbnD/4fpL390DUenm21n/n5+4rwVu9o5S7En4n0YQL4qfFwLn5/i97ocwX/f6Wf3vJ3Rv9Wyr1PvpXNC5XA/fH3VPh9vU0B3ocf30qvkx4H/0PIsb/2X1L/GOP72IxzcBO+LMa/HdnBNdL34cM68hoaOavXFf7N4DNh6wJ8F7wGvc3Yk9/024k+Zx6ohe4mxn2t2Dn4D1BvVgm66O+76G+LX6+Q/8UFUOoG5evAu6fyA6Ufhf848mqg3dHk1Uv+KvZqtfwj0PWl9EfG13B4nyn/K/o3rHYBtqdPP+jvOenx1Qrwd3K7CN03w7cbui4Bu4Kr1S9HXl3g01l/X0vXIb/S8GoE38yPZbM+U/7QzO/6vwZ+fcBu6u2AP4co/wJ4vf5WSr+sv1Xw3QWfaqrfz3heRh+qkOda+PZA3znaq00+z+PTAvNLX3pYF/yZnGMPf1R/JT7HPg5hr+dZJzSS/wN8dzVffmicLQdHmf9Otq6oa/ydJF0FfceWFGAzcL7xcAr8LjV/dAf7wqc9+krjx9fkXkr6IPW/wbe16CuFH6/o/0/5r6Frqn7u1P7j7O968j0ZvzrJzz6jDLllP9Je+2eRR/msF8CX6cn72r1KOxWM8xu132CPf/ffcI9/4/ER/DJud6UPu5PfBeRwA/gQOJD+zLcfWFOmAK+Rrodfj9OXO9mtgdKj0DuFXXy4RHnpa/X/Mb5OQW9jdF6OvsPMF4PpTSPp5sofr/xC+PxNf25Tvwo+9NPPtsofhP/Z38wGs7/Jfqcc+zqQ3e2Ejq20e6X1/jVgdXq8XD8Hx66C69X/A/3DjJvB4FywR9aD1m0b0NdR/k3o/5p9eDHrH/0vgn8FejFf/pfKvy5/FvsxFT0zpVfA7w36Uor+LJL+Wv42xkNXctlaurb2h6tXhz60xpfO6Dk385X0hfA7Mmn0Xq/c5/Dcifx2Z6+nsgvnk9fh+l+JH0O085J2Kqh/NHyPAWvqv1P27+zJPuTxtvlsW/mD9b9B/5Xwe2X2i/qfTC8bsy8r5C8wPy/B19eka2X+s+6tTi5/6u9hdJxBL0vgt5h9G4d/G/A//pHnYv+N72H6a4avq/VTjr5kf7Qw+03lsj/aTbvrtdcP/yrDr5b+/yL3+7SzCv9K629s9gPs382Z3/G7l3qjs3/Rf2fryhv135qdOCrrVP2fjB8L4PGz/ieydy+CZ4LxT3QvgFLXgW+ATeB5KHof0N/B4PWZv5Wbi08/Kn+j/k+kF73oyWvgkfj8AH0+SvpB6V/hN5/8Y6euxYdF2h9K3/7WbsbPY/jYG7/ehmcv6V21P9T+cYjxMRispf17pE/R7ijpfdRvRD5vF+2fXlX/gPi54NMdf06VP0r/9fBphPR+5Pq8+eQpenQTfY7+zpPujy8vSo+UP6WkABsavyOyH0LPbuzvWv3+AMaPtht+TbDO+Vm9DfSgMbxa6LcP+JFye8uvC+7g/xXZP+FHC/jOQMfB+JP1adal/5Wf9en79KKhdcAy6b20P8P4Pky9+Bsvlu5qPXER+Y2L3un/OP1O0F8f9Sppvwv7NYTcv9BOs9jP+J3YtZ7yp2QdT3//y4/YQ/5U+b/C/zTtf6//veDTgv34jP5sNE9dKf8/8P9MvbvRX6po/x+97YPf2f/Xg/8Y+rCF/X1Se7+q/y59+CXy094A66XztDvCOuo65b8wbk+w7lotXTP7Ze3cj54B+HEo+3id9FXKxy/4IfoG6PccdMe/kPX3AcbvNONtgPFdP/wnl7L6X5H1svbrKv8avv9kHj4o9oxcnrR+uho9+6s/m/5sNG4as3dD0HGJ8dhGP6XJe6D8mvprq9wG4/mD+LvM15cZ9ydpf7n8TuzCt9KdpTeTf2n/tyPXKuQd/9126ByMf4tDH/51U36w/59Me+pfpd4x5NOdPG+Vv7rI/xJ/TPwvMwugVE9wLFgWX3+RvgRcAvYmxwXk/xr4BTltpp/ZZ9xEXmPowa/Ss/BrBjgz/mj0j4o/K/svfFyrnT/IrwG6Dos/VvkO2RfBZ3/1a8q/2/9fglWV/0X/09jDA63P72bv3o7fAzxae6/Tw4HS9ditEfGHSr+H/1Xo1RL5x5Ffa/L7BT6XoLcUO72X/GusR6aCZ4Ht4ydTPuuC4vXCs+R8hvLPxF8c/UTf6egZRh+Px59Dje97yb1D7CP65pYU4Ifxf8PnfP3H3zVUu6dlfaR+R/3XJbcN+HOs9OXqXajfMcrvA/+58LuE/me8jdb+m+xzWfPrBunfY1/hex/668N3lvZjH+N/nRc/i/zeReeJ2d9/iX+75tyHfGvr9x35PditNuzWYvawnfGzwbj7mP36U/oa+RPMB/2Mj9fZ2Xfxqan0EuXf0f/K+Mfwoxo9fReflyhXnr7EXsSOnI8fbbOOQec36j2FP/eypz+BZci3KfovMJ6yD+gknf3AcHr3mPJ1s+/W/oux++Az7MOq+Fvg/Ur8pui8B3+Olb+NcXMJvkyiP2Pxb0P4D86jL2+rdxC6Sswn/eRP09+o8JseZH/6adF5zmvSL8k/qqQA/9Lu5fjzLD60Ir/O1h0Pw6cx+g9Tf4jx+YpyOXf4yv+b8Get9O70YBK9ugY9zcljDTqi9xkHC2Jvyetn7eZcJuc1H+DHmfj/Kfh97Jb+1tGrhspnHdwVf17U3jXweUj5LdIb4PUyutvAoz/9GYzO45VfjJ5j4n80vobnPFO/S+Q3IK9O6P5N/XnKLacvT8PzZfw8AR2DreuuNa5rSl+R/TT/Q3163QB8Cz616ede4D7kM1j9OdLbwXMiODb+F/j2x7fi9ddh9G4ZOY6QLqVc123/jUc36XY5F7R+HwGfeuz12Jy/4c9w8/wL8Hscv87W3pvqv6XfQfCrRv8HSt+q34Ni/8lve/ytBC7U3kb93K/dyfhwjPaWSW8lvw25xb/TwXrhPPCFov3m1uq9p50z1I//53l2K/6Jj6TPV64LfH+V/1TagV8f/NtXf8vp84/qD2GX1uDLVHbmZ/ral326V/2d1O8ifzF5NQDrg/snn9yqq9+Y/KZKzzT+KumnMph1R1f0dQMvBUfJH2u9c7nxWQ4dt5Dvvehrq3xL+JeXP4I9e9O+qqr9VkX8qVMCX/AJMPvIb6zncv73lXTO/65mb3NO9Tb7knOq14v8p/GnfkSe/ysu5Rf5iR9aYdwljijxQxfTuy7gHfKzT/8Yf2qQVw/8ayC9kP68i7+X2x9tpl/TtPu+/Ibs9Cb5j8B7nn7PRef46Be78Qj4HXrez7mSerNzXkm/Mz/eUwD/7E+yXzlW/5exb93Ai8Ay+NeU/bmBXtYHuxoHt5HrcHL4VXordLyHH69oN36fo/DjjZ3/3W9X8EL0rUr8QPzv8QNIj1f/XuPoIemL0XcL+bXRb33tblZ/K3iP8X8lfN4Y/5708fSyWSD62sl/hb6/iW+ZH/sW+a3GkP8Y5Y8mz5H+P4E+5PxyhfXspfD9QroP+irC4yblK6Bjmf4nGi/jwIfA+xPHYfxtQO/O6LuU/oR/4Vv4+Gji2eSf5/+c856d+Cx0dy1RHnyRHOMfT9xQB/XjH69t3FaWv5f08JzfkvfT5H8I/byyOP5Pux3pU/xz2c93BrPf31t/mdffw9+s6+K/SNzgnuhvjb7ED84nz0bk9Jx+c354sPXJ1vp7sch/e5H8C8HOYPSvm3XDcP8fKf04fGNfYlc6wTf25Qd69wm5n5lzovj30Jtz82Hs6xD4Jv5nuv5+UG6rxL8Z/9Px6yPpJ8jvDfPbSex/d/J9h76dm3UyuMn8k/OPm4y/j9GXc8b94dNX+5XReQh6DiaHN/RTR355/fyUeCzySNxO4ngSv7Ot8bi1/8sn3kz9T/G1RL9VjIel9KWU8ThQfgXpdfLfIs+L6fUS6abyd/b/jej9LPsJ/G6Dn1fr9wbpF9E/W/09tPdt0fpnFv6NLCnA9srlnHc1+n+W3hMel6g/B5kjwa7gSuuKVvh7sPKLrI92pR/lpOO/60XPP1Q+++rD8W0O+Wf83sQuNMO3Z8lpEjyzf1xRtO7K/nFk5BW/hvQz5Nu/KJ7zY+Uu1n85dCaurDje7Cf273TpJYn/UP8z9O8M7zfR/wL8PjBfXoy+8fZH2+uvNPnsmXgq42+A+ovsD6omfsh4eFn+/QVQ6jWwI1gJnjXw6zZwBXpeTpwUfStn3LYFq6N3sPXTlfZt+4K7y29Fvrfg+yp0nIQ/ie+YIT/xHYn3WF4UH3tn4kDhdyn9vpydzHnwA/Qv5+nPqh89fxp+5+z2b3ziv5+Cf9/gxyj6+xP8f5HOfNEX/zOP9NR/7FLsVA128sus37XzK3xG6O+p7N/gcxF6a9KX27Q/DL0Xyn8j/kb5N9OPJ+nXTdLHKT+bPtcn1zeNw/3wYyl8Emd+AzpOkR9/RjP8bYjfvZUfbX3yV9a/5Dw1/gbtr8W3jtrvhf6q9P8IdGUdmvVnX+V74OMK/eyh/jj6OAV+08TxdIb/JuN/kn1nPeOrM3zi747/+wrtx/99Ss4lwL7omZXzXPqd+fFS6cSnPkkeT4HvsxeT5N9nvj+fnL7Hz4Xwu4F9WgzeSx7Xkv+76HuH3blRupxy1aVL8LUFf0ETfC0+D83660Htly4pwJw/lpLO+eMr8Gyp/qf4s05+S/J5HX2n0r9lGd/4PQzdJ4KV4TVSe1P0Ux5d59G/bvIryL8HXZ9qfwl5J15jqXSz2Cf78RaZX/GxdOw3vZyceDvltpZ/K34tgu+J2adkP4r+Xcxz/4l/Bn+fyviD71T1NiaekT7VAvcqWm/fj54HwHHsdXl4dKBvJ4JtE3+CjuhNPXAV/XiZPGNXYmdm0qdm8Mz5a85d45/I+XdX46K8/GeMtwWJt6XXf5cU4Nbom6X9tcbzKuUOZm/n4E/x/YrMH4mvuzXxQfDKOU/Od9ZpdxW9/JWePhz7a77+Sn8L2ZH7tX8OPud8JuegJyTeh/7MVH8L+m7V/zHK577BA8rXTTyqdOTdxbjK/qqi/vdM3JJ2m8vPeC0NDsS/jOfELydeOfHLp2qnP//UPDDxlPEnH4ofR4KL6eEK9E+D/y7afUb6tuw37O9PJ4ca6ChHP8qQyxfsRCV86qD9B9C1AP/3sF44Wv0D6e2WxGOFX/GvG5fxi59d+d/0ver/TfT8D/2+Sx6foyv3l3KfKffjcn/mqEDjoSm5l7B318k/G36D4FfT/LgtPdxd+g799sn6Fsy5Y+Lvb2Z/aoNvG0/v6T/nu6cXnfP21M7D9GUcWI0cPsSH+K1ynl7svxrDL/kdfEdZh0zLfTJ8jX/3GHJM/Nck+vYy2AvMOd+HxvOK+KXwJ+cmuW90feJjEweY+OKcm4K/g0My/7HXf9OjQ9nDCdrfFz+qgPuAW+R/rL3tw1fr3+70qwP5t1VvjvyqGf/6q4/e7bRzNfwuSjwIuz0AvFm5ztEbdNyvnfibcz6bc9la5JDz2d/MJwvND+ule+LjNPWuRe/T0hepfzj7nLj5scotQd9Z2unu/yHwy/5pOv3omfgd5V7I/Ut6u5mdeEa5Nvgzh759p5+m6P0i6zv2J+fvn2jvi8R3Kr8XuBI/e6OnKb3fIr0S3ofn/KPo3uk/6x78uSv+pPjLcz8n9wvkv43eK+Qfp/5meDUh9/PIeSv6XXwfcJb2Hsv5L7mOB8eBPdTPfdBP8O+Y+AUTHxJ9s75I/OxC9R8ogFLPgheA1XL/ET/bgVfBf2PstP5mwvc38/MY/M1+7KzsR+HVLvdljdvozd3s+6GJozEft6MHZ4Pvy8/9v8ukH8OP3P/Lvdc34m+JXdB/7qHFb/Bl7nuFj+gun3tD2uuMvpPsexMHX0G5C+N/pX8N8HsP9J+e+4/kOY1+n8pOdoTPXsbzKvKrLX28fjYpV1t7uSe+HfpP0t5UdJyYOBP0z2C/5rFT06UzTvqzj8eZ/66XbiW/+D57zt8baX9tztXBV9nRBvLroL82OJ89yP4+5+nT4L0P+vZQ/wPz1xlgE/UPR38VfMs9sTkZb+RzGXm/IL8f+EPuT+Hzq+DvytdF507aH4S/Z8LzjvhniuJLaxkfiTNNXOl71jmJN02c6Xj0nhi7gh+5v7WD9MrgA/9L4NEIvoPk7yj/g8SfGW/PgM+C8dfNgc9H+h9JTn9LbzAfbgT/yH3u3HPR39051866HP6n4OvTReP3KeXWSCdu6UH9Jp7pNPa1JTxbSZdX/xL2ohe9nWA+v6BoftzeODlLOzPiXyzyN70a+ed8k9x20c7d+FMFvsfp5xDjJecfn2b+1P7NiZ+N/4v+fSc/cWg5p8/5/M3WW5ept0Z66/hX4Vvst/08dpj9zf2B4vvviZt/JPMbehI/f7l2K0nPSDwH+Sb+fT5YHJ/QGD/iP/8evvGfVzaeh+nnTuleym8yvy3V3ubcX4BPT/Tck7izvOsBvyvYu5bo2osd7K7+SuP2WeuXluajxDGMMu5XaWek9ND4O+GT+9sn0q8jtJ/9ZPaX/cGf46/P+S55PY+e2eo/l/jE7LfhO0v+qfBqAN+TpZfJ7574Hf0MQX9z/Fhgvpmc9S36KmT/QV635HxOubu0fzQ6nlZ+vXLTEz9nXjgwcWnKN1X+Aenx+sm6aYL8C+C/o/HXWXqM/tca7zeZpwaC22jnK+N3Enn9Bx+i/2P1e4D8H8hrNn5fTr65P3MOOFT7+1hXLgcX298lfmEWfS4LTjWPJf5hjvkhcaVPSOd+86vG0/Hxp2W9iz+r2PN18M+65kztr4LPcPjFXsc/uzv9Ot3/Wadnfd4+8Z7s55X4+br87+D7Lfg92JoelCmBN7tVEbxVfzPwYy/82R+smfW1crdIx3/dCP1PwO9j+nEdPbsU/xKHuL/xMR69M+Af/+50fLsdf+PffRT+s9iF4vcSpup/SvaJ+vtD+8vo1zj/X+b/ndFzKXzuII/J8ktyf8l8u3veITD+J8evVgD/xLHcC75ddD6QeyO5R/K8/Ml5DyTxaugfBJ/c26uceGl8GQ8+iH+TSwpwrXk498NzXlZNezlHW0Z+S9FRi5y/Z5/KxD9F/2drP/e4DgYfz7oFv8YXya85PPbD131zby7+EXqTOONN9HuR+kvYxwPzLoH5/yv4RW+rRc+K9Ler9WHini+Rfkb7g9jHwdrL+fQQ6QH07QZwhvLfoD/jby34rvVRxt/6nKfSw3k5f0Jvsb96Ojn1hd8x6M043EW/GX+r6e94fE08YuIPE9f4EPhV1rPy68Mr64ez8Cf3Um7Cz9fZiZnSc+X3LYBSt4J/Gqe5v553MeKXK34fI3Y370sU298ewS/95V5g3u8pmt/aay/3LxYq34U+LNR/zjdKmW+/ZRdL7L8HSW/Qfo/c75Y+IOctxvUjeYcBH1/K+Rr9XgpOod/xww3E71vC94xT+PcxXn/MfbW80yJ/Z+vLMdrtD56g/2Xsw7nw+x5+72s3fr/1Rf6/z7IeIZc64I74l/cf3qMX4+G9J/3oB98nyO9a7T0C/yekG+LfSnaias7D1M+5aM5Dc176sf4fzfsyuWde5O/pYt7MvabEE+Z+04/sc/zlHci5vva3aL8U+nrBp5X0S/BPHPrvYNbn8YP+AJ8S469x4uOtCxI/PxdM/PxV5Jv1Xz/prP/aJR6dPl1FTokPWph4afQOomdr4Z97yydl/VsUn1wTfS8kfkY68dQVc//+f7wTclfi4cCK/s/55RTrp9PIpaH69RPHh5+l0bMvem7P+TL53I2/s/FpO/xvjZ+H0vsm5D1FO2X830r9MeRzPfpvgceioveKTqAfjbVzgfrVlRsMv+bauzfvVMSfB78b0L0feDh+3o6OV9n9O42PBfq/q2i/m/i/xAMmvv8s4znvMuSdht30P62kALtlfVbkP45/J36dr+EZ/84heb8r6xjrpSZ5v4N9PcS6f7H2v5bfTnvtwe7ayXt7e9D3VonfLPIfvZl70do7EB9OSvwnefcF62oncf5nsov708/P6END7XSBfznry8vwr4/+vmSvbjauvpKui1+5Z/6HfitnP5r1nfF/MniDeluhL/chst44MOtD+V2sH7Y2bg6E3yHyX/D/6vjn/L8Ofxriy8Fg7rn2y3kV+S8iv8HS2Wf+TG7nsRvZX5+C3jngOnQ0hP+GrBfxp/ieefxvuV+Ve1UH0//Ej+/N7uSezwZ4xD8z3XiaaF6qBN4Erzr4dw9695bO+mIiuX+QeFXps/WfeOsq8BpJD3Le/hG96mycdAJ7yb88792Y10bj8+kZj+bvw3KPQ3opvtWLn5M+Lc88Bv+R+Fq8fhqE3hrwbU5v1rO3e2sn/Dgbvo/AL/yZgr9TweMzzuFXk17Vw4eZ6Mi7WveaT442btYo/0fim/W/jN61zP3IzFvV/01f18RTaH8/9M+Szr2EUehvAk6kX22yPkHfmdl3yD8y+075y+CXe1+5B5b3Y07U/9bqDYo9x++/8GNs9j/Sia+M//mQ+Ndy7pz7QvTvSHR/zH5lf5b9V/ZdG+hL9l/l2NdnyG8W+Ab6TsXnGfqNvybn471LCjDxtnlnKe8rZf57RH9z4ZH5bzH9P9A64HF86Jn1PHz+Ms7vUa4VfK5U/r/S8XMOwL/EzSeOfiWYONxtEu+ufuIhcz6T+yNDiu6NxF+b+Tf+54fRG/9z/KqHR89yPxYfdmKPhoPzrKfv1G7iRxI38hS+JH6kov4S9zlTf3lv6QR8yzsrX+Q9k7wPxF7ead9/h/RuiU8vshcZZ6Pxq5R5K+cfHRJPS74P0Mus17Key/lWlfjH4XccfXiYXN8oKcDF8Wurvw/+1LO+eQtejdmzu/Sf985a40PeQTsCnT/7v7r+W7EzK0Onfq+BT3v26rq8L4Xe6Ylbynk8OQ1hr95i308pup+9v/IVjON1xv/D6DuS/r9lnl2KX5vzHgk9ngc+n/jNxAcXQKlJYD/wT/zfCd65l9sW3rvGv2z9kHcamoLZD5WDdx1wbzDr5bn0eo154Tnp2+DfJXHh4EPgc/jfpqQAP9VfG/hl/TqH/X8Jv06PfyX33YyPJ+QXvxd1BLpzv7csvG6KfOlHi9CDX6fgT2v1w8ee8Jye+A/95T3rvG89U7ldYh/hd5fy8aNWQ99nyh+dcw7yS/xfVeXjZ49/fXbuKaJrB/Xbwud3+lsm/irpvG84i//6ceP8R+m833WVcVSG/fhG+jZ8+Tv7EXbvLP0OgN8J+v1Quezj6uF/8Xs5eUenqfrvs2dvoq9PzrHgf67xsMm+pDR7dKR+Juc+EliZniaecarx9pB+D9Bfl+z/8GscO/Ez+zQ/58nozjshOxrveS8k8XsPgp/CL/F89eB1kXRv/N0BP/5T9D5CGfB0+Tnvy7xYPF+2Y/eyX8w+MvPXudq7Qf0W8Emc5G743Rq/8z5k/EFVE+/PLj8R/6t63+Z+Hzl1kf5F/9fg5+3gVeAc+A9gV2fQv8OkNyX+Lfe7i/aH2S/+F11L4Xt79FX/iRNNvPc/71HRz8cS90+/tjO+n1Ev9zvGZR2G/7nfkXjt+APPUC77jdL0Me+WXoG+vGf6Af2bE7+edEn8OfT1ZvRdiS814J/3uF9XbpZ+tqWfg9E1BFyR+Dj8P8n89qF6axIPkveptBs/U7F/KedeeTd8XPwreV9E/V20v6N04nsq4cdY89IEsGvW8fQl729Plc7723dlPYGuF6U3ys/9r9nqbx2/pfzFKe//nM8uUf5F9mOf4Bm7Tr9eZRdyXpNznAdy/mL+v1g72+a+WM6p2PNP1L8/cej4l/eay8ofkHN9eH6Rc2lyaaH919Q/Ku+7xk9gvbW3/gfnPgx+9NTP3dLZtyxAz/XK19H+19k3K593/BdJF5+f5Nwk91MTV5Zz1/1znorPiTdN/Gl36VdyHkUuv+DDC/icuPJi/0f8HgPhd4/5aQW4N/s3QPvbGR/XkVN56aezf4bX3vDvyB43QF/u34W+0Bv6OmhvVeLapF+A5ze5Hxp7nXtE2mtO3tPQt1o7/TIv6z/353KfLvfnKmn/UXj1Bacr10v9Q/xfPfcg0J/5vBl6/sL/zO+xL8+bd07IuVn8G5k/6Elf+noa+bTPvgk9WefmfdgO1vPXKtdev2eD1fHrLPR8i97Ef2fdP0L6Pe3Hfqw3L+0HZr2R+xFPWQ9MYUfi5ztW/ZwfZV7IPJH5oaF03lfIewvxj22DH3mHPOffU+WXM+4f8/9+5oNd8n6G9nN/fr103gcsfv/lqMQnZT+u3cRnNsj4zHkKefcGd4NP+Lqt/7/Wz4PGxxZ4vE6/3tFP5cSD4WOn7O/gVz3rO+lt+OP+YNd+BkvBfxJ/w/ba7Z31T+L3pRNH3hXM9z4WWDfvU1KAp5DHRfQv/qrsq7+nj9lftyL/RmBxfPUjuR+ov/74lu9fJP4/7xZep1zuA+S92MRb5R2ZvL98Hr08E2wDDqVn8YvkfY3bivwki/HjTbCj+Szvc+9JTp9kvwnPNvDPe5x/05ezzJc5n2sWvwF4LHhN/MP04y/tPGq9lvXZsfifdyjy/kTn3PuEz33qP0suteGb/ekReccDPdmvtkw8Ru7f5r0N9Gc9mvXpW/HnSq/D77/08xn8499ZRZ9/NO9cxs5MgGfGb96NzTjO+M25VPxyeZ82/rqt6PcWfL3UfDFL+eNz3z16Jv+wnM+h5wz05N3r3bO/LIB/1qtdpHM//kntxb9cl94l/uxG/SeOpYPy8xL/nvs25ufa0vn+QbH/OH7j09N+vncRv61yeZ9nZM759ddL/iLpVfjSV/3i9c/VuUeReDb1z8r5o/R88pwFn6w3t9de7iMuUn6a9tvRhyetm6+lL5Xw+3+9a5jvF9SSP4D+9M77LcZXZf1/EPsP5v71kUVxvY/AM/G9+S7Cn/hwjP1Lh7zPov+T0ZV3/3vAL+9FztfOfP3k/cg/8/4d+BeYfccviU/W/x/0413prvrPOiDvxD0Mj8SL5j3ZBrn3RH8aSuc92sSTfiS/hvkl77h3g09Z+S/Bd3m+Q2e+ynu1o62PauD3q7k/SD4nGR8ngvEHTyanb4yXLcb5Ouu/fBct/vn68Hwz/hL95Hsuib/Iezn5vssH8PsSPcfSwyY5P2BvW9G/5xMXo/ztiX/NOAHzfaBv4X8B+/Cd9Jz4txNvYd2fd1D753wGPnsof4J0PfSUyff34HkmuuL/Ku//qcqVlW4sP/HUibMezg7lXGAL+3O9dWD/+IPh+ad6s62DhibODB9yvpFzjZvBnG8MyPcLwMvpUebbzfmeXkkBNoufB383Wa+Uzv0D5X7NPgReV5sfWkt/Y3zkfci8o1D8/a529OMssC2YOI6h9D3nxCfjV+xzxkH8VhPIO+8fVWPv7qYfI8D4c1/C37x/kfsx+Z5R3s16iNyL38+KP7MdGH/nj7m/ho7c38t9vh7w/x29+9K7jdLD4Jf3xH4Dj6Vn+d7HUPZ9oXG5kRxK4dd+0ifrfyvju7L+837E5/y6Rxa9JzGd3kwyPnctKcBd0Hszfh4Ov6rGX+7J5X2UvItSGf7Xwr8eef5GD8+jH23g14j9bal81lXx/1+Z91lyDocf58Fvov4na7cq/I9D3zvWpdPIPfFsiV+rTX8+ZP9Wkk/iuWYYHzPzPov5qzv6m9CHMXk/Ifd26Uf2S9k/1VU++6dx6CmPzgrg6sRZwy/vK1RGTw38Xir/MfzJ94fOy/3+AvhnvbUZPoMTf4lvg0oK8Hn6kHjiw/MuIbqrJ24UfblXlPtEuW+U95HzncR8n+MKcE383XnvRXsXw//27F/1Wx7M+Vv23/3y/hu8joodUv8+/BoNjgHzPYAL8P9wfM9988SvlmeP8/5TWenfcz8+57Pkm3cM7tZ/R/R+COa+Ufwvh1oP/AEuwo98v2QEfPM9xwHswE70927jKt9H+4Ge5vtoOU/N+eoA6dr6v7+kAGeR8xjp5vEPm09aKl+8v+1uvC9U/3XzwWfKN8/9DfbnUemc//6Fn/lua8ucX6GvInk0ouc7geOyvrLe2ZLxlf1/0f46++rcY87++sbEK8evmfMl+pH3mc9mP8aBeZ8533vJd2Dy3ZcH8/5F8CPHo+J/yTmn/tbhdwX6lPOWpdYb74DV8fmcjEN4533Z1upfgb4asZvo/i3nNfA/jbzyzt6f9KQd/EvLz3cllkvP1f6T+L0IHrdIn5d1PP50wucLyG1j1q/kezKY7zt8Ar/S8Hktfgz2KveP8r2HsXlHH/xU/dXaey1+FvPwU9qLv3xY4lbzfgx+HkhueXdvMzt8F/n9ht5PE7cM5n7Me8bPGvPU+eSX+1s5D8h3/55l53Je0Ev93kXrusSHPwrfrGOKv/OyLX373bpga+l8T/N8/e7Hrl4g3ZZ8cn52V9F5ds7POhq/X+i/nPbzfaH4XeNvzb3YIdJN6GPHkgJske+HJ64GfYn/X574muiP8TjZvH68enkP9w12pxu701x+3sMtRx9uBI9Bxwjtj4bvZv+H/vCjtfVNH+nByuf9+TnkVjbzkvRB8R/j1zpwGX1bmvcj9Bt/dPap2Z/m+1oT6WHiLPJ9rXwfOPPIc9KZT3Lf6UT6+U5JAb6Ye/CRF37l+81/kd8l8O4GXgoOUm5Hdiv3OIrvb+R8tNj/nfdLLoTvReBP4MfK575B7h+cnXiQ7FfZh3NynxP/q+t/d+28j995r2gyevO+5qaMH/l5X/Me+p+47+L3ML+wrmiC32XzTob2d8l9I/p7VPY7WU/Ffxd/buZB+Of7yBPif0dP4vM6Zt2UOP34P7Wfe4VN4XkY+BE6/w+H+xEDeJx13Xn01kP7B/BvlFZLaVG2r5AWFdnXyFLx2EUSUkQkW0ikbBVRopCtIiqVNpIKISRbRJbCkygqSykpyu+c3/16O8d9znP/8z5zz2dmrm2umc/MNfPpVr7k/3/tGxTwKeldmxWwys4FHLxTAV+Fh+xVwA9rFPC9vQt4WL0C7rFPAYdXKODISgWco/5JDQu4cYcCXleAkvm7FHDm7gV8sqLy8K3KBRy7bwHXVSvgI/Knbl/AQfh5ED1vNSlgaaMC/q581z3xKb8nup5F/6E7FrABurrAA/C7RPnz1TvF/9s0LWCjugWcu2sBe/v/QO0fib5Oym/W/sHk/wP5nFingCfAm+Uv3KaAH9PHZ9KN5E9B37DGBby8fgHnoaM9eZ4D28Gf0bGMfFdK/63+F9T/3G4FrEUuv5PXXM9/XKuA79PHfOn28mtuVcChZdBfpYALyONh/18Kq7KfFtq/l/y+Ic+tyWEX+Zfg93z8L9yjgHfR99/spQ87HVi9gHegd/uqBXyJXK7etoAfqO8CdrpefT3I4zjtT9XeUvJ+EH0N2NdJ9HumfjRAu7+yo4n4/hKdp6LjaPUvJa/X/L9CP3uZfNeyuw9qFvAb9M1H72j1v6eed+E22+FXvzqJHfwH/xeovxb57kpfY+lnPvnsTX7HwWvQd7HyT+C/rX5yEzqPk9+Tfr9gx+eQ29fwava2v3KfKjccf13R9zW5HkP++7OXevj9RLkl7HGE8keiuwf+j5D+UPsLyikPS/F/sfpfI79Z2i2j/o3s4bgtC/iM+jdsUcAO6n8RXzPgdDiU/q8gn5vUN5qcxks/I32zdDfPj5Oexz6PYG9fym9Df4vI5x32VSb+UfmW/NF+nt9AHzeg/2x+4Ud210Z6HX3cRl5ltT9beivp5ujZRB8Pav+/2l+Kv+i9LDpGwO/lbykdPY+Uvkj/rVa7gMvQv7P8Uul29HeodvvSb3v29TJ+RhkfJ3nuVOWay/8TPV+Rz5b8zSzyfV4/b6w/bacfVoVl6eNA9Q8jr1rK7YTuCujbjfyq+L+PejtIX8zuhpPLQn4w49gM5Y+Xznh6IvoX4ne58teQ53Gef5V93KLdq8wnhqB/p9IC3k9OZelhM/p+x9869d2bepWfzX47SD9CH3vpH5PJbQqcBC9G/wxynwnX6H8N0Lsrue7Nb7XbuoDpvxdobyb+z8n4g85L8HMXfjpLt9D+z+rtkHFXe1M8vzt5d2H/sct9td+JPe2j/Qrh3/OvKL+X5zeyw0ul6xvPayp3EbqvQN848v/Ac9vIfwQdN+G3VPs/0sd30l+T9+XaW5w0/UzzfD3P/4TesfIfLhr3qxWN/w/xK/35lR9KCzgRXWP0r3fgvnAdfu8mj4fgD+h5FH8NPD8JXQfR1576Vxf2/yG5fKyeHuQ3Vj1l8R99NJbfRPk/0T+Mv3mEPN4tW8AN9Hm/dBX1nYfefp6fhK+W6V/G/+fQUdH8a4D272KPO3v+PfQ1I9/o90rtnKKd9+Q/YDwaBofAg7XXTH/ZXbl9pHeV/wH7PRh/h3ruOfU3MX72RUdT6VbyD/b/HvrrtuobI93ZfOUrevxWehN9nUfue5SiE/4gf2f8bGF+0o2cns/4TB97GP/7wanoeq0AJbfBDvBu/N5p/tMFXgpPo8fa7KkueXWhn/cyn0Tvw/AheAg51iaPq8njDvUOQ/+J5h9D4fb0vDf6yrDPGdInKL+F8p+g73+9Bz2uv08g97/R1QM/d/B7g2AX86v0m5fQtZf6ZvHP7eQfQR6b5ddFz/vs4xP8NNPuYPmHpP+ad/+mX6yB+9BfG+PZNupbp73e0gvIoxl6FsifRD6XabdBxgP0XCL/W/xuMg5vhq/Q70vG46vMG1vA9spPpZ+K/EZZuFR7xe8f7+KrrfI/8Z/t+Yk10k967jny2VY9Xxq/K6nvHv74b/pdYfzaAd876q+14Sn6f1Vy+4bd3I/eR+lndcZz6cHyv/b8r/KvV+8B2t0fXq/cGvK807xpqXTstrX/Tw1mvNfeffhuip970X117Ji8f1JfG8/3YF8L+Y0mpQVsKb8le5mH/jnsv/j9Kv47fnuidPz34crvqZ/1JN8V8meyl4bsqC17Oxe9B/H/GX8PlZ6OvrxPdybvffmBw/C3irxuMz/oip5FylXiD+/R3kXoiDxPIr9m7Gx/2I38K/DPX/ArB+pfu8p/xfzyfHaZ+WXmm43570bwZOWOx8fF5hez4TWwM/oOw09r434r+I7+v1Xej8ihDj08RX599afb+PV+0uXJ5xlya2V82i16oL9pBSjpBsvTTwf83c4e7oDXs5Ph5DSRPXRnt/uiawj9zSW/7uR8LWzuuZb6W1XtPYfu7+Q/yJ7byf9b/svkPEH5PfHziPzu0nfgZ0ft3i09h37WSm/Sj8pp9/n4d3yfg79npQfKfwF/U+Fs5d/N+h+9fISu1vx9bfS15N+uk99KOusPp/v/HP3jZOnd1L+cPTSk1+7Kl0HHssy78XsjedVTvo3+0ll6Z3odjb/G5D+UnEaS0wLyP0T/uxFOM1+5IP1fe1PRdwX6f0FPffa/DX6rsdfe0nXpvQl+RqHvPvlPqL+t+l9R/7nkdTm9t+IHakhXy/xOv5quf6Qfjlb/S8a/9+n9BfTsJ38OvW8mvw/R96D63zOf2No84xN8/5XxkbzGw4/lb5K/gTyG0+vj8L2sCxhvKpPPQXnPQU/Wxet5bk/4Dj5+4g9XwlXwIPrbl328ja5H8Tcdf6PYxzeePyr9xPOnkG+pdtujs6nyrdnTKuW6srOfPDdG/aeTx1Pq3S7r10XvU3+o5yjPD5Vejb72nh+U/o+uB42LQ+FNyh0JdySvd5X/k3x/Na6uhu+Q13R2WJm/vER/ea5ofL2jACWd4Evsc0/2O53dPAa/Zk975n3cuFMelsLIYQL76YP/Kfj7mbyu4D+21X+fhrer/2L6aQPfZR+vqe/R0gIeK/2I9LXk+4D+OVl9Ez13Mvmd4/n4h7bSJ8jvg599yPEW6fvI90zy3FF7H/O3i8m3Av768zN1PLdIfmv2fJz6OsYvsa+sh74Er0J/1kfHorc+P7EzPAY/Z5LnOP17X3ppgb/u9NrM/+/S7zHyq6t/W35mmfnHAehtyK72y/u18fhe9P2oP/VF/wR6/9vza7Megt6H0NFT+b3YSxfzvN3N7/rrD7fI/xr2gYvJ6T72skm996OjRP03+/9B2Bc9HeV/bf6zGD7J/12Aj0Ho+U7/mwvzHvLP+i29riGvTupfK71AftZzL5JfET+rMp+LvbCfYfzBcPwejY+/1LuRff4FT/fcTvTbuwD/vMd3gHl/70nfN7Ory6RfIf829Jb5bPmsn5LPZeq7xv8feK6Z9v/C7wrtHY/f6eyjD/u5GP21YIn2f2Nvj8BfYdusv7D7u/SDh6SrZ//U+PAB3As/j6JnOX2ebnyug76ema+oZzf6OEX6Lfpryr8vQm9Z+cs9f7f5+G+wI3wf/5XI7Qn8/EC/i9A3jl86gVyvNL97U/7V9Lat+l7Tj+egfx/9YyD/ei+soL0LyXM3dHcjny2UH4e/+fxc+kNt+Udp73t0HS39F77ukN4GH6fQ9zf1/83vYfi7h71sQN+LRX6xk/IHZT9UO23JP/s7rdD3s/qPyf6U56K/SdrLvHyK/NvIcwy/VI79XMs/pH+OLUDJafRxsPbnKP8ku2rGrs6EbbSzQv8+QbnN6P1JfQON90vk9877nPzrzTubktMJ5DMv+0jaHwkHwKznVKG3kfrdE/En6P/WeDHZOJK4hGnav1X5rqUF3Mb4WA29N2W/kPxe9f/l6BuO3/GJJ6CPA+hnvv5yk/Y/08/v9Pwf7GqoftAcXx+hfwp7PS3jEfpHSEfe+6PravqYrP1r9ZeT9KNTPbeO/nug9wz1vqa+tZ5rrVwr+JX/V6F/GXt6m55/lV7MPr5j37+R12/6Uz/y/1O/PCTrJ7Cc8qXm57vB2vRfgt4LyGtS1vm1dwD6su68hN0Wrz//pJ2tlZvj/zfUdwv7WEaOh0tXkv8tey5Pv0ulM57WYM814XL+PeNpC/WWsNtjpPvRwxh2NxZOg18rfwu7uca4d6t0/dgR+3kVZr0066MtM+9Q3+fs4f2836G7Y+wI/3PV/4D/R8Cp+nHef48wz+jLLo9iP2vY72r62I4ehkjXU742+spJr0bfYcrPlX5Z+W+Mh69kfkceQ/Lei86fs/+j/HnKf6DeHZQfrL9eCV+lv3meX5t5sfoOpv9L8/7H3u/x3lJH+yPJYTT/coBy+8FL4h/4x+zvb5Q+T/4h6n07cSDs4C7116Cv6vDI0gJW0n8eppfEvbSGxyr/qfQu7KN79hnIqYJ6n8b/ueQyGn1XkX/2J89A72Pk8yx91aL3HeDbyndMvAI5dpJ+S37iaVaT6xrYAt2Han8uPTWTHqz9bvz9lfBqeLTyv3k/PIsf+Rm+of3j0N826+rG6c+1l/eJluR3EvkNlZ6m319Ob11gJ/Z+meeWwjfV9xl5H4HOGxKvQ5+PJP6PX3tW/q0FKNmI/ir8dWf0NlGuKWyB/w7GsSfho+gbQN/9pOdob4P0mfjtjP7E5Q1K/Jzxbz4+PpH+U7opvz+CfTeRPivt4ed62AXWxW9F41YleAj5xJ9kvfDp0gJm3TDrU7P4zY9ha/JqmX1Z9p957oSi+W458vtv5n/sZBv0nac/18z6nXprSbdD78cZb8g78/nMFzN/TLxO5o/d2dOPnhsn3dfzJxi3vjBPaiHdO+s65N2YPLqgr530qfrTw8o1IOct0Xcvvn+k//v0nxroa8Q+3kRP9hNvIb/G0jvgv4f/32FHiYtZLX+F5yskX3uDEg9h/HxN+xfwH9fQ2xT6OAyfXyqX9aCsEx2Lv+70U9H/n+GjD/kcmbg12Bxmv70//zGRvPtJ11R/A/7hbX7pLTgBXTdrt53n5+N/snTic1733Ap8zVB+uvnWA+ZvL0o3Jr8b+d1F5HwWOV1FHokPqI2fxAkkPqCT9h/T3rnyW6ov878VsJp+1gr9JfRRDpaB+2i/hv61PSyFz6W9xDsYV5rDs8jjYvStyPonTPz1gNIC3sBOnpd+Lfsg/h/LDyxE3w/Z7/V8dc/1Nj9agr9axv+B5HILe018zdP6RzPPH6/erK9Xzvt+1i2Ur6z8ffzVvXBg4nfoa4Xxcol53ljjaxv0XEW/25FnC/3n6ewPsuefzI8e9/wbyt+svV6JM8z6sfy55D096+HhN/GT8pfBtfR1sPZvKi3gOegbIn2x8rewqxH6ZdfE15DfUZ4/rGh+lPecY/mz4+HO+uO52U+jzwP51Q3650B8dNCvT0NvWf9fkvV49N3HTtdLP5P4Kfx+j/7ueV/hvwZprwI9vid9fuKh1PtM4h39XyPxW55/M/4enxfi/z70riG3h7VfTvufJ/4DP/3oKfG5vfBzrfr3kT4UHTez1ynsKHGUHdSTfeeFnu/s/2Hs5V79vaN6WtF7Ve0fyO6y7/QrPzdH/rH4m4H+h8h9Gvm8m/gp7UxFT9aVr0TPZf6fRF9vZv9NfuJTp8ivJH+09DWJv8p7H/k+oT+NVX9N/ByV9RH+41G4Dr6R/UV2uRxftfmnvbI/Tv/3wLqJj8d/ZeN7y6zroqtv4uvpK3GzOQ+SdZaB+ssp7PN4/WxGxhPPr+EXTpdO/Fbi1hOvnvX1h7T/l3lHWXKa7/3sKP5okPZPa/Rvet5kJwONb/fC7+CIxK9KZ5/rCOno98PSAh6Inw+k98j7UuKfyCPzhNfz/s7+ci6lqno2kfN25LYtv/wx+WX/ow+7n84+Z5Nf9k8ir7bkeSn7iPy+I7cV8IfYm/x66m8Iu8l/hjyPx29P9e+UdT/tV8Rf7aLzColjvTPx+fpZ57wPqu91/iLj103qeTjxSvzVAjgMTkH/2eg+j3wSf9wTHXuj7xP9oQ6+sj/7Onk/on9Ups+H6fEM9F+rnVfgsJy3ybka9thNOut/q80LboVb65//YQ9DpG/T/071/1bKH6t/L8LPZejM+ZIbClDSgTyzzpv13Ufxk3XlrDf3zzhRWsBm7K8velahZyf9dmf4Fjmvpqfr1Zf97PiR+I9G5pOj9Kft0PkF/qp6fn3Oq5BTffljyP93+juDHZ2UeCntf6b8LPreO/FZ0gvlZ5+xkfxbje8r8N2cHMaj/1H7bqewz0X4n5DzX8abK8hnIsw6yzr+6Dr1fpLzCvjppr7u8Hz03p31f/o/z/+zpAfk/SPrffSccSr+qzK/nfXtp4vWuTvwrzt5Pzyfff0qPUR/ehjdR3lfrE/+l+HvD/3oTHSsz/kd7YzKulLW5eh3B89PIJ/vjEc/4+O6xKfCSeQ9Ef7Fvsrrf5uk20ifRW8f0ctk6ayHrk+/jr/B70XoPAd93ch5Pb5PQv9Nnt+Hvquzz6M8Vw7fOe9XzXN9tTedP8x5t5elF2h/L3b5ivzjyedL6Xv0n+dznkf9NdF3W1HcTeJwiuNvEnfTMXKUfyP99tj13+2cxf7GGH+mwdHwW3ScR96fGJe+oYdXsp6pvz9H3xP8/yd6ZuH/F9ifHDvhb5rxc/fEzenPE+VfZzx/RP2PeA86Cv2rs77O/oZI747+N9R3F/6HG38S//6R/tSPn7qc/vri4xbjQXv4Mjwu79P010g68QDZ/78UPUuKzj9k/+cK9nlYzkd5rlHeI9GTOPDi+O/H0J33urzn5f3uJ/39KuV+kX5LO9/Gv5UWcLR6T2E/GYdP9f8a9J4a+UtnfyrjUtYHzuXvvibv86T7Kd+jACXj4Fx4Cb1tZnfV0LG9erL/PYR9DIUvwqyznEBureEV8CP5Y8hjYeLm4B/xc+QzHj3PwS+zXuP5lXAm/5HzpQfmvEr2Z0oLeD57+YPeNsL1MOcy2+e8BnrmZf+X/Iby9y3I5Xvt3az+bvTzlnIb0F1DfRPR/R9+9Azl3oWHo6OL+qerb2DW+6RXJV5F/TcmviH7Z/rB2aUFnJHzIdETPzOV3XdU/nb97SN29XzO+yp/CH0cDg+F4xLHa1zbxE/9aXyZHP9g3J4Yf47PrOf+xa98zw6Wsq/xeX/gP5qZZ1woPYDcbkbP4qyjk0PXnK/WXzfDEvbejzw/118+g4PQ+b3yW+KrLGwUf6v9uvj7lf73KHpPThzmOule7C3ntR6gn6wbZD3hb/rZmP4CN8Bb0Pek9Cj4FMx+z2Dj18P4PxgdUxNfib6t6GMn7Y9iJ5fSR73EG8o/XPkh+H4HPa/KfyjzG3q7hdx7wcE5f26e0hxd2+snw+XvTS7ZT/2F/LbX3i743RnuCntnfM28V/3r8XsG+u9h7wPMU34w/l4Lq5sPfGpcPFX60uwPZZ1QfTXRlffnXuwx8Vhvk+e1OUfJnq73/0r94BvPv8zuXoGz4Ez5H2afkn5+4S9+ynnrovNi5xifP5E+En2H6z/v6E/Z/8h6a9YLu5PTpUX3XzQhl9yDkfWPccbFCXA8bKr+JfrdDfDGnJ+Q/wX7+RA21f6z7KEd/xP/+I505oPD2NPp5LSy6P2+Db2uVH4v/v4sesx5v8RP7lt0/i/xQ3mfTPzQS+TzFHo/yL4PPnpknqa9i2BHmHiwxfz2Z3CQ/lMZfY3IaXfPf8Vuz836GXvZk17zPpn3x/HG09X4z30nud/kcP72OjhT/UcmvjNx++S9il4yv3mNfSVeuir7jP1+5f/f0Z/3iaHaT/xUH/363pwPT5xV0XmxldInk0/j8v8ul3pS/mTjz0Ps/yTpj+i3e/Z/1J/58gz0/a6db/H7Mv/UWH7O7V6Y+Pui87sHsL+XE9fN/hskXoy9LGE/2bfaHn1b02sVeDf76aD+uujrlfjWovllqXHheZjxe65x4z71NdSv7peugo72ua+DfeQ8Uzv/J2478lmceLnsP5LPyTmPxr7+kD6WfR4Nr4FjEr8uXZl+XpIepv4K/NLn6O4tfWfuT8H3HVn/w3df+bMLUHJU1iuld8DPRnL5k9/+U3qD/H3pN+sSxesVb2n3f61zfGI+/SL9L5BekvVt+DE55pxMF9gn78uJ++I/Euf6W86V64/Zp6infPQzXr/+MPH52b8hv+raechzLyY+hj4qwfJ5/1fPSdmfNI6cLJ37RK7K+Xp+5C6Y+0RO0t7v8LjEQ8lvoPyP+sfKnBdP/LX8XUsLWAvmvGpj+R3ocY3yt+ccS/YHyGslefWUzn51A36jft6j2FPOy98m/Sl72Er5HeUn3uY36TVZX6bPIfRXQXpexif0P4HfC7Wf+MXW9HgCnJX7IPA/kjyzz5P1tKyj9eUvVunnb3sfuSPn0+j1s+wDSs/O/TfkuRfMOHWA9t7kL17L/gU+PievDfrrGfRwPnusoP3ERyUeKvFRT+Z+B+01z3mcrLckPoM8fkF3Y+mcz36QfB5KPC0sm/ge+Ytzfli5i8g354ZfVH8v/Tznh0/gR8frv99IN9dOJ+Vy7mml57I/2og9Zh54mvZ3l3+CduI34kfiP36PP4O7s5+rc06LvSbuIfOkzI+eKkBJH3guHJt9UnZxCfs5n75PRN96/e53uKf2b0y/V34xenqT94U5n82fDiSXksRvq3+OddwtjQsV4bnkOU+x8+EwODrrZfj+I++LsWPya86f7YnObtIX5rwc/d/Prjbh49PE/yceKHEr+J6S+T55/ApHJ66L/E8xr/gKvmn8aZP3Pu8fT/h/f3Ierb3pxrX66HpBuoH0VuSdferi/emcA8k5zCP8n/MyX7Hn/eh/vveD3OfVAX0Xwo7w4NyfgJ6ucAH5H4O/nG/OueZtc49Szo+iN/c3bGJ/ub/hFnLL+s/q3JMifza/MxBmvnuQ9rOfOk27y4v2V8+m96rmp2eQ69cw+/aDcl4mcdoZX9T7eOZL8jO/LD6vPhNdJ0V/6J0sv19pAf8rf1LWszJOJN6X/f3Mn97luQ7Gu+3QF/uOXV+jfOz7Iv62Nfs7EbZOvAj/NoseO/M3TeTXI889YLF/GGFeMjjvj+h5lD0MIvfv0Z91kHaJr6X3Rv5PvNSZ+Ms891x4HUxcfkv+pGbi47W3i/Zr5l42dnWdemewjw7s4wvtf55xOuMneSfu6lM4Xf1ned/P/X5tiu75+6O0gP3ZxfScU4bvZ/1efa/jL/OTWfpbzvXOlD4v56fYX216bZh7pNRfk5x6Zr2fn/g471/kPTHnD0OH5xvifya+ZsDch3Kx9Fna6yx9hfqXkPsW2X+OHcS/8iuJi0oceeLHp5H3Fzm/l/O8RfHkmZ9F7m9m/8LzHcnpEum1Oc9PrjmnknMhdXK/QfoFu7qXPf0Tr1mAEmSXEGfJZPWXUc+RRfGLuX9gj8T/wOL72+qSf+KaR5BH4psTZzhZuZn4HJr7dbyf5zzTaOkX1LcX/VQpLWB96Zz7SXxZD+0kvizxZhXZ7yn8xt65zw2fm8lvrXnB5ejM/aJHKt8cLjG/XKvdMsbL3Lv5N3lk/bgsendgH7Wz34G+3NfWxPOz1Xcke83+wYSifYTsHxxA3i3Uu6/2Ls89Afpji9z/UFrAxP+coj/P5ifvUn99cthsfOjJz+8mXV7+5+RQMfH46ruE/Frh53jYEu6P7wPR287/90t/xj7a4Cvnp8LXXO1Vwt+2sI96J5FvZf2iCtwN5h6Ed40XE/A1Eea+qlbsJvG7Z7CDs/GX9828h+a9s1bu9+Bvts79RvSV/Z5+yj+j/BXkmfFzM3n+De9mB7m3Y3zODShfTf8qg74Dct5a+eL3h6beFx/XD3rJz3ns9eSTczZ/SB+Dz8HkMlL7DbRfT/3Z97wWZj80+6A537CVed9S2E/+Dubnpxatw2f9vRP55n7PC6UfRf+J6Mv4mfE04+dU8h+In2c991/1D6Dv7CNugCW5Z5FDbZF7kukj7/errf/+qJ4N/Me26Mp8oat1s2dh5g9L8TELXdejdyR6X857q+fbkv92+CvJvQw5bya/bu4Ty/3B6GlOP2U8f35RfEfe17I+u16/m514HunW6q9bdJ7wdvS3zz4kfd+cfS2Ycz2N+aOJmb9JN058Cvu4B96QeCT2ckjim3K+Ivf0KZ/793Lf3mXSM9A3njzekD5Ueij72FV7I+i1PZxnXaKc8bx6znPmvDf5jMj4CLOPeqb83OtQFS43j5pPXzuwqxfMkxNPnPjhtxMvJr0a3aPy/lEUnzmmKD4z9xLlfPsb5Jn3+1/q/bvetJP6q+qPievpz/+VZz8N/P9RzvckHqhof7xXznnI7+n5jH+7knPGh4n01UH/q0pP3+Ucm/r+Ym85zzdM//6zaD8n+ztD8Zv9nRf513n86FvmF7VyLjfnY9RTfF9M4hoPUP4B7XRJ/FzizfGb+3tzvj37nw3hWvxm/zPxJSvV88/6v/q6FO3/Zx86+/9PFcXnrs89aPh/WX25X+qO+NnEJ+mX2+mPM4vuU6yi/Gx+6hD0Hqi+Zco/pdw8eLT2TzOeP86PPAZ7Zz9ZfjVYveg9e2f9fSO/tYt04nV/yH0k6OsMcy4x49JC41Il9pjxKechxuiHOS/xJ/p60luzzCv5jRu1vw16ympnAX89POtDWfdlLxkfSnM/V/p1xlv5+6H/Cn6jOrnVgFm/2Jz1bOXOYge5f26V/+cnvi5+Fv81os/4E/quXLTfl3GlW9H4MtV7x6H80PPS+2r/e/S+xA/21H/r5Fwg+Z8NB9PDIYnHUO5Scqqs3ZfUX8e8OOsOtaXrkeeM/7H+NZY8lsv/xfMd8TEr82X2MJz/GhnMOr/yTdR7of9XqP80+bdrP+tea7IeZLzYQjuJk74Sf9/q/9fCLeES41SfAvzz3jgK5v2xQ84lF+1fN8351dw/Ca80fs5G73D1fQ6vhofkPFfOReNnT+mcD+mhvTn4y35YV/xlf3sczP529rtnkUdt7S3z/6NZ/0Dv98ax3O/2cOZT6nuV3y/JeUb2PlK5nGNsCHN+8Y3c+4ruVdlHRv9bOVcJVyYeOPeN8TcN6aFy1oPVU5b+s76T9Z6G6K/o/3HouUH9OT81Bf3l0T1J+i/tL9De3Z4/NueJyW8t/nbnH+vCb8kn/W5o4lQSP4H/7fXXLvjcBv1tleuBnumemyv/LnSM5z/Hwax3voHeodpLvOoI/ak8e7vD898pvwzWQl9t6azrFq/3flV0/+/x2lmW82LsZR27voA/ynnYnAv8MedB+eMryfdgejkxeiOH3D/5M356ae9Icqsj/7Ssm+ufi/SjBz1/U9H5xZxnfAwf4xPv4Pn1uUcq+3N5f8p3Vox3ibN8zHhWOfdrlhZwbPZVpGOvseOsTyZ+PnHzG7Wb+Pln1Ft8L3j4L5d4buPuH9rtr54P0D0I3e/n/JD82/1/B+xnfnEgOu/0fBPj1JPmZ3kPuQp/OV+S8yaV1H+nehM3mXoTP1kNX9vl+yPkvzzrc/Tbmn18wD5zLq/YHmOnuZ/6V/6tjPlzY/o8XX559cxLvA1/nO9TPJz4x8Tzss/HEr+M39zzV3y/X1vrEtej8wryfIr+cv9rJ/Xvl7i5nE/Uf5uRT77T8qXnEl+buNrEkT1JDr9pr7F50tuJz/f8KdIz5FeQHoLvLczbLjL+dJTeMv6GvlYVxXPkftMO/PcKfvNC6d70lfswMh/N+33uy+jIPz6V9xvy/y3rU+x+p9xDpT985v9KsTfYQv335Hxc7rdJfyH3o9G/W+Ksc54MHd/IX1RawFuzzsE+m+ceCnTtwk+0h5Pl75V4KdgKPVnfSPzpAHZ0Mj31od/cW5hzgTkneHrOb7D3FolrkV6WuCryeDfvx/Q6Un6+L/I5u8v3RfK9kdyLl/vwcl/ez0X3Y+VerLn4z/1Y+V7PDPgC+8r3e3bin89Gz66ZF2f/Fd+L4dewd/b5sq6Z/q787eTzv75Ldr/8w7R/Y+5tyXoQ+paS1z3yb/P8KOn32es/63z479z433SHj+fp98S8v9PPFvjJ/eG5v3l+5kX6Xc5DfuG58fT1LDqu9HzOS27k128wLrZlbxlHns6+HP0fr56NWVcx374cflp0PrL4fWVxaQH7a3+c+UO+p3Yj+8n96xP5t+w3ZF8k8XUbE59Ir2Xwn/MLy8k79wMuy30v5PM9+9zM7z/D3/ZD//ZZf9Fu9cRZaz/rxbnf5vHEddHPbuR0Q9ZF6CnxrTMq/vv/lyr+Oz/3bqa/v0IeuX9zH/4u7+F5/35A+ftjf+xgUe5JUm/W//uo71rtHEN+nxgPPoULsx5PfsPRc5Dyxfd/Hkjee5PPaH7uh9SPvn/uJ0HfEPK9S7+5G/aHg9W3pfrupMecg8g9YPmexD/fl8i5YfRfiN4u+J5cWsCsX+Z+n9zrk3t+boN5r1oKi+/R/ijfZ9DuDvi8T/uv6X/P6Qe5x2B3+f/JvYP847HSiRfO9xfzvcWs++X95S39cYesP0rn+4BTc67V+FJ8f/Ib7LGGdcdy+PhP7idST+K3jkFP7q9emPtK+JWjs46Z87v6W+bPP9LfmOyX575Xzw8lp7HS6wpQ8ji8At6a/Vz94n7j3nDpcujNutsD+KsinXi9s9lv1q26kX/Wq+qwu9j9jtIzye9Hci2+d3ac8rmf59XM54ru64mdj0ocC/luyv4eO5iMn/n6Y/ZLbtfv8x2cDblnJPd4qSfrmQ2196387uSV7w7OIMd8B2ZO4t2lc64o93fmvr8+5PF83ufobwq5dzL+LSWnXur5r3FnPLrLkE/ihpai51D1/Mle87269vl+GP3tD/Odu2q5lxE9+yWekH03LC3gq/R6H3p+0/7iApT0h7nXvH/WM3NuzP/lpaP/c6RfhSO1d732TyevxEFdTc9P5/y951tkXJCeRn7Zv+2Or6uls39b4rkh2k/8yjLyOB+f+V5LvueS+w0WmK9Myr5k3rsTv2w8X5nz04kHl/8pf9neOJB94Oz/5t6lVfxCc3bwLbqq00fiFr9InGXuz+Jfcl4j55HqyP8N/ceh83V21CTnM3PuWbo//3UsPeRe0jf5ueL7ScN/fdiwSB4XoG8T3AKfuWf7S+NPvj/4mfQn7KOX9sbyMzdLj8ffxei9Ej1fsaPueZ/J95S0l7jddeofoD/dDe+BuZe6buIZ1bNV7jui3+Xkm/iUfP8238PNuu0L8CK4Qv4KdL2rvarssyz66tB3dziYf7gr/gO/OW80Qr2HK1+O3Wxt/h87SlzsjvmuTNZPpK9RT9avcg/dYPor0d4r6PqA3ymOj8l6f74Tew2szF5/Me5/ZJ73ce49SHw9ui6l59zvl/v+HieP3P/6pPRNia+ml1GwIcx7TbXE07DvbfSHsjmPSL9tyfsrz12k/ozrWQ+rUFrArtmnwN+b5NnK+Do95+HJtUJRPOAA6dP0m2fY4SS4t/6yI3oq5Jxj1qW0n+/R5B6Q3P+R79PcLT1U+byv5P3kgOyL5R5FmPtUc39e3lMSh5PvB00xrkzNuWOYc65rtZfvSH5K3/l+5HrjV+KrZ5PbHPnF6wuPs7/MG7bPfqlyi3LPiPJnkWcl5c6Uvinr5/xZ7ifLfWW5n6wnu78n67r4y/czMk/OOc3cl5f9iXzveQT6ppFjvv98JLkcTU6HS39PvkehZzZsAaeo9xjyq0EOu8jPee91+B6Fj8TxN048Ve55Q/e26Zcw97vnvpNh6P9F+kb97TP/Xy99Xe4vQ99Kdjgv3/Mhnxf5iwcTT6x/fhn5qTffb59RNJ/ejb+tC3vBJvpZXe3lntXEnXeNfePvdfzkO7/5fuqo2B168l3FvB/31O/qm//dKD0z/hcdtWEdmPvusu7aDhaf1xvALubqN9+z6+roOxv9Of+eeVO+r5nvoy5X/wuZD6n//wAiqB4OeJx13Xf419P/P/B30jCKoin1Ls1PoawyIiGEKDOV1eCDhIzsyKfICCmSMiJaVkMiGkpZKYqGnbJXhArf6/q9bvfPdXldv8/7n8d1Xud5Hvs8znqc867XuOT//R2wZwHutkcBdmlVgB9XLcBPwPo7FmAf37XU/s7mBdgZHLd7AU5rWoBXw9/a9x8pH9aoAI/6l3bwntCyAK9Q/xB+GjQowIp7FeCMygV4/zYFuFV5fDcpwHbbFWA1eNsqt4avtHYBlqlfgLPrFeCIFgV4Lbm/Vn5L+1H4n07eDsq/4Hdv/N+xPXqVCvALehnt+7nkuR1cj84p6ufvVIDzqsC/cwE2R/eL6gW4FpyC/5/JO6e0AO/x+6nNCvBz/PUsW4DH7FqA9asVYAX6/QFfK9GrWLcA6+Fz8m6+990bNQtwG3bfRH+HgFuTp4R8XdnpRfZ/umEB7oH/X3YpwNa+/035bOWXyD0bfBFsh/6n8E+Gfw78R5PvMv640w4F+Aq/GK6+Fb4PIu9qehhMfzXQWQz/K/DX89097HW8fjO3XAH+5fsOpQV4NT7b1CnAOuR/2XdP8ZuJ/Ksn+qP8/jp9PKf+OnLcX6YADyVPD+X2ynvjaxA60ysWYGPyjofvffWtyNsC/SfU7+X3Fb5rrv559pgJXsz/RqB/rv73N331Ui7RvkWFAvyVfpor70ne79CvTF/v4PsP8s/kr2tjD+3OVr+n/rk3eD46/eDZIL78DD4IrvfdyezVslYBHgT/beQrr9+39fuH4tRQ9av5c394fteP5pJndWkBvkQvN9LzNdr30m4Q+v8Ba9Hzvfr3s/rlVOVDyT+Xfq7jR7XhvQk8D/4X8PUpvTyrfhL5HibXo+BP9FONvVby+1XgBPJ9rf0H+snnykP1y73Epab61T7Kt6nvSa49yXsWPe1A38dvW4B14O2svIvvL4HvRnJeqnw3/dwhLpxO7tuVZ5L/Un49Q7uZ4Jv893D2uJs+qtPjo9q/XVqAK2sU4DH4b0g/N4jb97H7m8rT8DNDfGrBvz9gx5XgAnraDt4tfj+ZfmZvXYDXsMtd9PI6fE3xXw5/pfS0A/5PpNeN8HZRPg7+pfR1Kj94WbypCP+2+m/G29Bv0uqf/OX3YeX+yV8H8h8G/iR+LcTfg8azseBt+tt4ceoI9rhUP1hlHtCevk8RL2eB14EXs09f7eaz+zzj4f34PZj8/fl3X/FjVOSkr0343gweyH/64a8/vg9jh3vo63d6bSp+1Te+3q1+O79PVP4Pvrel3+PQv4a9+vKXycq3sPdFfr/W75PAPpm/sf/d7HKbcuZ9me9lPjiJfEvpsy/5/iqAklV+X5j5IntN1o9Wal8C33noLWa/dervwV+H9KfMC/FTTVw5A55nyPsGffXNPFD7veC7mP5uY88zzTtb0P9A/B7K/pXV7wD2559X+35A4gy/uEH7dfjqhf4D+J+F/4PppzY+y9H/Kvz9xP6D+cnd4v+Bvlsofh1C7kv0r4PUz4mf4vdX32f+lP4wGv238Zv+sTd9fcYeG/2+O/7eFg/a6b8jzHMXo/safudshT74H/IP09+G6X+X6y/l8TcI3t3ZaTw/ORc/19Ff5k+ZT2X+VAn/A+lje/Vngb3Vf0qujeTfBr4u6o/z/X7oPY6/xvyhEdgQ7En+N8j3Pvpbk2+g9i3YqyH4vHg5lZ80ZfcLyb81PL/gt5t4UoW/fWCcWILfVehP1a8yj479D+Zf09mxjfG1Ff1tFl9Oga8T+d9Hv4Q/rROfTzDeNKXHaviuDu4MXko/s0sL8Az8vaw8Xvv96WUGvbRWPlP7xLtu+EscfAn8wfzifd+9xs8u8n1N8f8D/r8S/axX2pGvLL1+47vjyb8r/9gNvuf83lH7m8Sna+j9WrAW/T7AH45D9wzt7+HfffnBVO1ao1cHH8epL4v+F+pXse/nylurPzbxV/19yo9lPYmfGer7krsjvgaz8w3KN/Kfa/hNS/YZTr5vxaUj2bOEv76F3s7wfEtf9+H3E/Wviqttxdlt/H4u/i4wX/1TPzlfeVX6j/X+R+DX/OahjL/iy674rwsej59+xvPj4dtHP/mdfL3I9Rm8pfjfUz99VP+bxO+a8fPB6stpP0z5PO3fRX8t/zyMXUrMH4do945x93X97lTlq+A7B/1v2OEs5Qbqe/p+dua3/KQGWMHvv+o/len9hqL9m+zXZP9mCv3MSLxm53XwTFW/Tv/8ElxOj3V9/zY7DVa+VPtD+cFV+tej+kebzNvgv4u/DgPvBEvwfwp7dgXP5G/X0u/N6D1HjibkHIGfceLDQPUvggey3wr2vIe+P9J+TeIN/1oF3sof56pvwh8Xg83ip/gbwp7l+NUZpQV4Ivl2ZJ+q6LaGv5X6WfjLflD2ix5QPxrek+i1Cjs9mfm5+cMR9HGL79qlXr8dC8ZfpvpuPHs8DpZh1x7aZz2Y9eEw/K1j3wOU67LDgcrZd9kfv0MLoOQa5YfgXca+D/LbtvBOBJuKZ3/zi1+NQzXh/1b7bcn/Kn12Ikfi3oPs/xV/PTnzG3YfRL6bwVPVD1T/N/313umf3z0h3p3Mrh3ZeRD6M9SvofcPwZHsPVtcuBNsjd9d1E9Ar6F5wO3i/Ufk/V7c/Q68GuxP3qwnsr4YRF9ZX1RSnq/cAN3u+s/v9Hlq9nvIHftjq6QGup/it7P6LfTS3+9Hpj9l/wy9B8GG6F2Ln5H8ZBy97ENPx2i/KXFZHP2PON9S+8EYvIDeM48bmfkhmPlBldBX7saezfBX2Tp0Ov3sov+fg357+m6jvhZ/rwkuMv5+Se9/gHPQqwRGf9mvO54fnQCe4buD1R8E7k9PX2jfCd3MO+eR90fy1GGfK/W/68E3fX8C+Xvz58u0Own+V/WPBeB14FeZpxr3J6F7Jv5bwber9cpMfO9Fv3PVH0Bfl4H94J2Ffht+1Y38XcHJWUfB34U8o+BfSI45/KWs/rRCHDwc/eHiWnf0f+JXG9FfzF/GaP+d+mHqa6N7CHrH+P4l3/fEfw9wmP49Bp5DxL259FaGfTbxryv1j93537aJ5+x2BHz7kPtw5TfZY73+cTr6D4Gf4y/nDm2Ui88fPuPvy/Bbkb3r01838mZennl65ucLyPUHe92nf2a/ZQy5fvZ9W3Itpd9txPM3xIFfSwvwUXzdSV/x4x78If57AX1cRs8jyFtXfLkIPxeD/cDFiX/88Qf6fIQcVdQ/x7+eAZ8FF6l/xvh+u/nj5fprzvM+hv98+jyBvU/Tfpj24+mrJfw96Tv7Py/4foTyeuUq+O6G3l30eSx9D6a/2uxWVv+aCv/nvu+l/UDy18k+vngwhV7P4If7al/FfLqEvaoqX47ebvjNPP1scraCv7154/fs+wv/HKH+Ovx9Qs7sU71I/o769RDtP8PXzezfIHZt/k95n9X+R/o4wri2Jvuq2c/DzzT6mUEfL8Dfgb0q+34M/n5k72HmO3f4/Vrzodvx1Tr7Tzn3I8856ofwj/LoDFbO+iHntrXgb8K/ytPfrNIC7Aj/B+zTOfNv/a6e7/bWX2+lh2Ph/VL5NfHgZPLN0f/r638N6esD/E/VHybC/y08D9J/ff6Z/aRv4P8C/u3o/THy1OFP32hffN6dc/CG9LOD+LAz+CF5NsJ3Gr2MQ6d4/jhaPKxAXzln64/+U+w1CbzQfGKB7zL+Z7zP+J/zu3rsXx+sxT4577zE+rWrceEweC/KvrL4/zK9v4Hfncn5vvrT2KcreGH6C7+/kn4GJJ7GHvidgN5r4ucE+unNnlmfzmafKuofsr65HKwLXoL+Nplvo7et8lnaL9Jf+rDLYuVRyWcwHoziB++p780+5fn3zeCb7HMhfBXpY6NyR3HucvL+6Pt1+tkPykvgb4z+TeJaBfpbpf0U+psM1mOfefwh417Gu3f4wVf8/0XxcS39zIPnLPU1xYVu7L0UnzPjr/y7Br53heff6t/S3/rHH/F1UZH+o/fXivT/kvh2gN/bgD3xU5Z8neinBfkuS/8XHxqCjcGZ+JiKv4n4vhOfpeQfR96lmY/TxyHw/82fRtLDbHzk/Kc3/dZQXskfriL/Uv13Gfge2CHzcfKNNP7PLcpjeRn903w/ljxD8H+W8ib6PMPve+DnKvieLi3ABeJzQ/76vPY16ecAen9S+36+O59/vdL0n/JlX2qH7Isrj8n+KboTyVdbeZb6x/Tn03NeBdZEd4249BQ9zwLfih9aD64Bl9DbAPh3gucZ+tuRvOdrfxj888WlCvrX01l/6y85V5+ofBK73OL7X9l9SNrT03v8cVP218Abs7+tX70tPi8Gv9R+EH/fnp/WB+sk/0X7V7Vr7/dZ+G+sPFP5u8wHyf+D8iR+8lPskv0fdhuEn93Rr83eE0oLsCn9H4Ze/5xH6897Zn6ofIly5q2Zr/ZFZ0d8bOv86jywMv23RP9o5aPAjmDG4+/02xN8P50/HIPeMeR7nT4a0cdu5L+WfMvo93J4p8F3he+34PsA8tzHvhvwsxFcyD8m6F9l+WN3eN/C33var+aX0xJffD8FfzfS5yxxtK7yn/R3ML2tcu73iPIW9ZmvTwfPz/lG6Oe8FP3i/cV3zS/aZX8+eTz0exN/7yOuDsr+H/w/oVeO3morZx93Nvv9i36q4XM/+C8hTyNxtYv5SDf1zfjlGHxvMD9K/sUF1iMTxJXGFf7ZvlzyOfBxDz1k/p+8olFgV/01+UXzjOdD8D8UvSPJn3P1nKfnvL2b9uP51zL+9gg9f4n+GnY9jR5OT3+hp/X8raZ5xlHi3Sp06xoPdmeXFmCF7A+Tp5TeKpUWYPKY2hbtO2Qfoof6qfhfSb4n2LU5+d7BZ330Tsk4m3yD7FdlPgtfzoc261dbwE/M43Ie14M/dgf3Jk/O4wbgM+PfOvQXJ79S+SJ8LgF/y3yWvhaCU9h5DHudYFzoDO5lfvgFue5m7+Ha3QnOZd/PtFvIL5vz0z/xvc73OX/PeXzO3x9hl3+x3zjlptrtSx9ZRzYuGgeSDxn8oRf8t5Ij8fssekj8Dp2T6Hdn/D2qfjK/vEb7x9nvX/B3Ve4oDs6hj+HwTdDfk0c3GdwXv+P0vzL43BW+o9nnWf2nET73Kcrvy/5/zgnu1H+zztuHPi9ij72Vn9P+cHHhEnATP/wj61v6bal9Rf6Vc9kPxfW9xPXr+flV+M26JvnFOU9aAV8J+f8UB7r4PeubcuL3enbLeeCC6B+d3uAV+sPp9DuA/meyyzDwiuQ3oHsW/e2jvE3yH8WLnO+eZx38C/z3+v0Q8v1Nvrb8Z3v+dCB9ZRy7TbkGul38Xl35Y/VHaD8UvRrJ40p+SdF6Yjl+z0ieEPvcB45kp53Z5Untkx/RIfmi6Gzi192T/8e+16t/1/xua355EZj8/fX8sQw8ZbV/E39d/J596C/0t+w/j6bPzcnbAZO/ul3OffnDJ/R1S/KjC+C/5xazlHOe8bW4k/VMB/7TGZ0PlbN+Hs1OldBPvkLyaD8tmt9vm3NJ9F6DL/FzovIt6mOXHZKXxl7ZX2tDb1PRf5r/vaR9Hf33EvRPod8NxtWtxekTsl+OXvLee+FnvfYPsddoeLKfcTn6Q9B7hx7Hl5JL/SX600VgP7AcfldYT50JPgCeg88G7Jl95rH4zv5y4v0b7PUxPSX+Pybe5Rx5Gn/N+fE0/tlKXBgDfo3OQHQrsXPyHZPfWJu/ztFv3wbrqI9dK9HvEvrtib/zlZOfX5wfm7zzo7T/Q5x+A/934bc5uyS+PYnP+vTRnTzD9Kd56r9HL/sl2c+uhH4zfM3OfQB09kC/Cr9ajr915g/T1V9TWoD3gsPB3slvFC8y729F3sz/s37IumFh8nnUp9+nv1fD/63KNeC9V5xrol+t0L5/8oDJuUH7xupb0U/Ow/dV34y+/jS+POi7shnXkx/HvuvoZzd0kn++jr88xI++VO5Of8X+nfnTI+jXYo+T/D4Q399HfvOl7L+3MY9ao91i/Wx5hX/i2wu/jeE9OOMpfk5VPpQ/raHHt/G5OnZB/2B+u4vyNrn3Yn7TjJ1Ggy3pc4X++gO+H9aPN6f/iSeN0T0RP/uofwb/jeLP+vtdRftjAzO+Zl+K/r/A71qwkfH1qeyf8Nc6WR+QcyH9Zb8g888/8PcM/paIq5Po/23lyvwt+YOnsEvGqafxl/3wT8wrs1+e/fEnCqCkHfpv+L2P9sfA24D8FyaPSbkn/M/m/BF8hJ6+Iu9nYF3zh5dyv6a0AHOOdxi9HJJ7OvrP9/hKnv8fyYfB38G++wx/R+J/f/pvA27HPjN9dxX9Jb86+dbJr96Q8yH8fmL/aAb5Noobv4Lf5PxK+5PFpWrorzfPasu/K/Dnz8Sty5UPUt9e/KzP7m3od4b64dq14Kd/Wx8cW7Tezvo76/Fj6accfRyKv865H5H1F7/rDO8A9Nanv7PrK/CfRA+r6et0+rgYLM43PjVyJI+GPQ6FP/eFyoMDEu/1j0a+z3ws+9Jl8D9O/W/4+zJ52Opv0N/ni68N+Ff15BGVFuBG8EX7QD3QeVvcnJP7Ffznd+Xk5bTnX3cljub8nF1/ALcT319PPl3OF+j1b/GtYuZ/yefB9zTwLP3pnJyLgO3o43N8/QRv8pw35b4HPS03b5sM3/vJs+M/I9jzfP1kuPJOuX/C3+7Qfl98fJX8r9IC/Av8nH73yH3D5DNlfxXe3L9YzG+PgfdQeNrwjyH0OkPcexZsrn32S7N/OijzHPL1w0+v3BMDF5Cnawl6+J2gnPPle8WL5Msmf/a9rJeTlymOTsNvNf5/qf6b+wen6//Lc/6r/WX8oLI4MJ38W/jTc767m//lftHT9DsB/sPo8Wf6yPnR6epzjpR7RLcpf0v+V3OODH9n/rPa+NxFuQ68vxkPvhR3Nipnf3uSdn345QTlzE9fJk9rcfIa+js++cfZR8w6Br830P959hcOz70ccGT6N/0kX30Fvp/iH1/zv1bqt1I/Tf3v4vnV/yO//cbsr/CLu8mfPOZuyt3B7A9kvyD36WaDK8nfEf8X6q8XgJeAD2b9TR+5P3QsvLk/1Jg8WQ8n3y/5fXuS7xnztEeVeyc/Gt+PJX+JnZdpn332rB8u8N3r6t+E9yZ4KxXt/38nPp5Dr5OVM/8vh9+/+UOL7MPyn7L86Xd8rGTPRtq/R+5f6Sf3Ix6BJ/cjNqhf7vuH1T9YWoC70vs6+A/J/BP9rfw+XLz4A56rC6DkaXAx2EWcLZ6fLyqapx+H7vFg7ZwnJT/L7w8rD8ZH1kvZ/8m+z2PKxfs/2fc5rmj/5254kx91AHusSf6beHC/uPoheGbyn9WfB8283NP0e/JKcq+lTOIk+g/qVxPoo1xpAV4K/4Xixk45f0jeh/Yb+VXymnc2T7hF+9fFpe0z7hWt/xeIJ9PBt8SbzDe76A+b2eFa5e74rQh/BfDH7Pvyt53hrQo+YPzvkP1p9thAju/EiRPJk33V+7QvI059DP/z9JJ+/rn+mP6dfIGsi4rP12ezS/KBqpAr9/9OKgWzb0OPtbQ/PvfaxcmbwezjzMZ3veTPka8m/AeSbxzYTv/orX1VcXYweb/PvhM7nqo/HsQ+B4Kl8B/LH5v4bj5/qwtvm/ip+hJy3km+3FfNPdZFyrnPuoP+UhZ/h+DvDnha8Iu/xJF62j+V+yLwfgPfcL+Pxf8X9Lcbv1yr/LD6ofDmHsd/+Gfuc0zwexX6OpJ+vtV+Ovtn3p15+Pbqk7eTfJ3k8+yV+Mz+le37LRV/3kp+On+9BN/T6Ot0+l1ovrd9xk2/L8/9En6RPLfi/Lbcz+2g3+eebu7ndkUv+/P75T2O3Gehj7vVD40f+a6vfvW3flVN/30Nf9eLr8vRv075JPgW0FcDdliofLL6i9j1YbAvmP3jr/FfF0x++Jn0O5L9+vp9mX62Nf76F92rK74fcRi+jgC/tE64E/2N8Ge9MB/fjytvDZYHF/G76rmfCF+l7K8r18fv0sQ3fjAKnMcPW5NnJ9/n3Pk39j8+/OrHyRdJnkj2a7N/m/3c6Df5PcvwnXOA7P8nPyH7sbkf8Jr6huy9G9gg95/QG517ReSapB+8kn0bfC8RN4/Vn8fi5+jks4NfFeXvdhbPqpCzPX300P5I9su8cYTft2R+kPtKea/Id3k/oyZ/qUFvp+T+NP33pI9f4eulvF/yf61vRsJ7pvh/u/bv8Pdd9attlbN+2cG4eB843/wx++0viu9b0eNf+lfygheLR/vy77nKj9PfZvr5ULkeusnfT35lxdz3hyf5ld0KoGQg+Ao4gZ7nsesI7faG75rsj+J/DH94Fh+z6O8E/N2Or0f5wf3K9bUvBVeSfyvtm5N3L+1miW+naz9R/easj5Xb46M43z/5VDl//5h/n5n3Q+g9++d5/yD+l3VM1i/9ch8Y/cezv+m7n/y+QPl++HJ/Pffv7oE/9/BakL9raQE2zLmyct47KK98IXwnw7+39rnf/Hr1f9LL/earyD1Eu3V5l0J/OMq4cE/u86KzBP70n6tyD1e79J8hie/aR//t2XOOeHN+8tfA1fjrqN9U4B/f6z9rkh9PL8X3t/J+QO4djNQ/Hy+6f/Aiv34PPIX/3Ks++0tn5J4wOW5lr1PV9yP3dHxclvcZ0M17Ce9rP4cem/DPMeYhyd99Q/vkYyY/M/ma95FjiPJf+DsFP0vo51j09xOX5ohft+Ij719kPVLZ7zmf2hW+Ppl/k+MJ+j1f3PrN98nry/nrw+LFkex3v/ie9d2Loccvit+v6GT838xPOtuHyvov7zvlPacl9PKQ9t8XvVd3H309nfPZzNPpdwp/moKfXuJNb7APmPyH9/SvP/jP8tyD035B0fqmSSl82jc13z0QX/3F28ey/sq6lVyl5OyU83+/5z5Q8p+/zX4R/LnvWUZ5Jfn70O8+8FSjh5raD8B3HfAe/E/O/R36Sn5B8g2SXzDOfOER8KvkC/GjwblXyp7Dsz+v/aNZn5A354J3Kf9F//XBhexZwXfF+1fZt8r7UO2tXzdp90LiIvp38N/vyHUV/eV+1Fh++Q0/XGA+2N73m8WvjHebk0+AzvX6w4/sfkPy+dN/xOe7+H32ubO//W/0jyTPYv099yuXkvtdcBm4OfE691dzv1g592d+Yd926j9Uvyn3JdRnv3pfMO+FJX7mPCfvLeR9heTbjwDvBMvnnc+8L2f98npR/tlz7PcseKPxfF6Tf/L1VOYHDf/J3xf8cS14Nntthd9v4blSuwPhiX9k/z/7/uOMN8mva8Nuv+Xen+8vpYfi9xlqix/J712l32wN/5vGv4P5z8jSArxV/Mk7DjdlfSHunly0npvMv17Cz2ywUtaz9Bb7ZdzLOBj/u1F/XR1+wXL4a4C/DsbVK5Ub47OtcSnvTXyAzrlF/T15Bdl3TDxoq9/vTW9L6LMRPrbwh8f0y/L8f2t0joDv8OwfJ8+S/qYkH9Pv84wnOd8bbTwYBTbE73P4myl+NPL7Anb6iry5P38L/8o9+tyf784ePcBuee8o713w+zHieOJENfz9SR9bci+otAA74G+q8lz6eoW8i8n7i3nJn+LSi/pnOd/fxa7b6xfDlM8gx6n4eYbenwOvpv/h5peXZ54J3o+/PvTTiLyH5F1M8mVeWhO9A/HfMPMXftGVPM+ww9P02xI/+4mbNfSD1olf8PfIvXb4n0d/H3qtzg/7gQ8l35f+zgbzjmzuhyQvLveGi/PjXoAv+3IN9N+8/7uS38zD31B462v/jbg5EzxS/KwL33T0ZoBL9ceyGc/FxZwbH0pPY+llvv4/Fv3cyykX+2l3Kb1OAe/I/UT1ebevonKnzO98l/l93tt9knxHJt8M3xX4QVX1B9PfOH57EH+4Ab1Ple/l3+fqr/3QaQj/+Nx/UD4XPwPgvUy7FsbxzBcm0c8u9PNL6Cb/rLQAq2mf+dOxOf9h3z7smvvWuV+R9+9W/I/973uMH3k37eycU6HfhDwN9Ltmyregdx97P5x7IL7L+3bf6A9H5j6l8tXKB4mXQ8l5oPLueb806339YrzxajU9bYLvLvxeRB/VtK8fvL7fRXw9Lvf/+NtH+L6df33KfrXYrwm95N3d3I+t77sjsl+u/gD48+5t5rHF79+eXgAlE9Vfq7xJ/TJyD6Lvm5PPzJ4P08+TYNYbnfJ+F3wrS/7/9Nrgt33md8mThP8Cfn9raQG+jP4n5O1sfIl/7AaWwL+Rv2fffhdxbi265ypnX6YT/83+zEr+NUr//SH399Gfnnv7+B+d8QD/R2X/lN3vAHOOPp2/PQ9eRc70vzfgH0IvyQt8l3160PvL5JwDDuEfW7Tvp132YT/MPR5yjYd/sHhfFf3D+XdV8i2MfLnPpl3yw4rvL/Rmn5f+x/xtb/qcAi4xf9xDfWdx7SjwE/Ydg/4TuWecdzbRzf27z8XPO+kl8bQyvrP+2VK0Dsr6Z1v2vwDdzeLM89q/xK9eBm9mj+yDf5T3Uej5V+NYT/Y5Sn9pxg+Pxl+vnI+Jd9PprxO7/Q6ugW8VvlbkPSH62Y29sr+Qd/Kzv7BUffE4udr3V7JDxvsRuX+Lv7n00JTeu6r/wPdX5BxeffJIZ4Mf03sdfNcG835q8nGSn5N8nVfxn3fJ8075t/wrcTLj+EByfE++vA9U/P7TT+J73oG6WFzYkHEavu6ZX/t+J+1rsWMn9q+q/2yHbvLIGiZ+wLdr8laVcz8h9313z7ml/jyDfk40fub9hS7KWb+2MJ68pn4v5ZrsVx3+vA/fC/2q6h/n/3vwrxeVd4cv85krwC3sM5N9c06Y/aJX8d8858u+L87/rkc/V+t37fE1QPni7C/lXSVwG3Ei+2YXgHnXNvfhluK/Dvtdan30Mfv9V37x+jZ+Whscjd9mea8MXFtagNlHHsEe1fl1/Pjf7PO1eW/ycibnPFS5xLzoL/JdAybvfV/yfpV3opRfQ+dTfF1Lvm78/Qr0V4k3P/Pz3enjLPgf1J8eSNw2PpxWtL9yBb/OOrwL+nnvLe/ArUUn78Hl3dPkiRXnh83kr5lnL1XO/Poj5SXWz3kfIu+fJu9xJ/SK8x9vIu85pQVYFp3k55+gfhE9biJH4+xzscfXGefwkf76Nrz78Yf36Xv7vN/B396gp9/AKdrPLXpPL+/s5X35OuLOG/x0T/prVnQ/expY/M7mU/idkncPwFnq839EPibvLfQzkf6H0udT/OJCftgH/cSbVmDLonh0CvufSN5F/HcF+u/w2+XgUjDr6db6V11875d3KLPfk/lM1q2+y/8DuV1exSKwJ3gbPkYlP5n8XfDfOe+jRV79pbb6M/F3fc7TMn8zH0z+X+7PNsTfJOU/8P8pu/437974nfe0t9Wfn6eX3CPKvc+y2a+k7034OA//dfjFaerz/suAjBf88QBwu7x/xg+epqf8f5izjBP5/zA573sy+5va5Tww9E/N+MXf8h5N3rsZn7xueN/O+Ql79qW/vFP8I3vl3Zu8O3aEct4fyztt85O3hv4IdLqjvy8/OJd9OuecS/uns7+U/Q7yHOv7juAx4HL4H9T/HwMnZXzI+hud3DPLu0253/mT8aOb+PlW7peivz97TGSnvJOQ9xGK/79AA3CX3NP6H/lLN6jfkvPtnGvzw5wjJv8t58HJg8v6f3/2eEdcnczPK+b+rfnv2OS7sO945Wrw/4mvx3IvH393sd9P7HeP8lD8PKB93iMv/j8Pm+h3eeKm8sm+74Tvt9nvuaw74R8qnowC14DJ38r/TTkc39OL/n/KKPx8T77c1/kh82F0x9Lbb+g3pd/14utQfrOVeDgO/uyTXa3dOZlXkO8p67FeOXcoOn/I/6fJPaCR4tNceKrjN+9n5t7yUu3/rb+8m3eKwLzvlvfZT0o+XOI6++cdiBPVF7/PXo9/XS1+naGcvMAT8Xlj8iX5R/K3bja+1YT3tZwL019P4/n6nIPW+qccuW+8K7iutAAzv/9b/7zX9y+Lcznnq6m/fmmc+QX8Ofea+OMxuUdFrhb0nHeP/tc59It+L588SfhnJ08g98r4TX/l9N8WyYfz/cHJ91HfkN7nG4eSt71X7vfmfi76Hyp3y/0k7fP/iZI/l/uht4oH59HjUOP/d9lf5L8389u8M/kH/RxN3pPBE8C8F1mG39bKfmHWt8mPoc/+7HcFOQbzn79zPyTzAXqay4/eo5cV4IS8L5/8UXj/zv4KfLkfknzs5GlXU06+du535173VLCafpN7haNzzx6dd/Ffw++Pi3PjwWe1a6nf711agPvT29lgrbw3BWb/M/uhPcyvtwXPz30YfLyjvBRcBua9gtzPeTX7IkX3c2bw11o5r1B+Ifs8+P4IXG0frhP9/5rzUH6xiH+WU38If8j7tMXvK+ddjKzHiv//QV10c+6c88zk75zIr7vjo1HuyeUcG183w5/9vOzfjdb+Of13Kjgdn1v5/kdx72cw/wdzEn7fNL+anHuWuT+Uc768ExQ5yFcJvm709ot4c6h2Gb+bo5fxLuN39l3Ha/84mP3X1uJu9sOz73N23icSd5fw04zTA/hf27zHR57b6HGU/l4WvWa5n0oPHfMOAbwnw/sR+A0+itf37yjn/s1E/tYVP5OUZ9FHb+PBWnZ/KOty+H7Gx7jcB6a/b5PvVAAlF4CLwNxnWi0eNKXH9cbv5B+2JffzWfexX1/2zT5Z7iUOLLqvmHuuO6tfq3/mfmfekz3A99mny/2u3O/Mfc7c7zwm+dn68wLxb4Tyq+zfzfdV/X4muBL+/N/Avuw4Nu/xqd+ivGPWUex0N/wdSwuwRFz7JetA8jXPe0iZf4LV4dlDf1pi3Zh8xWfg75L3pMn3de570XtvdKex31Twh9yPw18d42Yt5StzX55+lyUPkH5GwR97rSJX7BN7TYMv5/PPKy/jP1nPnEQfz/H/nuw3SzwfWwAlFdjjhfzfyvx/wfyfivx/M+2vN5+4Dhyj/xxPv4fz18MSd8Ank2etXBGsALYj5/Xm6/vTyzFg/l9H8jaSr5F8jvwf1W5F97+3J0eVovlV5lWXgjvSV9YHz4PTi9YL69Crgu8v+dMLuWfMvrvl/16Ip5OK9sezH51z8Ib0m/yNqkV5HCPZd+usV7S/Bd1/aZ/zgJwT3FB0XlCdnXeE5wD2z7uXl5u/XAZWzjtw8FxD/3n/bTt6yPtvp+lPV2a/C38/5P5h7pnip4Xv839U9s3/3wXrsWPyM+ZrPyL3HslbAb17c+5Prxlf/kDvEf3rdnxNyzwS/pzfDjD/zTnuf983y3m274v/v2D+v1L+n1L+v9L+WV+KJz3El9XKmR/n/+22y3o278Upb+Jv3cl5L/1fiJ8Tk3cAdgGHw9OWvzfmXyOTV5f8Cd//r3dS38VvPfwvhe86/J1Zqn3ymIvud5Tnz9XA6uAY8Xcr66pe4A74LM39f/Phd9jhXuUH2Cf5uWXYryyY/Nx94KvFP2qCeR8467FHyfV80Xpto/77CH2MI+9Gelwqfh5c9K503rd7Bf6Xs+5LfID/dXSnGMcyj9sA/znqq1p3fM0fso6Yh59LxL0R9NGSfbdRfgR/yTfMe6J/svuPmcfBl/zy4veT36WHvKOc98dyr+DbovtHT7PbFdp3h3fHvO9iPPky67ai/LpF+DrD71fm/VT+3Ud8qpF3yNjvhvgHvpLXXUru/P+U6+DbgL8N9HUc/7lVu+L/853zkaxLpyknf65O7kcUve+QfNRbkkeZ99rBQbmHiM8S8s3O+kC5Wu4h5344vDmXS/768XlPJHl5yVdRf3RpAea+zyfsl/yU2vhp4vf1ymfxox/o49LsB+LnCeX/A6L0/tJ4nHXdedSWU/s38JsMGSoNJEV3pJSSylCESIaUkiEN0pMQSrOhlFnmQohEhkIlQyJlKjKVkEqUeahESRIyvGu91+drredav+f+53vvc5/72Me0h3PvY+/rmT1L/v/f/vULuMtuBay6fwEvblDAf+DpexfwhP0KuMMeBZyxawGfhXUaFXBw1QJ+v0UB+9Up4KzGBbysTAFfhRdUL2CDhgXssV0Bz4Td4ZR60pULOHIH70k/uQ85PK9RroDVlfsIf0O3L+AIdJtsXcBL6WPwtgU8dCdy4usg8r9Xu4B99i3gZuUukb5pmwK+hZ+Dq6hH/t/0eTq6R3h+GP03os/mnneSHtOEnOi1x2dJpQJcU7eA/+wlv1YBr9ylgNfKL2GPrdj3LfqZSb5a+J5LX5u9/zn+arL/eu99yX8u9/4h9BY9dqCP6PH3rQo4Cfag/7Lod/beF/j5HN/z+M8y9HrjewL571T/1/g9jV12Uv5j5e8sX8BO/OZwdKYrv4z/bNqxgB9Jb42/1vxnHfl+givY6wrlzuF/20nvS99bqK89/nYnz/HKT8DvGH5yl+cP4f+X0gJWROcndm7lvYPVc3FR+62h/LwKBbxd+TekX6Xv5/hPRfx11Z7fY5fG7NVy5wJ+xo4d1H8e/zycH3SpWMCe/OUM+S3Rv0F6ivSr/KmRdtZ19wKO5P8t2Lex93/E13j8/8i+J5CrDWwkvzr608i1m/Qu6L2k3rT3nfG9A/9YXVrAydrlvBoFTD9wq+e10K2u/Jn431H5vz2vqz01518DlOtCn+Wq4Ys93+Hvp9Lbo/xxN/S68Mdu+K/KD9vgf1v8loXbwKfRn6w/7k0/U6Tb88s7+dsw/tOSvH+Q/w3P98H/GPpcm/pLC/g8OrPRbUo/9fG7assCLjZOrEH3Ofb9Ubu6Tzt+gn//Ln8BfYynjx3l1+M/4/FzGrlX0f80+t1XfZX48b3yZyn/Bv3eLX2C/J3o7R1+uyP5jibfO9rjUcp3l3+48gNLCzhT+7qIf2zAfx/tqYl+6Qx0tiLPZ8b3z2FF/lRKnhL6XUt/p8A91N+EvRfjo6n0cPZsULaAb6pvV/zvSr596esNen9H/zYX/2fS71/G3z9hA/nTtNfX8XmJ9l0ffyP42SL19pXfXv5V9PMyvxilvnnenyH9IznWwib0czC7VSP3SuV6kG8N/r6Hr9BfB/X39f7B7NyO3mrws5r4H0R/Z/OXC9Fvp73P0j6Gs2Md/vwHujfgt6/nZ/GDbfC/LTwEP5ej35897sLHUdLd8P89v7tT/tHmD0vJ8Q++FhgnrsZfH/wMlD8ItkfvKvRP4o8d4Pmen87+TbXfF6QPkF4pfSj73sr/z5N+nB+8xL612PVgcuwg/xD8jmLfWuR72XuZf/bTr/5HehH9tdKf9Sf/mdrne+SvQN+HZL6g3r8z/9UutuI/++F3AfofFI0/O6Kb8Wcdfs9i37/peSP6K9H7h96+k14Tv/P8OrgjPmqj3059rdE7TroR/sapdz0/3QCfJO+9+sMnyb0lTPs/l/y34et2eJ78ruR5F50y9NAOTjEeVI49pTcpP5L+v0r/ik78b7H6F8FV/OgY+unC3t1gV3ix/H3pv1lpAZvDwepvo/7L1Peo8ldLv6K99qPXd9l7C/wu51dp32v5607Kf6m/aOn5GFhe+6xHnvqZt6p/Z/bdYFxdRG/PZL6X+Yb2uiN8z/xuP/ycrt3MMG94T7qP/u1X/rQRttA+x+J/una1iN2b6+d/ppfP9G8b0VtM7w+y9xLpDfI/9/6EtDP2vpI9Tvb+2/x3I/u09vwm+v9Vupf+vAx+1prvPqy+PsaV9vHDzE/o9wf92hh+3IN+Fyv/gvK7qe9k7fAv5W+jt6n0NlH/XJ88+7DDYOXXkfcR8vXFTx3+XUa6K//6Gv3e0sPJ+bn6F7BHU+m3pW9B/0v6OoW+98HHQxl/+cP26H+Kv+HK1+Kv7eVvSV+XqW9q+jv0b2Gv2tI7kOtbdjqOn0/mv+eYfxwtXZ8et8Xfmfh/ST33w+3lV9Gfz2OvgdpBJfxv7/030WmLrznsc3rNAlYm14jSAvbFz0XsvTc6t7LHqco/zW+egoeg9xr9XMuereCW2tFX7DhTe58FX0g/VjT/rUP/I/G/Qfpq8vbG/5XSLci/nf6nGr6m0tM0dPaml0fp8TH4tPw26P5Jvs3wMvT30j5W+755Pt+H/OAH48+V0lWVP598jfTP+8G2xqd31H+K9nQueU/j3xXVf6f65tHr1fysAv2W6G8ynm7r+QXsO1y9o/E3QvpL/lVNfeeTs7p0P/Q6o/cmfltn/Qy/z/ve2h7dCvAK9a2g7zP1O5fQT2vyVdJv7wwrw+b86x98nQPPhruqfx/62BvWgemnB2j//eEgmH773uiP36TfT3+wkX02wOHayVD6WERfT8pfIj2Jftehd5Vy3fjjneS/j9+O4MftUz//2V//MRwexA8GeW9DaQHX02vWYY6gv8fwk379CnKmf/+cPTPv3ZnfTFL/+/g9jj1PVP5p+tmO/edol9XY+zf079C/PsMvJmR9FZ+XsNez/Pwn4/FA9bRg78FwCOxNf13V31I77Cb9Mf3s7f1t1PeW+q5V/gvjaXX2rAL70sc8cn4l3ZS/NKSf3ZS/ALZgh3H0OICfDSNPOfK3pZ/R1qVPh1PgLcr31z8NRb8B7Of5TvQ+jX0qSP8Z+3v/QfOmZbAl+j/gt15pAX+UPpHc5aWr8INn0X+e/D/xq7bGwbH0e2/8I/Mn9ZWnh6PwN5b/bel5/3yvKn+N8fIa+bdIn85+Q4w7deEC88k/2Wtb8p8Kp5L/L/kfaH/l+ccF/Pcb/C7VX3dAf1f0eyt/Iju8772F8Ff5DbXbS/j3IP6QdliTfn/TPuqg97b3vtAfTipAyXA4VLk98f0gft9hp/vZ5zX6Tf+d/jz9N7WUfOqffN9WZ58qnt9GbwvYZzr9L6WPjP8nwIz/1+KvMXmzHtEN/fne3xN2wde28oewxxH4v1J64H7/TS/rGlnnWCf/MfXfTZ+j6Geu/GbsczDcGp1P6G+t51PNW04m12byHJn1jnzX42cBfofoj46TfzP/2In+Bhag5JV8t2S9i5zZP9gfvRnoHIa/Sfx3X/Jc5/2e6G/OvIVc3clzl/cfZu/7tatO5LyR/z5HX9uR93F2OSL9o3HvRv32s9K90P9L+b+zj4e/Jvl+Vn8v6yMdzD9vZre65NsH7gH/zno4+V7H96/6+7b0c6X0PcbBBd4fLb8zvrvArjDt5SZ+me/6n+gp3/tfs/9F/O5Fzx9AfyI5jiR/Fe8Nyj4B+YehOw9uzY92YK9e9L3W+L8F+v/Q9xbZf4MP42u58XeyfqWudG35g+ntVd8tHxWtl49E/zD2uUE63z8fk2di+mt8P8H/ss/3qPxPvD9VfhvyZv+kmfeWkPf17Dt5/gP/OVH+KPy2VX4kf5tB3x+YV3WT/x9Yjh93z/eW9JnqG4+/fH/X5hf5/s73+JX0MJA9nsLfDdLZd94Kv8X7z13o51b1X6D+0rQ/+u7Lj2dIr2Ofw/GxHbnmk7+6/Kr43wXuDOtlvy370fA65WP/GsaZ7zIeeL446xfqrc0+g/FfGf8n6M/WGN96a7+v4vtjfjeO37bCxyj09lX/H+htUv9B2T+l313oZRn5ent+CX72z/4QObri/yr97Ar8XCO9HP1t2acnf7oVnXPln8IfphgfV8HG6M03Pg7Wf5SFTeRfTh93Sz+rnqH4y7ziEvnF84sG+rNW2udR8H38bZH+0vx4S+lD6Pc8/cGF5hnnw+oZZ+jvdX47En+xx/meT8n3If18l/FT/zKQXQbEH7PfRb+T1DdUfafJPwY2Ud8v8ptKT866i3HjeDiCfKPI1whfPY3HnfBXS396BT1+CG9W7w3aw1T8fY/fx9B/N/04vo5UbjasxV6lsCZsip8l9LNEO1gKtyHfuey+OvEu9L1Zfn10WrBLbXxO4j+Hka8GuvuS73zvX4T+IHSORb+G8oMLUDLL+LGU/krJ3cH4NQY+oD/vpvwo7SHj+fbaSyN8nmtdIOvI/Yr2X19Dd1v8P4nvRYnLQLcze3Ynz2zpBcqPxNfHyh+n/EL2fdXzavqX1+XP1n7/gCdqv0vkb6Pf+Y5e/8Z/9/QP9HUaXK6eMcr/Rq8z+UUjeEP2R6R7w1d9f+1Hzjnpn+nvWziEf0zUrz6SeQE8Ff3fydWaXLdLT+I3w/n1Jegdq94G7PMJ/fVF7xHyLyJ/h9ICtodv0cMQeligfBntpSI/H6B8C/3Zd97vvu1/v/+Q/vo6enhD/3Y1/roUoORBeBl8wrh0AX/vlvVQ9e+EftPsb2fdVv29jC/700/77I/QzxvqX4D/hfBd2JD9v8+8Ub3f0uMH6h9T1O/ehM/fpceZFwyk9y76vyX017+0gFn/3ln6xCJ7xr7L8BP79uFPF8Bh8Pl8z2iXj5GneP9zd/1zlis/hf/Iv1V9m8l1Nj0uJ/90/Xc3BJ7y/GD8HZJxKvN19Eq8dx5/uxauR++kMKT9VVJvZe1rKfo1tO/si2afNPFS2X/OfnP2n7P/uZy/7KV/+ET6R/b4Al8rEycH50beovlc5nvnZ39BvUv5wyzyX0P+CcqnXaUdrZC/kDyb4QK4A384Bb8z9duJ5/qKvrM/+5nnn6r/eOVXSH8qv63328ivSP6p/Pd5/vVYxi/67KJd7yX/K/qdj/7u9FET/ePI14D/7WAc2B5e4/2v2eV9el2jPW2JfuLCEg+2nff+/T7SL3/Jbz6H1yt/F/2t4T8t8XMu/TWSLqvdNJXuR19r1HcL+/Uk7xfod9KfXIH+5XClcuvpbTG+htJ34if+yLwIP6/qbyqj/0T20+H9/H0TfZxuXr8YvXnss5H+K7FfDe2sovRq78+mn1rsMEu6UtYnzUfTTy1Q36n8o7J5bQVYHu7t/XMyPpLzQ/x153+JO+sJy2t/iT971vPp8DFyfC0/6zH9yHs9/Q2Wbkv/B5YW8BZ4I3suYs+Tvb9V9hnxl/iMHbTLkUk3+b/z8zzxG734+1XWP86WTvzPqdYXzlF/Oe3wUPY/Qrmj4IUw+m1q3vA2fMr8oZn6TyTfzeq7jh1GS69mr+zL1ZHO/lwz9bzs/XwnbEc/Zci/ZeJYEudLv9eyRwl/uk35FeT7Vf94j/wt8Zf4gYvo4wr6SXzES9IP89tH9BsPwonkX67+i7LehO758o8n37fqnYj+4eR/hr7f0f8+KT0GvVe069vgXFg365j8fRn8WfvvQQ8VPE+8dTv190M/cYmJR8x+bTv8N2HfuuTqgu/+yieuZ7/4tXT659jnMPXHTrHPBO1xrH7jbngsfe2c7xt6TJzBm5mfan/LYBvynaS++/FdET//0b5/UH/iQlaycxnfawvw+SX+GsHsxyR+5WrzzHz3/Yz+U/zqBP5yIjxJPYlzuk65jCvXqmcC+71gfvJH9mMzX8H/xqwXwE2wYeLttLdB7Ps+ffyu/DHSu6CfeNOy9HUR+QbDIfAU+fXQb5vvLnLvyT5P6Tc+129kneYs5X9m78zbjsZ/Xf50o+enwwn8+xryLET/lKzfqif99z70eoFxpZ50PfJnvCgr/4ai8eNK/rQZ3+/D7/E/Xnu9F7/3JW6V/HeZP9dk99X87QXvTTQveNDzruy2FL3p7L1ePZ2MA/toD4vJuzv594Z/sMNfvs+fhVvrZ36TP156Y9E5iV3xsZX2n3iLxC2eRT9vk2+uceYt6fuz/591E/bIennWx+/Uns/VPt7NvCXxS9mPyvkU9OonXot9jpHfBH/N2XdI0b5hC/nZP8y+4WGeF+8frrQuvAquhg/L/4zffAyn8NPER7XGf+Km79G/bOY/r3j/Be3oVONkVfr5inxDlB9P7i/J1xD/9+J7nHTmXz3oK/7cTPn0Hx+Z93wMn1Fu66LzQjk/9A96OT+UD7+90c25qcbyP+S3i2HiKRI/canv7E5wNuycOAx0M+952fPm0j/j73b08n1yh/wH6fML7fou/et/0LnH+8OybkzOF6UTx14jcW+er8n3A/n3Tfv33hlZn+EXs/MdJ/2u/G+zn6d85uuZn69i/2/p4cascys/mlydogfpBXmfvB+bJ9dCr0R9j+t35monG6Wf42/d+G9L6RGKn5PzJfT3k/ZzCLoXZP9Afdk3zT7qv/unnncmT/abPpMuXm9fK71Cfvmi9fasvy+X38t4dQA+zs4+LD7mSi9M/F32L7O+bTz6EX6qvZ7q/anq7YrvZ+ipctaH0ZvjeQ9yf4u/Qcazm9DvmHMd9Hdu1rfNK170flP1J86mMvoN6PMc6Zk5j6Hev/Azn3xljIeT9WuLfZ+Oxn+nonZ/RfYpc/5FuYX6/T+kv8ffwsxHMy/hh7vx1+r6va70uKt0E/VPZM+Z6P2gH38h67vGjx/U/7509dhffzND/ixYRv3PqTf+G38+X/3f0t8t8DuY+dHz+DmVviexxzX0s5k+WiXOVvtK/783erXh0fzxUvKO0H5bwCVwe/KXaO/F63zpX24tLeAqdn6T/hPX+4V58w8ZV6RzvqUve1wI+8DX1F8c79Ka/qqSv7J5wc6wCqzo/ef1h4mfmyWd+Lm/fU8k3nGl92bIvz9xsYn/SH7mB9ZPlsBa+R5mr5MSlwA7wnWZp9BvCzgAVsk8wvysEv3/Lb2S/oawd6/ExZrvdcVf4h8Sj79PUfxD5oePwIdhF/r9jV03wc36i/746a/9lMKz8bdTznPirwO6Dfnr7eQbzy9nZZ8U/WHqX2Leln2lUfw6+0vXZl+TnX4j9230c3XiD9j3WulW/Ks43jVxsLH/CPzV1G720d+8Q39v4Otj9WUdMuuPlbSnnKepqH0cqb7i/dLsoz6tfMfE3eC3eD/vwPQn0vO891HmK/itCqvBb/Bzm/ncnJyrkn4WP9eTfyR8Rfkl3u/DLwbAwejeh//Z9HMnvp4mz0b8naH9DSVXJ98xHXL+Tn/bALbn5zn3ELtmPbI5fcS+r/G7XfjF5ejn/NM22tu27LSVdPPoh/89p90+C19Q/rPEKaN/Oz5eznk4/L6Y80no7uf94vX4nKOZRz9dyb01Odbg/5qcpzL+DE0571fB31rj0Wx2vZFdH1D/XPrK+t3n2t0eyl+P7xvgQTkvqf5Nyv+q3EL62E75adp7vs+ekJ6f9Ut+tS/8IPvEWefTX202Dt4mPYW+HiBf38yn+duhie81LpZjh03ePxL933KejH7/kM7+z2D90Tb6l4HSiZ9vhZ9DSwvYTvveX/nn9Bvnqq8j/8r87wD+dZH8p9Sfdt8S/XLyv/K9sQX6tdE/C+6d89Xs8Kf22hWdC+k3cYjlyF0ebqXegdpP4ovqstdc+YkvOp9f9E+cNH3fz88eS9wjP+0I2+G/f+LHyXdAzq2y3wP8tiuso59pnnhf/vQQ/iuqf7b6nzIep39Jf1Mx+5fs+YP846X/kf+EenNebILvg3vwP4xfTJB/EtxIX+NyL4B28ii+TyRfQ/X1znxbOucXFiYund0XSc/A7wHs+qjnB+nHGshfmvsxcp6H/Y6TzvmsnMs6FA7D/27oXsGPPi2aP49l32v1S1fB2uRbqf4n4EPovib/Dn42NnHz9PSn987yvXAUuz3k+30cfbVU/x/kPVL6/Yyfnn9P7s65/wP9nLe/WL05h/+68k9ojzfp926Eb8mvV3Supr70/dkfRH8zvurmPB55D2CvgdpvN+03+ziP8fdh2X+DNyWORftczR7VYm/8Ja6tonEhcW1HyX+BXhfDJTBxU8+UFvBpeB5/PkX55ug2S1wI/79Z/iL6qqzdX0f+U8k3sWjemXXJzD8vps+cT8x5xZxPzPfkYHZeVPR9ubP5/nT6qio9P/H7+ocb1fOh9GZ6/bBoXakMOjuT7xV+k/sKErfQEP1W+T7RTxWfR5hBb0vVP5N8q9IPwh/gnuxbHv3T+Mso/cNo+Kz82eTNOtJ/vL8Yny3Vl7i7IeRcoX2sKlrPWC2d+1gascvzRft3Z9PPNfz1Le3hDuW3Yd8/jIf19Huz8NnM+zvyn/91Dn7PnFNJvCi7nYn+ZPYZl/X+ovWthvzlQeXKSLdN+9Bu1xYgn8Mlx+Onmv5ugfSbOQeH/7KZv2qHB3q+W873Z30q61j0uhP+V7D3gJxrpJ9zE9+Iv+yb1c93mfLbG+9zL1JV/fcG8v/MXq/BnuxYL/E02Q/0XXIaun3pp2rWy72/Pf73wE/ufWqN33PIk/ufKvHPnWBFuMR7E9GvkHgU9BK/+Tj9bV1awIGe98FnDwY7E07k/xPwOVb/uxe6N9LP69KLivqX9Dfz+V/uA8j9AC3xnfsBDsk4ID/nrL6RTr+Y/nBN4pq0v8u8Xy7nxflJFXLOVd8q85ScS/8l90+ZjzbD73HmC9m/vJ19jzC+v6Qd/iX/G/PlU/j1tTk/lf1c9daCM82PNuF7Gb86kl8dD3+Xn3XzrKNPgNm/HkDvq/DTkbzp3xqSZz84jf8s5+8Pl6JP/kezn8kuI/QnF2rH9fTTTbM+bjx8id0nyJ/Cf78OHfz+yD5/5v4E+sq5hMTN5nxC8f1Kzfhf7lk6hTxfee9U6WXk2ZV8VWF1+LX2Ul/76en9j/B5IH4e0K57o3+/dIesh5OnNnudnX4f/R6e53xFzlskPvB6+Q08z7rsZO9nf+3snBfOvRXoN05cGf97B/bFR3P2uArdV/TDrXN+qwAlN8Du8FHvr058uvSlMPebZdzNeJvx+PJ8n/PXJew2F/6o/P34nZ51EemMW5u0l5+0n/VwIfqf6J9+zTxGez4++1XqH8r/B6J7O9xofHhYvW/Sz7fsm/PDOTd8s3pzfrhK4pW1m5xfzHnG3J+Ve7Nuz3kLdpyj/8i+5vfwefW9rV2Vk66Nv5yv/Zh8felvAf3ujr9y9PUaPQ6Tvjrr7fher9yXid/nl23p9xHtYpj61saf0Xsn8c70mO+Djsb1T/jpJfS9kv4fLUDJ5fB3OD9xO+Sto//5Ap0Ds76L30th7lG4U/5N+s/n+O0TGUfxv6f+POfLluIr58uGqzfrD8/jZxl9fKh9diH/Wnr7Hf0Ppe9IvJv++XH8bcZ31h1yHnm6ctP0NxM9f0J6fdH5v+L4zLn5fky8eM6dZzxM/Dg6WQ+7M+ul0h2UPyJxpolbVX4O/d0M58KV5B3FXqNjf/69L7o537Ey++vqyfmOd8md+zsm8dd6+OhtfB7JrhPJ93X2DwtQcl72E6R70EdH9eV7bobnY6Vzfv1L+Cv+c579cP1D7knK/UiTyZfz1Efxm4H4uD7xUFn/J8/D9JD7H3fX/r6j12naxTfy15BHsyzBTslfxuWx9H4P7Ox767LE2ZK/Q9Zbyf8Wfr6iz53Iey9/u6Hhf/P1QeP/m79u7NMDngGrkP81/twYzoWv5rw9+TcRbJJyn/DPOYkH9Hwy+T4uOj/3Nrlyfm4Per65AP/uP/fmR1l/vAf9/c1D90KvZs4X+H4537rBXUXnEfuz/9H46ph7E9X3Nbm+gTX0V0/h9yeGnUXPs+HS3H/BzkdmXYX+M3+Zx37H43d19ltzfw99ZJ6Wfj7zswq5f4D/PMN/P0X/Uv7+Gj4vlH6LPe7OvVL4yP1opejf6P3b1H8u+9/kvcu0u5xvugX/OR+/G7t8mvhH6cR//Ur//8uOX+detdICfpV4WfU8XnT++31yzUH/auPDHPpfLJ34hz21lwrs9h5/TvzEWPXdBTeS/yn1zdf/PUz+psqn/899J9m/7Q+zf7sG3YnKfZ97Ksl3N/89OPff0ePeuT9IO5yd8//K7Yb/rBckLi3rCYlP+5PffG+ek3ihCvJzb3B/mHuYcx/eX4lDlc79XWuUX21+tApWSHyqerZj90MT/2n+UYLfi/GVuP7E+Z+svpx/zLnHqTkPSU/v575nfOaeye70/67qxsBDzU8SN1t8/2z2v3I++gT0RpH3Ee1odM47m2fuDN80/0z/uj27Jz5va/WVS/yW9rGe3tZLX554hqJ7NXqxT+ILcn4757Z/KLo/7Wj+MFz6bv40K/FaWa+17tVGO0lc+jD22SHx8dJvk+9E9LIfPlt/kvsXsy9YBpbNPiX6w73fTr0jcs8he2Q9IvHGvcnz7/pEUVzF9XCV/NuK7g0biU7uD7u1KH51fFH/Vd38cB/5NaXnsv+jntfD7130fEzGR/Z4if+/Kn0nP1tJn58oP4h/DcXfj/qFAfSX8Szj18zcL8Ye4+hrN+XH0lf2kzrg93j5Txs3jtUvzecHGafaZ/0o54HRy/2pY7TnO+Dl7Jv5w3X4X8MuP2YdU/2NfJ/8FX/gzzWz/5P7K7T/K9gv5//asscJsA2slPOXWe9X7ir66kBfiStOnPEI7TDxxS8rl3jdxPPOzfkN6U7qy7pv7u++Xn6+dy9Ebwj+X9bf/aOd1+cnY/BdG7/rs66Ibs5/57t83f/4Pm+W/d3SAp4DE285Tr238atb8V+LfetW+W9+enjvF/yPNl+7DdZHf0Pm3/R5M7w19yjR1y/slXiTAfrnoeSrqH1kH6AyP8t+wF/oZJ1zAX1nvbNz5sf6uXv5eW/1bZJ+RL2/5r4vepjOnwfwv745h59z2fhrzm/n0v9a5evqfzpmvVl9I9jn3/sW+UfuX92C/vvnHiR0Mn+Z4v3MfzLvqcmfpmaert7l8CD6yf36Tfn/gfAAODz3oZkP19FPTIRXJr7CeHcx+U82Dg5W36qsV7PTg+glfq67cbhPAUrugz3J/QC6B7DDgTD3Ut8k/9HsY0unnzimtIDNzOtawRr4z/d1vqsH4/M0+m+g/EPs/bf21C/rqdpn4jNzn9Djyh9J3lYw9/N94/1u+K1Grq7S55DnIHLkPuJXtbO/pXM/1PSc+1J/G+1zJn/Yr+je/+w/53zdMHRy/jfn6zIvHABf8j2S+dFq6TUw69FZfz6itIDr2Hlt7gOhz9yj9AJ57s38RHoZem3w/VLGEeXKk7eqdtEL7s4+Wd/ck/x36z+y3vmefn93730gnfnzBvzndx+Kfw8icbuJl+yc8TbzM/1OG+9twf+yP7W//MawESyL/xP1R+1yjpgefuI/Oa+XuKzcd3wp+hfS10nZL9d/T5C+jF6q5t5J2CP31GS8835+5yC/T3IBffWBX/DjM/Cf+LPEnS1F7yr6aVy0Lrwu+yDSnbPerdwIcv+Gjy7a3xL85l7TxD8cnfOI6CW++YKcz9PfHeb9ydrLuMQnlBZwErs8yH5bkH++8rnHN+dycp/vh97PPQPF9wtkP+Zm+ipeB/jF92fr7JubH7+c+1FyvkS/m99x2F9639w3it767D/l/hD8XILuu9L12e18/NUhV9at6yqffYsXYfH+RTl+8bP6T07cf+IvjJ93kyPxW+XYd4jy0/Q/U2HuM8nvOeT+yfzeQ37f4T70R2oH46QH4T/n5XL+ubt2lvNz7fTHH/Ov9tI5N5/512Ha0bqi+dcAeu0H+8N/tNNt+G/OYy9WT/ZXD8v+KLscLr2r8vOyv6d82knax8HqG19awF1yDhn/TfX3lfULB0q/nO9vdqmWdqR99835efmzYM653JPz1ebvPeljD/zlftNjvZ/9k5yHyf5J7ttphf4q9R9H/itgr6wn8dcr6SXfY/lOO5C+872W++xy/innoXL+KfvyK+hxpfQOmSfzl5nSdaS75x4v/jpKPVmHe50+StHLvQ+1iu5/yH3fjc1jN0hfIn9i0fpY7kvM/YiP6z8S93CT+Vh+9+nAxOXCx+mvAf4zv8r31x7Gh8yvrrXeuqvyj0iPpL+cB/tJ/oicA0t8jfG6Ork347+j94abL23i97nvPPebV9PeZttf21G6Bf6Wa9/N9YcN4KE5L8Y+WYfbkHM08u+kj8QlbkH/Od+Z+712T/wkuz6Z9VFy/VHzv+WMfIl72YZ9yqOX+Jcm+qUd2K154mW892wBSg4oLeC90rl/4Q5+m3iy/E5Ofh+nObtW007fYLcu8luQ6zr1VUO3Ws4vkqtaxhHpzJ9rKteDvW/hD62y/sVubdltnHRZ+sh9eJ/z1xn4ye8L9USvr35hA/5/y/nuzJ/wdXFpAeugOy73aKD/adH6XCXzxdH84iv90Hvxf/ZpgP7e6q+a+KysV3k/9/BOln8R/V8M30B/SfaXcx+xdrKM/bO+sJR+jyuKC56mfCvj/YbE/9JHBXbMfefF9+e+gk5L40X2pX/mPzewzwdZ5ynyj+PUfxV9Dsv9jZmnZZ5XgJKzYfadc95yHn0kruwB4+xr7Hs9uXM/ZHXprPNV8v7p/KOudp77Oe7i92PgDUXxD/k9t/w+4wz85/cZZ+W8BVyRc9z0eUziD/VDa2HOx+U+ztzTOVs9ua+zj++fu+QnHj5x8A8UoOQzqLp/7zceEr+Hb7Ff2l9V9nmafifxrzfwn9+9ORv2gtdn/y3fazlPis8rsz9GnuxrzCNvY/KXkm+a8k2kc//10/x+qnpXwOyzn8B/l5F369yTmvZLrq3yvUnenE8rvo8q91RNYd/0j+kXz849ZOiP0z7ug93x1y7xE/jJ/WcnkD/3n52qfY8uLeBpWY9XbjR/roluFXZ8M9+d+vdm6s853XX53vE86wZZR8j6wUZ+e5X+7Ur4En5raS/t8LNX5t/kz31qZROPSM9f5vy1/Cm5ZyNxsez/ve+t1zyvh/4v6q+B3kz0G+f3jvL9yz5nmd/nfqWJ9NNTezkMndb6g/y+3GwN5m/tMvGpC8l3r3HpF+PSeJjfL12nf5qjnk9yz1P65+w7k/N3+R+pJ+dFF2adGd2ch8x5i5y/OCTn/9kv7SHtpDj+5Ff8T9IvdWXf6xNfYH43iBzHyv+Wnzc1vt2uX3hU+jv555rvdcTfPYnDy/066OUehdb0UJ58o8l/kfzi7//EbW1HrsOKfv8w89G+9Hpw9vvRy32quV8s943lfrHa9JN4n/z+wIP0l981yb549smzP/6C+ejmxO1rv3PwewG+yhtfysEJ6s/49iA9ZZzL+bAD+E8/7XRXmN+HHAHzPfy8/u0Z+muUdeusv0on/jrn93KOvxl95vzefeq7H46HT5Ev515yDibnX1p5fk++m7XbFlnHhB08Hxv75l6Q7J/mPFHisuCrOX9SWsBB2Q/TDlZLL6fvF+FLsE3O1+b8vnWGI+lnv5yfyv0B2kvOm12X+P2i89GDis5Hf+i7ZS9YTXsem3jXApQ8A/vDnCebRp/dpPtIfwgPZO9O6P8Tu+d8dNF5wZwfbC+93PjwcH5nmP4O4Q+n8+cZ/HurxMXSR773X+DH+e4fwH9f57/5HeFf+Fd+P3hJ4n/RWccuE9ST3/tM/F4ness9xFdrj1lXyjpT1pfW8Nc69PeJ/nshPsexb+49+hD93BdThT76Fa3bnK7+AfJnl5KTfXsWxaeP0i+9Tx+JT894mPGxIX1kfGzs/Uvp5zvt7CDyPYT//6i3Y9F+/Jf84iv4BXxOflN6ybnB4vOEUxNPp9xx+t9+9DBZvT+XFjDr4/l95OnK53f7npY+Gf0y0iv4c3n4Lv0eqd/NveyluS8R/1Pye7T0/BTMfYWd5ee77XHfc7mHNb87kd+byO9RTJbewP9zP1zui8v9cG+ajzUzj2hKntzPkfvXr4a5fz33sd/Lvlk3yHpCfj/vaO01vxtX/Hty49WX3y1qkHEIn4m3GmMcSjxW4q/Ooof83vEW/C+/H3BPfh8Z3c4w/ngMfZc3jiT+Z6j8XujlXpzcM5L7cXZjj+zDjybv/uTdrP/P7wzV4J9Z7x2n/4s/zVHu+uzHo3cxPU9Xz3j6rqRf+lX5svR7jPzpibfkf/PJlfMLuf+3P6wBc//v/wO8X//eeJx13XnU1tP6P/CnCaVooCTxpExJKFQcRIiDRKUUiQyZyqwyZwoRJUSlUsaoJJolSdGIigyZUkhFhnDwXet3v95nLfdvneef99r3/uxrX9O+9ryfrrVK/t9ft9ICPrdjAUv3LWCHygUcJX2C9KImBfx5twJes2sBv0Hv/b0KeGPdArbeqYD11HPyAQX8l9/L717AivsU8Bb0y1csYDlYZrsCLsTPjo0KuPrAAt63ZwF3Vf4a5fb2/dXSG/aH1QrYfe8CbpRehF6nrQvYZIcCTvHdtui/0qCAz6LXWf6R5PuzegEfbFzAkfJn+f742gXcuU4Bj5M+iP56N8Sn8l/sUcAjlL90+wLuQA+f0s/b0tvQx9X7FXA79d+hfE366Oj3P2oUcBP5a9QrYOx4M4z9ni0t4P384D54Kn2Xqv9xclygnjb0V26bApaBZ1ct4AD1N/X9beQvi04j+WdvVcBb/H4v+W8n7+74XYjPv/lZR+Xr429N/AOeQ38nyF/NHm8q1wD/78Rv+cFBcDQ6A/nPmfR6j/QS+quo3VSCXeE69f+s3HP8cjt+2AU/ZelrH/nlpEfhsz2/6gAHss/1+Ntee/0GP1PouZfyS7TPT3y3mH/2Tjug79XqHSw+VOdfE3Yp4I708pJ0V+UvIN/v5OpQpYAH4e/AnQt4ADwSThEnxuDnAXI9CJ9XfozvR8Nz2Os0+vtC+Urkq16/gJ/xpyfRa1ZawIOlD5a/Wft7i5+Uobe+8CL0rtWOTsPHMvzXU64Dft5X7gz+1Z+epvj9fenr5PetVMAt5Qp4QIUC/lS+gEPwdzC9PiJ9lvq/Y7f18E70vsfP6+zfH9+vSS+XvxA/P9P3ZPHpaPZf5rva/OrOpPnbGfyiKvlqarcnS1dhl+1gZdgX/T7oDcXfifRyPby5TAFnwLPgUfJH4L8ae16J/8TPL+nrRt91F2+uVf4L/A/3/TXk/AD/87S7LuxzYNkC/gDPVN8G9Vdnlw/oc7H0VPn9ff8TPfUUL3rBHvy7Nf0+qr0NgQ/DO/C7THx8Fv4EV9Hr8NIC7qn+ZtrLVPXfQ/6t8NuNnn5Hf9O2BexIj3X0N6t8dxF9tpH/b/3lNex7GL+dIv9w6dXyx6FzO713oZ8a8l+oWcD5sJrvPpZ/rfhTGZ/niEN309+l/G0+/V4s/Zl6m6Nbi94/prfR/OMX332u3lfwV1H9b2r//6bPE+Am9bcg9xJ620X7PF89k7X3HeGb2n3tjEPUdzV7nI9ue/75M3qVxO2/0a0kf7HyK/zenBwvku9q9h/PP+bIz/htGfov4W83+B4+1+n3W7HraHg8/seLt9vS+4vS95LjKHG1h+9bSv+K/3Px/538E+HgxGn+3I98R7DjxfKfLC3gzez8pDjzi+9noree/w/z+zDlm/i9HH3Ulv+A9Dnk/Y4f1tPeyyo/Q/uYDqfBUnQOV+5w9qtILxeiP8644AU4Vvnr2WkS/czB5zbk2Uv+Gvo5N3GNfs7GXwXx5BD2ORiW5w9faDefw7LsU4WcxfqfiI+O5KiC34O1yx+1j6vIdzr/6kIPldS7wnd3KLeHuNJP+iDtoTb/TXz9Vb3nkO84cbsD+V8Vt2+Xv6/6S/BZXz3/IV/mR1eSawX5j8RfFfJ3lt9Zf3GM+PAUfTf3/aX0tDP5W7LX+/Kn89OzyHEVucrg/zXf18L/DdrjfX6fq102x09D8eku9PdEZzN8KPn0+Rt8F/+3018T44aG5O+sfOYFn6jvbv6Y+cFXBSh5BD4MjyLfTvz6ePZfhe4L8k8y3q4ivp8o/ZjvjhVXW8PjYEP6eMT3zdh5snHSOfRxPXvd7vu+0rXQ/wa9ofzuO+lnybdBu7ic3c6kv8PQz/hqu8wH6Cnjq1/Q2wx/gumHerBPR+Xq8MvRyvcSzxrxg8ulR+FvqLgyVj+00XcD8Hcde31G3syTXuBf+xtPNIZNM94g12Xax0vk7yndCJ+/aR+/Sf8hvRD9esbXtfC9A0z8el88WgE/5IdL0WurvU7C92nSs4vG7xm3ty8av/fL+E19ma9nft5dfByG7+L5yTT+NB524yd38t8J+J2l/HjpI/C3Cp0H2aM7OZopf5f2trXf+ym/Hfu+Sy/DxJnH4SLyXaDcb+RZRd7G6Nfg79Xj9/hsQw8/qm8/ft7N78vR+1Y8XQobkeNvOIpeRsJF5F2jPSTezYTnqD9xcRa++qt3hvRF6J/Hr8+GQ+ENyp9Af4v47XT6Gsve15n//ioOXWM887T8wfr3bfUP95p/XEr+ReLSMnG3GjxMO7sQv7exwwLph5V/yO9H0st69nmAfYrHd3X5d8Z5mU/N56cZN9/Iv56gh8fJU4neDuY/O6L7p/hbSzrtYEriGr+aKj1E+XX0UaLc1dJ3wh3orTV6O2gf1+HvTPIdSv7X6O1LfP7l93/jfy/x8GbpiexWHU6Hr5N7oXbwGnoD0GtLT4PocRF/LM///vJ9XfwNxPcC+j9F+Rrkyzwo859f1Psv/jRMurl0ufSv5Gmdfk+9Q6T75nt89JG+lf7nZn1LuV/JV5l+fxXvWqkv6xwHxL/oux99Pab9PI1+fXTPLJqf/Ru9Kfxif3Qu4//vaHc1+cHPcCX/aYn+Uu3nEvpZIv1Z0fhnMbmOVX8r+WXwWwGWyzx0n3/ydyD+NuOvLXpl+X37rJuov596r5Dfg5/8hM5++K9HPxXoZ3/6PUJ+W/GzFblPld4+80nxZXriMTvsm/EpfxpTgBLD3ZKJ9H8+fXzAf8ui2yz57H83e1yvP+yH/nTy7E3uqdJPoLeB/iYp96z03fR7nnJZtzwa/zejv1xcqG0ctkJ6Ov10N95ZZpzZFT6F/pn8pr/0MOljydnD7yPpaQi5p6Kf/Ywh7J19jcrydxf/H4AN4Cb2H+j76DnrABl/XWW/ZSZ9NVVPFfmti8ajGa8uTvxEN/1/xgPp//vpt4437ujMjs3xd4jyVZS/Ab8VlO/FPpfDV5RbkHiA3g++f559x2T+KR72wv/x/PeRjB/FvWvgOHaeTR870X9tWAuenvkzfS+n13Olu8ufRf735M+UPk/+xFJ0+MEi/F5EzgmJd9LzMn/nn1unf8fvDvzzF/ppIy6s8t0HcCJ+TtLfnAgPzPiIPleTp5P+48mM89l5FPu9RJ9L8NcH/af59TNwsvzLsx6h3jrK7yX9p3S10gJeZNzRA3airy7iw5P8YB77H0k/l8qvnfZunLEJf5351RlwjviR9dDs+21N/nfJkf2/tvibz69q+v0a9thWPJ+V+QQ/6yt/Pn/bXrmszzyC/13ov7n6LxKnfuXP7cS1weivk/6S/X4Rt3+FP8MT6L8zfR1BHz9JZ338dPJ1gBPlL2CfmuzRJHYhx/H4r6i//4BdK8CX8Z9x01fovUj+k7L+7vvts/8Er/T9jfQznn5ukH6BfH/Tx5va3Vw4Lvnkaik+HQlfZZ/u/OdO/tCb/1TL+Fe9N5NjeMZv0s35y0zyPAcPVP9d/OMSeroIHkL/r/KXqXAK/D3jYfYYyP+2lu6K/6yrZT6a9bZS9BvG38WNEvFhV/mD+NVn6NyufIn8NzKukT5fvCpLvtb8rYQea+hvVsjPeHx7erlcfRmfP0CuB3f6p5yV2WNL5g+xc2kBl7HPqeGXPm7Db9bvqpC3snpn8p/h8jPeKh4fZly2mX3rs+Ox6DXG34DMr9F/kH/UQ/+H7KfIz7r5SPzfat7aG/9PSl/Jns+JH8/C52EtdJ7Qnr7z/aLs27JX9u9+xOdm2Af/7/OLhdLvwAfwNyrju6zvwi6+e1R+q4z/pdexQ/Zvsl+T/ZsLM4+g733p5xV2mCg9be9/pvui155+j+GPh5F3vnq34m8L6PMs/ccccexO+qpA/n7424N8L5E/50P+NO5Lf9ESnyPh2+SYkPmr+s/iz3WtP3SV7obel+LLWfSWdfql5M74e0L6dZhxeBP8tNW/jTf+XIXOZ+xyme96wkeKzkv0kP6cfjdLr6XfzNsyn/udvuf6fiM6Q9jpB3iceLZJ3NsdX4cqX028rgpHlBbwcvU1pZ+v2euYrK8r31K5T9n3E/ghfm6l17bqPxWWZ+9Xtaer6KVuzsOw/4wClPSBF8IPfLcjerVgTbgavxP4xxf8YyzM+OJ6cWUnfGQekvnHveLnAHgPHEa+tvyoEr+uzc+2wB/Fn6b88gf13oS/l/H3uzj7B0y7uxN/h9H7CjiT/vuIJx/T80cw8/uy6r+Avsem/UtXR/8Kflot62W+W6Y9zoKvwQnqv7G0gJnHXpZzJ1kvzbkCv38s3TT7FfxxqjjQHP05+Ps85x3w8ws+M57dkPXLjDf5RWX+8xv73Ip+zk98wA/+8P2l+PtC++qdeRr9dVNfZfi6+t5grx+1tznS6+nnXPONfdIuitanXybPWnadJD0061rsMRJu0H92JN88/vg0//uXclm/PJ3cd/Lrw+Rn/XIzvb7BXyrR5zn8vyP5Jyk3Vf4E5duSa504MIr8b9BTPfauo54fD/wn/Zv560nkPzfxgv6ybpd1vD/4e9bv+hWg5GXYDd6DvzHGm9PoZzp8kf7uFi/GiD9j4Rh+sRD/T7PjLcZX9XMuRvzt7vttc16FnAP59+m+f519a9NPifFuxgsdS/ErPZrdKovjFeHZyl9Mb3WyL4n/nJ+bYxw1ANagj7Xa11vkmwf/IudV6HdjzzH4PFd6pPKPGxf+p/Y/y4/l3zlXWZf9ct4y5ywzX32laN46Ev5IfxvhX/z5RvY9h/99VFrAd4w3Zir/G328mf0RfOyQ/VF016RfQ/dz+ffyt/n69fL8ZR062Rd8SvuYrb1kf/BF6ew/57xPzZxPMW7oDe9Bp53657JrV3ymv6tEvhf5X86rRq8tpIeof6P6r037z/4E+Y4gzwzpVfxvB+lq7J1+Zh3/uJ39O2kXk8Wj8uTvyj5P4avE7/fjL/OFzB8m4jfzh7novQkvyrmdrG9k/GVcVk09D9PfZ/TzIX5PzD6R/Mez/pl9Mun3fHeJuHYXObuWFrA7fs/Qnjbj70DxZTW5WqCT88GH6V9yPvhw8rbG34e+Xy+9L7rHKd9c/VfHP9DLvnz26bM/fyN7vaHdzIOt5S/WP75hvLIPvr/MeTf83ctvT4APFZ0vrUVPOV+a86Zj6fOHtAdx5Bj8V81+Zda9YXV6mEy+KuiNQucm9s95uqwn5bzdipwvk26e/cj02+j1F49OFJdv0s5bSN9AP9nHnC3dqGg8kPFBzntmfLAV+71HT2XgCPqtU1rAJ8XnGeJnQ3I9Lm79zY/3QHfn+C9/y/mjgeywlfSj6D8M26hnEPvtaTy0g/pWGRctRn8v/O4B98z6bNqH9p19/EXiwBbyfaDeh/jBq3Ai/Y+XPhweof2+mfNfOYdMD+lnryBf1mNXiAMXGx/1y/6tuDZcuevE+Rny4y85j/lM5lXoj8m5D/K8wA67+G4FfZfAcnAxf9sef1VhX3E+68dvk7unehZI53zsC35/Meftc44/5/C0pzrqvUl6b/ymP6nn++rkbSfdUPzam35eyDqc+j9W/j30FpC/hvLxm+y/Pyc/++/d+UOFjJPE0Sr0+zJ/fJpcS/jXmbFz9gOVu7LoHM1o5Zcql/MOOd+wRr1L8dNHuS3ZP1T+cuOG7fnxJeS/QH+7rfKHSzfIfkrR+bacd8v5tqHa52/4/gvOwEcT9a4XNyrR6430M5M974ezYTP6mq7f20p6Jr3dr/57+f89sLV5xNbqn8Y+0+FU2AgfW9N7eXptQa+t6WddzkFkf5IcL0tfk/VN39Xifzk/dIF4+yZ8EE5W/gb85txldf3ZOPkN5N/p97vghfTwIv5fyT6FdlJX/bXps5J6N8Ce7PSS8fYkOBGupr/dtY/G/GER+U8m7/H4GILfVuSvmv0t/UnOkR9QdH68mvh6lHqW0Oepyg9Db5H6O6rvKPFlDTp/+X20+porv4Z+WtLPSu3hurTv0gJ+TW878O+cX9yD/qPv2OMZ+o3+arDf19LfyO9Bzw3YYUABSprkfJbv90I358j708e7ymfceX7R+HOj9vE9fF07qCI/65I30f/L8PvII13R9w3Iv5E9nxZfOuDnUO1wIP+oJ9530s+WZh8M/Va+W5j7XZmnkH+28dACmPsaXdQ3z/j8S/3eruSri14zev0Q3cHs/Bj6d/DXS/D9Lblulf8R/1rT+J9yTuE/o8XDUbC9/A8z/mK/nEs+r+h88hT6eyPnYfBxP3++wvgs9726+i77B7l31J5/5t7RGfg/BF/96ect9eb8RHvjgYb4Pip6VF/x+lU58boj/ca/VqFzY+Jq9lfZedX/uH8yVf9bTTucJr01ORoql/tII5Uvg37OC45O/y19Cv30EM+GwJr0/x55duE//8l83DxzBD9YJx40KS3g3OyzpH3Sz2T1ttOeco7qNfw+g9/9lM/632J2WwKXwl34z2s5143eQv6a8x3XFaDka3gH7Mbf52tv70h/JT0i6wP4vh+fh6j/I/Xf5/tu9LI84w7yNKe37OMVn8+vSu+b4fP085b0LfrVj/jVx/DY7J8aj4+H48SRxI8d8b0Uvyf7vWH8G19rpcfRwzPo7+b7TvR5NHq9pe/i3/VzblX6K3JvyvycHoez08/qeyPjFvXOkc766PjSAjbHZwO4NOf08TMY3U/V+x39P05fiZPDpE/23X7i9wx8Hi69r/Lfse+38Bv4o/oy/24E27B/5t+z+P9NWf+Rvot+n8y5TfJknTjrU+mv038PJ2/6727Zn8y+TmkBG+d8mP78d/38dJj7DBm/Ztx6Zc4xqa+TeDCMXB2lT1Z/7JL4MlP/l/PJdeirJr+oK51zmfeKZ08YVzbIOXXlz6OvC+Cl/OPvzHfofQt7rpL/OP5rZD9Q+5wAPyb/n+LqGv7xvvQj6Od+4kz+mfuJua/4if7nV3FotXQn/GRfMPuBxef1+tP7DHwNtq5QQ/6b7FUOP0vZc5vs74tH32Qflj/sJb+Z+N0CVkBnEflzb+hc9V8JP0DvSfyMgXfxjzvZ/116ew9uI/7UQf9u+u+fe/j431l+9oOHJ/5nHIJ+iXjeBT/ZF8w60s/8qXzuadL/V/yxi+9/Qb9R7unS75XKjYd/+O5W+RfjJ+Olcsr3kq6oPeZeRm315r5GFXG8bGkBl9HTXdrNn+w3WZzPOODQjH/YJ/Fte3H2JvQX6S8uwPc3/HdY5lfSy/XTB8HG8SftJ/fYf9Qec3/9N/6Z/e8tiU/4y/3v233fqOj+9wz0BvKLGvABdDqLJ4lvuQ+R+w+nZHzHDjlnlPNFt+I/54zu8F3OF62kpz7o5z2ElbnPpXzOqec8TM7BDBbPfkJ3oPTj+FuW8wH8czk9laWPs/F1CHq/5t5Rzv+SrwU9PMEP00/nfnKzovHhEvJcgp+Lsy+Dz4fRv5y/XQF7waPw85x6sx8/TvoC8e3bnG9T/+rSAraRP9V8ojM9PE/fw/B3CH0ugothL/w15feXwV65p0O/u/HvPcXh+tJZ93qMPo7Fz8nk2h/9z8XbIfhsyT4LfJd7sZ8kHvDXnC+9vui8cM4P5/z5NOOuV/n1rvBP9FaKd6vE8SOk/yM/5zeyzp91/ZzfmKLf+1pcf1n6HfJeWfRuQNaXl0u/TG+z+GNNejuP3MfrL0+g91G5F5Pxr/Y80u8/89ecrz2VPleiu0L7zf2pbvhpq74j8HFD3t8Qv49jn9znuJm/7YneiNzfkL5bfGnB73MvfQo+cz89+0WNcx4t+qLf3ux9Bbwj5xCzbpn7lvjOvaLn8LM850nooR7+LpBfPL4ZpD1lnBN+WuU+yh7/5G9c3tURn1eR842sB+Q+M3qH0/cI+i0jvd73N9HrZfRzkH65ljjeVLoZeiP5xXelBbyDXqqh38z3H+HjCOnsrx0gnl1HP5caX3yX8xfk6ZPzuTD3+xbmXpl2v15/eSu9teCPzeGhsAM6V+X+Dj0MVO8uOf/HLpvgu/RdJfE393XZ8Ve/53zqqXBc7v+w3xb6HareMenvc18PH68XnQ/JeZGM/9eJqy1yPpSdRilfRnxrJ78O+e/IeVf8ZL/yz6x75v0I/AxCb6Hvr8n6Tt5bKS3gDFg562Ps3Tl+hH5F5R9h7zb42488uU9Wq9I/6Vxb5Z90LsTPPvg9Br9zsn+Y92PgffC1rIdk3JT3ktijadoXvWf9vrr878O//uphmPPuuQ9ZQX3j4CviWfYhyypXBh6gnaT/m6q+V9S3Gz96LOtn+puj2b2PdDc4r2g/baH0EvVX0d83EXf6w/b4nyV+tWCXNeRoJ/+ijC9h9im7Zn8r48nSAmaf+vL9/8l/99wLlG5FnqX4vgq979n7N/r4jX7qobendn9qziOp/4Gi88ld/0e8ezfvz6C3m3TeDdsJ3Vb0n/PUOWf9NH/JeetS8eIC8WGoenL+eih5T8RP15z/VD73YXOeaKP++hh0bqOP7dX7Ev+5NPfv9TdLtPtFsA76qxLfit4B2ZB3QMg3T7pTzs3Rwz25r6fcg/hoIT/nyfuL09Wks++efuS+nGdR355pf+i2Ue/Z8hM/y/PLaegdyj/nKddSvBjMn2ZLv5R5m/HsKfS7i/QJ+LqR/g6ADeGh6I9Ju866pn5sLPtW1N53wee20r/7/jbfH218Uyn7RexYE/3Zyg8gR9axd+UPt/Pzo/n3q+x/Ivtkv/rIvOtD39Vyf0M776L+XdlvV/Fg99yXk54ofwS/HgW709tJ6hsibq/RvhvlPTLyLcJ/3p+Yia+8P5H1287kHgsz3j6U3fLuzF/o5f2Zi8IHf2qSd2rQfxe92/I+iPHIeuWmojeW3qqqb1TejzDeOIc8baTr5/xU7tUpd57xTM6XdpS/kt2qsmMr/N1GfxUybo6/5P5m1mPzXoP2kfenKvKb8vgbw/+eyf5D0bnvteSN/fLeX94BvF867wHmvEXF3IdTPucv5vKXueTcVFrAjLs6io8d4OnwXfINLUDJYPg5vNt3N6Gfe+c3SC/L+wd574rea+qnch/5Pnxnf2gW/rvFb8x/co/lZ5j2k/3qntKT0Kmv/hXizVr6Wyl9BPlL6PPI3BuTnotOK36Re5LF9yM/4a8X554S++5LvivUdyTsCc8hX953yXsued9lUvZ3tY/z+d1X0k/Q20v4yjpJ98y38Dco/pT5JH+9iL4yzzla/kniVe4LVCFH3stpgI878Dci59/xPRTenvfZ8n3OMcP30/8Yrx0GD4YL1X+1/ir3bovv4+6W94uUa8jfbibfY/jvJn05+bL++ii7D4JDYc5pZX8946ivpTN+Oj3rpDD+WFP7G5Nzi/KnsccP/HMiO+a+3HD56+WPFM+uzTqy79vQxxVF60VZT1qbezT4PgReqP39Lv/8ApTMhrfBlvg9jT9Vod+20nkfrvj9srb8K+s1eW8z65ZZx8z65Ub+MV8/WF75BhnfyP/D78vY5235ncWHmfh7KONQ9h1rPPctvb1W9L7HPTmnRx/r8Nsy4y3+1rnofGzm/43Zey19PUYPWR9tpT//iN/3FF/K4GdX47Ld4H7s9zZ6xfPCMfSd+42Tc3+HX+5EvwvVf6z6js75Jnqumf0n6Z3hYuOQLzLfF29yL2WpdN43Osj3TeHBMOP6TtId4Rlwbd4x4xd5/yHjkL/g6/x1jbh/fu4P5xyxuJt3dTfC7M8PZ5/p6A0i56P8YwB9T8h5IHraJ+uT+Mv6zG1ZD+UvDeh3iH6+fvZn6K8cuz7ATs/z060SD/DfGt8j8t6E+v+jvzidvL9Lv5X9X/zvrVzm4Zl/t8j6kt8z/xut/iPkZ7+pDbucj35l8mTe8Zj6M//Ywj7l+N8x/O8k9u9DfzfDhfBl+rzWfCjveVwjfTj6XfldVesQp+NjD/wVry9nXflOOIh+P1D+JfbPfdIm8q/Xb+c81E7qyb2t3ON6Vzrx5wf6+pu8N+En5+1Lxacd+G3O4eX83Vf8ozE9xi5ZXx4jXtWB7XNeW/s7Q/9XD3aCmQ9/Qn+fwnvwfyW+K9PHYL/X9N2BWT/LfR5Y/P5W9lOyv/I3OlPx30F/kX6yvXT6y7H09WzWM4vWgxaIn2/DzeJorZyT155a8L+8Z3w4fvKOYVV0J4rve2X9Pef71Jd3RvK+yI/85it+/0Deb0s/zJ9Phv+Gs3M/N/eJch9fe3s7/b3+7GG4Y9F9jYr8I/cRc0/xd/I8Yfy1wLiri3QL5U+ntw4w5wNyXmA1f3mLXebBT/FZDr2L04/xl7PIMzDnQXM+hFyr2X9q3rfOu878/HV22YY9r6fn3PPL+583Z96j3xgAP6f/4cplv+Ea7TTvy3fK+xv4aUbuXdCfwE92Vf4s/pH7FfuLrwfAjrAF/W/KPffsz+a8atYLs3+An6xfHSNdhh6y/tFL/d/jtx7+M15aid4V5DhFfvbd5+d+Evo3pV8gz/fo/wcfG5T7Sn7euc771v344w9Zn6HfA5UvZZ/r8s6K9JdZx8v9ttwPFGfrkCf3yPNeZNYPc3/3Kv4yw++nGIf18/2z0r/Qf1vyDSbX3vw45zSLz2deqr13p6c7pNvk/A66GUc/Jt68RR95X3cleW6l/7yvO55/5n7YPvr5nOv/NPsLpQVcm/t6eX8r58TRzX2x3A9boL+8V/vMe7Z5v3ageFgVnQdy34A+ehWg5EM4GuZ+zFXa/yB4rThTmnuV2sNTuQeU8Sh+jyfvtsYRxeOcb9FZn3tGMOvNWZ/uXbRO/Tj+/62+evzgROmtyd+o6D5X7nm1R7+rdM7VFp+3/UN9+9gXHph33Ml3JL2X8X1L6b/Qz/ugGS/n/fXc735afV8rP6jofO8Ici+Hl2sv2T/qpD3mXvkZ0rlffmDOkam/inry/zjSr7wO5+c8Gn0NKUDJmfAjeCH5G+G3T85d+306+pP5/ytwahBf92RfLudF6Wc//G+r3VUoLeCz+L8U/byH0yP7aOjkfZzLtOeH6eUn6evZpam4lff3b0SvRPl+5LsVPpd9LfnXine9EwfhWnw0Ud8s7f95/r+/+LFSez8k7yHpPyqrJ/dDTlIu90RyP2Sa/nsVtkfAqX4/Unvowj7Zzzk85x+Kzt/cTI+5X3ew8mdo3+sTD3MfPO9CZN9Sf3Gm8tnfnCW/eL69K3/rC5fxw6v437X085zyT+T9DPrPuc3M+y8XH6urfxb9f6neVuyT8ekj5Oqdd53EkTfJtwe7/cpvvxVvy+d8gvFQ5tV9YObb1cSD0RkHyK+a9SXxZVt0v5aekPODRfd9cg+ouvJz6etveBk9Zn6Y+w15D6f4fbxB5Mv48yHpzGeuJvc08Xua+rPPVCb7gdLzcq6Zfjagm3sU4+j/j6L7wjn/kXsf7ZTvnvdetL+zYeYHnflDV+nl+JhPvm1ybwi9MrnXmPNR9FULzqDHvXx3vd+/8ftr0om/xe/j9pF/BX6K7wvk/OAG/r9j/j+NdnaY/uAHdmrHH2uQa5n4sCrvHalvBfzOd3mPK/9XI/9n4xyY8/h5D6Ipfhuiex/95f2Bb81rTpTO+wNN+WtjuD/Muczc6z4F5r537nm/U7QvvLBofzj6j95XGodE/63I+SU8F92rlG+O70Pyf2Ly/3Xofzv6PtTv4+Ab9HG29jOCXsvDSvwp71NNR++WrBso/3Lu4xnHTpbuLX+T+Jb78xul3w599roILoE5n/oIeg/DR+Gx+KhL3zlvkXMYl8g/gPxnaHe9+EX9nE9lt7yvslw8yvnsm9j5VXqaRo68/3S7eNFE/9VKPOjEv84tLWBZdp+t3+qrvuPJk3XyT33/ifQk378IX4AblP9Be8m9rrwPlvfCdmbvuvA49XXJfDHrj/ReN/rP+QT2+pd2cQm9jJe/TPw/TD+Zddys315RgP/O15dLPyv/WnY+jTwHsV/X3E8y7jtWPzdcnM1707lfknNNOe+0L/pfSZ+Ar+xLRo776Wt63jGml77wefUPY9eKWWcsOj9bH+6e90PlP0Tvg2FP7Tv7s5eyx9X0cIn0MOXv43et/kf7b4z/Bfk/JPj7Gv+XyF+m/qVwO/Xl/wvl/9nk/wxlf7cDfbeD7eHuuceGv1+Vv87vuR9+Vc4PZ7xTdP7ifnLlfO9b6L2u/Pf4vz33+6XL4y/3zyanv1HfIbkfrH/PPeCcd0x/XE1+9azP5L5A7meJ99knXCCd/UFqL9E8Sr6BB4kL3/PnxTDn0fJ++ZP8pefW/+TnTPZ5hj7yf+FOo7fcz21uPSvvfv5/74EW3Y9rjeHck7sHv+thb9hCvPoJvY3KZ18958M+yvpd5jG+z/sSG/hL3mmelPve7Bb/aYlu/Cf+tJw9FtHbHPrfKuMn89s9tZvzpBNv8t5zTfz/TK5zc38OX4lL/y2H/2uyfgyL32u4Ef098T0t703w37ty35/fnmS89gp7rmbvvLf3DD10pd+cD8y5wNyLKpP7WdkXzf4xfeb91x45T6Pei/NOpvy9+M8NudeZ8595fyX7zfm/DFkPxG+l3BdXf9ajs/78i/jyL3p7RL2P5nwY//kAroR5t+QX/eo8dCqJx7Nz/gz/99Jva/39KuX3129cQM8Z33yE38n0Uppz20Xn2z8U9w/KPWR6uRr/Xxs/rIGX8YPb8t4Afeb/R+X/+uV9u1v43y7wCvnXy8/6d+eidfD4aTvpt+nhXzlvkXuefn8248/8fwx6uEP/fRvcj50Op5/cl1hK3z3FxZwf3Ul7rA2fzHuOmYfR31/s1wH95+gx9wVzj3Anfpj7hHsX3avPPfvcr98Lbsl4lJ064+8d9PJuylfkz/+PWsnex+T/euFnhvqH8ps57LtaPJup3r55Z5H/PJr9MfXdmXF11kO1z5/oM/f+30V3g/Rp+Hsi9yLUk/eM8v8x67LPA/n/Vtpn3rfIfdrcZ3lV+dyvvVB7qkTO97WXXvibLu6+ym6ZJzfhp5vFu8wnq9HvF+yR92/yPvlycub9m5xPfIr+ci7xQvzm/nfufVcQ53P/+0Lyp986QHxL/7UTfW7MfSByzlA+9xfeZpdN7JT7uyfxp7/T7ulz/9wfwV9N6dG+z/p07HN6/k9o7tFkv7voPc2qReelHlFv/i9Y7sE/h/4M/eMW9b4onfuRa9V7cIN/yhH+BxagpAfcBOfg80P2mcyP50j/zZ6b6Pv03F/gD9vwj7P4Yxnzii/z/xB816K0gO3Qn4Tf3F9uZ158HT9aRj/5f8J57+/MnD8U/ydk/lJ0Xyv3t/I+UU96yfpO7oHk/scG/A1C9y/pvO+c9pn7KGmnaZ9HKZd98uL98Xbi5dfsdyG+JsnPvZXIP8A6zCn0clTu3/GPltJPKT+dP4z8H+9gZF86+9SP0tvcrP+w6zH8uK92tUK55+nvG+1iNL/4LfMov29G9y3lfpLei77yf0vzf0yzfvVM1vOVOz/vaeS+ev5fSfYH9Q+T5H9hPNEx7+T5bqj8u8Sj8fjIO4Z5v7Cs+u/hbwPUNwF/kwrw33Nl7dTXi75yL3oOv5qddYTM99kr5zp3Ue5q9ffKfU5xeg7Mflf2xQbAZvLnRx7ynQ3Pgmvpc5X2Ow4/3+Az/x9gQGkBfxMP7pOuIz/vv+2J/yn0k/ffnuLvA8g5UfvLu0Nz9SuNjfO28M+e/OFK8bU/zHuPed/xvezrk+dd6W/51xb89UevfOK59GXS1+e+MLozpDdoF7Ff7Bn7LdY+FsB18j9CfzvjijPEwaH8sAd+3yb3lew3LefJ8p4Bf6mEn+L3ZX7B/2n4XoLuw/x7OLoj4GR0c/6oovq3hhPMQ/Ne4+qc58w+OvkeV3/uX/z33kXR+/5fo5d32s6Xzvts/wc4mwGxeJx13XnU10P7B/BbUUhCi0p0FyVly5JKKErZVZLsUSqEFpWdUtmKbAkhFGVpo0T2olAPIdIilS3ZpSzpd87v+3o/5/ie89z/vM98Z7u2uWY+M9fMfVODkv//67FHAV9oXMD/wA47FPAkeAj8TH7HqgVsv1sBx+xcwG6NCriyfgFvUr4vvBmeUq2An9cqYLvSAk7cq4Afa/evPQtYD50l+6BrO+1VKWDLhgVsoP826KlYvYDbwc8OKOC0MgV8SvnHy6Jr7wK+vHUBX4G/lC/gEvX/qVjAMvodsm8B98bfQ+R7nvyG9Qp4sHL7bVXAWrsU8OItC/huHe2XK+BI/P2hv8ro7Ud+zcnjz9ICTtH+0zW1i58y5HrFfgUcoP+tahdwS+lx+PuNvCrsXsBW+t1u/wK+WYCS22EX2F7/g9lLrUoFvEG6MfnMxldV+VXgQP0sI6/j0d0WHqv/dtInwOXKHyP/Cfw8RK7XktNe+L8Lf4fAJvAb9vYIfAw/HbS7A/nczL6Xku/t9H23fs6oW8Bh5PeZ8fKDdqqo30P7L0sPJ58L2ftM7deHe8pvWKOAjeBe8Cf8fb5NAVfAlfBn+dXQ+wp5X0KO/dD/GvtqIn9b9SrAFqUFPAyOY7dN2HuZXQt4HP7PMc5b6fdO5f9Ufgr6D9H/TdsWcOsKBRwiXYf8auOnLiyFbULvjgXcDm4DX5ffCT0j+Jn99X8r/W6j36GwFnv9k5x2Y6/ljMvl+r9F/WO096p+XoGb2NVd6t8J74Y7oO9v9jiAHZ1hnHYkv6fYy2j6+Nvvk/TfzXh71e9LtL8z+1lvfJyBv/vlD1a+Lf/ThN/7iR+cQ/6f0N+p5HcWP7ZI+3tJH0peZ+LjHvQd5PcL4fn89SHyH9JuZ7hN3X+3/9ROBRwH5+F3Mfspx/6uV6+89HXaf51fGEUO18Hn2GNvcrgZfXeQ9w74f4OeRpL/6fRaKv8f43ex3xtrd7P8WfzVQ9LF+mvN3o6CLfD3PP7Oqox++plmfIyVP4e9v6reodq/nvyOJrc12lmln5PwO4RdfCd/sHQd+dezx9/wfyU+R2r/HvL6OvO9ek/iryv5VPR77H6x8m3J51ntrsbXGrjJ/N3BvP2y9G5Zf2j/U+WXwNnav2L7AtYnn63Y/0P88db4vhweQb490d+OXY00DqLn6LeRepP5h0XWK43R0Rx99dU/Rb+3wSfIpQd6Hybna6U7a/9U2DfzrP5L+KMycAv4ODtYgO//KH84e/lM+tstCjhduT7SH2Q+Ir+92N9a9vQmO79Mf0eiryn7Ga/+/vT0MH4G0PfW5HshNubDe2APcjlY+9viezi6I58z6eN47U1gjxdIbyD3r0oL+Lv0NfIPw/fX5NJW+kHyq85f3MWPXC99tn7/Zo9r0HktO30B/+OUa0VeZbf7N71vGo+/67ci7Kn/odpbpJ+jpFfJb0ovp9PTq/TzHjk8aH5/AH7NXzdkf12U+1x6sna3Rd/F8h+hx/3opVLWV+aLo/F7t/Q58kebH3c3HsobD9OyfjVuZsKJxt8CdLyr/rTSAk6FvchzN/PJrvBGfHbJ+LYuOYjex2fdyH6a4G8x+pfgc4z6O9LfXOkD2e8+8X/mzx70UA32kj8Kv9uS2/Hk8Lr8N/G7T/y5dGv9ldPfaf+LPu2/bt1xF7yK/J71fTDcvPiMdL4Tsh49Rf9VitanPfF3Gjl0YBej4Tr2dov2duUHzifnq9n3NOXOVe449jGWvzkVfgwvw9/jyl8lXZU8Rqn/ivwK6KnAT7wnPd/66n/ZQWtyuVC5XvB9/b1t/hvD3poaf7PIazC7+0K5IdK95S8jzxbSX9BXD/TvZH6pqd5j7Pd65deT23PkOlF6BvrWkUdddnE3Pd2Bv+XG+/dwHfyLffQpLeAj+O4r3R19H/N7O8FD+b8x8l+Pvvmf8X7P9/Or5FuJ/CfIz/f5geEb/kReS9DfgF/YC97GP87UzkPs62E4V7lf8fcBf7SWXL5QrrL+7zeuvo6/IM9h+p/L/7wF34Yr0Pk2eiby/0/B7uyymXllNb29Sl4j9TfR+Mo64In4E+Ovk/Y6wp3RX52+u5Pr/fT3INxZfhf9TqWfSdq5Wn/r2d/LxsX5pQXci7zOM18dqP5BMOu9+9hrS+kj1Hs2+0v6WcWeDyHvtuR/MHoPItcPfQe01M7v9NkL3WPIux75/WZenGhczpSeoN9x7ODbfM9odxr6ypHPV/oZZf2S74LjyfcH/XUzfn5Wv7t6XdTrJl2W/MeipxK/3gb92X9qpv/v+L2RsDs8z3j73vgbR/6L0POj8VUR/4PhR/IfYM+Hk8df8Vvk34A9/qKfX+FKcvqDvfVRbjH6PyGfXY2vXeAV/O/bxufZ+D6O/zxXOuvzQdrPd+w+MN+vc8j7UngJvAl/J5H3jug5Wbq3+rXMh+vty2zJXuuxh5XkWpZ9bSK/luSwK/2dxU5L5J8LJ7LXjzJeya0L+c7i73fA/8fyx+n/OvrpSl7L6Kee+rvJP0/56ezmXen65N6NP9pTukn2B/T3nnbu1M/l6D28tID3sPOqMOuUBux6BVwO17KnNuTQln1MyDyPvrOVG4H/l8njRu0/K108jzfL/GEcZf9tP3xcSv8fS/+ovUb62SC9Eb0b4GPs47Hs/9Hr7+qNlc78d61677HL+bAjurYg98z312qnhvpbk891cAF7Gqr8OezsG3b4DBwmvxl9toBNYVntt9fubO3+A09X/wD0/ka+08xH7TO/W7d0wvcS4+Rp5Uula8PG1o/l6ed3+t5d+anG/zj2VTb7zvBr80xP9L1s/mlonN6pn5Xoq25dkH3V/uwg+6u3pv9K/6Yn+7ud+csbzKu/stPp7KeB9veC+9FrM+1Xwlc5ep3Gz1ys/jLphfgpq98P1b9Ff29rJ+uZOuRXm/97kV6fUH6B9qbiZ4zvip3l15L/Crp6SG9pPGT9PUL6WukOyt0r3Vh7z6HrvJyL0N9t6BoBa5NnXeXeN35PlG6H/3fpbzL6z9ZvB/L9lvzyXTkRHoTefF82Nj5eYCct2cHJOT/Q/0j9Z9/3U+0fj+4DzDu34/th+Lby2d/6FW7E/wz8lmE/h0s/k/0H7b6Kztdg9rEuM16mk8sl0jl/eZDdL9bvavaU/ZKD8TsIP/WMn93RP5u/qKnfW+EC9XuYn3rCiuTVDt9lyXW69dcnfu+vfvYlj8X/ybA8/n5mPz3JZSw6b1f/AvqvRg8l/E8T9bM/2Y+fzT5lK+0caV5uBVvCP8npS/V+t07dOftb6ncmr83k2z/7t+hryd52QM8q/vxm6XHWC3vSWymsof9h0kPhKeR5TPwzv/Sl8X87OZyu/7PR90ppASdod2S+T+hzLD1vhEPY++P67YCvrvqvo/0tySX7TtmHyv7TJuln8fuh9K3saxF5TNJeefmN1T+RPZwAT4Ld8D+dvo5D72XWtT3pZyy7O17+A9K91H+DfbzL/z1lPtus/EDyakm+X7HvDervpfyn6jeUbq7+tdaTJ5YW8Ll8L+NzWc6PzbPN4QbyqEb++2tvhfo7k19d9liivUPZ93fybyTfe8jjmfh18s18kvkl881S/W9mv0cUff/Hv/UyPrrD0dlH1c7h9NUCHgZv1s7z5Pl59E7O+f66Et/PBJXP+m2E9Lfy+8F5+GlqfFVjtzvDR9Wfx162NG7Ol76VHnujM/NAY+0fG/+s3D/k3o8+LiafIeytGz/8h/5r4PN5fq29dlsaRxvRf7nfT5KuTU6XoH8sOT+jvcvoa3vlJxn/XdHxvnXYR/L7y//IuvwDOJq+a5m3TzIPPYPPXfT3Bn4qW38dTU5fo7su+1un/CHwYvSvVT/fNcXfO6vYy0z1hhuvC8jhCHZ3J/39LD/7xZer/5r0BvRPy/6Sdj/Q3jnk1wP/3dSfAIv3Czvg7zn6/sbvH0nHv8efx78fqv9v+I3K6tVhTxdIf564GvQ00c5h5HcF/VXJuSb/sEH93uzukqx/lTsIv9exh0HoKpvzUvLKuUTOI3JecTj+1pBX9gNa5DtU+iv5h/k9+wofwjboX83urkNn1lf9wj97vYv8V+d7NetWep8mfZH8LfnTbeFc/raU/IbTzyT7HD2th8bTa/YtWtN/T+OzHfls6/dx1jHT6ecd7X+O/0fQ/6t658tfIX99znOU6yZ/EP5X4/tuOCvrb/3d5vfxyk+PfzBud+JnavNPGY/f438d3MDOPkfHVuTWWj8VpLMP+x37aJP1knT2YXfC3y3afUO7deh3GLnfwW7fyj43+huSf104S/vVc/5A/lPgZLiQ/1jCLn5U/zB6er7I/x5Nr/G/8cfvWF+cw35P0N4m/A3zXfe2cXULvJF+9tfPRdq7kzzOwF9V9D6n32nwQ/Iq5d8243uG+fUN9BzMTrMvsMg4baT9O/jvCX4fJT0V/ZsTP0cvsYdF8nNu3hw9c2KPysceY59XyP+N/NvQ69FwEv8yQn7iYxIPU0G6svzq/HpNWANegN+O7LsUX6vJswz7ambei//IOUvOV47NvGfcd6G/O+QPp6+KRd+fdcm3DnpPY1+rjI/o7R/tbZV4A+nn1H+BXJaw+xnSOZ+OX/7vPpX0dvjb2Ti4X/vfkv/70oeyp2Xo/4v9vkK/G9hV4tvG4GNhzsH54xtg/HODrLPQdajyg9ljOfpbbH7pX4CSUvJ+ER9L+aNu+i0Lz0L/xXDPnMdpv6d0L+u10XB45nP0NSTXZ+h9L+lB6JuJnsx3u9PPf7Iepv9n8HdwxjH9zUn8lX7zfdIj62v8346vO5R7h9zuY08N8PM8//Sq+tXUm8NPNcq+Gf0nnmi19IXwk6L4oT7K/ZS4V/19HbtD5wtwXc7bi9b72d/I/ti95ttz2WFX65c/1X/R/L5H4j2Uq4G/F9U/X73Z0uOVy7lv9p+yH5X9p6X8wdb89DLpI5X/ij4+yb6d9LfxL9KryXkN7IPej+IP4YdwCP0dQD4/oLMX+TfN+Tz7GK+frBsbyi+hl/b4+VE7l8rfoP4c+iKeklnyy5h//rSuOZr/6ZT1Kb5zrtJeOucrvdD1u34rS+cc/jb+tQt+z0TPteSzkryqkPd27Lc3fm5iXzWVP1G/3bW/Un+b6O9z6eyvd8HfDOO0ifkj8dDnkt8U9D2g38RXHWn85rup+HvqKvxdCTeS313k2zRxpuSzWHsl+hnNfy1C/wfwHeXb8XPHwF3594Hq/2Le+Qn+DF9D7wv4frK0gBNhvnMrZz/APFcDnqh+I/0uzv6w9Ez2sZ68f8v+NbySfNribzO7aQ7fJ5/a5PFw4nrUuxSeJv9b+pmG71pZH5i3s7/+qPS+6D+RXsqi/7OsX9D/q/z/5Sen6z/xlYm3THxlCX93NrmfAlvrfy3/tV57C6QfVP818jzDOvYsOJz99cu+nP7bstda8icl/jbnRfptkfhK/AyFx/Fvib/4kH5Gkt8A5eolHpb//0W7N9HTQP13N5/fz84uxM9P2Q9GX+4ndFV/d/UPtc55N3EJ8i9F30ztv8kPvAJ7a/9E+kx8/vHSV5HXUnJ5W3uXoufF3APR/nCYOP6r1d8KPR9K98x9gOwvkM/9iRcyrj6VP9S64nFYK+uM7KcbL2vgDuzxEfV743dvdF0ifTv5/aj8ZfTY3P7EW/n+8PsM/vsE/vXofG8Zj8PUqy9/Ajt/Dn/xz1snTgj9g0sL+As5ryLHxN8el/Wu8veid07iV42Hi9lPa+nEsx3MPkrUe9ME9hV7ak9uHTPvwOn6/4u+TkbHcnZwivzH5H+Dr6/ZRxP537Dn0ej6Gr/PJ44JPUeidyQ511A/5+OZVzLPZH75zHqxmvaXSif+vZP1wkLz2Dfw73yP0W/iju6QnsxebjXeO6DvFul5+n9Nuhb6dsn9BOmv9TMEP4fwT13VT7xE4ptnsqfETyw3Hjuyxyb8zCDlr2YvvRLnBnMf5Iei+JDp7Kim/vc2346Cw+jjUPXfIr8+/Pt2sIX81ua7o2D2eUflnNB4qGd8zPM9NFT/b+U8DnZX73T5v5pffzFuD7X++AD/35QWcLJ6tdDRh/wPROfL2fchh4r624Xe9068mXrNs38hfxW8Hx/9lTuM/rrSW31+OPeN3jC/lTc+y7G/ZujYaN04j/xPhj21fwN9VsbnpdLPym+Z+SHft/icLD1av/uSY84f2mZ/k39YCdvRV84nvtP+Su1+yW/8SD6PFsUzJr4x+6sv4j/7ey9JVzQ+O+PrYfrrLf0i/i5hj4/BSuRfG32PWC+8rd1x0jfjbwX/84J2bwni5wDtHgjL0GPir282fnbMfqp6ic+oit+d4TD2n/idVeTaidy2ZUfHJU6Lfl7NfRfpk7V/v/GduNZx5HhEzqMKUNIHfgwnojf3GzfDV4zfrCfmaH+QcfJUvtvoN+u3deipot2V+JuR7xvzxt7a+e89DeP2Bpjv73vQf2RpAVvB+cbvceSf+0aV0DOLnHP/6GD89GIXiWfNPcFp5JU4ugO0n/3yt43XxN1dVhR/15z915celXND9FyJny45P1I+43AOe9yE7rb0e6R2JvAHT8AnYU3yPki9vsZvH/ix+luTU9bV59PXnuitz9/uCb+gp4/yPVaAkhfgcHiD/pvrrylsBrMPs4Y8n2QPA/V/DvnM1d+t/OQtsBv6tie/+N9q5Bf/OzX3a/SXe5S5P5n7gXfzW2OL7gfON/7fgfPgJeSW/a7L4YXozf7XIONjIFzKjk/U/9/ZP4WXa3d25lft7QO35mcORt/t0tkXyT5J/3z/5J6K9Du5X0PendC9id1UpY+c90yxPrk890rYe86Jcr6RfeSz9JfzjQeNv+XstptyHyWehjz2Ip/L9D825xvaf5w8V+deJPntw6/9xs4f1s8QdHSD37OXtTl/TvwVeXyVeJOsl7X/pHafghNhHe3mXHEZv5z5/iL8XcMe2+S+NPrL0O+32jk28UDo+Un5rXKfl37KSb8jfx67LcfvdGZHq+inAnvYFv5h/Zf47MNzrxueQA9z0Zn7iRlnWd/kfmJd+a8aV/FnA3I/JOehsKHxVT7f3+SZe8WV6Cf3i9/EV85Phxr/i8hrZ/PS3+w4cT6fa3+J9nJelXOsjrnPpH5/eii+nzeQfp82zq6WHqr8gdnPTlwuOXyl//ns8x04D5ao34r95/50I/SeLz/3Dlrl+5a8X5JOvFDih0ZJl8v9QvqsYP6ax74no68yuc3+H/PrHOM950e/myfz/X04/reSn/3BBTlPjn/NuwzscLT+c9+lp/wL8h4F/hIPXNXvDbNvGLmgJ/v2c4v28/P9ku+Wv8kl3y9Z7+c74CbfB/keaEvvuSeRexE3o/8F8s69kdwjyf3Lmebv3Ju5Gw7ARxfl94094rc9+vro/zXtJ1468dG/GD/xf/GH8X996P9189aX6LmPPO7L/SD9n6zdk/Vfj9//E527SvdRP+c0uT+a85vcH93T+K3m9/bSuR96AbpvK0DJU7Cn3/dnX1nvzM39IJi4/dboKI7fT/xe4vUSv5d16qvZV9V+7rc9qn4d6R+0Xxy/X0m6b/Z/1Ev80ATj6gd6WQPPUz/vm+ReyxNF75287rtkDD3elPjQxN9pb1SpdqS/wN9S4+GLfJfs9G/+trEeO4Ve8z35Z9bh5LITed/Irsaon/dV+msn76yconzeS8n7KXX41475vuNfvjQ/zJLuRS8L6bel+akP/X6DjvXkdSW8Ama9MFD9HuibD+/N/FKAkp4w75jk/ZJj6SH3/6tm3wT/Ob/dnn3UIK+c536a/RbjdyDsp9zTxnv2GYr3F66hz3fxvVz+g+znXvP9O4kP0X7nxG3S96XkvhM5Z3/9C/LoaH7oAPvw7/O1fyM/+4b6k9D3B/qfSHymfoeSz+PGz77kkXuIJ5DvJO0eZF4/Vf7szE/qV8t6R727pM9lVxflXg9cSG97xo+rVxxPmfvns9GX++eJr+6Onx1ynojf3G9dyb5WwM9hzgGO1H7v7Bdov2/8VdZVuX+R+8AZn8ZXLX6kBkw87nD8LKOPt9j/8tiP+juxnx3hx+p9nHUJv9JP/cHaPzJxzdYJf2lvKnofyLtM5LkvvmqS34f0UZEcPpKuSn4Zp7k/l/t0uT/3q/5/Ve633FdW/iL2Xp+fqcrea2X9j76f6SPfhzvlfJ8+8l2yKnomv+3Ie1tYIfJX/ij+KvEzr+g/8TPfye+g/4nanaj/3F9YYd/hQZj7CwPIo6n2J5cW8P3cnzZet9Z+/H5D/WT/fbB0bXIbkvV24l/gfONxlv7G+D1xmfeZ56rlnSvfd0vQuY90M+1fQd+v089V0jeQT+IPf4ncc2+rKP4w+ym/KZf4w8SnjUdvq9x/k/8Ce15DnhdL555bCb+4CZ/1+aEO2tkt70MoXyvxtvR3Kvkn7mq4eom/mmh9mf3J7Fd+h77vjacH5c/J+WTeSyP3sfJH83cP5PyE/d+l3OP0N4M87iWfyfi/Qb+js7/MPvOeykv8e9b3T7D3avBIfLZI3BJ7vYcd/yydc+K61i0L+MXdpV8ipzHsKXaV8/gZ+K1pvJ6hvwPIdQT5/4c/qIu+hdLxpyeVFjBxA+2lE3/dzLi5k3zKk1fiq7bCb9aVs/ye9eUW+NlsHi2RLpPvA7+XGhe7wRMTX0H/mXfXoSfz72fs9UL8nZL5J+fh9DXC+HpT+irtPGpdN8W6br500+x/63cAvBx+q/4V7OIT9pL7qLl/+iv6mpD3OfxAG/mrtVeeHB6WbkefH+FrEjwu97XUT7xM4mcmSid+pjl/8ov2mknflngz/O6WeAxyeJY9rDfuFxv3a5RL/N1BOf/VfhP8PaH9B423nK9m/zLnq01zTkp+eQ8p/DRiV7lntbd07lcdyz5WqT/cuBic72fjPu9HFK/vH897O7mXa534ZOJ5jJdpiY+Vfld+5s9jjY93+JvcDz5avdwXqBd/g/8LClAyAs6E9fA/hHzfxuduud+gv93j77KuYBB5/+Ng/rUeu2oi3UL+NeSSe+05x8z99tNy39jvQ2Bn+RXRFz/4KByZ82rpvO+xEib+7nX2+EbuYfBvWQesxl/i3hYav7HXAfS5yHfEjvSY+zF5x+KXvBcDcz7cLvFH7KEt+1qc9Qd+c39nM3lkPZd9qrsTz5Bzcv2/p3zOt2bQW/xX3odbDJfBvsr1VX9+3jtAT1v1s78ypehdq7noz73op+APsHHeBzLec896e3iA/MrsvTd6TqO/N/RThn8rgVvAF/V/Pb+Re78j0XsMeZSFe9D3AuN/C/Uvtv7oRO83s5MLlG8i/R7+d/d7BfR1NN5uQ/975JfzwOboGkS+++i/uvze9s0GqH+p9GNZH5PnjdYJQ+ApWbfm/Q/2U6q/c7R/BL9Whd5X5Z0V9D+Jv+vRd4p2Ep+/KOf+5Lw3+8854jD0luUXiu9vt6XvjLOH2cMq6VPwcyp8PeeR6KiE/nH80gPwE/nbwOHkl/ecTku8kvG3OXFVNf6dv0e+e/mFKeSzfe7Hk+8+8OncV1Eu96+qay/7U7l/lf23MxOHhu/sx/XN+TQ+8l5t4qdXWs9cSX+TzeN/5j0/9aK//fQf/eU9pkb0cULmV/n7lRawMbwHPzvIb6C/vCPZL/ev8n6Ldiuyp0G5T8F+K9P/xexiBP2f5PdG9LNN3nnQ/134yT7CefjNPsPzSdPnhbmXCvupt866dw6/Oxf2Qm/5xGMa33ezgyvw1asAJXfCH+Fg891E9GZ/anre6aC/G/mVHtqfSP63JL6TvAbrbwr9l0scrnm5B7ym6L3HX4vuH+Q947yve21pAa+G18DnjJesF47KfWh0bUG+o43L3LOfnv1a+v1JO1Ppq2viRfFzQOIr+O1z6GdE0Xlz5ses43L+XILvQVlv6WeBdMWcq5PrX/RylXJPaX8TvnYpit+bafw/D9flnnzWp+z2jPiF3H9S/zn6OlH6ZP2tkM73Zr5DEx+T79HG/FVn4+pZ47119v/ILXHOI2D2T49lr3nX9HjppuT/Fvp/ZIdzpW9XvjX7LcNuvzUOj8/5Mv0NTHwM/d+W77mi84VhWS+yj69zPzX3fvWT+0FbSo/AzwDjYVf1h2Q/DA6FDdXP91vukc1Bd77jNie+mPzPZC9PkW8D9j2YXHLPb3v2lfumeV9gC34491FzvyZ2m3jP2O+P/Ms8ehmr/S2Ve8LvFXPvWf695Pmdfj8iv3XZJ0Tf9ujPPmqJ+rmfuQ997p04tugp45s8E1//R+6/KvcIf9uJfGbzY8ck/kT/ef+9v3Tefz+E3Ovn+4+8cn/stdICtsg9LenO+n/BPLHGvPGgdN5r+Ql925mfXyPH7RLfr//b0dOYnhLPfDo9zkXfDOPxCPI9iv668g8/s+8f1Fuj/GfqZx5/R/95b/Je64a8R5n3VPJeyWGwRdH7JSOMh3OlB/L/R9FvB3pph/+TpffW/0b01dDftdnnIv+DjZut+J0t0X9Q0Xldm9yny7sueV9APPdgv+9Krq3Ql/eYi+ObKqqfeONH875CUfxxzZy3o6f4vbr4w2Hqx1/GP3YtQMlr8FpYPfcoyLsXee0i3Vf7E3P/n3221d+O2b9lH+3515UZ54mP5/9Wwy/gTPLJfvZw7T4uP/vbh5HHAYkHzPyn/iHGWxN4OFzKPt+Urmp8jmYniesfRL6vS3fMvRvyOcF4z/vBeSdtOXoST3qZ8mtz3ou+vMc+wXdD/s9A/r9A3qfpQe55pybv01RI/Ir2u2Xfr+h+Ue4VJe4g9wfzvtE44zDvHOV9o8b6G6LcPtITlHuR33kp8Vf0vlD7o+r/m//II/xXND7+A8uUFjDn9E/k/2LknUC4IucN6l0Hz4IZX/Pwn3e3fiKH3C/83XhYX3Q+exz+Ez+SuJHEkeS+2Ub0bomuP6RzD6YCe08cX973/z3xu8Z/9JN3ZwbTX3vlH2AHd/KzWa+VkufD0h3Rn/PXafzx3eg+htyyP5H3TnbSTt7dTrz/NHTdiN6nsy+R+zNF94Vzj/jAnJeh+0n2lf2rrA8ny7+NnLPun4L/84z7rnAMf/OY+jnfaa7dnPPkfOc481/s7grjfDb6juDf2/Lv1fL/VxLPx576wpLYmX6zfzgSboClOYfP+/5Zd8Ocf+V96bwrfV/ei0bfo/Q3CY6DSxK/yl+NyX0c9rFe/8fg/yt21Je/SXx7A/SU4Cf3e3P/fH/1BiV+U3qE/jqzj/w/l1lZ37GfxG2+QS9v6i/xm735k370knjOxG8O5nfew8d8mPOVMupvov+W/Ogh+LuFPPe1Pu9Bz6PQP7gAJU+irzk7awrvyv1hdnpV4nBzf9zvA9FZ/P1egXzy/0TOx1df9HfOdy78J++ZkF/x/2VokXNx+S+ZH5uXFvBQuD/7GIrfpsbNLsqfi//Rvovr516+dJXc36CPReaZD+El9L1A+xvJbwO68n2S86pP8Z93Amagb6r8c/1eAo/Sfr5H4+/K4D/fp7nvmvV5mbyfhf4y8kfBoexv/8Rnort/3hEgl9yznsp+p8OH874Efu4ynu6G9+R+TPbbwhZ7agS7scddtVcbtst8lPVovtfIJe91vo7/04yHNfxAF+kx6Mv7LHmPJe+z3Kz+gfSe/+90Ef1/AmcZXzm3HcXOx9Pvdeh9if8Yqt0x8ueyu9wzHsH+6uEv99euKy3gqdKf4nsj+zoCfS3hzMT7aT/n4MXn338Yj3nPNe+7Zn0yCD1HkM9Q6efIeyfyu4Feb9LvEvbxGvpehoeQe039JZ7uXr+/iP7E1z1Bbzm/zHlmzi+XsufnM56084H0l+w272ltIuc9tPc3Peb/ZuVdl7/w18e4aQ27oO907a0x3tckjheWyfkuveddrrV5J1X7J2uvjnQl8uiv/i25T6yfD6TXJj4z51elBVyIrn/w1z3+Jd8nGffyb+a/839EnqfHvOd3tPHYJuNSP3+TU/7fTeLK8/+MEl+edWHe38l7PHl/p6H+94E5j9kv8TvsKf/Ppb761c1fZ6F3Z/RUV38b+VXwVRUuY987oqc5+b2pvynkfw9+PjE/Lso78eS7VvnE2+ScL/E4Od/7X3JNfG3eTboB/cXvJzVk/3vBw82vibduRy/5rpzEvqfK70Re+a7Od3arovXtS9kvyTm8/AfyvgH/fr902fgPfL2S/y/Ef86ltwPRc5X2s1/5M31m/r4w+/XsNfuPn7GnvMeWe9y5v91G/3kX+QTriviv4vOzmYnf097u9Pob/n4tOq/P+0EfspOhRf7wTuvdC/UzU/p5+h3L7+Ud2Lz/Ops+Ei/fJ98r+Z5C/y76zzlVzqP+ez7FH1wAsw7K9+8V+E3cS+5dvSj9AP8X+9s36xz1s/8Tf7eZvoZqZ6hx2xL9Q6R/kV5XWsBHyPU76aHk153d1iefPWFv/E8hj7cSp4iuO/L9HvszbppJ5z31r9jrl5lX4NXo/y7v75oncs6TdxLz/+Tyvu4f5oG8r9uDPaxQfxn8FL1V+IUj0NcK/oO+s+htR+kr2UPi93M/L/fyvod/6ucq9GSfNu9qZH/2Lf7iEvpdia+s/1eyr4Hs6lL6z/tIZ9Fbp/hj/f2e9wGsF/+Ej+b9Hv3lfkJt/c7IO17ae4lf+4lcmlqfDSCH7HPmvsN47eX/7zTQ33p2fF/ep9N/vr+XF90Dzvf3f/d/0ZX937dyXqS/nE/lvCrnUw/lfqz05dmXzn6O8bNRuia+PqHfweh/Hs5Ff84HbkTfS7lvK90I/zlvWQuf5f/q4b+M8ZT4rKfgi0X7K0fhr4Hxln2W3uSW90mGGS/Hqp/3fYvfB8/7vonnm6DcAumX2cNiv1fnvz/OeMPvtfSx2L7fI+ylUuL19XcAvXzM//xAPguNrz/g+zmfUf9S2D/xHvjP/w/7Dd/V8f2j8TIx92b2+Dc9N5H7eu01kd+Bfk42Ts5D76nsJ+875V2njdl/Uf59v6+lz3z/hp7Wft+an8r/kSpfWsCZ1jU14UvxT8bdjPzfnKL3p7qyt/z/wPw/wfz/wNC1feJh8ZPzpTbSW8jPvYn8/4/oc511c/Qdeb6q/4baO41/X6H+DPXy/x4f4W9nJX7P+usvOFX72adcYb24HGa9tb32Eld/Tu6fSCe+vq7xdkPiknJOxv4f098Z+f8q6uV98KXsLffHq6D7Qpj1TL7Tir/PatL3xsR1wLO0fx++Eyd2p3Tiw2YbbzNgQ+Xyf5Nyn2A9v5E4sCNy3xY9edc9/3cy77vXYP+LEkcMZyVeMfdijLPjpBPPfzU7/Vg7OVeqkvs72Z/IfW/joSv68+5G4tISp5b4tPH0OZW/fQZ9WZ9mPZd1Xpei9V4/9t0aXY/jK/9fufg+S3H8ybq8v5D4vrxbQ785n/3G+Mz5bM5r9zRvdJUeY/74A/3r2Ne94Sf3PPU3Pn4h77pIP6DcJfjLfb3c3zsafbfSS5v4PXxW1V9H4+l7frmu8XoDPVTFf+4dVJbO/vS40gLmfnJP6dxP/ln6HnY/Fw6i7xr6bZX9QvS8hP68h5j3EfNe4h/ar8M+mvLDu+SdRfV3JJ/Ea7+r3/u0l3tuD7GPN5Vfmvu1/GnWaYdJZ702hb3V9/u90mfCT/mX3J8+U7v3wcwvmVdyLzzzSyf22Jn/25F+OqJ3nnSXon207J81Rfd7yvXiXzbkHjH7GMAuXs65J/kNzH1Cfu5Wfm4DfAsmDrwGjH+9Bv+5l1R8Xyn7EdmfyD347E98r/9PlU88Uc7Pcz7QFh4Ncz6Q+LHxpQVMHNm92l/ILz6QexvSByc+pej7KevdfD9lPZH5cBJ5Zn3xf2sUBxt4nHXdd/jX0/8/8HdLyQyljHobqYSGlWSlREIaVkRTGQ2zEioZISERQlllFSmJVEQhOyqlNAgZHyQr8ruu3+t2/16X13V5/3O/zvs8zzmPdR5nPc55td6+5P//3V2pgGdUKWCnegUcuXcBL92vgF3rFvDN/QtYfpcCbgEvP6CAGxoWcGO1As5V37g9C1incQEf2a2AZ1Uv4Nlwd+2cq/z2tQr4ac0Cnqn+b8sX8IQKBXxSuqXyW5Ur4NtlC9hbuoX8G7Yu4NodCvgxOm/Dxwr0tt6rgB3J4Xb8f1i5gH3IcSr5jW9QwEW740v5mnBP7XywVQFHaP996Qvlf6ze7bZTv/R09P2xTQEfr1jA36Xvw18N9XyK7p61C3gL+veoWsAy5NINVqSfd+W/rPw70r9LX1iAkrHwJTh33wJW3qeAH9Yp4IPaXY7+UvTuBhfQR1n5PdG/WHtv0fO98j8hj8ipM/l3aFTAs9jXXfQxQD374G8muk4hlwN9N1L+lfhZB8/z/eu+O2VH7cNSemyg/OH0uXDLAj4i3YN+LsB3b9gLlkNnI+lx+LprpwJeWx8f5PMgeexJ3iPQt1q7K+HncEvl961RwHpwP1hZ/jnsqjMcCNehrwp97QC/QF877R+qf9y+RQG70P8l9FOd3C/U3vfkuwV+qvIrn+1awGrSDbWffpd++Dz7SP9rxq/9LX8ceZWT31v7B9PHN9rdxL903baAr6jnD3x2o9/Z+vfx7Gxr/qu7/L6+r6/d19VXqp0Z2o9dNkVHdXLaSF8L2M3D7KwPOe3LH7ZKWr27k+/v8r+BLfTfr+U/z7+drd2uOxfwWfKpTG77o38r6Tbk05C9f0/v27PTZ3x/Fv6ewd8geBj57EuuL7OPWbAUP5cZf85TX2PYWfmm/GlbfMwk/7eUP4O8T4Pl2W9bcuqnvu3I42ztjVH/K2UKeBXsAlsqfy65vq+efuh5Gp/7+n8z6QP0z/ukryT3o313pva3L6In9B1e79/0bYHPY/Wfu6XX0t/y0gLO0m/mk9NR6htqXF2Nj7VwG+1cSX9L0z/Z8+va352+9oSn8Pvfs4+/0b8Zv43J7V3l99Te5ey9J3rKyj9U/6qh//+U+YPvP8LvNdo9mHxP0f7V0vf6fkydf9f/g3rP0S++4v8akM9J+lsbOIn9XEc+C9U7AV8DtHeN+pvQ7yByvML3W6JvW/XMlP+g/zfV/ul7FHAs+v6h11L5NeTvCvcoLeDh2h2L3nvhbtp/A/bRf/sbZ/6nH3fBz8f0trfvd8BfGfxt4A/i14r93Zf6dxd+uWwQH6exy9Njn+ysBf6ms4+P+Ndp0jPpe0v0H4y+/empnfK7k0spO6wpfb3yf5ovfoHOqvgZju/t2MeD8Gd0N8X/Xfhdwe89SM5/KL+DftEanZXM434lnx/ZdzV2N0f6ce2MJ9ducK3x4DH5U/ibY6S/oreXpWtrvw7cG3bT/iDtDoZH6l/D4n/p+0p6eZtdlar/c/JeBefQ71r6GM+ux5D3vMyv5d9ML7Pl3yz/fPkj6eM2uAM9LfLdsPhz/58rXZ78H2A398N9yKsuOfVnT/VhbViefo/VHyqipy35TZceRC91zUMGSmc+Nk26Ib31Ul9V8rudvOaywyHSDcjjWHKtpX/WhFXxf5H8U83bL5Q+C30Xstu58k8lh/3k30IetelhnPQl/NA6+v/CvGA5ui+X/xT+KqO7e6V/0/+C8fIGeBnsoX+OLC3gn+Tehv/flfzXy78LvYvlX6r9a/W/D7W7mnx3VH4s+2sbfbHftvKvp7dNynXOepj+yuH7OPL7wTpyOPpHs8sh+v9N6NgRfW2Vv6sAJZ+ifxl8Cj3zyLWxfjdG+VHy92bP3+Mn8mhLv834je0yDvj+at/XoI/7lOvY+N/8ha8q8BD8VrD+vg9d5aRro+8Ydj0w8xPtfKD+ufQ6Cz6IzkH8SSXj2pX8f2Xpx7T3g3nvaH6zr/79I/u/Fp1Lzfs24+d6fJ7LLp+hl+HovUH+//DzIzyfvDfip676GqC3NPNX/E8nr2+zTkXPDeTwOr9aRvkP9b//sa/q+ttI9nCqfljb98v542Xxy+jro/3T8N0Rpn/EPlb6/4HaXSH9BXoXZX6B3kfRs1r5ZeS9NOsg/eN79N/j+wbs8ADYSv692n1Vu2OlryfH+vh5n51eqR90Iv/Z6FxRtJ7I+uER4+qP+l9T8t8R/TvJb8JPHMV/36ydUfg5Cx0nqeco9f/Mfuryqy2VPx797civI/10xt/n5NmAPibGrrPfEvvRLxr5bj/6vwR9G0sL+DB7WKidqeTziX5xkfwrjA9L1X8deoZF7jByftz3x9NvK3g4/taSz4/42VN+LfK9RvnW2n+CH/1F/sW+b6b8Gv3vk6zv9Y8jMj/gHxbJn6L+hfRwGT3dhf8X2VVL5b4mx2b01x6/fxhfm7DXSuTzWtG4uxvsj54dtD8Z1mcHjfA3ij2ejd69/L915kf8ygp0rZBeyJ4HGl8rKL+H8kei/x/yWYvvcfhZrP4/2cuXyi+ALyq/q3aW0mcP9D6sfI/sN9Ffd+lS5Sux97vkP8ePvi3/PPZXS7vD1HsdXEn/O2n/Efpv5/tbzAdGa/dOuJV2V6h/L/V9k/1p+t+V3j/UD6tLdyKvOwtQMh2eCZvQb0P2fS08BDZF7xv8f012tkD6Y/KYxj92w1dn/udxcn+FfkZqr7P/V8bP38aPk5Vrg49P2EE99rEPeU1A1/Psdy5/Ow7fr0p3Uv829D0EvRPRMU16PGysvseyDyo9RfsXqK9F9n2l19DTx/ATOCPrC/5uNfoGwmvoZ3b2FcmvDP2egv8jtJ/98gfpPfsH65UbQG9P8PcvZJ+hACWHk+tr/G3mX8v1/x/MN4br/38of6n+ukq5pug6HDYjrwfI5T5yWYrOudm/8v+XyD/z01b4Px5ubb6zkvwvYx8/w5fln81erjIeTCbn2Nl56F+l3HO+Hw/v9V3Gj8v1u4wfGU/eJZ/a5PIweQzB/4/4H4Xeh+APcCZ9jvP9U9n3Ip9/lD9D/unRu/K/0Mv90qP5w4XSH7D3j9DZATZDb2X+vgI9zCCnbch/BHmeb9zK+qwv+U2u8O/6BpJLE+1/pN5K+BpKro9nfcJfD4F1fbdU/UfQ+2H6QzPpcfKznruNHrPOy7qvuv5xo+9Hqv/H7A/gd4L+c5x59gL0vSI9G86B1+DzYvXPUt8s+nmI/magd3d8v4iuH3x/i/pOhifBheicx36H0uMt0k3VNyv7tvr14fHT+O1t/LgHvg9vxO9w9rUKP3f6/1zlO6D/UPQslJ5KPuvxU16/+JN/O1L+fPkr4XHsZxT6Z5BfV/J6jz1Pl/4cf9P1w1/Q2VH92XfOPvTZRfvPzYxL5cntCOkt8XlwaQHPU++W+s/Nyl9QgJK34PnZZ0ffWPT2VX4SeZ6p/GHsf0t2VoEct6D/1r7fSr0N5A/Q/yqzh52NCxvYQc6PbzDfqKb89dJHKB+/tAP+i/3TMPUPhWfg/0n1f0qeddG/t3Q9/DdSb0NYl143RL/69XTymWdcuZh8JqmvM5wNT8w5MnsaBe+AOR+bTL5Z/2Q9lPXPpexrmfYOVm9D/N3Dvubap3hD/9kR/ftbF5WD68mzjfqHsPv+8jOvr0a/n6HvV+3fpv012m9D7pPp5Rn4Anndxe9NUE+jrGPU/wt9n4f+GfzALPL51rh+DPwOnpz+ofwqcsi5Zc7/niSP7Ke2Ye+f4v8k6ezH/pb9G/k5H+xStE+b9U3OB7Ov+0rR+maM70/nPxaT95H0PJ8/OcI41YfeDsV/D/rP+UnON75T/1X0lnnHado5wfdHk2sLWBefXelvNXv8HFbPOYHy68l7jv7R0TxpI/o/1P97xf/S9/PxH9qdoF/cxP829f+f2MWf6P9B+UXkPzz7t/rhT+xrOflMRd+26jkQ9tb+aOPpAnKeKt1E/Sv4o8e08730JnRkvM/4vx19ZPyfSG4TyWOS9DXoq6SenGc/T1510PeW+cxI/fIw3z0hfy19ZB75pPnw4JxP4atEu5vVcyM7WUc+H8HB7LMSvoayn6VZJ0sfTZ8drId2ZjcdpW+U3lv/6wT7w6H42I2eDzP+9UDXWeR/I32OgNuys8rkdrjyscfY6W/S7Xx3etYD5Hsp+qrKn5R5XcZn5Qer72p4Jbxeue/My2bC49nPi/j7nX+5g55uT7yOdp6GK8n7R/bzKfsZR14T6XUSf/Es/a40vz5bugp5rFbf5fJL4W3o7qf+S/mD2eh9nR5yPtkQPcPkN1fvMvLbTB/X84v94VE5nyhAyUews/yb9aeexuPzYQ84gvwPxO9v6Jqp33yV/R/9fibMeJzxd7F2nsPP0tICvsS+elofPGre1Mr3V+PvJHKvph9tQs818rdkD1vD4v2SxJ9VKIpDS/xZ4tcSt/ZlUfxaX/r5W/sb2dMGdjMP/W3QXZPcx+O3O/0cgp65+tFm9LdSfhS93AbfyPqBPQ0w/tysnvbk+yB+j6CPcdJPSg9kd4NgS/w0R389/qQ2/vaGc2LP5JVzipxLTKWvtr7bDT2D1Hub9hfi9yH2lHnUOPqfyr6nKJ99hz7yx4QudO/BDpfm/DbzdeVW8y/fSh+E3tr6zXp0H4O+nfB/AbtaQe/D0JN5fTn4vP6xRLuz/b9eaQFHmG89Kv9Q9PTQ/vb68VmJf9LuW+ZVPaVHoW8zfscqN5wcnlR+D/ZynnZHoWdd4leMJ+dkXw6uzDk/vX6h/mOk52a/ybx8d+3knLAT+/5Gfzg689Hszyf+A7296OtefG6Fvp/NB75FT84HE19ZQ/8/FLblv+9WvnPi0uj7NP7npMRv0P+DcCJ7/sN43Ri/12Rc1v8PlV5IH+ei+yn2ch36EqdzTubd5FOGPGopd1X8Gfqflr4JvYOl+5kHPCWdeMvEYf5MvonHzH5D9h+yHzGQ/CPPyPco9hj5juBfbiHfW+HuiYvhny7Wj39lBweqdwF57kK+Q2DOc9aS50n4eLT8v8t/j9+fYdYTD/MjVdnHs+R0S9H+xc3s73l6mQrHkd8g/b0F+n9C/2LyeNr4PpmeWvI395FfKXlerL6tM+/hnxqRz2v8wsHS56r/HfXdS+9j4VD2+p12H8o5D0wcRuI3Ev+QeVLmRzP49cb8y07ay/5eR3LcAx8f59wK7qh/tje+7CD9Av5PIZ/d4H6wOv670cdz5DyAnnL+uoR9fYDeWuhfovwb5Nkl8UDorKr9O/Hfgb6fUr4bfdzHnk5kX/fD7B9tg//P8dtTuZra72Xds0i91fSv5vIHk+8Z+Ogg/ZB630PfBehb7P/X6l/74ms2Ox5ODtkf/lu6OrouUT76qaw/VoJ30FNz5Z6m7wu18zT72VL+BvS9qb3TYLWsL7U3GP3ZL8/++Fzjxa385KvSLZR/kP67GncekH5Jvfujdwr5lrCfe9DxG31XVN9v7KF94rsyvpD/dPxmnbwi54PGydelB+D/DP396tICtmWnF6NnFvvppt0m7OfdnG+x53PRu4t05nfxZ1OUWy1dlj5W4/cLfCTu7ib4AXs6MP0Ff+kfm+hvKnqLz/fe5G9f5Yd/zXwN/b9l3JHug8/E36e/LienJ/mvk31/Jrkv5KfSD2L/Z+LvdNhM/sOJ3yTvH9W7LPG5+N3H/KI27FeAkjrSjyYeD44tLeBhyr+cuAH6foHffAx/a8lvA/se77vEj38pf0LivX2X+PH+7LeC9rY1H1hKrocZ76uS307wWPk5b0y/z3nkA+p/nP6/YD//43/6o6O/ecpcdlFtx3/Xuz89PKD+N9lJhbRvXJpXil84Wf25h5D53yn6Y+Z/i+KX2f+j5HUA/bZX36Ccd/ITK/8jne+e0n9Gkuc5sCs+q+R8Ff/D2N/myIH82inXHn5JnrugO/smDcl3EhyN/hPJJ/Oc1tJvk2fOh080L2mnv9UktxP4ve8yn1HuH/Rnf/lO2ET/yD2M7Edln+qJov2q/vpnd/1oO/LL+fBg+j8o98EyD5B/M3/cO+v6ovXJKHw11L/O0063jE/KrSo6Px6rvRHsoUri9dDXP/FDiTeOP6SPpfQ337zsBHRMzH5fxivzud/o9Qb2MFH+D+qdoN2z0ZP4jBvV9wQ+Ti8t4LfKX87PHEgeB5H7ofG/GV+1n/jEGb7/PPFwvvua/i5DV+7L7Y2/d8jvYu0sx19H9b/F32R9l/lc5ncvFM3v/sq9AXqtxL88jb/h+sUL+ndn6cRfzmc/O8h/Vv+vrf766D4A/smuDim6D/F/9zf0h9yP+A292dcq3u96Sn7mK5m/tFK++L5G7nHcgI5j0dUCtoQ5B/lM/z1Dv+2ln/6G3lb8Sit6OB7uTr/1lUtc26fqS3xbHfSd5vv9so9I/t313/PhTlnHKP8n/1iP3O7ih17KPSTyyv2bSln3ks9B7LtNaQEbqL+z9o/z/2P9/2T9LfszVxWda44rOt98Al0b+YVG7Lc1u+nOn91E3uvpL+v/v9G3Hzo2S/fF/4noOTn3Mo2fa9S3vAAlY2DOR29F/zP+f0jOu6Wra38v85Jd9NM9pfvhL/dqJvk+920Wk291fqMG3Bk+o9wR+tPl6HqNvmri7139cUjm9+xjoPqbm9f/Sd8z2eNM9LxNLrl3NzXnoeq5gb/Jec4w6b+k71D+enq7AVZU/jVyaYLup9ExPOsX9O0Du6DvEfmN9N+3YOLRMk99P+MjOn6F/cnnm9ICPsW+noSbIqcClLwBz4dL5ZdlP+/CMrAv+e5P37+w0wbS32i/P7luQ6+XGQ9eYX+/oPd/6Hw98e/03Ve5Xr7rJ/0POW7JH1WE67R7GPvtYr3SFX5LD2Xl36Wf7cneHuVvbs/+Tu6tpb/IvyL3b6WXaLdr7mnR33nGnZf9vx851VTfqex7nvzEAdxPviP15wuNQx+QT+5V5V557pnPh7lffpzyuXf+ZPbR5Y9kP73Z7WDlZ2c/nb33Yp+96bdG7nPqz1Uzn8n4Tj61fdeLfEq0u45891RvrdzjpaeW2s/5bs51c847VPmjyT/6ib7mSJ+Q+BT0fU7fdbP/LZ3z5Zw35/7c5pzbazf7D03Udyx5NIcf4Pt95afozwfl3ha+OmtvH+19hN6fMk9S/jN6qZV7kdKvyW/JHzxOTi2k18d/sLfTEjeRe8Tkt1j6i9xrQNfv8gfQyzL1Xin9Ff+T++e53zuUfWX9W5P8FqO/Pn8wI/HR5mM7w2pwifpH6z9Ltf8AOscmPl57y+EQ433uGX9oPrwefe+qP/Pj4vveD8rPfuTy/7CvnZS/Vn+8PvNP6UHy5xivd8m9Uvzk/uKJ7L1d0fpqFvlUwU/b0gK+qR9XYycb9d/co6iGjl3obyB636OHd8jvDvmN2HP2Iy9iD9vm/nrR/Ghn6cyTcv6z0rxtctF50Hzp+9nNfbnvrb7qiRPC7+HkfUf6a1F8deLIEj/2ovGoXvxc0fz4QONNH+Vz3yD3Cw40rjyCnnns8xz635ee1ki/jJ/31H8wvR4E38HfnfF3Gbey/1cUv/ymcb0yPivBNeTXhj308v+cX8UfLcr4QS7faf8M+R/iJ/2uuD++LZ3zvZz35Xzvavxuot/b2Xf2NzZr/x/4Czqmk89E7R6buBb6ep38qxg/cl9gfe71qr+u77dJXAr/d5X87fWfv9hlf+1eAsfxvz+TY+7RZH3RAt1t+O/G7D/xvpkvXk2ui6W/Rm95dE3C5/P84dq8R6LeETlHlt4q9qF/91auV/xp7rfgt7fPh0k/p93d2ddkcqvt//9TfpX+lHi7nIuMkJ6Hn5/4yfZF8aF7saN17GITe8n9mHo5T0PXx/j5gHyir4f/4/5JzhNzztit6LzxDnSNVW572AQ92c/O/vYJ7Cn72z3o5R/fny9d4vtntDcZToF/5n41vZVJfCL7zv3/6PtH/WNX2EG/6cKeusGuReu54nitxHE10f5tyH0NdoWl5DO3tICnZ94jvRZ9NY1nu8Ld4GbyGENeGc8yzl0gHXlFjt2L5FlFv1vHjuIH0v+vQlfi207HX/zrZvo9ghzfz/1L/P0s/Qu8jr47JH5efUej+8/cC879J/5/NJxBv3XQ3y73ixPfnPuuOdfF73dwPcz93FcTT6PdhujZBf/F5xU5x8j8o2zuRfBjb0hHH1sbV7ZO3Lvv5mv/Xe3mfvw4+sz9+OdyH59+NsC96KUTuZSzL1EWPgZ75f5D3tMpGg+v4F9GSs82n9gd/c3kZ9+2hXYfYO+/lxbwJvX+If1izk/1p7L8yp/Sua98APre0/4CmPPTvG+1WnvL1J/7Ya3pq1XRveVTff9I9jcSJ0cfH6H3sazP6TVxA3m/KfH4ic/fB72Jzz+df9w547D0/Iy/iV+AC3KfQX2v8P+JN6ubfV75W5D/MamPHa6Srs3uZ+DjTfxtge7cv76MvI6y/n6cfrrzJyXmueVy3yzji/nqUnS+Lj0/76+ws0fh/KLz4oty/q6dPdF5DvmtYd9/575tzgHxl/uS17Gf1dLfZf5gXF9Fz7dr5+6cjxf5jztg/Met/MXZ6PiZPK/JPiq7yb7Rifxj9o+WsqO8m5J3VBKfeID+NFN910nfTR8PlxbwKfZRi71/mPNn/OUcKu9jva988Xwv8V15H+4bcpmA/vXSe+SdhKK40Svg3JzXR57k8h6sk/U0f5b48EvIcRN6BrCbNfz/usTLsq/n8p4QPhIvtFj+AP1lee7/+O5A/C0kzxH+PxhdeV+ohL3dQW6vwHn8yxr2Gv9ZHq6mj63w8we5NFZf3ol6iN/IOe0pyiUO+iH9JffqB5UWMPftD5FOnO/T6kn8w2ryn5d7DvrTGPmZzz+qX+c8M/P7GuTfhDyG8DPz2Nea3ItHx1n8173yt+dP3s87Qej5NfcIjXdboWeJdDP621p/yTlx8flw4imyL7SePhNfsRf/l/nVZbGTnJ8rt6/0rfHPyn+O7hnscYj6cs7aFH9l0PVV4pESj4G+/fmf/eBR6n0Uv5X5rTX47Iiu3MvL/b/c18s9vfbkPZG+VtHHmfi5omi/9dLcD0T/q+hZSK9fkt8r+C9Rf5+cu7LDjLcZTzO+fir9cJF+8h5m3sk8QbqP8Sr37z5ib7l/t8k435P9HoT/D8ijBfs9GF8tpWdppzn5Lsu9Z/Kdhs+xOY/G145F5+fd8y4hffSQHi3/dfo+SDtz5C+i3ykwcUHfajfxQe3Mx9rC0+Dzvnsy/ivnRHBv9S5EV/Z1+pD37fg4Br8H+b659Jfkeyx/2hweDzeQXw/2fT7sCS/DT3394fnEFWt3L/XXZD/N2dkIdP5fPAR+LmIHx+V8Tv7XJdqDw+FL5JL4xfSDDjD2f0nuk+kvPdF7V+5XK5/3PjaTU94/uQQ9i9nHJ/ArfBxOHpvobQ39zyaHivgbxY8vhJ3xVz37s9odZRzcEv3l0H+y749nF8+hdz65ddJPGpkfz+cH3ipFL1wH++Nv16y39P+T6Gmo+h/L+1Ps/B/2833eeyG/A9B3P/oSf78l/vK+Yt5bzPuKNXy/nfrK5d2/xKeh5+7cu6H338m/ZwFKZsDYSdbHvXKek/cstJf9+b3Rn/PsnHPnfl/eU/zSOJ73FvO+YivjRd4Dm6z+v/Cf88md6TPnlDmfzL73sdov3v8eip/t2QV2Sg6SH3lH/tPzHqH8vNs1J++kSef9rkb837P6TWPpv3L/N/u1sA/+/5Zf/N5p1bzPmvMf9v4ife0tPZe+y6J/I/t/Vrlp5POCfrU0cZ3s59OctymX95uPTjym/CsTz4/uDuorm36O723ovUPikJS/nd1eh/7Kub9WdL9hK+3nfkPmN0vI4zr1Jb75E/xVLNr3zXt7t+Q8Uj+ugI47M++F4/mby+l1gnTWoS8ZNy9A/5PyW+337/KJ85tAXonvO0y/uyzvXyf+VPtt8PdE+rt6j2IfTch7Gjpeyb3jxOeVos+4fU/urSZ+mT/7gH8rgZXkX554ZPOB+tI/4ucr+u2Gj23Zd+KQHjJfHwzP9P+r8g6G+qqoP+dHg/GV9wHzLuDZ7LNp3h9B9rXwPPh/99PR17m0gOfAbjlvNv78YBxJ/Nj2eZ+B/HM/qSG6cz/paf32e/bxA2xPPtuzi8e0d6z6Jqj/YvbRG05S/xOJ8ySPMfzjPfCc3N8j91XwhMx76bkCe68Icw8v9+/ak+/GondKp2f/iV3tjI9z8Jv3oSok/l29jRJ3CW/WnxM3kDiwxH8NYJeXFN3/Oy3vy5UWsDy7ejfnIuq7Cd/t6PlU+J12Jhp/Xyavx6XzDlvex34n9xrYXd7vHoD+3A86jl11kt8RvRfmvjg7ejPvP/C/k7JeLFo/3Zn7nXA0bITev+j/cnLeJD0r9w+Nn9XgE/rFz9m/Nq+4hf8bQi6J5+3LHifhrz768r5H7kXvB/eHk7Wziny+VF/uNd+vvtr6696Zh7HzZ7WzTL8eAEvooab2lxtvvyKPirlfhf957CL3VZ5hD4lPmcO/X6L6CfBj87FFpQXsrp4x9HkWOVUlt1LYGJ6h/bzr34Pf6AkzH7oF391zfzjze/zdxt+2pPfjYO6H/MUvnkE+e9D/azm/JI8D6THvf3yi/CGxb34j71/lPaysV6dlX4v8sn79Ivahv5TXXuw9cf3PsoPi+P4r8q5V9puK4huWsacT0HE8XIG/TurNujFxXVk/PoeenzKfNn7m/d/t8PMQ/FD/nxA/Sb7fwNz3yv2uF8lloXnLIHZTL/ZdWsCR6r0994nY9wnsrxe72lf6H/Zck77H2/d7mXxuy3ka/WUf5Bz630ieL7GfV4zjieuuQz5b6P+H8Otd6fF88sn9oSuL9oVzf+hK/L4HB8Bp6K+r/ub4+EU7Y8hnE7n8nXNp+s098K7SL+b8CF4h/43ci4HzYfb98/sL++LrdPZyLv578h9537yKckehryO+58C8J3eR/DPw+yr656kn73MXx3MNSvwQ/TRgd1Pp/yT+4k30Xp15c+at+uc0+hktf+u8dyK9CH95j+4JOA/mfKV4P/5idOV989e09xi729P49yj55/5OraL+nv49UP5L0utyPwf9LfmPBdptLf+lovOFvkXnDDlfuFv9eac99NfIeKVffk8/v6Evcd45v28G1+nPX+R+mnpzH7J4/ZD1bs6Hsx7O+jf3g8eTW+4Jz1R+Af57omcDPssU7R8mbvPSov3EFepdlfkwXPEf7xfk3YJVuS/o/yeq9wlyujXnI/rtgfzIu/6f90tyDzbrj6xHsv6Iv8o8M34r88sX9Z8Z8Av5XdBX/L5Ofick8WInyH8Ijst998S/5vdFyD33i3I/aYxxfTy9T4CL1J/7p7mXUHxf4Ujf5d3EptmPw/9GfD2KnoHSJ5Ljzlmvq28BecYe4hfzjkL8Yt5PKK//vqzeA2DG9+747QF7wqrqSbxz1+yDajf321rqX7/ir0F+D8J3Nyb+1/+3TVwe/Ctxb3mHVz2f5z4a+/o87+KhL+9PTCst4JDELUq/Gv2qd0dyzL7wNJjz7neki88X9td+B/Y1AB1D0Jl7AFW1l3dRBqvvJXI7Rb8dAvPu1I/k81neF8g7OIk3Lvr9mZUw7/VkfjSBHQ8omi/lvbpmMPem835dfq+nqvryez75/Z7i+1C5J5X1bR/j3eLED6Hjevbxq3Tu6f+ZfXj1l8l+pPqao6dW4r/jD+Wvlf4l9x/05wb0MkU6978mF6DkDlifH+uu39yQOC39fFc4K/v2idshtzZZj5LHf527tmY/WU+N9f8pyie+LvEaeS+/Djn1y3kXu5hhHpB3eSapf7z+/BAcyn6OVF9+X2Q3fO+UOIHMb8htRtaP+DjXdw3MHxvDvfSDzJdWmO8+ABvn/Iv8fiOf3+Fz1jNvy897DnnfYZr84dovW7S/W/z7OTeyl/j7FeT9WebX+k8/49hv9Dsw91zJP+v5vLOe84WGeR+e3TdKvCp6u9Dna8r3Vt886SbaOxQ2hS/Sz7XsP/sCxfsFt2n3d+1uMv70084L5u0b4CTjcBV8bGe+fwU/VEU6+6/n0ufVRfflcj+uDLlfTu5XwNb4/5S/KZf7efKzj57fZbsfngu38f1Z7CXxZYk3S3xZ3ut7Gr4Jo9/72c94eB/M73zkHePEnQ1mL4k/a11awBv1s5LEZ9PfX+zxbnzeG/+q/cQF5N72Epj727PzPlfehYff5vxB/rbZN4XLE/9IHl/nnWD4mfxhxv0t4HX5PSr1f8O+1uC/HbnkfmHiBq9SLnGDw/ifTsbnqfQ1IPvn2u9atN4qft+2Dv+zDzwu6x303Mtff8o+75O+VX419tg89kv+VdGX9ycSL5l3KPL+xEL8JY78mbzTJ3+O/jgXHuD/R6p/DXsZkHin+BffFd9P7lZ0T3ks+vMO5hz0/5F5nPlMR/41866DtNM29ub/9c03T5L/APrep+eX0ZX7F+cVoGQavA9mf7uV9u9khy3zfnje7dHfRhW9n9sy77DR14fRY5E/uD3zi8Q1F82Pcj8h9xLyPlXuJ+R9nawj8r5Ofh8h7389lXl7fh9H+cv4zytg4qC/yXsh5Jb33OZnv0r92xhXK8OT6ft38ss7yOnXeR854/nNRe+v3lv0/upE7eU9qdHoye/P5Pc6a8H8nmfeI19C3q+R/zzYiv19Zryoof5K9Jf3wRvor53U36u0gLk/l3OnWuidid4Xcv6d+Dx+qaL5xDvsc636v4RfwMyH8j5ae/J9p+i9tMzfM2//mtwzfz9e++8YR96G+X2GxH3vBjuzr8SFH6Tdxdo5WPpr9OX3p1bwM3dGT/QzjH9sjq6r2FWN3DMz3ub3VV+H+X3Vncy7LoWXwK/xf4Dx52/l7ki8m/ZuQe+bxq234XLlX8VnlfzOlfyXc76LjosSF+v/A/E/SXs38U+555rz4PxOwm3s+i7fHRZ+6bM3uR2a9shvkPqW60dbSW+D/uL7krlHeTb5ViKfxDHkPCznYBvxO0+/3B4mPjq/79c07z+gq0vmP+S7Lu//qC+/PzWIXMfjqzf9d1B+CfkshTkH2K/+v8unXJd6/y6f+5Cr8l6D/GeK7keNQVcj9SWuP+fi+9Bv8fn4ucpvwOfovHOo/H3mc3k3exn55v3sdfJ3RN/XWd9lfcQfVWEX68wnc//nE+1OzO+foX8Tvjv5/3T6f4+edqO/Svp13kH9PO+zGc835P4zzPvNr6sv853u6luccwjy+UG5n2Dui+Qd4Onkvpm8zpC+WfmK+vMIfuoS9r0L+Szij9qj+1X62FV+3q++JfE1MO9Xn5L7IvkdPPL/lfwaoju/y9JIOr/Psh159KXXv9CXc/ZPEh+p/EP4zvp6i6J73cdl/YT/5vLXl0rT3x/yt0j8jX69l3nil/RxB/pGwzth3jlaEnvMPIAfGomOvEeY9wmPUH/eJ6xD38/6/kQ4Rf5N8vP7Qnl/PPuPZ/FvA8n7Xvo6kXwTD7Yw7WX8lr8yv1f8H/dbypP7Abkvgp6Pyb9czgtz3036bfQmXiRxJD2L4knye0aJUyyOT/yLvyzPfhPnmfjOvOf4LLoXZd4Y+dHrHuYhZckn7z3OzHs2ML9vmviB1nm/M3HP7OkE+hydc0x6WYD+V+lnuPIvlBZwFv3fpNyD9NNC+b9yHqD93/mrfjDvAOf3t/NOZN6R3CNxWelf+mvOC7+R3zfvH6BvPf6+g43o/QhyO5NfOCv3X9A7ruh3QfM7ofl90Lyvknt5U6VzPy/z9nJF8/kl6DsCX3nv4m7lsv+7Dv9N6OM89tkZnzewt+vhxTnP197/A5+68wt4nHXdedTW0/o/8AgN5kpJ0Y0mEhUVQpHokGg2H5QGMqcyHUNESkiahCIiZAqhwqmoUKlkSkIlSsYQ4bfW7369z1rutb7PP++1n/3Ze1/TvvZ07X1vVbnM///rXLGIW0vftH8R/6hTxG0bFnFTffkHFXFj7SKef4D8ekU8SP7W5Yq4ZucinnJgEas0KWL56kUcs3cRfy5CmXL+30H5U+DJ8N/7FXGC9tqid2pd3zcqYnf1rYC3wTrou0f5dY2L+KjyNdB39y5FHAHHwMba74LOzrArnIfPDjsUcWKDInaUPpK8VpDn/uR7pvaXon/RHkV8Qb3vqWec8kN8/4n0a/Iv0X6PmkXsq57N+xSxOvpX0O8V6nlKuyPwX3NH/2cX1bYvYg3llxehzKcQO2X+xs8o7e1atogXwi/I/3ztXun7Deh+HR2Ha6c3/s5ib4cp34VddcF3E+nH6HMJgmpLP6K9L6U7oud98q0ivZf6hrLLIfB2+KL2W5LLL/rP59sW8WftbioUsdduRfxj3yJuxt/OlYr4Nbp3kT4N3ydXKeJH+L911yLuQ15vst9t0bOKPqup/33yXwYPgQfi72jtPQm/2qmIV+tP5+HjS+lWsRf0dNH+Rum9yfd98r12zyKWV34J+X2O/pXVivgv7bTExyT4KL3MJI9J7HmC9ibXKOJjsKX8X9HVTX/rCn+Am+VfKN1Te4/Q417svwq9rSe3NehZxU77a++E3fEBm6f/4asmfTzFft+QPrWq9pSbSx7L6Gea73vgt6r6LlK+K3orku8u5Yu4knxvZD+H6cdL6HkYfheh/114qXb2xP/15HQcftrL79f4n3yfWMJ/Jd99q39sh96F0k3Vf636P0Zvs4w3vm9QKOLP9LAJHqv+dvrDibA3+21MHmvRsw5epv+9z55uVt897GcE3A5/fcntQnie/78Av1bPdOle9LVIuqH+8E348/0p8t/ib2ZtXcT19LI84xd6qir/sv5UTXoH4+Fw/uMDeKDyLdjrrrWKWAnG3+6Lr7vZ0enK38D+2rPPFeR3svRv8qdo/2n4OKwlfwO7KsOuFyj/LvqGkNdj7GukcgvYxzD20IK+jyW/1+U/qF8+SE5j4La+O1//vkT5ndj/HfifoP7HtLub/vWC/C3Gu+rG/fH4G6j9r+h3ne9/VU8z+p2LjqnssY/2bvN9G/31OHiY9maj4zRyOh1erb2V0o8Uiri39s4lj2syvkkv4Hfnw7XKv8LuMi7vWjI+n8reaoR+9S2R/4zvP1PPndKN8B15XO/7eewv8rmdPI7jB9aSywD5D0kPYx9/4H+M9M/s53ffvQ8vxF9d3x+l/V/RdQj9faDdh9C5N3qe0/6+7HUf+LHy9/r+EPL5UXtDtTdV+QXk9pj8E7U3R/v16Pl+9nmE9j9UvkmFIl6/VRE7sI/D9dfRZfALX9deB+V/ou9d+YFN0tHvs+aFvfnFGvRbQT0/F4r4vXLVpFvjf5Lyw/YqYkf8xR4jz4vxdyL9RL7fKb8Rfg/bk8/Jvu9G3/O2K+Kp0sOlz+L/DyaXzuqvzx9cod79pSeh52j9uRVsCRfjo5bx4RflGqlnHvlU5Ncqw+3hKvmj2Mfp5Dpa+ij0VzZfvItdjZa+F31f0vdj/PIC6QfI54hCESfST1v9oZn2K21TxPdhH+PvWPo/i73+Tp/f4rss+dXWn7cl51HSu6D/CP0i88P6/H3mh1ez713Z/xj2cAr6r+A3foFnlv1n+x3wV007LfB3pfqnkVtj9E+U3x9/89nlf+lvgfRC5d+gz2+Nb2OUm6P9yzNvgJfCr9jlsezuANhefz2fPA6AF2hvOfm+Tx4foetafN4Cp+Fnqvxn4AD2NUW9Q41vQ2DG84zf65U7h/2Nw+9byj/Ar3SF18FL6XcP9FSHNdUzAB992dNw+utAf5VhW/YwMfMV8utB/zONexPkb8ZHd/m34+dp7dzuu2fopw39D8Tvb+xrrfy/0XkLfkaxj4rybyCfw8njeump2n9af+0LL4Y7a3duEco8DM+AH6rvSv7jEN93p7/m6p9iPFwGn4Cn6TfPhf+sw2Hj7BegZyX+x4cf9X9OHut93wUOJ48rlXtDer3vV0rfgY5HyO1Q3z8f/fALd/puO/Y/W/lFxp0V+L5WP94u4wu9HmN+1RpupLfe6u+ovSbKjZbuzl8fq57st9yIzhrscABcyE6XorcNfmfq91uhuxr72EN7LfXfg9D1iP7bDT8D6LeD9AVZP2r3FThT+9lfGKU/ZHzOeF1Pew+rrxw72tb/X6XHysodaPy+U71L8dOJfXzOLlbByeppYLzJPttV0nOtG8ei+8T0a3YwCF07kt8bJfYU+3lT/17FP7al3/vJdxA+riSvCvGP0i2NdyMzT848gvw38Oc3wA/kz5afdduOyh+Lz6zj3vX/hfB1mPX6dOn34Esw65Ub2NuHxtdDyK8VOQyX7q5cDziMvdyG3wPIcYp6P0p/9P0G2M36pYryN/AXV2edXtAu/rawmxvUt1n6DvmN2V8TeCM9l2M/w40HXeBQ2Ff+JvL9Of5Jf/0J/6/xB6Oty+dKb9b/PpSeTi8N2cdJ9NiZfDfC1b7bXfnL2eF0dr6RHSxG33r1v6X9ddKPs69D1dOfHX4oXSH7D9IDsl+S/TXlB5mX3Qg7stcT4h/xsU3mW/TQTv29fT9E/+jPj1VCT3f62ArO4T/Kqb8O/uvCpuyiPv2OZR/n08cafvhW+R9q9w92ugVmfbUTu5thXn0c+f8LfXXMB27hJ/fkv46PfSl/B/kMg9PR/yG/NZv97cw/vYmPcejI+mppyfqqEr3ej7774AblL6SvBeop5/+DlV+O/uyTHlgo4qX0lX3zC+CFWaeo73j2MRB912mvC/4eZZej1TsGHkZetXxfkTwfVN996t8gfyfpxezpCu1lf/Ua+I569kd/O/LdM/uI5LtRfaep78/M18kn5zMrjS812dfJ7Kef/Inou0S519D/l/pnK/ckv9OsUMTss6xhH5/D1fr/1uh/1Xe10NeM/pdLN/b9r3AtP3FViT+MnzzUfDT+cgq6HofN2UFBf9mHva5gZ1PQ+RH6pukPlfXj7vzLo+QxyPc3x1/Hj5NfXfa6E/rfQX9H/P2LfMvRd3367aR8f/Rl/Pwg++/SN9J35rWl890J5Bt7LKe9WfjbrF+upvcy/OuV6PmpoB7//0H/zz7+TuRZUTtD2EMT9PUkl8fxW0P7N6c8fe2N78Pocbb89ux7svqnae8Z+bHn19Qfe++v/1+qfCWY9fwi5bbmd3em1x7GuQL6Z5HnDDgT9kFvv/hduC/97Kj9uvRXG/bKflHmJ9r/jt//L+xK/sPR2Vz9P6m/rvxx7Kore5/s/0+jvx2/0R5eQH/7yl9qPH8fLoP7qOc3/G6GB+O7v/yp/OVT8Em4NbqnGe+eg2XNO1/IeQd5n+j/e/vubvlj6a0vO7mE/kdkva1fl+WPzsDfVvgrY7zrBqeax71E/s0LRTxH/U3ZX1N6yvlMDXxXgZ+zv11yHuL7naUXomeTdsfR/+NwMvoOx99n+tcp+JtPnzmfaaW9gfpPW/Jvxn/Xpd/J6rlQuS7sYyR6ukm3wP/V5D0QXZPo4fTso6a/k/c4csr6aIXyP/J7U9V/pvz2/l8j824Y+7pZvytLL+tgZ3KrZ/5yEbru096f9PA8uxzNDlrAQvaX9Jf25Ndduerkf4j+96x+N126Dn2uY89fwdHkMUH5foUizlX/McodJ/8930+PffJjl6CvtfTj2W+m31boHIfv49U7vmT/fJj6M2+5Qzr7UlXx/x39zc24qnyd7IdkHqz+7xInwL7WqPcu6WvR+zR7vUr7XfnXS9WzXP8Zgv+z/f8r8joo+/3+f0/OZXw/i75rsZMdMr9H7770lX2ArPsPyH5QzpHVezH5Znwvx/9UhFWMz9sr9wg7nMZuL2Lfg8j3XfqZ5P/nw6vof2jWY3AYHJz5pfGyLT+wmnxznpDxpY/vW6M/40uHxLfIn6bcMvh2oYiT1fsOPf2i3tr43RvuA++On8PfK/j9Rns3qn+x+trye0+yk9FZ3/AjM8mzdH/uZPpfLb8CuhbRT2f2mf6V/pb+dQS9/Gmedaj0+JxPkdcj6Hlb/Xtpf5J5XQV8bkd/27CjG9CbOJUF+F+tfFfl3mQ/LdCV+dnR+Hqbfh5Rz1HyL5Segr7R6J3q+4nkuyf+h9Bj5le7sc/qOdeUbuH7pfh7CZ1fw8+1exr5f6a9b8jniPR/6RX4KJ0/jsp+D3zKOPI3e+lLf58VoczlcJlxKvPhBbAM7Gcf4ib0DUPHO+jug/8z8FtXv/pANfWkLzFeVYUXwub4e4G9pD+nn7+s/jaJS+DnuheKuMX31xmfnuGnlmU9kfWRcflf2p0pnf3x3/F7kfXHuTD743vT9x5Zt0gfTA4v8LeHa2+L+ltk/oG+Ar3vCZfLr87/7AF3h0+zxx6+n5tzWukvlW9csq9UvWR/6R7+uox11PXZh9OPdmAHPfD3uvb/Un6M/bB19H+1dBf6u7tQxMQddaWvofRzj/pb6keb2OP0kvVb1m03lqzfst/yEf53ZY/Zf5nC77ypvU3S70g3Ru8n6D/T/Hpw7K+kv6YfT0j/Qv+98Ff0/+K7b4wbW8H18B7tV4c76b/ZvxiHn1PYU331tVP//vh/Qr9+Mv0b/q2+lvRdlZ9cKt0dv1X04/HwFXJrpf5b2dNd8H796A5y/05/OFt+4tmasr/st0xi91nnnqT+qexzJHqfTpxLxg92eSQ8Ch5GHoeQR1PYDJ6t/fGJ1yTPyPcA9T+c9TusR367k8PD5LYJv2O0O5593K5/19IvalqfTM18iV3EnmPf57Kf64xLGQdK/f+cxJ1m/cN+vsPf2/rlYu0fBb9GX847c/6Zeef1yg/V3l/61d8l++vPmu/Ph6frD4epr2fW5yXnK/W0fz96PyoU8UPlHsL/Q+g/1nej6X8ZOe/Cb5xJbmfAJ+jnJfaQ/esXYfav5/LfWcdm/ToBf31Lxp+sXx+UX9f/O9NzDf2kGvprZ56FnhHoXsS+TtE/1vCzh6n3TPkDyet/+xvkmP2NiYl3kl86P98bn/uqtxb/d7j8i+mzL/zdeHNu9g/I40p+79fsByg/JfVl3xN/q5UvsIcX4Tx28iz7fRDd07I+Jo/sl52PnsHsv7f0Peq/MfEb7Pbe9C/5ffXXC+Bf6r9Qv/+EP9qcfWry3IG+biOX2+EQWDnxWextNTucrT+PIoez0bOkDHrgeb7vQg43oedw7R+N/39r72h6faNk/B9nvKyt/IPSiZdLPFXiq27i3xJfdYD6m8Em8C3151zwYph46JwPDqOX/WB54+dj6J3IP20mh378z7Hk8xi9nKDcnvhvI/+PrOvhJPY/lb19g85D8XcD/qZLL+GfdySPrdT7KP1N0F7Gq4xnzye+TXt/sa/3S8bH9fxHy4zn0j2UX4yvhXA1P7NCfQX+o4r69pPemX5akeufiaPQ/3bL/QX++0D8Zh2Z9eNX7HEdvBudf2qvPnl9nngW7cxSfhr9jfP/4/i577XXB18/keN9vvtBfgPf70cPkxJXk/MtfuEacv1AejE/mrj7LfSyTjrx9zeRzyL5K9BzFT7L8w+VpX/Az9PoOAddidedSZ4VyHEEv9CQ/2tKTonv7qf+J+BDxqnBvutl3rpK+n79s4zy5dC1nj2UoY9G5Jf9nv/t/8jP/k9B+tuSePbDct6l2m7aXZXzFf6nZ+Zj+K8g3Ux6Ev92TcrBEdofTm+dlEt8aXf0P8beX2a3ncjzz+y/0scp6Ns5cZDoH89vTJa/Vvpk7b+IzuxPVTEeZfyry7/Uh5m/PZD1PHn1JN/EBfbK/jX51vf9l76fof6V6GmbeynonJv1qH7xXMk5VM6frmAvA8m5C3scmPhW843TyOVF35+n/ifl535J7pvkfsnx6HqQ//ySf68aP0of25NjT/kbpT/KeQW+y5HDJPT9rj8uNz5UUz77Ef9CX1/0r0T/t+ovo98sT5yu73ZO/Ix2X8XP7vhroP0x5FhN/3obvbfznwukd5c/1vdDc38C/zfCG+BQ9G+Hr/PY763oqit/vvnLAniSfhD7XoCfowvoxf+h+Dnf98vJ7Vbjx3PZd5KezB/mHPI26fOUO4UeSuNXtucXW6Pv3/j5Un7i9aOP+ez9fvx9Yrw+FN0d2Xt59PdSbx94ILrrKP8D+ddU/xz6y35Ezu9ybleWnjK/vY7+eyfeIftd5Fsnfsw4k3jUgb4fZDwor9/dIr1E+3uSRzf989SsF7T7ne9roOs89fyR/Vt2e2fiNtn7htzPIpf98bcMv+vJvX3Ow0rus+X+2qzoh7wv4R/eyf2/9EvpxJ+8Jf1KoYinqfcE5TuQzxfkmfjMxGs+QT73J34I36Xr5dL4rrLqT5zXEHb6Ifx34lizTs56Ur97QPoZdCxCf/zyF/pTM/VXQt/UkrjLy3K+w97+zv0G9p3zpfPo/3j9pA08UvsP6J/j4cOwcu73kffbibtWLvtnd5o3bE/ed0tfrv2cs84h1+3Qt0n9zcmzku/KsLPlmX+xr/S3X8hhD/V/RZ6D+Yeb4Uz2lHjQxIk2kk68aO5DVsg+R6GIt6B3E/u/jB2/Ib8Rep6np/OyH83e3paeR34VElcOz1B+K3S9ga7X4Qx6bS+/re9PoL8e5NOTPLZRrpd0A3Ttwb82Yn9z2EOL3Ktk11/AVvzfjvRRGt9ZsVDExHl2s9491rz2C+lOibNO/Cs5lMYzlPbH9NPETycu4VZ2+ajxIXEKia/K/C7xVZnfTUZXU5h7CP/JfFh7T0mn/6Q/VU88CHlV8v+x9Psqev6Ln+ONo+fI/9K859bcRzTe/C7/M9+/hr7D0fMleq5ld6fyb3/h73byqZb4Av1miPbWa2+WcWMG3INeJiU+Wv/pDwfCR+V3yr1y6XrK5/zlDXK5TXud0Jfz/97m0xfAl/HzLP/Vi/xqss8+0ok3GuP7sblXlvg+7WxDbn9o/3n6naj+e9H7A/teQz7HkPNd2Q9NHKb/T6bnboUibo2eB/XLVxLfov774HiY+VoXdtEZdoKZr21B797GnxVV/snPZnrtmf116Uba76C9nyJ39vWU8oPxdzX9VfX/3L+rLP8i+S+gq3fub+l3P8Nn9cd9tdeC/VZInAZcn/gK/rAre84+8Afay/7NEnTlvlz2b5bzfznfOBkd26NvdOKusq+qfNkm/+S/jvw8EBD+e0l3xHd/9GSfcUbWH+S6DXyZfbRFzxh+dSx8U37uX+ykH+X+Re5j1NYvOvr/1chsgr/jcp8OPTXwt5X8I5TPffDTfDdX/p7Zl4fPJ84AfU2NDwvZ5RnmgyMy/ufeGf9dwM+5/PhE4+M840PicFqT7+vk11q5HfJ+Arm3QP/h8DB4N/0dTH/D1ftL5nXqf61QxKPi/7S3NPsH6jsa1uQ/sh/VlTxvzXxMvR/Hf/NHn8Pvc5+K/LbTX5ux+xdyT7vk/vm7JffQc/+8Z8n6ojo/kHXGjuz/x6xfzd875XyjUMQa/MOcvAsgP/encl8q96fiv9qTy1zyOEn6N/Usoffcv2id+7n010+7NyYuM+eZuY9cch44Un7Of/KexQnoKl0fvEm+q+LvjRPN6Tfz9RHovYZ8cr51UvYT1P9A7k+S7/b854/Su/j+J+nX6e1n6RnGx03SQ4tQphl6j0Dn7uSb/bnf9P/sz2Xdvyf5xA9urX9syf4DvzDNOLcLfEX5TcaPv/nlP+Hu7PQh9OW+3o3ShyQejF1czW9VJcdLyS/xQ5crnziixA+1Vn4mfffNuST6D6HvhuS/G/ta7rsf9b/nyasrua6THiw/9ykaoO8N7a+x3roMHVdK3+r7E/CV87+W9Jf7j7P57//Cd/m/5+QfTF+HsvsN+sPLDf/J10fspnL8WPbnEy+C37dz31b+RYl3pfeLpbP/9ij7fCTzGPYU+Y4tFHE4O0m83RXkVB495WAF+L1+8wD5XpX5IDmOId+8V5L3SwbrXy2Uf9O4kndQ8v7JEfL/U4QyrdQ/Wbqn+j/j7zIPn81/zsp6X/7O+n079v2c/lK2UMRt6KksfJe+x7CHs+DL8Bj1f5r4d/a9UrpS7nfgq738yiX3Gy/XXsa3jHcZ3x5mF9vhv6zyvdlXY+0dBBvB9IOaxr9a2s899CvYx7nyZ/u+j3ZXsc8/2EX8yEj0xH9s0D9u0a+30j9GZZxll+NyPzFx0fjvhv+B/OoncAflz8p5RvZ/8NcP/9X0h7f5sRFwB+3dxZ7+KsiX3gX9+7G/+nknRPlr0Fl6/pZztyW5j2a9m/O6nOctk789u5+ivkXSuc/7C/lkfyP7HdnfqMevTCTnK/nTaco3Yd+5l5V7WrmflfOS3IvPuW7s6WLtx58kzmc35c/Nvo7vjySHh9h34pZ+/j/ilz4kv3eVby59aOLzya1J7k+j93Tfd+av7mB3V7H/V7U/Pfvvid9KPGniE/mz/QtF3CDdPuMU+e3NP1wi/SI51GNf/2EXB/Ojsbc69J3zsdfy/oT6d+ePmpHbbtIzcv6o3bxf1Zq95/2q7A+sVn/W++0yvrOXellPkEfvvBeiP51Gfq39P+u/9cajnIM8IP2FftyKfpblvIu95J5nNeVGksv50rn/O9T8szm73QH9TbJ+zXtDvn9He59m/5Q8htNLC/0g76p8nHMB+Werv2L8Mz21N+4cSJ83ku9HuV+r/cT/ZT++Av02LRSxhv5+DvovMB58o/71cJvE/5PHPjD3VGPfT7P3vNuQOPk+9Pt87tVGHr5bpf6TtPcRutfi5xn5X2R9TW5r896b9hvwh1O12zDzD+3lXO10mHO1Keqvzp89RM8PJw6GPO/S344yj1uk/Lc5jyeXd+jpY+W3wcddhSImDjJxj38knpf9FLRXer77NXt+ip6e0t4t5Psq+rrl3TLp2urbi/yzTzuGHz1N+2vJfx38Cr4m/35y248fu0+6nfoST/xp/IT0wPhD9vIJeeUeW+6v7S/9a6GIfeAM+qxKnpXQtSvM/KV/1ve+HyA9LO/5SD+m3sOl8z7KYvUvQPcS6d/Qn/3qutqtA7N/XY+/yvz6r7y3lPNn/vE2fq6Oft5G/pvoWqjcHOl91Zd41X2Uq8heE5/flPya5V0LuA07W4j+2ezoR7if9mryq4mffz/3HLK/gt/x6M28bo38T0rmLTfzT3k/Yg18WHs/5r4B/R3J/11GTpfD2uQ/ooBOfFTSX56MP0HP8erP+ead6BtiXJoDE88f//oqf5J3Lkrft6hU95/0LKOX1eRxMvrHwdynOiv7n8a/e7Wf+12577Wt8TZxzLlHnvjl6/md7+Gr2Q8O/ex2BjwUH0clXozc8k7Y53lvDB+35NwbDoYf5b0x9C7GV8+S/enp7PNE7X9Lfy/jb3/+4oDEfRjPb835c4ndjJXeLD/v8+yQ9wGk897FZO3mfb/m0nnfr1HGS/1mMzlcg+5B9PJ85r/GoV7Zv0f3FbBfzoOyzmdvE8j7IHp8ir/bVn/Kuxx/Fv5Jf+I1T9dPErfZMe/X8fv94R3qeQF9iV9bQ6+JX0s8W239pY1x4ViY/cQC/9we/hf938tP/M9x9J44oMT/PMoeH4Ejc18h+yOJ14aJhxwmf3/6+hJfj0pn/3tQ3jPLfWjyyvsOZ5oXDFH/iRnnyO9idvGW8gfS10Lp74pQpg+8yTg3CNZnz3n/8wv2lPiwHvrbI/BReA39lpHekvjDvIeE/hXoP993PWHOmXvlXljia8i5vfzM32bDUTDztyt8n7irk3JfRv4piaslpyPq/TM/993T338l/9x/z/3o3Isuj+/cj34FPQPhOfA+8hyA/wH6XUfynqGe2OVJ8GP96Ul0N2OXL/BbNaW36J95t3EILH2/8QT13ZX9Ze0krnuocbcBnMdvVMn9Rel74UiY9cxP/M5L7LpD4qgyP+PvdmRXd+Mj9xpvQ89889r3tFtZ/RPN5wfDxK22813p+2eZr2R+cgr+H8p4Jv1E4tT5jzsT78PuGmh/A/rXwsfhMfrfDuxjPvvYLvvoeb+VP18He8K+6D496xL2cWbiALR/Lfqeyvt3MPF1U9hD5mvt8n5Uyuf9PfpvRU55vzLvjX1iXvV0yftjw/w/99w/zPu4yk/2fc5X78+6Qf7zef8p8frozf2ivHd1A7ryXlbOl/7MfQb2dUCJ//xafSv5lRUw99XHoq83u/mFnQ3NO070lXcrm9Nj3hU/O+/xKJ94vcTnnSU/cXk59018Xkdy/w9+hvt+VO7HsoevM89D7/fyf0HXnrl3aZ50Xc7X6Tfx+pl3zcP/6+YjM+Gp+B/g+7wnlnfGOpa8NzbRudVDcELJfYdT2WPedZ5Fn2fIb4mf3HPJ/ZYjcz5Lzjdq72398wb85Tw+5/Oz8ZvzrZeN163QdR38HX/ZL8j+QQX5uT/4HX0slb+C/irLv4f9vqnfV5VugN6/sp62PvxWe1+hL++K3QNHwLwztg+5zCWnT+m3C/rf0//OJecx/OWO5PsK/m/QL+6QXpE4UeXb5Z0M+n0Rn3kHKOeWuW+c88uf6Sf7wuXVU933K/GzyPjxqfRw9F1jfMj97dznzv3tW9n1NgX0s4/b8t5wyfuCOdfI+4J5dz7vzeedpbyvVD/v65Pr2CKUuV0670Z/nvmicSbvR0/R/p/oXwp/1/6d7LGgvQHouCf3+/ivrFcak8e1eR8m63V4GTwTPbXo9Sz21RZ2pd+8H1jqRxO/29Z4nXdatrCP+aHP//vl3CfzDfLOeW3iO/M7BTm/zft2FZSbo72GOR9GZ+a/ncgr8SAvks/N+tFq84dj8k5E1rvKb6tfNNb+7uwucXSl8XPnkF9+T+Rs6UHSeTci5xuds5+T+Ex2soyd7iJdE19HSh8BW+ScnH10y/vR9FRBubNyv8B8cVbeRYWZ5zdVfgO6upH/QYmPMR63Ie8xJe+PNCWvr9GTe0K75X1S8t6Evon0N5+8+9Frb3Z3iXQT/aONcr/k/jE7zO+1LMw7MLkPQv95H7E7fu+E03Nf1/eL9ced0P2e9JTcr1V/4unm5Hxd+cG5LxB9KXdf7hfnfXv8LTQ/T3zwuOwnJp6EPSZ+YjS7GQNHwWsSn288+5W8Liih/2DjcTX6/TTvYSVukj0fRS/jyf/4vMdlXDrIuJR4yP3wn/nb67mnUDJ/O4F9vIXfNrl/kPNt/J+cuBb5DbR/EfvpA3OfLvfndsr7AuzjNv7nRPofQJ77pD9oJ++XX1iEMgPhPJh3yFfxl1uRe34nIr8PkfjtxGs/L514/CPpowXMezJ5P2Zb8quv/9fL/Y7cHy85f34c5v5jdfa0FG4w/8i8aQy9PIOeldL/Tvxozkcyj5VuSc838Hu5l9uWHnI/dwH5Jl7kG9+NSbxcxnfYE75NH4nv7FMS57mEffbH14Dwqf068m+m/6mJe4a/saPX2PducJ7xIO+ZPe77KfBe/bkzu7wk7+LA3Af+jX3lXcm8J5n3Jk/Ifho5JB5kGnnVzP3QIvwvju8b6cTv7Un+NeFe8F8l5605f33B+JPz10H5XYucB0gnHuxn65GzrVPeg7l/1ZK8p6i3IXkvUd/J5JT70OeRe+QzWH+5A94CB+V9Gv4054s5bzwr+y/qy3nlFHRdrfwf6E0ce96zzTu2Oa/ZV/ljyP+1xHexq4XqvVz5bdWf990H03Peec/77g3zvlmhiHmXoh1+rkbHpfzHkfrXJdJ14LHmpZeyg6vYzRL6Shzne/m9kry/xd7yzm/mv3nHKPOtbdhJ5mPN+IMd/b8N3AFmf74tPdfSX4fTR35f6w/0tkl8Gv02pMf52ffM+EaO+X2fx/L+Zta/6K5BX5mvtcbXS3lvm3zuNx8aAPvDn+inHv9duaAe+sr99wfQtxQ9p+Y+kvwr6aUKPhuprwF9TCb3Ajofl75U+ev41f/A6+FJ8sviN7+flt9Ty++nrcv5EvmOMI58Kb+C8bY8rFjyzvZn0ivhLeqbgP6j9J/GWf/DLep/kzz2YsdvSf8p/zLj0TQ4CL6n/b7sJfO57PMfnPj/vJcDX4N5v7oP+TRkb/WUP126i36/G34OyTog75Xob4nXuIf8eiSOEma+34Z88v74ZHp/xTj9mPSM3LtUPr9jU/r7NYk7eIbfLo0/6J34xNxXwXfG1xbqPdG8/CSY99cTD7IKZp6aeJFm+sP/dY7/A/+7seQextK8r1ESn5/79rlf/6P+fo76DtTe+4m/Yncj9Jtv83tK6s+9u7b0Unr/LvvGB8HFMPEPbfiTUfzW0dKPJB4ffetj/zlnyfzUuLbROJDzt255b4M8RkqvRV9d9D9Lf5eUvCfST3qjcWVP+sj7qXnvLuvfxC/nHe+sf/NebN6R3bHkPdnN7PocdpV7qLl/+iK/mXPZ0t8jyH2A3A9IfFDuB7Qgj8NgS/Xlfkfu1XbM/jxcg++xiffRTxvBWtr7xnj6JD+0WDq/v/gceR9BrvurN78fOY/cfs/9MP20C/nWzv0/mPc/Z+D/CvT0C/I/M/WHevjOOq+DdNZ76c/30cP4kv5djz2WNa94kvyPzvpCu2+z63fgLPKdyW4nZv9TOvvfI407I+Cr+E787Sry+L9+pzDztZ+lM5/L/O2Y7DsYtzazrx/l/5D7BXAafvP+8ZTwAcvl3TD0lVff/Nx/yj6u/vsGf1XRdyMLRTxNPc9In6uf/Jn3S+knv6+1Vjrz2thH3sPMOnJn+Gn9f9b7nHae2P2f9f/b/OU99LyReyDq7+7/uW+7RX+4POtbfA1R/y7ovU65zcaPyey7m35yJTtskvfwM87RU/OS323IPfjS+++9zT+n46tu7iGgrwd7LGue1F36mNw/oKcXs5+Ye2TqmYDunNPmXYVLE4elnt+UfynxgOR3QeKj4NfqOYM9dVY+9xE/ynuY0h9L5z5i9r0nl8QPJG4gcQR5X397/qV8oYjbwr7yO+Zdm8QDaS/x1bXRG/t4ij5vwu/Gkt/fyjsbeV9jue8/5reeJv9X+Me/tfdg/AH6N0ofyZ6PgC1g3rt8i93k/CznaTk/O1q739LjSNiU/i4ivxnoaZS4mbz/5ru1yi2XHkwenZU/VflucGPeT+FPxrD3Kux3KTsr8J+dfNcBbp37R+wp7xnFLy9M/Kz2E/ecOOjEP68m39dz3qfdeSXva7yW+YHv58uvrv3sz2W/7lz5+X3HnjC/89gv52xZb5LbZSX3v6uU+Ku863uT/FP127f0n1mJM0LP+/Jr5bxDOr8/V5H+f8371PJ75H6NeVf23W4t2X+rpr2P6W936azjs6+UeW+LkvnwyCKUeRf2hh/zy8/oXz+odySsSw7lCkV8Vb/Yw/jwv/5rXtoJdig5n3yCPT2ZfR7ziNhLQ/xGnnmPIu9PVC3Zf8l+TN6/Xsxe7kq8OLrvlr6SP887Smvg19o/hf1fhJ9dyXOUdH7nOu8GrtNe+sdxeb+P/z9eOr9n29b4cGDeSzH/GIDfdrn/pF+2KIl3THzLGfB19nxLzlcK6ITvam8/9ef3BWfyU/l9wfze4Ln8YQ32mftmuV+2G7vL75cWpE+Vf7v5RS983yI9FP/92Mv3/j+aHuOn83uY2VfOPnP2l/N7UF/Beuo9R/6luQ/Cbs/O/pV6ZpW8d5V3sN5T/lD9sSPM/YqP6b8vevMuwiL+KO/3ViWPO3IuRp+Xk29f37eSzrn+Luq/iFxOIKfWhSJ+j8+8Z5x7GZ3wk/sZvcyHFuZ8KPdFfP+tcXGO+n9j/+O1//8Am/7RjHicdd132NfTHz/wu0JLU5ropmWv7AiRoqxEIURSRjKiCKWSnchKCml8JRmlNEQhSUpJyhZllJ1N/a7r93k8f9flc/3c/zyv8znvc85rnddZr3PuK2qW/N+/ByoU8LmqBRy1TwGXlyvgWfC5RgWssVsBF9Uu4GK4YbsCttm5gAMrFvDGSgUcAI/ds4D3lS/g0hoF7LFNAf/cvYAHaXfkrgWcWraAM/fQ7tYFLIFN1d9B+VPU1xYdv0g/rL7dtyzgtfCwLQrYu34BBzUp4G+7FPBzfP9NPrXqFbAKPKNBAY/eq4Av1ingbDgO3+NhX3KfIH2V9ETpn3csYHVy6A6b4e8e9L4Jh+DjD+VH0G+1rXwvfcreBTy9aQHXNyvgFOUq7VvA8+ilda0Cniv9kPLdqxTwfFiNnEuVf3inAv7CPn6DL5PnfeR1FxwGtyLnmfiqj6/KcFTy6WcjezjO7+fSz0fssDJ5nd64gL/Sz507FLCK33tKn6++HaoVcFs4hxy6y1/J3n4nj7f9/h7+q5LvH+ztevR8ov1zyK1C5QKuUf+O6rsWXc+S16Owo/r3yu/43o88qqm/HL1uLX9X9L2j/jLo6URe5chpW/Ufq79/SI8X1y1gvfDLHhqqv/mu/+a/GX01V24AfZ7r+5/V30e6j++qK/+lflURXeukD9f+laUF3IXdTsTfMcq/we4XwTrqmY/fZdo/ZdsCjtRPtyHXSfR+OD6PgMvR+w17f0K/mkOP09EziD/9jZ2Ml75F/S3Z2xnaHa6/LyXHs+nzQd+/ge7b8DfS72f5bqH82+Vfoz/1g7vza98q10M7b6U99tYu9sB+3iDv2FEX9e+N3n3gbdq5mh6asP/B5FFWO42Un8D+dzIOtKCfl+VXwldTv1fXfjP0fUze1fj1b/DVUPkz0F+K/ovVN1T5keh+XH8ZTR8/y++g/I7SJ0j3lz7MuHMo/BCdPdL/2Uf8Yj/jV/zjQvS0Jq+l5FWq/hrqfRN/i+F3+KygP2wsQMmlsLzfx7C78uhqw56f1P7x+ufn+uUFsBc/Xc540wsORX9T+qrp97PhDPkT0DcL/SPir6XX4/c0dE2ln13w/5X01WXQC1+Dd6qvk+93VE9veuwDy8tvp71Lffcc+Y7T7y9in1/h+yzyGU0eG+G+5HUNO/4WvyNga3I4kh//2vft1deQ3C6If8NPM/OmBtJ94Ufk+Aj6e+ufD8e/amcu/3Ov7zdmfkJO68jjYuVXKL+MfTRE51T4qO9fwdcPsCv+PifH4/nrrWBH8vxB/lD03Rw/w3731/5p6PuB/JvR1xz6j5+chZ+HyeUI5Tdo70DfvUp/Fyrfn1+9GI6BM9DT2vdvNixgdXr4n/Jj9aM6/MK+vn8f3RvZ8x/VC7gl/X6j/nONL6/xu/PpcUf8DuNPjsTPDeTVSrrN9gX8AT1fG6+bye9DXvfI/wldI+Q/ia7V7GM+3Ew/c7V/mfS+6tte+S3odXNpARebB8zw/Zf812rpevRwOz5bK3c0XK++TdpdbTz9x7h4Kf6b0/cdBSiZDZeETvnf0dvn9PKA9n8i34X6bXV2PQ3OIscr8Hsk+Q1Vbjb+a6F7B3bxOb1mfn8Je1wBJ8Fz0FmVvS/y+8Hk3136CvkZR1ahqyJ69iHffbS3pfwO0o+ipzK6P8XPLeTznvIf+m44vCz16c+V4UL9fLz89eS3Fv4PTpC/Lz130/6f2nsG/T3Muy6A3WF1evqGHcyXnoy++I891X+8+sfh71j8/aP/b4Kb4WDlHzA/mJl1gfVVRfqdxx/Mh6/An9Azml3+QG/fw3vQWUe/3hbWgs3Q24A8K5oXTWVHHcm7uvlPTfiIdi9H31fk2Qn9DeS/R/5T9cfz0N2FfRyo/Dvsazb7WiG9l/ys20/h345GZyn+Xi9ASVftXyl9G/7qoK8See/qu/L0szR0qW8i+lag/4L/8B870fu75LRJ+Wnk2U07q82rluFvOv9bzvcl/Ettei8r3QEd95YWsD+cx9+frvxc8vmFHz+cvymD/r/ROVX6NfZ5Hv7Px18X/O2l3T+Uu4d9fsCuPoSt1He18o9Jf4euldLz8T9BuTb021X/K0HPmdp9gd56Z/5DHiebF95FTmfIz/q6Kr18Qe6HyD/A+PK3+neRPgS/08nrQuPYDOnP0N+PXNeR81Dyv1X9Z5qvjMf3pbCs/JfpeyvtbQFrs+8GpQWco9639M9dY2fk97H+9wlsjc/9s39Ajl+T31/kO5nd3UyObel1L99V0Z+qwh+tN9rj/3v+5Uj6q0z+Y7TbQ//pCS+E56Gnqe93hs3g+fIn8g//aH9L/mc/dH5L/t/BDfBy+c3oawl5LJBfBn+XoPsmWEH7J+CvGb0epdxl9DeF/Mrj83n6Wi9/Wfaf9I/vzVMXa6cBei7mty6Bsc+aytfGd2e/b8Fu2sLfyONXdjOWnU6U302758KjtP+H+p5Sfjy7qpP9GnwtNl7WNe943/jXEv8XktfF8CJYDz0ns6t6sFnmS/Szhj98lp/cE97Fvu/Uf7fFzxV+v5d8HkDXcL/3lx6c/QD94z16qGx+9qTv5/Ib2+Prcf2hjPyD/L5P1sn8U8ui/aonpI8it1fRuxs7norfeeTSB/0XsavtyP0y/Xy09rPeP0D58n5fxH4742+sfthJ+h3fj8T3ffBw2I7+NuFvG/T/xn98Kf828sq6p3g9dAK7WqXcR+prp/8cTr4N4Tz03Ye+vfH3XcaV9FPyGcsfl1Fuo/qvVf4h9KzD/xfwYfn7lBZwZ9hF/dXRdz17rOL3d/CR/cN96Kez8mfAqdknJJf2yp0A29NTI+Vv1c9uhsfLv8V6Yhl9Pge3Qd9S/e9CWMX88HB2voFcW+DjW+mxkQ9/8Kt2R0r3xO9o9D4s3d94tDv+K5DnVnAhea/JfEa/qE0v70m/o75P6Pdndl/R793U/3HmX37/xXfny8+4dTZ+biWfL7O+559fgk+RT2X51dFVAx5FTtXV86L+9hQ9PA3H4m+8+ub6fTfjyXXouVN/ih66sofI/0vyXQsnsOPr9K8zyOtW5bP+usrvA8llGqxCXlur/2T0DSC3DtLvS99UWsDVDf5dT8r/Qy57GRe2YJfp/6XkWj77Buzod/11hPlAmYwbvst5wVa+rxD7R8+z6JuN3q3VM1N69/QD9WV9M69ofTMv+8H0s1b5B+m/lfHkXePMcdLl8LeD/tBKvS9k/ob+LtZ3R6CnAznWVb6y8qPgIeh5Wv7++stN+tVg+BP5L9Te1fX+//Ufgt4n4eP0tI3yy0oL+DH5VeFvXkJ3OXyVhceoZ0j2g/Xr3uygF7yanWxDbzVgTXgw+f6I37fpsxU5XIn+v9Gzr3LV8Xe3/n0Ue25L3k+yq/uU35n+/1Lvdvxef+31Is/v9MPe0j+wj5Pwt1a/m+G7g+nzfPn7ZN5Nvl3wF/vfATaEo3JOhp639dtL4Uq/z6CHXtlvR8f90i+ZL70MG/BP8/C/we+X8ged0FcLf2v0uzLofwjdq9Q/Eb0T4CWl+PJ9N/b5HLt4XTrr1Vf5pRPZxWH8W84Hfou9mr+uVv+B6Bgh/aj+ORp2l3+q+UNr43zH0CU//nwKnAy70t8YdvGi9vfXj3ZB/2r5I+mrD/99Pflso7627LQNOa3E32B+e0D2N7LPp388Q1/Xk0vlrDuVb0uen7K7CcrviL672ckw43tF6UXq/0n5nEPk3GGMdvpbH0U+7+P3TvX/Lf8e/b8H+Wc/pkcBShbDV7L/VFrAV7U7H2Y+2IZ+JuF7B3Z9BHvNvnhNfF3Hblvgb6TyM9GZ8+8l7Lp21pfKt1duHKyQc172Vwt+i//B6hsdfeN/Er42oO88/XUuvA22S3/Cb62gftAG3dl3yvnGm+wn5xsD6Hua/Bulb2e/n2TdSk+d6Sfr897p//Bcv/9O/zspl/2Uh/nZR7JeIr8m5LZauqZys/W77Lt8gc7sv/RR31cFKBkCZ/H78Uu9YG9Yir+x5NkV9oOjyPcz/vHrov3TY8mvnn43F50XobMC/b1gfnhHzg3I4ULl92PPzWFL+sn52dZ+3479XEw+zcnrMlgJPkl/e6HzL3opZRfNMt8jv4Xsbzfy7iZ9gPab57wQ/e2Nfxull/O/V6n3CPy3Jq+r9KvR2XeBZ5LvlvidSS4PkXeTjC/a+zbrJXzdFf9CLtfC5tknoN93tP+V/rE3uueo796cV5BrBekGyk8z7uwM3zdPqy+/P36ug9fCG+n309ICfgbXwE3KL6Ovw6SXS2+Q3os8sn/SMfu8+M/+ww2Zz2XfVfs7oXtf/fYM9ZYn7wXoWaifP8Y/HaW+QfrDeHgqvCTrG+XPNq6Ng1PQ21997dRfVnox+R/M772uvQ/wm/PIp9jVTDgLjpTf0vh2GHyX/pZp/23p97KvqPxpsX/zsWqJt5MeTn5j0D0EX4Phqzlf1O//0r9eMo62kn+M9nPOnfEi5yfjE39CnsfEP+BvIHpvgE+w44xHC1KfdqbD3fS/19GxFo7Sn1/A31n6TW31nSM9SLo7/ZxcWsCG2SdWfnt2tR2sBpdo7w/85RzrHfaZ86vt9JfX8b27dF31r/P9LPlPJF6FfMagdxU9VZP+yffP82snyJ8m/Yz8v/ifBfzsm3Ap+tuY/52C7xbmEW+gr3fOd3L+VICSrvxo9qG2wm/x+fxO9Jr4sivYz1Pou8v389AxH9bL/qT5dfbnF9L7z9qL/26S9UPivOT/kPUUOc8xPg7R/kX4O8k4uwv5ZH26jX7X3DiwBF1zye+19Dd2u0C6Bf5X8E9HwPPIdz0+xvAH1+U8PnFY0o9LZz+xBv7+YR/XkmdF7ZaHiU+cwy6uKS3g1bBu1gfk/UrO+RKXQ19bWddWhOvi17T/dfZH0Plc7F5+F/QdmnMKmHO+m/S/Vfzme/AufB5M7vXQ2dZ4twD9X6L3pZxfy/8ocWz0/4bvGvFn8X9dyede/D2Mnp3Qdzr6n4eJUy0nfyy61rOr2fK3Ym/RV/R3AzlFf23Yb85TW/t9qPQc/L8IvyG/Y/W7FfzJYWlH+tTEK+k/29LLH+xusXae931zcpkmnf37DvjpTI6d4PHkfwL6y6N3O3y/Lv08uc+AOV/dXv274Gsn/awFO1yP3sizPb4j78h3iu9v893TSeP/RPbQVbl2WZfK/9v4Mt/vO9LzX+S5s/KHoq87vNf3Ha0/OsBtlbsE/6/p75XZx1zpSuQ/Af8j5deBd6BvHL4nwuL16zLzlTuMizXhM8ovYt+JK6hdFF/QJ/uF/Pnv8Gjy/R+72J7eJkq3lv83eT0s/xR+sF/iI9DxIH3+zP6XS9fR3gDzjoHwbvwlPijxXVnXJr5rjvI3wkEw51EnF8U9T9IfflFfKXknDqdh9s+lEw+ec8GcZyc+fBL5PoveNsaPGvrH5eS0MPup+ss09LeQbiy9OPO6xBfT5ynGj9vNz/ui8wL67I+O7DMMUn4Bv/a68XsAO70JfcOl70oc8bb/pq+leivKn8I/v0YexfENiWs4S/lT0HMgOrYn15t994D+9z5sit/srx2Yc2py7Mae6uV8yHxnZ/Lflf774X9Yzu/Q/YF2s55YZNyvgs6t4ZOZz+jvPbPvBt9T/w34fhf+Tc6V0HmV8lfDUniZ+rN/+gl+L5FO/PFn5HIkubwIV8l/kz85jB95S7q3+s+kp/HSWW9lfVWeXVWBi9jXCvb6rfa/hJPgcvknoOdTv4+Hi7X7unpPhXPVvxI99fmTN8i1c+KtyKOL/nqU9F3a3Y0e29NvK/2msXafy/5DzgPo+XR2cHn219U/s+gcJOcfd7KHu+AwuHivf5e/r9y/60n5I60XHmAfN+WcjH20ZL8b0FVH+xfRz+X8fWPfH2Z8/kL96/SPHtLTfXez8tPIM/Oujvxz5l+f6S+9lBuEvxMTP43up0sLWAW9b8t/j/5ONk6ulH458YPG3Sdi19rNPZesi5bAuuwz66NhRfd71pJf7veciL9P1f8Z/FU9iV+/Xb9L/Hri2W+hr6/4t1ul7+ZvprKvvX1fi5w3oHel8aoS+uqx75PYw/3645ScQ8Gzc39H/bNzXqjdrM+6qLdTzgvZ85PkG30Ngd/iI/r8Svm+6m+Jv3aJL2RP75jX9c18jH6Px0fiw8bBJZnvGYce8N1k/DeRvoM/6MtPXJo4Iumu7L6vfnKO9AD092Kfj+b+SfyA9meidxYco1zb/4jfqVlawMTxNKK/duR3HFxDPs31mz/U/xv8MvM3/P/Azo6Wfw06jlB/y9w7ghOUH65/5V5k7knmfmST6E99jaW/p5+l+FkC/1FPY/S/yx6a8FO3yS9JfBb6/2Knn7KDcvKb629d0H2F9reQP4Iea8OfySH7M0+z59NyH7F4/pf1Kf3n/taFicfAV+Zvz0jn/to8/mYsuuvh5zf2vhP/OEZ9TdXTmfyf5S/qWz/cCRN/sYn+v1Surf6SeLPZxq2e2p+uf+9rPnINuX+ufOIaTsz6iP+Kn54Fd6H/9TlPNW+6CD4Em/Ij8+Bm7dXHXwv0vo2+ZfAfdNQln7tzHpB5XeKT1Jd96exXb5b/Cfv4UD/9CL6J30/JowK5Xo6/VYkfZw9ZTyc+dSh6Ej+0B0wcUeKHMo4lfvisrEfxn/nw8P84f2uJnvth4r0Tn/U9PmoknhT/iX8tn/j43KdV73T05Twu53Mti87ndjTef6Nf3Uie25FD4pTbs9+h5Nud/ZSit3PuYfEfm4vmjWOll8HMH+uUFnCScX2j9FHavYU/biQ9LPFY+M19kq74fZm95H7JUPzkHub+8jfn/JJ89ybv1+nvWvJ9hP+aSn9/5nw1+wzkfwj55PzmVPUdqf9cRu4f8Be3a78x+b+VfXvYC11N2EtT2Bi+QD+3kO9A/vAt8m2h/sRxJl7rZ/wv8P3d/NUo+fdI3xR50O9rcL1+1Ap9oxI/Bmvob50zX8DP8+R3GXxfe2fwBxP5sVnk81b2+ejtQHgQfCHxV+Sfc5msqxIvuqXxcJD6y0lX9V1T9nol+1pm/rCL8iXqvzj3ArSzFX1frN+s8PkV8BK/n0n/W5j/bQmHKH8jexueePrMv9jvC+yjn3nTQvXOZP9z2ENz6RelE59Wif1XhNXgM76fSf7x03+ia0/8N0TfJvpO/Gn/xPegZ1PRurN34sijL5g4q8RXvUW+J/o+5x+d0DGFPDLf2F7//wJ9k80Hr1Uucej757yP33s79yzgInxUxf9O7OIR6SvJfwR9rZLfl32PLjr/v8z6rvj+yTvobciuOklfyu5uVN9m6axny+f+Jbsdjo4/5FdTf86XZupnOWeqk/hD/AxghzfAr8lvBb2cZl7fCS7Iul17dyfOg3/JPu1u7PM33y8sOt8eyJ/cCP/E5yr1XFU077qm6P78WPJdot5h9NY06z9yXw1/y3w29x+0u5jel8B7yKe2/tCCX5yqXzRS/5fs/8/cp9zz3/xlPy77c9mvy/2Sgeivh64G8KCcn5FvPXY+qOj+ahl8L6ffLuobkf3IxKFJn83+m+S+buZ7GR/Qm/PFSfxtB/PmM/O+h/Zz/+Y969mTc48Tflq0Pq2AjzryB6KnJnu+2jgy3Pf9/J7+dT56rkT3Jdo9CP0z0FMf/cX3QXJPJP5nAHm+xN7qSG+Nv1rs+n7j14f6x/Xo2zH30+j1AHZyIjmNZl9b6Wdvqf9s+m9Mf1+XFvA19PZT3y7KD8i9AvLoif/j8FuivQnkOyzno+p/WX2N9J+sTxubpy+Hq2HGt93Ifap2l9DPcvwfTX/nkst5cKB6uiUun3/LOeMyWA9fpUX3ABL/38J4cAhM/HDiFYrjEROneBD+OvNDsa/YW+zrPvS1wdda8p5EXok/rAb78LOJQ+xD3/PJvyL/M1D7B6NrdO6z0s/x8u9jd1mfZl2a+Kiq7OFq7R2of3+vvvH0Ow5O8ft5WX/6fjO8PvtouV/CHsZop6f0SZkX4jv7B5/B7B8krr8Gva8iv56Jl8u6J/ep+IP2uf+LrvNgN7hI+09rry/99IOnqG89/SYONvvyS9jvraUFvFg/TXz5p+gvw9+uhyMSX6H8jIy76Bkl/VbuB/zHuef/8P0UfzUZzmaHFyeuEd2vqv8X6RfV/0zmt+j9M/MG+jsz97WUO0v6d3Kox45fRs8N/OWr6tsX3aXwVXRO0c5J/MudyucexkvsrE0pPqQHZhwmvzPoO+88PJVz87yP4vd1cIH+lPjzcTmPDt/w9tyvY29N9cvGcJB2Hkv8n3Jz8n5EzufYU963mcYf5X2bJvzDrnCh/LXkUAITP3aI9j5Ef85Dss6tXrS+fdp8qnf2j6Rfy/sO9LoIDst7Y7n/qb0y2ss6NevT89jndbk3k/sBif/gT4ew/+XSg3OOaby8hfymlxawm/qz7/mcctkPzT7oFH7/Gf1m79xbSxwMetrRQ3v4rvbf1N7jcKL+8Kv8xGslfqsDe0n81h/avxsW7xfnfk/2vQ5CX84PHvPdnfrFmb6rp/6e2luT/R79OPvPM9U/C86Gm3L+wF7z3kveg3le+w34w/rwtpw/+34tu2icd6fY2Rd+n5x4QDjJfHxF7p+bN94Hv6WX+egvx97PZXeJX0o809Hkuo9xI3GON5LzzfjJOzB59yXvf6yzbm3Pjk5C587k2KvovYm8Q5H4gVb6y1/mB//gL++JZZ7fUP9M/NrgnC/T556+y3sSeT9ilHFxNEz89Ofo+4g/vyDrw6L4/6uKzpMv538fjr2yq4MS38Ie3k9/Zn81/H6m8fYp/OU+Se6Z5F7JTVn/kk/Z+F/pa7T/u/H1SX50Tu7Hklc/fDXKPX44IPcbM3+m7zJV/t3+X/j6Gn4D27Lv0eRYlT4vSzxF7r/lPhw6u5FDX+3nXt/W+sfL0rnftwV9ZL+qrPSB6DtXex+j44fsa6PnY/Xtyb72yP30jFfxa3AUel+X/yP5XJi4Q+kb1P8s/138rlPOX/K+VqW0g768r/Ulf/uCfveV9Ab9pS59n6hca/3sTvUnfiFxC4ljGCd/T9/vDWvyE23YRxnyW0Aff6ov8VyX5v0LfOX9ukXyn1bPbdrLPtKlRfObzGsGsYPVym1Sf/YTcw65IPfD6HsNud8j3Uv+cv4r5+PtYM7H27K3xLu04lez/5bzmw3oTnzVrfitzN5/1o8u0G7G60r81Sx2NgMOUt9FxXFT/Pwt6FuK3vn4OEc68dXHsNfW8Fj4GDn9ZN7+M/wFPip/f/T/CfMOVOLPv9buU1nXFe2PLuPfs395XM7/0DfXfC/3kQbCIb7vS74vSw9ln2+qv3Xes5O/NfvP+dD3+t059D4LXp/9Q/6zS+5VkW/Gl7vxW479ZX65DJ37aX9P64s9YE928BO/ukS5leopqz9Wzn4WuVSSzn3ol9E/h93NhrkH3Vr/HqbdCujO+yPZn807gR0Svwl/yHxP+de0/0vR+udzeh1VtB7KvtrsnJtrP+vQvHuQ9zoTb5/3Dx7J/VByXJ73Ssm3b9bLec9CPU31v3eNR7XIuZLxJ++h5l7+6bD4fv43uTcHN8DDc26Er8nsqjl7PQg9U/WXabAXOeXdwFuM10PZURX6f4X97Ures/ST3TKPIscPck6m/I7SraS7kOci/GRekvd0bpHeVboH+pei/yp8LeTXOxbFiWbd8zh6u6G/SuJz2ddj8l+h7xvo52h23Y99PYC/FejKfmPGgWL/fxq/eSC9DqOfevjpjJ5n9evTpW/V/4fj78isA6T/kh6LnnHwAvTulvgS/LfL/Nd8b/fUT+55f+xg8sj88UnpvF+W98zyfllH+Rm3Bqr3O/mXZr6hnz7LHnfKu2jkkTjepdm/or/00/qJr9FezmdfZKf1c7+XXM5QrjN53VBawOthL3r+iF8bzf7HwK3Rn/dW8/5qL9iuKP/wxINnn1u6hL/bpN639KcHyLO++UCrxJHB/fI+DbnlHe/cv8x9zOXqW89ulkp3o4fzySXzr+L3TU9jr8+SxyB+tpPy2R/6hd1UhNkfqov+3C/JfZPT0N9Ev2kMtzdfuIkcT9UvtiGnbXPuhL/bfN+dn+0BS9B3Gnnknm/x/d4f2N8f8EdYkngw42ddcsg6J+ubV9jlq3Bb/Len/3nspyy7nUJ/jej3cnzlfHwBzPl4K/5j5+wDkP9L9NOG/c5PHDHyj/F7RXKvBCvD7E/elPOVxIHDafh/gB/+gv3kHsL+yp+qv12C39noa46+8fh/POs7+l9Jf3fwSzmfHSad89mq2u9Dri3YW/YPDko8Qt1/lx+Mnl/oc7Jx/H74qfrL4Wd+3nHkZ6+i78Z5Bwn205+zf5L1Rd7LmsauP5bOe0p5X2ms9LH60wnSx8MT4RHZz7NfMANOhw+hfyvfD1PfltKPk+8D5HUhu7sZfSV5f4E9fC9/rvS+ic/MvrL6dzd+vJP4R/aZd/Xzzv5+9J/41exDFe8/vVM0P038/w4w55On6y9701/OJ7/xe84T/0bPK/LHZFwren/kCPJZ6fvECx0U+Sg/hD2drn/NQ0/mARnPs757nj/K+P6A9h+E09nXzvLzPlbexco7WY3Ul/cUE69UfB+jG3JvgdNhk9zz1B/bqv9+dvWp/IqlBRwh/wn+8Uj59+I771zcJ/0rOS3jr/6HnrwHmv3Xatm/9X3ep59AvrX4938SBwmzj7o48SDKXZ/9dnL6UP+/t2ifr2HOmdjLdvQygz3nPeVPcv9Pva/l3BL9iU9LXFpX/Ob90bXGy5zL5Zwu53M91Hs0+WReMR//V+K3O6ya/djclyW/KTnfLTof2Fl+W/VvVv/52WfR7x7NfeC8D6J83hfM+fEx5DVXOvdy8i5T7uvkfaavEi+T/T70rFD/Cv6yuva7J+4p5+vsaR0/XUb6KuX/Mp4PgUPhm+gbrz+WGrdm0/tbyj9P/rkH+CN7GqD947U3U/m9/Z73C/Ped97/zntIFxT5tymlBYyfi39LfNR17CNxUhf5PfEUia/Yk50mviLxVol/TRxW4l8TfzuYn08cbuJvH5P/KHwk8WXZB8w+dO5HkVfPrEelS33/q99j/zvIH4X+jeTzpnRV9vVQ3rnXPx/K+Yffny1Fl/SF7OQN/vLD6Jvd1Uz8PP39Tp45R7ha+3/mHm3u06Cvp/yV7L01eVVX/kfpm1N/4mKl72Un6/iv1eYneedssPofQtc17GsxLJf1/X/cW5pMzoepN+9+5x3w5/POMHnFn00n76eV/zbjIf7vVX/ep7oQ/x/Cuvn/FfgvMR/ob/x6RX9YRx7pdyV551Q9nyn/i/X8aOP7g3lPM/dP8dcEvSPyPkL21/iP/TLfo78G8rM/8w++N8Hs0xxJvmfDJ+kv++Fd+POVuY+Inj3U34ff6wGnw+7y96CHl9jZXuTdO/F3+mXeLalhHMn7Jc+h/2z0dNQ/Zqv/UPSV0w8+heUyv+RvL1L+nKzDyWsndtUI7s9/rlU+74mNhfPp53L6yXu8+/o+8dd3st/c/x3PTi7JvcisX/w+GN0fk2/e/7nX+Jn/t7A/P5l3uW4vQMl6eCi5HaD+7Cv+hM7co839uewv5h7tRt/l/tzl7H2jeV4N6SPp8xryHa/dN5Vrif/XtT8170onbiLxx36fV1rA+XBv323MPVnfJw4u8W/hJ/zlXnD4C1+5D1zM3+/65a8w66Fl6l+K34l+nwDz/w0W0Vvi8/OO6hNZX+tv+X8NJ7Ovi6TvyH3brCfReW3eT8t7Afm/C+zn/LwPxB6eYSeJS8n8Ku+2vw8/zHmO9mKvseO8nx17bsx/Jq42cbaJr51YgJIbYHeY9xCrkN908+aO0q3Vn3cIL038bt51zvhNnp/j+yl2H/6r6I9fw6P0083GmXb8xR55pz79BzZEzx78zBR2/VfsmP0lnrA4fqoCueQe68OxF/Qdk/tufh/JHs7M/f/Ev9Hzn+ypi/ylBcgwU1KWv7tD/TnPqMaPzpZ+Hv3Vct6T9Yj5YOIzD6T3Ndp7gfza4K+W8aWT3weRc4n0q/RRSp5jc/9belf2dgX720ye47Sb/xux/j/+f8QHyud90lVwHv7Owffp+vnIxLtk/099B5Pzajg58Rb42AJOxd9j+B+e94zho/rhnfgoa9z/w7zy/70/jL+8J5N3Zu6Xn/dmJkr3SH9S7w3S5dhPo/xfEvbWSf2/4SfxXVerL/Fd/djDNP1tD3K5Cn/HFMWRf0+Od+UdCnTmPs0B+udI8u+Rez3ksgf57ej3m9nBkfB49tE2+4nSOb8813cV1N+1tIDnwAH60Xj8JR7+C+0mTj5x84mjL46z38Lvi0vwAYfD7H+u4XfuzfxO/3ucXNrKb5N9K7g7eeU95NPYwdnsYE3i6Ogj4+Jb+lsd+r+fvJfkHbKi9UXxe4Z557Cr/P4cR4XQh54R6sn/C5hTtH+W/x+Q/5twN77z/xPWyp/Ab24yPyi+391f/XvIv1Y6/6/sUPrrSH9vo38ROr6Uvw5+BRO/t4d90wPgXjD7CRPyfi/9v20cqks/efc393ty3yfvKzUnrxn6x9F5T1z9P+X8K/tTyuX/e+Vd+bwzfw7M+/I1tJd7tdPRk/u1w/WrvHOWOLTEn+2OntraqQOPQk/x+5R5l7Kv8hXy/iX9bORn8l5s/v9M/u/MIb7L+5rPFqBkJZyc+Al20DP7gfTamL3k/xsVn8e1yHvG+B+afVn4PvurTb7drSey35Z1cMXEd7GHOxK/Rw5PZ13Cn+T/4uQd6Q3qn678/2B9uCbvfLGv7bP/is/Ex2yhvcuUG5l3uMiv+P3FZ/j7vLeW+OTsKydOOfHJC+jjSr/vQp5P5f11/eh7ck88yEPoX8ofXchPJA5klPz7+aOb8JNzxbwP9L76VuedrLxTQn5P4nu4cegp6Yv5p/tLC3h37n3RR96HOYU9HgvzDmXu907O/V7yeh/dH0mfr968o5f7LlfKn1kUl3medvL/Dx8hz3fYZW3yyL3XU/T/4v39/P/cH/mN0eQ3wPic///4hvrb088t0mfKz/9Vqq9/5B2H36Wzr5b41eL9tZzj1sLvL/rL4bn/yn7vZj/l1TNY/jf4+zH7n/R/jvqepq+17HYIPvrKn8K+8o7kPurJ/39qaTzIOcqtMOcneU8k74vcTH55X6QsOdxTWsB+9LQdvDz+HDZh37nHdE3uE8Fa8Cvt5d7yGuXzHlfe4TqavGuj+yc4Fn/9su6CH8Dmub9QgBJqKNnGfDXr9xMSD4a/NeSb+Pru6M29qNXG68wf9s27rHlnsui9iePpe7fc36bvt7PeZr/H0d8x9PEKu8r/v83/vf216P/fDjfvOEs9zekv7/AWx3cmrrMi+ovfu8g7GEPI9w763ITvzTD7Z/m/qeN89xG95f+oVjSuPZ7/YyC9JTv/Tn2r+K2K+H8w76ywv/zf7vF5Z4f9DKPvr2BVcnkU/efS2zLjQv5PeP4/eB/2dCU8Hn0n4W+C778n1+vwu1/u6SVe2Hcfaq+//NX88io4Hx6n/pPJ66Wso+hpED7GFqDkDHgjnKR8/MNgdluff4t/SHzeT/BtmPi8rfmri3z/g3ozfjQg7yXk3yjzffbZn147k99d9NBaPSvRs97v38Ds/05mz6ey87wzdZjyeZ/qqqwn0HGo/OvYT03y65O4fPV3Y5cn6ycN6SfvJR7k981+fz1xHeSxu36Z/z+bd+Dz/ntb9vJxaQFb8PMfhX+/5z3dvLc7Rv0V2GXikK/BX8/Emfr+dHLpYD7Slrza+m5buAN6XtP+AP15ILwx71llnsF+H0PHYHKcmvf94G/kmfu2k9jH/wGMydiJeJx13Xf411MfP/AvzdtqqIyojxRFEhIZkbhl5JaV0dASoUhD9miJzIyMklVWwxYqQrS0s0WUlGw3Sf2u6/d5PO/r+n2un88/z+t8zvuc89rnvM96n1u77P/+usLauxfx4H2L+NRWRZy7VxGXbFPE2+V/vEMRj96niB9Jb9O0iFPqF7Hq3kXco3ER99yviOMaFrGa9A+NithH+s1aRTyrThHPhDPVt0h785TrEDrRdzK+2sEjdipiP/mVGxRxdZMizlHvUPT/XbGI+1Yv4nVbF7G89v5Q71/wTzhA+UfQP6+88uR0qPZr7FHEl/zfEx3D8P88eqfAyXDx/ugkj8vJ9exdijhK/VuT7zHSI/E7XHpKEcr6wGWwMXoW4ff7bYt4L9wWnZ1rFHGW/y/y/Onon1QNPdsV8S64DTlvws+7Oxdx/m5FfJx8f8Jf7PMbeJTy/65SxO/Q85D0K/h71vOT4FX424C+l/x/CjuaKb2//I7st476lpLnsdLX8ocvyeFK6ans8JXti/hypSK+CHeV32xX7cGb2cPP7OdHz/eAq+Cn+P8OPXPIazb93sce+pUrYkW4fMcitsbfaRWKeOO/1M9Oj5L/Sc0iXk9PN8CT2cdG+Rvgn/A6+tiXXNuKK2Po+T30vYautnDTlkWcz74/xtfd+K3Hnz4j/wbkvZKc95ReQr6X0Gdf2AwdS+VXRc/n9YpYTXqB/Ab8fgj9ToTvo2cgea/A77Pktgz9J9LPIfK/Zk+n0+/F6OpFD72lh3u+8Z5FnC5dHl2faae/55uSywDpvT33Eb4GigsN/H9S6MRvI3bxHb4OQ9/KqkUcTb5/8Oe69L+eP/8tfz75XK6dbfF1h/zHpV+oXMSqyh9Eznuyw/3I73z+MJe91EfXAvQP0t432ntSvZd47htxaTVcBS+ml5/VuzT6oc9u2l8lvVj+r57vLn84+x4Kh8G30fM1f3iJfr6Sbkt+27Lvjurtwj4qsu/p/O1gz70h3RL/M9U7oq7npWvLf5+8f9aP9afPZdp7TP6J8BB2UFn+meymPZzBXgaS3xHk3RIO0s5S8v9de2Pod1vp85UfTh+/SU+gz8nor8L+m5L/buT6mvRw8lytn/gW3qG+49W3q3Zq6p+Wk291dN9qnFNDejF5j8fvBeS7mHxbq/9AcnoWv5ex1zvTP5NbU899yj/XaX9L8n4d3TPgFfzwGf3CKPgprIu+rujqBrvDv8mvMXr3gXvDk9DTgT+3JJ+b9C/3pf8uFLG+9rYVTxbgdyY5bK++1vh/XLoJec5kF/tIj8XfjfiZX4SyC+AUctqBPH6V/h0eRH7nsqc54ks18X89etegL/3xDP51bsl46EDP1cT3KPprhd/KxiWV4Cr+uyV/f89z2+u/NsDP0bOAnD+TPiDjA37xtPRV4t8C7a8RHzOeWSv9tPym7OeAQhHvQF8L8h2u/ovVPw+egM8m7L43/ZxBb4+qfy25XJz4l/5O+WbSVdD3pHbflv8u/5wH58I/tDOKfz/Gbm5jV7fDpvynj3qbK7+7/Nn8sx87eU+6N7pPUW8T9JXHxxLlz2BPp8F+hSL+G/9bsqPR2q+N30Hq25XdjfDcj+zxSPWfIH0iHC8ePYK+e4xHuig/Rfunaf9Uzz/ILz9mR5fL/4h8PoSv4WMi+uqzp7/EvXvw8brys9jpXOOvGsodIf84/toGHg97sf/N7GclOruKI1vSf0vtHwEPh/fI/43f1GK3LfnnzuS3pfyz6L03+l6Q/zS+3iSfQdqf7bmq3geqwffhSeh/lD6rscdrlUv8PDZ8kfs1+D2cvhryr3J5L4T3oq+LdFfYi/z/Uv8A/XnGzX+VjJ930C9PNy7vLb0NOlujO+OjjJcyPhounffdPvAJ+Z9mPA0/gXmvaIzvvvjuD6um/6C3pfqd5ejfgv18id87PD+EvKeRz+vkeIu49BZ6f5U/Rnzop9z2/n9P/ev5+2faqaE/OUn+gC3QhY+npUd6/hx+2V9+Ad6K/8PElUraKQ/708/t+O5Ej1fzo4n4/Y3evvH/f+jvb3a4kf831o+04Md3oH85e75b3F8m3ZLcrhG3B8Kr4R3k9E96rSz/Ffy9DC+CX5NPBc/vx252p59TpH/gz2XkNkj6SvU/zn9ni0sb+d3O+HsI33mvy3te3u8S7w+EDdhb4v9R0lNhfXL/k32/RZ4ztbNOuTe0P5r/LiO3/0hvrfyN6j0PXVPo6y3ll4mHPZT7hp7GsufDtP8kuzkL/3lf/Ex8uVj7q/UnA7R3PrufyA++Vv5E9OX9cwK+Pkz/i75n2Msr8GU4j16HonckbIaPNuRfm9w2sPO/4Cnsby/6fc///9V+4uhs9nQ+/faE8+mpufJtyfkkuAGfXUri5rnSiZ8HkNd+cA/4hvwXtbcIDqa/jAOqkF999R+FrufI7/BCEVvhbxz6upHfUn5/qOcOgXXUd4h41IoczlVvF7gVva7e8/+f3yh2hN7xnnuDvheT32Pa3YGf3UN+0+hzL3I5N/Nx9LcQP231u69oJ/OvKz33qvYu99wg+Wex76/Rsa/8gdrvyu6fM07tJj0UXxXY/1Ml+oz+jhefz0T3XvztHHS1Em8OzXshfjN+LuNXw8htjvaGZH6Bnm6m94vZw/PkcLP+rqN4fYv0WcoNxv9A9r43u9hB/TXpvQbsK45Vl1838RS/B5LbUOlNadf4ZjD5ZH6vO3q/1W6HxL/UQz5T4BDYMP2v8rXxO1S5V+QPSbyW/5rnX5b/X/xXEieu4ie/o2MrelmmnnPQfzb+7iLHtfKnej8aI78eec9XT0/ll8s/hjy7FYrYHW70/M3oqpb5SHq4VPmPMh8Id4GHsK/W7O5+/XdH4+UTpb81nijQz2z0l8FJ6sv6wsvixWvs5XZ8/4ie29jpB+zjK+VP5qcP42cI+rZj3+eSdz32clne39DxXeZJYXftrafPvB/nffk4dI0vFPEb7Y6m3x709obxzDT4pfHOh9qfip7j9C/Hwgry67H/muhfh6+L5MdvB0tXlB//fbsIZWfCsbAefuaQX0/x6Tx4vXo6y28uPYic/0tff4hbdQpF3CSd9Zpdxds5yu0i3SjvX/qrn9T/sfRt6s/8WubT3hAf98j8kf6jArwDvTfK70B/47S3Uj3LpM+it+bs/nZ0Ls/8Rcn77e/i92/yx/n/f/7o+Xnav59+XtVeM/psID68Rf/vwb7sryV97+P/U2FP+CT9HYrujLcrks8v6j/Nc23Vtxb9iT/zyfs76av0D6PRe7b+5QJ2+a34ciy+b+fXt4kDMz1/pXZ/Fgf2YP/t1T+fH3Tkn53gXsoNJt8j0ddYO5vEu5r4XcHfvoKXFYrYSP5o+jgMP/8h/1n0dbL04fLv8/y78rfH16Xk/rz+dZr61+GnJ3ozz9GN/Hchj0awOdyYdTLyPIac7hI/W2VeltxHw81ZbyT/+/nrQ3Aw+70z6wB5vyP/D+Ey+Av+LsTHy/h4DP+H+L9W9ICuvFdfxZ4a0tsv8HLlb896G3rnk08F+Tuofyd4pHovRH979JwJT6Ovd5NPjqcrd7389Bcv4f8cOBT2kP8VvlaSx4P0c4L2tsdfG3o5gZ5Gw0HKNWTPe0u/Q06Zx6yL/2/UtzzjG/GyYcYV7LiRdPq79IPhM/zV124X7W4Jv8m6g3gwBdZmJ/9C19vGO6/h+wv2mPenevg8Gv/7o/d6/9/MLhsrd1L2Aah/ODquY2fXwsxTPIC/Pfjf5sxvaf8c8e1N8b2D9KH8ryF9f66e7uq5QfmrM77xfvNUoYjr6GOU/mKy///mP5lf/JD9fknui9jv5egvT96T6GEjfAv/rfM+Qn/N0PU5vEq8z7r46+Jb5t/3EncWaX8lupuh7wHtZX3qQZj1qVvQv0B9bdE1F/1b6V93J4e2+Dsu88v0dxo6Ttf+K9qfge4TlVvODo5X/l128jX7aSo9y/Onom86+cz1/yr63Zj3WbgBZn52IHqmJ16j866Mr7R7Lnr+LFk/PwT9L5D7e+SX/n0/9tMU1uU/NylfmZ9fod7B0ufjs436ziDfs+lrgfRQ9vYIuz6Pnd9KDvvitwncB07C93/o83v81dOPzkXfgdofD8do/5rwp77u/LIHvEt9FxiPH+49Ylrep7V/Hz6mi1sj0L+7/DXK3Q9v8twE+eO0vy+7aQp7stdK7KMFPh8W79tmHqBk/qM2+Q+SX818TlVYHY4l3/KFIq4SH44yPr2JPdUQH2vCeso/i76Z4Yv+7ipCWUN6rY3e3cTfn9XbGX3TybuZ8c1C6cXKPYWeZ+AF7HAz/3gEPg1biIcz1T/E8+XoZTF/n5/9afS3hjwqe/445R/TbgX5Y6XvxMdS8X4zuR9FTpkP2Qc9J3s+7xHHqL8Nurr7vy09bMc++/o/645Zh8z640LyPx4f5+mfsg9iN/XXh5s8n/W5PvzlJP1Y27x/yV9XhLIR8Er1t4DH09fh5NBL3D2YPlrJXwKz3tkZf8P0dy8qdys73w1/O9LXZezphsRl9H1BXlmnqF4oYvnMP+FnpnrbST+Q+U/lso+odP9QHfTtzX4bwpfx10xcuQ5fG8S9D8WZQex6hXbH8NdV+L006+Ps5D31Jv58Iv48w78+lp6p/IP6p/HsbjI+rlK+kXqflx6n3LfS1bXfHZ/biyOr5S9hN+eQfzn0tYWHFYrYRvkZ4mNz8s7+pexb6lOyf+kK8vke/kCOl6Gjmvoyv7wz/9wl68fi4z34yntP1mf7oO935f6AC+m3An1sNP6rmPdv+ReTbxfy6C39h/b/Zg8Zp+9FDtd5XrgsWwDvhe2UP0O/+77234On4r8xu3lVRRv1D93IdyO5/Q0vZAc9yGE6+3wTzoAr0duLXVVg95Olp+L/E/LNfEdp/OrN3stge3GosvzIdSm6DxQnIt8W+DoEHgx/Zpe1xat7xZudpN+J39DnCvI4jx30hJU9/y9YCVbI/CN7G4K/zcarWyW+sL8Cvr/Q3mPo34d+etJ3L3SMVv4k/nMibAu7oP9q7S+S3lk8rqt81pOvhrezv4r0V4u8a8Ca8Ez07c+OYo+b6XO9+j+gn7ae76EfW+75nvR1HvwXbK79L9n/3uRUuj7+m7hxIfuYCb/y3BnKtVPPybCX9peJd4/iq5z4cb7838ivE7+dxb5Hl8SXxJU62k98+cW4taP/F8Fq8l8i74bk8jD+X6DnYUUo+x5uYKcvsJPL+NUlcEXe38hvR/Y2izx6+z/jk3aev1d93dG1kH99WijiYtidfQ1XT9b7M1/RXvnsB+iW+WHYBQ5Q/xTlR9BnTeWzP6AB/XSjl1e1v4P2m9LTFp6fpb4rpJ/Tv9cUN09TvhN/KF1Pzzr7h5k/KUIZsZeth6+KgxsSN+Ff8Ax0vcgffotctPsF+oeg7wbYWD+U9ZtB/HJP2BC2Yh95P897+Wbt5P28Yfbf0sdG9ad/+w6/P8GjyOcy9LdU/4nk0039PTJ/rv7N9PQgPjL/+yq7HsV/nvX+uBn9V4tvS43fRsh/IfNL2n8Y/W+Ik43QN5797oHuCdJTyPdX46SxsCn/vUv907Q/glw38+NV9PQA/WUdNPsim+C/nXg/UvunSF+bcyboqQarwmPkf6HcKvVeJt05+0yyXxl92Ud7Hjm8yEAzX5N5nKOVvwvfc+EQ9bWUXxpvEofujv7YRSHzZ9JzyK93EcoWwl9hZfYwRnzeXCjiEezvZfzX5per2c238CXybYK+vIeXvn8fza6+pbfW0ifnfQvdNbLewJ6+xN8bnv+E334KF5PPB8YVL6F3MHvZP+d10m/wg/JwOX22L1lfyXpL25w3Yg8nqudK6fXqz37Ym+GIkv2x7+hftyeffaWfQm8v/F0Ih4lbQ7M/WboNPBW/7XP+IftatVs97We+l9+uVP8Q6froeYIdxG/jx/HfCexpK/9Xyzgq+6/ZY9ZlG9NP1m2bsIdx/t+k3oxvvkf/UPXMyzgRf9/rHyuSdxl/T/+/Nb5q4Ws76e3V34j9bql/2gJ+lHkI/f0HMP3CLO2foL4T4VJ87ctefyOP52F5/fzR5HWyeqcbZ9Qo9//Sfxx6ToAzsi9V/tHs7nJ2u0T+QPS9iJ7S/bfn4y/xYCpM/9WAf52Z+Wl+3F56tXYaso8Cv2gEq2h/a/RVh9XEk1bo+gBfZ+TckPj2ono+y/7D7Csht6uzf48/57xIzo+0R38/dnuB9vrQ94PKL6GXxfAB2F99V6J3T/T3KBTxfPVfwo9OQNc06fPRm3MlK+SfQP4/5PwFuR+g/jnSj6L7K/Jpr19YKT0s47PsX8g8VeZ52N8kdtWEXU2Bt6n/XM+9id616PuGfS3NvmDtT4Wr8VULPZlPqVooYpvs3835Efq9F16g3Yc8fwA7+oL9vZp4j96ucAEsR5+ZH/uNXz3ID/ak393Fu93gWOOTzPMP196wzB+Qa8ZHX4gvXcnnOPb4Dv6aar8hrJp5ZuXPYY+Tsk9VfH+Z/Xym/oO120n5JiX9c/rlMbBSid/VII9dcr5A/cd67jg4zfN/a3frnF9MPwh7a3+GccubsBZMf9VHug76L5FelPUF45u30DVB+6+LH7cVitiQfGZ57jHlx4k7I8ltujh7jvZn4+t92Ep9B5PjDP1LL3HrKf3MTuidzJ7Gwi/4S7ec1/T8pMyDsqPrtd+Z/Jaju6P0Dew380nvoCvzTZlfaqM/a4zP46RzHmhr8eBu9p39r6cr39mLzV5wb7i/5z5Bz9/a/Ug6/l6DPBvhs6txxFr66Of/S9DXjxzfoL/3+fMUOJK/P6n+5exsTc4zs9Pn2NdF4s1f+Omo3OPy9xevF9LvAvh75CP+tSGnbaSboP/fxh0D4BGwHf0vobcz6GmQej6RP168OBbfB+W8MPlONN57XPz4mn2vx2f2e4xkN9kPkv0fj2fdiN6uUm9H9l+fP73NLs7IOCbxln4u9XzWbfpKd+fPO8BjYPZjP6vdiYUini3/kZzz0f5k/dpw9F8j/SX+eqnvF/HuQu1nP+RGer0Pfy/Lz/n26uL2o9I5574Wf+vgGtiO/S3JPjp+e6R07HeE8cFCuAiuQ8+HOU+Nj+XSW2f/SuwcH99n3wH5V6SXcvyjCvp60v+H4kbe0371fN7PTisU8Uz21x7ulPFlzkew+1Pwl/3Bz+mP/oOu/uy2t/J7KFeNXdaX/lfWw7K/lP3Owm9r9H1eot8V0hdKX6N8ztn/CEdrf2IRyi6B3em3Qeyens4m3yvQ30L5mwpFvJhdToNXs89OOS/CjnMe8uich8PvbPY1Vn3txY/E5d21WxqfF2UfJr3OEd/6ZfzL3nM+eVze97X/B/ou8fytxgkV8TcP35XIYRPM+YcNymXfdNYNs3+6tfIX0Gc/dlFV/TPZ3ans+jT4nHoO49//dM4r+5fnkcNH9N8v64fkvQdcqn/ppPx+5PEK+ffWTxxJLmeQ62n85FSYeyzuK1lfzXrrFPx3yH0N6Mv75jX02ZX/dGLfi4pQNiLnCsi1P32PIu8B0uXw241cjpI/Tvsv0+cDhSK+mPkb9E5Q7in4gXrPI78r6S/n5Sepf1H2n/DrB8ijrucXZv4Pf2vgPPhb3h/obyE9DCSnfuo9K/cXwBH42Ef72cdVus/rRn6cfV3Z59WOfWV/1zvSs+C78Ar09SLfLelxk/i8Wv4B2d9Jn5nnmY/+nBfZgN7V4mHznD/IPS/K/1e92R+0mH98i97t+EFT5W7Lerr2vif/mdl/wx43wWvEp+gt69rZ51a6vp39snO1l320F6H3ZfyUjvu64i/rflnvy3pg1pcuZee1cw9OyTnIXfhb5uVK5+sOIJdmMPuOmpF3K/xcTY97wa/lZz0z65sXwqxvPpj4mfV/cTTr/MPYbz929xo/6sAuV4srn8Hsc8g+wH2zf4pc94ld4WNq9nOGXuPVzF+O+4dxTwt0zch+KvVMl26Z/dXs6WzYDZ8D8bcy/OFrAXlMQGcb9OS8fbnMZ9Bf9pN/nfVr6U9iJ0UoewU+BK+XP5S8P0LPF/RXPetv4tn37Kd0/mGyeDMF3qK/baO+3EtS4R/uJ2kgXT+o/A/0kXWyrJtlPW2p9HD15n6kUTD3IzViz5PJfyIcwx5Kx8Nd8LVY+kb+1dvz59Fvf/b7Gn+r7f+sR+whfwX6dqL3zGPXzjjSuOx2eCusjY7f0T9F/Y3Uk/7nO/R/USjiJ/q53M+ym/Qh9DfBc2vUP1I8uAUOpZd78L8Te2jN7h7gBzk/nv4//X1X9G+X9wvxK/uvsh8r+6/W0Vf2AZbu/9uGnw8u2UeY/YPPw5wPay6d82FD+X8t/DaAq9hXG/43Xvp+/L6PviP435HkmXupJsInvBd2ZCcTpAdrv2buaSKfzuL9juRwJ785Ev25n2uDcpNK9icfDt9B78/km307OReR/TytPX8krJv7V7S/Bf9aDM/L/FHOB+n/+qp3f/JcG//KeWV6yXxKU+Wn+X8H/78Kl6GvFvvcFl7KDjNf25q91dY/tZC+hX5Kz6sMQN/YnM+Sfgy/p3k+65Nj6Xue9h6W/ib9R+aH0LdnoYiZH/xA+kd6+wpmv8n7Jfa6VeSjvbPYw9baO5LcfsfPDHbfGf/ZT57zH5+hN+cXPxHPt5XfmT+eC7vAjdp7XX92A3qukG6Fv6XizgD2fb/48yH9NZP/DGwOjyDvg9B9Aj7q6Odyrn80P3+I3nuyzxXyV+R9j1x/yf1H/+Cf50nHT1vxx5wHuA49OR8Xff8AfyzRf+b159HHdvwt63eDjTtuhHPRexE9Zr9dTfporHz2332JnycKRezFzu7NeSzyynpc1uueQP+f/LYC+extvLdG+UuNz3JuKvs3c87kJ+V/gD9mwwS+X2Uv9bIPNffFZP8hfmqg52R675X1R3StIZ+G+OyQ+Yu8v/OD/fG/UX4ZeR6mng/kj8z9PeSReefeJfPRZfq9LeEWsKk4kPnmzEPfCjMfPZncpsDN7GOE9mex19xDeHn2X+T8G785MuNrmHXOc8SztfzjbOnjc79U1kv4den5sw7k10dcqVtyD8vU3B/i/wHiUXd03cuuKrPnfvTQif6OIe+bC0U8Wjr3blRW/1f0dYb0Ivw/rF8/C87Gz4HaK2OPPdBTxfisoP2d0fuv3LODjz/8n3vpBpXcT9dK/Reyz1boybzRssyX0OtSeHPGdTm/gO/X1P8ie5ygnh/I/1FyeQTemvk48egm+j4bfp7xrXo78avnpVfmvq8yfOW+Kenh6Mu+8uwzzzn9jux728RLdpn58uwvfIm+n1T/KbkHT/2tPJd55cwzZ375WfHiePQ+k3tIyLEZf5nFPuaU7I+dgu+M354vGb/V0X//mnU4cpsD+7GXm8hhBvtrmP3B+B5TKOKqzH+i91h2WSfzvuxzbc6rsbP+uX8CfVvDF9B3kPpyr8VX9J/78HL+6AnxJuePsn8o+4Y+L9k/lHNnOQe5AuYej//tD8x9FP7fm3x3xffZ8nM+rRJ9H8j/8p5aXXvt8LG25PxmznPm/Gb2p2df+ih6y/70WuTdlTxXw1PJ4zJyvIGcK0mvRE8T/Ob85Sb/5xxmD/49NuMl7V4TP+ZP8eOt9UPx38/p9SDYhP12zf0knjsQTsv9b/j9FP+Zn2rFHjI/lfnpn9R/unSLnHdTX3fx7WfxY2H405/vB7vB2dp9XbmX8PeDdLecD1Rf7vdoJ537PdbjK+vpGT8Pxc+/2deDnj/W8wOzPk2PV+b9W/0DxcmpRSi7HGb+Z0bmG/jrTPH/S+lp4kviZ+LmWSXx8z79/UPi973SnUrG9w//w/huLr+P/76Cn2Oz/q++FTD9ZfrHLsa7N+Y+I3LM+/9J2W+n/insMeuXu5LTKnb5DZyYe1/Zffbn5nxx7uc6k7wG42Nn/L3Kfutk/pF8Kkvvmv17+L2T/j6B68m9R+a70LEdf+ygvi709i66DkNP7+wP4M8V+HdN6V34wc/qmYeu+bCl8iPVW0W/sS2sE/vL/Knn34W5X/wd7fw74/Lc95Tzquq/BX8j4Gz1P4zuT7NPTvu18PGI8luTw478JOe5lmS+SH7epz4VP3YXH+vl/dH/Ocf0Z+6TTfxW/2T5DcTzZfw+6zCvZP9eoYjX4j/vF0+x3/s8n/MTOU/RRfkpWa+Gd6KjsfK5//aXnL8tuf/2m+yfll96/+2r9J/9gFnHeSvzcOgalXO7MPfN3JT7aNIfw9w3s077R6h/gXq3a/L/8nUVHFbCZ+6jn18o4vKS++l35g/vs4+d6bkP+WW96xeYdbCsi3VjD9vz20f0x4vzvkiv+8Ff9CNf4Kej+JJ9aWdLZ39aXfys0d53ua+X/Evva8k9LjlfnffnHcg57895nz6QPf2Y/gtORd+h4mZzuCP5/KC9qvrvT6W7aLcB+u4Uf1bAu2Bn+sm5oJwT2o3/3pL5S/a8SdzdWfpdfBfQe4jnm7C33J/0sXJ/eL4S+a+Tv5N4UigU8WZ+1pd93CL/Cv9fmH2W5LyF9DPs4oacP0LPaPTETxeyv/jnZPLri54u5Jjzue/pByqy+6/Ey1o5n6DerB8/h9670T+E/ofCPdlnrbwfay/z+eXRk/e73O+Xe/0mxe/U/wv7z/mPVfqPnP/Ieetanh8qP+PL3J97es71Zb4451HY/+fk9VniR/aH4jfzd3/T073ZT6cf3FH50vsPc97qtpJzV7mfahN5L1PPZuUm5vwwexoHC+wh6xdz2PXu5F4fPo++7EvJfQXZ1/im+i9kVzkfWpE9r0DnOfT/eeahvX98lPvN8XUUv28NO+T8Af+pp55x0pn/X4+vNtpfl/il/WvRv5z+XmFX8f/S+8lyL1nuf8r9F/PRfUPuUYo/s8fcnzVP+dyfdRV/W6ncOfQ/IONH/E8m1wf1T7m/tnrOk+f9J+vEymdfSO6xL90fcrG4OFf8v4Z970a/eZ98Tb1538z75UT5mU8tvR/1RvUOhqX3I3XmX5k368RPf836kvhe4Gdrcp+Q/C3U+yu7nC59Xd4/0bM67xNZ18j6Efs8Jes3/KUrfr7zf+Z1Ms+T+Z3c7/0I/91ROvd778Sf8p2J3JM7MvopuR/32pyH5a9ZL8768cH42SbnZ9nHLtlvKv1m3lfQ3x6emfFM9veh7w9+sQG+j99j2NuEfAcEZh1+H/Y6DH0NpU9kHy2l35E/Mef86eNe/eWNcJzxbM6rXoSe88hnJbzY/+UyX2Oc3EC83QPmvrrr+NeL0vHH3F+1Zfbx4+9vcn9KO8Py3i79NPrWi485d7qP8rkP8eHIXfkx0r+T70H8txt5nRS7oZ/P+cej+KnGTzqg71rx8CH8HEquM5S/hr9dCw9mHw9mfyJ6H8g4Fj+5/yXffcl3YC7z3Hp0VkHfwfS2Czn2xc+L7Ll0XfxheLr/F2XdVfzOuYxK6M498Nuxx9wHf4f2JpLLXtKtyKH0Pp30V5FP1r2zDr6pUMSq4v1p+ForrmQ/SLms55BL7kkvvR99M3tJP/R9Sf+T7x3l3rzpMN8/GpR9W+qriv/cf19gTxXhSfBH/Of7IvmuyICsV5DHKvpskfMimfcin1NyXlf8zX2UuX+ydD9B6fm4RfS3Nt/vyH0vnr9GPFynndmFIu6Z+8nRX8j5HHJOP1Z630D2I2WeOO/nOY9fE99z0T8eXRNg3+yzkb89ed+T+R2Y+6PHidO57zznav/3fpN7NdjNseSR7x9kP2H2GY4t2W+Y9bJrw5f2s342lr4uz70hsL/6OxeKuBe7+jc5/1jiD/GP7BuMf2Te+wH5mQ8/X37u8b7Ic7kX+4bcn0NPmTfOPQ+536GTuPgGv3g93/mQn/2Y7eBw9vA8/ZzLHnNO8DH+lHOCz9FH5r8yH5b5r4vIa1t+0ZD+y+uvct9O7uH5oeQ+nj3gGPrfhhzORN+V6N41570zn4y/2HPmwWLvse/X6ftH9byW8wTsOfuXMo9XOn+3Ifc45t4B6cEZD/n/B/9v5o83yp9NH4/DZfkeHPn1Fpf7wL7stAt5XI7u2703VyLf/ck7/W764cPhQeQ3lb09iZ6cWx6c/T1Z78r31dBXsWT/e+5Jzz7483MeSv25d7h0nJ/735uKI7kHPna+JX28iZ8tpHfP+Mj4pKXxyfHs8wR4H7vN+GK2/zO+2I99rFJvE+nm2t8L//uFzqxzZx5FPI7/xp/jv2eVzGu8DU8hj3eUz77P7APN/s/cz5118D1zXp98n2VfD6f/jx2q70j8V893aPRftXKPHvllHF46/q4lnn1m3P0fuCt+832VfE8l56ZzP+0k9j4l87SeH5d9jujN+aIG+M/5olvZb96TS9+PdyafwZnHks49mtuwq9xTVHo/0Sb2+b/7NLX/dPon8rtNe9Wls5/waOVn5dwqzPcPZ5fct/oUvufkfgbx6hDt96Xni6Snsced8L9Q/1YZPQ/gY7x2b0LPEOVHGZfnOxy5xynf32jE3xrCDuRzKDr/SjyDPehrrDhwQPZvsaPH+OEQ6Q6FIg70fEfpXdD/Brt8Db6e+3XIb2DGVbA/fEL+UexhEL9aQz6r4Qns8sjcx0c+OT94NH/NubQR5Fg+8wf082jWlfjfl/FP8fQZdDwN981+Hny3J/f7+MHm7O/N/ZTazTx25q/vlZ/vgT3FPldkfqxk30f2gWT/x9X5vljei3NOI/dN88d8dyzfIUt7Nch1Kn77Z78h+3lBfR/kXi2Y76zmu3M3w1NzL6D6rpY+VVyZk3O+OV+W9Vr/9873QBJ/sy6F7v34f77PmvNnmYfrV/KelO8l5N6Q3COS8flN/HEYe3qefpvnfBF/eBv+yV7yfY3R+pX74Q7wlozrybOWdvcnz3rksxHdudfsskIRc7/ZPujbFzaBh+PnK/4yhn2shVWMlyuwj/KwOfk+o/2sj2a/evavZ3005xPznlD6fvBEEf73fdUr8v0O9f+Z/bDwr3zvKOeB8F8z57JK9NfHc1tkvoa/b8r+83+Yn2pH/teT9xB4HRxFv1XZ0+7k2E4ceEB9iedtcj+MeF839295/k728xz9/Krcbf8w75v5z/+KryO1N5Z8B6Hv78jf+Lc2ehuTb+7bn0R+rXIPds7HkPcSuCjf20VHvtv7I/rK8JH9l7eob7J2qidNvvdlfj/3ceX9WPu5Xyn3UhzMPrIfKvcTLINL4E+5Lwk9C8jpO/G4SvaJGJ/OyTxF5jXk310o4tP4znmBnBPYQv4T/u8kTtXDz3/Z10Ps7nF8Z/26FfvdQfzdEa5Vf4G87ia/lzIeyvo+fS7hd2fQ87Lct2N804fcxhnHLZe/q3hTGyKzbDM6a+W+A/T8pNx+6H8Ef7m3Ofc45/7mxfqHuuovwDpwb/aTe3pyL0++D7A9vtryr2rS6Qezn/vxrNei59nsP5UeL/90zz8j/8nYa+4HkB4v/yryvo38t5MeqZ7sHyynfM+SfYTrxbXsd+gIsz8z+1HyHcDsr8o9+dfm3CLsbLx9Bfpi97mX6k96jv2/ga6u/PPNnPdRvkrO1ap3G/bxcfpv8ss6RPbJ5P6xSfLzPaSXcm81/xmO/zL92EHssXrub0bfr9lfQx5r2FHp9xNybn4n7T9LnjP4UZXspyffjDsyDjkJv+Pp7w/6zP0HuQ8h93PMQVcL7R8Cs5/0ceWyv730e3UFcs1+9ux3v1P+XcZj9+h3n8v93+prlP0GhSLmPrIWmT9ily2yv0g670enl/hZ7l+Kf1XRbvZdjso9MezgLnZ3d74PKw7m+4H/B/023K94nHXdedSW0/4/8IeKSjmViKSeqJCQhJDhRIhMpRChIlFIKdJAOJUhpZRKRVHGFJIoYxkqQyoSmepIIokMR4bvWr/79T5ruX/rPP+8176va+/9mfe+9v7s/XxRv+T//a3Yt4BPNirgnQcUcOQuynAE/GKfAn6yRwF7w5rwwsYFPLF2AU+A4/Ys4MADC3jaTgX8bccCboWDPF9TtoAtyhWwvfIztQr46vYFPA82094t6G+rvzvrFrCV8l/oO75SAY+Db5HDZU0KeGvFAu7h9zsqFPB1z5ei475dCziAfC4hxzV1Cvg5/AKerv8Byk/DN/Yq4Av4fxy9n+1ewHJ+r6F+H3y9p974GgXcKfRWL2AFdN9HPmvJ56cGBbznoAL2pNft8NdJu9fTa639Cvjq/gWsWKaAO2r/um0LWKr+i+QyH74QOam/W/kC1oTn0UPXhgUcjL7v0TdSvXe134T9XkHeLdA3AH/ztdcXX/OUa6lful0B94J14Jfke5P3f8Dn2dUK+A47LKWXA/DVv2YBh6C3Fn00p8c6yjOjX+1+UIIf5b/webp6e7CzOvA48rlCvbmwDxys/aboWQJnqn81Of2B7hWw4h5/rz+2cgE3wYHkXJl8h/KP3vR+PvrL4H9nfvkJ/10Nd9f+Yeofyk5Hkn8v9WuXFnAlO5y6cwFv1X9ZcmqrveXsYTj9taSvqto/lZ0dg/8f2Fd7fDViJ+vVH8Jf9mMHDbQzXf0rvN8FPbfyuyrqv0l/29J7N/7azvvdting63AMXK79s8TNN+nlDOWd0fsxfg/V7xnk1pJ9N9NvM/bajfz3hC3oazM9nUOPw/w+Bd9T4e/k0Uv73xSg5HaIzJJD6eNH+jynSgF/Uh6I3uO0V5t9vSr+z8TfKPa6Gd4N91K/rg6P4Q/Pef45ObQn7x+99zPcg/y/ZPdfxQ/YWW3Pv0PPt3AjPBt/x5LvP/VzLPxF/6dp713vPcReVqi/K3lcjd/HE6/Z9TPkcyP5POL5Fs9fr1rA5eLvNPZdT//b4Hc3fnMde7yW/m6n5w70/r32jvB7TXZyBPtpjr/ufv+MPHr8A72wOn6WqdeuaBx/V9z8FV3tyOln5R3R14Vex+PnOXK42vNe5HNUkJ1W4H+L+P9l6OzADk/kX/eSV0fl05V31f7F4lNnuEH9Yfg7jHxvRl8z5U7q91W+H77PDk7TXzn2cBB7GOH35cqPoWcjfVQnvy5+b4a/R/W/Nzs4SP+D0Hs3O7tf+03IZwZ5Pg8fpf8T8deKnhrCN8Sfv/jfinoFvFC7VdTrgP4x6u1qflNW/evU/2C3Ar4PjygtYDf0/c6f/4B/wh/Yxb34nwC3Y3+TPT+c3E5nt6ew84UJVOrtxz4HsJPdyPlD8pwjPp6Kvxvx1wtfq9ltT+VrvNednoaiq6r+DsXf9uT3tXp7so+9+Hej0gI25B9b8DGV/Cpovxy9lVeeza6i92vYwWjl6P8Ldt1Pfw/xn5Xi3yjj0bOwK3xG/Qfxcyo530W+0/0+W7xqjP+DYC/ymc4eLhd/j6eXj9F/1Q4FrEsv/4CfoK8j3EofLfcu4DT+MFz9O+G3+p+K33La+5QcGuJ/R/ZzHL0fDo+A7cj/R3Lvgd/u8EH9z9TfYPKapfwa/yxHPvHjg8Wx+PMl9PYgXMUeY39r+NeJ+DmgtIDj9TeJfMezm8nKD6hfjb6+g2XY3wn0eQeMHxX7T/yk2H96+P0w85PEhcSJxIc/yLu6+NMfn43Jtzp6GvOPg+BD6i8kj8/I7Qjttya/DuLFYHwvNg9uQP4T2PM39HoR7Awf8/wc+Bocrp++2r02cQ3ORv/x9NpJezeq343dTsbPFDgEdtH+sb4nvyG/fyoPQX8d7y2l/y/Fk5We7668nhze0M4cz79G13fseBN8m/xeIted6Oc5+vpGfxdo/xTvX8FvxmT+xa/O004V8ami91rwh+PgVu/HnzsVoGQQnAF3Zd/nofc0djMp35H4rIruKvA+esn8tbJ4eAg/7EoeP+CvHjqba2+I/qar/xY7H4neJcp3438GfX/Nb/rzo395Plr5Kfil95ppfyT/2YSOK+m7l/42iJvX0m8/WN/712h3O7in9leqdxZ6b+ZH2/LjdfleKNE+fA6eyX6vwN+9cAW8kLw6o+N62MH31iHqD6eXO+Ek2CjzO/bQktznsaN7PG/Hn9vClvznDv3NEh9fgt1hI/qdyu7e0u6ByllPWMk+5vDjD5Qb0cNa9K6BG+C7+b4k5wPEhf3h+/Q3z7j0A730gc/7/WjzijO095P6p5Dfv9DTGt4Cj8Pf++SxSjsr4eP8oLN+dtf+5XAr+3ygACU+G0pMQ0pG4PNAfrdRv6vEh/eM303x30m7jZWvw/8B7G9w9KWdd/S/RPtvk/9i5Zf4fy/29nKRHWb96Cn+8zh63iO3nfR/IXo+Zz8NlZuQX+x/AYwfxP4v4G8XE9D5madqv7z27iL3l+Cvnu+Mny7sbpJyVfb3OzkPYxcX8uM3Mn6JVx/xj4nK13l+uP6uMm60Zf/Hov9xCh0It8dHBfKaYD51sfeb8t/n0J91lKXo/ZO8j6Kfnui5Bl5Avw3pZ7X+tsDy9LCb+vsbX+7yfTASDtDvzvrrj74D0d2Q/fQ377lH+1l/PpH9r9ffsVknVt5R+yuUe7CH18jpQu2fIm4cwj6znn2S9m+lz9vg7XAi+ZVh/1vF2476eVb7kz2P//zsvfhPL3G7JzycP0+jj1lZ/8HfOvy8Tl5N2NVP8LyMT9rvqP5o9jMGtvP8Fe+fzO6nZn1A/wfo70BYhz5n0v9X7Gkqer7F/wL2e3cBSs5Ax5Ha/0hc61TqBb9XhFu0PwFdU8xX36S/Y9B3L/8YDyfAeuTdVLw9BB4M1+P/bfZ3Nvrr6Le35wfz/8TBG+gv+vxV/euUW7Kb1do7Hb1nwFfxHXlNx98ccpumPJT9fGQ+XlN82RU+qp/M325S/0r+k/nbUHobS/5D8f8rPh/X3t3s7jnzqI89/8V48IZ52Tn8oxz/bpPvKfie8X6g5+fSx2zlDsorlKvgN37ZHcZfj9D/V+iarf3x5H0o+6vDHlb5/QPl9ez9Qf1+pXw5+bfC54/624c+30TfNewx+zTfi19dtf8m/bRF11rxcbX2DqefvemhAjq2Y1/D6XGQ/g6hv53p7zVyrWQceUP5evXG4f879GwLz+V/H+rvI3w+ww6O19+r7CHj5Nsw/lmZPC7Czyvk9mnWv9nDnvi/VHkl+n8Vt3rTc8+d/05nK3o9khx7iq/fkMOv+O7MTgewh4vIrwP6l9DrB/AT8tmPfAajdyb7uEf5Q3HzLnGwETzSe5XE76vh3Kyjep59s/L4WG4caex5xs8X8Hck/g7V/7/Nd/J9+bT28n3Zgd4qZT2OXp6gvzvRexhsmfmI97dotx65ldLPXfQ5kD420s/b5hcl7OcGfO1CX53Qt8zzUfTzLT4uhrfDNfS2H7quUt5W/4P1dyO8nb0cge932cG5/OjnyIF9vSMuL4UX8c+a5P8PWAa992hvpPJZ/KEdbJs4me+z0gJ+QO4b+HFv8u9LnufQeyVx9FbP/0MO+5LzOHpqAD9iV6uUr1PeDm5Db9/n+055L/ZxCjmtIs+q7H2HrF+htzb6ZylflfkNeU3x+2By3CPf7+TRBV6u3mHkN4s/DEPPLHQcov8P6f0MeDA+8328f2kBD4SNYRX9j2a/d8Eu5D1JPzPQ24D9PKF8uvab6+8R+rkOHXPQ+w36a2t/B+U9lPuIJ/uJE9co76DdhfQ7Gl4K2/CXlvyqK75as4PO6K/Jf66ix0W+Az7xvCP9XGz8ed742Cp5HvQyQftvar83/h7I/jRcj49v6HGAessyLsM+6OnJX7/N+nQJvulnT3Kdxj4fDKo/1LztCfZ1m/JCfpnv8ouMH/k+jz1f4fvlIPz+C90ns68LxYvp6JrJDq4nr8ynxrH/6UXzq6PFg3w37170/fw9edyH/mXGm8r4O5U9tIaDks+hnSv58Wj911BOPJ9Jnzeq9yx9f0V/0Vf0dyyM/t7D79Ha3Ql9l5HfU+yjiufTYTP0bSb3Yfxqi/JI/D3q9z3EtZ3Z63zx7QPtb0XPcvRvSPxgP7vDm/3egHzvU/8o8nsPTqGXbui5IvMLWBf935uf3Jf9evW+U27Pftrr93rvL8r+Gr1ULy1gbfaxFv+P4aclPXVih9nfa8reD4EV8TlU//caP+8Qd+7iR3X1P1+8aUYvA2HWb8ey75H6b8YeqrKD1vRdXtzZCO/X//n6OwXdxfOLx9hPN3o4sbSAW7I+YLzphP6xWWcn55Xaex++6v1Znu/Cn5MPUUO5Bf6rsPuz2ev56HkM/0vx95u4nnyX5Lfsgq43yf3o8In/duzlBO8Vz4+e1f5u5hc3RM/6v4H8v+f/Gz0/Df2Z/yWPqh/9dFM+l343wDboP4meF2379/plYeaPqZf3H1Hu7Pl1/OVaOE98HcIf12n/ae0eCoew76xPZV2qPbllfWoD/8n+1zhyyv7XP+k5+/nZ78/6/J7oSZ7HXkX5Hnuwhz1hLXi655XJvx88Tf/1sn/N3pbBJUXr+cmH2cwPkieTvJnk1STP5ij2mPyakQa8cXAE7MA+eokXV2bcVc7311byvcA4156dZ392NXsqpc/D8Jn1HeGqxLSuZDCsIi5/J36tpf8j1b+HfCaKXw/Cu7z/WMY75T1gTXgefS8nn7thHXK5n3ynaKcd+U8ml7fxX5ff/OD3I4vyK1bTzyT6OAcm/6Yaflbpvxespd1D8NUUTtZ+c/LLfHAmnFE0P1zIfj+kl8/Z13z970DwyVfLOs1X+H8+34XwLPa1xntNyGUD++tEb7frdyh7GgL/BY9C3yUFKHkF3gCXZJwTL7/C/zp4DP0ln22A8sn8+eb4Mzp/z/orfp/V/5Pav5lc39F/o8yL+Evyio6G97KLGZn/wcfhn+J0WeUB8C30NEx+oXid74jDs5+A3j7k2xHWgdm/qmn87QOTTzpb/Zv4ZVnvD1Yenu9D9vgKO/0V/pZ8I/aysbSA09jXrdq7X3vj4UD670YvR5N3Te+3Rtcl+h+W9QV8v6Kdj+nvLP66TL//4C+rPS9D34dr93p0n6/9i4ybF8BORfO0J42fi8Xjhex8iufJG0keSUv0vqP9S8kn+iyf73r+9RB9r/L8afJYjP4W+C7l97unfzgp3zPwH+g9K/ld/PFQ2Mr4sjD5O+LvIu/Xz/4C+lag51ryuy9693wlf/uI/JcVzX9H+T3jWCX8L9X/ewUouRJOgOW1k8B/pvczL/5aeYv3DkLfBuXZmV+Rx44w48/96H/T+LQ/vU3IvEr95PPdhI9bYPL75vgueApW5l+V0TfGutcEeHLWufST74um6KuNjvbZL9HeH/RdQxz9LPll5Hopuibj/2z170LXOnx+BZP3+6N6W+DV4tf12S9jV3d7XiPf09kfQ9dj+HscHkjPP+n//XzfwuR7zCkt4NewXvJH6Geacb0036+Z54kfH2t/FbyXfI/z/AT0tITDYVX0zyePLX4v4W836P9i86JLYFeYfZLO5JF97+yDZ/+7A3meC8fio5n6L/DrEeRYAS7OOr749ac40izjOvv73QSpL//dHs7w3jE5r0Ju1dHxBf77Gd+GiwPXKW8kv6y/nGx8ahXUzwf6b8ae5rDrS9GXfbl56DhYuV3yQdnB7nA2Pq9AX9YbW+g365FZf1xRgP/mRVwOe8Dm5qPf6P9zcnmNfteTxyb4lvd60s8m/X3v92eUJyR/SXzanrwOwUd/9FUWP05D/6mZ/5FX8quTV72GXJNf/SR5NSavudk/198q8jmNXQ7B77fqd/X8L/bUX3834X8iPpMv24X8k//zJH7Hqvc2e+ik/+xXddDP3srd9J+87+R7Pyne7eL5kfx1Ir00V/5S/xX50Y5wo/F5J8+/Id+F7Ptb5cNyHox9tqWPm8mhN/2V5V/JN19GD2uVHxf3Ls2+F2yhvS/Fs4rix0X4vUU/2U95mB4n5/sTn/cXoOQN2BveRh67+D4/Qr+HwQb0VoHcm5YWcLb6D8euPF9OPhvxsxB/d7P78+BEdnRq9l/QWQNf5yufTH9rE9/YzxR09E1+WM59ZL8D/a0872heeiscYPx7LHlXyuuMe1/CHcg3+aoHsKvksz6rv7m+J5K3+oV+8j1/DHvJ99T+4u/X2h/F79vhY3ryD7Rf1vhcBvZjD/9Ef/LW/kGPyVs7Dv/JW5vLfpK31iL2b772Jz6moH8x+x2ov13hCHKooH45dvBHaQE/Fhezj5l99JPwu1g8W6L9E9DzG/53JJ+p8CXt/8luPsTfv8inJ3pvweeMfO95Piv6RG8DdvSc/l9H90L4GtzLe98VoGQYZOYlrbLegJ+32WvWAcfpr7cKv2n3J/FzFvmUo9ftYX303qSd2clvSx4YeTXiFz1zDon/r1b/Enq9DX0N9Ze8u/vwX007ndjPy/znTM9/I/esc+/LXrO+vSL7OuY135HLNvi/n70sQv80+hqPnsxHroJ3Fc1PmvKrQ2FbcjlG/RPJc292d4LyR8lfFNe39/4P4szrGd/RXcfzHXNOR/la8n0ged3ob4rvW+h3F/h08gPUf4Q+Luev+/PDS/Wf+DaAns9O/gT5l2Hvmb/NN78bya864e8imHzF7K8czK7W6vdh+tkDnS/o90U4H+Z8X85T/Jm80NIC5nzFF+g6gFyPpu+Lc763ACWj4Ah4QtbJtHO390uMjx/T3yR2N4Y9fK1ciXzaZJ4HX6Cn2t6fRJ/Hw5y32EA/z6LjMvHnTvb9BX/uQh+ns6sG5HM4eseSy/ni1Fjy6qr/+urVg3dgs1viAv18Kn5VUK8L/lqpV9Hv+2a/Mv6bc6Ho2S/5Mvm+Vj/nqnLOKuerxojrA/hBX+3tjf+54scr2VeCNbX/Ob5/JM+B6DsVfWP184Dn95sPTVW/ifJc7eY74zH1p6J/Ij1NSv5y0X5U9qf+Mh/L/tSv+PkMf0PZ5yr++D5/eC75y3BbdC9JXjh8h311wM8aenwq83/lxslHL8rHKV6/vgG9c+PP5FDf8+78P3mgK0sLONl7/envB/xdrzyafP9dtD9SvL8xhF3kXMZCdN9Cfu/y73eybwaPQd+p/Crnj1qQb84fXYWenvBqmPyWk30PnESvJ8LkD2f8q548PPSXoCPjXCn9TC2K05d5P99H+V46Rv0Psr+WdQTlm/Sf9YeLzSu+0U/WI57FzyT6fZA/Z53nW3r7gJ88rLyVfOtpvxF8Gr1TyGcb40cJ3BYmn/Jk9JzBro6GZbSf78+/Sgs4Ofvg6M15kt+T94f/nC+5z35nHTgA9hefq7Gb9uatK/h/Lfb8J/v4A/6VPEt21j37h/TYG3/n6v+orNOR38vi7Xmel6WH1+k759U+138P8i7llx+Rz73JX/f7O+Txqvab8J+MuxmH+9HP59pt/T++u/eiv+fwMwF9E/V7bfa3is5D5nzkJ/Q3mFxugkPg0/Sfc4snJJ+n6PziMPHs7eSLKOc8UvJSlhflpfQRH9rwu37k+R/6eCvxn3x2w2clfGbdZbl5QRn8Xa68M/mcz37eIb/zlJ8hx33oq3nyP7Ifh87d6btW8njhZfrbhL4H2d1m5UHo247fr/f7z94bl/Ob7LoTfd+Bvrr4z7mVh7LOzb/Wqb9t1ofpqYFy8pf2MY/cF/ZA/5bke5cWcI327xevk6dTwh+3gWthR/RemfOkMOctt+L/knzHJh9X/7clf4JenvX8Yu/f7vn19HmkuNE295KQzyvi4cvwZO2ckO9P+t0Btsq9FJ6vZQfZD+lrvPxAuTc5ZL/pec+zfjaIPyxBV/az31J+Sfs1sq8ae8/4JO43pa8G/Ofy7GeKB8eyn1nwrawDsddSdtJVebz6yTs5EH4Bq6r/CL+sUFrAn+l1NHo+Iv/T2FVrWIZcriaP5HP3UK8f+d2qvWGwkf6Xk8dBxvNn9HOocmft7E5+C7yffejsPz/Gvw6Dh8DF+t+Gf7USX0+B1fKdnvUWWF18Sfy8UXsH0ktX/JfF/xp+9yn8HHbXfyv6fgb/D+b73PPkteT8bVv9JL8l5+3rwpr09Tq5JC/ugZyfUD6L/vv6/T1+PS77Wdqfzq8mssOHlbPffLq4sYx8zlS+EP+/scdfYQf030O+t5vftyPPY+ETsLL3amUfkRye5G9djJcd4XPixS7Zf2F/1bz/M7lUwN9JGT/F9xOyDqR+8o+2w99B9Jv8oy3soS5cwD6r5XtJuw3hPrA/vhaId6/AuerlfpURyTsm9y25BwIf/dlPj+Q1Zl8Kv2d570HlTuQ9m3yTv3g3uxggniSfMfcd5f6j3cWv3H/0Bn7W57uOHhaiP+P1Xsk/Z28Zz1v4fdfcW+b9mdpvp53cK1V831Qb+p2jvVNzzibzH/LZSTs5dzWF/pbgdxDMeaCL8x0pbj5HHvNgY/bT3ns3iCMjch8Qeb9Pr5kfZb7ULecn9Zu80YFF8s+6241F6245X9ah6HxeK/Ez5/MW5ty/drK+OZxd/MBuc368Hfnl/PjN7O8W2CLnqz0fxS7PhlMzfut/duTHLpOHl/y7dlnP0N7+7GEr+eX8eb4Liu+TyH0PN7H/M8TjfyY/PPebaPcB+mr8P87Ph+/cr1cbfTvzg3K+72olPybrGnAKrJr8h9xnkTxR5dwDtc58aRg8Mut/5HcH+35L+VRyfBl/f7L7meh9kn/clv2vtO+9q5SfT36AePY6vJ38viSH38xfPoJb4dHoWU3fk9H9ifJ+yS8g16zfNFU/6ze/Z9/fe9mPOT/yx3/nxFvrNd2Sn8meLvP+HuhulvMJ9JX7MXJfRs7/5LxP7sPIfRk5/3NL7is54O+/z2jy93Yeynlv7z/ueQ32tkBcWcIOZ6iXfdm9xb/j+G/2Z29Db324FD+Jv7n/aQeYvKzkF68iv8T7jAehf3d0DdXvPrmvzfN8d+R7ow3++iuvJr+Mc8crZ5zL+b7X0deRff2kn2XKr6L7M/OMO9nL0ehrDo+CFdjzZwUomQJ7wRXiTn38H6e9N/C/Af3HiSsXimtrtbsl+Rns+Rf+UR+98adrxYFF4sybmYckf0D9+MmeOS9FvuOMm5/C3NeZ+zmTX5688onKd7KPgaUF3JzxInli7HGJ3//NDovPR9fI/Ag/HyYvA33rcz4+9yIk3zD2YVw4KvdwKWd99S3y+oWcJ+PjRc9zn0Tul9ji/QkZD9A7Bn6G39ae30Kum8TxpXBg1s/w/4v6bcWLrG/k3P5f/+P8fvJnWxfl0SZ/dg19DMN/7iOt6/nZ9P09vjbBJuxjx9w7ys++gsnPHEUfq4vyUZKHssTzadmv8DznS1qQe9aX/7vejL6O5i3nwubo2d/zT5W3J5+TyOczv09UPgDO9N6I+Kfx8DN8fZr1MM+vI4/s3+yb+UPyw/zeVFy4TzzJeLKUPa0k99y3k/t1TsdvzhvlPF32Y2/KvWfsPOts2d/KfL8xzDmEzP8P1n/OSTZRzjnJsuxtNP+7N/NOeI/4v760gF/Bqz0/wHg5CN9T9FMH/V3ptyY5lsVvU/VLxadO9LMN3J58DlWvHL+Zwm5aqn88v1khbs7Vb+4nXJX1dvgpfJweBhsHboI3w1r0kO/73Ks1G38v6GeQ/texm4r0+J7nrc0XTsn9b3ACPqryh3H8ZwM+HmU/bdEzTdx9CE7K+S3ynQ+fgEOy/kPPL8FpcAP+ttLvSLgS/RvVz3mRuvhrj9/sj+RerM1+fyD3WOHnSv6yiDy2I7+sn7Uz33jT81n4y/pZi9yPmXPj8N/aT/5w9qWzT5384V/R8x/4oPrr9ded/V4Oe8Dco1EGn+XR81rR/cSrC1DSBQ6H9ZOfwy/mZf6u/AL5fyI+n0ZOV+i/b/JH0fsWfkcpJ3/sVu3dBu+AD+X+Jv5d3vsX5d4G9CffoU2+K9jjWP6V/ISryfUn7Sc/4Yncl+278V5x6Lac/0veVPJNlJfr/zL+sJqfd1ceww8StxPH/10Uv3PeckAB/nsOM+cyV/veyDpc1t8u1P/B7HaB8eVV2JH+vmc3Y/jB89mvIp9PvL8aHileH0w+tfjjMHF3eO4rII/cy5x1/OLzf2ehP+fTkpeR82kVi/bfivOBN2vnNfazi/aq4T/rXtXJvxrM+tfanNtmJ7XZX8aJzKfO1v8NRfOrFtm3gsfDseiqkvuT8fem35Mf3gYfp/CffjlHQb4/5vyX+tF39Jy85MrknvzkEervqXwDuo7Ed75fP8H3Or8P1f4V7KMHu5zHLucrv4+eKd6fz17r5DsRZv8t56Zqi/fZf8u9v8vgUnh+8mXwPxs9FXz/9EH/IwUoORcOgcl/flq/nbVbvL7bu7SAOSfRPnlE2s/9Xq/BfvBD7Wf9Puv2TxWt38+hl8StJ/jJIny9wD6r+G57mz4/1P+Z5g9tYNvcN5I8s+iDfnLvQfZ/c5/3TuyqdeZxnu+qfBW8EnZKfgW6F8F67P9fyV9Ad+7vyf1Lub+nCXluyfdLaQEH5nuTPjuz16fZ0T7aP0K7043fRyqXL9ofyL7AhKL9gZzLvjn5Zeh7nvwPYw+jxbdRcELyZ9jNKv3ui46l6Mz+f/b95yln/39X/NeAn2fdW/uX8fsfjS9Xw+Hk8XjWh9hbGfrP+ctZnv/Cv3OeaH7iL3usr/96xqdN9Pshe1sJL8z9yJ4X3xece4RP8PzKrEOHX/qcl/FDf6uT1110z8VM/C+mn+L7IefSRyNxeh07qsE+2mpns3lA7p3O+PtuAUrGQOIpuUP7z+HvIHw/r3yS+u3Rk/NfF7Cf8n7vy98G5V547ezj97H0NQb+Uzstya0G/urSU/4/Qin5zcPPr7mfgd2+yz6Go6MqfB9/j3ie+1VzLj334OR8eu5Xy3zwCfzlfrX98n9MyGUvei7x/NnsH/n9nfhz1ncIvEXyluG0rOPld/yNFi+XoO887b9MHvfpZ5D28z39Hr9vqH5HdM8qOp+a86rJN+zje6E2PIx/f6l8p/azD1S8/zMC/fvzn1zgkfuPRrLX3MtVfF/XwpxrR/eVOU9OT33pozc9lbKPF/jDftk3EH/e1U7OB+e84aaMR+JE7oeoK96s11+p8k7oP1PcOIb/XpN9SfXH4XsMHA8fwV9F9pD94a+Usz/8In56+i56SXkQeo8tWnfM/Po38Wgz+ewKF9BTW/xk34y6/r/9s6XsqwN6B+TenuQhiCvTSgvYXf9Zj30YvzXI+VHlrupPzX4fe8v9SLtE/vSR+7/q0Wfu/8r4NQ5mPyn51z+xpy3waXh88ijVi19vq7wtPf5GTj/DX+Bw9Zuhvxz6fsp8jP5yvix53P2L8reH5//HsKs9q/yd/9yfWZ+8cn/mNcpZ3+wCG4pjySed6/d5OachDixF3x/42Qozj7lE/S38NefUX/B7zqeXeH8xXC8uXAOXea0HHA9v4/fJ68z8P98Dye+sYP6f//OxnfLO6p2Z+er/uJ/3QPJYwm4yjh1Mv2d7f5zxpfh+oOfJpQr7XQxP034n9t+RPVTO/yUgnxn89Xh07sL+Hsl9Zvp9V1x9LeNdzkuLY7m/OfeX5/7mJuhpB89KGf05r5vzuyvZU87v/qTfBeJs94zLvgvy/yvyfytWs9eT1D9Rf7eZZz7MDpLPMB69X5rXFN9/lPy57MNvLcqfO1P/teivFG6r/RL2fA8cB3MP6LH0sUPOHeivivYTzxLf+pBP4tsv7DH7TseT6/Y5H8k+voW5B76s573R3wfmPurcZ1+ZPZ9KbpWUV2X+zF4bkG/OwXxE/53Zaxd4MXxN/Ub8JveYV4O5x7yu7806MN+fL+ZeSv7/EyyOB6+wk6HGnyezToi+3Lc9h16Sp9RE+8nffTP3rpBz8ncTPxM378m9KOi/L/eN8OMpsVvtV2ef19LbTsqjxZfi8yk7F51TuVk7ORd1OfvJ+aj7yeEu9B7u/Rfxn++V3Ct5VdH3S3n+97U40AV2JYcXClDSHyaONsf/lewpeeQXsZfa6E0+Ufwx94Imvyj/3+3i+A/7fS3nx8ijF/xO3D5f+zmfnnWxnFPP+tiNuX8s96ZkHFR/if5yb0nuMTnM84fFw7K5l0m5oueT6KMqfib7/Vv+Pcx6Zs6/Js8j+R0jyW0R+xul/H7OBxjH8n8Xir8PMq5nXyZ5zxnfH/b7XjlXnfOe6Ck1Li8n/zb0d77nyUdJnsqyWn/nY7Lx5I7cQ+f37B/fpd1W/GwkumOv+b9r+T9sQ5Ifqf6coviTeDSWnJM3mXzO5FMmj3J8/m8Wuh9G7+2eJ29te9hZvGiQ8w0F+O+9FDlnm3O3Wb/brF7W8bJ+N0I8/Q95tlIu5/lN9Hdm9t/Zae4XWqv9/f1+rfKl+Z7kF0ONm6dmH9J4tyDrj/pdqLx/8r2UPybX1bAf/9lNuwPhBcbHJ5K/hp6ca84555xvzvn7apl3kFvO4dfXXtY96vGzCjn/jM85cAw57Cf+dGWXOb96qfIo8v1ce5vy3cJOH0L/gd6/nbxmkGfV7C/kHkx6/ZWen6KfdcnLgy30dyv7rWb8vpv+F8TuyXe08TD7Yf8Rn3vk/Lz+BsEv+Gtz7fVL/mvmR56v9/zlAvz3HqX8H5Lcn785++/wKvwOIt/ziu7v2xe9z6Iv9z58CPsmr9Tzcd7P/2Gsjo/BuSfBfKK93+fz/1ae5zx6Z+PSRXDP3N/Fv3ct+v+tTYry0YfQd/F+2sH668j/L4Bn0V/2NbLPcSe8g3ymw/w/xHXKt6hffC9E99Dj+Sn5f1ns/0flNdrL/T3jsm6Zc97a+1B7X+DvOnb1NhxIL5+Rx3/YWd+cX2IvbfA5Pvki6M7/U8r/f8z/W8r/V7qKPHOedpz56176n8hff4QHkV/+H0iN3GufvBnj1VztvcRuJrO/c8Snhrm/JPuq5NGafWzOfq/xLvOczG/WJb9bXDiI316r/Bn6NrLP5P0syHc++eX/q+X/WeX/q+W8woPo6wOzX90Lf91KCzgF3g9f0k7WNZf/j/XNW7O/B7POmfXNM7V3BqwhTvXR/kby/wZ+p5+byedR5Udg7sPI/Rc12E3Ove2i3Ibd7avfb8m/ofJp+M+58JwHv518cr74r+TVe/+97JfkfGPukyL/ITkPm/PZ/Gpb+Bg6ch9A/i9ivjM7waxT70POG8SndeSac3KnZP0FHVkXG6r//P/W7PNUUh6Z/CL2+DX735TvcfaTe+Vzz/xH7DH3y+c+t9zzlnM2+f/A+b9e+X9e+X9fP6Z94+HZ+k2cTHzM/2ks/v+NiYMvZh0FZr1gFPlm/Hw567nG0YyfTyWvBT6d8yze/17c2QQr0mPuR1tkXrEY5v7nj8kh/w8p/ycp/xepJ/5/wf92+M99GWegr5L2ci51B3gAeY6HL3u/OUw+yTjPj/L7SzD5KDmXlvu22uT/nODv41LtiEvzYX/6yX0nuTfhXuX8/76+5l+j+Fkf5e08fyP3TYobL+eeb/5XkT5GK59sfMh9iYvNH7dh/4uUJ6Pv8gKUjIXzYM5zJi91RtH/uUp+aviqxM6/L7ofYplyzi0Wn2dcwB7rae9O8j4n/k3e+T9V6zMOeP4Mvhrjfxh/Pyr6y31w4mel5KvSe212l3N8xef3hqMr5/iKz++dg+/s+/5Gv9n/zffXSHxUzz396Juec/Xizhr+9yz6ns59QOLio6UFnKh+S/zWyP6hevn/AP8r7/rqnL/IfRPiU/5v+0r0/6jfS7ST7/e9yf90/Od+oNwXdCy9/B/mS7iqeJx13Xf4ztX/B/APijSkREL5lKJEQyUlQkilIZFIqSilPZTQQijaVlrKKJKkQkpRUhFNtIi0tEt7+F3X7348u67u6/re/zyvc5/3Oee1z3mf9V5VteT/f0/tWMARsPV+BVxZuYDfbVfADtsX8IX9C3hVtQJesXMBD9lNPQ0KuNsuBdy+dgHPhlc0LOBPyv8IT1P+JO0/sUUBZ8K79i7gokYF3HXLAr6/dQEnovfS+gXcgJ/+8D64tfJDKhTwQfU/AE/Szs3qX1S+gK9rp+c+BeyN7/v3LeA50i+gvwu5XUpuvSsWcDz59Vff2h0K2LlKAa9XfrL8KXkOPf3I7+U6BaxHrmtLC7gM/UPRMxy2rlXA9+RfumsBj2cHV+9UwJnyz9+mgBfAPvAp9C/fvYB/kvf5yv1MPqfi/yl8z4LHsI/t9ijgVPLbsGcBN1P/FjUKWMbzm0uvkt+2UgFHwhvhPuQzZ/MCrpNuTn5H0v/e5Qp4KKziuV/Vv5R8NsDX4T30s4q9HQxPgE3Uvyd+t0fXdvBa5VuzqzbwCNgOvyeT653SY+oW8BHlz6CvHvCN6gWsQQ//qO93evsVVpF/EPlU2ayA78Jz2eHt7O4OuBn6h2h/Bn2toe9T0HeY/K3Y5ZZwKDt7bK8Cdme/c8j7S/8vl56Nr6fg3eTwufamofNwdE3fyvPk9hJ7byq+HAqn0fPn0nvyjxLx5zz1n1mmgPNh7La3/LJlC3hHaQFPx99V7Gkf9vAZ+S0XXx5nH32U219c+gUOl38dfc3E5yXqqcZfDtZeJ37RhpxH4H8Evq5F90jpU/D/Iv2/BBclrf3G4uPd/KadOHWr8hXQP69eAc+ntwOUP5fcFsIx8E30DCKnHuS4XPu7+n8AeZVHx37iyUj22xf/l+D/cunn1H+x+NKDvL5kr/XQdx9/uRc+AH8hv0rSleH17HV7+b3Yz6fa/cZzY7U3E9330mN/6Qbav1x8eIHdviK9kh/8xh/bksu92huEv+sLUNITToR/0MPkxAd2NUn6gcQT7T3Nf+5jZ7O0v178qMPutmEHD6T/It/4f+JB/L81vfQRN8+HO9Hf7uzpee29v20BH1R+MDtowz7qK9+InDug6wR4Ipyg/j3I7wN28yl76kme20o/h69K0kez7/fIqxy5b2M88xt+v2UHN5JnX/JYQf/LpXek7z38P0z6ZHLvDDvB29S/F/ncyW76S99G/n/5/x16/FO6l/LL/T+FfbWCn2b8hp9lcCg7eQlfvdn1MPwPhZ8o35B8DsPXftJL8HeJ9NPi6kXSM5Q/SXz8An4Oy5B/+tVD0q/Czen3Lva6BL93SjfX/kLx8Cy4ADbW/mH0fQgsR/7l8PNEAUpGspd3pQ+h74r+v4Wd9Zd+LeMn9lpbP3RKzQLG/isaP20Je8kfIn8wvqqg5zr96zT+sSu7XmZ8uYR8npdfXrtDSwvYhx4+Jt/l+oMJ/n9Duif9z1duKrnV8twt5Hsafe7PH4/gpzvx27358zJ2NwCd4/DzFLkPpLfH8TNX/c+w9wHyP5U+kFw+8P9H+J6k/qbo3xb9u6C7qvRx5PMKff0ozr0qfbZ41Bx/N7GXw6UnS/9N78PQ87j0QbEvzzeDTWHeD4ahqybcU/8ylP576y/nwithK/LpRR7L8X8yPo4l31Hiz9/s9RS4g/I76bfLSW+r3dukx9LfIeodJ327+gfT3xPizo7k3yTj+9ICVoLnsu8u5LtC3H2DPa6UXqn91drtj79j5bfQ/g76l6qwGqxHH9+T63fwJ3i3+v/QX13J//rR2xvyvxbv6iv3Cj/4lZx2oK/eMPGtC/qair+HwauNAzqyz1fJ7RX4Goz8e3q+LH+6kn9tq777xe0H4ATYnDy/Li3gOvQNIfej8Tm4ACWz4Vkw/VQj8Waj+uaiO+PP4fQyS797k/Q98l9lf621ey+9vIC/MfR1jPQ46f7SZejnN/WcjO6q8quTzxp20pR9fIfey9H/WvRMb8+r5wzx8Wr6/Vv6L/Y7zPNX4Kc3O+kr/TJ97EY/S2AF+buTR/RfQXz7UPtbqe8CeltIT2PJaz7/vgw253/j5B8LjxJP2km3yfhMfz6b3ornP/qWoF/+/dI10X9k7EX97aXbqn8sf78aPoW+Tp7fjD7zHl/8/v4Tvb7CLu6KX0iv528n0Edr8nql6P0z483Oyr0l/bl4vpZ91vb/RngA/z6d33aHI+U/Jj3Pc++wq+7y3xfv99HORvpfhr8O+r0T4KH8+wZ2tVz/1Ql9R8HX6aei9psYR1TIeF75WeT9JCyW/57o+hxdG7S3Gb/5mb1NV+/hiW/0sEL5C/U7tfI+I709u9zbuKkvPjsW6bdz0ftBNfRNYA/DtT8MNsJ/A/SlX2xY1D9WJpcjjFtOpp9m6l/Hr5rpd+bTY5mMP/L+otxS9G2N/qfEg5PpeR3saLzzHjmOIIex5FNLfZeRZ+dSfCrXRzvXqv8TfF0nvYq87hY/puDnbfXPIJ8V5LeXeqeLYxvI527j9/vhcPQ8LD/vx3nfuRdd32vvUc8fCp8g71Hyi+cL+0ufLH8I+o73fzd4FPnPEU9W4rczOvbA3/fk8aRybehzvvqPKi3gYPS1k35EvQdmvE+++0lP0f508fBRWBF/h9D/WvL/nj+cp1wf9LUVl35A92j9zeme6ybu92Un3aVXob+s/8fwz0f1J7XyPov/Eezuyvgje56k3/sQnZMzXsr8NHuogs5R+Jyg/Sbk2pF8ToR3kt8Mcf0BdjcBfqn+0eLJGLgMjpc/qLSAtxWgZDV+Bvv/ZXJdCqfqv28jvyuV66C+R6Rfkn8bue+OnzvY73L6WSMuJS6mn9rIXstKP85/G+FvnXqG66/biGvbeb6x9tJvp79Of/4y+0n/nf46/ffivD+zh1fZwb7SB2T8Tp7HsofIux557YTOpp7/gT8/IH0De/hTuS3hX+S5QL0vwFXy09/vzh62pLetYMYbi4vWH7IeUSb+zO7uRU8D9H6h/B/suiq9d2ffg5WbzZ9mKf8XfZ9Jfi3Jc1t8tpDex/M9pGvCSnCQ/Ero+Srj3czfoO9b/vIVf6sifQ762vOf29lTDfbQHX3NyesE+JB6yql/BXsaSO9zyP8L9tJOv3YPP/6IfHvKnyVeLVNvqX5gofxp+rvd0L0rXIjfifrxIbArrK58PfZ8CDoaw2vQ37vovfRl+DZ5NCXvlfyor/ynlL8VX2eie5N0xvl1+W892AG+yP7Lqr+d99B/5H+O/tO0Nwg+Cd/X/mfs9kr2ekT6K+1vq9/cjJy3Jv+/En/IvR65DqT/zuirzH7PKOrv0r919P59mvZ/JLdt0TdVe6tL8Ymemeo/W7waBKvBH/nJ++jpg8/z4Bj0lJDbPuLbTXAGOnamt5rwPfUvQF8f9VeF52e9N/Nv+qXB7Hqk8mP5T1nPr8LfIvqfqf6a7GJo1onQvyf+LhIv+osjF0pf6fn7tTdCfH0VHx81/G97aX92jf+2/5n8T+Fj4sWb7OMm8rsZDocn0ucnnn9We+PEl2cTr/nTmRlfkceB6p9KfieKj3vgp5v6V/t/EL19KL298nXI7yL17y79QuYv2O3+8r9jVxkfPWU80sL4ZAX8ih3/yS9W4u8O9A+g//b4T3/7Bcz7SU9xcYg4eo70zerbD19f4LcC/hLfl4ifJ9FrF/n386sD+V/W6+/2/+Xan6P8APG3Bcz8z1PiSQv941v6md8yXhZf/+GXu9Nn1mfiR9drf2/0XK7+g0sL2Bg+qp4enq+m/lmZv/N/HfS/xi4z7n4k7yvy96ev6fAt8W8v9jGI3G6A18Md5H/GHgaiewm+B2b+gn0+TE89tXs2vLNofr4lPjI/P5M93oW+fuhvqf7f2NdI+YvZ6Th0NeBvjeB4WF39TcXns9Vb3P+VyC8Dy8L9wqd4MFX6GunH8HNAxu/6oYOkS9C/v/oawCuVX8MubmJf08ivn/IbyG87/nNB1sPZ7+is/4gnTbJ/Al1zpGeXFjDv3x3ZSeZHptHfdPgef9hET5Pobyfl9+Ef7ci3N30chb9j4AvoHqre8pn/gpehfwF9lWQdVLoW+mqpfwa8h/xuln+R8ck30sfnfQJ923u+Njvbix4Xer42uz4o69ni2o3o24deMy97jDiQefI+yH8D/gg7KN+LP9djfz34c2f58/RX39L/ang/+U/l35+z2x9LC7gVPi/H30Zx5+7sk0BfK/q7mHyPxU9l5Zfzq5fE+Qrkthh+gL5z4fvwEfbQJPEOPzXp/YxG/+W7prhTA34OX/V8q4yn2fMTmf8ljxJYFlbFXznyffl/vD/eqj/60XhgnXjyNHqf9n838l1FnsvZQw/pjE8zXt2XnXxK3qv8/4n06Xk/kT5BPS2kz2N/x5UW8AZ+c7H0luT7Er0thPP4U3v1/+757J8Zlnlu8sv8WiX0DWd/mV+7lP8MIb8j1fOO/Gfxva96npM+gL560v9FGcfAReRzN7r3YWfnsLOXpa83bjuBXT1JnyXSF3uuFE5Qvpd++DP+24s9nENuQ/Exh73Mhc/BZfR7C/s4MuPtrAdIP1RawBrkN4X+JpBXe/JoSX+t4HfkU8P7/7v8cHPt38o+l2lvOXwdXqz8Fuwy+6KK90vdxh5uhWeSTw3yaqLcg+i9ir7fwN/H+LqVvMvhJ+vaG8S9r+Ae4vN5/HcteayBH8P1Wf8pQMmpcBQ8B12HsMdeyl0jzg+nn2vRMxvf77GPk8lnD/LZC197S79HPq3Fk4GeXwyfZt/T8z4nLrTW7jfob8We31CuG/3+rv7n9ddd2PkpcHXmj9GzQD3F+2vL4fv1vA8lrf3Mt6+hj9XZB0T+Jer9g91sghfio1Ld/9aXdsai7zH0z4XT4SXks6G0gPPIp3PGa+rfxnjkrswHij+vaO+b7I/J+MHz89R/EX+oZBx0ifTmymXcl3HgbdIZ/yW+jIc38bPF7GtP7f2C3m74L5P1LPrvJw70hxM9P994aK7n71LvRvLLfGST8Ck9V/4d4tTJxtVN9E8NyGcx+nYgn/3Q93Xeb+g7/dnl5HuX+n8u9Rw/bs6fnpA/g7+0Fb8PYX+L8fOL+rbX/tP8ZXrW48hzOrqLx/PfsK855FWXHOZmHj/r3spNFA+7kmNTces5+n8WNlb/g+zhe3Y5Hr6c/a/GM0+Tc+b56uK/MX96O+/V2a+k/rr8uSs7eBXOzz5gdL5FLx3xe2XWl8h1bcaZ2vmBXOM/8ZsV4lv8Z39yeTL7quGZ2psvnbhSkv2NypegZ4L2OmRcjP8RHpsHu8Nl6q8qXhyE7hXqyf7mjezhAvL6Sn5v9d/IP/rRU2Xj42PkX554jv9Xtfem+g7Wbl/0xO6+Y+/r9DfL2MlofrQLO/ua3q8gp6+kK5NPP/3CXeqfRp/H5/1bfM1+1ux3fQn/WTeaIs4+S/6Zv/6V3rvi85SsM8m/x/8T8D1F+RHys+6S9ZZPss6X9w/2mn11v2sv++vOp5/u5HZT3tuUf7u0gKPQcT0+upLfK/SyvbiwHaxmPPWb/A/oo3j+N/ul6/l/ied2Q19rcaM/vz6Yve/puff530p4gfreQf/B+D4EHgATX7YSP8d5/ix8pf+apb4Dso+D/A+Wn/FPP+PQjIMy/hnKrqay8wX4mJP99ehZpn8aT5+T6PMA/J/GbnuR20nora/8UPrbSL/fk89XRevea0oLeGf2Z/L/rH9lPSzrXy35w+FZH4H/ZH6TvtfDT+EVeZ/W3lP4yz64C9U/jF3dmP39sJf8vfTXj8Nb4X7kQ+wlH5E3+Hf/SRNyP4DdTNX+c1kfEI/Oyjog+8/8wo5Z92ZfVaX7qf9oemmmncMzvlXPnfRzIzt5LXaeeS5yKUNun+FrsPan8M+P8n4rf6D2d80+DPEz++HW02/296xWfrL6rlH+W/Jen3NU2WeR99vMx8KsB9RF/zs5r6O+fvypMf3dg//xcCI8N+trsW94PDkeg/6ryTP7+C/X/2f9Z2dx8XjyfaS0gEcovxt5z838nfTh8ocWrT9ln2T2R2b9olH2maMj6xfH5b2YHm+Gd5BLHf6+hJ6Wwvr0McXzp/Lbh6X/VH4z9GwO18Hr8Zn377x376Bc3r+/1x/9pl9tQ85t2ful9F+d/V2Ors7KN2QXx2Udtkh/i4wrxuBzkX52quezfy775bJ/7s7s71auGbkOFV/Wpz/yfxXyvpY+XlF+M+mF2d+Onux7/gk912QcmfNv9H8x+g5MvEVf4nsXes+6fzlxJOsRJeJRd/3cyeLsFsp/qt3Psk7m/1Mz/6n+d9T/JHlchP5K9LszfZ0hDjVJHCWvC+BF8CH1L2BPictTSguY+Y7v8J1xX8aBGf9lX3H2p1aD2Z96JHkeis/sV83+1OyP+gL927GLa5Vfpb0P816dc5DZPyyeZN0i6xhZv+jLPnNeNOdHa6jnQPI6Ft/tYdZLs651AbwQ3pr9zfRzpvi6lJ5qkl8D7ws/ZD+d5zPevzLjNXgOekbn/U17eU9tUvR+Opv9zoVPw4bKn8Af26v3Cun62Y+t/rHkv458ZsufwZ7Pwcdg9d/k+UY5T4OvrcSv6pkHZ28L4Ivw/sQv5crBZ9hbQ/lT2Ptd/PgOOI9+DtJ+Ff8/yM/ny2/u/1PxcRX9LM/+C3LZmfxrwcPlP0mvQ9nxPOm90DcBvQ+T9wfsMe+/nfl1JzgN/2fzn4X87if9z2J4qvyV4kZ5et8t+7P1s58Z4AziV2Wl55DbhNIC9obd+Gdf9d+S80/ZV63+ttK/a+eLrJdJ12Qf2Q/2FOwJJ5LLAP3pWvZwnXR98vqOvFvz0w3So9j3XexpK/XeKX2+8tVz7opedpR+n/4/U+86uBYOx8/96j2I/W0jfRn+zhMfzyHXYw0g12RfEXu6gByHkt8muJoeHqKfrONn/f4C+h2U9y/+tzTjc/Fxged7kOPqrA8q/1GpNDwj54PQl3WxjGMnZv2fPM9DV4ecx878Zvordlo8P9yOvI+ErdTzhvwTpcugo4N0+pUR5NaevFpKt9Pe+eTdgLw/4d+7+v8J+Cb/rOG5Tp57Qv+d94oZ5Jb3i/v4/z3wXvgj+R/GXpvBXeXvKn6fxW4OQvcT8B/2WwG/FeEW8Dj1n4vObcSn9zN/j859xbel8veXvkD72R8+mhzGS2d/+LXsd2rW/UsLOCn+yL4yfviWXjJ+WMx+v2I/C9jHI+ifZNz4ofKveD77jxbrv7Nuv4f2Nqh/OvqOJd9j+EEd5W8kr2a5TyHzdNIn5byx+kayz3nSL+Y8OfuoQL5voXcfz1fJ/l/pt/G3ltw3oKMBOWT9dS16tqGP7NeeSX9b0sut9DJAegQ55zzTTrA6bKG+59nXp/y5vva3yfxYzlXC0fzmN/ZXB1/r0HO0/BtyvoE+sp9rkHY6yh9vfNkRvcPQ9XbGp+T/lrg1SDzKfRXZF5DzE8X7A0ax/9HwDP3OH9rJ/GDb7BfKuTX8b1RuObn/JD0evd/pT4/Ed1t4t/xH1NcC/0ew18hjBHuo5f3rcH70pXJ/iVtXobun9ProSby4np3/QV6X0M9o/dEv5DbRcwvkF68XXC39F/474vu4nF+DWY+on/EKHAnfzfqf8d9G+uuaeX562z3rg+TYTf632d8t3j0AZ+E/49PLxIdKOccjfo1EX/F56pxTuQ9/B/K/g+BA/tA355By/0Lee+CZ6p/JfrfxfM5lrMj6mfoyX5j5w+cTv/Czg/yu7ONw+fPxXQ3O8Xzmj/fI/qfMP6dfyvqlcp8q92DG+eqfx/5r0Ed1cppN/jtK15T/rOfnyJ/FPg7OPjP83it/Dfl9nH3XpQXM+YaqRfPObcnziOwvZL9l2e+Zyn9Avplfy/pD5tkyv/at8VbGCSdkHIK+r8hxP+1VyP7I3G9AnjnX3V199ZXrRJ7zMk9Lzs9Ij6v03/avqvDf9g/B/0x+mXMqL2Y/t3hwADwQXkjfM7V3IDpeg9l/1l19Ncm/BnxA+/fzh1viF3CB9t9W3+faOVz6LHaR+4pep/fcZ5T7izKfn/n91t5fMr8/AN8D4RL6/oh9HM4uZmUdG/3nq68ifWwBt4Sv0d9Nyt2inmHSddC/Cb2HiVv/SE9Cf+uc1yH3a7N/IvsZjf+yn64PurfU/nD01sn5WnxmPnQlez2O/e7CnjPfWhZ+C3fV3inqn82uHtb+P1v8l/8j6LOu+ttIL0Vn3Zx/83996cmZJ6PvA2Dx/UBXks99cDncX/nL9GvZh36p9ET8NGJX3dT/MvkM2fe/9Lbe+r/8hP4j+dPW9HcK+Q1n3zONi8oX7QPbQ/zOvRJN1XMYzP0SY8k7+0Gih8i/Crrnwmfx01X9s/J+Cx+Df5PPfPRlvJbx2yz1R2+PsJOHYd7Pcn9JzsutKRoPzYnfoH+p/xeoP/svK+Ar6+j/rmOKY7XlF58/r6Y/3L60gJVh7r96B39j4PDogXwSN38mt9hD9N9B3G8nLuT+munoOTHn+RPXpT8lzzH0e4b8HnlfQn/OK14Dc55xz4xf0PM1zPpdxiVn5/wrPfWUrip+rNdeHfwXnxfK+dbP1Pez/E34KOGPX5PXWOkX0b9/zrmKq03o7V16bpVzceT3Lj+snvPI7L0NPBrmfNKB+OqR+znQtZX6/1T/Oer9Q/p3+aehq7/2Mi5tT7+JKzNg7iN7Pe8T7PcxceEX9vaKeuah7xNxYQO5Pic/793d1LOeva3mLxv5913ofSTrPpnfVy7zTP3hUvp4wHrIQNgDjs/9Z8YzFdnjQnx1j32LhyeIC39Id8n+D/QdG38xPpmU+Wn1Nst+G8/n/N5ruc9Mfs7x5fze0exzM/3mDbmfBP3l6PsKdlFG+mj1ZL27evZvF61/H8EfKhoH1aavqsp3pq9X6L2b51fgN/fu5R6+4dnHjL7s27i6aP/GcnL6iT1eJo6cSM+Vye9sfrFHzqkWoKS3/zvh9+6i/fnd2c/m6s15nazH5/6chvw773fv8e+831VU/nn+swD+Rp6PK7dLzg3Bi8gv61PDYNansl51Fr/tQb7rMw9JP5P5Rwv8T5K+RPvF91U9g76u7His/PsKULIR5pz/wfQ9smicOV7993j+DPgcrI7+TeTVhRxnSC/kp8vEje/F5xfhJ+zjYHp5hNz2Rnf6wwdzf1Tu98x4kXzX+b+B564oLeDx6EvczPnO4vh5Hvs+H/aBTyuf+dPx9JZ51Myf/px7FvCT8/057z9V//2Y9N/kclbR/QGfwLUw76vPFMWtgUXxqxd77gk7wcboGo3+I/DVMuNn+dn/WRNeTP5D8HdZaQH/4m9z2d9enmvAvq6j9wPZ4VXkfaL8Nfj+uPZ/y++s3pqwFrxQ+ez/OIb910NP9n+U8L9hOT/L/rcnv1b4X8v/KtPfMPXvLf/29KPsf6b8efzxUf75qHSfnL/UXs5t3ofev4riQy39zHmeW0T/OVe6nbi6KefJ8ddE3GyTe8SkJ9H/m+pvTe5vSI9hb9kXlv2oxfvD9mFvr9LTZujvnfVA7X5StE8u8xsj2FFdz3dk7+eiP/soRmb/kfyP2Vc9cehJ7T5Hbtsq/5H4nnNQjYvOP70lfW7WMWA58jmSvtvEb+l7mfrXi0dzsm8o58Ay3s9+/Zw7IN+F+M1+1ozLM07P+HwjerrhY7p+/Cdye1j+SbmXBp1/k0MN5abm/kL2cTX+Xyq61/FF6YboyHxvdXxcRs+Z/03cTz9wc+7vw19V+q4Cz0JP1umnikfvwJPg6fIPU89JcC0/yP2LXTx/O1wEc/9m9JXzKdFn9HcKfrrCduwo+6WzrpR1ppfoMetLWU8aQK5ZZ/p33Ul+C3KpmPcH+n0Ifd/rH7pqL/f95t6Vr0oLWHz/SvZrdcv7bs4T0H/2Y50qP/u1sj9regFKbobpp9M/H5l2yaWt9C3sp7x4ex99PUKOX8vfE985R1Z8fmynonmrzGOdjr/njG9zbib7SnJ+plQ8/UX+OvJtKL9f7huBV8M+5FGNXdZVvjw9zML/cva0NdwGli0t4GB2/zh8Gs5TvmnW9ej1fulp+Gju/4b+XwTTX41B70xYRv+7hvxa5Tw4+ZbCvJfvpV+bQ097S49i/++Iy7XJ4e2sl+XeGO2NJudh5Hsb/6hJPx3Is63/12X/I/vL+l3W87J+dzB+T9Je9hGcxT5fY0/ZH/1Y9vtqrxW6Mi9ct2h++G3lJ+b+oqL9BM3Y9cXSXfj1SexhNvrGw4/o6/Ui/8t83odF/veRdOYDi/2vNvrqwIb0/qf6r+Av7ei/LTxF+QHofxBfvyr/i/Ze0D+Xp/ct4Kv0cZ10O+O+Ibn/mn2U1952cPPsX498PD8n83+lBeyb+XP+UCX32hbNn2wkz9nwNHKeTE5/seMP6fls9v0n/vp4/kV4sHpG4+cMcfkCuE78fxf9VY0fXiS/5+Db8o9B97Hw1uxjhrl3Zjf2lXng3D9zFnpb4KOM9In0lnttMk+8ouh+m0a5F1e/mXn29vJ3UP7d7M/F3w2e2zz7P0sLeBrsnnUR5X/XD30l/pWwr+P4W+5xKb6/5WN03UMfXbIfJufHVPchvrOfOvunM587Nf1z+lP1Z34l8yoP5Zxhzsfj+9H/cf62N/3MZQ/blBZwbc6Z4b+9do/NfeLaS/+0VNyvmPFJ5Mu+/1Au8zTPw9aJJ+rJPM0L8ALyy3ckZsGj8Dku95HATuS7SLzKuaOcQ/qx6PzRUvF5Z+11Um/O17am10XZr5hzyMq/RP6faG9U/FJ9mXcZwY9uhpl/+ZLftcXnVzmfoHzu78q9XVmvPS3jPv54mn4j+zSyP6Olci+T28W570T9CxncbezvOvjv+jn6R8FPxcMB2T9D3gPZyT7StbW/wv875X5Z2JL85rHrzT1XPvMk2V+VcSW8UPyalXtsyGGM+nJf4VjpzzPehtm3lvH9ofg/jJ4nwRrksII+VsL76GnvzP/jtyrcEeb+pNPoL/t2KucemKxvsJfq2V/DHo+QPyf+zm6L32emoHNfeF/GNfRbjn1eq59bnPM6/Pt0fj8jei1AyXTpmhnvk0vus8z9ld/R39n4LBEf+5P/zeidQy5vwj8yftXOm7nfEWZ9JOtJvei/MqyH/mWlBVwOV4onjbM+bLzUiNxznifneHIuPffA5v7XyvSS++Czn7wcvkuldzW+bMoPc59C7k94MfdrZ90Gfafn/JHyf8P69HUd+mrS6wf0uitsha/0j+3Jufh+1/S/GVcNlc79svlew+sw33HIdx0m02/up+4q/qzMOUX2+T2/mGwcck32j+B7x5zPzLiDfk7N+BW+k/O9ef/M/jL83Vi0Py3fOTiTPbWx3rKn/Iw7cg/eYO1k/NGA3a76H+OLOtnvjb9qObef89Ul6s88hnSjPFeqHu3eLp3x66Tc5wknF83TbuJPf8N/YD305bsv+Q7MD1lfxMdF+uNhOa+l3DO5/4fdjfL+M4l+ck/fsdnfAZ9hH5kf+FVcyfnrnMf+Qf1D6C/nSbYm74wPl5LvG7Ajv+givx+5nZ5zlvHvovNnOXf2Ocz4qZr2q8KR5Hdp3jO0e5e4NBo+gI5JWd8uWgedw06raHhMznkjaJT8hvqdVfrd93J+Keur4kv2iy7Rbr6Pc6H8KfJHK9eW/J/RL8+F7clnsPy59Lsi6xfSperLvYFziu4NzP3fZ6nvI3HsDOnzPHe1fuhPz+c869SsX7CL/cS1BdIDtb9jzquzl4/xvSL2pb1p/OvR7Kcih1vZx86lBVwPJ8v/d11BvTlXOLHIPzt5Pyt+v5yU/bb0eIz+o438PfhLBfa5NOektZ/zgK+x+ylF9+NnfijzQhWkMz/0Xu51yfs4eY0j37H4uxqOgRer/6CM/9h1F3Rn/90G7Y1D75fS2+Z+GnQ3Vr65dDP09KKfnDPtALP/O/1P4m36ofQ///Zf/k/cTf81nP/VhW/yv9x/lvfO9vCYovfQzC8PhCPpaz4/m0kfX+i3cs/fBPZcUbnvcz+y9B3Z/2y8kvXShdKJ/5Pp9cecb4AZ73wjTr9edP9uefRfRu6t4MWJU+yiY9bz2d/4UvXiY5ciuUWOl2W/DP4/yXccyOFh+mgZurIPNt83Y0c38ptvyWUieo6W/zN7Kb4/KPd+dKP/GllXls78dnny2zzfWck+ydxvyd+ezXq05zuyvzf4wztwZebDsl7m/7wfHYPee+nvB/3DW57PeLZF7gcQT3O/2WMw95vVYRe75x5XOAq9OQ+T+28rFZ2PyX3Bx5FL7mnO/cy/6Xe2F5+6on8M+e0o/w52d6301uz7ltxrRW9r+XMl9N2B369z3xfsCZ9VX9l8b0Z6Ffqjj+gn8yrRT+41vzn7PrNemfiMnqX4WZ57Gsk396u/mX3p0rlf/UHvUxm3jfGenPHbQnKN/93EPoai88K8P8An2EsH8puL33yXsPh7hf+gfxNsxg+GyJ/O7nZW7jHpG3NeIOf/2MWvWXdCf85n/a/33E3klXsu8x2y3G85Ef/3Sj+Ez7XklfMNWefaTTrrW0eIY19nHij7RtCX/VLLcs6maP/Uzvia7//dpHMf4J3oXwhvz3187GkZevrlnDR7foL+PkLXH/J3Nv7YSf7u7G6R5/K9wauy70C82Tb9vPIfom8Qe3nBOGEB//tAfi1y2xnuAh9Xf74nlO+p5rxHvi+0uAAlD8Ae8KaMZ9jtS+TXLPuNlM+9ZheR2w7oX0Tf9djDOPFhCfxd/Y+S5/R8p6fo/oV3sy+cHe5PHrkfo07mBeh1d+m/9C/5/tM8/7fMOWb6mcivJ8EttddJ/gn8O/dvjMy+KPznvqzcn9XZ87k/64+cC4T53t3vOZfNP3KOonj9J/cO3J7v1LKXG9S/lN1sKi3gF56frfwA8noS/0/k/gX07kge1WDugf9e/XuT6x3sr2HmlzO/wJ7+hpvgoRkH4nt+vmsFm6v/MfYzlbz74jPfJ6yY7xXh+zj+syjt6z/SP6S/GKT9acazuQ+6tXK55/Mn8sn3Eaazs3y/IfvV67OP7GfP/vVK2a+QfSjqOSfzc+huCWvD1fqJCfivRB8tjUMy/pvh+Wn84jr6zftbaQFK/F3yJbw847jsmyPX1/Oexf5y72DuG8x9hLWyvz/fG4VbiHNv4z/njPPdrR3II+uHWdc+THvF+89ynijni5qjO+eLluZ8EL85FC7F/2T6yvff8j24fP/tTHIbR0BZJ/uJfK/CR3P01s19Efhvhr4l/OMX9V+E/vXs6yf+9mPOlSq/Ufpn+FnWY+U3zb0bOb9BTvn+1enknvtdc99r7nfdC1335J6rrIPEv7JvBd5LX1eRby3xpmbGCXAxedyN3x3Ufw09Han9W9R3m3Zvga3wc20BSqbAXnBJ7uVR3xlZ/0LnQ8rne8iDtFNZOt9HLt6vk3vCcj/YXHF1DpwNF2a9LOuTOfdedL9G7vd+DV3HkVvu977HeGg8vDf3FaJnNb2tgfHDiei73fMf5Du25NAq8xfscbnnh+def/z3RF+17GPhB6d6/vd8vzTjefb1LPvIZ43jp9mP0lj5UfytO7/P/fddtT+cPeY7TLmvLPeTDfB87skuvh87551y/undovNPv5UWMOfVc34933+ewv/PJ4c+cDQ+u2RfvPay33uc9Ne5bz3nfeFA+s++4NpwHXr+8VzuMzgAHZuz/w2ZVyk6V5hzhtl/NzjnKf7HPTIZp+S7g/kOYe6fz7xV7nUvvp/2n5w/QW/WJaep7/i8j6B/GNyN/f0fvUCyvHicdd159NdT/gfwrxYVWpQSWr4iS5tUaKEYVFJiyNZiabVExIixMxiUkCVF2bKlhSlKCaEUUmkf2aMkZRsh/c75fR5P58znnPn+8zz3e9/33tf+vu97X/d+tuxT8v9/Z9Yp4C31CjisSQHPrVrACRUK2K96Aa9Wv7hhAe9QHtS4gC82K2Cd8gX8d7kCHlCrgH/3/E3qq8H5npt5QAF393wt2G5f/Wt/TpUCfl6pgH2Vlxm/1h4FnF23gHPgUvV771jAfSsX8JkaBVyrfgZ+/6L/I+Gv6PuyfgH7wU/3LOC2gwvYe6cC9tTPWcq/HFjAF4z7PHx21wJ2wt/H6L0EDoXryLmD8hbjbqDHD7Q/S7+n7lzAivAz7Zuj5yDYDJ6q/SnsoabyicoXtijgXp6vA5v6/5nwS/T0bVDAJ5oXcLr610oLOAfeQ46fe+6nvfCJv+bwZfL7+24FfMv4N9DfSPKvaPwq7PxW40zFz9QClGwoU8CryxawSdMCxn6+Ypfnwpr+/xl7qKDdjfqJPVZh17/SU0ftX9y9gH/F39WwTc0CHsn+lqK7AfmNC1/k9z6/OEb/H2h3sfrp+psGD6pdwGMPKmBd415Frwf6/+/G2Z2d9CePhfsV8Hb9L1Dup7625+9Qv5he9grf5FEfdhFXLmSnF8BzjX8dulbQ1/XKo/X/tPg0qVoBT2pUwAmxP3poptyGfHqlPXuZDl+CfzFeS/JtBVvA4exz3Q4F/Bu8DU5TX720gLXI+XPl08npefFqEhxQsYCbyHOeOPNPfM0j7wH674i/R8nhTO2GkF8zcp4izv3ITt9XP489vAXfhg+jr5pyVdgdvk+Oe7HPPeCesDU72oN/ziPXt2AJ/90J31+ykya7FPBm4z/l/dITX13j9/rvptxL/QTPX61+mv7moPcr9vYR/p/irxPI5TR4ObpuIb+F/OtWdnyY/5+3fwHvp59txvnE+Hfjf7v4f5z4frfnrkbfLPyvgWdrP5hd/4tdtFS+yXiT0fki/V8IF7DfFwpQsgxeAtuoL5N4o9/28HHyvJ691xd/motbi9nfWca/GfaBJ/KvGuL16eJ6HfbzhvY3qr8dPUuVn6SfJ8njAnK6EA4gn9fos5z2N5JzLeMPQG9/eFIpfsjvCvreCz7OHlrpd0EBSv4On4ZPsc9p+v2dfbwO29HvOv3E7qYX2eOQ+J331A+wF/53Q8988j8Bnb/6f0fYaO8CzqDPfTx3Pr/fj92WZbdr2OE/0XMHvA0+RT677Pff/FzP346hv93NJ+qK23XgCvp5G32l6BkCq+nnMvaS98sl/OVl/c8iz9fElbxnXlL/qPhYgs71/n8x+d2H34fwvwqup783yfs5/bZl7+u0byBeTUDnpeTW1jjPen4tfiuzh+fUr6ffVfS3Qbkh+TbyXriU3c/zfttOPvfQ6xTzjRfgYeitQF5/kOsJ+P0EnyWJa+RXjz4u8v9j6TvvvVb6W0ffjxhvPLyAvA7D3/HkspP2XZR/Txwkj/H4WqvcgbyO8P56lt2cCAeT/7HkcmUpOjPP1v4d8pkPv4KDyOcO/DzF/2bAA8WL3/FTjp2Vge9q3039CbA9Ob7FfsrqryIsA/fUvhV9rKSPR+GR2k/H76Hi+83KjfF/i/h3K/xGfC6rvhG5NiLvPdBfN/Mn8XCy9l3J42TPvwAXw4n8qQb5tmMnd5P7Ueznt6I4mfj5hP+39P+b8fsbHM9fxsGr8T2cPFbwr8yfDuYn35LnRvRtV38Le7qdfw0jj5vVrzQfGKbcSfv3lHuJl+XQXR8fFydOiZ9Ho6u357qq30xfp6NvjPLb+v+YX7xCb58of+H5N72v34LdjXcP/2+qXT+4kr/sTr8j+O9dcCQcQ3+30tujsCz/6Jr3k7i5xvP9jXs5+rsY9zh4Gv529X5dSH49yH+GePa6frrR37v6+8A4r2u/o/7ewc8R6vN90YPfHe7/8z2X74vK7Lku+2nF3jt7fhi5dqS/fbyvrkNXF/7yM7rr42e++or8ty58nh3fQn9HsIMD4Hvs4x/q64gXy+Dh8At8ZP42peg7IPP/geLfw+gaC0vI8zr2MoEcG/C7duLbweTRHPby/Bryyvfgx8bJd+Eo8n2QHvPdV6yffP+N9lz0FP1MoL8/jPOk8nT8PcAf/4XeO/VXi3y2iROXlRawU+KvcW4oQMmrsB/8VfvMZw6l/9uL5jdnkkdPuJBcbkn8QN9047VWHoi/3em9P5xF//vj51r+toh8p3mPLo782We+3x6D+X5bqzyc/q5X/jd5NyCvw5SroPs8+G9yrs7f32FflfBTjv+0FZeGkNPb6M+8PvP87zx3TdbP2GP8KP5TgXzuwe9IeDe8Gv8Nsn4nvnwKN9PPsAKUPAcHsofm7GCBeP8G/x2k/n30b1J/G7qGZB2RXF7F7zr+syM5TyG/psY5ANaEXbXvIa7W9x46XBy8gHxW0U/eBxX8/zn63S6eV2aXuwTRP93763ntKvj/d/S3nj1u1v8Qz++f9Q3xIPOfrONm/fYs4zdU/jv+D9Zf/KNXkZ/EPxqQ7wByKFUuY/z64u1E4+yt/Ab93oje9onX/t9K+1fMD35C38/on+P5o8j9B/U7iTOvqT+OXfbjh73Z33Ger8/+6sKzYQP18a/4VRd+Fv8a732wDLbznhht/A34G+L5EVnPwd98cWOOuHGi8iDP92aXnWBneDM5ZV28ubh6aL7/tL+NPBaofwdmfpf4/CD9jYa3ss+sUz/L/prgZ5XyEfyhOf/7IfNP9StLCzgVPWXYx0z8dyDv58SVR9jXNPyV0MPZWa81/lDtW5HXy3AtOeb7ai3/vo793cmePlW/hj6ybpp11KyfthJvD4Ut4cnoaZzvD3Jrpnwo+f1g3j2JX000fmNy/Yj8utFj59ir+iP9v4z3R1nYHb1P0d89/j8KPmT8u9FzGjtoDtuIvzOiD7i6ACWX6ffhzJ/gsXCD8WvT++5wtviX9a/y/HWruH4v+91A/mNK0QtHw6H67648DR/t+e/t+FsinnycdVP9jzD+au+319nBJM/PFL8/8P8VnltBXyvof6zyw/By/NdT/4l2u7Dj+9jxSuOPUB6n/YPK5fHXRnzZiJ7H/H+u/k+n/7fEuf3Y2U/6n6vfN7OPg59j9PMSf6qO7xfoozX7rVdqXHEj87J/av8Me7qDXR7OLs7w3LXs92q4jv4X08+D4uGb4mPr7A/i7xx+8Q25Pm7cE8WLqwtQMpl9TVDO/O4Q7T723oy/dtDPNHYxhVz2w/cM49/P/0d5vrL13Hb6f4f83qPfhcpvqH9Ov8epvwtuJZ+e9isXZj2W3f+Mv9bav4T+OuzjDc93Ki3gZ+T+ORxh/MrsfbZxa2r/cObf/r+ZHDpnvmf855QnBvlpJfQ3Jo+n2duj4tI87Wcbr7t2f4Wr0XeWcV/PdxpcTt6D2XMDcWk8Pd+F/onk3ZR8TtXfAP1/5P/x48nsuz47m8Qel7Pj57MOp/4B75Nn8XsB/j7B3xxx53tynws3ql9tvFVwDfwWf+faD/onfBEOUv85v5wPv4CP4H9fdtAXffux1z3UrxAXPhMXd+aHh2Z/nX0M4Bf94eXkd0q+v5SvYS/P678jffYQX7rBvuyhY77HxI834Uzj74+uA+C/6Ltq1ufpfSQ+Fmm/b+YvpQVsQW970mMtfjSXPC+GY7MPR48rxJ869LJc+R/4napcw/uvffZ1yPtG8fle/N7Jbs5D/2Pic0Pthopz1dHbhb28bn7SFF5APtvYbW3//115f/zPUP6CXs7kP2PRN0B8Wa68U75r8bcMXbOyv6O/xcb/Q7+d+dV25WmJz/wv/n8X+/mb+qvEhx/VzyOfxKfR9PoAfBD289wm8qvNz9aQ1yL0rTKfa0s+d8Aa2Z/PPkr2u9EzXrlCaQEHstOXjNOyaP1ouvGyjpT1owXqu/j/tfwp/lPTvHKp/58Pa+q/DrnvBevCR+h3MnnMwvdMuAV/95D/3Tv+dz9Nst9AX93FwW5wFfufQF+N4JPwc/xUYffJM1gCk2fQTDwqYR9NlSdHHvprrX6b+DDW+E+zv+ZwHP+4V/9l+MkZ/H4v9nAR/s5g31eIU9W06wbjf5fp9718h2nfUP916f0o8u2kffJqkmfTvLSAya9Zj7+q5im/s4cz8NcJ363JpXXmx/S3Hj2V4V762c5OjjduU3ae79RK7Ly6/t7gt3NhY/Rl3Xc4nEf+Wf99UDyckfcO/Av7zP5K9lVGkFf2V3p5fu7/iK+XiY9XoKdUu3v1vw69V/GTS+HOnv83e+vDD0r9/2f6ecn/p8PH4Sr+UzX7hfifCe/VT77PvmUnG+F/1M/y/s/+Y/Jdsv+YfJbsO77i+ew/TvL+WqN+lDjSHf/90Nc/eUqeW6H9t+g9nB+vTF4I/r/nF62Ns1n5NXH+AvOv/5UHsiN7KA/LwX30fzr7O4/et5PPEnosww7Louut7OfiL3L82njTyOc67X8Rt97k/1ONvwD9i/jjEHIrYQ919V+en/zq/b0an1mHbmpecQy7OKV4vyD7C7Cp9skPyP7rUH6Qfdgn0NOC3G/Ofin+Gyh/yf/L4K8hP++nnP34+zyfffkm3ltZz8z65oCi9c2hyr+VFvBX2Dbfi/pbBr9CX9/EB/odAcfgd0f8J58m+TWj6S/5NeUTl4veW23Zz0OeT/5N8nGSfzOU/O6gpy7G/6t+hoof9T3fGd33oO889vIJvf3ADrZ4fo7ndyHPpsZvqfwv43ZkH42VN2v/OPp3pe/Ycez3O/F6M2yKnnvY77Pi/qfo+xgu0n5zaQHfFF+/Ux6KzmPptyq7HQMPQP9p4mfe99FD5D+W/9+Prgaee5P83iXfG8mph3Hreu4q/f0drodHqh9u/Eu1qylOna7/quivBO+k7ylF89vMa/8omt8+wb6ehBNg77yfkpfh+UX4+QP/1+vv0ayzibPv4Lc2P/yaf7zLP1eLS+ezi7fMg96GH+F/mfrl8EP4G3kcVrQenPXi5MeWiDu7JX6hp57nN4nXG+Fv6h/M+gX+VrOzfeEW4z5B//eyz7vh9Oy/lhawFb87FPbR/yJy2KhdXf31RV8H/GQ9rzO9dib/Y8Spl5W3Gu8K/Gc/Zy38gX7O19/46M+44+GT2v+s/41wK7yEXTyDvuvxcxS/HJ71Qfzu5v32hfYXqP/UeHtnvV48Pyn17KGNeWgZ84kdPb9NXE3+V/LB2iY/En3Ns17g/1fpf6P482H2G9jtF577vgAl3K6kSaX/pu9Q9nAYLI+fY403Ed9ryeHjrNeqz7rMQv7Tlj6OSj6lctaHarOXS9Cb74omcIn/Z/8m/IS/9/b7b/4OI7e2cA/0nZ38cPp6TFypTA+Zjx1PHskbm5X5lvqbs59FgD3UT1D/Ir8c7L15YebdsC1+R+OvTb7Hkr/kuevgH/Sf/f8/8wbY1VnKyR8YQz+PwSXav8d/R5QWcN/s68Dt9P+Ncfvpf4j+d4Lz+N0Z7OIZ8kqexwX4apjvV+XbyH9X78u76HEn9HyG/0MyDyK/FyIHftgCvQNhS3gRe7gOXdfC5nCg/g/wfKOsC/n+OBD/Z9DrgfR4kvJc43/Irh4i1578t1v2Ydn3vtkfJYes3z6R/Gb6+Zk8Hsw+Zc5HeG8forzc9+ofeR/pN/PRzD+/0N9C84NO3qNP888jyeNy7T7M/n/iA/t+GR/PkWtz/X/n+a7kck32R/Q/UNyogv9BytXxn3zRSUV5XC9lf8vz38Nt7PAD9nI8ua3H3wP43Uf/ya9KPtX9ybvCX/Khf0F38qWTH30l+XbM+R3jf0k/B+tvCbuJHcV+DhV/n+MP+Y7L91srdp08jx5wOfkNNl5l8nudvH9A3yZ6Wavdt8qtyfVI9vgH+k73XAf/fy3rh3C2/7+ScxbKXcj5YOW/4ePcxAF+X095W/KvjdcetqCf39UnHz/5+V/A5Od/GruCWUfO+nH84l10xT/GZn2zaN/xZpj9x2O9D2r7LnuXH3c3fkf0dYBHwpP4wffsInkXY8j/CXROob+c4xmMj8Ozvix+5LzPNuMfof6izPvznQIfUP+r99a3+LocviKuDNT+PDgg51XQX7y+nXWXcuSX/eWL8Z195uwvryC3f5UWcJnyksw/8fs+P9qofFq+N/j7Rd4jOc+TczzJP03eaXPl5J8+Sd7ztX8UfVmvJv6SjcnDUX7T+LXFv4r6i3z7sK+vxZ118EN+uEPO35H/LeSZPOicn6qv/mXxaRo8EH070/c37HCS+oH6+4Jdz1T/hPpz9Z/9gOwPZL0y65TF6z27i0fLtU8+SvIWkq+S/JSxxu1F/j3hWv1uIe9jyfEqcs66eQt0XUWu/xEHrmWH57CXHdG9A3k8YvxDzMdOI4dbPLed/uqL72eTZ85bfsn+lnv+SfgUfIX9VqSv/4gHj+HvKfLK+YF64u4lRfO/4vMDw9ln5o9D8T+b3moo34e/v+i/L/+qRp5j1B/pffJT9o+UTyT/ffGzntwehvepf4i91iD/1fRzkP5HGX+y/4+Du2ifdan3i9alzqTfo+mnOv6HwEXkW8J+ysB/xI/JZ7r/z4XJs2tB/jXE16y7zoDfaH82vqaT20twZfJb0fMZuXwKsz8zCj/r8LdA+ajon53Oh1fn/An+3lXOuaAb4HD9lyXnCexxB/O27N9k/+Fn9nykfv+jPIC9naXcShyahr7l4va59HwOvN7/q6CnP7kdBC9G1x2eGwF35j8fKZdjbw3E1zv4QfJnR5UW8FJ4L+yf/H7yaQ8/Tz6F+pr8IfHqsqL9lS76uy15Y3BP9Ccf4RJ81yrKT7hff9ezh9uMdw19/KL+YdhR/U3J49BvFXrIuY5p6LtN/X70MoXcjk+80+9u8BD9b4FPeG4y+7o15wL1v1jcq8puu7GXnD/K+tkX9PMX+r5N+1fRN59eD0s+BXk8pN3L+FuafE7y+cp4yee/j30m/2JW4qDxPmff2d97Gv29kjeW9Wbx5bW8Vzy3nL2VNd5IdK1X3i15KPp/S/ltuA8+N+X9RS/HkktlWCXn9/E/n13Ohe21v6wAJV/DUvFkJn4GiBdXkuvF4khV/98J/Tsb52n09Ms5dfLYR3z/DP/dyPUk6xnJz0i+RvIzzjNuY3Rfjb/kh24RT7+Hm+FM8m9Ev9XI/2j6OC3xWbzI+cLi865lzW8qsee74AL9D+YPi+FqOEX/99JXR/R+SI/n0W8FfM2MXcPB5r99Mx+CK+DX6mdmXkMPCzL/VJ/8mtn0s6oov6Y8Pf6Vn47X/smsv5PXaPP3L/n5BPW/6bc1bAPLk89F5h3ZH8t+2V7oy/nanuT6jv5zvva1THDFj/eU67Cv5L0nD76FOFyf/KfoL/pYkDhF/uX1tyO8K+8F5SvyPme31+DnInHiOn4yP+c7ld9RruL5ifR2GD/4G/7+YbxbyfPL7BMrf5X9ZLiJHnpov0g8Oh4/fdj7fco34aMrP+oGb0L/JaUFzPmv8dmvy/4q/91UtP/7MXlWZt8nZz9ZOfnFN3i+Q85lii8T1Xdnj5PZ75qi/Kmf0ftmvhOV27KvI/lPc3GnQu7hIL9DjTvduGeQ37ns7xN8X8z+KhX5dxv9diTHLuxrLrlnvn1D7oEx3vN5v3p/Je8o601ZZ2qVfSNxZ6FxkgfUF70vGWcGHEJ/fdjnWOMOUa6e/M/s35Lf08qn4L9/4gI5vofOK5Nfn/MT9D0bXa+qf6G0gFPgVHiK+gv5Qz9+0B9uTr6oeJ17bRoV3W8zlj4+4re5j+EG9F9Lvh/i6xrlyug82vvlSf3VgI+Sz01F69tZ7876do2i75tZMN83q3Ju2/NTtZ+aeCBujIDXwW/Uf0z+t7DrW+Eq/L3DHhbAK+EN5Ds7+Wnw1ZyXVT9SPGlBLu8o94OT811NvkcVtU9+9AfGTZ50U/zW915tSq9N4KR8n+X8Cvvqws7X4K+feV8Nfph7Boby30/MN4Z7T42Eo7Uvz15z7mEsfFb8y77IUfzjW+Xsj5yBrw30drpyd/q9ipyy//u4cvZ//5P1ZeP+Db6mfXX0/Y0cRvr/yVnfYU9Z91gZ+SUPiP/c9z/OJzyh3zX8+0nlOVlfJteK+P+Evupn/8Dzp9FrD/bcCr9Zb9jf/0uL1h+a5DwQugcbZyft29P7r/Seff5K6nslnzjf+dnPR3++u/JeKv7+OpDcnmcPQ8XhYdqf6X24hb9NFbePUf9B7uNI/izspb/kd/6Ijwv56wXJ18r7rAB/zqeXZ10s5+GTD4XfnN9dpv/L9NuBvQxC3134Owkfw1M2/kTvgX3543D5mzvo/2X2MgNmXl/q+SXi0bbSAi5Vvjzzt8zf851ctH+WvKo2/yO/6h7+1IGdjVLuyP5miUvl+d+F7Gtc9v/RdQM7u5c8T0T/+fppTb/L8b8s6+P6a2vcdrAZ+uuwy9tzj4nydv2/Sz8T/f9W9HbO/Ic+J6PzSuV96WUzf/tB/RblXZN/wF82sLusc+2C/xtzrwO/aWz8bvRzMXlfCnfT31s5/8Av7/D//b1vV6M/5/Rzjr9O+uFfJ7Pv3CeWe8aWkt84en8EXsVe+id/3fwu8TX7jD8mP4OdZL3sc+/rVfrvwS9yb03uscn9NckH/Fx/yRdMfuBp/Pa7xEVxrgX67sLPPHp5Lveskf8c5Ybsbwb72924Z/Gn12HV5A+hfz59PcnuHof7qs9+bPbVss+W/bVhWc817tPwFvbTX/+34e8WWAv/i8lrNRzkfbUi+cMFKFnlvb9W+RnyHFpawMvhqeznqeQV6Xe+9m/Dn5J/nXxa455JH8uSv6G/Y/F1EzkcTv5L9PcB/I0/nIq/BVn/gcejpyr/qIuO8/CzidxaG3839A3Svq/yVu0v098e6pcpv4K+jbmfS5w53Tj10Tcg9zdm/p88pdy3xL4H+X8duIVfvKW+Vs6nKddI/icF3sSP94UTcz67aH74B/mV0T55WcnTWsrOk5+1Vruc+8g5kIfZ6ZAC/PkdvxLm+31A+IMDYQXy+YY/rDb/LL5frSy7ybnqc4rOW8/kH43Z0cvK99HPycmXhLkXsLbxG2Z9Ez6Dvp6ey3t/Y+JQ0fs/89425J1572/ar2AXy+FK2MRzC0vQkXMPyskfeVj8XV1awFXwMXHmBX5TLfld5gcfGv+13EvgPfY0+peon85+epP7D8q7om+08u/s/kDP/aY8l16Oz7ovPb5Avr9mPxNdXWFP9f9M//g/S//x76VZz4WHGO8g8hnEL3JPx9n87PDMC/w/3wX7574k9nUju78J3gwH0+cO/GElOQ/znviS/Kqal/X3nljjuZ3op7vv5xa5LwJd2T9pJ143xMdC9F2M/87Jc0Vvp/3+m//v2Psf6Nqs/FPye9CXdaLsw2T/pR27f4MfHqE8Fn85j57z6QfBTuoPQM/R2R/OPUT6305vv5P/Uv5UO9+/9D+C3u+COR+X/L7kuyUfbiT5tGNf5bLPCi/3/Gz6m1RawOfNUx4T/44jnyf48fvazyb33BvyGfpvVX5P+6bk3Vr/jZU7Gr+6/nKPX/bLc3/fA+S7gOO/D9doP4g/nU+/J+S8jf/n/trcW7seHpH7D9DdB15Gv43Qn/2hk+Ch2a9C5+P6fxRm//ho/cfecv9l7sPM/Zfr8fMd3JB8/qL7BXZl/7lnIPcLjDbeGfzrIeXck/w+fbwoHr2nPCf5X/n+yL0ByZ/N/RXiUe5hOJWcc//CoeRWj5+21/8R4kM99rpfzhGw56HJ3yqaj2Se8gD/XMkfRpHDlcZ9kH9H793oZSA9DSb3W4032Pg10Zf32a7JHzP+nfisY/zkRycv+rXEcfZ/fgH+vA/mFeXsX98nbvfBxzvkeyP/TV7LdPa/qii/pZz3UllYBv6D/kaKNw3F5f3hqeyjBntfha9d8z42fj/99Ye1st6Hn8na/ZH72bR7BSbf/V6YfPj26HuQvY+GD8Bzcj9mAUrmwmfgSfTcDj3d2Fnt7J8Z/xT/P5Wcc4/YrkXfh+HzBuV8H2bfZ6X6VbAL+qbRV/ZN3zbeHP1fQ6+X8p9+/HMi/quVFvDf7HEpeytHv7m3N/dctIDJf+9QdP7mX0Xnb84Vn5eyxz343Tfa1zV+Y3LPeaPkb9yLrt5Z14E5H1df3BlHD/fB3GcwnR+9DHN/XDf2M4e+HtMu+Vk9ybcCeY6kl7vhVPptpP3Z5F+BnJfpvxz5/+S5vbX/Qv+1sx5NrltKCziMvKrpr6f+H1TOOecXlKfCXdA7ivwPx/dRxv8L/DLft54/jbzyPZTvoBdzbwacCiuznxe0XwevNd56/W/w/DfwM/b7Pfq+Y2+1vVeO4f/PkN8G/Z2dcxq579b4P/Prc/TXiv0Mo59jrCflXNCF+e7P+Upy+wNWNM4C/rOAfnJevSv6eqpfTG85P/+qcs7PJy82+bDJl/3F+CewjwNg99xP4PnXjd/3f+wfbxKXa4rTu8GPyCP5Cslf6AWzvpj7KXrDd/lT8qev0d/epQXcK++znF/LeiN8kT5bFq0/53cF9mP/+X2Bi9nFRXAIfCfnGzPfgY3hQepnozf3R1fJPh/59zXu3dr1Tv5N7idB39f8Pvff1aOfPdDTKvcIa7dn1ufNb7NfPIpeHiCf+8gl57jepK+c38r9gTmvOc//F5L/1KJ7b3MP7tKsr/qO3664kh2O8f9h7PVZ78lO6Nk13xHi4UJ8blV+FR1HGe9I2AFOUL82+e7aL4K5P6S3+dMZsCz9Z//+LeVx2j0K2+FvPPq3wnHwQPV1i9Zdsg6T9ZeD6DX3Pw7IPeP0fKX+kmeX+7SSX1d8H8948eQx9Tkv92/ynOh9lfNzI0sLeDc8lfzvQF9DetkPVi06/5h7XdaS34fKLbNfIt5dDu+kn2pZ/+S/VZNHKn4k/+P1nHcTl58130j+SFf6Pcx7oUXet+Sxjr101z6/N5DfGbg9vzuS8/Xo2If8d9DvA7Akedg5T+09mHzSb80n3jf+2+T5Lsx9rIuyTkSeu8Oh4ldz+vuR3HKPTO6P2SXn27Vr6f8HF+1Hfax8BHnXQu8Y5W7saaZ50Vb4vvp96fN8+n1enFpMv0+Jp7XQ2RE9rcintf5b0nsl/c8j7zfErbmwGX2OI8/+5HUOux2gfGriH3/KOd/ayolTPyU/gB/0zTlS9QPZVym7eZR9vY+/y9Hd3XtzL/w1Ip/8LsfCfNd5Lr/TkfM5OW+eczq9yad3znvCs2Ct2FfR/lr22xai/yr2OIl+PkJ/Ze13I48J5FNDOfdBzMy5e/7xTPTd6L/7X6H9f4xTnv2dwJ+yf9Qd9tH+Pe02mJ9sJefs//fP93zOW2T9hPxyDvhXWC75sMZ/Q38j6fEumHn8Tuy1CzoGw4O0P8O4J3m+I385Oucrcl84zPr0EP6V801XkNtfyXGW+r/zj9XizMPsZDj5fISetbAq+jfw0y+Sh4We3b2Pc77+De+NrJMuRF/WR5+lr+wvPgOzv1gt6yMw76Hnjb8s9xezq6xTvaS+kbh0ADwQHsS+WtPPDbnfyPgHJ/+2tICHwOfo43byq6S/s5J/lP3wrAfyx9PhqTD3z3RG73GwU+67IJ869P2DeDSEvz+Mv6fMUxai+124AN6sv5vgP3IfOfkmn/Fk/t9XOXmPyYccKk7eJD4mb7Je8kHgYVkfVv4K7gH3hGfn93DYVTn20lK5a9a/xZP8zsfLpQXM731k/nEFzHwt848B9LJV+4HKuSdiHf2V+P8Xyrm/fBJ7bcj+8n55Ab1f43d//HynPIT/PMYfck912eQlwWfZ30+wDvt+V/vsr98t7twDd8n5RPXv5fdV4A/q17OXB9hlM/E7+WzLyetS9fuTw7HkO6IofiWeJX7l3tHD2WlHdlMl+c366wZzj9di/L9YWsDkjb6uXb4H1uX3s+DXeU9n/xrdPeAv3r+5n+Q55WeTf0Y/Txon99rlnrtx7P2irK8mPwC+zv7LFq2fNIL1so6b/FjybmvczvQzCX3nkv8yz+V3xvrkXpL83kjR/U+d+GsT9AzMOe6i+5/yezN94AKY3585hTwj/+J83jvFxdvp/wBy2hv9q5U/hckHTP5fbfpenTwNcewy+vtVfefsmynn9/y2GDf30u8DX8v72ffEL/xxf3zl9+OW6PdxOEm/V3quCv7asYPE0fwO1xjy3lH9kNwzzL8aq2f+f653ZX3riJyn9B7OOvyfeTviQiXxJvfF53747fR5E7vJPlf2ty7IffyZFyln/pZ8kDvhOPQnX2Q9fddLnOTPs9C3uej783SY78/cb5u8lPzeUu63/RG/s423VXmW9pvYxdHqc4/bh+SR9fA22g1D/zb+9RV7+Zh8PlZ+gvzzeyD5fbW29Bh9N8y8Bb3bxOvsP/+TPScP59TYC/q75zxqzinif1Xia2kBH+HXK1I27jP8Ib9rkXy55MflfufP6CP3On/o+eqez+8eVlMewr6/J6/cc/ZB7kvQ38jc+4GPDfhdFD/yfL//YT/JT+4Kv+NnFfXfJveKim+/sN/kr2b+uwusBJvRf9bzKiZ/Fp1Z39vofdib3Zyd3ymkn3bGzz3zg8jncvpJvm6z/M4E+38IfXfR9yL8XZ/z9fTTOPNKAaC9/vM7lR+w30U5Jw2rkM8N+N0x5z1yzk3/A5MXhM8ByuPw/xD77um7phdcafwv2c+HuccWDtH+8dyPwX4yfzgA/7mXu1HuDyi6n/tB8jhQP1v52Ymez/1Fqzw3jBxzj9Ffs+/Ebs72/9bo3pM/XcLuflSf3wltwn53Y4+Ni9bPBhn/PHgxfQ73fF36m8Le6yhPxl/uHz2paP6S+0ez//0wOxsLz8t6pPoj4KPav0nfuV90T35RXvlC9ju5aN9mCsz9nqewl3xX5Tsr31enie8r0LUEvh36yaUxu9wLJj/7I3QfB9fAivq/Tn/XZh6R3+lgP/fT70H4u1P56eQn4Te/e1b8e2iX8PuX6DXrZFkf+0X73BvVu+g+qVHeS4+QTwXtt5L/icbrDq/Xzy9ZX+N3fZKYpHwM/jbjtwb6P/H/AfqvmN/X9VxbfjGZ/EZY/87vJw0X369Vn/vkl8Fn8PEB/W9hz1v5xR30uQQdOX87DY4qOn/bSb9D+delMPORHujLea38fshz9Jffe2sJ98x6v/bnZF6be5dyPyP6d0fH7Vn/9f4drP/sF3u9lmC/ZAb9Zv8w+4XZPzxBf7n3P+cqpitfpP+sP2fduUHR+vPN+ss9+Ln3PvnT95P3t/A7WJl95t6f3AO01Pi5/6dDaQE38Yt2nn+AHTSjr23wCgIYmN+VEldvhSf4HliGj23s7Sx4DvwdH/n92cyHMk/K76dl/eujrBOhN+tf0/V3of4m5vf2ct7d86s915kffYT/MfSSvPbkuR9HvuPxNRV+hr/pyc/K707R44/KP7Cv3L+6p+d7F92/2kd5L/XF97feg/4yxq3Ojuug52pyiZ2dDvP7Enmf7QDznst7b4T3d83cj5Pf8ct6ZM7/aZ/7UHP/6Sbj5VzFheSX+eN0/eV3DPI7sPn9gtbJ9xdHzkTHPPLLelFTdDaDR5BTfn8xv7eY31+8X3kO+WZ9J+s2Wd9Zknup4OSs56nPftcZ+B8P8/0xBt2bvPdyHjvnr19hz6fBq2HuX04+yyrjrqfXrOvm/FDODX0Gp+f97Ln8PvIJ/DPn87IuuAd9J18h64PF8+3Mw3P+ozl9ncI/ewQ9X0n82xnulHV09NXM/SD53eLkuaOvmTixJzq75v2dc47Kc2DyCdvr//8ABeqnZHicdd151JZT2z/wO41IRfPEVRKRMj6azIUyVFLGRMYyxCMkMpdKpkZpIENJJOoJTeahzCo9ZmWWzCRK71q/6/N913qv9XP/81372ufe+5j3ee597H1PrV32//5GNS3izQ2LOH3XIl7brIiV9ijiTX7fd68iflW+iLtULOJrFYpYYZsi7rFVEVvBCysVsVfLIr5UKOJq+AJ8Y7cinrpjEbdsVMTK8Ef1vaoXcVW1Im6uXMT6rYv4wQ5FfA9/3+rvmD2LeI52/eDZ8Db196DnMngufBr97+5UxPnG+9Dv55DPPM9f3qSIc5Wf3b2IF5N3HXztU6eId7cq4otVi9gcria/e9S/j58qdYv4u/adjX/RLkWcgJ/6Oxexkvqp5Yq4EvaCF+l/snGP3LqI29b0PPn/Ta6b4HLynqf/X3b6v/wu1e8E9nR6rSKeo//L9L+d5z/x+3Ps6Xm42PitGhRxB3a6l/Kj7PR58umNrqO2L+I9xj8w9sp+u3nuDOUL0fMgO/u5ShG76/+dekU8Trvlyg3xOWLLIlapUcThyg3Uv05vi9H5tfIM/J3PPy+G2xinn/p72XvNbYs4F31L9P8b+o8wbgvlyehf2biIH8Jx8Dn6e4o9fQP71i9idfbUln28QF7PwWn84TT6e4v8vjf+4/S7kfwfhSekH/Rtjd9O9FZVeQn9DS5CWXdyOxY240+74LsGv95Z+Rrta+lvB3y3Nc7L/GZH8e2dLYrYULkl+d6A/xbbFXG2/qfSz3H8vjW7+IR9diKf8eTxLjmNU94Z/1XptxV6t1JurVyN3qvDhvj8N/kKF2XryV/zsqfobym/HYi+X9jhQPQfzW5bs6sJyt/ofwZ/LK/jYQZsoP5G9LyJr234+3xxcif9rtX+R/GnP+zN7k7Ebx/lk5Tb678P+bVR/gr9x6LvTXQ/SD9Hk/+X7O038vkd3qn/HbVbhr7d1d/OP3rQ7/Xk1o9+Rxn/I3xXwHd5uKBFEb/3fC3296PyMfq/X7yuQ57Xw3H0t8m8ejW6Juv3PvXf6W8tHIveFeR/A3ldCz9G383s+znyup99T4dvoG8j+29LTv+Fr2vf0/x2HNxK/LiSfPYm//78v6o496byLfyzHvm+iP6dtD8C3/fAzvAn9TPx00V5D+V25HMJ/i6FA+H37OMS9vapuPBXQXt6+JjdXcA+qtP3DuTTkbw+Q9cp/PRc8lnA//YRX3qKL++yv9vx+wj+D0DHOvQtJp9ynrtOeRz91uCP4/VbUbmG8Y/iH6vQ/Qx9HsWOthJHdzT+TcpHq+9Pf6Po60J6ruj3kcZtpN+H8bmT3+/zXF3tX2fPz5PbduR6Nb0dTK6HwL3Z2xxyHUvOzfF/JnrOF0/PVv6J/puxx0b4aww/V9+Xfhsa/3Tl/nk/Fb9OgQXP7a79Kvo9lP99ST+Xk/8k9Pytvq7561r6/7EkPqzL+yv+LyanU8jh3+RwvvanGn9347SEu7HfT/W7xnPV0Xen+mPQ8x46uioPzPudcVeyo6v5zxXkvQ05lTOfTkdXbe2n038N+AI7aKPdNZG7fgewj3e0f5I9HlIoYjP8fEr+nfD7Grprmue66n87/G4L68Iy9UOaF3EafT3v90746MGOR7LrH+Db+PkZvW/Bz8npQ/LZGT1Xke8uyrON9xhyHjbOt/pvST/TxO115NYl8tH+B/KYxs630c8K9ddpvzc7OhzO039Bf/Xp4UVxooz/36+/x9H1F5xFTuPxtQ89TVA+Mu+Xnl+sn9rwRfKpIF5db/x9+HUz7a/z+xOZx5RHiY+NybNfoYgVxclF6JvNbxvTVyVyvE65Ofo2s59p6NsfnsQ+BqO3L3yIfWzS/2hx7Je8Dxv/a/R1IZc7xPer8NfS77vDK9jzQvbdBx2xuxGwl/Gb6L8v+TdVrkY+T6M/32X5Tsv32b6+q75iP73Nz62N31X7l5U76PdV9H+HniPQWVn5E372B7nczS/WK99Cz/numi3OlH5/TaKvVvT1vvIb6Jmc9QDtJykPQt+t3jO3ZmcfKbflB7fgey16L6OHe9H3K30O0e8UfEym3+XoGQ+Ho3MI+Y73/AS4Dm5DHzt5/6goPjdX3gV/d5ehC74Am5LP8fi5G14FT+S/lfnzLDgHPwPocSN7G8AutoIPG/9ZcblAT03gOM89S469PLeCf76Lvur4asrOprHPVeovQu/ncK5+8v50MrmfBE+EXdC/Nz7nk/ee3qerob+n95JjYTc4jf7mGbcfnAjf19874sIp6H1TeYXxs351Jf/bsmT96kZyHxW7h3eyr1PE78n0MBW2Y7+V2Gcvv88g92XoOz7fw/pbIP7V176Kebmu5/fAx+3kszV97k6PS8jzNe135ddV+fU39NeRXq9V31f9bfywgd+n6fdeeL/3l5PRcQ17HwKvhqvR2xtf5ch7G/S9i/7G5Hc7eqaIX5+S/1T+th//70kfq9W/Sh9PZn1TeT/j5juqGbm/Lh5+zj6H4Ge5ceboP+8/u4n3LfNeD7/BzxWJ1/zjcfrrp/93lX8Tn/Ykn3+j/3nz4rNwqPn8SfVr2M2J5HQ8nEi+s8TbWvj/nt4GKud9+iz4Tcn79iL2n/XTb+mhHv6OJve/6L8D/8s66qPsZRg5dvD7dPIbrN+3+dUL/KEc/pqjfxC8HE4nv3Oy/gaXwPvV9yC3p+jtC3Q0wN/l/Gd91hPoqTn63kL/K/A12AN9Y/Ldxc+ehgdofyB7Gm+8I/D/qfG+Q999+r2f/KZ4LvFmGr0cjL7R/KMbPf5ufroWDtL/EvZeDt+v0FdX9r49va1HRxf8fGT8qfTdmV0PYK8fqz+PPS0QHxYqrzH+uiKU/ckP5tHPQnaVuPQLujbAxKnLPD8b/5crP5T3B/205T+fobcJ/v5G13n4uk25OzpbsbfWcHeY95+r0F2XX23l/eEV9FUjt+rwBfPv4+qvJP9e8DE4mn0O589rzKtVtG/Cfz/2/CfwNjgQ/yvo4zh09oIf0E/WtcbASvBp8qmQ93VyuVC5Cv5n4ONu+jyLPV/N/iqLxw3opWH0q/8/0PMv8tsXXo2/T9lvVfyvUb5Afdansi71KPqyPrU/u/w+30vKB6A36w7tyK0b+WYd4oTsZ8Hj4WTyq04/PWEndBynfnERym6GV8IO5HY6uz2T3L9Ubkw+D7KnmXBb8txK/3uQ3z5w74J+xZ9T0HUY//6dnbdT31s8utlzd6kfSL73ku/2+J7uuc7a/yqeDPb7evLfi55+RWe+VzuJp8uVOyrne/Vnz69U7kYuXSMfOEv9NfRZXty7VnmVfrYQH8vBMrhA+4/w/y/z947sooz99i8UcRd2uytsjf97tFukn2/5eWf+tzG/s6s16n/O9yG53lbix/Hfs8St7f5h/eJ38WxLdO4Wf8b/fOMXjP8Z/Wymt3zf/oXvwSXft/uxm+fp91/KHcnvbvS01m8HcWK58vHsoBb93GDcJ/J9g67XyfECdLTnf7+hrzp+s8+Z/c1HzQ/75PtG+VjP18t+DL+qr3yLfm4nn9vgd9kPREdT/Hb3XdI+6yN5fxU/mhq3vPo65P+5/dFfMl+j6xn9b6X8m/ovPf+0+un6u1D/PxhvePZX6XuwuNm7UMRG+t2VfewGX6Gva/L+yV8Gwyvh/eLPXb6HTmOX7yr3VX6UP8yBX5JvFf1f5n1sS8+vIufsd1XG92WwJ/5/0H5H7c8QhxroZ5Lnh+EndngGvs9iH5/TeyvzYOLJvXl/Fw9eRvcgcrwE/y9pt5D89mLfQ9E3Ft/DtR+XdST8LWDXu/P7/uxmIvtryK9+5Sfn4nP32Lf3/TnwMbhBP7vS1yS/10f/rvj7kL1kH3YNv2ySdW/0NYD14QD99/C+k3XMFrAD/t7F98oG///62dkvNn4H5Tbq/6LfjTDrae3VV6GvyfRQDz0zyG8Rexyc/USY+bsce9mXH+8Dt6Xfc/nX635/m/xX6X+8+fwRdjuW3DaTTwe/H6a//6rfE/0nZD9Ff/meyPfDE4UiHoevyLsX/a3E9yrYhz1nn/B/9YePBiX628weTmKX2V96U/1c9nxP4jecb/w64nY7z72j/kD4Ev0knyf5PofivyO7OB/9JyYO5/uUvMeJr2Phfeqvyn5k5gn4Lf+vze6H8c8K6H3V+KX7T9l3OtLvn5H3CnS+iJ8+9DWFf+7MDi6l7xH8vzZ5/tt7WSPl7eh3LPv7zrhr4TlZf09eSBHKBub9BD3ZD7kQXgS3x/8ycW8pbFMo4snGPxGfP5LzJnLYF381xaXMo6XzZ0P0NYCn0V8b/A/C9xXwcvgU+ubR1yl5rzbervrfwN9/hb/BxezvP+QwD86Fr6J/H/zuC7ekz5HaF8SjPdhFZeUh5J/8gK/gu+LADll/Yl+nwD4l+QoV+cHF8Fj6eYB8viDviejqbpzp6kcm743+9oIbyaeZfrO/u5wfZn/3Ne+P1eBc+juN/FsYvxs7vML4bWFn/U3U//XhT7lM3PgQnf3gIPy3y/e0dtvDJXl/Vf6cXXwB78z3Irs8G1Yh/wHon/0P649Zl8z32af8slfJ99l2WS/TrobyV/T/AHlPh/fDvtl/FlcPMY9WhIvZ3wz1C9jth5lP9N+T3hsb92Plucn3II/r4I3wFfqfRP5H0/ddyp2NvwN5NRefEqcSn17ht+Po7S54IPlcTe5D8n5Ffjvov5p4XJZ1jOwHkM9s9DwMZ8Eu+j8G393g9YUi/oG/zeLJTfB49Vuwr4L5K+u8E/GT9d0HzHdH0kvWe7O+ux87yXf5ZHZ0q98/Mx8vIq/J5HM3/pcoL4Z1zGMN0DdT+XB66wy/034Iuht67mrlo7V/2+93k1t1OCD5Cfz5KPx9y867aZ992ezTrlXO+sPNxhsFb4En5n2FPs8in2vJoW7WD+llf+06wCb6rxz7y/uCfj5M/hJ6fxOHvsj3p99fVM734/7o37lQxC7JE2GXNeHv1k/G86cJcDg/fxw9rcSnnfzeDD7DPrrnuwof3ZSfQX91/G/3D/sz1fFRDS7kJ/8x/ljjjU/+HX3vTH5j9HdjSRyI/y9n78fDpvjJ+ttX5NpTPD9duTZ5XJp9WXgd+a6h95r85efkrYkDa9nHevrcTO5fJX8IfYP0+6Z+Gyk/rP0+0Zdxpmr/LDt7Vrx8yDhLxNH38LcNua0Xl6uTw/vqRxWh7FuYfNG96O9b7ZMffjk/3sn89Dl6u5Jf1kuyPrKRna2hz5vsL96Y7zP9LyHvxfAA488pFPFxeDo+7tFvwby8wvhl5HOW9svINXkd/UryOzprl/yQh2DW2xZ478p72ELYIuuD7K8Gu9zk/ep4+kvcuwPeChuy397s5kl+00p5Fvkmnia+Xph4h7//Zl0BHoz/Dslnx+8S+CR5zDb+aew4+UN94E7qn1dOnuML8Cj9NyKPxnA39P9NPmeTx1nwSva3Wf1Y9I7Jdwy8WX2+u+eW5KH/hb7Jxp0CO5FjNfpryh/WkU8z5euyvum9tjP6Jvj+WM++qppPXqGHZbAmfTSs/H/HyfpKzgfco3wTuXTPe2bkp//t4Wfsew7+XzTvd0dfL37Yz/zV0riTYFdYL/4lni7D7xzl79nne+zifXLtlzwfuMF6QAtxtbnnR8D3zGcD0R05DcHf4/ppQH9ve7/fwe+rxa3b0fUjuz8v74/0k/3drPe30f9H5LFO3Hi/oN/kP5BHsxI7iP7v5U93oP8g/tEef/uxh0f010Y562vnKB8O+8HR6K8jHv6Fv1rKY9QfRB5t+VVH5b70+zl+noctyPso9H+sfCf803NzEr/MGzPNzw/BrKP1UJ889uSD/84+diWfw8jlRnJJ3v8HeX+h3/L0eia8Dd+3wmawIv7XigefoDvnj8Zk/Z++/oKb4Fn4K88uHya3h+BL2rdmj/t57l9wAP9aJm7kHMtS5XI5/4GPueSzCL5N/r/obwp7uD/vp/gr5HsANoFf0G/y+5LXlzyw5PeNYpdP5L02+abar6Gv27Ouk3z+8Jd1XXI4Cp6H/oOUp/Or7soX4+cU+ngM3sAeztb/Wvx8C79L/nTOb2n33/gp7Et/h8Q/6G0iP8h+ymP0ci2+/qP8q/5vEu+HJx8Nvk5+1cwntWB/9veR75atxddB5NpUnO1Df8l/apn3L3HndfVnsv9djHtW8qyNn3XV0+F98PrsH5JXH3gqvBF/yTvI/mRp/kEN8lylvrr4cyg6byDPZ9D3JP4PUd+G3s8uFLET/fc1fj3yvkA/n9JTFe2b67eL+Fqah/p05nvyHarfJ9jvRZ4f5vfkmz6pvi3+vuBXD+qnAf4zL2U+2lW5Bfoqkkt5WAEui/yV812Q74RhWf8gz20T13MegX7HZF075ypgDf1fTJ5nGOdZ9lUd/WvIbzW8mrw7kMeh5L5EfR/29Sv+LhCf3mM335BDPb8fiJ5yiUP6/9P4ORd4Dr46xM7Y93GFIrZL3k7yIfjvIHIZqf3Fnr+R/o6mj27wGPhbvt/FrXdg8jyfI7/D6f0x4/zGX3dGX93kk9HXiOQZ4m8ivjfpP98J+T44iz9UJdc65Lyn/urmnCO8iv+NEVePNx+cCHvB9vofnf5z7gE9yb94S3x5E74Bh5Lvhfiu4f1mQN43sn9ZKGIXWEY/v+Y8h/76wbfxN1D/w9B3SfLfYKvsX5pvkydcmh/8umF/hOfC59DZgL3vxT4aKtdBX/L+cw7gJ5j8/+gz+k0+dfT7X/byHnwMf4/hb3Dy/nIuMvsN2icfb6P6XfKda7wB5udN7OMK/nN2ziGJVyvhKvh48lfQM4LetybXdfk+Ldl3OCzvreS7r3Z7wzHo7qd+H+1riYvd+ceMvJ+yuxXoOFd5gHG259ct6OVG/D+hfga7OVX7Vcm7Nv6f6jfAj8WrM9QfIf51hi3Y8ZnJj0V/C3iJ+Dso+4f09V6hiKXv95PpZUrmXfxdI34sFm+uMe4S5Wn0cyR6K/LbCrBl8oPRdW/yv5R3Uz+U3Q2j94fIaX/8XUlvV8DGxjuPHZSJb5vJp7zyG/T3e/I/8Jd8huQvbM/f59NbI+UvtR/DTveGE9hzt5y3Zv/zjJ98qcrkf4j+hug/+dEb1NfVz/PmmeXix/70M5O8Z8FH6fdg9K3wPjQJHgf70E/Ow/YtORd7hPZLPb8X+YymjzP9/hJ+sw5yXdbztO/LTrom3oovOR+zkL4qs++K8H31s9nVQn53evZD6XcRu3iQnNrhI3ldG9jT1uxrBPkkj2uDficmf5h+FqnfbLxJ9Jf1oqzL/8yeVuv/gYyT9Z2cT4cvwcPxt5Y+D6PfKfBJ9cn3noWvh/F5OPuvgL5ZhSJuofx68ifZxSf4+y7nI/X/chHKToN3wexPfmpevx+dTcwXS3J+Cr0P8JtW9HmE+kv4V004E+Z86HLyeAeugK8aJ+eX25WcY8755axnPg0fLRSxjfo3PL8pee/6H6T/9ew35+ieUR7IvrLOX5o/lnyeT/D/MexDXzn//L34+iQ72Y/9vUX+uyWvk9x2z/l69Z/R96cw6zn9k39FL/+kp5z3zPnPq81jXdE3nH2MzLkE9LbH/76er8OuK+aeEPU1cq4w+7zK9+j/oqwHwMuyXsC+cq/EeXCI+DeZ/Swq+b4bXPJ9l3s7lolLI+lhnvHv9PzPcFvyPTfnkPjDSfBicjop+Wn0NpRcroe74v+MzFfi95nKm7K/xl4uYz+5f+ODnN/JvMcvenv//VD9Dzl/mHU1WIn/TMl+MpwK98/7T86b8o9q9Dk45x/IL/er9M19C/jrjp4/4BTx8nX9rkTPXuRVlZ99b/zy7H0LmHM5R7HPV3OuBWad6fbcn6O/B8z7C2F77f9iLxthzqvnfPoN7GEaudwLu7CvPuxuB/opT1/ZN1pNLuvQlftDxrHfrO9kXeeK5FsY/23z5tHktER5TvLDE4+1zzm3nG+7nLwvy/xHjsmfrEeeM9ld4syz+Mv7ydKS95Q2Ob/CD2b+Q35aM/Hzcnb7fs6JiK/7ks/z+HsWLsv6AX9pi8+u6NyX/fbNvTD8d1e4Vv8/oKeCef425TNgQf9ZH896+URyfIydjsV3dfq9grxvzzoq+95KuTX7+kW75iXnO9ei52PzSe7B2TLrTcZ/B9+b0TGIfa5nP1MKRdyPf+4Nn9L+PHRupOep6vfLfSQ5lwhHwCHeT+4iz0nwR3hC8otK8te/KslfP0c8nJx5Av1lxs9+ym3oOh6dk9R3w1932BVeSv8H5N4ZOD7xSPsL8fMu+X+gPAWuI/8DzHsd4CP8J/Nt/OPBxGv8JV/wcc8ljzB5hVuof6vknEn5rD/lPhd+cVHu+2E/Oe+R8x93ah8//FU8rk2udWF/9J8r3/hz+trWuKeRT3d66QHfzv4z+VYQr7qIO0fBNvi/Mucl+PnP6Bxj/JniTtalsk41Kt//2n2kXeL1NujNvPKluF16f1f8slqJX+7j9xvZ68s5T8/vFuL/NfWtcz4i+Xv4r4S+mfxyBjwHf+X0NxT9feB4/H2J7x/J9R3lKslfRe8P/Ptl8edC/Dditx+KGx3hLskLRd86cmmtnPvtNrHXA/Wf8xOb0Fcz7x3s6BHlS8irefYtxKfcdzSe/6xGz8HorK68WLlCoYjDyetLdI9I/gl5lMv+Bhxo/MPo5QvyOlL5B+2zX5Z7wR5Xf3juZyqZfzIfZf7pmnxZ/f/ID7fW/6v6WwpjL3ujL+dHc09LzpHm/Oi57Gkwu/kJnVPIfyS5TxYnRygv176MPnZmF+WUXzV+d/11hGfmPS/rKyXfNZfRf75vmrK/D/T/mjiwkPxGI2MNvN5zh7GrPdjDnvC4fH+yv9rsZDKsBQ9Sn33ml5NHoHxP8rRyHhGdyY9/BH/Xmb/vy7mOrB+S76vkvyn5Eznvyb8uYT9Nya/0/pkext2AvkNyvws55p6gOX5P/vFw418mHvxI/4vMNzdm/+4f3h/zXpnzRTlX9FfJ+aLkXyfverxy8q/3po8Pcu8gf35D/QH8ce+s+xeK+Lj+x+Q9nVybiN9l2pejzy3gZ3A4vy7kvg18lcPn6XBZyft73ufHJj6QV2X0Z5/wd/I7lx5qwTrwBPV38Jeb0H8R+92OfpOfNhaOhpWM/z57qGmeG8mOWvOPZ8gn5zeWKp8c+8y9hPylZqGIs43/jf6+ht/CmfzjSPy+Qq9HKeec2C3oPQQeAX/Ifgt5vsFuxsFC9uc9XwFuCf9E/2h2VZ39no2OHujPucJ9Eh8TP9XnXGFVfLdQbpv3D3ZQEy5iJyexr7eyL8Huvs55ppyjFDdzriTnct6Bu6Mr9wr2065H7lfgD8mTaghL86POLMmTSn5U9v2yD3gIfCr5ITmfVShi7is4HH9zE4fZa0f5dzmf0TT5l+SffPjkv/eg3zr4P4N+f2R3n6HnEvK9IedhyKMT+26Zc4/wLPNPd/LI+eGn8Zv1E+ItWy1+vqXcHf2Xev7k7AOYJ05GfyN0N0weOVxk/O+1G4LPj/P9qdyO320m7yPYy+zk76g/Qbu/8/6vvI1+diC3O/Axze+NyK9rziVmvqC/y71fR3/RZ/T3oXh0KrvfD30F8ru6UMSh8Co4T31FcetLcSX5GS/qfy56R8JJ6GyC/6Mp6BiY+/KuRO8I/jQc5n68q/L+F33rd6ecR6W/5J3mnuLkn+Z+4uTdJg93Of33JL9Z7Cr3EN3qubvUN6a/ZpGbODCUfSRvaW7Ok5TkLzVO3kChiBfABeylAf86Fp1/aL8D/qfR31n00AUW1D/l+YuTT5j1JuN/TC7bmwcbw+QPXah9JXwPVB6Z/BbynMOfF8Gb1S8zXvYBStf/k79ZRX3yOJO/2ZYfHCkudCXvh3I+hr5H8ofd+El95ZwPTF7qldmfJ9/14t2vsB757Ye+7OtvVbJP+GzWZ9HzL3o8RvlP9vEjv6it/3Xkc0PyM8jnOfznPplH2e/P+OgkrnaEuack97ysYM//Fp9XKr9m/CrJw4dLtZ/mvSF+M5udLcVfR/a1oVDEQdnfpt/3zTfD2MGH2YdB1+viz9/izqP5Ls/5EvK+hB1mnSvrW4vQ14ucDuOPndXPo9dT0J/7q3Kv1WTtXiTH8fp7IfmDnp+I747JY2T/l7DHK9lRfeMv1H5Lv4+kt3fgd/g8DX8/FYqYfZxW6quo70h+I9jHe+Tfht/NTZ5nzgtY/xqsv64l+TGPaf8e/tvm3hj4sPo/0JV1gKuM/yb7ORRdbbKvARuhf6F22efN/m7uw9pDf8k73QU2Jb+/8JN9lT+Ve9HvRvb+d/Jwcg6i5D6t3K/1EvvP/VrXs4Oe8DF4fu4Tyv089Pi1cu4nvkrc/zz3cuQcJf5n09/n5PJI7jsh39f9/gc/qm9+WK//k9Ufnzxt2J98zih5vxyqn/nqb2Jvw+F88tsN/1XJ6zHzWhXlsbk/Az+j2fkdcBK5rtbvkMT9kv2n5Lvfmbzmkvtd9vRecV6hiK2VR8T/cv5UPJ+DvtwvOJRf3slPx8NdtM/79pewkPNBxm9GHsmf3VH5tJw/Z4/n5HwVf3om+xfmk7OTx5vvXPaddc6PzE+l99/MYI9L9Tc45z7Qn/y3m8hlGHwh66vi5w3aVci9Wcn/Rc95yZOHkzx/tLiY+7WWkt8m8llt/NxvvLN4Xkn9uOwvwNynnPuTD8R3F/J/Fv+7wzFFKDsH/gKfF6ee0+504z+f+8LIZ0/jNi4UcS/l5F8cSV/9tX+Kf+yo/dnJJ2XnFyQPmH3lPszfYe7LzP2Y2dfJPk875ezvrELXVOOeh76p6DuBP9Vj5xfC0/N9n/PN+F5AHj+xzx76zz7nNiX7mx8XoWwlpI6ymewk94PnXvDzza+5H3wqvrak1zeV98z5GfKqnTxpA7xMvvPx/UTknn7Qvx27O198zz2RuR8y9z68Cd+AB7D/0fq9m71MhM3yfcfeb833kfI87Q/EzwRyrsPPN5DfCyXrPm8mvwd/w+jvaXx8Rg63Zv3M89kHr5ZzDTm/jq7sf39fsv99BfkOht/6/TrymUQelY03iR1fov6tvHexiwPJ63zPTyCvF3I/inIn+qlFLxvI81D8vYT/R/S/t35nxz71n/3Eq+AS/I3yvjcdvTXNG5cb5+nkH9PH17Bb4gD6BhTQD+ew3x3533/4xbn4e1K5Of32JJfcPzVL+9w/lfshcx9k7oesgP+27KYdbA9noS/71TOM8yb6m+g/9zjmXsfc9/gwfMG8WsdzP3ku618T+O9buWc6+yHsO/c9n5Q8r5L7n3/Fz+L8H5nkPeE3+Xq51yz5fMnfS77aTuzwj+xjaD/cvDoSPq//5KfWR9ch5F+J/B8lv+3F26rspiH7O5w8ziGPS/XTkp+dSc6ZT1vlPjzzbebXjVnHQu8T8vMaqF+Mn2O998/D5/vo35l/XAHLk8fB5P9doYgnwzXsoYv2tUr2FwbABerHlfjnAnH678if3h71eyXl3E98Nv9alLxF5WvU74beYfj8BJ/bkUdn8s+5n0X4v5t8biD3Jvn/B8qNcv+R+fWT3JPi/WKC+gP440HwOXz2zv0lxv8+55rovbs4mP+7k32Cp0r2B85mD63YyW/s5znlRvl/QXCH0KH/3Bfwfu4BwV/uD2hA3vcVing/+qflfg3j596emcYfRM4D2dupuV8v69bGf5I9nASHwnri5/7JU02+l9+z/jJR+RX1uR886y9/4u8vuAFei54a9D6NnWzMPpP2x/DXLjD3vzxD/hfRRxv6aZLvkOwP0mszcsl57qH6z32avWDlnOfQ/yj9Zt8u+3jZv5tWKOJn7LOOOHxi8rPZZ+6paIK/O5Kfn3W7kvstRqvPucfcHzYh9wfR3ynGzf99yf+Byb3FOfdzAfsqPf+zlr5zT3rp/egL8z0Fd4cr6fku8j0u+cGwHPnlPv09c48Yez3A79vzt5eSp1xyP/9Ez+eez3zftIAbtLuenG4m31rs8aaS+1Vzr+rW9Pc2+p+C7en3T8+1LRRxLvp3458D9f+ydvvq/yXlE7T/Tlz6Gn4J78v9y1mPofdOcHm+X9l9bXaVcxI/0F+n5OOX3F+be233z3ks8tsf5v/X5f9J5P6A3CeQ+wNy30DuH8j/mcj9A9Xx/Sq5faP/l7M/5PfZyZtVzjmSHfhb7qfM/Qv5/2AnsLfnyP3Z3BOe96Pc/0/ubZRHqY9d5Vxe6f9/iF3+0/+BqIuPU30H51xf4l9vv9fzXM4FJv7VId8X+cUzyjXxVws967Mvlfcw+AT97Z3vSPgl+Tfnz7Pgy+LAT+jId9Nm/JV+P40TDz+jj8Pxs5H9nZT/V6HfV8n/I+2St5c8vuONl3WVYea7u8WfUblHMPMHfeV8Zl385nzmL94H26Ojkvj2C/6SV7AM5r6z3G+W8+dZB7wNH9PFx/xfxR/4XW/4Df5yv8Ux7LorPIj+ch987odP3C0X/8J3zulnvSLrFLkX8d1/uB9xBXoG5n4O5Qm5v4Zf5fxOzvNMyvkFdpHzka9qn/ORY/Pennu6yKlN7m9R7mn8n3OvI/lONZ/XFKfyf0a/Vb+YX/7K/u/j3/XUb0b3E/DtnDdh3y+Ry/zs42afhX4+ST6A+PEgzPm6/D/M5APkHtncH5v72R/hl7PhwfTYK+ebyGcdfEf/D9Dv9oUi3kse88lvS3KpAsfr74Dkv2n3Ncx+78Ul90cuY/dLYe6TrBv74Ff/+//+8Jm8iqroPTTf0fpvyg5zzqj0fFF7/W7CV7vs55DPVHo9g15PoI/l+D8ZP8fA3DczK/7Nf3KfWl/93kA/J7Pn3llHzT1v9P9X7gPMfSDkm/s7aqMn/5ch/6ch/5/h9wK6YP5/UG/+/W/0Dct3pd+z/5L/J7keHSeS76G5fy3nJ2DuZ5iqfTvtcy9H6X0dD7C36TkXCRfi/xrjZX2/P31nff908Tj3iK0tuT9svXj/FHvJvvuW6JtLXvPgftm/THwpFHEY/SZ/MfmM2d/Jvs6u5JL9nWsb/9/65H+ups93+eNKuAq+lfsFzB85p7aT+Jz7lA8W3y9idzmnlvuY25PHQHF+lffI/yT+su/c75X7vnK/10n464juAfSwRvsj/d7ecyvJaXtyXlpyL0/un8n9PIPRfal+r4B1jZ97yWrC/D+Z3E/2N3200m/O4d2V/w+gPDPnGsWPpvl+t893OXpyP/rJyf8itw/p4Qd2MoR8z1CuaJ56yfOfst8exn26UMQRxl+u/8r2nXK/2zdZf8v5IHGpL6zo+W3w352+DyWHI+Av2Q/mb71hf7gAnxej5zn0PQv3yPpr7g+Cl8JvyDf5uVfgO/m5ydftyr7+Vn7Zczk/cma+3+DW+Hsp61vscYl2Byjn/3XluzLfmYfyh3xfZr8h36X5Ts33ac7D/aL/3HOU+41eyb3F7KhP/p8n+8956tUw561zD3pL7XOuOuescy96Zb/fyY+mFqFsAXl08HzygNaW5P/0yHq5eW2See4wfP2Z89bics/k62V/UryZCr/B/6y8PyTfnRzHKfczfgX2/Sa5zEfnLeyrpfrhWVdTvsn4z6Q/8a0/rJ/8NnI/FrblBwexzxXK78Dl8FL2dh//uB/mnHjOhx9FbzlnfjTM+fIt0H07vk7U/zz1j9D3bDg/99mkfcm5jzOz/ky+o9FzB7wdVkX/f3I/GLtfCo8RH47R3yvorGWco9jTDHLrrJz/E/QA+a03H/RCd/6/0Az1LfWfPKH/5v6tnNfzvvpkaV6Q+hr8c9vk3cKL1PfJfSf4qm38T6Jfz+f/fOf/e69jH/8DGyCAG3icdd13+NfT/z/wd2loISop5S1SlFRIRh9lk4zspoREVBTJTMooO2QniUiyR6KMEGnQ0FASJSOrKOF7Xb/X7f65rs/r+nn/c7/O+zzPOY999nn1LF/y//5O2KmAbcsVsKP0xi0LOKRKAbtuW8CpzQpYu14B5+5cwA67FvBV+T+p/3f1Hi79SfMCXle3gC3rF7Cycle1LOC8BgVsIH9nWFZ+GfmN0NG0VgE/2quAi2sX8HO4YPsCrpXfFH/14PXVCvi+/CrKVYbtlP+1aQE3VCzgFOXfgOvl3+/7Uei7Cx7dooBb7FjA7bW3m/SF+PubHiqVFvDZXdDh+/pbFfCn7QpYi366yB9N3lfCd+nhBfV/vkMBj9NuB/gHPTTduoBj4As1CvhzkwJGb/3QF31Gj9vhf6V2foIr9ijgL+j9uHIBX61ewObo2wL/dyg3L3JU/07aW8T+GtPTTPk7qG+D+htJ192zgEdtUcD6NQtYoWwBv9DuvBLlYR94lvZuKVPATlULeBM5PeX/t7KHayoV8Fp4NPoqksNT7OGr3Qo4Vbqv8vtsU8CPpP+QP5Det4R3+649/TxZWsDG9DpB+hL2eSD7bQMPgg+iryf5doNdYS3yu5McnqefnnA/+T/i9zn0/SBdi33uUKGAdWEdOJL+j6ujPPpbii8bxI8B7PouuI4+J5LTTP7yvDixUnxoTu6b2NOfsBr++suvIx58yG5ukV6GvxHkPZK+1/juEnbQJHrDV1nl3qa/50vUzy9vwcf+9PMluTUlN+5ecqLy7dndfjIu095D5JP4/cfuBezKD95Q/hblDoddYXXlz9DuVHS/if8vlP9cv7ArXAxvYz/9+fcAeCf5TIl/NirgtdpryW5/VH8H8WOI74+THsA+rmcX18HL2NX28u9lz7uLW/vhv2Hqp/djYXv2u4vyqwtQcimkppK62unl+4nizgR4CH5ORtc036cf+UD75ckz/cdbvvtQ/gPi0GB8j5Y+mT46s9dD0H8wnMN+rmMf79Lrz/yjlDxvZLeXwlfgS+j/nB33oNdZ5Hg5+fRmr0tgdThB/UvwX08/cRRcn/iEnwlwPGyi/NzSAs6Dc+BF6KuIni3Y6d/4W0FRp/H/+uJ6V/Iv8d065S6HP8NntT+N/ZxAP9ex43Lk+wS9XCqu7C/O1KHH2dopA3vAiuR3oX7nAtgHDuCvN/OXD+lvW3RVUv8k+hpJ7nOlJ7OPx0sLuB05nM9e79F+f/qZRe5nk8/e5FtLvH1Y/iOwJ/3VUH8N9dZX32HoW0N+38Bz4Hb4eAPdU+FG/rkIfW+S6xtwCuyKvhvJ/31yHy79vfj9NPt4UFysLQ5XSv+PniXkOzPxTf3v0Hdt9vQzbI/eV0t9r5/6FN7MPiqRU8aLqxoWsCf+vpHOeLGy78+W3wI/e8Hm8Kb0j+xyPr4+hQ3Q3w3f3eEweA/5f0Jus2AL+Cv5Haq9Q2B98WUVenchr07ixAjx5lp8NBbfy6Cns3IjpTvR5z7sZl/YHn8T06+qfzVM/xq/HEJPxf55IX4vglvT24nss3XihfgwRvo+/M/hj3PhbLgr+m9nDxPUux28W/vHq7ctvi5Xf/+M9/lNQ/gW+Vein0fxNwaOhSeTb5f4B/1swz/PQN/z2j8ZPftpv6f2p6P/UXRXgy/iv6n6XmfXr4nfDZUfoF+4BK5DXzv0P4eu3fH1vHRr9N9pfDMallfuP/S/XH3L4I/s7daMH9G3I9yJPCbx7xLfD8LXHrA++dT0fS24PXyBvAbi+376WSi/Lfoq+H9leKr+eKb6d2SnG8nnP/yjhf79F/Hudv3OaPHqHfXf5P9X0+OL9NcYjsJPN3r8VPze0v+PVd8z2hlFzh+R81bKHer7L6XflO4E//b/52BD8p2svrbwM/wuVf+x7KUO+9+SP48hn/7k24ncqpFjJ/axm/IZ/zWULkc+o+hpCXqe1m8eL380uV8sLs4U5ydofwdxYYnvHtAfHKqePzLPI+/K9PA+e/vE93PgLFhX/cuUu4ocf9Sfz6L/7vrly7UzCP6O35bsZQD5HgSvVL4avs7V7tbSJ2n/cvI8tLSAv5DfB/ynAf+4Ov2C8mPIvyt/rUpP3aQ3aP978kgcfUH6NfroQq/HoSPj1aeV/xX/A9jtJXAb+htDXo+z44HoXEDvh6l3h4yDpRtp/152NxreA4cp/xC6/2KXbSN/9L3DXt6G0+Gzyp9ILsfDE+Dpyh+ceAHbweH4m4XfjvyqFTv5EB/76M+q4f9I6Xr0c5D4cCA8AJ4kfk+n7+bGcY9nfKr9ZvTVkxx21r9lvHoMfu5Uzx3wSuUfVN88drGMPj9jX2PQPQK+lvkY+X1N7jf4fqD0g9InZX2CXE6Rvop9jyenT9A5jn6n8t9Z7OVm5f7DnmYrvw1+t4ZV0b9Z+5+yh2uNe+ZJf8m+xqG3LtwRnkweZxSg5CU4HLamn73J80X17iO9RvvPsutJ8FL1bmJf75HLD+LEO1nno5+si2WdrH76J/FlrXLLyOcZejo783v97iK4GE6nvxvJZVd03yR9uvyrxZPPtPOUfuhj/I9j/0cofyS8Cv9/8rdNsEP6Q/mr/P81er0/4336OUH7A7K+xR5ekn8+envDC2BP9L/PPz7mDzvBGtr/nT9vgFvSz9HkP5+/LoCfoLMs/71aP5J5U9bpviKfo8SF8fSa8dM2GaeVFvAFeC0/mI6/MfiuQU63k8+39P8BexjE/i+Dr+F/M31vgs/T34H8Z7b+6Hr1z5Fuqf6D+dNSdF9Evn3kd0P3+f8i/4r4n0Hv9fH9vnTLxHt6aiH9H3qawf6vYVdTxKth9Hcauqb47nW4q/ZnSk9mp5Ngxh1txdXL6PFMfnMo/R9kPPQH+19knHEE/SzF311wGP6uUP9q338Dv4aDtfOmcrcqVxmOFP8qsacr4KP0fafyU3y/ll28wD5vZn/PJB6Sw2LyOgz9tf1/qfqz3jMb/evpZRrsTC+R/3ryrFVawN+lz5KfdfcHYfH6ezP8/wV/IufL2P18fnmc9utpP/OxXeRPhM3ocXH6D/L+BGZ9Yi3+FpPnBPZ1sXo/I9+Z6PkYPqF/GAB/V9+Z4tRadJfjX3+h+w10Hwfnk39H+mkKy8CLtD8SfdPZ/XPwVPJdwd/Px/cF8F75v6J7JvpeYc/b43836YZwV/ik9uemXvJ5Ba4S/2pnPwC2E2d+Ur4xf96dXH9V39b8axC9Z979hvzbpMvjbwL7riv+H6D+l/C3mtxXiNPLsj9HXk0yL0TPAPmV8VsJzhMHvxff/hKPt2Gve4gXp9FfefFuBrqH+24o/mqjay25ZD9gZ/rpSm612VEn6Uroq0EO2Qe8o2j/r45ydeGOcE/5T7CnjuTwIfq+YZ8PiwcPwW8zX1C+LzuPPa+Vfh19TxetPx9AjgvFoR+0exZ5fif9nvJ30eduvl9G/vewz73o/Qdyuxfui75+6H0pdKt/sfg3WPnf2cnpWafAz9XkcSz7mE3fc9n3zfS2mVyfYV8fZH2DviaIL7Pp9We4Dbo+ZCcz4WHKV9HeTH7+EdzMvp6zvliO/IaiK/PDWeLJ2+LMz3BL35+ovayv3li0vtrK9+vJ4R31bQNrKv8jOneUXoaOixNv+enSrH/T3xztDmKHdfnP+/J3pfdn+ElD6evkdybv7HsV74edi87amQcq34h89hX3WsK9YW/yHyDdQrky6KhO/u3Q2yD9mji2VdH+wD/k+G7WF9R/JHmtZ19HSTeSfwZ5dYKnw8/ib9q9PO2qfx/tvqzeFfS3i/jcAf0Z/8T/JxeNfzJvXfAv89f92VEz9A7OuqV0a/Z/FnoPpqfz5DfIeissW1rAf/j/PuQxGh9V0DtJ/pXiwwZ6ms6Pj8j+J/u7Nf0GPBGdLfD7tXbrwYo5P8Jvm8Av2NcK/BzJ7jfxy41wb/J9Hl8ttVsRbtb+WZmfZX2ZfX3B/5agZwb9bMw+YPpf8Wv+v8w/xpLbY/BReCD+HqfX7KdNRsfHyv/JXr7C57dwIr3fQO7VtF8Vrsr8w/rTEHxlv60W/XeVP55cj5S+Hv/fqe97OFt7Pcm/MXk2gi/AMtr/PutymUfDx9h3Fe1dQb8t9U+16a+m/Fbsdp/sr2v/V99n/L5Y/5Tx+8HobpN9C/1L66yfq29/drCGPh+ln7LsvQ27WkkfXdFfjzwr09938Gh89hYHBtD7HuJDFf+/Bj3N4V6wV+wf/x3Rdwp8GH8v6tfnoqe39GLyOY3dvgtX0c8Jvv9T/ZvhPHSfqnxd7d2M3paJp/TThvzuyXqZ9Fj0jcHPevV8qP77yD/7X+2K9sGy/zUo63fk/i459mG/L5HnAnS1gsPZ71r2UIlex7GTJ9W/B/sZD/9C7z7qP6C0gI/pHxeIu+fl/AZ/aAKbwn3JYzW+/0m+eHms/F3oOecqdraf15n8VqK3snJ/S7cn/8/wdwf77sUeeyv/WvZR4etwpfKj1DcR//dLLyG/uuT/avZ/pBvnfI742jXr+NLDc56E3FaSd/H65SdF6/qzi9b3Bxadu1pPjzl/lfXTP7V/Z9H66e+lBSwvv7f0G8o/HHvktxtgD/nYLlGs5Em4mdzLs8ctYDnYMPGJXy1JP4G/nL9J+2n3CTiIfM5U7ln8D9e/HESeY3Puhv4ST09Q/0R20Q5mfLwv/VRFb/YvJosTP9HvBu2th7/B28lnbfrzxIOcA9P+HN8vFBcm4H8n5Zuj/7ScGyyaP1ZV/+H0ejr7+VV7T2TcaJzTKvFT+To5v8KuG+H/Rfx/S49r4Bh0Pp35mf7+oczX2fca+s36UR3yL+5/Wsgvr9412r1L+b7GjWPFlZb0sTjzCPmt8X101kEzntNuJ3rvDDeh923yG5txIj9ohb6bfX8jfJK8JssfS64z8LEh8yn51Y0btoXbwZOyPkyf76v3LvG5NfleIj7uwC4GSE+R/536JtHz99KfaH+v7LeRyw/iQXX8rtRvd6LHM+B95NeBPczE17Hk2V38ewD9l7Crzb5/k//91+78v6Xv9qO/r7T/A/qakP8m7T+rvYvhZDhE/iDlcv7pMjhS+29qvwH9NCSnyuTTmd18pd1HS9Unf0f2WhduzQ8vpr+ce8o5qJkZp8r/Wvur4Tcw85FZ2v0WHfvS14P4Gy7diZ2/RX+j2O8M/vZeznGp7w/8D856tLhTU/75+Lu1ACXnwrdhKfrLoasE3qLdeujfS393Glwe+uTn3HXOYVeGOX99J/nVhAPJbxw9PsKej4G7saPz0XeOuPE7/3iEn15Ofj39/2x4GPsbwv5m8Lty9FsW7kc+8/njvvBF46m/0X8l/iLnK+Bp2s++WvbZJpBj9tdmo2MP/rjB+etHyG8je6uPziPQf6nvj6TXo+EB2vtH+9fiZyi8Bo5Q/rrMf9Ivss8O6Kos3lSBw5SL/5Qnlw/Ipb/04/j7mj5PpN8ns58k/07+PwoOZOcV1J9xR6OicUDGH3Pxs6s4tD1cmv0JdnRw7pdk/qX9A+hlB3r5XvqdjK/UPx5/4/FXlh0OD3/k/pH4ORy9M+jrCPpbh77b2M9ceruM//RQ/hr2/aj0Y1mnReeh6FtAbxdlnkd/fyp/uPTt6O+A/r+lH8y5ePrNfm72b3drXMBLyLMi/Y+T/lL7lbQzEp/VxJ8e/P0s2BPup/7P0LOHenqjq3nWBflTC3y/I92d/keQywRx52lYWfuZ//WHvYvmg1PpbTq7e1N6ivrvoP9p5HsXebVT/kN0PUGPR6Qe8v+NXhfhe2HWeekv/nYcbMLfu7GPY/Gbc+F7seeZic/4/6O0gFdK78G+q7P3NspP52ed5V9P3x+x4/jbRnquj7/Ryo2Dz9H/buymIWwEP0N/f99fDPvB+fJrZn6pf64hfRn5780OFvGbe9lHxk3xhxmlBYy/xD+2wHc5WBbOor/P1XM/vY7QnwzI+KMAJYPhifTXEX5OXnuSY3/pHdlhOeuvw9nHXdr/SP33sZfz5N+t3kflN/8X/3iAvazx/VRyaMx+nyC/uvq9hegro55h9Jf10A8jL/PrrI8uV98n7O6wnO9nH7ew7/38f5j0UPXfJE7m3EY3cq6s/l/wUYb+K8rvyz4fyn00dFwE35Cfccns3HOIndFvefUPQ0dF6Z78px7//kf7J2S/Juf/5K9V/h7p43O+1njyIHbfJvMr/FWin5wT7a5/maj8KeSd/dra+JpftL83NOsu6L+Bvu4xXsh5uFJ0V9J+7tVMZufF92tW09eJOWdMnouzv0Hv2V9rIH23dhqo70v13577gPz7GOXaw2Ph9ehbzI6ao+cS/GR+eB559YIb+dVR2t+ZXBKH3oNj1NuXX9ViH4lHj8gfW7TuPK5o/XkBuy7ht7/CrdlPWfU1xNcd0p+j/8Hcf+GHb8DJ5NONf1+Y87Xyt/X/N+lnXObVuX9Afs9q9xZyGQq3zH0fdPaFj+jPJ6Jvb3adcWFV9vai78eS+8vwE3a8G309Rz65Z/Rv94v6qj/3jHK/6GvlVsOe9PUy/g7j733YZV/4Hv1dTl7dsn+unW8y/kB3dfUcKh6fmPsd4mLxOeR/0H1QxiFwAnm9rP06+L8a39fCluT/E3ker1w3/Ut7+q+KviqwCzn8rfylyj+Ar4E51wXbsbejcv4UrsP//ujLvGzf0Jv7YeSWc44di843vkxfd/CzxuJjzuc/JX8p+l4Wnz7P+Br92WfPvvogcfN+dn0ffCT7bfz7KHRX8f/sZ12GvlL+9aX6c++1D9xW+7+h+23tN1F/0+zD5r6xeHwb+Wbe8Ay/fzjnc/H/Pbt5Gn4DD8n6HLupAD/i54fKn5XzSrn3zL4zv95Z+7lH+17WC3K/uwAlW+a8ru8qkdP19PNazs/AZrnfi64u5FsOfTvmXGrOPZJj1n+Wkdcq9pZ1nGZF6zc519ue3eW8b875Zv27vbiW9e+shw/kL9+wv8xXd5TfTPpLftsYvWfLX8CvFpUWsKz06+R7gnqPYkdHw6bKH4DujG9awx7KJy49LQ4Xx6fMTzMvbeP/mZ/eTj7F5/tz7n8jeqbmXj//HCM+H535hLhzVM7ZyX+PvmbADZnPoOMS/voqOQyU/pH/VhS3fpQ/Rz3Pqz/3/3cqegcg9/8bibcP5n4i+XVU/ip8d8s9Afzv4P8POD+ScWrxfn4/dnQJvi/KPj39Vc/6U+7JlBbwNvWdw1+/Klqn6JN9CvLOusYw9G2Rflt/9Qa9r5XOOG6o//fmj9dJj9T+pqxnaHcX6VW5V6adyCXnASKfi7R3a9aXyGEw/9uV/NOPdiot4Mrm/0t/6M45woxHl9PrY+ziC+kauc+lXO5lPEX+GYf2J8eLYT/YRfm+9PJy9lXEu2e1/5u48jtcD3vkfid55F5Af/Kdv/v/1ttfO69If6N81j1extd/4DPar6S+CuRXWfoI/HXWz7wMR8Fzsj5C7020uwe8Rvvn8Ic7co61tIA38o/Y7bbwbO23UL599ufhW/z1cH4yKef5Ye47/4X+H8TP3GsrQx4d0T9U3OrF70+CE/R/S9G9ALaIvtWf8dnDub+tnQvRn3tXOX+ee7y5vzsn8zH+UFt86cb/P6Cvx7N/Lr2U/HZlH33x3Yz8p6FvSO5/afd0+BT/WMnuv4I91D+ffGv6fio91pL+VH76pZX/0j9dqP1h/OaWnBdXvoX0Mei+OfcwMv8gly3giJy7he/j83jjmt/INe935N5zzhkX33/unvNo9HCR/N+yP4ueiexyEfxFOznPuUPsNPtxOT9GL7+xm1/hyeTfilyas4+9YF98ZV/kZ+0OYeeDyLcJvY3N/rjxz2Dyq6H9mnA7uBZ/59BXxh0Zh2T88Sa9R//pf3N/Ov137OYsmPvX17GXITAb6Seg7wZ6rya+zlT/00XvOxxE3nnnoXj+lXcd2hS973CVdo/VTofcv2Z/67X7O5yovRX4b4HexvBb5bvQT84P5dzQ5JxPCn/iw+nwVFiFfLal/xXoqSG9QP7Z7OlCeukhvU7715J/JbglbJv+ib5zDrQfXEa+VxSgZAT8Dh6UeYP6esHeuS+Z90fYY85J/ggPld9Kfs5n3A4Xks9p7OpUmHH2DeT/Av/NvfLcM8/98o/V/4I4OJ0eH6T/3uLGefzkxsw35V+n3twzL76/Pq4AJYYZJYZrJU30Q2+xr2nwTPQ0w38P8W8Cvivw/4fxdz555pztFuqdq//JfY3v8LW+6P7GKPo8VHy4W7qq/PuL1m+znvst+5jG3muhb6p0HfbRhbxGsuuu0mcoXws92R8or/w+9Hsi/zw++2/pH8n/FHTfoP2t2P01WT9lT73YRc4X3ZN92qJ7gSeRU+47Zv8o++vZR8r+Ufabb6C37Edn//mejDfwn/tGuV+U/dzs82Z9rVS9G/jt8swb1HMA+eV+xLLst4kjuR9RE181YO7L5378S/q9ftJbqXeM9Hrj6GboOy7rc/qJbYvmD5lPZP7wEr2+AHP/czL5dFbP1vxsDT7qoz/3g7MPkHvCuR+8Z/Z72G3r0gIeEf9hXy3EhxX4/4V9VuE3K8m3lPw2KL8N+W4Fb0Rfe/SNQvfBeT8g5+vUfyr6rkfXydKL+GdX85Z3tHt/5jPougBdj7KbPtKd2M+/3Ws6g/7+yX6u9tN/NsBfP3ZxLVwFz5PfM+eLMs6SvoD8u6a/005H3y3HX841fMf/qkj3Un4h+d1Avgtyj1F+3hcbUfTO2Efyt879nZzbgXNyfpM9fge/z35p5velBcy7EAOkjyC/nuyne+5twq1zHzrz69yLgHtn34g9nEKf19PfU8ofTN95x+dA9vCp/89GT86JZH+0Ff4PV+8u8Dz+dC/6W7Krsvqv6eQ7OPKT/0viCzu7Wn7ug72ae9CwBztbJS6M137e7+mfdx/Sb0Ds/ff9qeyfZ78p++jZPx9K/r3473nwEfLLfaLcL8r6au4XfaTdLXLvgp3drvwScn06+04535DzpvZb8l5ixi15/zLnqnLOKu9L5XxV/D9+f0qR/w8yHjmbYLKevlk677k9jL9Nxe+9FaDkSng2zP3z0dLd4euwmvYbaucfdtUm5x+kn8n7m7mvp7+alP1KmLiZOLpn1ieK/G9tkf/twD9642sDfusof7l4ewUcDNfwr6H6o2HwetiWfDqR72nwEeVHab8ivjbj90z8neL/jchjILyWvJ7Fd9Z/Qtfp5PAb+t71/1q+7yXdKvMr7eSecO4B5v7fl0X3P3MfNPc/f8m7YOJXPXFkrvrvyv1+dBaf795Veyvwdyr6fhEHvipFf+7FwNPxl7j2t++L49u+uYebeMufntE/Vtfu7cZxrfMOnP8voZfcT18GK7DfU/jrt/qdtXC9+Ufed30g43rYIfc38DuaXO6DO5JfRXJ7OOMeuDHvD5Dv6rzPI77slPMR7Hpc5nXSw8kn8SrvSGW/KPtD15NvTeVvTT+i/S3oI/cLbhcfK+DvjKJzhzmHmPOHu5JzeXx0J/97su7MP1uTQ3fp1bmfVICSIZB6S/bJPJrfnYr+0+AX5NsNXdm3qY2Phup/VDw4lNzbofNv8p1MHnvn3YicgySfktyHNG7IPfhByteh/+1hbdhW+Vbsegk69s46X1H/trion0v/dj555hxXW3hW9gHRM4Ue/8o8iHyGZb0r5yPodzD9zRNPP8u5SvKckftxeZ8y6zjksY7/TMZX3lcelH1o8hlmPJh3YIrff8l7v2XUn/eA8/7vOPIsPl+Xc3c/5jyiuLkz+/oz50eyz6/8dtLf5b5L4nLGS+R/MPnk3YdqeedHfMw7EDewn4n8tj397pXzpuLLf8Td9dLt5a/R3l/4WKGe38hvPXvPuypPwxnk3zHrmuQ4Mucb8f8WvdRFZz04Xf1lSguYcf54/pPx/Sr1jWdXo8ihNfuqgt8r+dee9PVxzk+o7xX2NV97U3LvyIJG9gMWsbusP+U919v5bWvpHtkf8/+x5FZP+mj11GEPGSfknu9uWR9gF1fS/zR4AX9qoV/dKede6KsLvDzvq+fdo+xzSR+t/vvUO5T8rss9iqzLwIq5f4++5uQ3qAAl38P9xeGcm5sCR8KW5Pmn9rMP+Kr0JPaxKO8i0W/uyed+/Dj2+hi8Rv7FuW/O/2fyv6ulB2p/hHK5Z5z3VfKe28nKtRM3LuAH9eXnfPYfRfd/cj77l9zHyb0f7bys/W3pe8vcL2OfR7D/heJReVgBvk8uOVeUc0Y5L5/zRdn32AVfF+aeMfv9JveLYfbT6jf73//nu9VF+eO1/0TO2aP/yqL98x9gDXZ7pvafYY8/wlPZ61L8X8outoKz2McS+avItx89XkLOF5Bvn6JzfzkHmPnYHPiH+r4WPxeir5Q/9zLuayD9CfmuK3pX9ie4lH9vK301OzqBn7dTf4UivccOov9rcw+itIBj4Vz5eV/5ItgX5n3lo8n7GNgedlS+MjvK/d3c58393UbiYu4tXwmnio8r2fuf6D8o93/k16L3jdKTc74l7zvn/fO8W0ePH9FL98zPyK+L9ILcn0bfu8pdir7lud/i/xfBp4xHjtT+IeTdQP0t8zsT6n8pvwsAfxAHXpM/kLw7w66wO/k10N7H5DwLTkn/p90P2Nce7PTrovOnJ8Ld2dM77O8xejtBO+fnviX+xvGn4/nXOvhP1on5S+YlF/CzzFty/zf3fvN7DLn/e1RpAZdr/2jpCeYnGU+01d6r2jsBf+fi9w38nZP7UeRzGns8UPnROV9Av8+zh9wTy/2w99A3lz7zjus86bdzf1B/UfxuXtbH835q3k0dIv7n/dS8z5ZxWt5py/jsEvraT7t5p+dw+qlKrrn3OiLvfaBvsvpfUW/Ow89ifyejq4byeW8278u+Tf4/yb4NHpH5Nvv5MucG+eET5H+V9m+kl2n0lPhbUf3z9Atd2Vfi93fiQ94Z2ARLyLe06L3HnAvL++Q90fO8+p+Dub++UPxYlHG6ePA1+dQuLWDeaXw87zmh78GcG2Jn88SnR3J+14Qv94USFxfIn4m+DtKnq2+37E+y93Ny7oB/tqLfu/L7GuzjXPGgu/a+R/9X6DpD+pj0b8q9n3eJ2dcp8iuwp9E5R6f+bvLzeyQPsMMTpf/K+Sz8LYZP+f/36Mv70nlXOu+b5X3pI+kz+3zRZ3X5WY/eTC5Zr876dN5feIKdd2M/C+l3YX5/JeeuYdW8T4afUXn/A/81cj5EfDy3aJ0o60PHF93Pzb2T3M/N/DXz1ksz7pV/Jf3m3OsA9eT3DXJ/PffWz8s+Gjs7DN95B+jQ7DPn/iX5Hk6uzaW3xF/eQ0pcz7tIK8m/gvrKZ18cf49l/4U834VPwX9yf5jdDEB31kuzPjoNX1XVXw1Wxd9RRfcWby26v7gV/W8Ns//bi/8s5J85Fz0U3TkfnXd7865G8fu9OW/XVX7O42U96i3xbT/xshW8QjvRXwt0daGn4ehvwo7Sj6b/nKf9SeLRev5d/PsCt7KnKv6/Mz13z/iR/9Wk1/yOUH5XaIxyQ/FVw/j2lRb/S1/oyu8rhb6XxbOJ2r2J/i9nP7tkv7HF/5++t/nFfPhZ5gPqn6JfiR3Wp59b6fdAelhOrh/pf34n/9KMy5V/H96R9xbobx28L+sd6L9K+ZxzH0OPr6H/Lu1nnvWo9Pqszxadv8l5nOLzNzl3U0E652+aozfvbLeAeV877yOcx4/yTkLeR+ifexvoHiad9432y/tf/Gx4+i/05F24a3LvMOeH8F9Z+UrwT3Y6jH4e568HwUfgA/Jz/7GKcrmH0S7l8beUHeQ+d+5v18v7ErknoJ4VyrfP+x7s4+GcB5d/ofw98Hcu+zpMfjP+tydsnvt5+L+c/3Rg19mvfZ7+897jVDgE5vcXnuRXeZ9kEhyv/oz/M+7vSY/Vcp8r7/nQX33pB9h37tflXl32Y3K/rp1yddHdUrqB+peQ72K4NT1XZgfnksc5eU9N+zdp/2H19c37bfTzBf6PQddCWB99y+S/R155l/zdvEOJ/r+K9q2yj5X9q8n8NvtW2cfK/tWanNvA3zfSlbR/pHYPh0fAJ9nfa0Xzv8wHM/97gl2Oh49nPKt8D3Z3OD1Pwv/9eV/D93XIfUDmR+zrHv7xrXL3Sr+Wc534fADeD7vK71GA/55fmwpraz9yjJx7pP8jp8g3ch1CzjkXezO5Tsr+S8YL2l9ZWsAvYd5B+5v8muC7n/JttD8YXXnv/qnEt+hD/R3yrnLOecHmOX+Dj3/Uf3LeS5C/Hf/Mu1ebpd/iH/ujpw37vgBdDeAIcvmZns8gn0P8PwcCuqDrsIwv1Xex8csP9J3zu3nfpWLR+mulovXXvEf7Isx7tXmf9rasH9JjObjO/1vhL7+vkd/baKMfOxX9gzO+gOv0U33ofw28EL6DvtvUcyu8A9blf5siR3F7o/Q88iihr9x7XA3PZz9Zz98o/me9/03rD7l//VXeOc9+KfvfL+ci5NcRvy5FX+7fncp/cw8v48tFeRcg8ww4Wv4ocp0Vv8Jf7pc240eJMy/nvDT+JqPvGfhs7i8pP6zo/Ylz1P8IOeWdir2NXx6nz2GxwwKUzIHY++/v+52LnubqyTh3Sc7XZt82vzMpnd+XXC6dc/wrMk8gn7Hk/gRcJx7eyn7y7vCj9NuRnx6j/Jz8bk76r7wDTL+515jfbSi+3/gbedYWt6aytxXkW41cc28p95hyf+kt/dpw/rBd5uH4v4g9rIDtye8h8v3b90N9311+U/m5flzduGG7nK/IeW8Ky/r4VUXr412L1tezXpP1mV7a75r1B+km7P9c8p+q3ZviZxl/qLdq3jshn/7Sw8m7ae7Pou+OnIvwXT84TX178f8u6J1OEJvhgeR1L7r2zDs3mR/i73r2Njzn8GAb9tPE+PT1vIMq3Un9O4mTmQcWz/+m4yPnB9vi70D/71dawJqwlH0dh767xZs9YU14rPq3UG5HmHcs/pbfmf19wD4eZ2cL8v5Uzidpd1HRe9at+OWQnNdR38Xsr3XeN/D/KVkPzfuNRfeKcs8o94s25l0d+CPsr728J5D37/Meft6/f50c8z7yVPLN+8jZN92n6J3k7J9+Q/+rYVl8PKb8JPXtqf7JWS9h/2dkfJR3veC+5JP1nebknnWeW/B/X87rwXth45x/Qk/ibuJw4u9V7LF87vXDMujL+eMXi84h5/zxXkW/TxB+8jsFp6vvAnr5TLoP+eVd2uW5h1X0Pu3e5N8n53aky+V+gHbyzu4Uerhfft7nuQ92K3qf9ZT8Lg2/L35f+SDtNub35bR/r/LLtZ/3O/eBB+f8s/4iv5+0qfj3k8itXM4H5n1YOJt/LSs6x5XzWxuVP1P5Q6TzXuE97P1emHek2+Z8eH6PA76j/FD1z9f+9uy4I/utAa/J+465H5PfO6C/vFt2nPiX98ueY795zzv3VnKPJe9711TvVAbcX7x/iH2PJKfq7PgV8nlSfvrt/I578e+3Z1ujH71xt5J32U9H5UbkdypzD5T8ct7ot6LzmS9qf1PGzb7bnN/zUz73fyeIr0/BzujbRbulOV9a9L7nq+hejt6vpC/VfhVya8pOm8BtfZ/3P/P7ETnHcAz9bE58yvtoyi+nnx/xk3uwq9hX7te+xQ6nwZyTfUX5fpm3Enx/6Vfl53epR/Lv4t+n/rTovN2xWYcmv/8Ds6J6rXicdd159FfTHjfwX6NmDa4GpV+jqUKiZCbSgK4mMlbKWDLligxRCmkwu6JMoUTSYAqFZKqkzISMXRm6qDQ8az3f1/tZ6/mudb//vNc+++y9P/PZZ5/P3t+rdiz5v79LKxXwYjhznwL+q0IBK8K55Qu4q/oJpQX8eOcCNlR+uG0Bz61fwIVNCziugfq9Clhdv5Pgq/p/ds8C3l6rgMvQ+RG8ok0BD6lbwMPhUnT8tW8B21cpYAc4t2YB+7cu4H7oGbGLfpsVsK7+98NPu3rKsD/668IF5DFIvzfh/yzl+erruf9m9b+RS33jdyKv3bR7r04BV1Uu4OqqBayovy74WrBTAY9Vnq6+164F7AFPhBcYfxB9X6D9bOPsrv1ZLQv4x94F/AD9B2h/Z9kC3lbOOOS7RH+7kWc/ch5UWsBz9FfF9Q34r5iy8Xs3LOA+5NIaHqz9J+j9HFasXsBD1NdF34no69akgKv0s6hMAc+FF8EVrQr4ReMCNvpHAe9D/+vss3eNAk7Cbxf2OpH9LCTvffUzV/li9A1Hdzt6nrZDAU+n/6sKUPIoPAtuZt8LjXecdt/h/2nyOwjdd8G7Yan21/O3qfzmb+X56q/V/23sahr8A//H84eK8Dj4K/ndj7/r0XcDPBx/r9LLV/TUWvl87U9wvZHrh7OHi8ivPvpOhNXoYSf9H+P+luxrKXtcqP4GfO/jvp2VT6a/09nLGbADPZaon0pvz7GDP6qhT/1ice1n1/vx34/4UYn2jWoXcLn7XkPfteT1I/wWvks/E8W9yXASfIf8ujcq4Hno78bum/HfLfy1ArpWoWcC+e5Inw3hCfA9/N1IHmPgNNhdfXn6+JEdlFNujf8njPul+seUlxn/JPxWFffbal8V/bvwp9WlBfybnoez/6riySPi7Fvqt5DvbPxcQf//gkeQ71Lj31yxgKuU26L/HeUF9Hwo/+iMvov448XwMNiffFobvw1sBccYvzO7qI7vzuyjkfH/IO9LyOEyeBj+HsL3LqUFbAzHaT8X3aPgksQD8j/G/cfzi6/J51b0HYW+nfA9EG7S/+no9Rgpqcm+2ul/JP18kucwfAL9jYxbNnwoD9X+WPHsIH59OHo/F58St9fT+3fs/zD28SS7mgU/p59/Gf9R5S78e4Y4s0l9Y3HpQrhEvNoJfYviz3Ax7Kz+LHpdxg8HKX+IvuH8oXXoUu5J/n/w6zvJ53x0fK3/Da7/Aiuxj8biw1nsZy/1X5H/Vv1/Rl/Po2+68ruxL/J4GE4wn+in/Un8eiD5PkiOK7Xvjd66cCH5rcb/kdrdo5+m5HMa/1mQ+QxswD4m47+ReJj4fkNRfG9LnvvByuy3u/Gn84c/YQ9+8i/9n6Lckp21c98Drr+Mr174ulL5Q/XHGvfb2IXyE/xnSZFcTlBeZ/w8H6rq73P1eT7cXVrANfzjYc+D48SnUtdXiTszC1CyWjnz6a3mRXvpP/PrcuzyV/SfjI791a/S/8ewFTvruEcBm7GXmuLIQP38m322Z48Hwo7wncRPeu1N/r+h90D21cm4p8FNpQVcgL5l+psnLsyF9xo/9lGVXcQeYx+/0Xc3fN+r/Iz6AeTzDbtdx3/KGv9q/Z+t/yGwCf3XZPcT3Vdb+U79TyO3GXA8P61fFB8OYD8blGvS48/89gvlG/HRAUYfX8bu2cFR/Li8cffDXyfYLvNP/f5t/GfgDPxNV38S3Kb/w9D5X/Kaapzd9X8H+1+K33fgm7Cn/nvnfYo991Tuw35eZI9zxI+n4XP6v9u4V8AR8Af9v1v0fpb3tbyfjTXuOHgjXGH8z43/PVyPvt7s71PjTab/5eR+JPq+Er9HiXOt0H+C8Yeat7RhVw8rP8T/zzHuhdrdoZ86xl/Jryrwn/3o5TL87yGeLC4t4L/R3z3vT8b7kV6uhIej/yP+8Qn8GM4mnwnuP46dvscOD0P/ocrH8bvf4QrP+wcKUMK8SlSX7GL8auRyAPlWyHuY8U9jb1fR74L4m/nFXPFjAXwWvs3/dkL3UO0e1f9Y+sl7Rd4zpha9X1Qi93rk+pd4N13/b4lHc9nF++S9UfzbQXytBEej43j8n4b/0+GZ8EX9/4n+VeTwR95v6f81/NZB5zbt7qSfs8ntbno8V7kF/q4RXwbg4yz01dH++jy34Sh4Ofqz3lQOVoXbsn7Cft+CS+Gnxt+uv5WwHHt+T/8dyfMgeBacpP7U6Etc68TQxsA98t6Dv92Va9D/lfxvJrpmwTPRdx17eYf894ATyfm1zD+Nf4X7d3T9cfKdCd9hJ8eSTz3j7Qw7kcPj/Hc99i6BY+GZ9P8F//tU3F6tPEV5N/Lqgu9R7PAh/tOfPc2i99rs5F7yedz85im43P2Njd+f3b2e9wf6W4S/xeT+JlwED8XfWvrr1LyAJ+nvTePvjP66sDY6jmSf39HfVdpNEXdW0M/f4tnp+KvBv/qgL+tBrYy/Hv13428QvZTLOgYcYvzVxv8AroLD2OfkApR8DX+Bo4yz2fjjSwu4SXkX/e/KjsbCvuxsBDm0F1C3wWXmX+ewg2dgb/cfojwy9u/6FHIaqXwf/lejc4P49zvckfwqi5uVyX+x+gPJf77r8+BH7GSZ9qfkfQCeBLPeORg9+/O7rGP9rn0P+t4RHf9UvlT7X8jrfXyPU+6D/yEFKJkCF8DrtP+aPrfiawu8O+tX/OwneCEsr//V7GU3eq0Jj877H72+jq4qyqX0P8L4U/DXRH870M+r+tsGt8NR2s9m76/h/0BxaBr+5vGLkeQ7X/kj/F3N71Zq9wF8W/zoJq50hxXEj1b478u/HzLvehDupX6VeHibcS7V/hj0Hc1ulpLDHaUF7E9+N6FnHBwLp6PvLPY7CH6m/Vj8DSOXibAK3Fv7Ld6TbiDPG3cr4GjlRvT9LWwIb0R/3l9n6LdsUH0L+vmT/N8mxwvJZwy5bPBcuU55jufTSP5yDdyJnXyV9xPzyR/wv8R9r5Ffnut5zj+lfZ7vJdE7ureapw3i37/idx2/PBPe6/o2/ZYx/hbl38n3NM+jBZ4r75DHPuR7gLhcTtwoC0/Af0f1vUoL+AT+vkB/b+PWdd+j2r9B/0+JF120X4O+rO93Zp9Vs87s+XW/9iew13x3aQ87oD/rclmnu4V+31D/Ofv4g9+3IefjybGE/S/jR+WVx+OvObm1gDvQ1yj6He35NQTfY5SvIb/N+lun//Hi24Pan1s0f7wHZv54jnbryP0neI/2n5H/9exqtvEW4f/n0gL+7r5H8r6m/TfoXWycd/MdZ6//v9+MsyrzD/1n/aM8vW6h75n0Oyvfm+AQ+DT9/gc/b2adznh/GX8f4+0OPzVeTf53Grt5hh3sx39vy/cT/vSn52879Q3Q14h9PMIuhpD/jspf0/vB7GsrXJjnJ3rLigNl4A36X5/vRfDn6Av/a8Wll+HArIdr/wJ7+V/vIRfg6zl0D9bP3Myf0f+nOPCy+65V3zvfHWBL+Jj6E/l1M/rdhJ4rxO1R/OE3/vUeeZay34fotwG57MDeXsB/M/p4VxyYSI/r2edu7Olmz91Z5Pip9q/hP+vbLyvvWfT8OxB2hOfg72nyGcmO7iH/qupPNm/41X2/wZvxu3NpAefQy7PwH+g7kDwOYScHw/PZVy/4XZ5j8EjjX2qct9FRUfko9cvpsxf617L3k/Dfkd7awgPhJP5bR7va8ALyn6d9f/rqS/73oP8h9j+DPdRwXxv8r1T/OHu8ml7eUu7KvxMvKqBrq/KF5LfA9Sb85jnlNfifS+/Pwqxn9UZ/J+3ezXcWeCH+Xye/veEy9vwE+3uKvTwJnzHOevRVIK8d8lwl/x/Y/wP6vcPz5ux8X8B/5gffZV6pXBd91ZW/MT87UJxsYvyR2l0FH4Qtk19A7rX4fx3YU/u8986Dxe+/9fO9Sr9b6Hk8+U8m3ybieimcChvz1zr6yXfWReiLfCKXacqRzzL2VNH4y5VnsK/r2dMNiaP0NDPfh9Cb7wL5TpDvA2+KP2X59X/005f+GpJXI9gKLsn8x3jJi+ibOJb5U/wTfg/LkP8PxlvJbp/O+pT6nXKdXXaANxm/Hvpn6mcGrKx93te/ZT95n8/7+1JyOYo8DhfvOylvJ79tcAr/uZ5/3EMeQ+PnyvvpP+9NeY96qej96Wz2fBQ7bw8bkt8S/taaHJri92f2s5x9v+6+P8n/layvomcSnAgrxv5LC3iiuLYGPXto38b8bG+4LzwW/RO12wKfZF8/009Nfl8d1oAb1F9DHtfCqxNn9T+raN70QdH86X38rIx/k0dv9V3JqxvsAXfI92f21BDuArcnz4s8FtP7zcq70G/WzbOOvrW0gFk/35m978uus041h/5m0lfeE9d5vs1w/SPy/hjOI79rya8CfpMXNVS7pXm+s+/kWfWCb6r/irx3y3c49l8x/YtL7cX1S4x/NPpHaX8DHFBawE/1/x25jVUe43k5Tvlh8jjXOL+Rw9XkXzPzG1gbXsQ+Yp+P5P2JnOuz3zXGW4ufofR0svY9yKMrud8Ny+Hv7QKUaFYyHo7N+hx+k6dyP3t4zfjz2OvZ8HaY99s/zWvGoPvirB+hY6b+7hfHEs9+x08P8k3+xglwI/v7hHw/hc3FqQfz/UhcSf5K8lmSv/K28Tqzoz3Zya/ad2AXB8Jh0Yf42A5fT9DPP/T/ovZr9fc9/AFOJd8T0Jt17Rs9Zz7W/2P6W2rc54yzlXx2cH/8sC78jPzzfj7c/Dzv6Xk/P871lvR7vPJ15JPncT/z1v/APK/zPM7zeQT9VqPfj41Xz/1Tso6Jv5bi6iHizknG72X8VeQ1Xz/5/vk++UY+PdHROu8/+j9ePHzPfV2TZ6r/9fwj7/X3oq+r+j/Iu4Z2z4kPc7N+gJ4WsCWsrP0t7KqWfk/M+gH6Fihn3j2FnDbQzxP8aRz7LhW/L4P10H8wPddNvmne78wHphv/IuOMQN8r5J55+ELlIckfpo8L4UPw48T30gKOwveTyuv4Zzd+cxzsDvcW/9op3+b5djs8g3x/wNeh5PQn+XRDX1PxYAq6zoOfZ/6W7170l/yk140/Qv018Df6nqL/Ifyunut1YSXyPT7PZ+13UW5KPtXFh3w3Weu+qdrvnu/19DSEHmaLD3+w6wu1O065Qr4PaNeQXudlHpj8IfyWwlPRtxp/44rW97fwk6zv31GAkk8hNkpuMf4a440QFy7Uz+XsrTW6W8G94P7so3i+l3ngO/jvTO8DxYHkN9bC3zb+VYbdblHumPxl/OQBd794+VLR/PA5dpZ5YuaHV+JjUlGe6ij8n6bfhvBUmPy5t9F1NDvtDB/Db77XbUg+mfvz/e4MfE+Hr8LXMr/nP0PZ5afiQhnrw33Qm7iaODss+cXs7zHvbUPwf4r6Uvo4kR9sZn+nqs930a7/4/voWPodB2+KvtF/GfqPcf18BnZy5tfsdrr4Nx72Ez8r4acfO7yT/g+lvxb42Z9eurj/X+r/ovfbyeEP5f7G78LejoUv6f8s9rmZvPuTyyblger7Jn8XztJPJ/x3FTf3ZhfJb36rKH+0Ydbl1c9Rf4Xn3RTPpc+TR67/W8gveSlfwerktzp2S04fKpdB/8XJr0P38/j/nn7/pu/NcAs8KM8H8nwCvga35/sLuXxclEf7H/J/lDy/Yhe/wivwH3uIfdxSZB//THyl9+OUV+Av6wGryW0JO2yM/lqJr+i6hTx+FL824fcPeB17finzY/ScIC6uNS/a6noF7yMDyH0+rI6+XlnXILfxxj85eSr0+Qv8jB2MxP9k/P6dPDrlD8mvPb89BPbQz5363yv5c+ysKjuvnfxn9E6AP7OTEvS/QC5/omszfFn7TuLSEbCKOPSK+j7kvxn+xzjn0s+d+DqVXPI9YzD93CMufoP+tvhrjP/Xza8Gw+Fwrv6bRz7srmXyF5M/z27e138b8hlK/wMkjmc94L9wY9H70avw1Lyfqb+Dvx9KPnPEgZX0m3XbPrAyOb2v/ZHs5xT2M1L9JvVX+B7bjb664+vKfP/RbkDWaenndPe9kPd+cm1NPvficzR5XgYXwPvUv0Fe+T6Q7wX5PvCQ5899MOv0dejvUveXYVft1NdSfye7mF1awNuVe+Gvv/YT+OMCOFz9Yfi7jB1dCs9R34J8Tiaf5sqXG/9k+jsJ9oNPZH1UXLq/aB/KwOw/wM8z7Gs/9AzSvg651FJfEx6Q9Q3zskbiz5OZXytfw95asL9DksfK3l5MfiYsR/8TfR/ahbzmkeNCemyZ+KGfb8lnIPt7GP0L0DMbPq2/18l3MnnfDR/AfwX+tZd+k0ddnD99pv767/j/03s9+Vwn/q8lp+34n588f/ZSI/sOyKm8+7Jeegx59kg/ec/z3LgWzi0t4FL099df8kSX6eda/ccev4EDyTn2mfzPrGPN8/xJ/ufLxvsBH5Pp8Rvyr5HvRq53zHpg5q/6f5WczqCnI7J+xZ6Hks+tsHPs0/OjNqwFT9R/3ouSX1azKL8s+bF3kesH8Fz1D7DHEfRwFRwkfpxWWsDLXU++XcPsYyWvN4w7Hn3f6j/7ltqhb0DWD9Df2fO7jXHWZj1J+/s9j57KOgE6ducfCzJfgLfH7shvbvZl4HMfmP0b/2UPf8AH2dEI498t/v+RvAx0Ps0+DmBnq+F3Wa8zv1vh/mPR/wn/HYq+luxhN9gm8SfzF/LZmDwC2Eh97LOn67HT2Od69riW3L6Bv6P/MvpokP269PSs+pv5TVN0NYM7k39b9C3H3/H89M+i/Nb26Eyea/Jbn8j3GTgDDtZ/N3b1Mroeod+js75An5uMMyH7H+l3Lbq+hd/AM/TfL/stPCdOUV5C/83x0xJuJL+l9Pu98b6EX8CHjX8Xu/wR/f3p+Tn+s1S/p7P7PuzsOPQNUJ+8iXJF+RPVlP9235vaj1RffXf3Z7+n507yx+7R7kV4N8z85VD2NIsfrITbxIfkzSaP9jV66KH+a/5wMP+YCufRX/Jqr2Z/xfm115rvDINz4Dnab6P/XUsL+Aj+59Ff1smL18+30Hf21TVgV4d6DpyL/jLstR86f6DHt5OfmrwPceqDPEe1j13FzrZnf3y+H6k/Hv9L0VGZ/cT/4netleN/z6BrNrwLfmn8D7RbBWto37hof3M3elxYWsBbyT/5xsk/7s3e6mb9nH2Pxl8l5ffxd3j2c5P7QPPbFa5fx76O5Vf9PP+eRH9D9y3Tvnm+e+h/d/q/it1enXUC/L2n3+Q3JN8h+Q2Zj1WAWY97K/mt6G2c9WN4h/HL8dvKsArcrP1f7Gk4vWSfd/Z3L/C8fA4+D2/Tfk5pATPvyTwo85/l9LdO/VT6qcU+zqaPc+Dw5LMY/x3+dBusDM/Q/2HkdgR8PfNs8htZgJKNsC9/GZHvxehtl++Mrv/u+ZB8xudh8h2T3ziYvFqju7Ly/pmf0tsZcIL+B6Lf8CU/mgdRT8lg9D/AnrIvrb3ywOz/yL4o2CH2qf88T/N8/bbo+TpIf9l3l3142X/3AgI/1+/O5NSIfF7nHx+473zlC2J/2iXP/Rpy6Mt/dnC9Bbsuzz465/2Zvm5E3yjta5BP5v+JG4kjiR8HiJ8/imOfJ16R3z6Zz8A9YEf07UwvyYtLnlzy4+qgr3bWheFq9H2mvy/gx/B84z+Dr6fhFfi7g3yXojf7qGrC48m3I3r60Vvep2e4/iJ6kkfzEvxB/7+4/w3yeRM2J/+38T9T/Cyn/UT0r+KP58Mn4Wjty7OLg9jBwTkHgPzyXSzrHPfD5Kc9h57f0Zk86Bn0sww9K+Bg8muOv5zrsA7+AB+nn9uSd8svnoabzJ8+ZI8f5bsYrKb/5Ksmf3X/ovzVfc2nDoDjxI8l2V/m/mNdz37+g/B3u36He/6OFid3y/yNPcSuz1Vfku9X7PZRfHYkn+70ekGp+ry34K8060/KJ7oveeT143/GW4/OAcp/Z3919h1ql++8+b57q+dJ3ssmZH81/vYUb1rB0exjT/affZR5j+yO3zruOzb5KuQ3Vfm37M8i/wFF60SPRX/8Ne8/G4vff4q+S+c7db5PH0Ou283rE/BX679v8gvZ9wPwdvaR/RHZF9G/aH/Ey+jtatwqnkO3kU/yBvvQT03lL9Q/wi5u1m9H4zXIPmv67/A/9k9l39Vv5sUnFe2/qoa+6vBidDbP/g/X28MH6akH+8l5F5/CA9zXk3zz3XsDuy7+/j0efR1gZfQtSb46XKj9S5mvFa2fH1q0jp7188lF+44rKr+s/aDEfe2SD5X8pw7iWeZX8+Ei/F1coj2cDVvp/w3z3ofgEngq+gYrz6C3JvS5yPgPoGcq/Bf9PKs+52/l3K0xRedvlWZfsP5rKOd8pkru/zR5fOLDkeifVlrAndFVkT5OzvlAWVdMnhPM+Uv/Jr8byXkH411i/Jn03hYup//kx03gFxXhR+hspn32UyRv+aycs4b/xfytCbt9gd3XFl9eoc8/xZfu7PgY/VfR740w89mjcz6JuLfd9T7K79PPJejpIg5uSB5KzmdBz2XZx4iOQ/T/CH/aEyaf7Rv018v+IHiV8Rbwrx7eyzpkHQW+of4K/Lagn5vY10/oeyn7/ZP/r1wv+S3Zf04+p8EvPZ9/z/ln6Mg8Y0XOxxGnasDO4tgc9tYk6wL67UjO3xl/X3azp/nFuOybVj/N9Qfh1NyH/+x/zL7HZ4r2P36Jv7z3nUu+y7XvQy7bs5+VPOvT/6f5HlRawOL1u5wHVY2d3qv9evRn/b9O8jrI5yXXz+Rfw9nxMH7yAvk/Fnvh12Pc/6jn4wr+eKD77lH/Bvqzn347v1uRPFjtj8rzgF0czI7m0u9B6m/Szwr1b+Ev6yhb4TD+X48em9JHM3g/bE2PL+Y9SLvjlVfl/ILSAl5gvIrK+6H/iuQjwGvgs+JX15xbl3UV8v8ZTjNv2MP4v7CT6uiYoL/O+e4lDrxOvv3dfzm7OlP5GvQnvmX/2Hx+kP1jT6PrAvr7Rfkt9Ccfvzu7G4neDew38fnf7CNxOvF5RNG6SPIFcr5Wzg0a+T/ODxrv+mzyqqX8uPGfy3sxP2uFzxbkMy/8wpnGvwB/S7X7HpbX/hz0VeNfVeAFyX/jf8nbSB5HzktJ/saz6O2C/s3iUs2cU0Bf2XefffjZf/8V+7+YfvpkH6zxL8TPMDgUTmOfv5DPIbA7fa7P+id5385+9meHWTfoxl87Zd0bTjD+dnbRjNwmKPfFf/Itk385NedIkH9j9T+RR3lxqDv6s5/+SXLLfvvsrx9WgJJZ8FvYgn8/Th9Z/x2Ev0XKyWvsiM/i/MbExQcTX4ri40U5L1P8eiX7XbQ/Fz2/wPfg9dmXzS7Pi10mfznnA7lvX3LYTg45z/VS+piF/jdyToz6u8WLO+FdcDb5TSGHnKuVc7ZyvtbB+C6ffZrs8C79H8Zu/pv9IzkvAP3fk8t3Wb/OeTz6b+r+0/TTnv2PYR95ruZ8gZ3g89pvxs9GuAnuR/45j7YzPIh8lmZ/clH/dYr6b8pfMo9rrtwF/x/xx8wDVyt3VR//GU1P1djjRPUPu76GfL+CC7M+rN/4Rfwk/tGnKD8t+WrJT1uM7kVwMfv5j/Fvwu9CeDrsRv7xuxlwJuyqfgN7+CDnv6K/TM4fEfdmwb7oz/vDP9zfyLylrvKH4nfyB/IenDyCQ/H/TuIOP7mX/supT97ZdPJbbvwP8/2Bvz5JL0dkfVf9DHQ9rp/Zyvuj79vkXdHjd/R9qvG30cee7Lou+V2b9T923y55jvAR9WPxt1tpAZNfMkj/Y/F9K7tszg9Pop8f6GUQLPWcqpPvl8mrgkPhP7M/j9yruh49R7+L0NMG3dknfkD2L9DXDdrPUr6Jf+bc5m/F5aV5n8dfJfL7b+Yf5FUGf+eQ50jjXguTp7WEXOZEjrAM/hvpt0FpARsqP0/+2e88GU6Cq5Ifk/mouPY2XJT8APXz4Nv57oe+i9h7tcQB9viR+odzjhicBifrfx16f4YfwQH5fsKe1xl3k3KJ/rMevifMennWx5/kN0/BWXCnrL96Lo32XnUXeT9Jv3ujdx/YJvkV+f6uv43kuhlenfV38ag2vJS+E6+fKco7Sh5S8o+OzrlYsC37aZq8KXGpedE63LfJhyDPvWHOjzyHfH4y7jo4gHx7kM8a/jgs+8xyXiz5TOIPjY2f8wWnoeNO9H5HbrXJ+6rkT+g/5+9eWnT+7oDkT9J/xayn5Pye7H9C9xh8H0J+iW834O975TbqT1ZOnv5L8Av2eRZ7yDk2ddC/L/vby/3L0LkctsVfV/wP9/y6kPzaq09+5G/ixGHKy+mntrhUC/Ynn3+iP/txvmJPF8CV8CLy+pmc8ny+w/iXoPff/OYv+lto/F3E/eTNfZ/8AOO/Qq/LXH8PDsv8B18VxK3h7CLz++yn6pVzG4vOlzxW+86wC7ycfea9dfT/eH+toZxzoL6C842f8xpzfuN56nN+YyXyvQ5eCw/P+eM5DyLnuPHL9e7Lvse/6eNQ8sm+yCHkPZj829NXJ/1fXPR+Xh+9fdD/T3Yxmv8NQkczONr4j4gfZfnJUcm70t/K7GuDP7HvLfymIvqWe37uWJQf9SvM/p+n8n3O8yTPl6VFz5cd9FsJjuOPDei/l357wpX8aRf1m9B/Ef2t519HqR9egP93jmXx+ZVTi9bHPuTnWR/7lZ6O1n/VrMfjf3DOC3X9L/a5j/rTxM0z4Dz1/dRvzHMNHpN8B+Pf5vrl7ORy5Sne3/K9K/sYi/cvfkgfhxv3qPiP+vra3YfvCvq7GH1/uX4trCcePMM+Pye37L/Lfrzsv8u56DnvJuejZ37Wiz1k/+yJymejb0PmT5mHGufGzG9dfxw+Bqvw31b4S/5i8hmTv3gi/e6BvpvQd5jrXfjJE/znN35dlt/n3Oz58Hy4Fv/5TvWifrNelPWh5HWON38qzu8syx9ybv8m8hmR8xH0d5/+/4Lv0V/Oc7kYNsHHjvk/k6LzYcrABeg5PfvxPDfOUP46+vdc+Qx+DGtnf2HOJ2C3NfI+rv1n7Crr8k+z36zPJ78reV2PJZ83+df4+gxfyTfI+/9g9J6W88m134v85uVcG+PMVz5S/Zl5H2f3/ZU76D/PreRZ91F+E32Ho3uk+HaE8dfSTxf6PICcOiu/lv13+FmU9dWi8w9/oscf4cM5Ly7x1XgvsKP58BP29QX59yT/LpmPm19dzW8amJfke0vbvJ+wl/j3HBj/fpX8T8j+JvJ4vGh/7N34zz7Z7I/dB1/1jfuxciP8NSP3JrApPMPzMecD7QN3yfuB9jfbH5N8qnvpbVbOUyh6f32g6P01//fxYuSc8y7yfpvv0eLOefAb/d+nvwfFm2nwFvT8nPN2YAtYPvtD9HcRPbQm/+wX2yvnXsMvzI/X6D/vx3WTV+C+wbE/etmaPHnlh+Lf7CX7pH/M/pOcH0Ae8d9Hivy3LHrKwVXqb9b/AeLjfuy2rn7aix8T2cVD7Ph58qyY+JD3VnZ2Lj7LZr9raQHbJs8GP0vV30fek3IurPFqk0/2TeRc7eyfyPnaU8WDC/NdOOfQaF8bvU2Nc5D7L0v+A3m8ie+sA7WI/vnn1qwb6Cfrl8n/LCNu1M76pOv19dsu/zPEnm9EX9ZHsi4ysGh9ZEr+V4qdt8p5GfSfvODkCe+inPzgfUsLuDdsDWuKD79mX55xKmZ/KvqGZf9x/mcg51Vo/xk+89zN/z1crJz/Z8hzZIt5+mTlfA/PuUnHKV+p/7H0mXMt8538KvUVi77/5JzfFvT7ZM4nhHvTXy3621Xc/Ibc9qP/RtlfSV+3J6+maH1xf/wuy7kROcdK/RHkWSH58+z8PPI9q+j85JynnPOT32X/z+a7Z54v2ud7Vs4dyzlkOX+sB/v9Lec0kcOO+G9CD/lfmOxLin/thv5ntc862Uvkn31x2Se3Fn/ZH1eFPKvCnM822vj753tq0TrfNvPvX+lzZ3h05nfs5dmifWnZp5b9aXuQZ77f7w7z/X6z8eZlX5hyb/SdZ9zq2lWDy1zvR+/rsi7Hnk7Vvrx4diUsC9/J/iF+9QB8l/0PId/MV0/HX/YrzWOf9bOPDN0jlWepv0B5qPohcA66vyfPNVnngP/N/hj2NAKWFd+2ZH7NHvaBO4kn09F/pOv7s4/G6s/P91l85VzH4v8n25pzK+Df8Ev07eF5c1DOefKcW6c+609Zd3q5aP0p61cnGH9+zgPK+gj/6QSPgnfRX/LRG/CD+jD56W3xvaq0gB/AkZ6vk4rWj/sljxl9yWvJd9l8p8332VPyvRRfG/P9hPzniJtd6aEK+3sF/ds8l6/nt7/mfHHjX1KUF5I8keSHlGNH041fSbmB/ieS76Sck4vexeLLrejLOUrF5ycdga62OUeePJui7wP2fR673hMdA4y3hjxPEhfW5vsN+6hXWsB3jfto8i1i/+4/Q3/98/8Q/GuW8X9iF9XR0c71O4ryd5PPm/zdU7I+h7/RWYdTn3Nb8l5yE1zh+mX5fyf6Kad8Hn6boeM5cesY7e9wPf9nmP83fDr7YfB3BL9YxL/O9xzaNfkv9FENVsr/GJLfeQUoGQGXwrb0N5K+uhtnHfncqv0pRfuass8p+5tyHmDOB7w6+XzoO6q0gF2TZx87V/9j0bnMOac55zO/4f6HtN/Efw5Df/bjZ3/+h+7L/vwx4snY5L/AnfG3d/Kw6W8IfFs/O5JLE3hc8r2L9o9k38h0mP0jK5WprcTj6f/9n+rR/PUO/XdVnsP+vsk5yujeBruR3+X0cgv7GQ/zP2An6/efcDR9/xt9/3D/1qL8qu7ZN1S07yX7YHpl/1XR+fI5jyDny/cs+l+H+uSb/3s4nL5zfnr2Ea3T/21F/2uU/znK/xvtl/PA0FUJJt/4JvUN2Ecb/U9ivy/RZ2X6+CnrMNmfl/3K/K+Zck/jX5rz32Db5IGp7ydejeQXV8HK7HNNEb3Jl77H/CvnF2V9NuuFOc9oHL+7OecCGe9E9nkw/o427kb0H6P9rvl+UFrAfH/dpv0811u4/gs+B6I/3z/y3aNV0feP/P9e/ndvhH7y/3v5Lp33sB74fdD4XyZfHn4Ob9U+/3uR7x9r8v8o+Dsy5+uIv8thveSX0XfPnLOh/FnkS+/3w/tg0zwf2PEKuDL/R4P/O/M+lHmz8rX6z//udMk+Arg3/vO/jbXwWaUUv8afn/0v+f9c8umQ/Tn4z3vcMPLO+b+NxY+89+U84Jz/2xO/1+f8Hdg3+2+zPyf7Q5QnGD95z/ehszj/+S/y3gi75Hur8afgvys76gJL1ef/jOrjI/Pq88X3rdr/RH4r8/0M/QPxm/+jzv8l5P2nK34fgF3gedlfWvT/TaNynqHx++T8xeyTyP69zG+L/p/7XuPn/7nf5F+r9HMG/xuV/aHmPfOy/g9bkk/2u2X/29dF+9++Em8GZ57PPj/Lfv+i/w/I/7k1Jb/kTR0Dx8A26PtYvP4EVs//B+P/IHLLuUAdlb/LPlP0bRcnl+V9Oecrk0ff0gKWZL0i+VPk3sQ8fhX7KUHfYvI9NOdqK5+W8x9y7qN2OWezvfqzdfcO3AAXizOT878E/8O+sr6Yc7By/lVD/tHTeCNz7n3+Zxz/tZN3Cw+ix6v4Q97Ti9/ff4X5v+Xs03sx/yfr+fh/AD1Ab214nHXdefTWQ/8/8E/aN5V2Sp9SlpQlslUUcWshsqeFkK2yRpYbhSjaRFKyK9naqBTFbV8i+06RJVKSJRX9zvldj6dzvtc5rn+eZ655z8xrnZn3zGvm/VnFkv//+wB+CNvvWcCOZQt4WuUCnrtVAftL7yndBp7s+ZeaFvCW6gVcXaaAN8HP4awdClivsfLbFvDP3Qs4qLSA28LGzQq4cI8C9qpawJ+qoXvrAn60awGnoeOIcgX8BXYvj44KnkfnnG0K2E37H9cv4Cdws/o6ty7gDeh5uF4Bq3vuEfS9rJ1X4W/ovGO3Ao7cvoATClCyHj5ft4AVyGW4dq6BV7cp4NvoXwCfghvV/2LNAr6l3Rfp7eFWBWxA36sqFfAH2BT/A2sUcBa5zoSvKf8afe8Nb4Wd2M9G9B9G7puk7yOPt8ntQLgMriK/P9lHO+V2YB+/qP8rdvc/7baH8/C/VLs3am+i9DX014q+G9QqYD34mPbnNSzgfPgknIz/iaUFHMkujqSfW9jfIPIfDBtpvwZ6utHzjsrPwP/N6B+MnxfxWSJdif5fo4/b+MEkOAP9J5Ff3SYF3J+9HUK/pzQo4B7k+6nna8Z+Uw7fG9B5R8sCbt6ugOUaFbA8fJR+rvN8t9ICHgFvUf/H/G4SO5xNH43oZ4jya/jVz+gYQP7vkeds8jwQnq38E57fFf7Kfn7G/9lVCjiD3Jbzj3Xyt/J8U3rdp3kBe9BP5NtB/g/kdbT2r5VfAd5KXkepf736f4P96ecG9e+Jn/Pw+QXsyG7maLee8l+ovz75Xka/9bW/NfrPVn+J8jvT/06wGfvahVzKk8sesC76R+lvKvh/BDt/Xv0t8LMjPIIeh8lv5f9dYXl6WqX+L/E5wv83wBvZ1051CtiP3y5mP7/KP4t/nAkHwLHy72Cvt6HrRnK8l/xuJb/17LAtPzyDHz5DPk/BvfSXb9L/evQ9hr5x2j+XfPv4/31y6yt9LPoGaOd87f4lv4H/7/b/PfBr/Xc9+Venv4O/w73xdVoBSubD0bAF+c9G1178ZI70GeTTlVz2h7PY08/434XdNTTeN4Az4PeeH0YPbUoLOB7/vdhVA+3/F1aWfzG97Q+H0N9C+e3Yez39agt07oD+U8mhH0x/eBr7/Fv/9DQ/fMQ4eq38muq9ULnz4Xf4vxdf09jxdFhG+7PJ4Tg4Bg4k/6P5cyd2fxCchr+h6HqSXltKb6/+g/nDSnpbwT5uVP8C8j2H3a5iXyer/zT0DIHPwTuVH46fR+nxS/SWlz+T/t8vLeDf+sdF8i8j38thC3T+gP799Ef7wtHkey36Wmt3N9gKnmV8aMoPTuUfb5HPNf4fpd2H+OnM2gWcpf4ORfOGd+F/0deIfsuxgzqxM/nfk38Nch+tne3V/wy77cIuF0k/yL7+oI9LlR8Cp8sfZtx8gF3eHz2rfy76M+/IPCTzjyn6rSna+YU8Kqr/ZPx9jb4T8HeO/qs5fr7CZwX2cF/6T/UuY19vwcvUv4K99KTf3Y0DF6D/ae219lxf+t2Vf71NXpdo9yJYnX1V4C/HKz+ktIDTlb8i8x92uroAJfv7fyN8D/4Fh6m/n/HvWXLoK32d+qvQzyByHgh3J59x8h8hv7Hk1RD/B2jvAfo6suj9pav2usNusKL2v8TXB+GP/DZpvxb5TPT/b/T8Ff5+yfwC7kcf99F/U3LdDZ2l0gcoP5o++qj3VfodQf/VlauBvmrSn6j/Of64mN0/Az+W34UcGpNjFfLpapy4GL0t+f+9+D2b/49gjx/Q34nSz5DP2+x/Lvt8Aq7N+wV6lsE3YGvyb678zQUo+QG2yLhgPtAMnz8rf4D2O5P7OPRWxUfm4a+R19b8IO+fl5P/Puqbx69v1N6u7Ks+vhfDBvh/WX5V4+cZ9HMa/b0kfzR6xsCB+KiN3gekn9LuPdIP0l/G7XZwJnt5Gf9701dbuA9sT/4fGb9Oz7wE1kffa/Rfkn5Veqn6R/O3uui7TvpE9L1vPnGMdnch7/bKnxF7LS3gVHK6j/ynKH82fY1ER1/ld9dvnwEraf8849eJ6N3RuHmy9G/q/8n/09Axh372xv88evkTPkkvp2j/UH5zAr3cRg5z1X8Me1/Or4+VPkn9B2Z+hb9n2fW26n8BvUeh60XpgeQ7XnsTtP84v+2E/4/Jb4R6P5Fejb4J/P0z2Eh/cIXyGwpQ8l84DV6O3j3Y26HqHcPfKvHfM/XL9fjRAOl95F9ArseT6+ai+fmh9J1+rYv0vcr/Rv7p136Rvkd+M/RVM++qCr+ED7H388kx/d47/GMOff3JTtL/vSd/I7muRd8W6cHan0Bvv9H/rdKnkn9xv9RSOv3WVei7GN5qfGrDPrJ+8Bf8G56n/c/Vt4ZcV5HPUva3F30Mw//V8Anl/yKnjuTekd7/UP4X9rge/gqPRV/eV4+EPeDF7Lc7vdXWf+4L71a+p+ePTv9WgJKjpCuz24xj0d9P/t/lX8at6rCa+cRr+vdTtf+F9hfSZ++0D9eRz+36nW1gbdiTfuuS72b1b4Qv4/9Mej0bDoAVtX+A9tehvyp7nCm/eZ6n3/rSn9FPKX0fRo/vktMI6b7Gq1Pgq/gfjv4R/PpEdrtJ+nX8Tyst4DL+8TZ8GH9/qPd8iJySF9TfkzxOYNdvof8I+fsbnw6i1/2k++P/D+NFA/3oh+Q1x/phTfWWh7VgTf67Tns3oaOxfrSj+rdX78743gXOV34KvdwJp8bO0F9Vv5D+oyZ6f9G/pv95mh88q/1f5W/v+Yn8ehKcnfVb9pX3iE/JOe8P9cirPuyknZ+VH8hu9uIHbWA59F+k/T31Ry3xMVT5bwvwj15V/49+tyGvJuTwpPK7sJ8X6DXzv6VF879K9PW3/6tIv5b1H/3NvOgF9sJ/JYRNp99Wym+r/g76gaX6iaulr5ffmL/0g4/pV0bI34O8nyD/ofz/Qvq7IO+rnnta+gzlq7Ov0fzrWfI+Xf55yu2afkJ6K/mLyLNdaQEPkd6D/O/C11T4I6xB7nWMj4drt7b0B+Q7NeOZfv9O6afV30d/WJXcq8Hj5G8mt1708BF7681/7mGXd8N74RPKt2SPo+Ep/ON98v2BPk6EJ8Ge7K0KfV6G76Fwa+1cX1rAD/nVx7Aa+dbyXE24DZyY8ZccR7HPq/H3Cvkdy956wmPgmfgfQl+D0XGJ9Jf8a6z641hLlb9d+cnsYQo8Lusb2m/PP3amt4e0cxH5fU5ebejpd/K6KnxLnwsXwbzf3qG/O0M9R6tnoHZ7ov+C+BX5t2APVdn1evQ/RM8DyHdP5d5W7jHpXcjnHvXM1A/WMX9ZRT7N+GMpu2kuPZ5+n9b+E3Ap/ET720mfQK+3kH8r/I+V3odf19HOhejrja4nyPMh4+75cC359Mf3GulNef/w/2w4B1ZH30z+NgvOhi/Kn8w/74QnZz+XfLp5/pusz+gHmsvvSJ6dyO1guFL9Len9KHoYRf8l+O5Kb8PZQw/tP5x9udICvgDPgzuwzw+0fxf7+Czv3+z7c/L6An4GtyG/j+ltMP3cwT/2kt/V/28aH96Gh8e/yONX/rMGdpU/X31bYMaph7K+SO7XwOvhWPxlX+sP42vx/lbWfyuXFnCG/rmT/BPUt5Bce3quIflcQy95Dyie/79KL5nfZ76f+X1Nzz9H/tWl12d+y/7rwSfYx7vmX0PRdRl8B39/kM9v9HkEvFD58omfYF+dYBn21VM/2Z/cFumHTpW+QvnypQWsBCvAgfIfIs/f6fUK6Zvopyv7OYheu2W/if3fWYCSU9DTL3ThN+tHe8I28GX8/yr9J+zDfp9G32D6eB8+Bq+XX4W8Ep+wDF6v/oboXZ7+Xf3b6f9W0f9TsDf51VB/d+2Ng23U96r0FfxnmH5vF+lxyl+Y8V4/epH0wD3+Lz9XsM+W0svgewUomQ2RXXKl57MelPWhd4vWh/qxqz7wBPQdxT9uLy3gW/Q+Xvk36L+Tch3g//C5PUL6F/Xni+FZ2X9gDxknl3h/m8Z/TlNvxsmHyelB+Xvq788gt7PgBPzta/7YR//dQ/0j0H935of64Xqef5f8sp/XxXMD8D8U/QvIZar56SVwPf2ulm6on7pG+nn0/aqd9fATfvwje++l3T+MQz0yf1X+HfJ5G74bfaBvC3p3zLwCZl5fQXvlYebzj2v/OO2diP7EE6yn34xbGcdOUm/Gr/3V92/j4DOwhvwVcLH/h5P/MnqbKN2I/tuziw6weeaf+tem6E1cT+J8Et9TVb+cOLLi+LFT8XcGPZ8ifXzij/A9Hx6G7+PIv5x2K8JK8KP03+T7FbtYrP4y+JtFHjeTx2vSs8i/CbpKYVNYMf6Lrknwo+y3o3NwAUrmwYvgKeTXB119YRX4Pf/JulvW4c4ix6y/ldHfrvF/a/1DT/z3J//V/h+beS7+E0YyB34IT46d0tMusLf/35Ve4fk7YOLhRsHW/KUV3BPegb7oY1HWxflBH/w9zO4amc9dhZ83xC+96PmV+revYb/sHyj3gXo+DNJfGXqKXnenx+i7Crl1Q/dw7W8muM38IXEG/bTXSvsXkNdL+BvJvg7Kuhr9jeC3M7Q/Hl2l+pfEJSVO6Sv1d5Eew28PgFvI79/W3abBzuqvov8+Fl3Pso/y+Fqkv9qIziXyM37uWjSOrsJHxsmMn8y65Af597PHndj3EvJtgL9u6HlRPR2U26m0gDPRt2v2H6T35L8ti+LGEkeW+LEv6S9xY4kjS/xY38xn0Lkj+veWfwm+B8D58EnyH4CuLfBd9TRgP7Pxd1Peo6RfJ6jO7Km3cXcuOjO+H1NawMSvHiv9ReIztHdJ3tPZ8RD2P0d72RdqjY5F5H8FeXbhN+20P0z+NfzkBvPqMdI/oi/v+wv46YvscxX+2pPvJny2k/5MfqPENbPf7aQz/xzLLsbAKezjGPWtYFfL4RfwnOw/5b0aJt5hEvnURv9t/O8QfDxOvys8/zXsT883sL+vpKvKrwx/J5/P1Jf1/b7w97z/kNdB9HMI7KD9Werrgd+f6bmq8of4/zA4kh5fwl/WC94wL51E38PQ30B/tQ4mnuYYekh8wlr2lziFxCf8mnz91NrSAk7W/qXk+iq+Xgmf8u/G37f6n6PYb2/5D+JrJrtpjY/Wka/0Gnr/hXw2sa/x8v9SzxY4PvMLdLfXP56ZOG7tH8Hea+hXjpL+LfFF4Yt8XjIufsb+sv9zonZPip4Sv6s/fCXjeOIc0HcLf7w/7xfSo5S/RrnDyfFgcnwL/dPRtx7dT8Pvlc88ALn/zBNeZQ+PF80LdpbOPGoxvFL+JDhX+0fJ3wAPkz+VvDbid8C/9J/tM69kjyPhJPa/A701g4PY29iM/+SyVdZNyeuEyFd/OAHeCierP/POz7LvXDT/vIw+lqBrnfRM9R+s/22I3wZwZuJPsm6m/k/oZw39jFdfSfwXPo+/Ieyyu/65B2wpP/FjiRu7TzrxYxdJXwxX0kMn+fXVVw/WLC3g4ZGP/yvBCvBV9Cdu+CeYeONy6FvLr7fXv5+gf7+cPPdlN3+nfyLPt8hxk/IZJyYXjQ8Dcl4i8Un+r0r+iZ9K3NSv7CfxU3lvynvUm9J5f7oNXW/Ceuy7lPzKsretYDnYXP230fdEeHviHdC3u3anwFrs/KGcL6DXFfqHUdkvop9H2euT5HYi/QzUP5ZLPCl5/w9eh/7E8ye+vzZMfH/fxOXA6uxznvxV9PI9bEA+n5DDEUX79o3oIfv3D+P78ay/JT6CfO5Wbpnn7pGuFf8kn8xzEsea+U3ictbRa3F8Tr3SAs5gJ3NzXkP7ed97GeZ9MO9/byi/A7vaop4T1P9p+hf4OdyL/LP+1ox/VpWuonz2rbOP3THr/dk/ot/EpyceJvEvnT2/L79/kv52Tnwhv3kKHkxvvdWfeK3Eb5XiM/FbOX8wMpjzYOhvgY7GcFno1P5k/z+Prt7ye/n/cfXNhJ94biH9TMVfE3LIe8hI9fcnz6r6hb3Y8Xfoewvf3+Y5/jGLfTaO3cImiePI/NPzt8NbYAv1/1e/cRV8HZ7OzkcZbz+D6+FS9ef9+VH4SOZ/3p+nJL6SXX+X8YF9rS8t4C/wC/QfpP7O+pOp8FD4g/KJa56v3dXkN5X/v0RPe8Cz6G8Ke12T+Zp+Ifu3k3J+hz+MQl979tWafU0gp7GwnPXHKfKv5G8H5nyYfmIU+d/E7q/V7s3SdeRvSHwF3CfnsMinSvwSbg1rK/9T4nfJP3GIK/B3t+df0i8the3YV9ZPcz5iH+NDzkd0Uu8B6Mr63Kl5/yPXhkXz++PYYd7r8p43A715v7vQc23pazo/virnO/jNdHrPe9aizB/Y60j1DiPHxuS3RLnL2cUVsBp76YXuk+FqWAHfj2pvPDtqjt6W6FvIPn/RL/SUvivxZfiqmHMF9HEe+r7B33L1r5Rum/Vx9nlA1kfhG3k/SXxt4gdh+s/v+c138Ft4v/yc53qCnHLeK+e7SvF/CZyh/vOVPyXnh+mhv/SpCahB3x+wMf5e0H9OYR+T4Vj2VZZ9Ncx+T/bh2Ucv+edpJutDH8NWiW/BT/Yhyqvn+8Q/6q8n8Is/pXP+Zlz2xcmnHqxLvyPJpRa+bqDHfcgn76Ud9Rs3sc/O6J+JnquVvxSdx6Av6+ZZRz+B/O/T/lPs+cHEn0ov0D9m3++ynA8o2v+bje8ZsQvYFv/r0HV5+k1YL+83+Hm8tIDV9YfL1H8Xv6+jX60Nf0D/JPZ8O7wDXkE+l+PreHyVQW/m9b30Nz3MP/cpmsfvRl/v0OsG8hic8aXo/TXvs1MzvkpPMW4lHqEL+hsXjcv7suOMz/uR3078bF/pPfHXEz1r6Gcovzma/L7E993ksG/O4yc+jb5OThysdj5O/0o+n2Z/UnoN+d3i/03898DEB/j/DPb8Gj+4lvyH4P90//fi34l//BD9Leh7XmkBm0ufpvzNnp+inlHqaUo+FZXLPnjx/vc8cjsVnYOUX2t+fEbiKsjlD/K9DH3P0dvz8HX9/jPa3wtd5ch3W/65d+Lz2P8S9lNZekPsx3z+lqJzwEuyPobe5YkjzDki7V+v3cSRVWQvR6o/58e7Fp0jz/nxLon/4JdZZ2iI/n87V3wQfIP/9EBXW3R+nP3ZxI0mjpX8PpI/owAlIyB1lTxFf4cWxe3vnPdufneB9p7X71yNjnfI51N6fYB8psEl6n+dvBL3MUh6g/w72eO38Kq8L8o/hxxuQdeN8OvE32j/GHocpv4T0Ddbu6P5zdTEccoflHN5cD1cQE99tL+aXbU1juyu/Vrqu5c/15S+UP2/ZX6Aju55D2M/WY+7AH4E98/5C/qtTq9H6h82sK96RfHbFeCOOd/HL7+BL6KjDvomkuekxPnhryP+TmIXZfG1O/n8jN+O6Dka9tBfXpZ93sS/weNhu8SXe75J4iqzfqT8Su2VwC3+n88vTlfuNJjxdyW7uDHrSfxjGXyE/K9LvwqPwOej8rP/NyrnAaSz/5d9voe1m/3ALv5vk3tR6H1P6Sszf8h5xZw7g7vJP54drmaHOb9ztv7jvpxPyL5nxo3EUyk3HP3DIk98XEfe69Tbv7SAn2Z/hj+OhoP4wRvkk/N5OZfXNvsF7G9v9T3i/7bSozL+o3MQHAzvz/wDne3RvSv7PCDx1ORVTn7irK/Lvi66E5fdPPv8+LiQHV0Eq+U9I+ev1HssbJ84A36Zfd3D0JX7KHL/RM+ifdRzzU/OgW3U24RdZB1+e+m899XxfEN4Cvl8xl4noP/WxLnkfBw5nAkHwN30L6ex+znouw29L/s/50ESN5M4msTP5FzbLdn3htOMm5OMHxXodSq++rKv5ez7PHxfTh6VpavQR95P876a99NLPT8U1lbu6Zy34nc5B1l8/rEb+6mG3iOkx+V+hdybw44ONj8uzT4IuvK+tTL7KeorSx7l0s+Rc29+eSs6sz85AVbL+RbyakXPC4veb/8sLWAZdjKUPC/F37vSR6v3Ac9PZJ8r/P8d/B6uZh9TpCfByfBY5S8032nGHy6SHk5+Of94KL5jLzn/eGXGbfIrPj+/KueR2M8P0ocrvxU5T4vdaeeQnC9O3ETiy3P/hP8T97kQvkC/f2t/H+Pp8+x4d+nO7H8Df38r9xBINyb/JvjrRX8HseeN9Jt4/8f5W84D9JV/sfI5t5T14LPU/wV/zD1RX0rXob/sr2Zfdbei/dXca5Fx5ij8n0O+ie9OXPebpQVMfHdtepmn3rNyXiH7k9q/HZ8PSZ8vP+cEcm4g5wmOzLlY/B4Pa/HPL9jfWuPXJHgHPDDvzwUoWQknwk74a8Kejk7csfo7kN9oftU+cR45f6v9/6L7YPbXlzzH8ZOZ5Hq8/qOD/8/P+Rv9+Ufqf0D+4+jfxG6Wsdfp6PyQ/IdLnwdfoP/sT/1Gnt+i8xu4JXEG5FwZZj08699jyPNh9M2Al5Pff0oLeFbi1NH/K/q3Ul8ZWBbezL8SR1QcX/QoOhOXlDilnN9IfNI5nl8EL4dt1J91q6xjNYJZv1pAn0/CBvT1RuLzKv1fPnKcJvSX14/nnEcjeFfev4vuHzgCDjDf2p/ct+M3DeHNOZ9NT009V7z+OZzfZf9xEn/K/mM5dK8lv1dg7pXZgv7cb9GDveTei27af5R9dZXePeu/nk+cyfO5v0995dCzmd7+gh3lb2L/G+B2iRPO+V98HZm4Mu+Xp2f9ln9M186Vyl0Lc7/L03AxfAD9Q8nnEph7XqbJ3wOdf6J7A7yCITyH3gfZzTS4Lfn3zXo4e22U8U89iX9I3MOBuY+Nfl9IPDT8Bb6C/y30OF19BxnffoHlsm5Pf2Wlryefn7PfBFvg/xzpxOclLu+xovi84eh+FmYcr8CR62TeRm814WNZ36b3b/lJ7jPJ/SXTlP83PSe+InEVDaQTXzEGv13gQvZbnn7asqvO5NNG+uy8f2TdR/s1PPd73g/Q+4p+v6d0A+0nLjlxNsXxNaPlZx0gcTqJz1mk3R/ZW3d8jFF/zr939n/ms2Plt0dXO3iWfu5Z+bf7f1Ludcs9Fuz/y6z/8uufjOM3oLuz5w+Hy7KezD4monukecydsBlGd6fPV/H5OtxL/gL1nqXeQzMe08+MxIHwq9+kcx/lDvxgXGkBW7OzTfh7lr6egx3I4WTtL6evynAC7Kf8oco9nHMM6BzNfz+RP0i/MMNz7+X9PufXE6dp/KiV8ZecT6fX1fiq4v/sO2cfOudnsv+8CN/D0fUufDDnl7K+yn+K798qVzS/LSma365lpxk3Ev+VcaWd+obCffHxI/sbym4T51oc35p5SbXEkXpuN+Xr5zyb8bQs/n7U/3TMvQG51yTl6Xdu0fmbnMdJfG4fbGd+kfnjm9n/1v657Gyp9Ab5mVdknjEPZn6xL7vdD+acbO6DGm8+1Ul+R9jOc9tqbxO73S7rxonPz31CsJn+7Sftb/D8GHSNzTp54svY5WR4JzyRf2/I+SN21IWem5DvVHzcq96u7L9U/oycH8q5DHpcjf7s62efP/fvZX8/8ZUf6Je+Y39N8Pdo4uLynpE48ezf61+eYzfT4Qvyd2T3xxlXjoX10f81u8/55QEw55dzXnlE0bnlsvTXybrRvfqJxDlurf6j0bMx55tynwb66vOnuonvz3sg+z1dvQNgd3pYp3zmgQuK7hnM/YKP0U93ct+W/vpk/R0f7+ccjXRZ8i81fjaBTeH/xK8kHjrx0avIO/HRO9NXLXZWM/fMyF+S+Qm+79J/tsz6A3rvg1fmPtTMDxOvi67EMSV+qZrne6PrdHb4N/l86/nvEjeR+5yV34s97Mi+E4+7k/QxWY/MvUnkl3j5rDtlHeqJxB/CnFvJvZg5v5L7MftLd/iX/etLsp6t/nLS5fU72T8tz7/vxOfDyu9GPotyXgi+Tz5r8PMTrJN7PNGxEP1PZV+m6HzRpQX4Zx+r+P6XL9HzFzt5Xfk/9E/lE59Kbz/CF9V/A7lcRA8Xw97ozbiZcXRY0fg5lh7HwZ8yTuo/l/Cf5/2ffc7VuR8g7wfwBv55jPI7pF9I/K3+4hv8v4T/tgST+L4lWX/J+37OC0nn/aBGzteRy9bS85Vvmnhr+S/g49vs7+X9BF+nqjf7txWyT8QvtyKn++nnd+nj8H2D8ltn/oOvTfgco56DEz/Cb3Ou8QH8P638LugbAM+Et8j/Kutl+o/acIL8udpvyA/qw3NzPwL72SfxzHAs/nKfbu7XvUA/l/t1d8TPZejYOesH+Ps280mY+6Mq0f8VifOCxycO8V/m75m3N8++Frnm3ugbpXN/9HXkkXsai+9nzLmTnEPJPRY5f9JLfQvVf4r8EcqfpB+YiP8f0NnD/Gmmcac8+2uRfcqMP8otQdez0V/ux9GvVYOr4HbaOZ29teb3rWBlcjsV3W+ZX9xGvhvRN0R7F8NzE+/Ofrqrv656/4Ldcp813BtOZicPZn8v95Ljv/h+gj/4z3Pk8j94lfbXkU/Ol+S8Sc6XfEm+F6pnufTK3L/j+b/0zxlvcj7yqqK4p+zDZv/1MHgf+dwLz1d+Pn4X62cWSA9if9mPaqud7FNl32o2u1ujnQvIvx76c370n3OjyuX8aOgP3eNq/l/6e+pf7mXH16K/q/JnJ9498a3q+1R6ZNaNcg6XnFvmnk3yLFHvmNzDQz5Viu4dXAMH5x5H/K1nn7lH+AHlm+R+avgy+78n8Sva/1a5LonvUv72nBeHWV/cOf0z/73G/1eTc5ecr9Xf/QX/hgfIz3iVuPbEqyc+fSv9XVlYBl6X+H7yOLTonOzcnBv0/7bsqnLR+/vW9F4d/mAczvc0cj9Z7iXLcZ3V5LW8yH8Gw/hP9nUTP7Fn5I/OZ7WT+Imj8x5ovK/h/x2Nj1Okd0b/ywjaXn0V1d8/32NIHAI6d8p9OrnfAD+Ji899e4kPelm/9B2+2rK7dfqPhjlvAD/IObrE/avfsFvyI6zNblfj5xD8fp73rZwP0S8sLi1gN/OfMTn/SJ+5h774/vnM93JPWfZxlpNfvi+Q7wrsDeujf/es0+ZeiKLzy4kbTxz5SnQkfnxk4nvVc7XyMxlUv9xrrvxm5W+lvwMoaH/YDo5X/0CCrQsbwW1yvpICEmdZHF95tvqyj1e8fzcSXVkXfJX83ia/7HdnHzz73llPyXptN+PmcXk/YT9HsuvPs86E//fQ1yHx89nnYKf7Jv4z9zbz99zHmPsXy0rPZtenpT9XPvd55/tE+V5R7vfOvDTf/8n8NN//yf1uiVMujk9uq73ncs947gvN+7Xn812fx+GavL/kPhb4En+4VvuJl2rKri5kZzX8Xyb32eFngfoTP5X+tbby2xTd0/EOO30PZn/0OPTNLi3gLHgreR2Lvuy76gZL6pND9l83ovNPuAFup3z277aFv+KjtfxO9NvH/83wW9fzTdlzk5zL0w+fgv7cqzYcHpJ7fWHuVTwu9xbSw015v1Ff7me8OOf05PdTb3v5HyUeHv9V0Zt703/MPTPklPvTd6WX3KNelX6yrvMHOovXd14Lvfw352kS/34geg6C+Y5RN/TdyF9HwJoU2S3xw/ziOXgzeo7P+SXPb6SPw8nhKv1H7k3JPSo7lBYw96fcmf24nE8p2v85AF2t+F/ORy9D3234nUuO96DzXfUvLFp3aF20/nAkentk3qe9Ifg7lP3dSS+5JzNx4hs9PxZ9jcmhR86/eX4Xz+eca869bkF/7mkqMb59kPgQ/ptxsDbM+HdlvpcB6/OTxBllv/U67dzFfl6gn57SZWBZOFj92c/9O+t+uY9De7lXant8Zh8039FqmvVx/tU8950Xnd8abr6Vc1w5vzUn96bgZ5b0bewj98nnfvk2MPfLhxxi+2feXivfsSpKz8bXDPJZmvc4cnwj95zm/hb2lXl28fx6vXL9yPUz6UNzPjn7qezsJ/ZUQ/1ji9bts46f9ft9yK8C+8v5rjMTP0Bf1xJAcf+3U/aV4M7wV/yfQy6D+f1o8hmU/Xx23Ag+RuCj6D/3wb6D/nfh3eg7ir+8Sm9H4qMy+19ZdP9We/79Cvnkfq6DYc6JnIv+rLdl/a08/WX9Leer65o/jsTXZdrfF11z6fVSepqq/abkUZp1B/I62HPzE/dELrl3ain6EjeV8z/F8VPHouc/+Li4tIAvou8RfJch563gwtxfg57u6Mv322qzwy76zf3U/6l0Jfzl3pPc41t8/8lLyq1A10vwTedDcl9a7vnJd9jy/bWc28o5rtw3kvtF1uZcNyy+Xz/38t8Li+/nz319ub9vXNH9fRP4y/vKvwcPI9878DMZjlH+ouy/ZPxW/+MFKGkhvQi/+f5mvsfZmHxb0Utr+DX/a0pPndhLd/ZzBDwcHfPY2YLYG2yN/sbsZytyvpzeN9Nf3mcvzHsT+Z5E/g2K7o/IfRK5P2Jyzi/yj5P1Nx/h7xJ+dz2/HQZvlb+N/ut49Qykv63VP4Ecci/Dz+SxPvdTa69ZzmUUxZ/8J9/HhC3zfULt5zzw/olvh1fJz7ntsuRSo+j8dtbbs/6eASfr79/R66l5b8/8VX3DPT8MVlTfV/h6LfuB9POM9I70k/vSR5QWMPep5/706eTRnl0dLP0N+a5kj3Xo5Xz2ca789B/d0F0cH53vT+a7k5PVk+9P7pC487xvZB024wu5zYHnwXLKd9buITmfwd/yPZLcX5H7O3OfZ+7v3ICuPjm3kPdQ/H2T+CQ4kb1eib7XC5DrW0q4S0kL9pZ196zDL885BPLJd0/zHdTD2Xu+f5rzpVlfzXplzpcm/vIw+BU7GJP+V/0Pmhe/It1c/tbkVS3fz4WnyO/N3u/C/zaJzyK/3p6vmftrpU9Cf/z1HFgbf/MS/8Ce9oNr2f3a7K8W4J99wOL9v/PII/H15RNnV/R9znyXM9/Jy/c58/3hfHf4icQvqj/zs8zLPi2an21XFNf3M5ybe+DMe9p5f+jCfm+E1UsLmHs1zlJuBf0+S56P4WeJdFX0HU6um9H9n8yX0Dcr3/VU7mn8P5X1ldw3Di+Clckn42bWGSsVrS9m/N0Z31lnzPriWHY3Cd7P/nplfZlc9uIvn0uXZP8dXxeg4wb6Wsn/8t2AzD9uw2e+H1CzaH85cYwXkE/uf813E/J+Px//+f5C7nvN+/2CxJf4P+PQ2qLx5+Si8f129OX72nk/f7XoPT3v5z+o73z1P6r9QdLL9ddfwhVwsfJL0fFz7i+C9yuf7wZVy/qC9vL9oPG5n5EeKpL/7Ow/Jx4VX4+m/5W/urSAJ8GTYVf6HaD+TdlHgsvQme0RbJcsgyvYadZ7P9RuXX7VEf+513UzP8z9rjOzv5/1E+NUG/z8N+triV/Szo3su438XFe/NwKLz9fmPFa+U5vzWjmf9YoO7VN2Ntdzt2f9MN8fQ0fW47P+vr/6rlG+KT3dTP75nuhC/pvvjeb7op9IZx0r94V2UL41fnOvaNbB2st/H7+JX0XWP3GtO9FH4l8TD/u29IOJP4eL2X8f8n2BnjOOZB6Y+V/uCSm+P6Srds6h59xDUnz/yBL28HvOKUhfk/lvzi3DgbAJ+vJ94GeyDyK9E0HMpbch+OufewqU/3/RiCqieJx1nXm4z0X7x7/ZwrGvJcuxHPt6yL4c+5p9S0pokX3fd4VEhBbyJBHKWmhTqqeSNVvIdghFniJUhPhd1+/7ermuM1fn/PM+85ntnnvumbnnnnvmuyZl5P//1twTxdLgfrBUFCLvgYfA1eQ7kzmKH4E1MkbxZLkoVikUxarg+txR3Fo2il9niuLvlJcrdRSvpo9i78LUn4f84Dflo/hwBvKDKan/wQpRTJcminWzRjGRdN3KRPHzfFFccD/lEF4O/W9CX1vo6Un4beIL5o9iITAWTBEfxd9SRHE+OA+smyOK2+BLDr5nB2+AOwpEsUXeKG4n/Ajld703ig+DXcBm0Je9SBQbU97HOaP4MvwuliqKw+D7N9DVG75tBbeB34Kd6b8VlLtcpNxh8Gkn/JxGPVNF6ptLutOEM1B/P/o3LemXkK4H6X7j+2Tqu0Q9xaEjI9833hfFTeAHYFH4s47+6g2uBz8h/t0oRJqBM8AxlBOTK4qFkMuCYDf6Jy10FIGuCYR/IH832pOK9pwHn03Hd8pPCeYA4+DPTsbdLrAS8h9D/JvQS3URxDzyCfLchf58HL53JTyV/H+kjeKjpH8c/JTxtR56U9OO3uB05GMs7WW4Rb4Hez8QxY3w+37k9EPC3Sm/MeO2erYo1oOevcQPpWHDwCFgFvhfivmmNvLxE+NoGe0rAT8fg+76tKcd6b4vGMVR9Gt7yj9WOopr4NsZ5pUL4BPQN5F2TgCbMN7XQt+sLFFcRfvmMH7vJ/8M6HkBLAGdbaFvFXL1LtgUfqdADuiuSAy4B0wBH28wz98Em5G/NeUfI3wULEn9Eco/Q8E7wG3gG7RvEHQPBo+AeeHn12BvBDM78/0r5C+KXMeDceBK+NMQ+eiF3G7OHsVXyb+d8jvSns7gQ+Q/R3vOg6fovz+Qjyr0y0baW5VwBcr/Gfm4HhvFS9C/h/KH079XoO938Fnml5bI5TPwpRdYB3q6wffn6d/p4C3oWU/7F0BXKzCG+oswj9ygX26Cn0L/NOR3OtgG+jaQvz/t+pX+Gc76c9L1FblJD+4C74fPi8AD8KUQ8r+Y/BHaexZsS7s/ZL7PxHwwGD7E0v5UhEtQX1fyHSCcn368D3nZQvvuJ/wt9fek/CfAGOahrcRnpb5s4EUwJfPKLvq3PXK3l3Bn5Oc63+Pop7WM7/fp/+/p/0eQoy8Ip2T+XEd5K6F7KuUsp/8mM8An0c+P0P9HyO98WR+sC+5xfSJ/P8qdiXysZML+gn6YTvlfUv4x2ref+fBe+JeZ/j1O/GjkdAxYg3Imwd++fH/KdZ/wJuLfQd7uo9yL8OlL6M8AvU3g6w7yJ1J/dfhZFawBdif/75R7KRYkvJD4x+jv1IyLLOAryN840teDrnqU/zf0H2d9yUL52cBUxE9wvYCv++if7NSPuhaJo119kIPpxL9H/fHUXx7cTv+Vpl9Ow8cfwVbwZxJ8nwhWo56ZyOcN6MqHnFx3niF+PfQMBn+knEmUP5T2HVQ/p30v0P7x0Pc7OAFcQPvW0J48fL/BOvoo+WfTH3PAytQ/mPgXkd/ZYFMwNeVPl37a9T7xr5P/a+rfRf3X6d9FxKei3hTgZOovQvllkfcK4MfU14T4tZS3BjwA3ka/OES994CH1U/J3wy570O/NSDcA/rUb9Rr1HOOE77FvFyNeToefInyBzD/PEP5gwjPYn75g/m2HnwbRfgtkfY2ov2vIAcDoe9N2nM1NoqJzKt13H+p9zIvZ6I/PiR/WfqtDDiW9u+C/hbQMQccST/FZ02av1CapOWYfxTr3hXo/ArcBn3Pwpd8yPV6wpuR/1/gdwHoQnwjT1H+Q8wjLzHPzAGXQcensVHsBB3H0GcywH+aFSFb5CCYlXqrgzXo77qM/xf4vpj+eAP8C/q/pH2Hoa82uEv9g/atptz8rtvgP8R3of9ehe5KyFdz2v8SfHcc50O+YmhfGxo4C+wCnc8jV2Wp70/o+wNc774GeruDe0hfkHQNoL+heinxxaE7nnQzwL2Uc4f5dQ709uD7eNLlAYdD51b42pH54SDtL8P34axjpRhH7ZDvP2n3IjAnmED+FYSbgDvhzw7wGnRcB0czj/9Be0eTbyl4DcxH/0+mnMvkvwJ+R/6mYBPwBuM3C3wc436XcEnK3wu2QD/6mPGxEtxE/XXga22wGfJThnJ/hF/HwHHgGvjzDfNpHcZtK3A18SUIPw0+A84lPhf9lwM8TfnznB9dT+jH/oS303/tofc96FgPbiN+Gfz6xfUFPE/8YeTwz2T6/wf4dRg8BNYk/1TmjVSxUZxGeDrxhVAwCoNFwDvEH0W/2E/+fWB/xndp933IVSnCORi/Zemnp+m/p8A/md/+hj8z0SMXEy5B+6oif+vBO4y3GcjH7ihE5oOtwRqsE2OC8fNnwL+dzNv9wAHgddq/iXJa0e4n6a/+5L+G3C9yHkHOv4M/efj+ALgPPhUgXQzycJl+eZ3wOvJnhf/FwRvM33mhrwrr90fkU1/eC3/cdw8B46g3G+XNJH052pmVflhJ++4gj/fyvTzr8DjmvwvIfWrXK9bVxeQ/RT2jqX8UmE57Ef0xAPwKTEX7HyHd4ShEEKtIMeT0HPJ2lHH3M+HR8Cd3MK8tDea35+mPmegn9WnHVuh3P/402Bs+nSSck/TTgv35HddxcCn4AOOhEuP0JuVM0e4Hqvd0h39vx0In/VGQ9n1K+nHKE7ib+KrMW1XAxsj3BfrvOvlbg23A/1D/C8noD2/Dhyco73+061cwPfnyER4VrJ+D4P8/8D8R+saDS6H/b8IV6d8Y+H2O+HuQv/aU+zn1HKb+oshJK+aVSrRjseMUeagM/sA887L6Bvl2oL98BhZFPuppz1d/gz83CScgV3XBzdC/1/VfuyLjdxQK4mba9x/ac5zyShG+RnxB2lPI/mF+PBbo+38TrhfYN5tSn3bTZoTbMv60q2hniVffg09rY6M4nHkoI/K6l/w7yJeJdb5NoMep15kujM8LPX2ptw94GNwAP7LAn8qE36c9rovqleqZ6pf70cdm0C81CO+Avy0Yb4/Sr3ng25ueTzAfnqEfb6pfUP5XlJeR+rtCZxfo/Il29ASfAD2HmkL6Z0HPo1KT/wW+zwRHqPcRbhekmwHuo19X0u7RzNsjwYHI56fu3+m/PLQnL/H2R28wA+OtIuVr/29LvZ4DaP/X3vwaqD1a+/NI9UZQO7T250sET4PtwMnwryHlLQcHgRvojxHKN6idXfv6q9SnnT20r2ekvbZfO+4esCbl5CBdNvAU8nGJdT8D6aogP5eYH+0v7b+XwP3Qm5d68oH9aFdm4pUz5e8R8q/iu+eRc8GGfG9Mf1eCjxXAePAK8l+Ocdae9eAD2tcQ+tciL68w/91ivn+MePWg+dC/ifCbxJeAnoXQtwC8iVxmYp3KCI5gnD7O+I13XoLOochde8rfwvr1E+0tSLntiJ9Afs+nrhO+RvvHkH80OAqcxPj4ln69Cm4Fu0JfM/TJIfCvEPIwuXzS8nakTVqf5bdBDluD74L9KN99Vn/wEPw9Rrgf9HzMvN3b/Qrln4a+e2OjmAasSPxB5qM62g8J95L/yPM12vcXOM7zIeRhAvkHEN6vfZb52vOTy8H5yTDkrSd09gCrkL8n/FJPUT95ET60oL+3sU5sQH98FfprBnpPKeRAu8r1KEQeBCuDnaBrFe29Cr8zg7uhP0J7duoPAD3PQX956H0Gue8Fvs54GoZ+1Id8i+BffvKnCOyHhwL7YQLl96Hc3mAPyt+GPNxkfTvC+B8Hf3qTfyz5PC/IxPdm8Mnzga7w8yJYn3zqUY8h/+PInxNMTXwaMD/8PUy71dvU49TfJjIvvBUbxQLI+T7G1zL6dTl4lv7qAX9aQ/fXlNOWcF/iMzNv9EN++oMFiC9Evt76vZD/BP2/lPXXedl52vn5JN+rKLdgT+3zUYiMBZeAa5jnVlBvNdq9knAe8jeh/gWs+9W0VxGvfUm7UlPC08Ga0PMkdD4BjqQdTwX7p4eQh37wpR/53T9NBYvCx33kywpmAXczTscgl2WZ38uAU5HPm1GIjAdXgNpft8KnCtRbHrwMNnf/S3vTyA+wEfQ0BjPRvg3w+QZ8mM+8PA/sC397Qf8U103GV03o6098auRzAOElxH8Bn247f1B+LuLT8/2i58LQ8wTyv8j5BFS+GpFuI+2YFqGd4EH4fJLwYFD/jr7wNSXllEC+3kO+ltA/8rscGAsfuqvXw9fMzsPw9zNwJvWtAh8Cn0K+3qG+hWAH1oEV8Mf9mvON85D7txWuD8xrj8HHOPK733L/9ajrK+H/eS7APL8W/I72f0N/aR9ejFzXoPwqrDd3mBc9Pz+E/EykvHrJnO/Op12ZaE9mcBTz+ufwZS7z2DywNvnPx0bxZ/AcOAj5yY08Og5Hg7HE36D+m+BE+FnJ/mN8ad9oSHu1bxRwvwlmJN9L6qf0i/YB2BH5mPyXqPciOJT8q+GTeq167inoV7/Vv8xzD89BPP/QH83zD89DPP/Qry8n2JL8LVhnduvnQbznFVNIp3/MBsaTfjL6x9hg9YYiyKf6w1DGb3bmqwvgJ/CH7o8gxpEz4Fki1A/VC/sH+mFb+usmdOVh/O5Sv6U8/egqMt70n3uH/j9F/sGU/7D6M/RmAbOC6xnfaeBTQfhWSDmn3J/pjxTgPeBHyMsA+PMhuBQ8Qv/lQ9/PC9YEz9K+E9pnQO1vE5mXtdfcgu5/wO3Qv5r+64g8riL8FOXfhp7PqfcO4efYSK8h31pwIPP9VOI36ucJToA/60g/H3pvUW43+HOvdmL6NwX57gHzUt4R6mtOe39iHpsC/xYiWAdcz8F19G9t5rPcjIecYG/a3476ByE3A8ETlH/acyD5DP3HoasZ604q5otajI+q7L/TMa4eoF15wPaUt5hy3gWvIjdfQZ/n3Z5/ex5+jvHjelA4sNPlRE8/TvwJ/UAj0KP/Lh+ygQe1M9CeI8jLBehdDR39KO970rUCD4Dl4P8H0HmG/GfBO9TzCeO0BfLRHHyW/DMZ77PAp+HnK9CfAH1LkIu6hG/Tfyeh8y/4lkj4P4Tdfy+PjeI++v9d6vdcYQw4gPwjyMe0GDnEP7mRv7rlk8ZfDtIZ73lDRcr3PMLzh/3MW0fh0yH4c4H239QOFZwvvwWmQw5iwHjW/xb6H1L/HDCR+XFKbBQ30p6+yG0/91H04xueL0oXmMHzw+Bcth35PbctxXgsC56hf29An/b7btCRGNjv59NfY4N+6k+92m21474HH7Xf/gO93cn3ONiB/MPIN4lyJoLrmd8WIndXwYPQeRH6ylDOQMrVX7UO/ZuK+Wc2/XyG9rxO+79x3qPdKQjngL/nohDRbTbUT/bTvj3gCeT2e+Tn7cC/PgXzV33arT/9c57f0E+F1a9I15z8LcCvkctS5CsNjmX+6Ev+K667tOso88drwT7bfbf78UTCdZHXVLQvjvm+Me1/kHpyUL/z3WW+byZ9ReiO9/wY/If5fQDhgZ4zu+6p57EOlQUr0z8LI9AJ7gPT0t+7aHdt5HwV60Bj/e9Ij7vWXfu2dm/HkeOrFOh9m1mk18/vOKh/Xw3329CxhHB16OkAvzp6vgPf9jBOX0Me6lPuG+An6EeuVxWCdUz/rY+Qt4Rkzq88HypOes+J1oLvU5/zqGYv51Hv65SD/vLgw8S3pj9bgW2QJ88T79AfW7wfoJ8d4zMF6UaQf7h2CurtQLij+g3fR5PPc8PK0PUg2AX6FtCeH8Hq4Az4W0H/bXAf9ZRA/ouRvjh4AszHOPqV9PeCacGTzEMjPfexXdSTGT50gt7OYAPobsf82pH6fgJLIYhx4DjoGA+WZQIrAP3KnfWc1o4P3yrqRwV2Y1zNon/GEh4D7mC8dyL+PtqVGzxIuhyeM/M9xvNX/Z2Q+7TIofYbz/N+00+c+mLBnLFRbJmMfjISrM84UZ6GaTel/k9Yx0vAx7/Jdx1UHn5Qj/aeBfU9A24E9bO6qV0JfJ72KHfKofIXS7/9aL2sU+8STokcjKT8T5Gr2dQ7XHuW6wRh7U+DSX8/9NwHdiReP7TQT20oeJtyHV9VwFrIT3740ikYp5cody9ylZl69xH+hf5b47pBOQ+QT3++WZ5fapdk3szmPTPml3LML7eR/3OWT3rtrhXB7+F/LvX9wD/od/VA6B0a+OnsdiOgvc57G8xPExh/q0mmXU47nfa5fyjH+bWs58vwoWUwv+qvkQD/WwX+IY2g+w5yfZ7057STkC6VehfjsDLlPwg+Sfo4+i0FfCyBvnWE9nl+4rlJSsa/5yeVoUe/lbbyj/bXZFx3Rq/qgLxuo/8+ZxyH5xeea6TR/hucX3iuoV6+HlRfTwzOr48G49zza8+9nR/C82/9hbVjh/Zr7XnJ6dH6Ra5DjkP/yDvwRf9I/SVXJ6N/jCesHvJTsG9spf8v88wM8nXVroi+tgf+b4BO/ev1t9e/Xv/8Xqxn+unrn++5/2zwd7CR53XIqevbWtD1zfBLYIdI0nzLHN/gGPplLvUPUa6Q2wrI20jirwXjXz3X8a9dMJf6rOcO8EH/BP0SZibjn7Dac333CcjXZNpTB0wAV0I37IzQPZFT4FT4XYPyqksn7axDvaF/dri+qEeHenY67Jrv0b56hJu7D0AeXoDORZ7Dw5fB2meR19D/w/7fxDx3ioaeEOmfJo7zQM9KJP8P7B/SoG+nAguTfwr11QJrgwOY1897rwp+VASHwKeSyJn6gPqBeuMx+KOeoF6gf/84yhnrPRboXQ1/ilBeYbA49R0h7Lmh54jdkF/XtdbMz/rV6merf21ioB+VA7XfVIOfVdXP6MdHaU8NzyfB6uC3+p/RD9ohtT9OVc/13A38EdyiXRM6ant/nn6ZS/7Bgb1WO+5F5GYS+Lf+Sept1JMePmk3vB+8DhaE355vlXWfQTn6I2pf0l/R/ZH7R/0btc/o39if+mcF84P6TF7od35QH1L/0T6hXWIqqH0ikfK0j2gv0T5SCzmoRnxV7Zyk60x9D3uuynioR/0dQPf3lcBPkMPl6D3LwOzI+efQ5zmr56/Lqfd97Vy05yyonU/73n7ytdeuBO6Fr1cC/X4ouBl69uRK2m71117eg6d98kE9drT2MuQzNeN2NuFL4EXW7cXJ2J9PkC6GDmzluPMeE3TuBK8xr2+xf5k/h4AnwG7wR7+V48n4r9Smve4TBgTn1buhYyd67HeEP6f8A+R/n/y1nNc8X0O+9kchUgO8u78mv36pBehw7RLaYdrAd/0Q+9C/F1j4fg702OLkf5x++h/4O+2Po7+cdzLqz6J+zPrbHH467suAPannf5RnP4b95zqygXa7zjwOfys4D2j/BhMYn31o34vUO1s7SnBu8pT3ApGzK4wz9SP1Iu0F6kdXye+9oKKU08l7o9DztvtZ71sgD4uR24xgJnAI+qfvz2hf097m+zPhuzV37WvEXyB9S7AV2Ib54W/CvouB+EYehg8xyFMhxs8Wxk96xs84+LuJdn0Afgz98bTbe1h/geMpRzuZ9rNi4EzyaS9jONy1p80ifh7hq6D7f+0C+ZHbGPohg/4q2s+Rr9LIRSnwaeh0PU/unKYz5U+zHuQmhvZ7T9p7096nbsF3x7V2tNB+lp51uw50xhBuCP+/9N4i5X9BuBHx3vvzft5s5G4i9T+NPqJ/o/6O+jd6nun55gr6zfNN/QL1E/SehP6BtfUz1P8J3Mf84/7RfeMu0POd0D4bH5wvhnYH9Tj1N++9rtL+pR0LfhWGL75P43s1vk/jezS+T5MS9H0azx9/cbyBnj/eIXwbbKk/IOOrE/wvQP35wf6kbwu6L3Kf5P7I/UIz7d/6nwT2K+1WrleuU8pxWfiiX6z6q/Ol93Ib0u7bhL/S3yEKkaqg/ed9BPfnvifh+Zby7rrmeFD+F5P+DbAx5Z1mnqlIORNo13iwmPtwz1tB7Vjar5aRriX5tPdUp9y68tXzN9JXpd9896sn5XcHh2v/Y9wUZtxtJzyH+NAvPbwfEd4vrxDIv3Yu7WCNwFjo66ieT7mDwFvoofqJ6T/WAixP/h8Cv5Ns4DrfZaJ+77VpR9V+WpP0ydlR0uhvAW71fQzyV2BhKgbdRcEltCucl5Vb7dS/+e6Z6cFp5Fvh+CT9HbAO48vzoj9Az5E8V3K/35Z82gPc/08j3WT0+TToQxPof/fPoX6j3rMA+prQ7qbgFOJHeX8D/hX3HBQ+T1Cf8tzMeRQ+618Wa37mpSWUmzpYt/TTcl2b6zqqHmx5zC/qcy0DPV19T7uv+XNS3jLa5/0V7638Anp/xXXDeSdcPw5QXqN7kpbnfZjSzF/qd9rB1O9epr2+X/cg7e4JnyZDZ7Ogfx4mXWv6wf4pCVaDLu217cBD4HbkXvuZdnPtaNrPkju39HzG8492fFdOPQ8h2V0/uCtgaeSjOhHNSd8M/NnxDD3Pq19B11b1KvjwDnxZqf0CvoT3B7w3MJpxo/6d3Dnd7NgormJ8HaHeZYyv44z/N503PCe3f7R/QP8kz3kKJqVLOpdHktKnX2Zyev47rDf6h3v/+7/UXw8+ngW7kn4gYZoTQS2LXASbkm4EfCwTnG88DR0PUZ/nHNOo9yAFV2D+bkC89xEmua+BDv0eqhLW/6EI9enf1Z16z9L+8YR9/1B5iadByoPvKL7heQDt8t2F8H1M381cqfwnw79FUYjUBN03uq++xnftvwzryL7sSfNZzl+RpPnV6x+F/lC/1z6rXdb7elP4rl+ifjuhf6J+ifr9hP6J7pM8r3P/tM91m+++i+I+yv2T+0P3haNB94fh/WL9BbxnrD+Adjz9Bbxf7LxcDXSfpt64kXkm7D/71X2u7666H/Y8032u+1/txr7fOpL06jXqOeo3oV+P8q3cz6O8V133wNasP6PI15/v+uF87X6A8ZWR778QXkt8+cBuHOozb0OvdnXPMarCP98tLWX/0w++Y9qcenz/1PdQff9Uu/zqZOzz+qfol6K96U3PHelv7Uv6q3xB+UOhV71UPVX9VLufflP6UWkX7Ei6LvrFgE2of5T2RPdvtLuX8xz1KfcUe3dc3CLsuHEcOX5+BefCB/UY9ZfqrudgTeaFPp5zs/5o/+0CvgB9FQL5/Qd6lF//lHvHgfLfINBrQv1IvScWOT9PeCroeur62gn0fHAW9aSDbv1NvmUedV8d6gnur5sH8cMD/cF9yRD1As6X/iK8m7B+BLnBpfoPBPq+40b9R3nepl0J9FxKe5TvJ52g/Ja+Q0r4Pv0y9B+6N2n7bWdoX3A/7b1T99nuu7U7aoc85boLvzy/TAA3gp5f2p/6mYT+JeH5lvqL51zeX/I6hfYU/TfCfWV4/0l7hP5J2iu0T6hnqneqj7pvcjy4//U+oPf/2sAf3wV4EvS96ufI5/sAg7SbIDeOT+1Svufh+x3Koff6avi+IGHfXfYd5nSg7y/77nIJ6g/fX/b8znM7Hyrz/E69r24yeoznjetAzyE9l6xEWD011E+bEvb+yTBwM/Lj/Qj1jvHg86zLB3ynmfY+BnpvQrrUG0L7suvvr2BoX1hPe7UThPYB7/suhJ6t0Ov93/aU9x2oXuW+rjX8T4DuOmBP6B+inYzvI8DPyFc05t/pW5/MuGvs/BKs6+G4107hOLQfw/4L31fraT/BB/fTrkuuU65PvvP3UDA/bXeepL6jYOgfq16hXSHUL9QntE+oZzQP1v/zYGifUi6ag6F8aLfQjrEusF+4noTrj/Pyn/CxCnTph/UV9Knfa39Rz3ef4Psx2v/C97G1q9bie2hfdd1VLhoF8qHcKsfaIZRf1zP1QvVF1zfv41u/dvjRpNcvy3v5oX+WfgH6CfgOtv4B+gP4Drb+AvoH6Dc2Tr0vuP+u39ij0BXef3eecP5wP1LEdzgJy6eQP9pL3X/53sxC9ye0pxKYCn3T82XXO9e/0H9Ru4bvkA/y/B/6tGv4/vhl+PIS9dehnseTOT9tS33uD0+D+u9UJJ/vaHkf4jnKfxJ6fDfLexCLk7HrhveDSzJf+L6C7x98T/nuWzIks3+564/v+mmY9df+Dc8h7V/1g9BO5ftKrsfanVynXbcvgxm1Z7n/hU7f5fJcZiD88p6Y66LrpPczXR+l33Xt7jrMd9cl3/dzvXKd0l/Z8xn9mPVr1r/Ec2v9TPQv8X63/SYf4+Bf6N8cvv8t3eoNIf0podf7jd2odyT0e96mHu0+0f2h83pDMJzf5at6x2+g/D1Kebf5fgcc4O8j+C5doB9pH/CcV7uCdgbtC+q94frqupsLPdL3p3o4v9M/vj812X0KfDkDXdo5tHuE9yO0k2g3Ce9XuI65rrneaY+YQrz3dz1/bE/5QynHe7+eZx5G/v29E9flRqD7f+0HrutF9Z/ynW/Te25Hvm+ZZ7UDhHYC769oB9AuEN5fcTyH77euCMazfjf64egH7b4unN/d3x0K5t8Ewt0Du4/8D+2bjjfHn/OX40+1nuZEEsEjtN99TrgP8nxIf3vtEPqxaYfwLzk/fufLuGTGfzi/eR/deU5+aYdxvXR91A6gXUB7gfc/NVPon6m/pvYV/Tv169S+od3De3men7RCX3uXeO/neW4yQ76wP/L3aGyX+qT36/Uv8hyqteOM/L7X4b21EqDvsx0I+Fsi4K/vcsqfkqD8qUW7fL/3G9vt/aBAfpVn5bcoYe/PeV/Vd606E/b+svfBY9m36BdWImiH9Euv99Nsj/T7rqbnp973vwh9npt6rz+B/vPdRu15ypVypn2vCfUpn+H6oL+a/RK+nzc5WB+mgNrBLC98v8V3XUpCr/NiQ+0J0B8XzIvHaPcT8OVPyuPzXX/yJ2mn+6oG4LPgUPp/nnZC6vO9Dn//y98D8d0GL8j7+yD+HojvP/g7If5uiHqtdh7fpVG/lS7pdN8nfdUD/Ut9TP3LfVq4j3P8Wb56Qtj+9IFdpSntbUb7lzDPl1QOwGe0l0GH99z8PRbfqXSdVw9Qv9c/yH28+/xahF8BbzFOXqNe399bp12UfZ52uQRQ+5x6bqj/un6oN8kf+aL+5Lh0nOon7fgM760XDeYJ1zvXQde9icF64foU6t/uV1w/3c8sNB90qXfpz6Ne5vmP+pnn8+pnoV1dO4V2d/2XSXbXj9l3DPSPUS/1PQr9Y3wvPJf2ANB3xTvBp8nw1XeI/b2Ft7RLeq6D3jOC/pef2vHkt/x1P+e9HPd77u8cl/4ckOPVcervViX3ToPzteuy65Dyobyr/4b3HLyXovzWBZVr+Rgf8Fn9X/8y7R7a1/R/9t6M9yDeR673q0cyf+v/o53Vd4XiGf/aVfUD8l0i7f/aRfSH0D4S2t3LgNrl1Ruct0L9QfmvDSr/7t8X6/8IXd4XOuA8HLz7q/7he7/eI2lDvb7n/l/vr/q7PvR3aF/0fQ3fYfOdDd/XCPWF8P1L7Q7an8LzaelQbsP7Zf7+kXZh7Twd9f+nf7UPaV8eDn+qQEf4/rTvUnuvwd9XCO83qL+pHziO1A+S0zvUb8N5Xzuv64J++b5j73lQB/2raIf+o3Gg7xb5PpH+o6k9x6fc2dqztXOD7bIlbYfzRPi+nO97+q7nb6Dve/aE/75v6Tsp+0in36V+Dfpf6t/gexDOC/VA77UpX44r1x/lzf2U/ex5u+frriPh+uJ61R/7t78f4Hu/G4LzP+2koX1UeXVcOc6U69bBd9M5LrVXPgJ6H9b7r96fHQNftYd6f9Z10XXSddD1UblzftkdzC/apbVTh/cf1BvUs9Qn1CNsVzh+bb96snq058meHxuuH6Qzn+cHyemR+ifr/+19R+83qo+7D1BfVz8P3431HTTvRTuOw/2/+yj1g3D9cl0L9/2h/SVc1z2nc913vnF8Ol4dn8q78u/8pvx/F3w33ZWgvrNBvZ4PhnaNcPwcCsbnD8H8n4C8+jszb8HXL5HfUK8N9QPnD+Uz9I9yvkqOT3sDusL12flGOdMPV/9b5SSUH/eP4flguL457lznw/HXg4dJvlMBQy66ZE0a73fTXUd/TCwaxRk8dHISuU/MnzTe76ZbisPKZRa246xTG6l3U9ak8X433cvQtZMNxBZ/nxW5XxXE+91082nPADYe6ZjnCqCI5wni/W66nNCVj/I7Ea5NvTXzJI33u+mKwYfs4ALskSOR+3lFk8b73XSvgTUot6/vrULfO8WSxvvddJuJL5fp3+PfCeLD8s1/FIW+IfUcoL0/xSWN97vp/P3tI8Q34PtB0r0dxPvddGcofw50rESeX4JvK9Imjfe76bYRTmAcNaBftrOv+DBf0rDxpj9f/N/zLYyNYvqiSeP9HpZ/gvhx4BawS1zS+C1BugGMvx+Rz9b+vjPxLwbxfjddIuOpMvGL4O8X7JuqFU8aNt7078HX8ZTbzXf/weU5ksb73XTLoC+WctZzAfBT5LpE2qTxfjddIb4fSP/v8eY3Pizf/B84PmKjmAW5q1ckabzfTXeTeH8f3N8DH6VfSO6k8X433VuU+1nRf483v/Fh+eafyTzzGOE2yFVO6Ps/7rp0nHicdZ1nlFVF1oZJ3aQGmth0AC5wu283DQ1mMaASVMSAccQcBjDrmAOiGFAxIGMaxFHRMaCYAw4YUFRgzIOMoEgwgWIAxxHE9K313edhrV3ryp/Nft+36lY+VaeqTu/frdH//zuqNm+vq8jbHarztk8ubzt1zdv96vP2+ZrIi6t7syxvb27I2+vRL+ift21ykRdXd0ld3j7cJ28vbok+m7fjWkZeXN0awn/bvzBvePk0fsM/3zdvyyifcn5vYZ/Ii6trSfmtHZC327fI27p2eXtdbeTF1W2H3Zp0tCnP26Gk99Zs5MXVtcWOJv7rivP2BuyC2siLq9uqFfHBH0S9nI89ozby4upKKJfh/QvzhpdP4zf8Pp3y9hTay/Md8nZUu+jLq9+d+P9K/LcT75vUy59zkRdX91i/vM21ztsR+A9T7p+0jv6IRP8l8d9H/GOb5m1r7IImkRdXN5T071GUt/ejW9ssbx9sFn159cMIfyP98mXszZTP4k7Rl1f/Gvmag92QydvVtnt0fcoK87O7RV5cneEPbZO3Syivz0rydmpt5MXVDaGcd2H8+Bh+GXZFSeTF1WWI/zTqbSP9pRHp3lQVeXF1XUnHG8T/IvEO2jJvb+4YeXF1F9DOphPPV935GfC1+HPgd6Zfno5/TS7ypye6WuwY8jmd8ppGPWRqIi+urj/pvxX+ZdL/bc+8Pa08+vLqJxL/LManXowT75OuxcXRl1ffm/54gv0nk7cX8Xt71EVeXN1obCPKf5fmefs64+qIDpEXV/cu5TmR/OzbI2+vwn+yIvJXJboyxxfKYT/a0ZP4F7WNvrz6c/rG/JmvMUn+5MXVbaJ8jqYdz6a/jeidt+sqoy+vfrc/eD4ctEXejsxFXvyG5PnxM+3qePir8d/JRl9e/bPkYyPpsr87LjgeyIurG0n+HS9S/o/GE3WG35b07Ey7uIP2MrA28uLqxtKeepC+vZJx6aVs5MXVPUY835OOV4nvXtL7ZU3kxdVtJD+T6cctKd8b4S9uFX159YeQvz60kx35nam0y9rK6MurP5X8XUu8rSifsx2vayIvru5V+v/FjCvzM3l7kuMdv/sP0j+acPcR7/stoy+vvpXzA+qvN/74znlblIu8uLoc+W2H7cf4czn5/qgs8uKbdcQzn/p/mHJbSHo/rYq8uLr9SF8LyuE78Besr66RF1f3b9IzinI+gnHkJuYDWxDudNJZSz0NId7HyqMvr34l8TdmXDuwNG/vdhwpjby4uucIPwz+yi55+zfqYUF15MXV3Yq/mHKzf3SEf6E2+vLqVxPvWurveNpTJ/rV69nIi6s7DruM50F7dONoT+t6Rl9e/WXEP5l2exLjwe3YylzkxdW1oR9fR/xfk77p5O/AXOTF1f3AuP4J9bqa9vAV6du/X+TF1fWGP4v6/Bp/Rfu8bdwp+l8n+tWkZwbpPMl5Pr/Xv23kxdUdTPgLSgrzhpdP4zf8NuTnbp6TzjuWVUdeXN0O9LMljF8bGW/HU18/tYq8uLpqfj9LO11DunK98vbfjAtLCb+Y8MeRr+PbRl5c3aek/0P4Rc5jmed+nvDi6l7C3y+Tt5NI3wLGg83zmkzE1Q1i/OhSX5g3vHwav+GvZDzfmXROoN9c1SL68uq7UF/PUX830u4Ocx7XPvLi6sazTjuFdtuM8XMS+hdroi+vfijtdh3peZX+tjvj4B7F0ZdXvwP+XuTrRNrbBn7v0LrIi6u7nN+/lHX0HegvwR/fLvry6qf7nHP9Sn6fop6ur4u8uLpnKYdO2PmMW2Wk84D2kRdXdyHxf4V1PV6brMvlxdV9jB2aydt5lMc3jMt7ZyMvru43bBPaxQz610zq5aG2kRdX15nw1s9nlOsE7AGtIy+uzvr9jXJZzu/0Au/RO/Li6namHr7Bv5v8PUG6ajKRF1e3LX51pjBvePk0fsOfTLncT/qepH6fah55cXU/UD8+t96G9/m1qiTy4uoqiddyHMa40pF0dspFXlxdW/L1AvGspl8O5bn/QC7y4uomUo+uN9aTvhm873guWbeIqxuFP8X3e7Sro0jvxcWRF1d3D+X3EOtYny9DmTd92T368upvIn2vMX+4M5O3Na7fspGvSXR3YK8hf8/Dz2V8/SwXfXn1j8EPx65nvnwm6f6oZ+TF1fWmPK6GP4hyOgJ8dDb68uqdv7v+vIH6vR47uWXkxdV1J55jiOdF8jfW50l19OXVTyJ9zRgf6mnnt/F8ntAQeXF15a6LiHd/0tWbcbdRn8iLqxuK/z/iXUL5jFVXF3159ae4X0C7+iaTt8N9D5eLvLi63fF3pT1/Sn52wR/cKfK7JLpS4j+W59NoynsDz8cfayMvrm4710vMGxvwDyD+XdtFvyHRP0v5fM7v/OC6AXx+h8iLq1tG+j/EH8nvfIS/c//oy6u/gPrYiudDA/36Meq7f0XkxdVlKYcK6vEm0nk+tm/Ci6tzPbwN5fov8JNpH1t0j768+maun7HdmY92w/boFnlxdWXuRzG+vUl5vUe5Xl8WfXn1L1EeFb73YT44i3K9sl/kxdV9yPv/SvhuvLd/Dt3sZpEXVzeR+D8mHbfwvF+eydsde0deXN18yv866ndf6ulL9PtWR34zbn2ybq4lXVfRrs6jXH0vKi+ubiL2RNaNFxFvV9J3cGXkxdXNI/37ZwvzhpdP4zf8Mb7XyOTt97S7ki6RF1fnfuUs8rkcfjn5nF+e8DVRN4l29TP12MA4PZD6/qJl9OXVT6N+1hHPczzv3A/4Z8/Iz0l07h/M6lmYN7x8Gr/hj6RdnEd5VVHOe1ZHXlzdEZm83Zf83ONzw/EmG3lxdQsZX3cGzzBP6Eh59cB3f/ls9D1YX7u/LC+u7hbG3zuoP+cdJ/H7zk++In+HMy58D+77OnlxdauYh7QkHU/RXhZRz+uzkRdXtzPzUN/TOL/9EruyJPLi6nzvMwc7iHZ+Ab97c1305dWPykW+e9/IG15fXr3hXUc1gLu+ct0lPy/Rve0+CvnZQH88Db9lm8iflugWYr/IFuYNL5/Gb/jbyd/l9OvdaPcNVZEXV7eM9nRF98K84eXT+A2/iHrZiefyG6T3T3WRF1c3CFtO+9iH8jyZduVzT15c3Z3kfz32XcrrR+ZZcxsiL67uRPrbIH6nNe36d35nWk3kxdUtYnz/M/m7lvJ6gfJulI28uLpuvv+sKswbXj6N3/BLSc8j1Ms82vmH5ZEXV7eR8vne927EW8w4uUOvyIurc/5/tfOATN5uhV2Wiby4ukW+n6ednMn4Mpzfubck+vLqW/v+035Ge7yF8fPWdpEXV3ck8Yz0PSL5vIZ63TYbfXn1f+H3DyeeD+gfs2gnXXKRF1f3HPM7z81sg95zM56r+aJbxNXJp/PCG4jX+aO8uLqzyM+O1M9q0tWZfH3bPfLi6qY4//X5RzntwO+tqYq8uLrDyMe+tKcH6CeHU99XZqMvr76c8tid9K3jvcoEx6f6yIur20j7mt+iMG94+TR+wx9HOa7Engf/eXn05dWvIP/zmU8XozvK/Z2iyIurm0o8H9Av3mdecL/9rU/kxdX9i/nFOsbXEsbj1tjXaiIvrq4P9mra4XG877mMcXYD4+su1iv6l0nXRTWRF1d3L/O9auK/jXnbru73VEZeXN0Y50HE+xu45+Xc/07P0anbiB1LO6imvMcyL34mG/3NPPq2bSLf0Dfym8PXJ3zLGP498nUx64Ye1P+43pEXV9eS/un+9cJM3rqPvaFn5MXVuc+9P+PW2+Sv1HOYXaMvr74D5fqG6zba29mk69KEF1f3b/rXQNrfKsrnfuqlDensQbv+gXbt+bGpHSMvru5n5yPg4+lnc1j3lhRFXlzdFZTPjvB3sq7+iHX1lQkvrq4v9n7PcVAfo/FfyER+dKLzfNDR5M/+/RS6we2jL69+PPmfQD+9j3poQnv6vVX05dX7HqWU/nce+XmbfGaaRl5c3SLfu1Kvn9DvZ9KOvqyIvLi69YRfTfxbu8/FOLRXi8iLZ2nvTZgPVPJcWkq9dmac360m8uLqlmFPp31ewXj0OPVSVhd5cXWXY6fTPkbSXodiR5ZEfjOO/ZT6+6/vq2gXfUj3uf0iL65uH+Z3W/YszBtePo3f8K5LtyO9DbbTksg3JDrfn3ehfF9xX4l29m3LyIure5Tx7mvKdw/Kcy7xnp+LvLi6ecxPiknXQNrVFNpHaWXkxdUt8Lwj9ez5pfH0j9uy0ZdXPw78aeq3jvLuQPxXZqIvr34s+d+B9jAT/GP8gR2jL69+Num4kXys8r0f/vgukZ+d6H7E/3tFYd7w8mn8hv/J8ZXx6mr68bRs5MXVHU/5OZ+ak8nboynnYbnIi6tbQvt9lXLdhfc1x1HfjTpGXlzdeOK/nXineW7AdWZN9OXVf5GL/LYDIm94fXn1ht8RfAj9ahvnYTWRF1e3ifGxHfmqdHyhn73WIfLi6nbi9z3/6bmCHPOPk3tHXlzdCMKXVhXmDS+fxm/4Q0jXFPrrRNZLN1ZGXlyd+zD1jDPNfa9JOe1dHH159fPoP3+mXXagP9ZRP5PqIy+urgvl6jzpvz4n/2AeJa5uHf1jv66F+f2TeVoav+HP8RwP5fIyfJvqyIur+zWTtw+Qv2/o5x+jv6Y68uLqvsPmaE8rqc89Pd/ZMfry6v9D/R3HuLw9/mzS92j/yIur85z4d+gO5ndWMS78CX4A8xXP2d2Lv6ZJ9OXVz8f/lXguYtx6i3z0L468uDrPf77iuoh9iJ9J58gekRdXdyDxvkv+vV/kfSXvH8mn95w2eU6Ddr896d3O8/3VkRdXty22O/wpjJsnYU8ujby4uq7EfyDt7lzWv5cyLp3XOvLi6pbSvocQ/6OUa1viXVgbeXF1l5P+SSWFecPLp/Eb3nNe1fT/I7Ct6yIvri6HTc87t3P92yXy4uo8D31Er8K84eXT+A3/pOe6WY/28ZxCTeTF1c3FLmIf/Dr62RGUd88O0ZdXfxrxD/c8QbJOcf0hn65PLsGuY932Nul7C3xYUfTl1T9D/h9gnKpm/Nra9zQV0ZdXP8R5BPG0wh5KPqdkoy+v/ib4zeXrfi58326RF1dn/fzSvTBvePk0fsM/Qr5e4TkyD/tGVeTF1b1OPDvRnjzv8JDnRHKRF1f3GfUxznZLOY+kvQ+qj7y4ums9J0E8Y6iXU0j3yVWRF1f3u+sy6mcj/aSI+ceGXpEXV7eW33f/bUImb92Hc/8t3Z9TNzY5Hz0C/CDfo9VEXlzdwfj9fX9O+jLOU8oiL67O+3K78b44h24W48RNnaMvr35r3/O4T8fvjUbXqkvkxdW9QP6KwH9lnH3L+y+lkRdXN4D2t3eyj+r+6er20ZdX77q1Bf3iXNrZFuSvf+foy6vvRXmm+/+TeT57PmBycv5A/f74R2G3pF31I97FlZEXV9fFeUGyvz+IcnH/Xj/d31/tfQPiuZffO5b6uqQ28uLq/kI9fkV8g5m3PYv+n9nIi6vbnnX+mZ4T9Xya95GqIy+u7mnS8UxlYd7w8mn8hvfc4jie555r7NIx8uLqrqR8vF90Fu1yLPbsksiLq/N+0pPUS5Z6dj4+tXPkxdXtTf626lmYN7x8Gr/hd+I58Q/Pkbq/URV9efU9+0b+i6rIG74Vv78d7WAW48KT5dGXV38Z5X42+R/HeLeccGtzkRdXtx/t0/vjcxkH2lD+3v+WF1f3JPPMW6jnD93H8L1kNvry6p8mnmWuO/Bf5HmyY0nkxdU1p1w/aV+YN7x8Gr/hd8nkree0TmH82DUTfXn1a8if8+9HmUe57n2sVeTF1f3Relne8PJp/Ib/zvkS80bvkTXuEPn0fpn3zt5zPUS/ncl7XvuvvLi6kyhfzwV7f9D9lKY10ZdX/zX8TqRvW9Ln9yxmJLy4uo6+nyktzBtePo3f8I/Qvk7J5K3vGx7JRl5c3QTmCRe7D9w4b09wH71x5MXVtXX93rgwb3j5NH7D/+A5WsbjE3wf0DLy4uquJV0PsF4/Af8D1vWHNo3+CYn+HuJ1HuP8xX3+BzLR/6N5T0f3CxnfHvG9Ujb68urPoP12pV6fYR4xkd99vnfkxdX5PjkdP28jXsdHeXF1j9reKwrzhpdP4zf88d5fZz02i/XX9kWRF1f3lOcHKJ8V/N5yxqtMXeTF1b3J88D7uFnG53vx72sRfXn1//b8lOsp2tWRjA9HF0deXN2L1O9Z8K9gX6ecHN/OAH/QcxjU56/V0ZdX3x/+GvydaHcP4++a8A8nuoHY95J9+s99b98t8uLqHqKdvtG9MG94+TR+wz/r/RJ00xmHtqqLvLi6A3yfRj115vk3h3i3q428uDrPD31D+Y6i3XxAOfWpjry4uhuZp5TQf/yexN/hb6mPvLi6Wcl74aHURzv6zZAukRdXN5B4PuJ3Dqf9DfC9S3HkxdU57qTnAy72nl9yfkBcnfNX70/NYRz13lSHppEXV7eY8nTf1/OHnmf8uXvk03OQnk/0uwhT6Ffe/7qxIvLi6lz/XdulMG94+TR+w/+X8X8D+fsB/8KG6MurL3G/h3xdyO9chB3WJ/Li6i7AnuH5aJ4HQ7Df9Yy8uLqXyYf7756H2YT9KTlPsyk5N+O5mjra4b307+X0qxdroy+vflld5D8pjrzh9eXVG/4H8MNcpxDuwr7Rl1d/oesNz0NQHg8zD32d/Nl/JxPfJfTjCWWRF1f3APX9T88j8rt3ke41pZEXV+fzw+dJyhs+fS6pM/zejF+DvedCOVyW8OLqjnK+yTpuhvfUqP89M9GXV78b4WeCL6H/vEO5L+0ceXF1Zzr/8bsd9JdF1P/W9dGXV9+MeGd4/5X5oveu17SMvLg672U/TXy1jJ+38TtNW0deXN3N3othfbMNugMs307Rl1fv8+db8vkB5boE+1lV5MXVPU74TeTjA9p5b+plUJ/oy6t/i3gvJJ5JjP/3E87zI/ry6g/xPLv7N8S/0fvo7aMvr34Vz5dT+Z1viL8x+OVlkRdX97PPB/K3we9rYb8pi7z4hmTe8wT18fdkP/+2FtGXV+/+/l+Zh65mPL6J/DVlnn5Cv4irk7/C8wE8T/0uyLdNIi+ubiL18kyTwrzh5dP4DX8J6fua/jTJ+Wx15CclurvJ/0PEMz1vGi3FHtYo8uLqXqIeK73Xz3P/N9rVtFzkxdVNovw8V5jBet7Qc4arElzdV5TDL7SjSxhvd4DftjTy4urOJf8jSNcTjAvHUD5V/SIvru5JrN/hOdZ9DsqrWU3kxdV1pX1WtCjMG14+jd/wVbTL9PyK37VKz6+oX5rw21VF3vD68uoN/4bzb8ajfSnnpr0iL67uXeqviPF9R/g11NdP/SIvru5O743h3+U9RecJ2ciLq6ugf9xI/vZgvJuCP7x95Kckuh2pH8+l7EC78lzKiOTciri6u/n9LYj3VfqF5yTWlkdeXJ3fT53p+SnK6R3Gi8ubRl9e/f/4/Q7Ux/O8X5uNndM88uLq7qM+/D7ieu9XUC79El5c3XfYv9EuX4Iv5rn9Sk3kxdX5PN+afuD57x/Z955aGn159b87flCOmbxp9CD2mkaRF1f3C8+Rh2lPs2kXs7CTqiMvru457OeUz2vMa+djV1ZHXlzd676PpZzP43l5H+2kqCby4urOwXpPeynlk97nTu9xq9v8HYRsYT69553Gb/h033Uk4/5lmciLq3N/9hzGo9OZZzahvPyeq7y4utHYhfBzmafPoX18UR15cXWnU/8L3F9n3daKdv1Et8iLq/uM+H8hXW9TPwMor39VRl5c3beEv9tzTsxLHkJ3bI/Ii6t7Avwt6qmM8bqBdrF7r8iLq/P7A/XGz3vBs7GvN4u8uLo3k/flXrsb4z5oo8iLq2vv853+9T3PxebuV1dFXlzdVMrjIPwFrCu89/RBXeTF1S3EfkY6ruB3rqdf39A++vLqx/j8YBybR38eSjo3JLy4ujHEM5By+Q/941HS+XFd5MXVzYH3+xrzSeevnnvoGHlxdX6fowXx9MQe7ve2aqMvr/5d+BnU7z7Eu7fzpvaRF1fn97hua1WYN7x8Gr/hvQd+F/O5bujTe+Li6sYSz1rq5VL6dTaTtzMzkRdXN4P+63tL15m+z0zfb8qrv5PyH8U4dCvpnMjz7pS20ZdX/xn5f9P7rOTrf+SzqkPkxdX5PuZ0v0+DXUj+FmejL6/+18rI31MXecN7f/gKysP7w+n9YnF10zwvyrg7hHb8J8bF0l7Rl1e/pfd4wPemvxfR7+Z2iLy4ui0IP83xjPSsZxyY1yfy4upWeD+NeeC7vq8g3aUV0ZdX775LU9KxJ/PRc5hHnZWLvLi6P7O/Osf9DvebvMfVPfLi6u6gHj5k/FrP/uGJ2KmNIy+u7irS7/ePNmKPR7+2Q/Tl0+8neT/yVuJthr66deTF1c3DrqJ8bve7rX4HqDby4upu8DukpHMN5bMT844LOkRfXv1dnl+jPB+kPnZHP6xd5MXV/eL3W2ifX7uvgv6YXOTF1TVmvjOY+n2HccO/a3BT68iLq2tLe76c9t2c37vBcapn5MXVHed3hamXz7E/k65cm+jLqz/D+0fkr5j6aIFt3iXy4uru5PePdB3hvgV2ZfPoy6ufneir2kd+c3jKra/3thgP/1YffXn1D/RP+GzkDb85/mzUG36w8yP6zRXe3yuOvrz6dp5P4ncmJfc3vZ+Z3t9UV471fuZDyf3NgU0jL67O+50nkh6/L3Mg9en3Z+TF1S2hPJxfzKM9vYJ9oT7y4upexo7z/Tnvi88hXZNqIi+ubg/qf5336sG7eu+uZeTF1U0mvhXk71f641Tqa2rCi6u7Db8r/O2+V/V8Y+fIi6s7gfLZk3HjneT5+3abyIur8/n8HfP0vdBd6Xv1qujLq7/dc0e0yymMO6PIV6fqyIurm+t3fsjfa7TPy2iXM4oiL66unP64mPxc7/0f+veJbaIvr/4CntcfU7+PMG6/hK7TgMiLq3sG+2xJYd7w8mn8m8Prk89+3qfORl5c3dOsD/p73od8zSHe9xNeXN25lJ/j/mXMu3wu/NHzQt0Y9wmo3/+g34Jy3akm8uLqfqd89sV6DnXfTN56PlVeXF2Gedfj1O9kdMNoX0PbRl9efXt89zfd18zRThtXR15cXS/6sX/341PW522pp8G5yIurW4XtRzq8J3gY80q/Xywvru5IzyHBv0Y9beM8vlvkxdXNoH1tib+J+km/e6Uvr/5bv6/QiPiMh/JaWRV9efUvYdN9rw1Y97fkxdX9iL2AeNrTznxf+GWj6MurX+I9GvqX87/7/O5JdeTF1Tk/PMS/y0I5l1GvXcsiL67Ov/+Unnc4hnQtKYu+fHqe4mbGA89TfIHugF7Rl1c/0fxRL44rp1Hejj/68uqnEL4fvO9Vz6Z/HNUi8uLqphBPd3i/t/J3ymWvfpEXV7eB3z+S+ngQ3cH4B7eLvrx6zx/MYZ0xzX0J2ssxjaMvr34U6fc59NfkeZWpiLz4X5Pn2FlFhXnDy6fxG/5EyuEV8vOo95froi+v/gDK4XjmQX63L/2en768+oXE94bfNye9P2EbyiMvrm6A+2XE/zz6Buq3T13kxdXNwg5G9zrj8Z2M91NykRdX9xq2A+kYQfxn+N2C+siLq9uHej2C9PXxXJ/3+aqjL6++P+EfgU//zsZuXSMvrs6/v1FHvBcyLz+LdL/XJPLi6lp4nov4Puf51pt5Qq+SyIur+47wc+kPh8Ef7T3cksiLq7se3O+ijyF9fi/9iN6RF1f3q+eDuxXmDS+fxm/4cp6nd5GuG7CHtIu8uDrPU1RTPlszXnf3HmXCi6t7h/o8nf6xLeuLNczP7ukYeXF1H9F+fD55jmJc8nySF1c3pTzGX5HE6+/Ii6sbgP877++Gew/R8xrdoi+v/m+kbxHj2mj496if94uiL6/+cN9XUT//Y1xaTvpWtoy8uLoV/P5w6mMdujrKpb48+vLqlxPe803n+N4B/D/J+Shxdef4dxJ9v0n9Ps5z8sfi6Murn1od+Q3Fkf8x8Tck8Rne8zW2C9vLXQmftjPP4bxHvLvSvh8iXLeO0ZdXv8nzPJ7r97ym+3RdIi+e/r2gUvppuk/es1PkxdX5XduujC9l3r+G/0fjyIurm0n/Pq9xYd7w8mn8hj/T92qejyJdnvOSF1dX7d/H8Duqf/CdRHlxdZ3wV7r/Sr8cQb8+tSHy4uoGZ/J2d7+PQXyt/P5a78iLqxvFvMS/23c+8aV/vy/9u37qGuH/g/GpNXgVdnIm8uLqfqM89yZ9nzOu96V/ri6JvLi6OtL1Eu3S7zQ6L5jbNfry6heTvw7Uz870kxX8zrX1kRdXt5Ty29ipMG94+TR+ww+mHU5nfBlCP6ksjry4ut9ol/59nfe9X065Lq+IvLg6//7OUuZh9eRzCP3to9bRl1fv391y/2M390loF7/1iL68evdH0v0V9fJ+N53hbPN301c2iry4uvf4Ty3lfwu/M53nV2VR5MXVPU39vNysMG94+TR+w8+k/fu9yA/Jl9+NlBdXtwv7S0Xu79Dul1D+G0oiL67O74R29HwS677vsevaR15cnfer19GOHyY9R/md/YQXV9ec9w/eb6mkHZ7K/o73X/Tl1Zdi15O+ZcT/o/P4ssiLq7uVdrEn/eZUynsP15Ml0ZdX7/tq+eHNI294fXn1hvf7fUz7N3+/b3mjyIur8/t+7kvdQn58H+f+lby4ulnUy6E+32nnJfSLO9pEXlzd77Sf3f3eQSZvzwffPhN5cXUHUp57ZQrzhpdP4zf848S/gufms7SLTZnIi6v7E/GM9vt9lNe5nhuuiby4Op+PtqtnfL+B/u1c5MXVdXedij/K72cT7pCqyIurKwU/iXp8h3nUMfTz6dWRF1d3LH4rxvvG9K//0k6KKqIvr36B9znIV4/kveQrDZEXVzeI52wT+GHYqz3PVBN9efWtqc8JyXnkFpTLq7noy6v3fO108Lu9v+A+Drr/A7P8N4d4nHWdd5RW1fm2B4EBBmYog8MMwwzT3hlg6IkFUCzRAKIRY2+faEQj9ooSihQFGwYUGwgxFlBEBSwIMYgY0aAYkWLsGhHsii02/K31vdeVtZ69XuefZz33fe/97vLscs7Z58ybmbz///eX3ll7R6+s3dgDHH8+/FvoN/WIvrz6Od2z9pSeWdu/OGtP75e1uxdHXlzdl/VZu6wxa/9clLWn8nuf94i8uLrrsft1zNoDm2btyL5ZO6Q48uLqPtkla++kPs9iT+mWtYPbRV9e/XV1WduMdnmnOms38juPlEReXN3vqf9xu+bmTS+f5m/6M2nfOdSrL/3ywC6RF1f3O+p1Nu00s0/W3to2awfmR19e/a38/l6U55/Us1tp1nYvjby4umNJ/zn+2Z2z9rbarB3dOfLi6hpI/zb1G8vv3Nclaz+qj768+kXg68n/AGwv+vfb+siLq/uc/n+NuLyU/nmlImu3ohtOHLXvn7VH0K7D2kVfXv0T/P4JlHtFy6w9D/3cTOTF1T2OPZ3xM6pV1hYWZm2b7pEXV1eEP5pyvcTvHU1cjiH9N10irk5+cHnWvkq8FdF/hZ2jL6++Pf4dzBu70C77gzdtF3lxdcMasnbiL/Cmn/gL+Zv+D/CX0k5H4/83E/mjE11d16yt7ZqbN718mr/ptzrO8E+kvQ7eNfLi6noRF3+tytp76adn0f+zJvLi9ybj5ei+uXnTy6f5m34q9RrXOmtHEldbCyIvri5D++8kn07E9wTm8/3yIy+ubgbp36U9n2L+qumUtdfT/h+yzjRtkrXH0653N4m8uLp3qO/p5DuP33+d+vctjry4ui+Js6Pgrybu+zKPXFseeXF1Yyn/35nPHmSc3kYcz2kXfXn1RzVE/scOkTe9vrx60x9AvvWM91Lau03Ci6v7DfhN4Cvot32Yf/ZuFXlxdSNov2Xwx9Le15H/tI6RF1c3Cv9Z4qcLcfEg7b1XTeTF1T1E3C6mfcbRP8fRL0NLIi+u7g3nX9p1Bvm3wn+jZfTl1Z9p/BJXN6D/Lb9X2jHy4upOIr/7qd8TtOcF8B83Rl5c3UX4F7bMzZv+wgRXZ/pqyjWYdfMufm+visiLqzuaep3H+MzQ3rvRru0TXlxdA3afZB6bTNyOK4u+vPp3wV+gHdcyL5yCLaqPvLi6L7EfMK/MYH/xF/r1zq7Rl1c/m3q5v3yU+qT7x3R/qu4Q8nvFfT7z2fFZkze1KvLi6u6lPXuzD7qL/l5Du/y9Jvry6tcbt8wDHzHvv8u+vqRt5MXV7SC/AvibaaerGB+re0ZeXN2ZlH93+uc0dIup5w950ZdXfwL12tEma7cwzzSlvV5qE3159YPB96nK2jn0xyDa7aya6Murv5nyP0l93qN+W7FXFEdeXN1uxPNO4uMo4uMbxtcdmciLq3uXcjSlHIvojyNo91l10ZdXP4v8ryb/gcT1deS7rlvkxdUt4npgHP1Sh2471xnDO0deXN1Ftktpbt70WxNcnekXk/8c+vXf4K8VRV5c3dm0QyPrSTvi6WZsfafoy6t3PuxDuS5xv+Y6Uh/9SxJ9HfxDlO8++mcr5WvdIvLi6ibRPwdjO9LPR/I779VFX179V17XMw56oX8Z3fJM5MXV3cG4OKkya3tTr0tp15GV0ZdXfz/5HU77FLIfHcC6ubU48uLqNlC+I+APYr2YTlxuTHhxdf3xG/idoZTnNdr5wPzoy6vf7PU/7fs3ruvHgW/qFXlxdW2xY9pn7XnmYzy1j768+g+pX0/2ZYcxv/0na/J25EVeXF0h/XpLXm7e9LckuDrT/wf8Kta1WdjpJZEXV7eBOJzEfvpz2ut8x0VN9OXVD+wR+TU1kX8o8dck+Zl+P+LjJ9b7G+jnn3pH/n84ulZV1Ad+MnHRnHWzpj7y4uq60o/d+Z1D6d+P+Z23u0ZfXv1u5P8G+Z/JvPQ27Vqbiby4utHYzcYn+e7PvDC7NPLi6vqT/3XwwyjnSYyvE7EPVEdcnfzzxEct+5pnKGfnXSMvru4y5pUrKNdSdN9RnupM9OXVf12VtXX+PutyX+b5Z9pHXlzdj64fBbl508un+Zs+Q3nOoL8XsO79plvkxdWVMn9VwY9gXn6G/rm5PvLi6vZgPGyhPT9FVwr/Xpfoy6tfiv86/TnI61fi7c2GyIur+wF7Pe37JOvc7ZTzi+Loy6t/jv4dCN6JeGrLeO9QHnlxdYu9vqJ8h6FL1yl9efUP0i4HUI73aZft2IF9oi+v/tH+kV/bM/Km15dXb/pPqc9n6N+hXz8rS/w+UX8k+U2kHW5gfV2Nf2wm8qsT3e3E96tcR9bSL6/gNyuIvrx6rw+eY3zOZ3+7gLjJL4+8uLqhjI+D2Of96H1syj28KPry6m9gPRkFvpL57j7yL+wWeXF19+Ln0Q8TvY7ENm+IvLi667GNtEMr9hkncX11Yuvoy6v/IBP5bY2RN72+vHrTL3NfSn/l06/9CiIvrq4788tMqnkK6/oS+q3nrpEXV1fD+juIdh5L/T6n3Tq3iby4upX4dxDXo7h/mUf/XpKJvLi6AeRzOXEwu3nWjqe+NzWLvLi6h30uR7uud55nv7UmP/Li6n6k/T7hPsQj5D8L/7Qm0ZdXP5p2mWh5aM/Z1Hd1s+jLq19N+x1IfPrcxOcor1dGPn2+4nOXu2mfCfDbGC8tE15c3UTvk5Tl5k0vn+Zv+vWUz+eL7/F7f8xEX179U60if3C/yJteX1696XvCb2A9P5d2fqNX5MXVvUL+jeS7G/20hPicVhR5cXXF9P+F9NNkfm8z7bKpOvry6vfB/4j8LmU89GWfOqZD5MXVXcC8UobO65vLWLd/bh958XHJdVNr8tnMvNRAOxUURl5c3THk8xnj7DDy20p8f5offXn1W4j/Rdi+7gMp5yvdIy+uLoNfV5ybN31dgqsz/QB0zdmPt8Be0hB5cXX52CE8D9hG/gW0d+sO0ZdXfwT5Po3dzLgaTzv/KhN9efVn0v4/g/+R8pyBva888uLqTiH91+ie5Xf6ss/9pjz68uqXU47xxMdq4q2Q3/usMPLi6txXjWMc9GFffTH76saukRdXt5r0f2N+H12VtT2oX5/GyIurOwPr9ZPXSV4fbfiF66v0eqqRej3AuPZcwN1dIy+u7ifKtYN2XMa+Zi5xsrpT5MXV+TzhXuaH39Guh2DXFkVeXN1xpH+a+g1lXP4WOwR7nnHLfNucdD26RV5c3U3eL2P+Pdn5m3q/1DXy4uoe93k7/Pe031Dyn9sj8uLq7oQ/iPhpT71fY/1f3D3y4uqewP+GcvXlfmBvbJ8WkRdXV0t7zGC/cALtcRb9cWNh9OXVj8L+hf45jHhbwzg4sWvkxdVVUr/Z1K+M+W4v5rWV9ZEXV1fFejPe61LG/VDPMZVHXlzdPuT/Mu2xgHKegF+RifwJiW451zkH9cnNm14+zd/0ZVVZ24n26Iw/tTz68urH0B7bvC/GuOvN/uuC0siLq9uP/A6lfM1o1zz87ztEPi/R7eT6dgXxvYB5Zwn13KUy8uLqjqD8/6jJzZtePs3f9KMdP5RrLnE6rGXkxdVtIi52xa6iX57ALq2PvLi6PPYZl6DrxHzW13Mr7SIvrm4P8k3P3f2KecLzefLi6kw/jXEwB90Z1Ht62+jLq3+f9nPeXkd7O68/Xxl5cXVbST+JdaeW3xlKPetaRl5c3Xrmn/R8y3x8z6/MT3j1LxEHhzBO3vK+BPNOv/Loy6tfSPkXgn/I9Whbxq3Pb+XF1d2GnU/9uhLnoxgXn3ePvrz6D+H/zPp7F+vZMcTHkUWRF1d3p8+FfC5QlbWT2Q+dlYm8uLpjmIfvIv8FtMvd+Ed0i/zdie4J4uEen08yvhbgj2kZ+QWJ7kjy3+B4pjyXU87HqiIvru5L6tdAPj4/G8w89UN55MXV1RNPt1Tm5k0vn+Zv+j2JkzOyJm8y8+wjeZEXV+f9Dp8/jcE/kHa9KOHF1W2i/ud47sVzA+jKE19efWN95Cf1jnx5opdXb3rv/3/Neda1PLc6smnkxdUV0S/lzM892Nd8Bf5NQeTF1S2i/n9sl5s3vXyav+nvp36vUc7RlHNKx+jLq+9PPq+DL/I5I9eTL9ZGXlxdP9KP8XwT/VrhPqZz5MXVHe51MvPTTur3EfH2VdvIi6vLo/7bKMehzEt/9bxWy8iLq7uR9HsV5OZNL5/mb/rXWdf7Uc7XmBdfrIy+vPoJPr9gXuwJX4y/JT/68uof8Pw6/fFb1vWjWF+H9Yq8uLoDsUOYz/p7zod6vlgcfXn1FY2RL+wYedPry6s3/Upsa+LkR+rVvSH68urHJ/wfqiJven159aZvTn/Op13X01/nNEZeXN0h2ImFuXnTy6f5m/4m1veFrIfHEh99qiMvrm428fN4VW7e9PJp/qafSZzU0k/V2Jo2kRdX57kFzw32ZD/5FPV+q2XkxdUtY/x0phydWV+6ER8XVEReXF1/5/mK3Lzp5dP8Tb+G/v2YfpqCf1/HyE9JdNuIH5+/7e1+lPltR5/Ii6t7k/Z4judd48m/mHTPdom+vPqltF8FfCnXs52w3zaJvLi6SVxHXcO4LmS+vZz4nFIUeXF1beiXi2nP9qyrnTwnkfDi6kZUZe1Q4msdv7eI+JpSH3lxdffi+9xgHfWamTxfkBdXt5D819E+61jvTvNcRffIi6trgn8V+S+jXEuw/6qPvLi6Y7g+bUP7jvWcEr/r/ldeXN2evq8E7356JnH7r0z05dP9us9ZvM/h85iTekd+VnK/xOc0bzfJzZv+7QRXZ/pr6F/fw+lIfJ/aJfry6rdRv32T833XVmXtgF0jL67O83+268GUz/ZtXRB5cXX2z2/a5uZNL5/mb/qO1Occfqclfk3Ct0x0D3Nd5nPnP7IvKvbca9/Ii6vz+bX3x3Zjn3ka5XuuPvLi6r7HtmRcz2Ocv+z9+5Loy6sfSf2OJf9fuk+qL6/+Qp/v+R4V42kZ88KSNpEXV7fK89aUYyn1GUtcPNI78uLqRpH+FubxDcTpA+g/rYi8uLrHac/1XXLzpl9BfZexn3wc/6HKyD+e6C4jvweJ97WeE/K5fEPklya6QfRbk7rcvOnl0/xNfzHzTgX7gUuZ/y5rG3lxdSvJ733idyTXEx8QR9VdIy+urg/jpC/5/4d+X+c5gPrIi6t7Hv9c+v0J4uFfvldTF3159f/l952/m3pelPKtaoy8uLqjuU/wCf04jbhbg/7KdpEXV3ch7ZLfKjdvevk0f9MvYL/jOZMrGY+eP9GXV9+Z+eod8vE+xqXE/buZyIuru53+HAX/KevFDfTbrQ2RF1d3I3ajz1+Jl03YDvWRF1f3Ef1xLePqPc4bnE+5J3WMvLi6U+jfGcTXHuS7J3Z4XeTF1R1E+ZrQjr6fsYa4Wl4XfXn1vtfRnXY9hvHWm9/b1iry4uqe8P26trl508un+Zu+lPzbEF/30V4720ZeXF0X+ve/nnckriZS74UFkRdX9x75DmvMzZu+jeebPPfO+PuwU+TF1V3AOHmB9j+AfeFy4nFOTeTF1W303I/XvfRba+JuXXnkxdX9g/g4nnyH+d4W7fpiJvLi6pbTf6OI/9u5HpiH/aZH5MXVzcdeje5x7g95f3hl88iLq+tM+X7v+9HU6xPi4LO6yIurm0d8vIx/O3HTnt+ZkIm8uLo/0B7fke+h9G8F7V1SEXlxda+S/68o39VVWbscuyrhxdW9QX8ugt9MvIwgPgbUR15c3fv4NdRvOPWZxv5uevvIi6vzPQ3ftziI6/Jh2KGtIy+u7iXKV0F8HUf7/Jv2ubgh8uLqHqX+J5Xk5k0vn+Zvep9LdHA/y32tc1pEXlzdW4zLjdRvN/Zdx/F7laWRF1d3D+X7E3HyjveBiZfLK6Ivr/55/EuY76+jPXdQv5H9Ii+u7i34Z/vk5kcmfJq/6TfTPnm050LaeUhJ5MXVdaD9HvJ7Hay3r2LPbhJ5cXXNKM9tlO9R+qU389LKgsiLqysjfltQj2bMlwWeD62PvLi6hdRjEvUa77k36nVLXeTF1X3K+J7OPm1f3wPE31ISfXn1z/uehu8DExfpeev0nHT63mot+Z5IPYd7/rs68uLqMvz+wWW5edMfnODqTP8w+3XPXxYyv88sjr68+in4nahfA/U923Po9ZEXV1ePPZJyHcz4voZ0awsjL67uNuKnE+24FvwZ7GNtIy+ubizxcA3zw63ESQfKu3cm+vLqy+CriKf7sybvIuxTeZEXV7eZ+cm4XMK4bqCdllVHXlzdB+4/yH8g+o89d14deXF1P1OfMtp3BuvqKtaH/XtHXlzdddgO7KeOQfcW/XRo5+jLqy9pjPy+ZZE3vb68etMPox7zWFenUr+a2siLq3vD8zE+HyPee7K/ej3hxdVtxr7gfTH3CbTzA3WRF1fn+dpK2uVkxlUh9rqOkRdX9y3pL3H/4/1fbLe2kRdXdyPlmeB9ccp1AeOjoG3kxdWNoh/+y/j6jv5ZT73PrI68uDrfjxrHOPB+/qHUa0Jp9OXVP9s98uNLIz8h8ccn+Zm+kP5pw7p0h9fz9ZEXV/co48F12HX5aZ/Xd428uDrX9QmM66nu27n/srok8uLqHvE7KozvL7mO9zsSX+VHXlzdeN8PZx6/Omvy5jPuVuRFXlzdAMpxNu1zI+Mjve8pL66uF+WY5XNrxvPFtNf0TOTF1Z3K/u1i5qEV6Kd6jqJd9OXVbyYuF8KPpDzNKO+59ZEXV3cK9hXKtaUqa73/0aJz5MXVzSPf2ypz86aXT/M3/fX04zOcE1iL/94ukV+b6G5jP+b7d8Opn+/h3VQffXn1vr83iHLMYp9wF3G7a/PIi6uron630D6DWO+voV/f6hN5cXV7YfcuzM2bXj7N3/Q7aZer+R33ZeNqIi+ubgn1H1Gemze9fJq/6X1v5xXmlRW0zxeZyIur+z3z8Zfk14717j3S7egZeXF1BYzfr+GfZD17H93KlpEXV/eV322gfC2Y329hfp9WE3lxdceTX1efWxBnG/3uS7voy6t/lfbrwvy4yufQrJsP9468uLrriY9/wu/H9fUyxldBfuTF1Z3E/LYa/k3a9Xnvm9VEXlyd74c+QHzt9Dqecl+Rib68+vWePyKu9uR+7iDsgKLIi6vzfbt87z8RD1NZZw6oj7y4ulnEdfpezxbsBY2RF0/f//madXI2+g/Y79WVRF9e/UbPj3hfiPzG0u4tGiMvru5k39OmX171fDzjakR95MXVva71eoy43Av8ivrIi6urwy5nH3ECcXIj/TOiKPry6ptS/5PB/V7YfqwXBQkvrm4H5dq/Mjdv+v0TXJ3pR7t/5LrW7x4Nrom8uLpJvt/EeJicNXm/rsrahbWRF1fnd18ezsvNm14+zd/0X7JOljAvbWB93Kdp5MXVLbVc1p+4/KvPIysjL66uM+P4p1/gTf/TL+Rv+qvo328ZJzOJu36dIi+uLv3OZcqbXj7N3/T/YXzsyfw+ELu8V+TF1W2n/Q7x/UXi5XfYtxNeXF0Ln9N6vobxtZz16eJWkRdXt53229P3a5lvOjsOSyIvru4x2uFJ5pnrHZ/sl2tLIy+u7gjKX12amze9fJq/6b0/0od2nsF121mtIy+u7jTGX5sWuXnTy6f5m/5Iv2/A/HCb3yGri7y4ujLqcYXnvjy34XtpdZEXVzec+g/x/C92BOtUu7Loy6v3/R75GZWRN72+vHrTb6F8a9DdgO7jysiLq5tI+U/uk5s3vXyav+m9P30r/Xy67VEXfXn1oz2nib8e3QSf49RFX179PJ6T5sMP8btIjKuZLSMvrm5v/Bd87km7Hse+a0Fx5MXVrfO7IsTXCtbJ8czrO+oiL67uJKzfr/L5kO8L/CH5/pW4uj/Be57lLO8LwJ9ZEHlxdf0YP+l9jVLWxwnJfRFxdcu9j0Q56miXXaqytnVV5MXV/ez5AOq3iHH9NdcZdd0iL67uXuxO+uclyvUC8d60KvLi6o6iXE3LcvOml0/zN3078j+WffkGyvVRfuTF1e3L+PE7heOz5he/YyiubhV2LNexfm+zF+XsWh55cXVVxIPffyxqEuv1epPIi6uzPb5okps3vXyav+nvd/1gXe2JbdYl8uLqBlMP78PO8z0h9H7fVV8+ve/7Cf3yFu1RxLrzU/Poy6v/wfszjIttzGcr8Td1ib68+ivp108p3ybWuWexr3WMvrz6sobI39wv8qbXl1dv+gHOO+wrunluoSry4uqqGAfp+1eeO/L9KnlxdZ5beo52uIf89vd5cyb68up/6/1E1gHXh7n4tzaPvrz6EcTBdp938Ts/E+8flEVfXn2rnpHfVhb5DxJ/W5Kf6b9gnRgOPpRyPtwh8uLqJvr9qPzcvOnl0/xN7/MIn1PUei6gNvrpc443KX/6/GJL8nxCXlzdG34nijhowrz4J/SXtYq8uLoX6P+89rl508un+Zt+hM8RGa9/8/s6dZEXV+f3K7wv9IbPqfB7NkRfXv3b9I/nCO5hvJ7L+PS8gby4ugngj3m+l/3OXZ7X6RB5cXV7eD63Q27e9PJp/qZfwnVhX+r1JPc3VldFXlzdi7TPmurcvOnXJLg60/tc2efUJ7NvOKQi+ulzbp8/r6V9dvE+J7+zpj768uoP8vlncu78PMaH58vlxdWNwt7uOV6/R41fkom+vPp53n/kvkA7fqcO/+Vdoi+v/n7q8Tvm8y7wM2if33SJvrz6EcRfCf1wFPezj8YuahV5cXX+P4nz/J5Hco7Z883y6flmzz1/Cz/Zc4SUq2ND5MXVTcFOp1//Tn6rsD81RF5c3RPYLsyrU3zfyu8JVUdeXN1pyXcZX6Jd98be0S3y4uoGY/2uw03058vEWafkexDi6vw+6z7sD9PrxKZ10ZdX7/dlpno+2fmVfm/WPvLi6i7n939FPnfQ39Wsk51rIi+urob2WViWmzf9wgRXZ/onKd8s12P6a2om8uLqOlH+IZ6zIl4uoN06NkZePP1u0SfuS3z/nfuya9tGXjx9fup3myZ735h52u87yYury6P8W+F3sM/9AV1VfuTF1Z1HPYbQHiv8HhX44sLIi6vz+v8Y8tuXuPw17T6vVfTl1T/ePfKL+0Te9Pry6k2/HHw71+Pr2J98VBR5cXX9qY/vo9b4fMjzX5noy6v/mfZ/BH8u6/oc7NLiyIurm0H7HQA/2ut84rpNJvry6h/k98/1/CLX5bWeN0h4cXW7Yz2fcSFx5bmMA/tGXlyd5zlatc3Nm14+zd/06feBFxAnfv9XP/0+8LvsSzawDmV8/4O4uTITeXF1J+N/wP2UO8n/ar9LUxB9efWP0S+l1KMe3Tv0e6cWkRdXV01/TiNfv4fi91V+3Sr6//teiutdQ+RLiyJven159aY/yvMytMtO3pPaURx5cXXHUp5rC3LzppdP8zf9D/TvAb6Xje/5S/nxiW4O5foT+B7+/zLi4vyGyIurW5XcL52NPxC7uHfkxWcn92c3UJ9+7sfYbzcWR19e/UXET3p/ZBPXa+n9E3F1A5mXdvVcBvm/S/vcWB99efVf0r78zP/+74SffV2cF3159e1Zzxr9flIyTh2/8un4XuZ84XdgWJ/+iv13n8iLq5vP+vYIcXS+94+Is+JM9OXV/x5+Lvn7f3POgPf/58iLqzuf+fMM6rOE+xX7s7/a2Czy4uqKfZ+P9W2A5//wH2sdfXn1670vzn7sM+Lkfc/5F0ZfXr3PQ+ZQjuM9l8r+am519I9P9IcQv34/cwxx7fcz0+9r/g83/im/7819xHiZTP0mtY68uLpqz9/Rv76nXUN/fVEffXn1Q31/hHa5n/qt8L3vusiLq5tJ/Pgd1EuJ7xfJf3wm+vLq/U7qd/Dlfj+Vcv5YF3nx8mR8f0u+X5Hvj/SL3/eTF1fXn/TF8L5X4/8h8f0aeXF1F/ocOXmu6ftJd9dEXjx9/nkO/IXuf4g77+/Ii6sbxf3M/t7vZFxNZ9xNaB55cXXPUI4rWZ/ncV09iP79rkXkxdX1xL5Ku2wnPsc6zlpHXlxdOfV/v3Vu3vSuG0sZzzeic18uL67uQaz/l+5AJm7ve5/SK/Li6k7D/pnf6UL9D/d9nrrIi6sbSv9tYby/7Hkh3xfwew7onjKOWHDcd+vLq/+E323DdXIP6tPoezcVid8r6ttQnnLyPYD5/HifkzZEXlzd98yD46j3d8x3e/M7/dpEXlzdNdTD/381pSprT8+avKNKIi+u7s/4/YivQd5HYJwXNkRfXv2e9Lf/R+1pz/8zXuY2RF5c3X2U4xja5QrWlbPZ7x1RHHlxdXV+z8nz9OjOZ592eF305dXvQ3xcR/3u8XkP9ulmkRdXt4z6fON5Y/It9nqsJvLi6s6kPc+rzM2bXj7N3/Qtia9/MZ9c6fPPxsiLq8vDel1aW5W1/4/fa1IVeXF121034auxh2M7ZCJ/eKJ7wPvHlK89+XfD7uwWeXF1ZzO/bGH+WZt8b6iiMPLi6ra7f6M8u4MfzPi6qlvkxdUNYl4fRzvfjb0B/fxM9OXVL0/2l7XU69/wu9dHXlxdHbZlZW7e9PJp/qbfTLu8ib2JcVvQI/ry6g8nn26Mh2a092DG2fPNoi+v/kPG911Zk/c98Xw5vs+95S9PdKfir/oF3vSrElyd6dP3JMdgi0oiL56+b3kq7TDS82O0682dIi+ubq3/H8r78rTrtf4fr56RF1f3D+z5xPcmyns369P3DZEXV7cv46c3/eO5Et9X9v3k3gmenj+ZyHP9w9hvjMD2bxV9efWTaRefS9yOPp/rsvb5kRdXt5P6XUU77ev3csF3VEReXF1Hxvcz9O80fudUz1nVR15c3ddcj/Usy82bXj7N3/QPk387z9PTzle3jby4upPJ3/+/O43zFDfxe6trIi+ubqfv8xKHzXxfvSprf+wSeXF102m/M3yuSblmMU+e3iLy4uoeJL7+D6w5/9N4nH2dd3RXVdaGEyAQIAFCJ4GQQEhCIDQr2EfEOjoCKuBYEAV07CAWHJUmdgd1lCJSbICiKDjYxlFQERUUR4rlc3RQUBCxgqLot9b3ex7W2mfFL//std/3Peeesk+55977S+9uWf/317cqY6/qkrEzOmVs724RV3dZecbu1yNj13fP2FPQfd4p8uLqKknfqlfGvtEzY58uzNjdCS+ublNxxt5enbHTGmTsa1x3dEXkxdVNxz5I/g82z9h9ue7sZpEXV7euK/l1q5k3vXyav+mXtcrYL2mnL+D/VRp9efXfds7Yl+iPm9Hd3TJje7WLvLi6Q2nHyrKaedPLp/mb/lzqcQj1PZp2LmwUeXF131dm7MgmNfOml0/zN/0XxNOZXOcd+r1NeeTF1S2G/4R6TEc3rl7GPpAXeXF1/6VdWvaqOb18M+JvZtOMvQ97b9PIi6vbj/L2pd/7EEfX0e/vV0VeXN0B2Kspz72MvzvAx9aLvrz6sVw/i+ucQ/0GgY8pi768+mtp3yPJ/56OGTsRfGF15MXVdS+ifOT3SkHGziQuvm4aeXF1OZTrBPjS/Iyt0zhj29aNvLi6T8GnUa81dTJ2VcOMPSAn8uLqthBnS8mnA/30MXHbsVP05dV3gz+AclYRh73xpzSOvrz6KZRrLu1xIuUZQ1z3y4u+vPrnKMdWytU7N2OvYBzulxt5cXW7icfjGB/tiasCxnOdvOjLq/9zReT37R550+vLqzf9OuLrJebfvxBnh1VHXlxdO+z+1G8e/X0o42ROnciLqzuWfh1EOy6jv5Zjv6wfeXF1B9MfT2LPId6HUK7JeZEXVzeLfKdiyxmvHVlX2nSIvLi6hc6vtE8zxtfj5N+8UeTF1fWnPS6Cb8B6m4ut7hx5cXXvkt88+nU8+d5AurPqRl5c3Qf0/1LiYzD13Yxt1D7y4urGEQ/1iKdCyjmAfsttEnlxda2p/8D6NfOmH5jg6kxfJE55p7cmXeLLq2/VJfIzWkd+YKKXV2/6PswrOS0y9hnmpft6RF5c3Xzi8fvqmnnTy6f5m34Z/Ar2f69iXymMvLi6UeAnUL696NeHuc6m9pEXV1dJ/GymnDtZFxYSZ826RF5c3TbK/wPxOYR902DsoJaRF1d3JdcvpR4Hu0/lOleWR19efXf40ynfcMb3COy5pZEXV7eJfF8j358p50LnofLIi6v7hXF8GPmflzFZq5mv7s6KvLi6S8n/deqzE9uF+WpCefTl1b9LHBWT/6/M13WZn5+qE3lxdZ3Ipwf8ifhDiJvBHSMvrq6I8i2jXn1YV3tjz62MvLi6/bGTiM+3szN2IfbC7MiLqxtbm3yJ04lcZyj+v8uiL69+uO0P/hHzahXt2rxr5MXVbcfuoH0eJa560269yiIvri6X+BsLX83+Yjhxtk915MXVbWcerUU8LqWdTiNdw8roy6t/jDj4Dr8x+5NG2KsqIi+uLh/7F8r3Mv2xGPzKZpEXV3c+dkdJxj5Pv+TQPjtLoi+v/jTGRQ7jsyftsRjd8k6RF1d3G/23wPv3Nhm7P+kGt4m8uLo81pVLaNcB3E+eiD2jIvLi6vpjBzoOmZfvZ56e3j7y4uoqqX8DyncN+/MRzEvXNoy8uLpS2iOXeqzHPk1c5pZHX1798fADiY/LuJ+5HDu6KPLi6pzX5jCex1Oe3pRzaHb05dWfSD3G0753l2Tsm4zXO7pEXlzdFM4ZvkO3gP3WcPTvVUZeXN1C7E7i4mva+Uzyn0n6M0oiri7l0/RVrPPbae9B4BcQV0vaRV5c3WLat6nzInG0HX9RefTl1b9Cvc4i/4+xr9AO/6mIvrz6rcTpP5nnZzEOjyTd8wXRl1f/Ne1zFfPIZ/RDJ8bva82iL69+CHF7D+U7lvuJH6j3cXmRF1fXmPx2wQ/JmKxx2BeyIi+ubgHtv4JyPI6dzLpwZ6fIi6srpT3GYK9gHPyH8dSlIvLi6p7mPmsS/bGAfl1N/dZURl5c3Vv47+XVzJv+vQRXZ/p2xPFm4qsbcXtp6+jLq99I/f5r+yf7j4M6RD7dv7g/uYH6Pcq8079txl5YFHlxdT9y/Tdo17bkP47++aY88uLq3qY/u7FfHkA5r2Deqs6Pvrz6m7y/4hz4P/DLiJsLS6Ivr75F18iv6RB50+vLqzf9WOozhX4qYf4trIi8uLp96YeTaZ8erONPcJ1biiIvrm4l+T7KutcQ3XLuHxa2iL68+hbE5yryac/9ykzq93CzyIurO4Xx+x38J/TH0eCVnSIvrq418TEY/B7GaT94zxX15dW/S/xspF67aJevsa1KIi+u7mry+YX4vp716gLKfWyjyIurWwz+K/ZK7FuU+77yyIurm0N+r7OuDaSeF4K/1z3y4urGYvMZDyPwZ9JOjfOjPyLR5zEeP6Udv6KfFjMvep6sL6/efX8p+wTnmQ74Ja2iL69+mfNGxmQNp5yE/Z7zwKKEV/8zdpT7dcbHQuyWLpEXV3c25biDej3rfSjr5fLy6Murv5z+nEp/nsl4+ZL2mlsdeXF1X+Fvo11uZzzeRbobyyMvrm45+XagH/7kuSVxe2ajyIur29Yllm+b55LYn3NqLv+2pH4rsINZV2vRTrafvLi6IdgDiac1lOePzFfXlEZeXF0j8n3M817yd776MJm/5NWfyPg/g3K8Rz1/JO5PbRp9efUL8CcznmYQn9fjT8qPvrz6T+nHJwjwKRmTtRp7blbkxdV1ZR5/m/o9wniZj21VGXlxdWupR0Piax3z2kjqO61p5MXVvUe+W0sy9hh0G7mP/7Ik+vLqN9B+F9EvJ7Ov7US5djSPvLi6RYy//q6z5L8Df25h5HckumfxZxbWzJtePs1/T3qed+ygPY73PDg/+vLqT2VclnGfv4rxdkatjM2pG3lxdRPALyWf7ozLXqwTPRpHXlzdBeBzGtfMm14+zd/0Z9MuO4mXQ4i7LXmRF1c3CP9vnlsQD2vp94YFkRdX9xJ4g4KaedPLp/mbPhv8COp1OPG2omP05dWv7hL5VztGfkXiv5rkZ/ps4mI04/Ip/KqqyD+V6PoQV2OZB85jflnjOUzL6Murv7lr5He0jbzp9eXVm34++U6jXaup1xf1Iy+urj/1S/fH7bFXZ0deXJ375wbenzI/PIL9rSLy4uo6eJ9BPV7Ef831P+HF1a1nPjyH/i0jrlcS9/mVkRdX9zP9uALd4exTbqRdehdHXlzdCtbXHwtr5k0vn+Zv+kH0j+e9tzJeLu0ceXF1nhe7rp9NnGQTJ78VRV5c3THUawHlqmC9/oB2Oqkg8uLq1lGOASUZ24ZyDsTvXxJ9efUfke98bF/G01b6+aX8yIurM357EJ8LiLN64O+UR19e/Ub4hqwH7qcvZXwtahR9efX30X470H1DOVuR7/yG0ZdX/2K3yM9rGPn5iT8vyc/0/alXfeL6Nq7zVX7kxdV5ft+D9hmHfwXz5DDPf7pGXF3Kp+k/ppx9KH8/rv8M/tpG0ZdXfwn1u8Z9HeNoEONqWcvIi6t7g/KcQv07MV8Nw8+ujPywRNcR29r7Hvrd90JOyI28uLoV1Ocz7IGMx30o3yMVkRdX1xHr+3tzOde/iHH8fpfIi6ubjX2EdngF/mXsAS0jL67uCvJ/hnF3Ku1zNPHzdP3oy6s/l/mrinmkHuV8hHbyvTJ9efV9PXfAXsb9yBria3Rp5MXVNeP6Z7i+sG7NwA7Mjry4uuGMixPY513O/LfV5wVNI78HR7eT/WIF7fJbScYeSlxtLI68uLqllOsa+HnsR0exbj3cOfLi6i7F/xftOtnn3MT9EeWRF1d3CfG5nf5Y5XMk4vuLetGXVz+M/K4lvoaT703ej1ZEX16953yX0A6fse/eTv3WV0ReXN2n2IvIr2tJxq4kTnYXRV5c3VzadwXt04/x6XstcxJeXF1vzjfe9H0p9u++7+b7ffLpe3DdiK9RtOu9zP/baJdG3SIvrm6y6yTlux/93b4nVRZ5cXWzKV8+5RvKvuF++mlGZeTF1Z2FvYH8b2HfcCrl210ReXF1D2HH+/yPeWUtdl39yIurW0T5jqRcf6U9i/HXJnxxolvOOJ7RtGbe9PJp/qafTf98RnxuxH5aN/Li6rbTPgf4nJ16tqCfp1RGX159d/hnPCdifunNurBXm8iLq5tGPD5OeVZTzoc8x6kbfXn140jf2ufrGZM1ATugKPLi6oZifT49Cd3DjPf0+bW4uhtpF99PrKY/3iHOt+REXlzdHN9jdn1mnpsFf3LjyIuru4b6D3H+8vk115tRHn159R9Q/md9Pka/eK5Xq23kxdU5n7ftUDNvevk0f9PvpH0PY12dz7x2aKvIi6sbSfoDrS/t9BK2uiLy4uqyKYfPXx6mX1eiP7ki+vLqfyX9k5TvDer5hfupLpEXV3cw+6OptNOD8C/xXHCf0ujLq59EP15PO/gdxZOsD13APy2OuLqUT9P7/cWJ4Gfiv8g47tYt8uLqhmLbUe5DaIfnyH9cZeTF1b1KOz1fWDNv+ucTXJ3pl/E8rjblfRf/xXbRl1e/jfZ90PMd+muicdUl8uLqjqb/erWqmTe9fJq/6R/2+RX7oUnwOwsiL67uAPL/qV7NvOnl0/xNv9T3HojDV7GdCyMvrm4m6X0/4lba9UDiN6c48uLqBrNu7Mc85XseQ5wvO0ZeXF0213+5Tc286eXT/E1/NNbvCfx+wP2UvLi6Yuxo6teP/K+gvNdWRF9e/YDOkT+qR+RNry+v3vRXsV48BV+b87HzKiMvrm4053i1GtTMm75WgqszvedSzZn/t1DeFu0jL67Oc7ES8n2feLvKeaww8uLqFhA//fwOivY9knY5qjzy4uqm+T1Zh5p508un+Zv+MPB+7N++ob1P6Bx5cXWj2K9ez/zakPFxCPPEET0jL67uFe8Dyb8J7XSB5/Ll0ZdXP5ny/wO8lOsNpr987qIvr74n/LmUby/GQzn90gv/N/QDaMd1pNtWHXlxdbcxPzrvL+I6ridjy6Mvn64fnX2eTvvdwvy1qGvkxdX9RDv/l/p/R3macL/+Q2nkxdVVkH8h/Ww72S5986Ivr952XEq8PE+9XqZe3+dGX179BtJ/wTz4OeXMpXx7FUdfXv1w0v9CvtfgD6DdN3aJvLi6zuQ3gHbdwvu4g7B9cyIvrq4/+Ntcp67fR9HffcujL6/+YuLpF8oxh/GynfbK6xh5cXXHMU5ql9bMm14+zd/0E7mfHEh9e8JPqB99efWf0w65xNV62qMj50IbEl9e/WjfV2aevsZ5jfuOXQ2iL6/+G9rxCd+HRX8s7bUhP/Li6moz/33r/Zn3VeDHVEReXN0u5ifHxdP0t/PMnd0jL67O8bOVfvnJfOm3ES2iL69+LuP3Xer3Ju1cj3bNrx15cXUHsn94lH58B91m/G11oi+v/iDS+33aAPCV7GfWJd+viat7HX84/ALmlRP8Lrtx5MXVvUX7dqJcd3AetDfzTs/OkRdXNw07lbjMd99Fv45pEX159UOrIt+iR+RNry+v3vRngNenX69D/z/tIi+u7hnicxfrwUnE2f+wLhxeFH159W24/kjyb4C+NnZdm8iLq9vF+PN8fTj63uR/Y3XkxdV5Pj/F51YlGXsJ9e5VEnlxdZu4fgfq5b4hn3Hh+6Hy4un+4i3yv5r8c2mXTaWRF1dX5XcZ2JOop99LftIp8uLq3vecw/sP4noo89ZZ+ZEXV3eh3y2zTm/3PUnmmdb50ZdXP9v3BinH8cTTr1yvT4/oy6u/m3Y9pSRjt5Kfz2MnJ89n5dXPIr8qyjWB9f7P5D+pOPLi6j5kXXq0W8286eXT/E2/EL7Q+zl0fYojL65uDP05m/p97Hu5jLfc7MiLqzvD9qAdr2N+Go+d2Dny4urGYQewntUnzlb6Hl6D6Mur/9DnEJTjdK5zD3E1uiz68urnUb4zaY93aY8vifsvC6Mvr74D47efz9WJF99DPbko8nveTwV/hfpcR3n8Ptvz1vnl0d830fv9tvyYNpE3fQPaaR/K8SjjYVZl9OXVX0f7XQG/mvuGntjvqiIvru4k0k9mv3wsuhGku75p9OXVrwLf4L6a+aAB9uPmkRdXd6jfHVEfv8O8GntfRfTl1fv9ZhHtu41yvc05z6p6kRdX1xi8O/kez/OSfeCP6hx5cXUnYFtyvuX7SRuZ109tG3159YP9rpJ6ToCvx/yf0y7y4nt0tP+UjjXzppdP8zd9c9uB/roeuzAv8uLqjM/pjLMbiO9GxNf0NpEXV9eL8kxivjgIfwHtPLFB9A9K9E+T73fE5eXMnz19j7w48uLqltC/vl/fviRji7A3dom8uDrfzx/guRfr5hjs5Q0jL67O7z98P6w4eX/sX8WRF1c3C+v3m0uo50vsawdWRl5c3U34awtq5k0vn+Zv+g4+X6WcTxNX/SoiL66u2vcR3Z8RZ56X+X2PvLg63//aBF7CeOuMXdoh8uLqmtP+dxrf9Esz8m3ZI/Li6kbSLnUa1MybXj7N3/T+/sAp+C3hezSPvLi6rtTrKsbFm+zbL6Pek0ojL67uHvq3nHGwknnhNeyuwsiLqzucfO/yfJb79l2U896qyIure5P7/edpJ/eT7h9b5EdeXJ37Td/DPoL6lrGu3dY18uLqfK97mOsD+9g12LfqRl5c3W5/Xwe+W0nGTvS5eHXkxdUNoR3rsM+6l/68mfvGm5pEX179MMb/SNr3YnQHsB/bWhl5cXWHEF+jGA+D/f0F+unSttGXV1/L53O041fU8wH0X3eKvLi6u/x9sx4186aXT/M3/QTa5XTmo0WkG9898uLqhmI/oh3XE1+34+fkRv72RPd3/Lq5NfOmz/N8n3X/TPdNrSIvrq6vv8NA/23ynAH9/hWRF1c3gPoeTD6H0A7jiP/ZxZEXV1fgd5ClNfOm/ybB1Zn+/OQ+z/u+xhXRl1fv/eAG4q4J5zr+PtVhOZEXV+fvWf1GnL7B/u9N7H5dIy+u7hHGyU++H4YtQ+/7Qj8luLpyn0Pg30m+r1KvTj0jL65urL+3lzFZHzHufsQ/pUXkf0x0i/D/+ju86f+a4OpMP5B6zeRcbz/O+Y5oEnlxdVuxVxInxxKXO/F3YI9jH+196ATvO5tFX179BM/f4O9m/J2HXZX48uq30M53U66fae8fmRcmNYm8uLql7B9e93cM2Kf+Cb9Rs+jLq9+K9b5mLfUZ7TzVPfLi6rwv2sB4WUv5RrA/mF4QeXF15/v7CUn7HsP67P2/fnpOcD/z1bnuT2jP4dgR9SIvrm4+13+Mer5H/K33+Xl15MXVbcB2p34/oeuWPB+T75bohjPesqlXGXgZ17015aujbhX5H0y+t1Gvn9kf7KobeXF1f/C7S/Iby7pxLfbqvMiLq3vW3xGifZd7jkd5N1dEX159EfPTC/Lsq/5Ouf7ZJfLi6j5hfu1NfnWZ9+uz3vvds7z4Hh22M+Mk3Ue+nhN9efXuL7PA96Vcf6Xee+VHXlxdR/cHjMPFjPfxXO+L7OjLq1+C/yLnzA3I7xz22Y3Loi+vfl/a5wG/u+A6rh8zCiI/KtENIx430y/X0p6PMK9fVxp5cXUP+vyZeekFyrcb/8Cm0ZdXP4V8fV/sZs7NbqG+D1VFXnyPzvM46lXL54nY46oiL64uG7uE9riYfjmW9Whe4surX4x9m/a4yHM39l9rSqMvr74Afz/m03/4vAr/4oaR3z/RbaH9/d2zF+EPo7x3Nou8uLo7Sf8588sL9O9M7ivmdI28uLrnseeQ/+Tkue/17SMvrq6Q/I+Bn8v8NsH3u+tGXlzdTtLfX7dm3vTyaf6md584yt+bS97j0JdX7/OFi7FTGW//gL+nIPLi6lr6PhX5n0p/TXV9LIi8uLoGxEFL4rKd3z/h358dfXn1N3KO9hP9eKvvkbIutSmMvrz69Bx6TJKf6fXl1Zv+ePJdwHj8qCRjP2gfeXF1T7h++ZyLuJ7PPqeoceTF1bXn+hWU7+KMyfoM26lF5MXVrVfP/cI06nc2/ok50ZdX/7XntOx7+3POM5F97+xG0ZdXf0ny/LwJ7fIp9XyyXeTF1X1L/Pvc/EXiapO/L53w4uoupnzD/D09yuN4n9U+8uLqNlOv7rVr5k0vn+Zv+r3pX4ZXFuGVNTcr8uLqJhEHj/n+G+vt1OT3veXF1e1N+55OuYaxHpxPudbUjry4uiXs4571vpZ1wu9W/K5FXlzdaKznc+NYH8fwHD49vxNXdxf5f0P+v3efJS+u7gHWj+eIpwUZk/U2/F7tIy+u7jJsM99bYHzcQDlfbxt5cXVPUp4/UL/TmNcmYw/rFXlxdc/o0z9PUs7e9NM7tSMvru5v2P2ZH/x+4mDsRS0jL67uQWx6X3lQcv8pf1CiK2d/sI58itjX+9erdvTl1bN9z3qHfKso527wnrUjL66uDPwGn0vBQ2d9mBV5cXV/YfyNx7edDsGf1zH68uptv5WU4w725X/E/zI78n9MdL1YX2/x/oL8mGazsnMjL67uA+xDyf5/DfPmJdnRl1f/b9aHPv4eI3gfbK/6kRdXt+d3EdG5X13yO/cZ8xK9+9gL2Eevgf+FejXNib68+l/BC9AxPLLmMy4/yIm8uLq1WM8zhhCf5yTnH+ckvPpbHcf0D5fJKmK+2JwVeXF1e7N+OR+NZX6Zxb7F+UtfXv1N2O+xucxLf8CfWhp9efVrsN9Sjw3UbyT+6uzIj0x0Bawfn7t/opwVfmdTHHlxdWVMAJvZR/m7qf6u6nNlkRdX9yzr33LiaLXPjX1+AX6g+13Wm8fhb2gYfXn133WK/A+NI296fXn1pp9MuTZRH98byKmKvLi6y31P2N+joN5P0I9DSyIvrs7vC47y+0nirwXl9v+/6MurP6Z55M9OeNPrn53kb/rbmX9OYx92kr9bWRZ5cXUPw//b77SIO59XLMmLvLi61tTfuNuaxKPxKe/3f+ralUdfXr357PmesPj/T78lySdN7/eGW5L0+vJp+uN8fyaJf8eFvLi6kcRnmftZ2mtv+qNO3ejLq7+a9OXE/UPM8/bbvJ7Rl1c/PTfy9ru86fXTuDD9aeT7N9rnNr97LIi+vPpnE/2pTSJven159abf7T6T+P+e/trdLfry6n/FOm4Op50dP619Dt+wZt7xKt8i0bVOcMerfHrd35sPXLfGZMye9cz1rUNVxFO9vLi6V7netfTn7323JZ/+Hxn/P8xV5Pc55fZ9i00NI5+d6Hw/I/2/Qa+Rf/p/hcTT/0+U/i5yHutb+rvL4ur8/eT0d1Nu9H2S5HdZxNPfV0m/C/X/c6XfnYqn3496DuJ7fv3ZX3le0j/5Tjt9P1D+5+RcJn1fUF696dPnzkN+57n0kETn82vn/5Q3vXyav+n/FymJapE=DQAAAACAAABgOwAADRUAAP0UAAD9FAAAAhUAAMAUAAC3FAAAtxQAALoUAAC/FAAAtxQAALcUAAC6FAAAyAkAAA==eJw13S2DMlAUFtpRUVFRUdGLioo6KioqV1FRUQkEAoFAIBAIBAKBQCAQCIQJBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQDDMek9Zv+Hsj2cHvn5fkCGGGWGUMcb5zQSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzx8OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3749Rd+CTDIEMOMMMoY4/xmgkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjnDwcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/z6i78EGGSIYUYYZYxxfjPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577POHAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffv2lXwIMMsQwI4wyxji/mWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32+cMBhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+/AmCQIYYZYZQxxvnNBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPHw445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvj1l38JMMgQw4wwyhjj/GaCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OcPBxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PorvwQYZIhhRhhljHF+M8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvs84cDDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9+/dVfAgwyxDAjjDLGOL+ZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfb5wwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND/98+AMMMsQwI4wyxji/mWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32+cMBhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzc+fQs9f+yXAIEMMM8IoY4zzmwkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnz8ccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zw66//EmCQIYYZYZQxxvnNBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPHw445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvj1N34JMMgQw4wwyhjj/GaCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OcPBxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//FPoDzDIEMOMMMoY4/xmgkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjnDwcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P38aPH/zlwCDDDHMCKOMMc5vJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99/nDAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Ovv/VLgEGGGGaEUcYY5zcTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz5/OOCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754dff/iXAIEMMM8IoY4zzmwkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnz8ccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwT4M/wCBDDDPCKGOM85sJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58/HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/8/Bns+Du/BBhkiGFGGGWMcX4zwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+zzhwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH3793V8CDDLEMCOMMsY4v5lgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99vnDAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/7eLwEGGWKYEUYZY5zfTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77/OGAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745od/BvsCDDLEMCOMMsY4v5lgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99vnDAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c3Pn4HOv/9LgEGGGGaEUcYY5zcTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz5/OOCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754dc/+CXAIEMMM8IoY4zzmwkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnz8ccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zw6//7JcAgQwwzwihjjPObCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfPxxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDPQH+AQYYYZoRRxhjnNxNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPn844JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvn5s8jxD38JMMgQw4wwyhjj/GaCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OcPBxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PpHvwQYZIhhRhhljHF+M8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvs84cDDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9+/eNfAgwyxDAjjDLGOL+ZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfb5wwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND/8s8gUYZIhhRhhljHF+M8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvs84cDDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnim58/C5z/5JcAgwwxzAijjDHObyaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPff5wwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDr3/6S4BBhhhmhFHGGOc3E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+fzjgkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eHXP/slwCBDDDPCKGOM85sJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58/HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88M8Cf4BBhhhmhFHGGOc3E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+fzjgkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eHXP/8lwCBDDDPCKGOM85sJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58/HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88Otf/BJgkCGGGWGUMcb5zQSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzx8OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3749S9/CTDIEMOMMMoY4/xmgkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjnDwcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/wT3BNgkCGGGWGUMcb5zQSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzx8OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3749a9+CTDIEMOMMMoY4/xmgkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjnDwcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/z6178EGGSIYUYYZYxxfjPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577POHAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffv2bXwIMMsQwI4wyxji/mWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32+cMBhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ//BPYFGGSIYUYYZYxxfjPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577POHAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffv3bXwIMMsQwI4wyxji/mWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32+cMBhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//t0vAQYZYpgRRhljnN9MMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvv84YBDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1///pcAgwwxzAijjDHObyaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPff5wwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDP0G9AQYZYpgRRhljnN9MMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvv84YBDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1//4ZcAgwwxzAijjDHObyaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPff5wwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDr//4S4BBhhhmhFHGGOc3E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+fzjgkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eHXf/olwCBDDDPCKGOM85sJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58/HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88E9Af4BBhhhmhFHGGOc3E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+fzjgkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eHX//9LgEGGGGaEUcYY5zcTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz5/OOCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754dd//iXAIEMMM8IoY4zzmwkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnz8ccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zw67/8EmCQIYYZYZQxxvnNBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPHw445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745ItvfvjnME+AQYYYZoRRxhjnNxNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPn844JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnh13/9JcAgQwwzwihjjPObCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfPxxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDrv/0SYJAhhhlhlDHG+c0Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8fDjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++PXffwkwyBDDjDDKGOP8ZoJJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY5w8HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/8c5AvwCBDDDPCKGOM85sJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58/HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88Ot//BJgkCGGGWGUMcb5zQSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzx8OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3749T9/CTDIEMOMMMoY4/xmgkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjnDwcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/z6X78EGGSIYUYYZYxxfjPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577POHAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psf/jnEG2CQIYYZYZQxxvnNBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPHw445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvj1v38JMMgQw4wwyhjj/GaCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OcPBxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//Po/vwQYZIhhRhhljHF+M8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvs84cDDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9+/d9fAgwyxDAjjDLGOL+ZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfb5wwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND79yv/w/dLzYyHicLcUhuAEAACBmQRAEQRAEQRAEQRAEd7OdbbbZZnd2ZzvbbLPNNtvczW7uThCEFwRBEARBEARBEARBEF4QBEEQBEEQhBf2ffP/5Q8WAv+/kMOOOOqY40446ZTTzjjrnPMuuOiSy6646prrbrjpltvuuOue+x546JF/PPbEU88898JLr7z2xlvvvPfBR5/867Mvvvrmux9++uW3P/5z4B98CzrksCOOOua4E0465bQzzjrnvAsuuuSyK6665robbrrltjvuuue+Bx565B+PPfHUM8+98NIrr73x1jvvffDRJ//67Iuvvvnuh59++e2P/xz4h9+CDjnsiKOOOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx75x2NPPPXMcy+89Mprb7z1znsffPTJvz774qtvvvvhp19+++M/B/6db0GHHHbEUcccd8JJp5x2xlnnnHfBRZdcdsVV11x3w0233HbHXffc98BDj/zjsSeeeua5F1565bU33nrnvQ8++uRfn33x1Tff/fDTL7/98Z8DxW9Bhxx2xFHHHHfCSaecdsZZ55x3wUWXXHbFVddcd8NNt9x2x1333PfAQ4/847EnnnrmuRdeeuW1N956570PPvrkX5998dU33/3w0y+//fGfA//ut6BDDjviqGOOO+GkU04746xzzrvgoksuu+Kqa6674aZbbrvjrnvue+ChR/7x2BNPPfPcCy+98tobb73z3gcfffKvz7746pvvfvjpl9/++M+Bf+9b0CGHHXHUMcedcNIpp51x1jnnXXDRJZddcdU1191w0y233XHXPfc98NAj/3jsiaeeee6Fl1557Y233nnvg48++ddnX3z1zXc//PTLb3/858A/+hZ0yGFHHHXMcSecdMppZ5x1znkXXHTJZVdcdc11N9x0y2133HXPfQ889Mg/HnviqWeee+GlV15746133vvgo0/+9dkXX33z3Q8//fLbH/85UPoWdMhhRxx1zHEnnHTKaWecdc55F1x0yWVXXHXNdTfcdMttd9x1z30PPPTIPx574qlnnnvhpVdee+Otd9774KNP/vXZF199890PP/3y2x//OfDvfws65LAjjjrmuBNOOuW0M84657wLLrrksiuuuua6G2665bY77rrnvgceeuQfjz3x1DPPvfDSK6+98dY7733w0Sf/+uyLr7757oeffvntj/8c+A++BR1y2BFHHXPcCSedctoZZ51z3gUXXXLZFVddc90NN91y2x133XPfAw898o/HnnjqmedeeOmV19546533Pvjok3999sVX33z3w0+//PbHfw78h9+CDjnsiKOOOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx75x2NPPPXMcy+89Mprb7z1znsffPTJvz774qtvvvvhp19+++M/B8rfgg457IijjjnuhJNOOe2Ms84574KLLrnsiquuue6Gm2657Y677rnvgYce+cdjTzz1zHMvvPTKa2+89c57H3z0yb8+++Krb7774adffvvjPwf+o29Bhxx2xFHHHHfCSaecdsZZ55x3wUWXXHbFVddcd8NNt9x2x1333PfAQ4/847EnnnrmuRdeeuW1N956570PPvrkX5998dU33/3w0y+//fGfA//xt6BDDjviqGOOO+GkU04746xzzrvgoksuu+Kqa6674aZbbrvjrnvue+ChR/7x2BNPPfPcCy+98tobb73z3gcfffKvz7746pvvfvjpl9/++M+B/+Rb0CGHHXHUMcedcNIpp51x1jnnXXDRJZddcdU1191w0y233XHXPfc98NAj/3jsiaeeee6Fl1557Y233nnvg48++ddnX3z1zXc//PTLb3/850DlW9Ahhx1x1DHHnXDSKaedcdY5511w0SWXXXHVNdfdcNMtt91x1z33PfDQI/947ImnnnnuhZdeee2Nt95574OPPvnXZ1989c13P/z0y29//OfAf/ot6JDDjjjqmONOOOmU084465zzLrjoksuuuOqa62646Zbb7rjrnvseeOiRfzz2xFPPPPfCS6+89sZb77z3wUef/OuzL7765rsffvrltz/+c+A/+xZ0yGFHHHXMcSecdMppZ5x1znkXXHTJZVdcdc11N9x0y2133HXPfQ889Mg/HnviqWeee+GlV15746133vvgo0/+9dkXX33z3Q8//fLbH/858J9/CzrksCOOOua4E0465bQzzjrnvAsuuuSyK6665robbrrltjvuuue+Bx565B+PPfHUM8+98NIrr73x1jvvffDRJ//67Iuvvvnuh59++e2P/xyofgs65LAjjjrmuBNOOuW0M84657wLLrrksiuuuua6G2665bY77rrnvgceeuQfjz3x1DPPvfDSK6+98dY7733w0Sf/+uyLr7757oeffvntj/8c+C++BR1y2BFHHXPcCSedctoZZ51z3gUXXXLZFVddc90NN91y2x133XPfAw898o/HnnjqmedeeOmV19546533Pvjok3999sVX33z3w0+//PbHfw78429Bhxx2xFHHHHfCSaecdsZZ55x3wUWXXHbFVddcd8NNt9x2x1333PfAQ4/847EnnnrmuRdeeuW1N956570PPvrkX5998dU33/3w0y+//fGfA//kW9Ahhx1x1DHHnXDSKaedcdY5511w0SWXXXHVNdfdcNMtt91x1z33PfDQI/947ImnnnnuhZdeee2Nt95574OPPvnXZ1989c13P/z0y29//OdA7VvQIYcdcdQxx51w0imnnXHWOeddcNEll11x1TXX3XDTLbfdcdc99z3w0CP/eOyJp5557oWXXnntjbfeee+Djz7512dffPXNdz/89Mtvf/znwH/5LeiQw4446pjjTjjplNPOOOuc8y646JLLrrjqmutuuOmW2+646577HnjokX889sRTzzz3wkuvvPbGW++898FHn/zrsy+++ua7H3765bc//nPgn34LOuSwI4465rgTTjrltDPOOue8Cy665LIrrrrmuhtuuuW2O+66574HHnrkH4898dQzz73w0iuvvfHWO+998NEn//rsi6+++e6Hn3757Y//HPhn34IOOeyIo4457oSTTjntjLPOOe+Ciy657Iqrrrnuhptuue2Ou+6574GHHvnHY0889cxzL7z0ymtvvPXOex989Mm/Pvviq2++++GnX3774z8H6t+CDjnsiKOOOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx75x2NPPPXMcy+89Mprb7z1znsffPTJvz774qtvvvvhp19+++M/B/6rb0GHHHbEUcccd8JJp5x2xlnnnHfBRZdcdsVV11x3w0233HbHXffc98BDj/zjsSeeeua5F1565bU33nrnvQ8++uRfn33x1Tff/fDTL7/98Z8D//W3oEMOO+KoY4474aRTTjvjrHPOu+CiSy674qprrrvhpltuu+Oue+574KFH/vHYE08989wLL73y2htvvfPeBx998q/Pvvjqm+9++OmX3/74z4F//i3okMOOOOqY40446ZTTzjjrnPMuuOiSy6646prrbrjpltvuuOue+x546JF/PPbEU88898JLr7z2xlvvvPfBR5/867Mvvvrmux9++uW3P/5zoPEt6JDDjjjqmONOOOmU084465zzLrjoksuuuOqa62646Zbb7rjrnvseeOiRfzz2xFPPPPfCS6+89sZb77z3wUef/OuzL7765rsffvrltz/+c+C/+RZ0yGFHHHXMcSecdMppZ5x1znkXXHTJZVdcdc11N9x0y2133HXPfQ889Mg/HnviqWeee+GlV15746133vvgo0/+9dkXX33z3Q8//fLbH/858N9+CzrksCOOOua4E0465bQzzjrnvAsuuuSyK6665robbrrltjvuuue+Bx565B+PPfHUM8+98NIrr73x1jvvffDRJ//67Iuvvvnuh59++e2P/xz4774FHXLYEUcdc9wJJ51y2hlnnXPeBRddctkVV11z3Q033XLbHXfdc98DDz3yj8eeeOqZ51546ZXX3njrnfc++OiTf332xVfffPfDT7/89sd/DjS/BR1y2BFHHXPcCSedctoZZ51z3gUXXXLZFVddc90NN91y2x133XPfAw898o/HnnjqmedeeOmV19546533Pvjok3999sVX33z3w0+//PbHfw7899+CDjnsiKOOOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx75x2NPPPXMcy+89Mprb7z1znsffPTJvz774qtvvvvhp19+++M/B/6Hb0GHHHbEUcccd8JJp5x2xlnnnHfBRZdcdsVV11x3w0233HbHXffc98BDj/zjsSeeeua5F1565bU33nrnvQ8++uRfn33x1Tff/fDTL7/98Z8D/+O3oEMOO+KoY4474aRTTjvjrHPOu+CiSy674qprrrvhpltuu+Oue+574KFH/vHYE08989wLL73y2htvvfPeBx998q/Pvvjqm+9++OmX3/74z4HWt6BDDjviqGOOO+GkU04746xzzrvgoksuu+Kqa6674aZbbrvjrnvue+ChR/7x2BNPPfPcCy+98tobb73z3gcfffKvz7746pvvfvjpl9/++M+B/+lb0CGHHXHUMcedcNIpp51x1jnnXXDRJZddcdU1191w0y233XHXPfc98NAj/3jsiaeeee6Fl1557Y233nnvg48++ddnX3z1zXc//PTLb3/858D//C3okMOOOOqY40446ZTTzjjrnPMuuOiSy6646prrbrjpltvuuOue+x546JF/PPbEU88898JLr7z2xlvvvPfBR5/867Mvvvrmux9++uW3P/5z4H/5FnTIYUccdcxxJ5x0ymlnnHXOeRdcdMllV1x1zXU33HTLbXfcdc99Dzz0yD8ee+KpZ5574aVXXnvjrXfe++CjT/712RdfffPdDz/98tsf/znQ/hZ0yGFHHHXMcSecdMppZ5x1znkXXHTJZVdcdc11N9x0y2133HXPfQ889Mg/HnviqWeee+GlV15746133vvgo0/+9dkXX33z3Q8//fLbH/858L9+CzrksCOOOua4E0465bQzzjrnvAsuuuSyK6665robbrrltjvuuue+Bx565B+PPfHUM8+98NIrr73x1jvvffDRJ//67Iuvvvnuh59++e2P/xz4374FHXLYEUcdc9wJJ51y2hlnnXPeBRddctkVV11z3Q033XLbHXfdc98DDz3yj8eeeOqZ51546ZXX3njrnfc++OiTf332xVfffPfDT7/89sd/Dvzv34IOOeyIo4457oSTTjntjLPOOe+Ciy657Iqrrrnuhptuue2Ou+6574GHHvnHY0889cxzL7z0ymtvvPXOex989Mm/Pvviq2++++GnX3774z8HOt+CDjnsiKOOOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx75x2NPPPXMcy+89Mprb7z1znsffPTJvz774qtvvvvhp19+++M/B/6Pb0GHHHbEUcccd8JJp5x2xlnnnHfBRZdcdsVV11x3w0233HbHXffc98BDj/zjsSeeeua5F1565bU33nrnvQ8++uRfn33x1Tff/fDTL7/98Z8D/+e3oEMOO+KoY4474aRTTjvjrHPOu+CiSy674qprrrvhpltuu+Oue+574KFH/vHYE08989wLL73y2htvvfPeBx998q/Pvvjqm+9++OmX3/74z4H/61vQIYcdcdQxx51w0imnnXHWOeddcNEll11x1TXX3XDTLbfdcdc99z3w0CP/eOyJp5557oWXXnntjbfeee+Djz7512dffPXNdz/89Mtvf/znQPdb0CGHHXHUMcedcNIpp51x1jnnXXDRJZddcdU1191w0y233XHXPfc98NAj/3jsiaeeee6Fl1557Y233nnvg48++ddnX3z1zXc//PTLb3/858C/+BZ0yGFHHHXMcSecdMppZ5x1znkXXHTJZVdcdc11N9x0y2133HXPfQ889Mg/HnviqWeee+GlV15746133vvgo0/+9dkXX33z3Q8//fLbH/858C+/BR1y2BFHHXPcCSedctoZZ51z3gUXXXLZFVddc90NN91y2x133XPfAw898o/HnnjqmedeeOmV19546533Pvjok3999sVX33z3w0+//PbHfw7839+CDjnsiKOOOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx75x2NPPPXMcy+89Mprb7z1znsffPTJvz774qtvvvvhp19+++M/B3rfgg457IijjjnuhJNOOe2Ms84574KLLrnsiquuue6Gm2657Y677rnvgYce+cdjTzz1zHMvvPTKa2+89c57H3z0yb8+++Krb7774adffvvjPwf+n29Bhxx2xFHHHHfCSaecdsZZ55x3wUWXXHbFVddcd8NNt9x2x1333PfAQ4/847EnnnrmuRdeeuW1N956570PPvrkX5998dU33/3w0y+//fGfA//qW9Ahhx1x1DHHnXDSKaedcdY5511w0SWXXXHVNdfdcNMtt91x1z33PfDQI/947ImnnnnuhZdeee2Nt95574OPPvnXZ1989c13P/z0y29//OfA//st6JDDjjjqmONOOOmU084465zzLrjoksuuuOqa62646Zbb7rjrnvseeOiRfzz2xFPPPPfCS6+89sZb77z3wUef/OuzL7765rsffvrltz/+c6D/LeiQw4446pjjTjjplNPOOOuc8y646JLLrrjqmutuuOmW2+646577HnjokX889sRTzzz3wkuvvPbGW++898FHn/zrsy+++ua7H3765bc//nPgX38LOuSwI4465rgTTjrltDPOOue8Cy665LIrrrrmuhtuuuW2O+66574HHnrkH4898dQzz73w0iuvvfHWO+998NEn//rsi6+++e6Hn3757Y//HPg334IOOeyIo4457oSTTjntjLPOOe+Ciy657Iqrrrnuhptuue2Ou+6574GHHvnHY0889cxzL7z0ymtvvPXOex989Mm/Pvviq2++++GnX3774z8H/u23oEMOO+KoY4474aRTTjvjrHPOu+CiSy674qprrrvhpltuu+Oue+574KFH/vHYE08989wLL73y2htvvfPeBx998q/Pvvjqm+9++OmX3/74z4HBt/8PdlHZBHicLcUhuAEAACBmQRAEQXhBEARBEARBEARBEARBEARBEARBsJu7s80222yzzTa7s5vtbOfubLPN3QRBEF4QBEEQhBcEQRD2ffP/5Q/2A/+/kMOOOOofxxx3wkmnnHbGWeecd8FFl1x2xVXXXHfDTbfcdsdd99z3wEOPPPbEU88898JLr7z2xlvvvPfBR5/867Mvvvrmux/+89Mvv/1x4N/5FnTIYUcc9Y9jjjvhpFNOO+Osc8674KJLLrviqmuuu+GmW26746577nvgoUcee+KpZ5574aVXXnvjrXfe++CjT/712RdfffPdD//56Zff/jjwD74FHXLYEUf945jjTjjplNPOOOuc8y646JLLrrjqmutuuOmW2+646577HnjokceeeOqZ51546ZXX3njrnfc++OiTf332xVfffPfDf3765bc/Dvy734IOOeyIo/5xzHEnnHTKaWecdc55F1x0yWVXXHXNdTfcdMttd9x1z30PPPTIY0889cxzL7z0ymtvvPXOex989Mm/Pvviq2++++E/P/3y2x8HBt+CDjnsiKP+ccxxJ5x0ymlnnHXOeRdcdMllV1x1zXU33HTLbXfcdc99Dzz0yGNPPPXMcy+89Mprb7z1znsffPTJvz774qtvvvvhPz/98tsfB/7ht6BDDjviqH8cc9wJJ51y2hlnnXPeBRddctkVV11z3Q033XLbHXfdc98DDz3y2BNPPfPcCy+98tobb73z3gcfffKvz7746pvvfvjPT7/89seBf/Qt6JDDjjjqH8ccd8JJp5x2xlnnnHfBRZdcdsVV11x3w0233HbHXffc98BDjzz2xFPPPPfCS6+89sZb77z3wUef/OuzL7765rsf/vPTL7/9ceAffws65LAjjvrHMcedcNIpp51x1jnnXXDRJZddcdU1191w0y233XHXPfc98NAjjz3x1DPPvfDSK6+98dY7733w0Sf/+uyLr7757of//PTLb38cGH4LOuSwI476xzHHnXDSKaedcdY5511w0SWXXXHVNdfdcNMtt91x1z33PfDQI4898dQzz73w0iuvvfHWO+998NEn//rsi6+++e6H//z0y29/HPj3vgUdctgRR/3jmONOOOmU084465zzLrjoksuuuOqa62646Zbb7rjrnvseeOiRx5546pnnXnjpldfeeOud9z746JN/ffbFV99898N/fvrltz8O/Pvfgg457Iij/nHMcSecdMppZ5x1znkXXHTJZVdcdc11N9x0y2133HXPfQ889MhjTzz1zHMvvPTKa2+89c57H3z0yb8+++Krb7774T8//fLbHwf+g29Bhxx2xFH/OOa4E0465bQzzjrnvAsuuuSyK6665robbrrltjvuuue+Bx565LEnnnrmuRdeeuW1N956570PPvrkX5998dU33/3wn59++e2PA6NvQYccdsRR/zjmuBNOOuW0M84657wLLrrksiuuuua6G2665bY77rrnvgceeuSxJ5565rkXXnrltTfeeue9Dz765F+fffHVN9/98J+ffvntjwP/4begQw474qh/HHPcCSedctoZZ51z3gUXXXLZFVddc90NN91y2x133XPfAw898tgTTz3z3AsvvfLaG2+9894HH33yr8+++Oqb7374z0+//PbHgf/oW9Ahhx1x1D+OOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx557ImnnnnuhZdeee2Nt95574OPPvnXZ1989c13P/znp19+++PAf/wt6JDDjjjqH8ccd8JJp5x2xlnnnHfBRZdcdsVV11x3w0233HbHXffc98BDjzz2xFPPPPfCS6+89sZb77z3wUef/OuzL7765rsf/vPTL7/9cWD8LeiQw4446h/HHHfCSaecdsZZ55x3wUWXXHbFVddcd8NNt9x2x1333PfAQ4889sRTzzz3wkuvvPbGW++898FHn/zrsy+++ua7H/7z0y+//XHgP/kWdMhhRxz1j2OOO+GkU04746xzzrvgoksuu+Kqa6674aZbbrvjrnvue+ChRx574qlnnnvhpVdee+Otd9774KNP/vXZF199890P//npl9/+OPCffgs65LAjjvrHMcedcNIpp51x1jnnXXDRJZddcdU1191w0y233XHXPfc98NAjjz3x1DPPvfDSK6+98dY7733w0Sf/+uyLr7757of//PTLb38c+M++BR1y2BFH/eOY40446ZTTzjjrnPMuuOiSy6646prrbrjpltvuuOue+x546JHHnnjqmedeeOmV19546533Pvjok3999sVX33z3w39++uW3Pw5MvgUdctgRR/3jmONOOOmU084465zzLrjoksuuuOqa62646Zbb7rjrnvseeOiRx5546pnnXnjpldfeeOud9z746JN/ffbFV99898N/fvrltz8O/Offgg457Iij/nHMcSecdMppZ5x1znkXXHTJZVdcdc11N9x0y2133HXPfQ889MhjTzz1zHMvvPTKa2+89c57H3z0yb8+++Krb7774T8//fLbHwf+i29Bhxx2xFH/OOa4E0465bQzzjrnvAsuuuSyK6665robbrrltjvuuue+Bx565LEnnnrmuRdeeuW1N956570PPvrkX5998dU33/3wn59++e2PA//lt6BDDjviqH8cc9wJJ51y2hlnnXPeBRddctkVV11z3Q033XLbHXfdc98DDz3y2BNPPfPcCy+98tobb73z3gcfffKvz7746pvvfvjPT7/89seB6begQw474qh/HHPcCSedctoZZ51z3gUXXXLZFVddc90NN91y2x133XPfAw898tgTTz3z3AsvvfLaG2+9894HH33yr8+++Oqb7374z0+//PbHgf/qW9Ahhx1x1D+OOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx557ImnnnnuhZdeee2Nt95574OPPvnXZ1989c13P/znp19+++PAf/0t6JDDjjjqH8ccd8JJp5x2xlnnnHfBRZdcdsVV11x3w0233HbHXffc98BDjzz2xFPPPPfCS6+89sZb77z3wUef/OuzL7765rsf/vPTL7/9ceC/+RZ0yGFHHPWPY4474aRTTjvjrHPOu+CiSy674qprrrvhpltuu+Oue+574KFHHnviqWeee+GlV15746133vvgo0/+9dkXX33z3Q//+emX3/44MPsWdMhhRxz1j2OOO+GkU04746xzzrvgoksuu+Kqa6674aZbbrvjrnvue+ChRx574qlnnnvhpVdee+Otd9774KNP/vXZF199890P//npl9/+OPDffgs65LAjjvrHMcedcNIpp51x1jnnXXDRJZddcdU1191w0y233XHXPfc98NAjjz3x1DPPvfDSK6+98dY7733w0Sf/+uyLr7757of//PTLb38c+O++BR1y2BFH/eOY40446ZTTzjjrnPMuuOiSy6646prrbrjpltvuuOue+x546JHHnnjqmedeeOmV19546533Pvjok3999sVX33z3w39++uW3Pw7899+CDjnsiKP+ccxxJ5x0ymlnnHXOeRdcdMllV1x1zXU33HTLbXfcdc99Dzz0yGNPPPXMcy+89Mprb7z1znsffPTJvz774qtvvvvhPz/98tsfB+bfgg457Iij/nHMcSecdMppZ5x1znkXXHTJZVdcdc11N9x0y2133HXPfQ889MhjTzz1zHMvvPTKa2+89c57H3z0yb8+++Krb7774T8//fLbHwf+h29Bhxx2xFH/OOa4E0465bQzzjrnvAsuuuSyK6665robbrrltjvuuue+Bx565LEnnnrmuRdeeuW1N956570PPvrkX5998dU33/3wn59++e2PA//kW9Ahhx1x1D+OOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx557ImnnnnuhZdeee2Nt95574OPPvnXZ1989c13P/znp19+++PAP/0WdMhhRxz1j2OOO+GkU04746xzzrvgoksuu+Kqa6674aZbbrvjrnvue+ChRx574qlnnnvhpVdee+Otd9774KNP/vXZF199890P//npl9/+OLD4FnTIYUcc9Y9jjjvhpFNOO+Osc8674KJLLrviqmuuu+GmW26746577nvgoUcee+KpZ5574aVXXnvjrXfe++CjT/712RdfffPdD//56Zff/jjwP34LOuSwI476xzHHnXDSKaedcdY5511w0SWXXXHVNdfdcNMtt91x1z33PfDQI4898dQzz73w0iuvvfHWO+998NEn//rsi6+++e6H//z0y29/HPhn34IOOeyIo/5xzHEnnHTKaWecdc55F1x0yWVXXHXNdTfcdMttd9x1z30PPPTIY0889cxzL7z0ymtvvPXOex989Mm/Pvviq2++++E/P/3y2x8H/qdvQYccdsRR/zjmuBNOOuW0M84657wLLrrksiuuuua6G2665bY77rrnvgceeuSxJ5565rkXXnrltTfeeue9Dz765F+fffHVN9/98J+ffvntjwPLb0GHHHbEUf845rgTTjrltDPOOue8Cy665LIrrrrmuhtuuuW2O+66574HHnrksSeeeua5F1565bU33nrnvQ8++uRfn33x1Tff/fCfn3757Y8D//O3oEMOO+Kofxxz3AknnXLaGWedc94FF11y2RVXXXPdDTfdctsdd91z3wMPPfLYE08989wLL73y2htvvfPeBx998q/Pvvjqm+9++M9Pv/z2x4H/5VvQIYcdcdQ/jjnuhJNOOe2Ms84574KLLrnsiquuue6Gm2657Y677rnvgYceeeyJp5557oWXXnntjbfeee+Djz7512dffPXNdz/856dffvvjwD//FnTIYUcc9Y9jjjvhpFNOO+Osc8674KJLLrviqmuuu+GmW26746577nvgoUcee+KpZ5574aVXXnvjrXfe++CjT/712RdfffPdD//56Zff/jiw+hZ0yGFHHPWPY4474aRTTjvjrHPOu+CiSy674qprrrvhpltuu+Oue+574KFHHnviqWeee+GlV15746133vvgo0/+9dkXX33z3Q//+emX3/448L9+CzrksCOO+scxx51w0imnnXHWOeddcNEll11x1TXX3XDTLbfdcdc99z3w0COPPfHUM8+98NIrr73x1jvvffDRJ//67Iuvvvnuh//89Mtvfxz4374FHXLYEUf945jjTjjplNPOOOuc8y646JLLrrjqmutuuOmW2+646577HnjokceeeOqZ51546ZXX3njrnfc++OiTf332xVfffPfDf3765bc/DvyLb0GHHHbEUf845rgTTjrltDPOOue8Cy665LIrrrrmuhtuuuW2O+66574HHnrksSeeeua5F1565bU33nrnvQ8++uRfn33x1Tff/fCfn3757Y8D629Bhxx2xFH/OOa4E0465bQzzjrnvAsuuuSyK6665robbrrltjvuuue+Bx565LEnnnrmuRdeeuW1N956570PPvrkX5998dU33/3wn59++e2PA//yW9Ahhx1x1D+OOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx557ImnnnnuhZdeee2Nt95574OPPvnXZ1989c13P/znp19+++PAv/oWdMhhRxz1j2OOO+GkU04746xzzrvgoksuu+Kqa6674aZbbrvjrnvue+ChRx574qlnnnvhpVdee+Otd9774KNP/vXZF199890P//npl9/+OPCvvwUdctgRR/3jmONOOOmU084465zzLrjoksuuuOqa62646Zbb7rjrnvseeOiRx5546pnnXnjpldfeeOud9z746JN/ffbFV99898N/fvrltz8ObL4FHXLYEUf945jjTjjplNPOOOuc8y646JLLrrjqmutuuOmW2+646577HnjokceeeOqZ51546ZXX3njrnfc++OiTf332xVfffPfDf3765bc/Dvzv34IOOeyIo/5xzHEnnHTKaWecdc55F1x0yWVXXHXNdTfcdMttd9x1z30PPPTIY0889cxzL7z0ymtvvPXOex989Mm/Pvviq2++++E/P/3y2x8H/o9vQYccdsRR/zjmuBNOOuW0M84657wLLrrksiuuuua6G2665bY77rrnvgceeuSxJ5565rkXXnrltTfeeue9Dz765F+fffHVN9/98J+ffvntjwP/57egQw474qh/HHPcCSedctoZZ51z3gUXXXLZFVddc90NN91y2x133XPfAw898tgTTz3z3AsvvfLaG2+9894HH33yr8+++Oqb7374z0+//PbHge23oEMOO+Kofxxz3AknnXLaGWedc94FF11y2RVXXXPdDTfdctsdd91z3wMPPfLYE08989wLL73y2htvvfPeBx998q/Pvvjqm+9++M9Pv/z2x4H/61vQIYcdcdQ/jjnuhJNOOe2Ms84574KLLrnsiquuue6Gm2657Y677rnvgYceeeyJp5557oWXXnntjbfeee+Djz7512dffPXNdz/856dffvvjwP/9LeiQw4446h/HHHfCSaecdsZZ55x3wUWXXHbFVddcd8NNt9x2x1333PfAQ4889sRTzzz3wkuvvPbGW++898FHn/zrsy+++ua7H/7z0y+//XHg//kWdMhhRxz1j2OOO+GkU04746xzzrvgoksuu+Kqa6674aZbbrvjrnvue+ChRx574qlnnnvhpVdee+Otd9774KNP/vXZF199890P//npl9/+OLD7FnTIYUcc9Y9jjjvhpFNOO+Osc8674KJLLrviqmuuu+GmW26746577nvgoUcee+KpZ5574aVXXnvjrXfe++CjT/712RdfffPdD//56Zff/jjwb74FHXLYEUf945jjTjjplNPOOOuc8y646JLLrrjqmutuuOmW2+646577HnjokceeeOqZ51546ZXX3njrnfc++OiTf332xVfffPfDf3765bc/Dvzbb0GHHHbEUf845rgTTjrltDPOOue8Cy665LIrrrrmuhtuuuW2O+66574HHnrksSeeeua5F1565bU33nrnvQ8++uRfn33x1Tff/fCfn3757Y8D/++3oEMOO+Kofxxz3AknnXLaGWedc94FF11y2RVXXXPdDTfdctsdd91z3wMPPfLYE08989wLL73y2htvvfPeBx998q/Pvvjqm+9++M9Pv/z2x4H9t/8Pd+bZQHicLcUv2AEAAOBnex5BEARBEARBEARBEARBEAThC8IXBEEQBEEQBEEQBEEQBEEQBEFwN9tss83dbLOd29zNNtu5zTa3uc3+PM997y/83uAu8G8KMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqr/GGNv6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy8D/+CPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwip/WOMv62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwy8A//CPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyh/W+Ms6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/wy8G//EWSIYUYYZYxxJphkimlmmGWOeRZYZIllVljlD2v8ZZ0NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffhnY/xFkiGFGGGWMcSaYZIppZphljnkWWGSJZVZY5Q9r/GWdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH34Z+Hf+CDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6zyhzX+ss4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pvwz8u38EGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVvnDGn9ZZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odfBv69P4IMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqr/GGNv6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy8Dhz+CDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq/xhjb+ss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888MvA//+H0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV/rDGX9bZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754ZeB/+CPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwip/WOMv62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwy8B/+EeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlT+s8Zd1Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvhl4PhHkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU/rPGXdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb374ZeA/+iPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyh/W+Ms6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/wy8B//EWSIYUYYZYxxJphkimlmmGWOeRZYZIllVljlD2v8ZZ0NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffhn4T/4IMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrPKHNf6yzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+/DJz+CDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6zyhzX+ss4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pvwz8oz+CDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq/xhjb+ss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888MvA//4jyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqf1jjL+tssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MvAf/pHkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU/rPGXdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb374ZeD8R5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVP6zxl3U22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++GXgP/sjyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMof1vjLOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/8MvCf/xFkiGFGGGWMcSaYZIppZphljnkWWGSJZVZY5Q9r/GWdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH34Z+C/+CDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6zyhzX+ss4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pvwxc/ggyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMius8oc1/rLOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND78M/Jd/BBlimBFGGWOcCSaZYpoZZpljngUWWWKZFVb5wxp/WWeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHXwb+qz+CDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq/xhjb+ss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888MvA//kjyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqf1jjL+tssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MvA9Y8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKn9Y4y/rbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLwD/9I8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKH9b4yzobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//DLwX/8RZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWOUPa/xlnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9+Gfhv/ggyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMius8oc1/rLOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND78M3P4IMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrPKHNf6yzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+/DPyzP4IMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqr/GGNv6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy8D//yPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwip/WOMv62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwy8B/+0eQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlT+s8Zd1Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvhl4P5HkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU/rPGXdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb374ZeC/+yPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyh/W+Ms6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/wy8N//EWSIYUYYZYxxJphkimlmmGWOeRZYZIllVljlD2v8ZZ0NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffhn4H/4IMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrPKHNf6yzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+/DDz+CDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6zyhzX+ss4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pvwz8j38EGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVvnDGn9ZZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odfBv6nP4IMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqr/GGNv6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy8D/+KPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwip/WOMv62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwy8DzjyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqf1jjL+tssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MvAv/wjyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMof1vjLOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/8MvA//xFkiGFGGGWMcSaYZIppZphljnkWWGSJZVZY5Q9r/GWdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH34Z+F/+CDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6zyhzX+ss4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pvwy8/ggyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMius8oc1/rLOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND78M/K9/BBlimBFGGWOcCSaZYpoZZpljngUWWWKZFVb5wxp/WWeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHXwb+tz+CDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq/xhjb+ss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888MvA//7H0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV/rDGX9bZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754ZeB9x9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVf6wxl/W2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXgX/1R5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVP6zxl3U22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++GXg//gjyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMof1vjLOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/8MvB//hFkiGFGGGWMcSaYZIppZphljnkWWGSJZVZY5Q9r/GWdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH34Z+PwRZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWOUPa/xlnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9+GfjXfwQZYpgRRhljnAkmmWKaGWaZY54FFllimRVW+cMaf1lng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh18G/q8/ggwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqv8YY2/rLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDLwP/9x9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVf6wxl/W2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXge8fQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVX+sMZf1tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhl4H/548gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKn9Y4y/rbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLwP/7R5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVP6zxl3U22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++GXg//sjyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMof1vjLOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/8MhD4t/7N/39ygdh9eJwt1yETAgCXllFWPxUVlVVUVFR0UVFRUVFRUQkEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEFz9zi3nBzwz78z9Q+BPAv/vggwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8Cd/9A8MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfAX9CfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+Iv6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88Msf/3z4/wiDDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwl/RnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/rL+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwF/Rn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/++OcP3//nDwwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8Bf1Z9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4a/ozyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8Df11/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvljIKQ/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8Df0Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6m/gwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8Df0p9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hgI688gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8qf4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfA39afQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+Dv6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfAxH9GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgb+rP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfD39GeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+vv4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sdAVH8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgH+jPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/EP9GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgX+kP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MRDTn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPjH+jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwP/RH8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgn+rPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38MxPVnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/pn+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwD/Xn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPgz/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4GE/gwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8C/0J9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4l/ozyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8D/0p/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvljIKk/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8K/1Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6N/gwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8C/1Z9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hhI6c8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8O/0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bf68/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8B/0Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/BtL6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA/9RfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+A/6c8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8Z/0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+BjP4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfAf9GfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+K/6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA/9NfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375YyCrP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfDf9WeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+h/4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfA/9SfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4YyOnPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/C/9GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgf+tP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfB/9GeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwbyf/T/AtC86Mh4nC3RoRcBAIDYYXvvgiAIgiAIgiAIgiDYZpttdrOb3dlmm2222WZ3ttmd22wTBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEHY27vvV74/4PcH+b8W+P8FGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgr/+Vf8AgQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8Df8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bv+k/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wxUPCfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+Fv+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA3/bfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+Dv+M8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888MvfwwU/WeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+rv8MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfA3/OfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+Pv+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfAyX/GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgX/gP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfCH/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwP/0H8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WOg7D+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwj/xnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/sh/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4B/7zyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DFT8Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6J/wwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8Af+88gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8if8MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sdA1X8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgn/rPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/DP/GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgX/uP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MVDzn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPgX/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwP/0n8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgX/nPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M1P1nkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/rX/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwL/xn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPi3/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwMN/xlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4F/5z+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHw7/1nkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/oP/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHQNN/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4D/6zyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DPwn/xlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4H/7D+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHQ8p9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4L/4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8Df+o/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8Gf+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA23/GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgf/qP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfDf/GeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+u/8MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sdAx38GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgf/jPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/Ln/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwF/4zyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DHT9Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv7SfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+B/+s8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8L/8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bnv8MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfA//afQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+D/+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA//XfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y6D/V/4/0lHpBHicLdGhFwEAgNhh994FQRAEQRAEQRAEQRAEQRAEQRAEQRAEQbDNdrZzm2222WY322yzzTa32WZ3bhMEQRAEQRAEQRAEQdjbu+9Xvj/g94f9Pwj8/4IMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfDX/so/ZJAhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv66/wwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8Df8J9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hgY+M8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8Tf8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bv+U/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8Ef+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA0P/GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgb/tP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfB3/GeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+2H8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WNg5D+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwJ/4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8Df9d/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4O/5zyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DIz9Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6+/wwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8A/8J9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4h/4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8DE/8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bf+Q/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8I/9Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6J/wwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8DUfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+Cf+s8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8M/8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bf+4/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wxMPOfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+Bf+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA3/qP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfAv/WeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwbm/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwP/yn8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgX/vPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/Bv/GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgYX/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwL/1n0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPh3/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwP/3n8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WNg6T+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwH/xnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/qP/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwH/yn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GFj5zyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DPxn/xlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4H/4j+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwX/1nkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G1v4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8Df+Y/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8N/8Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv67/wwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8DGfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+B/+M8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8T/8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+B/+U/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wxsPWfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+N/+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA3/uP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfAX/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwM7/xlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4G/9J9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4P/4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8D/9d/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvljYP9X/j/T5ulAeJwt0a8fAQCA3mG3zwVBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBsM0229zNNttss80227nNbbZzm23247PtecP7/AHfP9z/QeD/LsgQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA3/5//uHDDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwF/Rn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPir+jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwMH/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4G/pj+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHw1/VnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/ob+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwFF/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4G/qzyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DPwt/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4G/rT+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DFw0p9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4I/0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+BP9afQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+Dv6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA2f9GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgb+rP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfD39GeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+vv4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfARX8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgH+jPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/EP9GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgX+kP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MXDVn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPjH+jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwP/RH8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgn+rPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M3PRnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/pn+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwD/Xn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPgX+jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwN3/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4F/qT+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwr/RnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/rX+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwEN/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4N/ozyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DPxb/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4E/0Z9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hh46s8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8qf4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfAv9OfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+Pf6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfAy/9GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgT/Tn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPgP+jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwP/UX8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgrT+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwn/RnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/rP+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwJ/rzyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DHz0Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv5CfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+C/6M8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8V/0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Br/4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfAf9OfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+O/6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA/9DfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+CnP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfA/9WeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+l/4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfA/9afQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4YCPyl//f/B86B6H14nC3WIRcCgJaVURyfiorKKCoqKjqoqKioqKioBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIjr59y/4B3zpr3T8E/iTw/y7IEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwN/4Y/+gUGGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPgT/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4G/qD+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//PHPh/9HGGSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgb+kP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfCX9WeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+iv4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sc/f/j/P39gkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/qr+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwF/Tn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPjr+jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwMh/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4G/oT+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwN/VnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/pb+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHQFh/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4E/1Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv62/gwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8Df0Z9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hiI6M8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8Xf0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bv6c/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8Pf1Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/BqL6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA/9AfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+Af6s8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8I/0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+BmP4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfAP9afQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+Cf6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA/9UfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375YyCuP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfDP9GeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+uf4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfAn+nPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38MJPRnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/oX+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwL/Un0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPhX+jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwNJ/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4F/rT+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwb/RnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/q3+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHQEp/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4N/pzyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DPx7/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4H/oD+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DGQ1p9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4j/ozyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8D/0l/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4D/rzyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DGT0Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6L/gwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8B/1Z9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4b/ozyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8DWf0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+B/64/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8D/0Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6n/gwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx0BOfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+B/6c8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8b/0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+B/6M/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wxkP+j/xcsy/jIeJwt0aEXAQCA2GFv74IgCIIgCIIgCIIg2GabbXazm93ZZpttttlmd7bZndtsEwRBEARBEARBEARBEARBEARBEARBEARB2Nu771e+P+D3B/m/Fvj/BRlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4K//lX/AIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/A3/GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgb/pP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MVDwn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPhb/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwN/238GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPg7/jPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38MFP1nkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/q7/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwN/zn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPj7/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwMl/xlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4F/4D+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwh/4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8D/9B/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvljoOw/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8I/8Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv7IfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+Af+88gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888MvfwxU/GeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+if8MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfAH/vPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/In/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHQNV/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4J/6zyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DPwz/xlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4F/7j+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DFQ859BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4F/4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8D/9J/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4F/5zyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DNT9Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv61/wwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8C/8Z9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4t/4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8DDf8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bf+c/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8O/9Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6D/wwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx0DTfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+A/+s8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8J/8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+B/+w/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx0PKfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+C/+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA3/qP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfBn/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwNt/xlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4H/6j+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHw3/xnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/rv/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHQMd/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4H/4zyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DPy5/wwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8Bf+M8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwx0/WeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+0n8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgf/rPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/C//GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgZ7/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwP/2n0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPg//jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwP/138GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WOg/1f+Py5g+QR4nC3RoRcBAIDYYe/eBUEQBEEQBEEQBEEQBEEQBEEQBEEQBEGwzXa2c5ttttlmN9tss802t9lmd24TBEEQBEEQBEEQBEHY27vvV74/4PeH/T8I/P+CDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHw1/7KP2SQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+uv8MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfA3/CfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4YGPjPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/E3/GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgb/lP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfBH/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwND/xlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4G/7T+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwd/xnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/th/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvljYOQ/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8Cf+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA3/XfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+Dv+c8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888MvfwyM/WeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+vv8MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfAP/CfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+If+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfAxP/GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgX/kP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfCP/WeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+if8MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfA1H8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgn/rPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/DP/GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgX/uP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MTDzn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPgX/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwN/6j+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwL/1nkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G5v4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8D/8p/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4F/7zyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DPwb/xlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4GF/wwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8C/9Z9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4d/4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8D/95/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvljYOk/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8B/8Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6j/wwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8B/8p9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hhY+c8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8Z/8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+B/+I/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8F/9Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Btb+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA3/mP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfDf/GeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+u/8MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfAxn8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgf/jPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/E//GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgf/lP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MbD1n0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPjf/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwN/7j+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwF/4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8DO/8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bv/SfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+D/+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA//XfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y2D/V/4/L/X5QHicLdGvHwEAgN5hn9sFQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQbDNNtvczTbbbLPNNtu5zW22c5tt9uOz7XnD+/wB3z/c/0Hg/y7IEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwN/+f/7hwwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8Bf0Z9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4q/ozyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8DB/0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bv6Y/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8Nf1Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6G/gwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8BRfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+Bv6s8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8Lf0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bv60/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wxcNKfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+CP9GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgT/Wn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPg7+jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwNn/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4G/qz+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHw9/RnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/r7+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwEV/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4B/ozyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DPxD/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4F/pD+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DFw1Z9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4x/ozyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8D/0R/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4J/qzyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DNz0Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6Z/gwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8A/159BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4F/ozyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8Dd/0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bf6k/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8K/0Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv61/gwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8BDfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+Df6M8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8W/0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+BP9GfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4YeOrPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/Kn+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwL/Tn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPj3+jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwMv/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4E/059BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4D/ozyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8D/1F/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4K0/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8J/0Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6z/gwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8Cf688gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwx89GeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+Qn8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgv+jPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/Ff9GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPga/+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwH/Tn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPjv+jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwP/Q38GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgpz+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwP/VnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/pf+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwP/Wn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GAj8pf/3/wcqkPh9eJwt1iEbAYBihlHbvdtss80222yz5xEEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQdjd7vnK+QFv+f4Y+EPg/xZkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4G/+LN/ZJAhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv5SfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+AP+jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLH/8U/s8wyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8Df6U/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8Nf6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA3+jP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/88U+H7//5I4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfC3+jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwN/pz+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHw9/ozyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8DIf0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bf9CfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+Ef9GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgX/Sn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GAjrzyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DPyz/gwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8C/6M8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8q/4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sdARH8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPg3/RnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/l1/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4D/0Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/BqL6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA/+pP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfBf+jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwP/rT+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DEQ059BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4H/0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimv+L/DvIhI=AgAAAACAAABsRwAANQAAACkAAAA=eJztwSEBAAAAgKDu/8EeAQoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGME7AEx4nO3BMQ0AAADDoL/+Bc/HAhQAAAAAAAAAAAAAAAAAAAAAAHwb7zDKVw== + + diff --git a/inputFiles/singlePhaseFlow/synthetic/synthetic_2_0.vtu b/inputFiles/singlePhaseFlow/synthetic/synthetic_2_0.vtu new file mode 100644 index 00000000000..d6b77b62910 --- /dev/null +++ b/inputFiles/singlePhaseFlow/synthetic/synthetic_2_0.vtu @@ -0,0 +1,23 @@ + + + + + + + + + + + + + + + + + + + + + _BgAAAACAAAAYGQAAOQAAADkAAAA5AAAAOQAAADkAAAAfAAAAeJztwwEJAAAMBKGD7995Qabgqqmqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqrq8weoHmABeJztwwEJAAAMBKGD7995Qabgqqmqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqrq8weoHmABeJztwwEJAAAMBKGD7995Qabgqqmqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqrq8weoHmABeJztwwEJAAAMBKGD7995Qabgqqmqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqrq8weoHmABeJztwwEJAAAMBKGD7995Qabgqqmqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqrq8weoHmABeJztwwEJAAAMBKGD7995Qabgqqmqqqqqqj54b2gS0w==CAAAAACAAAAAKAAAEVMAAC96AABRegAA32wAAMZuAABJegAAL3oAAD4mAAA=eJx0m3k8Vt339yUNSkJSqaQRicxEsRookSKJlBKFpMyKEkrmeZZ5nud5PC7zPCUqDZSSFFFpUD3n+P669nVuPf1xndf9fu17nb3XXnvttc/2oaP7x7+CQIz036618F/+49WfP3/krs/jC18S/M48HvIe59dd5nGWcaK9zzzu+AXnLgHzeBXR/nrIPC5O9Of0g3k84zFhP3oeDyL6ExA7jxcQ3CV+Hu8iuF3iPD4xN67keZyZ6Kde6jy+k+Cn0+dxRYIrZc7jhnP+yZ7Hz07jPCxnHnf7SIwrdx4vfodzr7x5PGmEGG/+PN5HtHcsmMcbCPt2hfPtE/2xKprHU74R/imex8N+4dyoZB73oMd/9Evncbsl+I9O2TxuzIT/aJbP4zqs+I9axTyuwoH/KFfO43Lr8R+FqnlciBv/gep5fJgF/9mIzeM3mfGf8Pmchejnmpp5PIkR/wmcz/cR42WlzOO9DPiP93xuRPht+fx1SvoH0WT+d13/l+P/btvwK71UDJrHv3xbu6To23x+QemxaGpd8DwuG/GYNSAvZB53ZXVwWd8UOo9jfk7RT5eHz+OvfjxJdnZ+MI/btWawsMtGUjkpn9CMi5QHaDhp/dJw0rqj4aT1QsNJcU7DSfFJw0lxRWufNh7+MV//He9fnp30dL5/cP5Pf+L8n/7H+T/nC+f/nF+c/zMecP7f+NF+Q8loPRQDH1R9otdHhVF5WJN8u/BUFQQ0K1h0xCEu2656J2eqEBbSJ5Z5bEP9X+ay9HjEdCY0yD9fYtuN+p85Wiad2ekHw6HYUredqP8cre1Tb07UgNzHzoXZ6oibRHxgDX1ZCr2H7k99KUc8Cgsp/dyfBys+3zzTdR/x9fp+0WJJSXDzwYn3i00Qr91I/FRBfcz6fFEmxHd/xeNhqgg4bHffE69BfntdIamctjIKNht+ibfLRNyEq//thrUZUHZOs00wBvHhcXvKotX3gMnTacFaBcS57uRrVKlSINZpEe9ZDsTfE/mnrxwalTjsTO0Qn5zE+8ORC/prNGTEVBAvXklH56CNgeEqjla9HYgr9B9TUzIuAzPrpddvhiH/M/ex+8oy+cJW9m8cs0/QfN1UTWCUd6mBpP0hfsueI76V2XNYNCIVSlcEyBYzR1C5UNVq40VVucD6bceP59YobpeEy4jozBTAFfYvX9uXoP4sI37elgCLRcafD8sQN82yPpbplgCL1ewsJZcjvjLFJTzodRBUz25nN11I4//r9w0cT9XA/ojLi+6+RvEZveel21hnCmSoPKq5+gTx/Le435blwxMnFo1bNNy1QSOZu7cSZHrXqSUMI35Zas+0RAYGm6a3+Bw8isab1LqN0f55MPTRLW0TOI54WcHbmV/1yTBhpNHJEIL8ZirC+7kvrAK8zFSvc7GgOB8LM2geHwqH40HGQw89Ed8jrzywxyQP0lK6ORz9kJ08n9Ym+7oYKBM/ZJqfg/r5NvjB8ojLWbBHWKdntgBxaxt/hf4mJ5Df3L2xdheyv/dh6AsdbQr4XuhdW82F+FX/CJa9+sUg9SLWQ8cNjcv0isv6XMdC+NxQz5slitr/XReqiQtHPuei9y79dCLQXBqDoOn65wZXUPt66cC0rl9lYGu0+7BUFWpv5xxc1LsxB0TXmTymvEPrbrHuqOHn77EwSb8xUEsG8T49ySfsTp7AOfRhP1aE7LC9n+YdD7oBmy4uqdKLRfy3zNLTlBYKLGK9XmUVhrimZvClBs1q8Fcb0JGtQ7yZwdZ85aIKWKYe6PzmHfKDxyJ6gcngMDgS201ZnIzam0Rzx4wLpsGS7zmKUr9RP39dEbLfetsdHm9vrU//gNbFyCeVSsGXNcDhvHfxt3HET13eKGNqXQEnbIpXH05B9pc8Tt9enUSB/D6nK6fEkf3jTu5NF/VvQ3KqckfGbsRVpnQGxEbSgCGXseIcTZwsdaFfkrG5BN4W3mc5+ATNi33S3o7ZjQkQa9MfwrsIxduJPzCVuzEXNLe01VlYIzuvBgvYs5pq4Ev4a8P7WogHb+G5l/QKA7505cQgTcQXj22ebNxTBjmXszaa+6P1e1GX/ml6cBx4KLrEuPkhP9DXqfZlHiiE6B3ZiRqb0LiK3PyKVBySYHfHxGU9Y2S/hFjXDAVQe/n8r9d6iOv5jMg7d6XD8vt8Dks1UN5rMOQZ91Ash8yaJxEhImi8r3+emWpUx0D12JIyO1H03owbzz9udyqBybanBzfQI17teaTTZ9gfqq/pX9AtQf40txji/MVVAwfL1Yv4WhGfTZA/qtFnBmPP0kPHTiE/KNnd9do+RYHCqg9ZBTT5vLlv1E2Y3xnST10wqTFD4+psPfeOTTkOgkv4Dz+RRryjQ487rS0EzO8a6Jk8Q3buey6ceLEmFXwKlE04HyH+J7zwbf/DXHC8sT6+4Tjq51nLzb+enMIgWWv4+4PLyL4Sds9rQW8BWPuMWr0pQvOlzfjpevubYgg6csHuhT5qn5mXar7+dyFclDH+7kzDy4bkf2QP20GQqWX/c1Pk/7enr+lNp1Dgwq3lLXRmiGvMGFBknnkDVLN8XG2G+r8n5uH3geksuHT9bUvzAlRHWVYzjZfJF0Of63j9vQE0X9t+fap6JZwNfmaFrybjkR2L7+mjCXerQJ7l7ZDQAeQH5RfZMpdel8Knaz8+aGig/lfPDLIcuYCBgkHv5LtqFFcfe1wsOJTCgEF59LBgDeLivzcUWspUwceunLWXHJDfmON3BHx7mA9brKtNdiai/shvdfWMO1YJ3Q90+wTrEZ9ROf/xVlUQqK8pcqlXRv3pM7lfWFtUA6F7Sjorg1D7nKsnny15nADBcgf2P72H/PNIViGN/RsGFmK1G68Fo/ZlUudPG0XkgY7TyU2el1H7tz2XW1fo5MGpVZfeF4Sg9q+cGN8tkc4D3Q79N9HnUH/4Fiho3WDIgWiZbXwB8oiHi+ryrCisBFODsG30BxDfQXfjpYEaBW72+yz0Oon49rLCd/skc+DAkRNPi7Yif9rb1ggbJuZDLpewlusNNF/ZJbUtQx9CoEXBImnkDoqfSE7by3V4ndB2/l7kuAiyPxlk9lBD3BFMtnuJib9A9tVcKmSbLSnw2KaZ15eGzxLnC6MUiDox+0hkL7LTxNt8PYK7HDi4lu/1UkHx9nak7RCdcALcZZnWmlWnWafigWX2vwuAzXZHs5ks4ruaSl1N35SA89IHWSY09hme52x1el8MHeZicYe/o/6obr9wUTu0AhieLVynwo04e/nuNWdWU2Ct1rf1kXfRPDYOfVkZsMwFNm0UTIi8QzO/TOs+/aSLA5lXpQ2al9H8Lkx4/2DlkVwINhrjTxKgqcO1hhno1SMh9fvo4A9PxCVPp/nodyTBtbJ31WI3kZ2Juqtabw/5wcP8+idt4jTni0C45X6vGtT3pK9YZUJTDz+x1GJwxuDmqs71vXfRPL6hy8LuPyqFOwt5HQrZ0L580/xifkpOFeglt3n82Yfsiy86VvdcNhmUt4i3HaKJk4atNq82KZWCV0KA9qlO5AcptVCG7kYPcG7qUknlQXbMX7YLS/+pAYsRuTfFNOcO9ZKzrYpurlDFyJonJYv4zW7nhAmrSNhSM2CsR7NOsVX9X6aEc4AicsO3e4wmfiZX14yHp0HXMhWrn5LID9I3Y6sLD2TB6Mnq0sH1qP26H1Ndy9rKYZnlzcICQZq86qv5MTEsBqy7yhw4tiLeqxOyMqqmGEQf78iTlkH2vbwMJ3W3Fc3jFYvFm8RW5cOQR50snRiyc8/hZOsJoUpws7i51oAZzYuLB7+fyZUMWGq6SecWzbrmPNwSzBeYAK0qXOHmnCg+rxddbNl6NQ0MjAeOTjMgOxxvhHrvXUuAI+JpT9+8Qv0p2aQm0ITXmVvPnb1xQwDZV9hwZX2dbRg4GDzK3Ewz3iaT44+bP+fDG78LO76boPdGWVXTW6RVw0bOwZlBmvldT3wfOJcG5+t7Th3aQZMfPF7FOxZXgGoYr17bOsRzPyg8tekPApYJtWOX2tG8K7OYhShBOLAJG2R9lEX9l31lIFE/Xgq5EZ4HHSaRnZ3H15vemciA0etVo+cskR2Wwrt9xf01kL5Oz6zvC2rvcqLpqGNRITxx42ie7UFxO0V8Z3haBko/Lnrm0/hBeqxpUeuPXEgKnmCtmEB8VKKI18w2C8Su3d1XZY/2owuPHrp0TxpBwMqPnvZCqL1x1svSvdy183jtmuqnTE8r4HocW9awCE3cqizMalwTCx/t8lUPKKF1V/eiO52SVQWpfiZKskGo/zqcMvvu9WJwJK7kfOoMsr9MUCrz60MM0q+7far4iPwj1Wat8CsFg7xlTvp7fiA7EypPBqzig+H++RrDmJ+Izz6PUws5XQpV53RdWjJQvPkvEXNgcK4Go4srtKxovpM01C9e7J5vAf0Xo0SShmnWdX1ntt4YZR7nZLNSCsIqwa622CfHA/GOa44bFt4OgAtt6r6DDsg/H0VH3Bz+5IO83m6m1p80dcXHz40i75MhsvBVNHcpittC1qklKjNlcLxH4pm3MPKnoKilsEQTBVbvOTTYpovy4dWvNt17vtvM4+FvGzLlDhTArfrGEf581M/BQozjWHIBrF8d4L9RBfnnhZ67xxXjNHCf0rRi60b+PGfNuz45wAV8n8VtUmpH/WH+xll5ehkFGn/ovsjsoMm3mSqLvUW9IFvj4a/qGfTeY6Itzlt7ykEvz15d2wzF4dahI6Umu2vB6VKR1eN05B97fWaO5zyXof6IbsLLLMTT3320lueOhje6G6NMT6J+cre4sQvn2UPOuz/bdtPkyRVSx9LeT1lBdLbt3qZE1E+TL1nLBQYoMJb6IGMzDV+hp79AybsY9v88HGRTjvzDu5alJvpdJLivyXFTXITmN8KT59ZW8wpITR67eVGMpv68e+3MVK4fnCs5U9e7AI13+om2x5Qqvr8sC/nhT8N9yhZ6lYRngHpbZchmmu8nPnqrftnWUWCXy27rfE40rqTh/Rt9blbBBz3Dd5bGqH34hStrLkaWgIIvy+L7X1B/nk7m3/OCBFis2uFk/wrxEOmmEsH4Unh0bGLhywTkh+0mZnonT1IgZb3ib/4CZL9jiX+LVWwNdH45u/P9YtR+6JRzSMLNIlhuHr9sYiHy26TKlp0imTmgGyi+bTs74otu7rFRkCuCVQbbGnbbof7sjdNK48DjobD58ZYomu8A0231rixGBqCferO4XBLx890ePwV8/YFyk+dUbD3yz+fQt/vMKXHAPFpsJVX5f9y1F+ho//39TvuX03xXX7sQf3r3zGu/ezH+DOyexw8ReTm8ax4vWUs8O+fxt1z4U7l9HufYjj81W+dx4Mef+s3z+HVh/GnaOI9HS+LPW/Xz+NJ9NOOk4eZCdOj7NQ0XUaBD37tpuB3Rn7/fx2l4C3G/Ylo8j7N/pfn+TsNrimi+19PwgUKa7/s0fHMkzX0ADeeOpLk/oOFzT3x+/3m/gPN/3i/g/J/3Czj/5/0Czv95v4Dzf94v4Pyf9ws4/+f9AmH/P/cLpPikiVtSfNJwUnzScFJ80nBSfNJwUnzScFJ80nBSfNJwUnzScFJ80nBSfNJwUnzScFJ80nBSfNJwUnzScFJ80nBSfNJwUnzScFJ80vDvm/GnWtv/cRQ/k0ZHdvDUYNCnMhtmQ1dA5du+Gg1xV+fAjcPuhcuHc6h8w0s5+p/pDfDSVTtJJjuVyhe0sIXwP2qAX5vNz4fuKaPyBmnNZjarYnCPb8N+lCMucSjlibVbFyxKSyqxlUuh8q05aWk7nbtAsCYtLY0Bxe2ZascdeYPJcPHPe4PngLi8H/9B76JS6Pbalnl9fRKVX2IZ8m9RaoWLWTIrN1bEU/nBHzZDI4Kt4KNjH9C4s5LKo664cnFW1oC4FpnzP6hRWmscD70B/3v+5WVrS699Sa0Bu20J5388QXzX7gEj9iuxwP1sInPKEfl5jCMhaHBFHgRzlSQtOBFD5e9DF5wdNeoGq6SA5iaaebnDaOMtaVMC6zTY11U+z6PykVLlcoXLTYANPlzF4oPa2zuyvI4PrANBIfoD7a8QL5mVXhpdkwtb7y1/tCsNrfdtx7+b5TdXwvnBRYcfcmNU7qcVLeV6pgOyB66fdagIQ/NoEVNtfbMDxh6OL1y4GLW/8Nmfwaq0G94JTVj8foHa1x3PY/L+1A0Xrqu/aDmK2rcHrFxbsrgJsrm3PlnA84DKWU4z3zxUGgZmg4fCeKRQe9X9UY0YRxOcCbK+//wQ4s1+g2OM63Jh7Y8/JqHONHmPa8Iu2KUOKty2uY7RofZSIcvFk8M74Z7L0MbFXMif7W92WTybqoRg82tOjVqlVO47bcKdU98OfHdd3L+4Is60wCHMoLQOIpitW+is0Xh9u7T2CTlVgfh2nqhXPCFUvvDAjP/U4h6YXnl1oYhmOpX/ZqtRZcE5W+dTRilLZP9WxcsdD/La4Xii7KuEnDQq/xDnqJvRFwp1O8KDxi+h9tl6Tn4aVtWwtDs9JT0C2deU5CrnEQgBc6mLO5m+ID5b2LprPLoYLDrY3409Rv3kbczS37I5BDRTLikdWxRK5Vv+aFDGfSgQdU4h4EZ8FpUHBdTIutq2gN9vxc7t/YirvGbcJSRTDEUrnRfU5SD/O+xaF23QnQLZDv1i/i2Ir5JdO2Zg3gJlq1/GF5ajeUxQPuHIk1gLTxrEry7bj8Y7+lBSKCQmFSzka35vmA6i8icBE6tMGwqgOEEt7sUR5De7NnX30J3JIGofZLo5NZPKnU6URjzy6YJ1Pw9JrE1GdhbN6sMlxy44qFXWGPIM9VM943H44TYM7lwUS7SdRjzHdAfD+k/NsHev5JHeLn8q16g4uT+HrQ1eTZUc/bYE7afuU1u+XPWkwJN2u9PVBwOo3KT8xbDnVAocZO278KS8iMof9DbbHG9sAsHWS79dHFHeKwjqiostbQLWVXRT3CKofliT2RmXWlYHI9i9ZHZIpHLbN4d3mNTXwBAn1743KcjP74q/BhiHdIGI+W8G+yL03qh1N2xe5VdAYtaVasYZtC/4OzEWGfzIghq48Hn0MLJPN7Eqx7DfE5Z+XSa+5QPKh0Gsj44dt8sH7ti2pSdSUV66r8Sv75nSAKbWJruGmgupXPaY/KKTJW0Q8vnuSt0yPypnW70mfuB2D2wYrzo/mphL5R3YmcY1w36QFj7ImSOD7Pzs3551QK4cfu2Lm4nPR/GpFJpSOMyYC52fr18/a+VL5R8Edme85W+BQts6+4k6NF/NOzl/m+zOgckIXl8xf+T/tTE3bhgYN0DSRnkre1fU/tJID5tSDAVent0kcJ+CePrFCS5dEW9wPWzAv+J1BZUvkDpzjPFGA5i0YvZfMG8q9zL7vf5CbRfEX520VZRC++/oZLqJJl6P1axtexp5JIHKZb4X+uf49YDau9ARRma0f+nyXNi9L7QBPLuXXnlhi/x2ipPtjrp5Hazeb/eEzQb5RzVT8TZU4fvORHtoVR+KB42tXhekH8dBS19UIvtDLyo3ZdtL77qrA/Iy5EWXaSH/c0xui1N26IEFLxUPhd1Afvg98T9e+yvnmbgd8v/S2dVcwpY9UKJyJGLhIvRe2WedgfcUG4Bzq2NDSncslatMWcRZbC2HdOUT7zc0Ijs1FnwveR0pIL6r7ND0EIrbfI+ag526TTCQMBti34DiXzpxy8C38w1wzK87KUKiisqzWTOZ3y31hYJzO58P30f974v6NXXudjU0sYaXTy9Bfo45/tXixrVyKLH+mb+Sgua3SNuom5u3HVj55egS2hAPfbHv7sP1nfDMJmomag3iu89JMWKJqdBgUluuSof2KemaioG35k1w7ZLI4Kt6NF/pqXHs42q1MLOQw7IpFNn5zZbl1/k4GgTe1d6ZMkecK0DLgrkqH5hPC0c3BKBxleYrVkXWVoPCWQ7ZKG+0fge+l0qkibRB2iyLYQQrikPNPpn82HNlYCu8h5WShuzYiOibD73Ph2X0aaZDTui9J6oX6MdMZ8NSQY97zE6o/fpZo9p7Vt2gcy+0I8Qf5RPLT+aT6026IeWsmKzvZWTn+jmhktgmDPgWn+asu+NG5Zz7jjpPyXfC3dfflrR/QOui9X75t/3r4uFn/Btd93z03rEv/AosXIUwlhXpe28/ioeXKR/k7S63wEyZdKvTPpSvooDhxtaVRWBp9Wlt9U3kn2ATnZADS9rhaM7+HR174qhcqy7Q+/xwO+ykz3M7yUmhcg5GIaOM3d1wuPmURM9lVypvCuP3Kjd0g1X8IvKxM8jPT8P88repdYNrbNH1ogLUfybnoqx6aALLt7e9St2QHf2N7TG87p2Qd6pv4tN4BpVvud9hmH2iDZZvstxRL4bG2zGeXl98ohN2+Lee6+5D65rOR11/8kguBBgdNv6xCu2nzM/BVFmrCgx3L9R8fA3lE5kuptzB+90QyM+yvGsDsh/aLPKawQyvd1t9NiyaQuvaPOtE4rEDVfBst0Anyys0rpPvPQbtB9tBIGDGerkRsh/x23J1p10naC6Z7GVTKKFyd+2z6kmVheAjc2NLfRvyG/0ty4sSx5qgOm5dnhU38v8yMaV6g+A6CBN0ed/3B723PMV68QqLbNieOWu5mA/ljQyFp7XKSwuhPYF/9fcIFG/jFkfFFI3KIXe6ZJ3QDDrX789dKGeV3Aw/Q916THNRvjo21fbsCFsL3BGzPyjfgPIM/3f14z8k68DowaHRI4X3qbyQcXrkk0QGWN7jmVj/HbW3/7HzV9jOLtjCbLEu1ArxrtkVqzykauDqC90fzEaorjYxcP11J6kLOleUKJsnov6cuFbPvBavt8K1GlyfiiI7Phxbz30+VAO22pv75FrR+a5BgH8ijbMG7mt23HA/SBOf24T8L30rBv0UVcvvE6jOXD675dX1xgQ4ukPvPscosm/6ZHhW80816Og60Ut8RfEQNnqyTmgmBh7Gl45sXY7s7+lTf6XL7QKGEef9yw+gOhBbx3XUja0evpySXnetGsVbeK37bOu0G/zs+t/zL1fRrNyzfXEt3FCJZc22Reevl2u4X91/1AOrXWRlUm+g/h+PXdd2p68HlvHoTzCaofeGnLTc0DbYCtfir5m9E0bn2ddS0X3FC/DzNcU0hH018lv/HwH5kf5YcL9ZsWk6BfEX6W0+9307IZ1R/lAzPYrPAxs8nHkDuoH57gXFigPID/6e7zgdFCmgnHix0boMnePy9PMmX3HdA70XfEEcx1D/N4QIaXiebgVZTpPw1Z7hVH5o/5vR88vcoGp27K3ADLLzvaK3aPlABrw3KjPbLI/G6zXhqlz6tQ7kujOdPDNQ/VM9nYb5f6kE22LuWF16FLemRq4a539WgJZe+UwEP6pLBd/yhS6hi4ONC0/wbVWPoHI2q/F7R993wuna/TunD0ci+8c8rMylukGuiu9T60U0rsVPX+50CEuBz91m2+9Yo3h2uPh7a/TZAtD2zF61fxKdX65hgpwhdN0Qz7/X9Jw2Gq9kEFv+haYe6Dd6l7HiGlovrLLxgrHNPRBsHzaRzYjq/ESZI1df3e+CI44fnBfsQPvCQODMw7xHBRC0RVLQyxzZb4mYObbtVxpEZWykr+e8R+USnbcFT6Tfg4FtFb2XB1E/IyRYZKrOhMLQgYU73JpQe6HummWUxZnw20+wdNljlM+TlkafmLhbAgvO63t2nHem8h9udC8MXlNAwsC4eHAxqh9yio/N/p7C4+xZxOtgdvS9JWhZgI2aZAusK6EcXpODeMj60u2pfHjeN7Rm9tiN4vP04/SXhoDXV8OLH7cWo/hXPgisv6AF3nGaicrVIr6tuM6mhKkDrh6cWHAtAsXJeik1yxf2RcASXvDlME1+jtOT8hapxeBQuvqXXGdkJ2sV9+J3I2Xwmc4i7OESFJ/K1qvdxnLKoekhu0cEDxrv8B2TncvPZsH19nOeDB0ors5tUr6QlN4Iz68mNDHZoH18+kQZq59oG3Qwxh+/a4T680y68c5kfSPIbBdZtMcK1Xt1jNoFTJ5x8KdwdpVdKeqPolNUgl4hBmyvhpSrdJCdFs+9zPmWRVAhLG0xko72l2sueYe6CzC4NNkyoSuA4ie/RZ6uqL4WQrJ3NDjKoTy5em1Z0RrhNtAcfJuj/g3l1cLanvRlu1KgKG/gcH0JWnf8YS0VrBoR8DE/KG+LKKqLjq+yt2NSzYcoM/93OoWo/zaRlv5aRq1Q98PdZOczNF8G0qLsAuVhQL/h9i+GI2hciifepTcf74JHojUvn3WhuM05Kp77K7QEFFToDnKcQet0m/jd8EL+fBh/zlCYF4TqWA7XkF3ZFs0gJuEvueQpOkcsbeRyiC8IBW/+8PD1yageYC6rjm8TzAfv+vuuL4dR3bjdO/Qcw4YyOEJ/QO/+LPLnmrsDVmpvOkHskejWMi5kv0aCbk4vwcs9kyW33IHK163NvWs73g1lOpJCZz+hcdHpdx9fNdMNQ82WVzbSzC+T/XCJulwr5FPcTZ5ZIPv36ov4LuP1Xs/Le/GTQcjP3o5sS19dboaVbsuLN15F49rSyj74/VcPFFddvl0Hjmi+mv/HJQL5SqYt0Hv9PQvcQq46wLMSfRcJR8Tnnv+9b/qr+/jv/dR/+X91BDScpCOg4SQdAQ0n6QhoOElHQMNJOgIaTtIR0HCSjoBmXP8//k87dP/Rp9Dwf/aT7j/6FBr+Tz/Q/UefQsP/62fPBXTzdTo4XzN3D0OZx+MJvc9/dUA4F5y7n6mZx8sI3dB/dUY4l5+7t8Hm8W7iD+v/q2PC+f/uc6rn8c5/6aRw/mbunqdyHv89dy9RMY+zz93/lM/j/Lx083VeOD8wdy9UOo9rCeLPKyXzuOncfVHxPO4ihj+ti+bxqLl7pMJ5vEgafzoVzOOMc/dL+fP4JsKOd948/r97p9x5vIEPf4bnzOP/u4/Knsf7pfCncuY8/r97qvR5fAsxL/qp83jr3P1V8jxuSsThrcR5/H/3WvHzePnoP3SUOK8u+ofuEucOqf/QaeL8SeE/dJ3EPSblHzpQnJPuwWh4V+E/dKbU9nfmcYj8h44V5zkulpciZGLIuiScO0dG8YV/qCLrmHD+USPL4fjGXLJeCeefhuwGhDlKyHolnMvW+Rk1lfiRdUk4905O0VymUkPWMeH8ytdtg506aWS9Es6zDSRzRirKyboknGtcNlRYLlVA1jHhnHmY0I3GkPVKODfZgT835pD1Sjgf3zR1dbVnNVmvRKy7AHbPTwtLyXolnNuLNAVy6t8l65Jw/pB1ID5bgULWMeGci8g/1kkQMEOjV8I5G7Fvfy8k65Vwnp5N6GrDyHolnCfc1tc2Ukwl65VwbqD/LK9/kS9Zl4TzWb1fAjfu15B1TDi/wVTG/GZ/GVmvhPN718YCf6gWkvVKOF91v649dm0eWa+E890i+FMtg6xXIvJt1SEtvtYKsl4J53dYs5VNWjGyXonYR2Laaj8H+JH1Sji3omMpX5ZSRtYr4fy5DP5cVEDWK+G8IkAtt+pmHFmvhPM4w6eyQhkYWZeE82OHJS4feR5M1jHhfESGiWGBQDlZr4Tz99XZa9THE8h6JZxfZe29TOHHyHol4u8oxvJ5GuIKyHolnD86Ev4Ay6wi65WI/HlG5EfuYDFZr0TkbRvzxWwtTmRdEs79HgZ7mGtTgK2dRseE89Vsjc9dTmeT9Uo4P11647WKdy5Zr4Tza/+3Lkh6JSJ/+t44Z3w1nKxXItZdYX+azrYUsl6JsB9npLhrqoisV8J51ZBH66JVVWS9Es5dvc7mPa+uIeuViP3lYknUiVoKWa+Ec6mUb1yFyTZkvRLOb/UlGb0ZjCLrlXDes4Jp/dDqJLJeCefnGs7/2HwKI+uViH2qcyLb7VspWa+E8/xvG5oEXtaQ9Uo4v9nHws9+252sV8I5vVa92ybRRLJeCeeL08rfDUZQyLokIv633Tu6nvcWvOGj0THh3Da5K+BSZClZr0Tkh10/PyUPZpL1SsS+VjMUumBBJVmvhHMZnuoVKlOFZL0SztP08gq4vniQ9Uo4r2NpfN66JYisV8K5l1bFJtOMVLJeCedLn9uzpdVVkvVKOHfSztqp1p5L1isReUy9OGGgs5ysV8I5B1GHLM8n65Vw/vbUinOVPKVkvRLOmbRyeUY9k8l6JWKdKvKaYGFhZL0SzpsOHNxSsD6TrFfCuZ7eZ941RwLIuiScm41zLM7iryHrmIh6KdH3uEq5OVmXROy/vZnHTn2nkHVMOFew0n2rLE4h65Vw/nmXqsfXd5VkvRJRP3tOl1/xxsh6JSIPnLZfynKvjKxXwnmf19G1vDKFZL0SUYe4f+bg9Qsj65VwrnTFzvz33jyyXgnnscYaXq9Zc8m6JJxv2MrFfUkti6xjwvl+ETH/gCE7si6J2EdaBBzGUihkHRMRn3cfH9wVXkPWKxH5oW713VXBxWS9Es7/lL3hcQ/MJuuViPjkceFmtikm65VwfoIvRbBobSxZr0TUV6YxruKn08h6JWL/ZfIRjtTByLoknG+8uvZm9b4wso4J56kcDUEcqbFkvRJRb9g/vrpE5j96JSIeBifelN2LJ+uViDp2g9hFoS6MrFfCecmxsOS6VV5kvRLO205rsN6KryDrlXAuvrsj88ydQLJeiVjvEzEpwRYFZL0SzjPUwsSmcgvIeiWinoz9yvGtr4CsVyLGtaMsyWV5MVmvROS3sn25I4VxZL0Ska+4Hb45at0l65Vwvuj6UQ7KQBFZr0Ssi6O72wb9/Mj6I5xHZMp2hFz5j44J51s8kxsOumNkHROxj+hLsl8VdSTrkoh1/brEP82SQtYxEfUAsd89LSPrlYj6dsCEu/F5MlmvRPg/LuzZnZkKsl4J5/JjxvKOrHlkvRLOv8V6fuQ6mUHWK+E8zz6q5OeRLLJeCecF/XIyihMJZL0SzlOi6To11lDIuiScj/EweOnsdCHrmIh6wN1iidPKKrJeiagP77PrTzYWkvVKOD90o9H+T1k1Wa9E1EUfd5a0p5ST9UrE/F7tYdc7X0PWKxH5auQX8yOBKLJeCeeXjmiJPVsTStYr4fzyjgT7KfM0sl4J541SMmFZVTFkvRKxb4Y8jvQ1LSfrlYi89Ip1D+aWTtYrEfu+fdGEU2sNWa9E5NuFW16d9XQl65WIvCdyVM/4Tw1Zr0TsF+HPOe7lVZP1Sjjfxs63bMXzIrJeCefNPFbRbpRSsl4J5wuMdnMnfiwm65WI9qKcOmMuSWS9Es6lm3qXCtRWkfVKRH640f2yNiKLrEvCuaNvyMqo9znzeMGGVsnW2f/olYj6jVvLSKc6nqxXIuqrc1ckm5+UkPVKRJ4cDxd7X19B1isRcU7p4Pz4uBTCq/uRXgnno3EGwZUDFWS9ErGPz2b2SOJ1JkmvRMRVrf+tZE2MrFci4r8lZ4fE+v/olYh6SYf+i2hwJFmvhPNq4jvDUClZr4Tz50x7SmZzEsh6JSKueEIYWNsxsl6JsD/C6vVVDiPrlYh9wVAowEohjaxXwvnDW1OHIbSErFci6pxndclODB5kvRLOlQclC+21csl6JaLeWIM/r6SQ9Uo4/yQt+UNsdSFZr0TU24sTjRt7isl6pbn8+Q9dEs4r/f+hYyL89tnxyBujBLJeCecvjX7zbrhXRdYr4bzi+NkUW0oMWa9E9P8kD8fz+CCyXgnnazJlg4+GBpH1SjjnL399yC8fI+uScL6aoti2+lswWceE8/ibZWe6TdPJeiWin6xCfz7wR5H1Sjjf1foPvRLOY/6lV8J5x+xqo76oOLJeCecq/dcjzq+tIeuVcP7sA6f1HZb/6JVwnuu7KOIyZzlZr4TzvUs3TOoJp5D1SjjXFfuHXgnnPwVvzNcr4XyT7B41rD2PrFci8rml3Ls8wzyyXgnnDI+ky44+KSXrlXBeZnPMu56ZQtYr4XzS6ITgvScuZL0SztM5H2xqLKgh65Vwnlhq/LnELomsVyL6+agx02/bZbJeCeffG5JdLuyuJeuViP6oHYr7eLiarFci8nyBts01fwpZr4Tzi4c3u+v8sCLrknAOwZlxhgMUso6J2F9uSv4yWphN1isR9TBjxcrQoGqyXgnnV5hyl5TKJJL1SkS8ieQV1KjWkPVKRD7cuznROMePrFci6gp5+9J4SglZr4Tzg6UB52JMb5D1SkT8a92qH9oVS9YrEXnGgr9bZiSDrFci/LMxaV/pRAVZr0Ssl8rr3nGP08h6JZw/EHzX1Hz0LlmvhHOuBy804g29yXolYr202xpqB+eQ9UpEfT7wrK/9YhFZr4Rz4aQG19KuHLJeCef5ncFGp6Qvk/VKRP3wZrBSe2ctWa+E8wZ3b/ghXkPWK+G8VYFpqCGrkqpX2jEdEmaliu4jzhoWHdr+MxB7Q7/pxcsNiP8IfDumeTQIq2JtWcI9hvRKNwxG5HligjDX2366MyWI39Zw8OTF1/WWzc7y69wQN3NX37PiTDCWK+zXsOsM4p/6t5jFlAdjq2V5vXv4Ea//9rWzlisE05vQ3pTyC+mhdFlb7xg4hWBeDd9WHe1E3HB6pZfDSAhWe96AXiMGca2v8lW/FUKx+68v1Vw1Rfwdfco0BY9z8YdtpeJyiO+VEj0VQheG8W416dFjQnzd+QwNfo0wbJXMGZGKfqTD2rHohDFHYhh2SjJ5D1cs4iPbE568fh+GxURuHHU3RHzIwKpPiC8ce/LpTQWvIOKOu358r9cOxzaaRR91eo30XKWn/xxtdArHIv2T95lcQZxb2YmrNTIcG5lq2jj+sYPK/zheuTKcEY6lCFms6jJH3Nw0+ZZbTjiW8yfbqu0r0oUlpI0GuKWGYzxXuceu2iGeZhKe+ig0HLvEMbZLeAHi8atOitbbh2PFsrZhVa5tVO4vwr4v9kw41odVL9vAhvgZkzW/UgXDMbdTS2S3RyLdmSjDt1NJs2FYY+DhnEw+xG2tgzMG6sMw9tgxP7fiFirX9o7N3OURhm12p+v2VUBc8s65kJPHwrDbj5jLoh8h/Zrgj+y1j5jCsObNex4FGyC+c/dLeu6WUAwrt7I4872JyiVS4ja6Oodi1uYqG3s8EFe798H9lFwo5lTauGaUC/Hyr1x+tXg+V44PnXHNQ/q4MWfv8wzZIdj2u9/3xisgbj45wHrwUghmOG37Z8fTBtTPiEeiiZwhWESBWNYiU8TZLvZOKHUGY19ijnYKL0JcWilmWv1uMCa14XVnVDjS391oMed/KhGM/XgsMQBCiL/Y8eH0zLsgjPVQYiJTQx2VP1884Y5FBGGiiVsvz2gjLszi4KN8PAgrqWWM+PoJ6fhurv99OGdBEHbAm//PHxfEC1T0//zJD8RYBjQuMnIh/l6yu+j45UDMdkIhdGkBhcqDZ09fz18biOVUd2hOKyKeZzBpIdcagL1OV9hR/QLpBFct+Jm01D4AW8UfL6hrhTiL8e3ebcIBmPlJhd0dyxC/fVxrefprf+zjmksnfkRjVN4TuXtlQag/tvMQz58BMcTXbhRvPXPMH2uTvHi31B/pECWdZD5U0Ptjz1NFmT+WVVE5cb/zs8QPmykbbd89XEnlryMZr+019cNua76naC9F/PBmecs0Xj/M7Ecmh5JABZV/u/RgyGbYFzvbLKXacwLpHEMOG82+iPTFGBLD3TDzMirX3pPwhk/bF/sh0aT93L+Uyu9YLjTM4PTFXrLQPxnPKaFym+ng+KRSH8wwRDMyoQ3pJevVmhNVDvlgoR9HHAtHiqj84umtJ/MfeWN5wXdHG38WUnnjM4ZFGebeWMrmDa1OzIiPrhNyruTEOYtaQuTGAipPNH0RatXjhW1K+8a3gw/pMade38pQi/LCzG6+ZjMQyaPyk7MLB8ZveWEFLVf6z0vnUjm3UdriD9e8sOKSdgrP37+HI96bcpRfxtoLC9youFgpOIvKjXfL1RoFemEGwsE9XzMzqPxu0+UrZi1eWFI/O0dZRxqVd415M1mu9cbYex5UpPxMofJtz7NORd32xnRWeQsxSyJ9qOJtXSWJb97YucOixlxOiVTuw826s9fZB9Pv7bsyNBhP5ZuHM1IfsvpiYdVLhdQU4qhc5Nz2dEMDX+zAymvTYRUxVH5fMpNpHwVv383aH20bReV5I4wHFmz2w8SDT1bpeDygcuankhZ3nPwwel7NpfaJoVQ+kmftEDrih+k2Nq/vpwRR+b3Vh4T2Kvpj1lPOQaLP/Km8rp3J53yGPxZs91a5fxDpW+1KexumVgRg2gJ0bauG3Kj8oMADi/6rAdi3FWqL/pTfpXL7MsGygcYALOi8ukRToy2VX76zbXXyxkBserhYWFTemMpjjp0of3I1EAva+FqU4H+If3heSQhRnOMf1iyRotpxrYVoyro5O70OfouJ9/5t/+HBhrn3Co9mtRP9/MvfZTjO9XP//m3HqePC7Xh1Zc2Na8vB4WCqH3Cecue5N+GHwJirG6l+w3nMsuVzfhOsOLiM6mec9x4Qm/PzxRBnjDovOL987oM5MS/GMV6PqfOI8yfnSvcT8xjy+tFn6rzj3D5RY27el6+JE6bGCc7P17WkEXESgSVcpcYVzt/Jn5iLK4szciZEHP4db7GcFh8Rh4lO/SLUuMXbz27NP0rELYsmTzU1znEu8XnlXJzfvPN6LbEu/tr5emXx3Lpo9EjuI9bRX26W+dOIWEdqd8IYqesOt8NX+JVCrDubgoA66jrF+Ug+79w6vaam/Ji6rnEufD93bl2vK3jBTuSBv/a1ZMXn8gBHzLJdRN74/Xd+lQbm8sbjvJtJ1DyD26nTvRZG5JmvNRrt1LxE+Pnb5Fxe+vy8ZYyax3De3vFxLo/tdpW5R817ON/fIqxO5D2xn+XR1DyJ88bkb0lEnvwQZT1Izas4l+QZSSDyqpPbUR1qHsa55o/iuTz8KlDQk8jbf8f149Hlt0Tevsrx9CQ1z+PtW45J/iLyvEj9xXXUfQHnp3dZDxP7gmB0bj11H8H5kll+K2If6a6r7iL2nb/2jcV/zu072pkbWan7FN5+qZpnDLFPRSWevU/sa3/bHws48JHY137TZ9I9/rsP4u3PBci3Efug+fVpVeq+iXOFm4osxL6ZF/5MiNhn/9rh8r3FROyzq7cfEiL25b/8JUvaQ2Jfrl7wiYe6j+N2bhbsTiH2cc1HTmeo+z7ObR8KWBH7/srFi8KpdQLxd2VbokyJOmHRIJc+ta7AebrxphKirtD0+UVHq+Pe97p07u801jzqjqTWLTjfc1xZkahbnNcNG1DrHJxrSzT4EnWOcdqZZGpdhHO5VgFPoi4KVnr1mFpHEe99tlWLqKN4JVy6qXUXzocaY3YRdddilddd1DoN55av6j4Tddoeo4Zsoq7765/3MDFJ1HXS1xkW8DxF7RNr3okRdWDLbjtZat2I87KcYTaibpQMZftO1Jl/7TAMeV8g6kwWrz3rqHUp3n5FELs/UZcKny/hIurYv+2fXRrwIOrYnd39ltS6F28vsNmJi6h7UzMD+ql1MpEn5QoWEnWyiu7FcmpdTazfrzbriLpaJ+5YD7UOJ95bvjaUqMNL6oUCqHU7zo3zVLKIul1xo0suUef/Xdczj8QyiTrf/wjIUc8FePvSSGcN4lxQ3zK1nDhH/O3/iVH/uXPERHhSOPXcgbff5Xpz7tzxRY9ZkDin/G3/ejRq7pwCS+TeU881RN7gaJs715S1NVtTz0E4D3ZaGEicg0q/3GennpuIuLJJnzs37dnYx0U9Z+Gc8YLG3DnrRUOqLPVchnOjBRpz5zKtlkAl6jkO58lvK+bOcRMUrUrquQ/nmR/j5s59Q49c0TkR54rFTHPnRI1IRmnquRLnmwoF586Vvp/y586hf8fber/nCnEO7flYhc6teHsewZ1z59YA/rVl1HMuzpUyMtWJc65ZWjo6F+P8m/WWuXNxbnISOkcT+bOpvpI4R49GC7NTz904N+sN8STO3XcyfefO6X/7czlZa+6cfidIC53ribx6yHPuXC+xuhp9B8D5FrcaU+I7QNXWbPTdAOfiCb+liO8Gqr1F6DsDkQ9dpea+MzgIjqLvEsTfkerlzH2X0I4QnfuO8bc//XkNc98xVJ/Goe8eePvf35LmvntwOU0/aWxqBTb21WsFeCmg7szcu4AlHMu9TqnABNqA97aIv1NBDTw4n+Dkuycca7xwuOTCsTYI2Fmr+3gvBbbfzJrwkQ/HJAK1Vb+HtcFsTXmgfU4NXFK6U3fuQjgmmK39dF1wIxiu4PGtDaLA8HGZsPwHIViD+3DwbGsj2DqVjPivx/cRw44QaSwEu8gmn9Rr0gjwPPzqb2bcnyYigsIOIRjP6NdOfesiEONy1AtUcoGAtUr84Yn4frdC8/ueukJou3m2pW3GE36LOxrXnfXGjAPTvLbFFgLEpH7ncLsLXclcC04d98b8E3QO9Vo2wsUVbSrtx11BcUX2htl7IRhH7kzVRtdG8F/w58N1PW94oLlAmt8/BNvdpLXPk7cRevgydce2eoFF9ZaDdidCsJTeMwd36DeC79UVkS8E/EF30tbW+2YIFvz5mYQRVEPvm7PZ4/QUuPtuSbHVGz+sgHL0/Tr+ajhve459aXoNbOQMf7rzhR9mrh77qeFhNbjce/xVt64GVJersHmt88c4Qz83nXarhgjB9qGJwzVQ9fVDjOMfP2ysi88i0zYPfFak3b3+qBT0qosd6+55YRUNO2DrlXx4nN0ud5azDEbqDsTwpHlhC4YOzhwJyQP72Zqd3GllINLJlqPm6oVZ9T/UnBjpgosXRn5xF5iCf5nIcLdvGJacAKqCOfi6yznaFJVoDQy6eysdH4dhCaymJbx5XbA3+ffDXNNLsETNYuGS/jBs2eQp/o4vVfDDUdveStoeNpkvO/ezzQ8LjO80snWtAtlZHRPF1cbAP3TQcDzZD6P087T6HqoGCbXNxbekrwGjqRbj8Fs/bCDy48O0Y70wY981aP6wBGw7NS/fpQvCNqUs+F7A0QuaHKwqtsdKIVNnFZOKehDWtGKnsghnLxgdLLpWt68EWOMzjVNUgrC29SMloX2XIIfF9oFFKwU8n7/i/2QXiMkdtlnusewG/NRevI9xWS2Ur7dO/C0YiIGj4/W2Z3ogzqwxOCNQC9s5FXmUHAOxqg6vDvWzvaAzW+br6WcD0L7hIfN4INav2t3bx4Ovo4enq3JuX4fnMh5nFuwJwgYyuA0OXeiF6kU2Y0udLkOyX/FAwZtAbF9r/srvHbrgd+WNgPoZCuQfDAvrvR+ILR/zsu9JuwIyaiwr/D/XgCkL3zPPa4GYsNbLFRf1e2HKLnhz5RMnWGdocHnXUCA2KpNjlKbWC+dfpvC9lHCDxwJ7mS2+B2J5xT6vnEPLIWJdsYG/QhrsXfHn/mS+L7ZFt7R6/1gZbGt4c5VdIhV+7r53ptreF4vzdwuSSS4Hi1mTfO6uFIjRuPbFvsQXOy+8SF/JDt+n3ixcuiULA94/b5ZwfgjDmPfUpwUxtIL/52z1lUEYSPNWnN+bH4YxYSvDbfhb4ZHVrzV75TCgnLxkXN4Qhl0vLKSDuBqYVB5IzWisBM+8S8H3VAMwqWtjY0xMFFA2jVnzfroSSh6124lEBWCLL5RoWHTUwMUPz32OVlVBlWeE/h2zAKxp7XbTsENXYWpIWsnCPAPahlWvMl4JxJa6VW09p3YLCs9xStA7p4PD+WTHglWB2ObPDeaf79jCFd/I8abSTFj1wnHUfBM+j+KMVmwXuyF5cpeD+GNfeNppceo3Foq9+hZTRn+zG4RVQnVqmNxBZ4UZr2hQKEYpFnV8ENENQqt82rKW+MEXR8NHPiqhmJjmtmb32WbwZLKV+ZxGgRVxZ97Rbw3DsA511zy5FuCg1K/lxuNHXsP7p6ViGBZXcGowsLwZohkt9JzX1kK1c7Z372woJm4weUxeJBYsT52a/nwF99OpQzkaSfj595uPnb9BDEz6rbG4PFQDH588+lX3yBdrd7rh4DsZBVvv6NFLaOB15ey6P2xsfth2GWWzbzd9QSbwtrrs52wwseamcM76Y0LV1w+sZwoAv1Nj5aq1OXB19vOlnUn+WLHd6e089r7QZ66j08WQC5wjvQf8fvpjbB6cDaEtbaAit/1B+O37EPTeKsHvejh2cDll1SbWdhAzFJaKb/GGS588Xrbj+3hGmpM5XU4bTHGPjbcpe4PEzsOipgbh2FfVnR+rTeqhRry8LMk3DmJqpc/ZcQRjHcf8FKcW1kPXKL+ZoFQc5J5UnGxrDsIireCw+/56MDpjEno1PgZCEyyH7L8GYQ/Ky5MLH3TDWJeH+WBZFgzypPHrngjFin001i9P6oaEtLu3nQIyYN2Z/sPaMqGY9h2Rnd74vpzBAQzb32eC863sxMnXIdj05d/7+Gy74cRJtl+71TLh2b6RfTP+oRjn7fPqzeVNwKU1PKW7PRCSbSeHVXRCsVuCX1X1+ptg56hF5JbfvrCD33vDt+uh2NLXJXFhO5pBiO7TpnCDALB0Xe40HRuK9Z+94KH0KQ3sV4+IG34vgoJ4ebMZVm9MgHuw/Ni+dIgbbJMeni6EU17LmAUZvLG9LRacJf0ZsCl9gPl3ZRHMKqrv6K/zwjad+mrdvcUYlkEttj4lCAJSpNxlTPC8tH3dQJ5PBezqFIv1uVgFW0MLpmsX+GE7FEVSi5ZVghi/TrSzbyVE6OfvvcbnhyncKVtad7gSWD/+fGzYWQXPDp5vP7nPD4u+yH6uDN/3h1jfusz2YHB9ttaq7kcgJv1ClfkCVzecEzLc4SdjCt31OzveSIVhGzp2aN5g7YZrjIsLb5s5gPTKTdUMKmGY7c8DDmo5qRCumSnpKVMEwqs2O9086Y0ZZaw02XGsG+oz1qpglQYwY3DCPuJtKHYp4q4Ai2I3XKgsqnhfehMmsjXj/nwMxbaIuUoP+raDU7TXPhG2Ilj5unmhQUQ4pkx/Mn21fjs8CLLtyBsugv5nj9OSAsMxnekdLMx4HPYUdHyD2ULgDtVNb8bjsLPjleq2Lz3QNPGp/SVPAtSHtt5o9gzCLl/INbfY2QvXRpkLb61KhNW2kl8+iAVhWxICK/0/9sAaFuHjC1YmwS83BRXFUHy/KA5uuIXX58kJ711Uf2BQ5jZzHcPr8zXSQS0XXfH2fWfZvtenw+89XzgctYOxDXsFN7ww7IHT48yhE5vT4JqDrERWRDD2I+y3w7agHhioDD3y/HkqPHh2MSR9fzD2/YVulkhkHnTkCyiyG+YDv3nIKw43/Px+Mab9llw+nL6XXxPCUACKjoZnIM4Lizmh1XBBMw+ssaZIY6kC2DJ+UbrfAW//tX9TolwF5GgwxM1I5UF5MPsRhVE8ny82eZnHVgkuqt+/bmfPh18bwWrxLj9MJ3rSvmGqHLzOnwnj4M+H7u/aTUxdvpiHlemZqaB8qFOtieLZmg9ulzYnPMzzwrb5vwmJE62Eq3aMF+S+5sKZFW52mIQfNhFsmlyenwsSnFaBBt6VEJPJWCll4YU50L+xKcPHtfvJk2TzvkroTcmP5sXHxeaQzFTSnQvC23OFeoPwuGVjdl1u5YWNyZ9kd9bPAya2GSOtmgro4byrIuTkhTE20okKFPgBi+x4TMHpcqC/s26pUa8/tlegzSqQMxDkxp0DOD+WQ9PqjHQBJ38sWlH2Z/kjPzDuHHtneKACWE8FMY50+GMR5dqxYXcrQE0p9YKhSRIkeC+zGPnlizk1iujHm1VCl3KjHH1HEqxc+/MXk5Ifdtbl6y/OrxWQefKtmvyvZNg8wtNXtcUPe1OrxzRu0gMpD62nUo4kw7q81T5c/sHYp778Q7cO9kBGR/KD0RVJ0BR7KnT8fTBmmwBHThv1gP+Ll7tN4hIhWiz8dt6DYCwpzvDL8Ys9sMXBclXghgSw1AdVy7RgbFTufrQtvl9vUj3MI5tZBJUWCcs+4Pu1uzL3pJVdBTDEZs6seVcETgPbx5V++mK2VxxnXmSXw9X6Rsn7IcVw4Mrl6wLlvljdxBeJq1oVsN30SP3QYCHkdHvss5z0xVQ89ynwa9dDXbE65KZWwXJjbTsmRvw8Lic84CNbDz++u+iy+FaDtHDobY3PQdiyohwK75s6EOD805Q8XQUflyYv2loQhKWMVfJZ+TVCyaYIX0X3UhBSCv7oFhqCmd3cI7M3oREmv5z3lMgogR/fbtmdSAzB6sJ0XQreNkJe6EHH3+dKQXjht/WvekKwI9sp38fSveGze0pltVUF9G4XSDq4OQCTqc5mzvbwgfzrW/d9LCqHAWXt7PWrArCoroovWcXuEGvGt2dbZjn09cpdf3U+APtkfp1u1K8HuqcO9ezdkwhGvAnvhY4EY4yHqgdOeffA5AKWsMsRSWBgRB9jdBw/T41J8P3Bz03r6RftOPMsCVy4K0PW4eem53Eva91t4vB4Ky/wCMCg+oOSYNBZX2xptJu4dmQ8DD47rrTkEwagtvVGBJcvNhMfc8dyNBaWPWQ4HEJXA95GwWH6t3wxEF5Xn9MYB+bPLD159WpAUdywWkrJFyszztOfFOuG4eKoK9LaofAnyHJtKFsY5jV2Uu7JVvyc+KGuck9bIByMVYba3WHY3Zd+26pVu0HSuODE+J1AUFf0itr3IhSDb1Jdq0W6gVNOaAGTnR9waPb3uq4Jw2ScmK/tUimBz8+LEkIOFcAZdS2VIWcfbI+Hm1yhejGojXOuWmFSAA4PD8RvX+aD3TrNwrGwsBju7ZkQXZSWD05PhNwSpXywPnufyof4ue7A5yN3IttioNlL32VaJwCrqVjJb9pdA2cGOcyr/kRCWHPtvVSLAExyd6lcPx8FqmyiTXKkYkAklHN2MD8Aa5k8yqzVVgwCygZjVtsLYTZ5rwTfIR/syLXcNv6YLghXk2+IMMCgRStbfRFeT+o5Ryy4H98FU4u2qGQVVwPj2dYtDO/CsPBT45J03V0wyatz2ZsDg309+hPXssKwcT7xo4z4ed/0VlUa38JqSI17Ws2SFIaV6auOOMkmA+u59IdcC8Og70Sp1e8v3ljVuo/jfNuS4SbTwf2XdCNBMWO0aPCXNzbBUcu8uCQR/IbDzSM9HsCrFVrmmyx8sBXKPfVFLolQv8fsaNq6GDCZecD1/K4P1mBRbW2N59UJ7VtTbe6JICLf0z3F74et3laZIWmZCFe7cxrGbargdGrz5gJ3H2zxIuMTOzXwfWWTkueMRyW0KCbPysn6YNFrbN/lbE2GRW4Kq+4rVcFI3C6mBb+9sW9egoy8m4tgoFe7yzi/CDTsZCQeOnpj18JLF94rKYK1rgqtnIrFEPcyTMqS4o2Z2nwLDvlaCHwbihkNnYqBh5FzTaipN1b7bvVK4YkecJpRSh/syoXuYZZwkZAgTKDEf1FVUw9smIChEnw/WS6u/mjXM7y+SuZ4tL4Rz2PirDYOt3NhwKjygNzLIKzsc2v5znc94FtuUm7ZlAeSDpcOPI0NwlYUuv0cn20EjQ/hJ8tDSsCe8Xjj+qEQLKpcKgDj7oZ9AUuUbNbUwqvP4bVTYmGYVtjd8pbpLljqneUn1k2BSwvvS524FYYZVN89qITHf+velRJBgRS4xm3NmC8Uhp3Vdahl3NAOzqedD/14WAwVe+k0rJzDsSB2uHQ+tB3GIn8lK6QXQ7r0btngyHDsfq2k78898ZAinm8suOUqsE8niK4Q9cXS3p5oTYtNgHXR7jPXH1tDKt3E8fP9eByyCyxM2h4Pytjll1om9rDc7ueEsqQvptb8/VGwG36e+bFaIflTKri0BK8ZdvXHnv3hjIzF178gUw7bhe4UgEY5zvwef0ydpavLcRIDne1mlbUFabCofmxspNsf2/BAlfPFtVgIkd/KsHE/BmcnTthIhPpiw4ZZz92rosG8T1WZRxuDMIUAD8Vvvli1xu/1ckox+HpkOKYzWg3a33LaM575YivKPu3Z8TQG9HzpeB1iMAig/H41UeaLLRLlW+5baAwfjM8JNOH/3zGRj88ijQOx4be9y9WXFENxplUW99dycPxl7r3kjTe2mI/e0nFPEXDETDD60VeAfOBC4SEPb+yCI9tErWkRiJilydH/LINI8d+hQvHeWCBd34vAE71wsGT5u/VjVdCvvnvLxdlATEt+r90NkUbgD2o5/E64CixeflypeToEm3CT2Jx2shEuV7G5uOP1goHCBV6ZayHYvtzhzWJFjdAwqMW96Ekl7KqaTXXIDcGG98baeBwthuUCUrlykmVglqEdp7HIBzsf9f3NRu0iOCtd2lk7XgpfNX3Hv4d5Y6cW7Pf+aV4Iqwq/PJGPKAP73VevbJP1xlZrSfiLJTYCx552wXNYBViIcuz6ju87u2b4fdjLq+EAS+kx7opYCOrwGUhl8cd25m7bVXajGs4uVdFrL4kHFbujHc3f/bC2trqx0PwqCD1y7ssX4zjgvGJTcafID6uX5DFq6y6B1xGjCvrueWBYtZZBvNUHK2GRFv1/FZtpPBRqG4elTU46ckRlIlKSLBEnS7opElKJZGlVIQpFEUqFZBkzxgxG6RhL9qxjDDNuMxpOCQ2SUimhsoQSB/HO+/X5PR/u+8P/+V/Xh8ebz4LQreObC93LYR0jcP0dfgK2Hgz8avW9Ch7Q/LOa6WUwgvaY6Ci6z5C1prRwIVM4rp39PAv+Ot1jkF1Hxi/3djfrRzWCq++f/bvYhZA/O637npSMaQTtiH77RqiPDU8dX1wA5jTGl/JLyVgnFbEiLK8RGB/U60bu58N5MiP7Y24yOlLZ/BD9RrD4MhDxyyYPWJS8eR/nZBy0pOJONQE0BKqqqV8qg5vrpK1TRRxyIGQq7CdJAJRjO2MXl5TBWz+5+fgBGrYrvHZjGgug56aOMf1EORTm2FXsEPHJwNFei9YIATw4NvggJke0b28/be4dDV9v3Xx17gvC+p6uPMvMClDUucK/35yIw9axr/+4hbBveWLc3KkKYPoOmF65nYgb97dM+HUg+G14thBXUQ5P4nl7vnESUW5EtzQ4BsF7/8Zdj86Xg8PNbP079xPRc19lX5SI5+7Ihm0iv0MYkecv1/lKQlt3GOqIr4HnMHrAYQSBTPJ3YZSI8kucVNFuroH1BQNtpdEIyxZWm8zxSTjXMkkonmeDwPy2dbWo34cfGx4fjCCh8SfxV80cIbBmla6HbGJDmvmHhv5xKn7KfzMzVyyEqr1Cre491TB52MkueBUNtbSebC1/I4SiMKfivsPV8CKIyRiuoeLliGLDuxeYIOS+fcRPrYChhK8GbelEvLYjJyddxHNdDXGMlOZyeNCyUMfgENG87G8jPwof1G6pFlXOVELGah8399okTPo85hxiwAeecOfRUmRCYL+ch1FQEu6lTRw5sp4P6n+pvlrcVgm+npslaO5J6JLgYxAItfAqHAjUbA6Iaz/Rixbx/xlF+zpedyWUf8hRcVhfAVrcQxPbzhNxu9fzF5TgcOihOkkYTVYDKf+0nsQkBcXS8lbqdUfC2zcZ3itzqiHU6H6Lax4FLy9Em+53iQIKX/r78hQ2OLrIlvzMoKBE+3Tt35kIKgT5tsvdIh7++/rwPD0R2aZF7ioWTRDtma66I7Qa5Fwr1WVWpyA/mgJHzjXBlueaIdYBLDi3QsKQvDkF7SZtnWdu8UGrQd/rilIp+Iazf28oTsK/aoxzIrr5sH6yudDuUAkUz61Iffo9CV+sM3HDH3ygSRMkYveWgo10L3tBnIpzW9U8YjbGg1PNdPzh8lz4nfBxSNyIgm3Td2b964gQxDqcaleSDyemCMESGyloH8UiZA1Fg16HV2vrzzxo8ToecTuEgjb2q6oalchwvfvUQGBbLnjkeXUyB0R7Taz781kgC0ar3FwjC3gQY6l5N4iegPlUk7tM32pY1HuDq8rgwdPje/XbpUmY3TflFdLHgibdMlbpKj5sZthpV3UkYAvnR85suhAK9nUWOTHZkGFXrvRbk4Z1SlXNwSQhLFok9c1gqBpskjjZsjY0tFWQVSy+JoTtuW+mjrLYkCNlcX/wFg1tMmPFUK0JzK3+SihhMyH4p14543cyRoX4U50Um6BorOOJeVkVJMx333OfSsbCOFmmQ0sj9BoYd9HGmbDHIjOwtT4Zv5yMEFMRa4YkTVnagH0MZHs4h5xWoyNlsbl2xt5m+NSzVkE5jgS6i3odhszo+CfqxMa2PIcTZ7PnTPaSgdDBkrstQ0e3misjkPoSAmVudW7R54Bl3neek2MKfux49uNezEtIc174qbyFCxMGp9itV1JwzddtOzd5v4SOTsPM3fIcOD5sdbznSQr+a/haL7awAdqqdvmMEmpgB/N7p1qMyMftXNguFg3gprn32PwYG+o3RUrxTKlYMiahy7nbAKrneRtlHdjwof1AwEkfKq56anlhuvYl/Aq1JIlNc6AyRePpzB8p2PByheTwUDoUDstKZlVmQvpXj0+5MmRMUmxsvdT1CBYFGRiWtGfA6TbXR7qTJHw+dyfw88A/4DPtmMYfywT6bymCKouE7rft7/iXPADNyNh3/2kzQPPFjgPL3Mj4eENrjcC3CQwCfJ5u/80Exda3NGnNFJTgXjvUz+VB+HqD1fzCWkjfJ7Y/e2MSOh6W2dxygQeSQTYBVxU4YLFaOu1ALwVPPvxnsD+KBzXZUuMvpkQ9nvQfnzlFwYtpQkfjEA787LZPqtIoga4fs0o77cjYs+eqzOAYB6wGbeUGGorh1dAqaeVAMrZ8Him4G8GFk+nvPtgqlsD8wJ/ytBwy9vaWaiw6wwG/8vCJdyJfZI3evZVsQcZEC65asyoX8tYNtm36UQMsCz+iXxQZc88eaDpmxoVdPyzSzMZrwVu1WGIhgYxrF2e8j7RuBr2CwGipH6mg/nNCJXwfHY1ZWwYqOp/D7ImL3vsVU2F8/fMttDV0XCkY3HNKqxm28pijlvpUsNROG3xhSMcPZQTx/hXNoBFMUi9aeADVV2tPuGjQ0S+Lxcw80vb//905BxaYUMIY0Y8zpaOl9RJtslIblLbnU0ramHAxyuFIwAU6Ci6kHNyi3Qa1eYXjYhuYcG3uhu5SVzoSx8B/eHsrzKZd1todXg+ctw2fnuXQkevvmbO9shX+YxzlLsTUQ9AVFqGWSEfxpzKZyZ6tYP5w3EV/th5WafwWU0ino5WacCwwtQgehWgrjary4WKrdr1lUTyyucK9VXkFMOca4XSUwIcl2qdHMsfjMUMxYE5erwgCPFsF9/g8kE8o1zWujsduX2rgoYUnsFH5kMLxbSTws6K9lgiNx1RlcAvyKAL7MWZYdk0CHJKrWjJTFo9Lv1fPl5KK4Wqdd4HNv9Gg1FhD/ZwUj+f3xXb6FwmgwuqlFNmzHsQjO8vTZmjoUzmw5J2nAFwOHpTVbKwHsRchU0bPaJgx5xFsLer3pzJqV7Md6iGL4DX3OY+GUu8em/7d3gqqX1Gw1JwJjhYfrU7eo+OyKF8d4lmEtD7Nm9dnSWBjcvLwuUuJWKrhM6/yGOHm2UO5WlJxYPTqveTTh4moJy8VUynq9+ljJmc76GSoLftjmQI3ETl+rhN6kUKQmTAjPfzIgpU9w51iZ2no4bNuXvGwEEycj818G2fB8eu5YZNtNAyO9I645C6EpdQ1u9t/VcHY8pIohVwaLh9UODO1XQgfNzsrvDNhwaOwWp4tQfSO6fTax4VUgvOVeRmjIyJ/Tz672tqMiA20vsW/LzJB580P5ZhzCMFxPhTWP0Q03P2fmeQiJszTdZbxOAjR0i09TQFEHKHYajSOiHxVbjDB41sdxASdsJe9RMToXVaDfcPPYHp0xpcSXgeX+XfrCY9TMcxM1+Jl+jPYgve2hlog9KpSAsbDUrFw5/QNXiPCJ6qKzCa/eujaWUQYrEjECaXiuiYRf9h6Vq34IPJsvrGk8hpSIhquPSPvf0DEUdzHxRSfeqj5tedRg2si9mbdiPsmXwk6GmW7H4j4s0pfomF0AxFLzKxMF4vm3yGt/ub9YCks3+ogKRDNb63+XuH4Wib8cvvq8Wh5OfQpRdca3iSifqPETxMrAUTfPZU1wCWBS51T6NpyGhJq07cbhArAz8zKSFI3HkQyT/jWRUM94WK2GlcA3+FfsQYkQd8Jxi6nZcl4w9Ekc6VkJeR7cV0H4koB1Zy2mawj4qiW8ZnLC3kg7mXjndPFAxXOskOG5kTcP+/6q66gAOw8XcdsUnlgtjp2rZ0oF+7O+4q2ORTBp1VuiXR1DjDtlW/vqYxHgtedRtaSQpDW+G6amcqBO8rsKLm+eBzON5InFRfANfE3pjP8WqAa5VO7xkS5WFqyxGVICLpG2xgT+giMU6EHZx5ScY+w6KjtuBA2FUSGSxnVwfm6K0W3KFTc3t9IOryxHQLvm7+wy6oD61/cxz37qNitOTO9pYcLZeevJjQuyYO3Ee8TzBpEfC4I2BAkOv8fKG4xWHicHJh3PJb/98ejKCIUqQghpERDKOWIlJLdspIoK7tE9ohwc2/u29577/12k03cqJBVHwqVraL43d/fv+fxflzXud7nnNd5vq7Xz37OGIxmgOTNq6KmLTikTPJdIJAbwbrp2tHgikxgHusf596FRxOhftaNxEC4oTX/wxZLBRGHmBKWTgIKs/5u/Op9ADhvKHV330uEoNu/d/gNEpA9djdpbN4DakaXH74tiIfV5GUtMTEi6r74tGD9cz2M+1PCbvFkgYuqdKCPEw4d9hOp5K7AQ9xJf7dcZyxoxIWahhfjUWb9U6XwMiJ8vu4p5lSNB63Art+4Z3h09Nb0bFoVDljXt2+z3yTCYfpw0QAdj+J14lbVTpJASlx26rVJFEwdnspNNsUj+0bqaoIJHUq2n+E6PZpgc8I4xa2CjPTFnLQqlekwtiNks1+uCRYsJXY7bJAR9syT4uf2dHA6rFTRsIWgul1Q5xSJjGqfNqNb8nS44j+LU8A3AbGC2dCMPRpVOqfXbt4dgJuH5Zd6bDJgxnTQxX6FiF4E7rquJzIAJ6/8Gm64kAlar34Fj6qT0PE6bwl8vxf4jK9RPvLSoGj78ImX3ETEL8UsYhLvB/2bTQmi6TRgnXCQEl8hoC0R1SoBQTfACImw7vaggbaQyqzQdSL6rCn13DOsFjJk3bybJRD8VDO6SCnEIsnP8mwGE1awMOzTpjpUCzlvVnHvXxGR8589yKjnBYS+lA8We1ILnDldZ0ouENGXcf2K2YTn4HPK8JBwUB0UHGrLXb1MRL8XLSureQeggB9j/uJsCHy79/V9yD0ScgjbEuLbOQCf+HIl84y94FQf4cOoGwl1Nm8RohQGIFLHZDxqwQ9GSc/2T4mQEIHb4daVirdQU3Fo7ix/M6iAa37dTTJy2YyV7jzVCpO1Kxcf7m6G795ODwmJZLRlXN/YrT0An+28VJPo1TB0Ixj7dYuIUnf9sbtHsYe6lRDOOs8c2JtWd/mwDRHpWXrfcMpqA1rF2xuquBooS+5ROJkVjeacyjRaktvgUF6P0N2UWtif2cOfmhqNqiweiCWrtcGRs+f17c/XAq8c7rLc42iEUTm7cGJPO5QuehuKsNZCeqH+7oRv0cgzr76s6UEThN/Z73rtnD34JuTqqx0loMb81CH5Lwj8aqqjD/E6QfTLuiT7djy6+6h3RzqmEt4euyMRMZAGtouKS47Ho1C/8swf8UeVYHLj385FnwzQZnbN3ccdhXLVcKEs0RVg+Xfx0pfPaXC1p2KpqjQSaaWFCCTm9YDsHf3wp1/qYHrGyiwuiYo+DZ5rz3HtAb90bnGTiVoQfJdt8iqailov2ItUDveAtOCgg1VtLfzaeHvWJYOKSmPCq/cL9sCYdtgjJ5862OUp4OkeTEULL+1SJov7Qb3JcyMiKB2iww+bsojFIPpZK9EgfD9khyTaXB5LBce+a5NfLGIQc+ZsQFZ3P0TquhY+JqaCkOf22L75aKTz1ttvV2g/6A3rnx7cSIctGsrvdI9B5+o2jPt44iGyh/KjsfUlhLUXhRnr4JB6etpvklk85Fo8MbyV/gSQGJuG7TUcEgy4kRvKkQQ8s6ST5mn28LrjXOmBH1g0YcZVcauPBvauT4QLHOqhRq/xibkMEW0tdJg0bPdBDJeo09mfeOjtDlDZZ0tB3j7TCx/Y+qFv4ofpFnMk5NWyGCoaUdDb0SNY5iY63A/ENpjY5cGG7v2Y9nkSOtIetE6ppgPpnaily1AO2BzmEF38Q0Jm2fetB3/QQVVUkJs/IQciSL6dMRQSGn/z6jTuBx6Mnfn/+8bbBBSur1byOXg0uqV93vIlCbZMC/eSzjfB+aoFzasGeBTqfludo4IAf0K1tIxwTXBmc/YfOQqPBBu93fCnyfCF7UN7WlYTaF8YHK+4iEdXmjB94g/o4MJ6VICJQoD1/2z2v6sno11mL/95yNFhx5URofuxeJDqy5Wu541GyvH7Pido0UH4ydTGlE0UpNhdaLL5SEZcUsHyfMfpgLuR82VsBQMGuMJsLRlGP8+5PvdppIP/TWN2d55s4DA8MZfzk4QcaXf2K/9Ihe96Sisvlhhz9MG5hLAPi649knC+I5kGgfpPzRv7qsHtb0uj2E4sutTvSPQ2YPSNfreVkl0N/KpwCr9OjkIjzGH4gJ1JwJ3kJP+mEgsS9ilq2gtYJCBS4RaCiQdWtouNvWLh0BJ3WcxYBYfCPu5Uc7dMgov3i1JZn4fCeQ5Wt9cfsOiKNkX8ZlEKrC8VE85BDXh8sQ1W1cWinNSSoqiQfsidTRrf59wEg8NPKopfxiBVb4U3koX90O3hx9s81AQn4spG06Ri0PXJpCPOr/pBmRREKtxBAyE+kdce2BgkJJQ02DNSDRet7XtkDzfDBnOLA48sFnk0cm9+ruiHIYoQU2cTQ29NE1zTDjGeQ8tIOljSD87JfXRbmWbIeI2rJonGoHf7y+YdXvfD+Z5bfg58zWB+knLzu2cMIk7GZY9pdYPE97j0H5004PQTu/7wGhWdD3j1t+9TFyg4fTt/UqoZmGV83iUeoiIeO0LInvddkO1zi9M7iQaPjygz1/BRkfi+4iPndbuhUdx+7OupZhBtHx+P1aCi9tf17fLjJcCycNXtCnMR2L996aGIx6C500TlEnIpzDo28IaoFoB9vvPpvyUYJH5oQab7eyl8yZgPfyhTBDVML5KgFYMmtqmLR/RaoO1NQq5PaxpYuY19NbpOQjcqDFRlslugp9psv/hsKkB1H1tpCAmlJs6uH33TAvQGVjVfuQzwQi+4tJxIKGQgtKdEpQU6M5vY0q+mghUaC0i4SEKPH9JDCCJ9cE375VGdrkrovx0eVW9FRWMEY/mTn99Bkaz/e/nsKjj/RV3CNpCKbtZzt1H738FiSvwx+kwlZGQK2LaHUBHNcE9mqukAzK4Fidu3l8CjB4+mrs0RkVzjPiMpowFo+l6zUL9cClvJq5NsC0SUvJ4dHnd2ABoP0WQeMJeC3tiRyYdSJPS+nd26NKETfMJXzS10i+Fnk5LplDcF/T6QZxbj0gmhgXp3kghFsJA0NfPBioJOHzBjfv6zE/58N7hrFVIESgZuT+YzKeiIcuBD3lt1EJpBGGpyaoQ7B9VUZ+axSAS3vMhDroMIs92YMh0EmFiybO9OHBpJmEib3V8KIakWN0f5yZBMmh+KpGKQPpP1+Je+UpDWF/kZkUKEXj3roYJGDNrzqvbK2EwpmHv25zA9joFfhFTCYAsG1W6ce1SmUQrH/Bu09DdwsLzYq4xJxSChx6/77gf1wNBUmdsCDYELiH40olLRb/Z3csdEeuBjoaw7+yYC+a3I5WevqShMX6PXT7IHAr2OLld5IEi1Kwk9HkpFCe5pMXKkHnh7P1bP6W4TROs5DByMp6IYS9EKR/dKqLoj1JNzqBJU1OTWqo5EIT72gLidpyvhTBwuqo2pCu64aLxa+hWJ3F57nOlyb4brl6+dJjH600TiU+TRLCJin2Z5n9zQDC93x4/AvkJ4yOKVyfWJiMTNvr+duFIJ9s7F+jqqFRDwZUriw3YkChXU2Jkd0wx4qJXI4q4EOBqSpYCIyKXdUfOZXjP09fCqM7+phOpgHsfNcCJSrV6M3eVJhydfGmZKeZqB7ayV4fZLMvIcusF7ya4Lnn/d+1OF1AhOMnk+uGkKKjBU26N0sg/K/12x9KVVgXGL+JG/plQUqUBxVQhk6KRX4FCZjQOsl/wo43lCRqerlnlfqJbA+pc4m7+zRVDxs93A3geDsnc1kgOmS+CDPWnobG0xnCiSeGZAwKCLNT/CDSuKoWkwQ1OvrhiSJe9Kmrli0NOWudqax3RoCnZOxzE4J/9X4nGPTDLq7H221/MiHbR/zDItVlfDk7yux8rbZNT25p9UqBYWcnscDj3Y1wxtaZce/mQioGcVMetTOzuB4/k7+l9pBLYBeyXUJSnomlm2CuvLTtjXzFtSHt8IgbyoftCagqZ/fYmiX6qFG19F9KNMGmFaxD75eTQWvShbYH6qUANZSjsdToo0gmyS56F2TSzi2G44+Wy7BpoDKZ+8MxqgTnCY7VgwFuU5SF2tmMAC02NeXVbCM/go75q7YwGPtDhY6qdUSuFKhPihrpEiuKCm56SfgkGxsvtC6hmcTAt89lPyXAF0NCa00xic/L3i7889k3RgL4oo0GkrB/uCfzzKJSRENCjY9G+ng+Dz+DredxUQ+eV2YvwYCVVrHulYyKVDNT8XOPBWgKdIzgcHXgafu/VTpi9nwaWwtPHFaBrY2pyyYS+IREyX3c/ofswCvhyHw9/YaFBBtTPUfR2J8voipD2UcoA4PUAte0QDWTNF390XItHq3CcvQQwd9tZTz9TxVEIp0+TSf3pktH6+xrQlNwcmLs6N/h1vgnv5vrMSwpHorBj3KxehBlAfxZ3NWyqHMdEhQb0gHHrhZFpHKGmA0Y+uTWms5bCsirkpWYFDDW9mvSq4GyHu3uzTU2vlcPW05D3J9zjUSn//c22uG7y+tad+CI6HymMRaPAlFUn+lWnYpd4DVwiYdmexJKgc+/vMPJKKdKQX1t92dsMVgc9VCdeToJe9mjvRkYrKRs7cjbZvBOz3Ds29K2UQK8mD4tdwKPBguErA8SzgDv6g7l1FBBXmSDFCGSP/hN4DZ2SywXe9sbsFEw17NgcDC5wj0fuaPvp7ahk02RpPVidQgXfNczxnDYPS8glVFafKwT+hNCEiJwaa2Z8wOCMSEVWNd5w2K4d+DloeVikOQrNuDBMZ9/lHhmOGlZgHc5/MTZmG8yDxoTBhVy9jH03ulb9kmQ+qr+gn9YRzYT/30pRRKQa5J0uVqngUwK5hLwyePx9smX0/LJAxiMkgdK9KYB/wcgiWfV5EYOqz36qdk4qcPy+ApkUfPHsedOcqGYG0mESUoiwVzY4aLu3yywbN0u+kthPlICGysmBqFokaBOqOqlZ1Q8t4TmrQRQQ+sgWvmW2pSOCUdqbPo24Y0DzZZOmJ4LcCS/C8FhX9Uk85zvmwG9ZR048DLIz5Mk6rZWPEe95uipgI50HdgVrs96AasJSXMt0xgUHl3Uo7c/nyIa5aq2OLXA3xBnusJuowiPORSbkPTwG4kYsuqxvUwOU7ynKZSRj06fzHmssyBaB54b8Vy7YSYJYesluOxyA3fq83vDl50BioevS8WAmY8ahd+9OJQVq+S+pi7QVwwz4xpo2hJwUCOTXXsRj0s2FLcJdTJdA20uNKztbCT5k9ESf4o5DDXHTYtHIViPYkMek51IJ5tA/fhlcUOvtMTrW2rBKYjZ77xC7VQsD+25cDFKMQ/99SiXGVPFjT0Vjy4i2FjXNyRUIjjPeSpOxS5QpBX/1OQJh9LvxXfGjILhSDlDM5usnUYlhZtZqOxBfCX1Nrje/OGGTOVvjkUHMX+OxbvHBKxB9Oh+o2hDDqpdosKBlo0AUmuXryPTUuYJiO/ag+QkGRGDfM06ku8GUx0NDf5QDMe6YT8EeoaOQZ91+ZC71wm0ulM3wzDQx1NG9aFlCRCSdz+cfqXpj5GZcVGpUGP5+/j+4tpKKLVtId7HG9MG++fOniwQyIDvgcHFFERUufn+1tFnsHCqLphul3M+CEeeXEZCYV1Ur6s4atFcCnIbr4jH81DLoJv6qNwKDRXk/pil+d0D+DdbxsFQe1cYXTuXkU9Hx9Zp3XuxN0vDX9LbTjwYQLZx5rR0EmxyMP9IV1Ajvl95HflRT44PKwXMCVgpgKDdy3R5shXP/2+IXgbNCZVVkgLxHRhShxE67LLbDN9eJZ61omXBQYPlukSELHgo5uKau1QMDPjiwyaw5g2PTT5S+TkAjX3xtPJTqhpNGgJPhYIxzOUxw6comChIgZoTvON4P68Qms5e0amOGq47Z5QUS/dJaSF+k0+I9zoUOQrxY0QlGXjiwRWbtQmZq7adDLlZlbxlEDRssvjTqliSjUDcvjJdQJPMpswmX3qeD/UEyTeIGCZlaXW7vGG+DzSzbVkJ85sO7FFSX5FodM+n4k/3BqgDx53yi++TwYPlD08G8iDp0rJ32Pnq4H/VvWqCkkF7xm18DMGYeGx9yWaxTewvsAL9jcLgau5zacjxcYfLjIWVNR+hZ4ZR7FzviVQOLBPNb5G2RUWNDVSX36FtxP2qdKHS+F3ym+nuz7yShxf2eiv1YXRNcUDBv60GCHLeH+f+8pyNyN5PBevwuurO1WecHg/LIazc6lYQriZzvipn6rGY5ypUrTXBvASuuagXsIETlwP/2GW6aB/v7qAh2zBlisu/TOXYOIvmZ5a7KINYP+3bIuycx62J7/R1u3ISIVczXPy8LNoJHiNvPLrhGMuj/4nHlKREe7/guvbWmGwdP4nFeKydC7uyYvdJKIfGOu7HI42gI06cQE88fJcNc4RjT0GAn9x3ahbON7MwyfOm5d1J8CLjj9S2xbRFQ23BhMW2yG9PxEKxFsAnz8LO3fu4OEhnJ+BfTUvYWrXUo5h0KLYdjWotlVh8EzEqOTXz80QQM3P/0kdznMNt+wefCSgEK3h9PFTZpgSzHh7cOoMpBKpKZsCBEQx5+oH/OZjLhlWxR1rhTEjYZH4+8Q0BfXcKwUtgys/WbV1FvyoONk07rbMgaJ8n1PFQ8rA2LSk0uYyRwIjVu/kbPI4MyfgzusHpbDMXmcQfr5XPg5lcjJohCJNr9NmnIZNIGJUWDT8dByYB9h2XY5REDbNud5TjL86dA41jQlpRzqbu9NMh8mIxxm4b+rr+gQ+fHgfvUTFaDzdGunwwsy6sr11lcypIP+t7LXkhMVcNEfyV9uJyNe3W6L1Uv9sF//h3e2Uiq09B9IuMNKQTdX33AuPeoH5sDDLJfC00C0XIX1clMMMs4w96qX64fqS8Nikt3pwPK6x2vkMAV9rrBf23ONDneMfW4KMziqS+/vQuw3Miry3LxXsiMCzL613GNOoEGIH0a+5xYB1R88kvm1Dws+8iGthYU0OFwuzzS3iEfJvxz9Mzy6YFGrapLtQhHo23/qufOdghxaRzo8BrrgZ0wG69DHInBJ6lhP4qWigM/+tGKnLpA1j/765HgxRMQkKot/o6CUbdrLLxN4mJyxtpmYpYFioFrMrjw8eh4lH3tRbACsHyZxV2kVw+ykjtoVICEpDY+FWsUBqDupcOgnZwkMhh2PPSpMQl9MDEpP7B+AMwYr0tWaJbAlJLm/2piEbrqoPNvIpAPzLend5SresP+Da+dZQTJSv4gNXvL833+DfbK72V/BUfXWLT53MhK7+0b5V2wnnNlmOccdUAj5aat9T70oCMcktDDD3AXV4azt4b8LwP3UxYBHJRQ0eaU1iMmIDseq35/53ewKIuYL65u1ZMSzpy8rf7YJjJ5dBk4sFmKnuvuUgwlI+b56338XaaB5br/auTtEeKRw6/Z1RED2y0wn3nxsAv5Piyy3+EigciBXt5fRz0VtGinnHtCglf/riS/eWOA5zYkzfU9Avqea7ulLvIVO88/3tp43QadnnGzzZxKKcTsmJzDUAhtXsdEP/iHwpG6VVGUyfJ9iwYcX/9OfN0cS704jCHAYLDzD0J+gFuccJ1ki/H59zFzmpQP892SYy9IXjyyU10y7K1ogib2WqvayCYadhBxTcCTUXL+TjS5Dhziry2ct2ArA7rlF2vMj0SjS+aA91owOWamKflyO+dDxx9bcqISMIgNkhMtu0WFezNDJ3LIQrluvKpqNkFHLo4IWpZh6SMzM8vhqWQsq8QLW6B4OIWZs6nB7PazXXTxkjK2B25c6Nwee4hB7c6TleWIDeH5wGnI8WQsT4ytdU7k4dGBTq8T3hA08cZXeJb/ZANkrDrdpLkTUUH/s2fn0x7Bvf+7GsV0NkHhRXuA/fyIS+R23w6TUDf7pudWfPtEA/VUSBIwaEdl7mS4V3hmAvjLcC8KJJGgrcqYqrRHRmN25wErzAWAp4z9L5U8B0oim1uEZIkp6FZSjKD8AZI1K1fSeZPA4D7I24iR01jxgprDjLYiVcGXUCmQAzysKV/l9MtJ9Rdo6FPAWVHnfaIoOZ4Lsyyd1p46TUc/xctNOl7egLjG4Q353BkwJuSUIHyEjd2WRFEHBdlDIW5a73JsOJUk9/76uRSPxP2xWWON2MNTNUxLfzoDbKYKDA8IxqGEP/SDzRhsYGl6qmXycCQ4mxANSE9HI5MDfft2YVMjERGal7K0Dsu7t8BRhLJoeF/3IrJ4OvoRa4mXbWtjJYf28OzYKLX6//cPHLB3M2g/0MQXXwVpCp81DfBRSeXQgzqC8CE4X6e/Y7YdAjjPyDq8TBvmIWIiFnS4C43MaIizCCChHzb+1uGPQ2Nx/IWcki2GX0awZZj8CHNeSerkDBnnvKNG48qkI6GsqURNajZDGtF7E74hBtk5da2eGiuHW/inuUwGNYBJQGKXxHIPor1a4dDWaQPbqxGlR5jpYXY+YvclFQMXH7H5fDmuCF9fkKx1Fa6H+q8ApWSCgWOVtqnx8E1xItPa34qgD9E/DZPI2Af2Nwr8ULqdD5dCpGiwnDcQuHj2JYyajfP8jD3IX6cCEFqf+vm0C0RTBNQqRhBZS0ulLY3T4ojEcRtKnwU2VTFWWChLq2Du1e53SB5lr3d7veCvBMiRdxWCVghYyOta3kvtA1+qxity5CvAKW0n5OEdBzaQk6dLBPnhTdl6p82kFOJ9SUtTPpqA6k8t9tvzB0Dvs8nhVjwZFnsPD5mUERCXdSLuUEwi1ie77JKqbwKJ7dnWwnYBm9nmOyg+8AXqx6lwrOw3CejIy854R0FOByYP5Cu3w8rt7l1RXFgSH3tgruycG/T7qna0+QYd3n2raq80DoTxUSiKxlIRG2V9oF8zRobH6TXrBjwiIa2isl04koUI+cb0n1XRYgEZj3EAIvDj74L7BBgk1iu/uMDEbADW/ZgcsqRg4cHyrmrNEtLFDcYHbJAz45oVMVzNC4Gh856CDFQFl/hwZI84FwO/Y6ckzIhEwQ6azPxkgoAsX2vPeqgYD/3cD/cy7gSB1Xa1ho5iA5mkffPkv90PkPVPbdrt6iNfy2HFnFwWxE178WTXpB7aJKS21kw1AEma+H9kZg4IU/nbEKfTD0TXRHfEXGyBS6zzrEicFRRyvG8WX9YEQ7kuanW453IwU3bM5wIiTlbJL9FIgp2mfe/2NVOBh0VKbtsSiP8MR3IH3kuGmA2+BaUcyZFnrqafGY9HcZbkv6HsKWBUK7WVbSwbLVlq+thoWDeo2Kr8P6IOjp1cG+BdLYXPviILSPio6PbKQOJ3XByYTmJLHLqVgov/rD3mMgi7RxbEBuX3ApHFpjdmsDGYPPb1ye4KRT+eM0Ae7WpBckNv4olkDUu7q0icysOgbTsPmXXgtaDW3U8IjquGxwFQAcxEWafVpCMhr1UFVgRHP7101kKPV+0n1Oxad0ZaqHB3tA8xF36DrT8vA9VP6f9cTKUhMAachQewFt3RepZ6Saih7ypSUyuD/F1vfdOpXeyFHNXVad6MKig2kPjvmUdGR9WNsidu98Khe2FCSvQaiez+LhOZS0dZGi2+4The80d5euc+Dg3O81R+NP1KQ62SFr1xaF2A3G/qtFoiQXqPxfWCbgoaQeUH8i3cgHSzmSLesBr0JHkpGLBXVfyy7I/+1jbGXUw963MmDQYeuEgw9GhVo2/JknmgDYsBnasjJRvgaobl5RS8a/Wg2bP+vshW0A3770iMa4IOBpPsyUzS6bDI4z9LYCjYF58vaghthL3kvzwprNDofz7O7tJuhIxeHvgzhEkE9rc2u6SAeSfkceyl4H8Hh6Nqye6zJICjUabPvCR5FT5lc3NBFYC+6z3ZMKgH+xdSzcT7CIxbUeuB6ax/YCz/IYKUUwVGd1ci1OgraJSilqsKY68w/1w/OlxbCh+YXr+rnKUji2+6oqIE+ELjIs2N6rAAkOejpMzkUJLWzRm+S0SczPZZ2QxFFIO6o/fA0o09SNlfyztA6oOaA9ED6KBZY1gX9m3ZQEDEsen/DSgccpr0/LPyJAOsnjVf+O0pBmBlhh8PYDniG4cif2EGENs3UjabPMYjpzXIoh2sbKJ3ou8y8WQS+6fSBlsBoxOX8g+T1pxUCmAnP/a8Ww7tt1hvvZKNRZ3Jvd8HONvgqcWHM3qAIKgqudXy9EI28t/nH9J8x9OqUzKbmmQqIucgc/Uqcir7ecG32DuwDfSp5pTq8HByNj/UEMXzrubGk8NvpnaC/Juyk6NUAF07TPR38KWitJ/Fq7ngnnGgqW+wzqgeMMV4cMfpwz3N7q2bRLmhzOtvo+7oBpmg4FxsaBenycxj/+YCHK5k3e6ztafDjc5cPdz4eoYKBn/l9UcCjUMayQ4UG/zZvLlTtIyCt9itvrK9HwtZpGcHBnDwYH3yAJUsSEJZJfYTFIAx4pDzE2qtyobLxRsoGQ3/wNqFw6WMVsI1r3/0snQzi+6rOZvdGoUvRnidMpKtA8lr33zC5VCAkBR/3dI1CW7fSJrG9leDuVZYcLJEM0vOyKVevRaFDajmffBlch+7U6upW+0OUHD1vsYaM6nrfYD3f0EHVlpS2HRUECvfLuK8/ICP531qazScYfl/pwfjC5Spg72Q2//KWgtafuuboOHaBlt3PmZyQSljYflrv/ZWC7lKP57ERuoA0dEtp8SUjL9z+Nc7fFJTgOyn+frMTjtpjXKJIlfDxwZVPbQUUpFjdn8OSlQzsGTZ/zLTrYEjBU4MjHItEaUj9TU0KNJ5aHhJer4ND4iZaHNpYRNe+2z+CKwanIeErp/poIPqX/jzYGYPSE8v1Lb4Uw0mOqG+jMs1gQNdkv/oCgzzUhNTDmYvhn0n50EOhZjhm18iXwdjXZW9efV9msoRcx8dML9YrYDRG2mjWj4hwt8pE0qTa4UvD/ts97TkQ072L5eJWNJK/uvGSfxUHf+MWfQ0WmqCmcy6Us4vBkzd/1j50iIS0EG1jxYEmaJQKjBU7TkAfTm729n7oh6Ajr3RgbyMYPFM56zYQjRwee+XJ/uiHD1r3OTFyDWBb9uR5X3o0On5X6dkLNjr4ZhyutjvYCKnMuQeWrKPRsd+eTDkmdMg7ma8Yp0WDgEfPbppWkNH2T6zFkiMd6FpBCazjTbAW86PwK4aMXPlKhklBdCi45vPttDINDnpJXFZ/TEaEz623DEh0OH1GUMOKkeewM6f3bVUySt2ld7fBmg5+WjwtMWFvILfo8ORyHBkt2ogwY4h0WJL4fdNTKxxUP3hZfrpKRu3+Z/m4d8aC06f0u95sSfBDgONcBBGH4rRvW2znUUA0fCHqc0MyvKwc0Jej4RDl+cSt6G/RcO5xnZ72TCL0FZyQ4drGoYsK2rMPy/HwqkDwuXJFIBjXOZenFOOR5a/uD7N+OOhpyeYnJ4ZBafiazqERho5h261SLmBhbYj9JU99EPzRraXV7iKgF0/KQsl3IiGeTy4hVzMcejmHA0okCKigL+ItLY8OBD0aNlCxHgJ++SjS95OR0l0nBy4G/zT4dJhJP62H2eKVe0mVJGQq7ffgUgsdpHQCdsrZNMBG5kn2/GkSej3Ve4vtLx3KW/yJhbIN0Lswt3fCj4S+1S8vKFmHA0kluJ+vMBW05yl0cYbvhvThBCezYICAiV99eqlw1ELvllERAZ3uuCCV9DIUPu++ezz5djJ4ep25qR9AQOtbF9K2ZYtg10c9a9LDOvB/WnM/g8GZlddnsUYdRbD5OPwpa1Mt+N+sX/Rj8GTFM5f20ybF8IsnazLKog62ax8FJDDibNoHx4bohfBF9aeqWmgtnNI0effAB4N6x1ct5UK6QE6IR7gqPAwqHu+tj1+moKBvpwTdY8ogc/QV/VVwMoSIYMxWVjHobp6aRUpcGTwUntR89zwVXpN3LMuvYxCPpdOiXnspzBTvp8X8S4bkbtlDNfUYVP69/E1JfQdw22ikdzgmQ1z4pXK+rRj0vC+23CGvA+SPpJGepKeC7J/Evx0rMah+7aw307UOOHTF5hXDAsLGWuO5j2UxiHIovu6wSgdsdCu3yMqkQeh0hqJccQxy/cA/OtLWDezfHU9Z6jXAmEGgJ3Kgoq6iZJ6azm74tms/r5pOPYgI6IbGOjL8eKikzrGzPcBKdcri4mwA7erk/PAwKnrSP3YgWaoYuGQtZIkvmkDnhLlOFUMH0j93nGi5XwLTodoS2+eaoDl6P+9nPwzS4DRJ3bFQDH3/vK5zvG8C7hjO14KMugS9f+U+kxsLSt/XOF+/qAMN/3unz/vgUMpjb7sjovFgc3bfHjF8Lfw+S0i6chuH9DWvTDwQSIB5Tdv2TMb5N/e2jknI4NDQYnj0rsf9MM+dGOvhgYCD5/obhcYYpJRb4HXyYT9IsKiW2Sw3Qko+sfBZawyaJ1jZcrzph9tCGs5M6gj6b+Yroecx6OafpGQH+WJQE7ujPvsdwQPOrdBRxnfBJfqnZR9/uBuvH5qDksEudNJB+CsBtTz8eeCoVh/cqttxQFKuHEZ6uZeeqlGRLPZueY5fHxCVb+2eelsGN/PHfSK4qSjMY+zHqGQyjObhZc66xUDQi2rt9iwswnhy7EnTSIacXg8BgxdxEK9Rb4hPxqLnX4MISguJIP/AZnJFmArGiVKNKstYhDsWSDQY6QDbo5zT41/I8Fu0mGsXFwWJnHtrUx1cA6efHk6QP9wAhGDDdZo5FglLerCcaq+Bm9yP2kzO1sNj6VrrYDcsYpq41yxsVQuPSDuddb/Wg9JcAefhNCwyGvjJuVudDmoWbSX7lHPATUk7sXmOjIYKG4N+GtKhSqj3VQUxF7r2VMfVtZIREUw3y6ToMPKzA5ye5ELf9JD+q+PR6ExD6x6uz33AXVGsfHM0E9pdLQOekSno5ExHtOdGH7jHqHhQ2TOAX+FayQkXCpJMadQT4OkHy2LuXAOPTOgpkmunalOQb1fIVevGPoYvO1Zz1ykDFh+N8bG1UhDW5mumX30tiPOr60X+qYOp38VlNo1Y1LnWtXFlpgRYHVR5toWbgejhI+NEwCCzWp0A4pdSYJX5cpCHEQ824cBztGCQ9kWWiiqTZjjkKuCIlW8GiiHyVSMSkV6W+hB3TjOwtlZ72q7T4FPkFZHNboavZz5283ppM/jzjij+F2sJyyPGfnUDRMQa+ll6waoZfA/4ZRWddQEvrfGJXbFEpJQdXWwfkQ0isu/4JpQr4cupa6LhxpHogFHtrMLRLOg4+vRj0lgF8AmpzbyriER2hTay/vmZ0KLREDj3tRxWJVOlm4ciUUuGSsYbnV5Y/lN9R2xXM3TUMUdFF1JRwxPiQqBNL3xUIqSdx9NAsJHtmxmD53dfbbtxG/XCHoEzD4xoNNAMaRqNYpzPjOfzueaeAyB7Krt2pBLOkRUkPU5EIo6rPPobJ7LhpKt/px9HFZhURIS5uEQi9r/MXNGjKfCt+FyB6wUEvzoIcesaWHRv2W2uUyoF9C5c+COR2wiIT8hh/RnDB7VNLvIco4GD14vsloQ3cNu4T+lVPgGN/Pd5OD69CVRCTd/PsoTCrpmrj1YMCOiYAp7r588W2Cd+v/zAzyZ4ExLYGlRDQruMeiQsbN+CvnqgRfJuGiwuXErk4CWj3qw8YWvzchDwm2i+dLEQrvWZJVgoRKLQ6BeTPsoVMNKS/JQwXwDi0q0RwphIhCR9hb9XlUPA0u6iSpUiOC3O8fzp/UiUSGBWl7mOBVb9+oZZuyaQN66djmcmII1TfthvHjhw1tX4aJmWDHOT1+lMo3jE+6tCv70ECw/jlm/bqqaCbnbhxe5VPHLbfcGJZRkDEnMbinlLydDm8dZt6RQB/dEW/xweSAcilunFjiksfHlnWW9pRUY7VS4KmLl1QVG4y8Mc1wIwt3jiMzZLQUxjWY6PnOig4kJ26rncAF96lpS3IsgIDuBdB73oIHBMaULTsR5CZJJazriSUXSgYq9jDB1W/o4tneBvgBXL7uh9l8hoX6e+hkswHaxXjG/GOzbBRtPSY/9HZDQgsOIS0VEJwvhm05SMfPiY62PcejUKeY5cFpBQrYQs0fe2EaRCCBS6//vbjih0m7fhVwFPJXgEOY5KnsgH59iizq65SJTjFxE7KoWF1YXD+XzNWNjftB7rw0pAnOlrlQK6VUCMXVINaC2A+Pt9mlOvo9DUhav/MX/PhqcYxTauoip4eW1YzFIjEmWMQuTF9U4o+vs5WqyrFFaG7V1mcykoTVpPFmI6waKqe/o2fymE4x4KPfFkzHsFLesLaxdo53u6xf8sgVpictvTMgoq/vtHY8+TLmi5YSstoFYKAfl9XIJfKEj71TCtsbILBisy5vd0lAL/UHB3+B4q4mU3Msq+3gWtjfbJqqJl0JUeORU+SEHzBQ6sRwcbgcO61i1fug6uLZNA/zAevRIRODF9EgFz2gqhUqMWzDcPZBy+jkcum5co3bYIIpenfsxerIPTBAFxOVc84nhdu19XJw3g1YRHKD0Ainwmv9HWo5Cuwi3Dze10cP+rJHflrjdo9FCmi42i0NUE01fhO5pARr9aC4uvhhNx67/ujuFR2GpE/LEIBPw+jj5cmdWwvP7+RX4YHiUmk2TItQhIfOq28dNVsBzkLqiWh0fbUm/3HNzqg56zta8/GNGgv9/aM8GegjRdNlJ3tPcB7VGksHY8DSYX6v5k1FBQ+Y+hnQV6WWBbrW5y/ogtjIzLTndmMeYl937G1t0M4KLhtX3IzyD0xg3mzctRaI1lR323dx/gfktHxTH0k/nU8nz0ASpKE37hKlLfB1+EbfQzeJqB/c+mCHMHBbXPDN57x5wM7S5Woi5x5fBNuSIzqBiLntzZtUD5mgg3RGLZPDgr4P7goNOZFSzik1AgTXQlQEP2IrbuQjm4XsV8LTuIQ/0Fkgb7ZP3gsP1kfsa/GsBqD6PV3wREdHS6Inz7BawsVf/3zLIGpjqZa9uViEiQYu55kLMKFvVUQ2MEm+HHgn0U2TIK9X3Xqm/Mq4Q+juKvB6poIL6qhY8+H4WCmDvYOwIK4Msj/R3n+KlwfYRZ6zAZg+SN7sspChSB6IHK35LzMdB778+OZx4YFK3efny6rRAuvhdLvnwpDkKM9h9bYfBhKDnc/L10Glzd1J1ccEdwuwff4MaMRcSMol2CI0Vw1rirRaE5FpS/tC8dY3DmfhIalfnXBzodyV/T6WQIMtxy3eVAQYZ407Pmju9Al4ftiug1BFwKS8KLcVQ0qvHT4eNGL/ieLh1Ps0Ig+uFF1mIuFc005c8JCb2DQ7nVytE7ELTf0KMFZlHRxtbSFa9NHKDebw88NyrBhp+SzNeJRwLzuSbmpwnQvCoU+0ihEh6bDMYmJuPRzI1A1pYnROCoek7GCldB4q+FqH/uePRtTuXU8ZReCPumdl+TC8Fjy2v/uTD2C68kS0Th9zoorHrQSV9ncG4my49iYRyydT0gyHmzHr4JyGdmnCgDDk7P4weu4NCPcZyLPaqHXWu3Tde5y0E6z1CXzQqHkmBIs3R3A5xV1rMXulcG2ySSRLUXDkmEsGHmDuZBUlnhrY2WSvD90vROc5LBjc/zLxoa5QKeifXEN/8qEDvYonNwG4OseRKSi7wq4KAEN/OmexFUapwX1GH0M/3I+c/UmgpoNiltZbrL8Lv5re6PmiNR4VDJvWh6OWwEVBW1bhUB/sV0rrFFJPqy238+3h6B3yD3KnWTBn2zQj7ubnik1St3vftfI8RYc5mf52yG+woWd99K4lGcDO39UddWCBgRvBRKy4TdTS/Bq5+MTARZMrnaW0H1dznhPGP/nwy5v3aDMxr9M1o9LXazFUo5/4aLO2ZD0pZzp3MZGd36FucpMdYHZW3OEzd5aNAuY1HoEk9By3MaMaca+kBN4s8ob3ETvLXIvZDeRkErrneUZWcZc83ycjwuowl+Ply/ciCCgq7HkKNdO2PA/P6a2RguAxQkHjQlTOJQehr/cPvVGIjDfzMSjsuCwYlGhellHDonoyplOUuCLp7796JfZ8Cfca8X7Op4lPG04KRFaisk7kqwTo5whgyKHD50hYzCgy7xHuFpgxsbPv3zJQ5w1M+87yJEo4FqY9Geu+kwsuZy3tAuBCZ7LDWPkKKQpoaVwGvtDNA/uqb41gEDO2gOz+sgCr0sTDoXsp4GiP2PhvzBSHAe5hEcrmTooYEfl0dCFZhdruHQWEJQfz4kbqyQoZ9tldpVd6rBUKnvAWsegn0aTloxbFjkisOuRvtXA+7yjyHSacY9uO/+S+fDoh1RltN3/msAfPUyb+eeeBi5XZHC1oZDJlOeAXN7GqGLYJacppoEIY/b3X0GcIhHmjdVrb0RtBwzk3//jYUmN6VsRT48ipcqfXbnbz+cX7l/WpZWCz6Pfx9VDY5GCrOJp5t30mHsfeXehqYaWL3/bOzy82gUfxV/v/wUHdhTuWKxFbWMfHM5RwWj0ZJkvWt/fBvs6HIMa+9pBD7F6LmVpGjEf6brZUR4G7wsMbaQWWiAwcGS8gBiNNJuHgodP9kGDq0Z3eZ7ELjm3CS16Uej3y5MToqHYiGX/YPjv3NZoNIMXvU4HCKGJduzicaCQeiJZU33DHiZf0LeCYtDfJnKbv8lxgF9XZ6jqioNeB7+Y5c1w6G9bU35XnbxEEGWVp3ZzoDOkJ2kRjUcGr5hPbuUkAhpen079UPSITakalzhLxYdEOYTkv1eCTv9zBSSflPhVzd+B4thFBI09i46qlYFf9ql2zUNo8Fvl9xJGb8oJJRZdOd6WRV4OncnHDGhQlHei2uOtVFI9bgxfe++Friauh5v/qYcTFZqitQOktCGDqFxr2ELMJkozfWGVUBJWzTeX5OEliVfb5lMNgP96Y76Iu8KUGFa4e1cJSIHn+jvuw5Ug2mJI//X/dGgSsmu9/kZhfwwzhqT+yshd6yFc4GnFJxmRnPvz0eilKN2lc7yT2BxpOWrTn01kA3YB+Y8iYgasXnjxb0OUDp88x6+pwF2rGy2XEQxyOXAlqLPdDtsJZXo/uxqAAU9aavllzHoTsUNC8mrHVAhK1v44EgD3KJSH/KWxqAbxb/NWvtb4SbOz0p+IBMenag9fZA3GrnyCVdbLbdDkamK77/EergRN5p+zD8GrZH2TVrcGYASvsNFD+xyoPTx1EraGhGd1Kv6Yb1Ng/GWwIwUi2IIlrVSm9Ahok6v26qrtTRgP/KN70xwEbRrczr4CBHR8p12plTZZnhUu1NNB18EzuUa8/KuRGTQYRHg/b4frK2Tq76u1YDS8UBdeB+NXrYu7p8a6oe19xMDdwZr4VNlnFrEh2h0nU0n3rOcBr/PWI495siA3eItbLTDRMRueDloUKEZpN40YP8+z4COK2L2Ch5ENBfbKkD6RAP9M3fP+p7MgmbRyEizC0TUdH7bItioBWglt3h62epgbMZt/bI2o47Ge2dVx5vBXMhMrDq+Fvq+X1m8skJEqSUueKaGfuCw2sWUWVoHTt5r6v1sMWhQmoPToLgfGqUfb3Fja0G7sotZWjwGDecZ9xyM7Ie/7VuDOlp1YMF61rDOLgaZ2R+fHdPsgWldtVtCW1mweVRWEx9FRdm7drKfm+wGisHI74kn2bDMsydj8DkVKeb+mLo53Q2qxxWjr5pmgmbQ04ar7lT0Nv6lM5dTN3h9dL1A7cmCEC+xvwL6VCQ0lnpE7lg8MClm1WtvlYPWU11m09s4NP55OTf9UzW0r1T67kx0gOeeStdjZLEo6MYb/8+vaiDU/e0dnW0vGGtkERg1xaKJ6R34Dy+rQbQ4x/vdYT+wOCi/8vAAFsWcO7X+qbQYYgQTe4BcA2/3mFIuumKQ0ad5r37dEpA4Za9UjK+Fha7Uh6x+GETkuWpMdS0GE+n9R4tcamGsh6Rk6IRBq6HIeYm5GdYyblzXU6YBs37Z0HN9IqrQucvvwfCHTG1PCkvv00Bu6breyR1EtBYczJGXTQPdx7q/DeaboHPNeFKYh4iYeaBKUrwH/uLnn4fp1IDyL/ObD0OoKLyJn4/Xvweyjt6/5rNYA5bSgyy9FCpqLMp3GvjXDdIZluVTVrVgduzV+/+8qWh8WVJsKKUHdr616Ls0WQ0ajAKcTqSixB8/dENu0MD6+cGZKREaWPDNn7zQSUC8CdqR+zhbYJmwHjZfEwT4g/ekw/hIaNw/69tr7xYo2Fjc83Y1AHY+riwYfEpCvyjOKwZPWsDh/CtP1PkGlAzjhSfvkpA7Ze5vWm8KHBVrK9brzofB4gXZWk0sOnYvVXt0KRUCTIxzztUXwvPdMptZnFgkMPqpbNU2Bapkg0hL84XAdTVg5O5Dxh4RZSl82dYCvR21cVPOr8ExeO9gRzwJyV9kOkxyKYMPI3aZHz2a4Mofd6PmWQziOHMihu9qOVyRcYuScG2CPeU/WaJORaKqAj0hh5vl4OB+nW1psgnOvYgyCpSNRGlDzD9fL5VBDXuf/odDTVDneXMvD08k6k71YA/O7II/g2ee8aZnAc1l4q0+E8O/T3gnNgoy/KO1+OuHj7PBRnf4jk0jBVFSyh6W3ugC3K/iR0esMsE8zHOEY4iChvlzFBP/64Sq7IIZI8VM8LST2PEhhYKsO+xFJIa6YTPqm+9auROomyqV57hQ0fXuv+2stt3Q+nyC7PnGBlZbpQz+6FDR8fjnf+an40Ey6pOR9VIiJHy9F/HvHA5F/srjYrerhqqq4AvtklUQwrKAD+bCopSiYtvjf6qB/cfNCd+USoi8k/+nWQGLTlNfnA/YqIa7SuavRZKrwOQji6aUIhbxd+YcSs7uB8P9d3jSDzTCf//Ov2U+H4OYbQwNs5NqAIadZsbdq2B4deRWgzUWreSavEy1pcORj80bCx5FELLqJ7QZQ0Y/WIL2tTrSQVXP+dXqYAFM3P64oRpJRjEGd9b3xNHh6mOZ8lZUCBtpc28+nSMj93LzbMfkHDgUtfJK7jQVsIOx/lLHItHVQv0K5xs5cGl87UetdAKYfr/ovnw2Es3dUX04zqiHXa4hq2JYLLQs3vq0gY9EdY528PRuHxx4dojjpUY+3KoujlK/SEUNUqPN1Wf6QGquZu+Ieh54xtqE7n3A8E33xF21XPqg+5EIr+L7XGheujjnLUxF/3B/SjoLegF/xVnqdUkm6Lwe4Jdi8HbZhM4P2ZJe0OBxSIwgZ0O2nwUTFyOuRP0XqnehF+aKb5qKRWWBR03ntScFVDTbku1WeK4Pis9yh5CuItjR2VD4+h6D248+zfx3pQ9sP4R0T75phNBDmXu8talotTz/t6ZrHzjCXFnjQQTKnbzlXkJU5JUfMtvrRIMzPzIIUndroC2tUoL8lYD8/faRZKAPooIc7vrH58BovBJv4G0q+qn1aP+ZxBbgb5QbKXDNhsC/t97b+JFQ7jaL/7u3PSDjGDwamp0N4ftKTVnTqKjwbsShmtIeqBnOlNJqzoSkgt3rcclUdLng+EHB7Bqou970fr9QM/h9p8qr2mFRyxX1I2syPcBHKX8QNt8AIdmdN+PfUJHLSpjry+AeiEixVOPMaYCkscdTYVTGPW8dqJOJ7AHZsolZoYhG0G49VvQ7lopO2vop000HINhdvLznQwX45LM5s84x9FD63pqTOw3OCx1aVGX43Hxmu/Bn3wnI93FFvfcGDQJezdQ94W2GJ/WvVtW1iOj2h5TYTGdfsBVVelt1qgLWW+OyxbcJKPNJmmnthWdA9PXJPHK4AnjVuPYYPSWi32MGxAdBL2C9SdGiw6IcqkC4yk2RiJrX6tijYlrAdfLEr0BZW5hGqW74VyS0/sP2agBfCyCr/Le6M/ZgbBe3t1aAhJyER/UH6KVg5xofxS+XBM2elssiCIP0Euo/pPKVwqHCXKeBjiT4KCS0d2csBo3zlQ1uMXhIgncrInUyHor/aEw9pWKQrrWSr3cDHVauxVcNBjaC5DOWLOIiCT0XzNPVJNOBO5CgI/21ARKlJtkeqpDRo+SV2t4oOsgeYvU787YR6g4mkx20yGi/+6H7extS4bI5XnqPQjYcGOUvZDqERaL5g09KDqRD85EHP5g/Z8OvEPfO8/lRSPjkC4jtSgUNPbzDIdfc//8/cIPB7Uf2WFbry72BuOSJ0Xy5BADN/2Tt3Ano9XjOx6ELkcDalGiUq5cEdlZXfiVJEdAWWc5LijUK3q5l/VM6GQ9ar8ptcAIEtFic7I1rbIeYe2WZ3UlxwKyoKV9nHoPmnORxgwbtEMcyr5GyToH+fhbdxiMxSHddDvO4vB3ev1cwCG6IBosp39dnjWJQdontdPn9dujJTMrHZyeAj9lrpdWjMejRXx6yonov/Dm/PiaS8AwMjTb3CxZSUQmWTat1vAdqb3l/31Kzgf647hyWTCo68DODxOvVD0u6w81X8vwBG7NX9FJUDMJ4Tafevd4PiHt51iQiCJwqzUoOL8cgI4cba6cCa2B5m8P21P98t943SWZzxp5qGeLVPtEPfqPbuFaRKhAgPfoXJUFBOqTVkRmlfjhsHXzfQqISKvF+1xbZKIhvmn6/Qr8fHMt8Chw3K8HkWbiBx1gMg7cXZ+ps++GEypsRxauVkO2ysphQFIPOR+/OMsB3APFen9K34HTYtGjVOPJfDLK49+MD/ncHvA5uvLc6lQaW879Ly0QoqMv3xPFfgp1w/qrYhZb9qeDrGoMvl6eg6h6JgxZDKTDy08wsaIUEtTcect+8gUWR1ADsZFcSZM1k6M7VEEF8eZiH1IBFe1jkg6RaUsD0477pnfeoUCEp+27jFhYZnwyfN5DpB6EDrFlRHQjOOdgmlQtTUAS73r9Ah34ozP+vMWURwV3B+j7b7BiUGSsXojHpDr7md7UOCVVCSA1/MascEVEuXA9rtk6CZad3pBk7Gux+0tjj+R6LmrJ9lXl/JcPotSfvB67SYH1jt84hDywqwBXJzCgHwPedTmUD9yphqn7Ld+ITARVO1zZ4yvZD3Ca/ufBlBLq1oUEsghTUdoZeO3m5H2oEPM9UvikBw4eRLMvMFDS7l3BFmVFfwjrr7hOOpcCdo8CvyajvNtQ5rgn2A/Ph0he/bpVCz4+73iqXKOi+tkDcacUBqBf5LW7ztQykmePGl4RJ6PCNxRaFuwPgTne78I1eDinL7IleDB+klN44xXFoAEya72/afSgHp5bd50X0SSj2YbWU8L8aEBWebGeFOvjvqfq0QxBjHiff0/+vhPOOp/L//78kKg3Fu0iIkr0yoqJnVrISUSmSnRFSRkZJyD77HCfZI3vv9To2mUcDUWRWFMqWfufz/f37ul231+11va7r9Xjc739c10O+ahAsuMxfGV4L4QK619TUGefO76Kl49BDqIkV+/pFqhiQXvJwliEBZXSe0A09eB8GL+iwE1SLwPdh7Ou9DL94GbdYk83vBzkeSRxxJkVwb+PpNV9ehheECqzu768C65NVQyuOdVD0OYztiiQGnVZbcF1x7oeWS3FXznUVQ/RfspxuPgX90ZuurM5KhyQXyn/RHjnw8Wzkw30+seh7eJi+46MSuDVjIcvGWw9ptu9GhXKj0d45Lib+vmJgcjr9kzpbDwoed4YFMdEoM/mdkJ9rP1AXLi4H/sgHU3fsZ9scCkqJGD+iqtMPnMG8WNXKPNgX4h/jt0BBUu+eOs5ZVAJlGDPhzh8APlGJL/bExKJqi4Tah6OVkPtpiUA8HQqzr4ZMvPtj0SK/f2frrko4R37VLrwaCu5x0gKTVrEo+5l/rsUnRg5b62nG9NbD04eiLHyN0Sj7V1BSP3czfJ8zc/iw3QjK2nHZIvxEVKZ6MCw0phkSxll/tnM3QbGXg8zFR0T0S8fTmUemFxxCrjsv9GSD1IynU2gGFT1qyUl1Tu+F642n006OMXoz+NBxPRwVXUP3fh7L7IVvRorRU4x9e1p27dwclookl7tSa/LJUGmrJh3pjGDOLKNzlBXH6C968OEaAuiK5VJvnUfAuitvqMgFhzyOXvimvIsMG043X4b0NADBUwXTwIdDMfx3Vg/dJcDnsCMO/h4N8Peh6oVdvjhkuXvd/cp+OlzWuDE8OEGBh6T79gVWZGQ1ui4ccoEOotfKhO/ZUeHGcljS0AYJhUe+GZ/noYPbyfHUJ2vx8Jfjwrl7WmTkH7Y5nX+RDvgYj+SHdxPAT+SB9KE/JBSVmZb96TAdKhZNJvv6csFmLVkx8zoZcZy8l+ajzBiXMm2xzM2FjI9JByJ3ktGH4/YvQ+oYPrLtb3JFshg2FATqF1MYvT/koriDpQfMHV33dmwXw9zm1edN2VT0VLz3jm10NwjfejaJTpcA9vQJ/kEGD2ieEmxsVO2FwnYhKOZPgwADa+MkBp98lOWpjBzoAQMRK25CdwrQf05kZzD4SoNt8Ue2aTMIrRquv3engcphq4tFukTEIXSjD8/RDL8DhT9dYqHB96qGW/zcRJTNvmuY5XEzqMXml+xho0Fd6KzY63tE9JvroCssNcHzx3cVzBi+kJdzwWp6BxHle1ziMq1uhO/O5opGVRgo/dCMDPkI6LzmoIzLv0a4IVR2epGPAAkSNhnjVwko+D/F05vURpgRsbcuZiPAPRf1D9asBMTiyY9v4GuCCtLnO4bpGFD/OpnIY09AUx+z7kqvNoI3VymXvLAHCCyEmg5eIaDKcF5f36BGuNJOCWjudoZBzso+9L//bKww657n6gO2499CNl1dIM88i678gIowSS1L16pS4IjQG9X50+UQaYE1vGrIyBPhiXKdiVTAud1RPsBUARGff++P4cCgXa72mFm9FKgfYHafuVUBt/4ueEvaY5DjnF6G1PE+hq+5x3W8CIDEISGRAUcqUsrAnaHTeqHXdY7lGj0Y5O5x8lVHMjz0XYIzS2MvJBd7XZ956A1rvY5TeYzxVdWjKUigD7a3H018jQkBgzkHurE9FVkca2Uz4W0El5I1d2OefLgrx6tnkIVH1JCtm4/XaXCD7VOnIGshmK1sTBdi8EjUO05BrIAG7MMXInajfPC9/a1syByPCrkcWF//1wgGXbx+UvgqsEE6/KfT8eh5w5mbbByNIK1LWa/OqwTqjTtVR5LxaIx7oEkvshGq2SobHXWroM3g7dH5DTxS164qPf2E4d3ClXcN5CoZ99uw5fATjy4kKNkspPSDc2xLJs6mEvp7RDaKLlEQQfzaGeX2fkjpY927O74CSD4w5PiHjBR3pgq86e+H55lmn1bTK2E63eld4BgZ1crx+O4g9IN+8N+fsqYVUL9kfWvmLgWZnBTamBlncMyg3vVsgzzwSeN0mePEorIlBZ3T1+Lht+xf2/rqfJDP2mp94ohFzPY+i7Jmr0CHab/lCuM8atLJnmHhWPQm7ESMQWgieN9OG03gLIBv7dUGuv8wKHILNygn1QrdAnORHtyN8OhG4JnRRBKKHisNN0ppBe6rH4+AUSP0KDvubV8iIUsvwQeS7a2QZLeWEN5Pg8vePfwW+8koIqBw1XqjGQy4pNnT17PBEGcyNtRIRC04JY21f82wkz3BMqI5FwI2X/ydbSWiQFXDE6UvmkFfpMxNOjIHiLuGBg67Ms6d1t8AbDcdXMi1Om9u1YC78vAB4XdElKU/uHxni5EnefxrHsdqQTJMxusqw1MwwuJqPz/SIcYWNLOwtXDSYPTQX0RE/w68n7jAjgC78kb12c9aCM5R4Lgpi0OzjXLFoZENMM8Ws4P6pQ5sUz/zqDPh0LZfb5egegOQDv0V4PlVC9VrnxL2zWDRkY4THVx59XC2nUVFeboORk1XNnRLsSjYcWdTI0sbfMo4G/hPPQ1UaF1FmWfJSJzDQi/xahs8DrCq3bJKgQDRDkFPZzIq5Dy1NRTUBufZH+C7TqaBZWOc9mQ0GbV/Wj12tbQNprTsFesvpIBJeNwx5UIy8iGQjg0Sm4F8O7Lari4PNjX6TpF9iehD/lGxnq8IXoSawsxaKNzOKuoRasehcyWVfgWuCFJKWzy3/YJhIvr++tnHOGSYZ2pbLJsNaqdf1fttPIALZXShobMxaM2hjzJwGQHG/eicnUMkcHMenE4xxyHMEPe+9CPdcErp6Ne2mQYwXWDBiL6gopf7mEX6SN2QvvvIGV2Gn4aRF5luvqYiy4d//Qm/S0B2cHr3xcR4uEMgs0y1RSPcx2j7rM1i6NWr7pC/QoXNHtNDbaRo9PAbUdTkUh+sYzXV+Pc1QY7pxbsYfSoyTvjx9h6xFNZFJVMKbyHYbq+q3fUnGn1vC9c7LlsGmmJdoymtCLJnk2Q0TscgViC2Pj5bCkYQZqowhcBn88jRy0PRKFdmDgncfg3ZC4fcrgohaLQt7h/RwqJMz3s5nH39wOR/ZqLjOw7YTV7c/zBBRgZGX/99y+gHBbGwrbD9JDie4XIZr0JBsmIvLwh96gdvRZfZzH1k4F0y0bLuIqM3UhKmXxZbIPWN9I9TATXwUyIyLvgxCf227SlafN4CHw7/VFrSqAETpdJjHcIkxBO3WTFZ0QJjg+rvL3hVA6F6j82cHgmJeDUYf77UAy4dj801V+KhFZeb8u9/34EqKJ+WquyBZfZbB+hKiYAVfYgZZXhK2NLiYQXtHuDioduMHkuCKb8sfXnGOCEvRv3Qi1eQcvy9RuhpGlADHZ28grGo60DFGczNBGho3kzvqUPw2lODaCaMRdyHhcJlFqjwrl47aYmM4B677Nf9ZCx6Jt1esrV7ABQzPJtGNGvgelPg1TknIqqd31V83jkMSAJOexLcMsFo48XkSRwePWt8fUchLgi4tA42oNV0CJVMiiifwiPe490HpveHgiApaMxwOw24bXcl3MjAI4+s55tRNi3g+KkjwdalGgZnVM4fP0hCgqtGtAVGHkp1VcmP6+fAYLsGz9QXMvJ4KKlsld4PQYR9zLyx2eBmqJZUeYGC6vULPl9qZHjTmRhvc44s2LPpdXieiYJ+Z/Up53HTQMHuqerEpUywDuiYIf7EoXenona+DKOB6TWRlD+ZmRDnHoA7p4ZHEm7BwHqVBtlzIa7IOwssb7/NiPoPj/p3fu09XEWDH2LYICv5LJDHJKvvssajN5HuXbqrrVC8gfX9rlcMtUs/mXWkyejkdfcnqz9aYfT8GuqwKmE8t41N69NkxLr3C9V5uRXOqf+npeaC4K7Ub6kNSTLCPJg4+kimDSqcsR8UixBwvg49pW5KRtbH/KqvMnK1PMxf0rEUgZvxm6HHjFwt/3o04As3gs9Ei9v7Wkvhte6Ux3sVHGIrjSrQOo3g2OU8I8WkEmC+xjYpqYFDmo4S021nBkBlJI5niSMPTk2nfuATJaKLO++ey74xAJgktVmKaS440J7gniwRkMKc0h3/P63wwOyTosMuGtQ7vHliwlinfp5JXQDDV7kFH5NYdiXCp43Mkx4PYpEyj1f4195KGFSo/khKeA1vhS30pTtj0Zgt56urhW/B/Bu7+K90GgjLs324uIuKvLqNDrqzNUO9bU7jjne10JgzauFyiIgW2Pij9yc0wVF18S5KWy10DSewSTYTUD+34/gCXycEbSwdIfXnAZfJIkVTKQ59Pt9oVF/bAdLUN5TulVwIvHow8MVfClp9Kv1GaKUDsHOGFF56DtSkmideYfjmzDun017OTRA/JF9yha0WrIM1vA8nEpBpS+lpOqkT+tpNj9n35AH35H/CSb5xqFjvu4e9fCfokKqf/8UWwJ+wjvan6nFIU+LPQuzuJni4N/7JlncaLF43TcGbEdDNcP3Vbs8miBz3ZHHGpMHmg7u5sukEVH7n+2B4WhNwV/5HdTmUAQezL76cbyegLMv3bnCtBeh0C7eV403Q+qrR+csORj6InUw0Ex2ARYERhRu0fODLUpdUViYi0g3BPNuSHDjJ6tpmXfUcRNt4X+1biEbz6JwDU20eXAxsLYjIfgpa10vIAVnRKGui8Z72o1wonMYeDSl9CX682TqB9GhUam4Uij+G4NwtR9t9nylgoNOjtOs8DgWGFo8fpTVAlbG78LVyEvDhg8frDuPQpMVz40JGL0gTHnvUx5NggNVDJoLRCwec72Ea6mlQcsP2lG2jE9zasiWcsMcjWVJsfjAvguHtb6dbuQgQrDEclcuYv9lq7vqCKh2Ktsfcn2YXAuM4YntWSYjjokWP3xTjnN/z+S6/7A3PypU/bsxEI7EnSac0nQrAkzvm51IkgulszfioF9EoweCVrYl3PpTn5okpHWDch4aCLS85GnnmX9J0PEOHvhZ0J8Sb0ZsZp6SIHGTkq3Kw9IsOHdqy79rO9yXBwaX33xzGSIjXarxo30M6tEvsspH4nAx/d3m8exFOQnz/1OL/uNLhbaVJiMVkIhwNwhTuw5HQBy992p3mcuCqyL/OJxQDVy//Daxsi0HnWb6eeOTXAxEBfEKaAQiULyeb/u97nILaHckPb/XAw3SwOrGJIFxuPHCRkc/PNROcLix3g2GuuL8RFoHa8Y4I6ywqytgZqTU50QN7fqSrLy4yOEUO05mVR0WNxy0WY2WKoOTNvsH42xRwbMbhOx5EI+1Ds5c2ooogzkuvp+MsARwdQ2YMPaKRk+u882nRYpgJ/yckYEgGn7YG0yW/aPRfG4VF5WYhOIqNaHXmEaCGT98o91E0uhbg+Co7uhnAkcnjVDyC+8O55ARPIqrztSUJ/mDk4KGLFsKYevDaXEME7RiUk7KUFyqXA4pcH5+o+DaA4mv6thZrDPIQPGhNUc0Cw9qB7V1hDRA39Hak0zUGNS1P25o+bwRLEt17xJIMl0eiHO/9waPEs+5mH837odxf/OXbT6/BMy/3ZEAPBQmszOglmPZDyzrnlcApKoxbVrecHKSgB7N0Y8fQfthteCwrt/kVPCVoXFt/wuDhnYZ5zo7ZIP5mLvyHHAKiab+xp2QMsppP10qoeAufr18xvxmQAav+LTsCdlMRy6cr+3MvvQWjaA6Tgx/SYfZDHimlPw5ZSu0IcE94C8abXY++qqTBhMM3iQt/45BE2detQIm3EPo1R8iFOw3OWRzhbGiNQ1On5Xd2P+mCJVvPZrF/lRCea8k5YkpFO36qlnRydYGEy1ymMLUK2LToS7UyVNSrI9UfuP4WuOUWbu+vrgS8GH4w/RQVNa1WJznZdoFpphvOUrgaHicW3V8zoKK9n6KGhczpsN5XfaOjrATODR50K6shoT8d+u/WjekgEGG3d/NVMXSYFpZPdDL4XPzO6u5QOvyl/XgxdbgEYvqJNgZWJGTmWbCokvAUCM5Fhx5EZ0IZPw/r5l88sgPM+pWkGkh15otsY+TPlD99181yDDqcEbgillMLaLSsmm1PE3BElB3C7cWitBC5tmcpJVBfH/OMrZoGPM2hyw/LopGa7NE/G/YlwPfcxTRSlwa712jnoxn5c9sqqPrCbDEYsmWpyTXQYCA3VroeH4122HG2SKR0Q8tZZkeWrjq4eXm8liuRsW+J3ANxat1gd5ErWce0DiRNBCLUoqko+/LQnke/u8HWMm9+/9V62CG0HKLIOC+JwQ92UCe7IUGpI/W9QgM4vZVyzs6kot0xIy9+rRRDa37jrRiPFMj4QLFhY3Cm+EjtPFtqCRjz5XI6PU4FPra+57GM9a+v9jy4O1gM4lwfPbPr0kDC54jkLWw0Ckybk03Q6ADlUWTz5vt9OEOyu7tVQkH+GFYVq+p2YM1mYSdWu4HQ53P/7C0oKLW9buK1SjH4rIceFH2WDEKuLpdSAqLR2olrXOduFMOJtNr9o/cTYfIE8UTFM0aOhb+64ejVDj0WawbkA+WwGrtH0E6Ogga8P+0r+NAOjaeMD6r+KIcI72ciIW4U9PJQksT6cjt80xAXEOkog9+TVGa7YApq95Xhf+hfBDF/DcpEPBBcfa94Kd09GrXekdxE/MVwQErZMvI8Aq1FnCEXIwes1o4Rbi7Xw0uWwL0tx2tBw+mUyUAXFj3qYkr4KlkHVIvUj5nrhbDFOTYZpcAIKFdDVrx6LdypKKJE6hTBgVqVMflvGIROhbydYfiV4e+iC83ihZBgGtvhw4xF/llNbfYsnbCrmSLp/DUBtMXFdmJF4tBAp5KdJ8OPKiooro994iBiUiLIneFH2mdFF74ttEJ7QrKuyDgBPueeOv1BjIxQnv39PpM2UDZolmxuJELOXscA0wdklPfGsZVY0AdjOxck5FWD4YsckobhOGTcZdvsPdkHhcGpWaypYbAsKfZ7CReH3uI8v98v6wPpjyYDU+mRQDGUMvlOj0O+A0HFge/64AbPDuPPBRiYt5/gepUVh5Y9j/XaHWuB3Ifq562EK+Dsh9w+3mEiChurwIUotsCFwc7HDfKVIGOpqtwxT0Q+ocNmS6PNUBxfPT2vWAlcu9ffiOYT0cbO0ueJt+vAJbb9ya/ROIg7ZD49oIFFT5Ts5A1P1MFYTlDwjtl42C59mOMpi0XfmwhfWJxrwfUIkfhg/yvIztfL2L+CQU0ZPo+LcjsAV294fmKOCmUPI74t/qagYeHBqobkfrieRd/ZXlsKdrnYSn5NCtrv+TP/qWs/tAsdtu4uLmX40YrMnRwKMg3Zeirh3Q+9/Lv0mgZKwPNUoHUzhYK04uWPvn/UAqsm+6LI2RVQclNGIo6XhJYv+S6d+VYE7NyZaRIM3+p9jtvI84pGtgeSz13bLoQ7c/nuPekM/hzb5M5l9JHWZSkHXEwRfOEK9spleFhlvn6wFaOPfo4bSpP9+gEvK1vxOLQMvDtXbGQwFDRe6L7Xz6wUuD7e6i++WAMVJTb5rePRyPzGo4I9riXgXqOnobuzFjx3EP8rz45GLU9NMlxUSyBamDnKkr8GWO/emh1PjkYHmTgKDxrUgMGK9J0IxxRI9TkUUBWPQfHej+Ya3Wtg5s4/h7kjaXCC08YnNxODduz5F/g7vBp2HsypiolJBenUoHlmawxKyqK9CpRmcK+BoFrI1zAI3ezj70wioS2yQoxeeSucaL4bhfEIh5LuM7IDTGTEbz/2O027DtqVB36n/ywDQtarn8sXsEgyyMQ2aByByzv9rI97GmHIU21csQ2Hfh0/fLOU4bHiYy7j0ws0uGZXVyfpgENqIuH5uu/aQb0of0fnOYZHq/wL3HaloOtta3Nen9tB9wK3pterBuDVnlZ68oiCKEyd8fEnO8B6vMF1geGzV9d43v+XREHz03Klh63bYU292k9FH8Ej4sE67lMUZFeguumIZeRV9HF116IGwKoICa6oU1BDBW7r/BsbkNra3/1QqRDIuHtzn4IIaOLLiy2iSgfIivzrvvG8AUpzq3Ka8ygo2lanpmQhA+7YhTPx5lTDf0ymbj77Y5GA4sRgV10GeKvKuYW010D2jq0SZb5YlHwl8NC+Ajp8OH/Pz1+uFhxq6qdvHyCh7InSn3eJdNBtu98wE8Twyr3SXAqXSEjyxJ/NPZQSmHqozxIhjCD/UJK4Rkk0itFZ23c/vwTsd/Ox40IRsI6M82xXRCPp6u53zVPFkCt8X4HPGoG16r8wC0a/cAg6DES9q4ROYgSP9uFCeL9/H1tBVyya1yg+zLq7Ep6v7rpcrl4I737UtLFax6K9+RcWFWMaYKc7+ezjqQoYztfvld6BQyS9a0c8dzQAd/Ebbd00xrmuU3+/1IdFjWzZ3KV19aDwhHUedVeAOSvbpbkqLHqxo/RIW08DFLidWiDOVUJ/2Xyw71Ecght7k4IFIoH0a12cpy4dtFleihBu4ZH5gW+RZRYxsCK8i3P8eCYclt0alDmNRzcffQ/90NoJ5OXFnuLP5VDrVHBVGx+HOPPKZuMuvoU49rhHbvXl/99T+uJQ9BMJ/qiOTmiMZde7yNcEVrOHUksIcYhpT/qdNMlksNcRyNzBkQEWyQ/RG8b7b/XaNkXiUgr43c2wrRxIA+uWiaAoRwyK6f1vT/RgCmR21Ws3b6aDloE7Lf4yBj1qb4gLpnUB0ehAeeneJniuQfv10YWKzDQ47Fyt+2H8+3rjCMOn3rhPUE0QBc2+9pAYutgPXXGHvrFn1EJ7mvzPx/8o6G9TWHWMfD+ovXaQyVmqgSTfKIW/XHHIS4hVIHVXIcSE2viOphWDK+lbvAejp6T/9WQ8oRVCa/unBiWGzx6fjPQvd4tGv87qTPMFFEBOYkTNRGgJUGuyH5kHR6Njqr0vixq6YKD8i1l0WCPsebvoqstY59dvulkGf3thVlRyvUy9AaJtnio0+DF47E6HEWVfH+ge2cl7618DuJUPXzzjSUXvRTICSHZv4EOo0pe+5Bqw04v5FZMag5TOt7A9JvaCz0OLP58W6sH6WCB/IZGKfquKEZzWe2Fq1oVQZVEPfHndnl/9qahYktfCLbEXCvNKbSwn6kAcfuiT8VSkpH9Ll8cgF3asXfKJ0kqEsRXzcPHBaIRJu0OPHMyBq5vU228vx8MrWituz3dGjw8YHJdmzFu/YpjDEfYCTlo0pNyIwyKXL9xvrx+shxFP59jAOn+wS1UZ0HyKRaXr1Sfvfc8DZabFEXO1JDBcf6VNTYtG790GnK3sc+HdO2asimMyHNXYQ/F/F41OMe9P7qHnAbG2IG/jRgoUjtmdPJgZjfbFyFsZMtEh3zYHn7RdBHu2Et8W+ZPRbLWKRbYIHQ7xaw6HhxXDt1vmN6pFyGjX3w9On1noYJEV6aTN4K+vVtoTww/JyLW0MO63LB0oVTM3tAxKQDFv2KyCk4zOOSUUR+6hg4kDZ3pOawncOaYh1uRIRnqBO0+9HO2H782Oem6WJfDG9bTJ5TYy6jj9yvLGdD+ctMMEX8EXw4Y5r4lvKRm9Lxhlv8vZB+NarCMROQRgjr+00PmAiiTxnMOmk71gpKrwgZ5PhionDaeB51T0FO0/th3bCzpJLopQSoBnpdaS3SQq0lSIWInIqYOCI+9ujE6+gNuWmxsnLLGoWiRI+PDVNIiKKJVzj0mHZx8deoZXYtGP5ON1EmxpMJlzzdT0bCb0SPmTHu7BIHuLPSzn2kpBL+e6q7twE5zZp6fjsDMGYUfr/C4FpEKXo//A/b+pMDRs+FpEGIPemUbmSDmXgvjR+PdaFrWQIS26lMzw3z2i0Y+Ml6qBTTbwqVxADtwNsj0kFYRBm6PtkXUrdIh182mVnigE8eQmInMEET2c/HxE8GMbDNCfa/mpNIIEySW0jrFvXy60zr7e0w71y6mmc0n/++96oSbpGxm5/bpBtzvXDpqLdmrtio1gzENIZQQwYmu88OukXTvwS3HFxOong4bU0fO8pynoWLDAn1BGH0nvTXzk758EvuDl9ILRRwRRW+PeR71gf1j8GeeTSpBkaelff0VF9TsLNmJP9EDR96Hlp9G1YDV6d5iN4bP9tfK6zad6YGmRc9g2sA6KvQ27rjHGdXKGBjJ2NMGR+Ap5Y9cqOP6JKSP4GgEVGAfsfz3SCD2Dmg4ZkZWgmQd3bZUISMnYYY1Jvgl0O+hfBdwqYfjcSk3eYwI6Nf66xO4dAmYv9EKXHUFM5n34WodDjmdP/us/TIOHjZKUs7caQP1QcKbddxwi8JN9zmnTILbQOfu9KILv9znvnz+IR6T/Dr88HkkDpz3TM+mMHrQ4H1nXC3gkoR8WNltdBONXKq3+3k2H9zECz5I9o9EuqzqRFgYvyc/TU9m5UoH8gFRT+b/v7vkuRVDPt8Lg++2anKlXMKFC/MGXTUIlnFEWG1stsCB8AaHhBMgoP+vyOICEFurfPGzpaAG9lIMk43UqCHSyvmy+SUJc9KhLQjHxsLUxOYCysTBzNyjhmRUWzYq+GOVr6IfUe1dnMo1psEkVsHzKRkFCZrlx7160wGjSiW11xQRQOWHyUliEhDquZp/DVFXCf+pvgs7uRDA+aFR3sT4WZXEr6NtrV0EJOZhLxhBBnctYifkuDNLN6Lzfal8JmEXf2/aPGPtzUdc9FReLUCrTIQ3dLpgPu/P3IOcLkH4/csFBk/F8/7WvxIp3ARWLXb378wmYN21amSgzfA2OZdISukBth0zdOeNAMBrfbTx/j4qKVFMf7pShwYTb0B72P69ASVv4OmEbh2j9+9Ij2WnwJNv35tNHiTDwRNz1zBQOyXjWNQQ0IEB0nriy2/GAe5tktrsAh07Q8zkn7WnQdP15ucBMAjhs0feXM/o0MEyyM2eyGsTvPSN4JVcA82+61qEADBKmPP1SHlUNO9xfCKx5lwOc7T/3jsGBHvz7YrbGWiDPJiMhcA8CYeWbuc73Sejn6XC/RyytcA7XfGTsTAMsd/Fndz8noYO0a9eeG7XCF2o69vB6A3TqPilbrSShCp6VZd6sFrCz5dqnbNYA4Qf4168wOOcNieRsxpwCcjtuXDWtaoRn+MMiGC8Mesp/NMYyIRlwuL+UBtkmuP3sUZV6NAad7BfdfIRJgoMcBpali40wGfBVcKQLgxbsjDrOM3gplW/SaZ9sHQxmhnobMHjp3rBggJh2OZzh1TBiccGB3vKylSg2BtXkDQb9cy8D/bgXuWWvcNDj1+DjpBqDmEWmxKT5BsDfqnmF7Uwh8F5a4Bm9QkQ8+bUeLlcHQEVRz8D6YiHc2FpQ3bVNQJG/aFNlC2/hcN2WVdQVGgy7+4ruEKSiPw3Mqx/1uqDbIPKW2nkaHJL0Zd5mvA+F/atpAsmtwGy9t2pvXjrwj874Ly6SUE6U9IqmTCuo3r/u43YxAwyvHjC9kUxCn4+kGLUw9j3tAXbUsL4KtI1+zBnL4NCseU7wQSMEPWn+qk83K2F7fsDV0QqHNlrSvRJ9GiDhngJTm1EN9N4qTEDrWLRyTcH9JDRAyOX9U5ceVsNfrev9FtNYxF17djN4pQEM0yd9/V5Vg1BBsLmaMA5R7aj0G8caoCvNUsBtuB54LT9MuQ9hkWWjRKTOXAM4jT2bm6msB7OJj++LBHFImEPuQmZIG6jwjN6ddUqC6y/ujftjyKiHHh3Vw9MGB6N2rCjkJ4H4ZRKrljYZWew9mBO5LwmEeHEbCn9roFCwdPnwPAYpV5mK3zrQDFb5vuTbWjkgcj77pv8RIrKh7oi0kW+GmYSHf0p358EDXSuOeDkiSusfyvo30gSNgvrJLZfyoOvgerXxEgFlyiZP3H/YB+6sxvgrAgXwxayU20qAikTqPTSSsH2g+Dg3J3U0D+Ke3vCZ+huHMpSZR4zX+6FI/amp5wQG9t8/r1EbSUYulUW/hhi9bz1e/VUERwDx2hu/XviRkVm5i5EhvgeYLijMmrDUQbcKn2t6IRXtFgjI8UzrgXzpG/Nd8rWgVSbl5sAYPzRsXr2okgSfd5d7qnPVwUkW38LZcQyq/9LEX+30Gobe9t/z1KuDqJasskGGF4+t7nKZN+8BiYxM351PayAT7/L4bwEVYab0sFbfKXC4hzvknRMNjo7XsJmMYNH5Tr81q4cUyGSe3FWzjOBVg8lhvzksSs86IT51lw489n0v23gQZBmKosgCEtrvGNB54DYdQr81f81geIRTZottYxUJjf3359xrCTrc8n9tf5nhZ1ujOxqUBMho3W4qt0ydDr9k361UdyD441KVSZwnoUtGWmp5QThQ1v8b0+TxCt7Usmg+qsQh3YQQPc5eHHD4Hxtp30sBkWfT8ar5OPTbrk5aspUImJhf+c2P40DwDF6rQweHpLQt5dKvE+DM0Y86oktEYEszuun0BIe++WZ4vUvuBKYtiZikjzjolhdIxzyNQxsf/8HQt06gRXKYriEMHGIl7Y1Mj0M3dv1b6xR6C6cfNcRbhhDgw+hJZdfGOPSNXOO1mtwPExjh51WcKbBbQlgpT4OCmv0O+h590A/FA0n8QUdT4Os47eK5bAoK++/x4Sda3rARYfvvrUsVfFG7d7FTnoDKXx+YkDoxAKnmPy4l3MiCtyPlPZxaRBQ4xrRDRWQAdvwJtpx8nAMEpdiUFRUiYo/SPjha3A8Un6/a6cVJ4EGrV988QUG/fO9yHejoB62MZ7lNq8lQ9WqxLWOJjK4+CXUXYvDeD5hsXL2fBP85KC4JtJOR1xcWuyGmIqjfk+YxcjINkm2sDN48iEZ35+p1U8YKQWc9Xl98Ih14D5RM72R4gVcHh3pLTBW8/Lhq8/pDA0hH3/UJ4cEgseuCCXRcG6glXBTNdAgCpu74XT5xjHNqua4o2dwGZ5o/Xxx1DIfiWOHPv6vJ6MoXThPTTjxcubrwk5pRAC9sx1gmonCopI755ReWduCYCcWoiwRD5P1ZsvM0GR34xb3gvVkPCROzQmc9GuE/N1v+bz1Y9Gh1sjo9vR7OW26WPF6iAVz6cKitCIu2OvdOxR+ph7rO+P6Xpo0QvHGdryQIi9Yqdp3JXukF7P6h4zHMr2APcwI+P4CKImSUngik9ELWtdOdpe9fw2/sB46dDI+QFJ80ybbqhUa7eMFr4nGQJ4w975JIRSktYY7ps9Egq2y8/WWgFK7PdFeGSeHRSMvK+H88kfBPXlThTn8ZiOVpWK4xPNRl+12Ix+RLEI/km3k9WQp7Gs5u/PTDo8POyoO0wyEQZvR7p35UGQyo/bieVopHufxtRQf30aHlknGf+F0aFPmoDl+3ISPJyl70lZcOewoo/rGTCAzG656IXCKjmROtgmfMg8H40thzNu9SwPo66qh345H6KxAkczyD79Khxo9ky2DLWv1AzAYeTYrERUZq+zJ64Zsz+WYpSMWfoJ0XIaCxPaGzLA1kaMXWB2RpY2Gw+ohwDgsOBfG/XxygkeBZ1U3uF7xEcDngHDJ4Goe+ts4ZMLf2AtdNqbmTQUVwIYgzsCSCilKL/C4l1vRCD+IrL7pRCObM50bPRlORuCUo8P3XB/yXr/T9HGB4Z8S6aoorFb3aOetjodsLrF0l1XWThSAxaTP8KYWKCF7fAgU3q8DasktOwx6BWKsQr5kyBr1U2X1hDFcIqQPB7Ee1E0Dx33qbo0c0+qQ1k5IQVACj5OfxkmaJQJG5lHqY4a3Di1LpNg/74VmfdNdGLxlOBcTf+5tMQSkfnLlOaVbBb6Ouf8He6YAe/ftbzYJB10rXLX91VsGDu4dEoz+mQqqJWnKEOAbhylw+HjldDQEW+4yC4xn+fiYov0ETg0ajwu+KhvZClO63W5EJJTD5r92knkJFEkXiHI80Gdz+24Nrc7MYssdmD5WmUtFwQC7tH4N0R24/HBYrLgblhm3vjCgqqrLU73t3uwCiBqIH6C7JsOXCxBEQEo0I6ykXMQp0YF6t2LX3TBpkFuiSFtnJKCSkEpqwufD1cRr/MUaf11y3umXaE4305PlvLFjmgaH3WE+NcANoctq1rDO4ZcU9NGoxMQe6NtecCp7Vw67M/t+Xfkcj+x2v9LJbe+B8333c7cAGUOmycNH933+ww6av5Mv0wn8BT1ltzjXAi51RfzwzGH2RyHYFVHrBlfnTtuOtesjgDHE9l05F+AMRiZJDrXCKbtYSxpIAOX/enNHgYXhlfKjQSGQrYP9ti/v7UuGM67TUylcSap0LV8XZIjBOrJ3RVa+D0/rxu3of4FBN+uIz4xYE7UVYg53TtSCf1rUtUYJD9242bxGbEWzEpaxmlNUBt/x/pzKKcehQux9FCd8Gel0SePHrb0D/0WHBWkb+iKrcY78UVQ9cSmmHHlyrhmO6JdQzWYzceBVzg3O1HlpbdqWcDK2CvU5rR5y6sYgPjA1dc1ohcj31qtOrVJD72/BGdp2EpMRyMx7rtELCdMApRbM0KJxmokEJCZ3Kv0C4r9cKieVyk8WlKfB+hDf6VhkJfau/EvfcrhUEg/c0XUlKgJUU9lOf2kjoujdZ9fO+flj/nPoh7isNfPY9+OVgGodetNQ9PjCUCvs/RETamEXAqcfftsiHMUjOI5K/YywL+qiFChFKhRAl+m+hXycGOejpmw3PZkNDLnfQm9VCaG/92R7OGYPkNiTcNoSzIEyIdVXoQRHgV4zm7D1j0PeQJ/vXbieC2Vvd/Dsn64FVdjyTwIJFezcOUpaEk+HUmbXMuf31EOTFbnA+C4P4mNqufHucDApLivpxBnXwwLNenkjCIPHLZ1Z3fn8N2gPaj0ZONgAfNkrUWx6LMLGYk81i8WBtbNkudbEePhLOJ6S5YhFHjICE41I2GL74krerowgu9RyObzwUg6a9dfo0jVvh7JRxvvnTXMAdErE+W01CSDmMI7i6Fa4EMV8arM6FR4ERE+07ySjiZG7CibBW4D46P3mMMx9i+detE7+QEB9XMxenbB98G9hbxz1eBW55z82NzKlIb84+NcGlD5YPjik2cFeDhVixp7QwI7dpH7OZz/WBkt9d6XMr1WCzLsUTZkxF4SV8+TcfMXIJsOdixGugtFSP+T4fFWkJ/iGm8bVCqxemZz4/D7jmM5zbCSSk4GXfzi5Lh22bE2ofrpFAevywT/Z/ZGROzmo51d0Ez5NZeQ0eIOB6qadfMk1AkzyUcxdUmsH5xeXnwwkI2FzqiBOKRKROPSPNnNkEI3Hb1W/20GBHUtfZuk4Cuh12+YjZUyJQ9JJtWuoQODfmspoY49Cyfti5T+pN0D73RoTcTYFLewZL9IMISKwtsaXpQyMw6RfOS1whQ3Gws9PxMwSEgmf7/zo2Qav7V5HqJTyIftBuV39NQEdEvikUejWBqKdWgJ1rFZzzadpjmElAHR6dc7JZTTA6oEDMu58Do1ynFsy6COjvzGD03Zhm6Izc4Cx9XAiSj+hVQo+IyGpUeMrwdzMUkF10Toow/MVx9UhpHRHtk87VM/3UDPtcxFpCRItg1G4w8lIuETlVPL+/h9AMKxpnE+/5FUCYqfItLR8iatdbPrYQ0Agjo9Mf5/DlsC5pUiuxiEeR4gl/co83wtHa4Kovs+UQn+EyqZONR2kDdi5Rwo2gpBOQTfhRBtjV0xZ1hXhUGsPxLEK3HV5kvzanSvjCCD3XNoWLgiz6t0bI79qAOntqoGqnL+ifKT2zu5WM+IL90uP8GHzwvEfH7loFRCXOvPX6hUfL/3z2C4mlgdqxOx7HvcuASXB+uIMZg5anB3anVqTCzM/sn5YppfBJm/2bHoN/LNm597xVTQf9Z7ecXDpLYXzP532sCbHISN5J0XepDTo/3O+MyHACp0t1JseHyagzKtmx17gdtDiiTvONO4CZhCmV8xgF5QeJsQxa9EKyHOV8UMtTENvhKTzO4I2yIo7P+7BpsHf03Mvp1RLg8+EgpY3GogdHTlxvrM4H9QsSHBmFjaDJMepmgY1Gn8Xe1yjr5sEa/o/MPa1GeJ/ivtOtPBrJmr36ezG/Bx4L3M0ol8sBa8970xIMjzhT7dFmKEeHcydna9vESiGnbmvf78NkJBu3NplsQQe38C+nK+JL4Vm7Xte1UhJyzZOWt5ntgc6zDq2/r+bCPbdgs9t5VHQ57tfu/Yz1N97OtrVazQVa1WLpjiQqKr6uZJka0A9nL2R9ruCsgsq092ZyURT0rOwJ+38+/cCpL7J1QqkShuYiDjGRKYiF97327Stv4F3vIu26Fg16TpoVbWfHoNabv/+7LZ0B+yVWLcqf0EBw5aPdZb1YNLJDoXexPgNyao7kkX8jiMS3S44ej0WfKhW2KtL64dH3kvxr1lVAzN425lCjoDsOMjp7ZRJgpweh8YR5DgReLBJOEcciz2OxXknGSTBoWzKosZYDmjLN9l8+YdDR+o3IeoN2SN7oC+s91AT13Qb36o9QkGLS0LFz4e3wQbt6XgDfCNlH2s5mqFJQjfq1jJV3DL8ON7IruFUNO37tN7lSz+i1viHNhPsImPbKdQ9aVMMYy5mA2w9x6OrpkdzAFwi6+rl6i3ZUgkVl/NiVEByytH3ccItxP2DUcUhfuRLama/+mhvAoWfJT1Nme/rhduLgjfWfRdBzKOGxIYOTR5Z70+emGfy/trbocqYI7sRO7DxXQkajTVuWB6R7oGKQV+ewQjGU7i1N+M54XpioR6fDeXrgRX+a9vG7RRAytJURkktFC308TbHkt5Cj4W4kGpUNr3qyGvg24pDgzYaifqm3QP1rdvAFNgdO//YSnGqLQ6KX/33bcbEM9Cp4xHrLiZD6MtTDVyIG0TvmHcSKSkHtgECt2xk8CDZ6nXm6FY1wpRVfjdfLwOLBc2uaOQnmWjh/FHjEoJ4/n7mC9pVCt8OJ9F/mWMCYVF7iYvDMtM5RxVinLpj1uy/lNITAeimiT8yIirqlMlq4KrqgNoqj7KsgDZTjLOLT71ORzG7aQ1lSH8wuksjLdViwsK70L1yLQws/bur8pPaBsYn/y7s9RGBpUm2Q+x2Hpprxp89b9kFBbfTIA28CmFb//b5PnoqEzkX6Bay8hXtRxNbxJgTn7VR7HE5S0fWTZ7ydWN+A/1jGN5UqBKcifx1nrotBobwzNem5WVCu32Wk/hNBRPneM3rXY9CW6t15jE8jVM4eaO1mRrBmfKPx4jwezalpyF/83Ahj20rYnTIIXjsrepPOElCSJys3GdMIPSaa8m/CEXhGFki+3cajqceevKi4EVissjnf6zC4jiNPqekoAWWYDhIfkJuBN1dGN5bRw7os2K8NT4jo+qnZLiTXDNYX5Lwm2qgwz//95X1ZImKp85pxfMq4/hTNpn6JDGYBC3SF+0T0oGvn14sWzSBTkZWdczwRDj7xabtgREQ5/nICHex0OPs2K71rrhAUzbpV5hk+co/+Vfnxvm4oEA+qkPeiAS1sPTYtiIrqwq8VfQqhw+cIDQUmv1q4xv5jJsuKhIxvG9fMGdEB+sTGZmgMrnM9MXSxl4T23JJM1zSlg/DiPov72XVwjRb4aVcro2fn0vusd9fDS//cpQWXElhajir47Y9FlXLxnU4f6uExyq/c+FMCZd5b3YaNWCRLVDS/Sy2E7U4u33v5RdBBf6v3H8MLuNLZcx8KMniodyffDnwx+FbnL2T/7z/qm3daMUIYYF09obgmlg7TTVQHfTY8avutKS3rgQfnC82qYvFp0KHWXowoOKRJ0RIulcCDyTXVJ5JvU0CY7HdzIxmHsuOWh3lRPTS9N1+/M1AMwyU2G7XVWCSUvLRP8F05KFWyGiRlxUHL71vOrT0xaJj9AYH5YgX4Ostxhw2/hrj68ecz/2KQEO5pkeKNcriN9yIJNr8GptP9XCaUGMQauqBO/EmHwyuGNs90q4GdPXJUk0JEDs55RNfMtxBiw/LCUxfBuTbtSzo7qGgbcybo4cRbeHHD/JVldgMsdE/8dOOlovgylbDXIgNgl35rTcatGoRanS1vqRDRB4UsE84kGnD5JDM9OF8JL2OrbZau4pFxyAHXA3sbYT9LOC83qoDC5Gb/hng82k1XrG3Ifw5N4HBTMSoLjBzvOeZ+wCO1r2JHlIp8IFGVV8NAPAvkfTAh38QZHIKtF0lurgTO4KU96EQd3C5Zo4k0xyItrN0fHdYq8De+qSJ4th6qPp39FTMTizT1RcZyGHltOyBSjbWoBSOOk4Jy+zHodGzhvDOmDhZnRbdMGxphhae5RcoUi/JNW25OedXDM7+HEpOM8XtPiqa3k7EoZuPyZnNOKVijtmCsQx2o+4vyvd+IRoFT+OAV0VIoPSmU/WS5DuRPEMxd3kejBuWxN3NuLWBv2bfjVFYeVEQ1x+3nJiHFWXG7xV0tIJP8Ja83MR++w+o9eEtEdnIK0ddLe2CjXW/GZqMEZCW8ObcZ3jTaynvW7RujH33s/yzLlsCH1fZgHUbe+t36+Q8v1As7gcNzbaQERn7m4He+oaLsbrYjf+KqQTtdX7s0DgvYiaoXyB6D3sc0Ru5uqoI+G0/tC7wY+GzBwqMnikFjj+ZD77hXg+a/hLfWwZHgG1Kc/9gcg2TfZTiNveiBU0LN7LHfi0HqwrvbhYx+N2t6J8FR0wHU5ufmp6/QQHHpyKsXWxTUNVX+TlG8E1Re2HzV9qMB85tNG23VOPTyg5zxwXcdQOT5nVBdTQMXS7yqCXsc0iSGf2wdjgbDL3UaWg3VILlT5aedNB71BbXkc96LgCh9u0ncUBWEbrvcFLTDI3PxHz77hmIhordg71pMFWhizPGyB/AoSWO2SBFrA5SzrO5mQvZgoJnBc+w5AeV2VwZiDL2B9wPhwlEVNxD32HqHlScg4a5xPt8yO/ibLXxIbcgLmKQL1nX8CejPviTCqNUAtGtezPCSaYKrFtenp6YIqFD1QH2LOGN8cF8qL3sTcHgviz9QICI52fb9xDsDkIrzOqjU3wjxnnqsFT8I6OvNtL/PHtMg5YTpSmxBDEjLfKs7L4dHV23Cx4zP0kBUurhTVhUHdwbePwtnwaNZx1N7u47RIJd5NlozMgZ6Q66qH1vAoVeJTcuH8TT4cWbmG1M8Dqh99t0x2oz9kf3G/JTaAhlq3kxsr2mgQvdXb1YioTtvQwTzBluAxcBy+hbQgDcn7ZmXDQk1JK6tyC+3QIx5a7leIg22/f3rp7xJ6GyTDPu8fwtM56V8fapAgzfMV+Q9BEmoVOvtsJxCH/zhbXrg97kOWqh32QRvUJHqpfAjX9d6weynTeXQ8zrYv21xcm8AFb2dWCz//TEbNLeub3L2pECD86Rf2ZEY9LzqndZLp1xIqWPNNORPBYmWdo+JgWiU8lktW00uBPhfuw4/JuVAuVJGxPdiPNKxDjQ/Eo4FlSjpBjfBOnAuSq5lG8KhJLvQa9rK0UB43nWU3aoO7m81SoQrM/LEraLjiUoL7J3Ns2tTrIOqgdaMzAUi+n1Oifb2UAscIUxZHPzBWL/Q+IeRASLqn6+abhtpBjHsb/sNvjroSiq6dzWPiOKOJ48Ml2KAC1r+VKzWQc5+h/GwPzgUfiKYTdaaDvuX+aKVO8gwvPImpCKbhGrPK6uM36dDzOSgKd/kK0hv/5WJpZIQRZmN78dtHJxYWvstEItASPv2R5c6HIJ8tevBH7EQp23LkrsfwTWujNXOHhwSu2nynwyVDuFBx205XVLBQM1eMfYsCXWaRat3CrTBC3dJl/WPweDqGoqcdBmcX7p523msAWb+qJk+022EH5LNCkQ+HGKabSp69YEGfOuCzsqlqeDm/CbN0RuP1O8wgcI2DeysFDTGr6QA+RaT+EkCY1xh5ZiyfCMMC/rKsU+mQufx8MTCajxqPvlSc9i9AVaeftz17HwJyNdF5HGtYpFEPTkhNbALYkLjVH+NJAN9mJdHhvE+fB73f7Kl3QUdSr2ObuxJ8CnKfVpKg4rkDoVUxvM1wr6NkYIGKAW8X/GVVYZnrYZk3dI2bISvFtPKNM4yOMF3+ZJ9Dx5p8xyjxh6ohdrmAFW3n6WAvqHp1kEMOl6a99jsdg3ce3dk7/WqMlDNuhfCnYxBumUvJfKWq6El1YyNaaQUKq8cn5R5jkG3FVWUm5i7QHxJwyBdJhm2DU4MeIpSUSnLzu/NUh2gvILjZ1kugrUj5q3OGRQ0xVOfK+XRATiOVREr/SIo6eeW2+qloH85URUnozpg7x/v8ZQTxTD5L1PLYoyCDnh+WSzYnQN3eN/9VI0shui7ni6Z+2PQ/gVCXPdCM+Rdln3J01sM1P29CeM1DA8Vtc6oojWDUVBWm9pWEajH0+rj4oioKYelL92hB3a7npu7wVkAFXeTg68zctX//Hpyf283RF4l/XFczwMpP/lprXQq+r2Vp8Pm3APkwKolGMiFy8ZcY/aM6zEEwQNOWx2wcS2/4fm5YhCwN/r2SygOXXRyn7d26AS3pipskziDzyXdfDPuxqHNWNzZM7yd4DJlu8F9ugQ45zTYihXiGH693O4vFQrWh+bG/WgMv9tiqgtLwyO3sTIewgc6WDkHNgb3+UBj2U4NnyYiqvNY3riZ0QHXF2RSd04Vg266q5LwAgUFDohuduRHgZvxnwvbzwKA0PiqiuMSHmXzeLX9b/6DaVb/N4+t15H/m19AVqkwPIUOnnuPHlh71Qj/Dyo8LY54nByadzzV7/vHi1Io9aFQJFKSmVJk1JVkZZZEoSErMkrZMrIdznEOZyB77725z7FlUwrZMisiGaXf+f7+vR/X437f7+u6r9f1ej7e73zTmyo/hKKRGrbvGOFjH/g/X5hwp9LgtUm3kktDFLq9eXA8T6Mf0FeynscBGtheTAxt3hOF7KWFI6O5++Fb94x1CC8NZpecbl/Xo6/rvly4KdEPZ5NVzPfgqXC1tKJrj2QU+iE3m/Rqdz8UKBrnqabSwO+e0L1Y5yjE+lVuOyLDDpoS7nyVqwgEIqeh0xUzAuJ7uNvlwZA7lCkFPzYqDwD+dM/cOk4C8hV5+dTf7jXo/vDJrtSJgM25a1LbsgQUPheacqvXG0JYdaVZ7nmA/oXmDLNlPLowcp+9StMZRv1ceDEJVEgyoCrGXSQgSe0K7U6RfuA/elBU2jkcmje/2D6RjkL5vj9Oqfn1gkuZVFq4GAGgt/XcKR8S8ioSGRVdDIB7T+7s18yohS+lSo+iyXg0pzXmdLQlAHYVxf/Wtq6D1Ie2NrkxeIT9z6zEitkH/pPj/ynLXwcNMgmzlt/wKND4ZO0QJQGavk5YKO2lQuVzpS6jdixax+/EBqj6weHqXEaVvfVgOrJnVr0Lj36yJYnu562AdBXxstjgKsiazt0jZhuBWAJM0qLxTaDssXtdP60Cbl2V3m6TikaJhhIDt3uagKz4IzQ8tRw+Hd4OcjGJRvZZJ/mxD8pAW+4lTsmBBs3GCcoilHAUb4F1OlRTBuKc4mUv6XWPXN79hakxHAl/8jfEppbC+4jvtytbaJA/v7y5Wy8cucQWFPaEOAGlx9pdjc8bXNfKF32VCUjMiu3Bxk0q1ArKC6CPeSBeLbPCegiPjsGQ3WkbKkT5azJuseTCgMbYy6ZzeETERAjnGvtCd0x+7pk/NRDyaol0ZhiPPu1KxhzNcIFPWkWrnx/WwvV/qwunRAko8BDUDlzqh4EHai48ATQI21I84ikYhXLrazVluDrA/WPWsM3JZOgQQgUl5ylIWw0juf22Frb5Gv8GejwHyznzS9Z6ONQnv/Ex6lAtKKweqXLHekHJMU0rRlEcuoTLF9vFSQCa9PfPMFAFRbdWlNt9IxG30phCzjMcBOW3WGsFVkEcj+qzvyORSOA1lflRQzoUZfz7XV9cCT5Fr2aiusMRw0xroHBpBox62vl/fl4F3nf7pngiwpG6Q5+rlnofBFnpzDzwzYCUrzMRnmPRSL/PQDbSqQ90RfoMrD5kwFfeCSPVt9GoODD5LsE6E/58EIgOdakEv+AcIX+zcPRUBTsUJV8HZfn5s5knGuDZrw93/wvHocs+GqpGbrVwIKY84JVwA6SvmXfMa+HQzoGrcZL/q/v9S/FiZxtAWfu1zW563dfUXoR6ifeCYXiytRW5EATEjpXZniQjA4fkmUvPeoGjbIyRcboQTukt4eILSYjrv3lnzofvQTpEKinapBSORDpKdY+RUWbx9CWLjXZIvYO/ITxUAh6vFBiZcsnoqr3ePQG/9yD3Oe/TTloJjLCokWqXyUhWVWjtJnMVKLlf/veHuxBO71I/Za2ARUxPcN0U1ypg2l6fidkuBKvpoW8SJlj0b1zGqjW4EiyOvAzp2V8ETuwC43zcWMTnrf7Ktq0K7jN56k6ep8evyarMOGGR9lXuvos3qqBLPK65q7IIysRoVFktLNItmRl6eqkO9lpslFyvqwDzYCmTnVAcCs+uk9RTqIUHvmEtb3sqwElBizH6Cg7tH0ieLpqqhbWN3W7f28tBQPEmW60DDkkM/Ljqy18LNXwJl9Ury0HLUCvu7Xkckil40WrL1gMhQTq3jn6phkBhne97X1CQNb/UlcO/u8EQf/GaZV4VpMiqnsB5UlDq0VnCcdUcOLHlh1F9mgb+0yphBz5jkG4E19BL2xxw+9VU+fJjBoRfODsY249BspTKQomQLPATddfijEiHyTK/f+VnwlFn3WHderkq4FvbStb48BaGUw8GUjWwaNG1/FgOpRK0T9/ctbs/CLiardtHebHIRX8M+zWrF7bihZ86atAgZsfB20KKhGqiopY7frXBEbnrvC3naKCJ2Gu46Pfh8Us8Q8GNdtho5HWtmqZC15G4zyW3yGjJ+fEeYm8cNAW9b5r/5AdiptKe5Ms4FND+6uekZjvo7ErnCGiJAoz+ucBxXTLiTgn49+FJDahlxGwVClbAzFhVyotVLJI+xvDU1agGsnA9HNEclaCWnP7cZRmLNJ83cvwa7AGGkJBzYeLewBxzq7o5hYwOGOFG5vjLwSms41sW/fxB6o7Vgyvh6MC7xgXu8mK4OvZkaaaxFCTU5oMmKzGIHzN7dny5CCbeBhVJiJXCq/ctPEeiMOjI/sy2cz+L4e8lH9+CxhJIkFUbCGvBoOfHlp/teLbBBp7bzloYwZKm90zbIAnldCrj2tvqAMEyN2MUFjAiPrF763CoUZX6YVKkDhKqvDbvU0MB739xzjUIhypCeHHBUvUweZKxi3EriN4HNY9MJ3CoSMTp1n6hOlBTfWbS8CkStPSCVYYCcCi48Erz8ewWum4PRj58RQXZQfzzrUwicsj5tY/5Twt4WRlpcbZR4R27jabfOBEJptd9cnVugW7tkU62DXpdPPe5dgQQUbHx5uG9f1sgPmMhMUyMCh/CjkyJThBR53HzIyUBHRA+dviGWns+RPpIaywbUVCVj3jJXeUOuOpC4/EfyIVRuxxZSSUKWmUwjqiidUDaybC1L4fzoHBdkfXycwo6Xv1EKvt9H5zsm47hGkuCTzb4bwWDUWi3mGrxRG8f8BlMlDpoJUKyNYUq0BGFyLnSlxv+9YGn4bcUylgiUPi1rN+4RSFpdjHxvm99YG19vcHuaAJYPlivjCVHId6XhormZ/rhJe4wWedRMhTLC+sNKEQhixo7TS75DshLVrpxZbEADl+eYCy4SkFihn/lenbew+NDr6MrG/PBbj/a+1GIgiTlvW59LGuDqqW8dzd7SoHalaG/a4uEGMTvPmMraYOhPlqJPHMpkKTPfLm3QULfS2RaurjbIWPujRGLTCk0SoYY3rlIRrb/mqIy6X0R1+exvBtKgGFh/SwjvS/yL0m/GhShwlrIvWllBSps2P45SNyORDlF53X3jCNgUnb6hv2JIKlRjijUHInchMQn1WjV8CQ5J2auiwL9nSXFXxEWPcW/CLbPrQYWs7MRZ3bigLZvgmhThUUxJl9+dfFVw7U/Ea+dhyggJm3zNjEci65k5QQKzzTBvtsw+MkkEupPtfywso1GDGv6GduSzfDc3MXPJZsATEsvzD4nRiM2qt3e1uudkPd2UuqUdxEw9XC7z2Mo6N0xu/FNvk4wNJeTYHhYDHw2meeFAygIY83KG/qlA9aNDg/bDRcBLddxieMVBe2eXhG4dbQZLBoFLM6PIHBYjWvvD49Gy9mefISiDrDbm8rQTCwGFZvKlatWFFTyo3m8ZAtB6uefbR6mUfD0zh0Zsc+RaP0p9qPQQi9ES+k5MokXAP041no5RPTfc+1Ybr4+OLBz9417Vz5MSbT7P1YgooMmM20v7vfDnoMObaTUKkh6dTwk+TsBGT/500g06ofZGHsr3YZqcPj6cLrnBwFJCbLLKcj0w4szVm1uN6pBdCM82lQgCj39z13ldWgr6DDUBJ3OLIevVujrsWskZB0k2P/xcylIvj5IZTevg9+OIh8umIcj5HKT8/xcCbATyZFm7+pgrY69cRdbODo6urD7pCc9XidRLrC8FiJGu7Cj18ORUlqG6JXbXZDBqWEmvy8ZPkm/jSvMp6CPXwb1LomUAPMQj0SeSiVYH2d5gD5g0NEPognqmqUQ8x6puLhWgk7HRWOx8+Eoz+SWkJk9PV7iKpVBoQqElU5YDc5hENPgYBbZzxZ+xtTMnbhdC/9JLX41sCYg4cDFAxqTZhC6tyMpP6UGrodcYLjmQ0CipjJGW9r9oH3XsnzILRk4+Se+pu0Q0I+iVuGzj/rhafjxEIUPKVAvw2M+8pWAzg+oB6ZOlYJpHDezmWQ9cPQuHT5sHY6WdwyNs/y7IHVVN2uekAg1C55VBQUUZKM/o0qMSAENpyvM/YZU6MsQXJMajUBqdtGOO0ZZUKJ5Z5qgWwLHcnpWTCTDkc3xXEPxrmxgL/ZTt5wphg8jF84VL2JQj8Sn9NyP2eDU9aXQaKIEkm7tZTRYwCDQUByQvJUF2Pd4OU6LYljV0Up6ciEc9WdFT2Zo0cBp5kPPKaZ6kLpBc1/txCOzcP64CF8amP71uNh7oQ7SHt5YCl3Doxc28J/WhUgI6lht3nkXD+zzz0/N0CLRQshK9b/9fcB4f5+FV1IJcJtcV12xJqI4iwTx4ad90KrMpw7C9bCZqzF+PDUa1X7o7LIzj4A89amAMiwJBuJdDwcfxaO3G1Trz/WhMKwcodzyHwGC9PdJturg0cdp78mCv0EgQ8Vs31gnAmvWvWE7Nzw6V28XPBDWB/HKjRLzrxCMVtf8eH07GtkSqqR3Z/WB88pzrhY6F5TIzvbIcEcj6odUkDncB7yqKe9Y0kpBWn5UyPg+EWWyr5w+8KUXAvLNBBvESwG3p/W5TisRRd5wxQRP9MI0M4HKs7cM4tbipmrqiOi3rAdL42QLZHGUo7STOCjRlcvCdRPRBc6Xv713h0LdCoto7rEGaD93q87yAR5hFpQ2VvP74NqTHYVSgg1Y+ZdfJx2IRuXfpaVX6Ou6u7KeNNLj2WMnkuPo6/uXs9w/0/e5MHLq7my4DVD6th48oe/T3lG1d/BrJ+yaOFj6eU8K8NuqwFw6Bd3WWfWmctbCQ0kW3/GaPMg3KxcxFMehzaIJF3bUB8JuTt4ywQj4OqpP475FISxDLMOCWx3YfbB6E/mMCnYLBd5GyTh00WBE1YDWCN5MrN+qOBIgX5w4x0qJQt+k8QbWoe9B1PHlxPegHPinLewVsUZGkg0nT5vvew9NiVQNnEQu9A5NPM8sIaOu74kDtSGNcOOonq33IhW2bIJb3B2jUCqF+jLkTCPMJnB+OktfX7XqT3M5G4WUSnOL9iQVgB/DCGdmrBUYP9sMbXKg+402j3KnuEI4cEWyuMnUFiLfy7489AKDLie4UMfGC8B7U/7cG0U3cE1OHWWwx6CwuZKeufRWOGIidpDxQinM0H599dMjIc7950yPqLUCU9pZ51sadN/i6CXDyEFCzvzW1NlYP8C1VF34JtIAybb3mCPb6PWyW6VyL/YBaCnoFStbAi06a/35uyi03+HX5o8oP/igunKo4ZIlxKmd/7BGjx9rvOatS4837KpbFRZtgJSLJSKs9PioaqdHHYuZEMm3SHlypQHi74R+tVcJR5OkTFElfxroDivJbbYEw9uYXNm363jkb+8U9mqBBkU4ES/fzmAQk9Q3CgQCCk3UTXHc6ILWZjZlbesiULjMEy6YQ0Gf37J8iznYDf7rrVc4Ewvh2dQeT4UsCuKpMk3eMOqGwzjHkhNMRTB0qXnVK4GCyAqMq15RXbBwMLzxYD09r9b17gl0/flzyF63g7MHDIOx0nIMRYBVD1rwtqWg+0+4diuy1sGVDxwa2MZM4E8xkZ/1xKGfD+o9mYsqYIfpCNXPqAKKNyx2FKsi0B/pk2YWWpXgG6QdJXa2ElL2XwWNfVi0cX6xSyyuAn4Ydhta8FTC5ad3Z8XzI5BhSoybzatiWHY/xxbQVQZYaXeNuzkYxHJH1WpFvQRIWs3v77uXwfzvphXNUQwakWrmCuYvAWJajjRrWDkYqcnly9D9PN4mk/bcvR0M/pl87zQuAc5jLurFz8ho1jyl1DY/H8Y3ZxYmC14BrbKuQd8bg/7tF2wNdGoGg1Kh+VvOCFQ1DaU9+qJR/Z3qJK+/TWC4wj+ubIHAk7n/X79nNPJRKrvkgGkEI7OQWJOqRGDIpP58+TIKvWszScV4NEOg8WyH9DaCrCjb+bOfopGZtdDolflCaPtX+YHrbC54f6v0yHuNQcXXxnddYC6Ey/bAmX83F8jbUZPxdhhU3Xqfu+AJnd8YB1XuWWeDqQRVvIN+nzVvXlV1iUGQEHObkOBPAq8DQR/9oiLR8fCGJz7sVJhaObrx6SAZ0NLxPWILkSh6/2UM6+9C0G9/k3K0NBNKPwaaVDljUDNH7jFGkUKYcSiyp8xkAi4q1rqa/lwBvw2TF3gEH/+cwxlZEMC48jv3p4hIdCQY06TSXAgSnUK2JZbFkHYw11bXCYM0wuSqxkWqYLHH6caNVgSObbpkQRUsoojuqth8XA0MTNT8rzmFIHTGIFMgGYvOHuE7xUX3DaaCVVdaAovgaJaRfS4Ziwqui0jQdC1Boq17SmS2GN5pgOi4MwFpFq+fKXhdDZ8SpBm9j5ZADdt57TeZWCRb/Le7yKMGWLDfWo14SmAq8iFn4TYW2f93MXo2qROMfX6HrXa4QeyuR63n4yko5EytmbdwJ/BvGk3ZiL2BH30Klx8FURBfUk1KwKNOCIvbunnO5zn8x73I8wdPQT4UFnj1oA3MmZUXLwQWw1t7yeR8GgkJqcifUquk+95aK+y19GKYXI4582qbhH5nO55je1cJp16bZ+u8TocRmR9f+05gURYbu9CpoCowdZjOeHg9HYzWVm+5PsYihg9WsgM/28AgwmsWJ1wDVQLHSoxPkNFEQT9fuXA7vDFON+JzrIZ7IpN3bBXISCa5LapdvR0UT+4usKTznMxMeqOgDhkNMlN437S3wWnZ9HvDd6pBVm2RN3cvGXXcEZZRHwyErXz/+6zzRTDfHDzfG4pHBYz2HG6hwZA/nvFAj7MITGR2vd50xKMkFj5R5ckwyJeKKC6kxwedfuwxrohHS4cw3mHjb+GyXn49ybgI4ptKtd3K8SiBXZ9/YLYW2ozXrb+nVkIJ2vua9wUOLW8w5I2eo8Inh1jLsCIqJAWu9k9vRaIk4Rqq9VUqeFdUONzTocFpGZmn8cx4dM+tMf2yNxWclozbv32jgn3patKqLB7lwlBNHn1Ocd/KVhm+VAJcX8WXLJeikGXFt6+6BX3gb7tzZIC9FC4JzTybYo1Gep/bjbgj+qBfz1og9moJtEqpFYxpRaO9N+JSbn7uA3mD7ODqgRL4uxl1O6guCqGzNdYPpONAgGD8M+BkESxyqjJNaOCQR/2LAXHDBPil5LntGlwERO3V9LdDdK4/tzMWSoyDa51jr8pZimGLbSvz8FUcwu3ekawRS4DFTR6eTUoh+IS/kRaawSLXQmbDotg4qCgj5nYeL4Gh92X9Foo4ZBJ5tdhHNAYo5zG1Ic+KQcahqVMiAods/p3aXf+PDPGLJRK510vAW0L/C085DvEq6WM/Z/XAuXmXCmH5DNDXr5Y4MU5GTKw1cRn9PXDdP7f9uHYmtBf/XWnIIiP864SloLEeeC/E8i99VzbQeu56H6CQ0dG6Pl+DtB4QY9Z7kCmbBRIfp2ffzZBR1c2CU7fLesCBSf/BVZsccLw9xNHQS9fJHSWvQ+498OsENovDLAPEsqS5XTkp6NGRl4ICX5tAJ3/EVfYeBmKwpSw8z6PRB/FHitG9TaDsemokKMQPWkrPxDwyjUZ1P1zvtUU0QWTwR33BxGBwKPE2PiAZjaKYmqZeHqf7NMapC4juq3vLR95fUyai51r7NPh+9MKFN93/3qfVgPdkmW12IpHuhw+MFO/pAwW1f1dn7tXCuzbfossviWj85I35DNYUGBTUcKxnjoNzG/La2P1YFN7s/ji6KAlG11May6viIOVoaipNB4uOz7pz31yNhizJjBWJnhRg/NiwJcofiRhdghMDs/LBQuj+rMPJelieYVWLo8+FqQDK6VCmXuieV9KO6KyHWXNFDfuHZETUkTmZK9ULSmKxT3QS62Hg86SnIjcZnQ/I/254uQ9cTez53+PrAet6MIJnPxGJYxqMkhT6ICGh+y6nbx1szVVvULaiUZ5OBJuEYy/wbBg5O3zJhGIO55O6KXQ9ifaVMLrWC+WHTEO+6mQB3/MhguEuMuI9INiirdQLZR99fpjIZMBSUdA6F11/sIXFQi0svbDXmLsm9WEmrAhEeNYYkhHL97vMFloF0K9dy9w/nwQXRVwEn73CoIqRXwoDbIWAZ7JZiTFMAss+Yn0cXf/Xi8WtEnnzYfbuealgOtf8fNOJGQzGoBRiWtCf+S740fRitxSlFgwWHvtczaUggWbvhL9BXcA6sSyzMVkLT9mMDhXS/UNgpBKHsHo3iPTca7Cl89Qd5qzE/ckUZNQut3/6TQuwun4+iV+3g7R4ifuYMCJKiivtV1RpAYF3LB7jVDcYXOWV+PuUiLxv4kLu8dfDUAkXj8GBBqhWPPzCcxiHEo57SLyl53eu49f4ciENLl593MDAGInkpf5ePXikGp5kp+uak6jQExSkZxqKRc2elR6/hqtgSGrtGyMvDbqPf9B86YZFOLyAVANHFZR08pR/i6eC+auz+Q7XsMjYW1PE1zIJ3OXZT0pqVgPV97QP9yMseqr360/DWgKI3PWJPeRdBWUX4t0/lWBRurKCH+efBHjXWyHj4lsN2kJ2R3mLsWg73ePAY9Y4mN0KT8qhz/lypkFDKV0c+mKOPZ2RGwuGBl7DztIFIJFapGdmjENVQ5cN8uviodWfotb9pgDUO4MZb27Q9cTzxXCvEQUudOWw4NwKwe7cYVaObBzSYwudtRCkwFtfn80z4UVgN/DK7l4RDrWupQU5HI+Cky+uVfYtxwETQ7ff9MNI5N/ZLvaplAANclu3+3gSwSPn1h3z55HIuZiiGPStDEZcOJ101xFMVwUaXBsKRxnRj8+fHiyFiOBoguQZKvBmJ7YKPg1HIal6dlzhZGiwvMNu3pcCwjwpx+8249Azpr+MFdIkeLEtEC/lkAyr0cl57Ws4NPpCzvjbywbgde485E3MhJryzULVVAIKr51nuSXfAAO8WyfMlDOg23rgFtWdgNgepwxJZDZAR+2C63xLOhy6/dTmbgcBUcj6Xi/FuoEi+FLzY2MGyBsJJ35Oo6Agj9iWWtQLiY12YVF1RbAsLEA5toeE3EKy7iu2IXhyNbf7iWMBCLtclF0rjUTK6S9pQ9MIIFbOuXI9DwROBz4ktdF9VLzNpX18VBDmbz1halYAETKb4s9+RqJ185pPCkkdoBLCSJSRq4EvNxLnD5pRUCnrFxN3kw4YV5qvz1GohtvinjdcblFQ3HeVZZVQBF9v3hp4E5YPIwZMXBwhkUhywOOp92IPaGlghKPcSuGzXAxDdhBdT06xlu7pLgGMENPnwAepcCT1x/b43nCUfeXL31y5UtAVg7qJO+kwgPlybu1cOHKOfSZRpFACLx7GKTdqpkOkkeOlgiEMumU4XkFTaYYFtUGeuHdlsLiS+4G1KBqtxTzR87jUDGxR3YH348ohZfjVVAOduwlMvpdbVpugxsF40SCvDNiJ9vXjr6PRO7xFm1tOB7DVjNyc8okEuXnPqTsWFJSfkLk7yTofkox28mLV6T66ku0g8S0GbXum+8QlFkDHQ36ejCf5cCrKO66NzmuxSo/bXp0tgL4PmYHdTQXQfJKXz9gFg8p1Ns16eZ+Bel7YG/UdErxU3Fo77kBADt5rG06tbrD+ZY7xbEc0xPrSqEknCOhj6sWv8S6v4VsJJXTYHQ/nFn+t18gS0CGtyybNd/phLmV/z2UrBD+b9rHO/CagS4d5xEZ5+0GK4nbSPQ9Bm/e1qyYaUajgpY33CYl+CNoJDX/LTYUhU0bmG5JRyKRYjWmO1AxpCj8ujNwsh/LyDUvhpWh0+tHL8C4uKkT+azzpSyqDu2us8evfIlEic93Q8BiCijGT30uu5ZArdK+duTkSCT9ht+5rRqBZuLvwGD3/P+YU4xRKIlGHwT5VhXAEcXpV5RPC5TD01az9XFgkInLLPDb/3QRb8/fcG5wKIEF/yMLZNRp9T13g1xRuhh+uRzvuy+SD5tS6zqPYaDSV/9pbUqsZut46ZgY+LQD3Xys9MWXRqGrlgcDSyULgX/94+2QDXTfGbhVm0PWcgY9RXju6DzL3ZGFIJzNgw/aqyN1r0UgpPCl++HgTCL8iT5nIIJiy5zZ0HIpCfV2sNhOzjdDb/JFlKA7BL/OQUrPSKKSI/dcvldYIci1Ja5cU6Pc63vZAgH8UGpfvnlatjYHMhjNeU6dKga0+xm7eHYdc9ho3/CZEwQUkYcOykwTt/PYJ1jqRqGb9YDetlQIOD6QLrjxNhlzzMv1bsTj0+YrcjodBEyQ82yS88UZQ/0UtInNvNDo2cXw74HArXHzHlHPkRA2MPGL9LvWdiIw/eTGNfK+FQ2cj312sT4Xd8rosL51wSHqXhoBndjdcv9P/rq4nHfi09/r8xFKQ3tm3Bwsk+sDgBwN2E1sLqqt3TIncRCQm5iT0crgXRuvO8Y+b1EKSWNTxsvdENMtud59Huxe2atcutMiVwYeUzE9jMyT0wM9qljm4F4bEmB4M0jn0isCDi02vSOgyX9G5WYMiyDxcreQvWgF/q26fyKP7B0l9M+rgxWLAv5H+/bCtHP7tTnOUTMCgn/vUQlfoPtLlnX9mzXoFlFRt+F4lY5BE8Ib0EFcvpJTbZ4sdLYOlGOqutBtklKrl1km50Qum7WaW6wqldH46ZN66QUIB3UfdI04VgdLp6TGv/ZXgxsz25Lk7BrVKUl872heBR9JpBy2+cuCRlB118MOg49PbQcbsvaD52djs6tcSMCredZGgSUa2B0IVJV4XwtsLN3kvp5ZD6Yex0zb0/qV4GY2ITtNA6MH8SeXEYnjMbde6JE9At6sptBylBrC3VxpMEiqGWz7VSSI+BFTNdFhYQqMBlJ3FG31OlED7sWz17AACEog7HMFR0QsleAUnfWop3JwNqhPlJKENmeUBBbpuYy0R7m12GSgbYR6e3UtCapm+gQbnAiHPTCXXjJ7nxkBly60oPNpyIL3e/NQL9dyX3v7RLaHzelPhZg8R5c6WaDoGJcJPoUNAGiyAnjDpdK1ILFqkFWcn/pcI+nv6bjwsz4f+5Usn9uRhUbTUYU2r68nwPixWfHWjAHAXSK98pLDollvq/l97k8Al+DDZfKQQaGeWedErLLJ7wRueZtQD/IPq+pfHA8FO/ZeclgwF5X4K9l8I7AFsRJKPAoTAi/fXJkr3U9CJhpWKIeMe6KgLvMm/FQFBT6QFDaQpSHmLciIuKxky9PdMH2crghxBn5klHiy60DxXdj63B34+O6bufK8KJApuHJD7QkYxu/GUE8QeULp4adHgWiV048cexf8mI4ayPWqFFymAuf+84l19GPgtqcmIFOCQ+ugn0xt5bWDpBcfva9ZDX/a4/OQaCXW5a3vxZ7TBLvlvFsridcD4WFni8grdN16cXGyc7oVDFyePMNVQofj+dMuHciLa/VfTptuiDQp8WX6/PVoL+2bLVlLbSOiSwH2NpKU2YLh8NpFwshYow6U29cfIqPHMget+T3sA1zyp9utyJfyjmfhxiVMQm9na49O/qGDUGzp62J8CBn6HMsMxeDT2624UnzAN/O25MiX1iFBSU6MRW4RHnafviXVZ0+CTzrv7uqYU2OLvX3WdxCPvL4KMfpVU+E4t12dUIIFwV4mjwRM8StHfN3+zuhL4bSUr716kAUvnqT5OISyimWjInD1dCbpXZEhk+nsZCbLxfPkdgUS8qrYa+ipA7kegdoY8DV4NWHysfB+Blgzj/jqqVIGe+ae91Uk0GJO7ckpUG4u2nn7LeredDDtHc/0TD1WAUs7ji1WsWLRQz/aD/08icBbNZJ4yrAC7vw6Wv5yxqHc4+JvvlWzgazhnKsOOhZmWLYmhPeHoE+uWCbNgJuB+/W6zX8ECs7nB5nGncBTZGl/Oz50FeiFMhsvvgmD6GXfbH/qg0DI2T6sPSoX8zFC+IZ1imG62xPn4RaBu7Ug25b/JQOmUa64QKIbWr0ULFvTzOCgIzSoQU+G1f2DBlAWdZ7n65528IlBudk1B7nYcHD1xoX5UORPmuBLzL0rh0Ce2e75cxxIgZZthd2xpOnjWVe7ensciHekvYqOxCTAbnxzPxp4FXXcehn9pw6LG/kb74xwZEHvXx85hJBSkW73xmMpw1OSXRezLS4ZPWLfDrXdwwMS2JMBBv88w9iKxvTYRNlqOFSWQcfBoZ2WbPQCL9h2ItzyzmQhknrh9YVIZ4Gf9WzLRBYuUHJm3dUSSIOR13N4Gi1BILhnojH+ORSqMoa1n6HqV7fXgVKAJFahbSYVLdL0ihryvUdHthV+U7X/v9anA8ZJ7ZmmChJRCuYefZfRCSOxSctzzKuCzPcL05jIJqf885//7bS9IUmyOwaVqMMZqf+7xJKFqgUzmMjpP6Q4aj+B7qUAWZD/1aIvuG1d6LK1f9YJLUpjIf/urgJfBwUckloTy83cOtav1guouJ66Z9Sq4VfxryvMH/bmlumt5N6jgcn2ebzm+HAZ3zhVYHsQja9fJIaI8FaZ5/4TE1lXAPr1cJ/I+PPrO6bKLZEcFf7XkY5/JZVC658K762J4pEVYUNHsaAL5VGZuwfE8YHMPmiLcj0Zv7FOOTWEJgAwmpsxaMkD3+6KX0YtIxJb0nvlpQCSUvXZ4pxqXBYvPo699KI9E7Pp2Hy4PNoHsHYKIbHAO1BLWDj17Eo20YtyE6uKbgE3zhY2tSwHcvfSvPFQuGpWz12Tvv9YHISFqV8xzq2DAl8vz1a9o9IdVddYfXw1ZK6oL2aEVkParJ/FpERbdO/z8o9i/TFg/1zw6yF0DDC8WNFWVwpFPb1qvlGQWYPfPpzPwVIPYwN/D52TD0QhPGs2YKQfa1irKl3OrwfrZ17cfJjGIb8SFfPE8gt/qH0pOMLrBGdU7CTwakejpjec/eQfqoef11vUt8IZv5Mwrt49FovuN+A3SfgRXji3Y7MqxgyPBZQK+EpHouedr246xZrBza2WbLaeB2ZM+s+kTRGTwh4ZfOdMCwnttDJb9aCAle7s7V5uIFBW1WS33tQADtW1L52ADtDD+Gfe8QkQOL9yFvsw1g0q9B/dqlBucxvC0yp6m87tLYt+pswiOe8kY6xbT4FDO0YstNyLRGakXv0V30XmE+fFKpno1rMaQ37tnU5DEFV/Vm57dcMQpzO+RYxUEfOjgtqNQUNktpTfJmG7gdTXTrEusBivazh4VIp1fHN35Z4u7wcb0pQe2pwaosjzx+yIoaPqYy8uAqwWQuqwvfNAuHfDh81d9XmNQwqMfCzuNeZD/71j9Fd5McI/XCQ7CYtC12qju04p5oDc3EcUxlwaZa4kudrEY9MHWI+7SI3q9Lw/+lPbMhG+MQ5ZnnTDo4jppbHdZLvTte1z5OyUFEuWc3ghmYRBHtxlBbiobWlcqzGx8UyD09l4tgzkMMrhLTqXMdoHYbeafPccKwMvyurp1LgVh7H8SMya64J9vovfhfXng4PPnTjd9nbRn1IbnTjfMJDkqMSvnAxdf28mIRAoiVt69HtJMz9ukfuiyQx5ET/1ZwIVQ0JjEaNVQQCO4sXYvfvIshXsT73al2kUh+z0jjWlNjcDYevhpi24Z7GXT0XwdG4VCFf8smKc2Aq5sdaVOrxw04xyUV95GoSOVO+W+/D2w15Eny8CfChmmz93bzClo1fLET3ezHnhH5hWpsKaC4UjGFIcEBZkvqzJhlXughevZl95tKjhoV1mOqFPQN+HdARj/HmiNoRIU26nwZuBgoTorBVn8+nnzTDANCI73j5yNLIQG/q1/9zfxaPxgnoKRBg0o43djZevp3CPaUxL8Ho/aDzPrdz2jgW2gTnm6Rz6M4gqHpKfwqOJtmzPWvxL0bp2ND/iZCfu0b339wYlFVed0prETFTC3OTBDzciAn++FJvL6I5D5D79MqK2ASa7lK29JWUBQPKYtgyLQEad/vOs772H/apKFNKUOjj7viZgRoqAM/r+Z77vfQ8Hk2i/nd7VwSU9OlZWDgjj77a9itTvgePq9LvHmWpifi/fcpUJBrZ//eFRudAMpNFekdJkKDaWK3496UhDlkc7pP4d7IKKXOe7W+3z4ndxbZOxAQVf3H6ziNmsD82dd957LVwOPXBvpYQsJPVO/ucc+pg1C4q9YvBeqAZbYZXniPAk5P3hmGnCxDcaar8acPFgDsobfq3dlkVDJRLT5EYEyuF80H0tdTACl5qvnOnzo83H/3MGzTmVwieVE3FZVEiS4/WZOSQlHu5tz8oYC6Fy8lTR72SsJaiJJoq43wxGbfl7YlEo1vJ387llnmg61amtOHylYZGXMIvp7rAqqh88cssenQkDijlq6OxZ9vHnky966ajDQuz+8vDcNeKXOCuHrsehydme17qcKGAkxdD3BnA4cF/tqS7oiUFnGh/MvXAsh3Htdlt+4DOb2VO8OpvvklK/R0i0+BfBMrOnMsmQ56B8nfJF7gUHcDKfT1wWjQKp3MYxzbyVMWbHPxJpGouJK8EpdiwJeMS3BitVK8PhYKBCgRNe39IfFvKOR8M3Sb1ueWgkCm6XVkBOJhu4sid7AFMD0YSZc7t0yeOgnV5PliEHCRnt+X2DvgWVhDRYVdRo8LL3zA2tPQcujS0xxpxzB5+yPW3xnqJCs/jG+0ZCACnKukixKzGHBqP+2hQcVPDuaZm95END++1kRtXGl4PRMqfW2Cg1ui99uYNUOR3sDOPid0mhwwNfEO6egFC4O4QKb2AhIvYWTfBJHA2wJh0jZyxLYECv7KvEPjzI8185bztdC7xnzCplBKuRhVFySXuDQiF/0Xt7rtfD2UZ8HYwUVOmzI7ULyOMRrn0Saiq+FXI+PYnVWVBgd18pXvY9DYm5S8s5qtTC8GOFULUqD7ynLFuGKOFTbwCy/ztcKBT4p75m/hMCpXbLrHb+J6FV+x8PJ0Fb4/kz1/NPIMLj6ev3Yo2skFHMmwKvvSSusXbuK0ZfAgfDRObvo0yT0MINNScq6EQw1Za49eFgI98/3XNkwjEKy5KHbGq6NMCRgE/8upgjiF51la55GIeV/F0aQdyvAkqB8Ras/8DYfeiAoS0LfBrQcPW70wy5lLa8aLjwklvzVlDoUhWq01x8SjfuB38iQo9sYCxoeoUPFiwQUkxzJ859qC5xpqvQK+VUIglDRGm5ORC92DnW6FrcA8zNhj77WQuixacCn5xNR2zYz6ptvgZXAtduxPwuAZL95UmeAiKKD1fQbtVtBxbW79uGhWog58j3vGRcJbXJZmbtutUDO0fUbvAdrwdDIZcF5jIhW3sjx0V63Av+P6RnWSzWAZRYojZciIcrHLrVsn1rotng18nsjGWZYucVu6+LQo1Xul2aidaBWc640dm8KNB/0X04JwiGvc3t+pBX0QjBjVLFfQzEcdz1PwJwhoR2n1d8PdlOhXukPp/Rszv//X7H4JRKV8Z2lPE9CEDpzS9enMBuqwrgm7SmR6NnFvL2lxSngrKzVVWVSBj9OsvaSeyJQbLX2NteTJBArnH+WzVQKY5unt9UeYxFbllalB7kUFAvDbY7xpMCd973XHTXD0ZugGQ933R4Y3/xFEXVPg62Ox4fx1+hzBLQag+l9wbFvQ8BJPB1mrbza79H74k9p8fbo8R6YYK+SWA5IhWSH08+rrCnI88spDNkKgdg9Q30J8TR4dH6BP8UxEh28kEO1PIFgb8Sue/fs04Bv74nZvwqRKIhT4rO9AD3+d+zVT6MpMK13yqHzWiQqSfdvenoNwYukfPZi9QyIy3ggVq0fiV52cGp/ri8Ft6bHjyeGU8HgfMEk+4NwRH7wxL6ysQ8GRasOlFnnwYY/Oa9uOgr5m598x0/sg9zP1p66KBfmLprS8hSjkciElE/ZjVJw2fG7wNWbAOYZH2VOiYej621dd4uZW0H/Jlb3JqEIEhMTsCnzRLrfUz6fatsKt/y/FH+sLoIqlYPv9oiSUM9PI0EemVZwtdulsx5fDPurOgO69pGQ7hcR8qsXHfC3ay5/Ja0Ovo+6Ta7epqC6m5u/wrJpMN40y+ld6w34ZDP3N+wElB73zZvnLg1KsEOENoO3cJFdxfBxPx5NsB53fX6aBj5/chUK4l2hhHsicikfjzYltoUHxTsgqbP29pWzNXDWsPAC+QoFddc4+5X0vQc/mqoQ/n41tCzwntY8QkGXtrtjNNOaQdMjZrR2qxo6YpLSo+i+lGXZJnRnpRk0lgVWXD5Xw0nz5N/RIkR09e/Mdez3ZkgQyhvGJ9TA5EWUdEGYiNLHXY6FdjdDzzlst8b3Khhe+mIUwE5EVx5+HDpwtQsGHzNzz40XQ9q3xFfdeRQU/jBPZrayFHCWK8xlfJmg0N/O2moYjuLDkk9MGpbBmE8ptdoxHSpPuXHtJ4cjbh9P+z7+Bhh1vOvF9cEHtH4EKt+3IiCWwessL582ws568M5ZDxrc22556303CvGSDN9MVzWCJzbNAq9EA+/vS+nvCFEo+Y5EYORiIxRS9nsxVNPAfPHOc46KKFQW8VDBtbsFtHJ2dh+xz4Mt7Lt6Ao3+XrU65BmtVqjGnQ1j1siFP1h2zk+cJNSsH4s/Kt8Kp16Ea5sdy4cbfqZt9iwkFNaWixX/0QBVMlxBeXQ/ohhDrE79R0DdNqXNg1pEcH2ntGD+nyNI/P7Zs8IRiWTtXFvOjBCBo1XwsxObL2jaHP1VsysSEUYNd52fJ0DKHp7tjVBPUPtkPORjEYl+m313wDH1wrsBZ7FghXLYMPz50PwhGdUf7RAljzXA9Zz4+DSlSjh+czRUbo2AqtmVXEQLGmBnA5N7wqYKBlMt1516CSjvbFKh3t0GAI74g8ly1fAy7DjDx3ACkqHLzimOPmB4UNzj9I8GiNQuwaZPRB9WKpMVWfqA66lhEbclDcrG37DcsCQimD2y6/mVPnhKOy2bEEODxNZnZ7x2E9GPcWbmsANtcAO7avv4QT58VrJ/lYgjIWVh8kfWV23AmD9d5GOZD4auPDv3+kiI6iOKNb7aBpIsu1612heA6J2z21UFJCRjuK8lq7kPME5/nj+yKgDZCefLRyaikG6LxYK5RhvsNw/05bfPhey8lufiFSRU6/LCx6+gFSQyHfsroRguRd/1PHSPhP5scD7NH24BgZyPhvbCBeBZdja7q52I3v93P23fbXodu+6PrzsVAPnYkgL2GAkdvOjyNUuxF0zKLvfoSZfA5u+N/XqMZBTevsPGw9IL/82OaSUfLAHLVL+BTiMyIvM9nJqd7YHOZlBou1kM/IeMrX9iyChL4cWoulID/L7I/kLUJxus2w8ITnoT0OK/TFpiRClAqmVwvVEFuJreLatTC0f3sNgVRe4yYEjwuct4sBJufAo4LOkVjpb3rfR/E6Gf09p4g8ujEEwDRi3q/hERZoM1tmOhFdw7qrt/ZdWAdjCpR9eDhFR1OA08u+jzmoddS4nev68dPy+rPyOhl28iDYWWWkEtKdbyOnM12Kc85Rejc/q7/TmppZo1IF7t+2sXLQXutiulPVvConlndQ3K+RoQO5+o9rI5HQ468Gf4TWGR+Jkmzkw+ui9kzb5hPV0EvuEGpbIOWPRfr8AROcskGFirrP20XAxPmC7oCz/ConBvQa9DoskQ/erdSpNoJVy45jgmchmLuGSGC8t+loFboUr4rR8JwPmh9jVlJBztHFHavOFWDF0c4ue98fUgeex+jmouBkGLpaFQXhFY3deSvDlTDw439scbhmKQdEZY2ybpPRiScq9rRdWBc9pzHdoWGXWd23P0EiURdmzyH8c4V0KIVYuOTDgWDZ5IYTiw3gPHnZQ+BClXgFSKYcacCxnNz/3t/XyMXndDtknLC5XAWpZ3+iGQ0WeSVM/OoT6Ivvm52MYqHdiouqwf7xPRWNhwuc3tXjjiyHhYe6UCvA0f/tw9SkJH1//uyo9BMOmPRh8+zgVOJe7grCi6L23WOeZ6nAbbL25y/9C2BH3G0Pd5GXgklTT8NeBXIwQJkm80ijTA5UCCtF59FOLZuHt6sTcFRlhb/ztfkQvhT448NGyKQB/VSX0/uhJBY+90y6ORbIhRvn1TzJeeZ6/a3auePfD4S4HGg04S9Lvdcren88iV909medb6wKfItFOU3ndzjxrWosKjUEma7w2nhh4ot43sxFLIEL3IwlyGyMj7cUiWW2gPlOrLv+voiQWPya761j0UhMWbdzYtvIOnLTlXtDWI8DxaaFcXOw7dzAo6ZPU0DgyXsNXSBArsB0plpjIOnabtl6iKiwHe6IavaT+I8P6hxk92bxz6who2c+lCAcjTvdbp73SdTOq0dHHGINbTVFExlnzAxZfUeUg2QK3tS67z9Pp2HLj7A09ohd5RHabH+tngbtw6wXiThN4+XTQXtGsFaqNnj/NUJryhvfbboc9f9xDTLN2mVnhhd226KTUTHBcD5W2ektCNzSQOQlQrjF3gvjLyPAOK/GtHMun71I5JZt0h90JdIVas7B0CEMlZkbpLQnsvH3evLOyF10E6Gq6XEFQ4+GkbCJJQUaCZ8emuXri1qMbJGoJAQVHp0LdZIhIX/R16d6sZPGbULx1mSwNBk+PGFueJ6I9dygZHz3uI2Cl6Fm4WD/Vptc4i9LrgFaUzLiq2QoZO96nFi1EgKb+z8IGVhL6aC3y885YKaP0Zr/r5Bljmvsa8KI9HNiWPZyf/UuG+Vbfd2zMN4Hrd6+gcHo9Kek7ZaX6uhSpuaS2fJQQrChNVas9xSK72Tt6v460w55PK4htYAiz3XgwL/iKiI7nsthyfWqCtRWl6/WopvOJMKXvUSkT8/cuMp3ZXwvQTWktuWDms9Jgep01HoLii0n0rpyug4eywImtKORTMRC2WOkQgykDS3FnGViiKTpQ5+6cULLTElm/OEFHm4tS5nNAmuDneNlDxzRyGvzWuHxGLRk9j8Nwn2Jug9Hvojel3VrBS4LrANRCFAqlhuz8rFUPp1Jl/T5jSAX/l3PBQEgY9fiGqY48vAlKklvZwSAbk4LetBwIx6ImhSYHc3SJwFskes2pPA7Njf3Le/O8/w6qyuzp+pVBynucaz+UG6LAecxJWDkeG+jt6MFcLWvdH4tno3LF576Yd0Lnp1CRmzdigDlS85mcjZgthPChH8SARh2Ibn6gm6/SAadbl1qPqPnCg9wHPbaCgPQSOlv8660FQhfVM9UIEtC8sXpzkjEQ5xDs6Llfq4d8et950IwJET6hqH53GodHzT778R04Alw/nXHcfq4dE26DNlnYs0knIOON8rgWq+Pdr6AdTwd7Dse+EHv2e7Ev6eeNlC0Ta+my2/0EwcLayYcGPiJbbj3OJMNYBw6P15OPMhZAlwsFw2R2HvNcuvTrGlgd9E8XvmcIKoJe74MHfBAwqMJ1JE0U54D565o7uuUIQD7gpsNWCQcl2i86zi9mQhyumapoUgIlavdTvrxjEeJMW3TBKAxHuyQT+kGyYyuB7/FuGzqExYmrmazTY+zXw/KW7uXBjm4+zS5WASjrydBXofMrDv7V+XTMXaj0zJ27Q+fTUnha3mo0aGP5QOf+tDcHL3deOkgVxSIrTW892vAZe73lbxHqdComp6fFVPDjkNsj3+WFrDaQd8xxkya2GO9tx1b85cChE34GyMlkD+iuNEuZNVSDoGCgdykvn3AhmoRsxxbAryzuN8VUmODAwPfhejEE2ygeZuahFQB0NyLUmZsH1MbbqDQwGeQR/X5c82AiZA+3Kyb3RUGvqmJx0NAoNHk7wFfvYC4YiW3NUuj/EHKZIL30kovuv4OB2VzXIbH5sipyuhqvVTm7DjVh0+BXva6WNKmB5tDUgJl0NcULyOr/pehsaF3BxVagN1ktLSO9vpIFRTJelaBJdT6jXmn3etkGHOXwnmKcDhsr5t3aYhExWDubeW+4Gro/LFW1plfAjaEXG8w0F2adu3Z761QvYYfNhXU4a6M1Ze/HjiYiB+nt/D0MD7IrSI77PRfD1o7uxyW0C4r8e61o4ggMz5uh1pqU62BSP8zvRFYnWmsNVL1/qgLAXDNwW8yVgNmXX5aBAQVcZaGb+FzrAlTviSVNzMVgztTJYyVMQ63ML7q64DsC8rlJ5YFsC08/G+d49pqDvJ3/a9f1pAY9/2MMefCkwrKK1l2WCiJbyxDw+NFSD5+zl+3MJRMj/VCX5hIpFJSxOsjKFdP/wn+mzippoWH0V1eR3AIeC6ned/lRPg+7StufVsRQ4txw0byBAQJGmOT62WjVQ6ZXX5aaAh9PE67kpdL+xK11V7bxkG3yXxTwwxSO4LfP4gHY6CQVP/pt+Wt4Klk+XCVYFCCjbrhiPByQ0tWW5of+rFTj3u61k8lAhN2zPqb++JCS/YJIsUNMKOq5xMVXlafBG/GJUoCkJJapkjciciIHCisSXE3fegkaLXzsHDof+vjshZaubBNcvT1dHaGbBh/1/NcXNsagwaRbrfa0XwOSwg8lsJXT29A+z7yIjhwDuOxl0H3h3t7Uih24VKDaNuH8zJCMCy0Ujm8ZgOHfpjok3rhwMn7AvRdjhUaAinO67SoW3unrXuLSz4Xj9ssYCMx79w98fOavbCAcULkRaSSOYf1PJmakShdJs+b+2dzfCt+8e6en9GFiamJ74nByFDmKvnx191giNV3c/kn2PhanlEprU/Sg081/U2mmVXOj+TzKagykfBsVXZZbKMKiks+/YJaDBBrevf1MWFWYq/uMTasQjttehnwRSadBbOLb6v+8kZm5nFLsOEhA1OZ/UZtoPhn9VdJzoeumvL3uybI6AyDbymsK6/UD2Ej2SMFcDxH9Yr+0/BPTf7NNrp6PaIGXXCCuPVQhUv5Xf6ZghoSvRzw4J7m0H3QLDe5ZHQmFvjMDPv2fJqEZYrrddgAx5NQ7qP48Hwk9ZZ5+xARy6KKUu55LYAHzRVnWGshWQNPjZPreZgGjJ/93bo9kGdQ+TpT2MsaDPdUFHvJKErg2Ya6K1BpC/28jhbFIOO0+c1KoZo5CV4NHE3ZeLwLbmQPkWrgiungr5oeKJQT9Xcyyd2Bph7Yvgcoh6BUz5tWhiOekccSTd/9dwJzTtUu2+VlMC6nuO8pSkUdDPI5R7vtZdoPjh3G5Deh/txtqNmRZQEOl+0vAkQxeoGj74zdRWCiNat/ZlZVFQ2L+VpkC7BmD9y+WnnZ8LHjx62NuJBKQ5NDEjwtMAL5l7I69b5MM94yGXS08JqFNrY//Qn2L4IFnNZylVCM5YzLpIOwZZf761U5/QCiYEF8WBS/lQwUF2ntYkoVOcSYXtna3wumhM7JlOLuRlVDYMWtP1BEk/in/VAk9vsnJlny0F0VXTrkB/IrLg+L8Ozjueyvf/4xFaQtJQRka2SkhJvDM+VDJaQtlFyCiVkJ2MzjbOOfbee+/rHHtlh4xEJWWXQuR3vr9/78f9OOfc57rer9fz+Tj3fWL8pupbwG9BIDTUsATufOSe3l8RhXxz39o2iHSAnaxDS8mLBLC3e/jhG52CotC7m/P3OqC60FOk25UxBwFtNi0TFKS6w09a6Xc7nFowWj76IAkefVMpm8mmIJUl025eqwaQ2rUS8RYheCy/qalIZnjNd/buIxINMLnn3JbvNRp8qh13zXscjoYeMzdmRTG8eMbno6AnDdoNE8+9qg9Hvs410epddHjo2mTZtY3gSah0lbh0OFIRKT7zNbcBzLI1DaIvRoJpCEd1e3c46gmfPfNtpoHRX38OrU0T4M7kMazhRjg6bCOqctu9AYJuT+5kssUDfdyjzT8jHG1yC9nUqjfC7oiwpfDL4aCwWqU1rBKBTK/seMBMagGWtyJ7t36XwrXjxQQyJQoRlw9QzdXrYeS2+obEwSKo+Xm+XWiGgFikhSsFl+sg5XEL350jhcBhJWtu3UFAx5+a/OOrbQDBJ1aHbT/RQEyqFbPyIRy5e9MGQaAXiq7k7ct7lw2piJl87AIFObfYnljh6AUhna3hBNE8yO4X8Oe5QUFKBpEHjKEXdoQE3pdpz4cT134rk/4xfHm/FMdB1xqQ15Frn0qtAREtqdy/f/DoA4+S8pADGbDPdzUYqJRC17US6r15AtrO9fTebO2GiDuvvbG3S4Dqvsv9dwgVBclNGXB97oZZOUvooRRDwVy02Vd/KkJsk+pXjvdAc7+c4TPNEjgTty3m+uh/z1f+ibL72wVepmdrCboVULf5w24jk4pabRexeKt3gOPnXzVrL4dxjMsJRcZcTG+5vnptzDh+Tl9hcrUC8rfyeFfyqQiCzEM+GLbBlrc7vukMHfYQTr5vrmH45jN5ZvxyKziMGJ3EhNGhluZhQPUlozbruasLa61w3cCD9msnHWLeP6NpvCaj3PHSvXtKaNBcflBgbL0IXFffnbJgFITxeWbmPSx0aOFffnDyWTGQWB+8MieTEGtfqkZpTDVwqbIfGzj0GkYZlalSikfujrGH5dVq4NGOR7LlJB/4a1IhIfwNj5w8jV7uFKuBnJCUdiumEOi+yKIpPYlHbgf/WZHFGBx4b7VGWb4YXGUDtm0Z/fjeNad4PS8N3jz53fpwRwmI3Z5kmxDCIeXQKctrLzPgg7Rc0G2rYlBRPvjEMQ6L0mB9bKQ0AzoCFObT5UvgNclRchGLRasVVXvrzqdDQmTX7YnmIthDxGeX/sEi+whPKvlWD9i1SnX2KxWCssLtpq+Mvu5fyFnM1ekBn9kp3Ae5Atj4YXTW7D8qsh4eETq7SoEQB7OqHi4Eq2uecq8rCGiplM6zMW8ND9yG6r2OJUEkz7yNoF84mrefK5AcdASrfFcZs0MpQN6odna2C0f53rOZtOp2mCP/CUwwywbNX3Jgj6Gg0OlZg7zvvXBmQ5/v6VAMSMxpnz6dHYVa7NuZpm80QByfDwX7KBS6cm882Y8JR6960mkZRr2w9kvN7UNzNqT8WRqxGCCjWBPJ9HPKdbBYeKt213gdBMuaZURjGJ7Iu3j58Fgt+PiOXtTYqIV3XM9qFJ0I6Pw6a7jCUgsoxE0cL8IkgPmMo3DUcBRq7gxwDDreCiufLb7jziSBm0Q9XyDDa8B/RIj+uBbMJoxibb6FwoGpzI7mKwREj7LSVQ1k8P+Vur3YfDyIPWLbK23IeP3u668vnamF09ReJe6zJGiOE91IUSQg2/GhR3uSamFObOOCfnwkiEVePbVlwuiph7jTj+62wn9f/j0076fBOTbeYRo/GVltv1b4dL0VpC7y8nA8ocFlwwK5wcNkpFBxdejeq1Z4rOjvTuVncK9/w74FRTKyZiM9+KvaCllbv5gPlzA4R11hmnk/g1sS1Aaqf3SDY9k/kQsNOYC/GzDR6ktFCWwpnJH8PSD9xF/YcjIXaj4W3Rq2pSL3KM5NP9Z3wG5/a2jiRTngb1s7fmH0EQwX6V7RfwfhbPH0PW1lwKenzxHBmMdO3IWKi1MFcA9urU9EM+bxtojQlhMG3fxREqBbWQDDvz48TmGiA6cDReKXMwb94VI6N5NUCDk3XWz8TOiQ4/ruwq0nGKQKy3P7LtJhZI4LW0ssAiNybJs1IiHFYBlYcuqBfzVqrjdUi2EphifgozAVjURbnU407IEVLQmzPN4SoM1WPMOqMvo0rYfJkasWxlW5JuQ/VIJyXBrTFWkCcrF9GtZn1QcCWbN03cRqWB/vDrTMjEQ3cXH0a/0JsMtBU+d+XTnUib137q7BI/H496Jf9RJg+k1p38HiCij9I2vdOoZHeSSN6hRyNbiYyg730wvgKB8790YxHp1alavvvkGEyfMfOq3H0yDaa949vo6IFN29KpuN2sD7kJBMpXEprNxyUnNEjP5d6I0MZOSYxL0inj6DMngUUvaRwMixdBt8SeFcMwzwoW/682Uwna819VksCg18J3ye/dQMPkzB9YdYKkBYOzXOTDAKXeO78E3sUAuUeacd8P5WCq4iIs57NaJQ0pfWxYIHLdC+8/qc/JcysA3v14j1iEIjPPcxXs5ZUPkpyv6OWhVklx/6tEsai2o4xHWqR1PBUiCY4311Puw3aXwz9xCHcsd0Mx+cb4FhU7Fs1bxyOFqlK+NiGoU2Pu2+eFcEAVeRPzFOmOF9NV/2CV8mIkcO8+VTcgh6tqd9Fg7kwQuJfOWOq0T0bz+f751uGnw2+7L3864ieHSo4bfIExKaOusMrb/roaOlRvCMeCFUDFvuvXOSiJx+C+cG3q4HgaeVAY1SBZD0MrW3kNFH87OFNvzPn4P3hac1Z8SLAe0rc+w8H46u5hD3uazYgJb9mEvBUhHYe4rR7nmHI7e7Oqep3G3QE5xDu3wiA+TdWFWdI8goqkOP0/tVGuTQN1ddosvA4vVcAl4Ohyr8Uvs8DFJhyi/cPUCvHB5VTrYbR+HQrRM/1jH59YC5saGT0JAHieMfM/LYiagKxzGGMemHJFWTvkJEAe22R0beC+HoDPNrKfbBVHhre2spvKgUOlWmTp59hEM8Sqnefrxp4FT5wpTnZgU8W9ZNkr2BQw06tE2xmofwIHXWblYfwbi6+5mXL8ORWduv4IcuTXDwhkhkRWIl7OecT31wNBLJs3i5dfM2wZhwqHnz/krQLpPNzBuJQBEa+zs+VvUA2u0ZrsPo2XM2CiNzHRSUyaJVZ8iYowx2/vU7vBXw9evx3lciVLR8POM/16ky6Hhbv5yfEQGlew4IXhjEIotPH10ODvaAX11J2NXH5cD8vsOhM4OChPcaF9zpCYQphTUT9d5qaK5o07KpIKET4/8l4+/6wARv5cnq9WoofXSWpZPh7+5kn8Q3BlSYI1711V+NhqeSN10NcghIue+Mqtm1GMjTlmAnbcWA0u3SHJVHBBRr5plgf6wbqiizi0I7KiAl7b7ujwwq+k2rzFetewesxka/2MUrgGs+tiCFkT8PtfPf7vj0Dl6JcBy0PFYOAfvdT33IpaLxAh+KyJInHLQQ/BCqVQEqZLMcucPhqPm/aYUt5UDQ+mHw9u6FCvg2o8LbzMiZu8arAU7m/hDqo2dUzPg+k2//vLT9gYQ2qaxIdiEBDmYa3TlZXgasfnV0uzI8KucQ4XFRsYLpyj8r+Wz+wF6zKy3vdTgyYHaoHUyOA5FdzceL/pSBx/oOw+bjBMTF/9v/z1QvuMSyjN7eg8D+6Z/w/Ooo1IRsjl5t6IUfF3LEonvq4Yv4EdOGf1Eoo+qD4Bvrfnil0rMjwpYOkpd+GRtOMfjzn6WS4OE+kN60xcV/oYHpEz8X6vUo9FZjxPPMXcZ8RawHLLsXwXyZzKgwHwkV6yt5aIT3gODHj/b4gCLQdNjp82WDgjhpvKJHmnpAiHTy2W6nItAqZbcMraOgyYz7b9kFouDs2sj+XWKh8ChdAvfgGBFd9dC1jErpA7shJ7I0FMGEwEzWR+FI1OtzZeaaex9E9+c6PZcuAo+1tVSsVyRaW/tV9vxnC6yp1hx6eLAKOs7zyzd/iELJ/649d5HpggH5r2SiDh06y1xytBg8KYJHRnPmXfAjxb4quJcGN/q093wkUVHl/owyqdIueHtO9KXAWTrUBxzf0ZNIRYmdzluPNfGA/3v6rthQMRwfqv/xh5mRJ1XbqR/1CdDcEKFo0FEEavV/DF5OEtGHiu3HOhcYHPb4iObJL8XA05j9ZOo5Cantu1rExsi3UBmM12fzSlD8yEM+xci39nWUcPJ6Cyh+wN+OjquAHEPD+bpHDJ6PsK8/n0UAtlW7mvR3uXCqzyOvdICIQjZsmz65ECAqKqzj7IEcqJTZTzk1RkRB4a+tcwZJYKuDjbeyyIGTSgZMFmFEFCY97tzWXAMmzPv6P29hoWTFosntIAH9Z7FDbHK5GkI130md3ayC+rRtUmM3HrW033KSUmsBGcVwsotGFWiah4nzWUShTa+RSj/UCo7qTNYPw2jQePrR1TuWZMS7z/E01agaXpza7Z/U4AVh9m6eP+PxKFGU76npbBX0YF5//yP0Gt5/NeH08MYjtsTSGzbrjXAKy6X7j7sKhn0+lp+gR6CPfC9uXKH0wPD7+5OesYVgw8LNx7dKQSW2w/8arqVB7Kcvj/b6IsDH2SQnXcYhbalDnc5ebcC251HErWQ6nBwrjxl6T0YzXA78ixlt8Mss4dmrG3Q4XEJeLlwmo/dw7IUlsQ2So+pexq7QIF38YYzwZzIKXj/ulaaDhVhjdaFp0zw4Mjcb5S9OQlzFcX0+jcHQnMM9cDsgF1zgmtHAKxIaLq8j/nsRCvvXHKttrfOh8yipps6ahHoqXQ+U/5cJS3Zc+8a8iuDT5khvigMWmXUK5o1zpQM3/jCBJb4QloeDMbk7cUgz7EOl+cFUMBB9/uOebSFcfBrWcyMXhzS6dtxfbUoDk8Fw2YP25UD8nsuTewyHPsZzTGYup8O3k7TT/M3l4H/OJLSYjkW1FLFXJ54SoUFth5Beewkc++E0aVZFRMkHtJSkd7ZBu0XJCIbBw997ew5XhZERwVqZ7654G8j/VW/d1ZAJAYqSFvZJZDQZ2yGm/qwNlCqOXfT9LxtYxfWPvOwjoyN7Pz89FdwGQ4LujzQhEw4s5rKtjZOR4da+w1OiyfCYTI0mHGmA7JLLW8+U8Ag/k+uh71MLtWVib4Xlc+GGnWFQmD4BmYh07/xV2QdVVU8LRDSKIW7ij6LGegRaNKb9VoxsBVUpqhN5sRZGE8bruP8joy9mSZeMklrBenH0lTx/LXSpkMk/rpPRWSmeqTXXRoaPraZfmqiDAdsAEWvzCFTQ7qTzPq4Rrl1x08wprofjgn9J4r4RyGZvi8An7UYgJKR+HA2th9NeyzujIQKd5+rO21Qoge59Jue92osBH3juYewwBhVI2z/WY68FeY6JLE2tJFAq+5a3IklAHAcvREv01ICSWNBtiZFkID8VuuRxmIB+7uc8+lirD64q/q68/JkGVwKqOptmIlH3uwcR1/93X6CmpHMZey5syG1f83YioVOkhYN2wnTw5mtN3jqeAypFD4Xd8khobCtJYFccHW69WswPtE4AflHm8Zjd4ajHx7lC0pUO6mYS83qusXBKJ91xeIaE5r5kfhJopcN27JQvnicOODktN23Ew1FiKM0P614CD1+KW21vF4GFwNhn7x8YlHFVzORBFg0ODg2x+qpng+AOthpbIxJik03jbCN3wLxgWAF3RwKMyZjJ5DBy+9vv1s70kA74a2VmgdGMBYf3ZSXoJwW5tXJ/yE0LA7r99kGCWSF83FjZuGFIQo4nUrZWrV7DNjNLiYtBIfwcD8cdLSAhyTFcU7lJByw1yTVH9ZGBnH3+fOU4Bd3CXvUoNQ2DnfdEP4TGF4DRimzAt9skVKOglPKWvQdOx7LG8Z+Ohzf1HYUXnlLREcdD9BnpHihg9woJgxiwepyq/PI+FRUcw3/RiC0Cz9XML92OeTBkPC3MG4JBv2Nt3TxulcPzX7sltd0RyOawN+7Zi0MtUcdqMzJyYfeePqS0m+FzZ2ytyNkY9F3WTZxQWA5H4HzCfkcaqF9Ps/91DofcjByM4+vKoGKgu8jFmwbbcvl6Uk1YdGTfAn+/UjkoPDQ54DlNg2/mL2WDN7EoFmPoe0oyHH4ZvrD8fDEUKCHH5JV9ieiZ6rJCr0AP7Be6rer9IRG45VgC/z6kImfJzzn1Fd1AaA0Wjf2bAL1EqX9fMFQU3GfHN+7cA9X9vHFsV+phT0uG+ooQFT3oHTvzNb4HJq+9FHs4WQfux8a3jeYpqG8/1/koegac5Jjt/308Hrh4eiSqw7Dojuk/lY+i/rDHjfCl8WoxHONZOCA7QULiX/uffH3aDVevdv2M1y+HnD8PPERiqGjgJa6db6Eb3PoNbDsZ1xf9b05bgOFxl5VK84YgHRSqO08omSdAhj1F8/oqFv1hFc0cZvDqpK0dn7RFNvgxOTxpZfCq1/yaqLRnPSiyr+NdZ3JgyUe/KWGDgL7b7ucym+2DbzbVisOjxZB8h++PT2IEIg36CL4YtQMd3xz9He8q4L+sP4+jn4ajFC3mKxfi6iFQdMCHFJkJSRythcVsRPTZ1rGkqrEErDIlzP8+KQVU3icfy4xF2yfjfprd7odFYx+7As9I2OkV6ZC1yuD2eaPgvwr9oP/Fp1//DxlyskUamkQj0Np6W2CoEON8r097eUQjQcMvWOC7egR6K5tfklhWBftyfT/MssfDe9dRdR1nPHKY0LsSo10Fd08vi29vUYEneU3dXw+PgkvEPLQXmoB1d/S03Y5k+OP0QXL5SSQyP3HAj6O1CU7ZMFW7XUgEKyL//RCjSLT7vL1IXHQTPFHk8BD1SAElEDxOUopETbXE2CByL1h/4bdHLMXgklWb2H2HjASELTbMJN5BkI0bRsWTBjL5Gn1YBn9qprvYX+ruAtHUfnUjRt68HN4Ylk+lohNZq6kaCTHQGdaPn+ZpADmeN3HCZgTElzmUlqfdADrU5Fe+VxEEfIp0eh8YjoyLv77/2toGU3RPveqhAIhh43OrZqGgu6zx7hVCNPjApIXpwNWCJDm3k2OViCyX17SXtWkw5n85S+tpHfCNOXg+5yIhEUtWMeU7j+CwpfaVhAoEE5+O52s9CUflydf+jLa4wfSqbsp/jxB0Ew9YHtAIR+FyP9s+Jr2EiX6BppIGBNLfwv6siIajaKZJbTM3Gsz9pqr97KuBqhd+BvZnGPkwUvHv6gEM6Jq7897ElUEJVv/xqjIJJfr3//Y5godG/IsNpgflsG+hSbBsNwlxfIg51/Y4CPhM6+ZM7xbAn5FnsoMJJKTEOzw5o02AabU72/0+ZTDgpqXu/4mI9jidHnurhoeaqfuhScWloOHR2BK1k4RS1nWMDVsbwGmmjHvzBwVco30JktPhaGSl/kVwSwpceWNxW2t/A8xHZg3Kt+HQaihIimykwr6n5zXvedOhBh2ZS7+HQ0fkCLUSIWnwNaF448LeBsA/uWv9XhaHTBynCvwEG6BfuWJHSyIdtrSlvKxtw1FhrYacbxkd/rx8bpNTSAerJl8jv2PhSNcsRls1sAFWTbsdZqbrIcSAt1a1MBx9bNbQ915qgIzFoW+CLV6AnVkOiNkRgTgw3e98jBvhIUnP5Wm7B1jfwGR4X49At5iCnervlsOa4tizlv4C0A+zNORix6GLYWb5vvs74dyosoGeLoLn3frZ3TJUlHrZv4IW1gAVWk8NrApioG9gU51WFo5a90l+VNtIhtNxZxGvBx0CM37itvfhUejr1Qy3ul7YrXL2GvaBIwzH/Z6Z3E1GHublLoKS/aCLmQ6u4amBe0qSq//ORaCUQ/+ptCa/AP6f1yQHv6XCG9z0lI9cOOrqXzSUGX8KxTfPsH7wTYdd399bU3TCUZh3+OVUoYegZQabcy4ZEJjmyynkGY7IkvhRue8lMOJTUXHeiA77ZiWqMziwiKQZn8oSnAaTIxpMUpfyIPXu7jfyp3BIKkqpwGclHRzrtsmc3LkgMS+Y6M7gK2zyqPfVsnQg/Wz6sRiXD0cCpoT/68ciXtvf0SNH6BBBasanHcgC7rlr7s1pJCSGY90+/5wOHfFqEYvfsoBO2+4L+UFCmAnfZc2SPmDJzJPpkEEQZ5jZqsQSiZSs4x5ZzJTC8vjD+dE6CrB7x0yF2DO4TgpNVhlXwoNNL2Yd5nqQrmM5XroXj+rNG/d2jiLwTQ6Z8SQXwZXJr/UnG4iok8bUyaJMg4Gddt9sI4oh9V32TXc2EmqsFr39sr4ShCndUtuWdQz/sJXUEccjzJiot/JYO8i4zXXSTxcB9Iwc94yjoMKoEce1vR0wfZRbYB+DS0Fo+ZN7GQWl+icSdjp1wFrS+m2n//1O1cDp8OkrBT0Yb3rqL9cMKaLPKdfdSmCBYIhdTGL4mulLxRvlTfBG+YfIzagSuP5PkCPgWiTiWrhmdXOgCUKi09dvPSuGJDdsmpFFJEoJGOPyrKbDJLtKdlRzJmhKSradFAhHmr/SJUsPNgCnNPMwrToTtr5lH64zC0deCUVr0mqNUHKtJX/saCWIwMj7i8oRaH+VQYJpYiPk7apRD9GsBNGnUaH//CLQY7bjTxSlGoEjHidkvqsKPm/1UqelIhB29t9s0f0muBOoIFnJUwLDjRvzk3sjkRSZtuPPvia4LZMT/YFaDGwlsYEJ3REo42LO2oOBOqhqfy3oZJMHFt7eV+NpBCR8cKLHkuEFAx8vkNNGqNDzXVupleEF6s5mnW9o3eC5daMHF5YKeyscznaGUdHXX+FJR0v7oG6QK3UGR4NdY8GWccyRyLm0rHvP8VLoq1zQnumoB+HEBf9tASy6vvfufvJoIxTiM7l+viyBft9d4k9yIhDPekNg/WAfPGA1giHG+nNN2B3YboxA3grLOUffdsFO3tkEdoYfTe5o1UiKZszvzJ5r7CyMHkm9setDBB3YO9CrxiwqYt+bl/fjXiioZH7Ne+2Hg53M1nGWDxi8auNpx6kTBPUrWltaj4hgZha8sCOZhD4IWjr6XW4C9tKH/yZ2l4If34UX7r8jUELIpsrnW8Vg/d/frKmzr0DnCOGzWBoG+ejtP3vocxHgvw+69A2+hg8ybS3HSRgU7djtn3CsCDhr2a5zK/qCZozioVIPDDo2G1nY9q4MxpR63rvLl8J4v66MZScW6UgdMTiqUwHb1mTrjfYyYBG02lXnj0P0tnhsm0MFtCpZh4T9KAX1fTa9ahE41HPSo5PNIhT4gtfrFog0sJVrj5RjXFf7K2ytemc5lDScI6RV18Fr+T0SApo41Oh7XY1TpxzqIP3m6bJaxvVV3ZdiwSFljDJbhlwF+OavGYoM1QKFVatS8QUOxaemYdN+Z0POkrv4dutDOEArV9L+gkFqqn0qG6m5oJ5HkD/o5AgrdkwfpxmcKS3gQu+S7QGmId/ipLS3EFK/9WPvPQbvRRB5x3b3wLuvL7tsZRvAO/vWAOYZFRWxGQ6a5HeDSrcDZzBjDvYuhw5z46kIHfA4xs7SA2ffEAsXiumg4KY2G+jO4LT57rP3X7yGlb3jfnCJBrcGKaWLDL9Q4LmWsM3In/qQ1xQJQxyIhvBUvmPsN/nTak9+cfWC8uEfPP+66sDb+I7riB4FOTqp3nfU6QVnneGf4lt1UH+FECi2REanRFqy1VZ64PIAhnRsohZO9f37muhNQW1+KUcfHO+FS7d+dYV11IKO3xxx4BIFETpiI4wqkiF4I+vUVkACRA9jgsV58Yi1ssY4eTMRnu/aNPI5mQCJxq3cwy/w6CObmNcopQSimVWdVNI8wV+K8MNsFYP+G3QO1SQVw668i3fV7zvCDbEXPdpFGGRDcfTUGeuDZULnZZoREZraBPj3VkagNzactt2fi0FRdtSeXB4I8id1TI0aMUjGiX+W+KcELrw/3ZcRUgLCttcduA5iUU9Oa0t5TymIKgpZ7DlRChLPrf5LsMSi961ug9t/m+DuiOHIVVwF3BNw+I/uFYm+dOnVFL9sBmSqMeRmUAHXPblERN9Hou3k+JVCnWYws5NZtLle+f/PazgUR6I6sfyp7yKlYD8ZV8gcWQz060SRfcJYRDexSIrubAavoKMuM0cqYX7ni0vuXFGoIbD46PWwZggIFyIcEq8Czeel2oSpSJT2/kQF/2YfrFl+2g1PY+A35+RmNcNzP/o/VKwU6Ae3qjD/E/XxsHTjO/GBdgT6u1DkPl7B4NVr7L08MZHQ/sGxa4XBsXblBlf/W+0Ej2gvRzpzEuw8nG+X6MngxgdhX8Nq26F/Jf/0180IiHZuPX0fS0HmVhO+FhvtULHlol4eTIYdfJ6/d+dRENPUhVb61x4Incw32RWQBIb7nE/E4Sio9rJ3ZyVLL/Sbe69K3EqAzLbUW1etKEijbl1Hm7FPTuTo/Vw5kQQ6O4vKWFUpiPV1k1deeTfIPTxp3Xs8GV7sMlcUw1LR4FtXaQWNbtgS9rsZfj4JlNv+jk8mU1Hz0z+Bn59Ugunzps+3V3OBl9fOtuwAHgmW8V4eYeR+oFZuU8lQNsQd8WCbZ8GjwTWhIHeWKjBd8aja2ZgNtT4JVLaLeFTotvD06psKELUZyVcfyYExvbKxlGQc4oyrMsBeagOuyNL27Hch0KisInSxgIzeP2OjxH1tBdVEGfbyr6/htnlQeOZLMipgVl3M+q8NDmyVtx2xD4AmPX6Dj6VklPJN9rj1aBekpA04K+1sgIAf45bJaVQ059L9k9e4Czp6bh3VOd4AZVL6l4lEKspbGH9yObkajlW5WzwYp8GjjCd3NMrxKCU9+fiidQ3sCnylyslHh4G35OOdP/GonbVu8WdSNbRsMSv/MaTDcSV2Q2nG+YGFtjqhMulg24+LLzHPhoEGnt0mf7GoM+Mbk75vBpgKX+ZyqMmCpwItztExWBRToCqc1V8N6pi2ZZfbNBguL4k0bMajtUTFUK8TCH4lsg9iJxEsYWJbRNSI6Nhnw/ZwPwTvJGMPmuyhAXsRc/fFACI6+f6t3dOndAjt1UyxDCyG5Q/q0wGzJOQt6PNtkrG+9XOuJ139H0Bbwk6LY4z1NZ5d/ZFyPgtc6qt+NTzOgQHctpX8OSyK/ydo17e3EBzpL9u77QIg7V7SepwTBvFVpkkxHykAudGaFQ95f+A7vHzp3UsMuoYWZB2wzdB1su3K6VUSeNKCpBs/R6KRsNKotzGNEFH6yzQurBgIz+f5vLwjUIj7LZ3toip4S/3j+lCCkZMzZ6bPOuGRu0XcQoMMHZwOLQ/6VhWCL6vx561SEuqOd/208YkGNpL+e/I4CuH4Z1aNdB8Sygn6+cVvrR7uFTBH9aAiCPgXq7N4koioqTYkGW4EFhcMvmXtK4J50T3m0opEJP/ehltluhECA55J+dwuhUWMNR9zUQTaXOc9wXqqCVqK9P4YMpXBUubRurvfIlBNB9PN3fL98BG3PiYvFQN3uBVo1eIRSOR5DYv972Yozae4sAllg1GD0+Ns2Sh0MuTZvi/4ZjBSXhd+cSobDuWcPhbwNRJ9Mg/WO/cgDT6Zc++8V54DuYbp8+YXcEjllX4Zo/Bh9pWoy7Of9bDwym6B/pWERuxX/t6+6QG6cTGxiifqQefT+TXcCYZ33Oygimg+g20PTzTIjCDluL+5AISjzeukB6yFXdCTdMViGRMIj5heyKgkUpH/XqlGBYccIFo1ccxP0WDS7HlGez8GyR1jz7CmZ8MU22R43AU6dHVwFVDnMSj3qaziB58eUE1THTC6Zw8/z4xX2h+gouhrJ4sXrvXAtmqTr76/DejYil3Aa1DRO0OrwweiK0GMflQ+8XgV3IuZUf3Lh0fvex4fKWWsr0zTv3LqsSoA6SMtfIz11cXF5PfyVUF97YGRz4NVoODTk8ypjkcHsiv2nX7eAN2hExi1+FpgC7K/sZgWjh76jAQN1TSA6Mn5AwG+DM9lbY+r/xCO9mw+v88pnAHLstzs8agAFD/dEPMrxSJwPki+kpgCGzzNrkevJQG3VPTXgCEc2iClxP4WqYKBDk6KxeNKcEh2axXSxCNHlpybW7NV8PsHPdfvIoPTT35vyPLGo2pHvZ89lAZYN/kx7fspCWqWJnK4aOHoxHt4KXGzAXqVfo2uCyTC5SYdS8CEIyY3zhJMeAfwGoz0iAjSYP89pd31axR0xP3fZDguDe6plekQ0wtgzfDZRLs0Dv2U4Ofw6EgBm4tn5Q0jCkCaacazpgWHOBQzk4vudsGOvcJdz39Gw2GZaBNvRi4FRbZZiKZ0QYbrwef9/8igShr7Yh5PRatnlgYkh7qAY6Rv7SUxGvyCBdTFGPl2foy2KjlbBmx1EcdfqhXBklfMosYwFnE9SxKJLm0D7vRIi9JCBEE2kS8018loeFV7b+q3dyBivOh1714iJKSVV9/JpaKwx9wCLCJ9oJRy1dVDqBIuRtCf0OWi0IoS/kQSg3+Cd8phVmRLQdDDJEqSwT/MVzx36Iw3AUXq22XZEjrs/M7Z1PAwEuXJGqztd2+CGhz7f49T6fBmv8XoHH8kcp8Z2i4/S4NXteX1Rh4ewN0jfVGFiYSufhPavRJFA1U5EWWjG15Q9mpF9OBVEhpsHdQ8xPAm5o9rzmvqdNBnelJly/CmxEKhxNWf7RA+Hr57s54GJxz439RnUdBszwnWIHI7OOpvBvGtMfI8NPBjmAcFPY9UafK9lgohZSIaLyQQSLwzrhCk4ND1n1sXAyrTQP0nu7clGwJaydQGTgCH/AuYaXcoLZBlfGH3/qoiILT/HZyJjUJa9YV/pS+3wKHhyFFMXxGYyF974G0ZhXSq1BdCLFug+on6dXpSMZwvyGhveBGFKNx6puV6/RDkkhB7saYcXnPyz7JuhyPPF0o2kWf7IVh3yOBVaRkcl3KARxIR6HlIbV9pej1wFMj5S4mXgO3Iwsv1PURUcjgUTzWIAbLPFyaNrwxu4bjKg7EjoKo9r8lf5WLhWVqVmj+tChQnEzzPXiMgZZWB4HMC0WCjcVTjymIVtImqsKzgCej3uIj359U4EL/ZuuuCeRXYSvnvsj1AQNPji21zVqnwQipp87lvPWTWqC524XFoiVfrq8aTckD0K5qX+XxARyMo+NJRHLpgeDD3Dl8/XNx19CfT43LY+U/Z79y1CPTrDe89fUYP3T5HFzoymg1UbiuCRj4GHYfBo7WVRXCq31YpIDMH7CaaQpbeYhDL2Iz1SX4cxOfInPtsWwE1v++q8B8job1C+D+fvmNgMfq/00a3EPBf/D5pLUtCZ0fMW9J+pIO1767tb0U0SNQ1univEYuYycRi/eYQCLm8o3MPrQJmXrKOPXEioYlP2AEntUwIEHlnZJdHg2iqRr/pYyxyO3thRQ91g8zL3W+0r9NBOid/z9G3VKSkJrJspFoCGY3K99fS6iFSbIeJ8CgGVYjf1Bk9hIVqLaLwIKYe6r/ujC+SIiGySOfRcEwK9JabG1nhyLD43YlpdQKHQCh+9lZfLjw/xhF0ZAcN4vms14+nY9DdUJ0AZ1oucEnX37dxQ3CHWYP1WwYGhblJTHNQ+iDh+uMptRgK9Et8n+++EInaXHgaKqL74M0ZIwe26VhIVkqK8VKIRDe6/rP6eTgHRIm20cxvEezVP/hcZ5LxOqI7Hwhs98GX5xwKJ+PKgJP8/TnZMwItN2dsMIemQ/OOjHMdsR7wKuYe+dtHLLq6u3SP7u8eOMOqZsvzHMG8HbnwjTsFydlb8lrgsmEtobNXlYkGuvV+gmy/MUg941GPyRkKLE7xJqeNlkOx34E33/sISP7plkbL6SjYlUt82/W4AhKJkoM7jhIR7b8vane0ImFo9ZN1iFY5RBgcnExRIqLxePrZvXYtsMv8m+RRrxJwWljPvuAVhXY67fh+g6sFwqIE3tn9ZfgCPzWkQC0KleAphoKDZLjVKLEYs0mDo3yyJ05/JCCRLEsjGY0I2CvGPHHmEB28PPJm7E2IqMfb1+R4aBE4dP+4P0Rwgmt8N43TgzAo5164x+Lk/+4D17p5WKQCYjrnCtmfk5G3nd3VU397wTBagjssPhhK9v6uqnkThVx3bnzrlmf4zn8CSZ7Sb+BJF+Embn8UujtzWeZNQSv4/9qvVqtTCWc80cgBIzJazKWSg7w6Qc52nCnPMgdW9msUu92hovKlT1+fcrbBQ9wTuQ/nKmHSVfCnG4mM9snrrierZcF4wBPz4FupEL4DpdMUsMhmXcRmyrYN3IcI3Wp3K+HPLxvQaycjWO5a25RrA7nBRUyCUhWccR3jYs8kI3P/y0dUbrfBXvaAqJwbFbDL6MvMaB0Z9RIOnZInt4HGns8SlYx5f81mNZIyQ0YtZ7UuNkT2wMne1A1uhs8+2Pz7dhejv3aX+z4Bs2fwXUHmXpZNAfDls13xUQtHzRWbju/v+YEtd2hWIaEAGorbH//8RkJPDtvwj/xXBmuxQLnztRSEpndMuxKwKG+sxN3oQSn8lFwQbxAqg8Eh9n7pC1jEqjD49+PrAqgZT9pnfisEEpyid7E9Yewr99H/mDcKoL79GfeIDR7KNbmnixn8yWltbyko0Ab8PJtNYR/dgVOrwSQ9hoyW+fMXj4W2ge+b2J0ZGA+wbZ0+LfyRjBov+32NLouF8uzpL8zSdDDeDYcPKBOQU0yhWOOVOFhy8jtUXkgH7FU+tQvijH27M4qgnd4Fzr1sG3zmEXBFdOPqe0bP8piZ7uI90QUi+vIhD2qiYL/eLKtjEBWNX9v93k2wCzQ3hjpmqklQ7W2mqcU47k5h+P10NdSZauuFIzocxnOO3+vAo/KHdBnysWqYe7XfbiiTDp3THidNMAzeuHZBduehJrhkSrq/wVENb3D0gbPvI1Dt4BbXeE4vrNSy5pblvmbwbOqZ+7JktFPeQX8yuRd8zy1suBV4gJLBZGyrGhmp9Z7vFJnqA5eM9Vb7bgS2tOgE57wIdHqK3hvG2g9jHC+rv56hQdI3sfdFLhEIc4r5ZVB1IMRnfy7PbIwAhYtW5vhKEmqNVWp9recLWcMCou0VRAa/90pe/0NCNv9ST14sLQR5t1/XtS6EQJRcgpreUwyy7WwZMimjwcJA0VFRQCApu1y134KELoT449Ay7X//K2VLrq+HG18Ny4+GkdDu5vV9+sfpoGd3Ge9ihMCnyu7B1UwScksYvFbmEwb6/AVveuTqwHF+2Lr0JgkRriwvxm7TYPPHRfyZkipYW4oak4wgoUt3Vs8cM6NDTOaB6nTZarAUzXFbGiGh+b+p1nJMdLjuo+A9Uck4/kX3u14kCfEVHNxvxdUEHemZk3HlGWBQe0nofV8EGruDwn4VNoKY68f50sZ0kJgZvHoMG4H0fibsOsHZBGUX/ObNc9PAbYRJea43AtlcahEO36LBWyYadzWjf5J6CJN5JMb39u74J8pjOvwIXZs0NMwAjx1hm6pfSOhPouyRJ5l98KcqNHe5JBHmAw9mGPBGInPKb6vq1x2wt2OVx6W8Cm7GV+OWlyloM9Q3HsPdASaeModWxKrhL+a+mm4VYx7TRQ7ynGCcj5Gqx5yugkc0zj/cNAq6ZP74otejDpjYfqjpQquG+YlG57rPFCRGkuM+cL0c7ljIPK4KzoDHlqpJb9hwyHMlnyWHpwJST50jrnemw/TAn3wnOxxi2XuhIuRfOVCUToWkZmRCVftDg0v3cagyak9nclYGYG79F5xPqIGY7uqxRsZcN5hnfDmrmw5XUrUCU2NqoP3ts5dLy1jkI1V11renEB4eftzeZISHO7bih/+4YZCyR1Uc6410EGZbSr+zWgJvMr/Gn1/CIqKSQERUdTj4Cic+NXYshF2aJ5kSHImIKFbZ6nOSCBUWmfJxnYWgtUPMnNRIRMHT9TbJxk2ggN15dkCVCspvn/xb2hWJAn9IRygLNMHk+Y084uVYcPBWpU+PRaClXP6dBb8aYcfy/ga3QAqEslv+KKmLQLoi3gNTC9WQW3GcsjszGxZL9OoH3uGRTl/WHhn1MtC3y88JcM+BHEG+B69wWLRbUOanZGAp/D2qoD/5Mhd4ywL9Xmpi0VOBi65C/3u+20DVzoclBdZ+lxU1GFNQ8yFjjv1pJRCZJsM9XZ8H3m+sxw6uY5DPksqsB7EPTJG5uVxsApz3l/farR2J+i3rfx0OaATJIGkCQbMCBC24WL84RCC6ypvPo0M9sFn3qZ8/KAWEisRZv6dQUOShqBKsOhZ4IjKoFXV1kDYoi/0sTkIHpNYMpWe74NX+d0XLJyohXRVfI55BRZH7OnoSnneBeLPNOgu9Aphee2zsIFMRSlR59B9vJfh+XEjiYuw3q5JhpdllHNq9p1/M5VUFhB86VScoVQOHVF7fexmHQwrW2cGIvQpImY4TEUXV4F38Vcr+Eh5NddAcv96rhlCsD0eSQy4IPpoTJiXi0UvhHq/1I+FAU1yu57Epg/rnR5qC/IlIMm7BQo9OhE6aQ0ptSSk8X1IJms8nonufw7YjXKsAb2rT0yWYC+wcXzZ6TfDofvK7vM7GTqhZexUjQqkCdgON2cHHVJSmUI051tkJl/M/HLJOrISgOCtOFhcqKu7cciZRK+DotLmkNGM/ppzddeFdLg7tPNblWlNWDsecaS+F4gphqYPg5c3w8UsZ2RTKnQqw7hJ5ZfO3ANT+/tK9FIpDqiJCVQs+HsBUdNbx1p0EYFU9vP+pYDhq1F7S3CHQD2dkS9oGP9eBurTEz7c6DO69c1xa27Af4se1XXmX6uG4+Ynch38Z3jrV8+a2eD8ckw37b/08glU0udV2IQK9mqpwtr/nANKHfJSpPjGQxzxzg+IYjp7qru+Jk3KHYnvxDkV3KsSlSzGfOxWOMiwi8WdkKuFdsI3uNZZC+GYrQ9TaxKGUyb4em6xKuJLQUHKgJx+S5QKa9YTw6EGxNofMyXbQtvfkjOcvgyHx9sWHyhRkmpQj5v+2HWzPaB4U1i0DEfqruV1uFBRl73wee7EdvB9/trLdUw6Bx4aEBbQpaAJjFaV5uhnGgou8oxQSobWLcMAoMRLhr6VsZU4iMD6V/6XoWR14LPIFxzQT0Qn0MaPzhj90LDv/+ncqF1wb3u/JHyUhxVCN0h7/AOg7c1h3ckc+aLDh6Ds7SOhR8K9Hywt90NY7GGiDrYCAqDxqUhSjpwJqTqrN9AGzcYbYYmY53AzZ1NROjUCf0u1TSjNyID66SEGhsRR+WUQZSHZgkE4np8OTA3ngJ3GpvpG9DAaYomwzEhi8Pfcr/5dbL8CsZQ+W/gSM9d917otlcFdLTkXDmS64crE0te91JYQq1nOohlLR1Z9JsoXrnVBEz4nWG68ADcMph3deVNQVtmwzLcLwHI+mC4lyRLivH7Z+4ScW7b/BsRZHRdCw4EN+lZgEK9pdp76HE9FkzdNLT2QRsL8ftaurTQJhSfnFUzpENEHeq8zzGkGijt3QdekUcO5isSh+TUTHt/UlrZ41Q+j8wxmorwXT4Y7Yw/2RyPlClTZ+qhnc3HrDBAtrIe6LRX+fYBQy5Mq2ngttBt2WXw7GGzXALq/CeX0qEkncNNdg8esBhB0wJhz1AMGbssMyXFR09+1S3ofrPWC9HT3Cf+YZzEyxG05fpiKfQ/GBMS97wKlkCIkGBMBIoAT/5hEqiqI/LD6T1gtHJpOh5EI6qFDePOC4SEbvW5Rtph/VwH0Oy2SDqlxQiP7mXLiKR47OKj98P9fAiJi6/HliNugPBOuz8xOQ3Mls3YHnvZCZxVar0J4OpdYrgo8pDC49FFI5stoLl+5mzrmdTAL2mx+FFUlRSPfpPf+gQ6lg9oN9T9UKDfhpZ0dDc3Co98YiuaK6F25WHwsUOEqFm692lEZwkFEWZnHsiSWCkoQ9zo1FReAT9+hcLKNHWn7nvdtkvG9EUJPinGA9vFRNqBdgvO/V23xC6a1loJmaNbGrqx5avu5LTmrDIvXRJ7sa6GUgZn3wMTWvDqKdX3xjasGig6GtkkeDE8Auih6qi+LB2Lgo4hOjL+ykT+uYsfSDacp81q0vJdDRedgk/0kECj6xI563qBnevIvry7lXAtYad/d82opEVndC3czZW+B0zXz5BGcJsNVt8ayoRKGQztL+JvZOCGq9Maz3IR0IrbbagTJUFHdK4+/Q0U5QGz31KXB3KmzVv4kzkaOiFznnDuuIl4DZCqf2Eys63D17TfrvAAb15h9Kv+dVDPF/Lu6e4KPD8ILXgcJcDCJO6JUumpbA3sb7YYYbNGDSajmnN41Bt0MlAt+dQ7Cr0JF5FFsPHr7GtpV6RDRsHvtl0AmBGUXl8kGnOhCjfRLb9ZyIBLi8DXUC6kGPbTaadaIe4v4J+DtsEdAd25j5g8ZlYHr7nPzoGg3M/347yU/Bomyvv+5s/AguDh71dO6vhTGbW7xVKkSEu7aSfi6xGXb2+Go2aCQCX3V8HtNKJErrO5+8uBkCOIFeXqZCBJcWr1ZLOZCQeGZECodCEFA1vrLZ3kFwqCpOSjyFhKzyhBT36bfAzJEXg4FXYiEyOkFhv0MU6mT+oLa+wpijZK25Ey+T4MjSgVIt6Sg0SmZW0ajog6OxFxMKKyPheKTBvoDNCGT79PNsxfs+4L28Q1uPSAHvoOpkhYYIFB1/9YT8924YncT910rDQ8mPo+fO+VHR5mVB8sSpHng54buU3EeAsfTNdxdNqcjXuK/xx2wPONr7VNg+i4VwwSD8v1AKCksQar0s1QsY3S/JR3fHgrGvKd+KKIXhg/tyisWy4ECX17WBQ77gpU6UX2D4kYwcbYdSWg/s/MrsOPIvCVYTEniavlCQBF8NT1NqD0RUcn3v5E6FiLigv3pfKQjHN4o79LQHjnGXfn8UngJn2plWCwWoyGTYX2JPdjjwnaO9dl2qAblUi5vDTkREPcKU9jw8EhTrvY781akB4ulzM39kiKj6HjH1jkQUFP29Fp/0uBZeM9f9YuIlotstLno1B/sYveZ7S8Y+Ff6Z9m7TbkShDrM3kylsfSA0pZdd+CkZ8vofGbM5R6ETut+6BMQqYEp18kjlBxrcez/wWd8Vhx6whHcnfi6HLws5oqM6dPj16sv2JQMcGiS2L7XfaANiE1Yp2DUB2g/w/jSpJSNDlxZFr4Q2+OAsDgeq42AfiT03YY6MtiN3V58wjYT7OSr+XT+z4fvEqnmJAhGNN1zwVSWRoUtunCIOOZBYvJq4/xsBBe2TvtLhGwmOpI0oQdNc8Gius4k/TUQaHg9ljS/3QGPo9OEbAXRg+sljFaZLRWRX5dtdNzIhSAFXV+CPYI+hYn63HRaJjowczZPKgGa/3QH7zyDoDStfOFWMRSZPk7/XdDDmeujMs/5aBGpLgQmcKAqtV2I6/BZagGtvVrihMYK3qJj8dCgKjahOpXoy9cGuOdXqc68QVKSU6Eh4RKG3um+uBAbXwfZc80E7w0ggjQrWLqYTUFaYNtNn9Tooq5D0uf+MAtpcpucD8QTE+lcaq2VHhtmtAKard8iA81mpHJonIMqizTc3xn44r4QJNL9Nh9a99/cbMvaDvtC3oO/2PcDm8lGym864Xl3l/8bFqEiZaHYzy7cL9C5/YX2U+xZGX64cr6FQUYTi4Zsf17sgTzZgWGIqDLJjOM8OZlJR8t1XHcWEHlC++1auLiMBNGZ+GndvUdABHjObKw97YMBNzD/dKgnUhOP6LaWp6NJuJvzj2z1QGrDHKSInHnSy/6SLXaQindDVXlvDLBi1+MXSaEkDzMvXt/jlsCgnN9UyPjkDzNOTZsqlAuBOneduDAmL3rre7VafzYAX0fGaUWnuIJ+fqX3CH4u0Dv+1fv88EvLk2H/cyqgDmaLAG3/OEFHZLH+xTAAFRPyZXxGN6iCwBbvW0UJAaQEjaZdpZGjPrtwWkmFw2nBL5OgnAvpw4PGw7UopvGZzUpQn00DyzJLAnBMWPTah6mfwMvLEqWKEezsLzo7YvVsiRKLzrtqm3SntsGUzN/43qAZuypeWSflREN4loIV5qx0MjHXO8DH4WQjffcsyn4JGO7pMKDsSQV7u0psHLbnw728gdW8Rg28TFaJ4mxMgof4e542gEmi8qoZ+1+ORKEf5svybehCurg6ghyKYU3XbbvxHQG8b7ky5nUAQPBe0nnILQfbjw64CakRUOK54s6amA2Qzd4zXuCRBQVWjdt1eKrJg+6bRHVIA7mUfr//vfwWmtoIbB1wxqELLReXSiQIw8VH4oBBLgw4uBaO/7hj09rnjyqxXPsw9I/wL16EBF+utkvsBGLTz/oeBnrx2wPBG2MshBFFG3U1BQRTUHmb2T9KvDM5enIiK1c8EVl7xMZUsLLqycO7UjFwZlBO+354rywL/v7c5qoKxKLn5ouxMUAF43Ci1i1KogG5bAss64/OweV/MF9AsBF3fS1Ec7yrgy4mlkUPOGCSMs49jedoKvw28vQqvVoNupETpqdNk9JD78TXbK60Q5DxopM7whtfggpk6SEYjFuJpphGtMPRJz+mkRhXoKHzWfa1FRv8HVqYXS3icHJdlVJRtF0ZRMAlFQcWk60VFEBAQOSiggAgiUqJ0d0hKKUjXJDMg3d0d9wzdpaCIAVIGYaA036zv77NmzZo5z3Wus/eXAeaAdd86CAk2r0ieKodQ82PywBaH5ESbmCTdU6EwQFFnKrICorp4p8pH45C8Sgi3vvoAvOU9EcvIToVUsrx5UAkZieRy2tcllEPLL4bBx/rR8LD62JXnYdEodN4g4uH5fihL+hYmUECFw9YtCnte0j7P3Drat94H/BeWG+IXKJAt/6TxzTMyGnpUN61ZWgGZq+naSfuj4NM3kzKr2mg071D+J66hEuiw/nMvjsVC1vb4vsbdaPQxTtZGl7kGqHoO3NT+fFhyFfTtXYhBOWQPD417fVBl86VGgLMGeLr++S4okdENzceg2tkL2sKfLSsmq0HOlP37oyNkpMb0H/HRyT6YaGskix+sBj63UoFWUTJq3qMb4vWzF84PVOXHpdSAbKq7rBYXGeV1PC05ZFMO4xXir3rnMNDJ+7Wh4nk0AlNNLp+MNDD1h1My35/DFXfndyei4pCbq7nUWGoaFFvzHZEf9YDAJY2RMtpz3j0mLXEPhkHlh43pXX0qZBOOcn59n4AWvu67Pkt73o29f9hymAqkO3cE79GeZwp8Wv1VSoGtnu/66dI1kPX3cxOvIRblxShFMRm1w5vjId8aCkvgYgDH/AQjAWWsJy/6BfRAa8VXnTOR6XAvY9p00Z6EvMvrltKGe0Drp3q9+XIGpB9f8/6VQEJeour1v+9jgJfF89WLN7WAHXezamzGILmuWMsX34bB1GEgRJiQBZd9LTgjC4jo5mXMbaOdYVjeZ8muL1QAjFrNE5OBRNTLpi2B/UGC4EF3vJJWKURhqM8L6+LRzJEPrH/Pj8CxW7+8Bsh5oJWepvNChog8nrUWx3GXAq7wufSyQhHsPtIK7PSKRrn/wvYuMpChJcy9gH27FuK8fwTaVsejVMm4cf+3CRC2rhXXebUeqiJgsf5jPErRHLgCj4nwuj1Wu1m5Dmq2r+t+YMUguzrmJL+xflD/dl48WS8dGpVbjx7LJiNGysHXxKB+KL00sx1YkwHRma7qMyQySjxpnxtq1Q+OXCpZWltpQDTbt0cVT0ZTF7fO9noVwceDVxxnlitAVpO/ca00Gkks3ry3N2gY5PYETfXjqPCPVNCfEJKAWpy5khelUqH5rMrOLUt/sHtkcMlqOg7lcljKjfjigbTA48RFDIb9pUOcfVoY1JZHYkriKIaapslLOLYqENnH4zeREo0EU6Qnb4qOgNwI49foG1S4cYL5kzg7EY2Y3812nqJAIN8htj3TjaB+oor+VgAtDy7sSdGX2uFWSvorXsNMiHflrGtYwKMFpXtCUqKj0Prv4ozaZhMcavE+cUgEjyTSRKo+nPGEWzDGOXcmHbjf+j/ou4pDq1svXtngK4G3WWUzsj0ZWPY8PHHwTzQqsMLyrndkQhlHnrf8tAXsiwoXtOmORV99blk04wqgmCu2i7qWD15KVgMXVqPRi4cLHziXh0CqYGefp2gryO5htFZ7QULCA8Ppf9r64Lp6TW20UQsIsN1amnIgI5WV9XoerXy4vjYnudieB4upXHv/icYgHU3jxw/NI0B1cvv7NQ4KlH05vbFkjkXUibf2er8osL96sleIIQvCZvf8ehmJRedNKprvR1GgyB81rqBMYIpeHCtWwCJmnh86/9opQCl/8vGEUDa4CLorGdhh0fse1ZyVs3WQvBOgFilaCYzf6C5++x2LUr0qFD8rD0H3r4gX9cW54Gth+mX+NhndYja/puc0BNfOt75iZciHmp4z3p7ctPxMcqnPVY4A4/rJfD9PLIidyS7e3UtAFzv4xqZMRiECfzRqLCkJbq8QToTO4NAVi8V5HDYADMyd63lulcPpMEW+mztY9HNfD7H7XDt47j/DNB7dCMe+c7fET+IRu1Hg4lRQO0xUY8ZWSxrB2Lpll4GPgHbNW/L6jpjBCZ4W5u6FFoip6NrweIFD17fpdFr3EKFoQTP/3ZlWcIk4dk7qPAb111i856jFgWGdvZ6UQCtc5V98f9IBg+7P2tStPsXDFWu2UIliKpxN38tCeIBBN1hvvZs5OQKBUw/frR+wg49mj8kdKkS09fTjyYDrIwA/nVL+iVrDSKZn8twGAR1Rlyen03I73W7U2SzlC58dX9RZsBHR6Xcsen8a2yHZPa+leykfZsxzC2I1CEgkHs/zQr4HSsRTMt1f18GfBCk5AxUSerfTpVOU3wP1NnNZufV1wPDWmV8zmIRe6Fxy8bbpgXKV6zqDSfUwQ5V3HzAmIRspP/1Dn+PhdavGa0XTZ/ChWT6qqB+Dvs5LXr/4qRtO6zy3vEKug8uC9b0fWElI9g37hVaZHjhtycTYf6gOzCcK1AuUScjlkq/trs0IFIkZvlvMpAJDXoKbFpmArGL3PJFQb4ey+YVG4Y0GIN4NFPi1g0fat66okPq7QfZcz0TOohXwR5R1PT9AQjmHm0+VafXAL0fXWbfnDhC2320flzYJPVYOH/zvcA9cML1U1sb5DKjmzlVzwiQ0O//aISS4Bw5KBw0zPXgG5QxcrkVOJETHFy7JmkOGO9Eee1mRLSzSnePsTI1HxbexRWUWvXDj+MLEqdAmmIi3pP89TUKPVt//iPkwDFeO8zbunm2Fv+Wan651EhHHxFyFUl0tmFn5mkX9q4P7Dpf2n2qORTU9BenydnXAG9zqORBeDdJ/rYNwR+JQpZWorKngMOQP9OxcFqEC17Jj1wVBEtp6sXlzaSsdCn3uydI1hQD7TNiVz/JxSLCbZa3r8RDoR5gzvI9PhHzu1k5PcTKSLjY78Fd+GKZqJs6qnIoCx8LG3pu7CejjqfDpUBMKvO5d97F7VQeZ20dKJ7ixSHq1zTPz9wsYrQ7yM+lBEOZ7dQm1YZFSuoeSMcEfqtZ5b/29QoHSxtWCMQYcUtm726hm2wlqJ6TGGRRLwNC/pqDdj4gMriz+9BHshKjzvXyDM4VwZ5hNzUmTiFKTlDUeLIeBp/g5sfs5jTDoUeOl4otF+qS1Mv+FEegty3e+sYyHrHMsfswZeDQz89C6iHkUOug0+vaUY+Cfpc3UOTM8crN8789yZITW498NuQ8iaAj0YPxgSETPRLc0T8YSAWNH4PmxkwjZ46ksPIwYdKBNWDWZzwp+Wm5NfvfOhsvr6LCuFw5p5JY8SEQj0HkU4x87nAkZIiujUT/wSP9t7rCHJ4J/o9iFpCYXcH5VZ3n6GQaxnwy1smzohRj7XPvl543gGFk8LXCYjP64Np5nk+8F7me7+13gOdjwvpp8MkRCAyksD+KaeyB+Leq5u3Qw5G1l8c7HkBBJW1zl93IP8PEq7jxd9YXxkT7B0lwaDxRg/+4/0AtDxp+1nnyOgIsX/Yu9K0nI4i3uSnhCB2Rxzp84vkEF6fmYxNnvBCSz4ac+ZVcF8PkJrje/AZZs5MSiZGNQhpk0j1JqFTgfEzjnQG0EhRJXHzqNGMTtn62yX6IdPiUP/YnjjAAYW/tpv4hHCj/tpPfYtUOz8Rsfmccv4J32LC6AjYBuYOmq1ycogCJcVv7OUuB4Uwcz1geLTB8FdexkUoBfjU9PRIsKJlgmu8AHWLR3mfCUatYDHlJhLFeomfBkxy8r4zHt/44FS0ouDUMEJhQ72FEImhwKj15lENGJ+S83pPaMQJCLIcFZvhhK1KtbG3yIKO29RKuKdjec2W2fm8ghwcyejRrl5gT0+IJ2a9vzbpAZlnWo0yUCLqz4eOlEAjrLH856JRBBYDGLq5UMAsXsRxvwHINQlBfnYh6CpGusW37WLeCcd7S0OQWDJqe1OML3DMP9476Ut7fLISC47ZuSFQnp8XZcuL0xBGG6FRbRQmUwvHDZ2cuVhJgzJIrG3KwAU1YXFP4tHqIPJ9kHeOIQ9tzl18rX20FT5LR/5EkC1NjfxBX/wqMccdfYZ/SVsKdXoHBKoRwOFWmEDPVGo+dlj0wOMFeAQ6XhlffkcngTEcJMINF4JrnMWj8yH/aWsGyaZDaBFv/9Q358MShV4JlibWAu3Bfv9HHANYGvjbl0YFIMurvxEeXY5kLl2L7NyuxmYEoo7pFNj0G2194UGl0qBT5DIUEXVyqsvhWy6PKMRnr8A6q3+7vgj9Dzph37Uvhr3dr2wiYBWXvH9A2mdoGr/4ErBhfLIO+LXfHS3QTkWLAuUDdKu+/HqTEs7QiOT/2xvv8UiyIvS2n+MWoDfVNN2cJnldDpm3hBSguPnut1Phlop8LNTJ6k6JByMFre8argwyHeEq9/zzRaYVy4g+np1XKYLHoXFhuBQ5oMuVqn9EfhPWvXYLEqBZ6SjbGBKzhkW+cgtDGFoNBetSQOkwZZhoc/RHZiUNQJ7tP771PgVeswxzeNNDD888Vm6wTtXj810LstR4HlO7z9PtwZUOk4xzB4EIu2i0/iJy92wE5fHeWZcjMMyBi16qQSUKNPwPx6cztYb73+ddi6GXL33SHS3ycgtrCh0+nD7aB9uBedD2gCzHDyeZsnBPTomPPvCLYcMJTXefQvLAT2KfLQxe+NRSMpTKZRnl3w1m9ROPttJlx9eKCARywBqYq0FrhkDQE8/rzlfJkKj08QRyvmSEi6rTb0CEs5JGC+WBf9SoShsZPURO9odNJ5M8iafxTeUSoTNb9VQFZApLKcLB7ZPAlmH9juAOA3V/n6shhUL/l+HRIjIjWOFI7zD8qgl+5Z6Bo1Gd7yf2OycIpGVGx7fwR9N7C0Vsk+PlsG4dgAnb+RCai3dfGojVIiiPjsJOlLtsAtkpEoioxHN343Ztl8NoEvI2zn33GXA4NX7nrmSxwq4Za0OjraDwcSo/687KyGvWGvT+ZnkVHa0wfif8JGQMHfq2WHDQ/atZotegYEtKocyh39ORbiSy11/GYRlErh7lUzY1FvN3vfg/1DIMunbB3BX0DjHdvPFzzJ6PJwmpB8aSWIXKLc3WtWC5epj+olt2jeOpD8sDptAEo4/Z798qdAwJ/jy+6lZHRN9J1MLWsCnOXkd1RqoXGR0/Wvz9fjUVcsxjG7lgic3O6awlZUoF72Fgndh0HPPmmMJTWQQXiUeLAlnArm14VOMibHo80Oi70e2BJwww4Zx4yawN3sCabNoGjE2ooJHM9LAoHrnea8p/Fw/sqFqmnDePQwr9I67WIKmFYwRxN3sKBvmzRsdjgeXb/X//RZFQnyxPZPJrC2gvX8Qw5mSjxifr0YyyRWAyUyvRQcZyssxrAwv16PQSEMXyNMm4aBLTjDrWEGwZ/TDYrnGBNQ2/TSDz78MBRIix29eJACPNxWAkmPE9DD61aPWiz7YChfNpLZKQKu2socG7hHRluTY5ZHjg6AcAte8yoLbT/m/u3rLiCjYqs/+93MR4Fkl798bLkSKrIma9incCghKD5a0nIAPsdlLjo+aYGKsqfn7tLm2TTRUnbycCecviroq8pEheNH5vwNZYnIpZzfYGEfgilWlx3dhlCgi3kSniGCQdd1M/wOCsXCeSkTlfF/ZVD7t7zAkAOLPkbPxKp50rhBGn8x9B8Z0o0eyf88FoeuTpqYdnbUwdRHOYeeiBRYIjt1PRKKQ3aX8mzlh+rgUsYcO90GAV49HedhEYlDkQIP6eR1C+Cj9Y2Jp951wJokkZGyG42+MC5598/3wi/B/yg17pWQMKQuqnyOjKKIHvsjcihgXnfldBNvPZimm57SfYhFhVT0eV2WAobfV6duGdaDtszrjk8HsCgn/0qWsnMCFF0VW1SzaYCzv/GJrT/ikZ2D2NNaDgKcELpoO+/dAH8DpQpfymFQhPiXHa9gAqQaCB3T6K0HwcYbWpyXMWiME1P81LodctRurYSM5cHTdMey3GMEpDWXy8o92Q7fO/VUF5/nwXaaLuNPCwKydlFzV8Xj4O0Zxts3QsvBvMDZmeqCQY2PfEx2nIiAnWMiBrSWQVLbbtrDIxj0tvq/lHBlIsQ8yDjTUlAO/3jo7yyxYZCq2kQCrwjtzqU7SvztT4PK0QPe/qcwyL+X322wbwgeri81rFalAiU5xVOIxgl6Y1p3j9Byda0kwe/CaAusn/6Q1E3LFTq9x1iOfQRejjdU0gs1ww+uEoXnGkR018eux6RuCKJ3Ckj+B5NBvres7W0/CcUNhYodvpwCiYfyIgJ+J8GnsPvBkrT8O+Lsm5ze1sBFz0emdyda4PWFCKKQaiyaNhT8yp3UCC2qvYPcZGdQczzb07IvHinOZtR+aByBc0P/XcR51YK/ck1C8W88Cs5zvpBxvQdcqtOZFWLz4WXNx7T62yR0klHEnpGpB+YPXFZ3e5YLrAx7n23+R0KRD13U1TE9oD3bLRS6mAvZdc6+Fz1JKPv8fder1C74Xc/8nZO+FVhuk/Y5mCagL8biR8u2+uASz4fbBmyVkL9XgZrgR0YjQ6rS1w70w2Rr3RXDqUoojFVKvx9IRmcg3yv9Ux3MaLKGdLGnw2OJ6FVX0TiUgOfwEjpYB4/q1gMMfDKAasv4ALcQi5ivikUZ2PbAn7CzFCeNJqg2K6VXMyEhbjp3VfczPRD3piRmWbAZ8N6X58evktDhZ1bN47+LQU9KuRz7rhpOC7zwmoyKRjOzdpIWlBLo8Nxp7WuvAkrIyCuNgGg0XBt/RPRABxw5/QvP3p8DqY+rgynBBNTbxE1vZzEIgtJsAlJ2lXCVaEHKSCaj7N1v6Dd5ECLCc9RkxKvg8eFrHJE4Mvq1XXh04uAgbBaIqmE3K0HQlzWmLJ+M+j5dsnPKQFDsrmBt918DvBGbf8CfSOPboL3fWBxIwDx2y0xpuhoKT/jlt/bEo/MdLLsj+kS420N8fka0Gr7IV1IeHMOg2MXtDaMLZEi+McojuF4FNnJ4yanyePS0RHVuTn0QpJ6n9CZxV8Pq00NnddPJaDV54IvIMg7oNbnYHr/JBz/OSdZKCwz6VKK8i1UnQtD7mqa/fvkwdVX738ZxDPoRrpakxzYC8uqxl1fH6iD/zEdT5/tEtDKCMt+YN4HJ5D0JnScIRDjwLO+U45EkJ8nzEHcTqOqa3VHrb4G9WVu79Ffi0WH3fLZffU0QkFIh8aGvBY42ZEVetolHY9tS59KhCZbSNhrkJ/PAKIh7dUcmHu2Y1d4dGWsHww3+NwzP6yAuJPsPlykBTXjoiKWZ9EDKu9z149yFtDlFfnE3JKFTq/lR9eElsNxx26++rgbIfVo4zPNo9Erv6tULH7tBfDYw94d2Pjw5VCghT/Pfp12Dy18/DEBP6RHWsTUKtBbo8zEVkxHd4puXnd79YP5dZ5+XVBUsrtk0RCeQketL4Y861v1g6b7m4itSCT0cdy4448noRpsM67EDI/DJfjVP5Kg3CA++qTvtSES/0krSnjGNwPKSIvP9A88Bs1yUYWNKRN8G0wM+TA4D+nXAODAvAPaJtbSWdxHRsRMerqsCHeCjAkoK9vXwbtYsjjuJgI5a7Ot+fHwQNPvvOJ93o0JPk+Jsbh4ZGUXyKZZwF8OlZj8tPpoHiB2oSPqXHI2QZeJciEkJFCerMjifpUK1OTH1XEg06jxRJ1fwYxj2cLhpXYp3gBVHHocf2UT0OEukMfREHYiaK33Ms3ECezT2yGYlFk3V8lm/XKDt78bRimS9QmgcLKkS9CIjqeWLNgMGtdAYcMCUetcWihlbne2iYtEr9Qv/mWrhYORkZwJrRTNs/vw1WOODQad475Qs1mHhqMyrdOpSEyRfmc0+FotBr0Nk/f9TG4QUX+bkEgFnYNu49KmJls/d3+lrLcsV4NrrNSN/Iwtud586+q8jGpV/nzH8T6IQEpTtAhbcKMCbXVFS/T4aGQC7i5ZxF0h3vSxKPJsBQrYXpn5xJyAjDfyxsPYu6Hlz+ILv33TYT/haG2OegGRWnak73pXwhS/kmFUjFfpjz/F/+x6N3oZJ5wUoDMGk5ulPHEco4LJ/wsvuLhktpGLejO4ZAvUqz3dpvBTYHnrNMOlNRjzKb3XviueDmV9W5EQ7FtzdcqfuScWg99PTsx8uF4Lg4BvVuyew4KM1c+r5ZDRK1TBWy01vgrdaN1kz5JvgVGBa+pVH8WhB6rdInkoxiKoa4BJssfD73FabQmI0MmEd4f8UXQxH/6hnsNMRwe3Gy7fc+GgUwT6/1hE0CB1M/929f5ICddeEpfAkMqoTSle/bjcIT/b3ngnMRkARqy/MeUVG8UcckbtTP1zbzivbyc+HR1uy7A0EMlLkunHj9d1+ENy1pWf5kw1414OWwnFkxFHqvWZdPAA3G2arVFeqgE98rlOYxi2nCQOi8Uz9UKFGx0ak5EOmlga2IIiMuLm+0IcVp8CZ1xqfxTLr4Ka418XbG3GI4dTYHpP5TrDsb/JqF8qDWor3/oIRInqVGDWtY9cHL/szMLnB2fCMfqfaWZOM+gfiXzjvjMDVhqdJr84WgYvRriHlGR55f5cUnpOmwtunXV8v5lHB/8TKeHQLFimeSnzDMdYGnE061JsTvoB9tCTgmotHlvuMxXkne4D6SiLVNp8KYbjSQKdkmj/q5/05q9MLU2b/hUbtaQWVoytJwe9JyOiGV7rtcQpIjpU9nOZpACuXK30j3zCIob84n5l/GESldE79ii+F8AF81REREtJVf/Wp6+8wXLBb/2DVVw0zUdcGxeKJSHm+X7RmfRg8fVu1F2Zr4JkYTn0mgoj8zcw1jvCNQCG9YXyiWg2cOMpprn+RiCTen7b5ZtEBfuWTjB/5G+D59+e5vF0E5My3uzp2vBRILAnR/HmV8CCmIOqUTzQquFHHs0Dr4Rzf350Bd1KhmGj/WEaTiAbc13JLGQaBM/OYb20AAdx+KOmz0bjU+7jJ5YiuETg86WBst5YEvar3JWM+4FGWWk7MaPMIuNbeu5p5LhW4ZBhiVpbxKDAXwxjFEgbMo5jkxcEWqA+sFcCGYZHKfzKPVYyGYfFdZ2CjXzb0Buq9l+hIQDcfK03G8odDlABTyK09LVBK/nSSzguLtN5oy/7qQ8CAL3ccjaXSfDHqEaEWg4jsuDbmWx2Qzlo4H78vAK5xmWXalBDQkI3UTQa9TrBIlVz4EJMFY+NUJWkXIgrhZf2gKdAPbuN3bzCpZ4G9mmTQ6TBaP99gqKSv74eOKkd9PmIWLH3zcPWm9Ybmz5iNKMwIQEvE7VH6WuhWcT08o0xAk79tHns54KCj45zjqd0iOJqBGzjpiUHU2xXdVKceEMzOc2TXpYKFnNbQbXMSah5XOb7fuBzuiGcq3Wigwq1sa94SmqdsdJ152ylVALv7mn66kothcPnDlOC+GHRmO/97v2AeFIuJ51m9KIbpqxOi9a4x6OXRr4fNrfqgi9XFiONnGTDeap07qEFGiT9dvmq49cFkAPur0JlysJYWd4QHZGTvOXG87V8v2Nuz70qOl8NwFuPvJR4ysnr0GcP/qxdeGAyaY0rLIO0+ezGZi3Z3zleVXKUMgfWz76vOy00A87yqRa0kVMAcuswTPgQBMR8FveaagDVN5vvjA2TUPm5oN3mwFyaPua+o7KkG06lUnFUVCQU4HcUni2bTdPm2V6t0OmjJGDuH0Xhy38O7bZSUHFiXvn3YUDId9ij55ha+i0GMioIfAwN7QL2FShcTHAUHc8s5fR1IqL4pQolftQdSOyJFvngHA/dg6y1dDRL6+vDayoxJJtw8kNszQvP6+oEYh6TlWNTU2PIhuTcduE56uxb8aIK/ajv7TVTj0OEz9qFqWjWgUyHFObeZDmwpqT/oDsWiq24VPQXBfeAgl/c6i/cVzH3S9ZHXJ6MOCaJh5kAfuBic/vwzgAxH1OS+tTqT0dCiCe5KcCto06382rrYAnW8H+0lynDIxKbGbiCStv88Q+JMYSmQmXUV21ONQz5zWo/WVoaBcbrQzlEmD+TsHIbKXhER40XSI+GJYXC4MEnou5EDckYnQl0GiOjwutXf9RAyrLr4Xv8vuAk8zTIjL2fFI6cHj/6oxPZCOGXwzyZrNXw2+7Wj85eEhPUNpUMECfDaVoPfTLcSBsxVekJlMWg785u9VQAW/hwbwhsVVkD8d7X3kwQMeuPlHNtCHQA/4h+WMwecYWF3mMWjhIyC9w0EcN/Ew8iJ5/D+aRX8NRDPjjHAoCM1rre/8o+A3phmnbdzNeS5Bbw2ECKiFs6i4uCqdho3y3A6H2wErwZPKSlVAmofaE6NdGuHz6vB6jb1TTA0ZyJZcJqAqieDuTQW2mFAM1bBJaYRdB7MNuU7EhC387NslyQKROz7xf6wNB20Aw1GtNSxqFssTvyAQivELMfejNpJh8TRDfxqAA59zA/hLeCjQCFG9sGRg1lgJjzpMf0Pg/w4q5tFzCmQmHGhn104G3JkwosovFj0U6Fs+dJ3BOUz3/pX4jPA8ZxE+OkBDBLjOG+rolMNwQ+821cKmiD4qozWMjEGVcue+Pb58Qjc9r9bVONO8+IJvda+CgJqrfbJ5xMdASEdtztnK8rgDu/eRld2Ikof3GjPde8BP+Zaiux4NtzMXPm2YUlCOd44z2HeDjB/2kQ4cLsJXEtM0CyJgDT44zJYBNpAPjwm4NvPYpg6rDKNE8Qj/4epZy99rQHmc7DnsVsdHEoWYg3WikU4H7m15QUqLLQ0dh4i1sCxfV9P2crjUMSMVN/aAM2L1hM+1sU1QeH1SZvDCzh08cdjJuJqP+AKv6LXqB4sQ6vt7Ghc12mqoBU61ATP81SiEKTDBc3ReiPbeFTX+Gu1V6AL3GtmKIm0fXcsY07P3yaiJ7pM/RclOyD5SN9pGd0yyGs3FLqZTfPfae0s+ZhKCFUwrD3wkQDG5zT3fPkZjaoyinc/Go3CbY8vPgfLKTBhVnPoxjwOrVn94zvS3QfR3rjq1QIE0orkwLNONP758V4o8Kg5JIbU3/cyigZBBaW/lEAcOvrjUhmPWA/Yu4SI8xPjgeHJdEqXAgktGcl5u1YNw0JemnarVDLg+AcupJ1JQC3Ph29NBA6D2Igkn+DVVNi+NaU5H5KAbBWtP4W/Q1DYX6SiUkfzJrujphEUDBp6cJ0r6gdtzq6kW/LkWlhPkieIa8ci86nV+uIjNZDRcufHOFsdfO+7Tfj0NQbpCrZ7C1wvgEKG2PRoRwJcvCJ92ZQhBm0/CMeyV9F4bM+eXH8pElyPLHXx7o5GFkdkpbELQ3CBzsri/kAh7H19YvBfFAk5bip9rSCXgqg3PjXSsgBuLuw0srpEowuiqf3Re4ehu98yN527FFYQHbXEgoTkPjlZn2rqBn/1h517aqpBWViVtX47AX3QGEn9VtEH5PhTq1WVBPij5/Ahz5rmibf4XEaz6oFyuHp/oV4pDIx1i922jUN2k59Nmmnz8W2rfMuaUwDCubkb514mII/Qqo9nbSgwmyfGd4GNAM9VTrtoCGKRu8hh7i/Z7TAVDGeetSPYt+oUWypPQJw7Rm+ydofgp/YrySp5MrSUpsFVWxJqfYZ+l4YOw3JU7OTXU2UgdNptxckrAZW++Xoq12sYhpxsLjOKlELJjfMb0/gE5BPcwL+vcBjot49YPlcqhS8vuWw5Lieg3WBOc70rbWArlzQd5FQBikftTp8TxaPpWmXvVJMM0CE7Zk9NUqCRz43xjXAc2s6ybfq1lQYlS0kScs0UiPGxutbhGYd4X43oXcsrg890pwZdW+pAidVQKMc1GoW0douMZ/aBosYXYypfJsQMLbjMmJHRYTv7Y2tDFWBewRdQRPMP08V6n4qWaORu+pXlCW8VrOxLbAfNGlh+ONErxh2DWGWOGIwWUOCz9qkAmbN10Je/pu2sh0Xro7oZIubtID/fvjdyvgB03/DnxR4hoMS9Yw0aWkPgNGj+TZipEayk/TZ/yZERXjG/3ShuCJ6p0Wdc4WyEeWICSWOX5pupQkedKlpB8u2g2fuaCnjqrZX/bhSHZtwdox4daIPGlet8p20rYa8es+5jVjwyyuvr/1fVCgv98+N7J8rhnl2+ftUbHLo+zEHnwTkE17qvpwvWI7jZFxYwYkFG41v9JhrTNO9LMXryzRhB7o08feMXNE4OOPI+oLQVSrNCsvt6K6HAa2qsfBiHDuLftP+ice3dj3TpTD8bYO1sxe2G+zg0Xku5xszSBns4sY1zctmg56NYo3gCjwyoMh2fTw2CI8c0zs8BC1vs+CB2Wv9cKF+LEPEahNDlpbi7zPFQuIW/+SSRjA5d8gn5e3YA3qa+LWeYrgPPH3GiHYVkVLuONVZPbYPRY9u+fIeaYfa2l5Z0EB7xd0+klDtRoTftx4Eq5nT4Lf+2qGMOi+qOKOi18NeD8tJFi7EXuUDv4YlfUYxD3Bsv84Uf1cNMUPv77uB8uLfQ8ExWOw59IUs+P03j6a1r9RUhqwhafzjc9dGMRaD7fmjjHBXCD0yTT24nAe78mQbZAizaSsFKyMEQCC6f9JeYLAbVkO+iHupkRL4SdzrkURlwzHUGTg7lwJqf8VGyE80fzwXOqIj2APF8huyEWRm8xfjHNQDNF+wFg3ovkYC+2Y7826MRErqCLnGOxqMBHULujbZuICtGkWdJNM78WbO5toeE7He49hlb0HoJw91f98wZTr5KPnz8WCy69qF9q+NjG6QbxNoxTxFAwvu7V2sxHrFLWr2PnGgD0spTa77jWHjIhflUXIBHnYIjT1vE2qGUqBCnHh4PS3+aLDq+45GI6kl66StUuG3orvWR1s8u+zdfXq/DIlj8+k4/qQRcOujKsmPq4UniYJkrjVd5oro+vVsoglJd79nPFxsg6eYzMjUzGr1fdeBxl6DCyweDWom0+zzjhLtwvxGLtrdCguEDBU5xeWuM6VDg+1NBgvQzLHIT+v1p5V03sBLlftwxLQOtGYOdbhYSMuuqe8/B0QOomJTElVkKpQmHHPzFSeiTTfiP+dpuUPrNLrVpUgo+n9YmZDcT0B423g9a9aVQjDkgm/GvHk78PHvqB23+nd8LctaT8qEs/RNVJwlBCJKWP0Db36LBk6L7frVBdsT2qfqhFvAxxiu1NeIRJTfK9wZbNrz2yNGdCKiD5s0bnosPYlHS/ZPEsrRMINu8MOmir4Psg+wUw/FYRPcye2VtqhfqpQW6PtQUgVbXTbGh02QEGaxte/8OQc5fvztbPxE0dTPl/PUiofP6swNjsZnA7HF/41wpDghBmwscH2NR5S8340jOUnggHPT26Q8Evh17n//xikbKP2uq79eMQDHXzu5/CTXQqNpzQXsHj/R2fuunRDTB9pE7Aybvq0FIVaZM8UE82qB+CAyZRuAm0Haek7kRqig/ji13YlDz8iVhPQ4KHPUVaEmrbIR1pWixo8sYFMkDXTl/28GdWBrSWJ0JSo+aW5e9CKgMU8Hf/7oNxmwc/6yfbYRWDYkPATl4NOUzWTEsS4Vr1NVRs9ks+JGg/OY3wqJK9/jVIYNmuHD7xaH88Wp4x5iuEJUQj3Ra+i2fvC+l9X/suR7tZlgTGh0/Q3svLQZVIsZxpXAhgeHdF9UmoMbP94TQ7uDStj3nEqEE8KEs9+YZm+HFrU1yOy1vKt8n2UZ7+sEjvDHpYm4KWCxLO+ZmktGf/g7PtQsDwOKaMqpmlAbicolXt2m9seF51w9zrRsEhJ3u3WZphWEbARxPUQLy+tC28IivHFSjRBhlSAXAwNKSWuJLy3OSy6OZN/XwzNH8+p2ndrDhGaKb5hWH4thjP3+vaoDNiepgfwlHSBSsBpamONS+W/2jIacTkufrgg5+rIG/7Uc7SnOI6NM920k1sSw4eEaS99sSAoH60Zv86TQfybeI/tc9DKWvPfjuTkfBXFS/eMMKEV2ZevhDdrwfLmj7JU9TaD3PcsxYMJuM5vUiAu9+TwQypV0ZVVHgpMTF7++exqOhA6O6a2QqGCqw3bb8kwHCIordxvtxyD+mNPn9HBX+8xM7rCOaDj70NlozcjgkxJWVe+BpG1wN9pzsY6d5RNNxqRQTPLqljjfhFWoD7uNvN17/awKZ7e6iM8J4dEOf/ZLGwjCIHjx0V2IDwcjR649ulRKR2WaKCPMmCQ5zKMU/dMTB8/Nz6Y018ch4K+qlROAAIC32dNeoeujPX/lSUEpGWBtl++43PRDRfmeGUGMP63T3l84n0vwx9+OeoroaOK+R+OrZYxzEOrDVrMjEogajK7xsxGHIPe/JGPw+Fwyq//HV6yeg+SACM4dsD3C+2r33jNZLZwxWZt4rk9AbjxbGxaoB0KbWaLoYUaHOxfb7Cs1f9rzIEDlZMAQ3cjhc4v42ggf9tv3wJxLCoS9v1KyGwP5QQBr/ySbImBgytRKm+c5vDk+G90NAf3n/ht5SIyRfNDDySiWhDBM05cWHYGhPXFjMfzWgbOK68+omBh3MbfPXUm+DyS+bPZeCaoBUtN+VoIhHMT/ZnxdRqeDUd8Y2/VwJ+B8mxdjw4JD7TOst4v4cIInYHGE5TAVurPavnv2xyFPQxNLnaza40f8+oilJ27tL+W9LjsSitK8lj3v7cqGTo5THMDoDio7e/XkxPAa9s1b84cufCw+X1MMLvmbBy7WIWY3KGLQnh93I6mEWaO3+ilwWygSkLmFDwseih3xetkIOnUCn8eh6ijsJ3tZgwxoDiOi18nXRGIYB+KR6WP9ewjMwue20MZhPRjFeX7cllEhwkH4vh4hKMTgKdtw6NxSPvPZ3kAY6CcC65LWhrFQCvS/ivx3ix6CoW26697i74OqqBVmW1p9BzWnF+zaIKOxkSunD902Q/yVhc3YnCZa0D/euOsSjxuLkfjehCpirS1k9PoZA4XbpcePkaHSWbo1V+2I5zPEEe/KU0p5PeXY7PaPx8CGXbvH6Abj3yaFMiacVTjSq6fTS3q/UcdyD5YhGELUvjWk9nwr7Xxxsk6OLR2fZLe/9EWiEtbsPs9Nw6RCx3cXV9TkOdf86fioirAFcsQzJhk2pkO1xd2e3OA7dzKNUXXcdgLnFj+J6BaWwKvdQLZSW24/vAijSG/1Qq72QcFWyFOZr/Lo/0LjF9bzZO2v/frhZN+W2xl4KDDlfxvRJZKS6H2u7YtYEeRy/y68+TAX25bUP0crxaE/sZfmn+3pA/ZXj8E5kPZxaiX52UZCEXOTTeD1udgPGT3uPlmINPCyb51KqSEBKLoYRgeQGqIhs5vuILwEZT7JmdGUcmnj56UZPbSccvEbFaUngwX2BRK9QQURObppu1LdDAJm7ysvqFIj12UrKziChldFrQeVfOiGN/GJ+yDUB5kYffbsyRERuTp/5+7yzQEPvSaH3UDwIl2udag6LRQmvxV8U9jaDF8OBeIsPCM63cvHkNcej5Ddm8i5LzZDYvppSpEW7m4yvm7x74tGgpunBuYlhSHcVN57rroPdPlOD6T4iahEPc87cMwLpaYl09t9q4cKNWu0hbyKyXPKsaBNohgEeEQZ6UwTOebgFx9B4dKyarf7Mky44eN9JQWu2GSrl+yQCuBLQPmQox6hJgEL2+5UJeaUQ1nWGX1wSg6hhvHrXijNAIrhnJJj2u7xEk1TFzsShfbvYmmrafPuHbF/1CVXCYi/VPsw0DonhBf67/LUeJpba8oR1K6BV+l2jvX8cOprhe/NjbQc0/ZaVE+RGwJ0XgknbS0Q+4nuu5o1TodadyNlWUA3Pzibqtonh0Kd6NRbGazTejjwJeealwNJvcY1BAo9UfQ7WcunSPPaPel7DpUQwu5Rm88QCg86XXafqYtth1mJkKa2zGsZPZ2UnXSGgz7Wrp3pL2oHvSNMB6doqCCO8/I9DmYCeWBQytQfUguKHWnkLMwpUlNVIl6fEonKdnwq5zyiA6447+uROKbxff2xoJolFLO6yaiLVA2Ba/pMS9DcEHiYKji/R9uKMNYMbo/cAKH3/6jmG94e/89Yer2h5xvu+znP+OwB0d0eaX2T6A+ft5f/UafdRMuXgvVJjCpTVXH5Dr18GtjHtJHluLDL6PoJXe18HY7ijml65FSDXNPBY4nIcYlhkGOV5UweWhN+ck52VkBwob+R2MQ5xBEl1W18eALs8zU+6zdngceFc/m4RGfFdI069YRmCjfN9/jJSeTDA78FDdSEjprPuBnCP5l8pWU+/M9dCn4b89LQSGcmcJdThC/vAIGenhP9fDVxjM7IxtCQj7wflz6tP9cDU0t4jH8zSoO0f1k6JxoHpcQTxr5WVgGT1gkumQmEyuvtt7nY0ijhIqF0ZIANdqnbU5ch8EPnI89crkcZFdHLvmcN7IPZ52bkO3yr4fGjOj9+VhFi/Fu+Mn20HncPxMTgdKiR+FzGZfo9HAdeb9wj+poBykTF7zYkXkKHInXIuCot4dxvyiF+6IMBfs3faLRJmPjGINXkmoCie1XySTQ8INZ8KzXBJhbzQfaqfjUko8cjQLyv8MPzJv97Tt50AlOMZz04+TkCabwgJ9HwD4CHn/qenNwHuFh5k0aHN7cPRMgZh8QEg8buLJx3AQ2HZJ8drxWS0VCHBLkAcANaHIY0qLkQI0C8TTqK935MlVRzyz2uBEhXF6WOGhWGmJ707qbHoWGHQ5sPqWugaNzmkI9kC+HKnxNDGWBTlXp7393AjSL+WOPTNPRbi2+SFs8bjUDxvgfSsWQOo6EiQN/mx8HpeNLA2Iw45De+8NlBtAIkRHENUaxQYSRelzSbGobODb050QD8U1uqqbxWXAStvVmxFNBk5j/CS8gv6wTp4H5+MAM13QvRve6eSkcNFHaYsoW4we2u298lYOQQ7ubS8y0hAZ63HcYS93YDPLVXYflMBXSczzA0jE5Cj5qvNO6XWoBxuVe7LUAVn/1O1P+6OQy1TWhmqvAjurEUOP2OthYKEgzy9ChjU06ipWIGhgEThX5HkUxQwaz5Zr6KMRYZ6FcK1zynwW09JrTyIAnfO/hChymCReEOAtb8eBWQDnHeLaXdnf9jOZ4OzWFSUFVx7168daquXsCy+WBBkTblVzUVAlsJs7bej24ErobbaQSwO/viZdMpdJCAvjnL7oJp2kF7PngmtJ4DOFxm6LDUCujyqFn6SxidIyvvv+9dY0Nsen/hH21MDlr5/E/qjsP0lsX3GIhekLR8+cl/GoeIjnh9PxPRB0wum5bT2fBgpb091MCQjbtO3sovfM4CNEP+h+18LsPWEiYyxxKEiic6okPUBGCpq56veFwvHrk6/Y6Lt9e1yX1sPwwFIAB5lqZE4OHDYx/MQLScjwUprz0VrYCXVbzZQLBSse/BsZ9djEJd89RkxTDVkis7GhP31h75ZD2JyWQy6ss7614RqCQdCw4fqxuvB0vo6q7U3DtEH0HmdzuyF4C/uGuM5deCs1kDfs0tCsgL/xvO626HNyu7+900KzV8Nqkv1COiWuLRJE5F2LzXqPOibU6HewJlBjMb5BdV0QjrKFIi5HjSrSgkDZoyuqsYRLDqxZnrMnK4PrqbMrv4NqAfPCpcIXwEyakzW6GKh8VikD9GM+0o+3FLLX3tA47HSDJep3IUO8Nk4lzL9pw5WM67fY+MlIsZjBT8cnXOBaf8Np0HOVqB7tclYnxqDDuudHzVqG4BY49nPiaXNwL1epGpOey+3lpfsvuFHwDq5ZiKarwzq2K3KzgEBFSgGjbQ79oNg5KSIu188nG/cSEskkJHR8e7gXrl+wF/9o5K6XPr/HjtGy7+CRF5E09Uh2LvONHEdmwCHDylMVuiQkXa8AMkjvAv269D7P9WuBKN4hpf9crT89zfIbN7oA62DHzRurzQC1SpOQBjI6MXWHq1UhU7QTBW45iDZCDOD3GkDJkTEvHf7FtfvLtjnH+36X1klSH/hNU0ISkAxsjHhLUkt0D/YTuSryAKlxzjHK/sxSPzstsnH0EHw1s0V+EigAqdZ/12bBDL6NfDmbXlJKRzhvnzg8yfa3PJ07BSdo9H6hmlqKrUGtPgNPdkHYkFW0dfNQD4WmR0s7UOV1TBnUGRq0NAI2bGucd0oBrG8NRPOrq+BvH0zGeEDjVApu2pkJxuLFO+uhYsf6YQzKfXO1x/FwymNezsLN4hIjTjKz7TUCY+DuecHaXefLli/nHeciD6utdzcuNUM2e5xKve0U2Eu6HHoVFw8Iovtkovzy+FHrq/YvQPVsDKsS/4cEY0C9ixMsqp1Q/ijcfJhEgX+nbudRKylzWEsaDpZYRieCsqX2benQrPi8x7NrQSEtRpaqBctATkO0Y78K02wXLRf1DYsGrmkr/0TepcNdROVdQpJeVB5I1Sgho3maxLns42qcuHd48/n6CEXlvhtt5hjY5BxGtHq5ioe/sttHZp/XAE+GhGbzrQcbghvvGKTHoTLltstC4sh4JAuexGyyEhOR2HOJXoQTLpupRvPRsJIy7evGkQy6rf6EWup3QqdvDebfA9VgbMIZ6JQDA6lUcvucJe3QvbDvrS7+8vhmjgxZ3YEh96y7d/3tRuBvQreUW9/K7Datwg5VmNQ8ers5gnlDjjFYUH366ozJOovjMWXEVBfEVGk70sr4Ei6sUmEFli6fNn/3j8cqgkkjoqLtMIVMV1q9OwrIFf9DipzxqEH7R4Ky/R9sLeM7V35VB5gmK4oLQnSPLo0t49etxG+Dib3eKE8KOXs1ytdjkNNn8vD6Pu7IP+V52dD1nKghIW46dkkIHFJnMgX6VIIf3F6O32rFiwPFLya9IhGx26G7B9x7IbXa1c0Wo0r4eZ53trIgQRkxRhvyDw2BH7tA9bpRWXAHKbl5pxDQoKM41ccsB1gdGKpTLa4BCzniJtqCwQk+PaLbI5FLYR/n+fCPs2CNH6eLWZMLOrTelDHkNoBm8UPGVS7SiHGRNlI+CcBsb6ZfrI3og/eVaurnFWrBnaekHiWR2R0wWqToxzVgn+Ce0HCyRi4kY5vYqbGIv2WWw0nt6nAJlbCoN9OAbbVa1SRezjEtdCiuHCsDZrZGCudhKPgfH233CgHHsmWnOBoayDD6yLZhvL6BtDu+PxhX3I8so+V+POVMgBS7Oani+6ToUqyeNOf1jMflWcKz6wg0JWRvE7xQ/DmDfvpV8MYJOqF1Hb5B8H9zAm94eIkmOQSTQrMofV2GIPqzIUOWBFpOP73fgL0yzp9MiUQULYo04uo/B54MkAZantB46hzM5gbwSTEsrUpVczbA7ZKnMMXuGoh6sTEqQsyJNSmvkQ8y54OivQ3iS86msGJaDxr4BqHDHWRgzBXL6Tcp3ePvlwHC3ZPm15RaB5BSJKLausB4Zo63rOhKTDF2XGUFUNCe1O1I5+97wRpmQfv/EeTYL96p1thDxEJNyha3R+pBGxOrclegTzwvvRf79L+GHR3pPeClNEQnI5gC9ghN4PZtUN2nGJkVCN7fjOCfwhuqrJY3KX9Ht6s4V4XEzLqZJDS/SSaBzLBf8WUeNOAR5HRcsA5Bu11UFikY+0Dj9nQoUPe2dCulGl47RIZvQuOH3xwcRDmH6K14V0qdPzYkG/OJqOgPeYPYg8h6P+DLyevVsHSjUPmFy9jkNjpvLIOxgJQtzge7I1NhViO9dETzDFIRSmpT9qwA+yD3QiT51pgB4lcuE0hIHzsF0xHBYLpuJHWqK4USG0L5q3LxqAFHSu3KPl+OKhvNXeWrhhuVupUutD6HyXy8bcb98O9rfVue+lCKJ9b+XgAR0Zs1W3yffT9MJleqzNyoBQY66XtXQLISLExZMTaCYExO35+tK0Mzv52j3b0oPk1p1HbGLkDGD9au3IpV4Fers774EUCUk2nuwyfKoHKYLdcYF0Kxpu/iKcYY9DnMroHal/rYM33BJNMXxV0YTjXJcXjkOa11/niL+uh8MTqmbKXVXBwxJdj3jgOFdcMv/7a1wDLIuQf7knNoJFm5SLZFoeqXQ/OPgxCkHC1pIdLswoKhbvdj7zAoLucnmZyMR3wKlFMIQSVQfmdX58zZgho5huz1dTrGnBJbvzQ9bIA4ozjt8zvxCLmsb5E+9ftcNTrReWdh1So4jzaYmNMQBvzfhZYWQqYPmSscv/vBVxvm1QgHMCi42+PlWH6EgFtxS3tNa+BZn3fl7Pe8cjHvaqsvioRRv/Ne7+9XQus2vaaC8/iUZB0opGSOy3/+/M4Rtup0MJwVazNkoRKbb/sWnMPAab7u3PffCPc5JBkcjIno1wp3pHuyEbavp3J4aBS4Pz0Ts4Luni0JbPGuZ+tDbiCrl4nOpZDdLxkSuZpPMplbStq0akG+9+fDb9X2cIBSzd5roQYZJrqT1e3SoULEi7NYbWVEDlqMN1xB4f+fg3mXOmphXyMjUnv30o4ohmDQjtpvM0lQP/0Rh20sXvmfomogi3JNi8h+jikOCKl8Nu6Asy+PaZI5lDh5Wk178W8aPRf68wKdboffH+Uy5x3jwfRxOBND1oPiD+NALmKcth77L+odQUq8Bqf9z4cFY2Ynzq2vOsdAm/TxxILlTjQ0H7/y6OKhBweRHefSGoEwfN5lucjqaCTfnu+YV88+sVyLDWExsM2QubNbyrJQGa61fCKxsOTPlRTHxrfhgwo37a4ggBX36lsSuPbnAYmLqHseuB06NYfUk6DpZSpQmPbOPQy1FS1/voriCcpS1AXasEV/+F5rwrt+7XUR53kW4AjpygtsD4BJDm57nHOxSMHXpWjis6d8Ch02afEGUHeaYOVySAiYiqZs9282weY13/qElVaILaTSduW5oPqK+wOH2LaYMmY6nxRFwcC+UMZ/u54hPv+AcMdRIUR/Q/3T28j8EziNwz6jUVvzFQmQqOrwEF6s/PafykwXqTfsno7BtHr3d/pod0pfzeW6gflAZBc2PRnnHantpxTXydQSoEb/Z2751MFg/5xmVVO0WgxKXDQ7f0QfA7fjrprUgdXmQv+TKSQkO0Fjyb9oU54fviEwKhHBcy+LuIWaSWidxfs1A9td0NsLptCuEE2ZKQE6t3lIaG4rvN+z5/bw9+LH858yi4GxtcvdvRtcOgm9stPw75eYOffmdS6UwUVMfHhsay03tP5+mzmZj9c1piVVil+CRyXBcp5Y8jIwj/2gG2NLyQTuuRC9ErguphnXupJHOLBWJR8HOsHBrNWRXJpAfyRHnE/R+u9a99V7IQmusBwdbBVqDMT0rYqGxtdEtDB02Gr9HPDEOabunmT5j06XJer/qsiojmxk95U0RzQjCHuSiu2QGPIv9MnN2JQSoNyIbpABg9WV54FGvfiey+qvi6PR0uP9d+9sumCzE/sCme2y6D2k7LTIaEEZBbeLF/5uAo85iZMBOVs4XaX4W9rSZpf5HTnbQlkAyeLuGc4Bg/Tx7cCTdRjkUL1i/81cd3xVHjvP1QKKQ1lJRokSmkKHSFRRtGgkllCNhEpMoqMe919kT0ysrLjQZS9QlaIShmREs3f7fP6fe/Jn+/XeZ177nOe5/28n3PfL3M8E0lIwjSjd083DZnK3nl/xSwcntycsV4R+hAZXzJ/XM5Xij4LaFc5/44AWqCprnHucyR/0WDfyhXJqGn7QsVoFhW+T8g4qWg+Rxlavivq1VMQD5fk0iwrKnwr0K/9aFCI9A7my4+crECxb9PSapaz9l9DqpTeX4s+nqu+fzOiChEOhBFVkilgO5eCunsAFaWPZWRN+yAn92UOlZVESCxe93ZX9VVUP6W1ueZ1IaKmmhskupMg4mnXkh9+JeiIuQn9XH0WijutcnX2cgTYqYiojPX7oN2jaz0a5hPQTomBbk4uEoxXn7wW1FCHYNWcrH16IZK6YH9TaykdPpz71lVXUI1uv3IL+XLNDamkyl/Q6yJB5jPpu4zIalTZvbind94Xpf9KMvErI8HGMrnt+42qUey6hAvZ/VXIt+9jYjaBpRvLF7ytvKvRvKfNaWfrKvSmyznuVjoJtgrp7Q3n60A3e45WVax5im66r3adtySDn6Y0h6ofoJEHimbzCYBkT3qrPmHx/MGI/k1T4bWobMMlw+bvFHRmUdLizrcUeGjz9ISycit6JlmS/nVzIiJV+50d12PA6YNb5Q/xtKIAUQ9lke8J6MEt2ZlcVwZw732W/zuwFSEn7g8tkclIZJy3oHA5Azjli5WjVzQijSyXNz/G0lFFzMldfbKsOffBdf46gwp0rYSLR+xzAWpQ704WmiRATkeh8QvOTHQ1ZvPUpjIyq59fEz5aEQp2U92H3za3oGfju9oGWwBJrpWgeN5jwK59W3N7ptqRFqX8Wb94Ksrcf+hCI5UM4ccyOTm66lHg+a6TsizdOJCW9v0wkw5ja1o1L6dVohefVmRqllShZcfWaj06GwkXdliWe+ysRFMzu28T3lSh/f7dE/K/idCu0xkmv7UOxZs80dlAoqC684+FV8fRgP9xVmHslRoUy81rwFPoiWadwgrOCFDg8y2KatBwDVI9avSzJdMVNW7auqblGgXaK4+KR3PWIT33ncuqSHS030rJ3zSEBk0LtONLnjci87wzf5YL5qCOZ6/Id+wZINyb/HahqhUJXb0kmNEJKLbWa+AcS6epSRdleNe3ogPzJ94KXwdk1cohr1dIh7L99qhBtRk5GNblnAp9hJp+SBf9zmLA+Ku89jNdjQjppD0slc5FpxNzMjhdGGDiaS0jIpaJjFrOtf0qKULNr+7emykNBa/SjIu7dVOQmYZlueszAjL3CX5qNBMG7e/DIz7yJ6KWu2nEhZoytG4188wEdwRUujo+61qehQrmVK4+1CpD1I6ysWtxoTC2v0TF62gtqs1d0pitxJpnO2oDOB5TYKezbpBcTCs6lfRtn51eJRJ9wJFi9okOMUu6OvybAFEFMi1ikpPQpvU2Qb+LiNCbpPaLEP8E3egj9nimeKCdMd0mg3ph8GamaZWCXgP6zh/qq/akDKn9Oaaw+xUdHnNYpux+WI/sX3PGKvuUIoErlWZbfegQwOs7kXy2DXG3DTwqnWH1AeZXF6UuGjC3aX7inU9CusufX/USTkaVT+erL1wKh+rIl0ElR1JQ5gr69Af/FKTMefFD3NcwsKlS8bznnYSihYX51ORT0W7FGr0XQeHQxx197dxCC9Ir5Re8vz8Y+Upd5R7zZkCVudzGJnojWmPj4Npg/gQ9Lx0+pmfKgNBq+bz63c0IPbx18bBGALI1Oz+3mXVfM2a2yeYOzchkGKQ0rEJQBdpA8MpmQEBtSPSutla0WfOXvLNAGVqeq1Ahl0WHkLbS92szWpGpescHpVOlKIgu00V7TQdeza0XvvS2oi3xuaf7ZkvQur4mifBYOtCIVK2SzY9RWf0unYnbRYiiI2165n4oGNB4JAN6MtHnZPSuDApRj2TfA+PkUJj9MpAzeqkVhWz3XPlOKxed1XXpuaTAyp+0oyJpseXo6xW+ueS2CkRqFD2/PpsAt7c8bBXxL0SxM6uEuUqp6NPSWxc6NoWDna2C7FcnVr85Im4UNwZog8rzCbdvBBg5GyAtNdmEKlcf/uO4ohLpcpRpElMZMKLk7Pl1RRta6JhUnc8pQzeLCI5pBnSo9j/2Xl+uFlEy1OZ8Cp6g2Dqm3uxDCnDuLI9bPgQoM66jaNfFHHSZ28VUppYIcqWEI5O8bchy55STpVMpukDyuTp2lg6eP/RG3HUakDDDWSQuoBIJmh/pNO6mg7LAt7mqznpUe11HZLNqJdoqrx0mwuINtXMVT+Z2t6MvB3sbUj7ko8xgx8j7AlTgTAHqeoU6tEZi7dI9K6JRfIpbT2kaDdwmTr8SG2tDMZ7Gnw1Kq5Dy1KIvGdlUsDtrflvyNx09f32h2JfsidLzzXkNCgmw7GP3/ln/duRSFGzhqvoElU2WKwaYU6BH2m1LG08Huj+v8oMinIcoC79Ovb5KBrEbJfG/416g8JxhlRtiVUj3xTfjXB0abH9wWOczSwdT5jTlJaUC0csrhy5u30iA1bvDmjV2VqOLB3+ecWsvQxHvU+b2OZPgmWjjmYy+RrTp9Amf90sK0acrHp4hLD5Xk/N9Yv+0DfE75w8uFctB8rFzg1y8NBBFCbtKhqvReaGvhuu8EpHQniXL6r+SYNNC4HwIVyrao7NoyxqhXLS9YkdH/dMwSKW0Sw9b1KO3JzyMpDdWohsPOB/nX6JDUobridO0ejQ5u6b9VkQlCnzyfszhJh2MQxQE95yvRhQvbV/Rnkq0UMc9OxNBAjWFgg9blGJQfitH2rWmShQjUbnwVZoARfbDH5oKq9HXzMGPB6aC0ZUk7hX83SQwMdf68UG/GEnN9id8OhuJvqcJn1ZbFgGNypfHZM8UoFbLg29jVIvQDmNXtRvUMBjlJGRIMerRlp2KvnoxhWh1ZWfodS86rE1gCp1wp6GeRZZThxzykG0wmffLOAG+jETwe1PakE+N98Z6XWuUGW96dMKYBgNqXzMzCHFo+06mDHmDFTrL62gjFxEBy2vW2tWfaUP7n33IiFaoRuUxCsT2bhrQqaov1YVaUC7xSfshQhnatmW8gyeNNeeaLU29F5SPHK4weJv0rdGGBR2N0U+h8Ma4vlyWKxtFDBceLV6ThPSj5Zz++hkUBMYFDaNrUWy101fngwWI9/DpGI1PFPgjU/zWwBaQ4nmO08t7stG5Z9/1w12IINrOJ9EFbWhH480jndcfo01tx5LfcdHAVFRsj4YbIPc9Qv4j6gWoYmCyM+wmEWRgtelBpRY0bWvkK6IWixpIm653JjLAUfG19ZhBHXotqnBoYEkl0liVVMNTTgNx56kc2agWdNfKL/Isix/2qN/j0WLNxbJmtw0pLZnoXnKud+X3KORfLLzrSkoo+DIVqts3NqFUzYazypkJiPRLd2pjIANK4j98r21mIlJB8OwGZgG6SF0tz2TNiTMKra4eM5XoZ/N35z5jli5ikMxGgyNBtUM8JGhjDXLp2td8vN0Pjf+8HCMyQIaf4LHKprweuXrUcbc8LEEuYueG28PokHuNx3OpUQxqmIz//p2jCAXwbQzQ3EqAFe+GpZe/ZOn4P2ck7c/no2Eb7mjD8FBIHJ0ruWTdhtRDLnaMxFQit58oSPwJDXR6g3at/hXL4oG5/ipCGLrqwn1jKDcC0OCrwa6aSvQkb/TB7LYCdNnIqfqobSTon64qUFKvQSUxK4azJ7JRd+4ybpd5Mjz/renzccVDpDogrpi5rRrV/XJyMOVn6fAdc3c0lAEpOKz7Of4xHc2Z1/xUMSBCUi051aaqDjkNaOhm5GahCYXFBiOL6JB/ih4VltiG7px+SnBnhqDhkymtlio0OCG9TWHv22a0Kvd6ht2iHERqv6UdmcmA2LSaygJW/Tp+9a6i1xQhrqKjmypY9Qv73tWYPchBv5ffsPgqFIcU5urNjjuFguVlvh3EE83oztq5Tn2/coRUhOrtHzPg3YHJP4ErS1Dft+JG37pIdDBXyeiASgTwBZ93b+CoR6ZPTTlrV1Wi58u/p/Jvo0NeX+eGGyJtaJM4OWHlwyDEecHhbYEyHexE9QJVnQDFLw9cELSqQpf4fdVLbxDB4Za5W3lMLWr0+tQUvtMPGcncKFKfpoD+jp1Lt8S0obc/d9n/5MlFvlEZ0q4nWHOKpICISGkjsrYYTOHaXIWIWpdtR2wYkH/15O/4V89QCq/fWstjSWjRyt632o/IUJy0uNfoQBVS8/FsGLIrQyJev5tyn0bCSmGtOeeBNGSyLNPwy3QZypgfvBmiFQZ+nIfO+Q+0ootpQZO1SiXowFN5lckoOjwS+V7ee4eG3vyuCIxanoO61dvqgj4SILB2pFBJrR0taf1afJJYiLKTS+iuExQo6i36U/e9Gu2MHOPgzypBsV53J6WWkYEutVdQ5lg9mmu6ZXCvIQ/pCWk1CunQYfOe6Vmhty+Q8eTHyvA1JeiP5LbsXA8axDDO51tU1yNSMqic2RKHhA1477gS6OB1P8kubcMz1K1B0T/bXY68zaYP8mwkw8XadTz1b9qQwifz3TW5dLRz6EX2qjIqXJdjRp79VoWOX31sYuAUi+xoKs+/apGgf6hj97xjGtKee+cklZKMXM60LW0zCwMevQvacxZMtHZCseSRSBUq38j5Kz+IAPHmup+rArKQvOrd3KvR5UiE0tjeRQ4FLotNYmo2t5Gfv+vEh3OA9o6Rf575EwkaPe53Y1j9LuD84d2FKnTE0VaWs8eaDI30su6LHW1okcToxwBGINq67Mu6N/2sefzFOTXCaB1alzWUHJxRjqB18zHudXTwHd7r9aq2Ef005dLI6E1CP/nbZFxYuvpF9MG9DhNxaO/CkMbY4yy084QkzccrApi7H9XvlExE2r3F0lN7ypF1i/rFrYsjYPOXkbzHbkVI5Y6MimtYOYrhKC21YYTDQkHp7NnRPMQzoFSpmVCCBtvdSxWfhYKStFnxn7EapL0+LTt70xMURzI+tN2BAnO8l0IXSVUiY7V7oPcpB906qL/QNU+EvU66zpqmrSj45Jo5sdGnaMaz6Zn4bgYo2XNHLzXJQYv+/6/JY77cmMXntJicUxMKZWxc8UuwVW8iDSQmCtVXnYpm4/vLkbGYIBX23H1GGf5Rycb9c4Xcxi/ToeJ9cJhXeCEbj848pXXnBgmKN+jOC1nhz40qBaPR50ToyhVkUkxq2Pi8015Nnl4GfNsa5iw/m8zGH2ozR6cUSKB1mc/0bBI+Z/SKhavBviR4F3Ln8N07wMZTfr+ziX1CBmtJkoS8cDsbN6I+Px/nzATFHr68mdnnbHzb8CLOc/5MCLh8K7Ki8Qkbt90jJhTeSoDtlld6w6UesfEvKlZXUzoIMC1fLsOvX8XGNZ1azzqSKSA4pbvUevEzNi63bOmDth4qNMpvIfQaFLPxV1oLm3TvEMHi0WrfU844zr4aRam520ignPFlcW37YzYuTrQ1lGuIgPN3kzOPC9az8XZ7DxtxvihQSF/ysb4mAp9Tw7Y3r4kMcquk77TN0vD6796rNKoZwHXe80+bYhsb3zId9JD7DRNu3yrdPdKYysanzNL7vtnSYUZzid2vEhxPy5y6mbQkGqxXLPhzeGMexrc3GhdER0BeSN7hhh2tbLxwZqnoHnoUJNJk21bOJbBxv0NMnlf2f/+/WSVdrqSZjfOUzXnuXIiCXwvrvc4E4ntJUGCGyjSy5qBrb/fuXY3z4f7rfTKmTURY4WrV6e2B8yqq7Xaiz04auOz5YZ7aVsvGb9ltrFP+RoPVx88duTjZyMZ5Ew8uMcuKgt+Q6hSkWcHGdzrn+jLGIyGx4nIXrxOO84Bqg8qEGA3+dFuJr+wqYONvZ4+H3HtEhXseWyMcX5Lw+lO7l6kZkoDPuSivLTKFjf/iSHS07qeA3chD+WT7dDbe33JaU4sWARtqji3Zdz+LjS+0X35l0EsCnqZ9QRVF+Jyxy3obfrix8ny/i7Dw9nw2zmy4r/O6KRIuKW954/4L3+PehlaVG7JUUKRMrE4dxHUdoP9pVvU4Gb7YBsiLH8F1HZQ901Dew+K3toUb0kvwPguLInmWl9HB76VI8MWgajZe5S49c4U1d0ynm3S6ryph44uM+XxbT1JA1mD1fv+VOA4S+qPvLOYjoKLIcbhPAtc11a/yxg9VGsy7kLz1sh/ie7lNzupKJUJsRIDE2NI6Nr5Y9ChZW4IBNYmbBm49aGDjgXoSX5iOTOi93NkXp4nzao3AzRWuphFwnMb9rvLwbTYeJ/hHd8kDMjjUGi+ylipn4zdFmGJvPxJhdSIzTy0Hn7Pw9wtFwj4SHN7tNiVih+vr46nh6BLE0p+cOiv7Y5+ycXN6yjLtQArIRDn9YfDi+HS8kKg0XE2CIPGX6G4S5k+J0LCXrbXhsOLOphSn1ni8z0GBfkgmQ532aa2Ml5jf9gp9iA3bRwcB+nqllCOYfyz1Tkq/QwQYihVfrvwVf+4Xpc/vhooJcC3q3pc79xlsnPjhcR/JnwzBp/OWyvHj+10703xP4UgUaJg1k2xWYV76fGm7nmo4AwrW2Z8sGMR8mP1reYc/PxV2GLm6i//A+dnoEnYippEMczo8ii+08HnE3AT28Fxkwk1HV2UKA8chNE3zYsQTOnBd6885yKCz8U6PHWrVJyLhasHANqlKfE4nM+eBu/10IPLe+e34ooqNP/31w9/4BhlaXjVbNDbiunOMcnjo7xQJ990UXqoiXHfS1vL0B6x+Lfre+0ePxV02Hp5dubX1IwUCHbT5+y9iPrzshCy/cBFhyW36hqCHmPfmh82Vj5sRoNWpuPywDK6j1E/j7gd9aPAkzKvNlj+Rja8mEa6ln42Cd2dOc7RG4PXLvsbVVZZTIXCj1TmNayFsfFPbVppVFAkurPn09ssgPr/PEbnJa4JEaK+8afmkDPMzafzwwnMZJjSVfOWQvx/HxtN9VeUGZOgwu8Wp/u21eDaeFN3/3ssvEi7Sg9OdDmJ+4FzOf757bSTcadR5+b0Kn7Ookadyux0DnAve8T3YlsvGW4yV/Ly5yMCZlOBd3tTCxg8rP4hySWPCFOWretAlnCd9zNpIx4Zw1tytUbZoG+arEEdntWcbqaAQ/mTmQjPmExcZoUU+fUTQ0ver2bQok413q0ZoVeczwS75ONcdKdwXxEaCQ9SaqbCCMMdc4YXrXS61eNtHEzJwLxXy/JF/n40fr+d/1byIAefOpQPswP0rr0rlxPV6JrTun3u2lonzdnd1zhdFFwK4mNA+W+zH91WiRnRWlIgC+muBqK/3cT+K6r5lx0VngpxxgI+5DD5n0m35UONT0RB4pstpbW0VG998e079AKvfJZyZVxXd0cHGGWbirnkXKFDLFew3lZTBxm33id5aUKZBKKHRT0ApjY2HnpC9EHCPDK/PmiboPMJ99smG77s85Yig8Hk6qFMV84y/27guhVXvn8Zt3tAWYT68ojXy7JRGJEQmHpt/5/ePbpxuWGF4hgQNc+9/TizB+cYUfmQ8/JIA4g22BpNpWIcMThmRY3UjYL7nSvZmRVxfX00kNoha0MBK0rNmousFG0/9o9XCf4MO5m367YHHMP9MH35o2e1FgeGBrOI2d8yHES4rn79h6Zwbz7tMGutx3gaYiI5FvowCJ7OI8ctzuL+v7OP/cv1YBLzUnw788Qn3d/rQZGIWi98GfRjPPubhushffZVrGTcRTioWG71Kw7grSN5qFqeAV/27jqsjWAdaGWmFbeGLhgqXpc18dZjfhNy73PlSaHD9qN5vHyEc/+w7rjeEL9Cg/nqOVcUlHOdmm2qjRG0mZD9dLTjbiOtO7NWQgnddFGwJt6DFPca4Op/arzqtcHhrO2n+NAjrKMsjNtTN2lS4+sQmaUs/rqPYFS9uvLCiwOmb8no/7LLZ+KpDlrG6J8JBOl+RkkvG+5yT1P/1OJsO2qlvQvs24vryOGuyN3+BDo4/8/j4pHC/Ps/NJMuz9KpcYMlq1Se4n0pobYoQOxYNiXkaZge4MD9Qt8g8fqBMABm1VqVNm3D+v02U9il2pUHj0GdPrXq8z+KnvmtOyLP07fR73SZRzBsJYTOdHkuI0OdOe6RsiPNHSc73wfg7GrgZxoeub8J9au53XmKhGBkqjwtk3YnB6wXzRWU2NkeBruH66RHxf3TC07ld69pIkE7y4NQDnLdfN/zeP3o2GjYeST22txDH2briT+yRIwT4nMr3vmYFPv/MmrtUtUAG5Bx5u/aRyT/9hWAgqVhEhZOP2pc9ZOA5Qu/u18rfBZGgkkORmjTFeah2VDv+bUIUeNz4ZHp/OJ6ND3E9T4EWEuj2H5+5PI51kVt4yysrXhrkMM5Fhxji/KceEvnuQYiEP/ZjHxrO4P5yO6FPWNePCU7Oxt1BEViv5o4nDoaJUcGss3PJnUSc558Mioi2RFafGgfydACev45uaNhvTQyHjuLtj/16cDy3LOvzqGT1EeP8VV4PTuL8T3zLfMH1hQzVv+U2HObDuivwyBELgYBI8C857qN0HesEqR08o4XuZOA7Hqlt87iKjd+9umws5gUJduU/kHol7sbG667HWrXrU+BQopxLW0IRG198QrI4Kj4CvjN8CoUY+JyC38TpO4EONFUdxw/HcZ6HX9y195V/NPQvqZK8Y4nzquKlQFHqagIkSKa4Lg7AdSqz/YqLlygJ4iru8wWuw3muelppXYAPHbJil8aUWeK6eEu6+kOzmQjK646Ry37jPiXa1gsudUyo2uvft94G83wHs3OH5Jlo8JheFa+Yg8+jc8C3dTCSCNsEHVMz67HeFti626W7i8Wfht0WW0JxH7HtPkqzXkyA3490w8GoiY2bRMRJ3C5iwpernNKyW3D+C9qpZ1SKMaBht4X2rDeesybPC50Q5SWBjucppa9qmJ/POj7yorP69WjtALdILo7zDRcr/iTDaOgVnBSLN3TC96K3/YUzLxn29/jLxCXjfRo2pZ24ykOF4usEyTYmvsfqOs2olPORYHZlZ6UvBesxUqmBTMHzCAi7/0qt4596FPG7syw9IRoW9p0Z6VbyZeOKmZd7/KpIcGl2Tu6RYBUbH7l/d177Pgn87fwsT+zC/SWnv93mpzwB1G3v9VNd8DmPqERzOryhw36HW4uFP+O85V5Xt+5KNxmeSMVONXLj+1rNIzS8qJEKGrJJcWHcmG9PaQg/ynhKBWKIULT4Zqw3DFontz6ZYkDnfe37TS9wPtxoPhKe4EQGjqdrTEpVkti47KGbKoMHImFA8ChHaj2ur+QByZWmYkS4eeP6JN0H17vq5+a4xmwiTEnRZTSO4Pkr3eS7/XXVcDANT/iDluG8ot1b+Li8gAl1hA2i8BDfr/w773E/y0gYch5B3sV4H938xpjHt0kwtv3MLqI85oG1ZwKktpymwSXy6GDSwxg2/i1h78Bzi0hY9fRP3ZFUfC+WTxNdjJMZEFAnRlWexPrt+pD+9K60CBjoOXXdYwuOz3aPF1He4QS4rRpzWcAJv1+55C1J2mQUAcpiSS2fC3BfKP2+NfbXIhrc3mW7sT0J58+JevHF57SY0LyLg6/yF9ZFi8aDvStes4ikcS6AcxzzrUZDQ7rhdjKUaRyIuumP88Hss5PCocc0sI57pSBRU8rGA4SnK5ZKUcFwZNcjIS+MCw555jxJigTFPRX21IuYb+3nxQlWzqw+tTe6N/kzvneBzYolhpJkON91LG3lG5yfrw7Kzyo9oADHy9+O9Y8wnyeURHg655FgfIX+Do5zWH9yFXXefelLhB18PoUrv+P4XwngaNm4gQrZj2dnvCbwPT4tKVho8aeCeg+n10QA5o1hOB+tP0WD1SOF5qb5QWycbzavIX4Lay7blDXbcRvHuav7mM8lfTqEHK9tWI7wvWg0rnOp3c+EZ6ViAofmcD7v2vL1ldZ2ErQ3LXPVS8G662fXvm/dLN3F29bCta4D63ND8rSFLFAhRVdw+0NNXNfXW7bQeIXoEGAS0CU4id8xPF+2l+7lIMMfzomZyGLM87wOm+zLlkYC9ffnhtIVeP+wUClx4SYa3OP/+PrNa/y9nA/9ONt0nwZHV4Z8+7gX69v58ktMzixWHzcrLHQowTozJK+wOVCWCFsyTca4hm6ycQvrmUPt9nTQtd1F/COH9VufXu38aBgFqi1lNHYW4Lr7JOFzytItEkwFDXW0s7E+v2mxymnbYirY+RsO9DzF7wMKB7xN8vYz4IWr5dy3fhwHpoaqwY6tFPCNigt414L12GTZiZwySRp0VmwzM3LFcRg6YHCBQGDCzQSpsd7XWC99MGk8fORmBOQxfIeO6eH+KHGtOuF+MRmO/pHmqEnHde07e/TAK/8w2FKR37vzA+7L7odnjRQYUfD4qaj4KRvMk6tcD46c6osGotugwvENuO6qn61/6b+IDOkeN8uUE3H8My0ka0VyIuCOgGiXrQ/Of2n5jecquMKBeGTp2ZEerMceHqAPK+2NgNX7QqkJ6v+804pKqdGpdPgyEBvXE0Zm49YkRyFnMQpsz93Wx9iH62XJLh+1gtpICBA4fu2qEeZVB87La6Ys6BDm424hcxHr9trzQzyyQQTYqhi27NZzjBstP16pdDkCNii/n7bvw5+bN19Z2DpOhN5IYVHaXbz+2A2SC7WMDNvW21B3HMA6pLCpMJfhHwG17dlvAiVx/d54l+c+F8y63zEi13XLSDbuKrokrdGLNcf5kZ+Z12G+Emh/rughwACFZDsFr0f4vo7XT9b1MBgwbfXG3MLYmY2P70/9tV+WCkFer8qv3sL6xE595aJO9Wjo4H731voUzk+lqmc3j47SgSyX7Cyeg3Us54qSzGbrKNBrf7riwEf8fafPWJUPnqHB54PR1OhsfM7C5d/q53cSYdKk/IB3H66LnkgrOZUREoxQ9sRk0PD+VnYyd2ucGbD5T9ylrDqcP7mMPaZhLQRwIrwe2pGJ3/M9JKosHX5Fwnr9jP54oXg2fso9cHxfOxHuhNtnPwjG7xU7qc8908+Twb32S5moGq6Lz15lfBROFq/GxHt/qcD57F6Xv4KxlQq8+xQlZa5inv/okb6HpkuFjx9DNNZvr2Lj77UdNMYnyTAxCVNbPuPzcD59RFSKp8BI4TKbxqV4n8+nZtfIrKTB6FoHfz5P3O/8rDcsDjpHAN9lNqHfB/H+oZY6e8/spoCH7eCrrS34vahpo+a3DV3RsFTSNDGuCd9LJsF9qbA3CUJdTmdrPsc8H6H55YKACgUIKlI+dqJY7824WYS0XyHA7B+TJbe3Yf63oLzR68kiwr0vVwQ2DNmy8bKf++Zk48ngZkZZltiA969cGyxU8JkOThkZDyX2+7DxAegQvj/KgNP9dyRjXmG+eh9fu118lg57hz3Ui/5534gU/fxcU4AJPeNzIg5XMe91Zrj1inExwPnQ8dN+f7Cu4zBS8RU+wdIzw/PrhM7hPLwSRL4UJkuAF/pK+yh0rMekY/grrnBTgFid4ey4EMbG8+tPXrueRIF6/jKVkFe4H42/3sUbxroXxq8dF98X4PiXNu9QK/7OgA8v4gsOuOH+mFobarB5LgrETfatdj2A9RudGXF68UQkCLtXrH7DE8vGFRuLtl4XpYHu9Fet5mt4bu0tXb5v7HYY3B26ZuQnhPP2eY5pqnobGQLDpDqvaeA+WxPDe2lZYTgIGRDdL97Ddb1Zude5SYMJciFrhGKD8b3zk9vd0j5TYOOisaGdu/F81Gd4c6FiAxMEn5zSPU7E771X3MRVplOj4Qqp7YNLM36n4v+VvbszNBL6H8kKag/iPCfAQZHHLVQo/xVVfi4Pz0GElpMZpaXRkDiYNDGgH8DGtcuKLCuOkeDjpvDgFxx4/505LZ9UVzMhcaJcw+oT5vMfgsteyLpHg1mLradQJdZpctljp7+5EoDwTqRZYS3uI8cchvltpuiQt2dv557TeP9deyw/cPgRIPI4p+e9epxXjXPdw6uPEMF+NCE7rx3zlbVl/ZXXGgx4Pf7DS88Q3xffbysS53siSC/ZweQIxvmTXC1Mr9wRAd7kOypcS3CdbnfI7TioHw37hhKFby3/5z22WKPh4ToqhJ2bOGqRivtvC1rzu/8rA0w7GqfSufA9qnN/3qaYzgA9m9AkneU4/t0Lr3pmeekQ07sxYm4jPv/px0mE1hkGqNcpe3g9/ue98fnHYie/cCg0m5BzMMHrY6llz40rGbBr2/ln5ztxPM9O3Y+57seAVMb8bSHBf75vfH2k91YieHsv0+QNxXWdFfonfs/LMFDvXFsUUoD3if5mvKOmkQ5lwSfyLjfgPt74eWYo4GckzIxrLJiN4Dw/nCz/3o5OgKWdZvzV/Xiu4VfSvjqaQICShZ0n1n3FcVj+rH4iliMGrplnNy7dh/mtkzKfbhTCBE9xsv6u65jHisqk5QffkqHgFqWMmYF14GXrMR+TUgq80B28duECrncjB+KU6BsaENq/zqqJV7HxR8rnJIxZc3E3B/G+DgPrAdu16dfWTBOgjl/xZ2cmztuj+bP3OZdSAI2veS+ZhevxVqVIxBcFJijxzCoVy2MegFMiNs4lVGDWf1eQn8NxXvlqyle3mQ4W5Bs8G6g4r6yKu1d+Z/Xrrp9LN37ej+f6EZ4/ho8ESTBqdUVy8WE8R6+98futlQKrz8puyiuvw+8SxautddaIkAE+d5f/UPmnH7kHqKySZkJHpaTOouB4Nr6HEni9cyoClkZaWEImxpe9vpE2NESA6pU60GOE7+uglX353//7kUd1W6w4xGTj5qpSSfey6UBaLqwVpIXXjzu6kvekRQF6L+Cqdhbn1bN5puB1biZMN//J+ySH60VM5cX+6xlEeLn43hhHCNalrmfqyBfbCVBZVVC5UQP3kXtK6+90GpGg5Btv72J3HE/IE7V7fYoKcGX1p/QanJ/WU94MQXMWD7wUPcS4hu9FYaImWII3Atzpqe8O78B8uCxlgkDnYwLwNPd96q5i4wa7B3mjL9OBX0gh4m4ergujsSjOt4kUOE7J/LIoG+8zsvbO7IvNTNBevm8qZgOeUwYlvFymcqNh1v++vYkNjlvQuux1j01oIOV/+N3PExjfptJ+WJ7CALH7R9fyv8O60aPO5o4ehQifj0cabj+AebLEwOBrBYv/zUQL7En7cRyyEeGmREIEfCvy7hBlYn7YTH24cadhGExLX7spp43r6PY2OUlqEh3gWNXeHnkcN61DfIkP58mQ9ynZ5psi3n/Uu9j6NisOVUfkXQpo+B4vuHpsN2PFObh6B79+FebbQ1G/w+IPhoEs1XWDyAf8btxv8oNa8jIaJBwbds1/wnXxdrz76ORrOrSajtXZmOPfSVeM7n34RpcAFrG5B1aO4zjYW8t5+jwkwR9PiTc79PB6ndH1NL4dVOD+edlsqgLr2G0XqAvJT6hA7C+m7f6M9apQgM4e77FIKPUX6izaivnH+lztjuXxVKhdsdlSxg/r1YDLqQ3rH0VDyo68tRFc+B1mS+0F76EQIhiH5CkK+mEdws3lujiHSAFHpYsj1em4f40Huv38eCACkrReJlXVYB2eZZhA5yJEA+P19nmdNf/8nriyeI+eGAmWvb/kMnEb9+WOwpfGfZxM2BJ+0Eq/E9ddpAzz7jU6GTa2RHE5kPG9GH94qh2qRoRWwic9T3XMMw+XBz0lBUTCkqNul3RCcX6K5+r7/4hkwlxCBKfCSsyHB7+fnW1KY4JR0jPd/B04bj7XfeWkZ2hgfvci/0UTHLfYOYuMuBoq3Iq12LP2PuaxncQz5GPEKND5KUov9ML7yEdl5veJR8HwIa/t8vM4Dxc2VkfvbI8EeeWBii/lBDZOTp80dUgmwdqXb/u1P+A8eXdswr5GIBqGyEzZq6/wPhrhmXEKZ8lQF5DsOPMFf98d3Ne8k9ZSoOKHIDVhMY6zvev7iV+L6TCuZF0ZpIPfDQZXLjFs7A+H4fE1CvnLq9h4kGXY0i02NIiSra0ubfxH/2/cZ5o3RgBRxpa3x+px/I82zRpemmBAlEfYJith3DdtnyVUJGUTQKYpUHaVN9YJ2am60l9CouGDWFhvjjLONynZws6yHtYc8ZjBTbuB+6BL7EXj3qow2H0ZzJivcD7UpwQwVtsxwU5M+MNHO8x7PSWTScXjJGhrWVdlm4jPw2CoCB8bJMFyXQPK9BPMA1H233etJJCBaGt/0CaZyMYLjveGdm2NBIGf8ldOITx/NcityqmWJsHLlrvSGf/MuScop/YumosAFYuT1soduL90nszMDN4cBe+a0l/WJ/3zLpfn5uj6jhW3wwPbSvUwbsdXMDbiQ4ctzJB71/Qw792doa/IGqOCkpnoyXv17mx83SH1/kazKGhKXVx8swDnw2R9SaVsOB2i5bXJ5utwfHg2uqod1Y+E4WHPmfv/+EwcwlelJx6JAveqjuDrUZhnVH/fW6f/nQY+Dmd33qzFfeS8zqC/EykKVp92TEt/g+cIklvGKr/rUTA9Kz914SSO27H8n+rbjIkwIypwy88A66hTGWNaX1jzciFvc1QKAf/u7wxZ26QsqFA65rFyJRH7bfRlTiaN6lJAaWAlQ9YR50+wirjVPVsqbDhKypBh4L5mHvftqF06EX60TXNNaVHYuE8/557dv5kgtMda7hbfP+s/hCZmFVBhiWOWafBuzBvMhoZrsnEMSM7kM9S0xu/Mg/tkrNeFRYP/QdunydW4fr9rPB/IHKSBW3Cg5/kh7DM5uFtjn7UNFXq+Xl7xVg2/z3heNvj0GjGgxUV9MV91FBvPck3rDnxHhGfi0UHvyP/8jhbR+0xrPQnSn3dp7CvGOoQ59+dAuhQFApMvfC82xeePGK2LNTWhwJW78Rfjb+P+VZjITD+SSQOjDkeT/efxen7S1Vh3GRqMlZxZ9Ggzfg98rhg0P8Hi274G59xj2/C7nKS5S8Lnx+FwIPFE2eHtOJ4PVv0ySechgFFFzUdCLs5P7T1+82/CKRA3oM4l9c87v+iF6Y28DTRwtB/IudGHzyk64jT1ZpYAIWETP89SsN4bbXA/MZ4fCepddY+3ieE8d+VuV3V2IwGnjuYNxWn8bj89Zcgpw8qfFUfOaaypwn3qtKzjYMzNMPgWp95f7Y7nBWZpSllfNRO4V+qdFdXH55e8t/b2+FA0ZDhXCkjJ4vjPjGqW8KyMBLm5cd35QHweX0qLfexBBkwaKw/ckcf3eLm/76r6WRrQn2eujBXHc9apqhfxJ16S4HrYne2up6rY+K8nZsWCCmQQ29ulvizgBht3Y2rKhxNJsLflbRTbz3yvGsVd9v/Pz8wlZGXA9jOz8LGrdVf/+pmvfNTUZPuZWbheldt/fuaJWURj+5lZ+DXbD+5//czMW1ERbD8zC5f4oaX918+80uroAtvPzMKPJHgb//Uz9794FsX2M7Nw3yzJ43/9zOpBYq5sPzMLT7kb/J+f+etsrDnbz8zC6c37rv31MxcOL1Vm+5lZuKGIsd1fP3Pnldb//MxL/h/v1Go599fPfL2fnM/2M7Pwhfaq//zM2kOmZLafmYX31vT852cWOizUz/Yzs/CHmar/+Zkl9zvIsv3MLPwDz4Xzf/3Mx7rWLGP7mVn4i/z9oX/9zH2xZpFsPzMLl4r5KvHXz/xzneZdtp+ZhVfcSPjPzyzx24Gb7Wdm4UMld//zM1vsEnr818/8v+9VJLra9q+fOXKD5Tjbz8zCn9jf/c/P7P/j5W22n5mFW5WH/OdnTm4c/M/P/L99wuVzYv76maVlHBXYfmYWftBeu/+vn7llw+b//Mz/W++rs/0/P7Pv6CkOpf/5mVn4gaptF/76mbPWnlL662f+3/rz2yNE/vqZLV8ntrP9zCy8+aD1f37mm7qrmX/9zP9bX9jS8p+fean2L0+2n5mFW59I+8/PfIzD/cBfP/P/ARnxtK54nExad1jP7/cuDUUIIbTsJmWUKA6ZRUWlXTYhROqjEhrSUL33bGrvvcdp71TSFiVKKBqUxK8/flevrz/v61zP+3mdc5/73OcRD8/cv+dlsMvkhML5BjIq2ixrd/mvAnj+H3/s7xXpup2Jd7xfXI5prpzHBWNFajV/MTHGtgYsvtWDwP/jPw9fFriQxEUK/bG91/Hi+fjA7m9u7C8UvPomvn2xXeA8nr5Z+uBXSSb+TJjesKwtax5/NCvu9zyOgYcC00l3W6nz+IePm4S0DKlIsenNbKZEz+MxNYN3r/fQcfpO286o2/HzeO43leMnmYHYcuE/gT3eSfM455J+h0EXFT+SJ7yLc4h75l840DDzgINHeEUk1sllzOPKvud1exsoyMja3e8w2zL/vd0/9A44KjLQnYciFvOuZD7e1shw8tAJGgqw03dKH8yex/+0h9YXdQbi/fdK/8kKEOf4Z78SFi5gYQ9z2NfCq2w+/oWS9djVi3Rsrrvb7iCaN4937Ct/2nSKjtliXWoey4g8xPWEfLo0FYjCW/z7uzfgPK7t5/9w5hATRQ6Pu+qlhMzjq5zPJ7XFkFFObWzjkGDN/H2ECwXp2hvYeO2fQ+8jv7p5fN1y6gTnLgeDtza8DTueOX/OzgXCS+3PB6K8x4Ohkv2P5/F6lWV6An40NFLYwnd9W9E8bvA7S+rjMBnD2rZkaqUS93TZsESDtIeKuo/KRtbfap7/Xae1skF5wEbxKdflPaGF8/FXh4MXaT+jY090Ey9nMZEfh6RDpYYrqLhA0vmwe2TqPE6+9b61qTIA85eYx9g1hc/jW+M39mAUDacmm7UTWqvmcQVydZj/Hhaqut8/EH0wdx6npUjKfQISrnj/crHmJPG7OrVvB9/nkhCWJv984s2ex2V/ZXdTPWg4lPBcSGkpUd8n+8jeuw5yceK7Ev2GaO389wa5tuodCmCjiMhG3ax35fPxX2jbWz2WMrDWbNJReobg5+onSqeC62nY6BSxr/okcR+DbV27F1lw8G+vhSadTeSBrxLNAzNZ6BBfkr6XzZrHdfcKaJXpUPCmk6vsthLink97n/W697Aw4qIGj1116TyukXnlmZkjDStWLLxSX0/0nVu6doiHHQVbdQXbDwHRdxqbhVh+7AA8VLhmtvOS+zxuf/7XlqZhOu6lpS7rsUifx7u8Pl6e4CPjgzWb13mFvJzHB1dLap64QELL6E9F++WJPvqhY+Kw15WJV22zmm4ujZiPr3XPs4k/x8VKaQfepkAifnW5dE1JEQNzlFxNj9r4zsdvdNjIvMKlYvWn1UMT74j7Xxq9+M1mNRkTm4cuZxY0zZ/z5c6LqSp5Dg7r6fApe4fNx58WpSu9lWdh/b7quo82BN+GigoHnd0oeHC3faLdXkIfqlqGTdrFKDh871rr71LinhcH1qPcLTaW/ly51G9r2nz86NglNxc+Gp5zLn1U1PBqPp4zpcy9H8vBwbLhY16WBE/2Xwyj3q0LwEmHkkKerYReietuOVouxcAVa5XHzRsJPakQ7/n3qJuMngbfK2R4Eufxh3KntMsyOJjH/MD/ZBsxF66+pPppNTJQNLcoeIkz0e+zUadlh61o+M7/o+NMhjdRl/UHOxp52NhA+VSCCo3z93dbqaFjW8tBp+K9lWIcgre8K1ZO7rtPwplDoWOXVIl61ae33tu3gYtR/BeDJr2JebTMov4WH4uDaddTHl+UJ+55MTvrhdmZIMw+RbkvVknweU/IzWNqc/POL4P3sITC6/lz5Nwa7qeb05G2Q9xjJDJhPn5J+d1H05pMPPeo0X25Ruw8nl1y0NzzOQ2rhUSiTscVzOMc6Rnlh0pktJVx935ziNAZnYFyPfpcv0/pfvrA5CH08NbQ4sozRylIHfw4/cmNqNdDydXLDI2oaLdh/9+vAgTfzp27btbXSsJ3vN5G32Jj5vF/SutoobqBuPaUW8qmfUR/sfZHr5G4xETBVx8qv7ZVz39vlIhE01JHFnLJy1ufHSP0x4TadKXdmY5v3prmNTsQerg/yLCm/yYLp6T/WtXXErw1nNUepLRyMdS48pv1T2K+T3yIn7A9Foj1x5Kez4wS8/3j3o2RSXP61i5QVDmcTvSFeLUav9BCMu4PzjTviCXwSzwrXRul6WhKVXx97UPQPH7iqpT/ZpEgrNyg1SRSQ+ibSdQWR5FoJhoqdv5zXUvk//rGW/+tM2fi/nzHa8WWRJ6DS4vMI7Q5KKowu2q8nug7xojnbpcaLpoEqrHDkglcszl7tuZkAOYJUi8XehE+avEdd+YmbQbGSn2N3NxD9FGNp6Nj9RU63rCo1p+5lTKPh/+5F6qrE4BfFAcZaTTiHIdbx/4mp7Bwt9+ywG4por/uPmpVzZhm4StjvqUi24h5HXdKjq5cNtdfjetXHsok5qmI6qMAyWNBeMC//6IaH6EPbiW5yX6aJGw+1a4hI0Pwfzsv7VGuPRMpF7Y7nawlzvGJ6lmho8zCM2su6DdIELpR1pD65j8BMhbomyZoGhL8ET9Hf/Hl05zf09oXuKaBmFPv9JIisyVpuOvIopQnwUR8ekK/vFQjF2NuBf74IE30xdKIkyqrmqm454A8vx4SvL1+5KPqwLkgbDCsPrE7m8gz7bFI2MGDJOzpsBmsWELc//h4O13rGRvPjqeujrMi5ksP12/jvhwGPh55LhzCTp7HI8TWlv7NomD9Ge7Wb+cJHuooCb38+JKLsq4bLnr3hRN8HiuIxldUTLqfP2b9hfBFFgO8nVcWM/HIxrZgX0OC/yKL/k3/R6LgLwmb4TojYr78LDZcp+vGQZ+ZRV1egYRfVUpz6fOXZCDP5oqFTyIInr+ccSffJJOxTms/87tn3DwuZmamep0cgM2eWSlunUQ+Yw3UnErm5ogKRLn4nSL4LyG8spZvgoYtSa3r9osQvmtr95XLyz0pePbOsicatoRPeLjx2sdsBxq+DdU7dSO5lOiLhPOfg6upmB/1S7ZD+sE8bq6SfKVFn44Ouj4Pml/mzOPR7V253PBA1L7RnrOWTdxTiizK2Y4s5Ke52n0+QfD8pyVtd4dHEJ5bdWTLk8sEr/I1BnNiVpDwu3HvA35Pok+ZBRvtnSWoOHqHJvJsFcFz2ckQMU9XFm4rpYcUXCb6Yg1nz5/jjWQ0NnxAL/hLzKk67xS8X8NBS5J3z5obhM4HGcYobjQKwqFR54h9qcR96mnuze8oZFx+oz42sZbw24Pnv95vb2NhxoraK5tfEHNEz1uMeZ2fhFF36YFo2jAff+ph5YbHORy8tOGxnOLm6vn4pAdiiSWSbMxPZOmMuxB7lsW+hToSi6lo7+OqMalF6POOY4rOrLl5vfx7hND6NCLPDQu+LY00DMKBCRvpcEO7eZzDu7363mIaqnGj5cOiiHOu22joXFvEQN3AnM3NHKKOh2W1g6JNKLjLqKv0KZ3wYyP9AvJZVYFY16J45PX/9OOfwB8L418G4XZlgY/tGk/n4wVNz3e6lVLxqn/EjrjVBK9ab7VOa3tTUdLR/arODmK+bON3u/lHmYQlv6N7GPeJez6+lMV7p5+Fk9nHBNeNEby94cq/5mo7DSVFV36vX0jU6++57n6eegaeke596b+Q0Fuvo2IJCYUMTBmwCJbeRPiNLC+zrZkjbLw93u3bUE3wwUC/IPClHQ2HhTyt8w9EzuOL/xgdeKdGwaZFS/hjaon+KqJsFT0vScZVglbfWa5Ev693GAyvTyGj5MlcxaMHif1LFT7esT0UgKulZXgPCRG8iloY90U4i4Prpl9KYghRX9aHuK9ulymYcYdx2CWXOEc9riwk+TEV0zrTlcnKhA4oFBrLbT7LxBUXZfsjQ4Ln8buXlr6tukRBib6huoMxRF2WkPPszaLYGMHhMDW/Ef7NRZD9fUdsIIqkTt/5bzORn09CWUEuASQ0fuNzYbld1Dw+O1AYIWMaiAuHzJvHsoi58K9OPWyWh4n3MUeqJZLgzxhDjc/4JAc5jXsWl8wSvig+rdGluJeNnVZBXgu+EHr74E1zvKEcDU/dHgly8iD4MLkoZbd6MhPlxEz3bKjIn8e3LukvEdzGwC8/0hLWOhP4t7WstMxICgprGt5lWBB6+yZUinTlHhU9R7O7o8aIurvmbc8z3EhDt1Hr2GX9BD+FhhvHNPzo+Gp67F5tHKHnh3ifP7yXTkW/1Z2KvMaE/zx4tNy99emcPz9snbvsN5F/FVpIk5Q4AzUn6ePOX4k6bth4buaVx5y/+nLX5asnMTcP9qsG648w8UoG9/L5DK/5+GrFtrrwzXRc7jgx/voxkecfjbGPLPVZuEaJ1CAMRF2aEnnsK1U5qJvRtFL9J8FnU+39XSflqNhx0uuBXjThu/TXyU61z/kuq0gLgVWvCX8e/PvnZUVk4IaPXnIhx4m+Zh3iYS1ey8JyqOtY/Y14x+htb83fzUvD9Qe3jVNyCZ1PSH13u0CQgk7tlIb8JcT5vc9kZNY1MNFFd8O7/l7iu55xb55r8GbitqjK6eHdhL8V7rvNXZA01xcRPHl38gif+TbMqfGZIhn9/wgM8b13msc9Ilfta7nNwpvO3ZR/SoR/e3dybHrAn479rPfHtmcRfbdsud3Zyw8oqDRadko7hfDn7lrMu1v5GfitPLy3s5B4H3AJlrJOV2WjZ4rB1K8eIg8+ry8aKGyh4ybtl16fXhF+zLAoNbVg49yeol5/0dSeyEN4tqoFicRB8c6o4a5ewi/lGlbuP+gUiBZbfd4f0yPmo7Jq5Evv3DneRvxaUBFP9DWHa6/W4eGPk9WrerZ/JuayFpib7WJzUT1MSObMDUInTd3ufzjTHYSDl6L2nBAn+q7v2oM3Hjw0FDr8o0gzgsi/a8pg5frUQORd39tx05Xg/26B6nPFfAEoEGpq8qGT8GOPz0C/xu5A1OjrZrw8QtR3f03gYRaDhVvcrrzs9KfNx28T91t7T5KO0tnFPew9RL9wvuYcyaqk4KmQmBvXTAldbeeVExu5xELNVZTL8haEb//4feFiRS8SPrgzK/yoisDfn7xdomEdiLeTPcZudxO/W2NKz276QsbvzzdLMN2J+NnrpvcZBTSs2qTKUlAjfMi7X3vS2R6BeCl4y8CzjcTct7kb5PjTh4mvm5n8tpcp87juybOx9c4sfB02VnGxhtArocQYzf+Ws3HMPWW3cxxRr9t6d2o72Ww8vX3g0iWze/PxH2ZzZlUVGXjn48Pia48IfyLi1cjz5kgQNmbsHbx+huCnK83e+fAACxMiN9+XTiV8LOXhbELjdS7uo0QuVRsmvnfx6erCd0ZMtFPfwQ5KIe4ZkjlRN7WdjBc2Saq7dBN98ddOd/uBD3Nz34AbnMAkzu/6EOVWcY+N63fwnE+qIfjT9lrqgv8rEoaeSO1XSGTO4/r68ZfvzFJQ8vXs2/C14fM4t+nclz0tZJQIdU/z8yHeK7bxvXkYb0LDZ1UTBRJaRF+ctz4mQl/AwHipG64TxQSfq3H5MvYWBiryXt4of43QeZ/Fe3cydRloskf1+Bq50vl4uQfDx758o6Enr9T3zWPEfSSv9pA1wukodnH/jXpB4pxdD+6ulF/GRL6jrZ4iD4l5F0Vv5PMyJiFJVj7g9zvifEGlkj1GKnQccLTr2vKKeC+K4OX8Em8Lwo8DtMiwBqIu7va1gutcqLhcRCjteBWh85Yvt1kuP0BHKfHzT25JEH5vW6W8X8tVEibsWib0eCuh/zEi4/qdSWT8fNB7pfj7m/N4bprGT8Xwuf3iydlFEXXE+RHNpHVZYyz8K6cUvEHVleCD/9A67wE2XnNz3RTcQejV+6WtctLjLAwdPngk53/eN+7ua646vpyDjnlUyTvXCN2j9lt3S/Kx0ah3i5HbP8LX3Q694rZOh4KdDmTxtcYED6f+3LPyVyShVq7UXjqL8GNy0TF4dSEdfc4ceHB32n8eVyt5aGMbSceCRyrg20HMoxML4hb7z9VlKmS35WAWkX8t88HDub/ZqL5hYY7aA2I+VlusNdz0k4teR9JX2qsR/u0Pf70B/1cKvmneLda/KHQeP35aYKutBBM7q5VON9oQeyub9Gn30GN/FLZ2NnVbS/D21MTGmCPNNMQ3Ju02R4k527pexkooOwCrL405Wjwn+jpi0O5+w1EOdv5nvT7Uh6i7WDfFIXaMjmGJIv3bVYj96O5Ft+licQ6aLn57+gSZeO/dvlP+wPeYIHyS6PflfiPxTvW12E/lzQsKakceWa39juD5wrep65JfMTCg4X6xcTqxBxUFmCbk5wehg+mpkbf6nvPn6MUnXS4+NrcvoKBvNS9x/viGo98PreDgyNETx6+MEnru6/+0WtEhCAtfCzqvLSF82pc9oWd/2ZOwbOe9xl1ixBwh39VeemOEhVP/utt2niXOF3+t8JnXjYQNWZ+cn9cSvOq72N+/4iAZ+6QFUtNbCL36cEf9au9RNoZZ3nmkZ0jUS3plJHXBIBlndNu5vD4Ef874WrFKFALxw8lLB/kEiD7VPbenba9+EP5YChKPhAmelw9Z1YesYuDfuG1HLsUQ83fxNpu/PZNsVL7ZPBLPR9TxxCVp+X3xbBScLIw8LUzk/9c7lc7xxSzUCOcG/pQi7i9peZjU9IONjzVeODknE3mQ22yca+cWgO/hwvY7VkR899bjVWYlbFQ8yio3eUPk0+xZRpCtGxsFbA8+Xbua+N7ffkZUly1kZNcuOLn4BdHXQssoL3e2+qP7R6Mc36z/qUvpS/mKeha2N4xlWNcRc9z66q5+zz8U3J9lOHPhA8HzqNHxwVssEt6+2iRa1kPsNVfW8l0beEnC7IIJ7VWTRB4mUrZ9DeUNRu9PtEbBPYS+1UrEJZr6cvBL8NmzO2wJHdN1uqTy7iMNu4L2FnESCB/IG7v4iVU+HU1lrt00Nyf6fU2ky6hEPxOFhtUntaRL5/EQ65sbzOb24tYv6r6n2YQfOMK2vrHyOwn1djbNvkkkeMtDWeGzQJCOJ+l7hjYmEf2Yo7socGIXBxU6JzRylQkdYNezbO7lMbCplLFL+SeRZ6+xuqe6jSzUKl0sIs4geJWxpFX099y8dpO9JT2mSuz1Xh+HDONWU5HsXLKZfz+xR287IDJ4ZRcFbW7bZhTVEO8S+hW3Tq9cT8OrO0eLZw4Qevio1fiAqCwHtQpidHl8wufjt+ap2r4ZCcTU9W+uYCKBl9irx75/T8K1Hbex05Sol6JvXqGSLAsjrs0K7nvPmY9/+/dy5PMUFj4dO3PS6yQRb8d7nbozlovjp23stc4RvKIwalfZLuSgYtGarFGl/3nfkEhVs00gI/XXrWFeX8KXamY30SxaSLghUKdc6igxR5Sqdj19Y0rFLRXB3fwO/7PvPN1u23uGgXXOS3/EVxD8DGId56y+SEZ+my/72DZEXVrfSPpuWByIm7e+HdyvQOhhjuVWMkuEg0/UnN+OthP8CbzNsyTImoU1N2pJ7ulEXxRN7OX/GEFHOWbXJE8KcY4QN2i8ehMHCw76fAsWJ/YUN2E1+5G0IEy7n3zb6gaRt73r1q9KtmKinvWNT390CFzlxug+ZTobG7fWrVr6ifCNEy2aT/ToZPR7Z2wsp0bo5Pc/T38Wz+m/o1DZXaoqkYc/PxSdN7wMxJelN99IcAh96Bz8JbXd0B9br084K2kTfRQ7vngTI5KFMrfG93QqE3mr77B9GTJFQ5e3h2792kecP2yz0ubxXB6S1asfZDGJOobsOyd3YS7PdqVDy/RLCb3d8IU/IHyvP7q8NhNf/5l4N74YsoGZ1xqER/nylKdGib7QytDV+tbLQp4XLXU3LhL/TyqRujqkX5eEumeu7Fv2hchDUd4LJ9cQKi52/vNBQY+Il826wBRRYOCnhf6XRooJHxsm/mY6KpOBFgkebJUxwq/mrTqw02WIgr9NqttythD687a9R1E4nIGXhDddlXcj/Opl5y91a+KCUEZ31+pAPuId5oiAhMt7XzJeu6KosdqN8CH7zy8RTCXTMaB4w6eyeGJ+PaE++jOsFogiZycjSysIH965wY3NRwpCIdk106dXEv7toGXGTj1JKv46X2//9TExl538n5l3L+Bgl8Kua/pviL5L9OR42LBo6L/mF/8dGlGXFosFOi+0yJhgtObMwyOEziSo3CqkelLwx5YQy9MvCH4KGOu7z1A4WCwZumDXMkIPDX7kjjXEcvDXsIN+hgKRN/omz+2yP5jIOC8hamFF5E3o9HRiWAUDnU0Tdol5EzoW+1OBdozMRaPlA+xsZ+KcV+p3M7uluajhcVlBeYrgYdqV7ODtLRQMea1WMlFEmsdnp4bO34miogzb6r32Z4InM9F4u2J5EM7esN9+rYM4R+AGNXzXORquDim++2OC+F69PdIukWJ0ZFs5M1/yE3lWfV74bZafhXLKvmVep4l3A8WsGwb1PQF45kzI7gzhUqKOGWeFNt9g4m6P2Yr8eqIuj7XXXkgfIqHFyd8Dx2qJ/NOt1hhZfmVjXtjpTVfWEXOz8CILI1NIKBY3pSjqQviE1jZ+2QnfIMweW96TqknwTSXvTVtBJxlTHqQKMx2JOcizQdy8q9Qf6XbjFzgdBB88aCs4K25xMGpd5vDwLUL3lIyPR+d+oeKzpz3lNyOI+6woylx/7B0VAwSj6d8zCR34uKlxxzISDW9kVqnfiCLP47TFWS/atlBQ3+f6tTNA7F9h2X9SymSp+JvcIpfwP3vunx9eu3l+BiL1Huu65mtivqTnFCb4bOIi02JLW20k8S7n9nO3nf2nOV+kry+br0fs+7z1fp8/uLJQ7/dSHxs9Qvf4J5lLk4YYyC3R0Xle6zCPr1I/0lN/gYvGr6VynbIIPqQr/0bFgDldsuijX1xF5Aeqwo8c1qdgrofnuPf//J1J6kWMjzjIxQHpIl9bLqEzzgf7V+n/ZmKYXsAOp0pijhhYffawo3IxsPF1XHw/sUeox86Kutly8fdal1HzU0TedhiVH9lqRkapx69c3QwIH5XLv05nYm5fjgoSDIkmEf/vn9/4eeu2SwwcvOGwfBmZ+HubFVPnIwd06Vjddo+jeJfgT8HP/KvPbzKw8tzFJHk2Mdew9I3WrXgyumzdwj9ykj6P13W/UlH5y8Essentj0SI+PKxSy+TshgozZN73keF0I2QAksbxTA29pz6ZnD8OvHOnPhs2/VV/kHYTgkpjir7n3lX0/Mu8R0TQ/SCnUzeE39n8vGI1J7rNxi4XSBi6Uct4n2GKvh5tBfYKG1mLyhSxp2PV9z0sP3ZJzJWHR2cs6ZEP3Zunq04uYaK1WPrT+zJJXxIzLbH6vHb6HjnyPnfueeJ+zMlc0PPW9Fxbd1Jq/DHxPzC7pH4g4lMfCR830rVhIivtd8Y6iDPxNq/a3njNhHvgVssrkx/ndPbQxeKMo5tJd7lzFKCI8aSA/Cg08ai/XJEPgXcIq3jF5FwJ3twmJRG8FP0h+xUfwAdY1w9+Lb9zzt/XZ6V1OI6Jlb3WaU7dhP31Ni4c6R/nISLOFN/z9EJvzfONNH5kkHB4+esUrdK/s/73gcprXsPqHj36b3/9n0n3u1z9S0WyM/xRz3i4omVpcScOnRB/l2w09ze8XNLd5kDsS/cnmEXdJdxUNXuyjkJfeL+O//4u355H4SkTXvEtikS+d+dZZ6/aBkFt8ud0J96RtznwvnYu6F72dj85P3bJ8pEHdc1X71x5BwTtUX+ioZKE3uW9MrKcJ1WKuKEioL9mdJ5/NSlirzVu2h4ekvtMSFPx3lclHlUOYBMxfv9ASW25qnwTmb3zgTeZFgXe18i6TMd27WN3y6eSoFe03V5aRb5YHfAMNgmhYqfvzYvMn2YB17pO16EhObAsoQ0IUUVJpZFRDoGMdKgXzfj9Cb7UMAX4ldX4Jx/O6XSsSokD/qvNYm4hkWAyNdRe6G7DJTj0X025BAGKnbFfTfMs8BRYvUbD2cG6l62LF07GwnBAV4DOjvD5/ZN0Tqpa3Q0bmsb+XKoBDRWutE3zxRC46BJZp4TC7+WFf/335yedwk9NYhWDYc1Cr4HpOxZ6NS7Qy3qWhhYL5bq7swoghG3mfcmqgxU/Xv01+CaEljDeuHqYZ8GJqb/De+Y008N8U2it1yTwDvuyQn/iVSY1v63WngTBVWlNPXqfbJAS34mY2pvBuyP6LUP8KLiZg73grpODqTddeeLW1YEetxJP6UxKvLm6Ytp3yyHtSf1kz5w42CXom6jQiQbN0sH7QmuSAWquPWU8AOEshHe7re2ZLTov1C7/n0BmFy0dn/zKA3k9k1Obu2l4YnluiGOrtlge3PFmZ92seD0D/bUfKGgZ/L1fWcyy+EL+8W34J5iyGL5y12JZqNCmbndxS1B4JfpvjAkPwlenCtcxfObjuEbGIquVwrB3nnztipeOhwt8cjREaWhekzaq91VZSDcUlE6ppkDq009Kmb12RizZv2IoGIMnJG3il91CcFL/Z9rVCAFNe/XyC6MKAL1JQZGeXsR5MmLisoN6Nhqrv4wzyIK9M3Pj15QyAe+ozVqLyopKLSvVPzwuiRw128w9b6eDbxLt7gbHSPjnsZdOzq/x4LO6k/uk2PhwPtEaDX/CgrmF13avvNSOfS7F+WUPGGDN+90slYbC8WVcvY9UkI4WKX2fqjwJfiEUN2/y9KRx3nfePZoBZyz/fxo9lQ6jDudrPy0koN/I6Ju/DiD0CvU+3r6cDYYl3cedsil46Lt0qV2OXN13ahRey0sDu5R37SPLyHjgunuVR+WZsHa6Z0b9pNzgZf7SbVaiIJl3z2dTAQj4L9V1Dd2A2lgx/9csO0WFbMzlO9UxVeC/o5jL45M54LnsdPH845ycHjRuau/BXJhdOfBdqGjXBA/l81pfUTB4A+Kh0p8k2C7+geG1BAVYmXIl9TGSPgsY3xAMyAMBjPPn9fwoIKvM9/f2ggq8kscF6L1zp1vpBFgqRwOUmJtRSGHOKg8Kn2vV7wQfgovn9opkw99/7K3+QvTcH3C4yPc3nRwrxes05qlgLzmdgFGNglZBkc5L7wQnGy30k6IJcGW3NdCd+Z0Pj0lZrOQGQ2+PZYpl+F7Cb68TcpZTnQsETG6UxxYBdyBlhzaQoTm6aAB3RgOCn/NCLlnWQIrPbbbNM3QIC1r9J7n3H6UX7o3uWpxC/A79tVr89NBWHR72vokDpaeW+PkxxMF7GN9TdpHEqCtP0ve6xIFL7xImFxsng7LBH5YX/6RAbfO8Q529ZJQnTTVZ/FnTmdOitTNmuZDtXNGgbEDCeN8TgYNYgnsd51OsZhFUBE2XWr+i45crYbGIwUFwNPnunzMJw7WcY7JmsRTUUvx14E7QtlgVlHr+20MQalLzCGpkYwPt66WyBLIgl992htaVqeC8aezvO81yTiy62lyd3sgzO7Zw7vIIQ8sFl7cvXEzHY9O3dL9nFYKIbc19tlbJYD0kkW/UkIZmNQk7rd+dQv49l9fKpCTDYYODsLCrzn45vxim64TISDq0zBkb5kDV151OPjnU/F0VULD7DQZqgxfZzWOp4NZ+1bJnSfoaLW07aDQ+hZIexPmIv4hCkw6a1+U5nDwUdShC1sD53yAiOrwhpvFYJZmcChkNRP5vu5KvVdFBUdnWdGM5SVw4YV+ceJeOq6+SC6tuZ4Pufl/C2/d8IepWSfhEVUKPpPkdHiyS+G0L/UpdU4Pr8T4xHZsZOBZFc/AGtMw0OZwsxQbw8HsXedT86VUXF593v2lTzVcU/3oUP4tFQ6/TuY5ws/F/AGnsbS5+goMdAUkLUyFHM6641N5HCw3a9wzPFdXuZtpOvy3S+CZ/s18uUASfhfrej35rhqcJ4MvaLbSoF9Bz2x8CxePBsfIW8Sng+2eieKYOZ3cu1fY7xmdhUly40mZG1ugR6XWYrwKwb16umHkEQd9fheobesqg+KYvXXCsWlAtRuUPPeSieKOXVc3n0gDUs8XJ9Zc3xgku6zYBiR0ac848S8P4eExWto//QKYPCxvFsJDR7M1/kBjlYKt6ERLnHgebBaQUrH1Y+AzmRs3SjfVgKKG3nsl4zzgO91upCnExYbNq3bl/pcPVY2rTc48ygKfjnQ5vo1U3Dnb//X9z2owHepvLI+Ohc/Hny7J/MXBO/v2jtx/EgqicimxYqLFAAOxUnyHqaj27Piyuj95YFtZvOmhdwns6Hi9Y8tOCurmmQvIvCgA9cHJV49Vi6HulWr97QkK/lrTczicXgZkR0Fr8lk6lGlkr/jNndsfWxeOeURGgmfeYYP7nCx4nvZ+pfofMpYkkFf0rE8ES3OXh2d/ZsKGgprUR/E0PDu+xOnKgUwwUHD5pSdWBJe7bFTeDpDw54rRCfuIeHDuy9hZLFEEQ3tWWt8MJeHJlx4b3L6WQ+Z6zehXF0vgUJaitUIBE8+9NXxw2CMIPM35CtJC4yHvS5aR/1Mq+uePrPa+kAFPpPnPKMeWwD1/2viUFglNcg6f22WfB3q2xRpDdSngeS4+xM+Rgk6vlz68Ri6HZrWFZtce58PVjhsL8+hMzL5ubjzxPArqEimau3cEwEW7ZfYrLMj4sf/jqh3H8kF9h14B+EXAv1jLnFCg4JWdgR8Gf2SDbHPTtNTWVPi49up22pu5/fRCUrf99lo4sk/BZv/VTGi/Gnko9CIX99prKfd9LIHVef80+qPTISCKA0+66NgopJLINi6HUf/Lox6jEWA0uVL79mYmdq0SvNDXlQMpZieOW8YUwGGO469ufzIeKTjUFrU5C25klyxNKn8J3wwWyMh/ImHE0qMt/OvT4GnfWcWHAyFQ4b0ruYPMxNj7Kf+OCjSDTWfaXmOxLLhw4hzjGZeLemfDjvxzpMD0QPQkpyIQXtR4Hd3SMefHnDu95DRaQGLiVFCxWwFEPSPlnvzJxvpN2ZYHC7IhY7Lp6iBfFiSWpRwn6ZDR1l+z98/BeHikLat690QSDEnsDg9jzel8veu2Qx4t4Gr8a/2Zz2lwWP/xQsMUFm4zWWM5czseeuot/B0HaPDyrcG/h2VUrMrccnssIxnKvC/ofO9JB+XhCKHtq0hoNkkqb35QC557P31gqpXAER5v77z7XNzQW0Oq3VsMF55f+pmdmAUy3CW8dm5U5PIl304RrIRoEUW6zs5oUIq4O0M7zcKc7bvuveRrhluTgm8UL0WCVsadM2nPuVicMyI7ubcZfql5Ha//nQ/FL2TadXW4+OtXy4v210Ug2PM85WFiCeyWuFyveJaKbu6SRpncbNjSemu2nBwAAwFquyK3kPHqTdHIT8w6+KZkXbgrPgdefF+zwyiHizZ2bTM/lySC8kFWmIRNFHSmV24e2EfClu22Uad/UOHGXcZp88VF4PNhQfUyaRreVdZ3/u92CFj1WF1nO5RAX1Sr9VJxKgpmrVdIn/QD8tA7SzuLOHjtYXdea5SG3WTfsjTTUshavjWgcqIQLtVcNTGzoaPWw1FjmdYYCJN5pjh8PQ5msfmKsjMbR8+cWWoryQKHmysOud5KhbPjY1X9HXN+O31VCHdvErynKdz5eicbLj9ba7HfhY18tyM5l+sq4Grq0awdocmgENMfWXyUhYzmI6JfabVgN9Ye+ZX9EhKiuxg1VlxUh06LkZ31EPqm2TL3Dhcmb199nTjARe1t9qSsPxmgmbKLN606Fo5+JAnkKpFQM1E7o5rdAtvKLJXiFEvg1P5xp0g1FhZXXVA4H9QCM+JWJYn6iTD9orrriwwLL7iVfav90wQfh9NH434lw8utRqq/3LhovcbS5oJPC2Cn9MffqeFwXd3QZQmThfs3i51g5c/5oROZnjcW5cJRq9493YFkTC5dzXtZrgr+K+IfiOcPhMv1Ide2irOx2FLR2PFbFUR67kr6pZkJ3Qsbbv2LZ+MFBTa9YUkd7Pz2a9VFtwRQ8dv69mUwF83Iv/LOnUmGsQLafpOzCK2Dyk+ghY7yp6gjBxrTYODEDrOBy6kwscP36a0lJExy4m2ouBoJdgmWK/nbSqCiRkryxiEyTr0bOG0x52ufCLwI0V+fDkNK4auVNWm4ztekstKnAUTOCruejfKHD4HeN/W+c/HCXvm36S1ze+x1+YbS4SyY+JUZPpjBQPs7xzJlvCrgnuGHxoWFWdD18qnN8Nz+rpxidEK+MQMU/X19k/9mg1PdGeMwVRIu/frjtZ1qNDwqWRlWbp4Gaeek33jvJqNmlEYcZ38T9GbGiYg8LAEPiuXfxHdctLsmgvtzqwFZcdleYSVAHZcVHvzIxoc7esGOGQNDB1V9DnzOg1UDWxY+iCFh05daw+mzoVBeuP7u7q9ccPKxOpCgy8bdyvUOK/QqQLJqiZ9rlh8M8XTlxrozsX27xqTo1kpQ9otSO8ktBLv4f7/2WrBwsLPycolkPjQFR4j8NS+Gt+K26x9bsPE+3Yq/xa8FhDi+CX3pVFCoob3JfsJC5Nt1TMsDofNU26ap0ySIq5K/NP6dintsnPI4r9hw+lPfpsOvvOA6r1WANS8Vj2Xucxgxb4JZxXcfPkkGwtMLu0IoFVzcHHXpURBPA9hwMqpqXEuguqv9us8vLlbmuX8X1aiDvOmFsWX/CiBXkv7Wn8FF/4xPTYbMOBi43955/l8wtIU+1HY5QMIffV971mlFguCrHeOXQ4tg+HXVK+qc3zu/8vz+v9+K4N3Yq1bWoRQQSG76JGRExbW564aczzVAS6pLX9DcnDWr3dgvJhCEHOh9tT+vCH73cWt6ul/CmZ/ZTwZ3U/FjRcVvrw+5cFf4a4z9o1iYDNUc7jMg4673WCVLegnb0n0Pt+3mgGi3TWITjYxKYesoGZsboL33n2PipiLQ7VKw0p7kotbvM3k7aFUgfnK2Vm00EYadpNK3XmPjvUNOnhvT64Fh0LFNoSsNykV0Fgu1cVG2vIMcat0MQ7cev1UfLAEl+sbpuA1z+47e6n2xgs2wSs+baimNIGeR0lR5nIsBIbN34yuZsPbnf6JqBXkglVq//HsmC5tE67QtV2XAdaMlWaffZYN9W19Vhh0Dd13hyP5hVkLqvbu2vFkIxbutJJvILDQUdfpLzmoEJvWoYNnldFiwJtihQDIIJZPOvplY8QraPh3w6RIrho2Tl6U7FgZho6DglA29HiTCDmsv042CX5penvCBizLKB/ffPxEMJ2te3hMezYfSqRON7AoKblyZdNM3IxvSQ3pSpq7TgfvoW9rhlDmf7DFZFjC395kX6B9VX5sHJWVvHu0IoiIYJVyPES+Cc3/12065s0Dvx+31/AeZWPCt1MRhzt+8CvJsuxGUDiTdnLSbXRR8nv+qVkWuFIrED6W/ntsHNyz3tFgBdDx34L3Ea2WEzVVni9zn9tmPI5nMYTIVR4cNRTPJZTDg58H1Dy8Bz/ClV8yPM7BM2OCGu1sa7C17Ljc0588Nu4Z93XMD8VbeYeP9BxshyzTSOP9PGDAa9uxwXByEgg2lTuMXEWSoW/mSeILBsF337PNIKv7+NKVdEJoFtx/7PgpxyQe5mSmaogEJg4q+Zv+nlANDnvW7FbamwKry8mVa+nTM4owcqDRNAZKMp9tDzxxoFNri9is8EA32mY6o72gC/WV82ytE4mAlNU7wSS8XDRwNxP/Et8D2Lcv3L44thKJIs5V7O5h44EpKoo9/C4xLVdYslc+FaasXs65z/avd/YX6e1EBrNKnH332NR+2nmk9ILWJgo+2nI5dl5AEXP6ElfSPsfDikE3okVgqaojyy3zkcmF56tC+iN2Zc354QE1/BRVXmbh9VmAXQ8etIAXp04VgyCcbNqNFxYRjyw3XHq0EtdTUGse2XGA/tz20SpSF1RlevWscK6H+APkZRywDliTPTP9ZzsLY4Nc/bpVmQ5hz9y7Saw4MCGx8cyWChA6mcTMN61Lhwq53fQOx3vBMmDMkHhmI3GJOtZttM6jo+K/3cPCGyLAtK03+sTGO+99tO5lUkLiyapqiUgItoWnx96ID8cz7PpmtNelw1Shv1mcG4YSg7vfv22l4ZonX3vW5JbCouFDtc3YMPDRQPVP/gYamx4+PujlHwMHbuiWMF1GgORPGX2ZDRily1GYoiIUvvufT+vry4P46tTuDfAxUhc9TTPNYeHt5pqhavwhCuXer387ptvLJ0X0D3xC2CGaavg4qAZfn1mK5InO+Qqpp5T3nZIh1W7bm2gQHBqWSKZcdA/HAQWsHeWUfOBj/qGKqPwXsDy7Sqeye8y2V5sNa+2Pg+xd+ev2vVCiJ2/vW/T4DhUkX4sqbQoDG1MSTO9PgobjMWDCTjYfTXQZfn4oFm2HvNTYbM+GC5+EwW1MSxlMHd/EWl0OEDH/z1Yl4aOx1YSguYKLBw2Uin4VL4a9REknkewhsch7d0xlFQ6e9RoPTU8XweE0D36aSWBDPXXDFypiKH4I/dtpk0oEzWezrnY2QdlTMV57FQicxTWakFgNu2bg9D+CPAp/jXfaac/2becjymm4sHTStWk+eTQgGBo/kxWv1VHRc4Duy0iwMut8Vrg77mAIu4EVvkqSg2QaTkLSIOohwNdpA6/KDi0KD35/ocVHxabjI0txCCGPXUlu74uDmZ0Zscz4bH3uvMMj+kw1j2Y1fqyW5oH6akaDVzEZjalHDitMl8GNhhn/PlgiQio5SzPhHReqibw9UFCOBe7ggXuRZMgit8pr+0kPCD/u6TEsNmmCNzH8c+c150FV4vflOLRcjOl+p/5jKgIBXntXiX0hg/LP5WrsJFdN1gtLiRpqhwLEKAq0TQFXzpCpdhY01auennbk5IJ0qd8dSJh1utPEc1pk73zLku8EH7ULYPpHc6eLCBMdnx/jkD1HQVtrK8v37cLi2gN4WMZIPz+N0C6/bkdHUzeDsyvZmmPm9cYSWlAHnf9U6PfVlo8dZVf/VrEbQ32GkEz6VCLeexDariAehzcTCn66bKTC1seJ7kkI2TD64dSxJhYbmo9UPJaWqweoN39pqhQIAc+7N+MdsLIl92TP0pAY659rDlFkEBuOLr/C5czB6ufSTdZ/m9pEnQZc+uhXDUvtyP6cQEr6dVTlytiAdDt0YVOEtzgPR0TbP6exAlDn3KaFCNRsmHlMD06RKYZ3Q7uCKsyT8fc5v5ppNCqzN91TZfD8JeilXHSXDAjFi/eUHQdsqYXioRz2pOxiq1pTfa9Zg4XFL6xOH3ePh+trW84Px2eCSuc3OPTkQWV2ibTPSNdB15mz05yPhEGzaMfF+OQcXOhs8N8wqhpOFPyb+6uSAjxbpJI3FxiVT95ZVLUgH9dLVYtJVyZDoU3fK7wQVY2wanufGlwLDUvbRQLwfLH7LqtI0oSN/0aPEVrEoGGP9dHuxowS2W+ZWaG6m46fM87ZG2uVgYdVq6rvcC4KCmXalBxgYNexnbriuFPaMJ8RVqqeA8wmXNVN/aPgqDOR1vsXAabt1DX0HEKRCH8cXSZNQruXoAXWvOHhOrnHVOeMFLaYltUPf5/r9mZMJXboJXGdEtrVzQiAkJ1Cg+g0X7TcZ8mgfqwD/wL9X7pQUAyl9rGzhTiaqjWvsnFzfDFufGi3+z4sDkeJmLocnOPjufo/XSBEZNgNJdnbu9xV+bJnuTWVikPON2UOsIsh/tX6MX80PpGbWiK7PoSA90+BxEqUKfIxsNXq6I6HL5PrNQ60snIlJaBo6nwwntLdsPapQBEOmMglwfW7uZOjeqQ3MhO2NfcEaR9Nh8/q3zukCJMyRT/ot3xoIw0q+X/kjiiDkpPKyCRYDZfcKlu2qTIN7+TsGry3KhrvhizRLz1Nx653sb8Y2+cDX+ZT8MzkdLHyWTpbUktHyrYHqp0cN4PbD8ceVR3kgK+t13LaZi2VlH7O034fAlSvZtS3dZOB7+XTp20UUPMzW0/WYrQHRycLVOw1SQF+rWm3XVQ6S+3nUY6pygHsU/ReH5oKr1m/9XnkaPptstHwvWwg9C6piFonmQu3N58ErjlHw/vtK2fUiOWC/uemVXQUC7x6qlVAQA5/EbNvunOcBhwu/pkomIPgHCaeEhtKwU99+pcDXDLjy7+RIr1kQrOk//qWtIxCtl/3L1TkUD64rjC7o/0wFZ56Ljx50BuLgfwmLHRPCIO76b6FvzTng7ffwg/drMu7d/D7sfS8VIsQTJvyaSyDE2HV5QAwV651Hc4M1MkDgwIZHRcpRUNCwfpv3STpOvDc2WjRWBp9PZS9OlEmBlsI9pwelGRhkTjcv4skEgQ3HWv/5JkNfHvfHmZJAZNpHgatKM+z5Uv9zWCwdZGMcUMyFgyl5E8qHdarhSCHt8WtKDsxWe9S+uMTG56LWK6kuuXBlpqljpX04LMlOsjo2TUInP5ng+j1N8GDSfur4mgxwkihvWxLAxWYLlkbjohIQu+P5YmVlNhx/f8Z8+RAVDQL+guecbmyq6blmxZMIlzTO0sv9SJhW2KwxJZUJb8weX3ZSR9j1a3zdo7pArK7sl31QWQ2D470Zvd+ewc7LClJhxmx8WlMrH72hFiSG5bYnr3sBp5uWDOsac7AmQu3mlb4CiJepX2C9JAlk2o/cfixLwbPKhbFeci1wTm+Z/WtOMVz/WOKz3J+F22e+n97xohkeKn/zOGRRDC9VKvpbu9iYvG+rYKZSEvw2uWpnOTeX/3SFKMe2UDBsldTYzg/ZkMu2uOhdngM6ElLX1C6T8FNYeXWGXRgY/qsMbyuggkzcVMepYAbelz3g3X4yC5b2SD/6upMK2wuvG/35EYgn2grFXCfL4Qrf/oWke0HgYD7NWPCTgToqQrU7TV7Bp0s7o1YaZQMnU0R6wTAXeX3/HFE0yAczSsSGvnslUO5YwaOVT8OM8aHh259boGLhxqBTXZGwPEXXRZfCwNNX+0oCr6XBznvBD9SfR8Nir/vHx3wC0aOLnRn6rgXsRWWPBczpsKSTrCXWMvCZiVKpSXYe8Bzs0zRbhpBpq75S0J2Ml1X2ubNDPCFgKPpar04IpEny7LCOoCFpyORE0FxecqeSvP/oItxjL9F5ZkFDpToOaUt3FagbFn2NMEmDN7WRtvFfWJioLfQnpKwFksrf3JrwyoC46p1Low8zkbbxuYT7iRbwbrS/sEsuCzw9ZVnv9Fjo/61rE8/ZKjCQjTjuu7QU/hSPqY/dYeG3VjJF6EcUWJjYZ1Y4x8P3kJSCPEU6XlV/ZCb5uQSuX3p+UI+WB28pMZQ7dBqKxyQ1fbuZBp9ffR093p8OojEvn0deCsRNQx+8nMgJUKIeuImckwcxI5KOP18E4s2MtGl9nXAQLIsJ0KchWIX8apxNI6PcAYGsj8Itc3v6K6lY9IJAjchC5VwWcmXHlU4czAPhtRa2NbtZsDMsY/bPorm5PJTFehtVCP1/eL9etCwA3fvrw6f6GBjmZuyQV9UCLBLjQNfNZ/D0zkDdkmVM1FitE2Z1Jw2CpV4NqEgw4SZtIPaITSDWdSxR+7SmFl7d9sq8u7cUHg5v71GbYKPaXrvdNx9Ww7B17vRKYQ7EaVxfuUmTjcWPxPR3m5SD650NzddnC0DsYp2rjhoD+0iR13iNm8DQ//5Mxb4iWDPhPFJkwsWrUiY8M8+y4f74wynP99Ewk5DlKw8k3HSHhgMznmD0YNS3fmMpJHtPdgfF0vB58UlRf+9o4Pvo3xW1uQiaI0oUSJ40nJ052vQ7ggRVMzNC/2zpUNDHX6Vuw0S57uG8HQ51cKSMe2v8czooKw1T6rs5uPp+2uxYSwtkhv7I4PkXBKIyWlXBvxmY91Cg/E1bATxZd07EUCARCqtL3+ENBoYGFWvumGoGklNXldycH+/x2pt4r5eFTzm3NW55pYJPplXtYsNU+L4oedgmg43pFVGTM6mRIApCB7e2hULMxq/Hvj0joVeA9Lh5ehjs+P69Mo03A8717H7xvo6MpZwOY2HFUrj9xe1Y/4JSSL0h+mlRCA1vnvqu2T1ChhPpDzbYPM0EeYkIw++CLFyzsYR/XCIaFpgcD6s+GwdR7ZuPG9wk4UOKktqSjhLYwHtpkxIpC+5e4FhsaGHizu70AzMrPcHY+F6wu0AhXBf0NzYLm+tfBnuBSUw93P5QEddamAS5IVNtE/ZczJTiNVQ2rALK9dCzN5Sz4ee9ak7cZRY6dJmrdknlwcTO22YmZ56DiPT3I1fGSfjcpX3ieL4nLEoIbflS7wHbarT/lpBpmPftnpGMVi2053iqx8jnQOC09c7bFzlo05nhMKJYBp4KP6wqX0RD7g7dtWt86bi2XT69z6AQzFlh8jYHSqHj+OfaYwIUfLw+N8wmpwYcBSUSIyAdEh+/6+j/zUaXM9rJs+HpcKRYqS/siT9I/NvOe9siEAM6goruPEmDiL73htYhWVDn0/nwiXUgOocvMNZnxENFyH991L10+I/06tT5FgZKqVwaHhZPgJSvP+Nde4MgEw9uENTjoLYf93P36ySw2+nybSa2CBapjC2RqKTg8ZFwm4v2zXDR+qpbe3s4/OALExTm5+Do2PqlT42aIYn5jWU2FANfX/xSdV/MQfeJUf16dh04LD/y5BAvQrHXZQUqHxc7vulOXRROAbYL6aXeuzAIe3WXuUCcju4GxmYLleiw1qXIRmx9Hiwq1ZvRdKbikvxvR5YMh4BVNzdF8umcDydr8oQJ03HB7PJVr3ekgMRUyfLo0y/hDh4+JGYaiPu4TyLEukpBKZj9N+dUCdhovIrma2Hh4fCfZ5KSUsHku4C15RE/kBGTW7h6NwUlRDpKWrui4cC6m5bNWpHgUrkzv3YNCUMGzmowAmvh5H3PE8NP2PDfKqEfjg84GLJyVaN8SQu06rSeE4JUGPF+f/Tuobl9bYh2oampEHKiZ7o80xHeKDXJMk9Q8BTNIG51VBEsf+alL7MhHzqHZDoW2FLQZ2+QkUhjGlC2OP9UPVIKdSXCHR2nAzH6lu6M4lAz8AupxYwUR4HGoWX33wyy8NNGSzXurXQYpUbJClwrAs4NsR1ZS6jYq1+198nnRjBqTDu1XoYJMd2WgcNBXDxq9NvkSA8FapUyYj5aIkQemDGOTqZiWNX5AaZsKHSNTjOezP2urf3NLW3dZJRoMXrz26waBLLeGrRYIzTc3sMft2ZubzV+NSIQkQGSo8ekLq6OhMPxTvSZ54F4Zdt972QhKtS0rqI26SZB1VPjurAAKraxLGLq0hAeyxmHKhXEwEyRYrzJOiZ6XztH2e+QALGNTUsSr5VCkGLb1yHdQHzCy/4oN7evjWkJ/ZssZoHfC7uEiA4WZrzzMVrtHwT7qhPHlqsEge+hyZO0ixSM0/ysdrytGVQtg2+oMnLh+lTZC4YWGyut48OMzjWDsVlca31cNvS67ZN+IMBB0320dQcLC6HDsbJE7Xs0KPV7FlkCBclJq1/6ylXAm+/WUp8kMmDBAm3eKzxMlOImnPSNzgKtWtXXunwe8E3/aMfb6UBUDVlKXxAdBXs+Wa4c884GYZ+/hiftSTjWpP1h7ZIKEPnyVPfgaA7o3zxfL9jOwE9rEh98L4+G2OuqI4bTdLDbdT7XfBEJHT5d1nVcGQXS28b3+yS5QavBap3f2iQcLVyTZbk1C0qLeOIVnMJh/yIh6jFJKko4uOgOS2eBn9qrnTZ3c+DoE+MJ7ikOdjiqszJvl8Nnnk/y3i4I1zNWKvWqMDBSLs90wdkcEEtb9rlj0BfytLt4U3dQcdZjUvbvi2SIyBWKesYJBYWq93uzb5Px4CIjaLAtA9fkf2GbBDOAfbdD52QpHftkgoZuS6dBtfDympvMHDgX3zekcJqMFxUueSlwS8CVkWsX6JEBl58+s6Fp0rB3j+vepNctoHi8/tSWBflQEGcSViHIRK2tHWY1LXmQabKeZ/Z2FtRvV5nONiYjs+1b4n8GLdCncNLPybIU1ARpIZmJTLyiJv2G+c8HaFM/M5vkI+G2ZWH98ws0zBZmh2WZZYA13XX11r/R8JLqd3/RNgqe/JWYpvi+BNa+W1hnPkKC23GfZJoP0fBBbck2VnAIrPAd7qXku8HDfX+6/tWTcX/yiwiv+GDwfjZt9v1eNEyrnT+gepqCJbgsK2UE4aqlbbxeTiLAA5nYinAqHvpv9F0tPRZOcbPbuMkssNJc032uj4wq/qV27HOhYJEwIev6MAsOW3OEDxWRUVfb+eGnn7FwwemU83fnFDCOlKz/00DFEwdmNmxrSYQLhisizPQQ4j/vfbbKMhBTaws3TD+phMU3dbUKgikgnbvns3w2E+V3/bWZ4GHCyhQ19tX/69i8w6n+3z+u0rCySRkVpUSioiFuI6SirE8UZUZGGSVl75mzz3EcZe9x7M3rIDM7VCKF7NA0ot/5/v49f7yv6/163ffz+Xhc7+s8qgDcbO+s4Cwe9Ye6/jnEvC/P9xeHecwaIL5j4ZK7LQkZHfd/8QRC4Pd08fVLqwTQfcIiwUElovkaTn897XbQjrholHapHLjZ8zfsmD4OaX2f8G8ZcCGzwotqhoNbM+pXVPXikegRtpwx3wbgwzy74F1HhpLjxQruZQkokXc+QPJBJijI2dWosNXBgh6X3UUeLLrhLEv0edsAr7k+nvUMIsHQP/MP9xrw6L3Hxxre+lrgKZzf5VNdASuH32tV65CQQooBXwST04y/N6uXxpXCN1sHyT0FFKR3IixEST8XErMFd9s5Z8OtvnPKBT045NP3JOuyYxVo8mzXWXzMgBrK3PeBDixiUHVJhWM9cBObuMT2kw6ZJ1Ym6IE0VCEZnPcysx9ulNx5Ls1dASUPz11KFqWgkQLU47pSCgN3Gz9L4WrAQHhppvUbERkWDEU8r0kH56tGUdf0yyHcI3K9lTnPsQeqOK9N9YMZB8efUpQPw8+MlUZSySjEGfIKl6uhL1mNrZMzGTp+sLkOmRFRiWeCzKsfGPgQGf3hr1sRhLS6zFENKagTG7pX53k+LHxfZtvRUAP+xuLn7GdxKK3V+ofPi1ZYahgRkVyrgjnVT9QY83g0YEoWPzTZAO2TdWZ8+xhQmHnkoSZHPGqWSFpu1cqFB+zWdXfHSuFchILWZXU8Ov2yPDCTwYC8EprXkdxcuCGFWcv+xvTH4ywWzkI1sM+6zljeqhFW7RI+8x/AoYHn3++wUPJAXGss0MmEAE4zrsuy5hjkbch3o/5CGfiIrD+r2qDB168H+lzoOPRPIrbLuCgF3qCW7pbeTJBQX3vL4k5BL0KiD94fKIaH2VJjevdL4K5oRqvzMhEt2Povzg01gUkXvTs7LAlEtinRzjaT0Oi1Cf6pY9WQ6DZ5fE26CNLfr680z2KRyeA9qoFMBuCmrnuNfWJAjnWsdIQqAb27zv9ceYsOd7gbTr69VQNxBi6CsfwYZLIxvjGzVAKpISXOX6azwVWf9dcFy3hk6uPR3HSvAGI7/vyz6iqDZIZm2h1tDHpbHB5Q50wDYqnB30eVWeDOlx/pNJOALmg/7vGebIP5q0LT24rosPbkzsteoKLoKpLe1Vt9QFAjdCnsKoTFBj3B29+Z/N/4KP3wt2Z4P41crI0aIWi3VXuSPRmpT2zjrT/QAs8ERfUd9zeCDeZompIPBd021I7+49YJ5MT9+UkSmTDTayx4IDUBeX2sr9u9VQrvdSw9hgrLQHI8xg3IGHR8G0sZLq0R+KWbwgL50iBd0OdoXwGT8yP59h0UaQLBAlTsxVYDXmdx9zulSehUUWVL4VgxjEu3fSoszQOVm4XT6kwOvCC4lViNOgCrKsI4X14N4vfMcXHMvohdkh29VZEGVG+L9ggzBLJzZgrvPLCoVGPmuSW1BHT1FU9jY2rg9rl9O7YoODTrl2J30jUDJjIeZU7iM6BXrqBX+gIBFTnPX7MSY+6hW4bYO5l68LwVNvrzHQE9GendelrSD6T7f0LwIghOZmEynY9T0FyHgc+BbT0As8/WPVQagaXtqryWFg0ROU/KFHTlgq+iZYBCawYUuupOFfNS0AMLwS/bnrdC3WwiZ0NMPZB8IlmtmB76yEMIuWqVgnBhDe7bGAOc0ljyRpm5zXm1f7/QxyIAqrpvu0gjlO2pmyJ/w6IB8+0ZrXfqQO3IeSO5VOY5P7l49vcmM0/EGoyEC2qBn5ZhX8qWDHd7Q8Tf5OAQyxD9zmmrJmDVEFO3tMyDSxqnagT1SMj917G9buFJYLIlUFm2qx4EnwlN7yvEIW8FhciczymAqU4XjNHNhW4VUx8rIRzakfGlbTexCv6s3+s9tq0MvtetLficJCGeEcs9R7+Xw4cO7wgsfxGIPutKFZvBINQX1Kxu8wpc1lWyXDtTIGGt1v9VKw65vxbl9B5rh7TEEfHmQQQ38IqclM9UdIZnb8a/jhywvfhg67lxJSxSxEyDjhIQ5qrpp/LgIlitCfDNqyXCSReJOK0LzBx7vIg9F5kIAdkFe2toeRC5uZKkLoZHJoutbfdTm8BipIicF1IJD9MyVLZHkFAnJ7VZ/9BreD3BaRj5jQ4PVxNu8RaTkWfy8y7hjCRom5J9WqiWCfBMqMVakYRa7ivZ3P+aDu4P9NYCTidCoPPU/YvXCIh3S3/o4UIu2JeJbOw+EQ5nbzjrCKbiENUuVmnX5yjINurDiA8xQNN4+5gC8/l5QnjZgZUE0OnbdyrqXTFcM/W3CWfe797h4417iJ0goWLT2yhbBKpaWz8VSxKQic+8dva1EvAyOnOwsQ0By7Kqb7USBmWd+HVdyL4d7G+V+sxm1oCqX0eMdiAVPTknfHq/Wgdwh2QfYSxlwy8pMq38cAKKl2NTDRZpB7ePlQPXW3Lh+k9fqxoHKtp/+SeXMjsNRMY3x3I8EBwTB2OBK3i0zKEaOxf9GpKPPZohnk2Ho5p2Jx98ICPqOhejvJIOL/n75l8crQeZKLGCTREcyr64ZPyptA9s92VzHpovAhPJnIwv6lT0O0WY/oszC2zpL/IclBvhQCxxY2oPFunJ60BwWwsIPCeXlxcFgp9tyLbXJAqi4xVnvym2gIXgIiPodRFwhmmI7bSgIA+Vtd/sYy3Q99bZhQ+bCzebTj9V3R6PQo/T/iRd7wcZBZ7VYHtm3x2zsPjdTEEzUu9JzxqT4CX578cs1hKIusF7Lecx8943Hc0M7/fDuBtFVoXJyXs2LB6LvmHu7ykJFVubdNCiNa+iXQxo6hCkWZ2KR4d2/9wpO8GAe/YtsyikDJTbLLsJnDR08YeLzCndChiO0kuv+ILATe7rcfkDWNTKejCSO64X0hVN/larN4Lu8ot0xZoE1N1NiUlL7oTFX6ZToWJJMGyOEbhATUDO1L8Iq1AC1cOVEzVKxTDqR7rQv4BD3w1H7ofllMK4YqGF66V6mDB450pzwKAbPgoP1GdrQak74Oyl60GgWOJ8fjMThyy0yZ4PJxshp/jp2d4oCmisK3uH/yUid2EMy8C3aPizsDnDaV8F1dKDd0ukKUghc7bm0WoVRP219dotVQ+DosfYDlZjUV2DQ7ZkGB12lnW8r7nH5NV7R8xIRcz9ZQ+jDyfhwXyz/P28Yynsf2xz6vhjAtrxdO5RJyMcsJbd4zBdCp7XFr00/iOizigfw5RDRaDs0HLph2Mt3JdTMzAwJyPB704Hb9Ar4P6T9QidnwhMbp7D/RYjoom0RCc/7GsIUXrJ9tmNADx78+L/c6Ih//p70Y7UGjC9NZelLVsP5g7p+34JkFBrd8moal0ZmC+9E/3xrQSUykL1mptxaCpSco0hTIeZi35vUh2Y/SMa4yuuQ0HbKN4ZLTF98PuhZmH6o1qgmi3raERQUVelVdJiGAXYfm494Z0hgi1nmvvbXDyyq7npl/SzCDxxAuzYoCo4cs67+tRMHLo4dXxdwrwCntWUZN0dLoVMPj7p+Z1Y9PRuk7f0aCa08nnq8dvQ4eSh0eG5EQwa/Wn+TM+0F3jZ+rlCwtJgxH55n992GlJ6GFFHk68EauEV3bWOWhgq0BQonCYjA1vfyPr5OiAFSmZ2htbB7q+8bo778GgjbuMhZ3g7rBcdfKXVRYTf+859YQRR0WGD8BjbP90gxjLuSkjMgspgzbOKLsxzw2Wz7xKjgF1x2GXf3Dr40HqNOtWCR3RqnVvCq144jstQTtiZDSUntNEUcw41pvSVRlx64eiTxvHm1nzgnc/4E8nk4Xqs9kCkLYILK99WL+wMhqEmld7bfASE7fCo5PzcCZySCwlnAsuh0kq/sLc1ARVocGf7JyP45JzqIupTDX45bcuCZyho80Og7cHtRWB5+rnvXWauBzcmXav5G4eEqN0cKRmpIIyn+awdqWD2vpvZh1gqOoTPqMpOo0N2yLR866dSoHPeC7jdhkOhb46EaeQWwcLdlIMtQkmA/OfdZPdg0MmdtzomDhaB1KV/7SpbRTBoevJamQAGPSS07D+MbQXPok/zjqFJUO/mdPZpcTzK0CVzzL7JgPKl34PfPSKBpZ23fiqVgLKPBl/2KegBySE+LTWTEPBQCEq8IklDe9i4NR+GMuDyzFnD7SeKQHeuf21ilIAkM1Xa4wJfwyV9W/fKilpQDzfOez1GRncmb+S2PW0Ed5v1k8d8EgAz3ca6IU1DZW9XCrmE8qGUyLEzbjYHTl2ITut/gkEBQSn3aAkl0OHe7lS3WgAusU7L+y7jEIbscObxwQrgPjA6i71Mhx26mbGWTG58YbIawuGRCpzCr0fv5hTCVYpVlFoTAcXmb6javSKAOI/ZkIJGBWw4BZqWrCeg7aM07JXdeZCuzXGl8X0J/NDnur6sjkGMoWddh+KCgZLBJ3DiRiW0XsVpLIQQ0b+Hw/reXpGQcaFHS963HFqaaKLeAmRUsu5nLzzYBnuxFf4jdzNgKngtbOogFa0k2Ab0p/QDlvfWeqc3AWz96fWFm2RE3u14nC82GTbJvu2VfxHwrldH6EvQ0Du1TPvBwiaYvL045RwZBX+KrPouH41HUpwa+3MPlEGnzb2tqe5QmJpZW+CwwqHM3OCH6plvQK/gfWiuYSPsuzcakPc5AW0Jj1RNH2WAEJFcWBhcA3zc35aexhOQ9UKUcq1TLeT1mF/N8iyCes8H8SkkHLI80Wk3OdkPrtbhXn4zdbDWJHN+zo+Mjr3YM7ODPRfc36caHHSrgx06KpX/LJm+QA/8/bC+AVamlzYsmykgJvW5m1uVhC5VumfLeJfClV9JR2oOkGE91OBQxHEMCie+XHXzSgPsuVe6C1Jl4P3dT6ilHotiBEpuSEu3wPlbt6/TVhH4Diw4vJejoO4QE1YuvTx4+dxX6hMw+/2reekpTxxq543wpF0NBxm5B/ns0nHQcOXRE5cTZHQjVLusgbMN3GyG59bNcyDexeJgJiYe5am6K97mKALFG0cZz5jebTD9xlWWmVfu4hvDZhFMbzXLFcI6VkLGOItdMh6P9O+P+G0vqoEbR+5dX4Rq+H1CZDjsIg5BkUwAhzoOAgOUnT20gqF2u8mbICKB2Xc3X/4waQbaO/dDoqWZEPOcYt25RELshuPS3kEt4LNs3tOiVgufbd8npFtSkH3PKx5PJwaQXZdzJi0o/z8PHIkElEs6xH4oFoHmdCLLT/Mi2Km7PugsSkBnjgmuXLIth/7n/f3FfQj26nndFspPQL+SxbsF2HqgD5vGi1mtAXvxFT6XWBpqOr2HnqlaBoPHmifTnRvhjZqKZqYHBkVZz55oj+qC6snExqr6HMAnZvbcO0ND0iqiQ6fjEfwi6AXdPpYBr2r6Qp35CWhBNCJF4HYavGIPfbdfoBpmOx7O6RGxyI8lxINR2wV543Ipk9oI9PQ3vy2Z0JDGQl+8xMprKFuW/yiulAeie2fecQtTkMjj2AmSaDnwHaZYhzfWAr71J0sdGY+EVodfhbLXAsubTC7t0/Ww/HPp1Q4LHJopoytu3W2Abz/5w9M8G2FuErOJdcIjowvb0mtHukDoq/IzvrEiiLHgEjqhSkP5xSWjFsz3/HfMf6spsBZ6jOLP+9sQkdR/l956TtFhAqyThdbTYfjWiNegJR7ZT28aLF2JgqGyQrkCmwYI7SxI695GRGeFRBZuavZCt8gn+jaDCtgRZChsx0pDqurf7VTozVDBYZTI3omHSz7VSk48ZKRWwF0X/ZMCnUrycvIHG2FBd3Pvxwg80v6pfn1akwGRD+p/2IQ0wlCGF9+UGwEJmoxxeweUg+foI572AymgnvmnYdGAgmpeX5avFGuC5VWx8PmHRTDzeqdXwTYSOu94vX9NsAGkFDZGgoJfQfTB47483nikJGFwj3AlCD79tJlSnKmGmyYjsu5WRNTg1TK6S6QYbp37I3fNpA5EI8OeF3JjkEJr0M2zIQlgvSPdQ9q9CsSOkpySTuGRx5i+2MTNQphaSqkQXcmHtmW+509XcIg95ZEDZ00g0LPtesPqikE3PEtVwoOILJSplW/P1kGyT5HboSfpsLORk6g1SUS/pffcdLlGhyGnUB01qyJoiXonXxSBRenfJGaOclaCzoNuuhUuHcod2UKf9BNR0++sIh7rTNCvE/ggzFMFmB5jsZBqHDp17llGkVktzMPT7VfoxbCumnSHNpyA9p4LihlIegkMbtUBx7Jw+Lvn56PheiLaOxR392NpCtRkczQFj8aAp3j15br3WIT5e/5eYUcDuCmNFY1vR5A+3B4bc4CGeCLf508p1oDf9k6Z6dr0//+/ySwLDmn03Mphje4CzlwD0huNUlBXW/1Vysvsox/vplZEEcyill06DAYI2nANam2Q0BWfgA+lNmRgzYvqaKOkgELUXiFCOx6lGCmeMyLTAO1pTwlnQcCVuThi28t8X9bX/IwOHHxUOjKqQsaB1SJNyjE6AbF40f7O0XphbunDrh8KITBLfGolkZKAXEYLGTG5JfD86BHnQtFkMAh6syeF2dfOUx7qUY4vgf76JlVvWyPs7wpw5BgmIitkwrZ/mgGHvEnvdoxXQ466qIDhRgKqVeagCLC1QykhUPL4VAlgAp7Izm+noiXFs6HeSfmw3WT3CYG/ASBveIzDSQqDOLrdWLtv5MENxbPHKQOFwC6brHzjOga95uGMiJOsgV/NPWY8KZGQjFEUdT9ARN8HOPSTsnqhPFbos4FpKURo/DzP9TwBme/fOjcRVAL3KVrLnBcZgLitG7l/k9Gzmq9hv0+VwCjm8aKVVQpkxXIEFzE9rkcp01F9FAPSgT7BWm7FUJt38lpnCAH1ODWL7mIrhblxl7aMJ8XwSZ4DF62AQbkOXT0xl9Ph/JefLcGvqqDAUjZbI5KIfHU21PM5y4B3o8Ovsb4cLhEeXWBpwSEsnlPYaQpBO9eTE+dPN8CdvTrxXNMkxDf2u9mHhIXBo3PZPu5EoFyQTI8JJqCt/oY6h4wimJumEY83xYOVsL3Y5jwWXY9+fopwBQsHf3mfWOgugHtKGW8aa6goxvqV+L0wBJwvWJK3bS8Duz7nnbvOE5DB1frGwKhWUPgufo6Vtwx0Br7bH+eNR7qd9U3rie3A8+/7cqZHFbw982//S2sq6pjeLHeFDOCTeVGQXkcCt2b1T5clSOgH7YbU9fwOoNvh1twu1MHfq38+eR1MQP/dmhxVPt8PJQZ1HY5ZdKCsU62eLFDQ/rt0ozh1BOXrTVfBLBJEGavy2ypI6MZ9nEegyRv4zDXmd0+7Bp7GIFwYc07k2k5yeGi/gegOQkx1Vx00/eM84tiVgM5Ep0mXjFfAwTs8UlnbsqFPs+1t7ccEtHz3p+S+6ySY0SlAbP9y4Hisv4rEezwyaDCVvvugC7p4JF8XnkwAI9Fo0i8FGprarCuOd+8GLmHKYda9IRD+ronD8yANvbmx8rAhpwqC/dKH+MqqQRTjNF5Ow6Jowo/uwt2VIH7buiZQsREuer3dqB7BIZpvgT9rXAus5eCfeqikwnfhXa7eQRT00Kj9mYZcH+TUqp/+kosgqUdpcfIdFXnE3TnTEs+AX9MRXB3RoZBCfdtWV0ZAOLEtWhh3Jez68OIlN08GHNtNddZheqLtzh+fEq3pUBnvZWx3mQKMfYJWPz3x6K8Xh8PloFZwaK/8IuRDhwBdX6sByXhEjQgxYp3OAVW2l+UlZxjQ2/j4z9wdDDLV55XYc5IBT3YZXPyTkwTLqD69jJ+MXrx95YTuVoDVt3AvGaUKKPpVJP2Fm4DYlvxEM/mzIZJveWpVhg62hmyPopie+8pCRMdVpgn29H8cHtZlQBT7TaLVHhLamN7I2VvRCG+FPBJwwRmgunRIRayHgvrEdrzZPVkOYb/eS9lI1oOf6IP75W0YVORHKg/WrodtSOFPvUMa3GZ1UnfeS0HE3NDOytoqkPR7at0vlg/C/ML/NQwSkD0Xuyd7SwPTZ7O42nmK4QW37l9HRzIK5zr19GYQFj7WhwTE89dCNEUr2I1AQI8ODz7inEuCicvVZUs7X0GVhIyzaQYR8eb6/Lpgnwfvzl78jilPhpuqmC3lMxjk323imYw6ofhZbqnxIwa8u93/oJWZez9zt/7eCvaHhI+Xxwxj8kGZG9dp/ICIlGvp1zbEC2GSy2rk+zQCKacmYUxpPOLCfl+xPtkBQQbaPKFuSXAFSAbjuVQkVxpN44/pgIZ5p8GQ7DQYx2qrrU1R0QVfxxO52ALYlsKWU5YVDmfv6b8rvEpAwT3TVU8Vm6FbtqHIO6QatI4WJEo0ktC0xPzcd7EG2Of5OGVTIReiGgUXI7XwaIrUM/hlrAPe7D33XG65DFLOlhhXiyUg+sJCFGm8DXRef3aVvFMPP7M/3dl7goqklzXWTLD9EJlbWSumXAV6ifFNXybJSIhw/hXtfjNcSNwnSbhQDHvccWNzcyT0TeqzmaViNsT9lKO+z6qHoEqJgtLPZBSTjvv1ia0aAk6EV1DsEJhp9yX9VSaggEtmOO6jZWDvvO2YgRUDvk2f/U5Rw6DnQ7fgeW811Fddw+9A+WBMtda9yYpDI32ZNXotlVCzlJ64UJwPiw0tH1s48GhtaSOGpSwbsoMGrIIni0FfjkhyvEVFcbriXvLUejBNu7O3oIjpC/2HH+1i8sPk58MWdaud4JvQ8fro/VwIeiEQb0lJQP8ypy8lxzWB2WHqbuMOptf2sOTp0hJQVy1LyKmJJrgg1yKl85sII2Uxi1J3SMjNRsnTyA3Bfr6YKrn1chhY2chd7Mcj5aXkItvWcthimPPa7KiApY6Fjfx3GCTxdKnE1bUFjgRt27yf1ACU0VKi0j0KihPtsyjjKIeyHU/3T83nAadmYIf2GxxSk66Y6s4vAVf8WSrZAgv10mP7jVzI6M+S4yRVrx/ivb49ZEv3BzBXIJ3zoKD4YRsWh6BGsORu2JOonQeW6ULpE4+JSEPOWrFKuBa+bBhPOC8iiDCjHlIUoqBZAcnrLafKQcI9LMi1pApmItNv6CRg0AC76i616D4o+tLI/jMWDz+tb2bgBalo/7XOi2HvqTCBIdeyP62E769ff/tAJCH/dA6WBMsUKPksmOB0tBrOvJwe2H2CgrzCFguanvQCWV3fZDCZCoWp4vciaxNQhAz2amFeDmS93R3y5k4KHO0LTHjF5Nj3y7qfNFJLgbEpEZR7PhGcVGw5HZicICCyjVX9Rj+MSl/9KuNYAj0F+XY6ARQ0MH/1bIcgFegOT7+bmtNB5IAY64Fw5px3hQ/HM+eE/u45w/gnAV6GiYrcvohFa14VFWZ+pUAN8ieeS0Qw/PGMjJAxDjF+XFUYOlULr2TwdzQIRDBaxA5e0MKhY+bPTZSkG6CGIF+6IVEN4X9X7Lc/JCG/9z0/nko3QkqZz7Hh9HpQr1i3vCJHRLsUpUe+2DHzuUbk0qPjDVBucXKHInPvfsWjr8scfRCfSN3YNsjsDTY3iWMsCSjUYVgqcPsAtMiF3cCyVcCvnpEVItPHzw0WB+7JfgNtC6UkH61KkGdrzlZk9lp+BueAy7HXwL9eIhx2oxySKVa6mr5klJdzxMtcqRw6F1CX0JMSqAvh8+euJ6N/f8+ZyWZmA8Xm5RnuH+VwU3d4ZZK5jwKG7jvPnSkHdH7voYuiKZDmt/stloJBhjm//S7tzAbal8RAldt5kHL+r39HBAa19o50iT1oA7VdRRy8f3Ag7v924WRGPDr/J872QWgjmAtTAyfHK6HZ2yzOz56I9jvMdSq8fgNJkR+3Sn4Hw+pvT5L6agJCwipHK5rpIKDJ+13zaDmc1robHe2ORfZVmc0b83Q4HjzQM01Nh4F3SdIEZp+6aO0x09/qB4rYV2GR11WQHhHhTttLRsJW7zYW12uh6YBLogrLC9BQOX2p+RuTb3e8mlHrrgQ9vY18DvlS+KWbNuvxBI/MbEJcpnNrIYtmFlQWkgN1gX1bje44pCSieq5z6DUo0C5085CqwfeTjKAIM9+Kx69bzC1mwfx2LlaqZxXcuurMOpyLQSVDwp9ZniTD+LRMASmcCKGNmAfbt+GQ7MwnO/3cVOA5sjag6RcFj404I5wC8ehWNNcTB48mcKqZ59pzMwmObux52uXD3As5/+YkiWzwMQtXLu+uA7XfVubSTP/Co4tkvEIEJKZ/N7vongSb168Y3gwio7sv4lmDmbmUtHPWw7AmFfY6Go/Td5PQ3Ru4AzkDCXCSYjsqWcWABepZsf6fZFSwQbqqs2cA9lnsk3n1gw6pDxwYz9dJyCyDVu8Y2w8CBBeLw6dygc957e2OFjLSLw3Do6g+iPTl3igiNkKC3tvLj+fjEa24sVDnHtOve0/TN5QZoEBiz5BbxKPxjGOnBTT8QfGg9s/JJaYPCTk9kWJ662zot4eByt2gGP6g0P1OJXTqGParadJQAO70c0tNOugdZJd6FFgEbIp2xqmiRDRvedBP/mkzCLRImSiNl8JNrRctUl9JyKeotGqVswTixEQT6wzoIObhm3qBBYP8joeqXelohNh7sozZ9DIY45vfv7+QiCrH+to5zFPAQ9Doiad4MbihcjJ5Nw6pSu2X8JhPh+Zdh3/9usGAcwkrMlUSWKR/2va/ys+ZIKWmXRX5EYHJg0HF7eo4NPjNKU4S/wZsdG7qz4cQYPJzVbfL2wS09PZdcZlWCUikjDcxvtXCEc/34z9Mscg2KUvc5VYScHlwd4s9Tobp/p5d1hVkNGn5S+W6ZxtYFLh0tn4rByPfkMU6Gg01Pz+1kM+aAymeilW/9Brhy1djRVsHHJJe1EzS3xMKNu3ipaxuGbBWPNpfO0tCY2PdaioTqUB37JRbfIkgmztLeiWVgNZez/AlafWAzdDd22FayWDv3Ymv4achIz1ZnrnBEvjKc7k8nKsS/N5nCfjwYdDDwKZ+/n/9QDuw97yPWzRsnnBxPPOPhAy7c379aS2ArU95AiN6wTBrNiS+PwyLlBfcXKO52mDfkf1z0dcDYenSftNndvEIG3BgtedHMdw5dJhLaDUYhqL+G2whM7l3vGlz0pkOFTsvu2oeJECgiI/8QXYMIu6stNb6Ww3fbe/uPG7AzM+VpiFDyQQUYxQmczG1CV7k5ugMhAZA69tXvzoVSUgRn/n1n0YVeOk+0jHAl4HweZM9oc5Y1DlAfDAnzoC27cr7rzC9yQXlf/TXJiAJCbNySnAxnEOjjMzSAKCoXm0c+R2HgrodvThcGKDCMXSbjy8bzut5XXBgnlt8/ubfQrY++G10a3zepA5yiss+6S9R0UZ/u9S3231w+IUQI7qOBvxuLe46IVS055pX/m63Kpj4XnOU7pkB3lc8SGr2WEQ1+WD0jV4DH5f+nXLdxgD+8y8cjY7i0IZoByYqjsnHDSryjF05UCj35EPHNBkV3rzE7m7cD+vLxZO2X6jQXzitJ+tGQW/ahAie3APQKl5Ge7ctBUQtFV7t+EBCeZY7mo1m+2DywOkDnxcqQPg662aqTTzSO3eg4HNeKahKfdlgGfCHLNMRqTUVDFoIuL+r42IvKHdLv7p0DcGNug3Wp0zfcck7Xy5+sQeauvQdR0uZXt9xXVldkYZU7HF1h6+WwXCEmcOp77ng4yoYtGxMRNv/GJw9M5ED6/ev37qVkQmnRi+lbtPCoIPa+cYsuZVg4bOe/1o3AAbdAiLFAItaHTY7kyK6QH7FJeZXSBq8VJWM9WXOodQesWd7Bxshr5wgqhdfA9nTp5LLa+ORhK/Up6seLZBUopIq5FsB8uy52juvU5ClKEu2++EaOPfc6dnvBDJYT6p06zH58KXGEuOheD9U6V6QKV1NAkdCZDnuPQX5vKwobBTMhKH3J+2vvCsGIov2Z1jGoPZZ1YLHQtWw19Y7THcEB7HDgzpZUxS0nKq2qrZUC5Zv8733VqeBeYSubLwNDj2Ip44XTfeBntmPqdMpJfB5M6yJzTAe7Uz19eNOKAPbF8srVJ0GYLU3mol7REKeO+z59beVwiexwx88c3Hgq8qZXqVGRXkXTofajvfD7uj7wo/EGJDt2jngr0dGBzV+lLgYMQDr9Ekx5jIdHvhWG2i9J6PI/DOT9y5lgF1c+mjJLizkmnLdLS+OR2K40Jbk9hw49VbdXrYmApxHzy2dcySh5BCBgXgm5/Pv68G4fakBbZGPtMxdNPTLg8gvc74BOK6oZI0dLISVEb0XGwp4NPL1KA+HaSq0nU0e+BDTCCJxChvHs7FILZER0FlFgHjKh3BFpmeVTsyyrbHRUHnplZEve2tgiIOtt8C9FgZt6x/ov8Mik5oHyf5hyfDg8BS/ZjQD4vzj4m6I4JC3ojyD41U96LtH7THOCQeecdVaYPrO00jZwOey6fB9YbUsnysFeDKf9bAs4dD+nUemCDYdYPoNY/iEmc8BH02eKcsnovFs22nGs36w6XtCxt1NhZHbjRHVxymo2zznxFhIA8ywi2Z48yOIXpZIYtjjUaz8gsxDBg0WdE/WaueWgbJAI771CxFxMEL9JJ9lgomcdkryDgycrH/EcjAHg3pHuxq7nBkwGkHgzxZJAo+Twef/PCegkA+BupxttTD6Sy0v9HISWP4Hd11VCOjBbv/ElthqaL5/1fChcjHc054Pb54gI4uP4/FTDSEgeae2fDe5GHx4w2w3ucnow4Md7pdt3kCKOe7Bj+hiOPgqQraVwPSFid+KOUr14F7ubvTQoBJ2WF97//4mBRn5zD3+NhYGBqcbLrofrwXvOOPbZpfJKEFTlydXKQ/QkQIWqn4VHE4ukjidh0XiQm88B9SwIPn0g3XlUgr82sG1oFZMRbvU92H/+9gOxdaHvskV+kMFq2aHryXzd8P5iescyfDtvu/FM+rVILAm3uTCj0OcZ+SexT4sAaezwVkS39OZHBSkGvgRi+7WWynIOTdCwE42C4HNYhgh+zpk2RHRI8wji8sC/TB/UYHxlpmT7IaHdsquUxBntE6xRXYVHBO83Jt5F8HsTi25D97MHkw8nOBwhA7CMw8rjflL4cephMTK9ji0Ax+F5DPfwOrIxidNZwTXzquO0ZsTEN4jyn5bVBvkTv0XGxpVDWuXeZ0cXsajfQnDtj5Nr0HXL3TYopoE3n5dV0hvyWjGDcdtuHMAKoXsTMu/ZEOa2feRSQ4y4rD52IVSmyF+uTDx3fYGyL+XSe1j8oMv11ZWyGY/PGUs9LZ+bID3XU6PljjJ6MfB39m/mPe0eoXq1q2ZDSnV/cTxMgKaGPzJEK4sgEzZyCGTmwyoe1zblzUbh/rOz0q1G7fCD2rncdJUMXCUzRAfM/PHUsNO8eWBbsA4X83XYqsHVXvT9FQhGvLxPqnDyuTVrCkhxcLOEvg4LH7lgBgZ4aQ1OX9HlAOvaYVv11ouTMSMCo4nYdCLC13KbpeqIA6dN13na4SpifA98o8JSP0C3wTtSyU8CUt5sWydCguG27+O7SIgC7/88eTSVtB+zpD6y8qAz2pb+jJy8UiYYNoz29ELNQHqzwTZU2DY5CO/hGEC+tJpgBNULoAjT42LeXOKYFCaUibI5Cj019wkOR8Hmre9KKqSDaDwbaqRIU5AbLGEDyeUayF0Z8lnu210WO1xmLLKJaBvEiaEN+V5cN8ndjGslQG8Kj7J56eIKIK1KzF3TysoyDjazDLzOHCxxrcoi4JGRkLaOrR7ID4p5J2SdxWU/BjgWGanoclaDramL6nga1nyqmFnGrz9emVi9i4W1QTJzb/6Uw3XUqY3uI6UQPmitfLuKALStcA10IJ6oeLtEPfO6ioIMBZqxfomIMfmz2MlHyrB3dLoLF9MLby9ttS+T5P5nN+/GlqZfiRz7OrTXZYMSLO1jnC/REau9xsdaFutkPy5kONwdS20kRyl/tONR8E/nj4jNfYCfvlgZgW2HIZ6a/v/qiYgYTVd+sz1JpC4Y5clsKcOhP4Klt9dIKKfSkV7/XUpsD98v+H1Yir8OcQZF+3K7GvzCnnceh/oH37GCB1GwGIamTN3Ih71POq5pL+rCnayB4bmRTYCz2ft+6tMD724aw5fmtMM5rb5XW4HU8FzxCiP7Q8J9VECTAt3F8C58cA2V69GkG3ITvAtwaJNuR0V9Ft0OMamSpCKYM5F3MzjrWY8+iCnE/KOnguBtr1lhdU1kMuS3hhTSUCFNKyHU0oluJrOJn/kaYTtSw6cCzokpFfoQw7LqgCBYsqW31IxeG+e+pTei0FUUU7Wosx6MMrA7w5j5rxYb0faxXUcursAfwgN3fBbarNyKIoOY/9NaRzaSkDm/I9MlMMawOtSyQmN/HQ4byebInkNj5Lm/z2qNEfA65M5KBKfAsa+9ZTgMjxa8vSq/mGCgYZTxmslPVkwWq8WY5fyv+/s5lrbaspAi9dsVMu1FooSh9ipDhhEj4hduW2cApr/8QcnhVbAHreo0zafsGiP1zkZ5doOSDYhuB42LYY12ken0hUq0j5iecLBuBaOV5e5b7dNBm85z/vFHlREDVJt54uth1sG37cbGNRBt3rbve5/RLTwT37z0vlMqL5l8N8mSoKGs/Zt/iLxKPrVX/1y1jzANrSfuGVXAuJ/rYYfceOQiP865o5QLigWKOtd/ZMAKf33o9PkMUhTq2hBk7MGYnu4BKxWc0DaM87IBI9HsmTdrPR2BBsvywK799dB9SVCjslfPCqeiJmlbmIgMOa2aT2tETRbFw/omhPQU/bJ//BMzlzZ7jmiH83cS0UH3s4uHCpkUeV7fCMZBHarsNl6FsLDnINv9PlwKEun693z7mqIHGY78PprFVC0jvk4MfPh59I27NW1Ggg4cnz5nUYjsJm8Liy5R0Ai9h8eX53Pg83I5xdltyoh4Wnade6NOJRV7F1rnFEN09Ha0b3rGWB/JYA6l09AGpE/5w8fKAKM2hdBixeVkNVXM3H0ODNXzZM2G+wbIK//FGvG/TLQzMkjOd7Go5Zg/Sqxy6lwVkzg3VZ7LWRnypJ0OwiIw3s9TJiZ1w5PJOIX4kvg9x2Zu9g5AvJXNBzBO/RD/NhxYRVm7lopvndwP0BB2hjvz4bP8mCBv41GdkLwWZhjG2GFmUuKp9aamV565eo9dlZKAxRmdpQ5H6ah7TVJiXaH6yCWS9b5GJNvlQ6shCaOM3t8vLYoYoXpOWvvC9txVZC8+EVHtZOA5jxolSbKRSBa8xejEYmAaP+QJUmLgG7XHj5/YX8ReJDeR1W41EOS9THHC8FERIgIXuXXRdCu9sG5U/J/36HO8MwWMPeO92ynHm8+0Aninj9KCiDv0wuHMkRB8qt7+ZqvNkG46e5nDfuSIHHr3svBfiK6Ub5CF0opBLPvfoqZ15JhsOHD7p6jBCRPZrspsjsNnnkccnt1hwrKB9glPzzAooLKxiRT5tyWTilJ33ZPgohLtSzPPImobSKUK+FxG4h333gze6kMeB2ebF3yjkc5D+t1+vp7IKn70/GL9Dw46nmGWtCWgL4ZfAkdyGiGVIL4zjv0FAh23KdawOTzN6xr8bOHSbCxfG2GU4rB5Cnq5GoLHgW/oruv3UdgNeIVIPWkBl5yy7wxLGRyV+GIcePREsj5W6GcIEGGJbxE28wpPPJdw4gI6mVBEZb3q0xHPfwfbCb0G3icFJd3INVvH4abEpqSEZE9khF+dh8rUkYZlbIiu1DZs4yGeZaz7L0de/OcY69sikraJYkkUnrP++/543ue8Xnu+7p2V7afWsAlo/5TEirJ3W2w0J15+bFPMWSPVH2r/05AuttsdT2zuoH38oTC4cQK2DgsrZrpREKfGzvmRR8Xgur77Tv2u2cB58J1D4vwZHQkKHJ8hkGHi+0Xnhj61EE0v3EOvhWPEpTizpBfVYI8z1lrG3YGNH4ooB4JwCOMyVqKukQe7Fzee7ToVhusCAbUPWPBoNWu3IyI1Sbo28H+j24aAUtrpWWlE1j0yXa9SSCjAWI7NDpPqDyADBld0vUVLHqmXc/vc5UErE4MxUG/ZjgjVBGX0UhERtcbfp0brob7pC7W8lu1oHN+NeZsBxnhtmQ1xiPi4FMxaZa1owWOJ7dJppmQEeVZZEmNPAUowZyzAgfbQVxO/Y7McRyaWJl+6JLYC/6F0ebz5xjw2D458HA3GaVJzAiH17VBcJzYfPOuWtBav4+V40pBObWDFlOMTBBmHakI/JgHi1P3lNEpLLLpehFS87EW7Ov39PsdRLDl9eKclAAe+Yiwh4V96ILW7jB6V0Im6JXgTsdPEJHf0pa17d80oBvYG/F/boYlINw/mINFi4UPH4JdMehIm+CcZbHgs+f20McJDPrlGU9+6IdgJUTeJvR7GxhiamPLn+LQM7tThhG+I+DZHyM2NlEJXEZ/q2PrqOiH3u/n3zga4GjS/cyOWzkwe3Ah35ALg364V9ieX6mH60OKp3/+S4PnnZxxtqoE1K6g3ne/MxF09npLbbFnwxd5DKkoE48M1PzWo3+MwC8MbWE2GwfbNvioqSJUFHSCwEZvpcHsS85vUpP5EHj1ub16ZxL6/Eacs8qfDka1XKUFvjEwPBnw+ySkIDtDtoYI20p4gj62dOIYsMkV+s4tNgktbOh3l5NaoNrC2Oqyez1g9Fi+DF/Boq4TdxqMhkZB0Evl0JuBZqiz9ii1DyAj2q5XFW7OCA65nJqsGi4DM/FC9L4Yh/AHl6v6PWqhqnXQjXSTAU4n0k4RVLBI7Oy/TMnZXHD+dZR7OLQBfsLpLCEePLKaLhzuupID2iPtZd/rK+Bs2OLqq08kdGl1LeL8MnP98sU/1A3osCif3bnvNR75HubGCKfQYPfRhYZ1Eeb/y63Kxl/AoKlgmk9tGx6qlmwiVmMSwMVib/H9Nhyyn+XJ9T3dDv6pFN7DmeGA81tLc1PAoet8R2Sst5dDjIjSyK+oFvCSvLtpLIRB2qEqbQV2vWDH9bhxR2w5fF6TSx16SEam6nGbqakdcEJbSmYPfwW8TRUepa+R0EWDbAsFlyzw/2c2p2raBvaWak84x8iomK/Hf2RfNsQ7Dk8l/dcMP2a3bd/Olopu/JBW3c7VCewMd5+jTXWANxZ4/OhOCvr18rP/neUs8ENtZTzzmUDjFc7Yv4ZB3Yf2TksvE2H33rJsY8JjeJu39U0ugYii/7xqOlI5CmelDc3Pt7bBB+rNv83VZMR/4NwByapq4OFcWHqxuwkGJK/T4jXxSEZqWCZNox7456/+mtYnwJF0NuI5JxxqLX7I6aPVAqpyrsGn8iPh5UB74tFVHCreGB0LONYBLL+phtvXH4Bv/eZD6RgiCqL6Xjj+jg66z7cZ4S4kwM6rPs3eDUTEu5fvBU63AaRKFH2ULCsheHTfznezWLQ0cvTPWa444FmTCFD0osNdxcU7Dv14dMbez16nqBE8C+y9GNEl0NCmGnv4OgaZ7b9zUn+mBbAZTWefyiHoV7oCWE8sOnHJ9OB0Uj0IhTv5srFnwaL9yyyWViyiLL50qZOpAs+XJEHy7xzwpDUJBj1NQnen/vjorlHhHdvpnDoHOvzsfOpd8g2LzIcOjSbM58HHXfov2z0JUJ7mISZ3G4ci/hqF7nDAwdNL4QW16zTQm/7epPcXh1wFzNMX8U0g9SqwmD2gGoq6wv77VYFBdt8x3zBKA4D/zVPQ4cmAZ1ftvzioUNG9+RRVUQcEl++Lim8N5YJfiM7K3AgVzX04mnKrtAu07bXkfi7QIbbU5OOwBwVJbz1uXBWuANKW1Bs9+3pw2hVWP0BNQjgrkY85kgOAdfEaUQjDQlast+OGPBVZfHRbLLs5BvbxMhjHNDrQaHzSN/aRkMA9W+0jUU2QdUmrr2KiFX5pKwX0JePQxs9K+iZLJXh+eLYwRm8GK8aK54V9qcg1gbJ3pGwUrgp8Lf2xUAEFXZ/GKHQyOnnrbcAFlhjwHA3uHWArh6NZGzzju4go5CohABeLILtq178X3pXQwGIhFGSSir7/rdMf5M2B/7ilN82wdDBXE497aIJDDhMCjNEb3YAktaQwAbXweMT40gVBEoqaMUtMa+iHBw/M6Emz7aD1wSRp5z4q0rO7FTCQ1QpJHRM/a92rYZSUmzBWhkWFy6pKtluFUKc2eXTUuw6CP4DHWedkFNW2fyyRowvOTHy8JdTfDFfY3yGfQ0TkWVwjj3vXBfzEYu3vU+Wg/bCn4XEhFX2XLJ7+W1oODYfWv8lFFkOzBm+j/zgG9YWNhbksdoDG8KVA714EHEXilRtnUtDDnqGufr86CKv7T7czsw4wArH8E4dTECE26IXXfBMc7/NpMt9HhL6IoIo9mwQ07aQdXR41AHWeyd6V+o0Q8uYuS7k6FbWUfuK9gB4Dd69Cz+RSBSxliuycGscjJaru5VAxBliQPm7/kUIB2/9ORFNYSOjrM4+6bcsIcjecpyRf46DNOCvz8A482vk4PNOUJR/MRXRFr5nTYO+RsZT0mFT0RFK/77JDLvxadfAv8G2Fk/TGZed7OES5MyDurDoELh4ktv8YLSC0fxn3Y5CKTPaiE+7PKuHCNn7Fx2rV8Eh84o9iKQaZupvwO5k+hUOXAn3E2erAj4394vHdqYhUWG/55tYwBFZE+Ip71kJl5LC82E8quoLdXFVQHYY5gu9lgl01SI459Dyfo6JbJjpHzAvHYNcB7wL6tVrQuCO0eVeYis5wWjcoXKsAwUS8UcGDTPhrkLJYH5OEOJWU4nkUxyCieO9bnSfJ8OBs+H+ddSSUYdXy2YWZA+GP/Iq+5NHhjNw7aTVtLOK8JUY9/I4A+zfOnnUfbob2fzs9+qpw6ID002vr7hXwTSPLLuFPNbD8We67dxGPDmnUZSi4tAKbT6ThWQaTd9LE2HYHYhG1KZo6UNoDsWYveG92EoFclKq6eJCMNP8YPo2TrQJ/c7Hqk78bwd7N+azwLTJypjlKnttVBukmATkfupvhnYKdKasyGXnuGt90pjVC5lvM58aCemg3eOLnFodBVCeP28qfhkHihT6LSyQWLlwKtDwxxOSB6ln59MxByPWKeP8wugYC+ietGClUFK1z+sWSyBBoFH1qtjStgyuTx1VFWqno38woYfupSth2/LPapY4mMDTuzIv8h0XCIUEXAnQoYHrC35NTOAVePZ1OqjxAQJPBO7Ny9tTCjc8Uzdj9TeC7UHiO1o5B5tFs5/8tjoHydeU7m8oEeCzW+frs7xQkNbtPv9GmAfhkPQbiMpuAlmfWWZaIQ/H4Qs0D2/Ig0DxW/PKHCBjxH+E6zDy3D3K5m5zDNHh+M3iY4lUIR1Ft0ohfCsp7wzZ5KKMN+I33CNVnMvsk/qojKYSCuq7VsvEcKgDvC2Vsr9JboEVf7oHNdSway3QxXyCNAOG27u4pbjpIP/ZpsXShokjet0+5/lWDn/SzNt1rNbB/Z2/K1psklHTn+TH/9VH4uz2m4cHdNjA2202Z3ZaGJsOK2D2qxwCrGS64sC0GLB5wvx5OJ6NOF08+eQE6NGU88GNPQvAtrXA6xAiP0i7V/HsZkg9v/s0NJMrWgNcNyoXl0zj0ZZ5b7MlrBhTdnzhHojBgK/0/smMwAclZhZmJFHfAYf2nVwjAgA0r7w6KUgoqINduJ+Q2gE/ntF1iTCX8Kp4WO8eNQfvEMyTNZ8jw+vKrwvqBR7D1jsdOZAcOXZKRi/mJHwaDgkrzE67t0H+lt/7NJBVRjGs0BrOz4FkxH9+OgAJg7f0dTCvCo/E8lTuv+xpB+trYl2bnWkh4/uRdrhQF3b6rejI8HgGwfMwuvV0A6rqdk3e8CMjfcnD5rlAz8DbjeZ1ZMuH6J6m16BEMGorSf6bKlwQTh14d20akw0xPr+OhIOa82Yuzs/kxQD6b3l77JRJUFjznp5jfOVhph3Poz4JOU7pVfEU7RD21QU3LGJSnd7imXL8LHirE7dqwbIbox0HK+ncpSGu5nuPDw2zQV60UTae1gvngxarbhRikULHNT3V8EHxPuXwsnM6EJ2X0AJsGKsKHHLVRT0UQf8bJPj6dBKfaBVZatEgoWHSqflSImTtq3HWLuoUwej02auNmMvKd4NlefLsaWAW+urt018CB3K71wBgc+orzUxhurYVq9XGnxII4WPNQMdCGZHTvjdc/B61R2NZ/S1bgRQ1EPfrJkEynINWNhE2Jzx2w3llj90QgF4I4Fc9aM8/z5n/VLXfSWuGwr9Rqf1MynI81JUQ3Y9EdcYF5y54hMG16d8HEjg7H92uc2FqlovfPBbV3SrUA6e1T49nSJ6Cp8805/jcGna5bmdFYRUBqW623zsgE9Q+aTgVFBERP2W0nOjMCPuv35ntP5sPG8wLX4h8UFPCiSnuc1AU6f1K/uqRjwdJKfBeHCQVlXtLeBZha+JTlMnP9WDUoLQkWplulos27bHAhuA8sro3fe8fkjfDd7xM+HKag0q3cy8e4q5hcqziXdhoDWF5S8e3cJNTrr7qNPJ0Flld3+U28D4Uv589u2/4Gg6raDHZYRJbB1r9bbAqWeSAWqMenNZmEBIWW5mV/j8GzimSdXWnNcPO56h75FynIhqXeZea/enj1r1Sa1yYCKLmf/lPhwSLVQtE+a6lmEPWcsiCRi8Dwre/QlSLm/At7//x3NxeWhHME/VSywXnuj0hFdCoSVNWRfZ+UAyczM4pj9LHwxFgJ222eivJV/+LrPrXCwvTIbOdQA+wVA/awWjy6vkFY4+QZA3kjr3+zxFKYE7CwNpsiobvNVqVLZsy+kPYMUIhvAzXxIW4+YxLyKt/0UsH0QKOm/Gk/Js/vd5235xtPRaUH9+9h4x6AlqEPtQs/7kMn1NHsmb18/vFPUdN3faC/Hto5tUiDN8K/7m03p6AvB5JdpSpHgCcn0V8CtYHYi5TESwJMrvuhL2e52A9t7p1xQ5fKoOV2nZ35DioSXT04K7+7HF4O8e1zK2oBlxV5x8PDScjafezPu/JO6Fppr/fIL4ObTW2loW9TkJ8kfu2wUy6whbkq6etWArHkZbi6Nga1zyXdHvlRBS7WIRewf9rB7Ph/gem4JCSvD3hxM2YvSzQEGrJmQWOTp7D1BBWFxBqWir9pAunjZ1ScPjaB8H8d+5RyUpD6vTMhjFe5IOETIndjPhZCtK0VvYxSUIPZDx+Vj6NwifWKlc3VGjjxhdxoNpmKBjZs/x5JYYDGmO/7rJZCEL16m8Vbk4Cqv1kRLWSKYPFcKO1kNvO99z5rd/RLRmvG8nsMG4fh/PdBbSXzVsh4t5/6qY+KOL2GdSnWIzBHL1+31GkBkQaVjf3JVFQVnqKycaELRFl++X89fx8UucMxu6KJaHWxP0jtaSxon0rZf/oQA7ZJP3yxHEZG2DwuaeXPdCB8Nb66oloOrFkHnsX04lHN28zO9LQwUGW5dBP7IxtuXv51TMaCmc+Zwu7LmAEokV2dd/3dDCdutMo/VqOiE1mHjBb3VsP7bvYDUavMOWFT4HTjxSIJh8LT+Xe7YLpqp4vuznrYdp9HsUaGit6Jmz7pvBQNKVCI95JuB/GUeONrQSnoc+Kd5uSmIniqe/7jmZo6GK07qtV2FYv4beYHYn7XgN6OeavWtXIgZZ12vHSFiDraCi7Wp9SCgMWUddF8PSi0/jQ6op2MAl7jZnbSasC3TfzmebdSWLioebmMOxltC7vl6UKtBxNZwWkNbzJkLNmqXSxORkG8qmvE911wrSxMkZNRARphlbVPSogoj/+ZyZ22XkDHVEKWLtAh+OSnKOFSMnp87Ml1L5N6ULd0s2wTaYV6rS5KtSYV3b6pzsLPzBmZql5J18VC2D40RTN4QEQaD/7s8vGqgPm1D1xFyk3wd2fwsWxiEkpo/Zc840oDIS3ty4n+xdC2o084+HwqSg88+KplhQbc44t3767VwvsgrrbZ/CT0IZwt7EJgFXyZye0j+TeASESNZB4rBu09gNKlKEVwpEG78crncMi/H5zYo5CMInrD3PDePcDO2V3uGpgA9qmKR03GSShso9I+niMF2OsJD4Rc0oD4/O7sg3Icwpz/d77aLRtOYqruazD5P+r4DQ/nvXjkXj4uXmacBnbFUfx7dVsheM2Z+8wrPGpuP7h7q4EIbrzcF2W7i8CGh09lzyMCGubfkZG1vRY8hk7VywpXQmn8I5tzKQRESE5SgeB24OR/NvymoBzqfFUrz7CQEThhLmHnR2AiNJz97QINTK2Vp74yPWW9wqn+z1Yd+N89lXqz/SG43FI81TpOQOtNN1/uYWFAjZfXU1cm75C863e6uxFRTmjc4K5PoeBRpX04n1gHxpO0NgVrAko6MVKB3WKAohXJHo0zuYjScNJ3gIjei5YmubKPg3ne5X8+kQzw0xvWKu9LQfem7tBCipOgXHBT50d4NeBpu+K7mHNb/2z0a3jfKMgfZb9GuJUFt26JpDzkS0M/RI+JcPxGUGzx9cAXJp/Qf3VeEzRJYfqCUXWucw0IBCVrVx/NAbf3orUvmF4svki2uFPNgBujdPIJv0pI2PA+QmwhoqYsgfAE5vs8GHfgWrhkO+CFew4uMT3lJd8XDfPbOFjrCahcZK8Di4yguw/XcMgr/lhm7acs0FmOeld6mwG7Sc7FJofxyGfvwQ8tmVQgNzy34zdNhF/hV5Pdmsjowal8cf5PdfAKHbxZV8GA41lfImPiktExmxz/XZ9b4Wdgj1+HOAPSLbQu93wiIFkG55ZzzSjciP1qUDGYCdyBuOhDDWT0kTdwKO1RCyyJdF6ar6uB1JYK19NyWGT5UTnHVTsL5EqvGEpsNUJ8hYti0yoO8YhM+H8vewyZiktG1lslTA+7tOLXjEcyyZd/cZi0QXomkliKrAfXG00HCwax6FlsgeKxTgQrx4n5XoRGSOTESBz9QUB+frPZMcFNgCyvbZvUbIHTL/tT9m3i0V/fjonhm22QUGfxLyEyG0grH/9wjGPRse9+J3R1myHH5YghF6kB9C8UKwoOMvmKalDKScsG1ecO+rpm1VAedKxFJJyEQnNHisp7+oDCktTKIpcLaenKhoIaFPRVckfZc75mCHz6bMd1uWKwbz9azKWYggL90QNW80pQ39V/pKowGTJ1+CJ/vcMgfTZQtcnuhb/X9wuba2UBll2KklhCRv6pV9eHOTOBU1Lbkv8dFVQj5/fmmGORFv78qWNpRbD88oiV4TM6jIsH3JofJKKei/EhuzTr4dD0v7CxgkYYn1khb3ARUWJi8ZOQuVoIKRjSGRIhAOb97RONGljENO5I37tZcPHN8M/XK/cB/85b4T4Gj47hrExXFEMhO9x3tc+3DQ4PjQoYniWgZ2zhtN9XaNDv8JLBOvUEvFq8hC9cIKIrnxzeshPHoEh3+DVdrhp47qpr+WYSkVrxlCI2vxZ2Ca1Z3HGuBIav4oTjf8koXyxShpVnBN41vJ1xECuEuqh7Yl5lVNTtanNK3zAUBCYTbseX0uBiTPZilR4BGUqVn8NjOmHVq+S5RHwDHIiqP6DYmoK+7onp/ZU0Cj9Zpf2vxSCghFE8VH+R0eXYvXHtzD4VdbhHOIVjANvS2rkKHjKSidiR/C98FB6K7Cg/XlMPc8Nz6nkfyOjJF56/WkMkeLnjZVbEy1ooQJydO3Rw6FBL7I7MMASPbymJ7ixH0PjWJHxgg4CmF4JvSifUwaJFsxr/dzrEMkxN+ZXw6OWozyG1HdWgKL3999gTOgg6X5XfnpSEpEaxe+/p14F1zJ74EdMaeKvnwC1nloxGEnguSnjRgTUS4nZWtgBrocrVgBgiwo4+Dg+toMH30KyvLO2R4OF45uoAPgntOH1mt4J1CUwFhWRy2LdDkTXXiA1vMjrcO32k73cLcB9wIB6saoHBGzd+WBljET0ytiw3Bg/fdhotUS8wQBaZ8tftSUGqr2Nj8o7Q4JgGgzJnSwcts9GBhVAs6tMmp52dzYEH0ruWGUzPsrwi5uYxgUWK0W//fQiOgatt/F61IQg0z1cKHkLMvpPojzil+wjCTKQFOfUfgU9s0tnRLyQUa8iakOWZD1J6FkZny5rgY1/loHJfMupQZNsfua0MonVXKyQwZXCYO/LspEQK8mhKvbLTaxD2OM/v/fQyH9oCnrCrhFPRG4rwQEBVHfx8whJ6dpbZ+2DQsp/JOV81E8/E4Z5Cz5eF8OridpD7SVqcHqEi4e0FNts0OoG2Fd1mwPSyIftrx4liZGRmusLvrkKDuJd5+OY5OiSKvkpISiMi2RCaZYl0MJAOaWov/EwEFrEJMcZFAsrrMOkIudEGjumrQr0HaPBqq92Oc3cKephTsVMjO5B5XnsMlhMZYOPAydDUIaClEYGTJnEIjOfMiOxHqHD7Zdx/BYU4JPW41pniRYPguzwJzc/yoBtXY3L3KAXh7Y54RPiVgYUMxePiw1oglrKoNkdhkLOCfdUMthyuBq9dijqcBXZzbzT/aWLQpRb55sKFCmg6eW0gWCgZWK8Z0i4wyGjHr7a7UyPF0Fga1lhikQM6sQVNmqMYlH/ETiQ4qh10cDMJlcx9vPVWc6lSwKHGysGMK0NFMHzY806tVxUoG2jXt97FoTOv1gMHikfhvhS+g2MmBPRM/njMR5GRg4JhrdMHBpiK/17f8bgdXlS+JvL6EtDs7xO1gQLV8P1IACY4rQkMvX+XiEckITcnmYmjhQ2w8mXAg+VJG7SoCW/79DUZiV98o9a8rQdeCn+M92BrhK7rxvpdIST0ZzRz00Q8DjLVju8YI7WCGus1tzc5eMRxsEcs42IuvB6KvPHwTzPsaHEY8LDFIO8lpY981FwoV+8cyxXDwaMTXbp7T2PQiX3XHHmhERwYazFvOvPA8CAvv0sxGUVbSyS/MBqF30vvfVzGE4BY5LHFKZ+Gnp059m0mnQGtJ9T+cLkz4GRng9Xb6RS0SjNT4zrDgE4RHcJkKQm+t9f9xiziEadHnaoW2wBYVVSey1pCMNT4qGziLwVJpnZ0+0mWwNH5cMVhFTqs0aW7SixS0R9fP7ek8VGQOui0j7BaBEKBaY8lVclIfK31Ku/jTqg+1Y7KXKmwaxzsXvamoMKv8qrED7Xw+pXN1+mBWlhj3Is/VI9B3CZHT8+ktUDoq2H33DuZoGN3x9zhZQp6RzwfmeaAmLY0zHtmqBEaDshpZ8TikLHMMb0PbDjozFwuJj9vAZndNXOBLikI/+n3RFlLMUQd8zQ59LIU7NgfvHZexCF/u5JD9+zKoAN/OLb/UDUkq8R+LI9k5oMj+XeNeA3Ema9feZVRCIvx0d9D+JOR91/p6+n/5YPw6Xu+K+s14HEqSMlhPBlV2U/4PtlbB7yV304O8BTCG+XTIsq6WOQ48VRsN7EbBlRlK5UEU+H0DueeFAUSukIV3gjLbAHxhnQ1nmSmTzz+7u7nQEGen2aJXD6NcJIoec01Kw3m0p9WKapjULjGTpZAk0a4EVdmPjQfDys/1LViBTDosO+RgIfvCgD/YkGv50YMEHV5xFOdcCiC9R0tkUYDrYaHb40taDBZXl6hGJKEclozW/Uu0iF68PlmeVA1CLZYXbO7zuSKoCv5+OKnEHrTJ6bCpBTav4zskPtCRbn73pS+JZWAi+8egd+XC0A4anfXJE8KqpiOPzU/MQQ96aEtjzjwkG0bg8eNU5ETfxEf2+s+2EX6HBStkgjc6cQnz5Uo6GPp0r61y3TQ8xa7t8OEATsMbofvb2feezqppGeR6QkSojejf9DBRXj9hJM/CYnKgW9PaBxc9etLTlRvAHUpFol8OQqK8SUKJyz1QWCd/pZxTj04VCWqrDO92ONNfVN7YAWktVyp03RlQFabPtjdTEJimh0HjnfUg4zpEZynVxOMn396X8gQi9i9VaK6LpLBvk+MVedQM0gUcF5P34FD/NUfniUaIHiLsU12mE4CDMM9YicGhz4ajk1/ERwHQzcupyHDKmgeT5NIuZWCOrg1i3al0eHRodT3Uma5cDRDP/TotRSUKvx3jmjfBnmnZO4dFGwHip+xfPcGHt1jN0jHBjSDCv+cRXcTFb6xKMUcWcOi34K9r6ruVwIMN/I4R9KgprjfSZuGRWMDihZRKx3gmGIVdgWbBHE8Sn9yXajoqF3l2XyVMfC6/0PMmek1c3tqefvdSMhie6nrrvkqmHScuZqhEQOKBM38kFw8OrIw9n26Fg/PxZsubbiXg33DkmQ8bwra7mM50Mw3Bpb4vMh/X3Mh4ZHNfeE6EnJMgWL2wUawe++27U7zI+hj35G4700Kqi1V0D+k1g+fzspfadhsgmG90z4nXZk5kL/P0L+SAcLfOUNtjtWA4PP0ixuyFFQSKridXt8CK3X569k6FdAZlfng/9yrvqpVNvO5DXb/dbaP+UKCZwcbvYI/Y1FqXiVthymC3Ath+6plGVDtK7f2yxqPhod9n7bGFgFfsWm9hx8CswWVQi75ZFQUYpD+sCkHUvXPeXHiyuDUAOFc/3/M3GjRjr+4UgZ31gnvTAvygKRZf7qUgEXfkrs6/57pBlLkdesP9xOgald06sRXIuqrZ9U3YHIVdezOROkBJkdhD3y7PpaMPLtXbTMGq+FFgOftOLsWOGQ5HNx8MBlZPggZ+LtzHI65DSx4LwaDbekbr1MoBclhO9ek9uZDxIL1dFNuJVh+WvP984KAwm9pbyydGIUN3CHisXgGk69GCzhCKEi0XTo4fZAM3DIv+mSYc1epKTjyMYKIpv5rzjl+sx46K2wt221bIFz4q+sCnrmepybPsBppYO58ocPxSSXklPC2PUjFomBdsLk23wy4NStjYmUQPA2Qbld6jUFnOXz3v+DogO4LItnHUhDstb3M8k6SiAxEP/AFalTCDFf91UvP2iDc7E4hjtlfDa9Uj0x1VMG+I/805NYQLHg0fPa8i0G0Zh7ffvVuaH1xnr3qL7On7r0P+vmeiCbixdiedzVBs/kyVylzX8t8j9kmLuCQbBilm0+/EbaZj3Z6PEdgOxqSduwrFqlkOFy7st4HxjldlXdMykBiYrahxZKCMjkO/kxxr4Ui/zfmWq8rodJnEKOQj0MUUUOrmNc0uN1sdNWqiQ63JKIXo3yTEE+Jz6ZpdAfUazi8tKNUwEzh2Jny10yPvjE5gn/UDYXXnzwKaKqEXVJnR8zektGdyhUlcdEuELl8070lqQpWNR4euhFDRifCyy2MDMaAHqp19MAggvI4zKyOCgkJkv+T8cglQp2z6vB2Ri2YlM4lfvImIrYl7T+sftVwW5h9V04Sc97f56QKu2HQwDeKEnFkGPZ2tEmlrVCgIOsP7iyiIrZdZwccN4ehyOmm2jcCA8rtieH0NCraZ1flI+vZB2JmYkGuO9Og64qwxNF9FPR0J8cLJY1eiNHsf5moUA/018fvqWiS0Vqx8GylRQZwZM89SdhIgneOj9QuKGKRYGp7mFpQOyj/UDW4g+Lh9dVFCdVcMjqNba9v2N4NUVv8PAGi1aDByy9WUU1Eh4bi8x+3dcPaLXYdraRq+LMyuvlThIRS1Dh1BtTpkNpDMTvZlgOescvikwfxyF06ZPCjcBWEvxVhTX5fDm9kMP67r2EQjra0+DihC5r29UWez2gDOVnaJ4Y1EZkwuK+f+dcND9ty/nysY/LgbEKgiRMJHSlP5RIcaITqdzUs29UQvK46zFG1QkDVBYoLswX14JtBzViPTIKHuf9dudaUjC7w+nqUGLaBusSH/IvB7WBk5ymFq8Qic18Dd7dHAyBbPXrr6+McQDfcRsz4qcjnimL8WyUcvCBUKoS0t8M1pYTmAv4UpBVls/YzIx8WJOTnHQyJwG15IT5bEov+iT3+cIYxAiOrjH99D5n5v3baXWA/FVnddHHVnmGAx3ue15c2MOA6el2k0ouA+gczXnQaVcO+t2/cD+DowOaPCRW1p6AQpxGp0t4OiJaUMjC71whfxq7/vs9PQu+jv9EcxiJh29p+LwtuCig4idwNy09B2zSCgkaKEXwV62EXHaqB2g/CvLdWmfmzn5cdJ1YDSmbimlPKDPim/0GgqDAJ/WG1fVwf9BSkuzg8Wg7mwYMzq3GXh6kIu5krZHilG1Kb0jLPl+XDSGxVfg3zPQoj2wWWGgoEOC38bdtDh9FHYhIRUgTkY+KGs8aMwXn1NZcMbQZ4u2CCPCQoSEgv9IvQ9lGgDn5QMmsKB3qdVcjtfxTk9Pez7ODlLDDYzYjY01oLr8jCIhzPMWickNV5+gwBUt623naULwT9v6e8PjP9elo7JiuFY4z5ThS7CNl0CCjZpqtaTUJt7Yn39gaXgO9qZWteZD409WXSI/bj0fNJZzipOwSvHx3M5j3RDhYxWPbYRipaXHpt9EK2HvprLDkGputgqMF+tSebhMIvBGQf3l8HPqK2HkTvJpgdm3yrd5aMXChXhJeta8DzSmLlonI2+PHJbW35YJDCUWdoYdChVHJPE8v7FijXxL6IK2Ry7LWXtRrf22Dx4HEx25xwCAv4fMqFyT/3MsP/1R/vhPuGfMP62AS4cXtpe455CooQkfInNSMIve+txXGhGHLLPv5aGsehResPNLG/o3BOLjh79n0jaCm9aVDkJKOQOE1xkl0HdLARlX79rgOZ0c7tXD0EVMDHtTVfNASODoyEuCAG+N2y5vvOvEf9lTsy1nK50MHHdXRndTuoFcodKk3GocEF8S8nJRtgtjeKdSGpCXL39ot8+ZSM9ISN7HOCRiDTOdn58Rks5D6hG24/T0UuirxD9mvpII+9G/5KohrMDsz3Z5DwyC0t6MKrEwTQ7rj/tZVcADyqLr8xZTiEfDhS7GzqQN1Y6kpUWTs0dxoG9xRj0QDeYs4qvgei7xivOn8tA57EskfFWanIZK2F8KesEDz3WhhsK8yHJ3OkRIYeFm03vGVS3kAFdzlLt/OD9XD41OMro8NYdLjRtjaNbwQsvL4daMigg+HrSVwQjrnfE/dOnrnQCCTtbc5a+hVwfP5Op4YaBqXYZdP7ezOAt2NBdsCpCO4tkFw/mmNRdubhbez62YCnHwyL9SyGTjtJB3tmv8B/Ay+568dglpv3hd62Ijgu6Zw3hKeg1edGA4OZY5BnNfF3pKAU7jqz5FOoqYjtaAbnztEqkN2+czBnvgQ8+GQ98FdxyNNE7tzlxacA3+xf7pnCQOw+Q23zQSoSt1lqv54xBJONcz8u+D+GOPmT/INVVCRWyesie74fwndovbn1GgdX/7N533IyDakt7/2zcqkHAtdZu3wNW6Hrp9qjX+kkVGH+1Igg1wN3SjQs/LVqoP3ur0uGaalo/Z+afs7tOniU+9ePp+oBPB/WOXYfj0M3TltWNIh0gYK+03eJI03QEuB7O4+FiPJ2ymVR75SAut4TsujNVBiTLtj0gRRkrKUk0RzRCU+qA1kLM+kgHlVipUtMQX4DqjPT7FXwtfeM+YPDOeAwF5AVEI9F7m2/Ovj+lAKP3kdP7fOtEMN+dCbANAVl97s2B5OaodKI715hEYI/CwOPbIdSkbJ7An+dfSWIG4y05HXWQ1oIN2tYfhLyKWBUmynVg6JjLOzWbgWxE+Nje95h0NuV/Y/vt9SAhqaqk8KjSjj3W/5Smw4GJZ9wP2Q4Ww3vHU5wnXuRC8elzut2OuBR7YH9+5rPl4Mx5WYP/T4JNvcTI4L8kpCO/5G1zukR+Eb2tBycp8PkVNbfXTMUBG7691yP9sGeCDuPhsZ6IF1XU9szQEavurj7E/vqgOWjZ5F5Lh0uDcm/Mg9KRm+MzTejjtBg5EdT/Om2QuhvTjI6OZOMjHYmNGq59kHqJZ5qFdcq2Ht6+b+Hs2Sk/Hx9Lii7F1JEJk37HauALW39w1FXMqL5ZaC5sFJwO9IqSpGoBIntQi8fsGHRNqPjl862tsD3pwPHbfqoYNHdA0GizLn9FHcdGmug/713spT7I/j+OmfyGHPOn/3TH+BxqYNycb5fDa31oBotrfxxA4NCTh1tN1Vph/aJLHV7g3bYlLA6NSZNQuXldSjakgQR7wIEpgoqoWHJgz/WJwUpHg/Wu8Rc337R9Gka83sc3yf9rpqlIg7D/AJZnVpY1kkex4ZmgtqilJonSzJKKjFWfVQ7CiHbzlEshergGblb8M59Mtp3Qj2Gd7UJXjd3lSSoY+GXtYuucSkGHY8Ltl217ILmS7fz/hkhsOQQG/qmRkRz+hklUYUI5HN1RNde3oeZKQeZNVsC2nSKdzqfVguz2M86v1gZwCr3RZJ3lYDk34cNfbaoABubqYKS0xiwMVTaXbKZjPIDvNQP3ByAjWWH+QCPetBg0ZAv36Igg8ULnnpjOZD+jn4sz4IBxYOtVmq+BPT5AHXdbV8OlF8kh3YJMMDixndctTwR+SrLaBkw9zXagUtpVSkFRvKBqyid+b4qubqG3jbAod4Yba4jNVAQPvX2359kVOfiPvriex4InSvuWyLVQI639a0jPcz5v/luRdovDg4t/1hIkKiDGYGD39OS8Kjvbc7e7jQEyjqyPueGakHDYwQ1UghIkOX94XRfDBQEXxTVk2oAileS0HZdPNryfvbizfoYkO5Vc+XKFsHvmFOc4ykk5HmFVeNzfT7EmZa1pvOlga+m7fuximTkq3GVLPi7Dwb8C13kftbAxWyGc/xVCioeumW7mBkB2efeGrPK1MCnNwu61tYpKOtK3z0xPRrsfiVy++LNRqi8sN1RfQKDnDqKEhz1x0BtZWa/jyJznaTM3o/nSYigYrzj8okeQKbBvHd/0+FbrgVGzI+KEvWfCWnc6gKtEIftD4PpoKw3oDLwPRUdEl8YCGGpA9vBrpe8dzDAs0/x5Fx5KqoSE3T34RgHZb7Ue7lXa+G1BPaZXnYKMo2ZWrMfqwfuTCGbOKNisN9/tGjzERbpNLR/660hg7jL8bEamwZ4o2g1NBdIQg7ClcWGV3Mh5prBV53OAmC4yv4NvoxBPbHjUw1p7VB/3V9gltICcwGM7fYqOOTfnv3QsSQP5k5N3dsVXAn5HzubXR1wKHsTNvvyCVBoIXY2VCwHpJ/MYn6ZktCL5+ExOaGjwF4Q9ZSLSAf34xlHKBwUdJ9h7xzwugr6S+cvYdSYfrw6msz2i4hkv1pMVO9rgb702Z/r6omg67qg1/yTgnZja0/bTtTB+a/W3c5hzLmo9/tLvUJCBpe9vxkt0kFP6/Knmy2NsCCq+KqwBI/ue91lddzqgOM2cVFNVxnQXfNW/99dEtoKFtrPc6QO6mxoehuudBi5lvGheA6DQr8EW3czfVnWLvH6C916yMEoWpedJqDXFmapDvJtUGpVfLKLzIDSlWRPMzwecXif/UiubAEptjKTN9NMr3RtVXi7gENyF+ID9u5ugAUO3AL9XwZwtSg26jYko1mTl3PvFgdA9Y6v0NxCPDBMzhIEtKjI5FtREPb+GGD7D2N2r7bAhOTDDo5ZIhps2tUsWDUGb7bIsfr0+zDVE7O5dJKIZFjM/ZLWKPAr9+opoTYGeG383D4xi0VNhxul/Q6nwqzCJR0pajZ0DbkaNT3Ho8Iy2+Iheh8Us84YJPYzuW55c/87pt/ZpZxs+HyvCqpG/uNYeV8FBjMnrjqZJaHe93HGU7UlsKlzkcamEw/ZjRx7Nn8nocW5I5ST+UOQ+23rIb9tBaT/9U3Of0dF/HX7puQVxiCO2qAW/iETfhx3peTKUtGUn+DlvNelUNxAO5pIw0Hcu15rgf9wqFdVXZed+Q5l7jhHnw6hw64KS8FzVkx+8FPqWf5Ahq6S2gLMcDskPau5ayyHRzeCrgk/WsSCUyl2iedBJKSKiJh+miagXC8HLr2DDFBN/symk8YA5UweVWjBo4AQpY1T8wjqDZ44hRhkQprz/rXCHhxStTq9c3E9CxbMqxu3U0kg3ytjvJqGQ+Tbz5OWzFrh5q/81aSTrZD+u8ZozR2PtntHb6jIPAXVdMJnY/8mGNU/nLp/jopCRwu5dP4bgpPbYobKNxpB4gBt07WaijLavu0UjR6DzO15R8ocGbBmq8gmgCWiu2zxSnq7i4CbhTi/26UdErvfUrIksOhNfqW5wdVR+OhAOfPEOh+iP3dRCk5RkMiUeuLuihZwCdvrf6k5D3QpC5zrWngUwReLSTPLhx/7RRtMtiO4r9uoH1iWjBINlot2M+fE0V30Ho32BOLJMkKaVCpScSp0yjZ9DPbnXYnrVskwATOpdm14RNHFsJgt94BayWERmZ0IzMYZ6MZ+MhL52lXi+pkBfDVsXIzVVvgX8esztxkBlf4U3niQ3Qizj8yoht4FwDvM7y4SiUNzx0Qj1pUQePLluS3ZMeBGGYfPCiKg4puVPYeACO6b7nl9wcEgHPGyYH8UDlVjdD3w8k3AIje5nl0TDdYs1Gv7fuCQQFCLiOorBnzW5P2hyd0Oh/Z/0CfvpiDOVtNnEy/HoDvfZCUisBk2k+uva2HJyCp/0N6Z2X9vkg2UD7jlgI7k0luhRTzalNmUuizUCE5KywLyXPWw3D5M3H8Kh3aBh5CtTCW4vdI50aWKgZXv1z8e8U1FZEcX2xNjLfB3UG2rl+l9iacY1gI7mT2yI0y1+08W2Mcey3wbVw9vBYcxvhwpiDf/28DijmzI3cN++2YvglPWWH2fTAy6sXhPampnD9jaaqlv1jfBS0K49v2LJIQNrdIc4i6Eo3oXD03vK4OCNDl5GwMsWsd+lPXd1gNjEnsnDZhcxF2w5D3tSkIcRfUXerqbQdXqrgEXGUH2wevgdAWHysbOT+qED8CqI3VcT6kNVM5mHXPgpqJrhfsmothzYOkZo0jFqB2Is1EKlxIJaDqMWaerpXCQ5bCajQEZOK7UKLyUxSD9/wwvZpykwyO7by3CHXQYTtDvELhFQVy/Yxm78O1QV/my/0RrE0x+F9OIm05FYwel58S/t8AX1gKH9N31ULozpEA2NxXxmnsWe6kh6H3dwXtguQ30WX+P3qoloEV6+ka8bjV0jZyjzkpmQD4+FLN8BoskXcdnLGyL4JuD17Fs3gjofTxPM/mKQUFhH/ckneoC29FxhzdMHi7Q8DGOBjLKG5t51dZZA+HryuWGKqlg+7DU5asKHp29eH1NyrALTrx+rL+LMwHESf/693ISkY5f+dol0UrQ2X7OqYEeCT1R/edP6mORjLsT9m5eNTw3N39uY1wNNMdjMqzqGPT5/fvg+cl6GLpJkua0oIHL2036sx4M2vlzOp6RlgMXq2Vl5EKr4ZqyetmgHQaZPJlv7BltgKvnOzkCNelgplJirzVHRnesZwu6lsvBnj8jKEqyHRSHo3db2CQhz52xUdJCI5DwfPrTC2YeWkoEsBk+oSIRI0Gr+NYe8Fc/7/3lbA7siveJk39OQpe0a35oq9fBVaewYFFSE5yhPnyeGoJH3vOMFbeP5XA7ODU12aEclDvFYu57JyHfqNe5N69XQ/AextBCIgWG9mVMh/okISP93m/WqYlg8TyXi5qeCh+5z67ph+PRAbydj0gABp4Z0X6du08GvlNXq9QLCejkdBR9cpkKI2UxX88FMmDISlntdA0edc79qKahPvgmKCCjEtsK5VXqN8ZUKcj3k2f0msoIEBXCRzHEx/DsUfNkynUqSnGX0Jql5YGGYZJwHEsjxLpLefS/TUbp6TccT30Zg/tfCBrNJ+pgcfxwQZMDGVWZby1PdFEgnKjybtyOBh0qJM3Qp6noXHLPMNazEt4l144aybVCKv/lWIF7OCS078GhmBNVcJ6r6Prxt1XQSGGT4bfCo22tWulXzItBfvtmQVNsI+gd2Ro7lpGK9nAsjqkuloCRw+eytxs1wHpoNgeaUxEDIljKD9Hh6lfLD1a4J5A7uCVRswOPnPc9cviOrwLTnEXuuYtM757pLPyP2bNVI+QTSindsLhbSEhEvAhMuW2i33JS0Z7bNQ7SlU3gk1F8ebQrE+4dcCYpTuOQT0Jfmtr3dig/khNhPoWAH5W7nVbEIc3/vqq+k8oF+9ciyWv/NUH9mGe1SS0W/fxuGfOzegwcshdLnjI5fchXyS3egYiEO7Z5hZGqQdFmY2f65Tag9fH93BaehOYfjXe1+g2AtQ+2v26gBppobw4TlyiItn2bqlB7IQj8aeM/YJoJ9U9q9Kr0sEjfhuu1m1MHaPE/uMOl3AD2Xk8jQpjnrPLya4/WOBm2kW4qW3qVQw47/YXoPAnNsZu8ktOjg2RnsxJvIx04LeoXxcXwiNewrX+1PBoe5IDfWWwNPDl9IZFdnsnPnSuX9w/T4GBa54zLNQaUJ+y6Hq+MQ+EWtifdtkrgTnRfZVdwPbTf7LfjzUxC0vE2d2G9C07m5EO3JPN3z89KO58Q0RXp5BnStUbISFNbFWd63POHRkkP55l5LlXFhrcrAm9JbOqBjFzINPeRZVFJRgGkrH59ZQbsX5+pip5KB6s06mXHDmY+xBttsxFkQO1qR0r/12z4tCKZ0D6LR66PrVPFz/cCNbqH42hKHtQT/W8ckiSj18/uclE+dUOYa6RhF4UBdQO9Hp0uJBQXWGIvdKQZMj6LekymtMGA0k+uPTwkdCewqHVysQW4Rb479rzAwPFPl6W8B3DonIdf9Wf5URBRiH/0pK0SAtv8qYccKYgw5XhZSGwMlP5ebFPnqIKDnB2djkxedXPNGeyaZID8lrOyKBcN0mlGmm/MCUgY3Kgs4Z1g+Pvilsc9BvRNWLkl3E9BZ28FR9wrLwZT/7HXuhkNIBnrcDLxMwFxlz5dfc5OgfX/DmodaiiC8cjcP2ubWOT5fHxWmLUEtGvitB7TiyC6bIexmCcGxZeYTko4F8E7r+V3sgtM7nJEP8P+S0b7OB5GWrvTofinwa9PLcycEzejClgQkesxydC/P3rB0uRPDF8XEXRd/ijHJ5LRG7vNT5uh96HQ8fyZcBc64GLqhaTzU1C56uLgRaEK0DyZPCyTGQ+a3ZhXD5KT0K6tIG7VqBrQ30YdCmyqgMnIkLCixiRkZTed9eFyE5znbdkdfz0IOk+gRJoPBsnQ6ltqmmhQJF7yhRSRB98GBMR/reCR7Q7r/vGNTsDPZbT6HmHOy4sTcctRZBSmuXjvVRHTJzkD5VMjEWQq/WdRMJCE+iVOdQ8fqIRMy32sN49TYGWD+1eYZxL6zPdNX7iGAR+Vf/2zP1UDZ62ek+pVSej4rW+pVkxP/Nm9zy68KBVevKnY6fE+BX057tdeQGL6wKOfbPN7GsG4/8GpB1HJaO2eL17RnwYfDFV/jO4Lhm/K3jcMupPRl4cHDIQ8sJCasXysqSUXUiX2mlmt4FCC2kLLGiUEdO+amNznZeLu7cz5fXIEJOB01jGpvB0aJ/SXiy0zIXRv4FkueyLKf9riMpUbBQoSUmeFhPPgpFqw9pI/CakoT+VpBmWB/MrZbIVrpUCs9p4MnyEgUvAqY++xLlhZfHHH920x9Fn7Gzz/koJUglq23ghXgjptpc5fiQ62u0JvoX4CuhYbs6Gk1wHZ/wpfBr4vgeFzCqq2c6moIvY4ySZ8FBpPRqyahZfAcqFxW+w7MtrZun+dMdEMXzLqhnZlV8DRUveu0Ntk5L5imtE4Ug1lVnPvPojkgmgG5qNpQhKKIxiye56th4dHWB+OTeeBupD0XofwZBRrlgaWBR3APWtOMjIqgqhevhdykiS082tu9s0uGmw9eeTK3dcCPwkX/d06k9H55jZrLWiGodM8DnOHG+BHn/v4TQMcas9HO45KIxhgJQWxTdPAc39ZFtaJgOwYK1OhC+VwPzl1T5FCI/x9W7uRvEJENrvOFZXI5MHAwlrmGfYWCJZYcXmuloKeydvW+iX2gWGTFAdrIB1Y/QPnZP6QUZZkghWb6SAsXhktfjdMAaX50bwSZt9x/Dshn46tAuEWr4nGZiY3zXTYBc5S0dUek4tmaXTI+Fso6VBZCvq7tZ5UTqYgO2qzjjJHE/C78ghSWJtB7WMi1WoYiwSsVd9PqPVB+ePjBBfvWigRE3ivX0lG2z5HT3nuZJ77pFhrQBHTb6jL0rf+wyDTWDzXjfAckA8P1fngXAP7FR+WmkWlIj19KTG8YwNU+xeriyXSQcxrgFH9ORkds7dIkox4CrYNUliJCQb8NPnJjEMq2hk1HhtgWAiX660M0zfqYXTi7IjZxWQ0NknfY22cClN3fn6l7s6HHEdWzxjmvdfmqPto3x6FvSPajvsaq8H/EX3VeYmMxNO2UjnHx0DhrcifrMk2+Kd8jp5XQUHVuhdv8ja2AePd9dX5+43QnWPJyJnBok8m/L5nRtvAye2CxnUvKhzVys99/xiPHr0WmyQkp8LQha4rX+Jr4PylyC5HZj/uexOX+OV4HoixQTFtrRiuEev9GwaZPHOy+TfDLBOsFc+pOQy1wA22kAjJTQxi1e0y4HeoAn6S+8BBrzpQ9v96RLYLi9Yay67b0nrhXoDcZbeeR6BZ5L7Wcp2M3gtefG/QVgLvH+Q6XkxvhBOretPEvTjEF1ltf+Z+A/SS5fO4WJmcaLq/IY3JMwPK8hY14f1wQOFS8OUYOpRURtcKPKQgxjruYGkUA74akcUkY1LBIUj23p4WMjpgGThxwWEU/olKaBPGG2Hj9oLVBheTt7lkEhd/1oLWj8VzrfVlIPjhuOXvbAz6aENLMNw/Dg/kBGfCbzdARKgi/uoeEnoqtV3FQYYBG8Eyy0KzzUD76JligU9BD19WrmveLIAN7SF1RZUi4Kk028YbmYwib+xae91cDtxs8wF6bnVgNeNi4RmPQ5fPOBrqvWyBqTzjS2XeDFDqpQ1yHsMi9orjQr4PO8FPobA2zJIAjLh12S1vEsp1dHX7JTsE3HXGmvW7q6G6aNdkSzgV3fFIQ4r6wfC7qs5jMY4OmsorEzaWBHSO8lk9SK8PrsfXUGr3VIDQetnBvcppSLTM4NGpznZICA0LyqSlg5yRiNK2T2SUOSx0hpX53geNaQ+b+Ikwp/zpvAYrBllJ/6+EMw+H8v3fvjWhLKksfVKWEAmpkPAWkYjILpGIEi2StY2yl1nMjJmx7/u+r5exk12WkKXsS5FKqfzm+zz/zjHHPTPX9b7O8/U6jrnv5sQwsUx4/PCm0VBtCeQa/WS3NcGg9AXe1/ndxeD2+7SmOksZjKlX56WWRSKf0H41wewEuIKzdAhXIsDaYTVSxFEiOvCrxLjSNhk4cmfGmdsawDvC1kXLCot0tCMX649XwoB54IclgUpQUbn3NecLBt2/sSSVmVQEmbQGu76PmXDWPKWKGx+Jrlrqv/i1rwmuHlG+9fhOFnRgbHydzhER37eNK0weDdBxzuZSl1slzLlqBdb8IqOOw4mRzofwYD0xncq2hwZGu1yGQ3rwyP6t/NWeh2HgHZv+VPw5AtHyoiAvQhSqt7Q4TV0ohrfzH3W9tfGQ11dSo2AViWYO+uvJFbdB0N3fPoz99YDrXT8h70yfW4V+5gHPNkg5xBa+Ll8HLOmJVWy69B5szP2bz4hA8P3hODmNCkCebJkcNnSuyM4vfrjWAuzc39xfLVaD+5yO7vl8MhrgLS0MtGsBWf17kvpPamHymUx80D0qsj7zc7b3ayx0K4XxPMXWg9fEsKWUIw4ddBY/18xUDY+mLr/XdymAOrm9ut6KRCQ/p7n1dncGqK1y1Fl3l/6/+6e+7otCOVWqpy4JtoFjVq2KfjGdZ4/61fLvJyOqR/4Bfo1usLSay2/SKoaKZhbDl2VUVHG3QPzQrxroM7k7tsZVCbF2AqNiKjjk4zaefZM3Bo5qPD6aFZgKripMz2hEHJo//keMs4cAPIljwxb3iqFyJfXWgSA8GmZ8L/1UNAdeB7mEtOXXwx8O5/VcESwKvGIoWL5ChK0EQZdn42/h2PhIlvJQFEr6/MfdlNICTX0/OtG/TJidYN1tzRWN+DB6O/ZhjcCRuf8x6/kUOEzWeONiREJMe+ZmXnlmwr5Zr97D9HlxZ3jQKSaNQZdEO75pPy4CjfYUguTLRGAfUWrusyKgneeJzxo4imChfZBVN4cKlyZyC2oHiOiQdXxqzbU6qPyi/neijgbkMeui3dE49O+TVbetQx6kxLG5qXU3wA31XYuZQxikZNhA5qbSuTdOdk22CIHegaNO9Q4EROl5puna0QltTbP5crF5EOAgdP6gBBW90xuWGAl6B3xpXnHdTgUw/c/AxM6Dikz8X5fPKyaBfZFAjJ9UKhAIe3dHyOJRax973HeTMlhoMZ52iPWCz+pzDU8vYJAd8df2I7li8FY6eEm0F4F0ecCUZSAeXUmQiy/bSYeBk3/iY5xDwPRm/R3fSRJynPY3bYIWmMoL4lv66wtHDz0kFrST0Ika1QB5uoc/6VdzXxiggTq/RdpDt0jkIhbMeZurDw7+5hoK3p0DOrNGi7tSKahxLNzoD74UFK93zxHEayCuvak72hKH2t7YcnEOvIPIXzlBhj650D611pXtRUV5ouZsDoX9MLdjLU1Za4C1Ny06asIx6PL8wf0yTzvgZsEVK9EjlTD97Hzn5RcUtBQq39Y1mAm885880sQQPN75rCDmSkT3kP/6ol4yiN7hOV3KiYPFjvtLxFocOpGhay/d0gxWxksilw+Uwv1jjOE8j0hoJV3/nM5+X3h596GrJaIA7wSF97sOAZm0Jh3HcCZC8VrZiM4agsylq3xl2USUObzKHlbVD9ZHuuKCfqSD6Px3rraDJBR6d/poekkTTDz4C6ZMfrBGjX7Jk09Eq9Tv6p4tlcDA8JU0V1cCV/pZkq28cajTs9IpRSMV9qhqs9hvpIG35RV/YiY9h0uPtPazpQJ15RKXZE0SNBlhiA6/o5BN0u7bwhkI3oSyvbqtjOADR7EiOQmPHjVSmGfWyTB4YUCU3yUe0IfmjWeuMajkzJlez1sdEMf/9z5WJRpkn762VPKhoBMvV1uyXueBH4+n/8WEDOCxrF35HBeJvqb9iVTzrgdNslKr1/USWCYd/i+yjYK29p4MyHxVApmRwkxu2ZUgGCITss6GQY3LA8tre8rgzSMr77yzZJifHND8dBmD2Bo1z0pQmsGx7jFDvU8MRGuUkfIukNACw+zImCoV4v2vPlKVJQEjUZ988h0O7Q8+fJJ9dwLcVdieD6fz/7iAZ4Td5Sikq/T+brP4O/hVct6FOvcciv8qxjw9Q0W39oqz9I/1gMGW0Z6v/6pgxnDfFFMuFeXsSDna7M2HAubB0MPLCOaMnBxq6Lmhm3ohk7CNIFa/7kW8YgX8Wn/mc30Kj/R1WFwj9/aDuhL+2n0ZBPn3jE/wJESjX98znPeJVAD2sU7GrcZseNXz8VR3Hp2vhu7KbH4ohF35CoudiSUw42tohVWPRMEtNijJ2wdszFUUv555BpPsbBGqEgTkgTFnueueBaCj//0KaxVIXhOG7PVIxMT9OZbdPQFCAsZ2Kum58feLoZ0SNw6xyRdXltZ1wHNUjyaNS8Aw8ykDPpKCDlqNyEgfHADpLzoe8nQ+5PhzPlEolIjYdp3CFO4th/uh9n1nb9fDREXgFM6AjELtOoVmpOrhgU395vePxTDPtPEike6VHA2ig1qV/XCtxnWHzbwCFrv6vFOOk9C160xl0odbYLeiqHTt9wqYk37oPVJCz8k74yNHd9Og72ZlmumDNDjJb9pGbYlCu7j2klv8yLBaPTn5ZiMRBtUsGMQ3cOi7YYpHQU861L6M4Xh7oAEWghZ267thUJXu+kVP3WJIUIoPEOwqg1UKZmj3EyxaPvB0f706DVT5HlZs/Ydg1Kj03Z57RMTB+v7q67goOCrb9eNNVx5gWdLt1OPxqJNzgd9VJAZ2yz6x3ympBa6qFjtBfSK6r+6w6fmgD76NNTw9tRMMMWuLGUzdZHTJeEiGcSAZrrwa7KvYyoMPevvq1Jdx6LzjMKXxBd2fE79Gx61kw9cNG94F9SjkKtj9JGm8Hs6LbmjuvpwG0X/JzbsHyCj2srBZm302/H3R05e7GQcCN+4yXF7Co7jH0R+VHuSAh/OEskBFDHA+1z50RhmHpDHPeFQHYiBlTEwiEJcPtw4Tj/jhcEhYcTRswioTsE2/RX3io0BEW//lIj2fJX2f2e7booH3MutBhotloPQkKdhwg4j2y+17Qr1C75XPYQoVcSlw7rcOr6wBFU0WMVqUaJZD5ZzwTapjPrTxHzkR44lBA/d0Pu1faYL5+bz9mp210FPz35N4DjIar5CaUqwsAe/su7GWSzUg9FQpuYee5wStzN+0YylQdOmYEiU8H2wKp34f+kdEn9h+a4dlpMPlKw4CTInZYN62QAvhi0Ys5G/SIjbFEBJbuoV/lw0CAWcURPywyOoOVuXHbCGk4mtpe6/kgb3VHRPrG5HINV7bQ+tCKwSuHCwb1ikE1/63pKdWVMQ6cOfao1cFUFXv8/mZWx5ozt/4LuEchc5OH6nh/lINhJ61T55jSSA2P8hgN4ZF+18x8Nl8wcCN+idJ+xUqgI1vv8/3W0QU3uje56oWABdNLIpPelfCyexIzuB3RORMcRvVDy+FxJfFH0YWauH1gofDXzYC6k94kfLgSxeMSSrnPyxJh6McF9UzEqmIYZex4SXLaGgVu/VPLKUaDp1rjw68QUDvurT7/u5OgvsSl+7ZX0qAlpSnfr2n8ciJt1QhRmgAhH0JTh3MdXDzuoZSuj8RHQ8+eN5eoBkkbSZmmBRrge9iNttQDxFFhr/a4rWugB/hwtLNW9UgYc158JoIvaewz6+vHB0Au0IxxX/sqWBJLe1Yuk9ET36ymp2cbYUHtHuU2Zc08Djfp8qxGI0k5u9sntPrhSdf90ivPyyFlhK7PUp2VJR04adjq3wvtOVJ39lfWAwMPdxBuDtUxJK6910gQzu8Cj97Jt2vBqTm31+eyaWfi0GNEfFkIgioLXEy36gAa7MAtiUtPHoyMWwgGtMKQ5cqHvGF5ULU7H9iDh3RSPL6SSH5kVa4rcRk/Lo2HfRPiOwKb4lGuuWq2cQzZTD6uEvilnAC9HcHFJ/GYdHBaY1d/W1lIM8tHsqfUQSxW80Mp7ux6DqjRg/mQzscri3Q/Evn22sHv265XolF6vPEC7el++C1CmE1vAQD4fG5R20NKKg5zm3WubseSgaEmeRsc2Erk12Ck5+AHG1vfXAXRHBPk+MmqT0D5LoYrAR08MjBcDThxGQa+BmLygTPeEP9L4kCpzAMas0Zf3YsugC0r5LuLLXUgI3y0Nyhq5Hocrf45fTCfEjIVbWP+lgHB08oy6vGRKODlUZp+9J7odbjzTrLNA0aNVPrTnVS0EDf6sXV0R5IPPAvv9GyAux7/XPFcFTUsVu4ElWnwellck4RPW8kg1e4dzHikCS1UkuCuQD27RLj8+Oh+1ft6mPbMzg0k7Fv9oxVNYic8hF/pIXAV/nlon0qFjXdC1GoziNAfW3R6XQTBKl3x/n5sHh0Uky1M8ipCZIVHW8nsdG5UZshNNaUiNjV3bISqmjw87DbozSDRLi3/qrSVJiAbDT3Za9eofdLtcqL8Z4CmDBdMxprIqBvrV3nNQKbwLp4CKW5vICf6n0G/Y+i0dviT/85aeaDXAp34J4feeD15cTddYRFVVnrR/d6vgEeuaU6BZdsSG9Snbb6FIMMtr89+yNfCUmCGabZxaWQZtGfXFEchbRHVt8Xr6RDUFVVt5R+JbDc/lpreZeMrtzWn9R1qoZ7NgMhDSIZ8KLnvRduAoeovuHvN4fSoO5F4r/0BBpYXjxxdOULFl2o0ntY8agfLDLGD6eNVMF/3ioHbojHIuHEY1M00VIIoKmQZ+leI1K1/0DDUiSicHQwK3Tkwa9935Jo/5WD3SbWdZEViyqZAxKCPxYC5+JHvfSfCIirjDTM5UgkRIser+Qsg6sGjzH2w2mgkvmX5+BaFN2nNvOykvrhfeu5KJex/5/bR66SUMyUQol5hBeU2xrUaGjUwPfCsKuKagQEXYdN0SB9rv7kui8o0XlTaL5YVygSRZeahRAeJgBPXvD6X8Z8GDLmF8n/gUcsR+OvCZT3AHXvzdVx+xSIOO+3qZhGRVlyHK9eQRFsNtm/JI1jYTis6G3DBwz6+bnZb+hsK2QYmKrbfSfDdOou+0tPKGh22mDAqaYfRE19Lnj+awD12vnfbkwkxFdPWawS7YOPRYQKEq4aJLOFXGtcKejSWGMG7RkZHq7+x2048ByU7wuMK+wmoMdit8xMwlvA/q8DqSW7FHQPhDOweVHQuWdEe1PfJPgts2j3IKAE9uaG+Lx1JaBK+YYWM7oPShhot9xOTYYE6Twt/78xyN1Yfe8nryb665gPZ+i9rMF66FToTSLyfXHFt9+6Dibo87jmmw4mEl69PfR1fqcUE2wwSP/eu1dGf+6ne+4zlvevMVEoRnj2wpZjEbicu7eoNF0NC6LXvBsTMSivVSbzDlMBOIXxZxk0V4AQu6yw+LlING7lTS1dqYKks9cwzy6VQsd7Ut0uIhZpJwxea2J4CRYF6kHXvWigXd7uPvyeiPhjtiWZ/9LgXrDpjT3PY4C0rXvN6D8S8hVJc7/uSANdkVbidxMCyF861PhlFwlJF82G81v4Qv8z8JMrz4IeydHgmm/0dRs5dUpIpxfUf4XM5psVAJuzdHIpvZcznrykZVlR4MJvDn6lvcUg+r1Vb3KdhOo8wmwNhPtg8IfZiXsJdE67f5Oa8piC1t/LzCsr1kEPH16j4nQuJEouhpGoOKRxnCFTWb0ZArMoOqe9UyEw6q3U8l8iwiyY58qMN0IoP2NTzdFSsPDRfjp9kIj6Qeiq5kQmyOBL9xGcaBCu6ld14mcU4nG2X//2JBHsnmt37oqoBv9WQUv2TCyqNVawMz3dAvFjdYyDC6lw/74b6cTpWDQlQPw9GZwKrWoKKsdPIfiufCyw6QUOFS87j953roKAWxK43zeTwd+jPSBYH4taptrJTqQi+O28WXghLBFMY/6LSz4cicz4isd05Evg0BvekWzXCuCKOvbqfDEB2R3Hf4XDaSBBkR2W/ZIJ/ykKT5Lp188d4VOLCuyn98WQz8SNAjgx6DPy1Z+CPh+c4gk7jYDtw1umOUoBqGnw6J26gUej/mI5Rnk0uK7ZqtQyVwUKCfLhTvIEdOgYy3mmsCwQelYoXWpSA+PYbefnNvTe4S5Yy+oLAS5jmugXuucJm51gGq+NQjp3+MLSJjoB803teFkkgkNrQdOxilT0JPyav5p4L7hwVbGd6q4Dy84tE0UnKpoun9u3k5ILYgWiGUUbCbBb0mfKs5WE1PiOlGX+pa/vl+5rQ8QM+jn4KDIxGo3sLwSflxXqBfKA04Pf6U9AJYaYHXqZikwnkRH+XQ/MDDQbHj1YBHuVnraPY6hIQODvmolMNqQmStlYOBRCgNuld3oTkejI5snG081tMDSU8NB3JA/CsveMPU2gIn4+tpKdOgS7eV4tnBKkn2+Lt/uXIuneYXt7vn+oEVZDOqMOTyNoiYyQ/+oUjSpDik09hMtgZjLt8OVCBMLdA8sgjUGjgU83md1SYZ01wXqxkgZ8QSOdyvMYlHomtyfzbD2ERnYNW7Pi4OU+PtwW3SOY/TvMMkwboPpY+aMP3/Oh9FfDerxYFLrz2829YDYfXnDXi3WpVQE27xO7+SQGNTMenFlVzIOtcJdH/T+qIP1Aj7vHeyzSa3J5bWNXB1v60zfNO1Kh5FTbbyv6/Ltf7uJ4tFILg+WJ7JfiC4BK47G2C8Uhkdhbx9JXOkDgnfp7s+QCGBG415dfQUExFmMNfFFFoKaZ8ilUrgoMZL6OHU7Cok1F9QuiCtWg8DiY+ydzPPAfH0pMpEajdQnk1PWxAMrRrlH8aCYEXrhfvtczGvH9GJvOG82BtdcJVssH6oBxldL/4XUkiij1raMdpPcNb8GBZ544IDGy7IQWRKHojEvDQg718BqdXdtSLoJAD5pN0KsodHhBs6hkXwIonQyX51tpgN1vH+wITZMRU3uw9HGTDDDgEnPrim2AcZOYib5mLJoOaP+vfn8r8IDUxSVMITgxi3H1mUWjD6okB6agCgi+zOUTOpUADKhyJHmSiEpfh9+2f1AL149xlxVwlYPa4UONOfN4VHn+KClw4x2M3mTrtK7MhJOTtmPHXlCR8Ch+/WJ7DTCY/WaN8GsAbX+5Yd5GPBq+HG591KIaPp8eXpHLbYB9wumtZ+kccoX8aGt4TyeQk843S2RmAOuA8uolOv+QR2KWDV2awIl1s5RMLoDPx9hYaxyJKGHr/kXW2hyorh8aXvpAgxKWc9yGVpGo89CrQa79pcARfY2TgbMCAm7m3x5jjkLre4fXrY81gMMPm4ibcmUg4LeaSNkfhQZ9hWz39VSC4MOz+IehRSD7/WLqYjUOieZ+H/VWaoWNHI82x7dl0Fyic5/4OBpV3J+V2F7rhrq4uUrWnHLQryyMdKygooIR5oVUi2JwHWDzpqqXgrRBKnpSi0FJ3w+lJuuWAfmnfbp+JB7i/H3v1R/CIN45/8E1uqdx8cut5lAzIX/aVOHCfjzygRtLS4tZ4OB/a3CEzkGVR/R92Z7T/aVuBAMjpeA07UH9XE6DcYuHK5omWJQ9HsLRhMrhuwl2AjNZBA7Vfi9ujBGQmgB389zJeuC50fel9wuC9ScR2tU6BMSb5XU/bKYXlKW+vnuMo4I/5RG76TQFlRFsHCWiaoDDpdDzRXw67Nqdo3aVC4d8621P8jmVQapgmWhGQxEwP2vtCdDFoKlPdZVNEX1gm4PHFXPXgqqhWcdKLBmNgJkL2+EBcEkvseixyoXAVtMr0m+IiNSWoapmFEGfz2ZC61AVdAr8mOtqoqJTy3aGW7zlQLO+R16lc2XYa9cd5T041Dg0UsNrlgNJtxjbDjc3AM+Jv+d+xEciX/s/EoyKNZA63DWsn14CRT27xzL2k1DY1ek/caqFcDbpu9wBr1KoxVyqenuTgFwrBpgNGgvgwA/jeQfFYHiCyqfPFhDQ9YzaVIlTfWDWJ47VDisDO2WROkFtCvour28b590GjYoplanLBZA75cm6IE9G+H2aFrVnmsFukjH7B52rs1TCaruOkFCsO0XMb74Ckr4YzDdjiLD+VuQcJzkKVUkVPH6kj4Al5DDhzBp97s4Kibnfw6MxRd7dWp4IctqOYz9W08D5mIKCfgweMd34+yw+sweav33Gc5WnQF1LlkCzTSwy/ukUJ6CaA8YPaoy9EYLH+J3btfhIZPCrz8rveRVwr7GpKGWUw8vAHNun9wmo14qDWRpXD5oTYH9dJQdyWz3P/XInIeuUV+9E9QiwXd/stpdGA/+VzZQREh6V+T7q6+VBENGxp/KYQi0E03QmGq+Q0IfT0omBQ6nAUpHcPb+fAN0ucp2oPAotKhRJRVlkgHXaUlbJBoLPViUt3zuikNXmtd02UoHAzNNW/Y7Owy/kGHssg6LR43Qu5tlLFZCXxHO10ZgIoz7nM3GqOFRvn1jH/7wNrCKdD4i3VECEujw2QYuM0pVmwzT8GiEnTP17qvYbSDPPXJKrJaCGz8Sv1tf6YH739vXla3WAT+8qufeTjFTzXtc/7SqBuaAQ5oCP1TA7S7rxv/8hlzaPy5VvYKCN9qXIjpYD/5hyDv3ZxqO2W18uKFW2Q7w7Y/RqSiaoml7DvdxHQTBunCv0tBm+S/bBakUu6Owc0Io/RkIOXrqllQ9yoFH185KVnzdMMSoKOtE5f3vrh92pU2Ww01TCPMqaCg7Cr2Vv8+FRRljzTKpZMYT/M7Dsb6RAcu2J4txrWFQYRfv6gTud7mW1z/HNufDBVcqkXQWLTEoH+SMYmqFph2JTJ5oBTkwVymuUaCR+4eqpSlwwhOYoX/vAQoR4exWREPr3vK5s1aes1QDt/ibbQje8IWiy78uWdBQqehGX2SzXBHvecXLV0vP/aQrm6S1pCpoxKD8ortUGSY9/bX7qboCb5mxN/vvIaHO8I3nUCQf4slcly59qwcLE6sM+hEfy+oZfv3cFgZGnDLN+Jw0GefjGH7ZEITnlUG9Lo3dA7KlywJIrgZpZ+r5Bic4VBxYysVV9MKS+/cK7sgF0xN0s5iTI6Ev4RQPNbhr8ulnzSSea3jty5wNenicgP8W9t+4digeJEp/bH6YQcMllms/p4FDB1S0rY70aiNvrc3PErxYcM33K9S1j0LRg7XSARBmYhElVKDO/Bdenm79HY7HI+0Ls8SrtRogKzI3QVcuCdemITH4cAV3+Uvn0CHcdpK6clo4wiQM5EfzlingcsjsZGfOA0AAFNmGV2S61ULbqoGRH99PXp0/zH5ZuhAoc/90yjRJYLzoZ/NmPgFIVvFhC5Qrht/8Wq/1qLFxkkLCL/INB1qEpJ9ZLCLDRwv+NxFkFU+GXvE6/xiO3oEfDyoWx0By19MdTsBjmb1jOLjvh0MafxnOg0wxhZh8fPeargJDIw2+PbRGRMGx8WzBoA3HNGFNVOtco7eGWeyIai+7syti4z1gHy82MubRdufDVXpnw6lAUWtlvzctNboCd1zGU2u4KoHHq9628JaDJytC8atUmCGpNFri0NxW8Ma2JV88Q0f2MQ7lE+n79XX1/0CuqHuKINwfFL1DRN8GZDAbWHNDvWj7via2DnbP4kEM9OBS+i5zVcKMVnpcJKIgY1NPXY+zfRkA00pqS7TpRkwCu/G5rsqxxEHJoIST0YRTyu5wz+eRLOdw6rWAZ+AqByK6zdc0zeHSJ697bDfU0uOC5WCs3UwYl7+oXiyl0Hns5I0PBZMB5hnvrAVyZoJtHNcmbiEGOj2Q87+zJgMVvAnf+HamEz/KVXd/ysGgjAXtzJiUbrusvcysnVQPLJ9EvYpWRqM/h3KIkTyU84jqikqYXBzk8CV+DtXDo4zr1i/a5Fhhycc/4mN4AIRa78MQSEhIUHRMqwdeCeK+j1gGrOuDh5ZJiN8Ghe49L7xaV98Oe97gDIc8T4QSHxk0mNRIymwgzbWjvgttfxWLuYDzhroXg45+PqSgn2b44cDEGlG5nvCfW0OBSV+eR9A48CiCdCpoWHQDZi66NxQF0b2CZHO1xJqKUTxrn3f7VwfG/AuOS5f+7zW367iSdV7+/+yakmtkFpR7VhbuSK+CXwfsG6TAqouZwBESuFUPf5t7g3Q8q4e58xs3tLhwi6BX4dqm2QrfjXjv2L1jQsVi38zgag07F8vNwiFNAvO3PwpZgLZTMPo3OWcWhp6+iOOopzfBHQV+/Pbka6t/mVL1lIKMfJmeLDvQ0wGCTTsOVG9kQZCyQ6ytARncG4+Sw6iXA+2SDaiyZC5bvLghZ5VHRmaUgm5Bb2eCbmDLxPL8UZjqn527MRSJj46JjVjuNEPwf4zOCbDH8EvOKK5QlIhM9XZXixFr4HVn9dZ8gDeZEJ0VKkkno9kC7+BOhFrA0Y9pXJ4dA5ZfzbF4cCZGZUy/uyJVA95ldDZSDpfDDzbw8lY2AxjNTj7mcpK/nezO7ZftMqLBojt97gohGjj7o3mytoHsUZX/mUil8P8b0aDUtBqHleIUfExXgl3Rik5ifAec2sz38RjDIlaYeZ72SCoRDWzfG/JLBS/velQvpGLR0oY966MQAHOm9N67UiwHJylA/g3NEdJZqJG2MaQXVc7rJD9kqgOyVwmf6JhrlnbozGyY3AAf97ruVKZeDpDjNtFaSiFr5bgY5jFfCAU5xi0j7PKgnkjv0WkiodJXoJnWjDN4p7anS7S6F6r1SyX7yGMQUMNf9dq4Z7ox8CPaODASKCEl+MZOMHAwlGj1rk+FC0qR6OrYM9mzp1PkrYtG7lbNGGJ5O4IiVu7aukQixakhKv4SCpn/mKV3ZbIR/hX+Gaitj4OF/Fum3eIjo5xP75nUbGrQJ/Fk2lyqEfZsT3bTpKPRhnj+yqqwZ8q/JCk230cBo4FM3J73f9zEs/XL+0gepF+9azMhFw3+ZxyPnp6JRuNxciq95PGQljX2VG6gAcwaGOn1xHKJK/fv2aDof3JMfHiTXUqFL5bDbmVIsyqT0Lu+dQBBg/3Olg5gOMv+On2ZoIiIGWURKycqHGWa+XyNZb6Ao/SyVVIhD/B7tevKj1bDrt9V50yNpUPx4RW2kIAaNexLYBJmrwVHHaV7MnQptXzh6/0uOQR9NRZ48Uc+AfpNPSSrYcEhn9z5GDcUiZ/4/RoONVSC2Eaezu68O7rVw9dgMRqG2aMf4y6wDcPtvu8BUKA3upn6pzNmMRhMxx3X5J8uBuCYQcepNBXzlMEC7wnDooLL3uOdiPvRT9bri3Og5dlpy0F8Ojz48tbvdO0uB3+ZyoXJ0L9t5VIhjeRaNIhdKXT6GNUNBzI2YXxfiADQYnBM3KKjvB9ncoTIYdM0telwacsH0z63Lx9ujEfGs3kTLqWJ4su0zim98ARkn1g+/Gseh/f1nRpf+dYNUg2xb9pk6mFWu9+VPpKL/1jtKP8ZlguuPUeNxtgZQ5rVnJZ7Dory/nj0HGsphaT00rP15FrDGaTp+dyWgs+zdHMu4dHBGn3JFomnARHue+NkAjwrrPtyLfJcKow+uG8mkVcCE0rynuhgJWags/3T7XggR5lwBXZgaUOvq+yOghkOqVZIJe7YQ3KJ14Y9yZoNxRLt7SBABkaOEbo48yoQ63bMmVXRePfbj6Q8lawxirva/21pQDxPtdn1fpquByZqFZ0SbgPCFoSK6XbFQ4/VA8oCCD/CoMD5pLcKjTQWHjsuuwaBRkL6QuV0PNzLVaVyvyEhXB8tr4dwPGO3wr+CbBgS+bC7rDySkeK/qLJWjCRqCN4I9NEph+4DN0PZRKhKDfrIrzhfCLza8uhxVCI3abFfGpYjoabN92/esZJhtfH/E0c0LbG0TjU+dpvv4V9HJDzUYuK18caCcjQQCcnJievT+7RE5/WvsQR/UDvz+zbJUAdb065WMxiC2zvwf1oslULcuKSOWnA1M7Fcfd23i0fFLsbsGuArBLjLzq/V0CZC4Pbg5UjAoav1EaDbLAPAds2Sf606CE5xZZxnpuXGh/O5tzZ8N8JhTQaDjAQL1m0kpU2+j0A0b0XuOjf2ACv6b1ueqAu3YhKVJCyp6fPySR6tTPACDpUzGx1J4JsXcFXKJjHqvaS1KqteAN+/S69GwElBzzpho7sMj5zWfpmDfQhAo28PjO5wNlXd+JT38hUH3PpOtp1xS4f0Nlq00UwT5T+NwZD8Swoq62e2+0gAbe9lPWL4rBb0jLCdvDhCRX7m099jrfjh6LQg49tfDB37Fs7RwEuqcoVfodhKs3+ITdhypAHYB248vtLCo0oeQbHWpHUyqi03j1qvA9FaZ6LE8OodXtXbbGpZBTqPujV1qCOwNR0hGGVjkK3rHE3OmD3zKpZu/RyXCTm7rOq86BW31HttvTvcC/S0Nxp9NCGhLvzu5mXAouaijRYa1CXiPJhceFq2BV3t0WQhXiSgg3viig18/sPEumuUGIvh3fuCeBIaEiEdlZPb8rIYF6cPbu7oKoCgiSXO2BYv+VdwQGDXJgyDxcvZ6bCWMqBu1v/0ThVbJ6Q/dOash1v12r1RiNUi9Puj0QpGM/qlKq96+WgKP110NWI1o0LT5U+FcWRSaMdL7lyvTDi6BsrNfTuZBzouIDskM+u/lzdlVkdUMR9P1f1A+N8Bzzqqhp6dJKHSuqS70v2hgEKSt3bcthtWrF0demhHQ6SKuHFW5dtjgGbVSyMNCw8vt1uUkMhIT8CkW54iChTxaorNALszK34fMeBLyZTq2dsSiAYJMJ79q+NSDrpA9t65GFHrbqWE8ENsI190HjwVZ1EFkLKMGqiKg/a75XgeE+uFbfr/aKUoZnAn8aqTzMBpFiMxfeypDhXExynL7ah7cYE2V+K5MQPdfC+eO3C2GJantN2O4BtjnIyz8Vh+HflyzFP8WnwwDNPlOalgQ7LV5d+roXiyq2uxmLI5D8EzwTkS1VzK8OcQxbaYRjS7JadX/yQgGskOtn9Ui3eMT3ApPJkYha8WDd1JmuuHNtOFozkAMmNcl9uhmUlHmH60pn+o6OJd72/v0VDV4SsVxfcnAoanDgV/yT2TBdLSZCoQUg/3OSPQbQSwK5woJN6bng+mqT/uCQCFQi8lxdt0kFJ0uZmpX2wcfSm7vKsnGwiXFg1e0gIwUvRxMVRkRuMS22T7sLoOXn7ZoW4fwyKy/uO5/97cafK4tMzlCg8b9ARmLvhi0n/sPdvdqL8T/7aOwMxTDRT1J4ufbsWj2tauqtU4xtI6yK7RH0GBbTkR+IQ6H5E2/9ac4N0Cf3vw/zRgaJD5C9wKiCegmN8sePGTAQ+nQ4tiiAhAedA+9vIxFh7JUR/ZtV0OkRxbTeFQRUB0POv/v+djbDB/vuhXEwny8pIzTtSrocQz0LF2MQj2U+1tjhf2g2mkxG11RCC2675G4Bgl5/VA6u/mnBq68/Deojk0G4+3jTm3OeHTCcNxcwTwBGAb+XFsj5ULGzLwqdyIFDYvaHGNu7od9e9eIcc5k8L9Q8XtckormytmURM/hQFZK9uWlw4lQ1eydov0Jj/bEHFUgXeiFbhHh9F9q2bAkdMabie4Lx0RSr2apJII6/0Rr/PsqwF/nnz7LgkdHb9hdH+rxh0dSjJKcfdXAnreET9Ujoly2e3YBR4pAo23YkkQthfbqitbRIyS0Xu30vf8vAoJKv268J31/Fg3641WiEf8nb2/sZC4ke6j/VDhI92Y3ntI0x0gkPhSrqnG3DBbvK+R/O1INOFaOJhbAIH1OU7Mm7mRYvHO9hjsvGYT2TH3buoJDTfKKG70m8bBgpiyEHArBKCrVxOZIFGK9P+ZVy5UHu0/TXguzFwJTa69XTFIM6tLWFvmaXQIny0Q+aA9mQWd6/UVtXRxKYhxwpHkEA9/DgKfDc0kw3GuVIWhNRCK3FF1iqjJh5OnGMm99JoQqp7432o5Char9n13a+sCsdnUsubgQ4oobnf+cJ6P+W4qM1AMDIJiy6c/5AQtxKxeVzb+SEE/JqwDOv/1QwsCdE/GbBMVEpv67E9Eo1XaK4fSDQnih8n71JbkAHrEaEtjovKpZGkfUPlkJ5kK/J/6uv4DJXd3+focJqDxUEDPj2A3hwp8nj4fWAFU0fiwjh4qu68d3XNkoAy55/2AW51h4ziz1QrYej0Rp6YKfEqtgv0zm7H//EN1D7bKCPbBIw/2WgPSBSuAgrvdyzyDYOR555ccsBv1z3wp38c2D9t+bD+P6aMB4TtL41DAGKbKLdkhNtcHLhaLZB++zIPEQTpPzJRkxCuoxeyoOAD8uRtKWXAwXlpk+8B4lIpmJGTnvxz1QoPNmp645EzglL33VekNFkJvcdrm3HwplcYkv5FNg0FmT7WITFY1E9B7wkC8DzZT5wxzMNKjXpXTydZAQbstl/CMuAa6XY9iaKW9BiWKQxfOD7puxH5hXovthcXeaoCgTBWYENmKX3EhIln/UrXWniO6nBx69dEgB/QUjUnQvBn3kllnPGU2AU18PZ5+crIeTwh89XC7gkfenyFcXCzKBcsf8ZHogGWYfH0l81otFfw3Wk/1nwqHBUcVveVcCvGMafHiCvr88a9HXsn1poIynYEaFA+G5i9Sc3Vw0kjyk6CF07Dm05vTZx+q9hDPcwp6sVUS0zKXYMzqeAucfcV+spnPdc/GqRPlf9OsbvjF2aeiGMXWHhBJUCbzv2h8dqYlFvzdwvM+mO2Bc+M2XlZJqMA4rTI8Kp6CMIzrcGZdKQPP73XCCfy2YEvJ0O3ZwCCd99+bVXdUgcfJ10cerDWD307D4zIMoNDdup5otWw/+P0dG7XElcMD9usf6+yiEG+N9lPGjFcaLE2UDKjNAzc0xdJyNitYGJvozGWlwZpVRKsGqGuYcvarby6PQxdW/PBX7C2ELNh0T/OtA53PSTz0eLBLCXE2smsgDxyACo0l+HewK41K6cRuLWK6x1M4rpMEEp3l0nFsN/NLX++jOQUbqgwV7pXjTYV/zwUWvzWIINpXP86FhEb6cOUeyqxJWBysTD0mlQuhGEtPeTByKT/Rrcc8phbNz4tWYoDRwIAYTq/SwKJXctnFfsB3uJFf/aZGsgD93srMZbalIpVmkk/lLOoydvzBcVRkP/1I/TFvb4xEzTb/Kkc7V7hFDc61a1VCN33xv/g6HPscs7/v6hgTZu+upx+l5m75xhVUY8Ig9wmFecLQSXD+GHJD41wD3NxWOWP4loV0gcVGCEgY3t53FxD8Wg9g+Ld9PuCj0b+x1U4hhF3R6UoHDgM5lX9/4x4ZT0bnP8fdf8RYBQ1/R6k5LMpzlyj657zwJfSoQLFkRxQDLOTWtKvMXYHzz1JM4Pjp36So51lT0Ahuf0IjkQh54i5l/2zdKQYduvWHc2aLz520Lhf9xeMcxJnz2bwza6PyPLT6NBp6bjc1iMxUgY2x8VVOIjLL/yB5qNagGsXax52F76uCdVmuYrA8W/TrQcfePdwuIlveQTquUAecvrwU9ZTJS2I5gcLJtgZM3W/NdpCqg8fYLTqEzFJQg0GATbNgKLmrHfj71KodR04C7+52o6JLpNyVeqRb4IFZvOyVWAZd82U7O6saib0Lvvt2OSQEDd95XWtMpkKpLsGolUpDWG26liJ1EUJxWkM14WALHdRSTfH/iUXOlrafYxxJYq8sliH8sgvevsy/+twuH3o/991h8qhcWBHcraH8oAtz1GkkWREGSHqKG3KG5UF5/Cuzo/cs/e0wTs4BD7gcve0a1pEKKzAOnKH06b7xuusidQEI7EXY9gR1twJD6K/SOdxH0qUhIOQ1SUPyRzMOO9Nfjv+fJamJLgK3JKyVolIr8+jz82jUbQNVLO/NkVhqYfKy3t1zDo7lPPMqnr5PhxXop4VQQFvj69o10tOHQkuOK69u1SuDZY11sdq8ImCeZtPZKY9F4QEOjvTkFPI698TdW8wP3pkc9GtX09ydc0fHzR9C/yihRE1oOVZeOOV13i0ZXHg5sr+xvBnuON3HN++pBQ2RE+/NqDOreljR2/V4K9islekIadXD181z6HCcGhfDKyf0Ny4OQ/WJFGWJRkO6oEH1+h4DiBKUf7QyUAkfBod4Pb1Ngcd2POmNGQTecLXlzhjsh0z+r3katFEKMCJd3XsYiJcfw+UpjGgwk7K35uLsUenf+DUlMRKFk93UV5bN14Nr504LlVyZsNdncEiPQ+cdQOE02qwReHj11YzsvH+LI4ztMd/BIUofrxEflfpBadzOxlcqBQzTXJ+M80WjZ8Gxi3ygJvPlftx/pLYXBsyXlZ+nXn3hmZOxG9wqZCrK9yasCsGTnOrgNMej64leH05MY4C1UVKSV02A4/MXbSSsCciyCy2axPrB9bcKiJQoLHyczTh7RJ6L+kuNEC99+COrftcmKCYfZlhcnaXEkpCa2h/hoPhYyH3sGak80gKRDGTuLBg7Zcii1KJPK4LH2YXbdxFJIm6j/vGKJRxhVmjxzZQpI/NYsRekVcHpOK2xFFIcyW7+76aX0gZSy35tPx2JgjnRj7bUlGQ3KFRpmj/VBYofLiOFGA+j3G8ojWgwa2aG8rcoJglKxoakfmYVQ1pS4WNYZhVyGyhzZvFJBuuDif7ifCJ4+K/2BmOi9vH0qR6KpHK6/UdTYcnsClX73aT3RGGQauX9PPt13ZNak9qwEl4Dnbi9a2AsSOmgWWColXwoF/VHePY+LQanK48fXpUikfNriyXJJEhxtq3nr9McX0Lle1TY1PHrzjfclA28JmC85BLCdqYeNk9wvVM5jUU/NEtCK+0CFaW5DjAXBDHXKl0eFjNzrPyYfeVYNumZtL5xUyXA4TbTKgIBFs2dsK1xO0MBt872vjk0lkKMHOEJeE5ED29G4vv4imP0YRsixz4WOUDM2bAEBqR17FcOmUwQfFUx2FFargcj5VXm3aSS6qVU+b9BRD45quOnvFVXgPBPi5/YHh0SfJivhG/uA9wbT46396TDO+CYkYx8ZWV8rddmz3ApvI6P6JH5VAY6dwOnaG42mWV4PbnwqAanf7C0BStUQGuMfwLoZiTKHP8n8tYkG/QLyyI+WCriyq8jxixMB3S1lDfpciYEjVmnbac+q4BXn3/Ph++hzWCgisvg1Hly8GixO4XPAJO9czeHTOFSf7a9en4igTMZsabnuNfSnn57jso9GV58cs+rj6oeZa4uCws1lwOhUNlL/goIWeLaLW5PioTVBSOnuuQr4USFLXsjCI0dbj3MmYzSo4FM7H/ElHzTLrrhJjRMRd/iDkZ8d7yA5KUun61QDsMq3ccjfpaIfV/MM5zJqIeJOev6QVR6YXeblfb8vFp1Y73UQPpoCY9psGZOjCDhieC9fncegP/pcNU7TvaDvK1HjoZ0J395rm0mTKMjZoNddtb8KtOYWl2GcBiUF2t86bmKRnWGo2froEzr319ude1ICNYmTuWFnCCgm60jxtFE5SH1SXmc0KYGK7qeaLntxSCjMsCCpNQ4YlZ01LpBrgZXB8fEaBY9Epmz9b97LBbP4mKDy0wXQttNp0jKLR3qV9zaeSA3Awaci59PZK6Hvj/WJL3R/d3rrPp1vXQLP+nsrewhvYEhhWEl9moAOCbsd+hFdC1ynmDgtNhBEzxmSfO1xiBRfNPeJPmedYSWXLiTS4O/x0Q88RjikhRWKed6fBu2DkWFdyfWgjpl4OUqOQhFzb6d1d+jnkPFq8JW6GNAJ3NP5uJ2I/mIG1jkWKsH2eVQx7jgWuEe4MUa/8ajDZcL5YUYmfLl4s/9xPz0PIh8f0f3ffV4bD1hvWuXArsNLLR5nG+C9lNrZ/jIcKsdbJ7yxoUFpWHatRVUE6M0luW72RqF5PR/gO1MD9zW1tn9eR1CX7bM4fZKIrh93+1lzLBNoHLOreu+wgNktyFEijkdTd2ev10uUgk+o7KNtg2R49lV2bX44En1jcpkdTiiHbY84c85HRfD8i/rU1jYecTbWVM7O10BGeIuaREkVVGzceWFPX+dbl2OT93XWwvdbDzMy2KJhw0m4t8aW7i86lodEU2qB3Xw5PtPPG+ZOPzFSdMWjzz5jsx9Sq2CMx4v/w+tEyMn6zS7SjENHF44ba6n1w0dp2WfO36uAXXOcu5GVgv5dNDyynFMGZ7VGk3OTsiBo+a6ZMwaLXJeG1l+tpwFW/eqRjzqpECMR54OTpfOzRL3Oy+Is8Pm4T8dltgbW9cfzCpxx6KaEhvXa5TxIzK9R15KphRU91qpqaTp3rY9+m0uqAMaVP7qujTUQequCcGyGvi/oYoh4ZTMI1J3OIvXWQ4xtbjvjK3ouDZl//5tWCjly4k+HthCs2yogzT1YlOi5qYFTqQaC8ugrnb+VkMsrfsvPE4tUpqza8lEDhPXeRscFk2EqNjbkMFs0Osb6pOTQm17guhowPNTuAT1q0f2XZymo3g2rE3YkFwrel8ppvoqFMtHapWkLuodSpNoXrydC37VXB6b1GmDqKuGCoRIBDbZlHasRzofU3Ri9/0wQsM8ym6dI0/PnOWcklasFVNJer4ziEZxfzD+8SueliECpwtXjVdC48OCqh1Q9LF7MdpARx6JrrK+Yz+l3gt3L85FzMRQ4TOI6vjBFQd9Cun3oSAEdEoVi4p0+MCMqEPijHYPsnYVDuqVr4eCY8QWzc4WQxKz0U9uYhKq1wNgpswR2dJV0XawKQEvg80CENd1DExWvyL4tBT+loaPPh73g4uym3IIzFmF99yw5nGkEZfEIjtdraWBh7bzFFEVAbUvYE0bajeBZ7uroQq4EvO5Lo64UAqpXOnHmjVkKBEcbNgktxMOVRyS53EkMOsPVL/gvOgsGcEfaZG0jgIlcd43hZBSqCuJ76cRaDmlj/C/Y/1BA3VM+vCqDPp9dV7lNZYrhYbO19XlSFoSNHDS9LENCIT/ttZ5VNMCG/Exd2vsSkJusiKqxiEK/n7p/jr1VAgEiRTU7qVhg7+uWxHXiEO+w+BybYT2M1vZfMFdIh48YHVZzRhK67GvAY3yuAbxwE9r3mGOANdVldmiRgjRW7+50UQtht/u/+HXneihKbRRipHPLUvrt54mdfWB36nPkfx3BYMkT3RDISkYdsSkvjOvLoUJwm6OAsx4+4v4rsHPBIImYq94aHa+gChOkthCcBk0LanVnK6NQmseqfYxICDgmyHq8f1kNt7nC9YoiopD9jSsmb70rwVgxbfJKARb4l7X5z33CosLBu9S4U43A3Sc1VFflBwEXzuw56kNAfjkn7og20mCl16D8sYw/eKjevm3jTkR/TuP6NWt7QaF0jnXtCAL7zc6Dfu0UFFI36JxVWAgvPVdUZZyroOtN7z1cMwYF7WfvZeFvAT72Bi/b8GR4MHqO+uw1CbV8Fv+38bsIFvV6NrzDG0CbJ/esUhMG3bbHCNYGRoMh4aa7dmkOsHdo+7N+wiEz/TM+XhIDcOjr8MheuWho/o/l8LTB/54voV9WsNUG/cF7xm5m+QDL+t7WYTwZFW6lVeG0suG6sNoJW3Id3MbpSnAUR6HIQ0UXer8HAWtlVPVaXjq0ip4+Us9FQcXPZJ6XEvohrNoh76p7FfR/+M3xwZKELjCIJX8pK4PtrmLfKk0CLHKU8X4yIqCSkuU9hfRz6Gxor1DqnQ9CjtU8KsEE5OmlNXSjMwacdQpyLk+lwB1Zy5VvjFEow/dU2yNqAygsHbfN5YuGilr5saQkAlqYLt8VlFAENdajh9wG0yDolkxSrFEkktpdIcGJSQQ7eZnT7TFFoLdrzyDxNR5dOTpiRMQ1w4+9dznzdfxh188bw/+iolGhRypG8XY/OLTeCWBG5WBOjhimFZEQNrxA/SixBfqTvlKkvyWByhdNhvsLZFRusem/l9AMmdH42n9/U2DCSza26D0FLT67o3ZTvBEi9GkkywR6jx1/amPEFYPU738K+1tYD9cva/8sfVYExmyNHVw/6PNfY7K4c68f8LYO7b3yCYBdKSvwKyGh4zlaroyhPWDQ+t8Qk24BTAxxyf7EUlGUSfLdJ9fK4ENf8olkIwpo2kT9LlLGopS4vsPv+lIh7GLL3jMXa0CjdzqiOgqD1nbLNK3R+3VL5ldv1/1QqPhlOFtM/9wWzraBmW99kPzwx5KZixecYds9p90Zjc4cnFgZjkgDkTBKJ/N0Gsw8muD5p0tCrzh/DL4tpPtC3MjMr04clNRX5z36hEERjQM3bbILIIuzeMOokAaNU1fztlOxKIgn8PqyhzdcL9SIekepBcFdF82PmBNRsL7O8eqcF0DS19otvb8O9L0nX50IIiHPEyzqlvS+5Dt1RcvbgQjMTiEJNcKRiL+Jd83FJh1UZ4jY06mFMB/jlqF/G4PeQvNO5BAGNK8c7CR/RrDVnqMSzBWFNJKnw5KJlWBgcky0U7IUGjw1TTM4opFS1tJa51wfvBm3dnrwJh8yy26eKZqORlrjDqFDDdnwoG5s1cbyMZ3b90QzYCKRT/h1kQc9jZDrGH3CIbAKVBz2yCd8IqDI6MmXqxPdgJ19Uu7+pRAO7XW87ULfF/P5/aM6HelgeG4lZJaJDOY4J/PXFzGIm3ASL3ejDkbOJszwm7yGRinXS5eJOLTg2RK7c78TXsSspm4dKQaeF32X7n2goP8DH5fDGnicDJd3PJV/GIYRlRJla9gNO5IG6TEbdr9oRxlFCiWrpGHPs8+x917HOPb4nmPP7JGMJCtRSkbF7/z/ft7xvN/nuu9LXTA5uc2iFboH71cxqtOhk2duKMwsCllN0eLrUunAJx/54eIGDo7eLtPqvUBAOm/z9ziyJ0PyKdaP7XVZgN889/fwWSw6Lk1LNvlQCKK0do/LZ0ohPUoi8bJKBLp3ihIh+p4BMQm7Ks+6xsDutHZ8lwYR0eUFO5/7FYGcsv22PY9q4Xci/baRDxGJLxXsOeOOA0bayV/kVSqwjxlNfN1BREdEWvXHuXOgovvizgf6uXBQSahLLDICxT7Pnd3m2ACY5/u3aSslAQ7bVyMsQ0ZZj1oNXGwRJDhscd7mKgapz9PhdygkRExW2RHdUQ0Hf2e7HjKhgpTS5atlQXhULx2QvLmaB+cuzq7rxlPhHNzcm1GPQftJH58RRgNgN8e172P1fmDcWbSdMy8KvTlspbgzpRx+XmbFrK55wmNf6sQJExzaOF/8b+wbDWaLBCQc5vOB/OQEdp8ABs3qXWBVbq2D2Y/HuEXxDDDLHbx29BIZXRxK4eDWiIF/O34dk0yOAvlhheHzVRSU0LO229OpEOyU+FOvFafDz1Of5eMbcYiv4l3kik4RONm/HcRJVsGAZoVN+AQeXc9ue7DWkQT5VcFiL3Mr4U7szgCxKTySOciisbSSB72KTy9bVlTAQMR8E/sLEtqzaRRUnFcEquc6X70xfg4iWSn6lt4RyCHFdM9901YYO8gh8+JZLbjFHRLg4olFn+7ZHeXqTgDMDaxA0wl/6F7wiN6pTEaai9r8JbVdgLYJ7zr7sgyy7rj9VZ6IQpd4P97oOJQOZ7QUfqXn58OL97h9XzbxqDRM74GjOgMydt/SC/angkbTSKrpjUjEyOBVz//C/N5MmssBOQasnvR8oEoioQP5Lx+ls0fD98AOMn44CqrEhh5n6xDQDY2GfMJkEbT5mU8E1DPAy9mimSMCg8x0glcSZjpgw4c+vGmSDp/DcYU7X8eit6xRFoVJVAjvt0X9NXTwDkp0SLuLReuRT4v/CvRCYxQ/ud2wEN5R/juQX0FG4FMk+1m7GtxFe1G+wCuQc+Uf+PWVgHyVbXeXu/aATUdWO4efK+wdOPOF04eMMO1Ui7bxOhitGVflH80Gzj/m7FeNyMhCc5/YmjQVmqOrqPVZtWCnoV38zAODnEL/DlvJ5ID6d4ez+4IRhAp+EI6IxaOSzcljAfeKwfpg8Bu+6Fq4tHH8yl0ZPMqqXXm48qMCzoVtZgbeJYIxbeVa3xIO3XxGjHop1ABCxk70UjcG3AhUigjMp6D/otRey893g2LNTYXzjgxwTbfpNOOMRqxcl3pT9SrBsacjzEuWCicPSlLPpuCQwMx8xMiBDJD39dv+hyUTTHaOXDvqjkeBnG9Fmgwb4IbagTxuThocFZZZwu2NQnEZ17jfYHOBZ9viR4dzJSC/Y/3o1JEI5J1ttic7NhcMNvUIeFQMo4m/iU9uRqD7r26zhiSngSJbTH7Mi1o4/bzI0ycMi85hfW9uab0HnnCZmeomD9A9P8t3OjwajbEOJS2wFsLl0Tlk5YNge6BXxq4KDPJ69ePqokkhfM0vGTZzKIA6xWDR24oRSIFr/61EuwaY0dWPSzQggO5ALYa0QUKztTEaRlytQJdHh0G7CHpWdslflIxCpfcz5lXlSmCb9I7RLcckyHkU7TMYSUQ3LY9YVs1QAWMgYX35Qzyst1c05w2Go5Hs+I73cXUwTHg3XfG0GqTy9vL3SkSi48b/mTimZsNt/qOXM0/ngmvUkdmaQhxKXKO4zYZkwIzcLclnGsWgu+f9BJ1GQcnBE6Y35cqg3NzyBgqrAWe3zrpHviSUvGtVKe5bIzCEHhhVOmFAUGvvmIMgBZ0IKPj6aW8PfPv+USPwqB8kn24zVzaORgauVu+y1Xqg337P74LaIEh8XFCILsSia/f/OhQf7oH3521W5KSqYVTI1vn9cQpy+5lE6vaigoTQWPQwDx0+RmGoBfwRyBA/YJZuUAvYvRf8mlZq4HuFrmCuKAGRg9p7L801Aced7MoN1RL4EeXx7lQ1BXkqCG63DSTBu9vJZ8U/F4KW++LkQFQk+sJi5cazFAtcF2IeWB1OhpQ+4/v3pUloyrH4YHBZBXh908ka000D8R4FnecaWHSRtc+n3yAdGly4Twg+pEHWBfX5B5Y4xKvSMEMfSget3v2Hum8wQK9FkKf5OglpOxbNSeQWwxbbX92uGzHw7tqbvTsiyUj1ha4QjlAPayaKb4UkqcCWXCfbph6FNLN99WJZy6H7x6GPXJwIhGyypqRv4NBO039fFtmSYf8acb3/XC0crFAdHpDBophI8JD60gQBc9wmhV3Mc1XRNTH+gYJ+pnf56aW3gW/xv4puBQZUG9ndeHcoFv2b1/+Rk18MwVriV8VHGPDrZx7eKCICNbSM3BO1KoURYYt/s1uF8JHtP6Hljzg045Pslc/RC/Z7ezODDOggb2edueFJQS48Xu6vT/VCWXrwcGVlAqjzid5p3ENCyxySsStt3aDgHVva318BPx9Le8uXR6OOFI7OJr0SsJwVuty0Fg6c/D2kCiYHrBT+2nX5dMLZW74cRgxXuHE4KfPgs2jUeme8E8v1HmbSI81KP4bBx9f75DO1YpGFolVtsWsnCDnqkj79R4dbJQNCPzJika/x+MI5+SoQtjQfHr1aC9af54l7O7DILiO5q2W1B/bw4V0aJwohtVIhiHeFgkZWes6HOtBALEiGckMoC2QYw0tvxiIQaRf/6uyvdBg9Y7hqt5kErB1XPNYFCOjvr97Ksd4ymB2YOK/xohQ42HPje2pIaC3qwY95iAK1sbPJVsJxINzNJ/m7BIeo9j+MP12phDE+KoEmVAopL2n3xHFYxBEjE12cHwL/OiS+YrxLoJGES65fJCLV9/aRxPV3cPJ8SG6ddSLcm52V0i8hoMm47s4Xt+ohhzfYaeVHLaRKn9xMOhKJyq737+I/jYNPxIF06c4ECH24HnQslYj8+IBHQbEHLgScLM9aYECOxkf7SVEKaleVOPbJGIHY2w99N++6gRrbiUHHu3hkl+oWnPi4Do6zJrpddi2GQ6+47ypALBo2zsH9Z9AA+H8YsbPdTK7TBUWdWWKRmABqIgwVwR+tSutFz3SIU+L5G8rOzKNAkYtcmjmQzhtVxEXHgHjgpO7iQSxSmMrOSFYphoRHpR8rt6jAe9qQ74krBo3vrnu9/1UViOQatZfpVMJljYD3nBNYxPLMw9Ogzg2EvBLb2k4nwJxPuWDDKSJiVz0dvwcw8Guu70dneCFkhfKzv0ohokERrHnffzWgev6YwIPuWjDJ5hRd5IxCObWuhpvXGoH6tzLkeCgDDpG5ZdjryWgJfQpUvZsA+oakIy+1kkHl0d53zsznHl98FSuj0gZOUp/sT9DpoP5wQwCoUUxuGJ/8i7qBtydsJZSUAxEmu77qbY9EB0awVw6dpUH/CWsV1xUEfw4IvWXY41Et1EVZWWaClRbnxA5NKmS6ZoRli2CQymrjyuGC91DlfED99/5iSCp7LfXgfjRaq03W639UALEFun3ZN2iQbbgzcGkbAcWonTsq8ZoB3f2KPYr4LLCtuqJ+G0NCZrR5/ZWSbni9SPI4MpEMSp9Z0cGrkSjeYYFv3q0AQi8ffmsjXQquOwpONJRTEM3L+S3erAD2ng5zI7MXQV+Kk8IHRTy6lm5hVTxFhVtUna3RkwXw/I5r0I8xPAq3MArZc7ITtr1XJxfkIQjKo/phE6PRp8KosiP6ZfDwlL7Inh4G9Mlu6PyJwSAyPTiy4mgx3Gkq2P7qQSUYHjqf/x9bNKof/h3Cz+yNphssIQ9pxfCL7xltco2MUm0P3vLdVQBdd0KXBBYR/PDk+eSXhkWcOVee2+TmQfJlHdvRA8mAM7Lzoh+NQF+y+gX5TJLAsO7Bcus1KhR3NBGsrbDoGtfIBGdtE1zzVjO3ePccrmLuuGxGU5BjULdlunwB7C5u0SlWYOam3dd24alw9PXnQYadKhYKSjQ9EzFUqNRIjeHdS0YNzzr23Ka0wHTbI0OqTjzMxDTf038ag+xry1O0RRjQ9DK4Lqw8C9z4rNUONhBQdAtF/ui9JkioyW0QOBUPQr2POa57U9CvqoLu6PkG0Kq5aJS2hw7l0uJBPHfJyIOupJMrVASwP36fMWs1vHbMrrLVJaJ0U+MXJxPfQI+f4cfOTgr0x7WL5uyhIMPDQc74070wVLfUb8LcX8WVu9qbf4jobnH1T6pdAbBJ4/xra6KhpEX14zH/KORrObQfv5QDHkr5WT2nC0G/eui+tDkBnRsNWd/UQvCbGHhVbC0e0j8L2/VZ4JFYbdoA8VgR0IZCdpJYauDhqIvpiwQMui7w0pnlQjaI/9m9fGWJDpqYt82F3zGoNCSsDLZi4N7vp6/EvbJgQHnw1JM5Mkrm2BT1aUsD6cxmmcHYPDg8qSx/2hGD/tytdY89hoHfO2u+7Jlxg6RfcQpDnAS02kQeya0hg5y39XfjI6kwf1h7YwHwaKxeX4hEboIXx2s9MDez4BzFQp0YQEHeOVnCpfQ4EHyh0UGH53DHil43x4tDCo+mRrnMqVDD7m+hNcUASW7becFjGGT/UOMzh0IycIdYPisLpIEyi3qfXREOLQhnmYUr02H9muhatjcdorexPxuaikEy1GeBn5QToeS/HXL7ZRGwf9Dv5oijoC+2tGtPPhQAB51S5MG83mbyIOkmLx5x4b6rXHWqATcpO6F3MeXg8eEHNmsYj1h06w5wnuiG3XU/CjzXmNzCHPOyFYxCu8KuxWGdSoB63dGBksUA23zMwQJRPOqReXngJXcSYJZ8Br/uTwPna1ftLz7FIpr9G9f6ynxg45S6fTWoAEKq8AvCH8hozwmXYJXKKnjQwt3L15IO9YwXfdIXyCj/z+v1M0NUWM8Y+Tj6vQRI5hPerpEYtKjMg/HZUQCzAsJSC5Ol8FbS9OO/QCzK01guc/XJgBtWmZVpckHAGzrGLiiBQdN1E80B+jVQkbjvqgEvA5Sp+T8W3Jl9JvLMR+vX2WDq3V8eF4LgVX7NnvxhDJL48MX+BrNXsWG7g2mLFBg52pvVeDIS2Wuo6ireLQXLaHn9nJpQcLW9+PfW0ygkEDpb2banF9aOTQuFJHqDh8PDSdsvTC6tpKsm8fVCC19izMq9CLh4BZMeJxeJ/FseVhr+rAbjwpcFdxADwJhy/Gw6HlX8x+9Qh6qAz+3cwBZrKbSPL42Ob0SidA6ngNA71bDs8oN7hIcCUKv8V5HpiaKeZe8sz2XAhzCMgKF0NZhVVPgaqGPQ0SPnalQlEChoHv3hu5cGe7rXvmvvjkWCLWWrlypSgDTBoSmzkQ+sx2tN+McxqMAW2GzfM3u5Uulx1sNpsD/0u1diLRE9K+JQ4+pKBZBXt7TODgCvtGFVTyIGiYkQ1ca6c4CgN6u9XSkGOFXXJx2eRqLSa0pmfUcboXhdJ0n8URVo/T498i2QjL65/eNW6y8EgT3Tt58JxkFOcUyJL/M+et7P9skvt8GV6yY4sbkMCFdpsX2wKxq9vOkpUjeZB4VOqae0D7sCdr90+BPeCCStP3BxZoTZ64oaq9IV0wAT19ThTYpAIxE3qm0cu+G+UKhZJJO7ekVqJaHFkWi2y7M37X45sGY6sd7yyIeSWhcJ0/M4ZLkcKfDkZA8EpJfG7JOogP3hLN2zpygoe0deZTFfNHCbFJm7J2eAVYPxoRxm3zZm3Wf/JDQPNlq0jwrrFoJCGHtt6xIG3Q2ZUOeaZ/bmVoM/jL0xIMvjs9uYjEWUSilnNqEK+L2Q9j3scxA8ZWcUjI/h0KZyKSjLtsBvcYN9p18xucUTNyETHolWq0RjtO2pcHlBxfje2xyweae+3etCFLJ8VHTmPXc34BkDktMBdLhJOsF+LzYGGTpxcr3lr4RHotmF3wlBUH/wq4/8PSyadrhV/VenHFSOqiecLEyE/qsfh9NZmLmzPlF/17cZcuR2LygFZsBpD2e63NFI9Ms/KDa8iggrJOvjlu9K4PG+hqR/RiQUK9OpuOd4Lxxm0Zdhu8zMkXuaHckKJOTC+MTvalMJgmnq7yWySaDOaP+ahicjju3OYzrZ+TD4B7uruoHZ37qSuH7q49CtJX5Y3mB6wqjck7M6DJCa6o8R3k1BF3p098qpR4NDV5ba2YgKsLlneUjmIx7RLD0PKLs0g55QyIiAfBSYzIl+ktkXieDi1oZKXSncEyELCUXRgV15v07JfhwK3RYnMnCtAEju0VlnNFLhfcjuRd9oDDLYd/EfX0cW5C9qcUzyJMM1h5DUrc8YtHP2dkNjezmMXPC7JxRcDbY5vX0XN5n8F4u9NVWXBhV9Uk0utXR4lvd7frs3BvWT+zssbOpgn7TATOUyBtiaTiRVTpPQTmrSWsDZEmj1Nqw9psoAZkJpOHNgkMbVw5eUh+nw6XV571eJSjAxCT7oU0xB1NAevi+XU8GFY4ZT89krEJaUm21jISCuTxj/zKuloD6UMl7JmgD9TopCOTyxaPxJY5Xq0yJonNc6K6kSCKHWekHmJhEoVxLvnl5XD760Uf8Hp2rgmOr9FuVvZOSi/3p/5Ug55OiXnBXfUQb7J8C0VoOAbmRcP/64uAs0E/wlj2Miwc8kVX7qXizKuYFNOffNEzY3JNIEGPnQIxJT4CdDQouazjjN9HoI27/rxr5BBP7JK6yCTM6I55BSV71z4LV5nm7lDU9gYSOEK/3FosMifbPB2/LheMrXHLVVb3jILZ4n2o5Dah9vrbzVaoOPWPsBCed0OB5S56FgHIs6+bUfHTjaBAK5sclXW4qhmNidbmtKQUMigx1/HlUDyd+XnZFQAyW3g94qS5LRsb6/X93zSqDmjC6PZkUcfDAJNSo1x6Asf67gGWoTNOrV9xm+fANavMXdcSgK9X66KXR+mXnOH0j/9q3wg6KY8RCvP9FIQjvoyb93LbDJcNcplkqH5IQHK0lrzL9GOr7ZZOANFlq4l7F6pfCqW7Am3Z6EAj6VlDv+LARTAxql16ICWrjjmhLmSEixpn36iHEmRN/dm35qvycIBJ8l0LixyNzt71zmGhW07Ju95hpD4ObHfpsDAhGI0rL9Mic1CwTvkfKWN6mwnHPptrQ2CfkL13/T90iBLcV2M0+LIliulNI+eguHuoVyyvoa88C7umNR90QMPL4tbGioyvQCBkYPWsugTzTfONy5EK6/FZa9lopBX+Kthvv8C2Bxbonl+vs4mMzM0uXpxqGpJAK3zv52GA7V8aGH0IC65jbxlMlV7toHRtU27TB4T4Y7cJY51zQt6tmj0ejqwLnRm150SOX90pmYXwj1o4tiv0lE9Mo94o2nWCNsu6rw88ApZn/fL1oQ85qMpEz3xfrR6+FPnHek/EoAXNXW4+mlRSLvupf5Yrt7AWt1m5XHJh/cXfP7FWsp6IlterPc4WLIXHC61nmIDkLfTlgWP4hAgSzJY4TeHni97GJw9DOCC36U2bbxKGSvJSs+W9UDAreOLotv1EKOp+2l6YQYdJzvjwWrEAOuqKilHp6kw4s832O8gQTE2mZO6e7Ohz09QqHMe8JtEfVXM1sxyCJc8a1iBAGCeGwl1/eVwvw3xwMLlnhUU1qT8MjGDzw5yzB4zQJosPodadgeiXrT96cMm9Ih4anc/GmzMMDusEmfVohB/GLqLz5zNkPQ3Hh2cX0cDHg919VojEZ3x8t/2zQ2gkWBRgTlbSzMR1P7XK7HIu+QBuyezBIw1iB2mo6WQ+WhXaqaGCyKME7a0nBLAFOulZDCPwhGKsQmSq7hkRvB+WurRT7M49TKSDcYgBl4EZc4Q0Cxv/uQJK0MkjXVV8cnMsCJtVDCtg6LvpCpP8XVy4Gd/FN/9+8UEC5ns33ShEF7hcsqP7QheNlwqyzkajU4SOqsVzlGI5d33zn4HyPYRv5M0S0jg+RV/fy/bgTUX3SfSO2tAZZpqhdbBYIJC56erAIc0uEREhTJyYZArjQXMj8N7vtbz7E2Y9CDOZpXIHcoCH/5rta6RYcjws9ecuoTUETd24L7ta3wzrOkspSjFM49TkvNehmFJF4q8mbQc6H0vc3vxOpc0Mzx9G/6gUF3MEFtk0xPG9xp/vIdCcGmqR1X1rYIFFrltNAYmAS1t8xkFl5XQJBzVZf2zij0pDLtuDW2FQ7IlR+teBkAbNnmb2YCotCxqRvqP7k7wdL5ohPv3mgYDzotcZIcjezerb5Tia2COOVBxwtXc4Fzkmy+u46IRpVKyHn8dfA9YNBHrDoLJEbS1BK+R6JwweCKOr9iuP7gcn9zCTPHF7HHr9+OQOuhB94eaagBvYHkp2OXfeGmi9WxwmEy8uWRt2uxqIa8KPqyGmcyEPZ2lHn8IaBs6+zJ/nd0kLPiGJC+RgfOgXv72b8SkW6BHN/9E00w7+LmZ6pKhiGuwjt7r1LQteDuVj5mbx+zLrTFLhXADoP8HPQFjy5kLn0qqs0Fz1ar5+9F8dDE+vCKl0YE2meXJ/sfLw3EdHnDWDnS4S1XYXzZdzIaqLH/8desEIxrZlNOHmRA8/kqzxWRCPTr/LrD/YliqNy8EtN4JQpYjx42tqnHIsETpndF+engdVqxekYAC3tMTnT8GGbOx+fRxZ1C+eCkHMyOe1IJ5ZlJvxxNMIh+WLVw7fQLeLdmfVzkdirY1NVdOi5AQukxPpqDFT0QkZvDUdlTCJmz0W4cRTHo8y7jrOhmGhi+4GyERTrU0IY9d/Nj0aEssDruWQJ9LeUa116WwbrBsa7UY0Tk7+A2Y36cBmbN7l+3rb8Bni/mM4VNBHTLVMnlfn8ljGwIfWe3YgC1S/zhehoJDWXP+qz0F8HBqokrq8ZFYL16hTYuEYGaXhlxvOutALUriZXDF1Nh9IK88nd2EirMrzpd9iQRhOW3u2W8i4aLbz3c9kZjUZFup+aUSQpcVGl4yr9FBStr+T3ZPjgUuCvCct/Rd1D/Mir45G0a9A7v/vchJRLRGHxWp85nwWeux3bfHctAxW/go29zBEp8q6JHkk6DHGxkuFxfNmCNySkbJAzq2T2+2yo+Ax6erpVdMaqBg0V7rtu6YpEF4Y/hU5UyeCpi4Nq9nACSoMG6lIlFi8vZIdTmKuhxWriGqc0Cyw8PZwq8mT7L+e66WN17IGeJXbrjgaDplzYnco1Gj97k1M+YVMBE3LMIh6MMmFzYO/bUDIvyjfqHQrXSQWzu5OPzh2vhcE0AZys/Hs0s/XO6F4/AIiVwhr2mClImY2yUNwnoZmUnh3BFCLSzByWJT9WAXGFo3VcFAnq3KOHuXt4DHma+KUntDKhZkrkcsIuM+i43qWky3/t74KqxE64I1hizk5gOLNKTVbSRNcgCH+UPiU0bdKjQu8ATXRaJPGcnlfq4C+Aj/YZT9sMKqOEuer86H46aPn6pN9JPhN5Hk7+uhVbBRautUpI8HgnKZ8c8G60GWm4fSWW/Ozj+vGmTZYRDzYOuazsmKmHf1c1bIoblYEiPi8eLEdGjnGT3MssGiMgMeqOpHQmymW4blasUNFkoZkLXDoArFXOD3QFk8KqWti6qIqBj+29fSe2og/F8kxpyAh1OuwdJ3+ghIi6FCDY5Zg/x/XRHxWqyBHTfKsR3KhCRk5BpINW3Bp7yiITGNdDhTTbbgINJDDr52/1FiFE65Fbel+caqYRo+a1HZzmJqAW3P+yFQhNoST91qOgugvtJY+NPpiORezSX5gfPMvj7fCrqJtSA3489Ng0aOKT57Ulz2tESuL6nKGy4jg73tD1HN6dxKDH9g4paaRs0/Xx1enCOCoZmJtGBrrFoJafcLFuvCMKiHDxAqRwU/0pGvjSIQPYcRyWyDDMgX6zfSfNKEmzzMIL521g0/3iTb8G/CPrsxje2M/POkbe/hsaJQ2dMC74IPqHALc3ym0SuYvBdt+UxXI9BrTxlR53y8mDuiVZss1c2kJeXHstoRyC7VfxhVXIizFSRR9VjygGFnXG1richjU4zm1n7eJif+jdKe1wCx/8O7d74REA+X3xGV52K4MwUUV0oMh/Of2gwvzOKQf7X38UHFubCxValixhGGbhOczx/M830ygz9UR7nOri93zzi2CQJvNhd/vHwRaI2Nm0Vn+31cKQ1Q7hIIBbm6uzdk8rI6LrbAWknbAWM8PZFEl9Uw+fh4KR6Ag7djxlNDNFjQOBZwVsljQhEjkmcRxcpqGpVf7o3KAtaBtiwy6+zwOWSGPvAzwiUZT8VL2dRBg5+u8fUmT3I19h3Cp+FR7Hmx0VP/GP2sG4hmc7gCnicJ5g/+xiHtFSPbPqqVIGNq5ticHwO7NeQepk5gkVLykbm8p8zYL5B/Lne8xI4nyWWzGlFQt9rjzV0ozgQOit2KMOMCLJFwul/FvCI53K71MljvfCzwJ3DLKQKYqQ+KWfpk5Bx6Il4f+FecFK6WR/hXQV73S6eabnB7MmvWPIki5Mg/prLo9aWCrDgbzbJ/kVAkg89UaFcL8x8/+KSzfCDDeKzzr8qJDT87GygHU8DsCp6JH/Vp8IegUwz3RES2p4bRQq0aoeHnbxqCecQzDrW+j57EYvKQ74+27iPoOOn9BLeqBrKhrn/qpjjEfXb1qZMdDf4iM9svfAqh9drz0uH70eiuWMSfXKrdQDrcRHb+Mrg05HtK7UTRGQwdy7yA38XnDq89/bO3BJ4d/LyE6WL0WjHxaktC4E40E8QTNDbKoFKLq3tHVI4NHGRaOi4Gg2L0X5Lj0docCA1rYzugUNhNWMe2a5dkFKUbMp3PBU04obUXwlGo/Cvu/+8vdIIDj8sVSuS/OGUzsf7TvrRqApjcMKDpRIIr2TuipvRoJtQExqrhEcHu/XNgx8yYPx2tvCjr6VgMMimXPSMjEQqnc+GmteB3KuVV5XMfkS5yO2NSojoS12ZUkl7MWx2mGnKpBWD7MK/RHGmX5N13Hd+bS4AaZbGqjOu+RDXKZCakE1BMZMTSg8CIuHYcqbQ4kwpkGczvP6ejUJK6T1/cKRY6FZ1CzwJNBBR/YsuKkYjITbbDL9TFbBSfeF7WG4hbFO+bek7R0TC1V8atfkrgN54UIu7qhLwPuXXJQSxqLf1yBTlQSlQBUQEzrRSYVLhMEfiBhlNnV9Yff2mHpS0i/zEyKWwuiPT0o5KQRDXO3nPPQFGYpbf5PrVAJfwfPfVWiwyrWurLZEvBSEat21yWin4y2Z2C53BoPZb2+0JQhVQ6zzwYV6UAEmZnA+VeLBobvDW/ManUjBpFOicimeAZODJsOZ5PMI0jlyg40vhNm9mxjtnBrynrfwKOklEjUeKxDr5ssDpd96imFECsPf8Jm19jEBGCm88udQL4XOZrO/o8XI4hlvHZnjhEaNAaQdSqgaz1Y8Yq1eVkJnj7cj+nIR+W5jhD8mXgeJJYsri9VI4aPr66aFuLLp3yXjx12ksxIpvxnpMUeB1+Ypo7zgefSissNeezgPWA3YVVHIJmHvmCxecJyPxh/uFYgV64Szs/DO7uwSks9/jg/dTkIdNXf5SYCp0nnzRUKqfBg++6NXtK8WgEsG+uJHtFWD4rveSJ3POxW//G1U6gEWq7B0xxZlV8LbTRsnSPRbubM16nbUhIq2q55OuYqXQa9TuozuUD9PdnB576UxuP0lY8JoIh33iyOeHcQ1Yy5usnm4notYt99Rs/mz4ZZ/aH3yZAW9S2bm1O/Ho0NqbQyN2rSDnnrDj4CgDzqY6XI8wiEKabx+FvztDgHXpQD+X+wx4On4pIqSEguae+OvauaTC9UH3qTeEHJhSnvSHCSzqvuK+8L4kA8461/SLEkqhJDDlG68pHr13+dXucaIBLPwJjusSNLAIECz7OExCV549+3A1qxNk/de/a/CWA6lrY2abfzQa/KI9WS1RADmnfa71Unygxzwy14yDgNZ/2RSeF2eA4FhIn9mYB/RoYqJF0gnon3Oods7SC7D/SlBrdEXweJt7gkUKCRmU6y86T+bDoexHeb0niqHu4jcjhUtRKKNN9uIu7lawpJ54nilcBe/vL03TDWLQsPVX31TPeqjifJrQZpEI4Ym5hKOmJKQuv33hohodlm1TLT59q4Cce8+jDnQxz4khVtW6OwV0lz0HNneUQnlCanPsEAVF2PLPiVi1wNvB0W1uFwLg7y2NaL/aSLS8QiRWcXvDYtng70P+5dCm8paIESaixwHXS607U6E2LfrrM/VKaJM4qRTCj0PELknTNYcCGOR5XhhWQIfeD+b1v9xiEN5PwVKvqQtKfJpPcn4phlBx62OX86PQWIn3967TVXBKyC9BIqkaFtIIg5M3mfyJNsvYRyoE6bByKfk7AbBfahe/YA0G3W/LuN0FyWDsIiEplJIFdua3Do7IkNGa8M/0I46RoJitpGu+WgZZBtrrLZwEVKF+lvgpmgZ18r84/f/WAGvYV+1jnFgUPR1+5nVLGfjz3runOVQG4d50c6n5SDSkKdDw72kjPH057cP+ORec7t43opeTUf++4ZP2XQkg0NKfUWrJ9I6MCuxMLBm5IcOwk85lULAx2vQ+gQb3JAdaksow6EM5S0D/jl6oujeCqx7ygBszub+06GTk4n46Iii6AlZ71DC+rgwoEL9fXcXcizDPzILPdU1gY76r5192OfiwVWcFR1IQ6W4VsUy3EBreCnhEfmLAwYyXsVmnMUg8JHN4UjQP/nqLLP6YrQHNYw37Hakx6ObBybqs6BQ44nNy98uuZPBCUk1zPXgk1zhHLNtOh9b39EsKbRVwUp5da6UDj+YNyzQ+bqdBngZCSqgEIjsUai4XRiCaXR4megzBw/GC3wWtteCUtpZncoiIaoayt61m5IIHdqhk/VMyyBH95qZLMChCxGFbtE8KEDyLz7SUpoPLDVaioT0erQuafO1SaAFgT79n7ZwCxUdMk28TI1HQLf2BnloGmL9xyvETC4WM5+ToTbcoRPz8sOpIYAf8cdwmIeVSCf96Ftp4XkSjF63Pr7841wkZ4tSEt6alcPHD94esb6NR5c/JG7xVabDDTbr2QzIC0pR+Yd0qBmncy0vRXCyG5GCwZByuBu/V2xPl9hFo0Emqc/sMHWQv3O8cpxbAg+x/1iXMfClMo9gEbRAgwK+Z8pEnDl55sxAupJIR26WOL5dO0eG1lDTugGIpSKpznQndJKKZ2Fs4H2wjrLwqina8kgiT56Ol+ZrIaItEuxUoVQE8Vq1p8YwMaPCK/vJOFoscqG+wpYvdsLn751EWDRpEDugECI5T0M6aZ8J+/2og4FesgNedQsD6BIgS6omoY+3At7+2FXBZVGB6W10ZPB4PvmehhEUpnstt8z+7oTNCs+zRgSqY23X2snUKBfH6xfE6bDVCRbzc3huRT+Fuo3R41g4KOm2vfOVmfQ1ETX+7P/uPCj7W/w3+aYpCBY+wP3en0sFEWuQn70MEZI4np60/RiL/X2cPDaNOcF/UO2+Tz+y3AvFz08Ro1MSz1r6ij2A0UNaRvyEfTq1cOGPjRUB/v1e4cnDWwLagzO3/7UTg76elpjqHR0YvrsuOTdGhu8OiPH42Clp2mcf0GRKQxeA4EfutEJ7Ya06fyA8H295xP1cDHErXvRPpa14DUy63Jt/mZYLJiZBvN7gJSPmg15eEGirk0GMeqsokQd4XloCOIiz6fKZadtExETaOeW//1pIBez4UsWjgsejALVrLbEUpjF3iLHvwPhDyHx17VuuMRQ9VlrjmaQwYrFo2MdPCQ9Alvsu4cxSka1WSExVHh/cqcTuP5GXAEVl/l72LMWin0Q3Bj5APD8f+neLJrgaL88HN+3ZGoPz7E9Xl33vgxL02xi1ZBEMIU2wQGInYhz8HvdqZDc7Zj7MlrpJh6O6TlJukCGR52tuNN6gVXo6LGV/weQehy9+G1aJi0I94pcCKwSrgxi463BGphcyR4WtHfuCQB4aDNtpSBybLt99neVTC/GGJhXcMMpr0HtY/ZhkLGhXp4ayRiYDCd7gSqXi0pBJrKPP7Deyydn+do1cJPiaXZILfMLkxPqorV04GqcpGMn0NwaJx5lDkFg6lqOYvbJuOgW0WAdVUQirMynit614jozO7s+MrcRhYVf5+4dkgguAwUZtXFkQ0EUWRy3rYBbo/jtpccayGhKHwHkXOaOS/JlBaJ1IOyVNhqh1/sDDtaKCInIhouSdc97/pLpAiSu1Yl6aDmkBBYlpQFIoS+1a5s7sGJAPEYsW3KiD/Q6vfm1cE5B/9aoucWAs+clu3fh5KBNXxu4eJpsxzsk9nlc2jANjsddZqv2fA1N/C/3Bfw1FB05t/X70TwXvs+p0rGTlAfutzyygYi8J1we9yaDqcJ4/VMJYK4EBRbw7fAwISPnz251BaFig7nNxYKCLCQblckuQuLErid63eo1QHbYWfB9+5FsLKcG2FgTURVdOaRC+9KAXTLDWculYmWK59IHm+xCDZVy03w5NpIF/W8jSIxvTQHiHtaZ5YFH3X8YbeRAs0altW6SxXwjUPcoj4YiT6VOb50FQ0ByKzBO3qiTT478xKVJAzAeGXlZtOK/aCY/2UhkpXBfyui9XLUychzNPQ7ZzSYfBkw+P00bZKYM0MuODwhIi89vO4ee2Ng7TCM/9pfSaC/NXsx4t7cKj8YRX5hk0yuFv5mV3dCIW7HxQ1PmoSkb/QXSi7nAVvzOSVAh+UwVTP+GyNBQ5liB50HWysBa3OHRuLuknw9nLTfXkePFJr/lgtXt4Gg95/D06mJcNNrJ2d9/MY1O9uNrOWUweUc0fmpvuqIWJ3dXFyLgnBn4dhLmo1cPUvqSJ6hQjPO+rChNkIaB/vz9jp2GrQCxyhUJMSICRaZ+azNR6VHamuP3ekBKxFNbIw/pnQxFYo0hVNQkfu3RoV1+uBYxquFodVMmHl8Z9//rsoyO3Z+B3p12Hw3rh3QbEmF9b0XInJZCKaqjRtUfaMhWSruhWdlgQ4EsZ3jXoJhx7uyIn7FV4IlrWt0f2CBXCqKBxb7cfMKZa9g2a4Ahgn4mUiJ+kg8y9XJfcFBv2os5bo9GyFK98zC4neCL5obt1VexCF5Kp8lnoDiuFEQ7KkPB8NeNU5b82TSEj4UxfDbOMlcFa77DfKQtB57pyI1TgB/SjVxnIPZsCmsEakAZECt1v3u1xlJaD9bQYNx+UzoXLh8G1nFANvxpo39ogRUf+obvjTxCTwNW1yn7wcAKdf66puZuOQn9HUWMGDHhgtt8PdPhMLmMZrP9pTI9Er94SEs8z528QucGH+hsELk3svpdbJ6MD5q0VHvVohyKBxt/VkEjy4VRzboxWFrt6xNmSl5kLqPl5zekgSsE2V6LBo4lHk2UvO7+sKgKU27MC5zTJIYTE7fn6IgI5uHl4Pka2ErTyBXq7D2TAVlpyCfY5DH3Z9K1B3rwByVlJrV1wuVPHc2BHKhkeDI4NP/j2vA63p733+akmQm6/j1PyMiIrqjt8pIASAxD0pvOICFWa6J9bYLGPQ33Ppxiv3SgHVnhVruk6AqwWPbtKwWGScJ00xY4mDT6xi254nMz03kmWPRjIe0UkTd2uVuqBaybjSQYkMWfLNcW+ZfhpRr061fEsHUGrTInPTQVpRRPbCXgLajD9RdD20AXTf1nQ0QzYs1zo+3m0Wifa2a1lYrxXA3aV6S7TIAE6aitRHWjhi01ba1vk3B34rvdj34U4c7ONco3jUYtAORyLhw+9qKMjhvOF8lwaNZ7b5l2/gUUiAik6VQRmQDI5x73CtgH129HsSczFIAU+v+e9FIfw1kGmU3IiFqvyUmoD1cDT1i2XJiZcMy+cGPtn/igT+/07QjnDhmb4//0VkrQzOxZcFhZ3OAVbcq5NHmHlhnMHHYvGrHjJT0qMwiSUQX5HRfiqThOzlhhQW1TOgm3YGd6/DGTqpl2zFtmHQW9lbuEfnGeCneaHJbXshVJvJGT67T0Kcfn/E3oeUAG04p1bpWRnMD3aOsXFhUYh9lrqvZCK8uZvW1d1QComihUV2fjEIZ6Br622HYG2I4m9sUQbL/ek+NAM84lbxk39mhiB1AaPgWFUGtS2an8RkCcg2hP28TE4BdDARoLqDmQvkENHptnDUOSJe0CbWDJOpcqqaI/nQw53RPthFQU1S/90TPtUKwbY3OWYOMWB53CzWaCUSvdsTFvCBhgW6KZ3aSSqC4ueKhC/xZHTRwYVzRj0ZRKn1q/ov/eCTM56HnktB3w4elGPbVgqyH+vZq9aqoV5yl4XsAg4dOXiOQJetAvHym1fz1mjAJn7DP7YDi2iLD0tvNtbDD5U5vGd4OLzLnctxdiIh4vXrp7tOhoJCvOebz2vJ8EAzt+7kSAx6+qB5OCfjNfyRU+X2vZQFWLk+0Z9TBES7pm3c/LsIbn3TeLxzoASO9b8+o5yEQTlSbvyPn1fAKR8C+rpQCQHehrR2Zq/uNm549l8aHQ6xGQvhRz3hbuXThk1vIsquMiT/kWX+j//iPgDRD3ZwHqeeisYg3SpHCc2UHrDr2ch8vRMH+LlmjxYlMqo0pS7l3cJC6fypKP++TOjge4mVHmLuRYn6Z7ulTHhr31Vio/8K0sLvVFayENFVNiRaxJzLs6Lhf7N6JWDikkC9ZI5D5+5tU/3l0Qq89eGYyQI3MAkJED5wNgqdW7A2zKwmQ8+q5up7chX815qrddaPgP7MD5oUvOyCPfvvSZ097wvX/sUqbZ+MQqf15/d1TjLzeCynYfZsFbhpq89l3iCjXWZPZENa4kHpSP7V1lY/UIodG5tYZp43L0L+KyaXUqqft2z0FsHblN7PmJxoxPPliJxgugcQ6t/6tKbjoV/ovw2fZQJKaODVtUipgZTAu+HWnxEs17BSivPIaMnrV/aORwwY2LmUqD5UC3EsODZcFwHV0EZDwBxBDC3hwTSmGLRy2juJ9/Ho9252yfTb2ZAeJb/TEYug/iq6+2mSjBzee+z9udgKPE9ERO6Nx8ItyLrROBCDGKZO1lcck2HrJ0etrns1uG6d/0oLxSE6kW1mMKoWmOZ5fldUGghf/ihCVScgzEWKdp9tEbCcGk1SEMiDQbudjn+sIlDX5dLyB5+74H7ll4OWOVmQ4Srf+EAsFgnG6ckN3C2BMKOzpaLjCHS/XLsZ4UJCgiZ8/S6FNAhe3a8ueogOsVf442qMIpGm9okfrtllsHTt9Kk7q2lQ9qBZszyIgPSMKk9JlfdAGW3vYo1XDXBtL+mcmCehSZ8P312CqfDoWSm/qT4ZhKczi7Z4KSjmDN2JNSoVhvczMmd2ugKLi1oiHWERCyXP8EdjD0xtc1LvYa+Gijwn3NAkCcm9Yz39e7UbErwFYxriagAUss2d4ymob8Bjt8r3ZDBbXEtOf1oDQrzHK4rvEBBu/UT8AHc9PJrkbvvQVAFxjpQR6u9IZMswyPmOKYLTz1lq4m8i0LIOetHIgUVRxpVtIUoFoPqlJ2FcsAgaL0abFLZikBuNX0JDhQ6/1adb3dOjYUJEqnlrHY9UItof+v5oghyVfRzziXQYGP104PyhKOTlIpkr10OFjhVscbxVKayc8sBukXFIIVzih5pbInid7/UJ3UqGoqXtGe8OExGWOH/JwukdXEn6FbIlkgUv8K47dMfJSLX0Af/dpXDIlyT0LXBSga3i2+WYAwQUsENe6UxfFbQ+f/DUSgIDHSEb9IxQCrr8J8v55/Yy+H77sq9DVzioHZf+9lUaj4r7C6dVA5heVxQZTkG1oK+q+MGSD4M6PJ7t4Fkuhu8kCfvYyzT4EeZ6MSk6AumQ0kLKwskQXPepW5FQDVMm+UtX5KJQwrO+3VHXiiF48Zh9cH8h5F5Xu/KkioCuxu08ukczE55nMVzaWYohaCC5lw+PQ1nro3vXV2jQdMBDjW2EAe9Vq4pdOTBI7PL3x5c56sG52smDFJALhxUcT+/nJCHW8xWVtfPpkAfqbVG0cuiN6nitH05AybFqV4qdaNARTh/NbyPBI3PW3PwLeHTi37mLCufx0KUXkvv6JwKRA4fYj2pSEIM70uVwBx1etPPHaGSmwGqwKq/WZQKCfS9tRq4wYGG4T0ZPoBRYrGUrT4dGoUvbnoqJB7SB6Ju/f/4mZEPqnic7f3QxffOAzsxIEYIrFZ/k7j5mQMTEgyEhVgoKs72bSWP6FWpums13KYBgbQ67yJ8EZB3StyxOKwNR986DpTf9IO+9lkb8bhx6KjKp21nUAxMGdx6PMvfu7PkGl5xVEsqaMFzStqLDw9/0ojwm3wx3JD4V/YFHkmNvmqbG84E1pnGfhUgpaAaGXTjA5ImFyF0F52U6IP2h1I43hTDD87uyJJOAqlOWzh84gGDHjO/OXvtIuCyZ8EB1Px69Yg/gtsuIg7JdBMptq0pQxhvdTV3HouqP2e63N4rhxaKi1J0ftfBNr1/O9AAFXSpMH17Q7AGbIMntW9IMuB6IK9/2iYxqXfsNxg7UgW+FvcBYQAnIS0/l0H5Q0MlvphNWerXAp9NsUH+zDIzOnXv5tgSHCHUE1vaxIljqi509urscLhaYypDaMSh1u/iJiqAe+B6yXV9Onw5lxoY5onZklJg1ObTrfAs8+u/z7v9OMmC0Wco8+VYMCm6Kigtm+rno5t5CRnkVFOLoQp+3KCjg69Sb0qEsmKutS1jnTwXC47jlG+8jkZZEJcf+LAJEm5//q5BYDsSNLB3rs2RU9FlNp2O2Avhe3bxblVQLhQccEwbD8cif78MErFAhc8+unZw8hUD0RYlJb0hor1XK9uhLPYBTOONHf4yDiZM6HE+/ktFGpewPRm0p0PZpLEn5FADv0kzBIUsMilL5Vz7lWwt9r9ud2McZoHwt+0DZAA61eVzZXnukASLU6l+kyybB2AxRs1OZgnxl/jNniyqGlWyZm5LiAXCVyuJ39iUeXexUj0350Qpcn81tiYql4BnpBY+FYxDL48yCDWoezMfwHMPZVsCuZqO6u8wcF1r5W1fNkgQ7snV9pE4i2OW/1Gf3HxZxpJpOz8f3APnrjfZzsiUQfH+eKHc4FrnKHbf6QGmG9b/VG/4naiHSnn9F+1wsConf8siJqoL8uC3dmTXm+2spfktuxCL39Jiw8fECyNJoCzfEFkB45/MfWtNYtF1142ZOQB3onrL5FvGEAGncfEHDCUSU4Bxb+I2rFvIXPAK2H8QDc0ttbpiT0Wma77a8jlJ41LqdP53p17TbCzkfH2KQX3ql2aVjaWBw/OL1MgEqLKcM8UnERaHLi7kcDqN5wEKZkNrFlQLeuyw/z8Ri0SH+zXc581nwb7VjM+8pFYZK8YGBAli0mvIxMHF7Mfyx5ggYmC8FRbMts4oTOPT794MNYZlUOFMkZXi+kQzTI+0qAgiDlMWX5Ph8W8EaLysbdgIHf7JqewbtolBocofjm642KOeRpPR8YsBYWt0JtbEolE3bmdpg0wJGi7m7HygyubTzSHt4bCSSXTUWEB2rA8LtB/dlthXAvfRKS7l+Ilr9ssXq8z0Fkt2kzqTRSkDo55WT4ftwqEx00+DM12j4LeyqN2KDgS7Tvtfcfnh063dHNY9wIiSWLbmZ7GBAnhYjJZiMRUX9astCp9zBuPeX2rH6AnC78vdR8h9ml9shw+9v1QpWm6oSn6cKYOfGcvyKUhR6nyk5LSVKg+43u4srC7Bgmehgwl4TgT6zWZyxXy2Dcvdd8klZFOjR12FpKsIgRjzfnO2rOqgrb7zScqoQfJpLHvgxc7bssDMbSaIWkkZbKli2Z4C2YeT25DYc4h9taebLqQdlOY1P25n8uV3YRJb9R0bsx+bHh0fqwO52iCIjMh2On9EapbCQ0ILHQtEXyV4w5znsXvqTAvvafLKr68jo2JNyGV1SOUzFPJZlH6LDH2Ku5zKTG1YqLfm6rlEg5fYl40hJLgRzfZESmcMjWzvJmWt5CC6RucpifGgwV3f01hrTN0+9fvzbIzcSFGc9E6zEXsP8+tRTTwwJOSX89plJpoKpnvKNZLZciG1w9BDbHYHaHa6HvNZMghSVx8cVX2KhucBTb58OFpm3qHk+qU6CFecbOarLDJBOyeBdl8AiRQ6jFo7+HjD8lFJ6iS0N4hz07eUySOjxZ9hYNG0G9/Ep+z92GDjTyctpyeQh23VrkvSdGhh5mePsMFoMJXyM37nhOPQeLrzBXk+D1yJ48jf3aNBu0ywrLo5CA/Vye/MFUyGt+uKlfZOxsE2n59ViEBG9n8M9+9SZAyLd4ZWBTI8TGhkz+vwoAs39e3XoXG8a5JvSJ+rYSsCr8eXFak8ssif+2sE+UwBjf9IUz/d5wWRVzoUvh7DoLK/Z8SyVcqbv7bhycJ25N546+Yeb8ejOLqNhzAYNGghlvFrfq0At6FL3GxMs4sbZq25GUKE404ytWyUHXp0+6tWdRERPnQRkxIXLQCLFX2o8LBVEzP1dttUy+5KQ8NMbv5h7cSdzKG0JQfWZoad6i0xvYmSsBsWWwkhC7JFkhRJQ/DPUrXIfi+b8n34QbyXC/V9zlwYca+BkarYsmwoeJShsJI350WHEpV1HJTcNKLFGVmHMefZTO2vVf6TBvBbK9hgtgobmogsB9zFILf6/YBdKC/ysWq/PdkqEE0e456umItG/UI/1l5wNkCHQv/JyOB4CC2s5nNtIaHnjas3OynroUhDR8s3NhzuKLXE5rRRUc+qf9g6TCJj4RfcOJoTA3E6/3KxDBLQuK3ULjhWA5DZXly8/c6FY7+vux8o4FMr1TP3RUCo8NbAgTn6MA+/RH+cDmf6CSR2oPSbaDTqYGt+mL3Q48kfGX1MmCn2VKErT9nsDFjf52Xc3UuHE/e6zIR/J6POBi8U3W8qhRNj9+vx3BjwJ7ArdmMagsT0D1uObkaDswNo67YiDkQyF9aEkEhJ4F3anj9kbsKV3Q8L6kkAv1FGC5xEJbXZfv5zkkQpGcRN/JJ9VQ6eKWepkARYVLLjHDa/lw+DEdI2AQwzE7R5UjGCLQByLtC1e+y7QOsW3s7OsFP5j1n5fnmjm/uYtHh8phgZhUYo/PxVyZO7GD5Vjkfyg55ULp0vB6KoC5w6mP2IPDsvyfcAh+3/Bwq6KbfB8YtcGTqQC9mv4pxUnRCG8xM3dVw5SoZRoSLHdYvLq/w7O+5HK9//jQgmRVDIqUWZWskJ5mWUno5JZEpGVKLKSPc9e9t57z+scsrd270pEEqLSVL7n8/0Hzn1f4/V8Ph4/nLuiJMRrLRU18+xVo9qnQEmW+8haCoLqd+s7PuGJiN8t735IYwXY/VXdQ43uAtEyFhN6STq6GcyQOLrCgKh151B/TBdsKPemnz9LQpjj8pdKJivh7+0/+uv9DeAuPLghFI5FJ6scWy8Rm8HR6NehmjsIyi/kS1TeSUfSLI1cv3xpsOebiKOfQRKMkRt8cfZYNLZyuV+RbwByfXX4bsxjgJH6NJptFw0NSDwI+uuWD0UCPvL+38igcfy9XsM/MgLOqvue2mXgTGHX0inqgANv/nXzNqWh37kHJK9LVoPsLR6qQnIHKJuwUrdvwyMTp/vUJNZuOF9ajpsfbISUqJMsnBgS0pRVPTeC64aFEMPcY9sZ4GmfwWcyjUXHb70+fMM4H/Yrx3+uzEdgUsd7Nimf6Ymcxbcq0QS468TqWcekgv/LK3N1jVT06P0DTl3GAAyHGEc0qbbB4luPIjYGFcVVcjriysJhNC7zUM15OszrdhTJ2pMRx8bU9Wq7Vmj0LGMtZebtqz7t8HezNLSPdbfA4d3MHD58NvKPdR40Pk769OIzFi0/usWJNCYg+LF7vyM7HfqaZ0sk5Gioiauo8759NUizrA/tUIyHZXZurAE+HY1fdB4L/TMFY2n7/f2XCuGswGWWe/kUFJJB3AanCyH/qMpxXEYy9Kw64JUSMOirxkUtp/A6SBH67+jJMCywOi3xcSrjEW18m8vRygLoV77r5s4eBqfe+T56dpSAlGR6+H0/t8BB830sxKx6UFOo9TauwKOrSkJSV5wHoaeD9a7QjxpQWyBOCRdQ0Bhn0cG++3VQu59LxGqmkcmb/gdLT6Shoq4n1lebOmEqYWCFg5QLX5x+WJxUwqL2iF186wYTcCuhVdd0sxu8KLv62Q7QEKVLclRlCsF3Dq2L16dyQZ6nLfkh03M3pMRDzgs0wsXYo45PFdohK1BW+aMlDg0Syv2OMHtk8xlOj92hGY6zNobyquAQ63KkCY9sJ4jvcfh4p5AOgzsNjRxf4tGrp9/CJ8wm4SZ2o+jz9Wo43PE79+QLCgpKlbGUkquF5ddt9WJt7dD0q8xWfDQVhRw3e3hNsQiosePBlWudcPdkSE6wZzrKOfiBej+TAeRLcR3GNrnwxpSLbnaSiAZ2+D+1L+yEefKTxJuMZJAsTTXXzcSjAqMrKG1vMYzftdjdbVcFy2T21lGmh5KCFA99YmpSyUhrT83vWui7QFdhXMchHPczkxdH00G+JXMkz7YeeEJu0M5/wSF+Zfnk9uhKYBn1R313a2BZJ7MlRi8NNU01sZYkM/vogjS7Ey8ByC0i12sZWCQx5zvr8WoYkoYx+/vZGZBygN4os0pFFxd9MgO1OsBdInBfkEsUCN6kG+8QIiKp04Zut+cQtNddVdkMy4I7jRiG85cMZHM/9QrGvhzyPlL6ZVzDQS6VvLc6E4dO7Fae+jKaB5bfJc8d5esGV/8nA8/bsUhJe48NxrAQxMhWVuotDbDOif5bwuFR3l9+Ibnkaugq2ZUTtb8Ixv4eYAmLTkdsbe1655ie+PGLhllAUhEYDZ+9PeNERKdG6+LOsOeBxovtZ8RfFEMN/0G5C71YJPz9ZBMrrQG2zEPn/5XTofKA/ikrwzSUOzoR4FyeCfJCQgM+F1OgNOv8XexjPFpMeBma9LIJdIl1fKMSt4FTUHtiWJnJscnv90bdTIfp/BNW5/BM/8Lf0opkIyHtQoeyiyG9sCTFXnmEjQCdHxzP3VEkokmVe+z9fE0wgy4LXzErBGOMySeLQ+mIds8nhWWLDgrUnURMSBccTiZyt1njEbVolsXNhs6894zvc9874fXkGzeV3cw5+nD8+wuVWuAT+rmr7XYG1EV/OOF3B48KJ/JtWvbXQsZmW3DKc38oGBghr/elIrlrNIU7jd3w50beaFoTBm51LH5U7Ccg14S0g3/iKbA/lIJOn2DGZkp7RmcNFpFOrAuLhTWDr6W+dGk4Hg6kc3gvu6Ujy2OLY8k2HXB4z1feuUEG+O0/kDAfhEPZb68QT/Fg4F4R5YVLXgfsDbhgd/ENDmn637wRH9MMWzev3uz9XQ9KKWq/+q+koxfmX7MZXC2QoB8j8zmpE56XRPyofsg8x4hofC93FWw3keiT/p4Bb+q6e+rVcEh5MH95myAFzj28/nYcx4As+5lsDwESms5f/LlykwCpQwTxDPZ46E6J3tYlhkOKePgyhMdC55J939jbaOAvGwkltOKQiuCKv9+OaYAeSmrgYwYghf8O3s4jIf9U42Nr03lw4WWUxEZJLridb/7boodBbBqeb3dtTEJb1VvLN1b1UK3sFjucTEYdvSWtVJk6+FyLuaP0thh+vcl82M7MSdWdOvHaW1XQp3tpl+wGAwiLKxYxc6nouJttVgFXGxza58FBmnoIbjuKyuI4MShM98cWy3Q8sM8dnL1kUAAXUM2rt+54JLmsJFr2mw4FilmimKeNgF/HhzRnEtBQZ+SOoqQpuON7K244IQtiHh5ZjfgvA/2XEn70e2spJDmMiV906II3C+PVDV/S0BmFQifytS5QVrMDj4I84E9tqK5PJaIz8RoXSir6IHbok/iNG92wghVNzYykIoHpACl16hi073NNeyrAAN4s2Su+D2jIQf90Xj2jD7T0p8pKT3QC3urd26svSGjwvzN3ziTQIaZt5zvqr3bgTvqXilwIaFVR2o7TvReik288aC6mg9v0ta6D+STkxeDkiRythfxzHXc+/NcAYjVW9hCHQUtb/7jiwydAb+lkwwklBB239rxJis9EE5u1p7aMEZBnLUYLb5QDb3eIS445DnmRTnBJzdSDcZ90xYxDN8ywB1L2GKcjWOULIt5vBV9xL727mbfh07itBNtiOsJ53qUG63TCLstZ52sXEqAoGmsb7YRDoDanZ23RDfI1m2HH9OrAh+OFR7ckBX0uvHbjmlEHiIrYmdvdagGPbIcUETk8Mgs4IVLFnQ9cj2W7HDHN8FFip2XcGh7p+8Ua+XIMQh8tgWfkPR2K6dph6u4UlB95z68haAok47NLsymVsNBxe+HlLRJKPnhIdrC+CEzGIsf14rpBmeVORMtcBlrlueTuGNwEE70q0rxDzXDeK+oljh+HJtHhkhCTRzAg3XAkehqBysam6xQPGR08fE7xxbEgeNq5VesSkwMn5N2vaCsQUS09uOvJCyIE+322KoI6OMQikHX3CB79fn5dctx3EgYSZmZ/ubWDS9MzV5shCkqd0T8bLFcHkbFxgpIhsfCtTa5nq42MKBLCL/zlu2Fir8fj9xmdkNyk/HuEiEXSIYkeH40Y8MAl9/ONY3hg/KfEar6biB7d8alyt8BBU+6ZoQFSM1xLPf+rBEtCVh0f0s4FdoCIyk7RY3J0GHYNtTv5EYs0vw9tUepr4Edl81eF3wzYfvZQufFQKtpVKubXcQQPyrfNRRjDDWDpa3HGJYU516kG36v3jYDLvJCRt3IuiDt54yfYaOiYIel8smkdJB8S5KGLILDtcyicJ2BQ1HmdAy+zU2Ht67XpvheZYHPys6tcHBHp/flTiKrq4fpceWuzdy3sC6jcneWahobFHx988qEJ/qyF3ynp6waRo+/wy3YE1Jqkz3bVewCaTju8VN1EzB6W/TXNQUH0ahZ3jUcDYIWvN/MORrA8TXyrkExDokE2T/2q8yHuen3P+yudcDn2wMCxv+loVSk7w8ZiCpJLEdenX92QHXHeqoGdjAZaMMMt2XSosXklzSHTDTc5iy5FbRKQ9HjfLVGuXnhPnghQesIA+icz9qZ1AjrBqfvVjFoKfqUZXd/WmuAjbvu7bywERFZyS/6jPg1r8kG3pzC3wfdZiu+ZbUSkq5COYzWpAC9axard02bgDcspu6SIQ9jtf3hdJsuBcif276N0IsSXUI4gRyyK7BKXv9hPhG8aZnM2UwwQLE42NLuHR8+eXt2zh5sO1ifv/V1JrIOmtfzmcSIJbcQdMBgVzQPJrjkNGjDgDdse1U+mWPTTrSamaVsNPKf3iNm86ASdtQ9DrGlU1LVj8r1TWR2oj6ktvAmqA02bpg6be+ko9BNhsTEQgQPHeuZHJQIs9fM4pNjiUGjihyrB3gxwcNrhr0EtBnRJ75OUKAHJeb83/CFQDeRfXPGfPYlAfJWUx5uZjuZb97N4nesBpT8HuQ2FK6HxS3t4+R0Cwr6xFiV+m4JtbdvUdrK1wNfQ781bEURUWVnhrRY1CY79GfsMpUlw1EVzbI8fBV3o5894Zj8I90rn4vZvFMDrTf6T7RczUI7RNtPdQ9WwXepkt11gO+QqN5cE7U9DMyUFHeZzCXBz6NzvE4Q0cBec0rYUI6KU1ni5l5JdUHdVQitOuw5mxtbkLlzFoqfPryTUrCPwrxPVX/asgGeRn6czcDhkGbn77dXfHaAUSzvqmYiBOcw3+M6JRc+pipMZDyeAobfbZ7IqH05u9afszstEZM0rWmtC06Dg03SfdB/Bo/ww3ZVZElqxM3q86NALwnv4X7Sf7ISCCFyzqgcVSTnd7vtCGIUahafDuuK54FCn79wVREM6ITcNLrY1gWzdUeAUboAGnJNUNo2Couprr+J31EB0w6rptU4E76p9XFd10lFzZZwKKawWdp/f/9+Fv7chpJR4fwXS0RkTg72fWO5A8jtpBdxMDJzmLeAwfkNAJzMnuPUP1kJDn5zgl4EyKKEULN74xsy3CfUYucU86OZQlKnfagN2QQe88UEMKuvxMCyOZOYU9k0N16c6EFFte6ObR0ELKpvXGgn1cPvww1rhnGZYrhTgH7fCoXOn91nxv+qBV/XqOuVb3XCZVnn532MCelfkfNXzRgHEjuDT9k82g+tLqljw83QU+yqyw/plA8ibeGxe52mC9/hderkLOMTG8nFoga0Bgo4f3/9mHwN628xKggvSUXJRn5nP9i5Q74vmrrvUAjpSFx6DHhYdECX2FK93wTqNVcf6fAHI7N+2i+RDQJUv9XUm59vhh6z+VOIuBoSXffzX1o9FLwUU3kbUj4Anpkxr8Ek+pPN+74lzoCEVvSXYm4NgLVrAIrCqAEQLWB+MuONQlcb1cU/tfOiVclrVe1QBw52OD04zOZBQTD2jp94LMZhny4ZBgeCV1/8UxInoPJvE2xNGpbD2Qd/ln2YLlPWE88AhDAq4Tas0Cu+A+gOzByWo3bC9HxFEhAmon7VR7NLBaih/zm5yZF8bHFPsE4EuLKrwN7r4aW4E1D4Mc+1cZ4DJ/tDDvMo0RNPTGBciFAHJ0yCS8g8Hxk9Zf1yzTUeXu776zYi2AQuvg3lVagPQp1Jt/3eOH55/WN1n2gjJpjyTl6bbgKMuzGxzKB0Nc4xZzVcNQunOpq7m2Cb4L1JZM5bpUyLNRNvLMsPgaafoJzVaAH8KDPU5UqlI1/v0SYHyYbiigY2o8yyCm/gow6tvqOhAp9gYybQGyCtnj0nOtkNKz3KxvisWdd6c42vVbQURSxmTWa8miFUqpticwiKd3kz/+I5HMJ+WeTz5bDtEirraP6dnIMzuZ6kHtfvBLfyOm/bJDng+2283LEdGsdZfsC07S+GK1tUY1FMKPO9fzDtLYtF5AcEzH8l18DcGoyMzXQ+fkvmoO0lY1KPU8VLdYwo4K69/qx7uhO1bz9LrNilof2Su2XutAqjdvtt45ioe2oOpKxe2Y1HHzl+aGHo9dH5Z2XtIvxzERtfOt2inoSCzj36G25pA/8QLUjSxFOq77l2SMcSh36N1Kg05JXBNP8M3qqoWFCKssRqKGFRMf6xc7VwHotx3liY9umCx1X/o46dU9Era7UM01yhUD0SKK0RgIKV886eGDQ35P7xWu5lUDW6ih/N27MbDs0A7n5CHeHSE5+rcqno62B1VjZ9TRDDlPJMT9BuH/sw11/U550Fn7K0l2fByeI1R3YsxyURywcfzj9ekQ84ff3+2EjrUVbhfSywloNohtic4zXqwM/f302YpA4U5WZ3U2nRkxqgywN6YAOuPL1a5/1XBc/atnz5mmSgr8qf+udA+qDD7klDjUAuqv92fiAtloh9EHP/VRARBBdeiAlcQGGEL8MaTeGQzuG4yr9IP25Q8slS28uBtZ6JMjQYZnbiy09l3pBj2BxXt/UcvApvuYLA4lY6OxHWVsJYwgONuzLvEQDq0/tjPd/YfEekP/ZDA3+8Ecrqa4IXsOODYabx3+34sIg+UNl8RmILYotJcW7580GKh55wQpKJRHcmoE0OPIKSWawYNtMLfhe/3WuVJ6AeO++rChVFwihudCghDUNqdE/bsOg1NVacshbfgID/b2zzVshwYPQHW3qV49IuXb8BkYALCckxdH0m2ANsAcccOjQzEqCu25LYuhT3XXeaeDhWDi9zcnixWDDLI15cxFCyG7MUxF/QLC5c3xe9SMzHI9snzbZ5HGOCB22/R2FkD8x2hF68wz4XX0vH9a9kB2GqoNyzxzwd8sGvl4Swq+rqs08Ht1wdUnvdZHCQGkycp6rujKMjgRTqfnUk0nPUs6qEdZkCeQKiA/xM84pifZpvLLQO22gbO6poGaFxVUo8xJyEFf9eE3QUEqJ83ur1tLg9WtQbmHFrxKPOYzB/LpVHw2PeW5PBfLXCPFRnY3aChocxWxxnyBFgoHA/oXioDpf9Ufxq/p6IsWfxa3/sp6Fieq4nkxwDfKbcc+9tUtGFMKs1MyoSBqwq5tJx4+MGn73o4loZeixQK1YVOQsyXnpud/ETgkzj1vtqJhpLOpu3IYPIJ1pc98OuTWIjP36Hwj/k7Ug8tRsaZ+Sw2JqWI2VcKs9STCbhsMir6QhXzbCmHok/vVx4zuejl5jaOYBwGvSDyl5tYj8J3G8GGa2Ik+K0SEvzYmYYu1z2mcwZ3wuTr1t9eW62gqyfo8XOUgp7+ID/jzowB63cpD7a/Y0DQYcsy+RImN/II4QV4WmDTx8lnsjQUHIyz9yV8xiHej00mRixFEFNLrdZao4PL58vKU0EY9GkvUnlLboDe/R34sw0VoOku998F5rmL/vnHKfTiEexhj5TRs6fDh9Ly1HBdChqF1gPKzY1wUX6Kc2InHZZF9hX0FuERvvnYZHoNA7wbP+RFVhRC6E9rZ9tN5lwfc6iepbSBmau4xc8NBG7yGPOgH0R06tiDwg2YgrT/dv88SC6F7WWt7UVTFISN/HOYk+lTj4KLdBK9KmB90WKwVxOLhsJN0nY2DIDFf/wJJq8Y0EZXvPdeg8lLtLXwX5QMeJ1yrW+2qAyu2DzZP5hORI5iGXurZ0ag/6W+0MucThh9c+23jj4N1Uu/+NHIXgMjoTLNmSpMz9XtVJ5dS0VenH+XT/c0wOs1I/T6Ax2q5kyXzv3JQJFWFV+sY5l5zX54aM2gCtSpt1pUn+FQwf5nR3EyefDrxMUdcl/zoAJrsOO9OgWJd82WaXN3wNjXyA2trCZ47bRPNUIGh6ZI0p4eMjlwd0kykt8iA5R+Tm6GviEiZSP2gCnTKdiXcX9n1z8mn6quJ5q2kZD23Q/y9KAOkKl44QLOOVCqreCR8hqD1tt5DVrXekBkdylu2fwuWDCeP9zFRkIT58NdlCubIAuPW4qV6oTVE5LqxqLpKIOUvEeiqQSUVO/LLtZjgEz4K6F1k4BeleIShz51gKWY5fpaUj3oKddlhX3AoHKujPeH2Kbg/YBjMvu+ElA9vOendjwZSZGebGQMdQDbWxb5P5kU+LO4kc+ujUcScd/T+T7Rgbs40Ori3Vxwz1H+9+gsHsWU+1+9X9AB0Y70vtWHrXCTvUbrvQMJ1VV3C6qEUqFvsItFVZYB0aaLZd43aWhC7LZNnjIJso3cpuUd6HAuJvjlS9tMRNU2VV2yaAOrfaKXdgRQ4IeRHuGjPAaNXbtb6BNQAzLER2BkzIBFGkk9wYCIouwrglZyR0G3QlPpiVkXXPlZMzphS0MVeS7RD3HVYF0+1/0W1UCCkR0r1x0sovS+mKppZuY5/pGLSiaCLNvJ+d/M9UpwrbY2tJbDPym2yPanTO9MVCDf48Mi3y+Zz+g7me+fWR4TdZQBV+TjzinmYZHPKI+/7vM+UE3m2FLXKASKqQe18g0JlZTKhS++Q7DT4Kda0QkGLP9RCLTvwKEdcbhfg1Y10PF+d6RNcg603v9TyP2Q6SMsxee+G01BeGlXzAJiQFqW9z5SFgVpGfWfxYQMw1e/PxtsomT4pXSqk+9gBlr6rydgpK4bajCX2ExfMKBM+ELEN1c82rld3LegDkGkXBQHrxcN4gaOko4WEdGZI2HTv5NLYELMzLCdsxa+i6gbzeyloGfBDx2boiqhS7hwxi4/BUwOukRjvmJQjVJoo/6pXPD7cCe2uoUEyxlLrQvDWKShLy/RMTUAchcuSF6gdEAufyDHp2JmHt5H9p1jCPiOKvay5lXDy8K60asPcGjpSRnXBXwOrAcuaYvy1IJ3xbk75XMYdHjM/eG9L4PQKBf45t4gDuyszy2Kvaegw4dYug04HoGzQvvem3wIyE9Nf6pRiGih8AzHp4I6eH9GSnAs8AHYRfIZNtQS0UcWicjQn1joEe8pOriCA335yxdLc3AoYzClaT5xCqa2xx3DPGeAwy9bi1O6ZFSJlX397RMCAfPNtZKzrbDZ63b4RhoOsVYrPBAY6QIWERF398QwGJ6DkG8JRDTe5n5EjoTA5tFLry/MfbbcIGpEZOJR7IptZ6x3C7PfZ099rqNC/MGqA1LKZOTzE98pe6oZSBVSJOHjlfCA4Z7bWI9DJwUVarV6WqBxMCj5z2gLbPxOitsVhkPj2fKX2ecQHJ37e9gq1B9UHqnm2mbi0BOgZR9LbYGpmjV2B7kWOMJV4tFPTkfuqYh13rsZums4GOKrDKgkcv76ZIBBq2Hnj5/80AbKoyP3to5XgIw5fuyQLgY9kinJYdnWDGw5v+zqDeLhketrNVGjdLRiRRMsrcOD/Ym7C4aZdJiw9Cz3tcChZyJj67fOIKDOJM+ZD5bDzN/iSZ9tGehDXViKRVsRyBTn8ARCN9iaBGqd96Ig3qhHbFneDaCY30l697kDHrpef9EwkI6kH7T/OFNeD4KNpg2nxEkwcPK/M1/5CIhd67BWSF0fONsoPavwbQW8TvKYzCAJtc0b6F92GATi+I38sM4ukO/I66NmUtChzSUrmGgAJWdPw1ynYni04JwXKJ6JzF9Rn+6J64Q9n1Xvux2lw/mKqqzvvwjo87qnub7pCMQd5/xtstEOp65z43mHM9GGMtE7KXUKHDOv0ILdc+CU1cwzyzYyMv86zBvC9PRWecq6g2E2jD05bXm8lILaj7MXder0QkYKm5Tn9nKQLWAXuMjsQVVL5+pzPA3QsnvQ8nRpEExtK8DUUTFITWzDPPpwD5Q5BrM4GLYB0bfoGR/TX8Qeq9vuZS8DJEv9eGQyDYwE/hk5RaejfuWoReu/KfD91tnZvLRa2JFdMMDBiUcTyo47A3+3gs+l0ox4tkzYUqeddK7Go1VF0576uinwHI3vO7JEhzsnEx8oNZPRsQshynY7puHbefbc9nI6hM5ldGcxvVXgOqP/59M+2CW+aHFKvQW8LOkDR5i51F/03z795y2AP5/5YEWtFBi2zz+NVhKR3iutbV57W4FVPHchvakbjh8OSP24TEPaGZVOVzeqIVfkw2V3cjk8dVj6cZt5D+83O9dR5Qcg77XF04NvmPsh1ufFP0hGg93f+LfvzIPgQhd+fftO4A/4kUFeJ6C5/bahTj698OmBtVmtQw6IT7ZtZq6QkXf6mV9bv9sg7n5pqerrargrq3XJjsknwTcjjguxT8LnrZnEogskqDJTtnKzpqLp+dGf51hLoHJyVvHy4XYo3xJ867CLhoLCagRu7GkHh4jQDcP5VMCqads7uGPRFwWrgEfhQ6D+u0r6jFUmqLY2PiepU9F20pHj2XlkGHlUrOSo1Qas17L2HFQiok2lsWMVgREQ9KB/kTH0EM57ewTrLZFQpbL5TQNGGPi81qWa2HSC/aCwOmURj14NzHG51NZC2TGqyYXmcnDb/2Ve+G0q8sOaBT1gnQZ37kHaTbFKOOgc6l56hookeR4M9t7pgSCOE+8yB7NgOdnLWnSLit7q0raGznWCGZfOwXnrNGiXeZD06lAmcn7eWfxRpwHY6wu//+Gkw/uaEqOvY+nokc+JoF0TCNg17CR81TvgYK7twfVgHJpszjWaP9gDRr57w00I+aBXusDxGDJR2+K9Yd3hfLDgGnb7d7YBGvbTj6yIUdF/UUrCcu/LQO/pbkpiBIIjz5Dq5xYMEum8vUH6WQY4zU4/idAYEC75oEG9TEFX83sO0i6T4MvbdF/PV2Wg/V0gejsfFekFcx+UIufAAR4a62wsgojj78QXzlKR92QMBG00wB0uHWfjxm6YNyH3xu/AolvOixuSLtkwkiq3ISXZCgZZg/mol4D87H/cU9QfgHcnXLy9VXNAxD6l7f53MgoVMabduV8D4t3X1E0MS6Aq443uXg0s4gnlOV/Z1QuMhcDfNzjToE9lujNogoTUUsbsJzhq4a/CvQr7QgSmhQOfj6uTUXTSu+Ubya2w8PX9t8dX6uA6MbjBfwaH/PYeWWd8rAM1n/8KSpraQOiYsNLvUAK6G3wl8diXekCPnafbEhDUWUfT1FKIiNvzUOBOYwTiiaueKd7M3vCzZE/qxiOXA/b0AWIiGA8Wvov83gB9emJouwYefZ779d8xm2i4/eqc9Z/rjYDq/zh61uPR5kqXVWlBA9zTUT8jtDcPGoy/CCtmpaPJFt9sfY5I+JjyxJIez+SHVpuuurtk9DQ27M6eN2MwU2F7WKusDU5hv/0Ti6ShOPbF1pQxCmRRl1eqchB0cLjFPuZj8pjyK9kjamSoZ8hr6s7Ug6TH6/Nv5rAo1sbsblA3Fv4U8s7XWDbCQY2ptwhDQHyJVyWFFKdApp3q8vS0P8T7n5fQXyahHs8ox+jfDLjDulRPMI4HTmf5WhkjAkoUllHViy+F9J9XIuWfU+FK5g/7tMfp6NTe13/L4vrg1y8fgVAnEmy6/jRa6ySh4dAujyebU3BCebVpSqoB8lslCrLlqOjf/iyRl8UdIPGQHP86sQC8ZRdCf7Vi0J0dLAYnpKbBM2JWn1hcA+yh13X910lI5gvrgOZGJQjHSj4qsUJQPP2txbQYg/asZvF/PnIbpNkDrt1TLgRG4VvC+GEC2vr5dYKRHg2+YgJqR4vbQMrkmhIXJxUNhJqbrpxJgI1rQ7J0aQp43nw3bCmViWZeplA1Ne9Bx5lHhgfWmd7NbZFas0VA53b0jN1jelTCUo1FuHQNOItkHXxihUfZZz0zH6nUwS0+zWXerBa4+ZLakDWfivTaPVPMd/QBWfIbn4VzOXzPS3P4cImEFtb26fneKIE0r/BHmh8YsObW7hV0DIOUSxRfHut+BKm79/9YCG2B83IzJxfLyYgl9sl6ZdkU8M0hKd3vCD7NuPiGnyYj/X+Pz77gosFpMyuFNzNdcHsWHnDyENAbNn+tQPc+cNlnxDW0txIW0z2L1/Wp6AtRpGc9uRueR3hHEroy4ePzzuXMESx6Yrn6lEOjCC5fqFGLeEaHQdr+ho/qOKS5cO6I9/Y26KNtGUnG0KHAyQ3p7sYgjd/HEvldy2H/ouBIy886YHtHnCy5nYYaj3jA5Y5yiBg60bLLrxg4K1oVt+3GouBbWA9HtknICBg0XdzZAuH+pSb1NlQ0z/00yrqJDr/6eOhnT1TAlGTEG3/m3HHa1bHbcDB97MLo0c2aIjhnxd6bhfBoV4+Pr5raCBz3a5njutcB3pjLV19y05DgvHApy8spsHw9O2Pf3gz60h8CbHKoCKP6l3oojAGc3iRF25MNIF0gT8iQJCIOYycwUKRDxDd19FalDTKeL+ouKRGQ1qaAW/zcCKQ7G0oc5i2HAo/yeq6KTISVn5HK/twNbDbGRccmKCCVShps1yKgvji9yb2Lk1DSLiap9DIPHOA9+75cMuLZeJ8IAqNQefkCOLIzQJZrmMvUiob4Y1NE4rinwfZEJJ3ysgturq6tOYaRUZ3zqoo2YRKkVFdEchsbgSgufFlihIZch7xmDzt3gfNXsbyatA54PvlaWGyMeS4P3qik7OuBkFKTpr2EDjit1nJtRIOA2sRZtgZuMuBffU2Y+YNOEFtOD7BjYea2rZT6abU6CP3D3DzNBDh5QFdhZCYV5fF0fUpWqwR6iYbcmbeVIPZQ7bPTAh7N075od+/ohTPsdg0zh/JAeBvPIfSMgGZea9/jiQqAgqfc3HS1aojXupl65AgB1VNuPJmMrgXc0//4nPzyQJlNuf9cZDpKCmhYUO5jwD2jbVMtzL5I1VNUzFvGo6QqjYeXmDm/Imhek1dQAVqW4dG5C2Q0sXDniGhEIwQoZEfJ348Gl3YO2XJhEtKRcSIorPTByAdNzL3kCDhUKS3v/5yCdGVUd1m/QDBY/Lu+j8k5iq+mcFeMMpBbiGVyK18+PB2o/HZ/Vy3YNzws7NmOR533W3aI63XD3nzJacmYGvDWFo5wrcCivLcyDdv+DUKQAHGi24bJb9rb6D6vKeigiZfpgnAFvBGQUzmJy4fFI1q1HLppaOJRS1/xSiHsXQ6f6JDoAvsvbUEGM0RUZBm2deUpASIUZqx+0akwXePVeVyIimL254RLV9bAw01VPTarPEgYezZpqI1DBSvK3I+vlEKaHH/2tz8IzIRoQ4Ltacj5a3L/MEsBDH+/Eq+yVgo6/1RHW1NpKDUbXN8xe0qj9eO1LHoBvH2nYmbkgUMNb+KNbxY/grIweS+PHR0Q51l4gpeDhB7rhG3irsTBeu2w5DF+BJeeHNa4eIuGVjERB2ov9cPV9EPE1owYAPDSfn+WjJQHnOZK1/rhkLimkr1xLBg4HbnAWUlGv0xJJ82+l8BrdvPbplsU6HFLuHBAPhOR3cSAxasJAvVGHEqbCsBWcead/CIRRV86V4r3LQLDaP++zXgEY1WC2159pqLYcNPYufAOcFFR+ZaUiECqMz3RaBSDVFeNznBx1sH4Q3uNRlUGhCjx5dp+I6NOsZRNrdRW4DH45zT/Mx8YPQ2+U9IEdFgogAuv0A5LMl/ZPz3Jh/KL0yuvTPHo7nzfZjm1Dmru7r38Sq0Wcnwi6h7QM9APvzQ5N8EB+LhacvJoTif81GSMfOpgrvcyb37WgXxop6WopXrTYWaXa6mgDR51pxBe935jcvYWH9fZK6Gg1lEx7Mrcz21E3mCZSgTSEZZPmy+Vgq/+BbkfVXg0kks/fDRkDCINM5M3dQkAP3ljOfxoiMXi791iZm5EW3581crMuRevTpd3MeflxnGRkjM/GHBo8l/wFZFiAOcH3uzlJJT1OU31d8AQkLNzzQWtakBk+sXSP2kqijoYMsYVUw5HbKdko2bbYKs0+/HUDQwqCpNRsE+egKRaT4vT45kgLK697/47Kooe2/TKcm2Bk5JXeYSv1cD2xp32pIJ09FyJ+mCrohxSREjXim0Z0HDXYoeuRRoqsBaSMRJoh0vcZgu8U7XgOXI6LtafyYH1SV/GM2PBJkH76hXhONAPi9odeS8DdVpG3zB3b4dent74P4p1MKeuf6/mHA71/RxRz2YrZa5HakfQmSa4HLFmNM1GRXeieicyvnaAa1np/Lh6Gvypp60ZNxHQA9PVsZS3DHjNXVRGFG9hSrfZ+Q8niIhx30RtiB4NadWd1EP2bYCN28PeUYRHR6WflxdWI1j7olj0b7MY5tzMv6D7OLQCRw917UVA8+p2ZWXNAdmdj60MuIhIKCaB51MpA3RlL6iycneCqZ+P9sczzDliD91FxTBg3/QTC3XTKph57j987BUemRkvqlOuMUAlQvkY9kAnWJ2KMhhrxCPx/5rc+qOmYIwSK2iT2wDkr5+LVY5RkOkiL277QjH4vvUZpy/chaIsF/u0VizCOazyWXuOQHRSPCHjTgwc5lCt2pOcifD5wb3BLhOQW8t1vzefDjHOgy8u/aWiisLVaj29EThRPX1+7l498PFcnTJkpyFRNW+tyJlm2Ct3IFpkuh1+p2d1o1cYdJFDZshpZx+8ZhEq0V/FgsdegeH/fYefo+lBl/HIFAz6fC7u2NEJmA3FAifZDMQ6UJizblICx+4EDEUH5MH2qVWJiDYS4s6qzd5j1wt/TRSuJMJDUN8y47M+RkS+L/TPrbxB0Hjt0xlvWQxExlHHsxKYnm7J+IWf7IVn6mvH+cMLQYvuKvDNnYjydAr+LrCMgvrKbuW1ykDoVdnUdtCkoYLzLRP8bgxQbnN98JF5Hwxa0v5+K8WjN+zKxCOPBuC3buHbFmw7hDJuDUgqUpDzxvSoRncB6M8PvTYWZADGI1v4+mA6UhDh7v7sgiDzdO/rLbNWkAmQ31qQICGBxyrBf+zHIer7q6NzTgRIbr/KqL5GQwvcgsriu3oBhg9b2QxSIFF8S8q+JgPVikv54pm8pcambj2Rlwqiz0/edxLNRN/7Yku5zxbANymO4tPBdfD1Ez266zXTc+Xy/GTftINd4prWpRkGFMX6lb8Px6LeM9Ufvg90gbiTWFmwaDMotHZsBYoRkYHF5w1e0XpgIc9+GaAxwLyDTXv7JA59DrT9lLZ9EmwiojUfFxdBZ6iaq6EqFfGQNi4NMnmuzna7vuN0BKhGrn8S0SShu75/XqZlT8HPbLq80H8FoM08AOdTJJSsHfVP/FMDDNwKSponFIL05of8fBssOqphnlvF1Qp+gb69u9xbQZ5b8p/HGAa9bDXA6TSMQmbm54a7Do2wz31f2e5gGlrxdQveE98NmtGnoynpFZClMcSdupvJV1u7zpMz6fDbOENmqC4D5B8mDesw8yqDqH4hpZABvhnWV0ZHGdC1Ndh19jEeYXtIu7L2DsCThVnqDblWcFF2zL3ZSUMOmU/epo83gKQMr2KYENMvut1yP9pi0bNYU+MB+V7onA5fkHJshXDM8fM+TO9+LLeRs81zGJ7pPLh2rqYWvskLbrtaT0VP2y7azUtPQVHpts0b0A0P41x9lFhp6ILQkYOSVlMgG/icfqAFAZrO8pfQZPJkxq4mJ75W4KMSoj2LquHtm6/DQtx41Pjf9iYe2Q7odjR/F36YORd/nSZu12BQfdkSx/WoNhjv47IJDcoBPT9xkQwJDJouzP7rNT4JxXEhGVmV2aDQji0re0lG+OEzc86mRbDGfjzGqLEeNlkPNI/nE1DcubBvZ4yYPhCQditeG8GDhLyGj55Mn7K3jt8x1Q6s3v+uP93TBsNqkiHTmjg06Gt0/6M/AVZwMbj6yRzwGWGXtDHAIQfs2eZsq0H40bL4Pc2uHhYDQpX0blMQa++k0fwqggoroO4WaACLEYjl78KhkZMOYk+dS2Gc/5aB0JEKOMYpATg3DAoofyxlrkeBBJNUwY919ZCM2fwqeR6PHjfhYq5SM8BvZvDbdkoDlC6+xp7kIiBzkjKfqMUUvOQTNklUqod/fhJ3bCVoiOvLuA9LRwOYVWQ8eXkrAb7cl5p1S05Do4OL/5D4GHx75Svct7Mb3A3qN2dtacz5DbtemkYHv5tfY/RTc8Hoy9ovbzUCUjmbXpLZ3w+i96yviCnXg0PUs0NWx2hIN1f5nkN5BYRty4rWOYxg9fRMmaB9GnrU3jxZybz/BTMzn2Xft8PZlaCC7vMkFNEfoKGcweQe8YAP25geHZGVaMBPw6G/SQVROu/rocR4bEtHDoEfTeL5lDseoceTnWI5zTA7mXsjf7QQDKvOcbk1MeeRBXeEz2sAKFIB6QldTcBp0iK/YkJFQVK/I+gtBPgdmXE7V/gBHMh+Z3V8iYy+1wZ/4H9WA4ciK1Scbj+EA89+mq3exKBbZueG2Xcngt3+jBP5vyrhY+YArVYPj5wDj721V2qCbq+WT6dXWv7//x3lLOnI8czVYeWOfji6ek52OYQOKo+NlXekkdHuzpHRrYIOcEpIWjsbRobt6JWSTQsFXY6x92I/zuQG0TM6v7WKwMdnQKAmhorO3L4axm+QA4P3M9pkNRvhQxzhN84ah85fduUzetoGbJoPIvdId0NuXKt0+zMMinm3VX1+gZkLZz5+TH/WBWQ5XKxvPBYxLucsX1jOgfjC+0d5Q6tgMdPscdg8Fn321ivqtSuCFlubtEQPKhy4r/OyZZXJyRsJ5C8BLdBu5lxWndgMjLuvU46LE9Av+U3lQxcmmXyz8/hcUCM8evzxwZsRCuoJ4HrYbzQFKva/n3hcaAfZ2PpAv1cklNh67uvIjSroEsglTtxpgHNt3Kd++Kejv3u3nxZpnoS7/Kett1NbQDvQyvnhVzJKsH8tptnUB4HaR1qX+xC8KxDt6WSQkGxZj8hIYS/0nr29ykJpBscrlm9dmD0lTCBdORvCgBJnTKxPFg5qyN6kQ+N4FLh062z38gQgvN2JeEwb5Fmc31h3oKLv/3XdjDk0CNtTszv3jTSAYp8jXzEtE8UYH881iWSAXmjxoolwHszi99XvYaWg7L7AyxWVTTB+Ilr+DK0Lbs3PzToWYNDV31X6uXuaAY2Xxj2I74I7h8pkZJi5+qTmkHhvzBAUhDw0CXjbCOOnVUtEVajI7zSl3WCzD0J38YU0h1XALwNxR4wsGRklR6ronWgEe/NMrVTnXAi5bSsnqI1F5+LmNs9nlcNV7fY5LbkO2L24fqQrIx29l6h3wxAoYH6jpNrgYg60Pul0DhgkoJG+vcECx6fhGt3T8+L+fDgje7m0+SsBqbHxyDR/6YM84aWlfQdooEu1q24WoCBGr1PTrbNToPVlXwdp5h58e33i+t9ACtrbwvGb9KIZAoT855UtGYDNFQqJ5aKg4ZrzIc2PeuHfTAdmi7UDeKzv/zS8QUQ5Mgs8Nv9yYYdaQ89yUB0s35ckm18noDMjfORaZo4k6T6fbfHqBMlLdve+Y4ioYkWUfi2yF7T/kxovYPrXeprXtkk6CR3l537txuzHfOtFBT7Rarg/6WLqtEJBnmcDKuw+jMLFrlejuL2FQNp9e3eVGw29fH23j0MgF6Tar8puvmKAiYfk7ekrOMToFx0QXmGA43Dp7KmIAni583V8D46IbDcVTGRURsHrnfTk5T+FYCz1q8qDyQ9xL85eSv1WDbukXRRuDtVBVdrLHZJ66Wj6Ys0nP8leuOn6Jh470wW7OhtIioJEZPL8VJV71AjULPyaPcyTCPqZcebj3P/7jmJoxA3FKhj22R41VFMGly5uv/nEhYTkr9XYT0uWgOhAivWuB21wcDhKh08tHelTPv/W7h8Al87b7G0EBsyHx+XJPaGiuy9UWWKFe4HNot8/cSUXsnxbzFsKSKg+002WL7ge9L6n5Z5NwwPvD0sdK3I62kR3I/P/ToJwZJdGrRAdRsvv90e7kNFhqR3PDBfo8FP5UeO+4QK4JXwo3jqWgEKyDLw3lCcg5F7uPP8yAzT9j9DZdzLfX1rWuebgI3A68NeM3TsO/roG8mpgiSiAFtXY1YeD+0MiNkbR3YD9nEzwuI5DlydJov1rPWC6Jn6st6UbBEWXbrw9QEKC/joE06I+6D1YvNwc3wCE2vh/y00kdK1R33jEYwgmtlVWBR3rhiLjh7mcp6kIvzznONRHBfGfFI1TJxrghcLRctsOItqhurjzemgaxNvl5fetNsEzvdNacus41LZWUOjsXQ/bruKeF6SnQrjAngWjMxj0dfzietL+SbA8vemjN1MP3VNaPD9kqYj+mLKZ4lwB+4xHTA8FPYDAC/H7/W6TkFrTq8/W+bdh5cD4ww0PMmCOirVVbhJQevNdm1nTNnj++O1vhBDcfTWTHXUWiz4c8mkojaiDvPdeQjr+hUD/dIv/9hQZrT0/vvPjchlkZGGfdEsUQWjSbM3JLSz621nzRP39BGj4ufRKYLvAnVjrHOpDRSHmCiP1ngzYEB6a+PmxmclN2Y/v5OLR4BmDPR+HS8AQZ6pb8a4QdrY8HVVUJKCNc+vvyjRH4dkTuf3cwc1Qu43Tn9+ChvZSy35axI3APt6FXHloB47SG9FmQjS0853uw9iqKcjhmYu5gq0BLpWTqeTLFMRbzSf/+XgFVAXau7yQqIF+OXt26xAmRxlFif0Sn4boXrYXoe87oP7tsQP3pEnI+g7snAxvBpXLJlvnFPIgNsPknIFDOlJPPd2DkZ8GC7JszT+m11y+odfwO5SEfs5WVfk8nYKk1m3fRG4y+935smdQERFpqHp++zo7Af5LP6teWFWAu1Zggz+ioeXZZczkzX54cEv60zgDwZGeQC8vayoKbFnNelecAw9fG96OxNNh/PMsVZnZU+2mPaWJX+tBRw6s5PNbgWc+O/AUWyZqMTCXO7a3GXQfL+9hDewAi7Ctm1MVeBSjpxm2/esYcPtcyvxkSodtvBLR/nga8vYQyaN0tEERnjM8d7wDmhwx8nuYHOi/pBNdZzIJevn9NyGcCmVyxel7GBQUvt64nnyzBcTD1gaKs4sgOVNZcQybjpaNhKYdNBgwNmcjxs70Bf25Ye2GKAIyLjic95olF/i5Ui4c+BgAroW9RfgaLNpX4bvPeKUMQrmP1lUKJYANf7ZD8wCT34Kif4DIINhW0+sulmWBfpbP0p0bFCR0zdW9n1gOpCKW57fvMzmX7qq+IysdzbYHnkp2IsGlgurq6cIkaBd86VVunolePHS5Km47DFpF9oY/WDuh4/t/gZUVVJR8QE9T82c/vJJoX+In10BXvPJxZR4q0r0WiRU9+RAO7Sny362TCWtvAvxxPXj0oPiiVtVKGnylTlg4vM2HXRelLU5dICH/dgxdt6kFElkfJ01l1cLVokRVExYsCtXnBeNDodD0T2KbN2cLJCRc9teMIqH85nRp8w9k8P8Q/ChukcnLbVdLhWtISOfEdM6JDwVgY1hzsYRSCuZ3m7aPD6cj7A1Z4cn/eiHdScPhlACTtzcmnO+HEJH4c0ET96wsWHJ3Db3Dx4DGjbbZsIL/eZakXuP8ABBtPxAXbRrA2Du9okGPgiQnFHS8dKZh16+IQ4aXuuB08hGWhRcEFNt/Z1JIchp+ZRrXj2K64WLu45yHRkREswpMrHUqhOusg6/unWZAEpQ/4CCTkfOhbexBywi43U3cS1Tr4N4SZsfeATxyn/waqupcC6R+IwzHn0q4VxaTWKKHQ+7dqEmzvh/0PHxeftmoh+utPw/p3COjkbD/dHnXJsCaf3XF3yQfDN0tw02YHCI6yOHpYdkMYkK2mklqbWB5857izrPpqEEq0EvRZgIOjNZv6k9UgqeesXrObypykfLxeq9UAe2TugYazk3wu5mH1k1NRwcfseMP/4fA7uyWk9sSgnmxnw8JKTik+uaS0LpjG/SrKvkfKi0GXj0psWOvMOi54LC0uscw6AtaX/ryvRtq+osDebup6N0lvSTFHhpsT/mRNKbWBSyrkk1lMVj0ZnM25eH+GjjicUtW73kD4FgH9XOeYJC98oREvLQvJIoSdDOYeUnG8wr67SIgLUWiM5Hp0fK3JlTDNUrA8VzaT40JHKo5vMPtkz0d9MPHXu5rqQS2a7+Gvg/hkLSSu17qHAWarcJz6Dea4dcptY9eb/Go66B+fO1kBdSRlnjXPtEhHvvyiacZFu3QNl2eutIDCRywKcjZBp52hG2wSUQjTmV5hi9awTJa8dAvVwRaU94u5YiMcK7/OvJbiyAl/XuCkGYnJIRzTd+zwCP+Q8/IlLhWeMud8xJnTQdvHxu0S4uAdJZmcN9ZMOC/NdC+zbAVrntWX4wexaF5jwf8bBllsGOdITrl3w1ZxbKsO0pxCPP4yXLTiXZoE5rYN3W+HSQkDZt3+mHQm5KzqmJmjeAb9L4NJ1gN6PZt4eFUPDp1t7DcLoQAdnYcSwZiQSA9diDjkTEe8aR75hwLoMO67SO2MjUavBLVtXkgTUFXXH08eZr6YejJmT3dmQyYgC+f/zhSkXzIlYt00S74afRXyca8Ht57Ei/enyGioVEd+wcfqoDmX3Qx4nsBfCLl2lzbgUeF5z2Lk4umQFu1zkroWxNU5UtOEsRI6N/zmH7u2mhoOH3z+2FmT1kJZexLz8Gj95Qo0b7oevicNxaxaFAEX/pplAaddFSNefCrcCQCHuZxVXzoiINjJdVicY/xyNVeLt1Zugz8dtUd2t3WBIlypYYmpDTEyftv5J97BuA5D7ZE3MqHcc74heuGWCQVz94WntMKk7Yfa7SkkyDESX+aUZCBJPTui/ZG14G7H29Dzvdm6OfT01hhPvdx29/fv770gtRBx+yv/CVAWntWhKES0c071ZrK97AQ/qmkQS71NjxFrScdP+NRcYBmv/epNlAPP2awHtUEX/uSwnKUMaiLRfzKHbNJuHTkwHQNO4Jmx4QOjSkK2jwTTqsXGIJLMj/dX/s1QWtCZ+8sc+4ECtXlD8b2g+kenZPbhhjAUxl/L9aO2fslSdQX2v0Qz0hu2TnFgBPp6QLzihQ00PPcM6q8CbQnk2ZuaBbAzoSOf80iGKTW9V/2T61iwDq05sbnNoMU5iSbsxMWKe26unPyzhT8H5Q18s54nBWXiSMUbBfFlaKyZU8qsodEG4pcUZFSCUWhQpaSbGVPEiLMPmOQPTszxmCsz4wla9Z6tVBUCCmSRPLN9x88z7nn3vM7wk2rtn8vIRCwSdWu2ZCMpB1Qr14bgrupdw6+tGyAT2uJ+V0HKKjhW1/v1aPVcMmuYPumsxwA9weUla9YlKa99iO4tgAa1AfMlDE5wBv2cb9EVgqiybwxjhwrgLX1CwdzM+gw33jbayIRh84xP3usfK6DH1XLKWGN9bD5c9kOE7NkVPXPeNgZWuFmp63th5/5cLW7svBiEBm9/AAq/ScfwEi7mZ4OHwv+ZUp+j9uRjKyacpSZiSXwoKHxU8G55xBU+/OfvSQRSXqqpgrb0+DM+3OD+pwqCBoeETtbkYga5n6ueSXXgknEDKJ/YsLYtiS/plki+nOmFC4ptMDvavNoGosOc5U/g9Q6SKjK/O7Ra+510F+qfthFCA8GYQWmxzbi0fDpO3FV2mwwPyQkUdfYAF5V4u8UTdOQxCG3I+f1ekH0nd3p88E1sHDM1e2Aegpywmv5nL7YCM2ZOkphBjmwg1dyfVI5DjGaPs2P2fZD2OfoHPEKDDTwlSlakKio6q/l0OsNLWA9+fvcXDcF3iyFa5dcIqNTprQOjfF20FPmtVPg6u2dwGPjZZOGeIo5z7C9LWDeuc1Rgd0IEQFKtMHtZPSruXrnhGMd9DT5LEavsqFUu8o+pACLEiu3T1XO5UOseqHZwRQ2dN8+ZhEzjkFVLLpWhEcTMHVuro0d4oDvzSaGkxdXT3Ur6ptTTZDVLdaUaVoHubyqkqbDJETX0E8cwDyHv/PQH1PJgbmen6b8pQQkelO7+oo2Dbb98N6jxSDBnmMHy/7rS0T5hgOG9RvoIKLdw173DgcW6plXxpsSEYmwXBOgx/XD7al2QSwNlnZm2WS54FGEmLfvHfIz6GjWqtCm0cFWenOvnGAyGhloslLc8BwOiobgfktlQsc1fZ6OOxhEF3Wxud9eC+c8tU5EWyPANorcOH6FgAw9rJUNImtB2k2G7WSeBJZ1O94o6xHQu+3CWti5fvh21P+A7xoHkgtS9X7ZkBBfynV3DLUPji54aOy0CwLbNvUPvlQqWvn0tPmXrh8Q54Ozt2QiWPHN/2/TMyJauh6ponoDgZhm62P/2ccQtuee+JmzeLQ1tHPPzdnn8GD4VKASqoVIo8Bm8jEs2nXz/u3ca/3wz+ur6/oeJvw1+GQZn0FG21SjPczmmeA2n+lPMC6BaMb+M0kbMYg6c0XunXgRTC42SW0/z4Ti5XUVrbtxqCZILyhAhQE3nISlzj2vgNTYy89fjiWi2huCHQwnDtCqNqvzW7ChMl/lp8NPIpKbI6UTt+UBw3PiG+tBHgzf+n29jIRFBedd3Eb4noO3SPP7mC1sIJRqjQ5sICBCndpwRWg7qN0uMy4/lQo1Kt0Vp06noI0NEnXxXN/Y6V2akVCoAtmPwSufdxEQz2zfCzs6C4T37SvbLFwHrGrifcwYFhUVsIzapnLhfm1g4fR5BLuZDxVUSUSkv/rz+Lt9A2CZWHAfDcfA3vWbmiebyajSMuCIIVevr7rLl5/z5EHDnZ6Vgw+xSBtnb7PI1w2jUmnNIn2ZsN7k7ffjimnce7Xua/TTVsi03lSo41YLFcVvWVhERoeT7jacjaiDmL2/On+bPIeB4nVRVDk80rricCU2NweUr1s9MsZXQ1wJ+/5pMTxSEGFGFjT0g5N6RAf1KgvsH/KkeSIS8uU8fnEYFcJZ/3sFJz+XwvG1jlt/vMjI982bn2MNfvBPh29X1BQHbF7G91n+ICLtAFaWaUkyeMb29q9lsCE03V1ldR8BrR5MGrM/3QNYp8SO8JFa+C74PBvjnoKcXZjuuqUsyE7siEjSrwFSx1+5W+8wiGxx/p9idD2EUz61u6Wy4MF2q4y3HUTU0HPkOj6lEiRPOl/NXceBrD1/PvanUdEfhpdnQeoLsN/zsPC6bi7Em7fX9ThT0JHy8/gdx3vALx0StouVwlxnp6r8jRSUTPLS81frB+eFwIxiXjIYeL1gkLdQkEwO7sRPjX4wH7c/4UOmw0l5Jc2R+WRUuffh9l8u/VCGf3tPaIEDaWIl7nQCGcUNV9Ye2N8AzzytIzN318PkO7kQZ2scSgh/RpAk9YBJxhA5yLUB6ums7mtnUxDdcM9JMZ4ocMpdTr0vVw8651sreWaoiE/cODH+AwcK/hsuev2XDS1adZe/8JIQOi8Axy37wWRMe1U6jwpmG0+eOFFORnyitW8csNUQ/+c17/m+WjilHlWHT8SglpmsTU7YTJBN+eNxZ1cNiFyTpORdxyJdzwjs3ItGePtTtFXhWTwwAunaFDMCItNE1WnezTBb/Lr3fhMTvFX9BfI0SWjj6SfBY5waENg0GdPC3cddx1CLmlIKOiaiMWN7jA2NtFndFwNJ4K+XWcIZJaCbh+ZM/jUHQKZcZXufOAcKfyqhi5+JKEWvT3mDSAUsh6Y6d7Wkw92Iwy175pJRTMuJb6wrDfDhSmCrgWYmZI5dSFj7mYpen06OVNDvg0jPqhW7CgTv/92WMlzg6j+3lF13qgGkVMuSrblzHzsTfuFiGh6p5T1ZJE03Q7lDuaPMrkLQqP5iupaeikREaiJCyptBSVbSfBpHg3+6EFysnobitJ3Oj+kOwNYp7ZCRa0yIHtLK27dMRPyZFKF4zTqYYD57+p9vAARItTQ/1MIjQmAv7URwO0SI70o5Ip0HEvxeLYL1yYiW4CHbp8YAVzHVSzcLKSB3h63jdgyHItL4Qg95VcE8X+N8eXAt3Li5fr5WA4Ou5639Uj2MAV4DAb/Oj0/AXMSFpWRJRGdvGcysbsuHLZb7HnkkRMEXF8Ot8u0YxHNwKovR0w9n1/s9km4qB+8Gi9gL7SREKMC764ohiJZ67Xh/byG8Z1VsGbIhIneZ3Z2emwlAlwo/QfnHhIAgq8JDp/Eojm69+WwVEdLSjecjG+pA8GP/640KeDSqaOX6er4Lyh9YF1fcSwFRr81z/AdT0BLbssFttgxCXGsTVL+zofBUFX1AH4Nw2yvOuFHYkNPnP+6dVwP7K/w/bztKQGrK+Wo/AcEdX9aekPBCEAjNH2WGkJCWkidhTnkApL/dZR9Q4oCnLMUobzcJfe6MPnRNuQfoTzEFQYrZEBFXY1zqmoLsv5hHfZDvhy///Tp4+VYZdOG/H88ZSEZJgXcdR4PLYN/oqYKabjacfuWi/WMwEZWb5rjQTUKgvrzB/JFDNijVCo5cVOfmvrN7XPZuJjhK6zxDi2TQjV/8qzyCQfGlJLNSbC20vr8Tubq1HtpLK55mnCSgY95ZGd29dKi0ddOHh6XwRJlv9W4MBrkPmkhNbm6GCY8BBw9PBhyxvsKrIE5F9NsyzNkD1eD+o++zPA83D19V2iW9xCKllQCDqYEXEPh9w6cApwbAx1iUDbOp6Dd7hSJv2wTZNim/3+yuBfwGg2ara0R0h1rRunQuG55d0n99ShIPPocjNKY/4JGml4ww73IFnKtWm8o7XwHxwucPJJEw6MnucxEbj7XBkshXSfO3LHCWHY3cX5iGUgpyXmBwCPYcoB7c8aASloSjL7bXElBb7prB7XtNEK6qNyoVwISHXxfj+u4TkdkZnsl93Lscyf4iaTvPgU0RHz+y5bn7S0gR0Vvuh3UDOQOFE3QQvEFZ7tCkoltuuwq2XW0BagbP1KiXL/x5QfAtmiYh6e0dTyIopdD80XbSST8XNvXealJdT0Y7b88ots72wLdxhRe+2SRoG5jnVXyehtJl6f0zfiVAcPTuPKKSD/nBFqnDeAxyXZFzzD1QBqfhe/5EDgPET13LGVfBo8gZx6azKgjWJ7XtN7iCIDhM/5eMMpcDXbCWhksEcCyWVJuRZMMhpkW6WDYBbVUopBDz+6Bb1Knq0mY2JBExixV8KegbJzZ32woTZoM1Qu5rZ0L/7abu7Wp4JIAPGrKSwwBklB3I5XLK9tBv7/aO4hG6aERyzm0Eohthd5UPGxbfPja3icEjwZDXlYWKBHj/1nar0AMa1F2ywhvb4FGATvQH59gy8NQ97p4qy+XMKLVj5f0EFOL0cmZEJxPY93g25Tkj2OcZ8vkjd9/f5ZuyvFoQzHXp2OU8YcL3pN+Fu+PxqGPLj39tWjTgeX+1KTyJAeFzrL4JAhG1iT/9y8jsB+tUxUeTmCTQ6p6oJbdSkCuBt4KfVgYtr8N+rr/KhHaZb66bVzFol7eOBLkMA1NZcqVv53Kh+YR5NrGMgHoFzRwvXAmASVWfDU+C/OGXgUDU6hQRuXrQrDoTukHnFl+kkjkN6ImZt5QupaHfJ1iKt7tyIYnGTt/IxwFih3J6m0waqmsZ27y3qR8aDrR1y77MhZdeG952USnoSvAQ+RpfIRwJkxOlTLJAjOVywvYADtU31tdqZPbBw0HhkqlLdNC6UTY27paGBmePvk4w6gOlXdfTxa5ygGs3qW89yWhZKyYBCw1g5L468fsAByaPvHCaOp6MHK8lfsFZlQA1iGUov4DApdq/6FwgBgnhCybcH1fCGsWb5GRdDkaXj1u+3YxF6rPfanmn6uGIyRbc9LYy8JXRPfRUA4f28RBuGAjmQHKiR1hQQSQoWpg/6qvBokB5+eIFRjnYWBBMpOpzQe8qo9TFk8v/whIH9QcaYT7xjnVoFx0UpiNs41h4RFFmeIxkFcGEYwx7i3Em3NasU3kRiEMFFVYfl+yLYMP7ppPSaY+gXvSLUo9DEkoxIra5vysGebktylETDGjbQ7TYL4xF5iOU8m4CEwQMe43yEQOizRU1/ZhE1Hec4/AIXwGqZ+oadf3KoXb6Bw/0ktByIX/4ddQI+1diXHekcfPd0EqM8hKPhK8pZi47NUHpY5XhlZwcLjNYZsteJyK79GLtYm4fsAhcE2uda4Rb3y/a3N2FR6fH9Vk1DAJcp8XmsqvZoBR+48dbNTIyD0nJVSrrgJCgkugvUkUwZPuQ8CGAiqjr4oLm+VqAdI/BDB/mgOTdi5pDDBKyNyTf/HQhCy6VGulMp5IgejDywmcLLLJTFIg/ZlUOibfkRxcKfOGcSeFo73Iisu48RhtrzgIDNY9vKvxMMP1yyT5eFYumE7tqew70wQ4G+c/U22I4JhCqNDebjAYSE/bpGQ/A15/R3+wbSsDIeUFq/SiX55FQwpRLByhm693MaKuD4XynAzU2VHS0UNWn2K8dZpeFJCzai+Crcct1z8RkdCHw9qetzunwRbz9SQ+zAvb/ihXQ5cOh+ZoOW6mYRgi0phoIfi0G28/HiwYbcUineWeO02o/nDa4I1777Rk81CldTgUSUjf4xSvay+Xz8iBx/cwSICUQLIfScIgU9X7VbqQfZLZXVl0MwIPS6wzdOI00xBk0nEszKoTfFSP3S8tqIOhrEx9xBI/slHWtt+7NgKh+/KPFqwhUs934NIawSEHpg/1cTxZoDk7XXPrFAdeKaH1LwCGWV4jWb9kKeMX0vPRy4jGsrs0O8OanIMxr3Xd3P3Pg6rwXulxQB8J2IsprJmlIwTAo0yy9B94EbVdtE82AIZV3o3irFPRIlNRRndYM3b9lPfG4Kvj8+/Aq+zgJ/b5rmW1ZUgFzyn33btZygN06OKpvgEd8s0l2z6/mgiOzKYPESwf1w/xRkvEYtOdb73aJyD4QzHxW3mxZAI8dDlnsvJWMPnqysQKmMfB3fFbmqwoTMmUZ5xYGU9F5j6rz4qbNEC56/OTJ02zIDyStLS0S0Zv5g93aHlmwZpnrEMiXAw76TLHxjySkF2bEymrJhFODZvZTEQ1ATksKFXmER/9IK1MZVtw5/X4fdvJuHiyY8mzsM05Cz52yLmlsqYWlJBnZ7SeD4W2JqZJTPgG53jU4ZsiL4BhdIHXtMAt+hv+SFebDI6Xbojdz9PNA5eFWTq4HgvvrmslPGVhEu1AuOn2hFVZGmMGOwo3w25n/IkRyOf+x4swO/Vo4fO76cI5/FGww/jvQpYVD+637xjV358BME39TBykVdiT6q5r64NFCnGN5qHITfH1eyR5y4YBp9yffbd7JSA2HNyUGVkEWThhq9ubAy+9TAvGVBDRF2v+u5wr3fY6HMluzKeCT3l7n1YZDG+qFCa4uLwGFaqhbhxXAgYVLo3Y3U1CEVAxRisv9E+2vV9tMaoCY0/rhum4aKhn89nJRZgCeY+5HNdNCAE9zq1STpKJXfprJcndx8GGmTUI5rhy+STfxZzzFo1s7+tr+DnD52DFPTVi4BvZ+Jkq8OYRB/ct7E4bsQmDPofk5NyoTxs5uOeTnR0ZAitppE0yDhOT9BSLMRkgp+2Y21JyIXuW6cwibKuFudvTLsSw24IukPioNJCFzjeL9Hg9agLHTOUOPxIYt27+u3BeiILWW8W3VF7ugQeNPpfDxagj4ofiVIJGCpnzD165tbIDdEaXivAcZ4KxwWj56nIBEmqLS1WbZIPYgMEaqLBbkJ7Jac72JKO9f5+PpXTTAXTx4OGkvB8K1iYoOl3BI2lH5aVppGVg+3vCqIjgXghXT2+k8SUhKzhXh16ohysPsfrR3MjSeEaQN0bEoGBPiqMmuBE+1FMVb72hAOyXO9OFye4DxyNF2oyZgvbv5tyuOAnMvT15UMCeihOmPIU8zEXx0+3ru4pYAUKAsivA9J6DIgLuLsdw53veSZGp1R8Kl2MvCU44UVDc19MmliQWjBo5Py2/dhyRtDGbKHo+mFY40XrtfAlcTg9tpinXgst0mnUMmIwvbs7ulvRhQ6iTwVnR7AYzbROkl/sUiSeWZo6/KWqCx/srzE7MV8NV60jehmYJULrhdULIuhKYsXfbwvgqw/nvcwJ2ahJppnrH7DgfCGS2HFzv4uf9Yb5ox8pGATj/5+IbjXg/xbp8b64qLIW773Oa3W3AoRZIz8eJaGww+Tllvz90L7LN1QZ/+oyBorrpYV8yC3ne2J7AnskGfXZS9JTgFtQZcd9De0QmGoq+2xTRUw+Zi1j6ZMCoKyn9N0n1SBb5/VvjFL1eC0D8DyT2XMSiGdYORasKEqoyqlgunysGpWCLve2wS2vDAG+uc1gfCC9uvdJ3lQIjK2OkWhWQ0Kdr1enQ8BT4Enip5KFEEaWne1UE3cKhpPkJ5jzoZLvJ4MXj6ufcvcGXN0ovLt0bhM+8ds2DmbaJMb0EU0ImuHIVzVETR6Lg5rN8EM8NLD924Olw7ZqeTsYeInLIwWFcaFh6fGFH+VVkDp85cPug/T0Am3o17m6xfQGdIfZulBQNGl2OceOUpaPqix/Ji+DN4euJVmqvxU7j+1Z9f5QcOvfuri5e0b4RQq/O+D+8WQqFSsm9aNg61eAx81FKvgB+HdVZIQUzo3RPNoKlT0Jn4+W/XttTD4stR91R/OmQaOfj6fsWi8U8de1piMRDy76sePooNxgrWJ71/4RHjnkLAflIrt0dv1V0xRWCloJXLa5mGdIRtz+UZ+8GtKrZy7OVqUDmpcE9KjYgoLbbu4VN4cHIZc2Z7cmAlIliMcJyKcoZpR2gtZPiXrfXgUWQ9fGFav37iSEYfrCw3PZXphL9BWVqSs0yQXYqvFvSmIp7AEpnh1iZ4b1Z5u7ebCg2tKh8jpkiozmr4SPwCtx+yTOf1/aqAZn+4Fbi8oSvtOp0aXA/egd6Pmptr4dsmjWNlUtwc8fMnSrv1gVrXj43PVzLh/I2oUgo1GSU+ONJlmloDvINb12X6seHPlbI8IVscOkDepKLB9fmuJ692CtlyOU7r8PclLTIy3Uit24ftBiovsVjfpAKY3S6eEhlpqHzbyObBlV4IaX+taa6eDiMdZb79p6moey2hUicUQXXMSq1MGx4WhsJcaigkxLdQ8HJRvByKD9ybnnlaBby3FxeZflRkqmYoe6CoEW5zEo3zRu9D9uup62JWRPTgwreNAUZs6Gv5bznC6TlUyqAG4UwiImXZaF/JroDMGZvnLx9mwkcjPkR6T0Dj6nCZWVQJtOI14/ncJJC+udN1jTvHNfej3T6m1WD7KpYUZsbt470/TsTkJqPmlwOmr/hpIB915J+ATyWklWmWJHUkop4omXXxCv0gidFQTWXQQOV1v893KQrSqZrx+QV1QD8n0eTqzILLYprn7+dhEbE8ZhfPbgYMvd515nMIDUJEZG0eSeJRl531GYlMBqRcn4wrw9Eh417PTMRPPKqV8mwXUayF6oUgWcxQJYz4PTyVfZyMBMTazhknFMP4yiMXsb4EGJ1+ekvkIBEJbDves7S/C6QPh8jIieHB4HHjgNQSFQWMBJ36xOyE+5xNiy3+JNAWnXYhN1FRQ2O80bVibn8Zeros8TMOJKdGyzt/klC9YoybaDMdHt0aLyMY1sOhW7vLKjyxSDlq41UafyqUSxi8IjVHQvzRkBqeQzgkSHhjetaOBqcw/iYv9udAkEz3pwEXHNIc3BBePFAPGjE9GmNvS8Ew1/4eTpCI3g68YGbpDED6ycfdvlAG4R3fDcaMycj+AmdVua8PZDJP6sV3cnV2+TaR3URBK62UKX7DOthm8WvBrL0OjiiHfKi6QkSauyVkgpZZEL2w5Htdrh4IBSmzBdz3T5k9edef2gsnCIJZuzaWQ4S0RWcIi4oOh/aEYv+9hPiAT3zXDPJAJuLd2aNxKWgif3wfVioXhCwKOmrcuVwsQ1u1KMSiM2t6p5fiyWDvOP1YwhfBKKPqaYNzCiqyXje2Nz8D3N1WBPk/N4BkX56BHz0FvVeOU7Fx74S42nyzr6H+YMPX/PZfMRUluJz+tW22CRKaC9WkyXTorOF1dW8gI+M/O+Umrbn6D0gFCTVWQ37mgsLxBipKPLRhWcQRwfHBzzQGt0+MUo8uV9kmI375Cwtt2XTYTejMcvTLhoH2W7HhagQ0MiS4V+1HHVTqKSXw4HwApzRhJjCDRQM4Rzwjxg8SlfX4PY0Y8OOBUMGsPBEZxAhFPpLth9D+va/XRcZyeWOj0tuTFBS2NUXJMf0FKDokiK4a1kB8/1ZZ+nMqmnrLw2NU0gxNYaa7j19lgeHZDLeY+ymIaVKzfgGYIHpnv1mPFRnO6wo3N7kmIfYVtxtyvzJAyPqIINuqDqiOOWZf3lHQ8sfosdj9DaDqFHF1qKcBRJG2UHsgHp0iHlaTMWwFZ6Fm2YK2VJBJt8mPe0RGRMrdqtoJJgj9/YehTzEAX7t0N6YPi/AYQSvZW1QIqLzZm+eGA1nG3cjJswRU2OSnPDybCT4+jLaXD7h+qXv27LoRFgn63Q5PnGmGAoxa8fqUPBDb+eaFdhgZ8Z6RH5wyKIFZQd3BhWONgJs3H45tJSLnl9HHCq70g9u21BhfqQZgkFz/thPIaJICfyyUBuCHg6e704liWHeCvCrO5QcGb3E94XIFlMZdIPTJVEMrtQbVaiQjhZsCZlsucUCc/8/xiwwG3FUqsyIxCcg//MDMhjMINt6ZI0g4s0He2VNhfh0eiZZpmwtd7AZKq8xW3Q3JMC97LjlgIQ3tmuVni33qhwWxAsdp/zLg1flIzmGR0MTo1jmaRQ80DnrvDg2MB89boxsfuKSgtBsGKzHc+27G9rBQEasA6vinlVnu/dloNnN6dKUfjiuEr1xrY8Gv84FXw79TULbMj5K8N4XQfTAV+y0QB/95nV8pwSahhdvBCcy5ApDra4F9Chz4w/8umZyMRfrplbyaEcUgXZnURT1KA379bQ/sJnHoQ/nF65/nK+Fdmpqbu2cNdA71dveziOjcS9+TWaeq4LQ8S+ufaBPs2ue5TWUbBqX9Um3aT+wGGBW+oddVDO7zOVWjXlxuubisfq23GspeBDZcIBAh1sgnLRGLRzWHGjhhdoXwYSFjb0UYG/jyOesHuXwinfvzsZocA44kK+6oU6mH6B/9L6LUk1D3zw/2/0y4HLIgG+tIZMF1f5/1t8dxSPlvf3bplhaAzYH7y37WwLlK6hB6SkIJMV5bp85WwpDxa/uTzDKYv7dJUFcci07eWi/yxrgEFtdNzr2hFwBmNd8h0iEZdRVYBhX49MPdZvnP+w0fwLPag7QPFCrqYZTeyX3TCtWuO3ZnljaAAO9Veu16Ckqa+PvpqxcNiA77JE8scaDE7tjq3BgGTV4erHy9lQMJt06oSe8mQaAK2Y//KgF1Jd1XnBDIgb2Tsr2f1xXBhLTy5BozGRk+EX6ztbkNHKI/a233qgRB54zcYPVkFL9jX51EQypwIvRMFq3yYE7r1aCiOg7NLe60MDXMgmc6+eW64izoJOG/vePFoaI3J1lPLrHB6aDB2+d5VJjYRu88F05Gx/+gq19LaRCbF3042owDEzV5JbF5iWhTUp+tskQvbNK7WvobUwcMllrkn/Y0VHmhWOTkMB369wxYkUew4Lkt+V1UMAntSoizu1fKhPXbWh/nHqiBxQHHtisfk1DoXdGvHPkSaCtJUeoyTwaZ70dND7hiULzmp9qUP3nwtI0ceXRTA2yb51mVPodDctMWn+toRWAqMLe4GskGBVasTnszAUkl230V+I8JPQlrQU8MH8GvqY4NE+wk5NCWmmX0hgMPHsn0KvX4gEpfVsHBdUTk0dczanS8FFxe+HjvoHMg1xZz9v+5v9Fs59fA571w1mqXd3hLHUzukySX5lPR30OKUiJfyoEWXv94gEaEv/tTr7x+TUGuvYdohw3poJSYeTmZm0ve9ML7938Tkarlny1qhY2g8pUhd4+PBGFnfofWV+GQi2bQl2AzNlw+dLEuxgHBoeitHCFnEiIdDBkNW2OAgbpzRwY9BZwb8A+THTHoXLr/yPWIPng6ZSfk6kyHq89S331ySkGyFbvcFxzKQbGv2mdPNQHsH5SqE7l7bWLDvEFkNcHRdaaknSQmJAdfv2K9mYymVpKOmgWHgMieEbvN7eVgUeP48CGXkzl9m3bW7Q2GavzOvwNJBHhsV8jbZEJGehf8NbuWmeBy52Zg1TomEO5MsvjXYVG/mmdcLb0PDCj/pZTfeAY2z/j2biCnoP6JxoLUUBpM4MRjVXQ4cPmEpnxbPBVRY5TMXuaWgHnzktrx6SpoUV5n/vE8hst1l9JdSirgyctvyVNXK+Gp3H+mI/ZYND+/Uwxv2Qv7DqoYOAXngYHAraVmLreI8W+d7l/qg9qHwzYRB+sBYyk77ClIRdNvTBreBJTDv0CjRCytluuv57t7Y7EoRn6UZGk8ABln89L4o1KhGx1ww00QUdTp54+TJbNA15z3YIgOGyhDu7Pf81CQyePmEbNXbRA1cCouupGba403ZmLVktHEH1/icj73/u95fPvf90YIl5bBNgiQ0QoYGYVQaqE8T7dn09xDWAkqPR3EJqOo7Yf9C7UROAmVmjXeKAXnpsJio/V4NEm333XnQAZk8d7Ay/fUgtGmoznyVQTEEXF7qCFUBaaE9xV+0iwQF+Obm17i8l7hYYdLqi9AOPBafJ48gtoAPicTCQpqbRontLyiwPf/SPly4jRY64nsSvMgoKI2t70qxylgYssb8ceyFjIbNYZTr6Qh7G3j5dbddBCsXxgK59bDqwXGwcMViWjW5V72GKcFqkvrQ0o+MuCDnc+127vI6Hkkqc3HKhdYVxpHkvdzgF9534fLdVREalQRzC+qhcYrR0r3/KiGKy7WoRmpONS2bevbe+OlQOzgDXKy8wWbc+NyfV4YZDsRWuNbnANJU1tOTGyogOv1eolHyzDog/KmH1/qu+GgrJ2WLJdD4smyHRXmKWifR7yUlU4bXNAL/6T5lwHNWtm1EWJU1JvGS5TnJ8GBXjWT9m0EOBqyU1VECI82FEm8uL01B1wOjck6SHD14YnB/XmHQQyhDtpVhT6QP/F6RvlIPTCZ/rUXBKhIPEk1uXOoA6TnBp9+tOHAo1ipvqAAKnIpUBnv9GsFs5zlrDeHysEwbkJdP56MlpQ/aDxuzePy4R/H3EEsFBhouRuLENBez9BG77eZYC9sKujYFQwvrPvisCok5OER5u2o0whGyjv/K6NwuHuT6/+RRkIBj35Xrm/KBrn3Ox7Nv8kAidoEPfvfeFSQ8nS8f3cDDF0ceqFrmgs1/5mH+XjjkUzF4FTmx36oYZG9DSqzIUd+wcQplITSHztpFxr0wvr912R+7MyG1S0bXvRvTUHPfjYXUjzoEFR0crNXeh0sMR+GPd3M7Wt9W2gfqFjY3soa8Cqqg1C1PtxPBQpaR76J3cTtuUXNX6LMAzKASJXebLoxCRG6V+8/TasBhzlGrxubA3HDG3hUTxEQX+dvS/kOLCQQJg39PzFBJUXOMJNARZNHxX28fvQAKzKbTMktBL+99hE1e1IQf8qu5b35bTB4w8n/24Zy6DHb9GCpJQ0NLtrUCWdi4U7YDd+77VXwpycLY/KegvIm89ZOsSqANNX1qtGRAz1Pl1c+SSejW/qbtvfm1sBC05kJkU8F4FDflZ9KJSO68vvaintpYIbvVLvBYoPbZb+dR+YJyDdrdgAv3QHPLvXMC8qWQ5Cz/o9zzSkocHaM/0hYI7TxLUqkbq+AHj6h2pQBPLJgWDm2ve8Dek9QdlQGgveaD448SaCgXTqiAh0jrcCSVD0o/DAfRtQKXf+ykpF/quHs7XV9IDLXmIQXpEH8D7kMOycqEsiyORY/2Akcm8vVLlk0eOl96FjJBBXl7tTy4ctDsMn14djgMzb44It3aWwnoWcJP4YGBlvgYlgSeY99LvTzBWVYqpKRv/S7ivmpJxBTfy0yTjcL3m/hC33kQUSOQc6iuercHig+au1/gw614a2qs2WJyExYt7nhTT1QsZ3nhTryYHo3KcdcF4cG1iW+bz9cDncjrhz1O8GE8SqTXXVnMGhizXicrpkOG8qG5YqGquA279sO/VYselFSZTqehCDVIyadvL8WkgvN1Y8cJiK/lx0bbxsywEtwWqPeA0Gyf2v9EW7vMC8n3q8orQBp7WLRkiI6GI0F1rwtxaG00QtdUnsqgWNyW+3vvkq4eEzZedsIASUGkTszc6vgq9SGgx4iTLj2ZHZRL4aIVg/YZ05x+/xgdsFVaTEmaA4GDaWukpCQqmpZ0RcO3JQWURkszoYfWdZuwbIU9D9XX1N5KgAAAACAAADASAAAfCUAAGEmAADSJgAAKCcAADcnAABrJwAAfScAAJInAACqJwAAkScAAIUnAAC2JwAAxicAAMYnAAC0JwAAtScAAM4nAAC6JwAACSgAAPknAAD0JwAAAigAAO4nAADdJwAA6icAALEnAADrJwAA4CcAAPYnAADMJwAA5ScAAPknAACsJwAAtScAAIAnAACLJwAAYCcAAMcmAABFJQAAYyAAAM0fAABUEgAAeJx1nXnUjlX3+B88hog3Q5m9d6ZoMJcpiUiEotJg6omQiMqUJqRChSTxGkJIaKAoMqZJRchYVIbKUChDlPJd63d9Ptay1++5/9nrus919tlnn2mP58pbNO3//a4pnsCrgRnlEjirWALr8n+ZwglcXTKB1XMn8MT5CazGc+sSCSwC/uI81wJPk9IJbJgrgbdQ78n8tAv+C2l/B+0OBU/WUglclzeB3/8ngZ0vSGDbVAI/pd4VRRJYFHx5ab90vgQuOC+BF/O8j3amQv+U/9If/u99cQI3Sjf0tuW5N/gP5kngfuABYB7wNaG9kdB/A893gb8I739Nvy7k+cmy9I9+3UN7R8D7FOUp+LQAeDfwN/AvhD/FwfMsz3vodyWeuzFud9DPx5gfd1N+jP/3g/8e8E+H7nnwbbbPvF+AdkeXSeAm2vmwfAKH5EjgLMb5deCz0NcBuB58B2inQCqBS8G/A7z/Mv7XQWeJ9ASWAq7lverQ35r+uT7y0p7r42/nFzDFe6OofzF0XQ4903mvB+XjGPe+wFeAr0PfYujfAp5PgXXAdyPrZRj0j4a/m3nvfP6/lPl9dcEE/sB86Ul/LoRvF9Hez9S/+sIE7ub/Zy5K4B/Ms9bgPSAexqss9Dei/Q3gv57nTq5v6lWm/FHGpw78HQq/doPvJPVapRJ4mPbehG8fQ1cZ+DsWur8Hf0nGZw34ilHek3aPQI/ztzXrbTn9nsn6for6bxVI4ELq1aN/17P+cjFf64PnEONVEPw/U68osB/96k/5rfRnK/BJ6D1IeQf4U4v+XUY/Pqe8F+XyIfa/ZwLSatP+Vzy3o/x9+lOYeZOf+VUDfqyn3ovQV8h5w3p+hf5eB2xO+RzwF4CfFwKLcR5UBd+N2RN4a84EDoXfpcCTlfmXm/7fTf928XyUdo9T7wTPu+HTd9D/C/Xy088q1B/D/42g9ybed/9exHvlKX+gUAJbMH+/gb4m0L+J52XgbUF737Hv7wRWpH9NGL8x0Psg7a+k3XKM6zU8vwfeg+yf31HvMuj9Htic9b+F9XMefE7n+Q3w7YRvR4G/gi8f/R3IuisHnEv7J1O0B703Uq8iz8+xPt6EHyvp7/eMzzbojPuH+8ZYyj+n/7fAp0cpPwh++SNf5FM/5ud86BlCf9bz3gn4cw/1f6X8I/B3Yn0dpN361JsKXbuApd13XM/guZX2z2dfyIC/uXmeA/0v097vwILsx3OpfyvzZTt4i/Le16kEKvcoByn/1Ab/aJ5fgP5T4J/lea1cxbiMYj+bSf2nwN8ZPg6nna7gvYTnQdB3kP8/hD+eF54fnifTab899Z+hnvPpW/A9yn6Uzr6RFXg9fMgJnlXAP6F/DuPxBu19DP47eT5D/YbQ14xxeQX8xcD3F/TdD11NqfeT5z/lysFR/nX8qtGfM/DT8atM/Tt5bkS7x8E/nOdxtFuEfmQwP1aC737q/0T7damvfPEs5coX89k/XJ/fuu9Q7vq8Dvq+8fwBTy3gKMozO+cqsu9UAF4KzMf+6f4/A7o9B9z/P2e/Lcy8vYH37oWepxiv5jwXhz+doN9z/Xn+j+f7bPaff3h/FHgegn+j3YcZz/vh583Q/wj9H0W/36R8NfUm83yI8sezJrAJ/fhAfcD1SL97sv4OQ/cX0PsjeDpDj+vqFtcteFbTn6rQd5L2ZvP+J+BTn1C/+AF61S/a8zwdOpS//uX9uqyfOvD52qAPuH+6b0rHNurfR/mN0DWA/jfm/X38/xj0luK5P/Ub8Oy8cJ44P/4F/zrwTqQfz4H/N/TaQ8DfmX/V6f9x5teT4KtGffefK+D7NOZxFs77jFQCxwW5/wngUPUT6FcvaaDcR/++hf4svFdROli/tZnP3aCjBvBn8NeGzt3gKQPeVvSvBeWP0K+Hofsa3rsEfHmh73n4NBn+uX94rl8azvf20NsBeBI6SkOf+ug25tl8nofDh4+Va6HzHfB8Bn33cq6+yjzsxPMR+vEQ8/FhYDnGJzv4Pgn7Vm3qTQGqN6j3qgerPyhPKl92ZjyUL6tkP5f+taz3heBvDH7l9S3g3VfmXLq7Ff3/07+N/yfB70/gn3JgEfh3AfSso50W8K8G7Y+jfDj4ZrC/raJ+efo3zv1IPYPyRtRrAf78tL8unJ+rnUepBO5kPnXn/wvAP8X1Rf10yv8Oevghxns366oKzxn0x/PXc1c5yvN3Mu3X5P9tnAdfw5/ilJcClgT+wPhMveDcfkT68wS5INrLTkJXVs95yv+B/xNYf3WBR9iPdvKe57vnenX1a/o3hfLx8K2Q4wicrJ7EeHWHjmX0/yrW81ZgTWAe2lMfUk/q6nxR/2N/6Abdpal3nvIJdN1Ofz7iuSN0Pcqz8s9a24H/Sxhfz9HHmAe7qK98MCTICcoHZ88L1pXnyCrKp9GfgfTnNHT0ov2boM/9bUCWBA7jeQbzcS30dAv78x30W73hrB4B/ga0X674uXgGUv4o/zufaoJvNvR34333sZ7Q+7r6JP+v5P2G4Gvq/sP76kVlgepLfXh/A+9tlm+pBCofS6d0KR9vT0DaQuiYzvMx3jtK/7VzaOcpxPrIxvhlQE8t5WPOx1fg/7vMi/eAw+nHXvD+R37BvxPQP8l1w/+uF9eJ+pN60w3Mo4+g56jzl/fdb91fByh3Bzm+L/QXo34j6qXzfi7wX0a9tZ7jlJfSfkW9SbzXnP8/p/3eyDtjOD9Ps74vov3JlD9DPfkyEfnBfVX9JuqrZ9gfisKXhYzHheBpzr7ZErgeeu+hvKL2V/7XvtsH+tX/1PsWan9SjmL/OQZfXme/HqUcBP7BlL9E/ePgr0P9a4D1gG+wPrSbagfQfqpdbwx0/US72qmq8v5I4FjaPQ0dO7XjMy7axX/l+UX6t4r31QvUE9QPxrA+TvL/2/CveCqBQ+h/b9ZnPegZGOxTc4N9agLv9+O81J6snfnBMufWH0H9t6mvvWsD8Erlft7vQv26vK/c3oPnkfRfu9XNzFPtWbnUlxkf5Z7fwK/886XzCrpH068RjL/ytft43L9dt65j16/6d5R7FvC+dgT1z1XQrx6q/jlFewL0rYD+n2jHcdkDvpegaxn1f+D9XbTr+D/D+9r3mtK+dj7te1Oo3wC8OalfmfXfDryeG/E8ifvRHtZ5I/CP5X3tr9pjtb9q7zq7nwT7SUvo685zU/AN4TnaX7W73gdUv1Cv6EI99Yu/wXeA9v+g3hHm5zeUF6Pe5/Q3H/xXLnyCfVV5UTlRfUg9KcoTJ5Bb8gGzBfvX77x/j/Zsnh9nfIrSP/2C0V/ouboPvnu+Pkb9MupfjEcd+leV8j70Yy78uiCVwNnwZwv6Tw/4P4f9c53+xgSkFUBuyuD/HcE+U436b9Kedpq6wBa0+yz83sDzg54f4I3yzU/w8UfaW05771Bff7D+4UPsp/qHe8GPH8C7hfZag+8ant/hvaug/37Kl8Bf96Hn9bNB3/fs91WYNxtYp+O0Z0O//kP1AeX/aF9SLtbO1Ih5mRv8eYA3cv6vA99R3m+pv157Gf0rSP+PUH4C+pUfuqmn86wcof9Yv/GM4D+O8nzsj/EDxg101G8Ef9bQv3dpv7N+EsZvNfv5bv0a4LsbPCXp/ymgduFKwb+ofeBPz0nWR0nG823wP0b5n6wX5Wnl6+iPaBnsedr52kH/2f1VPxD13W/V2/dQfxL49qcSuJn9ZCtwC/C/1J+ZBh3gf4L/y9K/vwJf5JP8mcH4/cy4dmAcWkG/9hftLdpfVjN/lA/mQ79ygvLBF7SXR/81dBSj/Xzg1w65BX6k004R/n+Ddj4Bz07wpJc4l97G+AmO0X7Ji85tdwT4D/Osf2sJcsT1wd+1nP0ws3m6g/a+Bf5F+Xnw4ZT2MuNx6Md46ns+jAnnxErov4f33eeMhxnB/NzE/82gc5v+eeQj9UrtYtG/XlG9mfmifXkt9Wfy/sfaK9XzaH88/a0S7Dzad4wfKAaeGuAvAV3LKdffvZn/u0Kf54rnjOeL8tcJzz/9kIxvbfANpd3/BDlC+UH/u353/fD5jH/x/Od/5XDl78ziHrS/l+W8a8j7/aC/CvyOfhPt5do3Omkf054EnYXBP4H3CqYSqB2uBnRUMZ4M6Dnu+b2JcWsDf28FFg/2UO2j88GjfXQW9bezL+VgHQ2ifBnyRSPqdQfPZsorsa5y8qw/4UGeVwW90niiA6yPHoyPdhn1PO0zB6HnL/blU8CLKNd+alyVcVbGVym/K7erLym/x/3DfUP/uHYf7SraWZoE/VY/bnXe10+uf835sQB5Wf+J8VeDqV+fdsqnEmhcUm/2B+OTrqD+4eAfK0G9fvQv6t3uo4tppwT1jXvpynsDyp6Lt3gm+KP8otySg/q3hvim6Ed7y/g76jUD6v/bwHy/w3OEcdwNHS2Yf6/CpxfgzwfgV/4+Tvs/00/l8ecoz8v/BcF/reuf/eEO8JUC/2re0+6lnBztX9qL12ciP+o/vZbzR/+p/lT9AcoZzveHwJeNfi3Xfkb5YvC/yf51K/0pzLp5jv1R+6HzXPu583sMdI0FZlc/YHy/gw81GLfXaH9QiD8ZF9aZ62si+0s2nhvTz7K0vxP5/Ax8f4f9ahbzL8bP7OQ942iMa9Evqp9U/2j0j+sXrwCfhtHvuuCtzH76KHg28n916nWGvvzMX+NzjcttwLNxJD3h1yLtvvB/aiqB2if0P2in0D6h3Km86fiUhT/NWX+n4btyxnLG7zLaO6mdT/885cYpGc95Gj5fQvkc2lsAnfn0V8Hf+vBfPVa9davtU67dQz/1a/TLc1+7QTz/H+d99133YfffxvDtf0D3q7bgV398GvrVI2saT8X8e5B1tAA4nX40A98x6L8GeDX47wzxMXuBZ+NjaN+4XeN4jd/Vv/kq88Zz3PNbu4f2jujvmw1++y8/7H9X+PQE/3fn/xrwtwJ419Kefqmh0FmD9vbQT9ex+v2f7k/axylPp3+VaH888+xjzyfwD+a8XGzcMO/pfzD+cAN49ROvZL6qz+rHWqw8Sj/0d2qf1B9q/PE3rOdl0NOV9r9gfaufFwj6ufp6jAdxH0qH3rzo602YZzP4P0sqgep1TakX9TvX1Zs8ax/SXtQN/l2BHHIYuFM/iecL/X8JehuAR/5pH1gS+Gc8rfZ45TfjbT3/soPvL8qNl8qDPGAcRGbxDx/QnnFUxj+Uoj9lOV+in2OX8592f4HeFfDrOOVzwPuhfjjKjd/OaZwH9Y3fvp7x+INxGshz2RAPrt3eePFG1F+q/5n6uVnngxm/xxj3ZbQ/DHxjmI8fIB/p5zUPQX/va+zX6tXOG/Xrj3jvLdo5mkrgPtq/0vwE5SXo+If34vnluTUNqF5dnHkY9Wv1KfUr9a3z4U9O4rli/MQ6nvVLtMrEP+H6M07Ldej6ywX9xtUq/2bQ/63BH6+/fhF49MtpL9c/N8L8Ef1VjO909vMM3r8Xvm4Fz3H6pR6wA7qy8jzDcsZR+4hyvvK99pGZ7rs8r4HfE5TPocv4qkjfYtbffPhawngu8PzG/P2H9fc6+1g/+lMPfpUF7xjkkHLaL3l/K3g7QE9D6kd7lHaqe9n/J4G3rfo1/PwjyP/K+/q7tcMb39NKvYvyJqkEav+4hf+X8ZwvnAeeD/q3PR/ug08raH8p47WI95X797PPrKG8B3g7BP1sMHjMT1hofgvvaSfXPv6u8fb8f5X7Kf1dST3jihuDLzf0m49gfkJJ+GZ+wnusz2/A8yXlt0HfUuaFdv9lQP0CVfXvQmcV4zn1I7Cud/B+9J81Nz6C9ozTflH/O/hcV8YXfKX/i/qPuB9Bx37W/xzqN+C97MY5aW9LQNouxhFy08pT3/ln/FmMrzAuzvhe5Qnl7+qsjxrA0qynvqkEmg/Xhf9Lsc9+C/7n4fdz6sfAyfCrG+2dZ9wmfOhr/KT5APTnNvpv/H+5oB/H/IWx2j20N/BcFHxfgc99/WPK36T9rupT9CvG/11BeWXo+JP943nodl9ZHfaXnZSrX2hnfIR21S9mwJ9h8CcX/ehN/w/Dz0PAI8B07V7Uj35242X7J+Cs3/RZxqW//nHqa7/VnnsK+tKh/3L4of+0AnTGeF/1q4uD/uX/6mHLwbed8gfAs8J4Lfbf0pQbH2G8xP+gtwvnoXbCaB8cqL5Evy+inRvpX3b29/zqFzzv1F8I/kcor8H82Ko+H+w1D9D+zbSn/egy+qsdSfvRVPqrfUh70dvQ34x5WZX5p5xQAP5oN2nj/hHsJ9qXpNN1NJ762s+0m31O/7Wfaf/TLud+pn4d46v1a39G+QfIz9NC/FQp5rfxrp6T2nOvpL0q9H887bwEPKU/H/oHw+ejPHdifrs+XBcvQIfx4xcYf2a8u3Kt8bzBv1aN/ulfc/y0v0d732nqlWecbqM/xoubv6t9+X3lcug3f868OfPohvH+y7R7F+U1zRcJ8Sn626N/RPvEqmCf0L9tfLNxzZ4zTzN+d0CfedFteP43+O/WANenEtic+VcU+h6nnSbw6TXeU75Wnla/XeT+A3/vpv1S1N8Bvcrfyt1DlHfVv3jOD99fhE8XG59Pe54Hoz1P6F8d/cjqz+AZADQ+vhv1jJPfBT3Ku+YhVAe2Vb+GL7nNK+H5Pug3nzraf82vdv6UY304j5w/K7Wbqb8aD0G5+pnntv1UP6tD+QLj8CmfAF/aUd5Ked44CuPb1Zv0/1Jf/616s/lL6tPq0cazGY+m/8X4thgPp3+uLetrEM+O+9YEpO2lf+ezH+YF3kI7d7n/BLv+zdTXvt+V8R0K3GIeCftjGuNjXJV+f+OrjN/pQjvG8Ri/8yL91y+in0T/SG/Kbwr2AO3L0X72Cu2/Q/ntmcSPfWN8jP5j4+Z5X/tkH9dfJnZA88UKhryxfKkE7qX+X/rFaMf8Pe0W86BH+8VU+O/8dD7+QfnLlJtXo1wQ5YXb4E819T/+L8/80e7wDnw9Tn3tD+a1TAHOo9z8lmb060+eJxlXDn7t29q1r+M9z994rit/KI9oP9VuutF9HjxRf4rxVE2Z9+4jN/A8mPaNh/mRehXBvw/6n2LfGQB82nwE+Gi83Q3QYzye8XfGR5g/YJyE+ZOu/7lh/eeB/ss5D8oAL+O8WAJ9LY3XAu/t+hmYH9rFld+jffx52htJ+fO0Wwn67jd+AfyHmH9LqB/jyzyH9Q+4r1UzngP8h8CvPVT7jf5u7aMNGP999L8+z1/Qnv5f/b3xfoqYj6ic2Ifxf4D2/nAfpn9zodPxyc94mhefQX3Xm/H45rEsC/Zl86u1K5tfrb1TO6j2HOOZs7HuqqXot/HhnO/d2Y/rIdevgO5fad/7CYz39l6CdP3TCTirxx4zXws8+gdPQKf58PmVHyhfrH5FufuV+bDa18yHWUp75je7Tw5QvqW+9xUYP7sD2Jj530t/E3qu/ifjEysiv09hHHbxrByh/cNx0/7h+K0x/4vxMi6ulvGt5oMp18CndpSbr6l+ob4xH/7r3+1PPfc5/bs5sF//RfujEpC2mPE/QPs99a/IR+hUntLPoJ9U/4Ly/hnjfoxThd6YtzHGeQCd+jXNg4j+zX7Y655FT8mlvg89vahnXlPMdzJuvDf0Gjc+0fsJKJ8BXWnwdRLtX8//Ffhff+xC44Wha4r+M+hRfzJfwnUT19N1jKf3DMT7BfrR34q0v8d8GPNbec94O+PvjA/VHql9UnvlE6kEer/ExeDzngnvl5gOvdPZH8ZpH6Nd423n0a7xuMbfmi9g/oD5BHfoX6b8aeO+1bdYn3/SbnX1DPbff+mved3GlcX87rbgjXHuq8Bv/Kxxs8bRTgz52tpTtK+Yv+35bNyi57TxixWC/6BViLeM93N4L8f/PB/gz+eU327cIPP3B+g0X+Bn8G3nuQf9awZ8CLrd3+vC38zOgY7se6dp/3fwZnj/l/OHds0TvQX6zCfSr6e/Lx/9ND7Yczaer6/CV+NpjbNNZ/y8z8D4Ju87ML7JdpUH9KN6P1G0j2hHzM57BZjfyhHKD0PAfyn1vT/L+7R6BPuCcfPKOcZDFFDugN/ar4w7ifeFmEdRjvJa9E/9XH1d/dz8u/XG82pnpbwN9c2zVw5R/tf/NAm69RPrH1ZeNC+2MPPolOcE/DJ+y7wG/Z/GF0i/duhjlBsPbpy4eYLzQryg8884wiOMzwjqn8975jXm1v9N/66Dzo7mE0LnP0Guiv4x7Sfm8ahHa0/JoL5+cf3kWcHfl/VWk3O8j/cVQq/+S/2V+ln0r5ivO5T3zL8xf9f7CLS7aI+ZYBwv0Lhy9yP3Iftvu9Gfal62edrmZ5vfrP/pJubdSOSnm/VTUN/77pR/NnjfHs/XMx8nQEcn+Ov+aPzMMPC5P05lvWQW59NHeQJ65hmHTfkez2naz+E5pn/SeHfGzfgY57P5FOZXmLdsfsXLzL+xwPbQ9yj4vd9vPni8368w868f/d9oPBXtn6L+AJ6NZ+wCvkW0rzymfKa8Zn5tHdcvcDTr4z3jiY3/oL7+iYq0rz6sfrwf/OrH5j2Y72A+RC/lb/B5r1ILyr2va3cCzsaBx/jv09D7C/LVEP0a8g/9Tz3qkZAPOobxMi/cPPFpqQTqF9ZP7P1H+oc3sZ9l0f4DPyp6XtFu9EOZP1CJ86excql5TNpn6He8p8l8w6vpT12g9//JH/P3z8aFmwfN+MX4aeOmNzJ/vJ/E+zy838P8KP2zs9RrGTf9s/G+OPV99WPjxcxrjfmu+le1z+pndb/UP6A/QP/A3ZT/7b5Iv3v7HuXG7XheGc8jf7wXdTntxvtRvV+iJ3ypFe6bmEH72kcupz3tI8Yx6m+pAZ6rKN+Wyb0W+jdysO/lBBYGNqB+nL/GNziPtRdoP9hPufaDGD8b7wPVnq59XXt7DsbfeBD9X8aFqP/uQn9pB3wBfk8Fv/c7bQWv+sDZ/BLmu/FqxrNdaf5j0B/bKX/B7wrs75Pg7xPM9y5Fz6Vfuo1zkf480J0LOIj9qAftDWK+vGW+HuXptG+8Qi3tOrTbj/aMz/mF/flX44eob/yYcWPedzGN57vgZ4r+9eY5C+Nbn/pNeb+o+ib8PUm/unJ+Veb8qg1/74T+XrTbBvrfNn+Gc/Oodkz+L0997e8DGJdBrgfoyWEeGc/LoPeD8ue2NwQ56WPoPsz69f4a7605Qv+8v6YT7V9rPAvlN0FfU/MzAv37zS+mXLu/fgDzynIbL2X+HjAFfcbbea/li9qHqR/vK/Ue0yrQ77lp3I73EhrPYxyI+e7Gi+QI+VnGEV5u3hT9O8h4HwDuB64y/814LMbf/MLNtOv9idLZk/+fo50l9H8H6/g75pv+rD2c63/rT4S/hc1/0y8e7lU1/rUA/TN+wHgC4wdcX8a9GQfXUv89eCfQ75Y8H4Ye9YrCPEf94kPwLwEuBR5XPmB/mMe6/BB+rKP8G+a1cn28L3s4/fVeBu9p8HxQX3gK+KD5L0DzIb236A3tH+Dzvp7bGLd4T068P0S71zTej/dvdleehL/KqwPC+a88G+Ndng72GfM9jJ/1vrhpvO+9b8ZBn+TZeyS1l2o/HUY97afqH+od2mmi/pGZH8W8O/Pw7gOaf6d/Xb+6+7f+df2X+i31Y2p/1l+o/1A7+WnGIZ4nnjPe7+x9WMoryi+tGV/l50XwTT+S8nO8D0U9Wv3Zc/9x933a8xz1vgfvfyjO/94PH+OhvK9b/eN91s1A5l+U17yvwHsMtJNsAZ/nj/5e/b/p6m/U+5F6xu94n7H+9fapBGof0L+u305/vf67vPTPfBvzcMy7WWieEuXGj3rftfGj+s+Nr+tPPePrhhsvwvzfCezLeKhX3Qv/1K+M92nIfuL9RWnw1/ts1f/U+9QDS3A+vUE14zxjfOd5rAftsjVZR9pn9QvoD9BfMJr66lUraFf9yvg+4/b3gtd8eeP3P6Wf6vHeE9iQ8h/pl/k1X1E+mfmtf0m/knlOW2gnxis2U59hPM+Yd6z9Lpwnj7nfmbdvPCzzZy/vmY/7JO09Q/+9H817HOrQjn6qVYz7Cu9/or8tjF8x/hnYnv+1jxiv7f1k74Nf/bAU+IxbjfGsecP81o56HvSX4jy8l3nSKdhhtL/3ZZ7E+w6Mp8nF80jjwOHXQ+xrWcHXi/lytf5R6htfax6F96P1Dv5J991C3mehPGK7vKd9rxjrL94TrP9T/dp7841/Nk4txu8bt69+0Jp+jmC8zIedxf52D/1/B76uTUBaE/r3Kni0x3rOFGf+GzdSg/eMJzGO5Cr1G/7fbNwo7W+DHvOubte/Dv+3wZd6xidzPplvH/lf1Xw7+CfftW9G/nt/9I28r37sPdLVeK7M83bqN+PZvOiYv9sQ/uSiPAv/54GOD+if9hq/3+D3HNJo13yveH+m/tkFIS7HOJ2W2tvo3w7wnFJPM56I+W5ernFUxk/F9eI62mR8AOvte8911qH5W8bPxHNC+6D2dc9N7eyep8Z7mMfzHnSlMX+8P28W+5f35+kfjffRxvsTjZ/QDhLtH34PxO+DKH9U0X8d7IvKRd4v9wT7eQ/qZ6PdddT3/lH9K/pbvH/UfBnvDblLeQX+Of+cd79Tz/l3LfPpTvjid5J6qP+YDweeV8F/QDmXebESuALYkf6pH6sXt3ecjZ8O9LlOzG/fZL4TfIz2WeNijYc1XnYG/XuA9x9mHvfm+W343Z19bSD/f8XzqBBPZ3yd8XY/Qv9Q5nMzyl9OJTAL/df+p9wc5ekX1DeBI73Hn/IC9Mf74Vx/RWnfuIEvEZwK8Xwd7/ldgsvDOlfP9v5Q573rwPnfjH1V+1TrbAmcSf2J4LsWembT3h/MP+f3w4y789z57f115p97D5b5IWOZ/18yb7XTHqX8Cug7zPzta54s+LSH6h8y33oG+Lx/QTtA1P9Lsj8U4//WzJN2zK/Xzdc1zoj3FmjvARpv/V/4YP5jZt99+hR6vX86xk94/2LBEDfid42MV9Oe8Ct87ch57j0z+j+VL7VXaJ9Q7hgc7iH2/uFNjJ/58F8aTwt/KoD3beU48/KYH96Hqd/dezHL6f9nPe6D7l+0w8Iv/WP6xfwOlv6xhyjvAb3Gnd+v/gx+vytnnInxJW/R31b6O5lv2+iH+UHmBXnPovcr+p0R9bWy0Hk5/ZtBf8zvMN9jLfRp39IPoZ1L+1YOztfbMvH/6D/TX6b/zPkX899/Nz7H/Q/+xTgU19Nnxr3w/2742R7++30A77fQbun9Fp/w/nr4vZb5+Lf6FXzzPnj1ar8P1Aj6Xgh2nsng3yBfKN/IcyH1IfhrvvFgnvUfmF86OeSXmm/aKQFpx4DvmRdC+8YRG5cX72c0fmQ5+IwjMX7E/dF9UbuR++PDzJ9m0D0Qfn4LHvU340xW8qz+Fu+vM87G+JqhQb5Q3vB+Mu162lW167UB3zjj/73/k/WznfnRAnxt/F4JfPD+yM8ofxr8b0FvB/hgfFl2+uf+uBd88ke+DPD7h+DzfvZo5zSOy3wT/fbmo7TW/wG9yiHmvyuPaK/Tf6w/eVoqgfdCv3l/l4b8v5zIF95fstP8AuqbNxHjY8yjeIl5cR/ywUbmXyXvl2E+bwZ/Y9orwPi7H7g/uF94z0H0G69Uz4Y+/YrqS+ax1OI5G+VfwNf24PmS8hOcX5UZtwzG8xL3Y8pn8/8rwV7fSH8QcBP8+0d+hvtc/O7BMvhzmv6a97ad830R9Dl/nDfOI+3j3q8a88e/CvlFA6lvfpH2XeN/C9o++M5Qrn9ev7x+74Ih/8p4H+OAzoA3i/od6zKNZ/N7zS/Vzh7vozO/XbtXtIfdqVzE/PsIfWMjdMbv2Wj/upb5bzzAw+A3D8D4f+235q8Yt2Z+a0f4Whr8a3ivKviNXzZ/yXwm85euYn14T028n8b8EvNKzBd0fzffUDlUP73+F7+76HcYRyt/0b76tfle2qvUt+P3E7X7rKH+esq9t1x/jXkU3nfmvX76VRpDv/m30q/8bP6tcVOPg+8H8+jgt/eT+V28V3j2frIYfz2e+sZhj4A//1LeJdwHEeNv4/fGxsPXeuE7JH5/JN5naj6X9Cp3GT9q/If3uGSY18o+cTfP5anfnPf1l/i9rQbQ34Z22/N+BuVdmV/mS5g/YT6F3w/UP6B8qbypfGk8/NnvfvCe8Q0PaRek3Dx389v9fu+z4PU7W35fy+9K+J0J7WnapfqnQYdxgcY/eU7B/2eU/5TDGf94v4TxiMZhbqVd7dLNwFvE/Arv6wSaX2uceR6e/c6h3zesDx73F/2O+omqMH7x+zXeG+f36XbSbgfPLc5j89+i3dj7eDZR3oXz9BLtjLRbH/z7sSsYX2a8mfFlxt2Yz2r8jfkEDeCfcQfGIRh/4PdRjTNYSrnxBoP5/33gXPrTOcRvLIT+mbzn/QjmSxk3bR7VpZQfNU/c8yHYWcyvNY5upH5Q9w/4ox25MPWWmL/n91WoH+9vMX72hHqO53k475UTvU87H/i1a5sHlwZ9WcDf0XhpYC72kZr02/zbFzk/zbs1/lK91/hQ9eG57B9dKfd7djOZfx/qz4beevA/3u9+VYgvi+eZ9w/tg86fgQtp3/tlmoXvM3jfjN938LsO5uv4vQ/t9trx9Z/obzhOf3qwzr5GTvQ+TuNeerofm+8c8gPMC4jfj/b+N/0P3gNnPmrUB/8O9w9lh/9+F6U3eH/RzwFdD3sfOu35/bqJzM/VyFHjqH8f9BtnMon2jD85Srnf895L+6Por9/f6+F37yhvi/xhvKnraxDl76YSWIj57Xff1wN/A15U/Fy89WjXexr7MI67aG8i8EfgcPD/H/dwoAl4nHWdd9jP1fvAHx7JzojH9sFjVVRWtoYyEkJGVrLJrJQSMsoqo2TvVUbGF9kSSTbJSikjKSGSSHyv6/d+vb7X9Zzf5fPPfZ3POec+97nPvtc7ljfu/34vAD/IGcFc+SKYI0cEp8Ui+CXpofkjWPmuCFYFVgJezxPBn+4Ffy7wZIngrkIR/C17BCtQvhvlNtLegYwRTEZ7n0NfJupvp96LBSK4DXwzCkfwXfJfoD/dyF9H+fWkb4F3M/AJ+FErIYL/4f/awB+gsxH8aEq5JbR3g/b3Z6AfwJKUL5wYwWrpIjiF/39PH8Ej0HsP9PWBnsy0/xX0vwTeBakjuAe60uaOYMMUEUwF3h2xCI6l/gH+PwGf02WKYF3aq0O/+oKvM/UHAp9mvPPS78GZI1i0YARfhf73qD8Z+kfQv1m0Owe4iHKLwPcL9Tsx/s9B1y3424L8w+DNB9759O8i/RsA3sqkq0FfV+qfh/+raDc9+Y7/S+RXzJG0H8VJF6Re2VgEP6X9+YzLKNotQb1fofOreyJ4Gvg18AX62wv+noxAHNlxFRnXEtB3g/bH0s+a1N8MX6/Sz02kszP/Epl/hYHJaO8N+lEdem+C9zR47oX+vsyX7WkiuBwCm8C/LCkj+C98qA/cQv308K8S8zYz9VqzvqfQ3qeuP8Z/O/VzUz855XaDpyX8fxb+lIL+QZaDP3X4v0H6pHS9An8y0L+F5E9nfs9m/jEMcUvp/2HKVYf+3LSfnPY6ME6toa8A+Zvpx4/AHfTT8W1CvY70ryR8qgG9ceDPC59K0H4+9t/bwJXQnzUWwVmUd/24nlw/ReFPS+c37T8K/hHQdxu6Z1D/bfA1IX8Q7aWmX/+Q3gq/PoHPHwMv0+6DwEfpp3x6mfb7w/dbDMRzpPNA/zzmdX/2ybmkNzF+zajXCHpakJ7N+G9PG8EqrItOqSJYAH5Upr+vQOd90Pcr/XyZ/rwBXT3gyzHaOwr+kuC7yfo8SX9X0G6JeOhgPT1E/pfOn+DcKgP+d8n/CfxHoHcY8yUf6bGM61fgmc/8Wp+NfvN/WvA9Bf5hpNvSb9eX683zqj3lPc88v16hfkXa/ws8txmfWczX7ozbs/DxQca/Ifnuc+H+Ng86vgJOzEp5+leI8ZnOOCRnf/K+0ht6Pe+9B1yn/g7yV5E/HPhgYtL8d2g/Lem25D9Dv+oAE5l/+2jnIv09CfwI/C3gzzX4VZv5sBH8S0lPgr9zwDeI8lWZD1VotyKwMrAZ8+MK/DlJ/angTUF+H/D3Bm8f8KZkHvaj39P5vw79uIf6h6mfCD9fo5zj9zb5dcFfDbxpocP7wMek81P+EvPjPONahHXTkv5cikXwKe9LtFuUfs6Bvnjuq++DZxRwPP3KAL/K8H8l5s8H5D/j/GJc7+f/ZfT3JejdYbvkJ6c/peh3cf5PAB6C/k/JH+K90PUEX9zvTwMTKef+3wH6D3FunwD2g/+L6c8x2vmb/nwOvzZ5HsGvWayvVtSfCL2/QE8Hyo0ETmF/WwOe8aTd/9eTPg9sRfvnyb8OfR8C87A/X7nD/lIaus/Af+d9hWD+PwP+89SvTXou62si/XsSfBljEZxKufrk76L8Yvq/FTo2UT4LfPWePYb6Lcjvyf+PU684sBfzY5/vDvBMJL8ndGWg/bvBu5z8OeAPz2vP8b3gT4Cf5+BLghdQ1yntvwPeL8H3I+0N4f/K3qvJPwH+NsG7qxz47iff+3sV8HiP9/5enPLugykoFwOm9ryl3RHQ8SrjMZ99YTX/+/7qTX5L1k1N8P3M+dKE/NG0u5X0XNI/MP/K0X4H6B5H/mLo3wD9g4G5KV+f9nyXzIhF0PfJTNI1wPuO93LmXQP2v6LwsSL0TKWdnqR/o70B0D8OfOuo9wB0NOf/LtRfS/vXSRejXF/w5ab9dOyLnjeePwug0/uL95Yj5Ht/qep7gXn3BfBf9g/fb6/QfsifEozXFP7/mfOnjvd/6N0DnuP0OyX0+eC6xrxIRrpa8L54G7qrwKcPaK8z6e/AO5X2BnN+LwJfJ/LXMd/2KK+g3YPcX9eSPkd+adpvRTtf0+7D4L/NuaN8QXlDQ8r7PvFdcj/0HYjxv+9+30Xw6Vfyz1I/A+VSuA/B3+3kzyf/GvjPMd7Fudd+SvtvJo/gXPL3J4vgi9T3PXGS9kdDz0Pkl2ceHGF9/c747wOeB07wfgg9BcH7IHRsAY6Cf28AOzN/MtDOdf7PQ/s3SN/rfgc/fNfWpx3ft1sY18mM+xekO5Hvvn4QfoyF3pLMv7Ksj7TQU4b0asbL9ZcmWIeuvxzUyx2L4HLaO0y+83cD7b1B+8uYXwXhfyraG0p+D/rre8L766u07/21LO05b53HBcB3H+e9+7P3EeVj3s/XkO89/QDpucH+7H59nv42ZP1V4Z5Xk/afo7++m16iPd9TXch3vjv/XQ/DSa9gvaW/O4KNGYc54Pse/vxBO+noz0L4F77PC7Kubvk+532WB+g+5HujK/R0pX5HYBrlCd73WBedSR+DjzWpnwt8J6jfFzpOk/+YchXy31B+xngdpP4R2t3I/OpE/aeh+0nlYjHwQc9e5Zukv2c8Q/lWZu/d4NnBvMvC/ykZ537Q15B2n/IcgJ5K8Nf3vOdHM8bzSfr/DeWfI72C/asK/VsKXcpRBtL+GNofwbovA8zIPLlB/zK5v5EeTzon9VswTt6f50PPOdpfnj1pv7ZQLh56W7o/xSL4K3QeoP++71bxv+8833epwO/5kQ/8yrdWk3+F+gflF+VngC87+S+6f0Cf8oSV5Hu+JtC/Tcz7Rr7roaso/VlOe6Ootxj8j4N/KuP5MP8/Qv290B+P3Owx6Eygnc7k54W+3PR7FHhykD+b+XknOffv3D8HAudzvo/xfsL/i6GzC+dLQ/CXgt4FzPdc1F/O/ur7wnfFAOUHsQiOJP9p8O2E/oc8P8Hn/ns+0E9spv+fUV85ZV/Or7LwKwN87Mp6XEA5+VqZceoDncPo13Lay8W6WUr6KnRupf086h+on9X1ybo6ANyg3Ab6wne5+8Bq0omM15PwbTLv0Hj63xG63Mcv0k/374bKryn/MXQqr+1F+skY+GhnIPkJ9g8+eb8ewPj+zL74C/eG2/DnL9pbpNxKfRT9vkx6u/oy5Vq0c8TxVD8V7H/f+I6Hr0W8p9Dv12lnCP/fTf9+IZ2K+iNIz8mVtL8VoG8P80e5muec51s9xqcu9NchfYz+q9dQz5GO/9Vv+P56HvgG+d9A/0LGezj3kHHMyyvkZ4Perr5b4FM18Fzh/xZ32J/dP9033UfVF3zG+K4CrgRmpn64/yxXr6L86w5yE+VvdchvSP26pCu7/qB3fSyC7qOPB/tzB/ivPPgB6GtH/gPk76WdJtBZWQUK/3/KfFqv/oX6yi0WgOd1+BRPvnIz5Wg7oXcg66IvcC8wBn9mIN/43/7BeF0gvw/0/Uy+4/wO9Oekv/to33tfffiTSHnPr1XQN5H6vp/D9T2M8meYzzO9/7O+1Vd8xn1oI/XeJ/087as/V29ein6oP1feohzmFPBL1v9V+FOS//8i/RR4lD8pd/K9coF94GIgt/Yd0Bz681H/XfITwVuG+gOY7zX4/27v4cAejL/v6inAXeSXBf8U+FmYdk6RL38WcM62Zf6lDPhTBHpvUD8X+9My8tWrTKT/bSn3FO0UhJ8nKf8s81s9w7jg/u97QPqky/GTviPcFwuSD/q48bQ7mX3vb94dE0m3of27mU+JrPsN1CvkPk5/Poeuo/CxIvNLvemvlGsY6HcbQFCyQL+Tifns/eJf1plyN/V371P/H/5vQPvfQ38o/wjfk6pHTwGLwIeiwG6Ub0L9vMoHGN8m9ov2u3Ie1YS+HvT3eebdUPqxQ/ky66UR4/MbcCT4PR89F/vSH8/Havz/jO8BOtST/k+Hf60Z15eB9zM/lE+5T3t/Vv9dz36Rr93DNehbS78KxyL4NuUO0H5b+BhPfkbKzwL/P7Rfj/+b0Z9ctJvAOPX2/c98Hgu+oeCvS7+HU/9N0tpVaGeRh3NO+4onAnmX7Yn/Pe14oOdN8Hekf1fYT5/wXkha/Zf7U3/g20D3J/VXtT1fwZ+e+eP++Yj9olwVxu8S9P8BXy6QXkA53zOeyyU533p5P6FeLfbdvrRj/5cE79NQv38ZfqnP/of25kF/Q/BnAWr/oz1QU/hx2vu68iD4c1L9BOUr+V4gvyb7Uhr1YvKZ8elCf+5S/gY/TzM+xSlfC77tgQ8LaW848+su0rfA5zuhDfjC9+lw+p/NeyP/KydTPtaQ+2p7+lUE/hb1vQjeXtD7r3Yt9K8Y74ks1Pec8HzIxrn1B7CQcmDon+y6hy7tg1qSr/zoXf5XfnSD8t6PvBdNJ+39KCf4lecqZ3qR/qQnnYX8LyMQl4t897u+5LsPvkb76stH0V/tELpTvjn1lecp39sIfu0XV1BvOv3UfnEF63kY+Cu6T5A/FPy7wa9+eDD8U790GHraMa5Vld8z33wHh+9f35W+J1+D3kT635n35QzKKXf5DjgJ2AP6aqgv116O/lymXDL4WZPyvqPUV8jvNcH+qR5B/YH76CbmXRb2nY2kU9DeT+zPK6hfmf1hGfOnuu9D+Dkbfr7G/NcuTLlGKO+oYbvUa8R6v0W59YE9pP1f7f0WevcyLjc978nfzf6zw/cG5UvGIqj+Sr2Veqzq5L8V3P89h30fFVKeyb1jIfS2YvyUr1cATx71ROAvRvvyUf5VBP8qzsMt4FtNugD7U3Xqq1cI9cgnoe8C4/Y7sLV6WOaD97gLgXzIe/c56PXenej9kX7Phq9zgNmZHw9D35/AqtDVGPonsh/VoV8XGacpzCftArUT/Jb2tQ/Ufs19Sv23+9VM6nenH819J7mfBfbQ2kmngP5M9C+BfXY286ki9Ks/+hx8QzhHD4MvlL+px/Oe7PtTPYTvz1Tkj4HenuqraD8D+fkoX8z1AZ6S0Od7uyj0+O5eCf9agc/1737QivzSysvB05b+LY1FsC78rQZ9WSmXHPpyaM9Kee0j24K/JvWVryhvUb6ivE453u+s88RAvt8skHMp30oBfu9BvSivXv077cFJX/O+B/5qpN/zHg8e9dQ94Ec2+H2TebyDdD3qK//foX4D+lKB133uYcqtyJe0vvZC6g8uw5+y6pvZN28HdsxzoGc2cALrbTf9+xb8leFDPe/P1NduWXtl7ZkTqO+7Q374HvEdkkr7RtbPNd+/8Gcg60O9jnqezbT/cbB/u5+7f89Dv9ySenVpr6T2KcxrmolbA2zHfFL+9qF6VKDy/5WB3ZX2uNpfuZ+mAN4FbED+aO+d0PMp7dXT/0H9I/MhJ/UWkXZ/US+tnvqt4P3hu6MIdPr+mMj9eAnwb9b3B8wf9SdHwH8QqP7kGustJwy8rr0u/dFuajH0Nlb/Sf0q8Ku07y/SM92PlaeQrz1MJ2CbCMStYD49pPwR+n+Af9vAsx86xtD/7Mw77WJCe5ml9Hcd6c7g7+Z+CX7lJspRXmX+Kq9aAiyjHCkWwSrgf575Npn0WubzcfA/SD3XfQX49zfzaSPzfjPwbfihfEG7jG2ktddoz/zvCT3ez0eT7gffNkLPddp9GfyHmDf9mDfdgeq35pJWH9YB/C/Bz0bg/xvoOi1Avva46v1DewDPA+Xu6kk9H2rCr3b05wPKaT/j+8R+K6/xfVJUvSB4swG1F9B/Qn8J/SfO0H/1K76Lw/NHfZT6KfVV2o9qd/WjerfA/qo1620X+3tTxuMm9Gh/mg38zqc4+OO9dZb2woH+dTbzozzzszUwl3pG7o9F2J+bk14O/8p7L4Pu5oGdqPureg33WfUb2gdoF5BA+3HarTDfvV98G4vgE9Cv3qmp8qhA/7TU84L9ayfpc/Aj9N/QX6EY41MAfO5LbzpvocP38p/g20u5VvTvIOtD/YP6CPUPrttRyrWD9/htzreewEuUv6Z+MwJxq4BDmI8X4P9AzvucjPMg0trDajdXS7kG9g+v0v+PoXcBUPmUco9Wgfy8I1C7G++33mv3Bffb+czn1cE7x/fNYvBtod4oxqkc5cqRPx36/9COHv5/BL++pbz6g9MFkuIXr/YSF1yvzJtpgZxW+ewl6jn+uz3vae95+MY1Me4n+luY9uvrdwXfC1P+OPWb2z/w+j5pT/6d3l3/Ajty3i5TjgOeheR7X+pJOwP0M6Oc7/Yb0Hmcder7vR/jptzY81P5cTnf//pPwK9WjO+LtD+O+n0of5jyU8E/AziH8/Bn5s9Zyms/+J36DtpXnuh+XZNxWsr8vkz+N+DRDv8+8Gvfrj37WdeX9o/sV+sZtw3AM+qBWW/xwAyB/q2W4wE/79UOCvpOeN+jvYHQe5by+6GvPPCa8pTA7vAA+JRTez/MqH0BMB941NO1159F+0v47zn5svo56E4di+BF4Fr+D/Wrrn/9sfTT0i/rCvW1L2nnuRXY74xjXiin/gToefw397+dtFdVvwD4UY7+qO8brN4c/MrjlMP5fvU963nrfc37mxtzaN+uXbv+Ptolbwa/dv7aJ+sPqL2J/oJTyO8W3Mv6BfezR+C/9/Qj4PN+7v3Ne9sa0h0ZB+1fTul3oD2d8mXo+QmofOcL+Kt96kT5Sn3tVdWff0R77qcTwKdfguev7wTfBzmo3ymQ3zWH/8oH2gX+fq/5PoX/mZT7Mg+zeH9Tnkj+ftpXfpIbOv4B/6fawQT2P97rtBNYQrnb5O+NRbAk9A+Hfv1Htc96gPoPs36fIH8d7Z/VH4T23d9bQKf38GnqF0hf105JeQz49rOetCdZw3pdAX0TtH+hvfHgbcr+7nvQ9+FP4HH+9aCdd/XXp/wj2j9BXzr988hPo/9k4K/ifDkIfw6Rnwh+9dzqt703fKcegv//gd7SrIdSyo2Br8YiOMl9w/s3eJR/lQ7qdeP8rKv8kPonwPeOfrzwMbQnUH+kfVpZ9j/939QnrnK/Y/87Qzvl2D/ruG6hdxP9df6cZXy8b77l/cv9THs7yhvH4TztXAL//b4v3d9cB55LjIf3hmngUb67nvWp/rgH5V+Hf+rrB3E/GU46jf4/lFf/ncW4Ccxf5TmreN/cDuQ7+k8U0x8S+kp7f2RcewOrAhdqb0v/tcsJ90/jERifwHgFhaBPearvH+WtV+HHYtoZwXxYAt3a/3/HxTOBfh2gXjPvA9xnlPOeYr2rzzrOfniDczIZcAx8cH/x3tgruD+qn9vDvuH+qJ6uFveNs+Q/Df6K9EN7NP0BlsGn75mv+lcpb1Qeqf3DEuZ/Ot8BjGMr+rc7Av/z/9ecTf9/322+13zPHWL88pGOAQsAv6R/GaFPvdV69eL0rwvltoJvIO+8i/qXUS8ldDxOvetA92v3b/fzBvBZfxz9c8rAB/1zhlJvg/IH5RHMn9B+y/ui98Ma4NOP1zgfxvdQX61/VwXKqcfR/qQNsDXt+H6oDf9W6xekfx31S0D/Vu8NtKd/w4PU0+6rNuUXUf8Q/OpO/frQ9wz8n0/5QbSbSLql/vf8n175K/tVS/jXmvms345+PPrvtAnkD+pLjJeg/DuedpSDK//W/rQY9bXbHwf9+merl9RPW//sVsz75MCansPg2c6+4b27HftkDe09WbcTWOc16K/+W/o1qZdQT6F+wvFz3HZrRxXcv9RjLXP8qD8UeIP2nC9rmH/ZA3vMPMH98oT8C/x7b8KfdGwIcxiH+6D/TfijXmCI/mbwZzP4d8If41r0Ia1/blnKtyU/E+nu9F/7BP1e9YPVPkH5xg7oVr6hvCM7/e2iv4l+jPQv9E9azXwpGKwf1810+OT60f6nAPxtyP+Hgfpv9aHcNuNqQE+4Pxr/yH0y5rsQmB+4EPr0S7rH9zTj8yz7d0XW4yX4/j3tDQK/7x3fQcWYx76HejP+n3HPUh/vuWB8CO0utGsxPsQx+Kpfzhrf97EIem/UftnzXv8H7/cn4MvTlMtBfe3TjKvwIfWNr1AmsE/ULnER9I3l3F9C/WnMQ/VL2uvkzJu0fwtZX97LjCulv0oO8BuvSb5PCOI3faj9lvYf9LM/+PrCryz0OzXtfWJ8E/BtSJ2UHu+HYTwG7curwodJjK96GvUzvi+0J7yoPbD6KvhzJ72N73/l88oJpMfyAwO79qHIWRwP5ZHG5dCPSzui9+lP+O47COyu/kP/d+3/aN91MTEYp9dpJ7SfdZ3niUUwA/n7SGsXXBv+l2I+Pcq58BfzTf/v9tCn34x+NPrP6K8Zypdvew9g3XovCeVX2gNqH6i9YHH2hyvab9NuLe2smF+XaO85z3f9FRhn4+3FtHcg33h8k9jP89G+8tf0tDda+1X6q/9WVtrX70N/D/1B+sLfr3230t4XtFOO+ee5qR+G9h/ag3hvMS5MeH9JTr5+h92Nk0L/36Z/rWk/nntCa+jT/+Ao4x4P/Er9nfsbdConrhOLYHHo/oD21fOWp7774/2Ud58sR9q4d8non/boKcmfxvyZrh5T/0L6c8H9hPliXJ/pxi/SHo9yysl8312LQFwP4Gfk/0n5/9m7gsd7qutvJPvRe8BVwKmM3wfuK9Clv05h6j/EfNnN/qL958pYBLWX0n7KeCLad67QnjmwL/2N8X2a8ZzOPJ0G3x5l/rovKZ9yv3Kf8t69i3zHbxL8KacdAOUvKh+C/94XulKuu3Jf+D+I999z9P8Q6aNBfBDjgvSHv8YH0X+kOHgdH/1JUmrfS/vqWVzf6se2wQ/jdn0F/Tvpp/7E2nNrv6193+fg7wm/0kJfGu8TpH9wPwKfdn8PAV8Aj/Z/u9mfS7GOjd+m3t3zx3eX92vlePrzG1fIOEOH1UNB33jtXEkvo99j2S9yxSKoHcUq6Ne/UX9G/RtPsf6rI994Epifftwf2AevDOQQyh82QrfjN4jxdL8uCn27WEePsf+lp/xJ5stp4HDwF4PeftDbj/4bryQxiN/g+S6/lY/qN3lR+aZ2LKy/V8CvPuGWcjrth6BfP4nR2il4nrDvzQDOBB6Fnsvgz6/fhfY9vuMDvf9G6H8K+pVPtA7kzCUor95bO/R7+F/9aQvvT/TrGPklyN8GXYeAMfUxMfpH/Q2UP0W55czPMF6CcRTOQ38H6CrHvKgIn5U/uC4yUz6BdtcyvuuYN8bB6kz7yu+MJ2s8pdLK2aF3DvSHcTmaQv9K6DbewlvA/LRv3DDfp75XF7l/k+5A+yvo70j6o7z2MehqDD2ztWdj/6hPHJha8FN5Uy7W1wDo/gP+Noa+u1i3W7h3/E17L1Df92xL9VC0qz3yOvDtpN311L+q/Av+em/PTX3v72M5D7zX+j7wvnsT+uKh7yzr44L2y8rBGS/tmdqAPyvl1TvM0m7D/VB7JfXflNtN//UfUe6vv6H6gLLUU26nPK+L9MOXUtD3JuNRBP4rXw3jq4b27cqP9LPTvt33Tcg/31uXwdcNeiqo74c/4Xp2nWeifeOxjKf90E66BP8v9P3IPHN99+Q8qKOejfoFYhHcBX79Pt7j/3aMr/4n5fn/Z9K9oM94YPbLfto/7c9vMl7anXeHziH0ewflvUcrHzFOk3Z52umZX9x4VqyDixmT9s/4aMZ9CO3Rlbuo375E+/qbTGL+K//OyznnfFK/syLQ77g/+H7TzzYBebT3oE20rz/5Uf2x4H86+Gt8rYHgn+T6ot3Qv7sn/OnNfD/LPvgq6ULgq0b9prEIHqb+VejT/9L7r/4g+tscg59r4dNW+P8I9LXkflSE+n9SfxT5xp8ozjoP4wmF7Xsf703/CsM/7X71b3C+Ga9Fe5B45aP0N2tg96YcWvs3/bL1izOelP5xypeN39PcuCKsD/ezarR3ivfCO6xP4wkab2sf5cdoTwD+V6BDPfLH0Gc8R89Nz1HPT/VDod2++qKLngvQ95r8pb7vKeMehPNV+w7vXb7fh2t/FoG4ekD9Uh4N5Gv6x00I/OM+Jj0Z/Edo71H4+zX06F+sPbD+xbU5n3szP/9iHRjPVX9248hk049T/1j6bfwZ5Xv6p+uXuzYWQeNQDoS/xj8y7qlxUPVnCOPOeh/2/tuU/a0377eR9KM55e7kl/kg7YfvG981hemf+h31Op5v6ncWcD9Q/vctMDPja/wS45ZU8T5pHA/eC8qdCsN/5U/6f7xMu2E8jND+VLtT40SOYT0pxw3lt6437xNx7Ed5jYNC+/rf6I/TBfxfkNYvQT8F/RPGcx600a+D8f+Q/nuvSw1dM6FnsvGnaN9zx357/mivol451DcrL1BvpzxB+Y/vC98VvjPeY/9Srvihfi+k36c/g+DXQODD0JfP+GiUL0k7R0nvVx8Cf7Qz+pX563ccwv3afdx7gnEFjTNYjfn1kXJ3+Ol3KvRD8/sUd9GvcfDtfe1IjQ9FvnZV+mNoX/Wu/la8axcDy9D+Y5RX7qAcQvmD8UaNP2o80ufJ1/7rF+prB9aa/A7ahynvZd4NJ9/xU87iOCanvUasyyHwcZJxc1h/2o8Y/8F4EO5T+hf+S78eVz9r/EbyQ72b9sXG3XbehPFg9O9yn9S/y/3R97/xydU3acfg+f8s45FNu2H198yLPMy7zYF/7yPMp3nqc+HTU9TvD/3zmWdNvVd5vvCuVZ6m/Lxb4N+vnFP7W/37jUvcWLu5ID6x9qr6tRr3cJbyH/iqHCAzeM7EIpie+15x+nXNeGDQ+Qf3rpvUa6U8G/oy0L90wDHw8Xn1bcaLIB3Gr95Kv40XlAW6thdO2j/tdO2n9rotwH8f9BvvsT3z1/iJnwfx842f6PdN/J6JeveN4Pe7P34HaCH4/f5PdfgTH9gBaH97n/Za2j/SXgra/5z+/6idBuM1gf56rik/Nw6y8Y+HcW6q3zkOP4xDqn/BIfBpZ+w+od7T+GXqQ9WDeq9eGdzv9Zcx3o7xdyYF8Xfaac/mvR06GjC+viuvgl95qPGN1M9d4X/1cvfS/zcZd/W56nfzwf/B7M8DgZUY/+PQlwx7Iu9vNamfH/q0L9Wu1DgT2pcaV7dGLIKhv6L2ftr/aQ/4C+2/oX4dvIX1rwf/bO/v+uO6zxr/UPmt90PgR+Q/R34j4G7WZ23le9D/H/VbpCepf4Y/FZR7ANspx1bvD13HSPelfgL4msIH5Y/TSBuPqB78Ml6R8YmUH2qnrfxQeeI22tOe8Yp+QfoTB+eB54Tfr2gb2FW1CeL9+N2hmaTD7w85P9UbX9V/kHr1jftEP8d7j6B/rUmnMu467RwBv/Zt2rVp55aJ/j9B/tfIDYxD+jr1jXujHsV96NFgfzSurO/U0fDrd/q3h3R28o9rRw79ynEyQWcj+Bvac+zTnpm0766XGJfw/aX/wxLK6Qeh/4P2UcadNA6l/gD6zXi+GD8/k+cL+6VxpY033Q/8ft8gBp4u4EkJ/+XP8YA/z5B/jvUTT3oo5bRfLGbcG9ZnVs7Xi55PQXwf4/qoRzR+hnEz2kPnOui/m/fZfu2kSd9DvvET9uvnBH+MnxCuD9eF9od+X8jvCjUH+n0h5c5rmWfKo5VDaw+g/KEP/79MO8qHlQvvZB48QX97Qa92acNYf36Pogn4TpO/jnR/xn8l7fs+CvXjGd3PgOH3vwoxPoWB15m/echvFoH/F59W+YDxXlcB/6Mckvras6hPUf/1HvNpOumx2k2rn6DeKvi1F7xTaF/7NeMm64drvOhJxq/WL4d8/cC8R58F/xntqKFT+ZD67UnQoz19fvjdwvcH87s580D/TOPJ+32Ma54r2reD3+9v9KfcIvArL+9K+gH94Nn/Bgffh/G7MBeBt+Q3ePwu3l30c3lg77lcOwPK66/q96e8n2iPlgB/M0K/csa54B9BeeVcyrfUB+xgvvn9L78H9iP8+UR9ifLrwB9Te/MvPM+VW8Fn4xavpz3jF1+DP5nVNwBDezfXod9zmUy5H/WfDb6Hprylmv72jIvn4yPqWcCvv4V6h3LqD4HaX/1GudAfaw356hlC/YJ8Vw8T8n8q4xvKj9+H/9P0zwn0hN4/3iJfO76j1Neer5DzG3zqudVvXwWfcROVd3YHfxgPxPhOV6nv/jFNO0zli9TPBb7GysUp34ryl9STeO4q3yDdiX1hHHgPcD6UAL9yVf0gfaf4PtE+6q/ATkr/0HHU069JPyf9m4aR77tbe7YS+iuwL34LvJf5VpH63v+99ysv9/7v94H0s/okZ1I6Qv2hcRzeon/KO4x76znaKBZB9Wb6BeonqP4sXA+uE++Pxkc0LqJxEj+B/8pvLkO3chzlN9oHqEfQL7499Y1fvjQ4v+roDwQ97WlfuwHf5xto92vlk7Tn+87v2fqdIfWJfvc2jBuqnMz5r323ftb6V2vvrXzf+Ibqb5Tvax8znn3WOHr6L2rv4zvF89nz2nhB033XkL+S/HngN66ncT6N7+n3aPw+jf5V6j2Na6E+ORH82jl47nsP8Pw/F7xfHIfS4BtifBP+v5txS056F/w1vs6d/FyME+d9QTmc8jffRzm5Z/pO8n20QH0j7WS0n+AbTP/mAf9knLpS/0yOpHRJp/43oX2xdsXGz17L/Vw9lN+L1P7K+JfqVdSzqAfRPs3vkii/mkv9tZT7JRbBZN4f4Lf7h/HHjbet/UE99sVn9aNQ76O8IbjvGCff+Pjeq8Lvh2yGnl+p34J2u2p/CZ/0h9A/Qn8Jv6+qPkE9Q/h9JO0ztcdUn/gY7ZdnvyrN+JYjXdT4KsortN8CX6tA/hXaR1yFf6E9k3ZO7k/Kc9TvfAP9m8k3Ps1p6D8H/canmUn72mWG9pp38jv9mfq5WR9+99c4f9oXeD8Y6bvJ9yn5D8C3SvBtk/dgxl/7cu3K/V6D9uWhXsFz2u9npGT+HwrsSJV3q0+4Bn9n0Z/ytO/3BPW/93uD88B/i33xNvti8kB/5/1Nvxn9aLy/dYavfm/bOEwnGf8fcyXtp3qTeeQr7zd+/0rtpcjPwrrLDGxA/7rTH7979xewHHKak9CblX0vGzA7sL/+MXFJ2zXOnPHl/oUf4XeI9PfRP0o5a0fo0D9KvyrjhIT+VfrzhHYkxqF5kn5XN24HcAf0n1E+QX3tFirB51HIzfvRfjL9XqlfEfr1++/NPBtN/43r5vdR3ef9Pup/AZFiY/B4nHWdd/jOVdjAf7ayU/Z4SKHssiJZ2aOy98iOskc2keyfkS0rRIvMFIlSZKbIKDMNoWwq73W938/HdTnv2/PPfZ3vOec+932ffY/zlE8R97+/8Vki+OtDEeyaI4L5gc/njODfeSK4+5EIFswYwV3U7505gmPJb0v+oWwRHJA1ggXAc4nyb2aP4EDKz6S959NHcFC6CKYFNn44gvMoXywWwUTQUYr8LZki2B7YE342ABuniWCn1BFsQjorePZBXyrqx0NXb9o7DD09c0UwBXw8B3+1U4IHfHkSR7A45Welgl9gGeBx2j0Df61oPw3tX6P9ZeS3QK6XqfcS7e+JQNwV6meDvm25I7gGut6if5pT7jPaKQX+W+B/l+9ZH43gp9RLjDzTI8dW4H8L/PNj9+JPzPjIA/5j0N2edh6lfML7Ilg9SQQTkb6fdo8liGBF6r0HHT2hM2HyCFaB70f4vh78N2i/Jfjqkh5D2vG7lnQe6JwFnv2k65D+kPZ/hr+K1D8Ifa8Bn6b978QH/vsZF+OB1xg/25Bjsfsj+ALl30EeTYDLgXfgt1zaCNZLGsGTEYjLT34T6GsIHa9AX9ns9/LrvFUe8v8a6Xr0a/KEEVzK+OibIYJloD855a+Df43yoPwj4Pmd9Ez6fTnzbCPlf2V8/0P57sAZyH9HLIL1+b4EPk5TfybyG8n3yaRTsh6uAH8/vndnPRkDH03o3/eo341ye8B/g/H/b7IIvgu/5VlfJpN/G/pqAF+H/pLI9w3ktQ+8q2hvBOU+ol4X0k0o1xr57ad+PHT3IL8646sS+efAkws8w8k/xfeE0JMbPg+R/oj6P1CuGPgLxyKYjfVuNnLIQfoJ8Pdg/g4G7yXovE46HXhX0M438J+R/IqM6yykZzDfu9B/ZeHnJ/CE+1cN6v1Af6yErwfo72vguwq8AiwGnUOBZ+jfZczXvrQzhPlQifZbU74//Nfm+4/wld/xBN05GY/JmAc3kJ/7VxH2i83AosBtsQh+g9wegs864M9D/qO0X5z0YfKbQ/8p6nehfmn4LAv9/yAv97834C8b9QdT/2/3afIH5rmX79F8b0E5+f8a+Cn539POL/TPLcongb6yjL8nPLeQPxW601LuKv3v/ua+9hb13N8mQV9m8F6kfLZYBFexvnXj3FSf+tUZT9Uo/xffG9B+der3y3ovPvF/DZ8vkm4L/5moXx56MwTz0fmaE3y/QH8P0jlc70jvZ784ANzI+H4aets5LpHfUfb3zqSfpP1StG8/PUH/VGA+7ATPM6RrgT8H/FWh/lHqPc/4KMT+9TP73lzafRb5tGJfOA8d1WinC+ViyOMD0k/Bd9NgfXZ/cp12fW5E/16G7omkC0NnHtbzHNCZDbgN/jLDX2foitHOt/T7L9B/DjiE/PHgf4p2J0PnGOAa+B/1QAQzUW806TbUr4ZcOgNH0+7x4Lzn+c/z4Bjw5yS/LvRPoX5l+CvIuFmJ3PbQT+7Pi6F3Avz1Rl7LqP8m7X1MOy/Q7lLPr8jvJdofH4vgAcpN53sp8LwMno7wM5j0YPJHOd5o/w79lRr6P0R+S8E/gvtHPvB9CL4FzmPW49Xg6Qh/OVk/nkdeN2lvJvNrN+OrE/mNaX+r+yj9txt6UjA/BpLOSf0t8F8d/POR/2DyvU95v3KceL8qQfppz4vK2/sR33vFIjiA8uXAXwl+XmAc1PP8Sf/Fs39NBl8S6n/l/Yz5tJX8/fCfj/Z6uz7DZxnkdQf59vQ79OSDrx6kh1B/M3x8RL/dJH8+43Me0HvVHOivQXt7oGs2eJrRTkP4ncX3xqT/hZ9L4K0P353Yxz+hftUHI5iR/aM99HWBvkR8d3zn4Hsb+J9Nf88CzgE6vi5yPnqPcbmA9Xu75zfG7ST6cTntv+b9jXn7pvKCr/L03w3k8wXfh5JeB/5+Ebi7f3Qk/3Xm11T3d9KnKTcL+aeG71col4J+aEf+PtdX8Ob1fEG6Jvl5qfct+d7jmyGvod6HgN3hN6P3B/CNY7y9jJxag38v6SvUb8X5YjntlYfew54HyI9nPFxl3IyGnuLQd4H2m4O/GTAj7XSDnvCc14P+8V7zZCyC4f1mNny1At9rlE+IvEdwPvd+uB25LAH/SvizH+2/TozP8xnv/W4/27/zqH/Vexb8fko7qcgfB56Knn/IX8D8GsL4Hgx8DXqaQfc80uqnJkFHeuaH69dDpPNQfgD0jKL8Rur3gn/XhXyc810vXCc+g+7t0F0IOBP8K9g/ijEvJ5Hfk/Hh+eET2jkG/tzQM4fvmfj+FHiXA8+wvoywXehvSP8MR771yb9Aex/HIjgD+vaSTkr5sfRfOeRVKFEEr0NHEcZvGejzvFqYdnrBX13yHX8PAydCf2nmRxngdeR0FnzOb9cd97F3HY/edyk/1f0Q+qfCzxa+94XPs0D1burhdlPefeIK310HnwE2Qr4ZmG/H2LeLsJ4Opf2LjLs/gFeAM+nfCvTXGvpxK3z8zPhzvm4n7XzeBP4vaS+e9X0H6TvIZzLj9gX6ryDwfecx7at3VA77aM/7kfeWP6CnL/SXJv9P6NocgbizyOcc9dQPlgaOBf8c8q/RD9mB9cCXivm/BPoW014C8Hi/bU6/uT+Monw10p29V1L+X+h7iHzHqePzKvU3eF91vSX/C+Rfhf5ch7xzkR5Ae31Y73sDE8LXNeAM2v0efppCz1/grwr/VYDPAh8H/yrKp6J+evcP+HM/7Uy5LNDpftuZcbsMvG8De5G/iPXhOuvxJuct+Esgn1L0S23oPg78r3lZlPr2901gG/XdyLkv60IvYG/gAe/F3J9acs55Fz6PU7+N5zrKh3qwibR3ifK3c9xLf3r2m/qk11LuTeh/0H2AejeR1yH651nWh8XgOaOeyf0lAnFdgUOAacG3iv65AF8bXU+gx3nlfS7Uv9+hX4YH+2xG+rMl604e5w/n0c30G83EjQKuA16gvZGM6zHwXZP15zvk0tPxBPwaeSxCft/Qn+XZZ54BrlRfTr/+AZ8pSNf0/gVe9Z/HkVdy2j8BfX1InyLdgvqDkc8TtKf+aCPlxyCvfODfDR1L4P9B6ruffEm9VeD/nPOV+nb1nz9Qfz3440hXQ+6F6L+b0DOU8TAe/g4yftQrXwFvWeoPAs7hfvsM/dwXepOCz3vRaNKdwO/+9xfyfpXveaCnEvxod2tMe9rjXoV/7VHNgbnI7wv9y6HH/fV35LEAfNlId6R+QuTUn4E5mXE3CThe+xnjezbj7QPgLOB079ucNwYBRwBjyN9zsfqlouC95f2M8tn4no5+aEd+Fu0pyO0g+KrAxwDSjyOXHNR3HJzh+27vLYE+U3vFTuSnfmEf9Cel/yuybuxk/A9B/jPB9yD1+0BXR/IzMj/VT6uvftRzOvQfh46CjLM/7XfwD2R8qa/6KAb95H+l/Yx2i9G/G/g+hvKTIhB3i3LVqX9C/Qf0tHD8My7GQP8s0qconwNYDb5for1C2m9Iq2/4nfIbaL8J/d8UeJT51Iz8RtC3GHrWgi8X/Nmf9q/jwf6tR38tJb8i+0dK5Ol+0Br+Piatfbah9qNAv6/+Vfv4SPBqJ9c+3gz6XofuPNTPEoug98Oq6uFdRxj/uex/6leFrkuMT+/t4g/v7+Op/4X3CvI9357hu/3/q3Zw8H+APEsCD9Avi+Df+86L1Pc+5P3nCPi8d3kP8/61kXzX/fnkux/kZf61QM5VWU8nUr4q7avvXAe/Z0lXZb7NQx6pwL8Y/FupfwI5THc9Rv6hv8HTpEeCbxPlm2lf9LxM/UK01xC5paDcauSrvks92C/IT32Y69FR9a1A9Z83OC88AP1HPEdC31zS3le9x45w/wC/698Kys+mfkHoWEi6PfTvhY5P9TugXyqDpxL97/jaQPuFaG8Q9avQ3iOe19QXkN8T/h7mnFqF8433AO1Tpx2HwMehdyz93wH8/9LeG/TPx5zXPkHPehu4Dvm8T/lPGW+jwP+Y+gnnl/pT9ZbUzxLoHRLCXx/t2J7LWae815T2fEK6GfK8HotgY/Vnyh+57Ca9UzsN7b3h/uE+B50vQX8B9YHUa0r73usmIwf1EOof1A+oFyhFvvN3ufcKxkFu5KsdSX8Y/WO2wIfrb3/azwudO8HzC/T/Rnof+Frqj4R8Xgd/TdYP7+PbtMup/4Re7ZrTgfpz6N8xHX7171jDfL3t+sA5bxXtZ+R7bvBMA89O1z/Ot5+TvxHYiHrqHd5nfNSAj58Z1yXEDz2t4OsV0sORXxL4mwv96xlPialf2fst7V/1/kzafWAs5d5mfHxG+ifkf45y9eB/LuNRPeMF+K5D/fu174PnAfL3Qe/pCMTBTlxe+L5N/Q+Rfxf1Ot67WT/yI7/c+qXQ3iPQWwD+fqK9m+Bp4fyl4ePgqwWeH9VXw9dcy1FvGeOnN/3xG3Q9TftxlFN/upPxrh5V/al6I+3rjt8Ljl/tk+Q7z/+EnmXIax3r6AZgbujbQP3N4D1Ie/+4bmlfR16rKTcdeus6Hl3PGKfad/TP0S9HPx3lmZzvRSn/CfkbtK9Q/75YBOdC70XS6n8vIC/tx3f9MyIQdwQIuXFlGDcl9DcElgSeh76+rF8v8H0G+LsH94tx0H8rOH+oX/vb8zz1f2d+NNKeBP2e4z2/d0c+8ZRLr/0+FsHNnFfbaa9i/dmI/LSXzQB/TuhqQv/359zR1fHFOVb71rfkt+P7e8hjOPjeo55+HN2hqy7t1GX+PwccTn39J0L/Kf01BoPnH9ofp76KdHrko35KvVRC6umfpV+mfiu1KOf9IIY89XtISz+Von/acO7Yipx7kf6d+p0YUEPg6wjtdaB+Tdq7n/IpyW9Pfgrazwp/3r9u0z/e79Wbe7/3vt8T/MOA+msWgY8G7H/1gfWAxZQ/8/VN8O1w/sSgj/34Jv2nf1xq6jeH7xbAWeA/oT8S9buSP550CvpH+532uvC8ehO576L8NNKXGZ8fwK/+n9+7b3ouCPavg9DterGDcltJLyXdifE1Vn8R7cuMv+XQ+xj3gZPI5QfW21P0t+eEJ6E/MeXS0b/X2P9fh86syOMU9Bx2XEPXNPjw/hPq79Xbu77oH7Kactu091Df8/A/4N+pvsVzHHgzIo9lpCeC/yfKnwT/aOrNgf6SzJcDtPsk6UT6b+rfrh0W/Hu8lzpf6O+s+kHR/gjqq99KDh21oFd9bi71PfRDW/JnMa5nA/PS7iTamwt/k8CvHuC1QD811nUWevVPHq0+lPZD+3wd5KEffK3AH97zUQnv7/pvQ99m5tWz6nlZj/KBX32hfgWhv9o0xqt+J0NjEdT/5CPG+2rgVvaBduTbXzmcT7STDPkY/3Ab6PhPTzsNgnUpKfeDu+sT9fQDvwrd35P/sPOf7/q/pLafyddPWz914yu6kd8pONeq35jKeWkB+/9CYBXKj2A9aoRcFuqXqv+b5ynjLPTfJ99zyFrvD6S1L/RG//Es9bagHyxOfqjfPRCLYBvyh7K+NwDGgyc7+Xtptw/j8yLjKDd4msLfEfh7Enpywucx/SqQh/d//SP0f/rNdTnwf+pLfe8R+em3udDXhPFwVX6811Jfv+Fz2Gn1H45B/0Lt5/rzkZ+O/Bcz///fG4K/Ne23ptxS9AWdoEd/t5Pqtal/h/7V36418n2ddjYF/mf9yDfeR/8z57/6Ye9J3o9Cfz39+JaxPuZU341c5yG/8cH6ph3G9e0c5QZFIO5X5NAcWIR+9v5ZX/9A8M6C/+58129ff3737zysdxWNPyGdEv4buL+Rrz1E+8ci9X/QM5XyA8Cv3kh9kfqksuSXhn/93fR/0z/Xc6vn2DrA+uD7jvrPOX/1/4PODNCzP8u99dZ63+N8cR9wNv2kf2o65ts56h01DoVyrueu76732uNaMt+WMa+vUP5H6qdmfn6vfZ20cUATaL8u9BcB/xH1g+pvtfPDdyr4Kwm+Oa7n0Pmp/n+UjyOtHTwW6K/Xa0/UvoB8WiK3xvrXsX6OZvx/BX1j9Yel3LPM7+y0p/57EHwOY/8qTP3wfroG+rQP6TdQjnztQ96fvb97f/Y+7frgulAyWB/0q40H3y7aLQ9/z7B/9wV/cs6jU6h/gH5/Qjs7+JNS/xHo149lPe1pv5wEffn5nhNYDPn8y3xKyPhpRDo75bLQnvvEOfCqH/6B/jsCXEz/7aO/9J/Wr1I/av2nL1D+InCH85T2v4b+dMittv4b1E8J38YpdabcbOS3GH70Uw79k/+B79S0XwN600Cn8QmZvWfQznf646sXhU7tfJngX/2+en31/J8ZDxr4O0/T39DzMuPBuI9b0LtCOy/niQqMo6Xkp6Id7VM7tasH9oy0nAu7U64f9TtR3/t1aN/5nvQk6r0DfvWjmY0/IF+7g/Ya7Q8JjKujnRS0azxJ6FcpP9pfHnVf0C/FeCXan8F4Mq7OOLu/vAd4H9c/j3LPxyLYVvuX88fzqH68xn8BtbeWQ753SFdmH/N+7PlNf8hPaK8F7VWE3x3I4Qj4fvOcC//qq9STqM9Sf9VAezrf34Hu4bTX0v2Z/lOep0lnAv874LkE3epJfyT/UKD/MT7H+GX91o1fNp65gPdxvh9lvXud8pO5V8Qbl8P3Pd7HGK/bmCftuT+1dl8ivRW6rlOusucF5p/6N++P6t/0b9WvVT/XjfCfifPUXuDTnC9/1y8aOgp5X0beE2MRHMl4/IB+7k9a/6kXA3/aE9Sfx/o9BvpzsA90cL1hfOh30RF8Yfxt6PdXUP0E7RmPnIFxPA55G5/cj/V0HHL1XJhE/yT0RW+wPi2nnP5HzwbnP/ULrfW/gL6hyE//9Keo7/3Ne1tRxx/181JeP6LQf+gI46o9sAPQ+DH9NzoH673xRYXAb5yG4zwF9b1XSufI++6lr5Bxe+xn2nmWkS6m3xZ41U+to9xl5PML8nsFepdS3vOT56ab0On5yXutccWrqGd8sXFLGbx3UL8I9KdmvM1nvK2kfxfTP29HIG6IdiP6uzTtGL+sPm4t5fQHe4n1+wvjPsCv/WgF807/3YvI4QH9K5BXPqD2KOsP+Y/7g/Yb7RdT4Hs+9K9Efq4/notdh1x/Vmq/Jf8Q+FaSngtcSPkfWa+axSL4GfKdzvwrCB/T4Pck+PTv7KoeCP71B9A/QH+BzOB3/m21febHIvIrkr+IfinreIJ//SZLg1979QDoWRLYj7Ubb0K+vi9wlvq+M+D7Auqj1VOrl77u+wSsFy9C37ekjUeryfgxviWf53rGp3Zx57nz+nwsgqE8lNMk6hdnPqfwPk16COVD+3wB6t+103N+e5/1+wH4OxXEMxv/0gg8xsGov82vPzlQ+/A39MdL2kvAn0H/bOSVAzic8XWE/FfhpwjjvDBwCvh8F6U/dLleeB5Tv6ieWL3w2FgEu8H3Or6/jDxq0//G/xn35z5p/F9jz1PgM36/fqB/v6Pdn/LtoDc8b3oOLeg7KMh3MPnqJ8+CPxHpCZSbSzn9jxPRfq9s9+JXX6J+VL3oz+SrH+2hfg16fP8jKfwnQC5hfGRr2nd8b9ffG7iZ/i1n/GuM+ujhklHf9wg8f3gO2qn9w3gE5FAPeo1fVC+n/fQV6mvf0B9rmPuq/gzIV71x6UBeD8P/DcbPF577g3gg4319f0F7gnaEVOo1weu7CCuD+HnvLfon/Ua5MB7aOOnnwO+90fgg74/aV7uyvj/mvsz3ifDnfnHVOCjm9XvAx6GnlPoiyjfwHRvwhv4H2WIRPM28D/0vcxpfAz7P5/uhz/g+/fWmg9845pOUe47+eI78ifTXYtrrrR5Of2fqtzQ+HfzJaF8/0sTQZ3yNfjDab2bRfusIxKU3Hlp7bRBf/TL56nt+Mr4Eua+gff3d9G9ryvn2EP3ehHQm8TEfY3x/gvX1Avzpf54XuvVDNz7Xd13Up+sn94X3E+4brntTOA/5ToP+P/r9TAE+Qf/pb33X/5p6Cbw/6rdAe75bdAD67uq/6E/lqb68r3Zd12Poa+T8orz74g7gEdorAT36F36o3xvtr9A/ClgBOZaE/srI3Tgq7wEJ4OP3YN8dYJy27/NwHnte/zvOA4fhR33Jq8BqtKc+RfuLdpdV9L/vF9UiX73TYb5vhr/p+pdSrxvnwGnqY+B7Enyngc62wfs3xtfqZ7HJcwjy30x+Z8r3J1+/ynngN46qSiyC1+FbvVSorzIubwLynwi8rL8R+Bw/jif1pxWYV28jV8+Rnh+zs34dVa8B/p/I9z2QhtBzFf7eh37jx1zvizKfCtP/Nyn/hn6LlFe/rz27H/LW3q19ezTyc37qL5OaenX1+6L+K/D9pffTCNy1M+oPpX3xrPd3+OlM2vfbXsh873fvgWOof5BxVYpxvR55ej7aTn+qL1N/Vtl5GviH6y+rf6z+29q19OPWf/sy/ZWJ8XOF9E7GfyLG/3HjxeFnHPJVP6X/t3oq9VMNmb8doHc3+GtRv5D3O+rfotxC6HNdMP7UeFTjT3/T/xQ5NID/Jch3I/22HpiO8XyW9suxLtSHzurGF8HvbdrPpH3DeEPoK067xlXsRu6zyHf/9h0i7TvxtB++J+Q7Q+qX61B/BPiqa2eFv4LaU6jfR32I8SfeB7WrGXeHPD2PGcfne3odmA/1waf9T3ug9r/+yPNP1oe5wKzwqXyUi/6zykd9diyIZ9D/uUJwf3Ud8v1I7XmfQW8Ryt02/jHQp7jeGv/yAv2fFr5WMD714wj9xfQjW039NPqjGz+kfyn9ezGIu/7DfYTyvZjPw9WPev+jfe+Z2kF/Rq7b4C8t30coZ+jdQ/v/5fefAPzbIxBXF1ia9rLqnwLeLPClvl49/RzWB/0r8tBfeRgfzs9Lwfzs732GeVnYd26g43PKLVCe7Avz6c/u8B++fxb6MXzHvD6OnA+SPmycIvV+oJ30yPcd46tI332/g/3E9zt8t9T7fNVYBH0HTv2u/h3qeY0DSEl+TeTeQT9f8Gjn+hj8vje0g/Qk9o0KyK8icKj2C9r5BXypjXNx/UAuhYBnGKfJKN+T/qsBn22BzzG+UnK+KIVcSwIHUk79s/Gv6qHVP59GnhfVS7h+Gx/B/qd+OQl0LvYeBv6+Qdyu8Y/Fabcy9KhvdV1Qr+M7J843y5dgPE9Hzp5DjEd/HHnlYh0pQHqf74d4PjB+inHwQQx85GufGGZ8CPm+b7QNuB2oHVO/1Mz6dSEf39Ow/zrRTo2g/w5C9xDvp9wXayDf8P3dydovfb8ROvbTPy3Bpx9+BvrF/eGy/hHUa8W5oyXftYPXCN7HaaJ/AvSrP3Q9rcg6d56064vvvupXrZ/0M+rfgv0yG+vHVNLef/vDv3a1EsjvGP2dFrkMI12N/kitPyP4jBM2Pvgv8BsXpX3ReCnv47vBs0v/FOgP3/XUX0j7T37jP8Gr32oZ+vcVx5d+Z0H8VOh/sIp8/RD2a7cjrR7puvcz5s3X7Kt9STs/jK/xnR7PB9phUjD/8wI9v7aEfs/NvsfjuTmh+y/41c8sI/8b6idkvfqA8TMDWAH5ue7rP9fFeC7qt4rA/4kz7+f88j4FfcbZGF+jPcE40PA9nPPgHwdsAoxnXNz1S6B/PEeeAb/2GP20P2e9Peb7ZtpBqKceVf1pIfptCuug5xz18bv0e8v6//NbhPgh7RbGd06EHuNi9S/X3/x+/QGC/fIs+epRhwX2gxKMjwfpny70537t16R9L2Oo50no8h2Vf+nvdfprBu9UPBSL4C3a9/3P4frZIj/947aQr51L/7hm4D0LrKldhv6pTP3a1J8A/nnw1wP69EOtg5yXQZ/2SN/R9P1M7ZMpOb/V43sq0iWh0/3R/VD/2/bQt4V1Oxn4V5Ovfd/3rkcCjbfw/evtlL/7rrZ+utBfkvJpSa8E73Lth+ZTz/ckXX8rM371EzEO/yr1nXe+qxLa97zv+c7pIOh81/cBWD8uA9cBK4H3E9o9C/509PMJ8PgO7Tjmq/fEceBvBz0LmH9DfKfeeRTod/UzjCEn33fJQpyE77w8BH79/TvCb03q698qXuNNQvwVka9+Hfp5rKB8Teab/mfhe3++q+791fus+7F+O8Zd679jvIvv+/iuT/tYBH3fpyv9t4T6ngc8B3RCfuqhkpLWH1G7hHHc7nNtmN+OZ9/38F2PqdDTUf0IfOkf5ftT2mtHwY/ri/HFacCbFmjc/Fr1a4E9xndufV/hQfCHegb3B+OWPiK9lvozfD+M8ZtY/yPSbyOfesH92Hgr30/RXqT9SHuS9rUnyddv/AW+1/Z9UvCm4rvnn9HgN35pKHg70H++h5+S+XiTcef4PIS8jG9Y5zpAvnFHrue+I+97z+UC/xP9Tnwn1P+HmA89vmeUJdg/5F89Uxjvqj49kfcf76v0j/erTuBzHfR+dSHov4tB/3mP0F84fP+gBvTtVV+uHQ4+J/j+KrA4+6zv82n/c56rb9IeGJ4fFtPeZujvp30d/t0vVsGv/rUJtT+6TpOv3X8J5V6Dj7d9B4Lz/q+sj2No56LvS7O/+e5JZv0xtJcj/7b6xZKOB/9duyv4XqXcBt8hgz/1Sr739w34fZe6jnEd4HvA9zU4/zZE/rXY3w6iLwn1LephGmvnRF7HaM/30cdTXv+mH9W/g28Q9L9Lvu+j6G/u+yjOL+P+/Z+WUoyfN6kfjpPqyGsT/Ol3qP+4/ofh+Wcv8834myq0P5D8/azbfyE/35dKzj7mO1O+L5WP7+spV5J97k4wP5wXHwXz4y5/+k3Af0ro8D1B7WLayRJAv+Pbcb3I+YEcjDu7xHf9RvNoXzf+zfhG6t2n/4LvR9DuFvi7QXn1AeoH1BckgN5G7M+nGacNSU+CP9+jPQL/oR27EPj0S6rH/cT30VPDt3rYxDHwBvb5Gt7T4Hcr47MX+Z+Tf944CfI/B/9l8OpH68Nze5CHfmKhf5hxB1/SblvoWhq8/6H+z3uM8V36F+lXVBS89yGfLMYhQ1cYp6Y/Q/j+6VPI3/epfM9iN+WNM1KfuBR6jIf6nvofMz660q8bSesv6LvZTwbxg/rnNKV/2zCOCjHvvgTuhl7fDzd+S/vpcfardq5f8K1/jf55nts9x3t+r6k/MPz28rwIfVPg/y/9EPQ/oP9Xeu/Vj4Z5Mgp61DdJl+uq9MUH+jrfKTc+tCL1bgKTGscFnm+hz/cp46FvQ3Dfc71zPZxDfd8P/Ra8h4xvQx7HqO+67z7g+q//yJ/GablPg2+N7xkip1GME/Ugob9/+P862aHX9yFu0j/NGR8vsy83pv224BkJv/mpr599fvRv2cGzmfXE/x0rH/wfmf4Hed1XXZ9ofyfz/y3yr7E/6I+wGrp8d+JL4B/0f33a70D7+fS3AT7NenIdOf/AOcP4MOed8zAeeZ6ETv9XKrf3K84z2ej/s/TLKcpfhX79tL1fpAvuGd4vsrvuUX4a48X4WfUHqYHqD5pCj/POeEP1ZOpHjBvuwXf1Pr6Xm4rxpVxaIadhMeig/9ZA9/P0/yrGl+9lue75v0zvI9+vg/O553XP5+oD1Q/W5Lv6QeM6ciMn/eNP005B5O+9P9QH+P9j86G/mu98BPYj45r0J1T/pd+77wMWoN2lpFsE48P3LebTH/4fkPf+UB/wk/oc8Kwl//FYBH2H0f+98z1O/z8oCeulcSGhf7bvYvhuqu+o+j6G67vrunoG9Qv6k+lfpn1F/zL/r646dBn/loHx57zQzhba1+pAf12gfj7Gh+m/p7+e/nvGT+4Hr++ivhjsT5/Aj+/UaDcb7vkR/vuAZxHzYQT5Vxk3a8C7lHR1/U/hR/9w9Qvv+v9dyL034zQuFoEr8J+defdfcSa+q+w76OH7yntp33eWjQP0/7SMZzG+5UFgE/DsZ94cha5TtOv9I4z/MO5jE9B4CeMnwv+BKaw9XX0z/Pj+QRL9f4P/X9LfuYrxH6RD/7kT1IsH3mA/2AWeLch/EPOjqfoJ38HyXU/69T7wr/a8pN8s9bwPeA/4FXn7nl0Y/5XG9zu5t7YI9ueM0OX59KbxMtCn3dV3aPuQ9h3aA/TvbfjXnqL9/Dryu833943TgH7v7/rPeY/3/r4W+S2k/TOkXb/D/7cb7LkSqL+pfpPGFfs+1w3kM5zv7Rn/+on6/27q2fyfN/2Y9X/S30s/qFqBfaVtYGf5EPr3UN84kKWky9I/wyj/AXTkgi/jLJhOcYdcN2m/Ku1vov5ACu4C/1XklSPw79PfT/8+41mNb1WfYXyr8aW+x6m/v/9P47vyvjP/Kfh8X76d785TP4xP813AE/TfbPrlQLD/+76C5wD3/33Qoz4yXB8KkF4PTMH5KhX1K7E+/844iQd2o77vI/sOqXFA1bQvReDuednzs++ba/8O4+t/of/0+9PfT3/Aray/dZgXE+AzHf17IxZB35NR36mexvdlToL3Pejprb+m/j201xf6ToBnCvWLsr9nZ/xNYB/ZRf9Mo//eAk8zYCXofTbwDwz/h8T/7/N/+7RvjTL+EHy+66s/kv6a3yCfcUDt28bXG99Sm/Jl9HcgrT+u/2cwU/kgf+2d2j8P6f+H/Br4v2+sm+OAGWg/jD+oZxyF8Sjg9/8RjWf2/xH/QO7ngReA+j9NgF/f7ZoMvoPa/+i/fKzfadiPjW/3/6k269cHf75f6PuQDUmrhztJ/+xlX3uEfaKM70GAJ3wP0XcS80Gf/gb6Ifg+nXaaVPDbDZgWWAc8r2sfprz97P8rqk95G/y+bzcv0G9UpLx6DvUb9VkfSiOnrxn/+pf9ybjbSLnLpKt5X2Jd1g9kIOX0/1APqF6wAPR3Jd/12P/PSgwfrtfaZ3x31vgn46G0V+jvEc4P/w/U/wdNBv3bKD9J/z/jBpHnNfj72P6DXvWF/p+V677v0jjPnd/eR74Fj/eSLuR30O4MP/ox+Q607465D4Trf1rWy5fB9zh8/k3a/0feDl7jCvLT//6vku9s+v9KlVy/yK+M3B+D/h7Of8an/yvi/4xU1N8niB++Dh7/36ob+QvAe57869Dn/x/tB+4L/L3Vh+k/8xVyKQ1+7WUdoe8tvv8J/YPQ3+jX5DsKvp/wOfR5Dv8K+jx/J2U9bI+c13IeyMI8W8j826BeAHj3PTX9COFHu/JC/x8K/vzfbP0U9E/w3QPfQZgC1P6gfV57vPZ5/XuOBu9++Q5YzmA++h6N/2u3hP5phHwOg78W8vF/CXyv5Sv9OFzfoD+Rcb/Q4/sZ2ve1R2uf9h7j/2PWDPTzzzAfhlG/WQTiDgGHGXdCu/8D51F/U3icdZ13+M9V9MC/9t6yx0dmmQnZlLIKUSp7yyqVkF32qMzKCIWMKCErskeRFbKzixIyQhm/5/m9Xy/P4z6/3+ef89z3vffcc849d51z7v1cSBj3v7+F2SN4hfQzD0fwq2QRPJw1gityRvBA/gh+kyqCS4BFskXwr7wR3JcmggdzR/BYughWLBDBhzNHsHiOCK6nnW25Ivhshgj2oP4C2n8X+n6lvbwZI9guXwQnAPeBf0WWCD4NvEp7ieNH8FPaq40cbsQimCR9BI/QXsY8EdwKfxvh+xT1kiWP4BTwFYffo+A5CKwN3c2g7yh0HYWuYrTThHRT4CzKZUYOvyLfz0l/Ch2/Uv9D5PkN39+nvfeh7wZ4s8DPfuj6h3RL6K0BvE17qalfFvxbaT81+A4jr0WJI5iBfuwKniTQNzpFBDMitwSU609/Z8kUwV3AP6HvI9pZTPs5YhGcBF0H6P9LtL8JfDPUF9qfmiiC89PCX5IIDgHPy8h7BfIbBfwO/Fvo327gHZs0gveUT0rwU+4ScDbjpzjlTkLfi/Azg/wq9Fdy8FeDz7mOL+jLgrw7Qd8axtdp5FbzIdpXj2h3F+3lo15d8M2hnfiku1O+PHA9+PenjuBw4EDgZ9C/DH5/Qz+Wk96I/FPB11PQNQp+F9L+zgjEpaXda9DzEPJ/C/k+Sj9mQj8bge8g80Iv6v+LnPdA/1vQ0xU9jI8cyiHfNcyHRdGLs/DxDfStZvz3AW8F9Og9+qM58+ccvk+CztHkj0bf8yGH3NA7hHZq0D/zaW8m5ZJA3xLkVRK6DyGfnPB7h/Qi6GtPvXbwn4N2lG9Dyv8Jfa/TflbqX6ed5+m/I8htDv2eDHxjwZcJfKX5vgf6nwFfCvJXkk5Nflv69wfyX4DPg9B1mvzJ0BOf9o5SbrzzC/RfRB++Al9Z8rPRHyPQg2rQ0Rv8NeFrFHStAV6Cjlm09yn401I/H/jtn+KxCNpPtUnvZD7sSPudgJupnwt6R9PuBOpnpf0V8SL4Mnxmp3wl6OjG+F8DbEB/DUJereGvHfrZhvQ98FUE38OO0wQRPEB/XiY/HuXHwG9u5PEE86Hr4gzG67/MD09QvyX0DgPvKvhLDr4y0L8b/d1G/SngOwm8w/gfQf/Vp/7j0NMPOiuT3kD7qZH3D+QvIP0sfLeCnkfI/wg6ltLeTvisAN5zlM8KnhjlZ9BeQcbf6+6/qPcG6X7wVwG+6pBfiXQT8NaGv+egM5v7LPI70d/Doe9V0tuRT3PoSUT9MejFafCsp71nqbeOdCH0sAf6+yPzYxH0Z7frP/z0R6+PUd916hb096X9E/R/Dvifz/calEsBfd/D3wXkkoZ0C9rpi3yLoTddWP/Og68P9CWA/1ng6QbMCb7ZzN+z6ec5pCsivxzsH7ujF+0Yj28hv5PQ3YV2/4C/AfB3mXrZoKMO/KUG/wbyH6beD/TD1VgEt4N3IPS+RbkS6Fsx6p9H3u0pn4L6z9EfrzL+65JuTX476BoPnsnwMws8C/k+jvRI4CTkOwe9+ALYDf4Gw9+T0PU37d0m3Qp+3ka/zlP/Mv2bjnI5aP9t0nugbz/yH8l6mhn86aHL/dtV+DvF9yOU60u+828j8HeC/saUu8X68Sb5Y+H/Y/CNQP9HAudA/zb6p6d8gC87/PSA/zbwkwW9HAP+qvC3kPRN6DpO+ezga4T+zyM9AP24Dn3nkE8J+PyA/Ug98P4Ugbhy0HUZ/W5Ke8Xol3HozwzacX/0L/zdhv4a4P0G/g+Sdl/temA/eT6YSf4PzGOeDz6F307gnwq+wQUexCd+20sLfVPgPx/9k4t0aeR/lu8F2efldj6C/xakE4Hf9fdR6MsNffmQe3noLA3/rZGr+w73Ie4/ttLudeAc2plGfkXmo/HiRV7Kpwj0lAeuh56knmdIvwcfn1HO/XdZvjem/EfQ6zqdlfrVkMdq9wvIrz1034TOdqSHUj4OfMmh/0vqryb/d/CXg55pwI3Irzf0ZYKeU5TPSDnXqf3Of6wDachfTPkl0PEV+N6C/o9Ng/876DuDfn6CvrSG/lPg3UL99ZTfprzJ3838P4L6BWm/Nnicf7WHZOX7CdJtad/+uwd+z1F3kN836EMZ5tGd9MM9+KlIvUTU+xd8X6I/cfTXRugZD6yF/q2l/Fm+1wDPMMbfYtbHKeArwHg6inx2UT+b8oGuO+C74vkZOQ2Ar6HU3458dwTrgfN/S/DvgK5r4G9N/fPgHQ3cx/wXj/I/8H0x3zOjP+3I3w3+Ps5ftN8QOr/A/rASOBvYATrcv01BzypQfyf5xdQ32tvE99eQ/2n6tRHjYQ7y6kH+u+ArCswNXTXI/5H5vB/4n4KPb11PIhA3jnZPok8F0L8naL8F83J39vnvoN+b2A82oNzL4KmL/OfC90HksIfvV6g/mfpZWGfKsc7kcH1wPkROGd13uL7Ad3/a7Qesj36UJj8p7WYhf4HrP+3O5Xsr6LUfjqIXzpMJ0I9WyG8ZUPvTe/T/Xeis5foOHe5/68YimA25paOdEuox9S8xPnNQrhLpdyl3xvmJ+gP5/hLj8wf2Ly9Qry75XwD3Q5fzanX4yEv7zsfngN/RH+3I97xfSzsA8siGvJeSfw28hyIQt438G7T7K/knoOs58E8Fbw3a7cd8kwj9uYVeNqSdecj3PehdhD47H5ZCTmXIH0q9W+4foCcd+jEEuU9Wfzwvon93mG9fBDYA/oFcD4CvNu3Pp50s4L/i/h56jiO/Q6Srkb8NPHeQzyTwab+oEdgxtF90YH84zPkfuvIjv5Gk6yH/N0hr71rOuag341L7yDXq96F/xkLfcuqvgY8ppH+iXGfwJta+T72vkct/+h8otx+93QucgXwTkZ+W+c1zsefkq6QL025x8O8Afy7ou8X4KU95/Q36GfR/XOe7/o+61K/L/HGGcVaP9Hj4qwl/kynvOl8rFsGZ6KPnoqrIy/OSerQR+hy3b0PfM/AzmvIZ4Pcn9NV5ZbDnH/A5v2gPKQ6evNCrvSQF9fuSXxQ+/oGeWuRnQf9SUi4h9Bylf76inutPa+hvTHt5+f496d7gnw99yx3XwP7oXy7qDaF8U/rnT/KPyh9yuQwd32oH5HsK8O6A7sGM707UT4a8DiCXstDv+V47x0TwOr9rX5sA/g/pv2Ouv9CbXXsa+PrSzmTqb6C+5wzbn6J/ADl0o15z6K8MXZWoN4Ryx6GzLecR7R6j0fcvwD8LeiZC33LwbdEug76nZ55MS/oh2tPf0h0+59pf8N8D/L3A28t5EnkXcJ9FeqPnTPq3Dvxrx/sVfIvhPyv5vcivA37ldIH1oSDr9uVYBFuC/zz1X3fcOp5ZX8eQr31fu/4C8rMybz7JONlIe+nBt439VAbS/bUbUL8g+BsiN+2xr7i/pl3t4D9R/z3qL6dflwKPIsf09G9q2q/AOloRWNjzGXhrQl9G6r2AfLY6f1PuUfhvDvwP/WqHviVFT1w/X6RcGe1glJtEfkno1m6+Fn1aQbmyyGME9JbT3kT+RfZr2lcmsR5OI3+l+IBtoWcJ8s3EfmOgdjzSz7m/1o9J+em07/7lIvv1L6WLdh6nfhv677R+T/gpDN5SyLcB/P1Hudngv8F5qxjr9E3SU6FnYnA+ch/9KvLNhN6nBl5EH34kv1tg//Pcf5H8l8DfHPw3SQ8nfV8voH+I5yDSI8C3BXz1kNNW9Ksn9QuCb3LgX+sK3a8BtzN/Kd9/tMvRD2foX89Pc9Grq7RzhXbOk99U+0EsguE4OAs9uaGnD/rt+t+M8d+Udk/A/0X90+ArTL7r91H6PwZd5Wl/IeUagz/UV/V4P/KsCP36lfQzzQN/Decv+sP9xmD9DMgtP/PWr6S/h//W6hN0ZAM2pH526s1mXqlHP92hXHzK9YO/U+CbRFq7zMDA3nKE9HD4exs5/gX9KaBvKOVPen73/AL+cuj7b/BfCv0ppP0H/fiJ8VWN9JeUH0u6i34q5Ls0mD8zBvQ4f+ag/WvgqYGc9AfJr3LoAP3KowftLaNcEb6XoL3rfI8hZ9edOvpnofMl9EV/zGLo0/+ZlPLFyX+D8s2MB+B7Afq3COtPKdJrafdh+Oweg+8IxN1ln/gteF9xf8j877nNc5x2jn+gT/vnBPC0Q+4x+i20Y3dHjp5LNpEeQb3btJ8Evp503wgfxclvQf/Vp9+aA2ujP4vBu5LvlcQT9I9+uqb65fI9yK/n1RTGfyCnFfD/m/49ym8mfyD6PAiYGDmuB5/rwcfOu+DZTf/pf7hH+XGsp8vA/zPymqmdHjzN4b+R/jBgJ9obA3/TOH9l0/8O/8+Cvyz9F+f4Je35NLS/as/VDrsUvi+hp2P4nhL+dlNvN/g205//OR7gqzP9fpbyncHzMvrpebwu9N2ln+OBbxowG+PB/WVL0mnA0wz8f0HPKOT9vvJh/6J/vyLrWyXgWOpnRv6dod84rjj9W/AX+oXHMl8/xjxiPF1Jyt3WHmr8BnqtH2cb6UXwZ7yY8WPScZn0H+ynqmj3ikXwAvRNZtxOAeaCz6HIpyD0GDf2LnxMpr7+GM9NrlcX9G9BTyHwvUW6AvJ7inbXMW/dQJ++RD7ao7VPG0+lfboMdHn+Gk7+AtrXPqDdXzuB9oHrfM8J/q6U/9v9pvsf8tuw//Acc4r808DQzjIRvt6g3npgX/jXPqZd7DD0aR9T/sbrKf9V8N+QdbEkcvsQOmbRflL1Qf+S9mn1n3RK+Hmd+Uv/7qPgbaf9mvKnqF8e+owbzBr4Y9+H31vQr59G+/bmwP91F3lsof4R1pNj4M3DOB9G+9vJ/4hxcY70XfD/R72e4PsTPt5E/sXR98ERiNtAefeTSZBvF8+PpJuDPzP6FsZfvMv8dw7+xsJ3QvKfgp6vyfecWd/10fgK+uMT2nceuOc+mvGjn/9P4y/BvwV8eY0/pJ0LgX9Bv8I5ytcNxp/jzfiAGPwdAZ/nqXa0o715B/01H/yeA9z/n2R8OI52Ge9E+wtoLyX9ktx2oP9d5vUkfB9AWv1oZvyX8Wv6I6lfFP2eB/7POW+0ikWwjOst9Hv+Tgh+4wK/p7+u045xgrfhV7tUI+PQnB/g9xZyK0F/7wBfN/dfwTyr//tx8L9OuSvay2hnANB4H89nRcGvvcl4E+1Q08HfgfX28VgE+zO+2iM/45+Ndy5M+2/Rv/8h/+3GA0BPZvLdH67zPEa+9uv8yGM57XQwvp32G9HfzkebqL+X9rqlfRBPWL8S5Ssjl+fJr0S+5++/jRMhvYr80oH/tbf+41gEn5V/8odBx2H4b8t+YyjwYeq/aDys8YaM01r0xxfoSzheHcfaV5Wv+27txPoJphrXRfvrIhBXwn0Y/F10/wx97m9SuX8B/zrwX4pFUHvgMuAHzv+e3+k/9awl6Znke17NDT79Fn8an0d+P/onFXQ/rH05iDcyDqkl81cXxt965qGqrAfON94XKEJ6sHYG6KhJu/qrz8JfZ+iryLxWC74Wg38z9BRC/k/SzyXZr6dCzp7/PPc1IO35723m125A/ceut/Wplxb6u0N/M+o7Hh2fc4LxafyO8TrG7xSBf+NnKgFTsz7eo/9uI1/3b3dIp4S+efpLjIcl3RP8YbyudpW1jD/tO/ppQv9M+wjc94vqJ9U/WhB+OnpO8bwX5P/sfQHkUJn2tf935rv70BXub+gPzz+eh/6BnzyOZ+R8mHU8E/jygP9yICfl8y/8/gydu0gXo35+0omdD6nXA37Uj7msgx1iEVQ/jJeszLpoHOVj4K8DfS+B/yHwJkN/qtC++23jbjaqX+Tvhr+x0Pc25TuynxlFex8hv2LeX3BfBR7PGcZnLtbfiJ7UpH416OgLX/XR3+eBxp95vtd/kBv+14N/LPWvU6809Yyv+Jt5VX/NHui8gX58TP3vkbPn0rra75Wf8Xrg1b51Vv8e+B+C3xak9dfuMv4qAvf1Px106/9PAD3HaO8M7Rt/aDziAvL7BPdWvMcyCPza22/Tflfw9NYuRvue818JzvvpSWdwnQj2h8bTDkIPvqa9Ktp14H8YdGeLRdD9U07062v3VZRPCH3aA7WDaBcsSf3ljO8V2qkYz8UpNwx56F8L/UjtwZ+E9tq6T0S+37Eu5WYfkxc9qUl9zxeeJzxfvIl+DKY97XFp9NfR3mvY80K/8DrwlUd/F0BXBeaLLtSv7/6F/PeMbyT9PfLVHv0V60Nm6O+DfUK5byXt/uYX6PpJ/QF/Heobb23c6W7wGP83CH3JzvdX6J828PkB8vR8NYZ0CfITUM95xTjwkuDfS/s/A/cA3c8bP6Y99Yzxr8xfheFvpnY540fAb3yL8Sw9laP+Y/pjJvAa3+/Q/+5Xd2vnBpbQPkT/rUWe26Fzh/e3KO/5JrwHtRj9rIyeVwVeZf3IiN4+xLqWGjgDfG8jb/cT57wvRlr7l/HLnn+1f1VEXonhJw/9mA78e5F3zRj4KL+e+vvYf9WG7+eY/w6RLqpdLpj/jL9+Rrs5enWK/t8E/3s9lyNn7+G8Cv5OzBupPT/A/2jyp9J/2svUw7K0r/1cu7l2dPWpCuPiM++bKC/KPel5h3b08+p3/YD+ex/4IXAF7Xm/4VH95sZ9wP+cCMTVgs54zDdj3d9Sz/sdualvfN8V6NKvuVc7tftf6L8LviakRzP/dqT+J96H9r5tLILGR2mvuwE9njOMl1xH/7YinR06Lgbx39+Bd6D29eB+bxH3ud73JT+9dj/gbvAMQx9jjO88QOPbP4Te8Jw/FPnVgz7H/ZtA/UWp0LferK8pSB+n/lzj6+B3MnQ30f7hfgp6/qbeLe/fGn+n/QV80/U/o/9veK+A9eJf5OA5rD14K3t/jPpzwDeV8vb7afLjex9Nv77xvNBrPIF67zhQ/0elfpAv+ZS/l/VzUS/O9Zf+v+7+mHLh/UbvP1+lfe9Be//5O+anFOBZzfzR0Tg5+HksFkH12P2R9nDPJZ5TPJ94v38NeLzn35Dyr7D/bQRczfw2ETk8wvwyjXmwpfccqL8Ffi8Aj/PdeA73o7uC/arxhtWY/8O4zxno03jPP7Tr/fRS5A+EvzfIb0b9fsjB9a2M8f602xn+8rDepNS/A523gL0YnxXpx7/Qk8TI17gY42E+A89IyrWg/UvG36I3xt9pn15M80x7ccX4ng/+2nm+9vzr/TnmixzQoZ9CPXkaem4od+qn054K/7n0/5COR/+dCO5l6B80ntn42sdofwXzaELq+35FZujwvN8FRi/C5yVgGF+90/hY6l+Fr8S+L0B+GMf5GfhTg7c2+pXG+Hbkv5/5qQ/zfnz0MT3ljA8M7Vyf047jIwPj2HHi+PDehPclPgfWhv6xQTzbJtL6E43HTGa/g9f98ZoIxP3tvXzk5P2z95jfMtMvnq885xvX4/oyl7Try1bw5vJ+rvdStf9S74r+KPr9cuDfnqb/2jhV6uuX1R+r/UJ7xu/I84T3i8nPQP96ryee96M9x9H+ZdabTcaZe78TeU+g/G+xCPp+QWntl+iv74P4Xojvg/iuyzLgWucJ/afIczh0GJfybZ7/m/6+vrsCPe/qf+F7uD971P0dfPwBXT0De1ZJ/Q2UN/7M+7jez/W+rvdbcoO3HvlP6x+GvgLo0z/MOzeAnv+cd+ZAr/PRm/T/BeMyPQ/opyLf/WcB3+UA30r3I/RrFuScG5gF+log9x7g9V2YGehPL+j1/N6btPGx6scJ7b/U9/5mR+cl9MT96x741/56l/L6S7S/Nqa9A/RrFs8ptN8iuM/2HHqjfc39WU79ApRfSntVmZe2ep+f/UUa48+h2/hc43XP0f405DcVOB34D/j70/5E7fjQ94n+A95D+Ba92kt722lPf7z+ef3150hvZjylgr9J6Nsl0i0oVxp8OZD3QvpXv/t35OuP1w+fR79HEF+o/fRF2v+RdjMgt3l5H6T/V+/FQ4/3o40/jw/etcanxyJYhfne+9pJmUd6kM6HPq+mXH7STxmHme3BtHFsxq9lZ/6fyDqXBPz5of8v6N+JPNIa34a+GR9hXIRxEhM9h7A/GgIcDJwAf8vQt+boYWHSxZBjI+hKhXx3Uu8m7RsXFfrf9C9pv9eu73ynff9R5gfPO75r0AL+KyCffOhpa8bhcvB0Yf0+4nme9agK40N9cb1Sb0YA44H/pv2P/H3/yvtnnp826z+m/86hf4WQ0++k3wd/DfRiJHrxjf61WARnwY/vgvlO2Crqex8+EeU/db6m/Zbok/ZH7TD54fc29Ayl/95gftjG+FtG2ne3DoDf96VG075+Zu9Z3gRu9F4Ecg/fSfB+ZegXM/7E+BrjaoyzOYccikLXEb5ngr4v4dd7h94vmRvcT4l5P4r8PtQvgZ715LtxKcPJX0V972+7n3a/PTt4f+EI+c4zzi/h/YTz6Jf3FKq5Lnl/HH5WQc9d5Kl+VPAc4PtGtO8+MNz/fev7Efo5tb8hJ+0z+ZF/dePF3N+hv94T830k90+hvt2KRXAF+vUY+uc7ciWB06EvHfQ3hq9PSP8CntaU3xGBuHXw5/pvvFdoR9I/7bt07gfvv08H/ROZ7/aTPxJ8rxnf57oH3OT9csprf/oKvL47UB78ab0PbXwbfDqPHmN8XAFe1U7rfobz0RbvQfJde63vE4Xv9/k+URgP4TydHP1J5/0s7Uu04/y6h3Qn7ez6w+m/XxI9yN+X6Plq6JuGfCqSvkZ7fUm3hr8WwDbAKdBb1Pj3wM440vudtN+Zevo3XoS/SbT3DvXjoxfLgSt9HxG6m7Oejgf/IsZNM+QxI7hfUwR6PF/pD/X+yk3jtvneAn7iU+867RmntMt1JNBf422PG49Mfh3m3WP0S22g9y98T+3+u12kfV/N9+XqBO/M+b5cowjcP9+PIu39jSWsX3Ph5zfjNODfe11Fje9BX9uT7gu+psh1BWnjX3p6bwi6fE9tJPw5XzmPOW8tpX39C+5z9DPoX9AfpX+qEekl0Fcb+Xp/8pDvMzG+G9L+Stp9gnIF0J8u0Gvct/fo9sciaLxAfc8JpFsF95V9j8/3+t6hf+xf+3UP/eB4y075G+iV72U8Dv/6JUpR3n3Uu/o5aF+7ufFInof1u3g/y3tZ+l+0r6Xnu3Y27Wue950v4gXxCn1J6386BD3u79cZV846tYF0EfhYj35qr/E+gv68V5g/9jAOz7Le/oUcywTx5cZ77/ddNPKNz3f/4Psop5D7QvRmCPOU9xBORSBuJdB364xvD+ezusH5fQr0e48svD9WEvr0v/munf63IbTr+WoZaeeP5vpX9LsBX6K88Xn6N/V3Gq83iPFzVzsK88we+sP4rj+A2gGM7zKe62YQ71UL/muS7ztq4ftp85CfdrQp6Kn2tI3Gc3luh46OxjfqP6CditD3L/gTkJ+E794nGYd+rQKfcafO80OpHx999f2gk/rxvT9D+ePQ5zjdDH1NkOOLgb6MAv8f2o+dx6h/mPqup8+534Yf/Tja51zXtcs5Xn+HP/erxidu8n0d8nc5fsGvn9L3lLz37jtLbWm/Mv1VnX56nvH8AflVXH98v8vzlPYsxtsnwI+BE2i/MfqYnv4pCB2roN9719/Ch+eO95F3P/QtLeXaIu8ElOsJv77XUoPv3r/K5n1O95P6X4Ez6X/fDfL8VJT+/Q38+nc7gd/3NrKRnxA8n9API41zNR7d+3fMH/av97uSUH4t67f3u4x/9d0Z42CNf30WfZymnoKvKvlzkX9G50PamYh8tedp/x2JHmv/9X5afGAcsBbtJdOepF+Z71UCfb8BH46DhL6/SP447S7OP/Dp+4gr+T4VOtf6/hbyNK5sJfwbXzYOffGe0lnvGejnRF//BW4CX0bkon76ToDvfPq+5//37vXj0FcE+sN3Yo7Dx0HafSKI/9tFOxO018PfOPK9L+y7xlcYl9WhJ59xVox348Y/YjwZP54HPufTvvH1j/o+VBBPo589Ff0X+uf0yxWAv3B9cl3qBP2fU7+N72JAd1PPT+iveqp+ao8+hvzakn6E+t5fitH/+jk7Qt9835ei33y3YoPvRcD/X8b3UH8X6SbeP0auSaD3jPFv1Hf/4b7DfUgG2nkd/soCx8DfcdaPpNpPodd3BHw/YDryex++P6V8slgEEzE/eK/HeXOn/h3t1silqvYv8vV/6PdQ/3w/y/ef81HOd6B9//kA+vcDevk6cAD64/nSdTVcbz2P9NEvbXwE5epCb3/S/clvoH+b9n1nyzicXtC3l+/ex0tM/kPuP+gX7Tzad36D/3naK6DTfYbvExoX7n1D36NzftBv4nsGof9Ee0G5IC7H+Fv9ST+C97pxNrTnu5Dt9dMjl0nw5/uY68DjO5mjkbf+Of1yrof657Ygr3T2C9+nwV9W1oulxq8z3l6Ejgbupyi3nHG21PgJ+PdevPfkfW9NeXnfI7xfMwJ6ByKXRdCZh3zXHd8dC9+HXWpcBO14T3Y19L9mPA3y9z2eFbEIGldhPEU4D4Xvk9oPv7tP0l+mP8Z3Hek/36eqCb5exgOR1j9v3MpJ0mfIH4Tch8PXftpNjjzeQe+usi/5m/NRdsoZb2580VDfG4lFsInv70NXl2D9mQf9v8O/+yHtC8dpv573x9CHZt4HorxxK+dpz/iki4z/g9Q7BCxE/y3x/AAe79OUMX4JfsZrB7U/kf/3zF+djDfRnol8w/1NZfjyfaXnme/TI9d98Huc/O701zPOI7Tn+vc7+SuhK5f3ioDXfHcDvB9z3rjH+qL/V7/vIvRB++8lzyvg99zue/mOy8ba5RnfB4w/QL6uy74DP8z9Z2B/9R1d7bCe38ojp/zoz/BgP2K830L4HU//lg/8W/q7Dhn/iFx9N9H3gOobH0t7Z6BjCPQniUVwJ/L5GX35CTw9ff8Bv6/309oQb7CTcm84b5MO71v6vuIv0FMOvqv7/mEE7t/7We49PPL1/7rvdB+qP7gUeP3fmtD+rH3SuCPtlNonw3gV41j0/w1Afit8x4p5JCt0+L6j9zXSgP8U4+sA7Z+J0T505yE/5r1+4Ejfh9IPrn8Q+t3HfgTdlRk/K4CljKOkvf20Vx2++tFf3RgfO1xf+J4WmAY8P9J+N+irRT3jL/QH7oWucP/1mPcDfN+A9MvU931E7z16H9L1z/2J7wE2pp0nPF9pN4BO75kuo/wM0uPpz83uB/Tf0L7vt6w1fgP6+mrfA1/4fmr4/lkv7WfekzKeFTyhPcV4igSU873PLykXvr/rPca/od/7flPB5/3K5tBXifnsEHo7G/06TPmXwf8FfC31fAa/ns9PUG+69zCR5/d89x2B/xh/+7S/gc/11PXV+13ufx2PjtNM5I9h/vH+T1HmQe+fjGU+aqUdDrklM37O85zxXOBNGrw/4z2OF4yDJv8Y68pR4D3mgdnon/fnvTfve1ren+8O/lHQ4TvIVdGv7rR7ie++g2F80Ff4J36Drrra4cn3HfvnkfNjtJcC+jz/j6K86/9Y0nnpX/8XyP9niheLoPEF2i2NLxhqPA/ruXbm0L7s/rCYdlHj2vM9WF77tHjyUf8b422gz/tixkmH/6+Rk/K+Q+n66/5xOvOEdtQL6I//Z+E8dAJ98X0l31PyfaVB5Pv/Ba1pvx5yN344rf4P/fG+O2AcMeOyH3AAcCH5vg/i/3gYJ7Q9Bj/eX4du7wl5P8j4Jd/t/IByvp/p/chxwT1J4/lDe7p29nq+r4kcvcdq/MzPzE8FkLvvOukv8f9X9OdoN9ZPrH1Ru6XnNt8H1n75B9/D9yFnQf9s9Dse9QYwP61l/D1rfIX2XernBb/2Ie+jGL/tfOK60Il0uD4cjsB9O4p2E/03k6DbdwV9Z9D4Tv8fLyfzjHbDfcBzwX7O/d2bpL0v4bnf9Wk19R0vN6DHd57LIZ/Z8LuEemu0Y1De9w+cn30HwfnZeG7jvb3/aHz3LPh/lXK5yC8E/9ol/B+FSfBjfN239G8G1p9U7FO0iz/CvF0MWAiof8P7JcrJdzPXkP8L4/0q/WKc7XjKuV78B79fu24Aqxu3AF+Vg/gc5zfns/XQsxb8vq8yEjl430Y7XxgP7Ds9TWnf9y+7u78n3/cvvdfzHnx0Y/06HIug+xfv73h/6x3v35A+Tf2HoW8L8tO+YPzwa7Rn/PA+/w+EfmsYvNM+wf/rYd0N4/2Mx1kGNH7E9+n0j+nHLkF6L/yF/xfh+3L9ya/u+sz3PtS/gv72JG6gFHA5/X0W/jNod4Cu9KS7gn+98eHI0/fffZ9H/3Yy/T3QoX/b96H8/0b/z1F74hrkW5DzwSDvO9BOZ86l+rX+JG18h/9v+JDxfN4LId97CdqHtGOkhb4nkZ//E2Z8pP8XFv6fnfYH73GN1P9h3ATjvCjy1R/7MfLRX6t/1rgN4zXC+8Vv0f4T7DNPUq4L+dqnp+m31Y4A/5WZT3xHxPdDbsBHh8B/6fuavrfp+7urgnd4fc/UeCHjDX2vzfumbUn7/2/GQ++gvu8O/WD8CXjKUV/72wa++y6894e0uw8I3tVqAv9faE8C3x/g6Ub/PoHchgGNR1xEOe0TrlvaKY6Bz/V5APJcYDwP+uF82YDyHWinA/T5/q3/IxL+f4j/d+P7ot6P8v/FnjZeA/nuo/3SyMH7PW34ng6+vN+zw/kRufq+c1eg94u8V+Q9o2K+H2rcIu14P8T4sT3IS/tj+L5mMubNFMDkwIvQ6f94DKG/9XNtA/8g7f3G9xrvA37v4XpeNM7S+Er9Khtp53nPK+RrH6hCuzedx+A/9Ku7//R9oKO+hwE8CXya/jG+0ngh95UboN/5y3lLe6zzV/huwVj9y9A/xXMj9WrKJ/IL31vwHYbx3i+mfEHo0Q/rOPO9d9+F147pfRf/73h4cL/J+FXfC9X+/zXjYDbpVMyvTyE359sRyPeF4H9tChmf6ftNtF/CuDBgixh0BOe+tPBpfPo71Pdc5f95ed4y/moD7RqHpR1Xf1SqwF+l/8P/h/P9Vd9j9f3VSZyvZ4PvA+p736Yx/Guv/Qx9+In+Ce2h2kn9f23HywztK5Rz/NSLQNwmYDdgduSbkv5bb/w3cjhA/+u38X8Vz5HfFfx/It/7di7k4v/MniF/B/WeDOLxtE+H8Vu+b65/QbuC93L0L5znewbnVfDURR7h++OPM76eJt9zh+uL643ri/cgb/0/4/cm+twGPJOZ/9sYH8B8mAd+B5D2/OF6YFzfXOg3vs//Q/H/UcI4eO3Ng6DL92Cugc97tcZTvA1e79c6Hu9qR/R/1ciP571P732B52n4+5lzYxNgY+/zI0/9IzmoZ5z6j9BxIe5BPkJ7uvtO3ycN/z88h/oL9J0G/Rf9fP9BOw98ZDB+BZjP++ngL0x7R5FPHON0Dfz5/8z/Az/us5h4nHWdd/zP1ffAPyJki+zxNrOlgQb6SiR7VDKTCmVmj+RDVmZky57JClF2KLOiYY/slYxs8ns8fq/ns8ej+3j0/uc87uvee+455567zj3nvodljPv/36XsEeyZLYJ3ckTwM/IL5Izg47EIls4TwddTR7Bzqgg2zBrBjyi3iPTr4OuZJYI3ckcwQYIIzolAXBVgZcodIT0POBI681N/ROYIXqC9TbSzNlcEh0P/Dfi6CXw/bwRrZYhgPHgKkB5AuWopIvg3/P8EXU+BPzX1tpFeTn4e8Bd9OIKjkkRwNHAZ9C6k/BDam5QpglvyRfAa9L+KHHPQXhrouRGBuObk/8X3AdBzh/ox8hMBiyC/0qTfoz8zgf8z6M8EXe3Ad/GRCJ7IH8HxlD8OzAr9q6k3jO+t6ZeDfN8Ff0VTRnAK9ZrGItgA+j5FPiOh8zjlcpK/78EIfg6cC0xIvSzoS3NgQejZTTsHSb+EnGZC3yXonZooghXBNyptBFchj1rUywb+zsjxGvy1gL+d1K9Guj/4z9F+XtK/wd9H9OMY9OVwmgg2pt0mwCXoa13qD0FOlZHPbPCthb6l8Pcn9bcni+AOYHf4HQ6+OfB3Vb3g+3vox27aSwi9pRgvw2l/CfU7QMd15PAbdFxn3uiQNIJFkkewHninQXcd6B0Mns3IeVbiCDaHvhaUbwWdL1E+PhbBV2j/Wej7Ajq+oN5HlD8GfxfAO5X6J8B7A/1/nPz1fN8FP/mp34f57VXK7YOPP6G/Ie0N5PsH0PMm9Wcxf1Snfy6i36kpnx/5Pgpfx6FjN/jzIMfu9E99yl+Dn37g25YuggvSR/BT8k86PsD/Hu1WBn8V8pfTzgzayQX9M2ivO3xloVwy5N8Z/X3WdYF+eBw+ioHf/lolXeCfAj2ZoMd5/jrp/eKh3FzauUX/OS7jadfxeop6X9I/70FHZcqdAN8y+uUoeBoxThtSrhL0nITuh+F/AO2/Av4OyO08fI6B/kHIrzn434KO4rS/C/3/CfgjMCP4UoK/DPSUBM8n5LeG/j8iENeW9OeUf5vyryGP7KTrQH9B9KbgQxHMDf/ZwV+V9qdQ/zb8Z6W+6+VB8qdDh+tYXvh/m3rO1/mRTxv0tTntlCZ9hPn3MPWeoB+U59fw9zv1FkFHf76Pj0VwBONjFe2dpNw+0onR333Qr94WRD+r0t5N8HZjPjhGuTTZ/k2PdL6MfLZHIK4w+QdJP4+e5GP/5bpwEPm7PpyA3sepv4d5NqfrMfRVQE6PUP50DD6C9dJ1tCntv0f9InwvAp5nkE9x+PmMdA/wP0P/NEZvxiPnRynv+jET/PnBO4n8s9DzhXrB923ul+BvI+N5HfAm7U8kvxXreXvWnZ+R213o/Yz17Bb5e1kfS1F/JfpzDzoqkI5DfytDz1HnDejMBv890Yf9tPc9eGeRXw76TrOu5GR8bwZPUtaH25S7A2wKvl/ov1yUrwD/m2JA5FIAPudR/wrl7d8q9i+wPvjXg/8A6YrwXQv97+v8Dp2vwIfjpSD66/rteu54G0N7qSmfBfm+ST/dhN6Hofd/zEfr3Y9B/3H3RdA3Cf3qSLt93A8hnyrkP4B+/g7+yehBvPtj8PcH/1HK1WP8riXfc8JS8B8jfz3pgrR/xP0O/e9+f0Qsgn8ivxTUX4w+rkI+i0hPB19J6tcF707Si+FvHf2yB3nXh/6/SM+ErzaOO+Q/gfYLQ/8W2itNuafB7/xblXKHKHcY+fVAPgco14X+GWc/kT+O+i2Bw+1f0ilcL9Dj7rEIfg29Pzm/Un4A+Y0z/zs/nvK7oa+r5zPOPVdopwD8D6f8CfCshY+e4C8D/YPonynkXwaP55RttH+WfM/bjcDfinJfgac8cnRfOIX6vZD/UdpfhDwWAztQrgD6dQq8Z2j3Gnzsh7801LvEOK3K+vEh+M8yHspR7gzpbeBpw/xyFn6+IV0d+XZDPsMpnxk6LsLHXr47rjZAr+NrKN8Pwlda6LwJfatYD1dT7xvS12hnHu2ngB7HueO7AePpVeh/FbwzyO8e9E83+uVD5NuO+ovA2wH5zIPeB5i/fmQcJiX9HeOnBOkPaa846Smks0D/I+iF8/wZ91vu56D/Odcpxvf5CMQ1BS4CtkPuteGvFHzXpL3fSH9J+jvwroOvP+B/M/Wrwk8m5LOA/DScb7tA50vM/y3goxv7gj+o/wT4E1O/IOUKAa/RD1eRj/Ym19/s8OX8chP6JyOP3MhtFfhrQH9R6uUBTyLo2UX99vD/FPUrw+dP5L/ieTQ4R52Gf/frXcDTmfyT7GcPsa5Vgc5d6H9d6ueALufrVDHKMx5Ko3cDWD8cb473GfDZGzou035m+qUu8kwHvjG0/wlyb0R7z4HvBOkDjDfPXbnAdwg6n0Q+rlNNwDcb+Yb6PdZ5Cnrc/zr+62nno/2xjL9ujjO+f5z33+3bblryq7n/COwveekH99uzH4hg7YQRXAh/C6GnP+M6E/z38zyPfo1hXUkRnH9/hd8P2X/0BtZmfCShn9Rn13/tqk/TP2ugfwHzc3XPh/BXgn5/DFgDOi4i5+bI5V3aa0O5J2mnAd/fJP0d+bPBv5b5/kH0LglwYyyC8cjjrPMc6SHI4XPo6Ur6S+haTnvzyV9DfyT33I58EzJ/VHJdQV6HoPt57YLowzfQPQL5uf/qCd4zwX6sNP3vee46+tQXPBNod5TnM/JXud4gn6Xo6TLgEujfRHvFkOtK2u0Jvifpn9V8fwB+5iAf7ZXaL6e5X6R+CegpB51zae8m6by024bvG+GzJvUvsR/oCh2HKNcX+d4jnZr8aZwHCkKvduy84NPO3Rb5v8X8V4XvdWi/gfb1YF5eCN9rkX93+L5OvQyUS0/7UxhXa6AjJ/rZjPZLkt+L8ktprybtZ2VcZQfGM96O0H6MeSMXMA/zRz3y32X+Wgd9++HzAny0pH8q0u4u+FH/j6PfJ4DVaV/7uOc6z3Oe9yogB+frxO6fqJcL/rPRXhPvdaDnKfD9xPdm7rOR4x34O8i68xD4bzO+PyHdBXybwFMQOdz1fob2345FcAzfS0BfFvJ/JX8t7TveDqBvs2jnJ87b6ylfxfsg+H4Z+Sj/IshzIuVcxwbQzo+U38S8+hXlz9J+Kfj8mrT24vyM74Wef+D7SfCWh79c5M/le1boqAR9C2l3CbAt8i1N/bbQ25p6PyDnstDzFfR53zPUcwz1HR+Oi6G04/hoTfmhsQjucD9E/7dAL+t6zmD+uUC7u+iPefA/kPF+DHxnkWc/0udJJ4PeVdA1F3w5yN9Eej30vIh+noeOCdCnPSEV+FqT3550J/i76r0F9C6AnrnUH0w6gXySHkF6EvIeivx/of92QP8Svg8mfZn89OC/GNw/TvF+kPm3IvzuY7x/D/0D4f8O9TqiB8nJL4ncF4M/H+klpL/w/gN6UsHHeuo3Qx6DKPcLfB9Fvm9Av/NLefKdZ1rAb1bo6ws/qynv+lYaelzfXO/cV40L9kOTwX8HfMopIfL50PMY8nmI8gPoh36klzE/P0v5heRnRA7VWF+HeQ53/Xb9oXx56t/3XsvxgXz2AptAz6euw8xf59hnbKd/LlD/V8qXRS5lkEdV6NPe7TztPYL3B+4rtAtpJ3J/URn+MgGzAE8ib+1/2v2O0Z72vzfQj5e130J/J+gvSvm/9TsgnS4Wwdvox2DmNc+LN9D/PY4v8Ifzr/voJtDnPruX+zHw5gTuBdYM7h8yaGeA3wfId/yPAa/zgOM/F+tfHHLNiD7d8n6IchmgpyX4Xf9K/of9+1fKT6B97U3rqK/+LoB/x+P74PF+Mbf6AT2/AVMiX+0zv4OnKvj/B757rA91WAfrkt7oOTLYH14h/Tn1tS9oV4j3nh/+KiFX791mkN5Nfk3Sme0v8ZH/EGnvRRt6DqP8SfZl19Hra/T/McrFkXYfk4B0EuSrvTEB65z2SO2Pe0krP+U53/2F+3u+14PPFeQXha4T3q8h50Pkvxv0t/NYafp3kffi0FGJdlIin02k81IuFfL/HHq3o6/ay3p4TkE/9LvQjqk/RgH69yry/1r7N3rwHfidn7QT74Z/7cR1PB8CawNf06+D+l0o/wZ4D0Bf6F9RO9DPl9mPF4D+5M5/0N+Beb0zsAL7nwQxvjPfDFfPSbeCn2zQtwL6tsF/V/qnM/LqCLyJnrWkffdv7tvSwI/7tzzItwt4B1Lee/JW6Kf7o989PyCP4eBNj96E54cHKOd+Or12Cuj/BP6SQMcK6FsJDO0bi1jPtHNo385Jfzif/037VaCnIrAScA10D6H+UGAd8NaKAemvNJQfhHw7UW6Z9kvoLaee0P4pvruueX4sDbxFvxdAr/Qviaf956FLv7UF3lMjzwyUT8r3/fTjaPr/DvvhTMoRvMPJ1+66Bag9diflLgX2Tu9XqpN/m3arUa6M/gWUy6j/GN9fp50byGkd+ffg4w/4+pvzgfcp17wHDu5f4tCHBa5vfE9Ofe0lnvPUwxfQv8muv+oxsCF4tP9o9znL/DWY+SGGPrhOuy63hP/x6M/HzLuDgOnh/xHoO+f67f2O99vMV5X5Xo96/ck//x/2l6m0f4D9j/u1ltDXkf7XL2Wj4wG+63m+AL/nswrgfRv5PsG89jiwBLA2/dWQ+vpZ9oD+YcCnwTsZmJlyH0PfhmB/lNpzjuXBXwh8C/X3Ia39vUn2f9PxFfR3Z9x1Ayanf4/AfynKJ6O+dnjP043p91PsAy5T3n7aGoG41sAdwIbkP8j6EUNuH6AfU+F/U7CfHU+7T9KfOZBLDvcHtF+B8neZ7yZ7r8p83s/5G/z6FaUDOj/VJf+jwD/jKHSsQb9m66eqnZjys+FngPfkjIfG1J+J3PSfq4I8OpOvf9hO6NVPTP+wRMH5tQf4bpL/MfRnJK3/zTDGT1rk05p9ivcgPch/Gf0pS72/XOfJf817B77rv1oI+nfw3XuHjfRrQug5DX2pvHeLRXC29LJ/uw+f9vNM8mPeB9Hez7TjeSA59PTXf476FWlnLPl3wbMdetJTvin96XzVgXRh+Hdf6z73E8q5v73P+e0S+KeS1s/uCO09CD0Fkc8K7/eRr/442j9+V46M28GMn2fQn4H0o/4z4flU/4VZfHc/6f6yg/OP9kPy/yZ9jvzfwH8EunaAvwL016TfagNrAd+h3E+09xDl9bd5Cvl63+n951b62fvPfPC7Ajwz0efrsQgqvxbgV45XAv+RbylfGH1IQLv1Gd+vA2d530i9F50PXM/ZbzwFvXeRT7LAv6kH9LyAPtXVvsH8mxH5tA3GZWHmj2Lgvwc+7U3uE96hf5ogn8vwtxo6m+pvAn36FRaFr7vgGUr7U2m/IfqWFHwdmW8+1z+J8ToOfOe1U1P+Dt9XQt8rtFOZ/ATON9DX3f2L9xTUd3/6GfuTJtA1H3r+COaX76HDeWa8/h/kG7fRB7za15rqD6ee6j+CvH+A3urem9NOBupP5bv3E/npvyLoX3i/4L1CbeTTgPz/8rPzPkM7ZGh/HAneZ/jeUfsZfDr/3CRff86JtL8N/LnBM5L9Zirwl6P+AuhJRvm51M8P/Z7z8wH1N3oGOemPqn0oKf2Xh/IVg3PjFOR3G7pSUr4Y8ktDWv9a/Wn1ry0GnuqMa/1eXmJ8e/+tXaGacRS011h/B+Zd7+m9n/d+w3iUC64f2kvBf4n2koNXO/9q6g9jvvR83Dk4H2svdz94lO+uo86H70Of86Xz4wrKZ/Ico90W2B86ntBeBr7fyH8q8P+dBNyr/x35k41jAtan/cTMlxOgK539Kf3Iq7jnPOipBNT/85zzOHTqDzpa+xX5zYAr0Y+R7M+m0T+N9Fei/Vv2v/fXroe0r99DbtLaydqSVm+M+zAOxPgPz8VPo7fvgk/7b3nkZVzDGPhZBr7DzAcx+DhKWvvWzgjEwVbcKGAl+kd/QP0D59Cu/VeN8sZHGS9lfNQUz2/kj4S/+fpboXcr9ftFf7zP1r8kMe0Xhf5Pkd8W8vuQ/z3pHOS/Qvs/0t6bfL/A/KD/0H+dY3Jqv+O79xdZYtQP/H4rwbf7k/761xmP5/4Jeg6AX7/F77zfBc+DlNe/7An9L4xvYD7Zzvh/lXRG2ivIvFgAqNz3Q99s5rU5rI/F3L/Rnv5i7bS7gn9/DHqhf5T7A/SvNfIqFthXk1CvPfAy+LNSPh/8bmV8zgV/Gsq/6PoHH9ojliKvt/TvoX5m5DKMdekq60Vx8u0f+8X9q/1j/JX3ZKPgrx/1tY/sJH+c/lbQ4f1U6MefAPnOZ1zOoD8v0r83Sf/J+OjkfTj0diPf83xj8PbTX0d/LfY/55Gz8SyNYxFMC/07wPMycIlxTqSNKzLeqDH6tRL9eUH/WdIlkEc57Y/key/dWPum/cO47+A+ifYzex8T4HuL9s8zH+gnm9x7KPKfB19o/9R/x3vh7Ppvs94bn+H9hvO49xvO4/XZ1+ZDzz1X7WB8hffNtqd9rSP49yDnaeBvpP2M9Hro1/6lf2Mh2u+FnrRA/k9A/xrG3Vjq1wB21b8a/TAOJ4y/0X6dM7Bfj3IfwHiaAf0pyZ9pvCLyOGJ8M+X01yiPX99zyKEI6dzQ4bhynBmXMMf4CO8zkP9e/XC1b8LX78CFlCtDfe0ff8ciKP/aQ9x/u+9ez3g1vsVzuftJ95uuk21cXyjnfZz+vY2MV4KvkZQfQP//6f4ZvD2R31bKP2Z8DvQ8DL56tB/6p6TVf5P+e5t0beh5Sf0kfxv0ahfRTtIa+p5mXp0MPaPBMxn5N0XuY9DDv8CTlPqHtPfqT6TfofYb9LkYetUJ+pJSrolxr7Rr3O9E7UPIT781/dj0X0uOPI3LbuT6C/3673/t/arxsdDv/Zr3e97/94EO9df1QD1Wf3+G7hzQZ5zAMdJ/ML4vAhMBJ9PeAPbF26lXBfydoe9b+ud745Ipl9p5kvLaK/TX+gm6dpCv/4l2NO/PX4OeS+y7EqlvlBvKeJtB/zUwvlt7HuXdP2+lPffP3ud21i6t3QH5qPeeS5pqRyQ9PAJxK/neSz8o+AvX5dK0Y/xVGB9mXNh9403Qz2nAs6xnuQP7y/e09wP8ep4dRH4x+L2qn4X+qZx/vqTel/S343Q9fiuvey+pPRP9PUP9pNxvDaW+/sh5qadfX+jvlwi+EzBO7zMfVqb/tYedgp7iQO2vW7w/BW8P5Dwa+TleHD/Lke8U5Ke/a2++l4EO/V/1XzcuQz92/dfnkz/QuHrj7uQvAnF7wOv5x/hc63uPmNPzKf3j+d849s3klyD/a/Aat74b6Hz3CPux9EDv0V+AP/1vS0Lv/WD+8n73HN/D/c4o6GuqHdx7MvDNZ362P27pjwf9v+p/BL2eQ/PQP3P1J0Su3l/vAp/2I+3Wj1FP+1EG4+WD+8s1lPvY8QAcx3zm+wEp2PeNoH5f75mhc5339tp3GM+dYhHszvw1Ebx5Kf+C8dz0yxDoep72fP9gD/ndGBcLgccZf9pPtZs+Srujyff9CP3vPGc8gXy0G2WAbu1H+sneI/0y6+td0muRT23k0ZJ2tKvngY6Ogf+F/hgPeK6C30zMG8Nox/ubQ/A72fMb5dfQ/gLmxTzoT+h/kJHxoB996D+vv91S6NEfT/87/QXv0H425HeefO+VnBcSGZcDfdlp/0vkXJn2T3sORh7zPN8ynl+gnVnMvw209+unaTwU5WuwLiymnanG2yKfltqXwPMN8h3IvN00FsF49HQd+uH8U4P2tCdpfyzL+JwGvStJ5/B8jF5Uof06fL+rfzTfC9P+z8arUM77+bfpT+/pvZ/Xb0l/pebg8X2jOcYfQIf7mf30zwT51+8A/itD32X0MRN6mAn8P1Bf/4qbyPNz8t+g/jD9D4CDgR/pZ8G+5Xn6yXvY3vCrP6R6Her798wv95BbK9LjwZOf+vmAeYFPQud1yht/ql33L/2H0Ldv4HO28TeUr4lcagBrAVPrL6P9lH6uS/3p9J/+N8ZT6n8zg/4rAH3vUM9zqOdP/aH0j9IfNg75tKdebtJpgU3pv4r0fxL6/TIwNfh7g24/8BgwHfw01j8G2FA7LND9XxzlL1LO/Z/29ivka4cvSv2VVH8s0E/1NQFQf5M6tPcV6XeZX4Yz7+gfOIT81Oon7aclPZD+d/wbD+n4HwX9i5l/ijiPGh8Mvodo/xjtTkc/btP/k9gfjAWeDu6j3C8rv0uBfWsj83pqxnVF+NRfoJT6oV82fJVlfG5gPNwD3yDKb4bfUD9vk46PQRf66DsOh+H3PPnOx46HXxyn5OsvrN+A5x/9B+JZP/Q7zq3fGrA6/N/yXSK+u7/KiVxd3/Sja0H7xcHfj3V1IPCgcUSB/3MK7ev6cdF+a+/JKfcY7Ts/tQrmqaLk6z9bjXruc1P6HoV+bc4fQfyg52r9DMLzdRh/28D1APzfQn899HY1+vcz9RsYL4Ze6N+uv/vb4P0CvJ6bzvn+WQTiFOMQ2snN/OO+XbuV+/bXqF+I75tovwzzh/evB6BXv5sj4H8YeaqXnncH6VcC/1Whd0IsgjWUP+0/if7sEz+wEe17n/Yp0Pu2ksH7Ffp/eE/l/dQiBPMY9L5P/dH675DWLhnaKzcYjwr8FlgJfVlNPd+DK+79FfWzGQ+r/wJ0Gr/Vk/7OBH3G4SSFvxmM9zHo0XTSfXzfEPkbf9eT/B+M3wK/fvKuT/rHJwziLnJBZ6JgfBtP7DgfZ3wFdJUE7gf6DsWP6ENL2jN+qknwfuEq+Hd/Fu97bqyfa1mXOgD7gn897Xmftty4YOrr/3aN77775fuO+iffUu+BzaHvE9ovp92R9o2z8b6juv4MxhdR3/eVSkJfb/IreZ9H+92MpyW/CPnaO7V/LjDux3WG9eUK/b4euCsGHv3uAv++saS/MZ4UWBH+z9C+/m0FoHM4eD9FvsaHbEMOGaHvGcodQX8y095h0m3Av4f0X+wLrgB/oL7vvxh36Dswvhe3ifFo3LV+/49Cn/P9NPC5DpQ1PoP5Rv8m/Z18r1D/0xf0bwDfRf05kFcjyg2hnO/J3WM9TwG9O8Gv38HTgf+s8eCHjZenfx+mX7OAr4T+JfC/gnPcs6Tzcg+h/qv3+uWp/+H7WduCOCLtF8ZJaU/Xfl6e88s26OtFO12Y31ZC/9fA8H5zGf1fln5PpH0P/nYyv/m+p/dj3ueE73e+6filnPu1CsBmwflnC/z7bugN95/kHwvmj3/sSeCf6v1qML8fof83sv74/tQnpLdo/6J8V+RblHYK0D/9yH8HuoznKEp5/bfzxiJYnfIlSGczLpxyraAjFfV76d9Aed8B1T9yH/XT8f1x6BhD/xvvpT1aO/Vt6ruvWo084xlvifW/pHx78BuHZHzFaPYb1dCzT0kb3/uV8SrGB/oeDf3h/fdi6HNcb/V9K+h/CzofAF8M/obrfw1e9yHuP/YZrwMe43g6of/H2T/p5xsHHzvh1/Ob9+zO176PN418343yHSnj+bajTzuAnrO+9b6U+u57fM9moPdB1LsKXMH8chE69LdZirx8f0r/m9rGpetHBN2PIj/j2wZT7zXo0B9C/0L9IvQznOA+n/yz8D1ef3nPUaT149X/wfl6BHhaQ5f3YZuND2Ff/Qj0eH9wy/tr7Wba7ZDrcONfoS/0e8qQ79/1RoDHfb3+/vuD9cv1zPVL+7N+Z/r/eT/ru2k/8t135JrRP8qlMHTrH5YF/XxK/VOPqZc5eF80fH/S/cko8Bn3ZLzdq+A5gv7vBY4DVolFcADlC3h/4nxMeiHrQz7Wh2SsD9r5z/B9EnKbh77WQP77yN8L1N6tfXsW65b28Xbku79sT3t56T/9V+ZAfx705xbwsP5zyGcj61cH8OlfvZv+qOC7VNqXwf8C9I/UXwzo+vGgek557emD1RPvs92PIdc39Wfw/Sb2CROhxzgo/Qsm+v4s5bsF9lnjn30X9Z/3V2MRrBeBuJlA7/e995zgO17g950030czfvw0+I1f8T3JC7Tvuz6+8+P7Pl9RvxD6mDjzv+tvpj8eUr/orzboh+umfsWup1XA73g2vjiMT5/NfFqH+X+17VHed+e0a5xC3sbXzqG/N/oemP6Y0JcAvU+kXy/49PfIAT3joOe88a/6fxmfSb2e0FXc+3Hyc1Lf+JyS8L8cesPza2nKn6T8Kejehfyqu3+lfhLtLrRXW/s4/TLRcQ7Uv+628SXei4J/MHxq1/BdC+0bO6DvMHYv3wf4gf3FYeRd0PtS/fqo3137BPV9n8L3Kvx/A+3ftbxvR07avx8G3y+08xFwFfy3It/7be+1jXOsR/vNPJ+7jno/xXk1LfuuGcynGZnXFnt+pX5pzrun6F/vXb1vLQV9e/UTRf6D5Yv8JbSfHfraAWOMgwTwt8L4Wv0PjV+g/iXONVOAjdV/6PY93Pehf6LnPeh/lP2W70/Hw4f7mRdp3/iBTNC/IXi/2nsD/ez1r69p/Cx4jDNdbnwo+jTOuHzj94zPpZ72Me1l2seayE/gv+37ktpLjUfVnqr91Lgsz4H6Wb8Cf77vlYj6hejHbfqhadeGrnl8X4d8F2iXRu97+I4g9CnXud4Xgsd9xp++j64dH9gI+oxfaRSLYDr4zQz+LqR9j7Ct5xnoM+49OfX/iYcP4sP8f5B5yOuS8eXaL5FLQvQwI/jVH+NUfN8xC/T0Re/0K92qfwV0zYbfOsjtOvuIEsH6+gH0+a7IeNLTPO/T/gn6w/1sO9orQ3t34f8D4/jg/zP4+wK6h/i+hOsf5cL3j31/6Drt+B6+ft7hfOs8HAd/L5E2bvgQ6UyBvfAMeP6CTu2H3td5fzeJ+cX3uWrp7+78wnp8y/k4GL+O27H679Gu9izfB64P/jbsZ4ybqgeevpT3fWLjENZBj/uRep7PKe87Qmd8p456vlvuvevf2tsov9n9Ofj0z3T8O+7bQ28K5DcQfdGuksP7a/I9D77E/HUDfa5F/2kfNP5MO6H2Qe0F+cCvHeE+/M1G75fx/RrpkdDve7PxlPfdWf1/jT8w7sA4hAukvc88C/yM9c37TvcvxnfqJ+D+Rb9s3y0+F7xf/DP45qKH5Yx3Rt4XmC8eC/yE9Xebzno8Dej6rL/GEdqxv/9H/RnI13Gp3dn9aFf417/BOCrtvRORZ07k8ip87Aa/94dljeukv30fuKnnE/CO144T3Ifrj3MLuvTTSQD+pdCXHf720X5x8lOT/gi8i8FzkfY70r7vQn9JuT2MX88vYXyg64//b+R7eb6f1wT9ykl/32Tdza8fCviMX4n3HO67GMbzUr8y9HZGz6eDvxP8H4Vu40I3Gi/MfNad/X11/fi9H6H+Fdr3/bB70Pc4+hf6D/r/Mu9TPx/0hvFF3yC/IdBnvNAj1O9G2vfLfc/c98t70f4b0DdW/YR+9z/+D0v4/yt/Mu+UCfZR6qN2p3P2b7C+GPc1RbsN8j9AuhPnibTanbSng893aXwfzPdpfAdW+6H2OO2HAwL/2R3Ubxf4047wfAXdOYAvkb+L+Xkp/b+B+fgt2i/NfH2O74OYP45p9+J7K+Dz6HEy6NnLfP4N+5MVwPrev0Pfaf1PoE+/qvqB/+TD+vGiv/rH6xffBvnqH6+/WnPa3eO9I/3fAn3WH2S6cZGU8/8dqvF9v+Of/K2sd65/xhW6/jk/Oi86T+oPFjPOEXr1Fznk+2uU9/9yjK/znS37W/ud/qHa79aS7/uK2he1I7o/Na5GO/0t92fB/6O5bjSlXB/0Jw98Z0NffF//fb73BN9rtLMJ+WuXTUx57/+mej5Fftp9fAfPfWo36NKf1vcNVqNf2m8nGW9uHJf+jejtAOp3IX1V/13odf5wPtkF/l7QX0t99/4VPhx/+p19Ab6ixufBz3zt++B7y/cRGZfTwXfS9ydIV0Hf//nfJ6Dv9Pgeme+TZYVO3yebpj88/doWerpT7zLjLwP03bX/tSfCXxfay8s4WgB/87S/gNf3s5e5/wWP/8+jvcD3ORL5zoX2N/DdisEPaf8HUHuv9t3l7DvOMK9m1T8OvL4X3hd6LiGfNP6/CHi83/SezvtN7TWFoMc4Dd9vDd8N0Z9EP5L/+l+LX9Rf8LvvDN/z6BGs267jW70/47v2mz7GwUNfOsZ3IeA+9hPHKO9+y32Y+y79D5dT7xJ6GP4/jPZx/+/J/4HSPu7/F35AO/4f1SjK+f9Nz0PPs+634K8r9v7nmKfPkPb/GbS3uD/bT33tL32pN5T8Rfqtw6fvixl/7ztjFaErIeMtJXAN66P/Z7UheG9OP33vu/shn+LuQ6B7hO8D0X5v6s8Cai/1//H8P7wpxlvD33Tvl6Hbd7B9/1q/AuOTD2vf9P0W5yvjBFhPf6W+fqX6ky6nvvvTN8A72vgu1gfjP2+BL7vxEZT7QH9p/Z347v7W85txWYeAxmvNRx7GxXsv/xx6pD9PC/gvZzy892f6j8KP9h3vyf3/v1KMpzXwr5+o/qHe/88B71nfMTG+nv7/1v29/48Q2O99/9L3MLXf12C8v8g5IfQvmOq7Fb5rEMQjFGN/lot+Kez/oWn/CPbXp0nHYhGsGbxHpH9BVer7/5c1ofe471Pov6jfpOs38mqG/vl/mPqVe+71/7l8N24C+xDfj9sA/77/oL9de/2BtY963wZe+8t3GOORS1PSviPaz/WP+cN3O/VL8/1O7YHqj/bCVaSNl9nKPLGb+cP4Gd/j024a2lN9v2MUae3Vvt/hu45V6D//T8/3HfXf815jNPI6KX/Gi4DXefkj1xfo9f/VfmG9/ef/1cCr/8w//jTQ6/vW46k/Fuj71t6HGU//P757P3b1P/4/uQzjazLjqTz0uP+6FIOerP/Gbzz/m/4PB/r+z/+rOA+DbzP4SoAnGfJ+lPbfYT1sDvS9B9938P8+Z8K3/8/r/4LqF6yfsO9m6h/8JOP/DHJsyng0/vcg+lsafOrxLeYv/Qa8Xwz9B7pDr++MOI/6/zW+D+O9v34A3v+H78I9Tf+l9v+D4Ds9dG5gvhphPJL2F++RvCfTvxN5vWNcOfxM1n4f7Ofd5z9I+77b4zs+3hv7/5+bIhDXAZgVvVhD+76P5btBvjvp+3thXLb7d/fzvaF/i/GIzF8Doa9SMP6T6P8W+Ef43mL4/yL+f4f3B/qj+86V8RG3qWechOdh36daBL7BfNf+VYjxf8X/J6IfHqJcNepr1wnff/F/hQ4G/y+kn38q+sdzg//DMxN6PqWe7xLYv9uNl0Gexg03Jl//0Izg93+6wv+L/wLo/w/4boj/PzA+uHfznXHfo/khAv/EW2dhvn7E9xDg43f9Mcm/j/x8H+AZ1gnfCfB9gCPQ77lFP1v9a88G/s36O+uP4rnPcRz+f6T7/9XkH6S8ft7G/7blu3HA9X0fUHsD5fV/Twy//wfsQJbXeJx1nXXUlsXTgF+6W7oeAUHpDhGQ7kZCOiUFRJAupV5QSmkEJEQQQboEUboRaSRUJERBaRT4zvnu6/Ic7nN+zz9z9t7d2ZnZ2Zqd2Wd+3Kj//y0AnskcwMkvBrAB3+sBs8YJYPKMAdydPoAPMgRwb9oAfp4pgO+Q/zt43+P7lkgAB6cM4BrKbcxKPdqfRXu5qPce5XJkgx7SydMFsCN0XKN8Er6Pgt7i5JeBnlgJApiQ8uMTBnAs+XsTBTAb6e9or1CWAFaB30F8zwT9x14K4AbyF5Ffjfwo+LseGzrgs2H8AJ4nfxP0n6T9o8Ak4O8N3pnwtxz+5kUC+Cf49iQJ4DfwNxn6NyQPYHHySwCH5Qjg68kC+CXt5k8VwEnI/zztpoDerdA7iPQXpHNAT3/wvAj+Y+T3gu7k8QLYmf5oQ/6LpF+D37jg+ZT8ZPAzEXpegL7K8FsJWBf8X2UP4Gz4G0b7l6G7A/I9BN490L8u4/P0T4SeAfRzevIHQF+Y/6vwsQ76ClMvC9+zAqtRPgP5J+xn8qtA52PS+WlvjuNP+kiXJD8V9N0jvRb9+zFxAMswHv+hvaTI6xHtpCJ/GHIZCv415G8D7y3oO0x7ichfxnjbyjiwv+1/9eEx+LORXhMJ4HDoegH+ZtN+ZsrdB5YHXzf6dxGwFfTXh77i0OP843xUD/y3+X4XvnqA9yD9l4v2q6JP++GzP/XboXdtgW2AG2l/AfV/pZ2Y4B8Mv/+QTkf7xSgXn/pJmJfTAK8w3l+CjrLKVb2hv8cg3/xpAnidchXAPwj+6kCf464ldO0ELqbdJcASwO7g/ywAUevAf4b0efLzoHefge8C8p+YM4ApmG8GoycfQNddYD/wTkOfqsPPMvITpgjgYepXpt2PwZ8+dQAXIJ+DtFfD8cO8fIV2JpE+gPznI895wCqUe432c8DfVtaRCvRjQfC3pF7jSABbI+eF5KdyHSM/K/XTQn+E+lmBLwLnvBDAy+BrSL0PGR/1wfc14zMDdFek3UfMfxPBo3yGhOQzmu+3gCNc76HvJPJPT/uNkgbwDP1QC/1qDh0/8/1t5Bdxf8H3tJR/E/zv0u4N8h0vtxmPY2ivFuO/JvB75yP3D+jPHL7noH8X0W+P0Z+dlBsAffdJ944EMAv4etH+SuoXhP9o4D/Idwr8/Ex7LWMEMA/4O4CvC/XOwU8ByuemP7e7/wG+gzxGg/+c+wLk3Jv8l/neBPwNGX91wP+A8XwfeA/4L3S1Av8I8OYB3w+RAO6h/xPS3m7Sz1yv2W+8SL1q6Nd35F8A/1fgP4W8f4e+/cjpNvAL8PyE/F0vXD/yka6K/s6Dn47w/Snp25TfRLoz8nmL+mfAn5D23gffEr4nRz9HkP+MekegPy30TmT+mcG8td5xAL6F8N+K8hnI7096Gul14J1B+enUfw26zyCvzujXIujMxvr3IjACnBsJYCX06UfwZoefJ7Rbk/mtEelLyPF18P9GvbjgG8z46kp6C/PpVmBr9KMrdN9Fbu7/W0HfBfg5RXtR6M177Gf3g/+R+wPwjAPPDOQVzfe6pMcyXs8j38Hkr4WeGqzfXyDf7eCPoK+fIocrtL8R+hIx7yQAfsr4fwg/BVi38wFLwd9m6D0L/tO0d4z88fTPjXTP03mdfOfDBtTvCT9L4O9d8BWl3hDKXaH/WrCeTGWcxqF/XJ86ok99lRP130GeG+DnDnKtBp764D+A/nxP+f7Mby2g/wXojwneWch3qvs36E+KnEpCx0/Q15n2RsDfIfCNdn5BX1qDbxrz/DP6pwLjvyHt1oCPDLQ3BXwrabcwcp0J7EK9QcCj0PsX+Mej99HACcDm0Of5oAPtdQJPPPLTkU4ZCeBZ9KAP/GSkv/6Cz570RxPkUxW6+0Bvbs+59E9q6OkB/u7w+5Tyx6AvE3i6Q2dN+PuF8TICOv5G39uTnxj9qcw+YyP8PKb9h8yLN2IG8AjwAPxnAn9t2q0Kf/vdx5B+mXYzQccb8LEOulOB72/tB8ivX+j8/gv0zYF/z4dDIuAj3/Nic+j6EP3ODL0/gn+467XruPs91o+djIddwAah9TkD+vkpeCPItY32AeivAF0roPdb6FlGfnvavQQdc2m/E+11Yh64SfoP+IvH+vUa6Z/A14/2v6L8EtqPAlahfw7zORN6V53098h3Nfi2k7+b+jHI306/7qNfO8CX68Ny6rt/TEP/vgl9pchvDf5J9PNOyr9IvufA98BfB34Pk9+I/ALOUzmex7/YfQhyfgT91/n+L/UKIv/N5E9ifvwIWI75Zwr5sdUf8PwNH4mg71PG7w30Ix/zYUXo2I88WtL+AeqVQ375oX8Xct9Au4WQ38u03438LLRfjfrNqZ9DexvtZqCd8/ATAz3xHDyZ8t9QvyHtfEC6Ae1d5/uv4K1O/iXqT4cvx2lN8Ds+c1D/uPJ2XwB/7oevA90nD2Z+2uZ5n+9Jwfcy/MdiXjtG++VpvyvttWFc3WCeKsk+Zjb0HVTu4L9I/ZepPwi9zwSe2OhJLvQvXUhv1eeG0N+J/JrwsY/0Udq/i35EQ8cH8Oc+dTT5j0i3BG835o844C0C/4+1dzg+qdeUcsvB/5D2t0BPWupPBeam/l3Pg5TLA55i8N+G+fEP+G+p3pA/in4dDUwAbAsf2nfWUL+r8wX0aad0v3aA/GTwvxX53KPdndoJtXN7PmYc9ASWov23qLcA+F4Aou5QPzH60pnxnYT0XPRjcej8siRknxnF/LCfen3R1xXAHdo/nDdYh8ogP+3bD+Hffc886P8JvfQ8lYv2XZ9KwP9pYH/kr/3/V+iYQf+ORN4f035p5BvfeR4+4yL/R6H5exr5tbUXAD2PpKRceu2L6OMU2nW/1Qr+4iP3WMDYwJHwF7YfLCatHeF35P4mfKaEn1zQuZJ0PO1/0DMz8ny5Gdmex7MF+ndTvh35zWl3PvJx/U8Lfwnhy/V/HPhqkJ8L+eQj/wL0xUAuK2lvEfktSa+g3ETwVKB/z5CvfbIweHpAr/OV85fzmevvS5ynzrO//Sm0n39Mfny+N6XeIPonD/NudvolPvq5mfwY0LfV/RPtH4Ye7XXlKKcdbw/tr3Z9pJzzYVP4K0H+m+D/hHLt6Nfb6I12851A7el3GY9vgW84/OZB/tpNSlP+MPxeo3wC2tvqvEW53sCk5F9Wb4AR9OS/9cf7L8a764/2pw+1Q1O/Ie1rb9sCv9rjtL9pp9be+g/yukN97TPaZV6Bf+0zG0jvQw7b3P+Bz347AR0/k2//lWQ+2sC62gE8q2n/MfU9Dx4h/Qi6T0KX95LeU3o/6fo7FP0sEuE7+peP9qZ5vgdvdecf90Psw3dwXnL+u+P5F7gD/DGp30B7v/ez0PkJ7ZRGfofQs8yUuwqeipRXvuspX0i7MPS9Sznvx/4kPx/jbjp6MwB9OgJ+77Mm0m4X8ORG/tp3ted6H7dY+yznxcp+J90cPEcYD/+A3/GSgP5XHxzX6ov60Zf0PvJ/8H5T+y3r50ra7QyfpyjnPXk57aPQ2YD6YfuAdoFG5M/3Po96RRlfw4H1kJ/3UgWp7/7lIvVnUf4gdFVi/I6n/kDKeS4eif4UIX885Wsir8mkU5M/CvzaQ26AZyn9l0D7Nvqw2vWO+to9l0K/9s/TzI/ZGafTaSeV+1/quX67nr8Knrx8r6g9CTn2Bn/OWAH8EHpWYK+4FwngBOafRPTPSfebyGEA4/IO4/JlYBnG52jam6EeQc8C+OgG/3Mo9yflxkPf3+Qfd5/ovgr8SdxXA/tBXwfyC3o/ybgrQHoK7S8Ff2X4Tw7f2rmHUG8+81cH+i85/OejfinoegAfsWl/Av1WAug9c3/Kl0Feh8GfFfrm036f0PlyDHIoRv4O6LgE3tO0f8H7QveF8FUZeB3o+dXzqufXHdC3OgBRBRjXH5D+zvsQ8JeHvof6xaCfKaDPfqqJvjVBHy+AZxP111C+BvJzf3gROvUDyAi9h6ifGPz/Mt9Fw3876q0jfz34SpC/MDT+foCfhOhfk9B8WUe/Ae8rQv4Z7r8/hP7w+cb7rlcc/9DzFelBzKPxkP9w9kP6I+mvFE97PvRrB0+E3AsD+7D/HqZfj+dI6K2vfVN/Ce+d0a92jPs2wE3Q05pyqUJ6vRD8+k8UQ6/bQ29T1s861P+a+eMzxsFp4KeUXwVfO7QrMR5PUf8k/V3YeyD9uGj/Le0lni/px3PIdy7jTfviFPZBK6mfCLyLqFcFPPpPuH+MHQngfOg9DX0LoDcOeGqxT3kKPser93lDXTfRn+9ZP7z//x59yxuy/yWnXkn48v44HvRox9E+FBv6d8LPK/B7MXSeqkP7VaA7Bf13X/8R8Ot3UwI+7gOvMV/ud55AvrW8B4f+KfpBwcdy6SF90/laO24kgA8C8J8fRi/gXcoXgl77y/5MiXy0G7vvdB/q/nNC6P53lftA5PNluufL9fE+FHyLoWcMsA75OaBnBPXvuU9ynwI8xbhrTPou+n04EsDy2gdpPyV6MRD6h6HX/aBnKfUzu79CP9XL++BVP73P6Y3c9MPbDL7NtPMK/GifmIR858LvOejvpZ2TfOfX1Pqn2B541zN/ZeWcPpF0DvDWB6aA7j/Qsyjql0XfSgObw1dm8m9S/lf4ScL3B9CnP9v3Lz5PZzbyfwntr+ZKv/erpPVnukZ7XyIv7fXqn+eh6ZRvyPev4a8E5eO4viKXaOQyg/Ql/Un4npZ5NQXzcVHSA1jXe0BXP9LT4a+A9ivm+XiM57/Ir4ve7PbehPWrDfPGYPj5Br1wP3cJ+r0v2A29m7yvox/cnz8DT/j+yvW9nud58j+jvZzk/wj+XPpvgP9t9rtNKZdAu1kkgOvYf68FLkC+C8E/gXZvUm8O+p2A+rVprzrfi1GuG/wXYj3VL09/Pf2El6gv3hO7XtD+AfrzGvAjxzHrQER/VeoXgN658O+9jfc49sMF9Hc288dM5xHqHyI/feg+tjZ01QP/POq1Yvy1Bn4MfbeRfynoOBiAqKTeD5IuRbsPKZcR/PoDpkZ++gs+JP9n+PqNemmg7yR8joP+1/neiv1IfuS/gnYzRQI4k3r79M8gf6r+BfrPwJ/2Hs+f+9HjyfDnfcEq6E0BnrbUr0G+++Ra+v/Qvn6F1zwPUF//wtTI131o2L7u/Vde6GxK/bL07wn9Iij/Gfr5kfZH5O29rv5g3u963twHXs+j+mfMYp7IqJ81/GUivyDl6yP3avSz/pHR6FMz8H8NfQsj0EX/HgG//mMbwad9STv7GPpf+9I7+kPrP0e92Oov86j+411D9cP3kfNovzn0e8/kuhm2b/VFv/VzDfu3ZmB/UF1/WOb7gcwv+WmvEfi9Rxys/gITQE8D2ilJ/Ziu25EAXgZfuZB9sQP1tRd/T/2r5Ld1fwfdI6h/WT8F9yfQafxAHtKvgz8J5TMi/46ez/j+IXR2RH7v6b/M9y7eR0Nfe+ga4n4HfI6vOM630Kdf4FXyiyDvStB5h/yc5If9c6eE/HQHMW/HpJ9TgqcKsKrxEfrZU++D0H2B9wfnoF//rxjk63d/GzxjQvcP4lkauv93/ZxBff1EdpN+gfY2wtca+D7BfPQE/lpBd0v6qYv31SH/rC89X4OnO/I7rj+o/Qd+99Pab7TnzCL91LgS+LK//6G+fpmJ4aMs+D9Bv0aB76l+ZdDdWfs/9fNSrofnlkgAvyF/Ce3fof0XwF+a+fN15FQe+CXyrcF8kAD8w5lfFtFOFOP/KOecsvRDYtqrS3v6fQyi3vrQ/FwU/M7Tzs+e987r9wB+76+NX6gGvZ7X0nmfwXx8CHmdRM55aT8D+Dd7f428yoH/D+hqS72CQP3rEzL+otGT5cjjDvI9Cn/GQxkv9S7447N+JAQmAI6Fvn+1z0NfQtovBz/6p+if/XdIftHw/zH0RbMe5IG+8/C7HPxnqJdS+4v+8+w7W5PWf+Ia9L3vvgJ+K5CfCfmOYR+WmfRL3r+xXn9M+hPkNxk6fg5A1Dt8b896rX9vWup3BvaBzxHow7u02xcYEzq1F30C/dn0L4XvLcinuvZ2yvfSvwT+FiPfJcDPga/RP7non67Uy6yfv37V0GNcm/Fu9cmfQj339e7390JfVr5rnxtK+gvw9QDfRe+RyPd+3vlVvwLPKZ5PptLvvdHzbPA9m/G1HfpGed4kvw/6G9Yv77nVsx3aL72H87wO/rfYb7kPu0q5jNTPjz7sYF5Yin7q3/Am69p29O6C8VHw95nnLvcnIf+o1OB5G3nnRw97kj4GvlrI5yX9N5DjcPQyC3wNI+1+w3g54+qmwpfxc+qz8Vv90ePRkQC63zmhH437dOgexvex1Dcu9Bb062860HkEvoeRPwv8lZF/Y+OBQudN9fQG7e+lv/Uvelu//JB/kfOX9gnnL+NLroT8B1PTfmnyd7IeLYS+4cZdwGfYf8B7RfeLSeiPaGA++B6H/r6O/mWjX5uxPnZnfHsPE4v2vK8pTztxkYd2mrB9JiP0ea/q/e0I2l/LeqCdW/v2aOP/+N5VPaGdXeQ3Yv3OBd5OyKsc+HsEIGob0HNwC+T4EL3WT6gdaf2EmkDfJOjQH7k17ZUx/sB5l340vjcZ+l8T+e8AX2rK9TM+0fMHfD2i//V7yBUJoP4PD8jvqn0TeVeh3SbGLzF+a7hekv8a+atD/eI9u/4j3kd6T+m9ZCLoDPtb6YelPfhj+G4M/mTwPwx+iiDP+3xvgNyfGM+kvxD09ALPy+A/oN82+QPRv+6uc6RrQLfxne9TvoF+X9ozwa994JH7VeTWhfpjkedR5y3K6980L+QfbNzBB9C7k/a0F3m/kFY/ePT3NfQxDuMyCfO//nOv0b9Jkd8Z6j+Dvl/RzzroYVa+Ow+/TL2d7Ju+BXreOhXyz9UvNz/1K7D+pNcuCD+JkdcD5hXjfe6hH5siAWzG99q0o5+1/Buv39P9M+3eQL6fYH/JhF00HEeyzHHFd+Om4xofAH394bsf8B3oy4PcZsNXXtJj9IdFf5fSThr4W+B4YH4yzrQp6ZO0X5TvxkeWZR5aQvtL6b8zwFiUL0x+SeTm/Y3xeduQz1XkFk170dqH0J8iyKM4sCL8jEL+xudlQB/e8JwHf8eQq/o7yHMK9FUKxduc4Ltxotb/X/dsWdxf0p/qS3H9RZGL7zwY32W81yrGTT30/An8JTOOknYzgr+56xX4z4NnAvkfkZ8feS5E7/TP0V9H/5wLzH+XgNe1f7g/RB+msW5ppzphvAH0ec/jPdaYCHToz531efz674+j/lvU1/4yEvzh9Ws5+0jXMe0z2mU8T/SivUTIuxvl45Purr8VePXfMY5J/51vwbcTvjpA5ybk632i64tx9vVC9rc3qa/9rQf56mt3/fHIb4H880Gvft2fIhf9u4+yvnUxjg3o+c3220L3Tuidxfgpwnzxse9kIN9rlBtPv89CD44B+0B3Xvw5shkXTntXoNP7L/eV+imUjARwBPkb+e75qjz474GvhvZ50jvgfx16m451aA3pH2h/NfSvg+4eQO9DqsB3VWBNYF3j60Lxb4s9t3j/pn0NfhqF4ne7GY/uuk3+TeS/2fMRcDXlKtF/f9CfQ+inZq5b5K9zv8J396nuT7NQz/6PkNY/uAzyd17ep13RfTr5m50f6R/38dqf0wHHsb5ofzZ+qJxxUdBh/NAp9m2ngZ/T/i/I5yHr3RbwVkQe+kdNBv9PkQAaZ258uffrc3zXwrhN2i8PP4Wop7/UY+Sj/8V3wKrus8g3XtX1dXzI/9b9lfsq91mep3z/JhxfO0X7mPsO8FbSfw/6x9Lfr8BvIvg7C31D0asz4B1CeqV+GuhPE9p3f+v5qjTtuw9cDP4+4L8MPv2SfD9J/6Tu7Be6Mj6LkC5H/R6Mz8yRADaFv9qkvZ/yHrUucruEfPV3GAI/t7TDgN/7Iu+PtGOcprz64btDm70fdn4JQFQp+HmL9Fjo6xZ6d6U67fv+yjPofxv8PT0H0L/a72LzXftdatoLx7v5vtR79Lf2zq+A2kM9F6xF3h31A9CPWv8Y1hfvnYuF7p+TwM9c0kOQj/drPeG7F9D582/vIdAv77FPka5Af7jfKwW+6dSbgPzWuh5QPrH32N7fMC7bAX2HQPtke/rHdTSZ9if9S8F3hvYv0s4Xxo+D7yZ6MhK6apKv/8ZZ6MxqnIPx5caHgFd/I+NTjUd1f+I+w/1J2wD8Z//8l3R/9Md1rIj2Rta3Os7j6JfvRtyET9+TaOn9MnxO1U4A/r3QlwL6w/5tSdhX6qdyGDqb699Bf28HFgL/Iuiby7yhnoT1o4X3HtBXnHq+bzGF+r1Y1yb5XhD0Z2PdKMr3r9gfeF89BPjAuBDOa/qxHtcvw3sY1qP9xreT7uX9H3KJQ/sDwLM1FO//APr7w9dMvk+PBHAD5Z9Cf0zt9yH7tXa1m7SvP38r46P+R//2CPnn++7Tde3S0L+P8bMH2Aa6XoH/Pt4LAuM779BPZcEXKxQvpP3hb8o/on39AS9C/9vkG19oXKHxCG0CELULaJx7RvfT4O3q/A2dKxifZ2nP+1HvSwvDfzvqz+d7XfBG69+JXsQHPtG/F/p870m/jMrga0P7sSlvnN5tyvm+g/G1xtUaZ/sb9f9F70fCX1/w/wn9e7QXe35A/i2gT78k11f9k6rDp/dfhd1/UP5r8sPxq69SzjjWeeSXha+70PG+/jHgNy7POP3/4vPYX1xnfRuEPLUP6Q+hn8T3jBf9JfaDvzH0GMfrPa7xLUnd/0YCaHzLZOaDxtDV1vMq9B9wXg2tDwXhZxrjZiv1p5P+QPnQrvaR3aH9d0XoWQnUH+lV8BsvYPxAhPRpz1us983Qz2HaKeHP8X0Aue4NjfNLyLM2+Ueot4z2VyAP7Yrapb3f8767COW9D9e+qL5k16/K87X3PuxbEkcCOB55TaT+Y9L9aa+A+uX+ifY3kf8b+NOhXxnRnyeea9hHxKZ940B8/8h4U98/cn3y/lt/VNeplnwfBp7plPees0YAojYDj9A/+43XgZ/Y+j8jZ+NPy0L/ZurNJp2Q8jv077IfWK9fJZ0TqP1jj+dX9PsW+BbrP0J6LPKYAb/zqNdT/xTq12E9f8o8lsV7jEgA9TfIRn39EWb6/oDxG7STjPyf4f832nvq+wO+T+D7E6zPG9j3+e5RSuhPhn63Yn9wzveXoEv7lHEb2qd8n8z3hS4in9Kes4zr9Pzi+u/67ftU6Ntq2s0eul94yvyuf9oz0sPhw/tZ72WvM/69n1Vef2l3hZ5ryK9jAKLOAw8A9bvSnqWdyzhn7V0F2E/ljwSwkHZb8JdDvr7z0Bx69Y8Pv/dgP/4Z2t+4r8ka2t9o/9KuqR1sjX46zHuP3ZcwH75OvufaV6Ff+672fePRjE8zXm0z5Ueh3+sDEDWadAvwpKF/JyKHXcAk5LfXHwy+3C/o1+l7hsuQXzvo1h/F8/Ixyhv3nB36F+lvT3u+o3WJ+uG4qjjg8X3VhZQ/570xdFTw/BG6H9Je7vszvqfo/YHvLeanvvP0Ot+VQ58W0f4e0t5Xut98Fz43huJx7yBf5+/1rN+ez9xvjwWf9vcfyZ/v/U4EPMbbkK+fj/492i+1W7qv1j/kCv37B/nHmGfS6o/BePVdM99jm0L7X4M/DelW8DMO/m5QXn9A/QR9b+we8n6F9FDjC5C358uVQP1rPF9uQ5+/ATaFjvXAWOjrD/RTPNJ7nN9C9+/VoK8ecryF3veFT/0m9B/tQv+WRk7VaOcseMP7k/HgdZ9ifI7zj3E6u9Rb5oP5fP8d/tuqr3z3PWHjnIxvSg9dGYCpoHcd5fWnuRYJoO+4eb+l/qg3tcCfBPpzkK/d8ol+FOAby7rhPfo4/Z+gz3PTMuTiPnct+um9vu8u+w6z9/zGZemfo79Obui/SX/4/kkP8DcNxQ+9YdwD330fzvfHqsOf+6iG5K/X35b2jYs/B3/ef3rveY7x7P1nRfAvpt0W4H+T+r5PMQb8vlORFn7eAd8E/dtIG89XKXQvFo6H6olevA3sAVymnw/y951u3+duBp5v2a9tgc5m+s8yPmdQL2zn1D9+GOM2HnAosBXyfQH5+n52Svj3fccF+kVCdwnOWbNpp6n+98ZXAeeAz/N8A+gvAd69+n+DT3ux9uMZ0HeK+uOgy/drcng/LX7oMQ7MONhc7P+0Y7p/0I7v++n6gWln1/+rBvuJFch3EHpwFfz/+auBz3FykHzjn7q53lB+u+8bgd/3qHMzfi/6PpzxiOD1PkV7Snbk5zuzmZkPbxhHSPlKpI1f87328PuHqUjPJd1I/0Ton6F9Av0rDP1FgNWgfxX03aQ93zv1HdR70HPeuBz3YfAdhfwG0f4h7d7US0//9KK9fI5rz/3ke16JrV2E9D7nF+Tru9X6QTQhvyz6kZN1OwewMvR5/vO8Z/zhwUgAfX+iJvjT8/2s77FR3/gu7eS+l+++vz31w/v/B+xvtf8aF3+d/qnEeLzEvJUWPKcp3wb90U+oFuX/dD5GXp2YZx663upfzv7utveolLvl+0GMm7XAVeCvCZ3GA46ifeMEc6Nvxh8Zb2T8UV/kbzzlB/S379cZX7mYdocizzr6V4Avif9L4T0AsATyHcp4T+y+1Pkb/L4L5DuhSaE7ov3NdcN7RvLdn5ei/Z+Q11HS49G/AcZlaZdDn0aTP9nx5Puf0N0JqD90fvhynlisfwL49Uv1nukK+frH+B7OefjUPya98XjeZxhnRfsl0QffySxB2ncyB/guiO/PUc93r9Vf9dZzmPrr+5mnka/vaPp+5n741w+4EnzEoP8r6P8Avm/R72Xka9e+bfyZ/gyk/3s3Ffm6nxmoHQT++oHfOLEt6Ou7jJ/t7NNzs58oBv2+P7/JdxuRm+/P+z4MzUbNBvpOzEfIeyDjszHy8J2oMVRMyz7jsnYP/ctD8XK+uz6XfM+V80nnhT73W7fBq39/K+0b8H+O+ad4JIBFkUds/bCh71/S9fUnRv8bhM5j7gdykZ8d+jvB7yjtGbRXkHT4naGL0G+8pu945SR9wvgk8Lp+pg6tn5+hd93op3HGE1O/Gv4z7uvc742mf8Pvv3yn/xnjbxt647uGaZCf8d++J5ATet6Aj1T6X5LWTyjsH2S8QkfwGLeQCfn+oV+i/ujGWYA/MfX/ct8An3fg/5D+kyH73yrqj0Xevg9qfMYa6FtO+743/id0LCR/JPYX3/Pw/0d8R3gH/fMdsBb6qP/vHdqbhpzGQd+P5HseO+z9iPL2/xH06wFWof8HUD+L74fDb4T0X/Sv66/rrevvKejP6/226y7jfAD863ehfpdDT+IarwR/vq/kuus7S/rF+/6Y/y9R0vsh+LnKvmip/nvQO5jvQ4Bz6I93vS/2/Ef/+o7gD+A/i1x9/1t/mWTIpy/zpe9O1Qc6b7r/NS40inZ8X2KYfvJ8Hwv+XfqPsf4Yh9Gb9Enwp/H9GPQwE/33G/JvRnok824T0gvAf4z+OAd9RUn/7PpHO85z66Dvif7rpGO5/nrOAJ/vmsUg33cUfN/MuJ3fmbeeUM74Bfe34f8n8v79KuNmFfxnRN88B4Xvd9aC76bzN/sC3yF2/+b7375/px6WpL2D0O/7NsfBH5d0ave/zuuef8g3fkj7Qe6QHUF/6uTY24yXN/7e92X6k/a9AN8R+CgCHuTheOsHHx/6zhLtfYRedNeuRX3fB/KeZgj4m8Kf9+3uU2JRzneuKxiXT/ov8hcgv9z0h+/u+/5OXsprn/deRfu89nrjOY3vLK4fOvS5X3L/5Prj/sl5q6/7I+YJ49y0G/j+ju/9aUcwvi4hdOuvqX+m/7e1g/b8360c0Of/7+i3HfbvNz5uPO0ZJ3fU+An9CYwrhY/yyDccF1YG+jqDL0bo/eyn+iNrv2be0N6xjrT3V96v1wvds5eBPv1v9RsL/x/QK/o1638AH9rzNjIvjGF8niD9He1fB38b/U+gf4H2C8914PP9v4q+LxL6f7rPtSfBbyrmV+NIijH+h3o+BfpegPtx/79gCPwYd2Q8t/f/3gtPgn7vh3fZvn4fvoMQij81nuMceHy/Zxn5zVi/7yC/m+CPT3u+j6Bd0v9R2Il8ByCfU9Cz3fcvSLvfdh+uvcb9eCL2k0n0e6W9/tT3PXnjU31X3v3dTOalWcA67D/m6K8BfclCfur61z1Av8tQ7jR4zkKP57ZOEfjQ7mH8q/HB+gWDvxDj0/Of95TeS3r+096t/TuH94Dwdx96yrPOJPU9OeQxBX2bDJzqfRTtGI/xOXRs0l+S9nbpT4Zcfd/f/wFzfj+s3sKn77/5f2O+07fW9cz3AVlfHuv/Q358+Nd/z3dvo6F7Ifm+m+M7Op/x3fdz5tEf+iuuBY/vozWNoh3gIqDx+SOhP6bxxMjB/w8sAb3a/0d73ogEsLbvxQG1U2mfSo4+bgHPavSsI/R53osHvl/RU//PbIzxhPDt++H6fSxh/ilPv99HnxuS9v8bBmo/AO9x+sf3qXyXyneqStKe/yfje9Laj7TPT2e+XQqfX/g/M9TzPa+FlMtOujT647w6XL9017tQfK9xq+6PstNPw7UX+b+pwCbQX0o7jnZl6q+Cn83o10j2OeeZDweC3/O+53/fbfT834lyxoWG40Wvwo/2vf7oiXEE+r+6b/KdVN9bzMm4106Xi7T2ubjMnw+gr4Z+DPBXGfwHfN+LdjKg72XhfwbwMvrp/WIc6jfyPsXzM+35vr/nbs/hzs/GdfhuTvgcv5fz0N/Um+B5yf0j9CQM/X9XM+RbF3qqgW8K/Le0/6FPvy7n8ZPwvxl9GQn/mejvOsgvA/L1ft75oh38affqQPmw/aux8XfUH2gcEu37/xfpjDvhex3wGxfyEnT7PyqnQ/EJxiPYP9Xh/zT6/Al0/Uja++db6JP/m+i8MwlYjXztce6vb1H/Gf2hvW2c+wP416+5L/gKk64b+v8D/cwPQof+lfqD+D9rx+ln/1/NfVcZoHG7XzB+GqNfvtMbi/b8PwfXZ9dl/Ycy0Z+rmU+HQ3+UcbCUf994BOQQfn9d/+aK1DMOx/hW/ea1h4b95+PA9xbrgacLfFZlXjDuQX9B4yHC/2+7DT0wns//tzoL7AT03iL8/xfK8yvoK4F8zrA+p3I+jwTwRqjf3Admhb7N7vegS3/V1PSf78/77rz+fPr/GN/gfjY++IxvOM/+xviGm6T9f7wZ0O3/B0wl7f8H9KA/ewJTsE74P0vh++jdfL/s+3nM9/8AsyN3/x+rLvw9NI4A+vW/dP/mvs111f2b71X7frXv041ifphEvaeuf+D3/5Wy0W74/831N/sz5E+mvUb7zBLmL/tdPbD/o2lPf8/j8NOR9vWH0z8u/D5/2dC4dpw7vtWLucbtep6i/ank3zceWD0G3xHmo++M7yUdC/xhf2v/P2iv7+fprxKKn3H/6f9N+P8T/h/FafD+H5HagLt4nHWdddCXxfewH7qkU/JDg4TIl5ASULpbulsQ6ZaUDmlJkZISEFAUpAREpQUJ6ZIQFFG6fjPvfV3vDPeMzz9n9rO7pzbu3bPnnKfXq1H/769mhgDeShPAmDkCmDFOAHdT3yptAAdmD+CDAER1SBfA6pT/zRTAm6kD2JX6ZtBbkiWAlaC3Nn0Ah0UCWIL67fTLD/0x9E9Huz7gn0f7ytCtC39Nqe8E/lv025Y5gJv4PTH9WsDPfdo9jhXA7vDxiPJM6N2GnyL0r41+orIGoGDCAE6KHcAlyHEDeIf2ycA/GX7ro/9ylL+mfXVgQvBnSBLA9MCMwFrIFxf5clKOjlzDKHcG/9CMtKPcgnYn4O8odOfB5w36D0Zfb0DnEu33Uj8GfOqpD3pLkC2Af9B+Ov3Lgy8+4/cFv6+Fn3fki/7NwH+GdqPA9xvyfEw5DfWtKZdhvBZHBx/ytWV8N9C/K/jP0283cnwDHwvjBnAd+DOA50/4PxMvgEOBZ4GVaNc0RQB/pH9V5kl7+NuTOIBJwLcxUQBrMj8uvRLAF7Qbi152U58dOXIxHuvAu5L6adD9kN9Lwt8K5tcw5lMp8NRCP98xjhtjBvAB8+IJ+vkSfodT7oC8edBjP/jcgX7zw8d+2n8CvYXIdQm5i6DvPNRXgu5YymXpvxN5qiQPYN1kAcwF/UHIl4f1+T7ldvD5VPkZj93g+xo6PZAvNfh+oT4149mE/hsYn4YJArid8hLad4CvtMCk8FsAfaRFP+Wgcwz5MlP/DfWFKHeF7h70m5f9ezn959IuGvXrWG/Dofs4EsAp4FnM+K+m3xLKW6ifAd7k9JuNXD8yv9zfSqLXjtEC+CnzMQ/0D1D/OuO5Gjx/Mx9To7c0wIPwX4z5+ID5sQ39XKV/Z+bPh/A9J2kAbzF/JzOfukB3EuXlyHse/nZTX5Lxfwr9+SkDWID6bqkCuBH9vMP4VHX+RwK4FPmvUB8beh3h/7Dzkfr2/P4bdKqh39zUL0bPFWm3CjpZ+H0RfJdEnquU+4CvEfJE0b8x5eW064e+JlL/KvylhP4C6G0GXzvbI9d4xqM39Gcgf2LwVYPPNvS7hHzn+H0t/T6CryXUr4a/Hfy+FT1foNyTdVWB+d2a9f4Q/ovD71PkaA2+vfRfBv8rkK80430PPg8GIOpf+NvF7ynp/y31L5CzHfMwC/X14O9j6O6kPg3138Dfh9SPp/wK/BxhvzkHn6f5fRD9V8PXfvrtod0L5wNy+93cTL3fzwqst5zsg7fYx1qy/9VlvudHv8vRz2rPN8g3nHX3F+W1jN9p1lsh+meCbkz0+DnyVUWO35BrHv09b1Xy+087z2PdKQ8Fbqdd70gAT7K/bGafaMy8zMT8SAj+mQGISg5/ZeCvKHq9CJyGPtuBP3we8ZySFDmuMS8+h99+6Ps2+DOCrwL1Wfl9MPJXov5V8N6FTmXoV0avTdF7GvbJmNQXih/A/uhhADAneKYy3rGQYwrlN9BTAeiXdR0BD9G/Ee33g7cJ5afIk4lxmUq/mujD81FV6G6kXQf6bUMPfv++Rf7fab+H8avPemoJ3Rye84BfQa8U55gp8PEd49MA/OmRtzl0rjD/f6b+Gb8/B98y5H/AvE/gOZDvcRfovwK/C8DzgN9/pf8f9OsK/XfAVwD612mXx3MW7SYAPV+0ZZxvAK8hp/vvIehWCUBUBvD/g943IN+3tN/DOOyE7zjgK077OszPa6zfP5O/3P8S43eM/TgF68/vRQnoX/LcFQlgQfisQP109DkDOA24BX6yQO8perpBeTP0PW/0g+5jyiuZP3GRpybtPcdOoNyM8ekI/wupbw9/WemfD/r33ZeQJyd6eYvfm4JnPfhjsl5boKdf2R9ep30ezxfItQ05SmZ/uf5T2n+S9uX6XPD3vuc75J/D+L3Pee0IsCH4ViDPh7TPxHy7x3jPQn9J+B4sgL+F9G8FvQ6UZ8JXYvCdBl9h+l0HpkG/NagvwXz2XOR5bzv8vUX7UshbCjojKD+jXAF+FoCncSSAnqdeA4/nqjjItx7+vwDPBtofiLwsX53ML8tZgP59AxA1mvr6lPvC3yT614W/CON4lv2pEPW9qH8Cfu/X5xm3wdQ/9B5MfWm+3x8yTleR/3fa1eK7n4lzdhLqOyLfXNbbKPiaQ/k48/cXvu9HgIPAswn5k1PuCr6UlJ/TvzzyFUb/R5AvLfoax344hvYzGPd/0F8v9v/78LWS/fAT5DjB7yeBz4DJ0U8H+j9nXtdg/bWG3xSM9zz4fIzersHvVPS6ET0/hD/tVxM9TyHXZMqzwPMB/FaFj7vwPQh5U0HnTeA08PRFP++yvi9C9yT1q+i/E/5KxwhgdL9n1GdhPT2DfifwzGR/2Ol8AG9C6Hak/kt+PyNdxuV16jcxL/6E/3+Qvzbzox78a9fzvLWGchvP7SG7Tk34eED9OX4/TbtG0K/P/nGI+n3wkxr5PQ8l5HwwlXbnqV/COG3k957agaCfDfylmTc3kG8Z8nZAvhL0f5N5dt7vB/0yAyuwHj+F/xmsl+nga+Q5Df7mMT/ree5HjgzeU2g/kvoz6Gsv9VX5/jRz/LVvId8ez72M1yLkyAv/3r9Shu5h3r/cz7XLuK+P1P5Cv9LAG6z3WtBpBL9rwfMDsDH62Y0+13tPgN/v4a8T+h9Ivzroy31kBnQXobc5ziv0c9l9kvZZwP8D+ONiX6wLnZHwmwj5PN8Phu4J8E2Dn7vAuNBNEAlgX+3n9L9A//r0nwM/e6jfifwnaed6mMl+l41xOck5o7n0KOcA5rSe/TE945GbdZIbPPW9T/J7xPMj5RbenymvY128QN4PkbMf/E/nO9YO/kegv9qsB+2sY8Hjd2or66Mc5YTM43va67xfhb7/s5D/EvgvAi8Dn8BnC/ZH96W44D9J/y/g9xXgTH6fg/yr6L8amAf+O8HfSX4/4bmG/SkO/HYBb1rtnciTnfGZg16Keo+D7n70N4n+Y+B/Av3XUXZ9jGM+NXX9QM/718fo4//fv6B/jH6zobsWer9A/wD4r9CuJ/gXU3+d8SvhOY75lp36nshXBv1oh/gYep/BzwnPx+C5xzhsh/67tHuBPGM9LzOeWen3DuulSCSAmWgfw3MV+LLRviJ6T4hc49jHF9N/LueCWeyzA9hvsoHvR/ad4fCXEb7GAVMyH7Ohv0X0e4f6Xsg9GXnn0+4y+9NEv5/o60f4Xsj+OdD3GPBMof028HRkf40NnIP+k8NHCvie5rxHD1uYH+nANwP666GznPEdAf3/ga+t52vwHaH/Z5EAPob/ytTvhV4s6GUE7yPK2m28X3rf9H4Zl/mWi3mYG5iI+rzQfwQe7TsNnM/My9rArOB7Hf7+RD9b6Zfc+x76+A3503heBW8y+O0E/X5+R8H7Ff270L8/+LNBb5v3Tdcvej1Lu4HQ+Vl7Bvg9x1TL+DK/rWO9LI/8J2Z+jmadJqXsfqL96D50/mF8ngMnIvde+NIe25Hx027yL3TfAhah/1D4zq99jfpJkQBm8/0Q+qNoHz3Ty/X7M71cn4P+K6gvQ/+/tevAX0LO1fvg+yjtK9JuPnpbxT7zEXq5Tf9DrKdWrK+F4MnP+iwIH7mQNwbyval9m/3lKOf8MqH3nHHMy6TsOwnYr45C/0zoXOF54w58jmBcff/9SXsA9Ptrn+T3XvD3J+3zcp6owzwqyXk5r+c3+n2JnLmh6361jHNBQc/90IsFfc9zhdC337Os4LsEvb3w9RH7bVPq9Q/QH0D/gLnoZy36Ggf+OZSfsD8chp/NfgeR50/4K+L7GeV18FuY8hL9G+BjJfVJkDcF/CSFfknwX2EfQJyoA8DW7D/rkHso8+Eg81A/DOdTAupvRwIYn/KflJP6rg0/scDzFfq5B78FgOe9N6CfXfDjuu3N+aYP+BowP4ZFXubvHvMjAfL6PV7DvNgG/5UZj9eQtwrl+9BPBT7X+yX0eUL/APQ/gHb7PEdA3/dV31V9P/B9NQJ/vsN/6X4M/U2sv23I7/r5l/r47JeP4XsI6yQa+D7y/Ep5Dni0P/v+eBT+MmsvjgTwXqg+PL/qUd6CXN5HvX92Zf1tBU9W+B9A/wu+2/mOCp33mK9rwdeT8jrKVeHvAvvWQ/axQ9yn9iFHXegmpfwjdE5qX2b/nMz+eQJYhfHpS3v9gfZDtyL1LTwPUn8RPvcyPgWYn4n4fRf9l9G+K/rrznzsw4Kchf7mo78e6GsvckzTnsB66gO8DD3Pp9/plwKf97Rfg+eY79bwFQd9lqLcDv14L9Zv4ib6q8fv+n+kQl+eL5Yy/5cBGzM/R6K/hvC3Bah9fAjyH6F9CvT1LfK9C37PJ55LKoXOJ9rnfSdaiVza57XvDKO+P/uL9h79dVJCPz967sb4LmXepQPWZn52gc4I+POdMRlwi/5znl+g9xHwD/DfhL5+JV3g8234CdstRkHvHeQry368lH2iBLCL5zf2jXvanYCVtcN5foFO9Awv85UReRpB3/vxcf0ZvA9o94JuPvhvwe/Vmf/aq3NCPxv8j0Lv5cF/IWS/+Aw8B1lPFSMBfMZ4PgU+Bx4Aj35R+YEPWH/z4U976XbopGN8+oC/GL/7/rUU+j/AXxPmhX5s37G+ctF/CfpLjb60w02lvgrj1ZPv4APG5zfqlT+aflrIpT70x9M/bzz09M9bCF/uj4ng3/0xF/vpHPofpH+qkH3Q++8H0H1f/zb2r1vAL6BzgfH2/cv3Lt+/PqD+B+Sewrj1hN4/4BkOvUXQWwz/OVlfLdm/MsLvUej4vpge/UXX3xOo/1kT9ocvOcc0cn8C6u+ZgHE6yzk5Efxl178UvIfgt4Xvw8izD760F5em/TH9PbV/Uz8J+bTLbKJee01+vyf0zw2+HdDT/9V72irkzYUcv1G/mv7xtSswXu2ozwc9/TK0z3neao7+WgCTs57rw3ct8F+Gvzrgvws/zZ2v4KsMPf0LElOvf2Vvz8/w5758HZiE9Z0YPn3vnEzZd9CR9C8Cfs91tXx/R7+up4383gQ+XV/t4WcRcmamXV7aPWNe3QR/Hcq74KOA9i32pwN8D/0u/Y1cR+AjJb8nBr/vAp7LPKd5PtNfwPPAfujoP9ATvqaip4Ksm5aMTzXWV3b48hywy/dZ1kNfxj8J54DHtEtDOT1454CnLfy1Y7zmMW/aUo7m/ETeS/DTmf01Nv3jcl7Qjy0pcCr0vqI8OBLApeDLDL4PvJfoN4MeOtO+t/7RtP8XfL4fL0S/B+i3BH38Dr65jG8e9BiDcZ8Mf/mhPwx63m/0f9c+5z14O+3muv9xnn0f/PqFbYbfq9A/AF8DgZm0P4M/Ffw/gG/fT3Iz754D9ZOrgB6Pe15iXLsAD8JvHfjSD30I/K0BXqbdJ/ofoI9u2n+g14N26qGh/uEh+7p2c+3svr94PxkZuqeMgu5oYALk9P0lM+3Xo5c36VcX/pqznjax/ppQ1p/jGeOzVj9Oyp7L28B3U/TfgHHrg/4n8ns1+DoC3pyRAH7A7+5z84Cfg6cgdH/Ur4p+O9HfG/TXT0Z77zDqPf+0p99J9HTc+xD7UwK/g77P6x/C+uisHYf1vYj+T2nf0fs1eBIj/z7qezAem+FP/4mn8B1+/6zn+zjlbtB3vo9xvVOuR/8rvp9BX3/cWNT3ZJ/a6vnG9zvwlYDONcbpXepjMh6L+d39ZyP6KQzehsyfGvBfCHnT6j+j3zz8eR7M7XsF7fW/ee79Vfmp189qCPVbIgHsAR33H/3PZ9P+V+r1L4vP798hv/7DV+Ani+93oXtDF/dv5DauaBz7k+9nNdg/irOvlACeAv9a5p/+ciP4PrSg/m3XPfRdd97PPLdUpr/nlirIr/+afmvDQufNW/CdL4I8yLcV/PotFwFvLs938FcZ+Y3/OMl++tQ4GfDVYtwrgCcZ+H2/8t2qO/xoH3CcH8JfDfR3X/9171/oIT3zrzD9Z3Mu/8u4I+OAmF/xlQ863i8ivu/DVzf9c92/4f82/JTRP9hzN+NvPNMw9lfjmj6hf2r29y+hMxp4CfqzKTsvV8Kv89X7TxX4ask9pjf9jT/6Uz+DSADHU++6u8B4jYJOcvjTf+2//BxqUC7vewD06jA+j9gvU1DfGXyDofeFfofo0TgV/af0X9BvYSz49V9Iij5WIl9q6vdA7wDnVf139wF7RAJ4C37eAl9ez+98P4wn66cfNnq/Dp8jWL/HgStYv6e089O/qH6g3me1H3GfuQ3f31Of2v0h9F30/WY2/N9lXg2B3leUR/leyfofx7r/nX6FkVe7ZGno32Q+3WJ+jEYfxhn00D8H/NpjvF/08f0S/Xn++JffV4CvL/JdNd4B/qeneZm/dayfZ6zvY8Y70m84+hsJHBH7Zf7Oum7cDzhvlzP+h/J04A3wx2f+dvU84ryGrxyMn+/J30Bnk/Z11yd4ewEXg1d/Tsfd8b7KfaMP/FcAn/Z3/QePgyd8HvQ7WzsSwG7ow7iQrpT/R//hrLsx6PlV2q0F3gX/Td+XjI+kvjvzbQ5011NehH4fsi+2Z50n056GvOfot4FxX0+/KfDXg/lVjN8L831Zj/71Lx0E3tjI7f3Hc3xX6j1vHwF/F8eFfaYKZeOr9A8sqn1fORmf58zLU8iXkf7fhvxrx3oOpF966GdH7o760/neR/8djEtZ/c7Qp3rUftwKfjPB7wz6/0K5PPTXRQL4k/Fj8Pc7dO/BRw/4O81+eYZ9/DRwGnjc39zXjJ9zf1vAfPb90fdI3x99T3J+O99X0z4h+o2tnvmeD6W+Of3069TPU//OV8B/1n0VeJj+LaDXDLk+A08D6juj7+3I8Y1xrdop0G8ayqW0J7O+e7P/bgeG7cOz4edn45zp7/flPvIWpF0iyt5fdyKf94scjjf8l2e9DHF9s94zw6/xA8YNXPF7yvwpGTr/akcvQn/9OvTz0L9jJ/p3PJp5r2KdOF76TzTWXgTfRcGfHLyeK8Lnjb+pz6vdSv83ynGcT+DTz8n3Fe3S2qO1Vx9B/k/d/3w/gH4O7+/6f1AfHRgDeuHxchyz6/9L+QPwVHJ+wd8i5l9v+JupvYb6NOYT8H0UPMvBk4j92LjoU7Q3blo7sfGBndGn8YH6d7UL+Xnp33UDefXr/IPfz9L/I+h/HUU/4Cj90OG3lnZy+PG8pH34PL9rJ9Y+PBZ9tEYu/cj0H/vY9wfq7yCf+Rxucd7x3m18qfH0HVn3Z5m3F6A3HjoF9QcMvQPm8P3ccyH0hlFuFQGG4rqM89J+q7+1fkw3KSfQ/sr3xvda329Xo59D2o/p3x86SxmfztQPlJ7+u/Q3Xro08lflO6Rdc7h+zcb3oZcayP8q+ozwe1Xjj/WvRy9VoX8W/Ee8H8J3dPicY74N8CRBH1cYl7usN/e1WIxfS/h9CJ419F9GeZfx2/pP6f8JPe092oHS6D9Pvede38l8H4vGfSwz8mif/YZyW/hvA2wNjEH/FJTPoOdUlJtoh4Af471veZ+jf0L4K0X7w54vkK8983aP9y+g97sZ4PXek8b3Cv39PfdDzzwgVynvgV5Z2vVGbzGgr93Q+/Vn8KsdMaxv/Vn0XzH/xF3mTUzuX9ojfN/3u98I+cx3oL+JeUD0Q+nJ/E/P7/oH5wTv297fke9n+r1OffFIAO8wXsY5TDNOE3mSsK4S6z8dyudgfKdxncZ5Gt9xh310pe9K2nEZv/7Mmy/Nw8E6aQf+eMg1xXhZ4621r3DuWgB03UXQj/GXxl0ah/kz9CvD7zX0vJ79JBP6M675FPwX0E5DvXkhPkde3/f1z96HXL4P6T+yEf5+gl5O5sk25Ne/17iCGd47IwHUvvMD+rvNd6Il82cy5YXgXwBfScBX1vc15qt24H6+dyPPe/8Rf90QPn4EVgef9uXBvj/D92TaeS7a7/0/tF9OBJ6g3nitF+jDOC7zqXgees7v6usQ/Y1v8v3D9xDjmz6h/6e+T2pvgc9B2nv1s6H8jHr9grMpX8j+bNyU+XHMl3OF8SuBfGv87ul3Y/w/9+HPHIcAROX2+wb/pYxn8z0OPIOp911poH6VQO1uA/z+w99wxs+8UAlpb36oJJSvs37umMeKc1w949E8r9rP+CHk015y0ndXYG3zX3ku1w8T/a7Rn1O/GPrt9h2X8c/H+utNv79YD/3R/13WWzrz7LCeYtK/Dd/HsfAfh3V1LBLA3/h9h3Fb+uFpR0F+718/wccXyJcffu6w//7OPlae9s3Ap9+SfkOZwJNEe4Xnbd/TKeuP+8j3J/obf7We+bUB2EJ7n/ZAxjUF/GkPNW9VXMrxgLX8jkG/Cv0bwmd22p3Rn08/ee21tOuF/hYaH8a5KR3fH+0rnxrfqR8o47kf/Xoua4u8ntdGw99fvv/pT0V9W+rzaZdgvukH3Av814wP8/4VCeA42hfju98e+i3NI+B3ivOK5+4xnA9agWcRZfO0zQcWhN921Ht+fwb+7dDvBf0M3ruB2i/Nt/IIeAE+jAP4mO+J777GUR2kfIPx/Rl+PwJqn/T9z3c/83ylR3/a17Sr6Weofa2570LM48Po3/iMaLS/Ttn8OOXof5B5cxi4Ef5To7+Txu8abxbyR62kvxh4jYc3/n00+joLfM76qQ4/T5iP5+gXl/ncDv11Y3zOQlf/Ud/RasN3LaDvZ/ngd5X68f7A/jtKO6n+fL4zGqeHfPojzzHulvpX4f8h6+0RcBAwFePVELrmE9DeU5D6f8G/yHuF9mDt89o/jCPjfPg2/BvvZt4tz1uer6YzPsnolxjYADn0z5mCXqrBr/k+zEfnfboT3wHz0w2A/iX47mzcVQT5+L009B4C1/u9pN78fOYRuMr6y83vXaHnehjv+xTj/jnzZgV8Gr/nODWmvIX66vRfRL+Z4O9mfgv9u9yvWRcb6D8SvPo1ao80X5b5sSYYL41+J/r98N7qPcd3Cecl9PV/NF5UP0j9g5szPk2AbWn3BHwd4WcYv8czHh59pEef+hN20Y7pe2/Inqud1/eLcHxXMcZ3HfX9vP+H/B97o5/jrn/4fxX5fH/LAP78lA9pLzdfIPp8C1gKOJFzSJTfEdpHM84e+o28bwHnQd/zRUzwxVO/jONi2g1lfWVEr19Bbx39a8GGeZvu0u5UJIBXkf934Avm8xL0l8V3S99Z6LcR/gf4Xsbvzh/n03j6GRduvlPtx0ORO1vo3OH7diz6T2J89Xc5C52S7M/mJzAvQSn4L8r8+x/0T1F+Hzrarc1/E7Zf67+pfV1/VO9TjeE7BuMQQY/R4D+6/uj87jg7vnUZj1cY38bItZH6VMg1nu+T/iYlIgGcE4CobsDjwEquf/Tl/ljMOCnvl5wfzC8TB7zab+Yi3wrfiT2vsf71l/lDv2Ho6D/ju4lxgcYJ/gN+/YONP8qiHwVl/eXN61IH/ZjfJZb3Xfdpvs8ZkOMU46lffhXKJcFvPsl44DNPX2Hk68794oH5IyibR2YB94MxjM9t5Nynv4Hx4H5/9Rv0HY/xdR/Ub9/7/yTw59GO5veA+XkhdB4279ku5Pmb8a1E+38of4V85u/rAkyCnszf1xO5fJfoQ/kR/AyGH/N/eU/zftYb/uYjt/EpNeFnpnYz+ucL5R/4S38dxiWj/o7M783wbf7EJIyP+QDWwO8y9mPv8d8if3i/qg1+v3/h/Hbm1zNe+jX9xYE5kKMHeI2X/Iv+v3r/R37jwaPT3njxB+i/unELlL1nd6f8JueHJiE/TPNnhe3nxnvcR7/JkPcJ9eMo+/7t9yEj9eYp9fug/1PP0DmkB/SHByAqD/3uUC7G+ExD/orgmQ6ekcYLIU9l343ob/6V1xnXHuwD3hMO0VD7qnkIz8Nfs9D7pPkJzf94RP8+9WdeWfAYfzEm5Fecke+R7ytn+C5sYx6G7aXZkV9/af2on/veiHxV9csDGq/SS79T82Hx+wvfP6B7BLlHq0/f59CP/hjGsRiPd5X1nDOUB8X8Jxehf83vOniumZ+Q79qvwFvw9z39a5q3jvbak7QfGZfk/mC+sue+D9M/inOL+azG0z4a+o/STok+hsPHSeO/4Mdxv8v6rwjeZ+i9AuWfad8Mfe3S747+o+k/I+QXpJ+Q72Xm6/G9w3xaF5FvOvNKu2t8xm8M9b47+A7h+4PxrwNoXw78hRjPUcb/wrf3dd/jexrvSr3vXL5vLdc/mnE17/ARysZDa1/oRtl35kHg/5x1vR684fVR1rgK8ycAizBfrvB9vAy8CnR+DmDcBwLPQW+0+TDcd0L+uQmRT/ue+e2MSzT/dbPQ/uH98JHnY/bPWei9HLANdOrQXztWK/O2Aa9Cv73331D8fti/0nPSIfp/bbybcbDGASGH97N21Hs/8752H3pl+d370C3zo7hfQuc9+NJ+fBd514J/CHjLe17R7xx+HsPPupC9yXODeVBb6r+l3R887kPad/9hvWaHz785j6dz/4Rv/+9DVfNOgn8N+3ky7QzgOQM//l8C/0/BfOj6vrgKu9N25t0O85sgn+fnJ+inu3kdgGG/0QKeK6BfT38Y5KpPv03o3/dK3y+NTzY/+w7Waxv0dI/yMOrT0n449RXZv6q5H7PfDoV/913zB67RLsfv142r1j4FPf1Y9V9tjnzOt0fAuvopgs94CPNLmg/Q+AjtbR3gW3uc9rf3KDvv9Mu46vqgX3vzMGR4ub92Ke1R4fxzZeBvKu3eBG9a/TeZX42Ra7R+AJEAduM+o59NI/1BqNfeYf5/7SB/s87C9gztHO8zPjnQe7OQH7pxs1nMLwk+80f7vprC+D6+MxeYJ4mQvw/6jQ39r+k/0fvhf/jF6G/re9LbjGf4fFDDuEPwloTe7kgAw/Zc7bx/UB+OH3tC2TiyEb7H+g4Wyg9XnPG5wzhEM04e+R6jX/OkqL9pnudD/pPj9C8z/pPfjT/ZAD/miTefj/EeE4y/ZnxW6BcLf+ZNW4J8Ec4vO6jvBZ4c4Df/j/GDBxifvZQ3mp+H35+DZ5/2T+P1qTfvS1Pkz8D4FEevQ+GvG/IvZ38xfu5j6Pr/XL7znMHvvmt6vgzHVU8CX1nqfwv5rSSO+zJ+88+YD0R7fKOQ/1gKxjkt60v/Mf/vRH7wvRM6HzQGv3FO4Twi8ZB7tn5CjMtt6A8Cf27aP6K/89v14bpwnSQ1vyX1R8EzGjxTzIOBvo4xTvX4nvueVJv5dg7+loJP/z7Pm54/PY9qnzRfz1u+e8Dnh77nwVdC8PVBz8bPmg/a/NBHKP9Cv4bw5TlmC/xVoT627xDwYz5Lv8N+P/xu+B0pRnvj4ryvmf98QCh/tnmzfU8wj7t+OX1YH0PYn8xPOpv98WLIHqf9JxXjU9n8PkD9x4aE8vloX/P76//NSAr+ipR/obyZ8lzjfYCbWD/mPzXvnHlQzX96lPF4hHxtvOcin/4o+ql4vtG+eoz15btzffTve7T53Gejh3T6+cCHeVsvIEfTUB7XN+Df/0fj/6dJh3w/8T3owT63QD8g2pvf2nNHOP9wbv3DaD+A/knhz/u19+JrlPPSPh/ttaNqPy1uvibkvxjK49UbfEVYL0WBy0L5UZohv/4EiZnvvreE/++O31Xto43p19H8a9Ad6P4G/zeBnqc9R7/v+qD8JvQ6g/dnxrs2/N5nH/qXcXZ/b8w82es7hv5cyHsI/aRl/K8xPubnMV/d/5DP/PXmJRmm/45xVLTzPOA5wXPBQ+Q3/5v+s763aV+MwXdnle8j0PP/n4T//9hN9KV/SVH0mpx28diPjW94Av4J6O0p5WOMV9ieoZ2js/9fA3rms/V903ylrQIQNUX9hPIJGA/n/23rCV/Gy3VFfy31GwGeo53+5OYP1d5s/tCy1J83fso4Q/Dr9zMRfZ1FvyXNv816K8S5LanxYuDbH7ofey+eCH3zj4X9R44zvlfAvw4+xqHv3PBnftUZoTyr5heJyfnsFaD/D+cx47eS80ZG+pn/0Px1vzAuxsP67tWJevO+Gjcbzv8qP77/1kTf/n+aHcj7mvHC+huYv89xAa9+flH6Q4fw39IPmflovi3zcBm/Zj5846v1m9WPVv/ZT+mvv4150/6g3JX1sILvquN1GnmMny4FPuOoza/4B/vZe97jWI854e9X7fnw14RxTEP/W+BfCp+Xjc90/f9H/Hp39GVczDnzdND/a+bfAORJRP+BlPVzneD/N2LdjafsejP/5evQLY5e4sLfPeZzDN8HkdP/H/WY77L+Jcbn9gdPEeb9PPgyXtf43GzQ/Ryon5r+r74XaR/2Paky+v2ve91k6j33v6t/Y+j8r10mL/iLoA/Ph1W51+Wi3U70YJ6aoeh1Gt+fn4yXZP95gX60B5ZAT+PQX9ivxfVWm/oG6K0+0PO5+V9+0r8CGH6fMf74GN+NEuhfe0F1vp/ZzUvJeKVGf0do7/+ZqM/+GgUd89Nr566IHOZXOQpf5l/y/1yZf2l+yH5oHnrnx1fmb9BPFnypvI9Tzg1d43fuwF9x+D0BvvPIkxf5qrG/qp8GjHcV9JMHuScyzjvo3wb6uxjvin4PmVedQvnfEnlOpZ15chqC93v4vE27o+jPd0XtDxXQg/aHJ5znjvvdoGx+2ff0a4Cu/jLacc1vbH7mbcyHmLQ3v8jp0PvtRucP/Pi+fph2nh/1n1nvuNJ/D/RrsC/7PlaL8nPKvVlX4fg536f7I49xcfrJ5If+U/8/pP6h9DMPcT/2j9zsHxeB5vfQPqFdQjuF+X0yuD7Bk4P54zv/ZObjNuc3+iqo/yz43M82wn856vUf1W9UP9LkofhC9RHOJxeP/n2NEwQ+Qr7X3a/gu6bvmsyvX8G/gt99P60Bf+5fyeHLeB/jhP3/b8bnGYdk/FE180WxbrTXm7+9fch+ox+L/ivhvGcN0Pdp35fhzzzb4fzaxu91BurvHEt7o/FC7KNxoHcX/GXQm/ewpczXCYyjcUb6T4Xzn+zXT4/xD8c/lQ+9J/m+NJR25cCnX0ZaoOfob9FHOK/lVMavO/PjkPGRxusaX5D6Zb6M05I//XK0+39POav5hdCr+lS/2n9bsd8tZnzT6celn6H2M8+HwC+gd1X/f9qH15PzeZZ5GWnfD/78/x76eXoP0r9zI9/7dxln/9+t9gTzQZlXy7xQFSIB1J9/JuO0FTzex9sgdwPmTWvfc5DvLcanMnKF7Y/Gk3qere97P/xH8T0YBN+XQ+/F/j9e/z/vIMbL+7f++Z67fUddD/3wu85hyuar+Az99mCcq/G90662Ur9G6GnHjg3/EdpvoP4C+jN+2Hhc///r2+Dz/7+2Q2/+/7aK7O+d6b87AFHpfE9Cf1vZfwprb4SvopTNb6f93Pwr2s/Nv+L9fyDfNe//2gPMT2M+GvPTHKe/77vGGxiH0IL1N1f/YvRdDjofwJ/xYvo3GU/WF3nHMu8yMv8jwL/Bb15z80H5jvWF7zX01877HD607/qu1u4/3tf0v5xlfBHQ98/d+q1Q1k5uPmv/X4Pxz+H/P/V/X92H+nicdZ111FXF14BfeCmlO4VLgxKKICACopTSIS2pCCigtCBSItKhdCMl3RIS0qV0g4QgjSCNxLfWd57HtThr/e4/e82ZmV0zZ87Mnr33jRkv6v9/2TMF8PCLAfw5EsBXMwSwWsYAFk0fwKNZA7grfgB/A+4GbgTfqNgBXEW/CZQr038m9O6lCGBC6L1G/c3UAdzwUgCPpw3g5mwBrE//hS8EcDGwB+1jJg1gPGBu6NeFTm/oDk8ewIyU96YL4PlYAVwEvkk8v4x846PgA9gTOUdTHzdhANdSXocesyPfEuRrlzmA/cEfI0sAdyFfV/i4C/6h4HkHOW6lCeDCSAB3gy9vggB+Bx/5KU8F/9xkAVwALA6dsug3O/yth/8v0ENL8Pfi+cfwlQO54tH/EvKMol9i+B6cI4DHmH/JaTcTPo6D9w70X0HOsrRbDJ2ByF0fuZdB5yfoF0kZwAvwVzJVAP/KHsBk0MmMPnaAZzv8pQJ/adoVAn8ZytHwVwu8p6E3AvpT4fcI8/YuensX+mnAVwS6y6HXCvlSxQ1gamAu2qeGfi+en+D5Z8DT9M9EOSnl3PCzEfp1mA8TaLeZ+tzIP4znt+A7J+PwDvULAxDVB3gV2At91mX+JmScXwD+jrwR9BYXPW5Efz8xXj/CT1Lon+R5N8oHeN8roIdywLW0e0b/vvCdi3HIDv/3KRdFH11pH4v60vD3Au1OUN4A/93A+ynlfbTLifwfMp5XHB/wvwP/u2jfFTwn4Hsd9DNGB/Ai700b8BZmfn2e5nk5TjAv1tLuWswA1nUewsdS8H2O3rdCvxntyoMnB/rMBpxP/4LI2y1RAHsDY9I/gj5/Z7yXJQ7gAuRLjfy9WXenQH8R8jxjvtaGvx/hpxR8vwH+1bQf5XqN3DPRT07mUzbqh0LvV/DNon8f1ynkOgCeZ8hdjPqnlIdR3xT+lsP/NPSTB/rV6NeS+uuMU1LovAD9P5ErJ+1LIF8Dyo3oPzXUfjv67AQ/Wylfp3819P8Bz5vD3/u0vxmAqKLo4wH8fQd/v8UJ4Ou0P+18AH9eviu+r5Ph7134TYN+btK/O/RPMb7r+d6WoX8Hxic5+BfzPWpF/SLK05g/ydDPVvSxGbxr0H89+HkNul+BZwTt/kHe5vD7EHyn6d8Y+d2/XEdPl6kfwPNVPP8WPB9RfwB8/WiXE37a835XRj/J4WM4/VtFAvih3xf4H4Sc8eE/EiOAPwUgKgd6fgT9Vsz/LKxb88A/76Xn6W+WHjAt/X+Er4ful4B54X808j1E/uqMTwPqe/E97wO9y+zDBlHujD52Q9f34wJytIfePuoHoceXGP9zjM+/4Nvjd8b5Ab6B4OlP/y/g9332g7+zfl2kfy/k/wL52oB/Pfz2p38ayq+DPwlwGfzng34B+M9FvyKM31W+v9ORYyf85Gf+x2H86vGe5ISPMeBPxfreGzrR1MdD//HB+xC8j4Bf+H0MrW+uawOQ/yx421D/DfOlD/w3Rf5m6Hsj9BuAZzb9a9BvCvKvALajXr3kQX9f0L8f+inme8U4VYoEMCn989H/NnKNpH40/NVzH0G5F/h6sN5sAeZF30Vonw/9XECujuCPB3+T0O87vJc3oXsM/fcFT0P6X6G8lnI6v1+UbyJPJfD14vnPwN3QzwX9JfSPyfN7wGjGIwvr83n2SReAp+hfiHHJQL8r6GUx9RH43Uu7lrT7C/wtqPdc8Cv1Camvz3z7iPH5F7yH0M9g+G+KvI+hM5T29xjvTIxPe97PONSfR/+tWGdGs77Uhc6G0P6nPnRaQn8v8paD33jUp2R+v8P4/wC9ObQ7TP/20I9CzzGBf6CPP5EnDfgm0/8eZfeb7tvcx7l/u895+ngkgM7bnfSPRfuveH4Tuv8ixx/wN4ryPuSZRv/f2Jf9DowCzyna94f/xdDZD37PS+eTBPAC8JzznfXD+TwqNN+boodcvN+lqR8P3erwN4f+E5Sb+ZU2EsBvoddaeWnfAfzHaX8Nfpv7vWd9PY98idH/Nujshf5s+FpAfU34Pwr+TvQ/7Xh7fqK+G3wNAVah/1L4z097z+X3oOP5vBf1w5FjIPRSU7+Z738fnn8H//mpP8hzzw+7qB/C/K3LuDcA/yDmx1LkeZP3ah7v4RrtCehvIeXFwEXAXNRX5f0vDv2a0PkF/g7wvkxjXYqN/EPQ3x7mVX34Scn70IP5lZXv4h/uQyi/CZ4snD8zA09Bvx/1u9FPa+aF5/zBEaB2K/gpxvgdhP8jyDtP+wV4TrnfYXyO0T+afn8zv86g32rAv+i3ifZDGI/BwCTo81/PZ+hjEv1+g98B1I+j7L7YfbL74/b0/4n+C5kfvSIBbAW9p55f3c94vkPfo+h3BnnjMr9GwPceYHzW5/PQL8t+sQywNLAnehrCuFWi32DK2oNSsK89hJx/A28CxzGvdiN/7ND3ZyTz6y76yoqcsWiXhfGezPOvoZuY8TnKuH/JPKru/KF/X9bf4uhrOfXDKI9EnyNp35j62fC7XfsI9P+hPhf872F8yqGXWrxPvSLghb+x9PsSvWjfagT9bcgzAvgR/LxB+7fhNxZ4ptO/FP37M6/K07469P+BfnLqXb8uQedDxmcK8rVgPfoR+tG8F3GB+1mHUtC/CPgeQfex5xv4nAx/d6gvAZ3RzL+M9P+e50fofxV+1zE/8mr3o5yL/p5XPL94nlkHf8uYzwdZJ/6l/Rbaz0U/kymPDe2fWgcgagdwHbAB/BWj/V74uQf+Z4yP9oHfwK99YDr4B6DXjLyfa9Cv371e4CsOvmX0v0o5C+P1BL2ko9wS/v5EH0Ppl4JxncX8fhH5J6J37dYzqX+V9+cU8zyafeAz2qcFfw3t6e4j4S81+8XU8JWZ9S7Kcwr0d1PWHtOX+VPQdSkSwEXw9y3vQ+UQ/8npf5L+Exn31/w+Qb8wfDZGL99BPzvr3G7wF9beDf0a9PsBPbZELwcRy3Xa9Tkf/IyBv82M52T01Y/2ybQr0n4N5Qrwm9L3EzxF0UMM7JO9keMJ/eJCX7u1duyU2rPRzxrtdvSvQ7kw+P/l/YxFffJIAAu6v2PeJUBvpymvpH56FPLxXTqJ/urwvoxiXowG/oJ8s2jnvcZJ9Ba+3xgBf/Hg+xbl7tRPYv5NAU4G3nD/BP410JvGfLuPHn9i/u9Hro2RAMah/5t8fxvxXtyi/Bi876GXNMAL6L0r/b2vct+lnUQ7UN6Q/sP28lLMi2jk3UJ9O8rrPPeCz/uQh8hXC3kv068m5fT0C++P9qMP90nVkbsH+OcwvxZQ/ov5PAf9VqTfq/Dvuuh6GJ/6qvCfALn3wN9xnp+k/1nkqYfefN9cPz9nvNsCvwCOZX2qyPrgfWNj6pvC1z7m7RXkbAqdc9T3p/wx4xcPPV2lvij9GnvuQQ/r0f8p6pfTfjHy7oO/Tewn1gNjo98HnvuZH/PBOx46ccC/Fz3EBv/r2kMpP2b9as7zvOB5DT3PRz+pee+egG8g/FWDn6zAFbwnORjP++jHc3d99Ol5fAnzaSlQ+24e7cOsC7eBK4GxwPcq450FuV+j7PhsYF9WAv60X34P/9G8r+WAfRiPVuivGvrVnpgB+e8y/waCz/Xb/ehq9Kd90nXvZ9pXov1nrAsvw/8Qnj9G/riMTw70mJpyqcjz+O6gt088X6GfSdhf/C6UgB+/D+/C7xPP98g7E34XUK4Gf3vcb6OHsq638JsMul+DvxnryS74akp5PPzfZ79zFz08oZ3rpOcOzxueR7x/rqBdDLmygrdDCH+x2M/TEf9I73OQqytyH4T/n8BfD3nfRg8JGN9O9DvKOWESeGvTfwnzKop+PeGrAv2/9H4IuZ6in5c8/9DPef4Y/lZTvxr+9lC/X7tpxuf5/4Xyi+jxPHxWwN7aDP6vgneU/iG0/5VyX/C1gP8Z0L3G8z/RU3Pqk/O+e/6oGoCoY5EAdmc8PnJfyHoTTf1Y+DsDfw9TPs+X/MShHF5nC7JutgA293wGn51o35RyWubfZfTwAXhzwM9q9Lvf7xDr/VHg+9RXRb+eZ/5Bf57/vJ+cgVzVkLs16+dn0FsBPu83J8PXLfpfdv8DvcbIof2qGeveR8Ay4FsE/m3ofwhwK/BF54v3d/C9hf4HoHcSfSbnPWvKe1bf9cbvDfg6Mt87ac9F/jKMa1XKyXh/iiFfNP33eL6A/2XobTkwOePwLeuQ5wvve73HreT3LORfEvajycZ4jEeuRJSjab8d/u5Dx/PWZfgsxPNtrMMzeF5WezT69l5oFHp7m/qW9J/FeOdjfI+inwTQ24t82ldvuz9n/TnEd62C9//034A8D+CjOd/XZOhJ/4gX4asNeA/BXwzox6d9Tfj9BznPop+J8DeOduvB4738KWAD2l+jffh7MxR+evH9TsrzRfrX0L8D8kW0y4JH+3Vd6r1/0f9jN3w/gX5x9iUlgMsYp8GMZy36PwDuRR/agS+wnl/TL4F5o31ev4cuPL8Rsr9vwj5Tj/WxPjAP7c4gT3r6p0U/nf3++75DX3+63N5Tw3de20G3Cfrx3HUTetO9X3W94b0tBr1j1OvfVZj+6Xl+Gjqztf/CVwyeXwHPePj7HX3ept0d8HSEz8TUN48EUH+EFNC/C/22yBn2p/L73xa836JP9wEn0fd58MTQHgZ/2qNnaO+Ffnvon6N9c9anFsCvGf9z0PV+2Xtl7cNHwN8GefOF9ocl4S+pfiie05EvfC/ZgX1GUf1HvX9DLwm1J0C/F/0KRwJYHX62g380635Z5OwKzAbeK7SfDuwEnW+AT1l/vgc+Ayai/h7fi2jgMfRXlvoHvB9zGZ+8tPsI/uKE9gnuY9y/3GS98/waj/YH6e894vfUe8+4iXJp8H7I+H8K/ongv0j9Nu8VqB/E/BjPuuw+pCTz4ATrm9+zHsxH/UH8vunPdRt+wv4X3o+VR66L+gNAvyj131B/FOj7VIz55Xdsgf4N9G/B/u6mfo2U36LdY74ri+H/W/jbiXz7mI9zaR8+P95gvZoBX5WBO6BfknmVCfrefx6iXULK+uVmZZzS078286cy86AO5af6+Xi+AE86v9/g87s0g/dyE3QXgj8m/CXgufdCJ5kHLzC+byD3SMraFTqDPw3z6S745lMu4/028+AI/P2KfpOwPk/xO8d8u8o8WON9N/o+D71vPQe4H0c/MYGl9I8M+Su+An8T6P+SdsZIAN/Uvwj+36Kc2f07/TOjn8H6a9B/H/hquB+hfzb6DfN+mna/0T87z0vR7i/05H42Ar20+tnqHwH+LtBbgX70D9U+ug/8BYG9qT/O+tgceAl8wyLP90sPP/Wp1z/f+4z4tFtK/Trqs6O38fCVin3KDu8bGe/OwBasL53hL3xvtgJ8peg/nPd3ufs59wneD8NfOuMU4PMh7WeD333n+0Dt56tYXwaxDhg30IL6kbQ/C739rAf5mD9N4Ts77T/1PKr9zPUXvR3Qvg5e75e7eQ+HHH4fhjFuw4HzvF+BbkX6t4bvrdBLCD/6zw6JBHAWdC6yPsTlvLMeuA/+ctH+AfK2Q58rgRPRx2q+R8ZD9Gb9qAz/7ls+o/1U+NlN/X7qG+pPhRxNGf+VtJ/GuN+hfWvq36d+KfV/OP7U6w+mf5j+YiuQfyzzdQDr7gDkqeF8pL1+PBfh7wT4G3mfwfOG+tcw/gcYz6/Q21fgSeL3mvdhLO+Hfvr65+sPej4SwP/WK/APpJzafRrt/wQ24v1pBX/l9Reifz7W/bjgL8M4VQbeYd7Vhf9PGKdXvD+HrvtV7VgrGd/OyJub+mrI/Zh690/aQ9xHuX+qzXwa7L0X5dbg+V3/cO0i9OsM/tHUxwbvducZei7jeUl/TPCMo1yJ70823oMswELQcT10fTRux/WxHPMrIfOiNOUYkQBeg/495KtF/1fpfydklyzH/qUS4xuOD9kDfuNEOtFeP4t99NMeUovyI8+5+j0x/87ovw6+D5kvN5Bf/6zZyDHOcyDyjeL5O/C/DHzdnZ/s1/Rf1Z9V/9WunHcbse41Br4OP41Zt36CnvY31++evFdfav+Bj0fw6Xlc/uX7EPL5vhqnE4/n85hf39FvC/iL024l+itL/SXab9ePm3rtx9qNtSO31L7L+HUMjaPj9x79a+r/4/sNnxVC3zu/hyX0D/Z+nv76PbxM+6vUz6RfG/C9SfuH1K8Mfd/Kg2cZ61tq9oHed+g3cjFkn7hEWTtFQehGMS87MG/io58lIf8Z7aj6z5ymPsJ7scU4INq/xXzUn+IQ5bLUf0+5UySA2jm0bySi3riPquDf4P4T9r2nf531y/v5BrT3fDoDvBfpb7zAFfRgHIfzpSn4FwO9/78Nn+3h77Z+iKwTm6EfDb4H8OH9bWb6P6Nef52u7i/Rr/6lS1gn9TPVvzSF64r7OvD/4vnY95f5cZjyMfDsoH9F+mvvfxf873kvDT73h0eofzcSQM9fxknqZ/IK61kz8GxgfBrS3u+Z/p1b6L8V/YTjc/Qf0b47h+9nEuAMYGboD0Tufcg9SPuN97ngOw7+TPAZk/5VWA89P1YFen6srr+m96bsc5frfwv9AryXiUNxuNpPV8HX+tD8XMV46ld42/vGSABH8z7nZZ89krL+1C8jz4nQfZ/xhcZT6J/1yDhK7w/d33sOhr966P9P9hcF0YP3EN4/hP1lR4HvPPjbMl7GL9ZBf7/DdyrHBXznkL875ULw6/fD85ffj63odRJ896D/Vcr6dejPob/HLfB7n+M9j/5+3vc0BF9s7weMX6L/ezzvTfm093ZZnpdHv0P9EPU/zIJ+skJ/Cfq+5LlQe4j+A+Aphn5P0L4reE8yP7R3DWfdLGR8FfrPYPxayD4TC3rfod+JjKf75PD++G3e/wO8ByUpGyf1gHlrHJBxPy3R7wT9stHTAdcJ6geA7yF89mX+HWF8Bxt/BZ52wPWRAB7lfY7rvQXzsDTy/wB/w4GO83boN4duKv3gWd+ug38j+t0K9H6lKOPbDf7GGO/kfPW8S30M/YpC34fO6NV76vdY5+YYHwXdlH4P2O+2YX7oz6t/fiP0nCxkPzysPy56el37NO21x6UF/huyXxXSP157AvgSUv47EsANtHsB/g/Tvxnzqzr1xnc39LsN/+mYH/vBZ/yO9vEU+hvT3/vpKcyjJOixFPx5j6c99I52JcZvJvvrLsAq8NMQPWivKwl/x9Uv/I2h/DX8ZYJuXfD31B8fOCxkrxmhPQ25i3gPg/4bMj/epr4/7f3+a2+s4f0cfLqOraA+j/dNIf+HjOitF+v/S5Sr0v4x61ci3suwvdvzgueHbxhnzw/Gl76s3xJyGF+aAHwJoLvVfBvoL28E/uE3Hv3XGn8esu+7bmnnH6+/AM/D9xfGn29WX/D5lPmbmXnh/ueHAES1hK8njOs/6OcOsAf0FtHPeW6c6kD0Wwv5BzEvNrKeDUK+8LnRe7iB0J8e/3n+h0L3S/j3fblB/evKZ/wY46WfdAf4vO19lvqh3Uro6h/bm/qJ1GvHvg6+/c4P+JmHnI3pv9r9s/EO4PP8F836FwsYG3jKOKCQv6T30jXAtxr9+h1tpR+R9/Ss/wf0Qwdq1+yQ5nk65qnQX7MW82kc41nVuGH4bw2+gfA9ElgTft2fGEe2yvUPmInn6aBnnHQh/b89v9CumP6Lxv9oT6W/9+x/w9929gsF3J94zwL+Kuyv/kbf5aj/kvmZk31LQu0vxg+CPz18GbfhOdTz5w7WnezosXkoDnIM/Tui3xTQMT4hFuerlvQ/TLkq7fSvmoMeSnlfqv8z4xnO67BF/3HtLrQvFwlgA+j/FooLTA0fxgfq16ifo/6NxmuXQr/6c6Slv/l85sK/+VnMn2E+jfXMp1+B64AjkCMcX7vNfDXw35FyOP6jD+P3NfamHcB30WMX76NCcY3GOdaCv/D9wyPK+r95f/+C/g/G+VM/ifbmxTFO0vjIBeyXdgJLQic39MP+DPo5VKZ+CN+b2Tz/DD2cof4b6K8wbgx4LnS/sYdyO/1jeD+0exSmXdj+8Yvnde8F9XM2v5DvI/0aeu4BOr+Nk9B/8CwwO3jnIc+HtDsM/krQ+5Tybec7498F/nJCpyf4GoEvwvw2TiYe498EvOb3eMPzCfg+pv9nlM0/oh1kkff/AYh6RX8C/evB10n7Mf1KUp6rX6RxSeB3H3xJ/xTeP/3gNvF9Mr4uF3LlBk6gPqXnK/YH2seKGu/E+Dc0LwH7uHPQW+c6g16n6ucRCeA++JsP/sHI0ZV+d2lnvqEM6NE48j+QU3uLeVPMi2L8zhj4KQyfL8CnfrA7kGc9/RJRzoN8J+Df90c70DXwzwSfdudPwKP9Wf+0EvCr3WAf4x/21zNOyve/GPvTbPjF/Ey7Y8YX6Z+I/J8gl/klTlP/Kvzk5nkS6K9h3cvIOtUYeieh/9D8LaG8BK4vT9BrHvAspP1B7zWB5g3Qv+oW718l5Dde+zR4P0P/XaA7muf6d/1Me+NSlkI3D3LOoX9i76tD94RjwXOH9bEAz+9SXgz+Lny/LwH1XzH+Rr/XckDjufV//VJ7Hvj0k2jIOExjXf8QvU4Bv+eYE3xXOzI+pygb7/Ex8+8J/fp6n+s9DvpNhLzmSboUCWBd2tc1XgW+h5m/yPtK+neHjvlOmvM9ngFfn7M+9UGesH/cDp67Pq1l/7hOO2Eo38bKAPwXv/Uq+mtivBntjVsKxzNdgn5r74/No2F+GdaH5sxj528P5DTfjflv9H+axviH447D9om/jAuXH9odZ37Ogm4//WP1UzO+Q78Z+pkPQHv2Wdrv5HlM6JTUXwF5zWsXznc3Dvp/Uf8HchbSz4/x1Y/GOB3jcy5y7sjAPvkS5dbQT49cj/i+uA8aDszBerON+W2+nw7Q/1j/Pe9lPUfoX8B8M+/HL7Qz/4d+rV9T1t/V/F76ZeqP+ZLrlP67vo/67bq/gP+O1M+JBDAv9VWY31GUi+i3BN3L1K9jXTmK/GsprwCf9vA4rg8he3k/9G1er6T6M4Tib0t7f+48MU4Tvobx/pYB6q9bHL0W037NfFiOfiZqr3SdB7/3hwPdnwLf1Y+V8fP+uzf6PwEsgH7qU+/6Zp4x17f//ImYZ4uhMxf+sqE//Yi11+tf/wbPy0N3B3KOpf6w/j/MI/cH+ms9Q//vod+Y6K97KL+O+XTMr7Ofsvc1/dhXTkTf+oedobzH+Uz/OdD3fOd5Lux/Ybx5cvgvznu4GP0UYd5VgI+ilDuhj4Pmz2EccrMPyaI/Iu+v93PlWAe8n/sY/aRjnOIwP9ux/oXno/Pue8p3eR/0iz3Peh8zEsBo6HeD/7nuB/QPZTyumYeSeZLE+92Q/XyYdjztv8hTmedJKJeCfm7zixmvb54D9D+O/URlxnGCfkn6B6g3oOvMaPME8d3rxzw6QDm9fpjox7jItX4P9Q/ku/oI6D2E87OAfnHg+9x4TfrXQS/rzVPmORP59PcfapwDfBv/OyU0n53fT2nXlufmy/M+vaf5UUPxi8v9jutnwnhOZR4sZ36njASwNPKZ30M/qGvQewg/v3ou8xzl/UfIL8/v/Enqq6AX46cSmycF+hO099F/AfhjMQ++YzwGAPsDzVeWFbwxwFfT+H3o10TuPdTP4j0wf9un+rsxPvpHXQCab3gLZc+PP4Xs+9rzte/rf/kV/A4FDgEm8r4AvszX2QV63h+G82+Wcp9Kv0eUJ1JvHLHxSA94v2Yx7u21izEO65E7mfEJ9L8A1H5nHpZPvEc1npbn2i0K0a8O/Ddg/+x+1P3pe+bPZX7OgZ/krIM50GcT9JmTcn7WKe1bu8B/hXX4QcgONB96n8NXeeRx/1eH74r7a+PGvP/u7L5d+yDrs3kekph3Df42oWfff++JjOdepT2L+gm0b4ecbZlPb7n/Rr9ZzD8Tsg/lQB6/c+axaMv7oz9GOP/WIfrPhv/Z6F1/lH3Ikw95K1LORfk48zUz6/3/ilNP47qNXjfpBw79uZQHO6+QsxD4ryLfUfTxgPG8oX8s/R9pPwNmY36ZD1x/c/e/3m8Zr7+Afsbtl4f+d4z/Ltpn5H267fcX+uZh144bgZ75hc0r3Jey+YV3Uc5C+SblXdA3PiMV8hinYXyGfvNjwW98uP4t3j/3g0/vof+7f0a+LuZRD833XdpHwJfC+EzzEzFf+zMPNrKfSaG9hnlpHEY4/uIp9caz1wJ2hb8C6ONT+vXm+25+MO3h2se1lxcx/wT1scFbAz6qRQI4jPYZQ36e5akvxLw2Hsv7syXmP6d/Ctqbr3Ax9drbX4au+aK0x7dG34l4/64H4L/1MD7rk/4I81gvKoD/D/jzPriifgq8H9r9HnueNA6c9sbv6Bein4jxO1X1F4V+cdqZryscf5ifeWb+lyTmtTGPDvzfp38r+qfQXxJ+9P8oar5y8Beh/Mj8x/BzElgd+TzfdOP9eR18GaCXE/60Sxp/Fo6nD/sfGK/nfLjOfL8DHKPfGPjfQy73E+VCcZyvQNd93hjqJxtHY15i/TaxZ5mHtgDPZ9H+KOvzn64P4F1EfQT+tf+5D3Gd9H8U/P+ER9Dz/mOM+eSov29+D/ioTbskyOd34Rr6mcB81z7i/YX3Fd5fmF94vPZP/bugOzUSQOPbjGczvs18guegdwZ4Vnuh53X2g/orNGF9N3+t64d5fc3zW8j4tQBErQJ+zPuaBf6bwH9t4yrRi/5t1c2HQL151PRfHQRd/QiM99SPIDb1rRmnOuYJQk9x3TdSjqN9x3ti2ns+15+2DvrLw/t2jPFbxPukfUL/iP/8IoTwr/+hcR5r4LsX+N9kPMJ+yDfQfzgfaF7amX9wIfPxPngTIN9q9Uz7TdSH88F9qfzGwbBumL/sc+r/Qg79/8w/3hp9fMW4p6bs/8MMDEDUcPDs9d7T95XnX8Pf75Rn6d9vvDT4WqFHvy/7ON/od1WA/rXRz2L0571f+D7Q/PRXGIepvK/akXICP0Uf+fUbg/4S6Cdg3DJR9v9cMrPeZwF2Z78wB/0bf2ncpXFNxl8Ool8j3svClLvAj/m3jCs0/1kt5tf7yHUXuv7/yQjaXWZ+G5/dl+c7gQ+017AulgK+S/to8McD6lfZG/7MX3GXcfP/KHbr3+t+hXr94IwHMw5bv1394PUv3kx/97eu49qz68JvVeS87T0teNV/QuaFcbDqP4r3awL4/jtP6Z+JXl9k3IdS1n5Wkflo3qXa0DsLvaWUtRsvgW5j5lce+reHfh34LoH8nY2/oRyPdubHdL1fznu5jfYfQEd/vuPaYeHL+yjj/35EL8b/JYbOfPrpd+X/FWVgHkz2vKk/A+2vI5/21UXwq51V++rLrLvdqJ9uvA/16Rjf0jzvrh867buyf06PfpNS7z2pfrUDkKct8t2nbDzMOPRuvMxQ6Ju/uIp+TdSbz/gb89JSTgtcCNRfX/99/flHev9l/CvtMsB/Ku2I+hU5H72f0Z7CvGxA/SbaT9J/Q/8U7V7gNV+/8fr+T8s836MIeLWn0t980d9Q319/HuMN9CML5b8J/7+J9/P673iOCPt3GZ+zDH095Xts/kbzug9BL4/NT8D80z9iGvzqJ+H9Y23Wv13Y2cL6nI+8R/xOMQ/0n5zP/C3PPDWPzRHG50XKCfW7YH0q4/6S5xV5PsbxQb7r0DfvbBnza1O/iXFrhhwfAe/A/zvGPwB3sl4Yf+29oveJ/p/YVPRjPIz+oYPB7/7P/YLxA+b7NX7A9Sat8fSMT1XKo5hv+v1o/9P/56H7QfCY38TztP8v5f9JtaX+AfRLak9FfyUor2ZeuH5pn13pfpL5qX/QTur1E9I/aATy7DQvEPXea6Qyj4jnfp5XgL/m4DevgHkGzC/g+7+Z5weh4/v/Zui8eIv58sz7Z//XBFiP+fYs4/PyNgp9r4a7f0Rf38KHedJHM3+6s/5OpN88yje0i8BfN2BXoOfvcD4v83ylQ/7u3jdQHut+hvmT0X0G+KppZzc+APuffjnh+FDtFe0pD3FdCtkXciCf69Y28x1Cr433Y9Ap6P0541GO9yh8Xvf/NfSP2Q0e/TH1r/J/q8L/Z/VY/13kOmx8CvTzsl4ZB/8+/MVAf+YLN++7/1Nzl/F9wrpRE3jF84b5oqAf/n/Go9SP5X3QL9U8ak1C/n3m/TWvoefjQsy/G8zfgrzvR/Rfhp73yFXgw/vkFeYfRg+u45epNz+49p6wf6j3cRH4fkL/jPRfq3878CB6df8+l/Gbzjr9D+u38QU79E9BD/pXvRwJYGzmy1TfT/j50fgJ+DUvezhf+8/mB4PfAfo/MT8aQ8f1fwr8DDQfifdNzA/jt0trH3Rf7HcOfsyPeYP9ZTvgH44T+LSvaz/RnqJ93Xwe/t9cR+2k8J8evEmYJ+F7uBahe99qPPf+dwrv55uMT1q/b9Q3CcB/52TzMXTRvoQ8xmctB7//E2PeD/N9mA/E7381+vte5Kd9P/Nf6v9qvBd0rjD+qeD/ZfRmHizzX5l3Sf9U89ul0P8Qet4nh/Nfe55KRPkf42OZXynNu+j5G/25P/T/c4z73MA8Mf6zF+PShfekif6b6O8U+HoAzfs/V/9hxi0H8D7n9M/Bb34n8zqZJ9j8TsYldKds/pBTlK8wnxKZT4X6LxifVfo/0c58lOafHMj4NPO8T/kA/I9hPfdepxZl74/9XxO/S/7fyQ/0N17GOBPz1pWmPhvjlRU9xAdPAvNgMG+0j/i/fX3h5zLjVoX6q5THe/9Deab/D0O/MuDX39z/z+iE/vU/z8O8W++5zfM6+PVPMK+Rfp7v078ndH/1f6CAseAj2vwT0vc7A37Xx/uh9dH10v93Xchz/+fV/3fVv+Y+/Pl/D1vgT7/rZtA3/8Zb0I+v3wnPE1AuSXv/P8t4EfNR+v8l2nt2GE+OvP7/7Rf6o9PvJeAt9PO2fiTGUcFHkZD/q/970pmy9nj/l9FxN19nm9D542vmv+cQzx9Fjd+BL+NW3L+E43WM4/mY8lHGZzzP9TOrBx73e/8rD98h8Lt/OcX65P7F+8vJoXvMDOB33xcbfW9DHw8p+7/WxteXYnz15zfe1H21/y9sfnvzd5oPwzxz5u/0+2zehqKRAOqHkxd9ax9NTNn/X/J+cZH+OejlLDAr71M2YA7/T1D7I/2Xml9JewP9tW9VQp6EPDd+cZr+vN5/Ge+GfPmp7wP+JOhveii+5wx0/qb/EuNAWY8/MK8T0PP9I8Z1CPzkpN95yseQ13uo8P1TGf2Jwef/gPj/Jfr/dfkf52HjGmrQf2oofly/GP1X9YvRf9X8Pf8aJwH+d5Qf/XmP9Rr9zc/o/UZ6yp7z0/t+8b6PAVagf2Lo6w9p/l/zNesfed68orTb47kD/d1hfpsfwHwB5gd4m7J5KLQXZ0I+7Xf+T4r/W2J+mzfgx/zBrk/mD77H93En9CvynfN7VTLk/5kf/W6kv36IOdGf92He/3h/7v/56cfk/Yb2/V1+X+infUB+/G7Kl99P80qZZ6q27wf8Gp9uXLpx6uYn+T+6VaX6eJx1nXfYz9X7wB97ZM8QPoRsklBkhcx8jbJSspVQMjLy2CN775ktI2QksiLJzl6hkJnHJn7X9Xu/Xl2X93Xln9v5nHPudc77jPvc9/2czxj1//+2Zw9gM8prcwSwU9oA7gFmThfAAS8EMG/6AGbLHMAS/N42WwCrUH4zawDrJg/gO9A7Tf/G0I0Gz1zgRH7PGQngVMpHcwawQMoAJqC+f4YAngJ/3kQBLM/vpVIH8Az16zMF8BL9pwOHgr9+CugkCODGuAFcTrvT9F8Hv4OR5wDlx8i/BPk7UK++KycL4HD08i78bkTONdCPBb5iSQPYi/EZ/HwAY+Dj/SwB/A7+cycO4HvPBfAi+hr6YgCr0b8U8hxETy3ofyJJAOMmDGB3+LkP/frw+T3wNfDNhN+r4KtBOT/l0sg/j/axqS+KvkqgryTxApgUmApYnP5ZoFsB/qORMxbzryl4x9F+HPQXIP92xuMn+seC/n7qG0chHzBbrABmR/4C4KuJHMPR/0rw9ab+IfQfUr6Dfj+B/73QzQk/beC/GeP6Y6oAxnnxWfo16F/F7w0+0oG/FuMWzbj/j3IB9JKPeZ0XOAU+EqD/N2k/m9//gv+n0K/IerAJPmezTnxA/SDwrovAL3hWwW9W+ieHnwmU29J+NfguhdrVQr66jPfZNAEcBxxF/yrwe5nyH9B/GfqH0UtdvsPTzK9jjONd+L8HPBE/gBOR9yX0351yG2B/9Pcb9Ymht5HxbUX5Jdp/wLgNgO4U9JcSulmQOxlydEf+7nzfPYCFWD9ygycb/XfB9wDk3AtfGdDPIPh5DfyfQX8g826D8qCfLdQDoqqAtz/l6+DrgVy3wFsPGKHjRMZjEt/HNviZwTzfBZ9f0y4O+DKDvwbreRv0kyfzs/Qno+8xrmv0T4B+hqO3fOAfRvlt+HkH/Z1k/rWiX2vq47JuLwfmAsYg3yLW6+v064s893MFcB94p0YCGEW5A/xfhu/U9Hsb+UZDv0acAKpX9ax+L8N/SubZ54xnf9otAP9MxrcM7bag/z/4Pgrx+5+Uvwb/TPS5DHy94fN0zmfluY/834DnOeQv6H7I7+4XD5FzPPNtAnAqcB3tU6PfY6wDj9mfziHP3dgBrAjeRvBXGv6Pgm8n43+L+eT6kQK8yn+L9bAv+OeC9yrtZ4H/AePjfv8yv19AX2noP4j+BZHXdTQp/CWk/hb6K0+7AvTPQv2n0O8iXcYvBfvV+gBEtQRWh58RyP8H5V+Yd8fof8RzG+Ut0PPDHwhfMdKFv3iM71DaH6ZdOuprQycj+jlEuwrwsY/xcD6NQi/v8H1mhp7zM4p171fwZ/EcRP/V4Mvh+kL/j6H/FeWBjE8f5PU87DkufH67SfubkQA2h24T5n9T+vs9Pw+eC+hnIOfJ8cjVj3Jy8DQF/zuMQ0bkawa+LyjHp30t5FsG/fJ8/4tovxn6h6E/CnnOMU/6IkcZ5C/A+tKd72gHcC70JgNrih/6r0N/JPx/Ad3XGMfB9OvB/KvF+OVFzjXQbw1fI8FfCnm/pn4069kR6peBtyfj8++6BcwHPzNo9wnyew5L7D7L/L4OXxPBf5R9Ljf1s+i/hX43wO/4VKVcGvz70UMp5GzMuEfRPxvrzWL6DwD/p/A7AzkeUb+S8Y2KBOBbys3Rzyq+j/rsSyuh4/42AnxNwTcdfufTfyftt1LeQdn70Qbap6R/duCH6GcG8+E2dKL5vS/930fe+sj3N+3vMj9rou9y8FsCOS7DTzLWa89N05D/Y/B7X1wGPIM+XW9PQ28/fB8Hzyj610a+dvR7hfYPwOd5yPPRVfB6Pnob/lPC9zDG/y719Zi/Y4E3+f4/Ad9j6BaB3hP4GQ9/1eCnDe02gn8CclTh919p1x68PZC3EPovGAlgZupfhr8u0LtG/86uu8Bd1DenfXvoRsNfHeh7zrjPPPgOOoXQSx/0FgU/QynvQp7C4O0KvRquB+Btwu8dPPcyP76Bfmzo1qV9HPpnovwV/WdBtw71L7Lfj+Cc8Rd8T0W+vZ5HgRnhtyB8FOP+0o7vPDX3k0XQcf+bAH9p6XcJOJT65dQPUn/ovyV8tQbWAPo9uF6/6j2FciX0s5z2F9H7CsrXqF+hvQO4DDgb/bRjfp+i3yeUT8DfeOh+FQngWfg/gf6aId9v6M39oyx6rkj/Meh3M3o7DP2y/P4N8DXwXAeeZT34HXgGuJ315TD3orjA/8HfQu1bfJevwH9r5mtL+NfucRh+Z/k9Iv+OAER1AaZlP2sFnaO0fxX8uZCjPvwNAP9J+GnsfsX4nmJ/6oReKgPfYfwWwe965E4asp9MAv9L4G2NHJc898Hnq+BNB39/Ui6JfWgneLzfN2J8xoD3Y/B8SLtJ8LeM9gvB14H51RP9zuD7mw+cDrxOfVf65YiAB/5WI5/2nanI8yV8nKbclvIC+BgB/n70j4febqO3JtBbiv6zc79ZwL3jIN/7EvA9Bl8uvq9foTfE/QJ5vwffMuorai8Cz0Dkm4b+VjA/EtPefaIM6/Ay4HPwnQjofHd+u76vZB5+rZ2C8ZkN/h3AdrQvCn/VkHcV9R2R6wr162j/F/SOw38EeY/Tbyft5tDvCvxfQ64U9Nd+VsPxYT0bT7tC/H6B+eH+93YkgJnA8wj9OT+cF86TqtCfzvwux7p2l/F86vmS/jvpX087mfZP+CuFfOU5Tx+hvjv9hyFXN/pnQP/O5zboK4H2M/grwbwaQf9qfO+dGcfOjHdK9N6Jcj3q12uvpv4h9Ny/OlN/EfyVoX8G/udTn5P2EfTwBfovhP4KAgt579R+Sv/P5V+7CuPTAXpp4XcP6/F2yoXhtyZ4L7G/notAB/1MAE8T2j2l3I3yR5TfBd8J5kEB6O2AP88rnk+KIldx4KvAA84H1uf6wEn0e4K+vgL/ZsoPgffQX2LwDeP3RJQHoZ9pyFcWer+AbxP1lZDHc7vvHJ7fS3Mu2QT+XMyPiozPUPA9cD3jO+hF+92MXwvoV0BvuZi/T9CvdvUb6LEj+N+j/2742si4vkV9FuhHez6gXXvazaZ/fejWA+anXUPo7aZ/NPwUYJ515/5Qlfp91Delv+dxz+lxqf8Z/R1HX/uZFycpp6Xec+UL4OuCnn72fEl9AfTZEvyevx8xbi/T/x7tE9G/N/LXRM7qjgP40jNf/mb+xQD3gP8BfD8EJmQfqw+9HuDN7f7Pfjia+nfgx3XffcD1P2eofijyFWV++D4Swz7qO8kbzN+77Ft3gPeA45HvGPLfAs9ifs+LfL4vZoXfdIxzT8qJmP+JgbPR1zn1SP+k8Os71sfOb+g+YTziaZ9z/2G/qAqsDjxE+57a97S3wV9++H/NdxvGpRLf3zD6e++JD13vQ96D3lIvyJuXdh3Rc3bke5369LRvi/5Pas+hvfrz+44w37fzezbK3eC/H/QOAssy/lmZD2c5D4+n/x7fn7QPMw5+v36370L/HvppDKzOd9oM+t4vMtDfe8Yj6l0/NkLngvKjX7/fVfD/F2W/31PIuxy6hbkHzaP+JOvzqCzP4k+gvZR+t6C/mXIP6q8x7umo30d5IvyfoXwAuoWZHzV9b+D30vSPz3q3ORLAb70fI98Gfi8P/5OQLw34BnvPY3zi+r7j+y76nec5jPEuQn008hdj/PNS/px+22g/lfY7PLf4HoAcjaHfiv3ec2oW5sUD9DOA9SIdcnei/VntRd5r6T8U/Xken8b59i7rU2HarYLOEuZd0dC+34R677POO+dhc885tM9P2fPTIuS7xbq81ncl6MVlfPqjn4P0i2E8S8L/bNfbF57l7xP4q+r+CEzpfYDxqYLcF9BDV+B46l+l3yPoOI57Wf/0j3iF358Hf0/to+wn0egvh/so4+3373f/HHL5/c9i3Z4JnAEci/4eoY/94FG/34BvOfwXh15/6r+FP98NZlP/CP6LI7/7+VehdWEh8+9rz/XwfZ727eH/qPYc/VOgo717Ffou6/mQdtG+n4gfOWdC90fk/4vffe+vTfu+2j/4LobwXaTSLwY8i72/RwK4n/4NGd817Gf3OFc8Zh7UQr5YfE8VoH+f+inIc4Sy66r7xGXkSw691bTz/fxF+NuuXdH3YfRZzvOudgnoZdRe7fwOQFQMcA39B0I/2n0hEsD2tKuM/sqyXt9l/v5Dv7bwNx96I6FXHz4Poudc7tPocyv1vt8sAH9Zxqki628d5GvAfK8HTMp43Af/SehrP5oDfwVdJ5lfEX4f5j2Ycg7o9IgEcDL4+oO/K+P7C/J3o/wIeX1PcB0vBr596O88eH1vSkD7gZQL6b8B/9rXulPfHnyuV4uYHwmp1/+lpfPf85j+BtBrCR9HoVOS/lHoYx6wOOtTd+85yNuRfjvY719EvoqM3wDoLUBPzRnfJfT/m308E+t7NPSzIU8J1yXni+c31s/vwZOF8jbk7QU/+kXt4jvVP+oY+pwDfv019CcYCl/em4ZTXou8A5iPPaA3C75eQf4P2X8zw1dJ+NAe/RrybUOusP7PI1dz7ZrQH4n+fI/9QvsE46K/XTl/R74W4K+NfO/y+7/v5fRrD/8bqI+FXp7znOr7PXJcUd/w8z34qzJfPuYctZTvdKl2S/QxnfJM5CvH+CyC/zfFS7sM4O/N/vwh5YXwuwl5pnC+aQjewYzHevB8AD9V0H8U5fraW+B/nu809C+lfQA97AOOhN5d5sEt9FaN+o2uW/B7ge8jB3pMTf8l6L8Uco+gfizyFYM/7era07W3u34PAd917VV8X7vQz2no+87QjHnq+a0B/Gen/hD2vD/QV0Pt/8jje+Et9PO570raPeGjse+nfD+90Vdi1qeuyP8YfjrRfzHjeJ161yfXo/D7aGbwjeW770JZv40GzMvn3Y/BHwP+NuhLu5t2OO1vvoskQd6WzFffR7TrptSfTjsf/T/VPxF+W/J91QPfMO2r6G0GevA9eiTztRqwIvCe6xX0fDdxH/T95CDzY5zvMZRdn/PRb5X7J3rWHzklfC3XXwK6H3r/D52fPTdPB15GP3lcf+nfivlQj/5poROjHRV6X9K/LPrSf/MW9NMw7vXA/xf9k4F/IngnoY+6viNQP535Xho6xbBf14yAD3qpKGvfP0D/2uizBvQn6A/j/R96b7h+0m47/Czw+9dfmfrSzM/PGN/42p18l/J9lN+bw18c7e70P4JcLfi9HXQeAyt472Ec7ulniL7/Dvm/vQl8nf454H8A/fRHmES7i977KWvn1L7p+7HvxslC78e+Z/u+7Xv3bMZ/ovZV9Pkr+FvBXzTrT17WgTF8PzsZn5SU9SvXz3wD+I9Rn5t1Kg9Qf/UhfN/LKV9gPlwG/2j2P/1y42n/RP5XOfeWYv1Z5Ts1+tdePwL82vFreQ+ivhbz4Rj1f8L/Kr6HOb5/wdcA6KtP9VwIPeg/oP9Q3kgAf4beWsprfX9Eb953vOfoT6if0gXW20W+vzHvZrqOQV9/0THMh0/R0xJgduqT+R4KPd+PDuqnBj+e/3wv+RI99AJfQ+pL0H6gftja1fVXpjwN/X4YgKilwFG+H0G/GftVY/AnZ71aAv976JcBO+Eiyim08/r9+m4O3w2AN5hvOzi3vA39uUDfx7YCJ3veZH1oxPxugLwNKXdgPrVhXObCr/YX4wcqUn4Vfvd7D6L8C/z9CtwNTEz/1PC5GH0mhV4X+GvM/NDvvgjzUv/7l3x/hY+D+lPDf2G+qybQucY4tKK/596b8Bv2R9V+pV3lHvXar7LQPwt8NYwE8Cfwe7/3Xv83eLzfV4eO61Fuxmmx9nH7ByAqGXT/AHru0L85Ge2PIv9xyqmQ/yZ8RGi/AP5jobfJ/F4B+un5Xjry3XZlfgxAznT0Ow7+hL4vai+n/TrOXYVYP/cw/o18v9A/wfux+7P+M8iZBHqF4K8y8v0N37W0C9Nff5Bj9KsDbKj/qfEnlIuALxf4jTcx/mQU/Y0/mYdefL8+wvdeN8ez8ml/D9sbGvA9JPQ93fc76tPTfxHlatQ3YfyrUT/Qe4P+xOhjEvz/RL3+bdfgvwb7Q3b4eKLdE3nHu/8yPvfBN5j6uQGIets4JcqvgWc57R/Cfx/W26eMf0nwV0WOveghp/Z/9ea8hI984OvAupCY/sVYL/aBvz/joT/vYs57OZC/AeuxdvyGlJ/q70r5NvAT+NFfVnuf72mX4UM/mnzMj3LodwTrUQrPb6zHxvf9Qvlt8P/G72O0h0LvTfRzDnqV0M+P6LMw86O6+oc/92H9+7VfaK+4jZ4+gD/9G73ndEeu89A/Qv1i/Z4dL/R/g/27AHAL438KemfRz1f6P2pf154UgKgY+NXf/zblGYzLFPi6Bt5u9C/tvOB37d+ex1egr2T83gk5s9F/DO18t+znuRD41PgV+D8Hv+npvxb96kfbGqgfre8LV8BfkXG+if681xq/MIay99u1rK9rXGeNk9K+4X3C85zxf4yf+7V+cJWMZ9C+y7zdzLp9Bf7/Qf8XON/dcb8E/234zw3+55C3EnRSMT83MT7Tpa8/GPVfsD7Nh95SyuetZ7yMU9mF3jtCf7Bxnfohq0f9F5l/w4GJkeNP5O9D/2bQ7025M/U/+X4M3lXIc5X5sZ/xuohc1Zn/b3jO5veMkQDuBN9m+h9E773192Uf9X6gv1px/ebAE4/6h+jrRcb/NvhPU/4DvfsO8qfvlOjnDPi1T9zUfxL8jt818FVgXJ4APd/6DpGR73cr+PfQ3/uG95BSvtOE/Lf0R86Afk6xvrt+tDYeBD676Q9qHCLtXzEeCXrux547Orp+Uq/f7efaXUP3Z+/Ny9h/1lOfE7r6T+hPof/EdvqP9NyqPQX6fVk3PSdPZv5k9bzAvM2HXJ/5jkD/Xtx/1wHTwEc95HSf0r79Ovxp307ldwuMzfxfEwngW8g3zXsY8yKe7zsh+8ZXtK/t+Zb6H7QzanejfXrtD/TLDH/rtW+wPl2Bn98oa1/S/vAjePczfnWoN17uEPL1Dp0PTsBf2I/2qvOL77sQ6+5LzMPR1H8QgKj3wP8CcA74U0A/Dvx/SL3+51cY71S0W0r5BO3NH9Ah5NfXD/14343juQv+vf8+r1+r8Vbga4t+rtLe+O879Iur/wP62UG7+PqZMX7hfAjmSViD/JcYr/z6Y3v+pWxci/GVo/leRjN/9I/MzrzQL3I99DwPXgE+pb9xrsPBfxE8w6C7Tf9N9Kd9Ib7rEHS6Qtf7z3esb02Rz/jFu97XOd8ZzziUebOMebQOer2g9y3zMRd6+pT1rDb9uv+H/Uv/2gqsh5Pof8d3IPjzvX0i/PgOv5X50xH8vot6fymBfoxTvQXdGN8zqdcPy3hb/bXqgj/rf7yfGp/ViPaZtC9ox2G+mjfgQ+O+0bP5A/SHNi6ouOs9/Utg79UOrN03AfpJC1+Z4auf76B+H9R3hK9fzQ8BHt/t7tK/Cu2MB9O/R78e9239ew7Q/yP6zWE8EkNf/8ih8LXW+x/968LPUuX3HQD5y4T2H9/L54HP98hcIXuY75WeG0qgr2XakRjfluDTnn+Uchnq9a/dA33jHPQH3cJ3q33zBvyfpL/nhd+Rbzbyah82ruMfftd/twX9i7Av/sJ3ddn4U/rH0f4CPAS/w+lfGHvNKfq7vlagf0/orkffLzt/KOeB/kDwrDZuMnS+3e/9gv796T+V8nn6ad/Jke3Z/j9TvxA9b6DeeGPjj41H9v7ymesVsANwBvNrMuvVEM8/lMdpf4Af4/uN9ze+3/iwbMhhnPQkyqv9rpDf9wb9WxeD91v0rT/VWvdX8Gnnq0I/70OHkKcP68h6xkP7/R+smxeBf4b2q5uchybRz/ur5891Afj3Xgi5qGb8ZwJ8Gf+nf9oH8Pkj+H6A3+HUn2Z+DGN/fY/9owx4E9J/Cu3d5xdAx/3e97wW/K4/+17qt7E+6V9wkHPEFuMDGY8syOt6lZf6jfB3GP76A5eBfw315gc6Tn1D6r8Dv++Xv/O78mu3z6K9F/q/GMfJeGU1Doxxep/56/ui+WCMLxtofCrftf7rV+FP//Uh+uuY/8j1OhJA/bfbgfcV71vaG8G3iX36R+DarM/KXZz25lnQPqLfrn7s+q3rp6c/su8xvs/on5wV/IO0v2jvo38G9PcW3/Vy+J0DnU60nwZ+7b7aK/v67qR92XwI+kdpT6OfcbzuV+bXKgg/b1LvedJ4O/359e83f4z3vSahe5/73yzwu//uNl7C+Cjj9RiXa5TvQb8p8mgfSgY/Jah3/TqnXyh8+j5qfgXtir5j+H7xAfKupP436kfD/0zuf7P0D2d+e990/1/te3NIfv3zze+ln77++b/rV0R9XvD7juz97nv49X7n+/Vi+k2Hvu9gng8roU/zByRH/9Hg836gvcz7getvBH7+4Ts9yzxdSX/96g8g7xz6dzG/C/2nMm++h16s0Pup76YrKft+eobzvv6Z2WjX1PwhzLtz8PU7cDTyaB/x3c/7oe9/e/m9JHi1R2iHcP39JxJAz2euv/oLtg+tP28xfnmod913P+hu/A3z533oloGu/hDGzesXbZxTlPnF+L0I/SZArxf1no89F3tOLmj+K/TXmvNRG6D3R+8/J+hvnGEX6OnPq53L93L9fc8aLwPd5423Yv6+wrngI/3C9FdifK/4PgVe392u+z7JemnegTyUnZ/5wVsd+C7zo6r+O/rdAx94z6P/XfjXb7KJ+zvyTWf/9t2gmn6x6M974TnkH2Q8Eu1OoT/PNb4j+H6wlPod+h9Rr3++dnbfo5Kip8/hLyvy5jIuBvprtcOCv4TxWcAuzM+a0I0G76dA51cS5s8i5F+CvEdcH+iv/5B5SlLQX/uqfgHGYXyEPOY9M99ZPvgdStn8f5vAa94k3982MR+aG19PO+2z9VmfjIfZwDw4yPzMaP4t+j/gPO87nvFs6c2LAX/677/g94tc7xv3DH/mj4rLvc38UeaTCueXNB7zOHj0+z+PnmcgV3H0+yftzWNk3EFK5AuPn/l9KoBfu7J+7a6f+kfWZV9MDd5E3oOMr4I/3/er+27pegt/fgf6L72EvPrv6ZffybgX9JeD/k/oN5J2GcDved7zfa9Q/Kb+N635fT54OoDfdyHzWbWCz+HU+92v8N4MPteBKZTvwkcd2pmvZArzaRIwG+thZ/hw/Qn7b7v+NGf9SYp95Thl/dw8HxcPnZO7Mf7zofcl8/4+9y3tLT3hqyvtjhpPqH8U8m+BnwPs8/HRj/GMd6kPn58mUL/EfFiMWxT976C3sH+F9/GZ8HkCvcTjO4o2zwrtzYvWBn7N3/M1+90c4GzgbeTLiV5iI/9evpck4O+vfxB4l6GfNMiTNe2z/LWkX+rQ/DWvn/Eexnfor7NC/2b0kJ7xG8f6MRZ5PoGfuvRvwfqkvbel9x/q/8d8uaKfB/qaA7628GP+rY3g8b28P/1LAL/TP552xo+cMc4VPVw3vwbzrYRx8ubPoJ35sQ4jf2zgbsbH/BfzuJeH4+88P3tu9p3E83NWxjs7cLf+o/o50j85v5uPxvwzaWi3Rnsdcn4Zyu8Tzo/gOcP7t/n83qLdH+h3BfPnKHa6+sDDofjnG/Bh3PMVYGbwxwX/+8bR6t8JH+vAVxA8u+h/PLS+LOY87vpifrVj8JuEduZX03+2IfT1o9V/NhX6OIwcLZD/KO18X9G/UH/DFa6//B4bPK8jj/us53ftJp7jPb9v056nXQw+9U/YFIr3XMj+/Kr7L99TOr7DNEDtAK1C5+pZ6CkW81f/S/0tF6P/KbQ7wfcwkXW1KPSL0d74rUS0aw/dPdR/BT+NzAdFeSXlj5Bfe5hxUBlD/ujeY7y36K++N8Oz/N+Az4zId8hzJv32gee6+eD47s1r0ZbybcbnJ8rXmFcjgHV4V9A/uTT9jfM4CP6i6gO9GidufPgR32fonwl8N+F3NPX6NZRDP9dC9mPtv9qRP2J+/AC+orTrZ/wh89a8O+bbMT/b6pD/hvluxsBHJvP/OK+A14Cj4F9/KP2jevG7/lGnmU/XmYcXwPt3JID99euknJjxrWZ8CXrL5T0YvZv/vQTr8R3mqe+v5ie6qt8tv/s+WgQ868CbSbst9fG0q7Ee/uP6wXppHNMZ5MttXCRyztTPGL24b8wO5VMyr492LPOQaL/6le/f+MB3OR8MQr5x8J0PvW6G/4y+j0BvOeNSmfvKEf1rOE/kgJ80jK/vvFHUl4SvldAfbBwser/kORN+Yxt/Dj9ZlA89lodeYfPXmucPqP9COvSWFHpJ9PsC/yfgM9/XL+hjgPcp1q2HwNzI3zsSQPNDeH543XgB9Gu+FfOvvEQ786+cht/LxnfQzvz+OX3/Ny8x+llDuzvAI+hDO7/2GdflcUDXZd/vtyJvfuPJPHehv618n3Oh2wB9HkA/fShngL7nH/OUjghA1JeUV1MeBB/3kW87/froD+X5Enn0Tx9iPAP9jX/yfGP+wJWh+DrzXpoH0/yXnuua0+8Q4xGb+rfBbz4a89UYX2Q+jK3w8zLlJfQ3f5T3S/NIeb8sQv1p/cBD/l9x2Uem0F5/gJP6gxofol1Vv2bqxzE+adFbav194f9PxvViyE6gfcD9phXj4t8XaGJ8KPXmR3ge/ZgfYT70FgKND/aemwH+vTe6jzxm/IxncH51g0/zEx1k/BKh9wOUd1Hv/UA/2groyftB+H3RfKPGwRXX/8p7NuvAceqNF/LvVBhH1E7/EX73fX4peHbCn/5ME40XQ3/RofwG5jUwz8GLyGO+CO0F2hF8H3tCf/1yw/lZGxjXAJ4ajof5cVl3VqDXdax/1+ivH+/r8K9/bwvqvT8YX+24+45XGXrn9R+CH/MRuR48CK2fBfRv0z8H/v17GcZ/m/9lBP03RAL4AvyZnzwTv3vvTkF9feTpjPxF0Udt3/H0b4X+p+Azf8egkN/pc9qBGS/9f/X/dv1PCP/vBeBfP3nzNOgf/6VxYZ77jIehXQv0UwE5klAeCZ3KrC89WFcawOeAUH7ztMjzLnwlgv4a36to95N44Wc364/2p4vwpf96Nu0dwHAeWvPb9ANWBM9Y8Ogf+DW/t4P+Jb6vG+ZHov5z6BxRf/A9GT2G/RUzs16dBfb172TQ/in7qvkbpkAnMfgPu/7rV2K8O/yto+w5/Sfmkf4dO5k/mfX3pdyL8dHvTT+4657bwbOF88hKoHl6zctRhH5jzKdm3Jn5WVy/mK+tjHOnbL428+gvhX5MJID7qW+NflKgP+N9i3IePkh73/F9v484r/QvCfkXxSDPf53jbzJuMdD9W/9gv1/Oo/n4Lh7Qrw3y5Pd92vdt/bvQTzPKxic8od0j5o/npo7q1/hh7VTMjyoh/6wWkQC+yP5zOrTODgdu5bswf3EqvvN28JcW/H95rwfPFPRrfirjhHfBv/HBzvu2/B6e/763mTdOO/A05qv+s+eha17NPPATn/6+E5zw3ZD+7sfGo5v3uxTfT0LtUsabQ6+y51vKp+jfGHvQOei7rvt3ZrpQ3kP9Hd8r6W8+Df2rykPX/C7mezG/Swfah/MPVIf/qcz/AdwT64LvFnCo8Xf00179g/kbXA+Bnnc/9u8vMK6X4Pep9n36D2c8Y+BvGGXz2xTlftOO72ST/sDgz0e9f7/HPMgFQ/7B8v0r80B7ezj/gXkPZoK/D+2TuE6b9+c/4oevo0/zDzTk+9FvOuxP7XkinB9zBuPT0b/vxO9V+H02/I1lPnVFjnPGH8JfJsbvH+Srib7SUz+V8dHPNi6/619rvuiO4PEeaj7pbPRfhV58/+oMnom0N297Ld8vwb+M+W6esROeV5CvGO21T/jOq53WfUu/Qu1MxuH8oN8IevG9eDT8dYKef99G/xL9TuJ4/wfPItY759d/xVX59wr8e3XaT/vAh/bTVJT3RQLoOrs527Nyu96qD/2aZzA+5guqRH/jVwpD/zH9qhoHgvydOU/mBH8nyg8oDzPeT33Cp/EL5n8Nn6+9D3wEPv3JzDdsfhPzbMUzfxj4akFH/9XJ4NWPtSPfQTnWpZLMa/OCt/X9gHXjTfrHUNZ+upF9ex7z4AfjH/UD5/vtTHv/nt9U5qf2Rv0evE/e9b5uXKznLvOyoJ9/+D7MW/6EsvafRODvrd+w96hIAI0bvkG5Nu0TgV//18708x6p/+sj5k995Pfvvfj3XRqhz/eA10NxCjVZz24yDjf4/Qv00576Q9DvhR7K6q/G+laB8UtK2fuW+bbN21adcgn0WNLzHvPZ/DfOb/PjxQbGlR7je5b25o00n6R/d8fzmecy81V5PvPvvc1FXwMp7zZ+KIp+wCnACcaLw8936M/47lzIF77PeM/RftyH9d94uQyh9yXXSddB1z/fuxrCYDe/d9rdiQTwpHkjWRcbAStD/w7fR2PGOY9+Vt6fkacpZfPyu38OZ93072SNBPp3skoy36aZD5fff6fcgu/ltH9HDmh8pvath/BRGbkW8j3rd38Tu0JW5G1H+0fGlwJ7MR4r9G9Fn66vc9DDfPOLGR9Du7PIY/487eVnjS+gnfm767Iv1gGWh48kzM8z6D89ch2F72HGl/I9J2N/8/3I+L9k0B8CjAv9eeaHCJ0rvmC+tQN/NuaDfsr6QZpne6H52dHrOPYD89Aar6I/hfEsjRg/86aZTzA2enB9mkt/46zPM3/X6f8E3VjgMW/7WWCEfl0iAewK3Id+rvD96x+UFf37d9gqgf+qf2cJuv59Mt/n/bu9/v0q3+c9f25D/qbIVZ/+99FfAej6fv4adN5A/5kZ19cp6yfk/fCU9lq+v9PQb6PfO/QrG09hfJPxH9DVb/El+NzGfOiLHP18dzIejf6d9Zs1/tP4COmiz7A//M/wtxO4A5iH/uYLyuC6YBwO9V/Al/uHf8fG+NmF+rkaD639FzlP6S8On+Upl6LefLXGw4f/zp9xJf7dIfOJ+/eH9F81L79/L8Q8Gf69gYmMyyP2Sf8egf4B+h06DvoJmO/S/O3mgTP/2030bj6WErQ7pf8S54NNxuEDk4PHeLCw/15XoPEINcFvvILxCeY7MQ+K/pmea5Z5/6XdVuSqHYr3M/7PeMBp9Dc/re8U47UbmH+P76s1sBVwq+8+0E+l3zJ0tAdVgL75B8xPZb4q8zmkMj6Ffj9Tn057EevIdL7fsczf7OwnZdjXwudp//7KBfgy391kz1/GN8J/HfgcAn3vG94/ToXuH8aFbA7FhwymnX+vwr9jkSx0fvP8/TP0PYd7/i5DO88df3F+uQ0//v0r/+7VeebfdONQAhBVGahf+jrtk+hLu8FSvqOkvm/od6B/P/o8630LOj3g33zWqZn/+n3r7/288SjGp/r3xIFzgca/fwT9SoxLT+hl932YdX8L9W0pJ4ZeL/bbnsDZ6H+B8QboK4b6W8BDxmmjn0GcP7tS9v30GvpyfzNOpKvrJf2aM85JKfvONRl7yHvYSY4Bq6D/o+jb+BrfSVMa/8H3aJyZfw/Mv39u/n/z/ifS39v4BvPfIPdB7+mh/HO+85QB/y39LfVPNK8P+92PkQDqP+t91/uv71//B3wSwUB4nHWdddRWRfewH0q6RLpuGgQpkZZQUAQUkZCUUARFQeqBlxAlpUE6HkqkRDqUTmkQEUFauktS6rfWd67LtTjr8/5nrzkzs2t6z559n08X9f9+jTIFsCFwSNYAnokfwNiRACYgP0+2AK5/nvJJA9gsWQCz5wzgG88FMDpRANunBF/GAP4C3A3+xWkDGCt7AP8Hf9+np3yWAB4nv3XCAPaLixzgWQJ/JdIE8HXyV0F/ag7wQO8edB5mDmAR8AyGv9rQrQcfb0G/NPIfB9885P8mVwBHgLcSeG+hv/co/zX0Pyd/MPkj0F/2eAHMCcwG/DB3AI9Svw/1JsDvKuofIf8E+H+hXa8AU2cIYBv4TY3e2pLuAf8r+X4AOh3I70e7vgK+mBQBzIR+LpKfkfR5+IuN/HGQ502+10qAXND7GP4ukl8Q/S8B31vkj4Cvd5A3JfkPqDeT9puQ4Vl5ZoIvC/Xnkf8a5T8jfQn9dUUfy8nPQH7qSABzkj5AeiLlS1P+W+hMI/9F6L9KuRbQ2Q9/dehfZdBLMvQ5mPafRPnKlH8FfO+QnvgC8gFHpKIc+dGUn4qeylPuCPirJAlgP8bxDegvo71Lou8PkfsR8l2ifd+H/0TgGeV8gT7+B9xKe/WBn33QHwneksgZHQlgZ/jvQP85zfwziHEeQ3489HoCvvZCrwT5NZFrNvXzAVtBJxn8pKTeVPipDn+pHZfMQz3BZ7/JmjyAzwHj044/g68a89Fwxs0I4AHkzYDekoL/Lvo/gX7TUa4P6QvwO4/xPxO6Be3X9mfabx78diL9A3rKHglgfdq3LHTa0k+6kT/b/kP9WOQvJz0Fef8hPYv0NeaP/Mj3MvA4/WM6+LeAvyL044C/E/2lOvLsJb8q/GaA3jbqH0ffRcn/CPxFGQ8NEgdwE3p+RP3Y9J8DpB3HH0A/M/nNyK8Jf1foH9VJV6JeDfiZAP1NyNuB/N/Ak5H2q0P58uRPRt7c6O8U8qSCzh308AZ45sLfHMpVpNzqkD6qwI/6mgP+lfSf7dRbQbqB8w39vziwue0L/T7U+x34PPwcgt5W6Oel3xWnXAf0ewt8vcFXiPy59PdmyLGD8lfB34H89OCfj1xHqV+Geo4Px4XjpCz630f98Lz9FvK/z3hNASxLPy5D+6+j/mPwToZ+BPp12F8dZZ9Sn/7QkvyF9MeB4F1E+jv42MF+46H00Vdh8kcynycHhsf3V6kDOI/vpeHjM+ifg+9b6LUN37fQPzoij3qaCt5q5PdG78X4Phw6c9FvZuSPC95XoNeE9pwYBZ/QOUT5sfSHLYzbeJQvRnoO+B0X5xkXp+HzCP0jK+Vzw9d91o/2jjf0epX6s+BvJ+2/JlYAD/A9HXjb0f7n3C+Q/wV4SsD/TNJJoFeL+b0X+otPvWro8TvqxUW+juDvAZ5plL+BPnZTbxzybSbdHf4Po5910K+CPgaS/x39awX5GSn/J3ykJL0jEsAErJ/fQv8I88JY6B8l7frXCX5qoLf24J2G/MNJP4KfH5D3FfL/cP8Bngh6eNv9Nd//AfaHj5GUm8f3ZOAvxvez1B9L+ob7ZuSNgv5+xuV4+skE2m838leE3+fBP4/6XcFfDf7zUG4EdHJEArgXfKPg4xH81gZ/RurPy/4sv/K3nvzNyH0SOonILxgngEtpl3LsB4bEDmAM9QtQ/3XkqAJcjjz3oDuZ8gdo30Hpn8XTBjwtkW8c38tR/zb4xtK/t8PvBfp1C/TTlvyU5C/hexPwZkC/c/hegfIrPScwPufBp+1vf5iKPjfQrpsZF+tJPw8e23cF/H8NzEv9dMyvD5l/27DfGAZ/+ZnP4sPnRPD2J50FflKQrot+vqB+Fuhfol4m8pPSvjfI/wg584lf+Rx/yF/BfQ71G1K/PPUa0F75IgFcwvctzmfA6+ArAD8F0MtNz0Pwfwd83eFvf6Zn5b1IfgLS3eHrOjAP+nyTdolN/aHQa8/8PJ7+0wo8F4DfMr48X8dn/soFfzcYBzuBU4DZ4TcH/JVBzh58d/4owfe3oDfS/QjpA+6HaI/7lD9Nfx1M/ly+DyE9jPqjkP8k9fdC9xf693Ladwrt4T6+BOUGoq+BpN/zXAz9F5jfLrKvmMZ+KTv0+qJX91N/I9866g8ify3wEPnuHyshzyLSRSnXjfqun+OR13U0JfJthf/kjnPG26/Is8/zMPnnKF+S/nOG/VRfyrWLBPCY9gv3PdSbQTtcoH51+P6I8tfhbxP8T4ZuAedL8A2kfALSh8Efm3LVqf8X8863tNsp9yvU70/7vA3fG+jP2qeqI9dP8P0e/PyDfpLab+E7hvzs5A/g+x/wtQE+MsFfeP5+F3q/0j7/0D+PMM+lZR70nBOH9cfz8SnGVzLSmZGnMHJqn1wHP8fcPyJvVvrhaeivR7+ZoHcDeWtSPi70UlBuN/LsoX1rU290JIApkW8y9Icy7wwG1uQ8/xV6Sws8BkwEnV/BVwV8n6K/K8h3xfEHv++S/xPyHqB9pjK/3aPeDeg43ucyn/Xm+zX0o/1xFPXyk56J/O4POkFfO81XtOc5+L+K3HuBaSjfEH67od83wO/+Pr746Q9zwLuO9EnoPWLeqUP+E9K7oRPNfj01cixH/+2g9xL9SDtHJfj0/DOU8RQH/MdC+9XG6KMu8iyE7mD4K8557Sn5i8BXHPy7wJfUeSp0DtM+ot1rGfW0j3yqPQN53OdMIO15NqX7dfVL/if0t/fA3w0+P6F/XaN8Ocp57spP/jTqXYTfT52fXWeot4vvw+B/FPxMQN+tkfMS863noLngX0V6EnTSg6cf54/+wJLodxf0h1Pf+4Er1PN+oDfrQRPXW9rtS/gbjn7dJ2V1nqe+9q4fKPcN9a9Dfxnf7fdpgZ9Bbw1yrUefh6l3knRC6C2zncD/mPyx2gHAt9b1knR5+ns99NOQ/rgLPtzv70I/ngcSwEdV1wvgHdebSADj0q7aa9MDt9M/d9K+nfl+gfRd8teRvgMfb8N3OuQ7xfxVHn5GwF9L6iej37gvqIicubQHob/C3sfAdz7wNYL+J7TDSfDco35i+F7jfRb4jrN+VPLeCViS8omg0xq5tPt1or72wDTkVya9D/rL4LcZ+d6nec+WFfnbsu4tBv4B/jHw8QN0qyJfFfqD+u1O/4+PXWcdcB90O5Nfj++HgNHwmYH5Ow2wCe3VC320Yt5MBZ6b8PED+t8Onx8j1xrwXiD/b9az20D3uTtyPsuX/MhvV/DF0F9L0M4lgUPA7/3WF+jtrPt1z1/0r7v0qwLgW4n+T1J+CXI1gr8+0D/P/H4OeAG4jPreW3mPlZh67i/job9D4I8wDr2ffI12/4DvqZCvC3odR3o08HX0mEN+4X8o5bsBl8DH2/AXj/b8gn563nM+dNOANy94nR+uwt9s5p1r2vO1T1Hf+94OpB/QHp7vG5DOR7lM6E+7dT30pz3b+5vD7G82I/8szzfodyv1XiB92nmedDb4OQbdn8GzB/1PA99H6CUT9Y9D/3XSI+H/J9KeX+rC3176xdeRAN5hflnGeF0A/CvRs3wX8P6Wet/DRx74P0e9s8AzQO3kfQIQtRgI2ahC7Jt6Ab8CfgscDf8bkcd7gULazZB/DPi2AJPCdyrte6z3NUnP157v/S3ytUWuhXx/CKOF/+N8uY/26U76oXZq+Eug/cH7dfs/7bSP/lULuf6k3G/ke3/fGT1e5ft1ykWD33219/xdkMP9tef3DNCpBX+ZyS/r/o3v/4D/DPg/ha726xfAUxj9VI4EcAwwN/gukn4XfO/Bxx98v0X7FqO9XwYWBS6Efi7qFYPfltAfin7uk7+G70+1r8Pvr44/ylVFnh+0c7KubGddeQ3+l3pOAd9R8CwCbgfPVcZVE/r9FdLd0c9x8L1M+Z+9JyQ/mvHeCfge8jsPFgvp4y3w9UP+z+BvBvh3wF9myt9mXanF/Kn9ID/09ctI53wLngO0zze2t/tZ7WPkz0beOM6PpAtS3n3LUvj0HvFKyD+lEe07Hblrkx8+b2VBH/0oV5Xv1YCzoTMBuWaQdp/v/r4++G+Bryf4vkdflbVvsx7PhI/H4E1I+U2cp45BpwL4o8HfhvlXPVyk3jvorzj7C+/bvgjZj16j/OlIAF/1HoH8JJ4vkeMB/fAg/FehXdrB31vU877jXfhbjdy1ST+Cn1baDZB7AfSnw//ntJ/3cOH7t7bQ9R6vGPrRTut9a1/wLQDfDPrntgBE1QMOB25Cvg7gKwK/CeCvI/krwX+YdE7oVoJeKer/Rf0foV8R/TSGXjbmh42kM4b8XS6DJ34kgPrDPED+k+ivO3oYBx/3aK9x0Pee5EP468O+JovnVcZXXvhL5HpBflPkPQP++a5P2mf1k9HfhfY+TP2ZpD9H/9ohngK1T1SifSvozwbexvSjuJEAjkY/JdBrc+jMhv+3oTcVPNVJ36X+QuwmvzD+kjBP9oWfWcgXg/4aQm8Y+j8NX13Jn6E9Ev02IN/16TT1XJ+qMr4nsk8O+yclZdzFg68K7J9epX5e5CkI7Ah8Ff3NAt9hyveHziTwNwPfx8CmwI760yF/euR4HfmmIUdu9Gf75CRdGXq5qN8OfBu009I/RrCfnuw5HT32IP8v6utvNIF2iYkEULtKA9o7ivpvQ38I818Z+D0L/c3g/wa6WWh/78H/djzTbvWg633tfvJn0B+nAfWLWwj9HdrDoXsbOQp5/+f9LLA9eAuE7jfWUT8G+KL2dfTTn3k9Bnmfo34M/Wc6cIH+k+hpqXZHvutv0hd9pYLfaO+F4acB/GdFvi+BVdCf/j/z+a6fxAT4be76Sn5R7/1C/gMn4G+qdgf682vIn9ZxRb73sb/Q/xuQ3xq5uusPAP49+kd6HgJPVeRbrH8BfHkfXR76q/WXI/8M/b++55fwugQ/W8CfkfZKTv2ajIfPIgF0vXD9uOa9LPy2of/WZh8xGv3kpvzvzO8ZwV+bfqA/Q139hIBPtHvAXxXk/VH/SfqF96nT4Uf/DueJUaTTaI8inRU8DWifMdpR0VcS/ZiQ72P4/Qh4hXlwHPxlQD8pac+3odOO/DHsSw8xL1aE3w+8r2K9+Y71YQxQe1c89HeU71dJ14oEsHHIX9Z56gny/Mi4LE87lyTtfd0bAYjKBT/jSZ/1/Iw+ouDnHO0xU39h9HGOflCEtP6x2TmfRoDh+fNv8P8MvvB614z0P8j5AFjQ9kYfrd1HoKeW6P+E6zL62EY/nIh8sbgf6wX9hZyXHrt/+I/5Mxv9pxntdzvkX5WA/BPItwW5I4zPrvCnf4p+ET2ho9/ECPe33nPDz5jQ+f4M+Gu7D0P/+m1moz/v8XwMf2lYN5LyfQv6u+465HxBf/kZPk9B33On59AnlHseeuXYv79LvzhM/hD4c97WjyQFcuo/oj1oOPzcUZ/w3wL5P3ZdoNzH+meE7uu8x7sLf9eR33vpZYzT4aSbg7eD97Tw433VVvhdRPlatFs82lf/Kf2a3K9PRH+2f3Hwvwpe/ZQ+gL+i4K1NeiD4czBfr0K+2vBb1vmMfUUJ2sFx281zKONWvzjnUf3jYjOu9lI/CfU8f2SG3k7vmahfivYrhXxNkGsz+dqHw3altt4DRAJ4gvqTKBeP7yuQX78n113X4ZLev0KvD3xv1z8Efa2FbjX9a2jfq8j/0PcD6CEV5QYhX2n0/412dsbPz/Cpv3t//ftJ699/n3VzAng+hP9PvMfyPQz46pBfDv670J4JkLMReN90fVEvyH2I8o6Hk6QHgT8Wej6C/MfY/5xlXff+1PcD+iXMpj3C/gmzqb8P/l4A/znkc3+djfz3kW+B72eg577Wfa77222+LwLvQvgZSf/UP3m/fsH658Of557l0C2AnM/Bz07WzfvAEa6nlM8A3sfw9xvyJ9LO6vkLfN5D2r+1T2sv1y5dx/tf1s3E0NlD2vvvLeDz3VHY3rUk/bP1O7tfpv434KuqvwvpstCPoL/OlL+snwT53nd5D+a91z36z4vQ1b7v+dzzejvG1QX5gE4B8E+kfjLoPmUdmYl8vu/xnc5m8Pu+R/v6JvK1r+uPGI3+z8OH954r4MP3adph4oDPedD172XaV3uz66D+T64vL1HO+6md8FsXfgYjT+qQf5V+VZ4f9a86wHwy0fkRukPBd8r1Brr3KTdW/0TqpyW/NPleZGRi39sNPU1gnntZ+yv1wv4n7n+akta+or2lC/V3sq6MBb/nmbngvcd4f4wca9HHWeTsS/+c5Xs612nSU2jXH5AzL+P9PvJ9pt0F/BWQNxH4vS8/Fgmg9+nenychfRO8lZk/9P/Kx7jYCf7RyHvd9fc/zk0joDeG+gsYZ0l8/6b9kv7XHz6fkt9a+wLyDARqD0qkvyr731yMi/rgG0D9puh7Ju0W1vdy+sOPyLWV8ZmD9l0MvvA48f5lD/X2Mk7m0h6+FwnfR3tPPfc/7L+tvUdA/3X5/gT6Nym/yvtn/Q+1P4b8N5pCd5D+YJS/Tf/JxrpekfUoPv3A/X0M/Lel/dYHIOoi6WzwsxG92A9Huz8P3Qt3pz3S0n/icV4pZHvTTmeon5fzyWXa5UXSycg/DP3D+tEjbwf0mIXxkxn4Ffjb6sfKuOqFHnoDP9CP3P23fnjUi4G+flO+C7iE/nuj3436SVD+A/hT/y9ot0Zv16LAR34r9rU1wZ+U9okJ+fffgC/tLKPJr4zeXvIdKPu0vLTvCvHTj3vRjoV8Hw1f+iM300/X+Z56qeArM+PgFvXC9+ezqa/9swzt5rtb/ct9PzzC/Rh8xUWOB5EA3tee4/lPOyDy5YS+72guMl8lQT8F4WuX/uvUf4n8cr7L8h0JeMq6PjI+9ONNp50T+uV8/8D4q+S7NOTbyryWhfq9oDePclN8XwZfvv+uSHnnjwvo8T7fn9B/jgQgqpT3WpQ/SroE83YT4J/MX19FAjiH9vVd4Rn4PYJ+9JfRf8T3+mtD71c8F3pO1D7QVr9KyvkO0Hs6/UB6Uj6P7YN8cUnPR98P3Z/oX4Gc/Rn/dZFrI/kvo7f92snhuw7t47k8NfJO8h6ZtO8/EyJXUuhrf9O+VSH0TnwW9QcF4N/+bX+3f3eDr13kd0UfnRg/xj/wfKId+lPwF6b+I/UK/qrUH0K7ZwWORE994fMEae8rr+qvjnyOl/zwpV/zPsp7H+n9pPeV3mdspH+lhr9NpG+Cz/U1irTrqu8vfW/3J/ycJa3/wWPkX4GeNpD+knJbmA83AQ8Ck4f87weTjoFv/e9XsH6VYZ9XClgaOFL/CPifDt3VEfhGP/oHlWX+nIM8+q1eonz4/d455vcZ6Ck969crjI/H4B2vvYf2vO35JrS+3gImhP7v4D1GvzfuR1nwv8/3zL5PYL71PLYUeT6H7hLSCal/G/ny+D4pZC874/1zJID6Gy/wfb/2Kfr/JOrHtT/A327PT+Cb4f0B+PQXHkb6a/hrjDzZWDcakf4B+k/BFwu9dCU9LeRfaNyMzNqJ0H8142XAf1X2I95jLaIfLQZOQX8TtW+i11vAi7TfB+AfSL3XtffDzwPy9f+7ityfwM9a+M1E/YxA3z+thV/9ZRvBTx30H+39Cvj029LeOwH9+i62JfRKed6nvP6U50hvRM+TtC+xHvVl3TpO+s/Q++rnwXM2EsD+5O9n/dnM/LcNWIXycZHH9z/6Eein+T74v0L+oXw/b/wT38+DbzHy1kKefOTfIv0mdMrQXuug1w4+OoG/BvwXpXxf8JeAD9//D0Yfe7WTheJf+F60vucK6Ph+9HgAolYwr/jOugr09zIuUkG3DPp8Sv0BlM9Jey2n/z6vf4r2V9/tus91vWc+9twUi/nK85P2M+1msfmu/SwT+kuLvPPh57LvhanvvZr3bfrxt2S8l0CuO4wD99++33H8fs95p4/+BeB33xp+B+F9qfen3qcuRL/pjdvjeAvZU3sy3vU3yYZcpanfkXHRAdge+BzjaEkA/t13XCHt/qMl9NvQPk2p1xv5mvN9I/Ll1K8Y/eg/o99MYtr/M/eD5Hv/9yP6aU//3Ua7+A4i2n0I+YP4rt3oCfpuDP/ag3K4P/W9n/cPlNd/1TgXxrdoyv5+DVD71TnyByC/47+g7xD1LyNfPxv1qR5fo94t+PP930vk67+kv6rzzw3auzb6K4leS4X2D+H3hL4zfFf/GO0b8PGp70Dgx/3xbN/1o89e8Kf/QH39d0LvH2cyP0SDf2nIP7yu6z71EwL1q7vCfKUf4MyQ/18X+B0LvkGcp/VX0c/9jv2d/u/6+1cAoqZpXyadz/cgrKvnSP/GPFgB/eam/5z2PZrrO/k5ofcj0DhYxtcpx3xWFpid+vrLnXI+pnxW5HT+qkJ+Hc9n3k+hnybo51vK+/7U96jGX9BvzPgL2jmNK3UZPbgvN75UAeY73+v+Sf+Lxfhqwv7xZf1S0LP2g8zYkbyfPk36OnSW0O739PslvYj2m4j+a5Hv/XoV9DCUfPdnEeBO+Nd/NmMEPn1X7vtQ8vWv1t9a/+qEzAv6+Xie9p74LPo5BzzvO1fyF7O+nGacVEdfvt/dov3P9Q/6v8Cv99nGvTvKd/2PslF/tu9bnf8oNxp92W/1w9P/brP3N9BtTtr56Q7fy5M+SH3tcDNYN33PW4R2+hH97dEeCR7XodQh/yXj/+jHpP/SXda/HpQfj35TMv4KMT8WARYG9kS+WNBPAd098Of9ZIzvgyg3S79P+N9Mf8zEvtj3i/pjzQyd/2JrpwJPmVD8lObIY/yUFtR/33M3/NTTP9V4CejD+SMF8mu3eQF5LvleEfq/wPcs3yHZDvBTkfGvX9JP8LeC8fcg9G50m/5k4F9Ff/4LvQwhvUq7GvNpDHAK0Ph6+tfpV9eF8WX/9n2277J9p92K8sbzcP47QDn9M373vhh9jYsEsAf5nreuUm4Neje+4kXkyeo8Sdo4BPavH9HTavS8z/dPzB+/UN535L4f/4PyxZFDP0f9G33v4jsYx4fxFerTLj19fxyKD6V/8SzgzJC/8XfQy0D/0g6n/e1D+DPOp/btOOizE/wZB8H79vTgO8X+/il6G4B+B8C/9xreZ3jfsYn+d5n5s7Tvln2PRvlBpPXD1v/yX39s/Sb010aP7m//Zj3KC/w3XpDvxeD7jPdHwBbg+Y3xsjESwPX2C/RRHnxt2beE40MV0l/Ycx54fF99iX63EnlKMl4mUs74IZdpB/2kriHfLeafm8C/gaO0X4Tel/ie1vez+jvGA+9z5K8hX/+ZQ3w3Dqn+M72Nz6Id0ndN0JtF/zhjP0Z//cgfDT7jtuSBnvFbdqD/S8zTl4ETvWfW/17/Vt+xRwL4K/r13Hia+cnz5ADq50QP2dxno98UznPuH8BjfMA3aZ/E9lftINTXX6Ed5dvrH0/5u+57tAvT37swPpKzn1tJvZSkHyJ/K/jXft0pZL/+NBT/7THj4BT8FeL+dSf5SfVHJL869I4DyzBP/Akd47FsBO8fpI3Xor/Lr75TQT/XHCf6V4DPOHMRxs9o6GrfWKKdHX1677Af/VSjPcpGAui9vn7JYX/ln8DvvYL3DN4v/E3/Ta29m3Qh+M+EvCmQK29of6N9eZRxAxmfOdHzdeQ3bskBYA/w+17wJfj+Rz9R8lMwHvSfvkA71PT8zbhswTidF7KPTfbduPMR6d2kq6PPY86b1DNe4wTyF9AuB9FDX+RfR382jk04fk14vfScNJn2z4K+ahgfgvn5ovtD9OO+THuD9zSfQi8Z34fB52D9K1hPzwOHA4tRviz9YT/ffwf+ph8B+txC+9xHz6PoP+Mp532u97vHkK+59ynu99H/JNLbwXMWWJp2MD6W8Un00wr7Z4Xtc9rlfN93k/nROJy+Lzb+5kzWtRro2Xif8cj33vJz5PgEvpvAXyX0kYTzkfEhjRdp/Kew300x8MTTPwm6PamXk/zi6HUZ+qnsegZ978+MD2wcr7+NtxJ6969d2vXV85t2vfD7CN/LrtLfhv7pfdYZ5HPceH8xz34eevezDnxN4X887aJf9Gag+4ASvjfQn9fzD/3L+AJX0L9xBeqhv5uheBH60ek/d0r9R5DH+wnkz0f+cOqv95zi+ya+6/9lnHTfT4ff+/oOuJDxl9H/FPJbgPcm/G0K3T96H/kYPu4Dv4feeOr7vvI1vs8H+o6isvcP4PO+6jjjazXlPRfcB+8e6nv//xD9PwJOgk/jCxxhfITfF+5CvmLoYwB0BkYCOIP83Po/Ub+P720od4j5KRzfyXjNYbyb9XcgnZr+tpZ+0Q05D6Ef/bWmgz879M+SftX1NnR+6G38LfK1T2wO2Sf+YH3zXecAyl2Gv7A/p36eB+BvO3yvpJ9/B6wAH8Z7Nv5zx9D+Lifzq/4miSnXmPT7yG/8NeOxfQN/Sxl3Q42TAHwRPO5X3L+4n/E8cIF1z3cCT32/6Xsf9JPO/RjlEkDf+Anan/Vz7wz/cx1vlE8GP3kpb7x94+8bj9/9dUn0s9U4V/ARm/Y1LqDxpcPxAYeS77xuvEjnd/2tUyHnGegZh78FeCuhj8fw34L2H0+9coxH9ZwC/h4xnxVFLweR45T3AN4PQk8/I/2LNti+5Fel/nrwGR/zCHxV4/v3yDeI/WdD9OY+1/u7frT3NNJ9Sb+MfMbvMV6P8XuaI59+IrOA70H/ifFxmJcWIpdx2qdH4Df0PqQ/8mQgf5/2Z+NX+Z6K/M60307jegGrMP++CD/GA/e9+kb4aw59z2PTKf8n8p1FHxvgI/w+uBHz3VD4K+2+D/xVGI8jjM+iHz/6as38qT0yq+eAUHxS45Iap7QG9Etonya/m+sz9Y036P1TF+h7T9AAmEV/SPrRt7S/73v0768EndeNr2W8CeqXhJ7v9Q8yPrz/cZ5tqX88ae042nd8HxJHvyDtBZTvBn8NvT9Hjv3kb4C///I78f3zR/CrP+MR74+of478UuA33ulgyjd2v0X+h6znq0P+QTVI6yekf5D+atrNPKf/jrzv6N8MvXn0w37U912acVH0Q54C//fov/HJX+Y7Veq7/x2uXZ5y26Cv/1BN6OtHpP9QTc/9kQDmBv+L0Dfus/aJh9q9je9Au4xBzi3AUfSDcNztVqyv2tcOoY9bjJPL/k8J/PSgfjh+i+P9cACi9gMRN+oN3+dSz/cmx0LxVR6zP4piXg7fN0e05wIf0l+Nb2B8sIzaH9xnwb/xEJ5k+v/X9/7S85hxvIxn6vt3/YX0J9I/MRZ8n8d+cQFYw/tz47zBf0PoGB9/HfPbdvdxpN0n6TeUknr6D7Wk/3zhfozvO+h3raBvPGrjeofjxRrP3Th2B/Vn9D0kenXfbTw+9+XGN11D/zcek+cH8Q+BP/1V7iL/0QBE5Ycf/WYruP/x/hG6vn9LFLJ/K5/yKt8N8LcE6qfr/u/feKHsWxaSNp7o/2jPTdD9Xrsi+vXeajfyGy9yK/hjyO/BPqCO52bnF+ZL12Xfsbg++97R8e46kof6pdg/O77zhsZ3S/TTlHr+n09d8j1ve/72PO7/9Hhv3E9/Ueh9Dv206Otr/ezox/3g37hBqxnn4fhB9sdh8BV+L2j8TuN23jKeDPkJ4Kcwer7A/HUK+hf079X+itxxqO/9hfcWZahXn3z/H8T4RKWYJ1s5PzD+vH/wPsL7B//XzfeL5+HzPPV9P9eF+snR96/o1/8nS0r5HfC5jfyV9NtXodMLfruiN+0K14BXgZ/7fsB3N84r+gHYP6CXy/1aAP71T2tk/9auSv3mlC/C+jIV+TMzX+z0fo76+t3qh6v/bV3WM+NCXNTfgvzOIf9W/V31b9W/Ox34x/C9pe8n9VcNvYfUv34o+foF6ieof2Bf+ltJ4Oeh96Jrob8M+m/Adw7kv85+Pi395jXGzzH0Zfx93+mF3+dtof1jaPe6zCd5KP8K6UTAIbR/Ycaf66H2VO3uvZCvieMjFP9S+9Q76Ot97SLg8//7NpPWvhu+xzEua07K70G+bOjnJerNJV//wbGh9mpPujv6eJf6JWmHD8mvAz395w6yH/sEfbvPc3/XlPYsxjyzHz6yOH7pz4/p5/4vnu83nVe8H3W+cZ75Fv3kp3xzyq3X3oW8/p/fO/S/j4y/H3rfol1rPvNDhpD992Io/khb4+7oh0i6B/VbGj+EfOPXG9+lIvpLi97TAb3fdF12n1scfP6/yArjyoOnnH47yNsb/Wjfdvxp5/a+ujX9Vr9H76+XUk6/6cvg1X9aO8X/4G8D9H1/7r2Y7yl8D6QdXf+HxpT3/w5b+36G/cMcyiU0ngv4EpPvPdub6M/7tv6RAP4M/8nR2yLw54e/tdo94Kus9mnfjyLXAtIjwfMKeItTfhl85A2dX41PkQXYmPKbGRdfGX/M+3z4Hse+pyx0CnOvNtT7VOO2eD/r/k//C+a1hsh1g/5ifGLjGnYGn/a0EdS/r38ufH9J/T30g1Looxr9r6TvvoG1wOf/gvg/IfrfeF/ck3LeJ6+KBDA18245+MjFfNEcfP4fgf9PoL/zfvSQl3zfBY5HT/r3n2S9uAR8m/7j/ZD7LeNSGKfC+BTh/mY/9P12ReNbIN928Kwm3/icxi01Pqf2mbC/u3Y06c8OxQUbTjnjg+l/qN/h/pD/4WDyjb9iPBbjrzhvGa/BeA5DoNMGPo3H4Pnb/3fYC37nV+cx59eR7P/6g9/3UdGU1167gXquL3Ohm4/5wHdC9fVDCsUHMy5YEfgzPphyHQEa77C89iX04f+LGQdP/6Z+5I9zH2YcBvgL2+O1069EP77f0G/adxzas4ez3nmOrEza9wRzqO+67z7A9d/4B+G4dgORz/vj4fS/YUDvjzeBX79s35Hqr50Gfd31/Z/+fPDxm+9hPW/63hD9PcWe2w7o/4EYV6gg/PgOOU8AovLyPfz/S/7f1HzoJ2O+8P9HkpO2f45gftWvUT8G/RdO8D0B/ScJ80QN/eGhfxb9jPb+y/h8nreRJwV86c812P9bhc5kxkNX32+gL+PvGGfW+He+e6HYv+9hfAezBLranaIpmMP3TtDVjjWb/mB8z3D/MR6O/egz5j/f7/me7yX4u4R+byP36+j1ivH4wO////n/d9HorwPzzQLjpHBOKII+XqEfFIPvd4F5fK8WgKg0+q8BG8HfcdYv49yfIO14bOy7mpD/11j7M/W8b7zAOpgg+7P8lTC+HfULQb9EJIDb+J4ffZRyf01/9H+ex4Xef2of852g8d79P8nWrP/TkWsasBx0nc+MR2Y81geh+BHGjQj/3+gj5z3o9/I9NfrbxHfj43v/cBD99bJ90W/Yn/qu53Xvl3xnwvxmfCzjYhn/8h7yLwZfC/D5vs32M17gmEgAtb99SX3Pu82hu9tzPvU7ev6jnHHmnobenw5gXG9hnHkv0Ai5qzGO78Dvx/SnppQfR/2VQP/nprPvuUh3N04W6YzMd3PBN5Xxuhj+wv9H6ryRKuez8vyqP3jGZ+X7r3eX/v/cHvRTiO/lqT8BfL9FAtgMfv1/orqMj3D8jmHQ+Z76/wdO76y6eJx1nXXQlsXXgF9SQlI6H0pRBJQSpKSUBpUWKaWkBXlFkJDuEqRDuhUBeRERpBVp6QZpUEC6vpnvvq7fDPeMzz9n9t7dU9tnz9mnebqo///tyhjAVzMEcHWWAKZIFsBjmQM4PFMAi+cKYKW0AbwEnlOUu0h+cur/xvd82QP4KEcAI9DJki2A0+BjzIvwA73t1C8EvbngOZIwgCOg807SADYAXxz46gyeYeDPTP7SBAEsxvd34ecQ/BXlezXov5o+gG3Iz0T+8qwBbET+9/A3Dn3GpVxRvqdAvh3wtwS6k8UPvlixAlgJPFUCELWa+r2Rvw+wInwOpP4T8H0Bv3Wg0ypnAAfHDWBH6g8i/Rvl30wTwOLxA3iGdFvwfIf+7qUMYFn03y0SwH7Qzwxf39EO1+kfjZGvGemvKJ8A+bLD11TwTaJ+N9ovL/2hKvJ2oX5c6kfzfQIwHfnVwfcH/DdFrnjA8ZSPgd5N2mkicqcDfzzwjYOParRzR+q/GieA+2MjD+34F3gGJQ5gd8oPAd8l9F+N8oUpXwTYhvarA738lBvJ9+fh7wzttpRyu5D3Ie2Rn+/nkO8Pvi+E/kC+x4K/p5SPH4Ef0q9Qb776p/xbKQL4N/kzHA/Uv4bemoLnGPJVY5ycov1/YnwPBx6wXcE3D7k7wm8/5G9Lf8xI/0xMe+6kfj76e8t4AcxPejDy13w+gMnsv8nBC/994P835K4BTAz+T1MF8HXk28f3DMiX6IUALoL+ferfYjychf8m9JPa0P8Yfq4ibxrSd9Dfa/CfHHkLAtNRvjL6SeT8SL206HM38iVlnM2A38WUW4++6yN/SuTbAh+nwb82dQBzg+8K+AfB3y/o4wXSr1O/Bul6tNtB+BhD+kv4OQH9g+C5izyvQ68H88tW+I7NOJzj+gU/J8k/D75PqL+Y/rsX+e49F8Bu0G+LXmdQfg/1q4B/OfUuUG4B/K1AfyugP57vb1OuEvLvoT/MQb7k6Ock9JJRLyV4uiFHKugPpX578M6Gn5bUX8H3WeDviZ6LUH9MogBepH+WRB+54G8G8+Vw+CpDe78M/m8YPyeBE4BVyL9O/z9GOgZ+z6Dfi4yfqZQbQboG8k6Hvwvw1Qj8Pc1n/rhGejJ8/oy8F1I9y0efF57lozz4ricJ4CnG3yHql0H/P4I3Jfrrif720x+GUS4HfFRD7+mhcx5YLBLAIeg3DeP/efAnATqfXka+jqQL0L7t4KMH/J8Flgf/APj7F76uoO9M4LlNfv8ARDXk+3XwRpO/lvrZ+V6O/tck57Pp1sj3DvQbkh+X8XQPvZSHTkXwR6yHvqaF5pmMrAetoZOB9Brax/1CbOhegN9f4LdQSF/q7yz6yM58kw14AD12Be8G5uX18JOe/rGN9mtHv6kOf0lIn4CfTfBzAPqbgQuYP6+5nqCvFNRrSf468o8j71TwxVAuP/y6P7hDOfcJm+mfttMW6u1xPmY8x2ecRDM+vgff78ynmeA7O3h+p/3qIG8B8O5iHrkt//BXj/w30P8q0s/TnsvR/0L7Ce0zhPRE0vfgYw787wpAVBfkroq+YqD/EeW7oI+/0d8b8L+B/jkYOr+Qtp2Gw+93yN0d/Kfdv9EvZiLPZPCXgt/iofkoJ/pxfq1HP/P8lRN9TID/99w/wW8KynUhXZb8/fB5nPQo8N/he0H4Lwz9YuRnht8PwduU+vko35n6C8ifRzvNov4j8oej3zToZwTpo8xfMdRbA/wEfadh/5oLPSQhfQ/82eFnEvy8zPe94J9He7m/qQKefuRvhc4Y+MyKvLXBc4H5tzTrywfw9xR8I8BfBnydwbcJ/begvdYzL6SEfjXa+2XKr6c/VYSPy/SPfayv96DXl/qdKN8e+YvyPZv7A/iZjjy/U/8P5LoCnMX89RA4E9if/vUi+B5HAriX9nsF+W6Qrqc+oHeH+gXJTwt/C+F3M3h7BiDqPrAM8iYH30nKx4N+PuolR75W5A/le2n3k+hvB/25NP2mDPIlgZ8x0DvNPPcb7ZEUPHmZ37bBj/vI/fDTBfrdod8avp4i/yHwVwJGQ6crdBKgn7LUv+n8Cf6ufK+EvmOo9y34M9Ivl1P+Jvjqwkcb+lMW8LSjP3b3/M3+qbb2D86HldHf5+hpKHydgt5C9JPJ/Qn6bcZ87/jMSH3P256/H8L/UfpLHvKrwOcc+ndL9NUduatDN0L+EdqnLOdsz9cHwdOS+WUj8rUivRq+2phmHP8E/AH8u6n3FfL/iL7uoJ8DtH9D6EagO5n8DgGIOod8B0hXRP5fmE+60S49gAfR3yust1Odl1kv+8PPFc43t6A/Fv0cof5B2rMAfJ2j3BnKFdMeA1xCe5wGf1j+ltTP7/6JdBbozQTPd8gXxXjb4fpN/6mJft5B/4/g8zHwefAkoH37oeefgUmht538C8By8F83EsBjpGfB70n6Xz7qVwHfPuQohJ489w6l/w0jv6/rHvrLw/c3oNcHfW2j/nTkWUn+A+pp/xoZOj8XhX5Xyh9l3kjoOZDy68lvgXy90dcF8GwgfwDpDuSPo3w92sf9n/ty94Hu/57AfxbsIpMZHwOQYyb1Y6OHA8AfwX8Z/kejx1NA1yPrLSP9C3JG0M92+n8v8hexDx2Afge4f6U/DQff+6S1T2uX9hysfdr1w3WjOfpKwPx5l/lspecNxn8t8k9T/y3oXqZcVu08jOcPyb9LunQkgCVpjyj0fRk5o93/aT9F3j3Uy4F+61J/KHwfgs4a+JvGuFDfpSj/GP1od9AOof1hIPhbMe9cpP0vAK8i51ra53n4Wp3xWfpvgb8o/DvPZED/T9gXPQVeIj+p8yj046DPaPQxEv4978Th+z7a43fwJKe/XSE/If1nFvooTfmplE+EHpbA7w/Mt7Ohrx3P/pcX/EWptxl9ZIG/EeDXfvoPckVI217vkQ7rz/VlDd+vAnNq7yL/KHiqQrc+7XeV9cF7hU+pd4r+FYP+dmtPcJ9N+8ykv2tnuQL9r8Gfn++FgF8wn7+Efs8GIOp7IOSjHjr/sj7kBm9q+CiGfjch3/ZIAJNSLhtyTqB/l0COEfB/Bv4vUP8b6u3wvAj+tvSHbdTLQ3sehf97jP9y1L9POo33P6Qrw99F5NeeYL8qhuDVbW/aV/tBVebZEeT3Al9d1s24fB8OX+3A14H59TX4Wx+AqBXOJ3xP5f0aeF5EP4PZvw0BZiD/Pvm/ed8G3fv2T/DNovwi+H3Z/TD53ov8RPs8oh8OoP90JP8j8GxBX03RT2vo7aZcG/DegL+U4G3u+ky5CtqXXd9C9iPnt/R8rwFe991D6F8R6j+kXjT5q8E/jPwd5C8O2QPnw9dx8o8yz3k/d4z8lODzPL8I+Q6x3h4G5qA/vIB+HkHPc0g0+NLRXpWRb1GIXjbkuEK9P8ETti+epnwl+P+R8nfR1xrSWaAzl/ZND/8DXI/It/+0Qf8JmV+HoJfBQO39sbTbep6Dr/LInw767nNaQ+c48EO+X/M+j/Ql6vdnPf6LcbjI+wH3v+5DSa9BT6lpr3OM97zk/0X6OPz+ErIfrSe9Gn6SUq8g8mZy/4N+SpEuTPnb4M/k/pl5Q3vyY+T7Dfm6Uf4g368zzttHgKwPC+CjHvp8RH4N9FMTeJ5yT4BpWO/Wsi9Yx3x6ivwl4EuPfF95nwr/iTk3vkO/bgJUL+4X3D9cC+0fEjD/Xudc8Q/wBcqvgn4v9N8bmBf6g8jvAt6H5O8KrR+uG1vpf64f4f3vOdprh/c74PVe5XnKeb9yBf15b+M9ztFIAI/RbtNJdwL/c/S/G7RfHPhqQD9pRX5O8K3jezf4OU/+Z7TreOAs+uc8+HnA+HwEfAg8gTzFtH+B92frIZ/6V9+JyT9B/34S2ve5D0yE/hIj90/AFt6fk+/9wxO+qy/Xn4YB+N/5uzj68/xdFrrLyE8Cnozw34B8z+Mbqf8v6dXoP0aIvHUpl5v+OUt7FXRKgv9Vynu/573eh+BfBD8NkNN+kAT5OpD/LnxOh+5U8HcCv/4lZdGP+8BYlG8EniOUfwV83eH/C2A34ALorwtAVDtgMfAlRb/HGI8nmHeuaR+Gnw6Uf4+0468ocuaAT9vH/brt8w391v5qf45Ffkn2pZ/wfRL8XKU/ngNffOTVXyYe42kc/Xus9iH0twJ+viCtX8RQ8F3Unku6NvjXIJ/26s7wpX3lXdLaV0rCx2btb+A7RPo59n912Lf+Qtr79qWUd3/7UP8r4HPwkxl86yiXmvaL6/0g3y8hp+MyB/x6T+H9xEbwTaO/zIFOU+aPPLRPIfpDUeBm1rPl8BeHevqP5aY/rKd+EfcN0D/AOnSX+lNoN+0Wk4AH9M9yvbPdvZ8A37/Iqz+XdubejOeeofNAH+SeQfoe8ng/4n3JTvD9inwzPMdT71/0f4Tv8/U7on5n+kfYv+jlkB30Vdbj+NRf5f0D+qsF/gl8X+oBDfxp0j5LT/pt4X8A+nrZ+QQ8p8h/jfoNkP8tyt+IBLA++Ip43oaf0fBX3vuNkB/eVPS/mvJjoav97wvqd2X83/ceGDyxoP8AfvST0R9pAvlnKN8EuonBNxP50pPfTLsd+BaRr7+E93zh+73llNevbInrDfLlgJ+n6Och+XnJH4W83iN9STt4f3SO/hmXcdKPebgk9asxHpvQT6vq7wCeIsg7FzkOMr61f9ViPOlXUgX53vT+Q/tYJICeA3qS7/ngWOh8kAL82ofbw/8Q+FqEPqrDz0T0m4v67k9vo59R7q+gcxY82/RfJb2F9rhK/8nI/iyhfhHwO5r0dso3B49+U1WR7zvK/0C+/gbaCzrzPSHp/uT/TXob+qwO31tJzyE9xftY759C/nAtab/btHsEedaBvxDzZSPm33O0v+e9hO7/wVuffjXN+Zf9eyvof0o6Pu1Tn/ZrAJwPfKr/oec0xoP7oM7gzw6/pUPnpqXwkZHv5ZCzIN+LAD9BX21ppyfQ3Q2egimfLfcZeisA/YvQ9x47fH99nn7pPei7yF2Y9o/P91XAAuS/An/6xV6IBPB76GwlfxX4F1FutPYb8Bzl3HoMuA492F9r0O6jaMeiwDLgbwG9+ujjY9rDc0Qp2nMl/SQu+rhLvXysN8NjP1ve/GjqdQV2op2/QT9J4Md5qz9863+9gvG7Dn6rIH8T6scEIOop+m1C+gXG+698f510dvBHaR+H/hTgVGAi6PdgfC3Uvqxd2fkDOWfTHltId9XPG30MgX4L6A8iX7vXbM8l2oHhT3tQXsrNJP+lSACX8D0xeL9AX6ugN5v2nwlMTb0/gUtpT8+bnj/1x1tBu1Vi3O5nfthM/i7Wl53ATch7CX1EsR+dQvlcpBPTfqs9n6KPxvA9GvnfR58Z0HtZ8H9Cvue3x9RzHz7T+2f0Nz+03iaHfoPQfOT9aFbw5Wf8vcE8Ew3/yaAbzblvC/A0cjyFXhz4KWNcBPx8RrlmUfDrPpP0Ldr5B++RwFcZ/ieZpr0fAgdqn4kEsEpIv+6vHD8vIlchyvej/FeUT4m+96OHk+5P0b/rrXYh12PX3wfI+0D/I/jXr2AA824/YE7oVKB8bNLl6L/n6Wc1qO+5IhX0wueLk+DxHqW85xT0Ohe6iejnmZH3EPrR3qldWn+zO7Tn78hTBL3W5PtnzgesLyOZH5sgRy3yd4Xu5y6TvoqevT/yvsj7o+Pq37gb+HLd7Ur9bOTrv6l/p/6brlfaN2bRfto3FoTGh+v3y+hH+6F2w4eRAGo/9F4+Qjp8P98Lfb9tHAtp56/R2lu8t4VOavTh+dv7tVf1t9P/gf5Tl37eAzq34P869P4GPqDct+hzgedPxsMc+PmHtPtv/bYG6x+PXlPDr/cY05HD+wvP25/DdxXjJ2jf7OC/wPeTlEtFvvu5GvQz93vtobfH+BHq1XI+hb9l+oehv/f04/M8xvefXHf0t0O/t6HfgvytjL+vIwH8Evxn4ON15I2r3yV2i3GU30K5HNo3HX+Ub0b9L5E/IfRz6fcF/w2939G/wzgV2qc40HgY42N2kr4FP/HhpwT4tZdoH1kP/o/5ng/+YuC/BHQewe+74PmD9l9Jf8xJ+WPOu5TPyng8yjx1DBgD3rbQz+65Efy19B+3X4F3GP3I+BDvdRvTbjND97wbkKs59PKA/wSwAfl/uq9hHk1E+bA/sn7K25Dvgf6cwGXsY8eSr72vHPW1A3o+7gJ+/a5meg4mrf/bQccp/Wgi8sem3Fzyq8DfNf3Pmd9eRH/6ET+A/iz4+5z8L2iHdfSPT1xv0Xsv6M1Cjksh/6KGpI2vG8+47g9MCJzkfQp4j3gvwnxbFf52wW8c5F1P/ezka98+B3wZfWVCfv1eN5PvPaf+rwdorw76/zlvw99L9Kuc+s1rlyK/HfwPjwQwCfWboz/tNfope5+kPWcz9CcyjgqRjkd76Pfmfq439M6CPzflPRfqr6B/gvayd6mnHW2Z8a3Uu2vcGu3dFvyd4Hs8/Dxg/L4F/hfYD1xHL83I/8DzGeNpN+tYGvClFS98xYbPUrT3Y/jTLpFC+4f3mpEA1tTuyjyzAn5qwL/3N22gs5d2O20ciPFt5C+jfC3wG1+5IxRnaXyl8YlngbtD87Hj33HvPLDDuDToD6IdjrIe7ED+bMxnMejPe/iZ1Nf/MxXfV4f8P6+h//q2O+W0L++Cb+24ueEjLfKlQC83nZeBWZHjgv0WvKND/iOd6Q97ad+upAeDR7+yRvZv7QnIPwL+9ZsZSVr/1ZH6FSoP+HYYHxCKFzGOxPjSYvATjkMZCn3jk4yr0V9G+fTrbOw4J10Yeb9ifJ6nn1akHWvAzy2+X9VvGz00gv5f9Dfj1MLxaaaNX/stzbP5B+D3EHAhsC/0znvPgL4aes/ueo88pWw/4xPgrw/6cv5L6PmbcknRbw/6WRLSDZBTe/VbnrdoB+3XxqvHh68kxvVAPz7yfEW/N/6ipPMe46ch88Jd42SpP5r10biQhPoJGz9D++nXZJyU8VG39W+Ev97oYx/8H0Puya47tP9c+o/xLcs9nzH/3iS/csivSj+r/drPqO+++qx+SN4zMV6Swe8G7Vm07y+sa/oJ6h+4hPHxp3Zb6JWGv4/1T7XfQz8cT6H9XLv5W947gV9/sgrU3wn++JR7gfZKBWwXCeAT6B9j3n9AO0+0n7tvYH7ty7y6B74+0b+F9jCeJRo+0kF/KuNpIONsFPXia3+Bfkfgt+CPRb5+Te+hF/2zjbcwPm4HchXx/or2Gq69Abreo9Uk/xR6OQk8AWwP//Hgew16mBHqp/rHeW/xv3sOz+H6a9NOU+DjfcZHM8aV+zTtmGmdnxlf92j/u8DE2Z+lr71lHXT0d3+b/qC9Qz/SI9T3Xk2/tsSh9y1Wej8Hv65buWmfr6A/k3r6o52ET+87/+C7cdLH9S8kPz3fp1DvT/i/DX7HbwLy9Y9sAt5sfI9Pv0iBfJPgqw71O1N+vPftzHva1RNQX/u6/oylKK/fUnHnd9a3fcwrhY2PJP8b7y/oP/+Qth+Nh35j6OlH8xT9TIB+Ee0v4N2N/keT/yH95HgkgHng8yfy7zjvAPuKj/6dD76GMl4Xk1+V7yWR3zj2jfB7jvlQv9IFjGPv0/aAz/ONcROF6F+F+d4YfvVPz4OcXY2L1x6hfYDy+uPop6hfovasI5xftCf5bkgP7QusL1OAGZH7EeX1S04WCWAL9JVfexn6uUG986YpX9v7M/rHz8yXVWlf/fv059O/rwXpLLTfl6F76hjoDWd9bYL835D/GnrWX2sKcuRAfv23htAvD8D3SdL6padA/42R5zXjrJH/KuvFavh5BX0bH288ne/w1KK+8QzvaBd2v4z8K2n/HvAV9o9/4P4IvYTPNRHyY0F3LfX+Mb7F929Y967Bfxba6Qb5L4Hfc6f+i9P1L6J/ZwXPId850T9cvxu++17FFd8JAL/xE+noXyNzPEs3DuWdh6TfgfUjCXzv1I4FPv3D6sPfPeMmvL9FP/qP6e9ivOc40h9T3nOf/nt/I/8l/Svhtyr1Y9Gev5LeTjoWeK4y7g5rvyGt/aA98rUDOs8cRY6qjK+zjAP9RLXXdDI+CvgZfPRCvzehpx7X0s/UXxnkOc33GcBfqd9T/1v09CXpw6QPa7em3uf6h8On87Hz82T7Gfp4m/6xVn8S2j8+9Meiz7/Qyyj2L13dR4fi2i6DPwfylWN+aOQ6BExrvBPz+1TwfQk+7bdxoBcXGD7/tdMeEtoP6P9k/Ktxr7Mppx++5+db1NM+rL24KPnuF9xHuL/ZAn3tBe6T5xofQb/xvR7f8TkC/5/TLzaS/7t+sNpBbXf9o6B3wv0v830m+mlGyuvPfZn+cga+1hj3hByxKL/K95TgazbjT3+BG8h7nPmyCvJp/xxrfADftX9W8LztfZZxALTHkNB64PqQFv4yYW88wP7jM/RnHKrxWAXBWx1+aht/Z7wp9AdqbwrFv0eF4uCNfz8DXfdBfeHL/Y/3fllC8VPGE+iX4/tsecG7EP3m8/4S/q4i30zohPfjeci/g36bwn5Hvl8h7XtD80PnIvddno8+pl5rvvf1nS74TOt+i36ZkvmgrvMP/PsuQEG+16N9fL/qa9q3vHGZnpeYD0Yh77/QeQn6OeAn2vmWch2R37ht3y1YSTsWhP5Az9vgcVz21b+b/YTvCOZhv+H7gafoj0vo9+NIj4aPj9xPIUcz473htx98taC8/g/63/RA/387frS/wv+frnfoozHlx5DuBF+74Gsx6ezQc9yd/4/7uV+9zwMu9Hyivec/zu3l9adCr9uRK8b7D+9X8N/JA4yNPMaHboBf40P0f2qqfKT1uw+/B/S5+wLPZcZfw2flAERlZj5Iw3huSNp7be+vVyCv77Npf9dvzPeyppLfGnm8B61AuZXGZzI/GxfyLv2tPvUfhO6llvp+BONTP4a+4L3JfO77eeH49J6hOPXNQOOVvG9egvzzwed7RsYTGz/cz/fjjNsETkb/yWiXzynvOX+3/tf0G/03+uhnbfybfrXAz+DvmvFntEdVxtUk8K0j3/llDO3iPFMGeVwvjhqfTvuvgJ83mR/dRyU3ngj9+75a+Hzq+2rhdzed34v5Xo52TuAu8Ovf7bumm/QPolw7/W//I/5N/9z+xk+S73tB++FnBu3ru5j52UfpF1gP+mXQ26fga4v+KjJue9Cv1gPrU34Q7TONfj4c/L+jh3nGEzk/Q3cf+nSecT71Hsz7gmTMq8mBrYwfAM9I+kM+4w6Bc7RjhPZP+kFVsP/Dr/7/xgP4jmxL8BsvPAB+2+j/w3g1bkE8I4xHAv8BxrnvxC1Ajoral/SXMB7N+zvarzN8pCT9J/h9/2t56B0w3/+aRnuugr9/jQ/z/Kj/Mnz7Hulm8suTn4j6j8A30ngv0hupV4Z63l9up57v5a5hfsnq+QL8vn9YQf9L8vVb1M55lnJfeP+vXdy4OvSSlfavzXw7gXoLuX9YDH8VoK+fxX7k0P9kAPnXwKufjPbV6vp/RgK4Ez4quz9h/tzt91C8rPGnF6l/Cj6baz+nflPk/Zb8+8gXxbhIR7/Ygj5KM38Zt/cx+PW77U6+72H6TmYP8PteZi/jKeDbe9g88JOK8T+ScbANPnqC7yDz7RnKfwD+9sin/di4R/2rPF9VhF4y3ztxndb/3/GJHsaH4gUPMu7m2V99r5D6vpe2CrxdvL+NBFB71DbSs8Dr+vAv8iYF7zTgU/i/h14+ol4n2rs1+p0G/WbIN953hYzvcX+JnM5HzkO+x+b7bPrx+j7bIfaF1YC9Q/Ggeej3HUgbT5oLebXfa7e/Q35j5M/Ld/0e9IOIi/yb4Hc+47Ag9H2HUf2ol8noz/tn98fui7ejpwX0/5UBiOoJXd9BGAT/HcRDvT/0M0C/4fXQdTI15efSfxey7jUiv4D7Mc4bvm/pu2Kp4U//9xN8D4/HH3x/Uf8A5wXwtTJu1vWc+i1o36mkhxlvBz79c+YwPo2j6AjUXr4Z+XJA3/vye+DtA76ByO397wPoJaJdlzGv7mT8+X5HAdrbd1N9R9X3Uz8Fn++t34Su7x+UQ/4O1CtL+mvyS9F+JYElgPrjv8b+xf2K+xjj73qRNp7N+LZc8DGK8W2cezi+vbh2Mfj3HtLztfPXJ96/0r59KR/2j9QvcjTyeb/ve9Xa51eQfhjafxvvqv6a0t7JfKcWOosp3z50fh/j/Zr2a/0Pwes7z+6n9Gu7Dz/rvDc1Po52Sxnax9xAb96/ZQF/D9rN+AfjI+wX0frFQy8hfCQlfQZ6f6D/e+hnOfL4HoX+Ew9oz/vAofTju/D/ovs6/RX184Oe572ckQDqZ+v5Lwnljbsq4Hmf8hng5wBy/0m+91FPsI/2YhzPpz0zg38P+I3H3QCenMiv/1FD8vVD0v9oH3iPMI/tJd0R/EPQR1Paa77xM9T/y7gS8u+hjyfQXwq+pfpLwn8M+s0N/9oLpeP7gZ6bfU9vGHLoJ6bfqv6q+rMuND6dfud7hS3AM9H38fQrM54Yfn0frLbx6cxr3YHGy4Xf49c+vwx5UsD/j8aPI39d7Ru0v/Hyvks+E/pHKK+fylGg/injOHe1gO5t8Lj+JoP/pMDh9HPjCIrS7tpLtKfoT1ad/lcNWAM4BPra79MDMwC14182fkD/NOR1He9GvvFAW9BTf/I3g+db9OH92EvGdxp3Rznjg3dR3/Ht+TFlaHxvYv9h3OYG9Gk8Z3rvT8DXhO913N+h9/tA36c1HvuJ8X/o5R7986rvddAuvtt8g/bPDX/h+Hrj6kurD9bvw+Crgz5me79H/9SurZ1b+/Yi5BtsXCv0OtFeCULx9sZpGp9p/Iv+H1VC+/fy+j2E3rt5R38l+FnCutkTeJ5yHdDfTeN/aZ8R0KkU8vfU/3ca6d7otRfQ96rqwl9+1v83gNo/djFfFKf8Rugt9v0J+G9E+e8o5/uMeyMB1H/c+wH9yK+gv/eR73XkusD8k5L+7XsDvj/QQz8Ez4fOv6F3IDpCvzlya4fzHKEdLq37PfSV13My9X33IavrQ2i9aUb6qvf2nl+0vzEujBvzPtH7w1vex5AebP9FPxXRRyVgGsbxGOjrn7gT/P6/x9v6TaLfHOw/P2V/UCIUr1AMvl2HXX+3oe8PSBcHT2bGV3HOVZ7nPd9ng78C3u+ARzteRfL7sH71BfY2Tpj8sdpD9Hv0ngB+WjF/pQW2BA6g/hDKD/Ge3X0Q/St83+07bosoVxP9+O7LSuT0fRn9h4fST/Ujnup9JfS1O2uHvgp/4fHkOPP/Pz6j/U4bX0P/be/9jPebtKv7QPd/I+mfWY2bcB9G/krGXRHOKSmA/fSPod+XYBw8B3++35yC+Vc/C8+h+lvo365fg+9E6d9QhPOGfknh9zQ9n3oufYX+5/m0MHR91yYB3/9BP5PAm95zOeV850/7se/TtDDugvbN5/0p9Xy3Yzr4/2E8/w6fBWifj6h/V/u78XTg0T7eTf9D/cHgR/uQ/0/k/xI1gu5Z6vt+kfdEv0GnDuW6Ob/rz42cI9C/8QTatTr7Hixp2yMW7eS91XPQX8v4b0e99tpbtP/TL2ejp2Ho6RH57dFXWfj1fYjq8LuJ/ct7jINk7mfR1wPk8f3yqehjIOm/kE+7gnYG7QvJwZ+d73NIa4/WX0w/Mv3GpsB/JuTVn1o/6x7w7/ulcULvmPp+qech551C3gtQPwXz/kn4Mg5hrfd33p+gh/7aq8mPRv5N8DUEPr8HLmR/o9/7Yfh7A/58T+0u+taeXgY+0jLv+T5caebf4uCfaHw/fKXw3hz5tqMX993h/bj7M/+fwXeQRhnnAf43+e56rD3oCPrVf9o430z0tw7w3x7o/YPtnybk130QPo2/179jDPXe9BwLHf3+9O/Q38P3Z30P9Bh4xoJX/xLx+y6QdFqQ/1/vmup/n9j3pbwvcB1BP28yn/q+4SD2F8YTnqZdjeM0blO7g3ET/9WPliPvQfTQm/orqR/eV/k/YP7/10PkfxV+jeNZov8K+fq9HPf/JYz/RJ4M8NGc8TzLuDLGl/f5JcDT0/sn733TP/s9mvlzDP13GfLWQZ6n8D9Pf2jSYf9j/e59t6I15X2/4iL8OL+8RnnnD+NhfP/C+l0oP1q7PHLGcj9J+by06yP4X+R+0PMj824d2i8Wad/ncX2spR0ePJPQz5VQ/NYe0o3gr6P3WdT/EPofeD9J+7q/0G/T933zws8w29P3DYwXJF0SWJn+fB9+3P/7Tpbv1zaAvx3ur/XfCdm7PiJ/FPnpaN+63h+i7wrAKsC7jg/00Ri4B/raKfVvmQe96voxhvZT7q/0I3V/5f8+xSP/W+P4Kef/rfk/bIXoL95HHmDcTNGuxfes4FvPuG+KfvW/O0z5muCtAexNf9P/w/h17SWP0Z/7rw3ua9wP6udIfmH9p6FnHIXxE9+AVzvVe8zz9/WTR76jkQBqh/H/0WpQrwPpwci9FTrfor+ZwBnA+ZTz/+r8f0njVX1/9kf2f4PIv0Q6jv6VzCfdmWd8J7uX57PQ+1q+q3XN98n5ns59K/XXWQ79+f6C7Xuc9tkK/qUhPyT/j/LrAEQNc99LvvHPTSlXQf97+v+XxreF7oc9RxY2fhS9uK91vzs9EkDv7/yfSu/tSoDf/7VaSrsvBvo/V967bgP6Du1G45vYz4wMxQF87/5ev+/QOuI6oX9AN/01tLfaf8nPgN58/3Av+mrg/6IBczGOjL817nFs6L4qBn29qH4o5zsr/p/XffKba38g/0okgPYv/RXP+h4g6XKh95u0h+kn3Ap9LSO/E3z6vqrvK8SGfprQOwv61fq/Za4v9cD/PfkTvacjfQb9H2c/csb+S9o4jlvMW/5vRPj/JNyPuz+vDZ6t4P8LfbwEzAzeyqH953Xyo8C3yfHhfjvkR+w7kYfhV78c/+ctN/Sn+n8h4H0JPPrn9GJ8ee7wPKL/hP8nZVykcZKDqR+HfreX80dYHxv5/g7fN5D2/YG6yDMbvn13JVvOZ/PnZH62nPlbyPed93LweZ/5rWbIn9D1xfjRN+0f8JcJ/O/rD+W7K3zXf2Ac+P2/U/uj+1/fNyvJvOf/w7xp/DLlw/932sO4a9JD0z3Ll/5H74fsG+H3s7VvHEPeE8Ca/s8Y/PtegvubLo478n0vV7updlTtp/7/pvZS3933/zf/Rv8N6YdF2T/Mp/8bHyT+Uq6L+g/63o92Jcr5/pLv5hv/7bv5/n+v/x/p/0X6/5HZyf/O986p9xrt4/2R/mD6h/WDnv5hvifq+6LZSH+E/rrrj6sflPsz74HlV3taKP7pv+I6W1P+R99Hg++n9Kte+j9hl6kC9L6tv+f/DM/i938LEkQC+L3xOejJe4Xn0E8J+Nup/OhFf+JPfRdC/x3o+f7NbPqT98feJ3t//Jjy/i+O+27vT9+mfib9Wry/Jd/3hadBz//HfOz7XPRP33s+yvzUhXz9Z/WXHQYf25DPe80L1A/fb3reMv7H85z/U/d/6Zy0B3icdZ13+M/V+/jfduRtj+wXmUVEto9RUiRlZ5QVISNk7z2zEpmRVfaMyJuIZEf2jMiWLfN7Xb/n4+G6PK9fr3/u6zzPOfc6+z73fV6TX4j6f78OWQP4bqYAls4WwBeeD2Cx6ADuThbA3tkp/1wA72cO4E8pAtgqEsAqiQLYK2MAOycO4Cnya6cN4Nx0AZzF979zBHAd9H/PEMAG8QN4JUsA6/N9GPR3UH4j+QXBWxS5BlL+JPnz0wfwZ76Xhp9PwVcybgBXgudIAKIqIP8H6K899cqBLwf624b8/dBf/JQBTIk+ylPvDOn3oRv9YgDvJw1gK+Bz6L87+skPf/WRbyNyDKV+9eQB/ClBAB9RLiXyF0JfEfQ6OF4AuyFfeeSeC39bSCeK8B16Y9HDDuqdBMZJE8DD1O9CuXQ5A9gRfPnAc5RyK9DDRPR5PsuzeFbRX8ci15uU3036L+ivJv0+cqeCThX0t8r2of4e8vODvwH05tCeReA3F/Wrwt/blBtE/fHQT0e6MfRL0N4XwDeLdHboJUPOtuinD/3mIni2kj+E/L3UfxG+9sYKYHPk6cP3Io4H9QB/H5F/Ef4zQmcp/F2mvbYj5zt8L0D/mgf9tNSvbv8gv1UAonoBk8FXauiXpd/Np/4O+l+2COXB1xb6HaHXH/3XZb75NVUApwOHIOef8L+Y+hPBOxb6R9DvL4yruKTnUn8p/LyaBLmBH9JeV+FvMvq9wHgcDn9n0eenyDcf/n9BjxVI/0O5a8Ce6K89+DtT/3n4Xwt8F32+RLo1+Noh3yfgK0T9j8HXE/7ro5cI8jYh/13oL04YwKXA3pSbCb2L6LcT338E3wDSOaD/GLyPodsN/K+h33vo9TDtoH5LIU8R0p8Dx6DfjLR3H/SfCXr74C8hfCwDOk+NQW/3Gf+lqHeXdHn4G4Q8H5JOixyfMv72w19p8FeGv3S07w3m16vkr2K9PAJ/PeHnEe3TE3pxwTOU+fsF9JSA9cP5+QHlV4KnGnIVJD8346MQ9PKQTg1/fanfFb52o8f96PcV5FtF+c3oqQf5X9s+yDcKfN9BvxB8vQY8bD54pjM/D4DvnqxzscG/HH0vpN7z0NmJPL3B8z++n4Kfz8mvRr1rpDdApzby5Ob7ENp3L3xOIv019G9QvgNwN/nqTT3WpP9kotwj0n/QvpUYRzHo5yH8PoZuHuBK+lc+8HanPzwmfRH6jekfWwIQ1ZPxswG91HL+JF0KPR0G337mu8ngHcn3jvA3HLyXgcuBY8A7Cf4XwXdj+s+P1H+H/AWUfw36LcgfRH9MSruMR1+NkC97HOjFBj/yraJ8U+Q6SDohcjRFf+nJL0H+Efj8jnRz2mMT5VqQHhEJYD3420H+B8xTVeFvAvNPY9r3IuPzNPWdz1OgV+d75/dv4eMieptHf/oK/Uygfd8A/sV6WRk9ZgH/EegPAV9s6M1H7w/RSz7wf0z+XPe70JtK/TOMv93o43Xq72J8Hqfcu8j5O/AD6FWk/59h/5cJuCt1AIe53wPvCeRvCt46tF+E9ioAvkKUq+v+mvLOz/nRQwf4n0Z/mQudL5hHt6sf8juSPxB8V9BHDvTTgO9vU66F7Yl+sgKzAbuS/wflz4DnDny2Q76m6GMI+hkIfIQev0PfaeiHMbTfRvhZ7L4HufvR/55Apzd0X0UfQ5wPSReHXlzgNPieBn9D4KMB+sgQCeAF8tdAtyz5Y6lfhfxj0F9Ke/9N/V9pv6O0Zyn3BfBXHP6m0v77wDMPejUpvw3+xlFvrOc06pdh3GRh3DiON4OnDvqc4bpA+mvq50CfKcCzinrbyP8IvvYiV3rG5XD4awq+uMh7gvXujPM7/NxDDyuQdx744sD3BfeH7CduUz8Z9GZT3/3JSeq3ot4A9U3+S9QfDv+uX90o34/+Uxx+ZlK/M+Uu0d53mA+zoKf48JEQ/DvjPStHmP/u7JeTQLcb6RXo9z30VwW4hPGqfeEX6H7COIgHX/8C6yLvLeTcQfsVJv8f+F3geQc+oqA/GHuF89uPjMcX4b8S+shP/9Au8g3wa9qnDvVvoM9/6B+fsP5+BizO90/tX+irDXxeR57C0L+F/mfBdx368cvk50fusu4b4Gcx+C7D98vI9RqwPXpaDMwKX2/Df0/48/x6AfmmUN7z7CPOo2Mp5zrZE/1soF/Ehe8Y0gWovx65XoHvKeCJ9vyKfurSz87RPz4AX3X60xj0m5J+1BZ+HW8p6e/r0ct7ru+UH0n98+C/4/mfefNL4CDkqwD+xLRXFPwn9hyIfC2Qtyb9bwbfYyHfQuq3pl5y4CTKbyc/E3Atcq+h/c+Dfx7tOoX+0s/5gvLh/vUSfDxEr83oP5kotxz6zh+vw5fzx+II+e6LKX8MfV8jvYP8UZSPi56mw/9WxvceymV2v0X5RsjXBPmSsv4uIP8Q4/cg8GtgUugvYl9ZkH3mRuSIA33tEWWgE237AVOzX00DTE9/GUf/0F5xDf7D58MO9M9O9OPzlGtL+3djfHYFTqD8MPJHg/9D+wn6nwX+C/CZBL1OJn8w/bsP+shMv86OHr9G/g3I3wj660n3pb72sDeQKy/03iadnPZeSj+rRPn01H9Ae5VifN0nfQA+v9euSvp6JIBFwZ8ffd2hX/ZAzhnI34B900TaZyJyNoGf//H9N/haz/fL1P+K73WhXwx6C+H/Z+0IQM+Prk9ntRfAb03KXad/5IPfZsCa0HmR+nMZr9ovtFv0gf4N2uMmMBbtlNXzCvRHkHYdywQ/a+ivh2j39aTLI38a9H8EuVNQ3/uCI+D/h3IpaP8N8NuG8TpauzfpnMiRkfrlwJeR/p2L/j2YtOfDAdq74WMRdKuCJz7lyqDfH7RvIddN5LoO/mu0VxPob4Tvz8nvgDyJ6V9hPZ5k3F6inPu0kdCZw/6+IfzVIf0JfLaEP8fpDMqdg14r9LWV/KMh+dLSP2agl8TwvxZ5jqKfLeBrR/0Htl8AohgWT+87vN8YiX5cT10fhkL/IOV7IIf7j7vIr/0iD3wsod9+Tv0D5FdBPtvDduhMOoZ6MfD9Fvx53vEclBs8nodSMi5SA1MBH8PfbeiPgV4e6t3Ufkp7dadca9b5KuizDHI1jEAXfm9pH2R+SQH+2PTDVZQfxXkgMXylAFbX3gWdPPDrOcfzTbR2F/rdHtqnK/yXoPwK7wlonx/R4xeU7wL+bsifDn1/Q72E8Ov92TLq/4Leo8lfBr2N8KedugR0zjruyE/GfLWM+Wet8xb0b6J/x91S9F8DOTqF5mfvWU56f8O6sp91Lj/6rAgfy1gfFjh+4GOe9zro1/u54dArBn8fox/Pwf/CRy/a/xJ0D5A/i31EfuR33nQejUKuX+BvCemqtE8L9HEM/MWo/w3lFiDfZsofR/42zBO9Sc8H/y7q56d+DfiIg/4mIc8W8otT/gT4N0HP+XIA6aLIl9T+gfwDGK/unwqg5xmkYwF/R7/N4cdz90na3/O3+4SI+xHK7YSfJOh7Mv0iDel7lK8TgKib5B+D/zTI95j+cY9+kRj+p5LfKbQvTI48tbVnML6d35zv0qHPo+x3XAc+At+XyLfG/TP1T2l3pf5n9M8JpHNEAliK+jWjn6VfnXR9+Jvn/A4d91uJKH+I81tx6Jan3vPIX99zNXSvUM55+lXyt6HXl9BzAvR/kPF/BHgeffcgvyTzZQHwJ2E+HUH/fwe+l1F+ufc7tP+HjBfPY4ORKwf6uQl/LeB7n/d1WZ6Vuz763Q+9HdpPyM9Gvd7U2wJ+1zPvyddQfhr83SM/Nnw1gJ+h2ifB9xjoOSgF8q61fcH3M+kL3s94nnJ/Dh9laL+UzAsNWHcaAxuQ/xb81QJPY/jPjj4GOf+E7LnVIgFcRvmJmZ/lR/qNmB87AFNR7pJ2XvCXQT/14GcG8s5i/Cyn3gj4f+j9MOP1JLAR89Hr0J8Gvp3gb6xdBv3+yPd92vUov9n5w3sTypUifxzlL7I/1E55nrTr90dsvI5TfhN6+AP5tCu3go77mKmRAPYCXyPGTWLS86ifF/1Nor7rUy3PLZx/vwNfLvQ+Evn+on/kp18NZH4aDf+VoXuS8XsX+DX4G0E3N3rRb2US42cp9J0/3+EcPpBym+Hf9aEX/FdCPuf7DPYH+M8F/s7g1368gnRp9QtfLdC/9+M76QcdmL87AltHAqj+tSsuRV8VnI/An4r2SwG8SPvWRg7nx++gW4bvnam/KQBRJ9HnYeh+T//dpT2Oedp1rCP8PKZ/PQG+Cx+JtFNCX7t5OfR3Rfsy7ZuJebce+v6CctqtK0JPe7b2s7Dd9RXya4O/L/2lsPtu+GtC+3dD7rbgmwWfq+Ffe+pX6MN55jj4J4O/Iv23EtDzfTf4ewu9bfceRf8u70/sv8C+8DeS+eQ92n0q80wE/Aco7z4pvD96mf6wBLrfRgI4Cv7/h/7129KPS/+tAtp3vecL2UnyIW8j0rHgrx78ed/o/Z73fd4/VgT/KffVntfAN4T8TuBz/T9L+qzrseOStPaNZswvr9BO20knIL+0+znGY3/q70V/n0E/FfgfUr6R/lfkH0Mv7VyvwfcV34vSbw5xDvgY/KnYb+6n3DzS3usuRx9NkLcy6dO0X3Paazj448HfPMcZ8vRCvz2Bx+nveWmveIy/yuDpB3/6f2VBrv6kc5Aeg15HA1dSfwnyv8i+VrtfRuaJTe4n6Q/ZgTmBmeAvNvLFAlZjPCxE/mUhf039OPNSfzzlq0PvHf0wqd9ev5xIAPczz52ivv6EBai/zX0U5V8m7TxUhXZyvp4DvvfI70J6gPMwehxNu7Sl3HX0p7/SYfL1Y2oP/biM32nguUra/WsCvk+l/k36zwLw6x9bhPYuh5yjqb8e+ucZ5531CyD/J+028KMdtRH4J9C/pvP9H9Lb0dOfAYiqTjtuIz1Dvwb49T63K/R+h/4w9DEUmJ7y++HH+4AYvntf4P1ABPn1f/P+ug76iMV+KBfzaHZgJ8rpz7mH/tcEeseRfwT4T9IO3g+vQo916dfj0HMh0knh5wzldzqvQGeR96B8b5fx2XrnwX+B/doc0u4TEyP/RfQZRX/9TbsY6fPwf8t7C/hJDf0DjK/H+reQzoL82WiX897zkW7F/Ol9+xvMP0XgayDtmyZkVzuonSwSwKvo2/1CffBp32iDvB94b+h6idw1WZ+qA5Mx/9SA//jIdQm95NXejn5WMu+lo14W+K9Jfnrme/3u0pFeT7mHjKtHwAfATvC3iP7gPXH4frgR8pyHr9rwuQD59Rs+yfe/Kad/7hb9ShiXhUkvgr+s+ofo38T8Mkf/BcZtIur/C/6b5Hu+8VxTHb16vklK/0wGvEE79Kc9Y9NfEqGHOMC3wa/f3zr6acb0z/L7Pu3TBHx1oNsJ+RPAXwvKfw8+4wRmep+EPvpR3v2/9tlE7s/0M0bOg/Tbn6BfC7gL/K2g15L2KU9/c/5qq/2U9CTqr9Z/Ar03hz/vAexfU+FrCjAeeOYif1vWoxXgK0U5/Ye6o//YfO9Huj/yXUB+/Tbj8V37a2HGtXq+S/+uAf2u1MsKv9nhPy/5+hfo36BfwSPyT9Efz6G/GuDbJH+MN/2n9ac+Rv5M/Tmp9wJ8fASsQvldyJ8dPiqhr+vs11I77rAHJaVcEcbHHGBzyrWivxn/8Dr4ksPnm+j/b/p7L/R+lnQn+N/tvRD4WsNnTveHIXqf6CcJPeMFMsKv8QSO03co/yv5O8GTFf1nA/+rfM9Pf44if6P+A+DzvtD5qwPr3l7aUX8o7a8rmfduAGcxP/SGXm7Wm+TAfOA7C1/5oFuM9vxGu1vIfvwlULvxZMcv9P5yX8D8eBo8zr+TXN/gqzf47yHvy/DzTwCi1pHvvZv3jOH7t0uMz0HeV3g/Q9rzTkv97l0/gSMo/xn9rz/446sX6P6sX6v+Pcj3E+P3CfNYJ9aDRfBXnvaaRTntQ69FAvg88uUD33Oer+EvKXgrgPc288NE+serpDeBLwHjYAH0c2n/hY7xPF3ofyvJzw3dwaRbaYenXWrBzx3kN/7kFPg6ka6Jvo1/Wg++8vBbAT4ek65Mf+kL3knIo392V/p1F6Dxa3PVF3pxv+L56f2Q/4x+Mw9I6z8zAnrjAhDVxH1aJIDNqDeOdBbmr5TodwH6GYDcp+E7PvLdRN6ifP8DfYwkP6t+YdAZBT9TtI8jr/NnbebTu+TXgq7+m0dD49f7Fu9fvI/5jfYZQLvfp174/NCffP3KGwH/IN/4gFnQNy7gff0A0fcY5PyB9hmP/su4bqKnsL//FNJp4d/97CH4aA9+un3UaWATPtj+j0J+VLb/QOdb8Brf0znUP/aD135i/+hIf9F+lBQ82pFeAn9cvuuXsMH2cx4BDmae34j+ouhvu8D/K/QS6J9Ne2WgvuPtCu1xkvFxAHgK6PnnbfrXePAOYj+wnPqj4Ptj/drR32Dk0O9Vf9ffjc8jPxv9zfjGEsyDuUP+sPrJ6i+hf0Rl0qehX8/7E/TTiXz38RXhx/i/QbR7UvpdGubjU65D8K2/5Ejk26r/IfvjNdTfjv5+0l8X/dSG/lb408/T+TUt351nnV+bah92nNFvs8G/cR/Ge2hfvu94I9/4E8R9GpdyGvojqF+c+geQfzvregn40Y451zgv1vcOyFsXvE+oP5P0t8DxwJ20by/s/RPQz23SXcBfMRJA+7vxhptIu2/+Fv7cP+dl/NxC/xmRa4V+Jfp3MZ6MT/2S/eEK6JZF/t/Jj0V6IHQ2OK4ovwN6zciP5/0M5Vx/XY9H0iBfss6NA55Fn1fRVxn2BSWplxL8txk3d4CtGJ81kPOm9ivjQcBb3/td9F4VfV7Sjwv9TNQuq18y+KLtX9A9hd5OAgt5HqF/uf93H5wT+lX4Pgn8vby/dPySHwe96ufVDTzh+Jnt0NNP+1gU0PtZ5CsLf8u9n+V7XvBcgT/jQe+Srz9/XeZX73e05zgO48O/8Zc1wGPcpfeVndHXHePy0fct+PO+0nge7zFP0z4Z9G+C/nfwnQz+3keeB5RL5zle/xP6n+MvjvEppJNBX/t1U/C9CZ2HrA8nmPd2oc8T7o+pXxy5qmrvhI/J1G8H3lOkh6I/9+sLIwHUHut+3vWhLfR+149B+zRyN4ePP9F7Jcrpv7mOdedv5lv9OPczvx0AHqa/ZyF/Tshf8Bj7L+0J7tc93+mvuAL6ixnfqSj/K/JqBzO+qkQkgMZPPY23Ct1P5SXt/sL464b0s19D8dfh9x32waf2G9938J7A9x28JziIvl7Q34XvN9G//jjRQP11qnreh25J6iWhHc/SvuH4IPcLO/5jvfS9h0/VJ/UTwZ/r0jn61+u0+3/ZUWuAr5DxDXxPzvi7THvtpNx9/TkiAdQfXj/5fqT1E3mAPvT7Oyrf2kfA95f2F+p7X2D8o3KpF+MfjWv7AT0dIv9D5C8csl+u1j4OH0Whd5j+f5f0Ecp1AP9g8CakXmHoey9wAzmMl3cf/Qn5eYxzQI/99S+mf53zvst4df0j6Z8jgaOBzmfZqe/+zv2e+7ui9I+CzANFSBvP7HnY87HvWng+Loo8PfjeFr3s1b6NfqLAUwL5/ke55uizs/FZpJd6DmE+XQ9frlOuT+rr25D/u/FV8bF/xAWOgp371J/EfLGTfcOH2nupHw/+NzDPjQ35dz5iXomhH+6D37cZ/x/rX8i+zvvDeuBvBz+tfH+AflKQ8dUd/spHApjZfZj7Q+dX5w3a6T71N+gXQLmM6F1/zaPovSF8/Qm/O/Sf1v/A9xgcH8bjkl8SfN53tPN+nXETzbyVA/70b0xJ+Qrg3QCfR7Un277InY32fXr/r3+0drAAPPVHaYh8vrfwGu3o/eF/7ds2036rPD/B3x3a5xX0s5D8f6F/B3m+0b5FvS+g39p9hPGV6HsjfB53nFCvofdnvisAnYPg2wm9aM+f6Gu/fn7gSw7dS7TjD/B3nv7lO0jh94+WgO8j6Ou/vh388UnHI19/2HW0n37d+nmH3+fJxXgZDt1o7Uv6l4L/e999AN9645cYd4eY9w4DfwD/ENvfeDL4mA9/saCX3Hg88E+n/CHtM+D7Dj099J0Zyhvvc1I/IfC/Sfsmpd+thp7zz3PoNw18+b6Q8bVF9dvTzqg9iv7zDfWvUv8Nyl8C/xr4e9d6+qcYj2y7UG+Y877xRehlCOnw/dy34G/mPQx8fuB9NuV9v8X3XDoZ/8l8azyq8arXyW9A/VqRAJYx/iI0/zjvOA/p/56f+saVVaW+8WUP9OvVfq0dj/wd9J/StONqYGbyC4MvgfYM6PiOTzH6dXHgA+YZ7z9X6O/uvlx7E3J8qD0UOZaAvzXtkpn+38R3PUh7HjA+3ncJ+of2z83IN76sKfT2wP9O9NIX/srpD2R8AOn12rX01/Z8TjoC/XeBGT2/oM+i+g3Dl3HSSb0/g/5uYFbqf2HcLvV+QT+T6T/abVcij/bcq/CvX5P7r8/ht6pxA+ybfvddGtK3kC+3/gzOf9o5oed800H/IfLVr+/XFESe98Dzkf2PtPe3CeHvonYe/cfAuyDkP5vG8zn5rkfeQ3ZA/8anpOX7Uc8vyDuQ+ltYz3OQ/xb752HgDccPpzb+BPzTwD8C/c/x/R3qnUNfc+wnjM/c0MkDrEk5zyUbvKcOnU9GgD897b7V8zT4w/eZ1+BjJPWLsp54jzoR+t6fGreuXeNP5PWe2XgJ4yeMpzhB+RPGx5I/23lA+5Rxi8a1ub8C/2jv0+ifxUhHUW4s88lY8hfTL7znq4F+f9OPhbT+mznh37jT6do/GJ9D6T+V0Ft35kvjn41nL4Bc140fJl//e/3ttedov+kF376DE37/JpPnO/iNq52W9uvq/bz+M+hlvu+zsC/3HZ8SvvMFnkvIv8dzP3Cj7yoYfxayb1+B/lzm98HIOYf0EfTRiXPHD+i9C+l2tL/2fO37XYw3QP+NmPcbA3egn4TUe2L/pP7Hxschf3P9MWin9KR/gr/N8DMOuBHYmvr6Iw5B/o+AfyH/GcZf2L4zF/m6U971zPnM+5JF0DuoPzD141O/I+10zPeAjC+k/xg/+ZLnbGBB8n13Kg74fXfqmv7ivgcJnsTwOQ642/he8GbW/gY/vq/j+SYR+H1nR3uv9l/twdU8H+q/C/42vk9lfB94e/vul/6L+lcan8C5Vf++PJEARjNfpKL9e7rv9f1E+usBYH/wr/O+iXmxPvAa/fg77/HQn+8Mev91zvd+9As2TgK+kiH/ePqXfrZTjN+lXBPvh413J92Q+n9rB6G86+FK+PN8Nyy0D3b/25f89+BT/8do/Q9Iuy/Rv3ob7ax9036vv5/2zQzMJ94fHqe/N0Q/+v/oh6E/jv4XJ8hfxjxfwPtj3yvh/HKPeXSp78Ghrw7otRVya8+r5/sc5Ht+Hst83yNkHzHutTXnHO0j6eDHuPtNrKfeH8Y4/oyfAl925HwT/nuDx3deSsBf6tB8ZZzxAPgtxPye17gn+pN2qLvUv+19IHR+pP54123jruBP/44CzLvdmHejab+xjCPjbYx/N+5d/27vVxbD/znjzPVvDPkVGZ+qf1En2xe9DoWu88MSxuUG2n0Z6abke6+v3/Jz1Nf/brR+O3z3Xm6t7zvA/6+090Dyi9I+Mfqj0y7GKX4C/98wfpw/b1Fugv572idD50TPh/pX6FexhfqxGF+eD7baP/ju+SCKeW014+gJ48j463jox/P9WuRrAR7tGW2Ma0RP+uNNof5l4/+QMy752g/jUa8P/Gs/1L7p+WQw9LUP+75OEcp1hM9E8LeffONAbI+JxoOTHo9+PAf7bqv2pxLgbcn3VPBfzv0p309Qfxb870avucGfFnnTum4x/u7Tf2ej/9nooSHzietHSfhw/QjvVyp7jwF/+7wfAM8l5invq+7Qbo0pNx5+e0KvBONtOOO8Gvx5f2R87tZQ/1+f/f8vv/vGOC8+W/4l6hvfW5J0c+Mjac/x3utS37i3AvBlPJxxcFuZzxoxP+3S/xd8+lvpf/W396zaZ0j/6XsS8DeJ8u6/tQdqJ9xAvvc+3f/j/ucSUD+8teDxfVP9t/S7HKU/mfGz5Ps+uu+i+07WUfpVDHryvtP7zdXU/9LzsfZy+L9tXCz4w+/3lvNcBj7jjH+DfiHky+N6gd7d3xhP0EX7DOX3UW4942Uo372f2mx8GHyPdV9K+i3nN/BfAt7Rv13++W58yUzwvgK/OWkX4xqNczS+MbweeJ4+TLoo+LXrDEc/a0n7Plx15KzAeuN7ce5/3Pe4D9IfWfuf7zu1QX7fd3qecvmgZ3znMvrPQNbFOOyDB3jPrf8z/acveNOSHhQJoPZp39nwnU/t09uQbzD9/gHj0fcCerAv8J3B8PuCxr+vg452XuMjjSc0vvAt8o0vnMb3vO4XyK8Nfv1SesKP/in6Z9eBn5vMK/vh333iGO8rQ+eCas5vofeQ3Ad7HoxLe7yvn2/I33qB+3Po3PDdSvj33dMY/VlC7yt47+E9yE3oef9xhHbxXm4++8O05Gt/9b3M542bMD4Z/CvRs36B7l98t9B3DI/7nmfIP7+zduOQfekq/a2pdl7gP5EAVoK/9ND3HJLD+1nyDwML+X4N5VMwL29i3LWB7jrqr2J99N0G33H4Ff7zoNfRxnmDNwPtkQW67u/d16eH/4rQT0M/34yerlGuIe3huS8X+3njx2eTfpN2qIgdJ572de3T8LXEeAnyva/2nbgl8P0A+fz/DecN3wlZTX3H0+vwq5+W4+uEdk3kHUd+YehcC9mnrnq/h561pz59nxE+vU+M0H98xyD8/xvz9JeE/9m+s4McPdkXef6+p78s+H0/1vfHiumv7TsJ2jfc/1D+D+01SZ6lKx+e47Tvas/NQ3+YSfv6Pmpv4ydC8VeFGA++B14KfXh//hbrfl/k2U0/933XuOD1PS/fofH9G++LLhg/CczgPRewq3Z+6BgP4Pz6Kt+192rfTUK+foiNHa/eb5Iujb58Xycl+GNIP0Kv7mfO0r6zSI+Ffg3orCGdAf0YZxWOr1pAfeNN9a/xfW79TvWnPMX3GvDfzvc84fcz0p7jUjpfgacg+hhPfedt760zwr/zd0bm1w3AqfT/DPBZke8lPV/Qrs9R3/clPKf5Pya+x+/9xkPmbcej9x3GhR5DjvnguUf9E6H393yPTz/3+6yPm+mXvxiPYRwu/PnuqH6W7XxfgPZ/j+8pSU8gncR4PuT2nq8y/f8c+HtA7wny94N/59V6tMNx5LsCvl3oZZFxzKTT0l7/MB4PINc89Kk/f3L6XSXwuT638XwB3dL0r67US2Z8Cfzof2289Bno+36Y73uE3y/x3tj303xPzfvjGM/rxntCJzX6077tuzyjwKd9uzX5cSIB1M62i/Y3ns34NuPdalC/MuNR/4r2vu8LvrDfUyP02BI91eO828d3iyjn/0oYj9yZtPOX8ckR7R22L/r0vVDfv/bd6+nQ8X3Rmnz/GP618/g+j/HAe3yvIBQfrF+U83tL+pHzu/wbX217+p6899IR0tPob9pXe7j/Anbx/z5on5yMzxzAXMA32We0Qx+TobMQ+dujf98XMB7X9wXecH9K/8jn+QKYhv61hvz23gO7f6W+fs36OWeAvv7N/l+Y52P3M2f0qyS/ge9MeQ/v/T3z5x3f33AcIU8d/cP47n2K/uHG92yD3kHoGN8Tjhf0fa6vqP+A/Z9+iO1J+39b3ehftfzfEsrdcv9O+dPIcxy+X0Y/0a6n8K/f4Xzq90OeRfAfi3b/kfxzxnejB+NGRugPxHzvu6u+M68+/P8n910L9V9g/LV0/aLftiB9hHKXSW+FzkL6r/GxT/2ptQ9C1/cF9nD+mQsczP5rCvV991k/Gd+D1k6YDL35/01V0YNxJj/7f3dA44m0/2vv9x7AeKos4DM+zbhE49SMT6tNurj/A+g5F9iX84Hrl+eFP4w/0O/B924yPlu/mv7P2nltZ+QwrsT/JzG+xP8n8f1O7zHD95c/gE87xQbon0D/Cak/lO+T4Ev/JOPVjV83nr0s+VdoT/07epMe7L7V+F/06Tsc27QP+v8h1HuF9ETk2xh6b+iA8evocxryuW6W4nsPz6uh+9NHkQD2QZ/b9DdC7hX6l6Cfn8n3nsZ50vuaPvSLp/6zlPN9If397qkf51f4S8d4Ksa47Qf+4rTXAvrfMO1xfB/kekW/8X+dUjkPUt77C+8rvL/wPeGn/18C/+H3W30vKrl2YeMfqR+ON3mb8jHGP2M3DtuH5hk/5f8dwfdt0v6/wkT69T7w3jb+hvyL4NMurL17NvnJGI+e773nzar/Cfpvzzrq+WGA97z0P9+tDr9n7f87+Z6X7335/1vLKT8UGE355cjRju/enz8X+v8b1+PR8Ov/EKam/guk/R8px63/71gNPBeh6/9PyW/jAEQtBfYE6ic+gf3heOA1oP8Ppx/xSONttI+Rv5R+PdL3o/Qjon/5/0ujjDcFj/Pbdu8/Q3bM2+jFuEvjLY3H9P+/MsKPdvbXtG97/025jd5X67cEfxMZfy97L0p6lPfz4NcOY/y29pi55DdAvkro4YnnC/a3vkPXH/n0P89K/6wH3a3oUz8M/z/Ne4Xe7jOg577V/XfYf/6/3vUpR34L/WE9h7sekL8ntK4fgW/X93kBePq/l+nYL81Efs+36mc++B+S1h/5VeNljD/Qvx29JKOfeL6LpX+N8xHpJ+jD99P9Pyz/JysV+vZ+wffAfR/c98Jj9P+k3b4Hbwft+ZEAvkB+fvBtYT4sQ33tL/6/p/G32mPq094f+i4yfPp/Fv6/r++S+x66/++bC3mc5xba/8j3fbHh8LvNc5jnGfjy/Wzjp3w/+3vyL1N/Nvz4Prbzz+e+Y0b57vChH+Y1310ifcT33XwPmX3oavioS7tcIV2W8V+f8tp3q2tvIH3HeEn643DG20X6/3XjK40vov1WAJcDb2d5Vh7j85TX9bmf8fTw+zf1niCv8VSLkK8A+fPQ/0z69bdA3y3R3pWA9aIC68jMkH9wM+AB7e7wex75MusPSb2e8P8l+upOff3WPH8lhj/jG0dSrov2etrvLPmHwP8LeioJ/YKMP/9H2/+58pwfw3hZB/wXPX0AvdLsF0sAiwG/B/9e8HvPVxZ9e78XXk/8Hy7vx7J5P4w+krpPRD797/VL086gfSEl9Y2H9p2dDOT7/w5P92XUd77K6v/rgP9Hxr//kxR+T7uZ/mXw5/uwvk8V4zs/1L+B/JeBV4CL4acl46FV6P3Y9sijv/1B5PmE9vH9Rd/HNm54g/ti6utfZ/yT/nHe//r/qjtoL/139qGfWYz36ejnXfjTzjBDf3vStfT7E/I9KXidB48iz8/gbUW/HEH/Skz5N+xXxs3S37KBp6XvlzI+fWfSd5Sah87b/s9cM+j7v821GOdPwLsI/fq/whO1c4MnH/VXMu/PYJ1OD5xJ+a/Q70PwrEVfE6Dr++7h/z/Tfql/oX6FuUhr/8oLvcnooTbpH2hn7bOu467f2mv1e74N/Ynah8FvvI9xDJPtl76vg3x3gG0o73vL/wfdsKu1eJx1nXfYz9X/+G+bzGRmve2RJLJFknkLd2Vkhkr2ntlkk5GZWUnZdSNJ3MmMMjKyhazMiMTN97p+r8fDdfW6fp/7n+d13uec5zrPc17nPM/zee7ET0f9v7/ZWQK4OUcAs+YM4Dbqb2UL4Nr8AVxUIICx2QNYMi/twLOF8ir67Y8EsHDWALbKE8AfoLc1N/3of4jyA+hngM4y6t+mfjL4blP/C/W3wJuEciLkqQI/eyj3eSqAz2cM4FfQW4qcXcGbF3x/ZA7gCvg/G4Coh9R/Rfk+8i+G/g/5Ajg9EsBH4G+QOIBvpEbO9AGsC74ClB8ib37Kz9K/5JMB3A/cCzzM+DwPv8WQezfyNKK+BPQ7pA1gC/DXov225AHcCtwCHIH+HqUJYDzwIfA38MeAfyD9BgG7RAK4KFkAm9AvM/ofgb7qPBHAV4G9aX+a/n8hb42UAcwGvbm5AtgA+VtR3qV9o7+R6eA3VQBPAaPB35r+h9FbUfg6on1Q3w87fB7+x1A/H37fQ6+vMs53wJ8lUwD/pN+L2OEQ9PsDsBDt92NP+dBvG+hXp90k8DTC/q6h78WM53boT6b95gTIg33doH8q+H+J8q/obQRwAe1rpghgSfQ+mfFYRX0B6h8g/z1gDvibDP59yJEGvr5HvtfR61/AI7QbDX814GcL9H6lvhLjVIR+E5mvP9E+jv6x2FUB9UG5BvUfoO8O9FuBHWyMBPAr9LqG8gnWk5vQe8D4l8Ou5iYBL/SeR1+PsM/B8D0f2By7vo3exjB+ndDPq9BZDYxB/r/hP5r2yeDvWeidoP02xqcUMCXyuL49i/wrGKfxyL8CfW+k/UnkKQL9otArCv+NaZeX8nr4qwP+89Q/B5wPvqbg+xX6o6h/GvwfBCCqJXAtsBnjNStpAMe6voL3dfS9lvHZzjqwh3Z5ka8b4xmXgXohdvUF4/I69K4xziUZv/a0K4icOdDfZOjXYt4cRh8XkDMX49sB+RPQfhR4xjE+M1gvSsDvb+hnA/0v0975O47yTtq/jj3EU78BfaSAXgHG62fwzqNdFfpXRP6V6O9X7Ogr5B+O/nLR/iF42sP/u9DbQr/WwGeh/wbr40H6FQSmR1+X0WdO8EcY3ynI/yn6WwvfPenfF/oVKS+B3gnG6xXWp+z0/wb8CYG9wF8ZvEuQtxX6yAN/l8Afq7yMr/PvPPiHRQL4iPYXoTNP/vm9Av3vQncT+tnnPgP570J/PP3e4Pdb2Msh5Ivh+9CCdW8I9tCAfjXR7wngSH4/iLy/+P2En1zgWQD+BIzn+8yLnPCRQHtA3/nBOws8/ekfcb1H7j7w8SftnoReC/CeYh/RGf7C621L+LlK/fGE4AF/dKIANoK/hshXH3rrsNe66Dc3ev+Z9q7DveG/MHK9g33dQ54/IwHsAt356CEG+YbAX0fGZzP8pwLfE+DbynhWBn6GPbgP+Ij1ZTOwE/wdwn4L0y4bvw8E75Pwn4/6jPC7EP2ugr/V8JtfeeBzKfhXsn50Y11dTrk4+ryD/srRbwT0rtA/P/qqye+b4K8d+k7CeLRCvhXgqcn4VGS8ywNfBH6JfFPQ10/gr4oenS8/8/04AL8l0VM+8N9lvmxBDx1p1wb9VMM+k7G/XkX9VPC0ZL1wH7qasvvPpNiF6/tays3B737tLHqaT7s7yDeW8RoHrEq/e/Afg5w30Ws57Gs4/JUGfwrKfn9Lgf8OdFvye2fal0IfnZBrEHpeBHSdaoE93ESuzvBxh/GPpl1W6H1BuT7lLui/Kvo9Ab7u1I8E7074mYm9FYZObebXCfDEMT4TqM+NPguBbxz4ysNf7QBEpeX3HOi1GbCY8w/9tGU9GgO+Qu4vXW+hN4v6MfBVhXFrDZ3+lCeC7w/nO/a9CzzjGJ/J4B9Ku2Hgn0nZefuh+3z4TwC9o+ApjB6LAEeD13P+UP0E2EtR8JWHXn/qF1Juw/njbgR5oXea+hrM79zsIw4g3zPgKUl7zwlL4DOz8xHYAnmuIG9Txi85dpMdO83heo/+djM+2113oPuu32faLwbvVeS9S/uMzkvqLzJu4+EnpX4L2rdCvnXo72YAoh6ip9uUG4PnDnLvpZwA/h4h39fI9x2/N0av7wBLsS5MYt6soH1x+HF8s1OeCL1Y8HuuHYn9hM+3Hej3AP4c38+Qv5D7fvhxf9eB+lPst18Dz2/ocT34vkcvB/m9G3ztBh5Arm/Yf6wFvg2dt+GnLf2HM9494WcDv2eF/n3G803Gpwvr2Vy+G3EBiCrueYf+P8Hvbey5PfzdRd/N9bNhTxuQP7PnBvgcQr/1+t+o3wg/0eCZDL2M0MsErM336Evqk2J/PyDvdsrvUb8Q/HmQvyX1z0O/NPrMg91GgLNp9y16uEr/fZTrQu8S61sEO7pIuT7tn0HuRPBThfnVnfI31K8DJoPfmY4v41Pf7zp4c0QCuAR6tbCTrOipvvMPeW55TkauNozPOuxhDvQ8Z21FvveRa7Tnd743HzFOjYHnPIfAfxnWl53w/RJ4+9K+GHJUwV5eAlYGLoPPlHwfxrOPmQC8Cp5dtL8I7MM8foh8+lP0s+xyXUW+efBdg9+rA0dhH+mpz8D4/BEJ4O/U52B8zgJrIu918DSk33nKK+HjOvS/Z9z2hexM+/rbceP3SuCbg3yjmQ/3aJeT8fH72Qy+nM9HKNeC/0LoZwD8eX7zvD7Y/T58J/Uch31lhJ/WjMdy6utB33FLSbkj49Sf/ncZrxnUZ4ZeE/h7E7kOI1cTyuegpz97G3Qngm8LsB/1veFzAnSXAguC54PQ99Hv5W3Knms853i+mQr+N9BPK/CtoH9O9J2GcjLaTaH/13xv3gIWZD09GQngLOZTCuj3hu+26Od36OdGXtetwdjHRvYdZ/i9Cd+jmeC5wf4uMXx38rsJf7ndf6KHl/h9EPTdv5fBXt3Hu39Ph32vofwk5c/AsxT5GsPfUug8wB7Uq/tJ9Tsb+mdZHxJjFytZD3Mhn+eVS8g1ifnyMvi8N4iBnvcGh6nvBH9ZwKf/JRr9zmRdvMrvxSm3Qp5o9OG5Qz+g/j/vg7wn8l4oBvoX2d9cB95Bjm707xOAqO3ABsBR4HkH+VIi91voYyHyfMb4Pwv+osAD0OnM/F0A7ATs/j/8qfpZE8O/dvMbegjbz3rk70u75NjxOfjbgP0th+9Jntc9zyFvJsp1oZ8POgnd/4B3GPItYPxeAG872i+DnvvPvNhTFvT4HHK6vzpM+6rgWwi95pRPIvci6PxCfW36J3P/AkyDPl5BnsWse/8yHvMp669fjr2Ngv/3mV8XKNeD/tfg7wb+75CvOvxURv+/0H4f9Od5PwWdlIx/N9qnAm9q9NvJdRb+htF+FL8v9v4GPd5kfVzGdzOj5w/0txp5Y4F/o4cu1L8M/0uov0z9NOTvyX5oE/S+pf0nyD8cObx/9T72X+9/0McD+PJ7cQB551J/lv5+H8syvgvQm/7ZJLT7Gvob6f8E9DwHVEf/ZRmv+eC94j6e9vHY5Rn2sY8oj6HdCOxhGPBPxrMe+lnO98H7o2l8HyZHAqi/YCV8609Qvnj4O0z/d/QX6l9GvqrgewL5doPnY/rrFykP1L/t/UU+7Q07OQr/tQIQlZ3x+YZ2P9I/M/a2An5d96vBn/d9k4Ad0eMa7y3hfzv4d8P/LPg/Dv8NoFcLPV2nvJ3xj3d+Mw7ef7cF/3Twnob/Y9SfBX9C8F2Cr8XIsYb1Oxb4BOvbXfBM0q/ldzwSwGnwX8fzHeXb2M0Z9PM0/F2E7izkGE/7uch3F7l6oMehtIth/q1l33eC9t6bLmV8p2N30fBbCfoD4Xsq+q8E3iOh9ft94Gu0dz1/MwBRx5ErnrLfC/c3U5DH71Nd6J+GT+/j9Jdfo30Xzu+VwbOacfEcn4jxyMfv7m+yQGc3eC+Dz33ox/D3D/79cehvBd/x8+h7N/Y9ifHfq/+R/kngvwV8T/LeFnqDaPcrsC/9x3q/Cd041vGNwOL0r4J9bPU7qxzI1xb+0jDOXSnrHxlAP+8Vxng/EgngNfj+Db6OomfvD90Puk90P+5+8QLt84DnFO2Mv9jKePzL78XoP5X+s9Drx8BfwVdJ/x/tPe9khf+x8FdEfxv850ef96lPpT8IfN6LTcJ+Rnt+of0O8JVwH8V6+Ae/e87cQvst8DsA/k75/dP/gF5Sw98m6vvqv4X+fvjqB53c4Hc+fkK989X5mcn7fNqljwRwFHAc+/c39Wtin7HAa9jNt+A9Tr8PkGcE6437u9HodyXld+E3Efx5z/8++s2sHxRovFgU8r0D/0fd97tu0v8L5sNiYDx20hs6+1jvouA7lvXwbfR7A/1/5nmUcg/wZ2V8K7E+7kYfC9Hnh/CbHf5yel8O/rL0r8v4roKvCHKcp30nyi+A56zxYdRP8Vzs/b72G9rvDYXOcegXRX/36D+S/sfhfxLntskp/ku/DuPl/dwAz8/0fw777cF6cgE998YevoGf09jXSWAdoPerpeDP/Uf4vmYN9Zngqz/yZg7ZVT30MYz6Ou7H4Scx+4oH7M8KUl+C9f0S35FvgKPdT0O/E3KnoV834IAARLUBxgH19xRk/M9gNxvR43nkq+P+k/YfUl/Z+1u+X9ncxxpnw7jcQv8/RAKYC30kBP945B4LNM4ttXE3fg+xs5LgrY39t0OffdyHw5f+9xX8HkO7fvqp0J9xFzf043He2AG/67CHK/RryO+bjd8D/wT4Gw+MoZ1+yo7QG+I9NuXkjO/r9EuDXj5Hvul8z9PSfqTxk54nWS+aYkefUv7C+1TGY4xxJd6rAMsx7g3olw88baH3CuORi3UzAvyd/kPh23Xbddz1uwd2qR/jEXjPuj9AHwu8pwZOQN9D4O8O0HNucuZTBcb1IeOQhPrm0DeuoTP00mKPB/U30X8a7fWfz0P/ueC7pvOY9rNpb1ye/mL9yQ0YnzuM7yJgNfcH3j8YDwC+RdTf8L4DfO28t6Gd+9d21PeFv43ovxB8naP+PfB6H5KE9omIB0nKuvMt47ME/t13XTTuk/7Gexzmd+8HvC8wvqwL37uewM5Az4lnaB8Hf+3BX1z/OXr7hd+9R22qP0a/pHF1fGdv0M77b++9J9Le++8zUcgNfAv4FHpYhd4/cJ8MnkXopwvr3y/QP8R6sQH8uZDvKezDeAPjC4xH6Oc6AT3jFTx/uQ7GUvb8ZbxcUuQNx1eVZT63Z96Wo6y/vQ5672l8hPda4O/hfT71Z5k/c+nfx/sr6qtB/zL6Ocp6pb/wU88h9M+GftpC9wa/T8P+s3j/7X4F/HMZf+PZ/nWfbjw09PuwrnU0Lo7yCPBfQH9Noa8f6ABQuxsbCaD3u9rhd/SfwbgMoPwX9auQ9ytgetax9sZL0N773wreeyFvYuzrOX5PgP5rIf8WxmcrsCn1Fen/DHw1oH8L9+vwd831F7k+Yf3tivwtkD8P86E55XjwZ4W/wY4/fDi/jV+6ze/6m/Uzu398Bfz6MfRfGL91md9rorfNjO8svo9t6N8b/n4OrZ/6bZfRLg38/cl+ajPlkdA9CtTf8Dr9ysCP/ofdyFeW+VUGOIH+M5DP/I5d8FMcfOWobwe/fcD/KeVXqT8J/53o1xN+b4Fvgesm/T+PBPA443tEf4txmeiviecC/Yne08H/BMbN+A/jQY6YDwPeBsYP6q/Xf8e+Lj7kdxzj/pT1eg52tIR2R6BXkXnzIvBD6o33ycO55x34+IvyDPirBz9XqNc/fAX6xi3pvxkRgKhP0Y/27jy4z/eohP5a+meDThF+d/914X/4B3/UzozvYp92kfWyH/3L0N+8gMbg74/9JcZ+17k/h/9/wW++hvkbjbEf8zeMR/f+bTj4vX8bznqSHb6uh/bzbxgPDx7zJipjT82Mv/K+G7y94T8j8/dpvtPPQ/8j+KsF39WgV4P6S5RrYY/R2NFv2OsO6OVj/5ofuID2xnl7ftIPEvZ/tGFcFyLfLf3r6Ksz+ugC1H9cl/7vgjeVeVvoJxX15/jdcfgZvpYpJ/Y8hu9GAuQyvq8bcjc3vhJ96pcsjD6KALszH9/0Xgn6aY2fgv5e9P8TdHvBxyag3/kY6tNhx+E4rJnwVToSwGOMc2L9ic4/9/Wh+z39SbOo38J47cB+bpt/gDzuRz6k/07zndCT9qJ9eD/gvcAtyt4P7DKe0Hs98Ov/9Hvt9zsD663zz/iis8Zn+z2lfWnqPadkMP6c/t73hff3iY2HC9mDdnIa/jsYb5fsv/g9PyYEf2vo9YJP/TOfI29O6KxH/89CPxt4X8buqgJLQ1//bGb4d59VkfG7g92Y53YLaH7bPr4L7RjHOPhrFPJf52N8BkcCuAP+n2XdSg3eqfBbDTyH4Oe2fgPs5Dn0M5f19QpwO/26Gy+GfvQLNHSfC755tJ8Ov097jwB/n8D/Bvq/AD+L9ffxvZkDnqSU3X/WgN/P3B/y+8/QX8N4n2EcclE/EDg6AFGHgZO9xzN+3vgDxr08+KoznlUZl+Wsf4/M9wRPVu8HaJ+e3x2ft+B7OPx6/5fO/C/opjc+A/oN0aPxtuuRx3wi438rQR91Rm2Fz8LwM8x8HfSYGD1/y/jvQJ6c0N9JeSzlBfC7Az1tor/+36HYn3GAw6Fr/N984LPIUx/9lIVh920zkG8W9MzX+ZT+rgfR2GNuyt2x2/e89wbfRenq34Uv4zV2IP8y5p/5idmQw/zE9XwPFqDHIeD9FX4vGy/JOHT1u2vcOePlviix8TzUm99aDL3mgF/zXT03jzE/1Dwh6tMhv+fodwPw+B4zBb8fpZ/r3w+MX4Tz0GvAN5CjFfJlA8873ueCx/vZK9jLePS4Ej19B51lzOdr6Heu98Xoobb52+6LPb9T/xd2qx8i7H9Yzb6nJXLGhPLXuqDfHPoNgAOof0R9F/1f+rn1v4LvEXxNg5/GxscjV2rmo/EPHSg7/8ZEAvgqeu7l/R/0zYv6Cz4mQz+O+u+QNxY4G/yNaF9XezP/2vh79Po8ev4BOfqB33sr86LD91f39ecC3/T87HmV76HroevkFOT1/uN99zH0+x3+UtE+NTDGfBLvH+DvI+ROarwL8hbDnqIozzROkf7GjTh/qsDHa/Bnfu9S7D4RfFxDPzfR37/ow3tj8/+NFxoPvnXQ30+7zvA3Cr7D3wPjaEqgl5XwN4uy/mv91u/SXv91Y/AbJ1YI2MH7O/ajng/dl55FPv1/u+CrkHFA6G8X9dWQ0zing7TPG/Kf60/Xf25+SlfwmGdWEf39hv6HME7xlJ+if33m3yDm/QCg588+rD/9vHcEzkA+/WV9zYM0zwT+e2LX+sfLYd/ehxZj/Lsj9z++T0D9dNaDGUDzlW94fkWuu9D1O7iE+uaOH/QTYu8v08599HT0cRZ8xu9v9j6LcT0IvjmMn/kx9T2Xm38F/oysq5Wwk9bg3wAf7fn9Fvzl4fcUxoehj3qsA68Bj/veBfrfg/7XwUdL+IhCLxuMr6F9tPG3/L4SOY33XQT+tqH7x+TI7/2j5yPjDzwXGX/wAfKaHxf2X7czXt98XfOjqDd/a1Ioj8v4c/OP4qC/HHk2RQIYjp/rDKxK/13m1bl/gg/PT7cYX+OrqrrP0M/r/AaP32XzT9zPem//CvrKgT78nmSBbinw7PH+x/yWUB6o+Z/30dfn4Otuvgf8O5+cXwW0E8oFWQ8KeH8HNB42t/7NAERl0+9ufgr0E8Of70f4nkRryqfoV57xuER9JurLAr3PyRAJoPvGrymH94/ZWL+Hs0/+1/gv/SBp/ttPfEPgfzrlhOjlN+SohD01Yn+6lvqPoWecfybjFdDDUfP+0O9p+GhuvLP7Z/j/k/l8BdgOmM64Kdq39/4iglz6741Hcj8bip9Zjf3GAtcAK4B3FfIcAqann/ljc/zeQcdzkuejbNRn18+FvIOND2LeZjDvh7L3C9Pgdxz6aof97aH/TOgah1IaPMafeB93w3tA6j0f3mfcvX/szffT+8e88F3e+Yt8142/Ry8p+I49BZ4htLttvjx4vUfsizwf09575QnovQL4q7l+wf/bxv8a94z9/Qu9bczHR+b3+v4Lct/Xf4/+6nk+gX597xeMp+d77D269+eFoVcJ+QvRLyvjZxzq99A3r9t3YH5EPs/jn8PvNuT1fL44AI/9BgmQT//BjNB7Qy3AV8X4Tdr7rlUhzkO9oJeB+t7QuQbUb18YeauDvzl6yA//zq8ljKf5ji+gP/Nlk3uuoOz7PMXY777I7z0tg38nfK+DfhP0kD30PkUqxi8R7fvT3jy3v4Bl3V9B/yPWQ/NuJhjHRn1Z71/MJ4TPcp4/mD+1kc/40pbI3917BfjqCB73x9q/dt+Ldtr/cur787vn0p+Rrxb2l4V1PBMwFe2c9xHo/q2/lPIKvn/LwHcYvpJiH0UYb/3SX0KvFO0O0H8/MLw+ZYV+N+MHjSOAnvFJxiMZn6R/MjvybGRckmEf31N/mfGs7LkBfncZxw4/H5rHwDz1frqZ9/7GpcLvNdb3dOZXg+8q9TPh3/dhzEvynRjzlfQv6Fd4HXsb4PtuyNMXeIX9+xHfGTMeEXr9sIeG4Nd/U4Xf98C3+59drEcrgauAl8CvnVwHak+JoXfAvHToqAflLwV/g0L+stLY7xT0Phk4kfHwPYI4vufO41rINRX+m+hvon4p/HSAj3Bcse/NZAB/Q+zDvL9EyLHC/Evs0vjC8Dz1fcF4yn8aD+D+Fnzx9N8Ivm8jAfwDez7GujsJaPy45xPjC19D/gK+f8L86AEfrvOF0G/Y/3PFd+SoN5/F/BbH0/wW7z/noK8myLmd/l8j14voex3j6PpQH3vNiV5yAd+DT+OSzF8Jxydt9X0q6h9qx9TvQ0/z0cNN4Hb0k4/+CeF7pP5N6N/wfQ72dbOYZ56/28J/O+B7wIXeR2EP5pNFXH8pj0M/6aBXxvwu9Iu4UUuMj6fs+3Cb+P5eNr6FsvFPvl/0E3Rmw7f+uZL6Ven/Be2G0e4fylvNOwCf7zfehsEM6Ocg+vH7cyl0vv7Y+GL0c491rRjrmnl0vg90jfnXmHW5O+V67vPZH9aOBND4Y/3X/Zgv4TiIieD3XmAs7Y0TN77jrHFxfEfmmfeCvddGH08jV0fmzwnPz6F4b+PAc2L/fWnvecbzje98Yb5RE9DreGAe6F9gPTwPfIEOvq9Qh3Kc+zzKvnvhey4N0csh33eEnzjK3nMYh+t7HK9Q7/rlexNRvnMAX6X4vRXzuyX6VS+LIgGsAdyHfjw3DIA/45KSg38b+vgbOID5Osv3R9C354mD5imhH+/3vNczPtL7Pe+F9/s+iPFF2Lf3+97ne7/v+zqpmI/VoDsnCjroS3+N+cTGI+q/Mb/O73YP7KIS/Bk3GBOKH4xQ/wv6LgF+11HfE1rr+wrgz4BenzSfAPs3r/ocdjQS+Z8EXyeg74mZX/8i8/o+43iA/uNC+YULkDOvefvez5nPoP/I9+iQz/eJtFft2f1BBvRSnXmYEX5ug0//ejf6H4P/bfDxgHl/z/w/7Hmw90Oh+LFvsE/zwM1P2E173yOIjwTwe9avetCbAdR/nAx7zvU/4n+bYl93ob+Asu9wxULfdbFEKD/kC/1Koe/DOPgbiX5HAfegv230fwH73+T5g371jE+lPor5edLvGO3Ma/R9G++PzXOc7fkWuQfC73rkS49+6mOnrwN939f8qEXgidefbh4p9R+Zt0a70b4vxvj7fqjvifp+qPF2vruUnnHy/aU04PMdX++rvJ+awO/6U7vr78v//++3Bj7LgP8Y643+lhOU+xs/af449pQaPJ5PWjIuxq8az2r86u/o5x/92Mjj+xcb4Hc69G6YN0X9Jb7be4E7+X6bb+H5OLfvarh/Bt9TyOM7eoPg0/fzXF82Mi99P9T1ZQXrzWL6DYKe90eem/UfjaNs/sV49HfKd1KAW2nXm3XlBfSyjnXe+M4xyOV9jPlqBjwMQf/Gy1xGn/oPriHfPOheDb1PEY6f8n7A+4Je3kfxHegEX3OBzj/nXT7zTOnve7qOh36MZvBrPHJz7/cZ5zngd/1y3TKPwfWruO9KwEcT79Wh57six80TkV/jIL1/h//9xjf4HUGecH6572SG9xPuM3xf45jx3fDzHfZYLf9/+/k+6AB+179ZAflSIP/LtB+F/X7t90O/OO3m07+s8fmsO9vRZ0Lqza/KBH/h985+9FyoXWMvjaDjedN9sedR98fl6Z/Z+Qp8IhLAm67r7td8b8r3hI070S6Rcx98un9ug77Nn7gHvkzY9cfwlx88/1A/JxQ/4P1Oevj33ngIv4fvjz+H3gPkyWQ+JPobR31V9UT/BNSbF+07dHOZb75HZ/zp+lAcqvGn4fxKv3fN9ecaX2n8EvJeRb++p2ic1TXwrUSeGsxH8whm6b9E//ewb9/DHOd7AMafQ1e/iX6U1Oh7AfZYBLt6Tj+R5x3f/eIcVpGy7xuc9l4beQciX2PGZ7v+Reqj6L8C/rbxcxz4Iux/CjBO3nc9ZVwccj/OX2I9+gT5u1JOQH0Jfj8CfOT7neZx8rv7RfeTvu9h/uXjdxap973FcLyY576+4J9vPAL93zIf0u8r/Jwzbxz9+b7SZOxzr3GyfJ+WQr8G/UdQnup9EXzoPzfuWj+6/vOtjI/xLb736zu/X7M/8l3xHOjjkvkp3s9jP5u1I+/jzBtFvjbg2Qp+427qGh8DfyeB0fDzO+Pqezu+z/ogAI/33WMp99V/b76fcUZA31dbav4g9DOTr+f7vA28b6G9+7vWjJ/vzk5Ez3fAX8T9Avp72Xfz3YcZP+X7Co6P8ZbgP0Z9OP7f+IP3GQ/fWRrO7xHv58yvBl8l48/Rz3j06XnI89IB+NPejXd7nI8XCaD5ZTc8/3ivbP6oeS1+J6gvbX4y+pnF+A6hvfFMvtf0pX4Nfvf9pkHY23DgYKDvs/r/Tfy/Jiv53f9vUt38FfXuPsr9F3yf9p7d8x3y+X8z/qYc/v8ZPZkfnjt6UPY88irtb4G/md9N389l3mxDbvOP9K9cQa7Oysd8Woh85s+fDcVnmT9fme+d/6emPXjWef5BP8bB/er5FTvrijyNjHcM+W/KIHdv2s/iHJAEfe03fha8eY2HR97axq9RXwn5U6KfDOAzHqgRcqUB/x3fJUDOcL7iUPTje5o/QT8l8i9m/dHvfxnofcBC+MrlfEb+mcbnsV6fRs4jrOfJ0I/vmvjOie+bnEHfr6K/RcyTd41PRD7zWc1zNa/V97ezI1cm+HyNdg8Zr8XsJzzn5IhAF9gsAFGHgOf4vSb8t8FeYrC72Xzfr0FnZsh/0otxmgH9L5mvXzh/4fdt9HeLfveRy/ujLZ6/ab+Q+u/hr6r3b/BTE9if/f9R2vluyH3v34DrjF9nPIzv8r2JC+6X0X8y5P0BeZNTPhXyy+ivyQr9btjnKuSogD6Lgv+A75LzezT2ZX51UvC5bhRAv64fBbErz2+TwacfvyLyeg/oPbL3fw3NX0QPXfWLur9Cn7P1/6Onv2nnOzCH4cv/ZzKQdnvB77tJX1Hv+0lvwpfxvj+az2n+M/o2f8b3xnOZV2h8EvPuQ+NZ3Q9jT8WQO45yd/j1/8cMiNAPfj6An+XU++7Sc8j7Cfz5Lox+Q78nX9Hf9xKMq5vg/58A31XvveDrp9D/hwm/y+P/TzsDfvdb7r8umxdC/yn63xm/Yaynz9PevMso8Pg9eZHxMv/SfMt58OH75MOMh6Zc2ftr41Oy/JdeOH4wJfuzot6D+06L3wXWr4fMY9cx169C6C2B/gPWUf9f0hTolmLc/B7X0l+Cfr03ymDcqfd/4N/Numw8rPGvvh9YPJRH4fmiMPpfQz/vTZurn1D+wg7KNbCnEcy/WNaHbeZ5+T4ici8B72rfUcE+3mV+DAZ/F9/JN38e/pZS77m4HPwfZPzrU58u23/l6OO7JPDh/4faiH68fzb/oTPQ/IeO6N2421zoSf9XNvh7GngXfZSEz73wZVyH8R4j6H/M+KzQue+2+xPv983rx/7cp8wLwOM8xT2Ufe+hB+NufNIe1t+e4Pd+1/zQvvCl/977Nu/fKmBnybG/Y+aLQGcCfG1Ef8Z//u35IBT/Gcf34ZzxxZTTup+BfjnoRsN/WfSkvh/qj6A8yPOh/n/jHrHPX6ifS/k84zWK+en/K6yj38l8Yej09p0d5n8s+Hx3yXcAw/5p/aHGb7kvdT/qfnW3/j3k0T+hX8L7e/8flu+zGN/p++1N0Fce9JAI/PonfHe1LnKkjQTQ83Mb8ynNm6Z+FTCe8WzPuD2kHAMfx1jP2+tnCt3f+F7eLsprvU9Hzvl+B9B7VuzLfKzWAXj8DnI4j9u4YN+D8n2olb5vCD39i+ZHmCdvPup1+CtBvf72G/Q7Bt6c/h9G9Ge+UwznevOh4un/Of09tx3wfQz4S8F+603swPvRudZDbwx2+xr17neM3/2DsvezJxn/V5hfA+m3yXtR6ovyu+8SNNKv7/tG2LN2rp9f/35d8MdgF6eBP3p/Sn/zIsxPTBEJYF/qmyLHYda/M4zLN3x3TwbAdIrH54MD5hM5D4WMzzjaxwL3gvce9M13Mv+pCv3Nf1pk/grjH14vvA/qht7Se19JfSxl4ymNr6xPvf6rZ8xDhL9pyDcXvTzOywCf/29pUej9ljy0q8b4JOR7bt6z8T9TvSdjXOrQfivyLkf+HIyn70fkBDqfjsBPGux0qvrznRL9jpSXIq//H6Gpeanm7ejPCflv9dt+Sdl1Mpr1LRPzsA1wOvhz8932/9rFY6/+fzvfv1kC9P0b9anf1PdHzcfTf/oWZd/PfTkSwD+oNy66tvtz+GrA+JeBXi/z7infoX1H1tcP0Lv/7838/52+cwVd1/GdyGf+pfHp5i8Y3+X9cxztzV8eAv5p0J3D+v8J8C7t49BvAvS3ifLH8OW7br5fF54vx5H3jHFRlF+BfinK7rfUyzX652d9uEf/FbSvhn69rw/nmT7h+R9+GkUCWJXxep/+3r9571bLOE/m33j0sRZoXo/5c/p1jPMM+3e8V/W+0vtL32/2/XDvvYyP9f2wb+HP/yt5lHZp4f8jvi/F2adNpXyP9r634fsbk+DzJvTD7+/ERgLoPdkh9F8fOfy/LV/S/pJ5Y0D/34z/X66L99nwk4jfXR/8/x7L4eMaeH1fq4/+N2Ah9+W+v4TcvhdwAjv1fecW2Os+1i/jHfabzxrK7wu/c9We9rWB7eCjh/Gs9FevneDb/Vtt9F8M/Nqp+Sdj2M+dYB04xTrRgP432d+ehK77ubfMD6Zf+P/qtMF+SkPnCfSbDbspSP0k+HmEvmpGAuj7ITtZl1eHxs//z6z/Q7/HGOjr/1iin8R8KPc34PE9D9/3MF8sHvxvY89fAZezPg41f9D/m853wThw/79oNO1rGwcG9P38d+Db85T/99X/f2a+WkvjhB035PP7ONB7RuxgOvxPp796U4/qbxH8G29kHFIV6ocYf4lc//g+GXR8v6sbev0He/L/Px7jfG7eWVfmSxL97eDfYp5vJICNoe9+YyDlVtC96/2i7+k5f6jXn3gB+20GXyWg/wA9/x/4CrJSeJx1nXfYz9X7wB97782Djz0iq0H2lj2SEUJIGRmFjEhmCBlRyCorevAlWWXvhIzMykNkZK88+l3X7/16fa/L+7q+n3/u67zPOfc6+z73fT4vJIj6/1+lrAHclyuAjSIBHMj3tXz/K2cAq+UJ4LPkr8gdwBnRAYwif2e2AO7OEsD72QMYA55vUgfwbL4A3qL8mAIBHJokgB8ChwG7U/9iigBeAJ6KH8B2CQOYBbpLkecz+JoGvWLg+Qx4E3mmUu486V3w/WmOAC6i/n3yW/D9pbwBTEt+VOYA9ALfcsr1Jn0XeUsCdyD3yYIBbEb9xZkCOJv0JOjsThzAg/D3WqIA/kP+i/DXGrodkTNLJIB5kjyNZ28IX5uMAZyfgXK0bxfa+33KtQTvVei9Cv0K8D0KvncDb1G/QNoA7kkZwF2Jn+Z/Knzvpf/lpT1XUX8ueusIH43Qq/p+B34+Rt6f4P8+6S7pgfSXa3y/DqxNefvNdPVJ+7yZLoA9yd+G/jflD2Ad+N0HvmzRT/PZDv2uRb/5kSMT5WdTvzrli1G/N/q5ifwt0c892mEs/egU9c/xfTH1i4DvOvL8SP4J9FoB+W7TPm3hK450O+hlAt+fwMzg2wb+xcjXDvn+oNwh6pcCX0PKX0wewPTQv5cmgL/TL+6SjgbPpWQB7E07lqc9ijH+hqOf+OA/Sb36tM9K2isG+C3wMvq4h/7+gN8RpD8CfyX6ZwbwpoLeB+TvQb7N8DU81dPlX6F+RfA3hL76a8v8mDASwLm0QzH08xD5cyUN4D7q3aZ/LKI9jpCeDp4tyH8Hftch1yz4yQeeutD7CH1soFxj+klW6s8gfYr6w+AvLfzV5ns60i/AT0XaewHt1x39XCX/LfjPB9/Pwcdb8F8b/dQHjoPfv6k/CHqDgS2Y727DX3L4GgS+x8j3LelVjn++30IvsbTvIuaznPA3Fv7mUK4C+GuE+ov94yz9wvF3lP7tOOxIf/ge/q8j3+vINx6+YsD7KnjG05+2UL466b60V3vkq0r9s5TbARxJfnnKJ4KfYdBpi7yH+P4O8tanvYqi307oZ1ZoHXiFes+Brz58T0bOHuDrT7uOp936ka4Df4nhtyryJSFdAfylKL8yNL7bgn8R9PeDryztfY50M/QzlHIPgBfR/znoLYZeaurNByZEHyPRY4pIAJNCvyjfOyP/cco/pn9MZnzEIMcl+C9AfhLqj4efRkDnt13w67oXRTs0Q18ZmDfSA28iz1Hw1IS++7YapFdAvyD42yB/O/eL0F/EvF+e/IzQf0T9IvT/FcDfka8i+YfcjwCz0A+ygO8/0HsdeTbDd3v6Xzz2hVHA4Y4P4BLk+g397ABfffD8Q/vbP3NAZ7jrE/uWB8DS6Ocu/H9JvTS0dx3aa7DzN+tDBP1fZvyvha980K8TCeC/4CmOfu0vz8LvXujZf/KwH76PfEfBm4Lyj/i+k3oZ4e93+FtOuyyGv+zwVxl+MlHefe1H4PsC+rOh93b00/hXgr85+c+Crwj9ZQH1l5K/hfqpkbcE5XuT7gP8CH1VgZ+CtFcD9kNrwfMtafttbfSalPIr0G8R8P2KvtKhp3epn59+6bpckPRD8MUhz0D2QUOglw75WtNvZoG3Jeki6Gcr+t4GnMY8cBM5csNfR+RPwHfng6nxAliWfnAvtH9ZRb0yyJ2I+rHwX4nyy5CvG+XWIf8cvl8lfRn5rsH/NeT3vDEaOdPDn+uA62dj5gfXz37gn0O56cBi5Hdk3zCYcTQd/d+Afknk+ZHyY+H/H9J/0x/7ws8t4EH004Dz8Vz01wI+I/SPFciTELxvQ/979LHH/S9wM/y7v8+e/env4f3/c8j1BvnPIE8r+HN++JP8f8h3nohP+74Hf8nAf5r6w5C/NHLEkp+b8rfBP5Zy3aDzC/xVYL+Wl36bhf65AfrOp0fR13nw/4J+ErAfGEC5S+DPRvvtZBz3J3+z/YJ2KsB68Bz8FCQ9nPx46GMesKTzDfhfAG9G6HRyH4Z+3M+4zxkGHvc7r6KfB8C86G0D8o2lvuelYeBfS3589HYLvuNYp3ahrz2MhyrUW4C+1sPfYPJv8j0J8JBy0X/uwG8mxst89JOe+jWR/wf6aQb4O4xcccCv0N8A6E9AH6fhbxp0ylNfO0In9FcUOkOhr31lqv2O71OAJ1l/3gfvJcc79N0XR+AjvD9+ln5bnvS3lCtLffuj5+N+yGl/vUQ6E/wngP/3wLcB/a4HbgTepZz2p1rQLe4+0vkM/rKir4XMH3GkH2GXyEn97eyPMsLvuABETQbPatIPIwFsCj81aNdd9Lep5DcAf1b6Z3/0McrzD3irU76y9i3GT13k+wl+PC8cJF0Kft+mX48Czz7wl6T+Qeg/Rj8TyL9M/g6+z0dviegPe+g/Dajvfjwa/RUh3Qy+/wRPfNr/agD+qy/1+Aj8K9j3NAF/Ofc54JvJutyEfjoefQ+D7n7gNujtRi9z0d978J8avCvdzyNne+j/DJ7rfB+AfE+opz3lfc8b8P8X+isO3bbgH0D5keR/TfpVYFf0vw95PmGeP0D6HvSjmbcO0G/3AX+B3l7mowmkK2t/igSwLvXzo8eWofmkYwCiMrGP6U/6NnpwP+3++ir13V+vA/93wO+Bzu+n0d8y+CkK3STkfwZf7wHXM17iIf8u5s+ZwF3Q30L9m5wHclMvAvwCelvQf1/kK0b7fee+nvxK9DftrKXzPV0/LoTH+rF8f4J+ElF/IPXHU243/Ss7+sxJ/hHmjS3oeyT1/4Ifx6fj8gF4HJ8nwT+OetnR92Hqb6P+Ee3s0D8TCaD7RfeP2rPdP24kPQh6taH/F/zPQ//R9IdTrB9TSedFvtzU76y9h/r7wH8RPp5XDsov0L4L3wOpnxz+RjrvAccAL4O/DvulJ4y7lqxn2q86wZ/n9VTsQ19jfLai37XXrsN4WxIJ4IvoQ32pzw3a17QfaY+HTmHlY7xsQK4JzHOLKPcp9W8Ck0LvR+QrTX9/mXaPAe9x8lPSX2cFICoh6XWUTwG8AP548L2Z+hnQz1Lk6kl7e+77CX6vQvcI69Fs8FQlfwjzbFbmtz8pP8Tzn+d273silCd9B/2tQf4/6F8Fqb8T/S3U3kr73WS+nAV8DN97kG8t5Ssg34vgeQR+7XXD+T6D8lPBPxj9laL+Lfj5FPyNSJeG/7bgGUr+L+CvpX2X70NC53f3Vx9GAngB+vEYb7HwNRk+PkK/qVhX0gKbMD6qguc0/fuG92ukm7i/o3+VAG6l3FjXW8ZXavfV8BOHnG2Rf5z7efhLQf2c4DsCP5dID0Y+703j4Gc4+UlYHwY6P3hPov2I+nnQ6xjPS+gpIfXLMf6OoZ+ypDeBZxn9+WP68XLS08hPjLwJgc2B42m/k86X8FePerngpzXf10UCGEva/ZV2ql7o7R/04f1DG+azyrRDUvAsIP9UAKJqABuCrxx62eJ6SPkx5P8M/fXo6yHfm1L+NPodjv4f870i/A9Bzibu5/k+3Xsa6JWi3LukPyV/nfZf9N0Ten+Qno5+vR9Xj7/D55fed8PfPPcT0HuR+iPQ30jga8xTg6jfje+eX9tEAtgQfOO9X+H7UNrpB89D1GsF3WuMo6HoX3veOc+5lMsBPu1jL3s+RT7X49TM572od1M+4e9D6B2Ez2Gkz1D+O+R97P4XOk2QPx745sLvYvrDQvRXDv1v8J4a+CL8DcU+5bpYlvyH3o+Afwn8JAB2oP4g5u0hwMHA1pSrh34qgt97hHcjAdQuOpH8H+G/CfQ/g/+S4EuJ3NmB0cyHhW0n5KmmfYRx571iI+3r2img9wl0enpO115Afx9KejP0TqDflO4nyJ9H+62Ev37o43P4SKc9gPo/wPcU5NVuW4T+4TllBvjv0N8Le7/AvDgaOa5Cb7L39fSrEfCVxntW8Eeo5z2/dnDv9+8z32pHSR2yn4ymfWeCJwd6/MPzBf23MevPTfel2rdor0HsY/qT7k9+8VD/v4/8nZCvCPbJoewLi5HOS/nBwCuRAB5HD2/C/zLkzkt+Q/j/AvzbXU+R7zF6X4j+BiF/f/rNBMplQ07bWzqpgLZ/FvDrd6Efhv4Xroeujw+o3wc+ZlA/ivLvhuxdW6Hfnvxr1L8Dffe7LwAPaecG/zXwt9d+SPt30P7OfnsG4+JVYHforUc/8ZHja6D3N9P0X7HfQe8c/FelP1cDfkZ/eJv6F72vov5G+H/O+wf0oR+H9zf6czQBb2NgU2Ba251xG7ZXHyXdnfmhB/27N9D7pzeQryn6TUe9Bu7fGV/pgLmQIzXl0iHffvAsRZ+r6W/anSqQH0u9nPTP3LTTDfCMpt8v9PxKvbyOX+/P4PdZ9FCc8q0p1wX930X+2rTLHdJx1EsI/W3O685j3m9ijxtJ+xwh/Qb0WyCvduMB6P8T5ExJf8uvXxnzxyLy36a+68cC+BnmeVL/H+8v4DMZ8q6nv7tvehv6G+G/vX5HyDWFfP2//kYfZZHrZ/2CyL8L/Wbgj9Cu0eCfhHzXgfND/nTeL3qPOQt5F9E+a8F/Cz6roUf9sZYwn3rvth183r99T333xxHPveQ/T/118O15dQXytfJ+JufTfHp+Kw69J8DO+lki/0z2TylcN6l/UP8l2utn6Gs3vGf/pl/+5f0+62EV78WQL5p6g8B3iPGjHXMd5Q+j90Oe98j/NhLA6/qTUL9tyH90O3T6kB/F+j2F+uuYf15GvoPk65f0E+nL8JEW/SwGXXbwax9cy3z3HXAPeO5A/77zMfi+pF458p9nv9SHee1F0uVonwf076qMu2yMY/15TvLde8A5QOfThMx7NSgfX/8W6P+APrYAc1Le+8Y48HUBpgf+gpwT0X989wPQdR6s7PnX8Uz+cfS/BP24vh+gH7i+V2R+2Oj9lfcS9O9C1P8SebRTvEq++4OC4Hf/EQ1/9r/x8KW9/XftfcwHnzI/eD75FP61ZybiezP4077p/ly/siP6XUDP+4SGpL1n0M8nuf4/6g85vB+Zq/2TfMeJ42MN+7bEyJWA/dtS8o/R7teg01i7GPL/TH8pBt136afFSZ9AL6+gpy6kK3u+ZD5Irl2CtOdn/QX0e+ypPyDyaD8byvyiHe1b8osyHpoh1076Sz7kawA/ybTj69dJe+RF3jroMY92Oeq7vubQb5PvNZHvowBEnUO+K6Q/pH+9TjoaektJL1D/rAuvw3cM6X7QfR/+bnkfCZ5i6K8A5V134oMnJe0Tm/Rp/mumeFqug+ivLPPez6QzQ3cb0Pn5J9rJ8TKe+Sc3evbez/vdyvq/heo7v7t/fRb9PaIdqsG/frd1wRujfyr6KEP9evo5gHcy+gn7z5cCj370k5C3F+tsT2Bx+PU++gr8eA8yFfkK8f0T+PmGfP03y1F/JrAQ+V31Z4POGOct64O/AOeVgsBVjOea9PcvGb89kO8b6HieXUG7P6T/a8+riX4e0O6Zve8nPZe0/u3eD6yMBHAq+ivCuJ8N/VrkF5B/5NF/7i34ep38T+g3XcHzH/0RKH+f79qDlpJ/mfEX430kcu+m3g/IF4XcM+GjH3zWIz817TAT/EkYR87vHb0vBe/LtNNA8vW7vMJ3/S/P6H/E9yzgXQi/6ymnfdR9n/tA7aPuR/5hnD/Wn0t/Csb398D1wFXkj6B+W8b9Afr3SfeprOdVkGOB+3vtMfDr/Y3n2JWh/Zz28hjyT9M+N+iv+q3Eee9F+6ehfh6+e6/v+eoa9GdBz/voReAvQX5e6oXjYx6QfwO9boLeKcpnYjx0px2GMp6egOc030ugp2XwVQL6r9GvRmqvgb++5EezfiahHfIbv4E8J8mfFAngJfgrhP6NP/E80RY9Via/uusv3/dmf7qc/tCjKJdXP0fofwUsBP+H9M8M3Q95LzQJuhuRryff68gPMAZ8Yf+Lc5TXPqp/zWn0oz+6fjY5+R7DPP0L9efmehr/E/sP3/XvmEp/1t8uG+24E/6XMV6WAr8BzgeP9t6t1H+B9tX+25R+tM1+Cz8/Q78n69dc/S+Rq0wkgAP0e0OutzhvjIF+D/jZhZ4yg28r+Rnp38toR/040ofbj7T3fJ4P82i30N5Hfn/6ufdz96ivf29v45PQh/eUQ8BzFvkToI9c9EPjtZxn9X8+BB79nyeCpyn5e9DPSuhvigRQ+8Aq4C74uEZ94zWqo4dn+d6c/nlH/ynK6f/o/iQb5eejD+9DCyH/QNKn0P+r0K+gvwj53cHb1/sE+M8M/Xvwr31De0dj9u0vsm9uRPqi/kKeB8A3GzrL9ZMjbdzIUPjLQn526P/iOZ/ytcifCD+VqB/tfSX94UfKa9/fRL0y6Mv10vXznH4M9I/x+hfB/4/I+TL6fwb+ZsDHO+ApQHn9BfYCxzJ/60+Qw/rGP0A/Cv7q0R+fd/8BP1egn4B1Mz7wBHyfo/1beP4y7gb+mlJuB/OX4ZovM99fNz6E7yuA9SyHvPqruR7XBTrfbQLfFPYFGZkfGhr/inyeyxoiZwnq5wJ/hPJtoPsF8usXsR25TqBX/SRmQv8+/fA37/PRj/eX2fSfQC/eX77EvlY/lbB/ylbkykT926Tv037JkHcsfE0j/Tl6ysh8Whg63ud7j7+O8skYVxfoP62gPx96f1A+Of3zMPzrD6HdobL2SfLn0z8irh+Uc/64Ar6H9JPq0HE//hX49bvbC19ngS2MN0D/eWinZyIBnILevie/EuV/1X4Nv7W110K/sfebns+p97p+mMZ/oD/Pq3lJ5wW/8bTG2RpXm4r87sh1k+9v679hnBH5j6h/xv0R8o2kfRNQz/NWUvhvR/8rQv8Kxy/rrziQ+t7n69+egP1rXc8NQP2jipEf9z/sY+uBV4GON8dXfu8dtF9634c+4pGfC/22Q75qlF9C+eTktwd/LPXHIW8r6k0j/Qr03+F7Ou32yDWb9kkNffvtMecL/dfRm/F03heVdH/PvHyWcqcY39pj3W/Otr/Dt/vPstBrQH3v/xqTbzyD8Q3tQvbP8Ph0PTcOo24Aovby3fOI/gPGf9xjfJ4D9tD/Av52GG9Me+yFn7r690O/EvyO9h0E6s9C7y9Sfxf0UzH/rPUeADgOfB+T/hi+mhnHEVrf3mDed51zfXuf+acM/WIAaf2o3b++Bp3jwKHGN7C/XsP+3LiFEeDvZtwveh2nH5P+Ffr7Q2+//p/e40C/CnS0r/5kfGbIfqefmP73ztsvew+Pfpy/+1Lvc+PG4LeV/lLItYD1fyPrQyX4PQA/uWjPEp4P4O9vys/Xv4S08c+fMH9kxZ6zEP2uNv4duq9BJzPpoeDv4r4NfjrD/23918k/mePp8vWRfzTyx0MvicGzj3z9efXvLUh7FKd/paC+64vrjevLJPpTvVCcZzXa5xn4eRP8yYHGD85BnrXwf1Q9I393zkcpyfdcNA3689H3Ec+PQO0Bx+C/L3xp76kK/ifUP8O4qUn7NIgEcC/t9yvyv8Q6sxX92S+NCwn3zzvMV8Pp34/A+y/501jfoqFzjPR78FkXvHmop73CeMIq0L9OOf0TsofW3xroz/X3KvLXRP9h/4Uu8Od+3jjx/c6H0PkNvXwKf4Mpv4d2bkm/+Il6qWjPB8YH698In8/Dx1HvI4w7hp9rxkHD/y/Mf+2Aa2nHX72PZt6sC+zL9z7650Ffv33tAf3BXx3+s3M/lQNYhvqen+3XR0Pn6fD5uYz+g5TX/qXdqwP8af9aT/4A133oGh+t/akj8m2m/gPoey6a6Tka+aaBx/jnGL6/BH/a2dfSH7VjhO0XuYy/0g8QeMz3L4B1fO/Fczr9c7D+FZT7RD9tyhtP1FS+tXshfy3kNo4sHfv8e+R/x3y6RnsB7dmK/Casv2k5NzQmnUZ/aeSZAl+/k24ZCeBY+IvT35R6O6BXkf1RHtZf7YPlKTfb8Yt8m4HNjSMhXz+ldeSfh77v1ujPkIf+7/tAr0A/GfyVZX5b4vyj3z/5xkd4H1lVe5n7K+h9R/ttIz8T8+4h1o9O1Pd8aRym50zPl8a7lwI2Nf6FfO1D98GnfSgL4yOW+fUO82vYf934zP3QNb4iLhLAIr4fQ/t/Q/vYv667ngD/1g+K/NXQWwWfByJPy3cT/dwA3gIOgI/VyOO9Xz73rch3hPlmuesb9Vdqf4P+99C1P+0mv6jxC4yT5e4zoef+/Bz1B3l+hY9Ztjv5G6jXQH9l5C7L9wy0c0n4zwb+id7PgEd/vILANrTvbcpnpn9dpX23wsdW0hXAo7/sr+gxFe2n/2wj9HGX/u066Pp3gP7qu1xH0FcKyu9iPukM/ljS7eXfuCPt7JS76HhkPskHjAD1d3Xfpj97Pb5fgb9kzF/f0n494e8N/Xf5XtrxRT/2PjUTep9D+kv9IdDvXOol9t0Cyl+Gn1Hod43xcvC/Gj5rUP688RCU60z+b6wXvh/yK+M0ifd7tNcn0Cmtfw79qV3ofZrDyGG8RTP6y2Hx62eg3Z72Md5fO8hbxj8GIGo9MHxefIfx1oL26E16Jvwb/+/9w2/ozfuHS8g1HL3MYr1uBP3i8NMbubxv9H4xv+cr42qRa7/2HvipAqwMfE78lO8CdB2tT35v+NPO15Z5Rjuf8ce+X3bf/TfyNgdfRvJ9z+EU/Gei/CXgZ/oZGl/LfGQcUGHSH0YC+C7z32zS31PuB++/nbeBvvdxHPqFGN+jnecZvwXgw/dHfE/tc/h8Cf4yo5/rrE/GWxlf1Rq9pqR/eP/Thfr6d5/3nho4Ajq/wccl5HOcdob//oz/TehlI+NjAP3L/hCf/nAa/L3AE03/L6TfMvlnkfcj0p/7DojvM4Df+wTf0/C9jSuke9HfGqDfusxPxtPoz5UFfW3Qng7+30n7/ot8+/5LbfgzTsQ4W+07NWhP3/U4AD+9yO8KP76zF35fz/h54+aPqSfy9b/SD1w/LP2vRhi/R34KvucBet+/En7aOV9p/2a/dgfoPbv3674vWc/4Euq3ho+B9O+kjJPzyFndcz3lE8NHF/rdJuqPcj/Bd+Pq90J/Eu2yJxLA9OjZdxp+Qu6vfA8JfdR1faJ9RjN+ChgH6zs29Js4+MyCHspD/wJ008CX/rS+/2O8+H5gc+R5Bf68H9V/9jz9yPvSIown17cbpCvSfsZbGX+lH7bxV/qvrAEa71QGfNWh5/7JdrT9jAczTmwX4914sRja91/0NMU4EvAMgT/js7IxDxqfNYP+/plxZb4HF3pfwnNba/D4/lVy9lsl0XsG6J30fTT4KAr/4fhQ/UP1W9Q/1HE0m367AzlTsz/ohv5b6a+t3z3n/En0h3fhqwn8aH+/ov8d9LXT53cfqD0Wfe1FL1WAJahfkfqDkM9942byhyD/B8ATrt/Gf+pvRX39GxxnhdHn89TzHUvfr5Tvxch50nmP+r6baTyWfkFrtP+Tdv3ObH/2fa5QPMpZ9gGjwd+P/dvjSAC/pr7+F66fW4AlwOP66fnd/e1u5HB/mxP9H/C9LeN3jfMG7zzvAbQfw89M8Hmu/IH8h9B7KRT/+6vnGf3vnb/c/1I/Kfy7LrZyX6s9FP4nG5/kuzy+IwX9o/q7AdPox6G/J/X7hfzHRmiPoj8eAP4KLB0J4AP0tw7+15Kejf5KwP9u5E/m+Vf7KvhisT+uBZYCT1vG3+uULx3yD/K+4wXtnaF1cBXjuTbzSBb04DsJL5NvHGBm+t/fpLWbL2D/E7afN9b/MBJA432Okdb+pt9L2B9G/559vidJf/M+Xj+U6rTnKuTzPZjm0O/gO2Tgv4p+erEudUHPH8G38eXvc576AH2sIL0IfAnhf7XvsMDXeegXo3wZ4DPAGOPNfF8BOYxH1T9ru/tS8D0wjgH+krl/RO6Rnjt8f4r5oQD1EqPPdcjv+zU7tUuQPzW0/5yk/JSrTDn9aWLR2wHyz0Df91eMG3Z/6PsrxfieDHwxzMfXyNcf+1jIL7sv5c/SP71v3WgcMnR8j8T3SXyvxPfSYljfMwNPMT/EYzwZP6Of5X/99JDPuIT/MA6NVzBOITw+jjJ+HScXkH8D8rpfdX/6Fvxrv9hPfmbt2fB1DHr6E40nvzjleyD/FOOXfA8h9K6Z/tDR5PcmvxH8uZ8wnn1AAKLaUL8C8nxO/k3a8yXWsQ20o++/h+MDNkLPOAHf0za+y3gv/TGn07/7IFda9DuL8g9Zrz5gvvQd7dy0bzhezjg615+8zHd5gBfYL3enfvj9e9+9953EDOS/Db8N3W/6/pjrC3x29r1d358g/w3weh/nfP48+lvIOCiFHpZrn6S8dshm+sNR/0O+63f1yLg92mci+WXpD/WQvx9p3/Opid587+cl+F9K+58AFobPB8YHh+yb+h+0hb+ptFsP+JpK/jHqL4TvZ0gbV/q55yPONbbHEdrR+8+UjPeU+iGRLmD8kvchvg/oPsL4cvTxqe/K+J6U8bX0L9vV9u4A/Tj6q3bhIaSba39En/qdhP1RaqGXfOh7TWj8ZTWuCL59R+I911ffBYCOdgHfRzY+5y56rAk943N8F+shcALlv4a/GNrb94n001vv/Sb7jpuUSxN6P3gm86T9rT/1E4GvIPPt/zrn+X6+91y+U3Q/dD9fz/O37wz4fob2APnRLw3+9f8Nv9/2BDiQ9jwLzAH97xgvY9DrNfc58OX7KmWZFxyH6mE//Pg+9lK++y52Jvqv7wP4/kcW3+Gk/W7Q7on0W0YPu8Hfh/l1mucP0r7jqf0+Pvj1T1sL/fcZV2lZX1dprwe/95v+f8ds6rverKdePvRQDNjS+Qq+HQ+T3IfRPp6vfP8h/P8O2oe1V7k/6Uv9cuwLV8KX93/j0F9jz7fkD9O+DZ7q5C/wfEN935fyPatpvssJ9H0r/WZ8d3s69S4DD3oudV9Du/jeg/fB3g+PI12e/uK9ie9y5Pa+kfys8FfH+HfsAXvRTzXW81rAq7YP9bUvV4Mf7czal7tS/k2gdi79n9Yhl3r81/gf6tcnnYb+ssd4L/hLyXxQlnnF+JhIaP/zs36Q1F9D/1ii3Rq4GDjReHnvkY1LYZ2bRFr7pXZL7Zi+BxqLPu+iv8Wkk1J+KPxdoX/5PlIp+x96O0v71GC8LTQeS3sCck8G/3/gW//sN/Vf9F0g9DeA9XKb7w8D55AfC9/toDsU/YyCvzLex+sfixyD0G+c9kLya3qvFwmg95lR8O985f3mKfTre8++B32H8RwLP+fdRyCP9yC+T5zWd+BC9gffR3F/6f/KtEQ+/7/F/20pbNyk8QvMX9mBWYEXfM/I+Ri82pO0I4Xfh3e+WwL9U9TXbqb9Uv/jHtRfR9rzpOdI35f8wH0J+b+Bfwz4V/A9IXT0r9Q+2xX8i413Q3/fgtf4wWddHxivSxgPW62PHhN7/0R+YWBR4DLa3/XD93aNc9Q+WgZ619Dnn9rbwR/2rw/7VzdgvDQENgJOpJ2cd32fw/n4NPgraN9ErlHooxv8DUNfe+iXLXwHjfzS4DdeuCx89jI+KORfo7+N/jXuD9wXeI6YgXxfBCDqNeBxoP8D8j77r+dYB47zvZD2TPAbHzTD+Ro5wvFcxnlN077LeCiN/MvB14f+2c33raBfH+j/Lkxi/iuJfJ/Bh/H13VwX+e57cL4n/gf5xkOF41Hr097ToJsRuSbo3+J51f4HvvTw/zH9Qb+pf9CD75+0ZF2qRrkYz9vOQ+w/CnO+KMc8ZlyP7yHpf9QcfUbBv+9J+770DtK+L+3/xtSm/Fu+D+L9AO2xHL7cJ/newyG+h+OsUoP3G+i8ELJvJDZ+i/3gGeSoA//LvIcG/xfw1Uc/WfiYwn7G/0kxDsH/R1kBX/XhJxHtOFz/cujtjCIfOAR+wvENN0l3NZ4Eus7//3j+yft0+h3K6WddCPr7wGv8vfbKbOR7/+O9vvdAq7y/o3/6HrP3bf7/kuuv/ha+r7QMfP3gK/w+le/x6pcwRn+vkH+C/qS+C1PY+G3q56G//s449n3k72jHg9TroX9gKA7C9zu1W5Xj+0Pfb6N9tbt43vd8rz/4RaDxLGu8n2W/7Tvi/m/HVuSLZn9THb6KM7++Zrwx+KL000HuS4z/P8A7G3mN92mHHJ+Dt4PnKOrnhr7vYrrf8530v0Px2fqnGqft/Zbv7ztvuW75Dv9t9x/2W+rvAM5D/1vR7xv6g1E/GfoZy3hJqn2P9hnA+HaffIF+YHxLB/BX1p5Nv3yT/BzoayP0u1J/RCSA/u+W/ofGJ3Vwf+b5Ej1rB9P/zv8XK0u/9H/GjH+bzXrVn3VwHuf4x+Bvz/ztvtH3bC+S7/9JnfC+SX9S35ch7f9znQF2Jr+X97Xa6b2/Bn9R8pvrP0p+Oe3Unj/57v9HFI4EMAv6dl/hfsN3VtpQz3249+Lb1Z9xkpTzvW7ft3qP9fkM4zJs3xzC/JufcnPpR94v+n6j/srOf93pX0XQdyz2o32OD9+PY370ffBD3m+QnoA+bMdNwAvgie99JrAK8i5Cv3/B31fI/wr95F/nKeTz3RT9/rRf7qH8IeQ+DHQ/7Hssh6nfwHtc5NuN3LmYx54AO1Lf9xV9h9j3FfXvnGCcO/lNoeP43Q2+7UDvC+voD6S/AfS6gt93TK/y/Qb68p64GfqZE4Cog8A6wHfhx/e5fJfrnusA+KuhH+2jvr9YD7o/kN+b/H9D/odT6HeTgduBk9DLXNrvHvgOgMd4nOnw04b8Ucwj+l+2pH/5P0cDKXdM/cBfd/TTCL58/38y+bPhRz/cVxifJ+DPffRx/WN9X4P52P+V8n+m9ON2PTLutAX4jT/1/ZYx4DPO0fu2O+AdBt5mjDft8RnQh3GC8ygfQ/s/ol3nwHdv+KgCH8b1nQD6zq7/T9UJ/Xj/4H2E9w/6ByQh3/f1Vhs/qv+F8ZH685PuFICodOz7PgC/ceYxrAdzgPG47/O9cO1FS0J2I+MRjA+ooj2VfqN/Rnv02ZR27EDa9rjLfu+xdm7SxpeWRf4v4df/w9kJPe29vmenfUX7byLodYD/O7TXCvBlZr6a6Lsznp/1zwJfeP40Xvo4+G7B90bn7Qh8sG4Mpn/4v4gtganod5lZpzMCTxh/CL2r0K9M+74Kfvc/7ntWe07S3kW7ei/q+/m+o6N/jX6ptp/+kdeQfxjfOxhPS/scJt2D8s+Bf2Qo/rYYdPrCdzfbB3mnwOd02sPz7yzS89i3tgYu8T4P/nwX7xvvkaHTD/3Hh49atFM88h/Sfmew/+lfo9+N/xfs/+D6Pxv+/63vXrZG3/rxGI97kPm4POtOVeaPf/XD5Htx1u0EQN/5nsm4SUm9L3x/Vf806vs/AMO8t0V/+nW4fvu/hK7j2ZHX/5W4j378fwnv8WrSfmugmwj8K+nXrfV/h0/9D66zfmgPOKt9BT3WIq3dL/x/557Pjdczfi/i+o5+t8LfbeS6hH47qS/gQP+vQL8s+E0L9J7Qe0Pfg8kB/S+9Dw3F5+n36f9QGJ/XDnzNwZcBPXu/kBf8+udoF/oNOdaC13dNfW/S9yVzka5B+XD8Wyf9B4zrID2f+k2010M3GWnjZhJRb57vyzD+Znj+h15O4Bz0Us77M8a377Dm9BxB/Uro4wz6b0b/05/q/wDwbaHyeJx1nWXUlsXWgF86JOSl+yFfkBKQONIKSggiJSkCgoCAIJ3SrYKEgCCgICXdqJSUdEtLp0pISci31ndfl2udex2fP3vNPTO7pvfsPU+69FH//+ueNYC1cwRwWs4AbkoXwEqRAObOGMDK2QP4XeoAJic/deYAFgJP9rQBPMr3lynXLncAz2cK4Cm+94TekGwBvBKAqDsZArg/SwDnQb8r/BcG/5vQnZkrgNuplxW8xSm3H/o1o/43nfLgj4O8d+HzKvJUAM/epAHcB3ycJIBTqVczUQD7xAvgC+h5LvLdp1wP+P2D/OmkL6YK4CTkvJsSesj5JXKtgp/qwB7w/03yAP5C+Z6k75KujLxN0etV8LWBvwHI2x68ScG7A/6uwX8e+C4In0UiARwFvsngX4seM5GfGvxX6W/rwDca/GPJPwSe09R7n/wq5HcA71n4bAI/bajXiu+XSI+En7O0W95kAXzHdoKPN2nP9s8H8C3S7eCjJ/Q/QS/H0OcC0jfQ9yq+d4SPF+F/K/xcIH8bfB8mP0vcAGYGZgLugb+C0D9Le70J/iK2N+Umgzcn7ZMN/qomhH/yP4WPw+BbDn/rKW8/eZfx0498x9c88EyJBPBo/ADWhI826PE58FdC7wPge7f9CXrpyZ8P/Bj82ai/APkXU/9D6jeEv8TwtR9+ouE/gn4yog/7qf0yHvRfThDACvSvR7TLM2Be9JWUelnhYzP5S2ivtvAVzfjtAP9/0j9eBc9T6Nyl/r3EAZyN/NnBUwn+itB/69IvL1K+BfUnM66i0Edy5N5OemB0AHOgl2vo9yT4b8H/H8C3Kf8z+MvRvt2AXYBJkeOzWAF0vnzI9+fA3wJ5MqKPbJTPDt/10M8E+FvI+BxO/Xy0W17qb0SPU8m/wvx7FfgS9Nq7voB/G/Aq8A/k64w+KyLXX/AfKxLAQvSfFOB9C352kv+X7U+5X6DbF/7KOh7h+zv6cxLwHaDd19LOs4FvU39LmgB+AF8XWI+3OF75ngi+qtP+MchXiX7TP0UA30HeHuj7PfRREX7iMH5fpX2+AP9ayp+kfeaD/w3qOR9sQ74D6OEN5D9H/f+ArwJ8XmG8jADmpX+eRb6G9Jf74B0M/Jb+/Qfy1ab/zYefovC/nvqtgUliB3AW9JPQLhXgrzhyjQF/3wBENQf+DZ0/4bMJeM8DXc9cx1x/V9A+G6jnPiYr5fvAd3HKpyS/KPXakd6CXuvCZ3L67Z7nArgZ/I6fVOh1DPLVYXyns33BnwT8HaGfgbTz7UTKfQF959/TtG9/2jUGuR9Qfw78PaZfr0F/3eAnLXhd313XryLfE+bnufDRFf4Guv7b3/ieC7xLyb8bgKiVtM9G0iuUD/oP4HsvfDRCP7UYb6ugv4nxGB/5ne+Go5fP4Ocj6meJg3y0R2LwlCC/N/S/RC+FSfei/EfIMw38BRmvW6A/DP00Rr9DSadyP8e8+AHp+4z/X5H/AfItgU4b0qfA3x15tsD3E/ieRfvMh+4g9H+M9EPqN+b7ENojC3i+RL5t5K8CXyb0OZv67ejXvwLj0J8+pX459NWUfrgZ/n4C/ga+/uQvjwQwLvUnI9988FSAvx/Qx+uMl058/4p5tCjtkZ/26Ip8BUj3hH/3Wzkpfwt6O9B/OtJDwf8h/NaD/060m/OG84n796nkF0O+fegxGvotaP+W9ItWwDXIXwl8B6E/zvMZ/O2Cn0L04yvoZSD8uf+9FtoHu/9NxHrxHevKe/BzhfqvgH8aMCX0dyPfOPDdh24a9JUqEsDx9Ocd6Cce6eHgX818/zLr7E7SOZFndwCibjE/9CDdGHrloDcDvt6F7mJgIfKv0w5vI8di+NlJuzxHejzynEA/danfnPwPoPMb7ZcJfS1kXFVGvjrQOYZ+b3COfJVxMhb+UtF/x7FOfgasAb/z4Odn6L9Bv1gIfzfg7xz5R13v0W9+1pc30Fe8UHv8gfxLoVcXWIb+Zb+3v78FPxNJdyHf86/nYc+/nvs873kedP2LD77x8FMaOJ/+lZn0y/D5M3QvAZ8yXg6h/3iOQ9pnJvztB7aAfl/wL2G+2sY5bAjtVpL649BvdvDWQZ5FpLvQrk3pv/cYRxngLwa+tTO4f9W+kIX1KgF440Dvc+q7L6xLffeHBSifBv257rsfiOP5LRLAI+SXhJ/q4H+PtHpSL5XgLw74K/M9C3QLgt99m/u4MZRz//Zv43Y3+nU8vQSfb8HHQPBXI/0Z+KZAPy387XE8wucj8n8E/zXoxQZfRdJz3F9wPvA8u5j26Qv+1LTPXtq1DOkZ1Pf82Yt+0Jd+4fmzDvg9j1xD35/DTxf6bRnwFCSdnPrxkS83/FVEvsrk/0T+68iVn3I1kf8C9L8C/0XSeaFfjPnJ/lmctHaw1+2P1N+IfopC/znqLQLfJcqvRz9jnW+AfejPucj/mf1MD+1+yLeO/FHgTxIJYD/0Z384hvyx4Wsi+SPQw1Hw1iC/l/sx8ndSfwX5H6LHBejvMvq6ArwKzI9+wvYq7ViP0UcT+LmOXjpSzvG7nu+vUd7xkYPxORU6Z4DHwHca+ddonwPfHPCkg/9UrDcxzG9ZWW9qgi8H+ZU979DPz+X8b/wvoZ+v0Wd7yqeiv7aE/gukz4N/AvhaQX8l8B7528Hb2v028t2B/5KsX+vAf53650nfZv3Nyrp5i3QH+EwF/hfRq+epO9DbR39MSL+44/naeT4AUVXAN4f0WPAmB19P8J/heyrGxyPkyUV6GPk/Id9C6n2APkZQ/iz6dfyNo1xr+JhNfkn4dL/lfuwS6VdC+7bP+O7+bR798VXKXWecDoHeMvpzEtbJH+HzIfRPUm8heE+QfgP9ttDuihxPyG9G/iD6Xxba7xD6PwF/8wMQlQk5n4evb9BncfjNzv62DfkT0e8k6N5FzkzAQ/Cvvty3Joevpe7vwF8G/l4GVkcOz0sR7d6uS8Ch4B0BX5Upv9HzIvRH0j6bKTcbPg6yfuagXzwFX5ZIAHvSb53X0lNf+6Dru+u6+yDX9xuM11HMa6OB+zxPQ38gUDuX9q3B4N9Oeql2M/TXEH01ANb3fgZ9Pcd8tBv+S9D+6ehnHeh3H6Gn5sg3Fnm0P1zRjhGyR8SDXpxIABOQjkG/j133kONb5NA+Nwq6DaE3l3Qs6l+j3d6nXgP4y4f87dFbL+db6N2DnwmOC+h/in6HUn81+ffdR0P/Afyc0X7ueQz8o+BvNPi8PyoAv4soPx38Q7R7UG4Z+efBr53xNOtdRfRT3/MO83RG2nMv8n4OvtzoZ14Aoh7BX0vSp4D5KH+K+jH0x6mcC7Vzful5DXqJadeEwOHoT7ue9yae01+B/8vIlwa6tZC7O7AR+slJ/jD0NAR5ptFfi4E3o/MM+cvhZyj4CpO/EP6yMP4yAw+j513opyx6zYDe63hfAb3B8OX6X8fzMPRio58kyk25LvCXGvkHOY/DXyfqvw7d32kH+7f3QGXEFwngfvC9BP9FwFeV/EzIqf2/Ivvme8i5HX2Np7zz8v2QvcF5+qZ2f+Rx/6B9bBfprtTvhZyJKZ8TOU6Q/hV8FcFflf1+f/ap7ZB/FjC++qJ+d/j+gPWld+h8t4N0Hvc3yDcdfN4/ZiR/BHpv6DrheQL8HegPt+3fyPcm9ZPCX3b3d+B5m3QJ0h0YJ8PgMx7yjyH/W/CWQw/3kPcn2nMm7baB9Jfwo11GO00O5NM+c4b912ngEeTZCB/bteuA7z58LCO9BX1c147K/vCffsf+4gu+Z6D+fecvz/f6MUBvAPltQuteD8qVoj91IP8x8iSCryektWdo3zgOfu0bKdFvf8pHgb8a+l8M39VY1xYy3/SkfE7aoyz2sguMoy+1f3reR58l0Utn6ns/4b2EdhrtM4ORb5h2JvC0o3wc5NkFvibUfxv9fcz43g7dKPitTblKtHtlYFXwe/+Rmv1nLvpVG9KDoVcHvGXA9xry/gD/M/lej/Ln0fd29LMQ/rsgz0bwuV7dJp0cvJ7LGiNfdcbzQMptYZ0aAb00tFtqYFrozAPPEeQeGron6On9j/Zoz5P0w68Yvw3If8T3K+jvHOO/KHxt5XsHyi9ALw9I96Oc58wG1D8Ef9pHP6dcE/gZRP1c6Ocj9JkI/eSn/FnqzyJ/XQS81HMf1oPv70D/Dvnf0e79kfsMcBb5njO2wtca9FcFeh+Qru5+H/4aMH9oPzrC+CoAH2tINwLOpN/shX598H+EHn6Anw/gYw7f30D+CHIuIR0N/a7MX4sY74Oo3wy5W0K/uX4IyHMRvp/RvltI74b/e+7rvW+TnvZF+u9l13/G50nyF4DnDvzkRZ7OOf93+rh2LfT7CfP59/A1Az4TgtdzaSW+16Cc+z/9e1bBX0/KLQb/cPj9CjmagXcD7aP/Rkn0ph+H/hva7zyPjYGfjOR7XniCHJ4b3oF+J+bPyeA9C77XPP/Y/7QrkT8dPpsz3l9j3n6P9HrK50T+PaSn2r7oZyjtWRk+byLvRPrZb9S/6P4fubohx1rylwKn0H8boI9z6DWD9nv7G/zPQu7k7DNnkl4C/gcBiFoNP5+QHgb+XehvN7AO34tr/0Wumu5/veeDn5botwH6eIH0WugnRJ5Z9J9b1FtB+Y/hNxbfv4XeWecf7/vJXwm+45EA5kCvyxm3HegXH3q/Br5PqF8LfJ5P/nS/Dn873MfB/2HWkwbIdYn8i/Tv9rT/LfY5+2n/8fB1An6PIa/3+6PQb2f0OQN5LoL/NPwPoP4jyq9wvYX/E/A1l3onvK90fWD9jwFOoZ+nRF7tpmspn0t7Ifhzu27RL95nPfoR/aSC/jJgWfVD+Tzo9xZ4+ug/hD6eMO/uAV9h2jE/9LUvXWb8a2fSvtQYeXIg38v68XmfpX+J/hvU6wTMCD+90UNZ9N5U/wX653H4P45+miDfz9r3KH8KeoVIN9cfS/8uxvNF8msgb3XgD4xj/Sv1J0xP+xxBnxvg81YAojoDtwB/JD8DfI+nXbRPaH9Iwb4nGfSiSfd2fdYvhfI/MJ4m0V7ad5ynn2nvJr+r+y/mj5TAadB7Qj39iPUbPgO9/yDvNvif4j7P+yP6Yw7wZgM2d/9E+6ykf5aEblv9m8hPCn79Soeid/1eN2kXpP1sn3yeHylfU38K9HeW/Ifg/Rh4mfb803tF8Ovn8QPwZMgvthPlPJ8mQt/PARMDy9HujZF7o37V8NcK/br/9H7b++6d8PeUdER7tOcr6L8LnZmU70O6KPkdobcG/OXoD95XTWXdqcc8epj+n1E8of3zfPh9nfZ7jHwroaN/xe+U9zyn/0piypWKBDAn87vnylWct5q7fwrFB5yEH+MD/kae8sxLnZnPxiBf2K90G/hqUN9zjfdQk/WzR3/9+b6Ccp1db2k//Rw+Rx73+e7vk1J/OfoawX5tH/gbUU5/3630H89HB5mX9N//Gjyrge2gnww53ce7P+tKex4H7zn9FaCbAH2VZfwnIl3c+zPoux/0fveY/nPaF9FHffh5Qvod+HnBdQc9vuJ8gn7KUD4B35cjf13w34C+9x8Toe/42oA8jjPHVy7yO/P9Jeq5fscifyF87UU/2m9HMz5+Rw79xvV/y4Ze09L/BrBe/UX/XxGAqNj06/h8XwN9/bGXMv5OMx/rrz2OemkYJxmA3i/Vhm4q+NzFeNA+moX21/8xE+lNkQA2RO7d5BeEbjHwp/U8B7/jyTd+Zhn9ZTkwG/InIt/9W17sM+7jRqC/aPCP9BysnzX0K7GvSM64+QF9rYGPLtTzfGn8QVz988jfT35bxpHnP/1hExs3gh48f1Qj/zvSh+gHyegHVdB3ZWBV4CnjkOBT+6b+4t/BT2boaqf9Cr2sc3+k3xx0P3YfQn4x2v+G9iPWyzeRrw90Y+A3IfINID3c81UkgDvgd1Yo/maNfsj6I5G/Hv70o5pmnIz+WswfxnlsYrzod3iWenXha537Z+0V5JcBFgLvT/DbDn4Ha39G/3dJp2Rc5QSv57Lv7L+MrxbgSwCdodpX0Gc1+l0e9N0NPjKRzkV7byJ9nPwlfHf92YE+f4d+L+cf/Uxpr1fQ7wHtW+Bxfte/pzX5XZ1PkfsU/LcC/xX0VJv82NoHGLet+D6BdWMqsB359dDDGvRbg/xW8PN9JID6q+mfpv1ce3k62ln7u+N9EeXjov973p+oN+prD/T8NwH58lHOOCbjlyYx/3huLE358/onIU9tYC3gLOc55otV4FnJeagw/epd8F0Ff2rbLxJA/V4TkL7q/oP2/Qp5SsF3C9p5EvI5373LPKgf0Dr9/+DLcVcXvJ86fyDHav0zKG//LMR6c590Gv0wwe+9hX4U3lvoP9EOvvIxP7eF35PQi0auGO8zaEfvx2/q/wifOz3/0z5foK8+yJcSPIng17jLddTT3uQ9Z9h+tNJ4NOSIQR8TmQemahcmfwTzVVfonGY81KV9+lDvOnJsIL0Z/XzLfPAK+fOZB6/D33r4eQE+z0C/sfMZ83o3YFfgX9T3/OR56Sn4v0C/+8A7Cv4zGKcAHeNKvKfRH9X+N4N+/prjHLlKw99/WNe1yz9Gn47bhOw3joKnOPPICMoXgL/Snjdpd9dv/bXKAY+F/LdyIs8J/Zm8/wTPL9rzIsiFHm5Bb47+BOD7Cv60X16hP7leGadofKJ+i9/oD6w/I/Tdz7q/LeJ5gPIzwa9fcQr41N/Y+9rd4OlN/fS0zyPmp+n0C/3/yxuPA1790bSXax+/C/1m6LG695rAnd5vkP+3/kfIo19yYfgtCF7Pn9qnB3Bu106tffox9VPaf7XPUT8n+ixN+Ub6mUPvdeOLSMeC/nTju5mvzwEXox/jsgfRLx2X+xjfE9x/6J+ifRw+i+nnhD5yQbcY+jxmfFDIDy/sf1cJ/MXA8znljkDH/mw8XjX97bwfJ90fvWnH+BR+JjpvgFf/4j20b3L6zzro/En9U/A3nPn8IPykRZ5D+sdCvx70j5IeTP4q9BkNvlHeP5N2358ptB9w/298zm7wG6djfE428Hluz2A8N3guI+9c8lcwvjdHApiM/pPGuFGg/n3TouCDfpvDexbwvsH8XpL+8RN0vD9tgj6Mv4gd8lP9EflKej6lvvEtWenv1+hPGWmvStrP0a9+oHeAxt9Wpv30qzPO033eDta3wuRv9p4X/HVY3x/B3zjOdysj1Eff5fQrV37qO+/3ge4vpB9or9J/l3rzoa+dUP/PF/R/0Q6IfrTHHdA+5DlSf33q76XcJPD2VX/o9y5wAND9se8vbNWPBr7jor/c7BdjgB+hn2fw8xj63nvmN37F+FjaKxP7rqWsb7/T/+cGIOomMAN4je8Mx+9coz2TaK+h/xnX/S16OAr/2k+1m2Ymv4/jjPy/wNOE/uv7B42RS/+J3dCfiv4W++4F5bwXGIJ8xYxPgn74/iQP4/U/9JsqlLtp/Cjy6/+rP7D+v+5/3qJeCuAi+H+T9ek643qXdmj4bwP+18FnvKHxheWQJzf5LZEzIfLd8f6W/mgc7Vny28OP+zPPcymR733w5vE8Sv2X6b9P9Svxfst7MtLe5+p/+yL0vO/VP/Ch8YG+O/Ev73Pk8v6D8lHUL+89AfV+Qj+FmD8Ko+cFfof/sP+D/mP6QXzBuNCOqN2wgvGLzIdjgOMYT5coX4t1fRjfhwOrol/t721Ja4fX/l4QvPFZR1eF7jm91zSu3vvNkrTvSvB/D0zjudJ4Kt/f4HsVvhtftdH780gAexvHDH9ZQn6Tj9nnrId+PsZjBKi9Uvuk7x/Eod32QVf/CvkrSvkSIT5bo881+vWTPxp+3Xe53/Ic5fkpOfPm89rRWH9bg09/x4zQ0w9O/9Tx8LcEej/r/+37IuhdO+CXxtl4Pta+53iD7iD9o8nP6DpjfBb1tZdqP73rfk7/f9//gH/j80/Dv/1fvzT9+xwH+oV1pZ31D9Pe3p71xrgm45x8P6MO7bODftwAfM/gbxjz3lP0voz0COiE33vxHZgK0B/BeDBudDjrl/FVpSn/Mf2gLnAs+PT/9H7N+zbv13LAbzZgOvZbXfSDor5x2U2oXy4SwH/zm9A/bi/4BlIuCjyl0Y/nP899jcj3/Od7SM+T9p2k8dTfxfxXAFiefO/JL8D/SeRZRX4T6r9KfjbtzyH77XnnFdprNPWPUr4R+viV8VVUv1/mL/t7W/jpB76F8NOM9uoC/ndJex99C/zHSfeOBDAJ+H2PZhPf9XtIS/tON+6d+itdt6jvfOP800t/bOMZ2R/8AbwZij/1fHI0dE7JiX520u+HMo60s8/WHwP6FajvubcX+tGf4G9gR/L1L0jKfJubcZELWCDXf+ONpt5q/Wmov8j4M/114OsV8n03yHtE7++vge9Pxt8R5o+vmQ+8/0hEe9TSPga+IuTrX2lcre8c+b7GdOPrmQci0CsP3rnUD/u31dJeQ777MvdD2rHLkP8b5W9rN0N/b4O3J/JeR79Z9SNBnn6k+/puGel+9OcS3nsC+0UCGKO/LHTb6D8AvVL0m+b0u2ZA7as5wZeMfjuWcdgQfX9N//sGaPzXU/gz/iM3sBL2NuM/9P/SzjSO8fQ2+T3IN/5vB3JVh/8SlP8VOfvw/Wv0vYx92yH690qg8RF14asO/cu4feN7O5P/mPm7B+PhqnYp+s854CTar5nxqJR3X/E++tT+eBZ96d91CDyljf/VH1o7AenB2sMp/zP8bQC//i++P1gfuVZDd7/xUaH4bONz7d+uR65Prlf6mYAuqqxxp6Tzau9gXOX1fTn0+Sf4R8B/Q/086I/tyb+KXP30u6S/L6W8/sj6LXSz/SIBdL26zfdvWO9uk1+W+sXAHxe9NkWwk+zfeyNftO9wwV+M9lDo62fyj3+J/sN8/wE6DcB/kO++JxftfRHtH0X5tLTTPNo1lv75+sWSP9s4Dt9vA80R4HjgaP1UqV+GdviW/nsCPg6iL9/lq8V33+szbt37MONVjF8vDj9TaK8I/VP/rTmMx8ykxzNeq5N+Xns/eqpJe85F/8+Mn/PcCT9pQ++vhPfXS5yfwH8EmAfo/Or7Yr4/U8N37sDfXr93/VcY7/Vpp06U7wr9T/XjQl8pwG/8/B3oZKW8/lP6TelH9XvI33kT9YxPvQ5/l8n33cTw+zEj4Xd0aJ2Pp5834y+v+2/9daifDvz6B78PXOH7IOQnNI4Qvn3/YCrtttF3AYxDp3498m/D99/6a9G/LrIe6RcwV3uW66nrH3rTnnEC/R8iXZtyceCjbCSAncHXnvRaytl/s6CX5cidlXRr8lug12bI1dx3lsjfY9wyeJ9Hvtbwm8D9CXg9r4xDP/qldYO+7+ilRH7fn0vK/OU7dPo3T4WfSazfH9DeI31H7F/eJXxbP2/4b6wdCfwX4c+4wzvAxfZ//czob22Rv4zvPOgXyDx1EJgE/pwHM0H/YCSA+bSzMD/4Pql+yWF/5Uz6m0N3DHS3al9j/kru/BN6v7Qa+5lT3BtGkU7hvbDvIXj/AR99oO+7hr4nltn3S/Sj0T9P/1/K96P/FzI+n/5cz/YlfwjyrYffReDLR/nw/b3vsBUnv67xoPTHIvKr/zL9wnPIDuAT+P+S8oeh7zgsAX9noOu7orH03/H+Df7jur567iE9mfqx4Uc/TP0v03vuBmpn1L7Yk/bsDuyHfuaIn/WqO3y9xHjR39H3Lzahr/ik95OepL+88Umco40X3OJ9m361fD+KPOH7Le+1JqMf59eH4Pd9mcbQN17qHdL6l11AP6VYfz9n3TUuZBXlXW9dh53XmkA/NvS1r4T9obPrv2O/dR8Inju0yzTjZpkn4iL/vlA8RH/9DMFfA76nQT8v8vheh3HffaCnv4L+CUX06yXfe5mO1H+NfOOMv9AvmPwLvssB3gfo2/m5GXxqnyhJfjP0l16/OeifBc9I+DCuuyj1h1M+I+X3Mn6/AW8V+DuI/n6Fv+bGS8GP9sE77u9C75zFdR8G3vD9bnH9kkPvS2hHuQn/WdhflmQd6u09D/kL4E9/Q++nJ/i+CXwcN16b9s0L/z+iD+c15zvfY9Tfahn5+nXof3UX/ryXeA09eD9hfINxDe2Vg/Z3X/Ii9FKyPh/x/od83w3Un8r3A31/2ziSD7138/0J5C8d2ie7P3bfexV9aZcciHwTWf/K8v0m6Yrk54Lfjp6fWJ/Skt+EeguQz3jMcPxWfuSswfc1wJPMl4l8L0n7Kflj6De+9/Sh86rxS8inv6b+m74Hpv3hLv1BO4T2h4nQTQ69dI4/76fdn/s+jfft4OsAv8t9J8N9svOb/EUCuB88ecG/jXprgVuBvuPSE37aIc9v2q+sT3+pqJ1d/zzyv6BfuD/JGIov8bzclPXtBnTHo5+U9P8Y2n297wRpx6L/6TfQOOQ/MNR9PfSMa1yN/hrpV+v+2zh8yv2IvCk8L4T8y4vYT8h3nzIS/J3BF77/Nz6wAekXqHcA/Bf1D4S+7yoc8R6K/Njox3NLYu950N9g9LuNdSwxfOiH4vun7svD+/U1AYiqD4xmPKjfqsw3l+h3VUjPBn+r0P9H1KB9/P+Iw8anAqMY7/qvfOZ7QOjL98F6om/fzcrmfiPUPu9Br473bt7Dw080/G1gXenifkg/OecN6v2MvmbrZ8N6P4f+O9932vXHZL7uTbv4zrr49Pvzfs/1UvtbS98noZ+k0G+e9nZ+qByaH5wvlur/7Hzvu1eh/dk44z2Axq8f59zwALzvGi8VCaD2Qu8p24buK0fQPzNQLzX1/gL/DPrlHvIvI9/f8Bl+f6o5+p1BfedN58uhnNf0n95Df6pIv9xNeqJ+HqR7ML90BxqfVRj5j9Dv9Vv1/bT59K9UwEr0J+017s+uUi/8/xfh+Aff/85AeePuTgInkV9a+7z2d9c18A+nvu9Gaa9MQ/v4flQTxm0q5yfy8+vvC70C+nf4fglp7RPaJebzXfuE8V8tfK9IuzT0w/43tYH64Rj/FrYPlSD/CvTD+1P1/Zn7BfiaSj94y/tP8OtnaXyf/pa+yxlhHj1Gvu9z+n7AH+D3nXvftx+CfocDT6EH95fGQ8QxPpu0fsqnfB8F+BvQ/peHcZEXGAv+9I9q5P4Bvflu2Uzk8/8zTof8DluSX5H8w8j5J3z6frn+W9k8/8K//lulWa+dPz5hPG2NBND3K9b67of7Dup/5nkC2I15YTfyd4efG8j9EeXWkF+K+TwX/FXQf8x4N/3NmQfC7wPo3+X5ry968r2j0Yz3pt4Hke/7op6LXgSf56OGpM/RL84DG3ofZfwo/fUrYD3mS/tv2N6rHfg9x5fxYr67BvzdOEfkfoAeCpLWr7YG+vP9bO/dNofGTwH92sBvvEMn+uUG9NqF9Ne+XwG9RsANnl/0j/J+xPgy43Tof9qHEhg/FfK3/5bvpSi3z/jeCGnjsaEX1s8698W0ywH6m+8t1fb/WYCu967v+t/ob1ONdvZ/tIZST70N970r43HQh/cp6+AjF/rzXU/tV+H3PY0vNq64A3Q+BBrXrr3XeFfj27fSLr5f/RLr6zPjqOH3vu8s0j+ND6vie118T+05AvgN/aeV6xzt4/7L95ubkT9I+xnp4uT7joN+iE+RR3ub9jffD9X+9gft4T2J9yO3qN+JcfGMdnSf7/7+APRtT/2sHoA/DfSf6OcAtB9eCMA//zOyFKgfk/GLxnN4PpyCPFXhrxrwDaDrVF3Wi4+8RzL+G/69x64P9J47fySAl6D7OvlV4Ocg/c/3GR7y3fcZ3H80pV8soZ91cxyQX5Tx9RP9vBz8P0W+X3wfkf5sPKv+61vRR3rKDwT/1+j/EuvPZaB+Zt5v6v9hv5uhHRV5K8Kf59m09OdFpLv4LgrzY/j9Zv//zvcdjNf6Hv6zIk956PrO1bvI0xe8m6CbVrsW8tXje3/2KXuZf3xnPDPy/Wj8gvG78HfL+3f9jSLQB/9B5JkAf23o3/u0n+tnAb6x4PMcsdr3NZL+txz+P9Uo1s8D7J+vkR6NnvL4PjD4PU8fgM9ktE8p5qd8+uGSH/a30w9Px4DFpBOjvyz0P9/p9/1T/ydtrHHN6Kc45YyP8b0X33fR/zUr+vUdNN8/8/3Je45v8qPh/xj8HQce9f1B4xjhq6X2LOMPwK9ebjAOy5C+DT3ff93meRa8lbW3oT/tHA+0HyGv84rvTIfXn2zgn8f3u9T3fY1/3kd23wAe/c21J7zGOCsFTIj+C6Dv5ED3j9fgz/8D9N4qxnbUTgdf3uf5nvoz2msB86X/E5CU/av/DxS2e8WFjvZ5/x9pPvRKg6cZ+fot+86bfsvlob+M8XImAv/oQ/+UW+A7rt+58W72b+1M1K/o+kj99d5be97Q3kX+CvZ/f0PnKHaSXcaH6A+L/s4yz4+g/gTkNx5Qf8gJ8Od4cHz4Hn1V492Yz/QH1z/c++GnUfBNvWGk04D/mf51vvME1H/+JcbVI+Ai+pfvnM7z/QLS9ZF3gOdD743A6/v5xjPon6Nfzq+05zvw2x1+9UvaCfT/MvLQHpPRt/8PMoXxc5p8/xfM87j/D+b49j3nh8Dp7q/R513m9Z3I1db3U5BHv+y1ofOZ/ztn3Fj4nalV7vu0q7KedIL+i8ajA68abwp9///R98B9J9X7m8qMh9T00wmkb8JPXPQVH7lS830G+H1/zntF35/zftE4uy76m+vXh3zDkC+/73PARz7K3UY/xnOPBz4P/V3GP0J3gffXyNkTvL6P04t0DOO1HvAw+hkCPv/v4EXnG+Dv5FcxPpz0Zt8V0n8Yub9HP77PO5n12ftk/b/0d5jjPTn68f96fB+2M+VqUr8K+LuB55hxrMaBUq8i6fbooSX839Xe7r2k/tzQX0J7HAWOZP6KDsU3ResvDz3fN60O/xPgt5r+Tv4/AfgmAn3v2PeNZ4PfeBffnzpD2vUhJhLAR6H1wfdO3R/qr+X81JN9y3bfVQP6/6LaH3+jvvfDt4wfRV+p9Dugfc4g/0z4u0j9eI53+H2V/rDTdyhoP9/pHcZ41L7he+3Gc+o38yblw/4zZZmfcqPP5u7Pka+L/tvgrQW/g+DffYnvFoXfM0rA/tL3Tnz/5Dvw59fuD37f8f/n/4qgf8M4JeOA4df3WHyfJT3t5fvTvk/i+zC+U+L7JE3Z36aknv/T5H59JPodA13fSWvh+R9+/9J/T/9l+ItHe+0J2cU70j9foHwX7af2H++nwas/zmDkeQ79taZ/xA/tI90/+n5hff3PAxA1hfrh/0s1vtZ420zgbxiKE3kF/kejv4+N/+P7BmBaz03/EqcyFPyfw7/3R8mMzzZegnWtL+uo79if5rvnKv2Mj9M/j+gfo987fF1AH77b4/3lKdqjI2n/f9n/XW4X+v/lp8ivX1gy+PE+tgTy6a+xAT6aQj8Z/BUifz38eI/0CflPaCf/P6Mc9T2HzvNc4f0B+PS3Xhza1+5FP7tp7236sVDP9dv4xUlA4xe1L2jf1k6gP5f2bf0n9ZvUj7KK/jnodwb5fyF3Jepnh57vZftOx1Pje6hnvOFc94ng8T0a7ZXaM30fpC/to5+NcQIPoasfn+/Q9OJ8kht8/wekPoh1eJx1nXXUVkX3sB9KurvkBiQFEVBKAUmRLukGQZAUAelukEZQUkJBSrpEQEpAEKUEpFtCOtXfWt+5LtfirO99/tlr7pnZNXvizOy9nx5pov7f3/zMAdyVPoBbsgbwnaQBbJQsgLczBjBmJICNowVwQuoAnqf8apYA5gZ//UwBrAfslT2Aw9MFMNfLAWxBv8GvBPDb5AGsBF9TUwSwFu23gf9D6svBV59s8AFfsaGzOgP18BGb/sXTBvAC/Ycj/0rwforci2i/Bj7zoZ/B1B9HT3eQbz30O4DvPnR2Um6VKoDDhCkDmAU+98J3beSNAf3GlDPTrzPj14L2F6G/gnaHoJsDvs9BP3vMAH6JPqrFC+Ap8M1C/pcpN4gEcCL4v+f3vOD9DP5OUx8ncQCr0y4e5fq0rwy92eivKuWz0PkN/e1DHzGQoz38f8HvM2nfHvl7Qu/DJAFclyCATaDfCrmO0/8o7Yugh4Lgj0C/B/ifaQ+U36ffGux1JvLHwv5uUK6HfCdpXwf5tf+F0GsGfe2/WZwAtoDeL7T/FPzfUP4DvnbB71zozKV8lHa34Wc7/KREn72pH4w+utA/LvOvG3aeDf6eABMmDGAp+KsRP4B3kGcB5dsvBXBOogDuoH8m6h9jh68yPh9jt23gqxV85oOvT8Dfgv7Nkece9nMA/cZj/G/C31Dku0V5BPN1MnR6U44Pf+3gezF4B6HnmPA3Gf02RK/dwFMGOjuiB7AK87RGjBfxKNdcym2AfZHzCnq5gXyXKDfBPpwPS+G3FvSdH2Xg61/4aab9gD9a3ADuBfZmnkSj/jvwdwPPr/CRGf2uB19B9DAGOnEjAbwN3puMU0v02wE5/wH/S/S7CJ4Pka8m9P5Bnh8p/0L9m7Q/AR/XwVOJ8YmJ3bYFHoB+SuRrg1zZab+W/suZXwfZb7Igz0H4TQf9IsjRlXrXiY/g9w3G/W/6rWP8LoH/R9b7bbSbSvkRcmaHvzfB+5zf67G+vobcn8HHKNovgL+KlDMiXwHaXWD8mjAfawO/Zv6Nov8a9FsMPFHQiw2e+MyLuMAfWQ/OU58PPXyEvLuwr5LwnzhWAO/B30b09Ax73gK9eYzXP7RLCn/LaD87EsBT0I0N3br0n0l/15Ud0O+LXH1pV576LPTvRb37ylrq3V9WM27poT+R8VtL/7LopRIwNfopTf2/8H8QeVswDlmQbwN2mwB696ivQP+NnLdiIPdj7LcUdrKM9fs8v1/Hnk/BbxXke4RcUzz3AN8GT2/a/4UefoefXrEDmJb+7jNzGO8E2NMT5HiN+bcNfp6wLtSjf376Z0L+RLT7Cz6KoK8/qG9H/zbAYfC5j/r+6GUt+h2BvHOw/ztRyAndf9BnPfp/hf17bs0MH7mpz8z+EBs9D8eee1HfmP4r4KMO/Uejv5LItw/5r2NPP6D/3vx+A3xb0Otq7Dcz9pSXdq09DyBfceTdwe/nkeM36I+Cv8zgHQWff4I/K/17wGcP8HZ2fiDvFuZ1U8a7MHgugz+K8hrG7yr0z7M/1GWffhs8ro/LwBeLc9BU2i2mPhH66ge+I+ihA/Up4Hsdeh+hPSDHVurfRT8p0E9z9N1R/Wh/tC9K/0+xu6v0f4adN0c/nitW0H8kckyif/nU/38+qyBPLPQ/F72doV1bz8/gT0z9XvXK+LVAf3nRc0vKm+k/iX6x0dsX8FMcPFXZr3pApwrlUdSfo/11+HadzIQeczJe78F3CebJ+9BfQfuc4FtM+Rj1fhfUgL8K8Os8OMb8Ow7sif18Df249CvJeJTmd7/vysLfbaD7vPu731+J6HeO9T0++h2NPu4wD39FztPgT856ciIAUQOAyeHrHPgfIf869Dnb70XK+8FbEvs9hH4SI3dSYBLgCL/zmB/xwbMR/ttCdzT70lvInQp56iN/XPRZk/Yj0dMI5K+BvQ+gfrrfd/A/CfvdDP6v/D6Dv/bMhw7AjsDt6Ee7nUW5MfJrv29jT6Wxi9y0Lw7/c6HfFP0lhY/88P8F+NwfU8DfJvoPo3wC+m+jx08Yr07sZ8nhozPlu+BVb1vpr/7qwn8/8O3EvlbBx23w96T+Fr9/Ar5z4KuOvvIyT74Hf2XmRzH6jYHeavSxhXIt+H6LcXSfdl46HxPRz327LP0Tcp64D3waCeC/jP8I+ueHn3X0u015EPY2EDgAOAX934fuOvRZRTnEg35uuj/RLjX63AA/q9HnCM4re8Cf3Xsl2jWB3jXKyZgff9IuJeX84Pd75WfkjOX3CvR+xC6d385353cCvgezIfdKvhfL8ftE5t8E4ETsq6/rP/tPTvirRLko9A7Az0XkOUg5I/p/6PeE51r4HUn9IvhaB920zO+/kf9b6vsC+wGH0X+u38OUI9BrTNnvv+n8vhd99kI/3yHXbuTNQbtDzN8EnD+SAf3+LUz7pozX++B5DznroR/PLU9C55Z6kQBmZxzuMi5LWc/HwkdtYBb08TPyLPN+hH6zmR8HsFPvL7dgb2mg+z18t0b+wrT3HL4W/OPhv28AotJB7zble5THgb8P8jREv8Oh85h9qwz0U0F3jvdR0KvPvtHGe1fqT4Hf/f01+IpPfRfW4/HQK0B/vy+LwM8S+H0Onp20T0/9NOT/HFiS+jPU+/3l/VUS8BdkvhcGrsc+E9PuFHIVA0bzngb8O5B/Gu0d3189/zK+6dHfacoj6e+9eAH6r/f8gh5isd6uov9cfp/G/EhK/RjsuyH1z6kfiTwjgA2w/73w147xGE/7S3w/zqRclvJo5H6N/WAJes4Bv0/gf6nnE/qvZ948YH24B7/5ab8Vvi6CLzF8dWd8anFe8f4rF+3KgX809vUbv28A73TfC7CvHcDFwPi0+4r1sEQkgB9hB+4HBZHvLrAWcCXt9yNvfsp14bMY41sC/h95L4j+Xseeq8PHbMqJGJ8ByPff/Ti/e0/u/Xh/5mcKfr8OHc8PTyhvhM5x+H0Hfl9Bb973fuF+yvo5nfNDQup3MH4zGKdS3lcxP0pT7g8/CyifYPxTMS6HkTc9crWkXBk+WzP+PdHXMeBK1sk14E/LeFVkHEuj71ruC7RvRrvilEcgz2Pov4TcZfm9Avqf5nsF/PUDb330E4N5MQC5BqKHtNTv9x4Xfusxn2qgv7+wpyr0rxoJYCLk9zy5yPUafguBL/x+VtFzDf09z1WgX1PoPKad96Bj4SMtfFUP3Y+NpL33ZN6P1aOf709jkDcj7Yawv67CbrzHOwV/ydFfa/R2hP6JIwHMC/97obOQ8Uno+Z71tBN4tgYgag37cFfspjXj/jdwOXrNA/Tda4HfcX6fQXc0djkA/pLD/wnwp4TfWeB/gv0sh/9i4D3tfSzlf6A/mvJY6LxJ/7HUz0BvH3v+oL4Q6/5Dfu+Gvn3/KcA4NIVfzwebGb9P4O8Yv7fxHhB5ujBuS5hfE1hvEtI/Pv2HQG8Dcvye7cX+9usUebH/18yHCch3he+TAeg/Jut1CsZnOfgyUfbePBd4h4bux9bCX230ngf+8gIPo9+s1P/tdwR6aMR4PmCcv9KeXL+oPws/meHjIPR9n25FO9+pPd/dY11azO9/cd5syLiNRL4d1Dv+j6CTgf4FoX+Y+VHI8xv0dyLffviYjD08Qz83PT/S7h79fU/uBb3u1B/1fhr9tad/F+pPUo6D3bhOF2F9HkR9Aca/EOO6lP4fYz++n1fkd9/PfU+Py/7UiXrPM55fyqC/MoyX90rrqO9K/Tb6N0Mv6bDPOvCXA73PRI4vaTeH+XYVPmdT/g77eY49H4XPY8AC8D+O/X0C+IuzX24Gfw/0q/9DP++7XC/oN5R2h5HP97HV8J8Eee+ApxryNUB+72e8R/L+aDn1v4A/nuMMXIm82Wn/o/el0OuP/bzF78vgtzb2E4PfPYdsob4R+NJR/ga+T/jOSL33SfJ/zvMR+BuwPvr92gR7fIj8nj8265/hPTn68/1ylfdE1DdFvoT8/gt6agG/b9Dfe9/E9JsKHe9/vb89SL33t5cZ3zTU++5bkHrvN65S3xa5OziOofsc+fYc8AP41/C777n90U9S5PN9y/vbPfBRmvZPkfsd8GTz3RL9ttNfxXdO4BLkKA3+VeirOXylBc8a6p/BdxrXDdq/AT8VIwG8yn6RB/2+jN1uoF8S6FaEv6nOL+j8AJ2+3pfw+2348n23J/1d71z/zrJ+u/4Np30T+i9kH+xA/8Osz54rH7A+56L9bPibBZ2S6Dk7+mkK/sqMx23aTaScBf5vgO+MfEYCqP/MH7SrCh83oVMW/F+jt3j06wz93bT33uIN33+RbwzjX4Rx/4nyp7SrgL7+Yh2Z6jsQ/C6AL+fjBdcd6J9EX4XBp/9XCei7Prou1kEu18cYvi94vkUfFdDfM+ZDGfgrDRwK/tisP77b+I7j+80w+PfeaG0kgDf1j8BePV+upZwM/nzP8H3D944+0K8P/tLI8RXtLgG9X/VedSd8eL962vMm9Rmp7xN6nyxK2XubJ74f+e4EHANd3zdHI8929s1RlF+Fvv4RD903vJdTv/z+G3i/hs78SAArcJ74kHadvY+n/jzjN9H3OcbV/aoO+JZT30n96N9FfRLqi4G3PfxlCp0r9cPR/8bxrME+vIbyK+DvT/9vmAfD4KsV+hnOvJnMvPmDchX4iIAvMzAl+53+bifQS3TkHuQ+Bf722E9R5B7suxv85/L7lHYdGIfmtHsFvvOAfxP6fp3+vqf6buk7pu+X4ftoxzEx+h3p+yr0eoIvD/iTwldq+u2H31T0974/QySA3hfFAt8g1uOBwMHAbbTXv2Y34/uy79/o7z3uf8tBV38//fsqhr7vnug3C3+5oPch9Fz3itP/HvT1xzgJPO/9Jvrbi35jMB8+o/6k53P4Puk7GPQbYn9xoFce/nZSnwK7qwlffdivntIuFeteG87l6aF7nPoM0NuHHEfAEwF/H867vYDjgIngty12PQW5xkQCWA869zhfN0aOJtjnZuTpBN3v6Od3lH7EmeD/Gut4hLLfQeXp771yHuBk/W04989ErruUY+qPhP53QF878Pu+lOeJ0PviZfRXjv4TqS/k+ZT6Ieh9MfO+MfaUk/pB9O/r+yj0/vWcTP0u5HoKnXOMTxXqx6O3ZPA/hf774fdz6q/Q/kffJ8Drvl3C8xj90/H7EPBOhs9l1NdF/0kiASxKu6XU+/1ZTf9W793hvzXj+gN2shVYBTxZ0Mc191nobcQ+qmJ3H2GXDynXpr4s8sekfxz5Z30Kfx+kQN6e1JdhX4gOX6Upx0UO96PPkXcq+GJAX/9175G38rv3xz1o353f9eO/RLkP/I6PwD94ctAuB/PvGfaVi3JG9FcM+YuAJzXwWuj9MDf49P/2/TB8v/oB/Q/6HU+9/t2eV11n+3OuGAj0HH4G/TVkvUqNfGc4H45F/m/A9wX9+jFONX1fRv9/07+G94DUL9QfBnyTPScj3xXvK2nv/HqKfXr/oh9mYe8FodeZ/V6/pbA/0wDspj/wAOPk/Nc/eWvIT1n/5J/g/wZl52NL8G+m33P2Gd9RfT89ij7/QU8z4H8f9CuxHv2J3LGRS/+zYdD7kvadqV/n+1zqF/mSzzbQGRaA/96tN1L2vbMd418SPgsCXwJPKd87tBvG/zX4SYa+lwObgncj9e8hXyW/KynfQL49rq/g9fvtBvbh+bQy69QFyp5Tvdc6EAmg913ec2X8H/69m7AvzzO3gSVotw186ZHnJvh20/8O/H1HOUK/pci1GPzhcW/uOZ36lOyHz9HfFs4TObz3937F+1zsS/vQv+Ik+9xcyhlC+5P7Uh3jErAf/R67IO9//org7w7eHsCctD8AnujoOyYwBrA89nIU+p4Lw/4L1bG3pMj9GfZYnfansIsPKGeHzzjwnwI9/eV3CdD3Z+NSMtB+JPpchH705+4MX5c9x9OvHONTAdgNO6lI+3z6A4M3OXjzAYex7maHvn5M7m+P0M9Z5sci8FSG/47Gc+gHzHozif73sIe9+uUAf6F/TcZtJ/tmLcpVkW8oeIcAa4EvOuf2VthTS+AHwCvoTX/iSqHz3wno/4u+RgDjM74PsUe/m85EAuh3pN+Po+ArPvN+vPsc8kdBvzv8LPY+FXzd0G8J8Gag3Urpe36j7DnO89sxvt/+oP9C6CX2fOz5i36+Q34Df74r/4C9N9afH/l+Ri870et+yr/oLw1/96Hve6j3l55//D7/lvZ+n+sfcC4KfMAS7If6J1T0nR0+68BfedpPB24BXqLe+/x+fl+gr8ngeYB+9Atz3oxnHugf/oD+E7y/NL6AcV+MPrNgv1nAXxJ7Gog81bFf/RvD8S2+53pfnoz16g713fXjQ/+L0YvnKb9jjVebBr0NjEMz9H2N+tvMx5Kcj29R/hn82cHnfar3qyngbzfy56e8h3JW9FMIep39/vO9Hn7ng/ca+n9Vv03g6+jnHvbylnFFvl+xbvzjO4nfr/TPAd5LwKyRAFak3SLwNef32d4jg7829PVHWaqfrv6J6G0Pet4NXEC7QYy74++4vwR+/SV8v/C+tAz1xu99oV8W5WLY1yvIvdn3J+g7HvFpH45v7AIfh/R35fc5tJsLdD/aBn/6BbpfOa/9/vS+rYHfN8Yjgu8ydObTvxH28hy8V/SHMv4P+uphqfz7Lk7/xKxLbejfUf8S5OsSiiPKQr3v+b7v/0H5A/hbTL8+4ClC/wnY1yXkXsHvXwFXMD4rAxC1Hb6HUJ5H/RLmRV72ke2Uu8GPfje/AzPTbiH9JzkfoZsKPr+Dv2uUjZcO3x+3QT7jQy55HvV8S/kIdup9qfFTdeBnKXY3Bbsb5npI/WX9SpkHU+HvM84n+Y3DYr2sBp3xwLeon8G4+R6QlnrjYo2TNT5Wu6lGWfvxe8X7I89X4ffzQsYPUh+P34+4f3nupJ/nlmTI57tyxHbsR9p3FtbblHyXr2c+d0B/nrs9h3v+7g0fzYzv8/4Wfxrju71Xetn7ccbhNfqH43t85/B943P4zgP9v7HPKOp3wfebwAP654HnTfT3M3axht/nYd+tPZ9hXwlonxL8NYybp344sHwkgNfA5/uP96hbsd/C8Os+9CvytoefSdhN2M93OuNj/LX2pD9CNMbHd/UI7TaC9xb9SzA+ceD3Hcr3fH9kPGa5H2OP8agPn4fzM3+0L/1r9avNa5ws9I/SfzbrZDbGcb/+BNjLHv139Xunv9/l6ULf69ngd57+VNT/BP+L6B8Nuo/gOx/yjgHvEvy8wnGoxcEXfpcz3iqXftT0G4R+9lE/CvmGsr4Y91uXsvfhRdFHDfaPIpRv6YfJ/h4H+nkjAdS/sD7zJjr21ZByOfhpBX//+XHyez/G7wT2FIGfz2ifAf2l9v2Y/uWRowF8DMOeMrOOHNR/gP7FGN/itF+G/DGgv4H5eot+GfRf0v8Aut3B9ye/P/B9w/d7418Yv47Yh/4G3l/GhX/f/6eznu3md997T8FfV/gagx4uoL/20A+fnz03618yzftV9Oz79C/gT4LevU8wDtL4x5dZrwugl4yUD8PHt77vYB/6/z2OBLAX9n+acZoHf8ORvw34OsJXNf1svX8Hv3kj4ikn9fPYL4sxrs/Bcwf6B7xPMG7c+H7j77HvGsDqQP38fHfwvSEr+rwkfdZTz9FZmedvod9B4EnqfTX6edn8GeB7jf7mGdE/ILf5aJDfePC9xvnp7w+fjaCnv2F9+NtFu0GsP21ptwb9r2WetKd9Ou4XyqA/49SNXzGexXPLl+4f8NcL+nNY34yr/pDybPT5AXy1dp1hPKMh/9UARDUFLgZ6fjyDPIWAk9H/Vd+79ctC3j/hdyb8tWTdu09/4xZaMb76uRVy/ad/CuwnAfb9Bvjno0+/h/Oij1XUfwb+d6m/xry6DkxmvDD2cMz9DX29C/T9TX+Hcto99cmpbw4/9eGzNWW/N1pjj/qt6seq/+o6409ZX02ToB/xbuPVke9L9zHnN797nz+a9kXcH/WP43fj2Od7v8D+97t+rd6n0F+/e/1r9Ac0/uKmfoXeQyNfecY/HH9eDQHXQv8xetNPqiX6akl73zePgcc4J983X6L8FvQ+hj+/P41f1772RwIYpR87+PVD2KvfGfSj0S6r76mM4wL43w06/e+qUB6OnRxlvz/NvD8DTIvdf8D8KMf6PZDfjQd4wLz1Xmw8Ze/HjKeuFoqrnud+E4rf/xf86sH3uSjjOZB7t/dz4HVcpjEOjo/3Jfonep/i/ckM5r3+F7MoGx9jno/v6f8l8HPv3/UfQq4W8H+N+jSsd8atV0ScRqHvX797v4UPv3/nsh68rb8uZfOfzEE/Sb1/Qp+V0U84/uIQfLxD/8HMr3rIPZCy88r4NP3r/6L/Et+XWRfGoafKlN1/fvJ7E7ky628J/cSse3Vol5TyskgAXW/f853HuF6/3+HPfFOp0P/rjK/nst//x/ksLuWhzj/6X0dO8waVhZ9w/iDf5XuY18C8T+i/DO30xyuE/Cv8/vTek/JD8/qYP8Z4CfCbh0d579F/JvWZjDc0Xgd+pzDPnWfmx6jIeFcC/kG7scjxjP4znEfM86z0917Ic2P4POn99wjkSgV93/+fms8APZo/7rHxF/z+F+Pld5zfb9kpz0L+VyiX8n05AFHngc2A5if4mHNjOvj5zXd86Pn943dPPcp+/3hfGfa79vy2mfqk8OM9nPdvxhcbV6yft/HFGzgP9YfPKL4XjL/oyXjMAW4Cz9fUD4FeRvQTjjc2f5t2px1qf+upv8f4mm+rN3JWZb84y7m9Nvh/RL5pzJ/75j+i3BQ6g7Gfj8E7Ajr5qH/d+Df0MJGy/mO36Ke9bkXOt+Hf+67H5qOgvfktzB9o/FRv9GX81GL2vQXAu8YHQm838pjfYS3nK/M7vA8+/YWyht7PJzCee7nn2Qc0b475omo6DqH4M/2tzO9gvofN0BuDXYwFvsp8akk730UOARtCryry3zTfBev6FvrnhH4p9GLevALu4+hzvOdK4BHjP4yfov0+/Xoo/w79T5H7d/Mjop+r0NsOv973d6Wd7y/GI7j/ex644jzH/hrAVyX4aM34hN+/8gDj0r6d36fwMS+CXMYvYxfm4TuP/eT6H99HXSgnoH/4XSwCNF9ldvA/8p0JuVIbv8X4+S4Sfi+ZDd++v3pf8DnjGwt7rqxfGPzscZ+jvfuP+9Faz5esxyPgbwK/Pwa/8RlDjNdkvPojv/F9fUNxQ/qv7kBfrhux+I51/VgI/QfA95BnYiSA6kP7mcj+t953NOTz/OJ5xvOL/ljHjStjndro+w78HYbel+j7LPLONn+g9zzoye/naOAfDN62IX+ln+Db95fJ6Mv3l/eQJ51x6+C/ZLwy8htXNho+blOeBB39GsP+juuRb4N+kZS3U9YfUf/EpOCLAT7jz6O8P0KOJOjnAv0n0q+s/jnmcWD93EO/Y6wPxi83Bn1m+EpvXEkoPtl45PrQMf/NPOxpKHA58Bj8rqd92L/Y8TePXibGoy79+ofsdwh4Pg3Z8xL9VsFjPhbzh2zGnrszz/XvW2Z8CePbFrrf0878ogeMf4kEMCHryWPGfwT63I6ejVf1vmskdmV+uFLOa+A4+DVvX1/gCOQx/jQz9DeBx/jTltDz3rQm42++lfnYx1n077zeCAzng61qniH4+xe56rM+n0Je84CE8/Kc4vcf/Q5BX+/SLgnz2feoQuy769j/lkAnGvzMoNzJPH9+7+mfy/n4LP3LUE6tP5TxRugrX+h92XiBudJzn48EMAK+TZ5PErxIfz39uiP3M/PhUt/Y+B36mz/S+NcfsI847D+r6F+VdklYbzyvNwFvJfq3Ar/vJd43laP/Xezre+OKkG8i+qgCvWG0N4/Rw0gAH2AP5qUJ39/o9z8M+7qs3xztC9K+E78XBf+73ssY/8Xv8aG7CdiD9SQh962rKesn7H1zPuMXnX/opzv1V7yHoJ3fx4dcT5hn182XCX3zYazSz9d5gnzeB3tP7L1wXcbrN+ylJfqdjp3+TP9y9PP96hF6ML4sHfiNbzbPjuvHKuZHE+ZFDvPP6b8A/0dY13JTPg4+8/V1QF7z9v3je5/xN/B/x/gS8H/MvHxTvxbm+0r2l6Hg303/65QXoP/w+adf6BzUmfHIyjpUiXFKBn/DvW837gH8Q6AXA/zVkS+Lcebo7w/O7Zm8B4H+BfN/oM9q0IttHBxlz8e+U9+D7wTe3+jPjL2n0Q8A+cPvBdmYL+5f96hvC/6PjJtEngboJwP6OWM+PPi7iL7cL4ZQ1j/uYSi+RX8O49uMXxnp9zT62OZ9Gfb9q/e/tHsCrE37W/qJhvahMejf+dVIf2P4NR9DJuQ76T0CeDpBvwuwM/AodCsEIOog8CXPY+YP0w/Ld2HwnoL+LOw6L+uk75/m954Cvm7o6Sjlpch3HbmNy+mMfL6b/ZePi99/g4+u8Ncs5D/ZLhSfntzxgJ7+36npP5D1ZZ35y+n/0Pg47H0w0Dhm55/5lNKzzjQP5VeqyXo3nnX5JPAy8+7zkH/+HOPU4K+qfvPw/ww5K4by05i32Xw4feDf/PPmMTXvfE7jr5DbfBlJ4V//x7ScZxZBf6H6BI/zx3nTAnmcP+ZlCOcxP2p8p3lt4PME8hkf/si4Or57d3MeNb5sKHztBfp9EE//Evp5v+d9n3Zs/j7z9o2DP/30psO/3x+vh+KjwvkE8kOnGvrZBd6n1F+lfCt0/+z/PfC+1vvZKcyv+tAZ7TnIuKXQ/IkOXEL7++irPu31Fy2GfqMxXnPBW5v9t3kkgMspLwVWYj36zu9X12van9UPG/l20d44BvNCGr9wEX20B98lymep9/3qdd9NzOcAvXB8vXH1d6HTyHtB9JuZ32PC3xHw699tnjnjUefRP7fzMrS+fgE94+q194WUzQdkfiDzm5kfaBj7i379wynr3/8K86Ih8G3syviCDr43onf9UNPQfy/9wnmCjZ+fQP+72P1M6j+F71Lg0y8iFfbV3PnH7/4/gxXmh6PeePW25h8xDwj032VdLcC56Gfv6fU/R5+l4Mf4oZvU5/TdwPg62nU1/gj+ops3AXx+b+jfal78cL78jdQ/RU9VqDdPsvG0xtmOop/xtuY3Pca41YDufcrH4ct8kuv8nsE+zN/aR/9d5B0d8uf2/z4spL/vkzuYH/PoZ34287WZV9x84klC/ie1kXMWfMdkns3yfQq+zI+gP6n5EapRb76yLyIBvBvyPzLO0PiN72j/3//XQb9HkdP/r6O/uecN/9/In8hfD368n11EvedP/YcesE7q56F/R/pQXobe8GN+BuOLDhn/Znw99afAf9o4LvPlQucb1t2s0Nf/Uv/SaawHlRgX8ye7v/v/MIzP8/9l+P8xzG9svKDncvMbR4ffuOipm37y8N/B8eP3N33Xp958g+a1Ms9VUdrX4PeawFOcL1xvT5m/1PtC8yIwfpvYDzbB31jKR32vYX0zb2E09Og7exLjebA376kGU84CH77H+F6T2fulUH7VleCbAr8zGJdFvlfpVwF+/SP1x65O+7G0P4g8vjvkhH4C+CnP/qxfUQvkfYx+OnLeNo9RB8rHwX9Sv2foeF5KTr1xi5koz4ZeRf2P4LsmephL+0+Qz7xttdDPrVD+tg3Y90XkrgN9v5/MOzkJeZ4aZwZ+7SO6+Xigp534/6Fcb82DM5nx6Q/9QtD7CjrRwd+A75EinMuHQO8hUL9J87zoT7nT9zX4v6h/jn7w0PO8lQj+9CPXr+me77Pip/wq8pp/W/yNMr2Ivzv0y6OPcPxnOP+w8b23wLedfVf/Nf3Z9F/z/Ot9+yLzn0AnGvM9OnA769Ov8PkAvI+AD4F+z+wDv3lPzNNtPhT3h9G+P8O3/ql39J+n/z396JH/MOvOOuZBd8773sNVwl6NKwu/Q4/z+9q4eeBQ+nekfUboud/0Z30Mf1/M5/vD74wGjM9043KM4/a+BT3o76A/hO97A+F/H/vKZubZNOhPAt+fxjOF8lWupf23tFvN+E/1vpr9xPdT43CNv/V+dRPjZF7C6ox/Q/al4uD5E/14/shHv7Lgrx8J4N/mf0KunOD1vsT7EfNLmHeugPeY0Pc8Zf7uj+DD89YNxu8X9FAE+VPR3v9X0dF7Uc+z9L9jfgDkSU+7n6iPy7yoAawO1B++cKoX+ZJP+bsA/cbI01E/Cv2H9EfK+CK/5qvd57syem7n9zHjZ9xnIuwlHP85H/0UZRxmMo8uI29y8y8Dc/v/raBvPrhwfkz964xbDH+fGseYHf0s9lwT+n9Szf3+Bf8T8wVi333p9xv9ooD6c6w0np1x6QneRPR/3/MM60At5PlQ+4e+8V3GJ3Slf1nqq8Cf+b78/2fGRbUCNmN9MD5qIe17o8/OjOdA6Osvpb+9flT1Q9+3aY3XDMUvn2A9+195WvVL6A9/+if8AL6J6Hsl9fo1+P+f/P9x5sP0/8j5/+P8XvTdxXuU5Mijf7H+xOYhrwv+Adij/9+jifl/oZOB/t6bnWO+uv+E/asHUI7p+xn2bF7a8PnG/JbmtUzndyL0U9A+OTAlMIv+/L7nI7f3wK5v+rfp16bfnP5tTXwXhA/j2A+jnxrYd01gE6Dxu0UY95Hsfxvpfx7YA/l/Zl/dB/wY/trB9xvgMz+r+S8aBiBqBPAYcIJ56pmPaShfZL7OAu8d7ML/36Tf61XwNzEfDu39/1Pmb1nA/P0auBA4BP3o/zUD/L77jDbehnEcjLz+/17/X1It6F+m/WP4veD+RXkr/Iw3nyjtjdczfi+17zP0H0b/ttTX8L7J+HTKJ+F7nP4Vvs+E/J3cd/VvuMZ8H4kdjKMcDXqDof8kEsDSwGzmT8D+GuqfgH6NzzNeMTZ8Gc+Yk/ob5rvT35Jx8H1pG3x573QH/jx/dmN/qgdf56DX0TxY5h/xPAu+7fA7w/dP4x59v2N8fBfVj9j/m6Uf8XB+9/+1mcfY/MVpjR+n/jLlUfDzBuu9+fjM17eI/uH9xn3I9df9pTrj6j1gQuMjmK+HGKefzEcZCWBFv7eB3pOYL2CX/ryM6wTWD/0IP4V+HvQwmfmRED1tcX9E7unmh4Ke97vmRQz//7munJv9P7dpKN9BP34/+N3wX/5E5Av7r4fzdbg/bfUejfpSys9+Yv6Oj1gnn+lfEgU/wPtA/z9iDdazBfARFz28Ah3jJLwX9b70M/j3fr0wv3+DHF+Bf5n3H8yD04yP+TOWU9+RcWwJ33OZX718T4beAvT+HOj9a/ie9zbwIPrr5vpEO/MYGz8TzpM8gPFfEYCoQ0DPO+WRT3/Q/uB/Dj7zD33I+rY65Yt0njo/9d8ADgUWRP6m9Pe7JDflEZ7vuY+5Yh4Q8wVRPxy+TyFvVfCkgn5PzyPAp/pnRwJY0XwvwK3G8/kOpf8Q5fvQ30B/8xf6Xfgu7XpTn9n4cfQdzp9t3mXvfbwH8v7H/1fs/ftE+Nxj/gzzG0DP/wNh/tSOtDf/jnGe5t9ZAX79y/U317/c++VwngLvl6eznl1hfXI9dR01P5V5qRqBpwrjd8R9z3xtvg8j3/8Bll6ULnicdd13/NfT+z/wd1kZLTIivAslI4mPVUYpQjSshMqKpEQyM1MqkYgiRYU+JSukpYSspNLHKFH2roxU5veP1/3hdut5+/1e/1y38zznXOvsc67rem1dVvptWakEH9upBG+uU4LfblaC34GVKpfgW+UleInyh+xQgn/ULsFf1T9++xJ8d+cS/ET5j5V7Wb1J0vsp13+3EjxP/hj1LgR/2bUEGyi/E36Wo1dt9xIcWKUEbwcHgev3KMFX1P8bvcbwL1S/N/rP1NxQjqPqlmCV7UrwvV1KsKd0d/gfUn8CvGdKH10LX1uU4AB4y9B5nj6GVizBc6v5rvywrUpwt6ol2B6+V/CxDn8/wbcXfL+hs1a6EX29odz55fjF/4Hyq/veCZ394b8M23/Dewk8O2qfwer32rEET0s5+JfS+0v0nf6wQnoT6S/obwY8B+P/JfjfRvd48Fn0H1f/DnwvQ/9e9WvS31/Kv7B1CXbG1xbpb+o3h+86/D0Q/PS+Mf4OkX+K9BTlflZuX/Se2rwEb8TXYO07rrwEK/t+kvH0K3mfwd9g4/IsfL69ZQk+KP+XTUqwtvyfpf+HfgX96PrqJVgmXQ//Y7YtwRP164H46q39BpHvNfq5W/oA+SMqlGAz9N+Uvl75huaT/cE15Jmk/mnaswk9HKzeI+TrSF/bGB9X02977VtbfkN460h/jJ858D+gXk34W6u/njxdfP9Z+dPpZ3/6vMP8eTH9z5N/kPY6Ubqc3j+Wnk3vU9E/Cfwx8x+8i/G/CGyBn1/1q+f0jxPBNfTXDr87wHsVefoav/3o4ybwFuUegqeH8dBevYe1w43qz9+0BP/ney38HaD+BeR/Ex9dwFbqvyV/GXkmaZdx9P8p+e4vL8Eq9Hc3/U03n7c0jobS56f4vdf4PnfjEjwPnIfOKPA29LdE7xj0Tid/cXy/Sb+14N8j6xB8/8HnfuSrmHVD/RPkVzK/v6hcd+PjJfTn6E83St+p/hv6x9f4nU1fZ5Lja/rfnn52AJsYZ1vhZzr8c+QfS86G9Hsivu7C79Xk2xb987X3geaNn+g/8+cdvj+jfQZJn4H+P/pdBXzc4ntfcCG4dXkJ3kze26RPwt/F0n9kHId/9FbifyH9/S09T72M94f1z0H0dxn8++OjpfrT0alqfuyzTQlOpZ/fyb8y64l2GQ3/OdLnwP85Pprh68jU1x+WKv+Ecq3I1wf+qeq9pD0uJ8/wEiibQJ5a8E01/h5T/x56OomcHeDvoX/PRv8nctfX/79RbwW+vibfpvL/Y7y10c4HS+8nvzjem2rfa8k/Jes7+jfR/7vKb6H8QfLL1atHvrq+Xw7uTZ4x8mvh9wD45sFXLr9m0uRemvEr3Rn/n8K/lfKr6a+W9E7ojKHfk9E7Gp460r2U66z+fug1oOcx2nGI/LbWh1PxcZPxty86i7X38/TYW3onfG1WWO8vIUdH7XOu8r/6vhE6TeF/W/oF6ZvB88kzwr5hkHLvGC/ZH0/ER3GftwQ/c82Pr+s/46WnqV9Be641r30o3ZyeTqDP4fQ8ixxN1P9v9sf4Pgj9l/WjivjqCN+O8s+VXwm+4vz8P/JfTH/z6f8W+N5B/2nz7tf2Ed+A/0FnAHluBL9H50L8RC/ZlxX1s7RGCb5nfnocPAH+r/E1Wv1vwMHqH0m+OzIvKF9fudnmjw7KXZvzX9an7Nsynun7d+NrInzZr2cfX0n5R7TrPvr19vCXkf8q+vwHnVnqHZv+o77PZSvVv4p8P6C/L3wd0L9S/TvoqVy9xug9KH1Fzq/qf6D+2cEv/yPl2+OzEYZm1d6Q7zt32ZD/58ld0/o5n753Re8Keqsr/QR6v6s/y/ieUl6CB5PnR+VHWS/q+T4X/m74r29d3hR8Sv/6EP6cx3M+z3n9enKN1y++JVd34+My9eulPH6OU66f9FHyf4RnJdiZPMeY/1qCLbIP1782Mv8cZt6ppr1rZv+pvfZF5zHt0wofy+jvTP2oiXZqif/r8LMcP9UyTtL+9sf1jOuHpZco9xO6w+jrbXAMOrfJL6Pfb+TPRP8A7VcVH8Ocg76BfyV6Y+n9d+XX4e9x7dl0oxLsZ57ZXf5J9LM7+d6BZ3/pcfrnfWBbfM7Xfs/h6z/k2EO9x+l/svlphHnpPemblHsQP9vDM4R826X94M360l+58+nndvieh+9R9X/C31nm3/u091rtlP3J9/S3EHyZ/Btpn8fQfxbd9fAeIH+E/jgcvAfcUfl3wJPRf50cg/BbQb+9Uf6O8O9L/iXapxG+rte/78P/cPWvMA4+hL+RfrSHfn0reufKv4b+ci4Zi86B5F2c830JlNXX366SzvzaEV+7kPMxeJqRp8z89SW4g350rfqX4uc6/OUeYEnWV3gOkz4IrEH/43LPoNy83HfBd4/1eSN4N8PfefInmQ9/lK6g3An0f6b1911was5ryt1KXzPwMwk/tcmX+foV31/K/irrg3ZrB++j6Bwlnf1JZfJtTt9z8Lcfeb6Ff2TOu/Bfb125CbwZbIn/PvAPhyf9ayP8n5zzaMaFcs9phyo5/0nfg49/9OM9lb8N3n/g2QP/N5sXpim3UroffF8pPw3eqfDskPtP8vaknyraew/1e/ue/dwt8C2Tnqf9/zD+3zAfHQXvRfprXfq6UPpF42cNfLnXmWy8fVJeghPNv3+Dv+KvI3lamL9yrpxJ/q3Ur0Pe99Efplxl7XMZuq8ZXw9J70Q/v+BvV3im0EvuX7P+dkRvR3h/VT/9Lf3vDuUukL/MfDqcPJ9px2nKf4Tfa+XPkz9a/3jcebG98jdI74q/3C/mPnG59Lny74V//9wbw/MJ/r4wP+6gftXcd6h/KXo9wJ7g9fQwVHs2pP9tzO+XlpdgTfLsFP3nHhn9+0vg3/7YF79fyp+u/i/4fj/vLPCNIm8t/edy3+8BF8D3bt4b8D8KvRnw9pB+TXsdiv7z6u9KnkfJeb30NfhfDk4As//8Ad01+OlCPxtr362MlzPosQO4GbqHkrcSel3VGwduJH9w+pFy7xu/21nvc+8/hLwjyLep9p9lXHXIfgT+N3y/Dsz90bnoHIP+D+jvTs6y3I+Qr43v5eaTwfib4PsD8LWCZ5H2mI7/NRn/6LeR37pwnrhGfkfpBvibCn/OaQ/JX28dyfgYZb7O+Oqq//0p3Q2/j5Cviv3kYHIdDK5H5z7098X/c/Q/HP890d9bu19Anj/Dn/L7ofse/o7DzxDtl3uG36WnoNc598dZd8Fvst8r3A/0VD73Az/jby34E7i0vAQPsi5cDvYENyVfNetFA/2pqnQP8i3MOYN8Q3N/Rr7r6aMuvr7HV/vsP8xXLfGza95H0Dta/gx4airXAf3NfO+Efvbpe8LfmTzT6PM+88OPyn9dtqEcP+tHR6Ffr3C+vxS9nO+XwX+Sfcc/+nv2KXvgZxW5Dsw5OesbfLPhn5P1j/5rod+MPvfG39W5HzYf3a7fzgR/J88V6n+f817urTN/4O+47G8y7+DvSvw0Li/BI/WfbZTfS3s/CG8L31fn/CC/Wu5VzEML5D9rP/gy+Ax4LPornG+q+75cugd5JhoveT/v5Pu35PtN+V701J48m9L3Eu21TrkrjePL4XuQ/kbQ+5Dsi+G/VP125snj6H8S+SpLT7duVSL/Svj7Wfc+gHec9LPa71P8Zrx1k75KOvdPuXfKOXMU/iYYr9+SdzQ5PtK/D8+5Cv1d6bkt/ec9orl6eZd4EhxOvjLyP4veQPjGqLcavcwHV+Kvr/E4AH83SfcuL8FPyJdz/B/qH0/+7GuuAG/SHk/Rw1n690P4mA1vF/0x58WZ8B6hnxyY8yd99CfnfdLnoP83/m5HbyB8v9HP1DJ80PMo6XOUm4DeIvPHQvA59Sfhvwb8f5LjZ/l5z3sZ/3nPz/v9OHqrUF6Cj9DzWPIt0d9nmMeWSo+HL/d1i7XvddJbwrMzfTSyruUdL/fHK/GzFB9l+tPt+kPe85fAO047LlR/E+vzbHxtnPufvOca/+/RZw16zvm4B71dKD0q6w38Feh7F3y9rFwF+VvpT5uDGbc5371oPpxMf4vwcVLOp+QfRV+f4Xtj+PdH97m8t+a+TPtl/v6N/jKPZ/7uqnzsJ67A31f0u4n55mZ0Ms4fxl/eLTaSvwD8Cj8X0fcK7X+idrpdub/o9/7YIeU+Uv/ak96OU+5UfK0CvzDf9dAPLgFPp5/Tyf8IubJ//xr+sfh/n/ynoP8Q/bymPw3Wf/bGT1f4pum/C9V/TboF/DXdK66E91T0D6e/vLffk3Uh4wrM+0LeFXrSY94Xhjn/fEafh9BHX/mHoJv9TvY/scfI/fh6824nMPfksUtogP4y/FZX/0r87WP9axf7Me1zce639dtj8DmefNdmvsLnNdLL1a8Z+yn5xffCH4Of/rJOfJzzReyB8DcSvAKeifC+he8zcq7V/r3o40L8xz5kP/Sz/uc+O+v+2fIno/80mHea+vCPJd9Q37/Ifab826Vrw5d1aU/y9aX/nYzT3K/k3qUp/uqT41HzTO7jqipXgVxN4J+e+1/pzcjVL+9T+In901O+30//j2afqn1ezHlbuf7KfUfvb8SuRf7j+tc069tk5WZLF9e3rGtt0c36doL8+fCvAq+h31PgHZ37ZXweBc9k47kV/eWeMu9N2XfWTX/Sjtl/Fs/f1eFpLH8z7bGFdtxc+lP8DyBXS/SK/XRx7MPKS7CZ/nSB/LzP3iW/Dz6flB5s/bsanXHWv+mZP/DdkL5qoPep9Mu576TXrEdZfw7Le7Hvf+LvSPm/4e8q/FRV/mrpvG/95Xvuy/O+dQR8y33/EJ0D4R9P/0NiP4jfvP+Uy4++W5L7C+nMg8fBfwB95P0w962Lfc897Fx4etLr8OxjyLWV/PrKZ/xn3Gb8H03+5mAzcCtyXk2ebvBWzL2u+ttnvww+go+x8nurn3vP2PmMoZ865svdcm8A/qV8B/hyDr2/cP6s7z7pJ/mxF/mCPhuaFxvgfz/pA3K+NJ8dnnkp51T6uxqeU/B7g3YZJN0YvpvI0Rd8Ej+n4r8XPH3pdSD8XxmPX4JfgGeg08R42ST2a8bTzuT5MfpT7yjr9/q8e+d+QLu/l3cG8k9TfwY4Ffxv7NfUX0COBrH/yvslvT0KFu33bqPP08j/gf3TTOnVJVD2KrgOfy+qfz66r/s+Ej+HGT+xz6yGr1r4/p7+3le+3Pdd9I+R8ufm/JX9Vd7J6O88+hxl33CI9Jva77/0NR6cAE5GbyJ9TCovwWNy/6R+O/nd0X0QPwNyP2T/Vc++a510b/Vfjd28dB98j6WfxvZfQ+2T7wLzfhS7o+bSDdH5Xbqr+WsT/aub9OX4e9L4O5x8C+0TNpLfiV4foY+O0o/Jn0HevIP9pVw5/t/TX1bj+6JC/5lbAmUfg5Xpcyf8d1bvHPBw/MYf4E79I+e/WnmXyvtA1kflYsfck7xluTcEt/N9b3jyPrBE/fSLT+RXy7uCcqdq39rkW4/MAuO+qfmgWuE+8BZ0c08Ye8QBBfux+AtMkd9Kuof01+ofTP8V6eVEMPPBx5n30c+7QAXtMxG+H8jXB2zovHJG7jvoLfrJO0oP+E8xv2b/M8F+aCh6u8QfRb2cc0bI/z33H1nPlJuYewZ8XIPfov3GHOO9tX59rP1V9nfT5e+Gz9zfZZ3P/fHi9CN85f64lvId6XcyvvK+eJj1uDF4OLh39JFxDe+vxnv2X7lvzv3zDXnHz/yMr/p5p4o/jvpd9bu2+H0652/1m5L/enx9nXME+T+m7x/gm4DeE+qfYD75mR6G0cOdmcfp773cU/v+IX6aob+K3B/vsiH91Iu/Ru4dVurfv6BXF9/N4T9L+Qv156zbL+PzQO2f+4nYWca+Mv4zsd+M3WYL60PsN3f1vXJ5CXYzP71MP2vQ3Uv+xvFLwN9/cu6zzt6gnWPf8bJ+e1jmE/gvyPuO9vgA/l1i74u/+Bd0wGf8C7aKPat2fzn9R/pe9O/G35f4/lI7xb72TPcf2R/8u1/AzxT8/Yj+87GTVv9L47E2ve4FZh95HzxzlO8Ye8bs37RvTf1oDRh7mcvJ3zR2E5nXtP/ZsVdXvis95P63G3meyz0e/IPx8zn8sePcJv1H/dekY7f4auxscz6WH3uXvON8j7/sn2NPn/33d/JzPq4B3432wzkfx+7wj7ynSef+qbb1KvdVXUugbKec/5Uv2meeRo/Zzz9UviG/2d+P0j9+BJ9Sfm38J9FvZH25RXpV7jfpN/5k8Td7Srq69s97f+wBRss/Hr/pP+ML/ece/e/J+J2RI+eNrJfZN8/LO6H6L+k/Rbv+k8FT5d8M37Pk/hI/j5Cnivw98feA9n1H+kzyHZ99Rt4/jdee2feajzOPz9Fva+C/l/H7fewgMj/F3xG93M+caL3/GX+ng/MK9umZN+MHtTP+XimBsuN8f1J6ObqbqT+Unl+gx77ovKY/x79sjfT99NM89xn4Pzt2H+jnfrAc/ZXkyvhZp19OAdcW7D/yfv1Y4R37Iv2gHX1mf5p9afxT16KfdXMFOXL/ON989wz9dTHfxh7zH9+zP8x+MXaux8L/Ery5R4t/4Wj5Teilaew70I+/1Xj9MvcUsQ8bbXx10o9GSffLuzy6d2q3+Kk0gL+h/J3gv9B8+mHs3/FXRbnX0Y+d/QD7l9H2zU+A58jvp/88Gfnxkf17/LFXm7fjr109ftn692jzz0HSreGPPe9f6DSnxxbgvfQyUbv9Si9z6a9l+jP528rvE/vrnCcyDumjtfK5T64tvTt8v0nnfir71faF+6k74HvF997qPYz+UnqZgs7R5Lkm7yPkH5h3IfPlq+ofYP6Jf1E3+t5J+ZtyHo7dj3LZ37XFf2uwDViee3rnhbxvXBA7icgHX/yV44+e+9PdpeP/3YP+4q+3kv5zL1x8/9xcf70377PgA+i1JW8b8AHzwx2xb0E3fqdttUf8TyvG3jH+7dKvlJfg276fiL/NyVNP/SPIc5LvdclVC73YL8WuL3ZMv2m/G7X33sZF7FtvgydxC36STv+dhX5//A4A+4Hxw9oX3gbgl+R5mnxX08c+8VskT95L8j4f+7qbfJ+Cfj/95Tx8LTIfV0V/F/I+KJ131+rqxz5tOLyxU4t92jLz80e5Zyu833VEfzg4Iu/T+s/uvlcBq4Ir8NvFerM9utvF/4S815DnqpwLwRuyjy7EL0jcgorat3rWE/2nCTkewV/eHy4hV+z/Mn7iX7VMfn38xc/qSfNzFe002Pwcf6i+WXfhHZd1F4x93izt0Eo/+xz9v423H8i1Dj+jtOc36OYeLPahuQ/rHHteeF+PvxH8D6h/rvwtYy9NPyPpe6D8ywrz4Q/6+17m0ZXxs1P+X7sMeloi3TD74Nj9SO+Y9Ux7ZT92CDm2B7coL8E2scsg7w6xpyZf7PXexs/8+FGovxrdWrFXoscX4Kunf8Wec6DzZ/wrXoX/VvW6KNcY/3Pt52+l5/hz5/7whqyvsSPDx7C8f1lfNtXuz6s/Mf1Dvcb4fIc+zsZHi/gP4e9w/WaL2MeZlxpq5ytiDxI7b/Wzz+gG/yvpP+hUhvc1/Pyc8WM9eD9+Yuis038+jv1d7pkK73Xf+h57lM7ob4K/2CtVQX9z3+fT7xPk+SbnXnrcLf7NBX+TEfg7Af3cf+bec5+c57XvjuoPpp+Ts56qf6n+Upn+29hfjcRnd/yNoZ9m5pmJyo+lv8XmqdV5X6Lf2H221W/yzh870Jn4y7n/rvCR+ATk+y5+vcrn/m4W/meap6tLZ/4+z/z0ED6L60Al6UHKnUP/H2Y+Q+9Q9POOMqC8BEeiM5Z86QfD04/R/Z3+8k7fQ/s+kHcR3z9DZ4b+l/P5D7FjsT7knF7R/VM7cryufwzD3yE5f8E/B3/f6R9ryXuk8rlvmUm/bc2Lj8Lzkflxc3qpgY/Mc8X5rSm+15t314FHq1f0R9xdfvy3ZptPPgETn2Jg7A+Uj1/A99IZF/MST4L8L8JzJ/3X1j5zlWuK7rVgNe2Wdbq4Pu9r/ltrX/YbmPvHj+h3E3y9YR0qRy/3T/PLS/BZen1E/Zqx1809PjnuVP6+EihrA74LbqPcQcZr7s1Owfd9iZ9ivDTOflK6nfRy7V019mD4W6jdamjvRfA3lf9V7N/1n7uUmysd/+Pt6C/nzxrSOX8Oy/1A/GfhSfypnL83LUdX+Zy/49/7ArgDPf5KniEl8K9/0unSN5BnMHlOg+8YcHN6/Ai+p+BrnjgN+Mn9VN538t6zKvYYBf++NimPzqYVNuTzC3Ba3Q3l7Qlv4p9dh5+iPU/sfPJ+OSD2dei9of6V6iWeROJL9If3ffl7mW+2lf90/Fxzfi74t5xCzp2V/yF+vfr5Ivw8XI4v4yZ+868pH//5qsbvfONzUN4R8Bl/9+vUix/8KPo4vPD+tm38GdHP+Tz2w2/gcyT5VsCX94xRGWfmvz3yvk8vneR3kn+68XUnOMn42A++xDtK/KMTY0eOv60L/qWrlY99z8Hugw5KXAbwN/WyL7gj+3v8Dkn8sfjHFe6zLop/I7qNtUcDesz96efa5TPwEHhif3V7/HFjf0LON+MfC98Hefcq+NfXMr8dph/+GjtV+u7t+0exT5Bemv4q3Svvreplf9WHvLG7Wpw4T+RL/J4+vldP/Cr58fsbqL1jT5fz/bPS8f+dSt9Dgx/e92N/D98L6j+qfuymYsfeRf1P1H9T/jDln8ZP4nudnPgzOd8lvhq+cj7PfXrO561K4F+7gL3Rj//M/ui1lt9Q+rPyEqwb/wz0F1gvr1B/hu974SdxX/6Lr8QBGWK8JD7IEfQTf41LyR973djpxt5jT/uC2IPE/uNm/F1kXWpi/NTJPUneRfDR1v75L/xvg94Q8rZQL/5RsdfMvnA3/T37w4HqZx9QXP+r4vN++GKfWab+U4m/o/6D0h/m/TPnAnzEPuMJ+HY2Hy2j17HkXB//A+l9tUcbeD4n/znRN7w74CPjJ+8jJ8JzQ8H/tJ/0Xonfo38sif0O/r5U/w7zaOP4oyb+Brrjyb82carMS5Ps27Y1v8bvKf7pW6E/P/EN4q9C3+OlG6HzOf76G1+Lcj+h/RJntEHupfWrhgX7ucTTzLvFtMSDUD/2W7Hbih1X4pBdg99p0gNzn0f/m2rX+6yzzejhBu21wrmoDf5OAmN3uyd8FciX/Vjif+wFXzN8xS68k/zELampXRK/JPaReX8YRP95h3gM//Vznof3iLyjyZ9iPXghcQrBV+gv+5/0yz9iv6n+WfIPSnyf8hJMfJv419yCr2J8iz+sT3+Du9DzLPWPybsa+rEnyv6v3PyzM3ic/vl17F1ynx5/CvJXpt/V8MfvJn6Ur6LfNvbQsad0jtyr4F+R94P4DyU+2VnG37fgIuNvcPZp8MavPuNouPqH5byIn9yjfRv/P+N/OfiZ9sv9Sc4HvbO/gz/ng/LYlSX+Hz6m0s9YfNfH90nSiasYf4m/c6+OTvxX3tH+x8I7Jvaa0mfiN+vYOPcpWb++hO9K/BXjbcwr7Guzz83+NvaV/fEbe6D3CvcHowvv/Hnf70k/1+TdSnu1hL+V7zkfLiiBf+MDfm7/nf15rcivfRqh19E8cqD0cbFThD/7rRGF94F3YreW/RH8i+Qvsv7mfL8O/7G3myy/hXW5LvojydMZ/sR3ah7/FvLl3mSM8iPoewF+Ehe0l3In4O9y9GNf84t01qHY1+yc97+8V4Pz0Ptqhw3x3B+7a+Mj8SzPiv0vfMfi7y78dco9tPJTEv+CvmMnmzih2W8X44s1yDs4/tcU/LMTP2539RPv5i7pi+yvHpJuaT1PnNOVxkfim86PHww9bK3eDYnjEfvQxD8zfreNfzD+5uLjAHgfJ2fsO+InGPuO+AvmvDUI3ZzHEr8h8Uq60ecZ0pckrV06gAfj50H8pb3Hw3+g9ko871et913jH5TzGP5eib2odNb/2G/X074t6HcfdGI/Gvu/xFONH93G8GV8zKefg5SLPdtI61rOTbWN84nor7CeLEb/U+km9FNP/S7gWea3P+nrDXg/yvt7+l/O9+h9Yl9yqnUy++Sq9LEA33l/OI/8z5KvEbw7q5f965fm73+sP2UFf9HEk9wWPzk3xP4n/jlvgvHPib/Ombmvh69F4nmiX1t/7IrvFXmvy37bfmImuf+EJ+/bjei7hnE1WvoY+n+d/Ikf+Xh5CfZK/Dr4fwZb03eP3OfE/jNxw+CJfVX4T3yt82tuKE/uLRIna6PEVdnj/83fsoxf9RKf5krp5+hnAPmbmff3AZdaD+ooV0t/u0z/aacffp91Rb/9BuyN/kr8PWh81jZPlIMv6A/j4B0D7kb/iacfu+079fPYbfePfUriDZJ/IX3E3nAA/U6SvhHeh+mxcfzSY7+Q+5HyEnwdv8fHj996nvgFy5UfAf9Sepgm/63E36LH68w3zeHfRH4X9XdPfCn1P6WnmvGriH8T/bbTbzNPnyy9d96p815MvtjDrELvE3ytAJeD38L3knJ1jddi/LhDydME3Ms8PDrxPLTHm7H7jP9c4gPgbw9yHqPcC+XwoNdBOvbBd5Ovi/zz0cv/HZyvfOKEJ3740/T4QewJ0l/UT7yeo8iX++nf4flDuX3j/5N3J/VGKtdbfmXzQlP83GM8Jj5YldzvxZ4w5wj549VPnMmifUneE/K+kPeGmeTskndZ/b3oP9Zefz0DfC5xKuDPu3Pn2Lubp7+Lf7Xx2gF/L0q3gn8b47qXftkb7E6+4nl1Y/Ikfn7235PoN/vuufjJe96axL3FR9a/t+Ovpfzp+ks17f8AOXM/dkPihOA/47sHvjO+M97nofsVeWIfVCn7W+2bOOTNMg4zP8rP/nKVcolP0RW9pblX0a7ZXzXXr78zP8XubVf4Y/8Uu6fYM+b/WxJ/vyJ99cdf/IsSHybxYOI3vbnxV8v8fje4WL0++M+9fu5vc36omP4E/xj95mn7iCrofEQveadNXLt7c35K3Ep4Mz9lvnpV/cNzr1q4p3gm/hPK7Zn5If5JiWccf6oS+Pd96Qv1i3HoFqhvOi0bBs4A6+DvO+tb4jDPK9gfxb/0Iv1sG+Mv/qb5v5DJ8K3L+hv/8txbkjfvB4lP3oZ8veGrpv7Z5Mu8upl6sTfKvv12Ar6r//XSjlm/dqOPifD+ahy9FXt2+GI31S3vIto/58n0g5w3z8Df58bnSHq7Fh9H576GfInns1vsh/BXvJ9NvLBD0T8D3g/ofUJ5Ca6BL3aLC6JHciyLfU7ipeGzMfg0eSZn/GV/h49D8Zf9Yfa18+VfKT/xJxKPtHPNDfks2mPHTjvxcY/Sv/rqXxWks56c5jx6mn5wTfxOyRf7yHMLdpKxj9xG/efxlXf3JfJX4787vioot1r+7eTOvVIxPsdF+NqW/HvCc2jmm/gT65d18o6Yd0rr9/Tc/1qvPpMea35dbB0+CL474T868SisQ1+QvyL+/zZ/x+64aJ//kPbJ/wnEf/xt+m2d9TB+54kLJH9g4jObN+fjI3YaZ9PXTPzE3zD28qPor5r8Q/XfdolvgO9DyH0efs+hn8Q3iJ1i/G16wTcw+0rnhswzp8a/qBBfZq50/H3OJv8/9PVd3uPxP037LNMOsX84U/5S7b48cUzASnnf1R75f57YxaR9zjV+l8PfkX66m3/6kDPvrfG37CV/JnyJW7Se/IkjsT95H4idqHack/0N/d2tnXevsmH9CXkvwUd79P+Uzv9SbALflfELpN+u8MY+YWPp2CesKMM3fLFPTTzT63JeJtfWYOwDbzSecp87NuND/51H//PBLWIngP7i2K/EniL3jepvKj/xNb5Hvxs8Oe/m/JvzcOKzbm3eS3zUi+FLfN9nCu/feQ/fM/FPtFv8D1+P/0HsUdGLX2TiI0/A39slUNYd/Basgr+F6ud+uxjHarDyz5NzifRb5PlQf8j8mfk082fxfWkYOofKT1yg+D0W3wvz/l+Mm3NV5qnYx8Ib//D4A60yrvK+lve2I2LXC/858L2r3mn0/3js7Arx32JftrX2yL6/hnTsTM9TP/9/1y7v4FlfjL9nfL8Znf7Kx/7rBd9j/xV7sE7xL0ncPuP9avzvRo9P5r0hfh7yVxtf2V+skt4Rf11K4F97rVbkT/vfK32advsA/kPQy/tYm8K72Fr9b1L29dqlJT3GPzj/h/FdeQnOIs/q+LPk/g6/jydOHPz/v3u/xOdpmPkM3abZv6CX/6PL/9OdJ31O9v/mldxfdtMe3ck/JHG54hcZf2n8vSI/fs/xg47/c4sSKBsLZvwto89K2b8m7mTicsDTS79I3IHY6Wf9+Vj9Y9Ar+mddlfdf+F5NvAvtsz7+SOTOO0n+/60O/PHHyHv9c/DH/zN+nzvjL/ZLb+sfc5Vbp5/knTfvYvkfk9ElUNYq798Ff7H4kZ0lnf+HmEy+0dJtC/FZ4zcfP/rYm023/1wX+4j4K+Mn8ViaoBs77Pn0dyT+OqN/RfzV834uv4Z68WOsnnN4Qe9ph7x3nVK4v8t9Xvxpv1P+KHi/LewPfow9C3kzj2X+Ksbzyv8PJH5Xxn/W0byTZx7oa768BZxK//snbkvBnjN2nn+h/xj2fgLb+/4A+rfGHyj2zfCtks76mf8XyP9g5P8FEj//Qfhjp5r4+U0237B88GX9raffnCCd89Ei/SvrRuyZ1tJX1o/c7+Verym6P8F3aeyH9K/8H0jG64HwHy+deap77O/Uf0P9h9Wfnfcr89vd2mVo7p9Tnr4Sj2k9PhO/4gjzT+y2ulbaUN5t9Mf002L/vCnvzYkXjf9L8x5t/E0DT0f/cOWzXx5Czlm594c//vpH4DfxzxMPfbb9cGt83Cod+5mn7c+aJo4/WAXezcid/X/+T64p+o/j76v4fap3iP6buGWxx0k8s3+0T/xyj/S+Mk+52L8drb0uT3+x/x4mHb+hKuBG8KR9T8Zf3jUSX+Rz9HMOrac9cj7N/WDsVSooV3xfSNytxGkv/v9P/k8l83f8gfP/hcfh7+nMd3lnN75i3xy75vw/XeybG/g+RvoH9NIf4r/wBDny/ySXZP7Xvi+ClRNvP3IX/n/nTetXf/oq+gv2wW/+n+00/e1V/Sz/r3Uk+eIfn3uY4v1L/q8z/+OZd+YZeYdGL/dFc8i7H37yTtNIOvbFaxJfL3FFyVuMM/tL7K3y7gQmLkzm98zrsec/A70B4Qe+yzM/Jn4RvrMvy/8e7oi/9vbDp9D7O/ETir+X8ZN3ymI88N6Jz+revz2+Eg888f0T1z/+0kuVG6pf9MfHKP0j/sf/Jc972iPvFUvlD7S+zIVnZ/nx24l/8AXaIX7Ceb9JvMjECcn6lvggc8zvsWNtBX/+v674vh4/0ryz5//Z87/s+X/z9fJ/NC/vkPlH+jLtsyW+O0rHPqyT9IjC++ws6c9inwbffblHlp918C/tdzE528Y+CZ38H+jeyuf/+87Ab/4PNf+POlD5/D9q3u/yv6vxY4h/Sfwrq6L7P3QSBzp6jV1y7BYSf6CPeTnvi/m/4rw73oa/9eR7VT+pAV/8U4v/O5LzYeJF1tEvs/9OfJdjfU+8qsSzao3P/wMt+6+zeJx1nXXwlsX3sD+ECiLd/ZDS3SAl8EVABGkESekGESSku0E6JEQapEFEEKUR6ZKSECmlBRR/M+99Xc5wz7zPP2f22d1Te7bP2XtSyqj/99ubPoDV0gVweeYAfpw8gKXTBnAt5VJmDOCk1AFMTzpl7ADWyRTAwikCuJB6GyhfJAv40wSwUCSAC14P4CDwdUgYwIoZAhj91QCOI39AvAC24/9V8BkTOSrFCuA/0E0Jvij4yYJ8h+GjY6oAZs0awIKkS8BfBHnyQT9ekgDeAe0y6F9EvgLwlwe4JGYAuyHPAvBnIv2Q9viL+t0pf4NyCeG7M+2zFX3vRa4tpCPIsxz5lwEXoJeb4FmE/JWRZwR0GkA/HXqrSflS1N9D+hrtVYlyjd8IYCL0V4L8bOC/iHx3SSeIE8Dr8H8VmBd8P6PvbsBR6Dc2/E2PHsDtwGvw9yv5u5EnOfpNg15ukb5LvvpSf3fQb2f0MwG6n8B/R+x7KXZ3NEEAjwC/jwTwH/h+BP5T8NeK+ivBNxV+tiH3EehPot2uYz8N0U858j+LD17s5ASwNfp9NXEAS4N3atwA9of+XPQ/D/gF8DL8DgFfI+SJD//V0W9W9FMAesfJn0F6IPawDb2kBdZA3gvIf5Z6w2iPHuSPRn+pKZcGPmqRP4X/c2gn8N0X+nOQ53PstSx6+A77bCs//B+T9uxGfiXkO4K8acCzjvyD2EUv+OoMP29Svhfy93klgKVovzvw9wf478D398jfFHyVkWspdFZTrh/489P+9rsa2IX9ryb23Bf6R7CnTbT/LdK/gv8m6Z3wdy1ZALfB56fInx3+ivJ/ff4viB77QD89/3ekfAfkm0P6bdL5lQt5t9K+8/g/NXj2kH8P+ZswvnwIrAn/deBjGOXfoX5R/lf/D7CP+8B7wLvow/4RHT3OC/WPgdjPZui+hR2/in4X0v8OME/kBpbFTt6Gv6boYSH8RSIB1D7bAyPwrX1up/wF6MaAr0aUSwr+eMjzO/nD4W8vfKSKvFx/Bfq/Ct4vyO8OvSfQn0+5OtB7G3zRsMNyjFsFkO8xevqX8q9TvzXwBOXikL/htQC2Qv/rSS90PZIogMuoV8FxD/n2Y59P4fsX5EsIf13Qz2zqH0Leg86P2P8E8h+B/yry36D/PaP8x9C5i31WxV7iw3c1xpc28LEG+h/a/6DzJfV/xn7eigTwe+rFgP4d6jeD7xfQ3w+fD6G7jP8zgb8d9VFfVBza5Q30vJjySWnPwdDtQ33XPyMpN5r8RJRPhH6rM97dxg6e0s4PlI/yjcBzifbqgbxboOc4cpl8x49r1Lvueof8YuDPif7LMP4tp72eou9PwV+c8qXgLyb6uYV+V4F/O3RzYl/OL2NJO884v7RGvm/Ivwa9DNCrkDSAW8kvC1/Z0V9a5NE+vgXuIH8F6Qm0R0nwvwr9ycibDz5XYSd5kCM/9Tci98fw+x78NANfH/j9gfIzwX+acak54+9Zx0PwvcDAalKvHeuJ2+QvwT4fMn9NgK9VwE7IXxC+7gOXu46i3A/wmwh+k8DvXsbbFcBj9KfK2M2HrIeGun6Dj/josxH9IRZ0vkCOheT3CM3XZeD3TfipQvkmyPsV9rQz88v0TgCPgu8p8nVB3onY3zvkXyQ/Leven8hvES2AT+AnPvR6U97x6Tr567EL1wlNwJ8DO57peES6MXJ1R787kDcP9FtS/jjpKfS73NhhLuDH4KuJfO+6noTP1aTHBSCqEfAk8Cr8t4POePRcF3mHYJ95GXe20c7fIud70G+C/J2chxivTiBnUfBeAa5H3jbgH0L9j2m/gaTPgm8U9t+J/GbIf5r8IuCLwE8t5DmPfUxBn1eQKzp2Nxm4jvmkBHxfhF4u+K8A37PQ60TwNCJ/HvhbwU9S+LkB/XWUu0x7jGS8Ooz8Weg3reA/B/bVivxD9PfOzn/wNx1+KpNuDUzGPHQausnhZy3pBuBvCn7t/XgkgAdIX6L8FuzrR9ft6Lc7+c3RXwvgVsodAn8r9yfQ3Uf6NvpvTD3XV41IXyDdG3qT0W8H9P8E/aZCLwVdPzGODnV+Rn+r0Etx+BhM+S7oZzd0JtGezcCfMObL9VaF9LuJtOvdv6l/NhLAGfC7230T5X6g/RYxnnZjfM1PuWPosQ58JYbf0ujB/e026jel/nPgG9CPwfiRkH5bC37/Bx33T3eh4z7K8Vj7a8H/B0m/jvyxkGMV/MSkfe1/axg/MsFnBuy9PvUzYG8t4KctdFOTvw99zgBffP7fQ/u6Pndd3o7y19HflwGI6g+fLUlnBl8G7CUvdnQePn6CTj3wjQTfv4w/I6k/FX0XpVwt6JSGv3buZ+FzIniG0p6x+d/972PkuEk7P0Vfv7tOJj2P+sPB3w36vWjPM9hZvlD/vYF86ah/w/EKvsvDR1fGqwnYzXX65UTS1cC/h/T31N+IPkujv1bYy13wxsIOooG/HfJnpHxc+KtHejvzwWzs+DbzwFzqX2L+7g90HzgNPXoe1Bb5Xbd6XhTD81vbD7iS8hPQzwr+j0753LT/NPCPgt5vlC+OvHNJP6T+Rsrnpf5M+HYf+wA89ahfAX0+oX5V0uXRj+NqVeTZC55b4G8BvwnBF4f/W2OfVdifLaL9OgALgb84/DtunYY/x69ytj/2OYZ5NKnnntTvCb5D8HnU9SX5a8DvfO08fZv83KTjQHct9ZfDj+uh6toT8toOu6Bve8VAD9GYN6+6T4O/16D3cwCiJsFffMYrx6lZ2PdI7HME0POgJ8AC8O3+Yjr8fOC6HDnuUq6X9gr9BPzfn3RS+H9MfyrE+NWM8T0W/M8ivwrjVFLWH2M9r6bdbiFPdvTj+afj1iLSx+C/O/ZzjPb/lnrHSR9VDuQbQTo95dpDr7vnOOTvBH9h8k9g79GR6yTpTeQ3x976MS6uJX+H4zj4+lE+M/a0h3RZ5AvPew+R7yz4PsUuRqKvjui/MPiWwH8q6B5FX96b7Kd8+PwgfD9UDTqDse/55PeFr+jU30T9U4yPpxmfC4DnK88ZmX8vsX53vek6cwjyPYD/14G/wO8o9HOMdioPPx/B3zvQrwJMiR3WAn9q/v8HvqbBf2znQfC9iv5fQKcN9F2/5gZfJcpNQ093KH8wEsAe5F9D/2ViBHAndn8A+f4h33PEpdC5B5/3wFcafnvC7y7sbQD1f0I/M6lXnfLJvK9B37Hg/z3oN4b/afTPL8g/QL1ztG8x9yfA4sB56Kcd401bYHvgC/i55b0L8uRC3vaMP9Ph/yP4uoCcDaD/OXoZh17/od4w8t+gfeMAPwJOoHxX5NvB+HPY/QD8D6BcNfjojF42QGcz9QrZDuB7DfqDsd+qtMsg0ieQ+wX8j4WO52yPoZ/P/RQwhfsp8hPYX2mfhZ4n0U7TyT+H3jwPLUX/0L6qINff4PmK9Azm//ciAfyB/ysh/5/Q+wZ5ZsN/5tD9p/ee3qt5/6l8eYF3gU3BMw/8f0D/Jvxlpb7nLeUoPxh6H0I/G3S3AetTPhr8doKe5z4fMD98RvulBN8Czzuww+Lo/yrzbTLwj+X/cdoP9duTPwY5LsNfHvi5Cv6GwM2Uu4D8X8LfAGB68qfB7+fAZdj3Q+/xoBsPe3hOffe/fZxf4HOW56aU/xo8bdB3bvhLRv1p1B/ouTvpVLRzNsa3veAL99MG0J0C3VLuQyjflPVfZ8bHNaSXRgKYEv2s8p4QfueRf572jcO4dJ90PMr1A+9fpNeDPzX1PfdJC0wHPAe/78PvU+TwHNP+PZb/vwXf+/D7BPmTMv8lAZZmHbGN+rnhuz1235H53fPax4ynb8L/I9JTSdvesbG3XxmHbP9F2Mt42iUl+Huj/+rMD+8hx2uMd2cZT/bC103oRAeWh94axsPRlNtJ/a30j7nQSw792aTdv8dh/NmEnrvT33qRvwS+hsPPLPDcRz+t6Reb3X+TLoV8xdBHceBd+IwD/+uhW8L7HNo3MfRHYQ8NkNv9YVvoJ2C8TwjMTfs8oJzne57r3UEOz/fKI18U9H9CP+dpX9c9W6FfFX5fB8/v0LlF/Zjk61+TlvzCpK/QPn1pH+ff/t5Dgvcw+okDfedvzwc8LwiP+/pZ/Ej6JPTmYSezwZ8e/O+LX78B+s9g7HcZ9IrAv+dsnq+NoXxd6A5Ejg60j+cKMUL7Zc8XHtAvK8PvG87/5KdgPTmHflIcmAY+5iOf95nebw6H3gHs8SDQe5ZukQAexi5yQjcWdrob/N4jux//gv4SET/2dRz6B0mrr3Ssu8cy7qQlfcD7U8oP9t7bfQb6KOi8D74dnlO4P+D/8eDL4z0I7dOf9vnT83nac6XrBOTfSb8pT3u85Xkn5dt7f4a9XKT+h+Afgl1pB6Ohl5LxvgzzwGLwOb/orzEafOH9l+NGTfTm+DEW/PVIO/8mdd0Jvmjooxzl+4HvTfS1kf43F/5Hgace+l3MeJAHPr9yfKP+QNedwAfkr4b/DLRrTuRa7bmk53vo5V/0FOH/2cDP4E//K/2x9L/6Ar0stR79w/M1+3MK+PgbfPbvr7xvQG9bad+5yPcvdjEHfD3RxyrS+93PoO+WnheRXxL+3gKWAA7WfxB53vf8gP9/ph0Wuo4D/zj403/o3QBEtfa+nfnrAXhaMB40B7YErokEsBbyDUWucqynMsP/B8iTXr8P+PI85C34d99eF7oL9d8gv5t+kvx/G/6/Zlx+BTs4hz4HgKcV8p0BLgA+JF//Jf0Iw/6D3g8eho/e9M8v4b818mfnHKsV6ULUz0W9tdQ7jJ5zIMc+5Kru/Ef57ym/Wf9P9LMO+2uCfo/RXhvAMxzYAfkqopcT0K1NP0lE/bjwPYnyF20X+NNPJH4kgEnh6w3Xh9CLBp+eu38EHs9dvS8c77hI/ffcD0KnMbAA/GxhfPVe4hzjw2T4r0X9tvojgv8K6fG0n+dT3tMUg8/F6ONt9PSIdGPs6D7tuRA9/de/qK8/V/1IAC+T3ki6IvgWgL8x6Sb6ydGeu5DvJPyepn4V8guAtyj0r6BP/Srqw5/+FvpZbCM/M3b9Del80D8EXymZl3+wf9I+p7Cv3sBfwduJcqXgaxl8PaM9mtE+OZDnFHLcpP4O/W+Q+wX1lwMLe3+NXPGYV79yHawfCvgrUS8x/OSj/3meUoFxwnMV/b0/oXxy6v/G+LYU/XTV3wM+91PO/dtq9NYGPk95zk/9/fBdivVLTuTPR/33GXcmgWct8Bf9sbH3XtTrCL/TyU+CXtWf7ZGI9isC3331k6d9LsGf8vcEn36ur9C+F7CbbymfBX0uQb+jSI8BvuI6B/rP9Isn/zv0H5f6nle2cv1G/knso4/9BfleA3826nvv4LnueOdn1wfQzU9+feg8dv1Nu23m/+/0j9V/gf6xC7gafryX2Ev7xvOcFv5H6n8Af9P5/wr67ux9jvta0gfdN5E+jzyeZ3m+lZP2KEb+bfTTAfzPKZcbu/NevTj/x4c//XPWwIf+TDegF/aLu45d3IW+9/KLwPsJ+Hq6X2M8+gj6e0hnp33P8X9X/a+h8zb1a9M+qfUfRZ/74XM767Xc5HeBn2rgP+H5B/X0/zsN/sTU0x+0NP1tKfLnYfz/DXppKd/Z+zPGxarei9F/k5NfB3nSwkdj6rt+me+5LfofBp666Lci819d+FhCfxym/zZydSe9HD7vez4F/qToN4PnYJ6vs/87yvh42vUk9nTJc3nwPkWeNLYf9ROBz3t87++jsR40LmYQ8r1G/UkB+O9+rhz9ayz5eaFXFX62g+cO+eOhlw45T8Gn/cf7sui0u/dmH+tf4L6Yfu+5in7OfbG/T52HwLce+sUZF2rCdzbgcP1k4Xs8+I7qx+P5JfJNpR0fe/8Bn7+T/5fnvOCbRv3ryL3MuAfyCyFHFvLHUL8N+vN++lfya1Pvvucb0H/O+PEQ+Aj4Nfj1n3fc038+JvmLmN8WAo2vcv4dg12vg/8P3Geh37GMF5folyfhT3/IP8A3jPaZin6NF5nEfkn//kHgmQ8d/WNXkK+frP6xF/m/KPK8gnxtvR+mf1aAz0Popwv5P0LHdUMe+NsM/jHwo5+i/om9sc8fjP8xfgw8+5AvG/y0Jt0JfivDbyHq76Pdc+kfA1+DsH/jCMowDmzzfg79HEAv6fQrZXx6An79vZdiD+c9H4WvWPAz1PMy/cOhl4x+lMC4GvCfZn51vfOp8z/5r4DPc3vPHY2/CvvVGw94mvzyrPfiAKdgRyfd38NfMca5ocCS9jPwT4X+A/SxGLlnMT+4v0ljXAP0n7Bu8H5iDva0P3Q+5LnQSfj3fDAL9n8YPM5fzmuJ+b8g/HifNBD9rSX/X8qvId2f8p5rjoLv6uhnGPXPwJ/+0BnA4/62PO3Th/b+Xf9h0hOwO+8jvL+pif7d/zYBv3GS7n8zGH8BvZ7kZyS/K/x+DLxC/zSOMS/4/2c8IfU9/ytBfnXw72Q80X9uM+1RATiZ+sZ31kX+1chnnEB+5He9Mza0DjpCff0FSkUCeJxxwHiM6+BPpn1Q/33PY50fKD+HcmOgvx38jah3zzgN5NW/w31zcaD+5frH/wjeotA5CRxB/z0BPAn8gvb5hfar4ryH/X1gXAD23ZF2K6v/JPpZCT9l9F+Fbgn4qwp/hcCXiXzPC0qY7/kHevsR/pp5X0W/mg70/rIh8/1txq+7UeDDPiaCvwz8PHW8DsW39uD/iPef5HdD7i2sT3oYJwOfh8Gf0PnN9RDypOX/KujnHe8VSVem/iLvpcg/EAlgEeQ7RjvFxv5v8X939DOadrlH/lHwzQWP/mP6e49BvtPIPwF5SiH/PNKZmA93wdc4+PgL/a7D/v8br/S38vwc+fSTymjcLfyMZj3tPdkYoPdkDah3BL4qwsdV7Md4FO8748GH8SmV0MdxYBLk0Z/iI+zJ+5dUzC/G1zn+ev4cvl9aiV2kAu8TYBn4+I36afR3dD6n/lHs9gmwLfAX8o3HLAu/+uXNAn8PynuuHoVdZYLebdrjMfw7TlWlXCr0Uhg7aq4/OPbbFn0YVzaY+dj7t5Loozzl9Wc2vnAV+XvhX7+t59DP4/hsPCVyPUL+xtSfbJwZdPWviIs86/RLpz1mQ78t9ZK5r9C/mvRSxjfjTj7VTxg+HpP+Gz6fkE4Oftefrje95/V+txb86D+m31hi1y/04+TAhMzH/xiXCf5PWB/1NV7Kex74vA/si/5jQD8z8hp3cIJya9DfC/2zjVMgbTzDVsaVuPAxDfvOQvt0xz4aGleLfSSHTmfo6le+h3Jfkx+BnvenYf/657R/YsqnDO2vJuv/CiwAHOq5gvEz6HNIupf5jwE/s/l/LPTqhOJv9OctB/07+rdAZ7rre/A5H3pvUoV6ccDXnLTx4zN91wE+vR/X39bzLv2vje9bgv5/NT4R/U+Hfm70H5d0R8/NnF+R23t1+7n7jeXGQVOuCuPzVOMNff9Av2HsWD/sY4wv49y/Qacy/Bdm/Pr/xZEYD2B8gPECJch3XdHPdy1C43Mz+ncrYA/jXODjfc5HFnNu9DPQ85Ij0FmLnPpdDAL/BOQryLjZnnTqkH/EMPjOHvKPOBIFv0Djbo3vu0b/uw7czfotl+tT731I+77H59Cvpl+Q/g3ox/us5q6HqN86tD7dpv8R/ao28lWn3DX9McG3AzzvoKe10NPvpxj52yIBbMx6cyR4v0OejvpnU99zV89jSxufht0vBu9i8v+gvPFl+ShnnJnxTx2gH4P23Q+f+r9kNU4UvFPheyP0ff+lb+gdGN9/cX3nui4lfLi+S+V5JPneR66Cf/f37uv3+U6P71tg16ngfy7piP6T1Ndv8wVy64eo36/+vtPYLxtfVJ3+fA+4gv7qfWQ75oO2wDZA4zqKMF5kZJ01E/l7I5/+zvo//4Cc+j9npr0yIdcxzwnRg/EH1ZErNXo0vuaq9yHQC8djeP7al/HHc1f9z5bT7l0dH6lf2PsR8jcZp+v4gzzO2z2BvYDeE0Qo7/i/33UO9f9AHy3h9xJ0dum/Q/4x8luBbxT8DSBt/PUp8HcCv/E9zi/h+I6m5FcI7f8dP4x3Xg2+8r7XEfK3uMY4MoH/9ceYYdwN9adgx/q/dvdeFj17DuP5i+cGFalvf/2d9AvsZovnZ4wz240vAu/P1Jvv+lT/beOf0Pts8vVPK864/y36WQb+9/XPQx/3oHMQueaTn5HxpxF8ZiC9nHJtkEN/DP013jJemvnrc+atsejnEfUuoN/vPHcl/0IoHrWdcQPo8zb0jBdWPv2n+2uPlHe943mA+3/v67oAB+sPAb546M93QkrSD7Po58j4sQB5vCfzfY0Y6CsjfDVE3ovMH8Ybej5v3GE+6i+gvdZjd+H90z7auyz0T2MP/cHveY3nN9tB4/mN/SMT8oT9w/S7dL7xnbM/oV+ZdtFfVT/WJL7/An7fUZnhPGc8Hfot6bkkdtYfPL57tFT/F/Tgfji78Z36t4TWXxv1xzAeTX3Br+en+lWG+6/vZ62nnZbAh+9ndaD+99BNi1y10U/Yv2yk61XSnXzvAzqFgN6Dp6T8BuOOfI/L94uwK+M5jfOsQb7+v66X9APW/zc2+m8HP73gx/FvOPg/QI/NwTMFeI12uw3MgL3mxt68F/eevFfoftz5xffcnF8mwn8n+s8u78VJF4f/HvTHHODX/1d/4NWUnwnsCn/Poef7exWBxpEZPzbD8zPHbfQfA/k2sO59Qv7rjBP50Ndx8j83bo30Yf0psff5wCaMJ7f0GyStn1E01hcZyL+H3lNEAtiJ9voJOVoad+m9FHrvgf5OQ1c/mISsZ45R3/gN/fCNx8gPvfD6WX96718LkN9K/2v0lov6+mfqv/oj0PeMjA/Wr+XPULxkEu8VfS8APvobv4xd+56E96OTTaPPWaH7R999LEF71UfPL+D/D+hX8L0cyqeC30for3foXTXfWfN9r/2st3JhN/tI65/p+0vZwO87O995voQ9X4ggF+2TDfmvw88G/nf/dobyru9d1+tn7Pre9xse+14EeEaCP+w/3xW+jX/LAR7Xt+OQpyD19cf7K+RH4r3oQPSS0fga9GeceUbqNSNdg3q+//Uq9Gx378m1B+ORjE9qTP5v+scj3znozDEuCvyl9QN0fQH/80Lx/TeAvwMLgc/3p+4g5x/woR9K2F9BP4Z90NcfeBLlt2Inzv/Zsac3gZmBK6Hzm3Gk8J/d8yTXh8xH4bjT4sgdfpdBPxfnh8rkbyXf95y+oz3GGG+Fnn0XoCZye97k/uMi+IuR73mB517h8zDfxykD/TrgM/7O9srr/hc92p7Gn7jvNv5E/0Tfo/qcfek5/f/hT/+uK+DvDJ9HfT+G/ut9o36vFX2fC/68r/N8/BPSVZ1vsaOMpM/D/x3fCwS2YHx3PPX8va5xseDNl+ll+R6gV+8HfY9rCvKOkG/jGdGPfsdfIb/nnPrPe648Avg947/ny78EIGo08Gfjpz0fY7xOh3xpgLfYb+Skv2Xz/pn1guPrHPjdQL82Hmev58+h+Fb32+6vo6HvmPTfV4B59QMN2af31WvRXy34KUn7rSH/FPzFAv+f5LsOSUz9Fcjv+eAq0iuBK4yrpbzvC+rffxu8vkvaifR88s+zLkqPXnOyPsxK+UOMCwkYJxICR+gnTjuG33ncFQlgL+QdR9r35SZA/5LvJaBH7X4U9qb/yZfUn2+cm/er6GUK66hNpDOzLzW+zvWlcXbG11WLQm7j44yHpP2v0J9moZevjKcL3S/7Ls019OA989WQ/6P+kB08P+T/Ssh9Ankzwd8K7C017fYN9Ee4f4Se49pl+Ijov8m4tYf+MQv8vlfVB/z6y7aknOd3veHvPfdN8FUA/K2x3y7AvL4TBT7H70nQtZ94/u99UwLgFtZj18jvTP/Zxbo/B7An+U2xx+ne0wO3eM6EPN7r//eeD/WHBiCqCbCR4y/5xlNuR273W+XJX0i/ma//TQS89i/PdaC/BTl9H8nzRu+t9cPJTv1H6OMh8IH+LNhPdPSzB7vwHbQp8LEK+iWx+/B+dWEovuMQ4/Re0oNdNxp3SP1v4G8S/esD7LO/fqru/xmnsiBvAeh5v1YQ/K5TvWd1fdqX/lIZOpcdP6n/KNSe130/DP72IE8GYNdQfFh9+M4K/Takc4AvDXRr61fn+wjeb7r+hm/fSZkBvEv/O0v98PohJ/Vr8H9f2m8H9mbc3kzsPBy/N8T3luA/K+P1v+CpB79/eT9M2v3/uQBEDQJWABanfibGhwS0g+ukPBlflsv3aTYib1r0H35PLQXzfxfsdzT8jgEe9L0q2ncn9lYfuvGR33VMS+g3CN1vNtRPln6xGngRWBV+9tKf9gE70T9HGWcDv+2hcwb5SkL/N9+ThK9J1Pe8MI5+YfCvX/Au9FMAuu3B8w54tO8dlE8CP/9DvoTQ91y6Of0gs37U6Nf3U2eAzzh9/VVcL2/RX9R7cuMFXS/R3sZn+T7C1/SPhtjVB0D9EDwvVR/h94mP+a4ScCdy3nS96rv81NuOnlwfNaX8N5R/HXkXw18K43fJvw0ftbwfZb2Qj/WC7/gr9xP63w74SI18ntetI78jcK33k/oJYW+264esJ4bp/8u4FA8+S4bO0QciXwn4z0t7xwrdvwzyfol8/WtK074ZKNeA/DfBq/+9fvdnfd8K/vQvTgc/YfuJAd5s3qt7D0t+dv1ugGeRs4Dxm8hbA/3Hpdws8MTFLnbT7x6S/pf2LcZ6w/dFi4buQ/R/SwL/vifoeq0e/LhO9bsgrk89T8vreEN9z9eMG21EOxs/6vcoNvjelu9bIWc98LnuWAFcBkwD3UTI89TzcsaLzpEAHvEBbdKb4e8h+KOYN1bAr36Cxh/r3+K9pe8SNsB+EqH3vqDbDMyHfL5/9ovvLwN9B831uut3/aVdv6+DfkzK5zJuCDgWepvIf0B6OPIN8Pss6L1iKB7I+F3jdY3f9X3fGti395T6J3s/WQj53D+5P+rme4/YY3b6TVLWY394/gH9uvBrf7V/doeu9+8xtWv692Lk8j3vpuC5RHo84+84z4k9LzdeDnquM9JCx3XGu8jvdzD87oXv3X5GPd/hLwnfcb3vpl6aSACNJzR+0Pi0kd5/heLTtHvbM01o/e2863zrfGyc6m7q+36d79ZlJf8Z69G53tvTH7p6/41+fkZOz7H0J+mLfL7zapyo7y0YT298vefT7r/1E46FPPoR/0j+LvgPv6u91Ph96Pp+lu9ppSC/LvW99/Me0Pu/BPTfJeTXAqbS34ZxfzF6bQBsDR79R9+lvP6j+pMqj/KViPOyfBPoL1Ge6/lOAPz/43otEsC5lEuH/j1feBf4zP0X/IS/p+R7gddI52T9ugm4ERjb/sN4pR/nePB9rZ8K9Ix7vgwfnl9Wdn+I/N5br3d8Qx++5xjun35fYJFxk/CxwP0V+Z7T+66y5+v3Q99X8HsLn9lvGD9KAzPTXmmRL3z+cYB0WdrH81DviY3j8X7YeKjDrjuNU6dc7EgA3T+7n3b//Fj9w1dsoO+l9Pe+GDxFyPc7Mws8XzAuBroHjW/n/2f6R0L3W9+3Zn69h56dZ51f9U/zXtVxWn+1/sjj+1G+k+x+p5DrA+yuBmnfw9pAf0tNP5wGjA+/Z6B7A3oz4HMa+Icx/+hvuZ1y12mfzpQfgD5qGmeEHvxegXG/Q8j3ewa+3+F3Wfzey07ja7HvTax7M7l/QL+rvL9Cz4ugZ3xOZuMe4T8cX/k/+ktN+ImPHq/7fgLpQ+jrCnaenvxG0DOuwniLW+Cv7fqWchvgPyH50SMB/A67KgD+46S9t9vjOxah+zvj2h1PMzO+GB9/zvsk8o3/2U07VmF957otvJ4bqV84fHbznk3/F997gK+VpI2/b0z7LGOePAPMRv0v0Y/7Q79D4HviU1yfwvdk0i/Q39/w3VR/J/TsOOb3m/xuUyfjq4GFkU+/lNeQszpp74u8P1rm+j7k3zuM8vr1psLespBfln4UzTg//fW9z/S9GOo1BCbwfIjyvgvv+1XvBCDqJ2B4fb9E/w/f1cC+/D6D72a47+pEu3wCDL9v2MXzr0gAHW8dhx3HHI+TsW7q4HcPoT8efsLzifOM/hO+i2tcxYfYT0v0dYF0bfppHeAZ/Yv1q/Y9QN+zgN+l+v+gp7W+N0B+EeTze2fP5UP/a+g1Bx6Gr4zY31L3x94/kP839QcYX2RcIfwkof5F+vMPnheQ9vsSHcF7ETnjOW8Bv4bfN5HvF+PdPV/RPwB7CN8f5Wc8SAXd8oyXrn98b+8N6ITfjzUuvBH9IPx+eXLfLQi9B3DD9QftPxs4S3ug/h7wf0y99Po7Oj9472o8cuh9gL/174Rfv+M1NRT/mTEUB+r8sh65BqC/Z64j0Z/vj1yFju+XfAr/Pfn/U+83oX/c+0HoTqReXfTvfYrn2fq/u88aDZ9+V9Lx2e9N+p3JE9BPAJ4a1F9C/T7y5/ky5eZmfBnfiDQv0/P7leH3VfN7nug6wX0v/PwFff1rpyH/P9ih/m/6Mb7LuFINWB14KUI96Pk9Sr9P+RH2cZDx2PHa+IyPkD+tcfXgK6H/kv6jrjfJH4x+npKOjnylwfMm7bcWevpJ+76K87X7V98HNA7A70T4fRfjOXJz7mO8h3bfjX7b0/gQ32uH7nD0Mxp+ZiPPIPDrH5aecVv/MP3FfJfbd5Qb6mdLfnH+D8f/6r/ZSf9c4zuMe4Gfy/Drd3c3II/f3/X9kqK+70K9lthPhwD8905/f6Dv81eAnu+vtGT/6PsrO6Hn+OZ7Cr6f4PtsvsvmO5HG5/aDf/cVfeHX/UU27NrvE+cg7feJf0Xf+mnOcX5B/pyMP8YfLsC+fKfuLebfKsjhO731wK//Qy/WVfpB+D5UQ9pHvxvfF76JfDPB34X8jt6Deh4Bv77fuAt8uXwnRz9b7MQ43W3g9z6jUiSAcyifBfx9sb9jvrtGuRXIN4Ly+vnVoPy7nv/C/yP40x5s/9SU9x7gc/11sDPjMquTbkG5wtBP6bvqtJfvT+zW/wp70/6k/7bxTcZnhOL2c1B/LvwnAs8243Qp57szlVifeN/n/d50+7vjC/bhfX+70PuHZZDH9/CdT51fHXe2oL+62P0M/t8O/ofev/t9MmDbkD9FbsY3/Qv0N9C/QL/QHLRT2D+0DOfZvg9cOhTfH/ZPNa65Cu11Gf1HN37FdRZpx8PfPd9gHGjh/RNyXaRff0Z+kVD72q62c2rat1HovN/7AO/vu8J/OD7tVeyxtv5SyOW4vwD+viT/JvneYzm/6J/qd6P8jpT+qRdZv18GtsPOPK87Yhw/fL1O2vVfBdLngH9iZzvgx/Wl7XceefXPuIDdTqGc3/1bo38d5f2uu/FGft/d76vlx87c57q/Db8X7TmV51NtsNf+jOtj6I/G+wyhP/p+6XLoRPc+MBTfUAk6/WjfFPDrd6mnoofWrmdC+zf3bd7HNocf/ZjC90XGD6YKxREafz3T8RM+thm3R/s7/owAr+PQHfgsgL2/y/zyBXSfARsgf1H4/Y16z5Df+xO/U7rY8dj43NC540Ts0O9F/R+HJJNreJx13XkUzVX3P3BDcxqEhHAzJIWURkkjkWaeJymkQXqERIg0Is2KopmSSJNSIiUPKqkkpYHmQVFShCa+a/3u691a37t+3/vPXueec/Z05n32Pp93dy/z/371wTLg/YUiPLhCEb5Xowhvr1OEm+oX4S+VVatWhN9XKsK/lN9D/cm7ScP7Tr0irFG1CI+Cd2zNItx17yK8qEoRnlK7CDdIF/Yqwhf3wLf80XsW4WD8TfH/vejWVr5y3SJsU6sIp8tfKv80/ByNn4+V2yL/tpQn91fK3bNVEf4G//CdinACfOcq14x8D9L3KvBU8r2t/lbo7YvOKny8Sr5r4F+4cxE+Kn0meu/Qb1t0H6lehEfQf91dirALfXakv0342yD9LLqHadcT4G8IX234dyoUYXv5D8ufrx1uh2+2ctW2LcLr1H+8YhFG/+eSe4ryk9R/jPw/q78GXIS/t9HrvnURnrFjET66QxFeT54T/V8d3vbqb4D/nF3xS08vgxfjd6T+PsA4eA/dpWD57dHBx+76xw7o9dc+Q+A7CLxY+/yKn8uUn2scXUk/ac+07wnSQ0racxR+HtOf/pL/yjZFuBV9vKx8U/m/a49n4O2L/omFIqyhv62gl/HyH0evi/pr6PlHcK36f5C/Iv5bkLcb/W9tPEyj51n0fA38W+NrLTz18P2G8fOM/jNH+enkryS/If4ngzfQR2f9/+WyRbiH8j9J95V/FfwVyFNR/qXa7xj8llHuCnK0k/85vY3Rz3qYL/tqh3PAR8m1l3Zaqf2rkrsdPdyFz2fBJeqPIf8C/a9X5nF6XwnvSfD1ln83fo6V/yD9fEz+bvTZAH9XKnet9FnaswW8/f3fU/0TM9/is6b6X6O/K721VK9toQjn0d9EeO9X/030ztJ/lsOfdaUdWI8+hhmfT8M/XHoI/b2Nfh3lv8ZfH/kV0X1CupZyT6H/rfa+Vz/4TPmDyXc8/r/2/zb47wnfZvl94b1ZuWrk/1F+d+mT5A+QfqtcEU4AB5JvQUE++Z6D/1X4tkP/Rul38XWB8kPpq45+dxp85Y3vstp3V3gvhS/t1Uf+jtpnZ3hmpl3ob4v5+lrzSln4r9eO88nbU3pH8l0iPcR4PBzfH0nvSP8L0R9Mnk7wrcdvY3wdhu8Ltf9d+J9pXl9pXH0LdqH/6fjpif9e4Dbk3B/eM9F9g57/Vv9O42+x9f0B+ngaH13xPxS/H6h/H/19AP+d5JuFzhz598CzB3l+he9T6UXqj/V/U+UroDeJXrvQ07HK1UKnSehLTygUYUv6/9L4eB/f25rvj1SuC3yj0P1N+uvM//S5VfQKtlf/OvQn4PNzfHyn/jn4vg8/y5Q/mXzHSWfeLZ2Pb8o+Qv1v8ddC/f3JdT16g9R/XP4N+P1QP/oAnJ19K76XZR+mP9yN7gD0rkBnpn7/HtgFvgvg21e5P/H7Gfn+VH5PdI4qFOFJ/q+B3nfm/7PUn5r1DN4PpG8n3zr7ssfln01vb+rf9ch/lXFSV/+urP89rT+0RW+affJo+TeSvwv+quE3+/Pz0u7gLeS9Rfl+yg0EGyn3rvFxPPzr6CXnjSH4vxbfQ8E26N9A3zdY1+uTvwF5N9PDZ+blOWAN5T7OfIzeEnw1oIfv8FfeurKEPJPp/zv676LeUVk/8FcJnuH0kX31+/7P/rqs8ZFzwC74G1Qowuj/4xL996afHvK3wHOb/MO03yj0y+LzCeUyfxS0/13kOo68Y8l3m/6yn/KnpJ/IH2lfd2XWB3g20Md/tivCL+1TF0uvI98i7fc2OJCcOR/cYzwMpZfK8nuRbxB6y7N/BUfip63yQ/E9hx6GS3e1P9wO/W7SH+k/Z6PfKeMS3APedfgqSx/D4HkUfwvMD5XxU5MeM39dZ92pBt9I9ceTv63x3QZcAc+mAj6170J8vKJ9j5bfTP+YLP9y+RP0n8fV/0K58/HXG50npbOOPZv+Tn+7qfcRehfC34p8m4zHufRwJD6ulT9D/zqd3q+Vvg69O4ugzFVgLfuLY8xTldF7RX+7Ar+jtV8j/F2I7+bS2+HjCHLWx8/3+Hw+/Q+9C+DdEb1O6J1svZim3db4fzP4SvbF0ln/f8ZfWfW+hf9O+68D5K9QPvNp2/CB307yZ8nvi17OY29mvtZesXfEvnFyEZTZCN4K3oD+C9plMD5nSK9X/3Xzx1z8vI6/d6XvLhThUvQH0ftc/W+lfn0QuQfKnyK/j/45UPsthKcX/PXRezj7A/PLJvktpHfOPEZPTfH1hvZ8kr6qo/Oq8bsNfT0c+xe8jcjfUvtn3T3efFhTuQb0lnN/JeP9bPy2Vb6KdDvlfpS+XroZ+kPw21T+4fhrh/4n9PeI/NGxT+V8Jf8p6XHkrab+AviH0/8+2nu09XeU8TFA/VvQr6te9iG3yz/Xfv0X+l+lPe4rFOEw5eaBq/DTH/1m6h0AVqHvMzJe0O8u/Wv2I+pfSL+t6P0g6WuNi1n4mQm+CD5Ljtb095z+sBs9/Sq9C36uJs+/o1/pdeqPx98k/5+o/4yhz8vJ34i+r4D/LnptgW6l0JHeWXoIfPvQx73qj0N/T3y1JPdS/fNJ/D8B3oSfs42Ts+0H2qU/q78E/l7KT9I+/a2PZ+JvNf7HkH9f8/bInOfLF2HsI0vs02Ifyb4o+6HtydcV/THmj9HgnWAr+P7W3gOk/5KerX98je+J5Po3PdxOn5PQK5d5FfxJ/kDy7ILPg6S/lX8L/USvFe2Dot97tc+20heid5b+MF/+PdKPK3cQ/d6iv8RueSkYu+ZG8m6Lv4+UP55+z5QeQR//lj4J//OKoMzn6HaQ/rhQhN/h9yD0GsEb+9I19PEd+stz7oa/l/Fahl5vhbev/vED+TP/9kBnLPwH6F+H4u9GeDfoH3PMv9/TQ2v6H4jedPh7wLMD+mfAf5h5o5vyzemnlfz52qE1fk9Vfz9ybta/7kf/AXCm8meg/7J60/CxUf4AeuuH/jL9sw45n4N/CtjBOro3feyJv6fxU8f/i9RfgJ81yjVEZ6D8JfiqKb8ffurS733432ifdLRyzdGLXTv94znln6S/fY2LevDuTr9nSdfXv6ar308/OBL93bXv7eS6jn7Gye+MXi/5z8BzMz5jvzwevdgt9yP3Mep/VrIuToQ/9rYflD9B/Tbku4h+R6C/s/NJT/p9AT/D8HGIdt8G/u/0vwX4Wym9JfL6vzp6Wb8bqD9XehW8s9E5lxyl42sBfq7EXyfrYey1c7TPbOmP8LPG/qCr9hhHvxXUnwTvodnn43czfhqCu+l/rcFDtGe5QhHeG/sa/Iv1uz+y/8q6SP4Z9h8zwRdjR8z6i+/sby7H7w30G3vFDPx2xFfsF2Xx/Q75nlR+SfavxuVPRVBmR/w+Hjz2z83Nk1+Bl6DfG/5phSJ8HZ2t4c9939/ar1r2D/j9SvmXc37A3x/4r2A+7JR71KwX6jW1/tfKfaH++5V0c/3rJXhHo3MP/l7J/hdsTO6sLydZr08BTwZvR38r5e+Avwo5t4H/Yv23lf+X4Gda7gf1z6nw1dNvn0N/vv6Q+7YDlcv9Te4ZS8fXhejnPuVK5XLP8qryk3Ne1C/vk19W/Z7oZ39wM9hB/QPthy7Wb3qqPzJ6tt/aoN3uLrGXPE0/8/BxNT3GHjwV3wfjbyf5U+lnIryN9JN77C+qKp/71dh9/9JfL878p3wbsDrYNPMZub5U/o9CEd5GP13xVwH/V6F7CP5Oxe+n5PnV/7FvHmc8Hws+jG6FrI/68wfWzRnkrRu/Bf2lI35a4ONS+F/UPz/C5/34uZk8Q/A1XH4D9Vvis/T+aX6hCA+WPxy+xvipS78D4S8L/xn42KD8ifQ0WP8fBP6JzoPk6W1+nSn/kviTwPe7+egB81Qf6egl96O5F90YO5H0z/rzWrCJeaBV9k3q51z1c9qRfm8mb+xPexaKcKHye8qP/X0Cvq+mn4fgOyb2A+XOgCf3yxeUkUanHv28D18H9N4yvg5Jf1X/Gvk/5X5Dfnd4T9Lus6TfVH6q8d8R3drojtD+H6rXC7+V6XEz/N1q/P/pt6W/x6Trw98595/oGBZlPgffBe+MHw39jlc+dsTYD3+wPrxvHP0m3ZCeC+jn/Pan+i/mfoZ8DfGXde488r1s3hlnXVhnfMYf5oncH2VcxY6PfvwL4lfQp8S/4ADt2Radb9WLf9PFJfp7Rn7Wl90ocED8arTn7/IPL5kPD9VO68hfAb+/k+du+bvK71YEZZ4CHwPvMI9djb8j4M/99k7q746vrEPLjb+sPxOM90PJcVjsM+T9Av5hhSJ8F78HqT/ffDC3ZH2aj5+R9iNXgyvsh1bD97D1Le11Fn19g//YtbNuxt6d9fQL7bdE/3gPnJH6yj+a+4v4BeF/G/KsJu8D6M3TP5pql5vAy/B3V/Yb8N8RPyF8vaz+89aVPYyP99CJfaGa8Ry77uH6zxr6S7vnHN4ObIvev/FxErpdyfMI+corFzvwh/hvkv0JfLtmHy29PvZr/HyR84v+U15+2dhDCkU4G/125D8k/oD0epryl+M3+4WB+Mx+IuPlOfSmg0dap77LOqFe7BHPx08S/r7kqU8fl8g/kP5vRe9s8mTeGY//2A07gm/FTwP+GepvyH2T/CbwHx1/tOxjSvznjpF/XM4l1tnjlPvDuWRZ9sPkbIS/U/T/7Bc3SFfV/1+I3VD6AXyeKv0ZvPE3OT/+CdLt2Odiz9tJPz0g+I3fb8BL9Ofq6v2h3d4y/mO/ahr7uflmNr4qx04rf532fQL92rmv0p6Z/3+Vvzu9Xqh+V/qsHv/SQhE+RX83ob8U3VHmp2fwUwX/6+FfYv96AfnjF9gS/oaZj/HXSrtuMS+dr/w12iv7rd4l+67n4buZXuNHFvto7KUf0E/8bTZqnw34O0L+OOkD1bsJfwPIfU7sEIUibFPiP7yW/BfFHwu93KsNUu6yjMfYU5XfE90/5E/WPoPJU9H/K6RnxL6hP3fJfT96d+DnAHyPkD5Yez+pfafiq7ZyOTf1JOd++nv8SGrJn0j+c+w35scuLp373P72Oz/jryt9Vlf/Pv0pdrzLwbfp7wd091E/93M74i/+eUfSzy70dn38Z63vFdG9Xz/KPrJyzvvoPpDzMf3MJ8fu5ple6u0nv7f+3gw/HdW/Vrm+9FJfP98bfFY7nkye2N9GZJ7XXi2116X2ER/kfp98Z2m/FvE3w8eh+nOdnFPA/dE7AJ7L6b8feCh5fqePz7Tf1dbnxvj5nXx/yx8I9lMu5+rv6f+q6BXeW/D3I71u1m/uz30W/PPMC/8F54P7kb8vOrnfbYNOT/qri/7+8V+V7o9+L3R3As8FPysUYSH+NvDmnjH3i7nfPBLM/WbuO+fh7yz9LPcu35DvavJvG7sq+eK/U4jdDL0l0leQf2z8b+xPVtH/efHnQ3f/nAfwNYL8i4ugzB+xq8IzM/73+BmH7nLzzSR4HtWPcw5shd7W+Bsv/SB5OpP/zPjHwvdJCd7cV59Mn2/T/3jtt6FQhI3iT6/8f/BxJf4f1n5lle+An4fRv8m6u6N96Pbg+fRxn/E6K/eC6me/crD6J1oH4xd/qvZ9TH4H88+y+Pngp796lcGN9J31tD75sw/oqZ+dpz1q4mccfpb7/0F8lNoPZpDjqtzf0d9R9J/7yexjvqP3UerN9P8C9cuhHz/HwcptQW8T/HeTYyx4fPZH5F6i3HT5UxMvAn/Wr6v1n9gb25mvEteQOIcjCkX4k/wH4dmqxD8z/gBz4F2oXPwLsi9qrfwI8mf+LZdzVfb70llfRxbBP+fRnE/3kv8JvR0Ixu+sdubJ2A9jZ6eXJvT3Zfyi8LdJuSfpa6b+vyzxMfi+E/0ayscuFDtR7EPxz3xHP3hUuaHoZZ5fBk/sqPF3+i32H3jH0/dS+dearzqbx8pbX7qRK3Fdi6Wn5J5a/YOMqzLkaSZ9nHT2V3+C2V9lv3U3uu2lD5Wf+4N2+mf8BsfgJ+P7hZyX6Psj8nWWn/ukxMVUVK6b/HfwWzP+PsZ59g/z4b9He4wjx3vxs0EvcQWl8QaT9ccpmVfMH/G/KGu87R8/E/+3RT/+um+g+5T2Xk5fldBbof67/s/9wyxy7w3vv+C5VDrra6n/TuLtdpdfT/ncYzxPH7MSHwX+lnM0PZ+gf+U+8Gzj/3T6O59+L8ZXRXQu0n9K/RqeJf9h+Hgo/qHxL7d+3lnrf8Pd4b1G/f3QP1f+6+SsAe9P+F9ofT0ufivSZ8LXKuuWfnR69vn4z/3iEHhzz5j7xcn4OTH+0cqNiX2qCP6Zt8qSL/NXy/iXxQ4EX1Xtn7iKh0rufw6DP/55czMPK7cTOdrQ78T4udsHHxT/W/N+/CKvATfE/kxfH4K3qRf72SLrxQ/xG8bv0+o3Jk/8iuJnFP+iN+XHn/R3clQk//CS+J6zS+6Lxyj/M7rP5p4S/bfJ+wi9taaPXdB7hVxvxL+Pnr4yzw/Tvy+PvQT+NfJzns/5vrf54Fj8ZXy3op+M84zvxEfOSTwgvuK//Qi8l9tX3Cud8+uZ8A5D74qs8+p3o5cOWffwE/+8p/THrdVP3EZ5/bO5+W69fdfJ9DhTuYLxk/PRftIXx99Mur92mwVPx8RFav9jYkfEzyWxb2uvHtrxhqxDuZ9SL/b/+LffLH2c9sj9/jfm8do5/ymf8+Ih4B3y+6ObdSnr1GL66af9DoY//hDVE19Hf/Erf1T+avLVzLmWnuqBx6CzUXvlHNqc3GXi54SvxC0kPvpf8cfQb1ri7y/4D4WntvaYa5+9J1gfvtfw/yp4kvr7oDvK+JkKfps4XfLWz/6e3utJJ671B+3zvHG+MvGo+PuYPLk3zz167s93RWe19Hrlq9BPB+n75dfKPkL7/qlfliff3/i/OnalrCvauX3GV+LL4TsLX/HDTvzV2OxP/f9s7lVyf5B4FfX7kecy+D9Xf4T2uB+9GeRrbX3OeecV9eOfHD+PzP8X5X4l8SXGW9bXaTlvw/cQfrOeZn39JfMffJ/h90d4nox/H/3dJH8P+M5E/2b9/z3/L9bOn8nvoT0esO/op79eq3zi51ept6/+/gY+W+NvNvpP4G8Z/TVWvpd+eQkYf9e0+2J6fwtf12rfxOedljjX7BtzP+L/RbGP5f0B9Y/Hdzntc6r8H9U/vOT+IvcWq9O/4d0H3TWJ1yNn4tkS59ZducS73Z94AeX7ZX8W+xt9nKP9c6+/A/7jf3xQzjfwTKS/WsrHPzD+gvEPPBD9X+ipKj6z/0r77FfSTj3TT9SLP8Bz8GX+3pLzOr6e1Z8awj84dtPM/+rvQD/bu2fYmLg79BJ/+zf56/r/vdwH0seriacg1wnxx0Rv65zv8g6G8k+T58Gsj+pvJE/s7fuYVxuADcEt8fdAJ/fpuW//V+7/pRfC2wj9Nuptpu8b4dsi/UD8KfBfVr3N5H6tUITx55yu/n+Vj79nGeP5Avua5+A/Iu8YKJ/zbs6/i7TPMfA2z7qsXjn5+8GX9xf2Bi+jz+b0dTh4GBj/tWvjP4/+NdIt6PMy81dV81DF7Ku0T834c4GJZzozfiDSg/LuBL5vQj/vp/SyD9lQ8p5K/LdH0ctCfL5REp+d++fR2jn3z9Os2/eV3L8Nz/scJX4128If/5pS+S+Xjh6mGbfbKl8aP3ibdXcA/o8yPu+kh8HsC6ukh6Yf4e/pzH+5f8LfYbGPkb9RzrP0cBr6LfB7B/r/sp+vit7YkvcTEifdDp0/rL9n4LPUfjXZ/qKGflgdnEWOd+jj5sR1ac/4aY3Bf0385d2BVeSPv3HuPxrGPyzjgXzvgC/HzwZ/fYqgzDXwfCj9Dfqvab/p+PyvfvAD/MfSz6DYM+R3lF/dvm6PkvjaziXxQ4kbyjsNOZ8kHnBy4rnxlfeF3qL3+E3Grhn/ycT/vo/Oof7vr/4k/6/OOxZg8/gRxL9bP+sTPyDynSm9pWSenF9iP4hf8o6xT+X8Dv96ch0VOwg+p5CvWuww0lWUn4jfmfjIuyIPx34Xf175t8dvOPE18X/N+xPKZ/2coD8/Ao4HZ+PzGXzNxdeyxMnCN5jciSeNn2z8Y5uTP3bx+OFlnz3IfNfa/Lc1eGnm/8Q/0fuXuffRX06in1vJv0R+DfJvbf0Zbf4qmO/G4W90EZT5UH6pf/VW+nX8i+NvXBl/jfCXuO8h8d/O/lh/OB/+7ONz/5/78NyP3xX7tPw12Tfk3hm9+IcmLjrx0ImX3h6+U7VHH/IcmnsI+unq/+xP71X+BfkjzA+rrd/P0+9z8N+E35znRprff8D/evm5H8l5a4H8PfDfQr2WYN4Lq0qeXcGKYOJ7HoL3Ffpug950/Me+em/80bKP03/fcO6ohG7uq2Nfvo2+Cvj5JPt9+C/TX3rIvwe97eS3ln5ROycOfgl9Lbc+32xe3ST9HX5+gT/xwuVzD1Eowpfg/1I/HR//VfTTf85G91Z4WsiPXe9U+klcc+f4/ei3f+HvQ/r/Cp5y+sXx8Owdu6T2mE2eI7POGH+3+r9Z/L8Szwpve/UTv5h3NGJXzP6nATzbgHfT18ZCEXZQ/599Avx/at89zD95Hyr+vHkfakv28/7PuzXLwQHmq+zbB0k3VP+T7Avh/wQf75F3Wt69wNfOed9MfvxxW0uv0E7xH4+/Qvw+Y6eL/2cb4yvz8qfasavype+hxR+mBv5XJT4sfujoH4H+O/Av1a6/5R0c/Dawf3gp9i/p7NcS3zVX/9y/UITLcn4j3wvo7pj768yP+lXd3IvDl/cPD6HfrvA38H8X+OsaN/uCE8nRFf7Eva5Sv1bOU+rnPa74U52O/+w/nvJ/E/83pYe8L5h7/RVg7vWr4LOi+WhUzpnqL9U+sW/mXJxz8j/2TeM17xldJl2BvoYWQZnN9FpduXXgCnQfyf4+71Elftm+YJh9wWjpnDceMi5rOGd3id0tcX74ORKsZr6pQw85H35Pzt9KzovL6f+hvEsWf/Dwi/5zsZNp57/o54usV9Ejur8lXtv+ZmPuneK3Rc/Hxv8k7w9ph/O0z1TzQW9wTu5f4cn9Z+Lr/qKfxNedk7iN2APxdy/+/ybfE+BQMHaoHubD8eB/wbX01M1+5kjtlndPnqe/S+n3tfgFxq8//mP6Z1vt/3P2TYUijD201L8y90ul/nrx44u/6A/mn5X0fKF0OfVL56sd8t6d9ltoXL0eP33z31+ZT8m9HXhF3lHCf+LFS+NwVuU+W73cG02ih8S396eftebJ5WCl2P/J8zsYf5CryJf33i7IO530uUOJ//Hl5Cmfc27eZ0mcF/5eyPsPiT/X/8cm3sH4GIT/98i/i3Z9P/Fj+LtTv/7SOvqb9JvoZH/eh7zPq7dv4nP0x0HGdT394bzYZ8j3InyxA+U8c3TeT6DX9vT3Djq7JW6hUIRp38rwH0Te6DtxbAPxtw95X8fHsfTcDyzt76uV+0j++SX99wLp6CP+B9uhc4b+E/+D1s71u/g//sDx/30d/ZXxJ1Tvlrw/A//36CYOJuOntnTegYg/Z+zjsYfFPjYy+0f6j70gdoTX9KfYE8qY92OHij947E8fx68W3thJYx/91PzbI+fTkvdLj1A/8YPx/098zAh6Gx7/Z+mhJfaYvNt4K7h17heI8Qs6O+uv9bVf4i9awps4jMH0827u9QpF2CzrE/7uyn1mznfGQRP1vyd/AVwJ5r76MePtNOOvJjoP4u8K+pwtPQX93OfEH2GzevFTuAD93cm1S/xISuI5xhVBmS/BgWDeAWhiXd9onDWW/gsf5chRPv6g0i3wl/iO7fBXek9SWXs0QPdZsAk+r0u8eu654O8A313a76y8M5J4Pfjn67en67fPSF8Hz+/wpD/0QP/FvI+X84n6F6B3Ppj3S69UP/5M8V/qRL5h2mmB9KTYN+Mnr97H8ExU/+rES6LXDmyu/l7Zz5En71CeIr+7/3P+zDtWOX9uoN+O4LDYy5RPHOlj4NHozZXeTr2LyHFR3gUque8tjVNMfGTiJn6VPgr9fvpv4k4Th7qhJP60VvYT5DnQevI+On3sRw9DJ34fp8D/q/Fxh/rxAzvK/PYWfU/N+3z2C3WU75/7QPIlLqKz+j/irwd4MRj7ZU/85V75kNx/wNPXvLxN4t3o58bcX6Af/4y8x9E560D84cGflBsc+1PJ+6h5hzP+KZvUy/l5rXKvod+bfq43TiaDiQ86WP1H9IvpedejUITvmFdy7/cMmPvAnHtPTPwafvN+WBX78R5g4ogSx5L2iZ3uw7yDmPkBvvjV5fyee5q9tdf2+kl96Up5nyLtSm+T7GM6JI4C/cSr/RfenG/yvknu/Xvkvbb4/5fc13xt/u2T94vQjV1+QvZr8f9HN++Br814j/2P/N/qF3vV/9/0z1Pvffhu1P8b5/6XXnPf3yl+Qso3xe8J+vGB0m/HP6YI/nnfL+/6xW9kY+w5+F6e/UvsU/DdlvMF/V8R/3X85H2e+L1sp37eh8570Hl//wH85f3nTvjIO9B5//kNfI8CLwXnJd4399X4OBdfL8mvar5aZxystT/K9xviV3Np7L/pB+ovMN6e1A9fB2eS7xfjYh04hpx53zDvhWX/WKtk//i2/tcncRKJk9X+D9HLWPzGrjxK/bxLlHeKBusHeZ8o8cuJV0788gHqj0i8SOz2+HtV/bx7vgTdvL98NH6W6g95B3fHxGnETuP/vBu4s3TsOD+h00z6bO24gPyzjYfelf+3XCfnfib2PfxknB6g/k7yh8dPslCE26N3H/32jJ1PuW2SXwYf4NlgzoOxp3VGJ9+JmI3OD+a1E+mtdHznvYLEB7eXjp0p8TOP01viaJ4g/7HaaxF65XO/Lv+DfG9AfqXc39LX/sbFlfpPU+l71F8Ye7Z1tFLuteXvmnvWvEdBn6+Rr4v++J/sq/E7OvG7ObfB315+xucr8E3z/+HWw7wjsF463yWJPTH2w4fgX4S/+7Pvgj/rTP2cl3LPqP0/Jf8KsCp6E+B/NOu28m/m/IveMuvt64mHNx9tku5I7p/yrlPGFfyl7xPney55H7qO+Xypfdzf0k/EPwze/uaZ7Hf30m7D9Ke8V3OJfhg/2Dfxdzr6jfWTxEcNiD+M9jw9fv7Sc9VPfEXeM3pd+m3yLKa3vDeX+MoDtcc8/bIL/cV/NPJk3x4/iOzf7ydP3s9fK533q+rrn7/nnQh6WRf7B/maggeCud+egq/JYHX8xr8q9s45hSJ8iHxbwb8Yvn2sH+9KV4h85t/M26vpK/N3S+N7ALovSucdzNTL9xmOL1kPVki/Tv/DlHuJ/sfRV13r4ELp2HXznvo3YN5bz/vqA7RPjdjRyH8O/XTQXyuB3fXjfAcg+4Vqsd/rh3n3/Dz/nxr7XuKe4m+pfpfY4+R3l25mXE+k75wPYi/dI/ej+sWN8rvF31z+j/jYgL9/o9+BfpfSy6rcj8D3Vt4vweer+OguP/f2ecewAbnzfuEf8TdW/2r9qCw+fok/R+J98DFBur768Yt5MP6buZ9NPIz8zsbfbvGfKnlPMe8sVpVfKfHkidvJfoacczK/kS/+r/GHzfed9kwclXVwHvkS77YI37PgaYzf6tLvKrcs8Xj02xj9SeqflLj4xM+X+EcuSjyq9v0q5zX1Yk9aUSjCobEHqz+dvv6V90vMWy+A1yUOFf835n1o9fN9j8SRP0y+2CE6Ju4A/cSt5XsRVeLvmvikkvjLrNOJw7wq/Zg+uisX/7y8H5i4i7wfmPiC9lkP8h4SPX0qnffnEveVd+gSH1L6Lv3e8UPPPQP9rDb/Hmc/Gvt92n8sPN/Dcwt+L5KfuIlzS8ZvA/z/Ert37PDxrzTvHkoPebcl35nbyf8v4C921A3k64J+9Zyr1Y//2q3oZR48zThrH/9X4z3ryN7S8Tv9BFwO7q59a2r/e8y355l/8774Cvl5H7O2+T3vY+a9zBX2p5+CHyv3tfobYz/Ff/ZHn+ac9H/EPeQdwcWxP9NP/NCuob/4tcXPvDQ+J/N3xm/eybko8QHS8ZM5zPhYn34P3we5b8k+Nv6H9LGX+WmlcXxw4lLgG6p8Hf9vpJ9G9BU/74747o2/vLt6F/7zfYIj4Mu7Ynln7Mv4jyqX75esB38t+Z5J7Ouxq3+JTuzrg8jbRL+sqNyv0iul65DzKvqqnPkp348gR+x/3eMf83/4/ce/6uT476GzEn+5//iV4PkuzVrpfK/mn++DoLMZnmVpT+Mm73NcpN0zv+a7XC/RZ77TdrL88dnPFYow912537oB/zlv/gf9fB/jFu0xMO8fab+8F9NZek7sknkfhTwtS/Z7E/DbhP7y3n3sn6XxNi20T/w7voH/yMQtJF6DPnPfd0fOe84DX4HDnTPOgf9N6fbGRTl2/vvsJ3vR577Kvwhuiv0OvfvodQb+E9+zf/zJ8JfvpOR7Xa3Jne/CjFI+8YXpt8+hOyTvUtLfnva7U9TPfUbuL/J+0raxe+I772Pk/YV6efcSvCL7a3poRC/Hgi3wNVW/mJbv/En/BH8V+iu9d8/3oI5Rr7P5pZz0PHLcg85v6m1P34lfPib21cSz6Zeb815f+rP/D6GPg/GX9xHzLmLe+cv7I4kfPiX7bO13Ruyv+LkQf6ep/1rsi+jHflsdv33V/8X4zvc/8j2QfP8jfsH57mLemY5/cN+c32L3IkfD2M8SV6veaOto3nfIe3b18Xl94n2zr1E+73LeZT0+XfuN0D9mknsseo/H/oj/2C/yTmLeRxyPXt6vGGO+yP1ezttZB77Je3Lqd8NH3h/Ne0Od0M/8/wV8k/G3jfzsK4/0f+n+Mu8Sxv8l70x+jd6W+Cuqf7v0Jum8j/o4+o3JMRa+vBebd2RvwH++V9DBuJhWBGUmJM4J/SfRu1X9neMfnP10/Kvwk3Nczm+zjddTcm8af1H08y5H9lN5/26f3E/hN/0lcTTpf7mXzfcOXlI+97Nn5H1T/N6qXOLb4s+Z753F37Mq/PE/TTvHDzX+p5PR+xx/n8g/PvY14y/v1uT7Wnm/prX1b3v5rfI+E/31gr8f/OPVy/5piP4cv5S8t5z3lePPEv+WfL8y/i0ztP/f6H4EJh5kivE5nl4+lK6Gfk3rZr4HUcl6mnifs6Qflr9COu+TzNK/4pc0UnovcuR8+ib970S/b+A/fgN5LzF+A3mfoi954t/c1Hkk77uPSX+C9050Psn+Uv436rfV33Mf30x6dOJwYoeNvUT/nwgmbuMDsEneP5FOPFP8CyvYN7RP/AZ5psN/BPr7w1OeXm8gf84HORf8jc+cD37SHv1K3inrpNw8eEv3J/m+ZvaDiT+I/3v84WvBk/vrWTmHGh95jy3vbr+Z99zoP9+1y/ej815Cvgd1Gr1Uy/sY6XfaM/7PiZtPHH3i56fGX58ciWs/PP3D/8fhY03i99G/Cv7cD+VeKO+EJ74p8ZUXkmNg/I/8/xb+S+O7f1Z/Tfw+1f9Qfr7PN1x+vtOX+Lp8r+It+9NF8fOSn3i7KonjA/P+U+xJsS/F3lSNfL/FPuX/L80nR6kfe/i+uU9FP/bx2/HfMH4j6b/aK/59Gf8Znxn/J5iXHjYvrZHOe2mrnYd+BPN9qHzvPd8tjFz5nmHej8r7lNfnvQ54E3/2tnLr4ZsC34eFIlyU7xWC14DbkW9b+qgAvqA9cl+1zvjfK/cUeSdI/f8BD02Kh3icdd159NbT9gfwr5AkmhSJ+paERF0yFIVIA5HbRTJnKnNkqpsiJSohpLgkJENJotAgDYYohISkgVSERDTwW+v3vN53Lc9a9/lnr/M55+zp7DPvfZ6Ku5f8/290aQFO2LMAv9u7ALcrW4AdahbgE3sV4LX1C/BA9cf4XmOPAty5bgEO2a0AZ8H3mPzt9inATZV8V351xQJsLL+d+oNqF+B8dP6Ab6r8ivjeWqMA9ydPjTIFOLt6Ab5fTRq9X/BzvXr/gX+c+qN2KsBl8D8m/VM99XYpwCXbFWBN+ppPP3eVK8CV8p8h32ry9NmmALfF50j0dyP/PfD/q2oB3ic9X/3vtctP0ku1x/PkO4N+j6pQgN/AeyT+2qu/qk4BXgPPC/Q7YYcC3L98AZ5TpQA7wP8wvX1cWoCXq/+1+kPwexX8HcjXFP3dtd8S+u0Gfg/ffvL/wue/5d8m/w/0H6hVgM9tX4CttM/H2vcE/JbHR2/0T5G/Dv7G9DdEubPQOxtcJX8VfO9K74H+Leo9B//p5B3ke2vld6KfVezlNnr7TvoU7dQJf8/QQ2f4DoevlD0/wD6Gw9sI/X+hd4h6bdHpmP4lfwM6f5biT/5X8PbetQDXgT8r9xW+qtPPIvj/If9r+MvD1196lvTH0hfgr652aEW/n/l+K/2etGMBTte+89Wvhm4r5U+T/wF8m+llLjtuhf5Ztf9ePvVH0V8P8vVGv4n8fvIXsrdjwY/B8fQxQP/ZVb2zdy7Am9H7CX/tteee+JksPUR+qfQEfCwjz17sf6T83bXjo/TXRf4c/CyV7on+dcbFfxrX9jdO9UNnrP7eCt/rjCMdY0/0/yG6l8P7KdhS/59JL8dJNyfXMfh5Gv/NyD8z45Hy9enxdnRuI9+L6n+gXtp7ifpr8LdIvdrKXVlagK+y5xJ4jpUeSL6v6GUpWNN4enfmD/i/Q3cO/Mvlf8J+TsLPj/ioIb8B/TfXjxdIr1XuC3zdrvwV6GyQPli5F+i7N3oPsu89ybOXeiuk/638H+TqlPFL+//Gvq/W/5dkHlf/Bvg/wl8tci9Qrgv7fE3+p/T0CzpXqN9Hf9zCvsYa/25Q7npyZv0wB75t8f+I8h+z05u0T03ttxndw/E32veMc53Z89mZH/GzP/l3ZLfP6D8XGX+yDqqI3nR6mwp+jf8H2G9V+JtbD9Ql1yvaZTl5bsdvWfTPl1/B9wfQzfrjHN/L+L4GbMne7tJvXvJ9sPQj9NlK+5+q/HbkPBT9pQVQcp/6z0hvQr808ws7bEyuzuBx7CHz5+vwdEZ/EPoLtd9H4DT596t3H32Oge8A+bWkh8G7VrmHSgtwnHY/Vbqn8j3I1zLrD3Ah+7on8yj6u/neDJ4r1H9OvUrob0S/M/tO+/8MTzV2kPY/jj1UUG+0cn/R75fa/zl0n6DnXtprf3ztgf5HymW9cYv2vlsaupKD03/176X69WfwD8FfncoF+AU5plm/9qCfPbYtwJXWr1foL2cUjb+34+/VonH4ffxV1o8vUW4g+kP1x7vBIeDJ8jcTaF/y3FRagOdqn4Poty38k6Uryv+T/lZqx57k6kr/Z+nPd7DLKeQ7HZ1D1LsS38PwM0j9sfQ1Hd2L6PMp+bPpfSK9dNMeWb/9EruEt79yh8vvL//8zKP08Cm4VfnO+K2lXeaivzHzo/bIOi7rt23MS33Y5wD196D/Ruh+q/62yi2Gv7ZxfS96qwmuxt8E/LeEpxN6J6F/N/4zbvykfD18VNCue8Y+8fG7djzefHoqvF9I74heL+3TE2yjfZ6j7wN8X6L96tPP4/Q/if6yb6yK7ingcPwejK9z1H+b/lqov46ca9U7gP4yT72hfOavi+R3MX5uq1zW0fOV/4Mcr2X+ws856PSmt9e100ww7XOvdHewKj1szv5Ue+5HTzeQ83X4h2b/4nvWPWPxP9T8eZV5tbd+diB+byLfBfBVZF9D6P9Q+puk/BPoZB82Dr/X4G8vcDQ8JehtVG668eVe+b/RT1l4O0Wf5B8eu5T/M37uR79F5g/y3kX/d6vfSPqYrOPgObO0AN+Bb4p0A3ADffQyfjwH343Gjxvppxf+++GnR84P5Ge+PxidI8id9n+B/tP+jbOukj/SuH+c+u9I/wLvevI1gHea+vfh/3z5x4cuWIadLNJf3yZ39ks18D+G3srQ733OU4ZkP6dd99SuraXflT+EXBfCO1i6rvxb0S8F3zSOPKP8R9mv4uMdfPcnX/F+I/uQP5Xrx+5fYZeTwXeyn5CeDU7SfpXoP/1rT+Vb5Bwu60vt8i/l1tPvZvK9L51+k/60D37rwTfS93/7Ppn+91b/VfY1SXt+j7+l0g/TxwD4Jqc/6H9jfb/K+ugz+C5Bdxq6H+JzI3wdcz4GngsejK+ji+RvC8+b6F9M/znnLF7f/5vdnIGvxvLPpe/q+kc7+L8kTx/4Z7KbrPM3sZ9P8HcavJerfzc+qqu/V86X9KeO8Fwm/ybz2HByjYCnC/3XxM8V9NKJPDk/PAH+huQ9Efyc/ZRqv7W+34iPKfT/tvz02xXZj6h/r3Q/fN2U8Vn+OP21Z/qJ9K/kaWQ+jn774eNn9ne2+aO9ce9EcnZTbjz5s/C9Rz+aSn/1tU8/cvXWPjXRn0++o9VvRM4b1e8D3yfWiWvVu5R8Lck/Dz+10GnOvn8i12PSK9A7nH4Xa6/PwEXgOPgux1cndC/I/kD7n2Z9fSY91KPPS9M/sv7C13vZJ6hfJefLwYvOafS/q+8fwrccnqnwLDWe9tJOXfBRBf+P0v848AL43yf/1+aT4fCen30me7lZu08sOsd5Gf0DtecR6Z/K/6H9utNPznlnqDc65/fKj4T/IfBQ7XuK+itz7qx9hslvjp+W+N3EHlaQ80n6mYu/3dB/KueP6c8Z17MfzHkQ/H/KzzlYzr/ms8sG2nNa9iXwn0mek7VPC/b8mXmyFH91wK3kXIL+PuxnCj4X0GN9+JvSX+xue+PnJezlJfxPwfed8GwD/2L4Oyp3FTmfU/9YfGYf3RLMPvoc+nq+tACnwpvzyVu1123w9ZX+Tbmsy0bRZ9ZlS8iX8/ttsi5mD2PRbYP/Ufifp/4p8F2uP9RKv8TXYLAMvewCLmM/I+DZkT5baJ/pvh+Gv9fxvxI/26v/AvpXaP/R2ukA/eVt+hvl+wJwlO9j0OkH39Po/JD7K/xfLj/ntafi43v83ah8e/L9qvzu6p9Ar1m31aCnrfBMK4CSfZTPOUcb+J/JeTl+B5J3ufQZmeeNNzerf7v0O9p3M/7fkt4infVz1stZP7dCfwX8l+Dve/YwUfnf9LtdyTeC/fSmj53YTc41fkPvPPgHyP+S/hfjqwf8k9FrS1/LlJtAzuL1cyP8jlV/iHF5Bbs4Ur3cnzZiv9uB68DB9f/+vTH+y0p3lH4y6wfp7OuvVv+FAijJ8P4wfd0kfyt+S/G/mT66yT8Y/obwf6V9ZpJvFryL5T8u/UzGt9w3m4e2gfdN8Fb0XtVeA7TPWvlZr7VkN03Rz/rtS/aee5m26g/OPki/LgG3AWfh907lc/+T+6CN+M/6fK7vuXfO+vzNnMuzg+fhGcD+vyF//AOuJ8+E3A9qz5k5fzY/DCX/PvBfh+4k9W+AP+fXs+UPJc+18H+h/VZknRR5lK+V8yVws/H7Y3je8v1H/etm68NH6f80ejka3sNzTkkPy3L/go/lyvXD/8nkbe77PvDPUr8P+caTO/P7WrA9/F/l/LAUv/T3rO8noTesAEpa08988j0C/1nqr4b/B/oYic+HwXrsYwH8K9U7Ej8ZT1to34fAC9I++HkS/tHg0+D1yjUl/4n4eQLdtRmv6bUs+tto13mZH/S71vhcqHwL9feFf2/1T6OHduhcpN5w5U/F1z309092taPyP8JzhPJv6LfPkms77dyYPH/K3wreYby8E919nI/vS676Weegt8x6q8X/0G/fnCf7XlX7nIPPNvj/jh7Ow9/v6CzOfan0s+gdjv5k+L9U75oCKJklfyF7/jh+HDkfhK+z9miSdoBvFP3N1e/+wscc6dtzTmw8L6feUulz6PcxdA6U3kj+o3LOjW78LM7Fz+3q3YhOI+msx59Xf5D18QL015DvK/qvpPz80gK8OvtQ9Sfid5Xvq3Puw37jnzJK/tv4jX/KanZ1EXgxuAo/r5Onk3rVfb+CPMPg/1y5MyInfTUmzy70c2zR/HEvvnahp++lp+E/6/Gsz7Nev7bO3/n7bfe/83mM/H3Raw3/vey8G/0tVr4dfhqBn6J/v/r9fV+tH5Snv5ybT4t/Fnxnsd8d8DvMuUL8uk5Sf6R6//H9MOcx2Qf+hN8fwUOVfwF/1+HvZ3xUYd+f5P6qAEq2Q/8M6SnacYjxeB56WUcvZkfj9dcH2Vn2vc/S36PGxwOMM0eDW9FfQf70vzu01z743xkfZ6CXdkr7tJKf/W78CNZk/ifvk/B3cB6W+5HpOb/LfjXrZvm35d6LXBXw+xx95Hz4Mnw18/28rE/VPw7e7rl3h38DvO+q97Lyy+V3gP9Wcr2Scxv2cVjWH/CUgu3j35J1FbyTpJfCc53x5bucf9FP7i8qsKchpdJZz2uPifYDb+T+0PeLc09pvpkGTrJO34R+z9xXwL+OPM0yTrHf4nP/7F9aF903tzWOTFD/mKL7+NzXx9+rinnjG/u2FfrX+/C0Vv8udBrk/AO+DfSxJzv6Sv6c3D/b/+4OLgHbwL8/us2VX6a/HY+/D+ltJFgezHp1nPF4jH42XvpV9cfF/4q+K5P/efR6arcFOa/K+KD+zupXVa9F1onpn/SzI75egneB/Ldyb0sv3dT/VnoqvW2BP+15Aftdj/5E+sp5S+a/X+QfL399/CGL7m9y/pvzn5z/5t4v932V8Hcy/jdpr099P4o9bldagH3Z80KwGT08j04566699asdpI+SX5O8n+FvKjmapH+T72p8nqde/Aea5r4w81329+Rrjf/0463ad7j6zeDfO/cn6JdDr07OXeBvCN8H8d9T71L1TvF9cPwz0B2R81Hl62ifnFfk/KKteSTnFyvJ9w3YQH/9Gv8j8XM4/Y6Q3j7za+4nyXlvzsvRbw7fS+h+q53jz9YFf6/FTujv/ZwfwN8A/vjd/QT/4eidAm9neLrKr4nvU9BpD+4mv56Dhb7qfaF9q+qfG+A/Iefc6E9kPyvY45Pq3VXkz1VLu+1SWoD7pT2lR8K/E/xn4uNV9bv6nvGwvHrX4O9L49sT6P9QdL5STf1V0sfj72r1LzYedqeXSca3OzNeRh58XUyeEzJ+0u872Z8b39/SfjnPOE77HcTO4/+8Vv2d4N8b/Qr0/KXxoAs+s97L+m4R/bWGt3vuMfHXEP138L2I/tfQ1yr2eRa9tdYf/5Jf3F8bof84+l3Rv175Qbkvlf84+0hcQnfjWOIVvtOf7gFXgU3o/UH6GQbOBu9Bb0fpo9F9IffZOZ9gH9+T8wfwD/rqqb2aWKeslB5Af+lX6WfpX2/JP4g+c3+b+6fxsRf8fVZ0b7Uw59wV/87v+pp/z38XvweQ9w79NeeJXbXbJeRuDw5QfgfjzmXx29YuE+J/UgAlA+FbKf1q9h/s4SB0v1Z/rvzR+G3i+2Xkflp+/PS7yV+q3X8h743ke4+ezs69Qc5f5LfXPsdIl8PvmdplE7xz41+Z9TD+K7C7N8jxOfyfFMVHJF6iO/4vy7hOrjvih5b7Ye2Xc8HvpMvJ3017XI//yvHTh/+97Ivx/RYY/5kP1b/L+PSB9O05p2SvGbf6x58XnmbxHyPHCHKXoH+B5NPgFvBe+nwNvlfBKeBA9p+4nfPt7/aTbkcfA3P+h/675I//y+jcF5FnlHQZ+HNfE7t5vMjfron+fQj4AZj9aUP8rso6prQA18Eff7C30P8kfmK5R2A/K4r8yLMfLD4/zrnx5+AM9aqwv3fhy76yo/67GN+rpXMfc2b8URIfgk78t3bTv5fEnyv7c/UfzXxb5D92Mvn3hW8L/PWVz/q5T+4P1Xs+5znxx6PfTfAtj18Q/a83/ncm/1r1qmX9qf7xxv3cP9WGL/6017P/l9n5ZPxsZC8b1NuVPkZn/W09tYpePkRnEvrT6Ptj+ulSWoA3oV8R/7nXGCZ9pfyHC6DkK5D6/ntu+T29TmWv8cOJ/00r9reIPJdkf0t/5SFcqP4c9S9Wvwf+v2A/09l5zosSR/YHfYyAr6P6GR92Qz/jRMaHrsatS8Fu4KKsJ+j3THqtZnzKeinxkE1zHkreP+B/G9+vql9Kzz8o/wU9Jp5nHv5eU79NkT9b/N0uk98N/jnsoxqY+5lF5p0n4nfFzp7G/27kXQfPkaUFWBWe+uz6Q/16iP7en37id/Nt0Tn/d+q/ov1yb5R7pK3oj4//IDwL6DP7mV/xdw84OHFAiesiV/yq4mf1JDo1nZf9adx+DDxXO3yl3lKwO3yj2WnuAXLelnPI+K8MRecL/Jwef/icjxXZa+7p/3s/T6+JU/yH+rm/7q/9vkR/gHTOoXM/f2nR/Xz89zN+v8F+Ms59Lf2S/InKnwjP+fifk7hM48FA+T9Kv8sel+sX70i/mPkz60P0Mr4vhb+f9r8WH43IuWP8C30/Ct+z8fNw4mfYZ/zjFmuf3GNfmfvJnKvH70H5+Of+qvzx2ecX7c/i95j9Wdf4XyS+gN5z/1+RPrM/app+lnso8D/4ukO5fXJvDX/iQeKndiS+4p92cO5r0I/dX5j5T//bB50R8g+U30y/PBJsCn7Dnmuyz8+14ypwx/h30e9hWd/h92nyZ/1yQ/y+rW//iZ/p6sXvZhF9/qQ9jlDuOvnxj7hROuczV+Xcg/3dhf+sp9Lf0g97JX5N/eHgF/rrBvb2LX53oIc6xolj449AX3uhty88L2nf3D8+Qk9n+D5Q+/aE7ynfbyryP1mKn+/oqTv5b0k8IPkaSi+Sv1j79pXuh7+T8PEy+XMe1oR9jUE38TbxnzqfficX+U/lvKFM4v7gHxZ/Kt/jL7k68ZTxV9MvDrXOORCd+CWUxN/d93dLC7Ca+rlvHev7Scb7/vFvJ98getqP3EeADdA9nd00lH4456DaI/drw/AxDP5yxp9l6DcuGr9b0Fcb/WZGzpHo51n0Kpp3KoPj1S9JvBl+EyczW3tv0W594ufP3l6EP/cGWZf29T33B1Xw9WjROwi3wl/OfDkNnTfwtQt+Yg+Jy31VuhE6P+f8MXFHoZ/4UHi/Qe8dMPNLffW3y/klPMfqP/Ef3xlftemnI/mm5t4K3RqJv5B/A7gTuj+wk0vhz7nNSTlXJudt8R9F/27f12dfQT9rjH8L0GlvHHxW/u72lX8WQEk7MPdZ8Vv5p/pPF/lfXsReLgQ/JW95+c/jbzL+d1U/92DX0Wv8I7OO+Jk+Mr/dnXPa2FXindnHk/Q0SD/akvsT8sbfIf4Pq+CfoX9NB+OPET+M+9jvr+Bx2WfmPJX9HJV3E9DZlPU9+T7XPt2k46fSi71mfupkvJlPvgPIHb+k/XM/lf2z/FL0eydONfsn8t4Rv3jl18e/QPm++H7efJP7mQ6lBRi/tPipxT9tG+Pd+PgHy8/9VeLWa+G3OH79OOv5/X3POxNVs/9gVy/LfxC+l+ihXvpL/FDoKe+97Kv8eeSuEr0kvkz7PR+/YPiuVC/xHdlnFu8vq+Mr8XcT6Xsl/V3NXs5kP4sS31NagLPItyT7PemK+E/89y5FceCJ/z6M3bxo/GxCf4fB3xX/uZ//LONF/Jylf1d+CP5/I98w/IxBpyx77Sw/71DEL/hyeJeSP/c47+W+hH4/0b5nkKdc1mHSB8KXc7rEDczFbyX1qyUeA+wK3q5+/8QLoPuD7yeq/5jxr7rviQO/Ov5r5D8w/pH0m/uBxAckLiBxAicm/sj4+yb7SNzxL+wv7wK9Qr7EeSa+cyz7zDsieT9kTM7B8Fc29yLo/p72wV7OIdeCS8n5Crt4Vjr9aUTiEen7WOXihxP/6rrWn4mLrSd9YeLf6eM87dJD+sf0l7znVFqAxfHJHfD7ILgKPIYee+Mn54rL4asb/0H9JvGjT0gnfvRh5bOv38D+jtQ+Vdn7LfKPNM88o/7R9JV785f070nS/8vvumb2YfH/zflozjvRX639uyYOsLQAh2d9rl+eZ956Cfwh8uRdgLxvBf/18a9Qfyv6dbXTFdmfo7uD+sX36/GX/CH31vQR/8nq8O0GPk6/Fcid95nyLtMA+E9X/z/0/0Lu/+EppZ9HjHsjwYfBB/D7Gv1PhHeKdFny743+ZvQ3sYcDc36K39/Zz2XS38f/jD7b4m8veOIfWpY994ufMBg/jBvYyyrzQzVwFP4S13EO/InvOIP8K33PuvV9/CyR/yJ8bXOvj+6wjH95HwnexEvNSHxYzgel855Xzr8fMn629L03+btkf5j9CL3+R7vULeo/1yTe3ffcD8W/u4nvPya+Tf5g/fl+dj9COw0mz2zj79BA9rQz+5tH/zn/iL9TzkHmZt1Hvg746RM/IvRfRu8S9vczfZdR/tH4j8YvIf638N+Cj3Hgt9Gj/tkb/d/Yz5Xkz3lG1o8Ni843GqCfdwUuls79//7aJePSmty75P0s9LaXX7w+uBa/eUfqD+m8J3U1el3gzflZp7ynQV/xX0scfvzXprOPdeASfAxSvyl+luX9rsRLqD/DvPgPdGvie5z8LeymBzkPAivCf4N2m5T4g/T3xA+gPwn96uTYC/6N7G4puJP5Y7Z6Y+EbVFqAD6r/Sc59la+Kz/fIM4sePtfu1fO+C/nH4K85fF3hz3j+BD1k/Xen71kHpn0fUD/nOjlfXl/kP7c3fhMnED+6nEfmfDL7uezfjqDvw8CszxLfXJ8930d/b7GXHuwpfmLDMj7htzr5v8d3X3QrJo488Y++n5I4CHpdof4h7Lm3cXyo9ctBiQ/K+3XqJd6qcvjSXkPBk/M+Qfy76DPxhGvwUy/xh8az9ZlHtff98B9Kv2vUT5z+O/jbHT95d3EjO8p7jDXQb4+vnHd2gP9l4/uGAij5Uzrj9I/Gr4PAK+gr/qrF50GL8y6K9s37fkeXFuA5yreDf0f6rgRvT/peC0/ubxP/MNr+M/EPw/H1kPq1wyd6+5M354Ir6fHK/zG+ZVz7kn7Hs9v4J8dfOf7J0+D9QHtuBW9D/y1y3Eb/jTJ/5Z0i8uRdl6b223nfJee6V5I/572JL7mRveScoZHxZL+cb6Sd4ncSfz/pA+LPjd8Ti+IjatDnmLy/JT1T+32i/K/k+RTdwfGvyHlN4lP17xeVq4b+JcrnHua7vP+jX82z77gq75wkflD9E+kn8bY57+9JvznHramdYz+9lE+7X8oeHpHO+dZgdHLOlfOt/dRPvOfu8hfQX3n5xfvb7O86Ji5au80rGv/vt694Pes66Vb0lPe9GuS9Au2xA/z/gvepvBtEj3kf7CRy/a5+4tPy3tntiYPLeW78YdSfUAAlH4L9wDHx82ef8Usojpe93Xr7cnwOkD4b/aroZTy9IX6a6B+I/9NjP+CJyp+Jn0HgVvBL+t2PfC2Vr6T+ddLl8T+H3j/E/57ZHxm3E8+U+KaW8UPAXxV6rZz4UXTi9xS/mvjZxL+mrvGxNXgxfmur3894f2/ijqVzPlCJvV2c8yF0WuHvafbQi7y/s//z5CeeNfGt6/MeU+KZpXeVzn1d7uey37hA/exHcr/9LvzLQGKUdCRH8fi6Xe73876o/BrwZ12V90f64G+Z730zPqCf94FH1Pk7/lpZX2nf+B0fJZ37rby3cYL2r6rcF/KXkOcc8E2wJnrD8z6PcfIW6cS31cFPJ/gvgb8X+0s8cvy6t829Us63si9WbkbeG8v9CfveUvRO6/bKx//9UPZ0UOJ90E9ca8on3jXjx3uJW5S+NfcF8A3R3xNHt2Lnv/M3R/qhAiih1pIbtU9H64Vm8S8BF5F/OXp5/yDvIeT9g0PR3Rf/HTKPwj9K/9gG7Knes/HXKLLPzPvpH62NGwfQ28fGuWnSG+T/aV7cCua+rYN+kHOZU6Wz3q+n3Yr9nnfVPhPh24OeJuSd3pz301f0OCH7AXiyfuqZfoVO1k959zl+63nPOu/LTTduPQP/9fGDpa9Z9NEZXw1936KdnlBvC/zN1M97v/PR35q4yPgXlxZg3lPL+2p5b+2/58s5n4I/8TBZj/yY9/HixxP/GOXjX3Fw/JHYfwP6q209fW8BlFyI/yPRyXsEtyqf9wryPkFX6X3gLwPfFPnf5D04ejsv97fSo8h/a95XQfcr9r2M/vPOx+vGnz6J38r+Ff28Txl/tNPwPzX3XOonTvoE7XdR3hfBV/wNR9LXg75PLPKPSlzXRuVzP1gGf53I3yvvRJWSl3zZP9SBpwV6hxb5A+Y9ypwj7At/4tkT557/D0i8e/wSNiYeNHGAOd+A/118PoH/yjmn0H9PNA7lHjP3l5V9rwKON080RSfxWefnvp7eE59VpejeP34ApydOLPGG5BmA3x74XIjuR+DH4APq5x3IGfHXoo/LyZ93t6/NvQ38f+X82rg6PnHx+tch6regt+a5d4rfMvl2KopfSDxD4gFm088l5Cv+f4r0/+w7asUPPfrE3yPsexvjwD/iXx//W/ad+XMv+PNufln6WUXfeT+/hv4zC99vgG+r3wf9hb4fhm78u/uqHz+UHtqnTvxjcv5Avpb0v4Yea8Ofc6NS6YfgvznxJexuJ/gTnzoSniNKC/Dq+PvH/rV/3lmZKj0o/g3wJH54Fn47yD/N/FQC/0Pxp874pfw18sflXrfo/OPz7PPyLqf8G7X/LYn3lN+kaH7PurAlOt3R70H/8aP+bYe/85n9WPz4tyvy3z8y/1dC7wfF3wu9+JdlfC5+f6mT+WBb/C72vQL+Yt+x69h55rm8W1w2+7yck7Oz3AvmvYDi+Py8KxR/rh3lJ/5xpfmuun3FBvPB/fBfYlyYB84BT07cC3y9co9GHyvUbwBfU/3wUfz3z/pVvxmedULel6L/2+hvJvjf/3uhz9wvHZ+4PXrM/dKxmV/hfR+dbzMOsocWpQX4ePo3/uNf/lX87dUfR5/V4Y//fTWwnnq5DzpIOuNo7osey3t2edchfhHgieafVeSMv3b8tM/CzyG5jyTPnJx/Ge+mguXhyfql2N/+PfaQ9t9K36dp73nkuzv3Q+xzJr13p+cZuWeS/gW/b8b/Hv5Xc95FLwtzLwl/7mNzP5v72s/Im/+9iZ0V29fv9LHOvLBJ+veM70Xv1+Yd7jXoZ/+Z9zPzfs3juT8yHgz0PfEpR5HvDvrN/UvuY+6P/038h0oL8Ins36RzP3BP+jf8WzKO5H2X+DMkDh3/ffEfv4pif4vVxu8X4e2T973IO1N/b4he3o9oTL5fyD838cr4SXxz9it59yPvgOT9j4b4G5k4WPxn3XJxzrszP8J/bVH8QB/0EkfQEv5T5HePn3vkTDwi+9k17yyDeQc967Ch5E18aN4v6yh9snKHoJP3d07OfUjmY3qtB98/0E+cUN4pyfskc/Juo+9T2XH/vH+ReMP4n9FX/AsOw88G/L2Xc3D4yuJvoe8vw/Ms+hckngWeFeol/vuI/N8OO6mLv/1yXqfep7mnwu989pr3E3Ovnvv2rA/iP3W/7+cp3077t4v/uvrli/xXD058StYh5FsRf2vf8/50Y3rI+9O5t6qd8y31VsjPvWjr7Ddz/4+/3Gs8KT/+0PF/vqgASp4CK2u/W/LOCXkzP76e+z/8Zn86rWh8z351rvXhTujHL228/M7w3kpvw+F/V/uOy/5X+mb1X6Tf2+CNv2be0UrcTCfz1TDrqMx/8S+rl/UkPv7ER/x0838dLdDfS7m8j/0LfS0jTxPl897havrYVf9aKz0z/iEZT9TLO8jd5Ste8gE4gBz5v5Qpeb+PPeR9/cTHz2afZ/me/4k6KvEH5Mn6eCT95D3t/vpVmbyvAM8p9DSZ/APVyzoz998z43/zP96ZSfxz4p5rGv8WFPlvjQWPx8/z5Dge/7PxXxyfn3E3cT455z6G3uO//WLeeYIn76PEv2gQO37I+NIRnSrqxy5CL3Qqors7ff1KznvYx0T5M7KuUO6I3EPjs27mffgfVD//x9CbvPlfho34f6sASqppp/bSl+Y8jt2dlHGBvJ/DF/+drXlngVxjlP9Ju/wILoAv8/9L6H0Pdgb/KC3AvFt1ue8VpDdp/0q596L309jPYeTMuy6js45R7336Wad8/m8h/8MQ//Tp9D8/7wXHHybjb/x25Od++hX6iV/tRPzEr/YI9XN/djh+VsGT/we6SP9MHOgL1rsX+n619VGdzDPwd1G/nfa6W78cTr7f8HeMfndc/qdJ/lXyf9NeeT+xHZj3A76g9+xXs49N/O9Z9J7/w8w7FPEfW21fdzb4AXgFPSyXrse+Ho6/Vfzp854ivs7Neyjx58//i9FTzhvrq5//P0n85Dx0c78Uf807wfhxLqOfvM9VTr2OuT/JPj3v+WS9UxRnnPO+vFt+M37yfvkL7GcH/Obe4T720ov9n0HvzbPe0v5X6S9dfB8snXPONolPwU/8BTM+5L2ur/MeFTx5vyvv8+U9vrzPl/ezzzbf5j21xMPlfaLXtE/W7XON31m/788eqyn3g/Y7iz52xs9zYGX8PIzeQPZwsfYr/v+MxUXvguR9+/h/X69f5f2F4+w/8v5CxtdtSwuwEvq7534fnU/Aefk/isRXaLecT7Whh8x/h2uf+AFUUm6s/Obxnyx6H2ch+Q8n/zfkPs44En/FzvSW/3eZpf0eg7+y9UR1em+D3y/Raaz+5vhrZT1P/sSXJZ4s8WV5fzLrxG3pI/vKeYmvVX8Z+HXed0U//weY/0/L/wUeg68Jed+MPM18P1Q664Ma+Mk64dfEI8PfJvvuIv/H9I9/wZt+kvfuch5Wsei8bD37mqw9Mi5WTnxh4pmN95vB+PfE3+cd7Ztxc7n0R+w27xFvzf8cgvn/0o/In/iSvAfcVv6cIn+We5Rfif+8a9RGft43GpH7l/z/Q/yWiv4PcDN9FMevNUz8MXw533mW3C8njsG48CE9jtRPu6FfizzZJydusQL+b6DvPfL/mnkHR34l82Y5+iwLHgvPHuSqCdYCu+U9B/Z4NL3VUe/0jC+5tzbOFb9P85j8y4ybQ/A7hR7iLxT/oYH0Gf+hzGeZb49WL//zdSn9ZL7Nu3Z5T2yG+eJN+l8TfwjtE7/PvJO7S/zL5Mc/cwG9lDF+xj/z+JxHaM+h8GT9cxP8iU9cqXziEztGb/ST9WD2u/v9j/dHE/dTk5yJt8w+79G8f6L9vjMO5B2ExM/m3nR6/LMSN571Q/w0yJf3oHN+mv+LPDXypz3l/4TPxEt9rP03JH4ofn/4+Za8dyl/Nn23JUfe38o5Zfyr8y7NA/mfQ/o/wXhyk3FgJZj9yWd5P1y7fY2fJejn/du3wfiX5J33EdZlea9jZ3YSf9lm+f+1rG+ly9FP3o/YJf525Mh7EnnfNf8Lm/+JjX/9lKzv0J9I3pL4L8A/I/ZDjp2zj8TXIeg+lf0s/RXHdV9aSi75/1Q+/zt5B/tNfEj+vzf/25v/8b0PrBp/nPihxa7ppzN51hFriO9N0I//Q/xs87+LvcG8R5T7n1PJnfjRweylK3475v3inF/l/kS52Ffs7f8Al2TFvHicdd159JbT+j/wT8hQqVAplZ4kilAImYojmWXWyZiURBFKhsxFREepFEKGRKFBpCJTpGTKlE6kEDokZYzvWr/n9T5ruX/rPP9ca99772ve+9733te+nkuqVPy/3yEbl2H1Tcrw1wZl+OWWZfifGmX4Pbi+aRlupX/rqmX4l/YDGpVhy03L8CHlDugs2L4M521dhrO3KcN/gO1KZVhRtwzWeT6iXhnWUX9+/TJ8sHEZ1tSu7nZl2Ez7L8BB6DXdgVyhS94G1cqws/6zty3DWfhvUL0Mf2lShlPxdxg8v2h3rPp66j9Rfwk+O6p/G/5P9dtK+3boL9isDPttXoY3gp809BzeTUtlePRGZThO/3fI2xqdO8l5OD5OVX8luq3ALtr9pHyt9v+sXYbfwj+mDCo+BHuD17LLDPy9jd/r4JvO/gejX4f8k9H9Eb391D8Cz0JyfKX97uo/AbfV/wD92/DLUyqX4QD266t+I3zuqfw7PC3It8tWZXg4upX4+1n8/zv6vhdcBT4J70zjZRbYgx4uZf+v4T0P/YNLZbiCfy4l9yv891n1V2m/Kzqt8P0qfKfoPxy/lcGb+ffN9H+F8bkhfhbS6yLyPQTvDuisRP8w+nlQ+8/wc552J+p/NXkHRG72Py7zA/nWoPMw/O/gZwf9ZuH3vC3KcCf4a7Lvl57vhv5D2m+A3iL0NqefOfRzJXp7o/cDfj5Xvz9/mab+ywL+HfE3ij4+JceR2s9l93PhPYuemuN/U3Y9GJ5L+O+l8O2sX3f112v/Ffx/VCrDNeo3VK6j/17kfZr878DXTf8VG+iPbn/lvcm3jfbDGv9dzsg3AT814e8HTyfyfab+QP1PUr8VPOfyvxrqv1P/Bf3fBO9ccFv6H6P/vt5XB+nXRvk39Ddn//PxUYue/gVfDfjOoqd18CzWf0P6OEK7Zsqj4dke3uvTH19T9d+9ZhneB/6M7qHk+8J8sRxcBjaHZzD970Q/u5NnA/2fxM95+m1sPDQHX/W+Xan/S/g4HH8X89eN0euDvwfUX0Ufv5NvI/Ku5R+99X8j70n83sQ/PlM/hb7qq8/8NNr82rNWGTbSbvNSGVZD/3H8V6gfqX91/NyP7y3xUUL/OPraTru8764j392ed2Xfv/B3IzwP6X8aPjqDX9FXB/rsbd1zpPLt+Nwavvfwt0T5cfx1Y5/L2e9c5drovOv9fx28zxovB4Q/64Gt6ecL/R+mn4fx1c+8f4z3wAD4Z9PHW/AdSq5l+m+Q+ZyeNkRnf+0+oJ+96fMM+C5Qfh+9Ovhcb/1wuP7V4c84aux5xlEL+noWfwu1X0V/l6pvi+5E/O2oPuN6Mpj12CWlMnwc3WbwvgnPGPyfYP4+EdzGOuIf7Pmc8nfs/RU7nmF8vMB+94BjwAe074ufu8hxMv5/xP8ydrsFvfX4uAX+b/H7Af6rwTta/VOen02fF9LDyeRrXu/vz4vtw2/n0t/5rqy+s/534Psd/fvDvxx/NTI+Ix//+rBOGd7PL2opv47eevLfyP8r0UuTjG9+nHXCXvTZVbkO/orrxz/g313998o34X8H/P8Tvhfwf3HmJ3JMJV9bePdWfzz93AHfUd5LtTwfQv46+tfVbi15ZmlXZcMyHEH+KfytsnngmTKowG7FQPo6DR+98T+I/E+Tswv89+NrHDiCf83ExyXeI7349cnG8ZPqt7be+AH9nbNew9Bw9evIuVh5X3x9Cz6i/qyse9h3Nb4m0M888u3Bvw/U7yP6PwD9PTP+yHMlfE+y20zl7eE/l5wT079Uhg/wj8r4XF7/73iqmF/nwvMq2IB9x+BvLjzvwbME/tb8vhW8fbwHt6GHn/TfHF9P43sy+TaD70D6vhKeM9EfhZ+8V2dZJ28BT3/juxd+hvKrpbED+lPZuzc9X4veFPxPga8tOT9X3wx/PfF1t3ZXqm/heVv0PjPO9tUu67elnhft28f64Q16OwOcrf1r/K2SddJP6v+Cf0kFOsZHfXaN//6Y70vtn1H/GfqfGReX+E54kr+9Rf+n0NuN+p8PXgN/HfLlff6V9tPoYwvl0crX4/MJeG5HP+/La71vs/5sbbz8wg/epe9f1B+G3zc9/49239PfHfrfCf8w5X+S/2b8P6P9RuD92o/iH/XN6w+DF5TKsKl57XV4u+nfjf5uhL8qfleQv7HyXdY7A4zDHvz5Nvi/Mq4Xg+PZabP4EXxv0fNcehis/1jtvsPXdvj5TH07/v5P7dbwj2r0c7zxtAU+B+Gvm/b10GsAX334riP/EPY5EN+f6Z/9nmbsX4ufN6sgl/6z4OuJ3k34f5n+BqI/Ar+H0cMi5cb6t1OeoX4A/NHXCfz3GuOrsvbZd9mHXlbpn/2XN/nr2uyX8IdR8Delt1+1/xU/7eG/nH9V5lcj2Oki/rex+ny35ns936+P4nf/Er7o5R7032S//mD2S7JPUs942ZR/TTC/Xo/Ow/T9hXLeU5PR2Rd/n4I1zTcf09N2ypOzz0L+d8k/iN7yPZvv3M3Ieyp+uoPZP8l6qY5xdwd86+CpRv4V8O9H/z3x9Qr8o5Ubkae/dpnfsr7Luu4H+LK+29l6ohZ4ET2ei79Tsi+kfG3W2fAfTP/DjYPh+P8A/4vp9Qr0+ilPwH8l9vmRXU40Hxyu/c3G1T3qN8T/Zfwn6+58h26kXwv0T4WvTb6T6Kcb/tuQbw/4pkS/Wa+Q6ynwNePpefzkezbft/nenUG+NuaP28wfj1T/e/9vyTeM3q5SzvuuNn/vbn5dabzWh/8343UlOvPBluSbht4UsJf61ejXZc/i+3F3/pjvsUXZfwFrlMow+50ZV9kPzf5Czi9u4Fc5x/iEHcbluwvd+fTfD/2B/OtF+LN/1D/7p+aP9dYhd4NZX91Dnx+BbdjpEPQPZK/r8b0ROptk/9W4GZrvXP67lv538zzj9wHP3yV/f/xuDG9f9Fdq18PzGexfn36mwtcRva74eFG5YakML2Cfl+CdCk9D8l3Jb5/nJ8X5/k6was5N4DkdfwfjZzh99jZ/TaOf+OO54NfgBtpPop/sf7+OTva/V8J3v/pr+Mtw+mvFnm3J0Q5cAE/Wt4eRtxf/eQr/N/K7+Nv1ysein/3QH3IORP5N1a+n3wHkmKP8Gfln00++Sz6wPsj3SdZ3dxXWeVnffWv+P478vZV3y/4guufg8zPy9uJX75u3K8wTleFdh/+j8dsBP3+AreGvR97P8NVP/WD2uzjvWfgOwc8k5a+UP4TvaO0bsV+9zFfgNuA0/H/NvtknWG6c3g7/p8Z3f/Z5VXlxqQyv1O8p9UPI8Sn6U3x3/Kj9enINVD+Yfgbr9xN5uqK/Nb1m37Om8sXwXG087mB8TgNvYK9PtT8I/a29Px5A/xb+v4DdtyfHQejPLJxbnVbYx26pvBbec9AbAU/m88zv+R7K/D4L/2cV1kFfsme+7//XOirfX83hvQn9j8n3vuc19GsPz834GY/vJt5PG1pvztP+ZPRH4OdP/Z9X7gr/JvjJeeQU8u2nfSnzIfveozyIP26H7+3B1vQ7k1/0UJ7I395SrlU4n+mPn5/RP0a5Hv5eItf0wvdp7PE6euuVsz7Nui32yfq0FfgA/MvwMxc/TYyvEj85ld6Xw5/ziJxPTMVfzicWwd8u5yboXKL+8Jx75X2qfj/42/OPP73H/wKvNT/Pp/8LwPPBO+BZRJ7TlPdXnk9/L/OXvuBEsKv6+t4nZ5uXq5In9nuDv8ROsc+l+K9fmK8yn52ovqb5ZZF56ySwD3tVUt5Y/8b4ehY8kn/muyffQfn+OT3rDs+zTjiCHY/B/yvqM0/nfCj7wdkfLhX2h3uzf853jjcfZX/jTXznPP9g/GZ83Wk+XsaeX8N/VfSH/5w/nYP/1uofN++NA58hxyr4ct71g/45D7s78QWZJ5Szj5/9+00yb8H7LHxt1V+H3+y73wwejL/t+U81/GRdVIt9WvC3ncFdwF7wR/+ryP00flo0+Xv7U/GXfbrsz3Wnlz7ZhwcH4O/wMqgYAq4BB9HHBebX6cbPNP57ivp38dMM/UbeX5mfL1ef+SbzUD3y9+A/PcHzwarwP6Xf1/A9iM4d+ndnr920r+t9l/iMk42fBjk3gW88/XQwruPHvQr+PMr42IufLND/PfjHmk8fQKcb+e9E7yf4V4Ht6b8Z/a/mT7dnXZb1F/myDvgFvon0dzH+qhs/W4FDzdcT8Jv95TNzLg9Pb3TOo78qpTIclniWrL/wnXX+Av7ciB+Pw3/iwx5E70H63Q5fp+OrEb5H0t+f6F+ZfX39v4n9CucVb/HH3fG7qfb3knexdhPVL2W/lviNPsfA3xL+td4rj+DjCfxfof9X9PJm8Od7hz560c+P8NWBfx/6KWlfAc/R7J/xmvFbHP8d0BuJr0OVB7HPRPzlvZn3aN6fa9G/Nt916K3O+9p6ZW3ia3IeTv4u+DkHHK993iPNvZ9vQL8b+2T/8gd2r2yczOAP9+PjV/Se4QfZhxibc2zjajP4eynfUCrDN+m/Xfal9E+czih89/ReGsxPfiffSPoZif5V/Gkz8p1Evz09P9vz78j3Ur7PrD+/xc9qdlqhf1X8Pav/JPLVQTf2nUCuu9j/deuDDtnfx++n2rfE11bw3I3e5/Dsh7+G5N6Vfb5SvwP9D8t3OriL+uONi+rKD+FjZ/JvCt8x7PMCPee8f5XyOHj7gz+R73D0f6eP1+ntD+UG6GX/9MCso9R3538fep44mo/4/2vsMZ8fvAU2Yf/pxusx2jfB91zybc5/v/Pe+4uda6I/SflUeE8G/2C3N5VPTPyU8bOX/m+xZ4dSGSZ+7qmcL+f8Hp3r6C/6z3o/6//N6C/r/5znJi41caqJT72Ofb4g31D6OhPeLfGX7/jEEWWdmP3bCnztqv8cfBzr/Pv3zIPkK+mf8/mr0OuZONfEV/KPfp5vA+869nvOfswJ3qu3keM88m2C7r8zP9LHsepfUH+18pPa3aS8j/H0hfE1NvsI6md6flTmFe0Tj/oL++3C7uuUu6rP+XLOk3/O+XrWt/zndv1zbrUx+f8ozF93wXcRe82gv455v2rXKXEM1is5Jxhgns75QM7XmxbO2XO+/kXOx9Bbm/UF/hviZxb9FM8Xx/Obw4yzXvC9BM857NkV3Eu73uR5Fr+DyDEZvAW97Kf/jt8N4R3Ev66ij1v4VUP6/Hm7v/fPd8AYemqafYnsK2t/Fz4TH7ISvj+y/jQ/5Tz2EXh/jT/iO+cJXfBXO+OQ3Puy/4XG71XsPJ2ci+A7kf7vRv89+N+AZ7p+f7FLJfXXsN8KcmZ/ujJ+epNvqvnzLXIfYRw+nngH8k3ET/H7sS37P6F9O+V83/9hvPREZy/89FH/ovZtyHEvWB+d5xJ3B3YGHyD/pfznNXLdlzjFxAfSX9bJxfVx94wPcs80PhIPfAX+Hs93mfIU8lci37bw3mf+fKlUhkfDnzikY5UnZX2Z87LEPeAz/nM3eqPBMeDn2j8C71L0byiDiusSP+899rl5aa52r4PZX0582ykpZ//R/PU8OAs8JvFS8Lb2nviF3nqhvxi/ldm/xP6P5lwfver4yX2JWezzvXY5f75f+4/gH6v9s55vVirDyZkv2eO3xJ2DiX/I92W+J/vT+2OJb7fenWzeeiXlrNfooxa8V+c8nj4Tt7NI/TzjaTf6fc+6YKjx9xR5V+r/Q+LfEj9Lrtx/eBf/07XLecXl5Hg15xfZj8LPwuzX8fcDwKrGwdPqZxtvF+m/C/7y/ftz4o/xe3ypDI9in+L9ocSbTcJHcf7LvPcD+ydu5jewv/rEz/xckO8efPwbrItuR3xfRq774PkGP40ST6r9heRoTe/3ZF8w+yA5rzS++pkH9ucPr+pfQ/9zsl7MPmDeX+ifov3/t77Cz3/0G+z9M0//xBPkfsZb6nM/4z30G8IzGL2hic9Vzr2X2vx0i8Q78a9q5PyY/h7S/yZ8zaG/ofn+1/9L5ayvsq7K/Z7t+X/22Vuh/6z6a/TPeeeJ6GSe72m9MZr/3Jo4BvQS35b3aOLbEu+2j/Z75/0E5v053nhvl/g288A7+DwJHA9vFXTnw58479yvuDbntPy7l++v7MfdQM+t6PdpfHdS/5zyMvUHku8Q5RH4H6D8Pfrds8+D3z0zzxlXQ0tlOAlM/EmrvA/406m5Z6F+Br//KXH/6J1J/szLCz3flxxnwjfRvPcE+Aj5XwV/Jk9r9R95n2wCX+KN1+P7Cs+roL+18ZF5pri+qonvEfRRx/pzCP52RLcZP+umfGnixwvfF4nbel//e9V3R/dWdtgn+7/4H46PYezZJvGNhfja4v2yt83bi8D/fv/Cv4Z/vc8/57H32+TvlPM/fD2Gzzn6t9J/oOf3Zx8Nf4cmfohdtgCHJE4t90vp6xt4fuAH5yg/oZzvvYG5v8Juq+n/G+UJ2V+nv+L7/Wf63558O1mfHAiOyT5hIR56Gn6Pp9/f8Pdo4uXo8V/ot2ev4drdSF/bZ/1rXvqQfXanh5xz7OZ9W2EeTDxY4sCWer4GnvXgGeTM981u9DYP3irsUwO+Cex+jfqM88SjdMl9Gc8fx/9T3mfV0H1S+Sb2HQ5vTXa5S/n5nJvG/tkHxfcE+l3FPq3hPdb4G5n7i2VQ8T3YBVwTfyb/QPhzjn+h/vXN28+bt4eDC9nvQ+/Ln+j5avx3yjkn/FPp6eR8f/OHfcx/2W/cih4fg/8WfjsY3MT4yDrvdXifKIyH+H/OXUZ6frn2iQcsxh/uiN/sf9RQzv2w9vjPeUwp9wfx87N2/2SfxvC/iP7F+Hk78ivPz3lg4sWV96f/Kuz8jHEwTf8l6P/GTyaQ42z2S7xN1rctsr+b8wx2OxbebuBq8g83P61MfAI5ch9hW3a5JfdzwVX0kXiCxBfknnPOQ3vAuwW8xyWejfzn4Gdfdj8b3tyX/zTrIPxkv25L/Ruhuxf8uyTOUb9v0ct5Xc7xRivn/upJ9Jp7rLm/eht8b5OjtuebZT1J34m3rJ199cz/8D+fuOvCPYnvcv9I+aic3+pfXH82hSf3r/vym4P4w0e536Oc86rcj6sEz1j9c3/kgOxLa/9Bvnc931m/xoW4mczfH7Nj5vHM3118X44wf+X7L98vE8h/Aj72AB9PvJL5uVPW98o9yJf757l3vhy/uX/+efwq51r46ZP9BXwlHroNuqvxd3G+u/T7gV3mo59z7V35W867cr51aMYn/Fd7PkD/zG95rxff998ab/+Ad9/ERcPzjXbnoj+X/VbDn32l88FLyJf9pcHwP+j5E8b7XeTMfcQjM77zvYj+buRbi4/sz6/K/XH85rxlEjwt1C9G7xNwSe4DZT3H3kvgeVm5Rsa3dfDx5NiW/93p+bH57s15Cb6vyP6l93LiKp/Oe1v9PYX7kLkvuUh94qM/0q+4v1kPH3Oso17x/s7+82Xsnvjm3N/J/ebh1kvd0l67/ugfTb6Ps79Nj71LZbg499rQ+R3+nRI/o9/huQdFTx+Aa9jjB3qvS8/z1M/lV48mbhP9+9RXkP+mxBcnHwj6S8jX0jj6XPkQ8ie+uiV/GEfP1ei3U+I3Pd8y+5ClMmzKHh/T26/4eQn9Tuj10P763KNFvzZ+z0wcODr7Jb7e+7sHOLYQB3B89v3QnUR/X/LT5BOYgn7x+/cU5fqJ69N+J/L8rH6s8mKwDf7PY7fEySwlX+JjRhbuUyYPTe6X741uTfxVyfuMP+Z+Ue4Vraan3C96Sv8zcr9H/xfUb47+R4X9kicSf6r/7ey6a+KX0Mv317H8riF/zHdY4umuMM4Tb3dO9umST0U5cVSVsn7O/EE/ySeR/BFDPT8H/4PJ817uP7N3DzDzd85Xt8t8WirDDvwl57t75jsn+7vJc5L7l/jpBw6F/0L81LA+WM0vrwJ/U7+VcTlN/08qPE8+Be+/MxMnaz15QPKdJL6Bf00Hk69gBPslriNxAInvGKO/4VMxi/0uz/4J+ySuaVd8HUwvndn/NPAMsKv65NPJva4V/CH3u66F/6hSGeY7Jt8vF5nvs594ofJ57H8Jeed4/hKY/e470U885Yn0/wv7rUI/+Yva6Xc4+Turf0j7QeAl6h+l3+QXOROev/C3Ab/fFOyk3WvwzDYPHZP7IPR3n/67lcqwWeLV+GvOuybjL++9DcC8/xvw+wPo6ejkqYBvCH2fgH4/ero39/myH4mPxOcsIH+fwvjrRc7Ej1ej78Q5HIe/e/E/I/toeY8qZ585+Rv6J+6EffL9v9x4/wJcAV6A/2/Ifx+9jgVvynkOf2nKT5JPI/dtk++qmB9kGf5m4/d2eng9cUX0fya59zXArgZX638WfNl3zD5k9h/Hmy/nGDePKq9PfB17nA/2ALej5+xr7JK4uML+RvZPF2i/nLwLyXE4uWclfpudRuacI/ct1J+V/A/ofWn+a5d1gHbN2Sf5M5Iv401yTif/a+TJfk7yryQ/2/f4TTz0y/Ak38gN9Jv8So1yP5S//sRf14Lrc65bKsONtd8p6138L9a/r/k790OSN2IIfo7iV7fmOzf3CtUnPirr88RHjct+uXF7n/XZjYX7C5/zv2Fg8j5MIH8T+tk09+aTz0J9lcR35nySvT7RPvcqsl/7hnZ76v8JfqsYN0vp8Tntt6PP9uTO/sLV+q/L/TbPuyrfoHxHxo1x9KHyEfTXjn5z37ku+6yhny3ge9rzXfhRHfXX5vvV89vYI/fDm9LnDmDiXrYmX85tJmbfAJ3EPyT+uET+xB33Qf9r/TckT/K9XZz7JMkHhJ9Ps76G5+ot/y5Xr8L7Mff9c/8/eahy/z/r9+Q3y7o9+c2yP7QGni7KseN05VvVP45+J/IsZLezE5epfD9+K8izMbpX0u/KQv6W5GvJecrIrO9yroD+SuXEwzfkzw+i0x0fv+qf/GrJp1Y830tejZzzL0L/Hvz1pL/E3Wbdeqv+C4yPrfnB9/me1v7C3F/KeSl7X5Tzc3J94rv1d/Lk/vr+6E3gDx/jrzb7tTVvPALPQfSzOb3mvvqVhTx/ye/3u3nldO1vVs49tUH09wK+m+d7I/EB6H8P/ifxkfjdU/vx7LOH8v3sk/n9NO0zv2e+Lxn/HfJetH49iH6yr74BvS1h/8alMsz+X/b9lufcDP4v4Otr3fBn8ivhYxd2be291Qz+FfAk32Tuqexe2J+toL++5M88fCT6t5F/CJg8Nyfkexh8MnGX+t8P/xHw557bi+hn//VybIzzHlutnHtMuY/9K7u9AM+wxId4/i74Qb5L4c/96Xfxk/vTuU99Kf2Og+8A7Wvkfim/Xw9vS3gW6P8yf4w/96b/nE+/x26zS2WYuI6l2V9Ovo3sx2uf/Z2cVyS+JfEuWf/n3mxz/tUG/dyjfbQQL3iVcuIDnmCPxuTekR3zfT2H/+beafE+amXy7JG8EfibnPvd8K5T/536C8i7Fj+nJ/4n9w9LZdiPfEd4z5xiHsn30y/0lbi8I8ER6ickrxS6T8D7Yc6/2S9xBGeQ8xbyZ/2Q98378HTM/RfzVuKBqqP/F/wL4U2enG0TH8+/qpNvGT429P1/T+JJzCt38O/FysPIkftYR6M/D53p2UfkF0fTcwV+btF/4wL98FMZHKbfZfAcp5zzxDvN55XMQyvIn7jKW+i/En1kn7SB8bYY/6Nyf4NfzeA/s+k7+cfiN8k/NtD8uxCdhz2fb3xVT3wZfYzQ7hH0x7D3GdrVp/8G2ncyr35IvmK81znJZ6J/9sG74z/5HnKfL/f9uimPKoOKV81DzflZP/4xk9470/sByW8Mz2TzRztwKtgk/mZ8nFcqw2aF+e4i7V5NvDE7PJb7a4V8RS/nPg893+H5fP2Hx+/of4dCPt3kR02+1CbJ95R4Uv55XOjxy47skvk1822JHupkvcsep+V+IvmTH3u/3LMk30B+fqfnb1fAg/69yUti3I1R/hP+Fvjan5yj8Lvif6zHsk57E/3cG1iPfg/PbwVzHzznenmPzo7/6p+8qMmTmvOD5IXJ+WTyxOZ8cv/ktVR/kfYN9T8e2/WMk8T9jAMHoJfv8falMkx+5YyLquj1zb0W8o3l19n3msq/sx82xPdcZ3AemH3w1slnrP83nr8B/+2Jv+AH//D++j37F/HvxFHnO4wc03KeRf+5j7k65x+FvHlT9euYOE3tqyX/nfqT8LcZfx6XfDfJA5/vA3zXNG4vzH0e7ZMXJOdWY5VzfpX9zWJ8afLTb85fu+b8Aky+rGe1X5H7feAV5LmPPfZgr4v5V9Zf45OXA73c88j9jve8Lx6C513lBfRXy3v/mHyPF/K91Vb/oPJ0+kv++zuM72voZX/j+F+Zx7y/psB7inLue16U+yeJayJP9qdz3v2o+mL8Ut63ef++Qt95/87DfyX6viZ51OC/0Hu/S85tE//OP4r3AXJPoAF99CX/UPrO9+y9ytl/HoWf9+HfJN/PxuOP+E88YG31vyUumhwP0+PD+FlTiMdKvNZM9JMvPPeVEn9xVPZX8j1Cv49qV5d+jqKfI/FxXuJJ1Tch3374SZ7V5Oe/RH3yqiY+vjX/yb5WS+2T5zT7W8XzqJxTXZN4SX7XSv9t+P/w5IOh35n4eICea5Aj+a/WoPOBcs6LE3+QuIPi/drkmUx+ueTj+DLnP/q1pK996D/7L7vivwW4Se6xa7eb+Sn3LnMPszZ97Gxc5xzsIOMv51/tzM9tc+/D8165v5r9dX7yaN6r6l9MfBF6Hch3Nv/ZEb32hXX1GHrpwx8vAm/MPTj9k4d2ONhZv1PRT7zYHHIPM1+eRb9T1ecc7Gr8Zv5fl/0pfvEb/JsmPtz7aTn4NT4vLpXhevhLuZ/Kj1blOzVxYfj9DZ9LlC/L/oP2Nen5BvUfe9/kfkvupeyS/Wf2bYrv1fhJHPGZxmUNeHqhs0j/3on31f5H+P9FP5fh/9bkZwbvynlU9n88n5P7tDlPg3eG8q+Jk4D/cvyN5J+573Z29gfoJ3FRS9nv6pwvJ797zi2Sh5P/JN4x+sl97NPQ3zr7f/gbSH891ed8KecHOVfK+yH5JFvo31775A8ciK+vMn6Slwee5HVPPvfke0/+prPo57mci4CxX/ILHATOBl8uleFk+KeCU8Cct83Rfs/El4Jb0+8r6N2aPOX4GYJ+/s8ieTOfzvcF+c8kd/z7ZPK/lPsj6HWGL/nwb1TfK/fR4T+VnpL/88/EpSRekb63yP6U9dQ7xvlAMHEO/4Ev54ptlJMfPvnrk+8q+a9eMT6Tn7v4/z3rwOwrzkSv+P25kl73pLevlZN/ZTv9N6C3Zfiprpx80skz/U7ut9FPy+SfzT08fE2E/7XkC1F/FPv2zP4vvA3o7XrlxPEv9d5ZBtbm/yPQr5X7VckvgO+x8Gd/LPtiySeY/bFHzMv18dXWPJF45sH0s2niJZLPnX5P5+/Lsz8CnlwiH37/yL0N+jgj+W0K97mL/68ykP3Hku8WfCTO61rlr/GbfDXJT9Mr+3+JW4Mn8ZfP5/wRvtwPnVW4H5A45D28X3NfoH0ZVHwMTuN/n8KT/cPsJ/REb9fcr2SP5N1J/G7ieefzv73ptS45Mz8U8+3Xyvlx7v/id9vEu+En/y9zkPE7E7/ZL8/++GvGS+KPX1XOOuad5K1PfDn8D2b/GH/35T5e4vSzXou98f9b5gv2e4H+kxd1A/I8nP3rxBlEL8kjrv8RyrnPlXvSWf88k3ibjFvt+yR+tQwqLgJj15fxn//VOLpUhsX/10i+keTLyjlFPfhzbpT9nku9n3IfzHTw33u+1ej/UPiOyP04fHXMOQT6n8N/GbpLlU/K/nzeu7kXnXt66l9I/gbPD7Ueqov+FP2b5H4jPEfQ/0P651548b544ocb5DyrsN+b85Ocl+T8ZHTyP+U8s1SG+Z+s/D/WpRS4GN+J/98K/sRnv4qfnGdPyTqHvpbkOyL/I0G+5PPO/yUk33fye9eH/8Pc88g+WfYH8JXz1Zy3Jh/rCOWh9Doy//On/4bJv4mP5E18UX2z3A/AR/JALlQ/Ofl52WmS+Xxj7ZJ/fEz2neihkfpXcp5RuB+7gpzN8Z3/veiX/BrqR+t/U+LgtH9f/Xjjoa/n6/HXUH3yoiXuq5gfLf+/kfzy2ffprL5V4jPZoSo5Oqo/Hl+ZVx5gl1nkOUj/uvQ4Clz1P/LJJc9c/v8l94ujt+gx9unt+WnZ3/K8b+L3tZ9BrvwPYr4Xkr8z/9uQe4TPJv4n7zH1+f57hH0TN594+cTTL038YuJftMt6IeuD5L9J3pvu7Jb8N5+jm/OonFfNxd8e+L9Qu9vgn6R94qbPLJXh+dpvg//l9LGMXAfgd772LZOfL3lDk9cIfwu8l6uCic9O/vTkl8o8nzxTXZQ7op+8Mn/qXy/28f5ol/wI1oE74eN0676c94wuxOf31n4T753Pld/P/hS9z/UdMJd/rk8eDu0m0uNpOY8lX+5fT9Luw8R54uff5PqWPRrp9wz7vW28NjVv7QDeV8gv0hT9xOsnv8je/KEPOvOsAy7Ax/DE5dNz8kq9kPwN+LrE81HG2038M/cH878qydeQ/1fJ/bjci8s9uQvoP+d9OQfMuV/OlxJ/k3iJxOEk/uYQzR4GB4HHwDfTfDYK3tw7fg/++fzyf60jc97TH6xBfzkPKt77vSZ5uPC7r++Dncl/QOIfc7+VXQ5N3hn6mIvf/O/mYv53NP9MPuP5+h/Cnm+Rewf6uRW/xfuPXdhnNH9elnwi+JuDv5e8Px7HV+6XJD/sIeyfdXEV9sr6eHy+B9V/jY9P4H/MuN3CuKxsvE7Tf4719a25N0X+Gep3hj95qfL/ls2zX5J7beg3x3/yd+R/Gorz26H0s5P6eTmXz30s+k08YKfEbeIj+avyf765r5g4gfy/b94PyZc8Mfe0lXfI/nvi9/R7N/kv0E08X/IPP5b8Isk7ljyticdiv8RLJn7yH2DiJ3O/Oveqdy3838Zq77N2+PsG/2NKZXhG8gYlD5nnzbJ/q33ynBXzm92gf+J7E8eec8Xk20r+reTjak++rsb1beR/2vj+gJwne74FuYr5G84z33YHexfiFysZH7upb4iPVvRTlX/f6/k666T8v96JyieA/70HnfsJ+M3/EOX/h3JPf296zX3G+MWD8L9ovOTcsGPOE7Pu8bwbvf6avDzk38h43BBc6X10K/mHsdufYJvCfeHkY0h+huRryPrjUPPagea52cpDcr+CXmfST/5v5Q9yvpR7fCV8Kx+q/vjkL4Yv+Yrz/45zEn8F3knv1+U+sP75P4T8P8Jo+rku63/6bKvcEZ6iPcehn/vtA8k1CMy9i+SXKP4/RdYNFew7O/nG/kf+5/yf8FGJW8ZH/g/4Y+M3edCa+T5LHrQv0f2A/dZmHRl9er8sQTf5/LrT7+bOVd7zvB/7dMg63Xg6mN8tKayXs57L+q6Yb/Yv9fHr1ei8hr9Z/GcE++b+Su6zLOTPyftTzAf0H/hOZPfr8Pnv3J/F/2H0PzD72Oh3Sd4D8nZgh6rov5X8W/DnPvg7hfjQxqUybJt8MPp/Yv75NHG06Oa8O3EPOf/ZVv0f/PcM4y73sXI/60B+siL5G/VvzA5L4G+GbovkuS38T8ke+W5C96zkOaG/C3J/XvvLcq6b+Bb2aqz/NbknoP7/AL7RlxV4nHXdd/jX0/sH8A9KRRoq0eBdKjuryEhWhAZSIZtQKnv0NUqFlq2hjERbiBBSyIgSGRlRQkYZDSMRv+v6vR/P73V5X9f38899nfc5555nvc657/vTfYuy//+7AOywdRFus2MRNqxZhANqFOHRyjs0KMI+VYtwjn4/Vi/CX/RvW6kIC/CXh+fj+kX40rZF+Em9Iqy3QxE+C3/NWkV4kN8n6n+icmX1jeriG3+fNirCDdsVYTX4RxWKcG6TIuyO7/EVtIP/8u2LcLMqRdiGXK3BbeE/b5sibAj/S/ipj84S8o0kbyN8lzUugoHqr/L7ijpFuKX6j8m1D308Q55Z+N9U+woNi3Cx8lj9P6lWhJfhpyJ8p8N3E76uR/8O/HzMfmezWyX9FrDnX9ofj97f5O+Kv4fx10d9T/x1QO8M+KfTdz/4GrFfDfyfuwn5Ni3C+cofkOdV+r4R7Moe/dhvCHn6wF8fP4eg30/7G/T/hhyv4vcA7S+M3fBRkXxPqN8TP1OUd6bfruhPpr8Hleeg/xH7XKK+K7nXwb/S+DwR/B7sQo9Hb16ErcF9KqKT8W1+ttmyCDuUK8Ih+Hsh4xPff7Ffbfw1IG9Xev9Qu9/p6VT2qwbf4fT2OvrN2fNz/V7Rvpv586r59BR5hpiH96E/r3YR3qP/E9r9CP8k9furvwf9F8Bm5Kunvg75rjA+DixfhAeA0+Ffwd7tKvudnc6i35/UT0d/BLwfo3cee34LLtL+fPUd8TfR+jIZfBL9fuSfwn6f4P8+7frDl/FagPdx/VsYRzv5vRM+jiH3seifQO7xfr8JvUb6/06++9C7AZ6s/wdtVYRr6WU1OED7h82rqubZ3WAv+H/D767wDcn4Uv4E/heN7xfAPehnP/LVxNeV+o00vh4xbrdhn5eNv8nkPY18s/W7ze9H619Dv5Hk6QDWUP+X+fEYu5yMv+MLRVjP+L8C3a+U6+O3fxGUdQN3o4/P0HmJ/K+Cm6BzpHat8d9ceSv8dzM/utJn7PsGfo+iv+H4HYbfk42LpuSbYdwfjG5L8Bv8H2l/+B2dw+F9DNyL/raH93105ivPwvfH+BvPns3Q3y77hfrB6nur70OeTtqtMx+uYc+6df5NZ2Dh3/h7WA9/Ildz5Y/Idw397oJuV7+30r+3+XIZeLffdzG+P08/fLSmj0O0uxL+GvTxZNYV5WvJt81mRRi7VYB/pf7NyPc+Oiu0q2L8r8H3b0VQdpr+zev8G+8v9Lwb/h5Svos+z8T/G8r3Gj8jwY74X2383Uavw+1b4+h3tP4HwJd9ZUtyL9D/Tvx3ZtfOypXw9Yr59AP4rnn2ivZfssuP6C/Fz9nqs99k/8l+1B4fQ+BboX6+8jeFIoz+DmHnDn6P/mrRyxHWxfnojUP/F/zNM49GgY3ZowX7foXObvT7OriE3DtaZy/B39b4X4XvZ5UHwbM3+5+G7wbwXWaczCFHnyIouwueZcobyHcHOVqp39I541z817O/tPZ7XeVy+m2P/lb4WQzPXezfw/h4nL2vJ8dN4Pbs2YIeK9PzteRZj95x9vEH2XeE/huNp3Pwcxd976b+wpL52Um7ReQ/V/1R+PtQ/aHo5/z2Jbt/Be7Q+N/90n40+1yu/lfjoSG7VCPv9er7o78M3b/o83p4V8N3vfrK+nWi39r6H6fdlEIRDme/36w/48Ebcx7U/n58rUJvc/balb76a7c9+arj41H4f8Rvj5wv2H8i/obgb5zfD9H/Oe2/sJ4sBXdR/0nO51nX8fmd8ZD5dajx0gz/rVKmpz7stZ36/yjn++pE+Baa52+DH+B3HP57Wu++pp8Fxs8Jfs955xh8foS/bub1Tc5Nj4H5fnhX/Xv4eFN9T/wej/4zmf/wH47+tvT2uO+6Ycbbw4Ui7M1+zel1jXYL9a+SdZsdL0Z3IP28jZ+q8NVQnqd8uvUq9wxrwZHk2xf/P8A7DB+V9M/3wQ/otdIu3wf9lR8kfz/yzcj651xVk726Kvch32jl3GPk/uJGeI9TvwpfP7NDBfyNcH7awv693Pwpn3UKP9eBO8O7sOT7rICf7uS6GRxj3Vuu/Wjl88jXV//X2am2dg+AE6x/U/D1i/IZ5NmHfltqP5+ensLP29bT8eg+ap3fCn+LlB+0/r6JjzfYd0f4J+F3T/gnK+9ivH6d702wF/qHGb+r6O8P9jgi90Ho1wJrgl3RuVJ5if5XKXezvjzo9+noroL3HvJtaz0YbZ2Za/6fp34CvUxh7/r0tRL+SezzFrxDC0X4IX2/ot1X5P3D+rEu9zvKd+Nvun7/5Bxv3M1i3xnG563KB6Bbeu/zKP7n0ee27DfJfrYtPpeYF0vpswf73q3+Evrohu754GB0mtB3Y7AR+AB839HbQfB9Gz3SRx3t7ibHQPoaSg+XGx/V/f4d/m4l3/7G36n5PofnWvU/K79Bv9fS99rYn/yfg23w04l8B7D/C+b1BOOkNfucQ951xll7+l2ovhZ+a5HnEnwcBP9T5NsC3t/xO934yHz+m73rGg+Z38ey+/65z/P7V+h/i+/96ftFeG4j/xTj4wB2WZzvdf26wvctfM+RZ5z+L6rfqD7n6LfJ9zT+L7ZvvFQEZTPUbwbfR/q1oaem8A2nj5rk21v7pejfkv1Z/c7se5H+LfRvx67boXN5oQjzvZp17Qh85fywGv7b1L+U7wz67KD/D8rX0tsM/J2a9QrcXX3uX2vq/xs+91Wf+6n30PucXo7Fz6Hwt7Q/3Qm2tT59qN+t+T7ye1Xzdx06n2X9BD8FK+nfF19XFIrwC/S/od/70J2Mv1ONn1G5X9H+VnLeTq58fw+Gf2qgduvRa6ncTXm/3OOyUxfjbzk6K8M3+w0w3r8Ge5N/UuYTfD/i/0H4jqTfP61/h+JvFP3knmCGebuGPquh21H/g/D1J7y1yHM4utWM187KbbNvwH+K9ac7OleBuQfpSv/PgQ/pv5B+jkJvHr28AQ7D5wnWnxPB660D7cj7lXXxZPg3w+cT6M/IO4vxsI15Up/8I4qg7CzwNbCGfvn+yb7zEH18g84r+LgVvz/p3wz+DuovJtc/8M3VvpL1eIPxX1H5bPrZ3nh9TrkpO82m/0r0cQ07nGKdvx/+pfCtNK5exsdZ8OU8mfPlmnxPs9MS8rQn/y3KuT/sgP5Y+mqv3LNQhNXR2xq9E8l/Bf4GOY8vsg7nPjX3p631fz33XOiOpd+L6Gc//OddrS79FMyPHcAG4Gvat8TPtuTN+jgbfz8q595qivn1GvoNcq+of+Z59qM31N+N77XqP83+bb88Pedh7ebp35zc/xSK8HF2+Bh/s5XvpacjlH9R38G86OD345UL8Fc1Pq+GP/vOu/qP0e9KfAzD30HqP/O9cgpY3/fiOHhnKa+C50z77CDyn2b+ngW2sn48nP0c3jJ4FtJTR3rdaNyvZ5cxzpGDc65l73r6PWy8jGe/VZkX9qE54Gvs2dF4Pkn5JOXPlD9kz2rknWTctYc/71Iva/9uoQjXKT+pfwv8fpx3angW2QfWs29z46U3/TzOLhOz/zb4N73vyVOR3NXx+RY+atFjdfiuQ//X7B/Kb6HzofY3wF8e/vXkLKfcxvjI/dlBxt0gdsr92WbwZT0tn/d69N/H7+b4K6Czkn7/MS4+M64mKF8A73rrdd497ifPAehNg3+99gPUjzE+8326g993LxThy+S7Av7+9JH35y8yfqzrLa3Ds+inBvq1/P6L9s/CN468r9FH7mW/wMcH6F+Nv+n4GgI2y/2yffNUetsi+qbfm/UfnHsM+jgRnqX2k3yv5jt2lfoR+DsaXxfn+0b9CfC/Tb7cr72X94H/cW/2dM4pmX/Z50rm3zT9ulgHWlovbiZfR/ROw39Fcj6mPu+VJ8M3h/7PQj/fL3+T5xbt4z/RNud9+JaS50vjM+9/efd7Cp68/71uv9vg92+Vl7Nfe/264P9u/C3VfjvjayO6vyrnfXkZ/iYpt9evCvob2bO+9eEJ8/QDejuCXp7Az37o/0m+39HrZ1xvab73zHuY9tPx9zT6i/T/lr0amLeDlb9Abyf9tqbvD5XHKJ9Cvxtyf6PfBvjfoc91+PlFuw3kynf9PXmXZe8D8r6ifRV4z7efXGqc9iX3RXkftY8tU39pEZTVof+e9NEY/j2N2/45/6o/Hr3eJe9+c/CT97/v2e9efNQyP+rqfyU4Fz8L4r+T7z/0msPflD7OV9469x3xV6Dv4fT3p/6vFYrwA/vvUPgfhq+g/jr67aIcf5qcExYo76x+IXozyT0XvoPJ1dn69j0+6tLjX7kP0f94dHNvd6B2r/j9UfKso58vyH87fU5m97xXT8JPHfMm38XNrUf5Pj464x6+/fBdPu8zxktD8AiwD372JFe+y75H95b/sT99qpx9ajp54heyld9rs09j9P6wD11Lzo/UD1R/k36P55yM/lh43yHvueTdTP1s+noRbA3uQf+H5twHHgZuRGel9WQV+JTf76C/rbJ/GT+VjJ938N/M+nRy/Prwl/vvu9ltC/LNgO9C/Z+KPuPvk+9O5dutL/FXij9T3pnj35J9eyk9fZ7vOfgy/37Rvgv6uc/qhb8d9L9fOe9h8d/Le1nex3qRe3ffWc/gox39vUU/XcG76P8F7Xrnvg6szd6n42MkfsvUH47fL+E/DN2y+BXS99f67wnfar/Pwv8I8mS9mlfyHZj16/n4AxlXR5J7c/ptnPNx/OzgOUr/kdbXgeh/lfVZ/SPW13HgleRsVijCN9k/9wxTlHPfsKIIyjqAdfGV9+18PzyV91cw3w8Djaf+ft/E+f85+p1HvmvJdTU5V8F/K/kW0/cL6ivifyI4CWwP303wv6b/LHp+Ecw9Ui/r3QT66cJue5OzA/meLPm+7av+oPCf916/Hwh/O/P5HPM7erhSffwXcj5eAk/8F2ZaNwaX+BHnnSffX28XinBe3i/J0ZtdX0Mv/kafss/x5kvmzQ30sSv6g7TPuWQvsBr77Fxyr5xz1r30cAn6DZTP0v67+L/gv4Bezrv1tJ9gfxpgXV+qfMYO/5ZnLLmX5R0OHzX0W2Bfn6vfq/RxnPG4VfZn4zX23yt+27mfVL6A/AvJk3ue3O90Ur+E3U82Dq5W/k+hCCvrXwu/A/VbnfU0+xm73IJ+7jNfIn/8C7JuLsH/UHJtXXIf/Fv8/6yv78F3lfXufeVrjb/z8n2Z+0/2exL9c8h/Rc7r6M9Ab0Pug+ihpf5TjbsK5t/T8J+CvzvzfeX3W+irP/w1rVe5t9wZzP3lKPQOofd8/8e/ci18o/A/HJ+f638S+RbjY5z2y+lnqfo78dsLnjvhv579rgNPRT/+tRu0H1sowrfh/zz+FfT5G/l/0y/+4rPzfQLPT8pD9b/IetdL+33IUZ58B+b+Df//fX/O/Tq+x4P7g/GfaGP+tsLfWPQ7KD+Nr5Pgn6h+BPxv6T8Bvr/V/4d9r6aPLfH9D3w3FIpwnf7xd7+IXfaH/+3oT315/f/GX+7Dcy7ds+R+vG/evfGX8Tgr3zMl/lejs//Q99HG91T0KqMzEn/T6LNV3kHAqdq9Y/5d43wzqNq/6VXIe3f2H/JNI2895dPy7oq/h42PYdZTYpZ9CL7uu2QN+t9af9qU3G/Ev3sb9C6H/xTy3oPfqvm+9Z03Kd919JP3u5eU8443iXyvoNsq9730/5l5fQJ83ROngL8V+OkODsn8w2/VrN/096b6J/RvTf4F6DZkn53RO0X/nYyXBvB8hd9P1VfKOyz8L7P/xeTuTu4LwHwn/mw/GmoePxI/JOX+DJd7sbxLfkY/ef/Ku1dLfAwgX3d4GsY/QXldoQjnsPtd5JutfGPswb7jwMPAR9m7OnsPtG/VUN4+9xmJm8H/KOMp/umL6K8yevmubkR/ZebF4Mxr9mmn3QXo7YH/w7XbC/5JxktH+8RQsKl9Mfpqap5UpbeWYL7PV8J3D7kPU1+PfPHjfJ8cb+b9M/7J7NMWf/ley/tYj+y7hX/z0cP4XJZ7cr8nPiF+R/FDGkQP8T96C73b0NvVePkLn7Xw150cN+n/Bph9czX+sp9mH32LPueDrejn1vitG7/XsH/iMHKfeWne7ZWraFfA/3D8PYDfvKu+QP5P41dNrnfj16V+CL3kHnY4/INyfsz9dcn9e139b3Jeyndql5Lv1B2Mn1bxY4DnT+Olkfl8J/vN0z7nhCbw5lw4VbucD6/E9xXg5eB76B9Vci/zDLy5n0m8w//yo2/s3Jx5tCl9Zh69Yb5PM85+Nv92jD+O/h21W6W8Lf19kfELfon/xC/cSh+5578U/0fkfYBe8312G/vn+6w1ermv6cfeGW+xX+ImE0eZ+MnVxueI3IP5/XTj73J83wn/4/SQ83H8g+MPHL0mvuGHxBvmPSb+Pcr70HfiEL9Wjv9ZE+1PKJmX29D/YvXxR7kcH/n+Gcaup+Ej/g9t8DeOPVfn3YYdf1F/H3lr53u0gB/8zcRP3iMHoz9Zfe6Lh5FvD/K1xu/H8Ddnh4+UK6C3bYlf2enxQ6fnxOMkPqe6/fZp9SuMh7f1r67dlMSRwF8JrAjmvvwRest3cJVCEV4AJr4l7/AZB3l/n2y8TwEvJl/TkvGduMz3Ex+Dv/hDJ07sWfMk/tI/Jd6AXntpvxp/J9nXct/cPvEF6O9uf+yrfhPlPfC/FP74X8Tf93P9L8PPyeSYlfsp9b/ic2P8QfJuE/9o/R5Dv7z2b2q/hfq9yZXv1vhPVPb7O+h+lu8q/L9vfC/Gz3jj4dC8N9DHaHg3YYcj4T/SvtYu97fovFQowu+NlzvA3L/2R78L/Tyi/fvkLAf/AerPV/9i5i/+Bhkv8QP+1DyJ/2/iAvL+l3iB2onPLvmuT7x0gZ5mWR97g9Osk01K/P0TV32u9Tb+/9vHvyp+Lcoz8n7Efn/gM+fQauS7gD1646+J+g/VDyj5rr8k8cqJL8bvEPwvA2sXirBW7i/wn+/W3N/db3y3sO6NUR5uPOya9yD95yhfhp9j2KMNOM38uAv9N9hjqvLP+LnceLzRvO0LboJ+1svsy9mPZ6nP+fbPIvjvfe0V+H7O+FtCP2Pp5XnlQfBd635lNZh4tMSfPRD/djDntMyf8eTrRL4/4Kmi/kj48n7RInak/7wLbqr9KOXqyj/BV8c++6n1oy15G6M/h9xnwn84/Ilry/tF4iHzfrGmJD9Bq9x/xj9W/VC/b4LO/OiX3T8HMz//Q09fmQ/d0M27aPwb1xt3ndjnXnpOPoI30c998MxCESa/RPyrDwTHoRv/6sSPHKh/4kgSP5L4nLzfn5xxT19zE0eD/wfwn/wGiV9K3FLejRK/dGP8c/y+h/KF8GyZ+8GS/Xe/fD+jm++ihfGHyTkA/6ejXx8/TfEdv6DE5dQBp+b7yHxonXd868096OX99Wb8v0K/8Y8bar7nHu4SfOT+7XblE+izM3yJD4o/Xvxw43/7ODucar3dGr771O+iXFO/qebZ9fi6Af7aft8zdiD/6dodTO6ttPs7cWixo9+zvudclv0s/qo7wPO7domfi//thc5d3Uv8byvRx8rcf8J/JvmWw9uN3PFnPop8uf/PvX8j9HP+7cK+Fayvf4JLjJ+e+Mm4Otn8XQjfr+TLu/WueSfCX/xf448S/9f57L2b8rnwNTPfE187RX3iovP+nvf4+A/Eb+A+8uY8Vx3cOuc3csS/7r4iKOsCzlRfuVCEm9pPNgNPZa9l8R/NvXjJuSff2Q/ha6lyPfZ5jf0zHzvCcwA+e5DvWfZZDy6wDt6j/lDfqxvhW4v+fPbdNe9r7NSJng+gxwMTH4q/Zuq/V/+ZfvH7jR9w/H/H4DfxHC3M8xO1OzP5OehnPXlfgf+jIihrD36N/wbx70T/BXzlfmkL9M+il2bWpb3pJ+9fLdG9Ou8N6O8J3yz85dyac2zsGH/97dQ/4Pdu8P+G/nh0m+UequG/+12lX+IB4v//uvmWeNAFuT8g3w7G3W7GXRP85Hw1Iu9h5s1NyomfTzxH4jviv5T4jpvN51/jx8J+zfG5ve+yArgDmPfu3FftSL7zyZH8IQuyf9u3p+T7nXyPOr+8nH2YfU7E347K1+X7mNx75/xu/c/5+zRybqH/OOfh6ew6Qfl0eJaSO34xeWefVeIfFn+4fPfGPyzvMQsKRfg1PuIf2Ev/ydbBo/Gb9aty4gbyfktfM/HzUvwL8HUs+41Gv9SvdXbyQZH/Sr8fnHwN5B2v3NN46wFOMR7yTh97/IaPi8j3PbmPwWe7xPXhaxv2rU7ezjk/KFfGX/TzkHGe9X5e8meg3yLxC+j+oT76KV0nop8L2Dv+xKcYBy+rf8P+thHddeZZOXLFP/tAeOOnnf2jNN9E8lDUU/6NPjNuZheKMOMn8Zp5n0k8Z+5fb7G/taWn4fDVVP8N+Z+G5xP48168Fb3smLgLdOqq34X8u7JPY+Pvz9wH0EfuzRsar7k/H6V+gd/bxB86/ujKext3L5Ej92Lxm42/bDNy3Ma+q6yvj4GvWWeX6DcaXGu85R6sZvZn/E0yvsbTZwftmxiPZda1TcD4JySe8jH8tcJ/b/0zPjMuyycOF8z5L+e+kfSe8991Jf4m5dnh2ZxT4V+k32TtDoX/weS3Qv8m/Zvgb5nyFHptQa476acFu5zEfq2Szw2dg2v/m27b5KvCz9Hm073m2dfKD2hfAf8TtB+T8xJ9fh1/V3pI3o9fEz+E76wL+ya/B/7fLIKyzuBs8DT9D05ej+g599z6L4A/59KsrzmfPml+vEieMfS8nn3uoJ9/yHe6/o/k/ZteltHLXYHwn2N+LLM/bJ13oXxnwlcu3wHJ24H+yeh/WSjChto/Hz9V9wIjtBtvvdpT/Xy/J//ChckDAn9l+Erf7z9Tn3jNliV5mpI/aWLOa8Gf8yT6ebdbXvJ+l/vhCtajHnkXND4HxJ+dfQyrshsSvxL/O/SmZf9O/ij8HMI+P4Kj2edsCJ80PiuaH5XAKvicq3yldnebT8nXOBHeg8F7SvI/5j0m/rXHw5P3ml/pt6/2FbMeKX+W73n2GZb4BvbpxX7J+xX73Yy/v/XfJ/n9kq8G/W/Nn8n43Fl5LTyJLzwSTHxh4g2rs1c7828P8Fj89HPuqOX3vsp/s+8Lfj8T/dg/4+FO87m/feE9cCr5Ns17Ensmb8CQ2Id+kj8s+cTin/M0ef8yzmrkPlL7vA/n3Snvw2MSn0eeauDb9qHs73kvSNxmaTxn/JnjpxR/5/grzaCP+LfsaX9L/oQ/I5f2l+Iv8TNtjbvZ+Eu8/V7GU9afrDtXqM/6czT9d6WXqvR0gvrq9J91djo829DvJeTL+83r8LfBZ/JlfkRfjxaK8L/+wXmPzv05Om8mPyV99DAuluPv2cQZZ11F54zk8YqfJHvNjX8OfW2N7jTztRE4FUz+juRdTB7G5F/cmzxXWy8Sf/GQ9fov68s3mZ/Gb6/cm8Y/ogjKbnbOeVe5O3wF+k1er+T7SnzoXPhH4PcSeO8wPvrR3z15F1Merr6L/oPQW86+0xJPa93rjv7z1r9n2Kc/e22q/TXZF/F3H/4n+n0UPAONn/fUN4ZngHL2t95l5MLX5uRojF7uNR4if97bdyLPE/rtBN+i+Mfh70n444fZlH4SV558Tnkfvz32xP+ZxuX+4Kjku0U/8UqJY+qmnHimrc3/h8Baie/Le2C+/0veYfP+/l3y+qD3Kr38kPh+eFag94j6d8jfNHlb4+ecfJLwxz9ggPUh/gHRxybkSt7QXdjhHXSyjyRePX7Gm8Mff5tv8q6cvFX0O4c+/6TfbZMHT7sj2KcT+ZLf4Fny7Wf9P7Ikzif+I3mvzzt+3u1nFIowea9uyb4bvxT1O7NP4nZXk+/exIPg9zfz6BNwr/gBWo/W5Rytfy38fwRv7tVzz5779eRHPBg/yYvYUjn+P4cnDwv5Dk2cHrskLnACfSc+MO/xy9mnLH7yYPaDm/W/wDqb8/e+5GxArk/yXpj7duM98+WZ+DfAn/w9yduT95vk7zmBfImrThxa4qtPwHb8Yh5Qbmt+5F6jUeKpyXkx/In3zPtRBXwnX9ZfxtcGcAJ75r44+XFqx98Cv8mP0yT5rfJdSx9j0NvJ+eJO43QoOt3Z/wj9DgeTL2uFcXcO+ZL/bh/yLIM/+QeSd+Cs3IMkfsp6dYn2yR/9LfmS9/hF/bP+/p78AiX5J+doVw7/rbRfm/xAiYNWn7wHt/u9Cn6TB2Foid994pzif98C/xWNq8R5rsn7b/ZPv1dF5wL8n2H8Je/UuRmX8U+0nkwEs57mvq5J4n7RSZxP4ntGkqdc4gxzPkSnld+X570XX4mvK32vzzv+/fo3Jf/u5vXOym21j//OpBI/nvjvzM/9EDgy98D65/31AnImz+TQ+O8at8clrxd73Zo8G+iNN09Ogf8f/eN3ulJ98ogmf2jy6+YdtZd2/eLfnvyY2Z/gy/f5g7EXec6nt+/0n1mSN2e7vNcmf2bOXckXw165Hy3Vd+wwL+/5xmX8REr9Qwbrf6114FbtBuLn3vhlFoqwe/LTqN9XfXvyd8R/z+Rxth/ton/8W5N/MvEIiU8YQ77EJ3Rjz+1zb4jP+DscEf+9vO8rJ39z35wLkk8Dn6+X3O9V1i73fLnfW+++oJl2zcH34Ene4OyT59J/9ssHlRerTx70+bkHJ2/y4RwG79n4b6A++ZOfJ2fu9wrG/TP0njyVa9SXx2/ywt2g/N/8cHmfyfeH8b6QfuJf8zHYChxgHD1E352TbyLxncpHO9+div+h+NxE/aPolZ4P12pfRzn5BY7LvXj8k/Uv/b8XDRKfQH+5F8w9Yd6J78L/neiX5s8fhP/FOacmjif3UM71fcDkcfkSvuRXTl7lEcq5B+6tffJHTSFPRfTnmY8FfJc3/n+MfzT+B5D/GuMr/iXv+L1u/JLg/VB9H/NrQ9Zb4z/nreSv66jfrfDcj/7n8a8gXw/tX1Q/m1w/l/i/xx/+XPWjEi+K3yE5fyfuBN7kQ0r+o0fpI/488Ru6WP9b8DU/31vKP+dcYf3L+lX6/wE62Xe7gJ3B5GOalu9J+ss546Dkt8FvFXy1KRRh8qsn/+z3+r/Dzk3YZ6j1J+8+YxJ/kvju7DPwXgTPXfBnXzymZH/8IPeB9Jd4psQ35X4g8WqJX0s+nfgB7qh+PDk35r1Nu9L952zl7EN7kzf54J8HbyB/W/ZoAx4DVlWf/NrZl5NnO/m1H078En7WwN9Iu/olv+f/yOT/xySurb72iW9LfOXj9DkVHFwowsRvv4v+XjkX0tOH8PVR/yX+R2d/Qvc587EzvImPOIN8ea88yz77BDhZ++OcL65D79jkC0t8j/W8I7zL2TP5ma+2XmVf2N19wEnwX4PvoYn7T76IxOnDv5f25ZSHsd8K/ZIPbUv+Kl8nPkH7/fPdkPVJ+8S/NI8/Kfp12HN3+k6enZngj4lfp7/kD72U/pI/NHEqm+t3QvxA2Pfp5ANC915y7ky+lebdl8mHAd/L6D1fkp8x78PJz/iB+mHwt8u9ovp3zdvSe+tJ6Ndwrq5jfC42D9/BZ+Lr96CnbuRcSf5fsh5rV7q/3oyv5MVsg7+axk/73HMmr0hJHoC3lO/DT/wust7k/1XNKcl7sRX8pfEwuafP/fww63X83Huyx/nwrPV7BfTqa/8+fGfTa/xC4yea82TyG4xP3g5yLQfzPZ48HwPzbqJ/WfwrlQej87r+i/D7HviF9S/vv8mLPRZcA1ZVfy39XOP3h8GJ+I3/b/x+Z+Iz/r9L8v+D7BM5f0yMHyV7x0/+c+Mx8T2vJG84ej+jN7TkfXRTds77aN5LX7X+dLdvJ7/NK/hLfs/4MbRVzv3TwpL9Ofty4mMf1v429F5UTv6m3CetxVfHvHfCty7nZ/JsEr9u8n9aoq+cL/aPPwO7/km+5srT9O+QfNHkjT9D/Be+cu7MuEmcccZT/KIq0n/8pfI9OZr9NtUv95n5/xIX0f+G+Ffn/6Pk/JXxEv9J/CZ+5p/kbcq5Gf2GuWek3/xfrfJZZ/Wvb/1vSY/1lPuV5PeYho/k+Uh+j1H2q9nJ22N/yb5TXb8x2ieuPPcnt6jP/wXL/wnL/wfLfMk9RfzCZ8f/hv6zH80nf/z/T3YeeoR99s09bd45Ek8PT+n/N6oef+/4E5Tko+qLrxfwtcLvP5Mv8RX7ZX1FJ/EVuTf/lX3uUJ98KbvjO/HD7/pOSnxF/8S3oH8GWCf+oeTN+Tbxpjnf3oiv9/R7Ivlbcn+T/FXxI3C+Oc78eMF4mZr/k6M+eYjyf3QqZ9/L+gN//r9KQ/bqkXiWxJeVnDcW0ddi/XPvk/ffxCH+lf0q94PkSx7DlxOfZNyXsUf+D0PWm47sN1a/+DN/rP195Mx9cfyN41/8KPpf5XsAvvy/j/i33ZZ8HujfhL/H4reeexhyVIIv/7cs5+z8P7Ocs9ejl3Nx6Xk57x+7J5428dSJg2Lf3PflPvxg9o9/7Rd538df/HPz/3e20y9xx8fn/hydLfJemH0i+Wfsr92Mr7O03zfxr9b7mWAZe+b/G8zFX+JSEqeS79kW9PEgvD1z70Te/ta15DXZzvqW+/3k65kOHl+Sz6dhrX+3u5h9kt/nE2zPAVuDT7NXc+tXFftGy+Qnhz/+/fGfip9/8luXvqfnnf0l9edqn3039yXd4z9Q4r9fJfmO4Psm96P6Jc4w8YVPO6+UM07z/w/20v938qxJfvpCESYeJ/mFauj3bfInwD8761v8GozX/D/REb7vDwR/Qecf61/petXI+jrTeEw8d+K7LzVeEt+9l/Yd0I9fbv5/6xPOD/FHnRA/H3LewX7Zp0r3p+T9qQzvwdqX0z//XyBxMqX5whPfkfyP/dBfRL4z4FuUe1f1VdX/jJ9Lzb8+5H0Af4lviN9z/o/SafrfDG/8Ykr9Zf5J/iP8/p5xlPNX8t4lbw0+Jua+H/3WhSLMOv8M/q5i93bo3pZzvna5t7gandL7ixXofYf+ruT/IvF15vUd4FRwBXvuZ/1KPsv8H4hrjL+j0D0p5xB0s79dav2o6Ls5/2dqo36D6K9c7tvobyw8k9UnHmq8+gbwJ99bXfIkv8HwnK+N39w7JU7gC/zvrbwg8UXk6Bz/oMQ7+P2y5OfA77PWD83KZpu/8R/M+rQFfG8bR/fn/jX5TuDLefFAdhxo3alq3d0HzPq8C3r7Fopwud+TDy3+lcnXkzwF+f8YkTvyRh/5/tlMv8PwUy3+LYk3T/4+eBNnlviyrE85X2V9ynp1kPG8Bh97J59B7Jn7B+2Pyb1M3iHVX5n4Q+3OUX87vK8m70Ti6Mn1g/U+cSF/W08SH5J799y3Z3/J/29oAE/yFec9+Z2c35X3p5dT9T9f/+Tzb5r1BL74N5Xmh7hfOeMp/hXvJu69xL/lGeNjY86N6vP/HxbT94nwd4Gnp/6JW0i8QvLZJ3/9hfSd9WskPZxEvozn/F+1fAcl39vz5s8E8DkweToT35u43rnGU+J78/0xE95S/50y683Z1qHked9Sff5/2UfxayTPqsSlqL9C+ZTsp/R3rvF7Hvi+9Tr5na5AfyT6+X/reU9P/G78WC607iZ+t/T/I/+tf+KAEzf6vPqsl8fmfkf/JfqNih8KO92e/wuVezN6n578W0VQ1gN8HzyKnoezx1PkP4L8O8LzfxrDjiJ4nHXdd/jP1f8/8LcIRaiMjPSSFlGJtmgY7UmkpbSTSFQa2qJdCg1pSENKJaVSRKnQVKShgbRoaed7Xb/X7f65rp7Xr9c/j+s8zzmPdR5nPc7jnFf/6hX/7/d7ozLcb/0y7LFZGe5UuwxrrlOGNZR/oHEZ7qPetKZl+FaDMjyjWRmO971L8zI8Svnqm5fhs+idA29N9fZRvsN6ZVjasAynl8qwpfyfq5bhfN+P2KQMa8O/D/6/r1aG8+SvBBs1LMNe+FyEv3Oka6B/bc0y7FqjDO9SfyPyntWkDC/auAwHb1GGPdctw761lAPn019v8r6ofCV0l0hfRi8zqqCPnwPQOx39S9S7z/etSmX4JnlaojdJ+aGbluEn5Glcpwy/Uf96+QuV/139PeBdn31sSr5h9PGxcnXxP5m8d9DL3exoCPy/wn8YvK/Bc7r8vch7GNhQOzwrvxn8X+F7qfbui7+eG5VhfXxtpb2/Q29Ler1JvS2k78BH2qkG/JXgmy9/G/wfSM9LtOct7HMT/NVkp02kX1D/Cvgmwn+/dmzGfgfi9y/6Wwb/0eR7Sf1F6k+VP4j+J+CvRI4D0L1BuWvlP02fX/jeF/3LyDUIX28qfwL5muHvZvXuUe5V6XH0urXvu7LnTdH7egN09c8e5NwE/en1ynAofCvws5B89euW4Wbkq6n8nfIvpp/Y5z7w/wj/NPY7GF9dtP/b9Lm6fhkuArdD50nyv4xedXqZodyv6FRFfwv834T/+ugvoZcd6KMz/F/LX4+9f0A/Ffi8Bn/V8V8F7AZepv5D5N4R/QPSP/F/PXu8Xf695N+F/l7V775HdyU4AZ6J+DuKHI9KX6N+k0pl2BX7T4JvKb8vPXWQfoK+vsRPG/b1A3l3Qz/2NE3+yU3+zden+sex9NEane7yz1P/Fu1RW/mlpTKcjP+59LPc9wPZ897Kn0ne3r4vxPf69N9n7TKsWrkMT5Ruxe6PZj/X4uNt9tNO+3Qn31j5HfH9Lfxt6WPHjB/aex7+tpE/Ffwr8pJvT3b7mXoN8V9Cf5n2OID+2tHfmco9pn5z9N/H73z8LUVvMPzDMq/KH6l9zpQ/B7wa/0fBvwn8+5TKcIb6U9WfDT4LvhU+8b1rwf5vgr+l8vuaBw/RD1fD/41xeyY5jkW/Mv1cvFYZLgfbaueScs3Um0nubaR/xM9c7X+Edq9M3kna53d8dWc3C/XPnZr+/+WJnDfhvw7+5xk/jmCnV5PznzKoOBmcBr4Oz5ba8z3ynkCu1vjbmB0/pp/sarw4S/0T1L8Wv0dojxrwVZY+GD8tyb9c/oHWffvDf5ry38Pfj13sq97j8PyJv87hX72sP9sq93vmdXLdp/y99Nde+8zRPheA1eA7CL5d2O3F5DxMe8yFbz9wsvw35C83f40n5/fg5/jbQb3O5L0T3VX08yX+xuCrNj1sRK4L2Mcq8nRH/wfpzDeV8Z/5KPNPC/gyPi/C10D83+r7CPydSx9Xyd/SuFOXHbeQflf7rCbfYeSqhJ+31P8b/W98Hw//SPzdm/bF/4fs8S38TEevvu+vWn+er/yR+lMP8BD9pDp+Kox/L6CzdeZ99Gvol9/h6zr9rQ/5jpeeWFIO3Q/ocRa5Rsgfjs798N9ofrkBvB68Wf2Zyg/U3huTuzn6d+NrLPz16PNk5d7VX3fUv67P/kv9M+jjKd87wDNH+1zFfh8Ep7Pf0fi71vh6OL53kf+i/JvIP5gdDaPv5+F/Ef8fao9j2NGZ+NtKu83MusZ6o538632vQ59p94PlL8fX9+j/SI+HaedO+FkXnhvU3wl/q9FrrNwg6c/Vn+37Eni3Vv8A8i/THtlP99een+JnHPtarJ+30c8fVv9S80722RnfNsv6kn5+wm8LfMwn/3P4K6W/0fNp8o/U/v3xN90+cSvlG5bK8EP87K9+L/LfSL5jyDURf2fCN5K+zlPug+iPPKPU2xDei5S7jXzH6c9XKr83+b7D3+30fRY8z+DrJvI9go+/2Pdx4Az1L4PvV3bbiJytC/b1hHIj6PM5+WujOwrfc9T/HP/b4n8r/F+ov4yRf2XW8/IHmr/vhuck/pNDjG/3wBf7/l77H5T5QHu+Bv8X+HpPu3Shr8X09AV5NkHvBvLeIt3TuLGpca6z9FzlLimV4RR6rUaeI+NfItf16AzH12r8v8LeD5G/d/ZH6u9BH53Q3UY7TWQvK+j/dXysr37Gz3r0sQxsEEgP37D3deijpf5YK+tPdKdJPy29Dv6b4vsD9E8nb/Zj76LXWftcis5k8t2N/0Plj/L9RvTi39icPHtqx2/RP4y+mxo3bzZefIT+gcaVpfT8PHsYQv7Xy6DicO3bDbyHHo9Vfif8zCn4D57B/2jlp0r/rFwFe21KLxcYjzuVyrCueeU17fqI9FXxs5C3pP6L+Mk+bl35jypfx/cH6fke/Jyu3GXq707fXdFdT7u+qr8t0w7H63eTzKPr0nNH9neL8ewJsBp6j+KjH/lbo9df+lT6mwjfAHQvtp5ZRJ/Xa6c65KuvPUfibzP6Wkw/m8jfMOsnfP6Dn53ge4k9dSLfIfi4n55+oL8tyFM3+pd/nvzX2XfWZ63o8S34t2S/G2cdD89F8l+m/+3JsRpcT/m34V/CLj8B70X/YO05AJ0r6C3jc3E9Nlm5VupX0W53lkFFD/AZeHY1HuyFz92kl8K7NT77SB+Udb32ib+jLbl3QfcJ/E1E5wj5p6r3o/yftOeJ4GT9+H14XtTfG8OzCB/D8THP/DAa/j74vQv+KtK/yG9Mvs7yW0ifpN+uxU6PVG8j9vMd+g2kTyHHQPpti88Z2qsVvdxaBhWzwF3gfRb9dsrFj1/033eF7wX9oyXYlv3fqd3+KJXh5uxrgnKX0Os68KxFv/HTXh9/u33/3/R+Ff5+Ue8I8g9FZxLY2/cf9MOa5KlJPzPiX6ffE/WfA9XvVwYVVdXvH/8x+kfh70XyPEs/y7X/H8abv8A2xpdW6n+tfWfA/430bPg20X5D8XETuFv2w+hl/3Y3eSbj60vfryTPdPP5hvD/LH8QPU7G9yX085l2Pxx/D7KvtvK/ZY8zfO8nfTb6V5jff8o+AX+VtOPT6kX+6KO3/L70dTK+asJza/xH+BuGn0fhWy4d/83tpTKMvzb+2S3YQ/z/OygX/39j+HOek/OeS9N/c64BtiR39gPXsv/MC53Y/0h0mtP7H/A+GL8yOE5/yHrhOny2UH9T/E9X/m75T+GvoX7T3ffPybM7+cegn3Vb5fgh8B/7b8wOY/+bs59fsr/B3+Hk/0L6muhPelN0mqmf9XtF1l/4yfr9B/PPj+Dr+unD2VfoV2dYHxT9tfvDdxP6u9PDOaUyvIBcu+CjhnaeS39L1G+sfa5Qr13snz4m5bwH3Sr0exj9ZN3WD774zxuy90ZgB/YyRP74Mqg4ERwGbiY//uOsK/qT7wty3IrvI5TbJecz+NuJ3O9InwVPB/rvZ76/OOtS8Kb4K/TnfaxfdpN+kV7aaq8+2u8T/fPeUhnWJvdH5OmiH42h/4X02UT+++g+JH97+T3x/xy7OEn6d+PRAHRr4mM/9LdmNy3Bk+inn/qPmTc/8L2Z/rQQP7eRuw2+biT3GvqrmvUUepO1x7b4j1/lcvVOoY/h6PcyblyS8Vo71kO/d85n1K9KH6dIX8qezsPHMeDx8ZcbX/aCJ+d/B+C3E3s9RPkv4D8p/uuc/2Weif+SfA/Lz3yTcSbjS+pnXfpiw3/j2YbeG+PnRfWfpp/YVytwOfuJfa1r/dWU3W4M5nyzJfwz4XsQ/XPx10b57cBtwU6F+IpphTiLxFdUI9+h4B34Hyb/WN/XpvcV+I493Wl8W5s+7sHvAvzfEf8OeGzmffx9Z/49Sr0h5It/eAz7ngl+BR6MjxvYxwztcxb7/BX+Lchzm/KdwafTvuxtQ3y9hp9z0Z+kfeK/fVQ6+4VG+uVk9X43vnxvnKoHVkWvMznHRT/0F70V9bkjvO+jeyf4q/wR0t/H76adsj99nnxb5HxWfzuQfn7SLtcp347+r08a/iHst63049p/G/pdmP0B+j3I10P/nKLcfTmPRv9H+MZb1z4Adibf4fh5oqS89NUZ/9H9FD+3Zn+d8yP8nEGeHTNOqH8Ye5mv3+ScqLn8A/F/Db7XgWeHnG/SZ87vP2FHFyo3AT9T4G0Inq5+cXyvWxjnfzVerAY7lsrwefVr0+tqdAfKPxfcRf/4EqwCjtU+8807/dWvZpyoR5/xxz8T+yTPNbFP+lmgfC14HiB/lQK+ljnPQH+k+e5QeqyjfObJGvpD9ayj8LGj+tkvNdDOj2j3K9DvHn8/fk9RP+eLOd+Mnzd+3SPA8/F9ofJD4kfIOZD+Xpke9zC+ttM+k8jxZ9pT/XXgnUl/R+PjWenjyHO+7/PUb+P7JuTrRn9d2PHh0vcnPk+9QYmrQb87/s/E/3dlUGF4rTjL91PN7w+BVdlPC/Sz/qlEv8Pxl/XPA+i9iP5a4M45R2HXOf9IfOGlBX9M/DTHJO6kVIZ14PtUugF99U38ifHkBP2qsfT0rD/0+0vAoeA/6I8vzC+j6aEvev2z38r+IP4I+r1F+nz43kncX+bX+DfBp/WDevBnfZj1YNaH78d/xV72CH/KVdM+69PHj4lXA9P/r9KvlpJ7Gdi46b/l+0P6PHZxFTrbk28t+H5AbwfpNepfST+vaN+d5XfP+YR2rKsfxT8/pjDfZ/6fpf9sbTzJuj3784wvXc2fayWuMfEGiZeAdzv02uK3hfa5Wrt8ptxD9HA8+lO0x0n0eDJ4X86rwI/hW0g/PRPfib/Yc9YbVeNHUv4jfDVTLufwr8F/ku/nqtcG/sRbJQ4rcVe/K9+DfU9k1/Xg2xaeCfQ2IPFO7K2/8a0Xe3gXfAfsj7+O9h+D2X098u2G/lT0NqDPLvA/if//iiuZgr898fdC4sno62L0t038lX60jXTmo6nsp4N+cWLO89Tvhb/9ld+Fvf+E/vFlUPEXOAI8D/9nxd+k/Mf0cYL8g+h9e/jvQn9z+h1FrtaJZyBve/mL2N8L7K65frBhztdKZXgceAj9vi99sP64Pb0cJD0u6yrlL0f3N9/vIM9S8q2vnb6Uflj+cdrtWPAddrwv/i6RvhY/Z2S/T94RiReB//Gc62mvS31vj/+O4O/K9c34hO9O9Pst+jkfekW5uTkn0j5v65+V6Hcs/c7E71b083f21fBfJv9r+cX4w+byu0m/jY9G6L+Pv3Hkjx1vB24MX+Jxz9Q+1/h+O/t9OOcB7GwlerXp7yv1O6F7ufxTw4f+PEi7Lif/5uqnfycuZSI9pb9viq9uyg/NeU+pDA/P+Vzi/6Rfov/Y63b0Wxe+H+kn8SZfG6d7gZ8rdwN8OX/dkX7ejX8x/knynhb/BPor0O+Kv+wf96Hfs8l/n3Yqnt+cyZ5rwnud+qMSf2k8zLn20kK88+7knoJeF/gyP7ya9aD8m+HJ+m6s8r3R/177XYv+aN/PUn5ewd/W1fos9yba0Pf5ia+T3ka5NeCsnA/Fb4TORHxerv1G0l/ORWZKz0E/8efrqx97j30P1f9zb2I8+XOfoni+tlp+2qkKebNfqa7cx1lfozcu5/WZz7NP0O4L2X0r4/Ed0Su9RZ9fwB//Zfzek//D/10D/Ua538E+upTK8BX2k7jUy+j/NOlPyH8wfs42HnSX/wR9xL5ib7GvMfQ/Svk/rSNOSPwg/Cem3+J33cRPwt8p8x/5jpffIf0j63r1P5I/P+McuJ/8Pvh9SP2GsV9ypn+fpnzm0ce1x8O5P2DcWu17Re5rJH4i/ozsb8wHV2d/kfMz7bAG7JZ4bPrJeVvO4+5V/w9yb1kqwwOUb5z7C4lrx98l5P1C/ifofQx+CibOq7p5t5vvNxbiBwfKH2x8/4G8U/EzgLx365cLjB9ztU/uOYzOeoyeb8TfIPzegv+f4H9af2qq3hvgXOPJfhkf8HU3Pgfif+tC/Gd9dBP/mXiDo9jr3egtld4o45v6j5B3IL38CCY+7Df5w3P/I/4b/X0oO2gpXQ39je1XxqI7X7scRb7X7bfGF87v/pIurtezjn9I/ip0+6n3hvVBH/w9wP531U6ZZ+qTfxZ8iYu4XPnO8p/Mvi3xCfJnyT8U/anS7xoPE7+U89MJ7C/7s7/p51f1V4MnaqdDs77WH3Iv6CvttaVyT9P3LHqsD/8K+ftLX4GPY9jRVvAfI38n9n07PubKb0X+duT+mh4eoP/e7HU76452xuem8s/NurJUhmvI0ZV+XkjcUMHvkf3DXPSzHn468QT4669/bpH4KPpYBX/8ju9mXGcn8T+2hS/nhLtm/ZNzNnqpyPmk9GT8LE68SPxMhfimyfrvInrtanztpf7G5qtNlGsivXnh/tRv+G6Ve52BxoNV1qkrwdsSp0i+7I+zX87+eF9286H83JPJ/Zgp9Jt95xXaJ/vPxIcnLnwP9BIfnnV/7ht1xm/iZw+AZjb4Mbhe4p7hO1b6Fvr9BL8P0mvsqhE7aIH/a+hhA3w/Lr+D/M3gn4e/udr5VfgHyl8pfSV86yTeUL3YV/z9sa8LpAfR3xD2Mjb+loL9NSJHzqs3QfebnM+R/2n4i/cFM14Mjf+VvjOPjs99Q/IPVv6I7O8L58+Zx7fyfR/2tQD+hvi+DryCHSe+dpFx7+X4vdnbx/DV1q7t40dNnBdYTX/5mh3OzflU4pu0Rzf8/2q+WRv9wfrTeeBS+O6SvzO+PmdH7aXH4meQ76PVn6R/HIr+U9aTNxv3dpPO+Wfmm+xnst+po/13KZXh1fJna9+z9Y+L2cfs3NtW7kPtdyh9j8HfHeCR6K80Hub+dx/038DXAPSqJV4RnYyve8XvQO7z8Zv438fZz7jYSeKt8P8GfIkvy/la4suGl0FFb3CN/MaJXzDe3gLv7oXx+Fr0j1I+++eN8b+AncXfkzjTQ+mvvfmnZsolPhK+3GvPPff4M+O/PB39h+DPef8E+tk3cbXyX1B+/ZyfJr6LPa0lP/eLZ0gX990XJv4IvTvlPwpfR/xfZF6+z7i3DPxB+X3LoKIJuSZKD8t9APiPUL54v3lH9rYT+2oLfgVfF3bTkJ1uBKb9cv/8Tv22FnzP5n6r/rRH7n/rZzl/WYW/ufRyJn3Xkn+D9puF3v3s52z6qyXdWvpv5Ydnf2u8OSR+pYyT8o/F/1J4FpPjS+ndjZftwWL8TdEeYidN8bOf/AuznlYv8clXkn+Aeq3lnyt/gfpf0MfM7EPgn6X+b+Qao969yuf8OOfGN9PPsTk/Mz7eZV45ldw5D3pQe+b+Z+6jjYe/a+Yf+r0icWnxv7Hfp9jtadL/sPOMd7eDDyVONOfD7HGG7xvgM37+F9hX4neeYl9/0EPiwzKOtKWvjCdPGD9+oaesSxJfWA1f8ePeqP3jx834WyPtSm/r4+c19Xaj5znS95E/49+h6MaPeA77TDzx1Jy7Ji5Pudw3/QT93Ee9QP2l6XfwD1K/Ov1sbX7IvY+WYN7vWAB/3kd4Uv2D5HfI/UJyb6fc3/A/QD9N5e+lfMPcf9Keg+WPod8+5In8icONHiL/Q+q9xJ5zjzHnE7uzj8HsYiF9HIr+DHb5VcZV9lk/5+rsryf4UeJJ4Lkh/nl0T8T35Rl/5cdfHf91zotas4taYG1wBfv7PP2S/Q8g78Xym2qvC3LvXP9dkfgA49+Gyn3E3o/K/Qj0Pidf3rPIerQyufbB7wfkeUn+SvodlH6ovXrD387+9FN8bIePY+CrB98n9FkLfLlUhr9n/0O+FvTXBP2X5bfE55Ha7Uv6aZ84fOlNlfuUfWxrPqtGb9vHjxT/Nnx51+Vt7fs8/ovnEa/Gv5/9Cfovxy7Qvy/rD/Z+g/y+mWfIt13sG73l6DWm3ztyvqFc+tHD5D0V/y+wh8QtviW9g/QC/L+ReOPC/j379tboZn3Zmt4a4SP79TdLZfgIeb/wfUbOZ+JfYzcrC/aT+MjEh10O//XaZ92st/SLE3L/lR2/Sv5LydORfL+QZwP4GxTud+S+x8j4X9F7Ed7TpXN/4EP46pPzanxsnPNR8aw/JT7P+uI89Y/UP64yz8QfHv/3PPrIPqsnPquSpxg3UVV7v5z4Nekz1F8N3/3a43L6+RW+Ccq9k/2VcXE4Pnvpx9PUfxK+nOtmfbMtfhLPlvi2XvhPfNva9HG1+n/w5yW+MuvHTsbvrCOzflxJX6vAv7VP3t+oXRhfe9u/ZnztkPt/BfuMvW6JrxPppwl97UW/A+BbQm9VEwcgv63xNuNuk7w3k3Waes+XyjDr3cTbjNC/En+8NjnSn1+JP7sQ/5f99D34vYpcQ+C5jfzno/dD/GP08av8rJ/yTs1P6ifefn/z5XfsZCg4DB85T8758o+F/dSI3FeHbxp6Oc/KfcOsb+ZI91G/UuwanvN8/xq+nM/2pa+sr3I+O5a8WZ//nPhx9OfmXCz307VH1h+1recO+493oPbU7pnfjtFOmd/yrleDvBuhf41GP/Nx8K2QTjxf9ZxbSWc9lPXP/Pjzcv+EXtqzr/+tl3K/OvN7/Mt5Vy/jIT0s1z8PMJ/vrP91h3dl/Mfyj856l372IV/upxyYe0f4HYte4mE+l59z7FHwryi8x1VX/5ohvYg87TN/k3Ok9KT0K3rZFb229Fcn++f0j8TvJ15Xe/ZEb03idMjXWv0dS2XYXDtWUX668a94Dy/37N9QP/7H7GPjf1yV+wHS9xfuB5xq3jw07wiB8V/tl3dEwBrkexb/Vyq/MO8h5L03+HOfOveruxfuV19UBhX/ZL8k3Qi93A/fnT2dnnse0q3op1upDPNeU95n6oPepviZlvejpLPey/2SrAez/itJL6P/NvSymPyvsNdG7Gx+7qOgs27Wrco/6Hv23xtlXZP9mfRXyi0Dl4O5v70SfztJp31OptdeiT+Vbptxnzx5x2uR9m9BjoXSjyaOn9xrch/HeL4f/f6c+Cp6zLnJGnp6Fb2Mv73JuVj9RtqntXmhEvq95Y8ug4rZxkloK1rgL+877p93NMGPFXw+8QKJT87+OfGp+OmX+2DK3Ua/DfDXT70GeYdD/u1ZLxXOL96TfwJ5si8/XvoZeoqfNu91DqOHD/FzMLzfJ67D+FFD/QnabV9y53ws8eEj1E8c63hyJ541cUTZt5yf92ngP5b+jgKPBhNPWHxvKuuLvM9ytPkoftiNjPdVSmXY13icd+b6gVPws4S852Udwt4Sf9eQvJehe3j0pP4T2ifrp8Rl5z7bM/KfTVwFPBslvpc+toevGA9wsvzcK8s9sxfA461XZ9LnZ/S0Vu4/WzfvTS+743/33P9kL4lXnwk+nPtEib/O+WneWck7MMbHRuaNKepPVe7a3F9Ad6b2TfzUldKPwBM/aPyfuQe/NfrV4cv5wWT6XU0/A/NeaakMv5e/RLtcmPsXuX8nP/duO6L3s/qj4WuR+9jkeBM/n+u/b7GbN8HcW/hNf/uvd3DOzXse4A3xQ+PvEPZax/qmFlg792G0/8VlUHEzWIf+B5Av7wy3Sfx24f5jVfo+Ff7cfzxJvbwPm/cJ8z7sc+R5E76OuY+qfV9Hv/gOwxDl47+Ov7pK5mnpvux3ED3HrnrQ/+3qz4w+5E9F/xz2uBM8DcmZ+LVPpZeAK+O/wu8p8Z/ED5J1IP6O0T5dfD9a+pDEn+p3uSeRc4Tcj7hEvVG+b5j3mtRfwN43N76dAf/58neO/5bcuR+e++JzK8gDrmIvtbI+sR64Jvtc/Ob9n0roVQGbsI8tEz8K7xjwzIp/49/TfuJe8L7E69Nnxo+MG8ukR8bfnvhi8mU++agEv+85L8/5eeKndtCe7cE15oshyud8vhi/sQ78OTfIvdrzCvdr8+7NCvXiT7wF/i/J+wz7exbMedhB2V/io43v2e9cxz7i17sg9xni32Eftxt3vtV+OZ/J+8h5byN6/1z75T2JvC8RP3feB8x7HJVz3xB/byS+Pn5t9W/UL5/HX5W8C6peZemML2u096Ssy8gzUbpEnq7sbk/95gP0l+T+H/rxk+R967zX2QN8NP4u9B+CN+d6D0vHDzIq8z3+l2c/W3hfIu9K552JvC+xiX7Vg55G5Z1J5Vqxp465T66dcr8064HYeU3tE/texr56kWso/nsqn7iqvJOZuKq8j5l3w55jV1mHXiW/eH8h93zqkO9O/EyQHp33pfE/QD/Oe0KfGgd3VD73Dz9L/8m+Uv5X8k/LeQa5joM/4/PT6u+ZeU1+1luJP94Df4k//jn2RX9HZhzI+wSJz2M/H0on/uox9tcn8x9696j/iPEm9/QmSXfJeap+O4e9/6xc3j2YUYjnSpxXJfjznkDeFzi58L7A2YnnLpVhM+1bhX4e1e6n+f587nuT7wnj3xP0VocdjYr/nfxv5n5z4XznuQ3+jXcOe8377/fpd3kXc7b8K8nXWvtOit8jfjj891R+etZH0nmP9Y4ySJhZxULr+cy7Teg594JzTzj3g+/MuUTiKdGfkPO93FvH34HSee+iIXtpAM7L/Tz0+8a/ovwd8OwB//b6X84v847MG+xhqPZO/1ob3rXwX0d+3uFYH/wzfgryXkp/b+LzY3Kebdz6HVxj/CrlvRN85d3gvX3P+8H9C+f7Oe9/Hb/vZT2On8SrzyqVYe6PxD9WPeeYiR8m7wtZl2nf7Bcm5Lw2fh31342fBf4HybEMnhY5HzRe1QU3BDfLOpQ+v8u5qPFksPpH6z//gHlv7iby34X+KeQtnnfm/cacZ+Ydx7zfOF/58bkvCU8z+bkPFv9g7onFP3ia9oh/tl+Nf5d/0/dnsp9jJ9/hP/+fkf/NyD2jmvIvoI9BYBP6yzl11lUf0U9ldpZ+lvvyDeJfQmcaOfJe/dE5D817s+zvNXheI0/n3KdNvLzyZ2iX+pnH6SfvN/2Jbvxkecdpf+nZea8Anezvs69d/B/728sL8fVZRyW+fjq9PQ8eYny9Tvnx8afQzwnq5/78Y+RdUyrDvLeS+TnndcV7kzm/66c/fWicyDt3r8uP3WW9Gn99/PMr9fu11XtMvQ+yP0Q/43xxfF9K/8/k/SPtMCnx4+hnfIg/Pf5z5CseB3NPPvPvvXkvL/dUEtci/9i8Zxr/Lby5f5L/g2mn3jj4V+CvGbvO+7Rb6295n/bynI+S/8bEy5fK8Jj0A+nE6yU+71L9JX7dor/3E/Z1a/avBf/v/uarkfBeiO/c796ZveWc6E3lh2b9Tv4e9PcbORbT12Dyt5P/ADmq0d8t1j+jwK/gb4TfHdGvBF/+dyb0u5KzFXle0U+2kz849/2UK7bPct9zLjeEPIl/qlA+djMFvthP4rlm4y/vfyW+K/f2vpb+QPlViVMqnBfn/0jW5Pwv50eJm4wfPvGq8J8cu817GeTL+JzxOONz3lfoolxP9D7KuwXp3+w1/7swQTrxd2O1T+4XvZz5l33n3mje8X1FvdfgX0sH3Yv+TlH/HHztz35epqf8D8Yl8m+Fdwb+8r5fI/ib8ktea/zNO+T91O8Qv1HiHbMewOei/O8AfSeO+IL4TwvzZebR+Jf21j9H6HfdMu8V1g9LyZ31Q9YTleSvBeY98yHkzH7vYvAi8Cr6P5E8r6O3MnFiiRelv7vImTiU/I9Y7j9dqdzu6uV+Yu4f7qBd8k5q3kcdZ36fDL5fuP/WjBxLlG+c96QK52eJn7o39+oL9w/yDl7uHcyR/x7+m+eevPLp39tJ5/zjr9xHIH/+3ynxpcX/47jJ98RrPmaezPvwG2rXDcD1wVrkPif+68Q34P8b+BLfshV+EtfyaPwb+HhPOv6iz3KfMPEB+HoD/an0X/z/iYnsqzP6++p38Z8l/jr+syelr4P3FenEadTLeUHiUvEZf2/e9/84cfL4WIB+7tNt8B/vDzfUr47MOzulMpyR+7/mP8PA/845PjBe5f90Mq50YCf5f50N0ds572xEv+jvZt+7WeJrC/cH8q5mLbD4vmbe2x5c+jf+YfDnPdfFeTdbe+bd13PBa3KPAZ68f/at732lV6NfJffP866Ycj/gK+9b533wpfDWBfP/Tn3in9V+N+c8EL0Gxt1hsXN6yP87xF8d/3X82T/nfkveuwHzTkn+X+KGMvjfu9JTwPyPzKnwL8p7LPi7vtC+ecd/J+VWgysSHyE9k5xNcz+ePeV84Hz7m5wPLNefvgJ3yDpCfuK1E7+dOMfEb38a+yuVYf6PIf+/EH/ggtwngi/xQ3nnYzF9Nlcu/381znyR+yol9pz4nJw/nxg+E6+T+6fGrcWJpwDzvsqDxoXDzOMPS+f95mns+/KCn+01cl+R+/voNEE/+4lN5W+Lv7xHlPeH3ijEt/4C7+i8T4Lus+zrLemn6K8j/HnX5C50GpPvH+WHgSPQaY/+2+jlHa6M23kffRr7+pN86xioflVvrHpHk6tu4t/z/kHy2XniAOP/qw5/9Dhb/2sOT/wPW+V9efLF/zCPPX+admTHOX/fzbjbX/kK4/GA3FfU7nnHeVzuQdHvKOuBv9H5BxyecSH3W/C7LTx5x/i/3o2If3Zb+PNuR97xyPnzY+xjeKkMX83/oJGvhvZYmvsn9Jn4qC3RTTxL4lzWZJ1KH7OUT5zPzfCfRb5XyZf/MZoMrqCPKuarWfZHl8H/GX0+Jn0FPsaTP/djG2j3rXNvJeN7/j+DfHk38Cn08/5FzuGL/9+xtnmp5HvuZ4yW/7p6x8GX95S6xp+K/73yPiQ+OsqPXy7vBb2UOFf4b8v70vhclfP73H+0nrxTsc7SNeErrqfzP0H5f6CtjIcv0X/moTvwmffg8z588X2K4cazZ6zr67HXM/H3N7w518r/OOX/m0Yp/7PvD+e+Gf3cn/U9ved+35E538z6nHzF86nmOR/NexfsLf/Hkv/1qsxO1in8v1fiQ+agPw+dvejjPfJfF38D/cWPMoX8uX92Cj3dGH4zLuNjC/yOSLxaGVSsAjuB+T+5r5X/KnHM7PVD8q3C3y/auan+/x7+i/bdtGDnJ6B3Lpj/e0n84Tk5n8/9Ee04D/0fjEurwPjL5mufo7T/0eBn4Dj6P0B75H+FDpS+Lvcb0K8lP/Pga6UyPJx+u4PdAsnfI345dvSZ+lerfwp9TZdOfOdd7DBxQ3nvM/aS++WJL+2n3HPw/+9+pP61l++5z7U/eiXj69X67WHSx8tvql3jj8r48GHux7H3OWD8Jnk/ZAT7yPneNdLvap9rMu/QW87hc/7ex3iT/3X4K/9zwh6+NJ8kzqUf2Ia9D2V/DyT+jL7nJz6NHHlvZVt66kZ/Q9Tvk3h4/I6Ivyn7f/l5d+IA+S/7nriyxJklvmxn489i7ZT/Z7s17Rf/jPL7hQ/6eSDn7+B4MO/RLMn+JXFB6OR9iNzLyf3Ky6RzP2cMe8m5WP5nLvuPaYX3Km9X7x385n7mllmn6p/Z72+E3/tKZZj/68v/86V8/AJFf8HFeW8R3bw3kf+/zP8eDJRfh/00lv+U9UB742bOr+5PfJbx4nlwA98TX5T4rY8Td6t/NCNP7qOfSp6hG/9bvgVlUHEaODJp9d9NfEHiWODL+mJW4b5G7nP8nvhS+uyVd98L/p999Zf9wMrkXJccU3PvBZ3sfw7K+bt1UU9wEfuuyb721l9mw5s4+pw//B9bzHy2eJx13XnUl1MXN/C7DIVEhpJKd5JkDIUIJR4UkZBCKLOKDJEyRJlSCIlEKSKRBpQpTSIRUWTOkFkyFaXetd7f5/us1fW+z/3PXuc+Z49nn3OdYZ/9a1K37P/+ta9XgrW3K8E5DUpwwqYl2G3jEnxSeZr6r6qV4D3VS3A42KpOCc7esgRvwGes/++/Ywm+U6EEP4Z3m/KjNUpwq81K8KiNSvAh5X47leBF2r1QXoJX1yrBA+uX4MHqf9K+zw4l+NzOJVhzqxKsAV4EVmGPHbQ/HP0dti/BCup/3LAE79qiBOfRdzh9X2KvdrVL8CT1u7LfGfh1xecm9W3wmwH/WOXqm5fg0exXV/kA+HXY6Xv055KjOnnbKa9hj0Ghrx+b4L8beff1/wnstRbeB8pt+Mub7P6C/u2Ffzv2GgpvlPZ7w3+HXI/T54AqJfgY/Bc3KcGXwZfArdFbwm8a4z9Zvx+Nfi30a/n/zDL00K+pfgB6w2qW4InwJ7HPq+hfwz47k/dD+gym9zr6TlJ/Cv/Yo7wEn9ZPR+E/jZ0z7jIOM/4abFOCo7cuwQOVx2o3l/6Tti3B7sp9yDHZ/w+l1xR2WIr+gdq9pn5TcrZlj0785UHlzbSfC39Dem+r3Xz1I9nvXHSrhJ7258K/xbg5j70asXN37Z9nl3+N40fR/xG/2hmn2m8Kf4Ly/ex7Jjr16P8d+S5DdxP8B8Bvqt2IiiU4trwED9mgBIfjO8p8tBo8jL+Mw7eNfjuUnrOMp+vxW6i/dsTnR/11EPq9ybMw44oer5N/kfqtMp+oH67cD94yftdS/S7471q5BCub3zcFX4B/FPqT2L09vJnpP/o15Zfv6Zcn2e+GqtoZN12M75HwX1H/mHmwLXk/Qqer/rkT///Qo4X61uT/lF1r4vMqOo+YH+uT5zV0HmW/rvCP0F9D0e+nfTN0f2GH4+AP0j8fke9uft6BXJ+Vl+BXxv9D8Bqx35P8831+czb6z7HPfupbKz9ErjbKQ9E5nb/VoEc99Mro34NdTzdvngqOVP89+Y8k95fkuA/9h3xPWrHPGfAHkOcn7DqBf9P7H/Y5hF8s4CePqd+T/Q+iz+vsc1elEpwCv67xsQV5F/LfW/TPWPTfAZuj/yD6C/XLv/6/Mzqb0u9R9JrQpwv9P2ePLeBfoj7zRx3+O4a/9dJ+F+P8Re0uZd+l+Gb+bK39ZP3zBj/rzL6f0b8X/c83L+xDjkb8o6r67f3/WnjdydfCfHUseJV55rfyEtyWfjfq38bsMpz875JvqnZl8M5WPx69EZmnlQez/47whtO/AT5vwL/DfDMVvBv9o+l3FfyL/L+u/qlIz+X8JeuPrsZb1iHV2Plp/LYn5yDybat/doCf9dJwduirv/J96sjO37HvZPaPPz6qn05QXzvjEzyYv59K/unwZ6A7Df5K+PPh3aH+TeVh5G9q/nyW3psqN6bHAvoeBvZi/7PUd2e/fK/y/XqW/S9gn2fi3+Qeh/8EfF8kXzP+/4h2GX8L0Mk47MJeE8hVgf0/Y+8Z8H8GV7DHw+Q8HP9V5qcp5vnWhfkx65N3yLd1/FR5MX7L/f80/DZF/2b6HOD/Q9Dbnjw/2a8Mp+dpynOzHtf+W3pvi9/F8DenTwf0H2P/vdlnlHmzjF9cZ56by17b8Z/X1C9QvhfdrfHLdzXf2XxfT/bdGK79rvyhLv4v6bdj0b8a3qv0uYvdHsm4oXe+H83hH0PeJ7Tbj74/wT+OfN3Sb+w/37zwJvgW+L72f7P7LVmXoP87++6tfjdyHUTfxuRfjf9a5UfQrcH/15G/AztO1/5q8nVQ3hL+QHqeAH8P5XHqp0Rf9j2fv37Oz3rqh2vhX4f/1+Q/iRwH0Xcj+iw17w71PbpbuS28qWBl46Uleeoql4NL0RvGflnfZF2zO7x96P+379Z480B7/voB+drDfw7+deyxDv6jyhXI94/1Sw/1u8Bfp13G7ais57Q/lVxzlJ9gv3fY4en4v3LOL7ZA9zx8zkT/Y/XF7/f5+u8i+i2m9wdZ54Er1W+G3z3mhd3hb84e2+vPYdq/4v9t6Pev8TyeX1RU/pJ+lxrPR+r30/lR9qPjrSe2JVcv+naE351cGdc5j8n4HolfVXYYVGf99jcpV1ReSr/74beF15f8q9n3QvU36K+K6pfR5zjyHWj87ql99s/78o9nzEs/st/L5P1HeQz+l7DnluTsqH8Hq6+tvj05nsJ/kvnmXXZrm30N/tey+4PGwXDwJ/x/Qr8TPfbw/3PRv529jsU36+CsD5rAO4GdZ4Fv0uNA3/tm4PP8bR74O3s0LdjlYPJPQ28HctZX31r9QP50G3g72JUdntV/jflZB/NZZ/bqrH+WgS3wWxI/UF5UXoLd2OMZ9umR7zG5LkT3ZfU7sfd56A0kz8vkm43vZvTvpzyavdcpXwLuV319esu1G6N8nv6ox38eNV/uq76Wdcgk9htBnv35ySByTS+cjyzFZ1t65rxkc/YcqL4Mv7/Ur1a/AN+5+NRntynZn5Iv5z0557kE/8/VP8a+/bL+Vb4l8552Q+iR85ZDyXNq4fzlMfxb+f/z+FeHv9Z80zzrIuWcU2XdcCB9sm64i/270/8a8Ez+WU39Gv3ZAtyWv/Sh30Tfq4/ptZP11fXG10MlUNYOXAAepP5e/JrB62KezX4k58I5D56Gz8H0e4Pe9Qv9M5d/HK9/HmfPK7KeVT+dvc4CZ7LPUvrNYP/K5KkETtVuX/Jdzn7LyXFr5l/9fg45/kLve3Jwx7Kb0FnK37NOvl776uUl+CN6u9H/Z/Xv53yH3JXwn25eGwD2B48zHr6A/w75LsenCfzLyPUwujfQb4X6vsZLH3CR9fdW5K9p3/ye+TT9mP67nt1vUt4L3hPZf9OrDbyK6seSpz75/9HuKPLvQb629JwJL/uV5/X/7/CHavc+/Nb4D7Sen69f3gKzTj6ffS4AzzSPjyZff/pl/bM/O3SD/4hx9Rh4p3n0dHYeHz9AL+ck+7HXPuQ50Lg5jhy/aP+a/++WeyT1nemZ8dwQ/1eyT+LfPfnFw9rPw79Swf9akLd4f/Cd+pb0+CP7T/SPUZ95rzgfvpPzqpwvav8s+kvJ+yf55+nfzdTn+/aedVG+b/k+LTMe6lmnzMGnJf4b4787f6hMj9w/zCLPEei9SP6v4T+r/it2rJH1OvzDzJ/fZD1iH3G4+h75jrLXtej9qryIf22Z/Yvypfgspm+XzI+ZV3O+aAK6yPyV87udyb89e1yZcxt+tJZ8S9l1UnkJ1mLvDrmvItdVxsV85SuVd/LdPUr7+sq9lceyf2fynpJzVOUl5psK+qWR8fqUchPyzaFn8X6pCnmL8/tx9M1+NfvXW/XTiJzPqH+fXK318wNZL/PPe3zfRuq/h7TLuM94jx8/WF6CH5L/Rvq0Jsfx5PiNvXqQu4Xyrvj/im/28Vcqn4h+p5w34b9j7meNnx7knYP/vvgcif5t7Jf5MPNjzhMq6Oc+/KtMOffCkSvnCTlfuB3/quy7IX94Jes89S3pW5V8pxvHnykfQf4h8Jriux94NH3a5ZyMPCuzf8i5onLOu+fSvzZ7TjWOhyj3Je8a/NfCy7puqPFzMHufzH5b4r+F+lvxfxX/m9BbrdyU/F8qNyDXKVkfmU+assvP/PE+9Dvzt6Hgder3Z6939Oe74KLN1td/D3o9TY+nyXGs/qnBHrnnqpH9Gfwa1gctwSfNDzuRbyr//4b8tdijI//K/i77uuzz1ub7ZL6qzk5Xa3+qdv39/+DyEuxm/twI/gr+tZA9PvP/W8h3LPu2Jlc181EP/TzL+DohfptzGHbKPdPfYBXybYnPFcZN1pe9wKwvm8O7E7302xj4n+e+U7vv4A3XP/HXd8Evs2/RrhX8M/Xbupyv8dch9L4YXtapWZ/+zh5vqz+LHNfEfvTNvcUsMPcXvbI+U74av0UZX/wq+4m7yuiNfjHe5Nn0k/r96D0Tnb+Vz0H/RX6XeJvE3+xBv2H4Xs+edejzgvJYdLcxrlYo/wN/O/b9LOf3+H4Jv/4268t1WuIY8L2KPG3wzTxZDzxS+y2sczYHl6nfhz9VLC/B/ZSns1fO9waqL89+gf0WWl/eq917ymcnPoP9e5HzB/oerd7w/u+++Ubl7J9fNd/MAHM//Tr73a/9jfCrsts3OV/mf1cah6vQHYF/c/ruyk65lz0I/hT8lqE/s7wEx7BfzjdynpHzjcHK/cmdfWHG80fse5b54w/1w3wfzyBnPXY7RX8vYf9d8Z+tXFP9neTcmpy/85un6HeX/x+b+Kast/jFn8oPod/TempLHdU4929ZF+JbU388Qf/2ub/l9+X0fYaenxT8e7+Cn2f8dUbvUHy2Iv9C9vmAfUeTa6x2z2m3P/vEfufm/Dbjln8uJN9FOU9SvtH3qId++lo59037ZN+d7w7/boB+9te1tPuQ/h3oH3/J+dj4gj8dxX6boNO6+vrti/u77OsuKP//892T/jk/fRndBtqdoP598ideJ/E7X/GjxO+Mhr+d/tgSnc7Kd/GbGfxrJnhkzst8b8ex6z745vub+5Pcm9Rln9yfNERvLj94HayvfgP9cSJ+t2dfhH518/vv1p3fgLln/4I8iY/cvRAf2Rf9xAPcR/8N9F81dBK/mHnnabCC/v8V/mHkXEL+8fx6ZcZdzmnVb0z/DcFF2u1F7vh/4s+Oyzoo62f1idebSa8xyldqv5H+zD1R7oeq0X8P+nWi/2Lt5rDvX/qlunGU+b8z/q/zp374dVM/Hv3n8N8Gn98SR2ler5T1vfn+RPWj0duEPdJfWyvPNb7mwm+h/A47VOOfZ5dA2bWJZ0H/R/JvnvUbuBx8N/6auLzcO7LvstyvoNuHXLnfudh8eLxx+Lxyxl934+syflvX+NwYnZzPd9Qu5yA/mkcW8JcK8M7C91RyNs55oe/SxMTH0q+38tXgvv7/c+IB4VfyHalontqEfXuRJ/POKeR4m34j2C/3w5vyr6fUr1V+Un0j9rws8WH84z1wEfgh+7Qi32HgwfGXnM8X4kFWqp/IP5ux+wHg/uDL+d6TZ1LiLYPPPr+qf5HdBtNnNvl/MH6Wgqu1O5S+w9HLfFUp8QToH0nf5dmfg73531ztJ5H3L3SOhN8S/nb66Wf87mGfy4zrCfBOtn7oR77cL3z4P9bff/Grc+CtUj67EP82KvHU/Dnxb5uxR1/y7MJ+/ZWL9zdfaX8/+3YtxCc+wM6Jr5rlu9TG+JuonLiT75Rnk/c4ev8E/0LyZH+Tc4nl5G/L/tXix+gOYJ+sb78As85tgN+h8Jbor0PoGf+fhX6+tx3IdQH6iXvPfdY+2l+ivgZ71NCuB/9pSv6J5q1Pcx5Gvxbqf0NvWeKEEp9NvtvM1zmHGm/85DzqO/51TOJvs34m3xPoZx80hh7Z/+zt/1vT+7n0U+KTybURvH7o3az8ce5rzVtL+Gn2f2PMa1vxo4eUn8945K+Jq5zJn3PekPuOiuQd4nvzOP1G4P8geFf6A/0Kynux047krJP5H72R4KngSvhZD11NnrPJe7f+G5x755yD+W40SPyy/t+b/+2Lb6fcP8BPPFXirb7TbgL+iX97n/2PgH+l8Zt3F9ey15Hk7aD+wsQj+P+d5O/Lv3Kfvgs++b50T/xR1m3ws569WP09yl3yLgG/xFdvR7/b1GecJT6rTc5HyN9YfRvzXV1yloMf5p4B/o7kP578K+nXk33/1Q9N2Pcb8l0H/1b0DiJnHXqOhfes+qyjsn56BP0Rid9IHC37reF/o7W/3PjI+eUM7XuS67jIyx5vGO9Zj40ufF83SPwoeXeIXfC/mn6Z//M9yPy/ln1vBW8Gmyee1XpjHbxnjKNGeZ+jf3MvmvirCxI/kfg3djuevKPh76r+Uv12qXZ949/+n/V6JeuN3K8MYLdG+D+tPJ38FdE/MOdi6MzAP3Yth79af5eT/4bsj9TnfuI2+BuadzYAB+ivXelRnvdIhfH/Mfq5B87+uJH2q9RvpDwA/6/Zd4n6peTJOVJ/dOri867vQd5/LdRuC/LUMd8l3rxtCZTVo98M3++d0WvgO99Q+U/z9bXkepi/1OV/69jjIeujCoX7jUty7qv9bPoelHipxJfm/Iy+3dQ/WLjPGaE8TfnMzH/4fVBegtuoH8efc770M5jv1zHkaQhvEHlqsc8dvmuzwTlg9jv3sEdNdtoTfA3+1eR7ij3frL2+fs3hb+4cowr4uf7L/fCX5B5E3nbkna7/a/GXhfg8lfcR/P3t3A/B+7p8ffrfor+qzvr0R7LHhspV0dsd/SPIezW7HK7cNf4OP/c33+rnvAO6jD4na/cA+h2176r8p3J7ep6H/2T0RpH/DO0zH0/l/7XwmRZ7sn/2B79aNxxV2C8czq/HkO8z/r6j8XQjuon3PUT/Lsz7Rfym0PetvMvIOzL1h5Ur0+N87T43nr4ADzE/LiZfmfYfZV6Ln7FPg+y/0JtKj53VZ77N/Jv5eHzu5+j3Nbz9tPuP+t8Sn4v+3epHqc95VM6nDrFP3jv38YkzZ4+66OX9XH39MgreD9YHT+j3NeT6qLwEz0dvC/p1KsSdJY4j8WcN8Ts/8VjwX8y7V3Zdg9+CjEP9XQX+buTbx/cp92Fvse/E3Kuzwwr+8Dz83MM+w457st9N6DW3btgh8bRZL5g/rjHv5H3nCnqOtR5vnXe/YBt6XmB8PAfulHgFen8PbkCfduz5AvnPs/4ZRe7q5oEKuWdjl93Iub/5agPyJ56vH/qJ6xsJ/kbv7CcW0Wce+1yWdyfmm5x3VkG/Jf5Pa/ee8k/kPa0EyhrkPFj5KP6zIutf7X/NPbX6euh1yXm+clfldXnPnfWjcbwpfk/p/xvIl/fEj9Av9zY5R21tPso9ziB2606uDdnzAPRrJj4mcZf0G4R+T/2xGP3Mv3k/2Jb8lfhVRzDvP35W3iHnp+jk/dyJ9N6eXnmHuBj9b8ib9xO3scdm5Hs7+6HCO+GN4Y/zvbkj977G16Xw4+eJi028bOKr98IvcXWJs/sZ/h/q39X+0Lxnzf6a/KfQqzf6dRP/VAJlh4Pngc3y3oV9X865ET5Xxb/Md3vx+8bgp+R407i6HqysP5aVl2DiJU5Q/pi8rXKerf49/x+T73K+7+avnFOdopzzqarkPjnxyeqPZ8/j0b9PPzZmp5xfb8m/L9Jv8+CtMf7vVh5G/i315yzyLTfeKqn/Uf0R5Mt6O3FfiUf5b3xd7hXonfPgxIfMQ6e+9nnPeZr6M+l9Jz+czx5/5X4ueSjg9cz6LPtF/TVO/2Xdsb36xEskfiLxFCuUM688Rs5PzMc5//yd/t8lTqYQ35DxcZl+SXxK/7x/V873sZlyZfZvBn8V/ZInoSE4L/F47JD4zwXozzCf/Ua+4vuApnkfo76J8dCQvP2VbwRvADdVn3wjVySeqLwE835nCL/7Rr9vBd5BvhPJPZJ9h+X8mR2H6e/7wOXg4eQ/NO+c8cs77p/ZL+upc8iVfBdl8Ddi12Pp/1DePYJvsc+78b+sv7MOhZ93D3kHkfcPX+VdOf0eJu8c7d5UznlFzi/ewr+M/cb57t+QcZ/zIv63U77P5Dot7/TIty0+eefzJ/kGqs/5x5jcP7Jf1uWHov80+2d9fih75J1vJ+M173sb5D2JfqiF/q3k+zPx7zm3IOfT5Kmb80+wqv/3yffHvJnzrNbK7Qr3f4vZqX/uLdX3NZ+O4McLlMvVxz9eJ+9gcn6p/tnEP4JzzDNv5h1P1qWJ7yLHSfTI9/EV8mcflu/jOTkXYffNyDkK/cR1XUCvxHcNRWc8/p/gP1j9ZP2b88eJ5LlZf+c8csO8O1V/eO4nydeR/K+RYwKY89mL+HPxfckP/C95Diqj34w8iW9vT/8TwVZZ12b/x19u1P4K/d+Xfk8ZN4/bV+Ze663EU+W8gr0mJ54avcT9v+D/byY+i/xHKQ+h3+nwTsr9UNbV+FRBL3kAvidvE/i7F96vTTK/3w1WYv+u9LiQv1aOPXyvE9/YR/mqQvxK7k+TFyL3Pl8oJ09EzsUSV9Xd/3O/3tz3cJDvzibOt+ZoF396Eb8z8X8s7zHok/O579mrT+H9zcPk38L/WwWqv18//Av/D/JlvZz7kZ+M06yfu5uvLmGnawvv/fsYb3f6jua8P+f7A/Vf++ThMV/nHdk//O+q5KFRPivnx+T/hP1zz/wa+KNxf7t5djr8n+Hn/CnnTdejk/1V8k/MAeN3T6u/Pu8fyD+dva5AbzD7JO9U8lAl/9Ru5E+8drOsrxO/Zt7O9yDfi9wTZ/08qbBuzvlV8Ty4Efg7+r/Svy15H0e3qvqZeW9vHloMLmen2ujVYJdi/pnk8/mNfsn3k/w+00qg7FZwHXl2xL8D/+jGfxqC8dcq/Kk5v3yOn1xPny/Y67OcW4KxwwfkzbjMOP2ePisTH07uC9l1Hvgzekfy/9+Ur2PHKfTJ+rA3fXrg94jx/2vGHb3/Nf7eo+d27HW/cfVp9u/kexmfVeR/jb1P4G9P0iffufHqP+EfK5RbkmtU4jPZJ/chuS+ZqfwSvc9B56ecX9An51KJA09er8R/f2teagT+Qr8T8o4UvRb6eYbyEHqcR56WiQfAdwL77Z9xg27iDfJeYCh9r83+O/vNrA/5W+5J8p7uV/apgn/273nnmvetzdk/cTjj9PfGhfPLL+mTc8ycX17q/zm3vIIdc36Z89VO9D8g63H8D6dP7iXPofcr5H9V/RfkqJy4GvR3Cz69HiZHvvetcr5YXoL18HlU/UsZ7+z2Nvyp7JV92dLkV8HnFvTyvrmSeSjvmndR/77v5iNgx5wH06O1cnN8s17pq9zDejN5LWaYRw5hn1aFfGfJHzNAffWMJ3YYXH99/ll/vWkeP0E566/V2X+C9xf2r8nbshqfWXm3m++D9ct5yZPje9ezvARzvvZ2CZRdC+a8bQ/z0dGFPFwv6Z+P9NvnYN5h5X1t4goXZd1aiC/cl9/3Zrd9lP/BJ3Fi2Y8fmnhc9jmR/olLynuBMni92TV512pql/xrYxNPCm8+uyX/Td6FFfNvdSN/3s8kviXvaG5A/xf+84n2DfjrAPKd63twrnmksva/aP83u/yiXyfm/V7ieKwH3+XfA8HcgzWk9xHJy+X7t3veR9HvgMwjuc+tv34555Mvkat3zmf0R+N819Unz1lt9fMyPtg365e3+Nfu7Ddf+VL4vXw3blafeMzEX27BfxMvnXfXOcd5in3Hqz/L/Jr8LDvqj8RpzmL/5B8alrwD7JX7jofV5z3HWjDx8IPZ83jov7HPKOUl5DlYv7+vn17hr4kP3op/nqTcB97NynlPmPdQn6CX94UXJx9Uzq3psxf/HJa8reaF+b5H2fc9kbww5Ch+v87O+zz2mQuezb6JR6hMzhHm88QnLGD/zDd/l0DZtugnP0vi3Cvz7/q5z0fveu0vxudG+m2jX1qzz338/86cC6E/BP3TlXcjf/JObJT7ykL+iXz/8t3IdzDfv3xfn8u5knb5vnahf2Ptb6BXzvty3n4HmPP4fP8O8t0bgs7JyuvUt9H+aHaZpTwV/6HscXfBLnsnj8IO6/M7hr2nwR+Hby31+yufwT6LjLf3wEf5V4vsz3yX/uW3a8F27FUbvYynXRJPTL5x7Jvzwvbk6wF/pP5/5H/kYcz6+3v2Sb6GrL/vVE5egpxX5HxiYd4dod8BPIG8X+nPHRO/i9/F9C83P32fdbb5vgV93mb/5KVJnprkp9nB93IX4zfxW4kfSF6daeTfIHlwk//C/L4k+U3BvJf7sPB9mJ53xORP3M7fYPLtvQV/GXm+BpO/4mDy3azcm39kff4o/Kn6vy+/HgsmHm4K/C2Nl9nms/bJL5N34Dkfof9i7b9JvDT99koeFvgj0b+efP3Atejdwf7T/L8R/kvY52z+cQu/WFpegl+CO5FnHDmfy3kM+kMSD564Iv2W92OZtzKvZp7N/LqmBMruouepyvfl/Tm8STln2259+hcmLtz/P4bXH/2u+qM6OKAwn39hvs770yXKicdP3t/7ykuwmP839047seetyfdLvm7WCzeZNwYkj26+b3kvTb5aYNZvYwrxvon//Ut9vzL6FeLQcn/2DbvcRt9iHpal+J1BjuQpzfw8MXED7Dkf/jzlpskbQf/NkwdAfe5bkle8GrrJLz7EfFLJ+BumnHfmjdhvF7Ah2A+dx/lXMb9fzhtz/tuF/+ccOOe/NeD/J/dsiS9Gr2buQ7RL/u9+8D+g1w/s9AY/vZL89xpfexlfW8PbK+cT+D6bvDv4Xpj8WDmP1L9f6aeL4CXOJfnoEgfzd+Lvsy/Svlkhf/t52v9O72NLoOyP7Nf42+zkqQFzvnluvjf0H5B4fXLlvifxj3mHUFv9j3mXSu/cR+f++X79tzO9B7HjAO0OTDxd8v/xnxGZT/Xb4YmH0n+JX6yc91xgFe2yP8r9akty554196vb8Kvsk7c33+ae4mb9+i38jenZMvmF+EdDepbbPyW/S/IzFuOCk59xP/STN/lf9HMPebnvwxVgH/Bt+INy3gL/KnjH5/7Tuit5OIYbP8nHkXv1Bfrl1axjQjf9lnem/v8dfpspr6Zfq+QFynt4+pervyP75txvsGtP/0++5APV18l7cnZLnssW6hOX31B9S3Ta5H5Pf0xgt4vzzoh95pbRExwE3pz9s/6ZUV6Cic+sCH9I3l2AxfxjQ+iTfOTZx+d9ynz0Z6PbPOsJ/BIHk/kx+VCT/3SbQn7Lu8n9YuLvtM++Kvus7K9mKW8Ar6Jys7xP0M8n4/9l3u/Cf0D7lcovoZPf/8h7yhcL72ATX/6Z7+lz4A/G35n4V8m7CXa4Ie+gcg+i/hV0E7+W+SPn0z3hdcv8xP7d1T+K36rElyV+qhB3knHxUeKzrC+Slyq/k7A/+L1xl/w8E/OuJu/5jLdy8n6B36Xsl3zG9bXvQe7kN34w51/krllegjl/jX6fo3Ms/8r9StYPo5PHUfusI35I3g98OhfOmxIfOBi8CUy84Kjsf9FL/OiReX/Anom7zn64Zu5f2O8f+5i1ynXy3o9fJS4+cfKJH098U/KCTWeH5IdNfN5keiVOL/eLH5M/efqSn+9g+MlPnrzkLfVL8pPvnXgqcs1PXgT65XcX8nsLXZQfTP4A7bOeSh6f5O8Zmffc5F9RuGdt5Ls40Xd/V+W/yHcc+fKuflLOI+C/wL+Pcw743/ch5SU4gH1WgGXan584p+RlzXlS1vvKD+R9hv8nXqcr++S+9ozkOwVzf5v9ePYZ+2a+TTyzeT9xj7PpmfjHp9CfC44H59BjIrzHrVs7gXkPlHicxOckXud+8h2R9yaJM2OXZ/BP/pwO5SW4JO+86X+JeXFr/Zv4r8SD9cnvGYCJe38Jn9vJ1z37av19F/qJJ+mTdjkHJd/2yUdEvuSZT375/G5P9tVPZT1jPvuW3LWMsy/8P+vo3ZNfJb9bYn3yDHqv4Zd4zsfZ8zfyrTD++hp/4wv5/S+Nf2Rdj+7U3L+jv23uOdQvyzsl9s77mPvYOe9jkv+qNj1X66/kG008wTDrzNvIkXiDKejlnX59/PM+/2jy5/wg5wnfl5dg8fdz8u4/74NPot/Z8BL/Mln/90p+Wngj2fnjnB+Sq3Pyq8Dvrr6Y7yjz70n4L8rvHqH/p/a3K/+vuNhmOT/8H3nHcv7XM+Mc/Dj5b+Cv0i9dwJVg4smT/2hd4vfpkfxHed+W+IVnlBO/MB7e9uUlmDjhqvTLeiTrkz8Tr2Yc5DyyCjmyD0r9duz5AT5/kuPc5O8y79bTPycpdyHfC+yfeLnE0SV/xg++p9XIdZryOPSL+VUTB5D7/3zfink/T87+V/1L6CQPURP2yXlp3vEX3+/nfUbicPM+I/G3x+c8IPebyuey46rknWO/jfBNvs7kk0qeqWfA5Jt6j//l91ueVc5+ZRW+ua9aCG8V+p/oj3PAw9TnXj15W6olz7/ymtzP5/wc/6rqJyZ+u5DPMnku16Gf89ZO9E/+85zPJh5xU3ATML9TdIjyBfmdwOwn4U/3vc5642v8W+m/F8xvmUfLE2dCntmF94J34NeWPZPfOuvHe7KPUX8j/skTkPwA9/KPMfyrF/+6tPA7WkONh/vocyT6uf8qJ9ePOZdLvjL1o9Qn781A9JIPp2XyG2pXlniv7CfyXiJxtoX8XclPmLyEyVM4rPA+Jvu3vZKfTH3igq7hJ38Y5/mdncQ3nMqv54OJb5il/14FZ4D5fbiz8u6ffJfxg7PYZw57bEe+T7NOYM/8/t8x/KN4Tp+8NMlTk/w0yc+be7tXyfsIOd5D/176DwRvBycnX4VydzB5u3I/ewj/vBjMe6aD9FfyOx4D5l1b8jvmfWfODfLOsxb/eJ3/zgXfAHdg36v4T7/c2+c+KO8uEped/Sv9E8+Q95k7gi1TTn4M4+UFdL5l9ynkX0Ov5JFI3oi91ZeR72X2qcsu1bJ/57+JNxiQ/UzeV+u/+Pfl8BPf8Xzi/Pz/D/40i/12w/9Jdrkj/Yb+X+iek3utnA+B04yLH4yLF5UnF95jJR4l77XyPusa9umb+FPwcfiJF98pcdjqOyrnd1nb8e+Tsp/MuQT85F1Ovtkm+q+edombPClxDuTN+UDyCH2Vc2Lyn6r/J2Q+Nw4Tv5vf28j7yNH8J+/DNi/Il991S374qYnH03/TlHOe1Nv69XdytrXPvIo87YyHvO+4hrwXwz/a96g12F677G8n+F4+A04hf37/dU/8s25aVFg/TY7f5XyB3k3zfjO/n5Z3S7mXyvv83C+QqwP8W/hn9tPJG5V9dfJbXE7fU9Qnj1f2B6vJ35n9inny5pJ7efbF6Cc+OfNeN7BHYR4sI3/iO3PelvytH+XcM/Es9M/90lD9dw84J+XEA9En97vJJ578Fvn9plONyy/1X37HKfF9eUexV857yD9T+fe8gybnF/qvI//+N3m+fY/WJX6ysP46JL//SP5+/GUlODz71XJykLsl/AOV19HvfvPOPubJ08CVyT9m3CXvakV06+Z+A7/RhfciV9Nz54x79k1cwELwpsRz4vcGOS/Pe7D83if8C8gRP+6Z7y/8i8hxNPpbhS65k3808dez2LOl+ftV/LZKHLv+uz3xaeRN/qhaeT+Zd5BZZ5H/muQNA/uCeT/dVfkV+p2t/Ee99ev/4Oe1qhba06e/8v3kq4h/A/iZH5NHP/nrp/C7fendFMw8k9/V+U/elRXiUPN7l9nfP8AeyV96UuZb8AjjZ3/y7lZYt+S9fgX2ye8e555mbmH/0zVxgvTJ7zAlf+jb9M/6+DXriMS3pz7/n12oX6acvN7H6N+8r0l+vsSB5J1W4j+Svyl5m5JfOvmbpuiX/L5V8XecEpeymDyJV6md96fkSn6Kl3NPDr8YN5F4teTJ+0F/J69EMb9PfsdgDZjfO5iB/5zkN8/7DXJsoD7noYmHTZxsO/Y7xHr+gPzut/on0FtO7nnx95yjky/x0onj+n/Wn+TNu+LrtL+DXTcxHvJO/0bj4QP6Xg5/PHv+xG5v4f8+fvXQnU3P/I5sQ/N51pXnKq/JO+Kcy9Izv2ea3y993bye3/feDt38vvdt8AeTqw46vdH5Pzdxdm94nHXdd/jX0/8/8HckRBooLV5KESozUhnZ2ZIRZZRERlJGiELRQIkio2RVVCgiq5BRVoUiMorMNI3E97p+r9vddfX6XZ/XP4/rPM85j3UeZz/O4zVmo7L/93tgsyK8evMivApcV7MIf69dhC8qXygU4WM1inC3+kV4y3ZFWLFBEfbcsgh7gcu3L8LbdirCGvA/ukMRNq1ThB3gK6tQBG2q4atyEVZV7jVwG/Wfw8+XDYvwp0pF+AH+B5cvwl/gf0H5s/DRrVwRnrFjEY4kzzvoPFOrCEeoX6FKEW4KVsbnZPKNVP4ycjcoFOEE/C2g54Xg7psWYXv0d9iiCL/QPjU2KcKGJfycL31ovQ35q0yepUVQVtv3v/C3MX52lq4C3zHab2vyl69bhHcoX0H5lfTaA/3h9NhGe1xFv/vga6D6k8n/F7tYB/6mveuT/6qqRVh36yL8E96z1N8UX/fC+w1+d5H/BXnmqbfvNkU4gR72xO8N4CT8riBPN+ndY//oHKD+bvDP9b2vcq3p52h4/6LPpfDOxd9b2vV6dt0HvJm9DCXPA9Ir1T8L/ano7YB+qfxV4C+jpw4Vi3CE/Ef1h7HgZ+x3Pn3tKb0AvUr4ezLtB9/v4B/gYcq/gf6szTaUq4H6++F3AT3WIMcE9rKG/ueR+zr1+7KPmuT/QfkDlO8L/2j96aU6G9LfSHtM2xbe6kV4Gz09CP/G7OUJ9jdF+jvy9dK/apNjKvqt6K8lu34Q/aXotsDfenj/MH6sBa9X/1J43yLn04UiTH+6Q/5QfDdCZy/4J9Pr08p9qt7u+B/te23ydkKnHvt9BP8PGIdms4dX4T+YvCeoNwve18l5iu+14P8Onwcrd77xea3x7/CtirCz8iv1nxuVf0b9L9N/pV/UrpfjpwI5h2vfuoUibKmdj5N+gL7moNdaujb+/0a/u/b43fhUA/3riqCsGjvoJL0HuY+g32PwOQLcCb679KfG+Gmo/ZtIz8DPQnjG43Nb+p9InnfBoeQ9KHaQ+ZB+uuCrM/zN5N+v/Lf4Ok77H0j+nX1vCC6in8Xqfef7B+h8L12OvP9KPyXdQPtsw/7b+H6n+tuhfw09P4HeX+x5nPSl6t+h3CDyHUg/exmPTsbn6+rPQH8x/Q+n98uVW4afu5VvLn2qdmipHY6m7ybke0f6QfTPZ89T2fkF0ncWirAKeYeQpyY7Gitd1bg80fhZOh5HH7Pxtz3+G9Pfm/DdrJ33t377Bt2q+nc1sDq4Jf77wf+B+r3Uu4/+Mr99Q++Z5zK/fUnec/H1C/7HwnOc+nPReRGdL8hzkHKH0O9D8hvCv6/0HOV6o1Mz4ws887RXd+PY3/K7wftooQgvxM8j5DgfX9+yk4vptS36P5asL7PezPj0BHqj6OEx7Vkdv4dl3Ybep+h3kJ6pXMWsb9nzgfBnvP5AfsbzjN+jtf9M8DfybAn/k/iaAI4DM842ot8JhSL8R/1r6bMdfreR3ku6Ifx/kr+ddet+5FlLf+3xe2/WV/J/lN/B927kaSD/E+ll+tvz+OomPZp+tqCXLdnrCdGv9HNFUHYziO2ys8i/ivxvoztae7VRcLL1xTPgUcqdj/5i89qB0av17Cry3UUvw8FhYC98H4LfGdLXZLyFP/PM6fQxxffuWV+qP6VQhI31vxPJP0P9b8m7H9hV/b7kP0D7XiJ/KHrL6buC+actOfeih6Osl+YYp2fjr43668nzCX1erx1vQ38beMeDd6O3HN/t6PfejM/Sq+F7V3+cQ+8n4Ws1+Xvp12O1X0/px5Xbh30uxFct+nwNf/tLfwZfzUIRtidnnyIo+xPcXj88hDxN4X2Enrurdxn811lv3L/Vhnz0xN9P+N3B/DCIvN3pYyP8PaleB+n59H+idplv/qtt/F+Mj2vUW5v1Nn2cGnnRf55dPQeeo359/FyJ/wvBo9DP/HUqO8j4v076cu0Ze+qo/kD1D2YH5+CvdH36HTwFfB+vH32u/sP4v1G/u1X+JPw/JP8H+j0Yvnrkr6I9u5SRB1yd9RJ+etDvGHa4SfbT2vcNep8mfTT+muK7L3z3kLMK/i7RH7LOLV3fpn+/qn4D+n0GnhXaf5vsg6T/ih2S9++sh/Bzevqn8f1M+TvT04kl81XmsUvkZz67Ar7q+L0Rfzl/KUcvdcybh/ie84rv1N9de+wjvyr+punXp9L/VuzxRPwOKbch3fAR+qO1x0Lle7DXofInkv9RdlJP+1ZC/331BpF3vv73J/1ervxC7fTkFhvW30b9lsqfif9rsj7H3zP0MxXMed0k+hvHDncxLh4C/2ns/nRwKX39ot3Pg6chevtkXITnGuvJl8H9lLs96yPybqnewzknku6W8Y+ct5Pnh9ibdhmRczf4jsPXqeAd6FYrWb/WlH6W/B2NJzvjo7vxpB/7uRmdh+C7Ar3Y/3x8f6f9p2Wfo/5S/I5DfyV9nqfeePy+Bf/m7Pds/FwGX0f1T8l4xn6PYC/ZH92ufJWcV+L3ltiHfr2VcaE7eIn2W6Hda8O/Ef0fDt9g3/vgY7j8wYUizLnfC+gdRE9j8H+H+jWyLwGry5/BnvfRDjXoqSz7N+PFdHCd9ntIfiv6vAY/DbXfVuSbn/M2eh4N/8XKN4FvN7Bp1hPqf8Wu14B9wBHw3qrff2acu036Evro6vsB9PKzdBX2slx7la6vr1C/Ojqf5vyBHGXyv1H/3zob8nUY/h+mn/eVy7nR4/T3vPFmArmnavcz4O+M3hnqDybH4Vl/4Pfu9GtwOn67GI9q5NxBeiT8t8C7RUF5+L7AZz30K+OrD/xT8J9xYT2+rlN+85wTZ96Ev6P859A/Xf+YrN/20D9OQCf2G7uNHZ8U/al/J/5eMZ88YrzuT76F5Em79tQ+3yp/J3gbPJcpPwpfh2Qdhv+DlTtGv6jLroZknpF/HHn60f95+F0P//H4O6hQhC+q/x75jibvr1nvGS96k2MW/mqm3dCppPxY/A6Hvwv8W5N/L+uN19nfT/L/Dh/sZTZ4mfH0AfxNgv9k7d+G3I+Dg4z/A8FK+LsQ/feMO3PAE/SHp5V7ib5agWfTZ+w+++lrydcy+yjtn/64B3kynoxHfwZ8f8F/D/ix/nVHzk/JORHeIeTP+JZxrY32nK19atHvE/Q7mXz/4vNV+Gvj/1b1z1b/c/k3ojeSHC9KV6PnZ6WfVH6l9Gr7v0lgP/z8S46R2nOVeWCH7Fvkz6WPC8GT2NUi+IeSa4l56VDz47Hw7M4+78s+g56+hj/7qn7kyv7qBO0TuzjOuD5I+lD6uSzrEfjmZB2s/t4l+8fsJ0er35C+Di8U4ZH4OIqc35Mn/aQPPOkfd/velH5ngVvTT1f0Xsq6gL1sqt0+z/kfvjvC+0fWe/Atwt+j6H2T84OcW6h3sHGolfoX0ddJyi3W3jvlPDftJP0mfXyR+xn5h6B3pHHgU/l9yLUd++iee2X5T+FnEvgW+IL8NSXzeebTq+kn5+adCkW4MX5yfp5+n/O0e+i7Hf0vk16t3kXwzcJnL+uq3dlvY/B0eLfI/ahx/h/996Lcv+T+g/1dzT7ulH8s+69Ir5fSY9bpE9BvQa+mu7Ij5P8B38Pat0L2W+TdR7/YC7wO/jfQr8deLood669ZN19Qsj66FJ/VydMS/x9pj2PlD0X/OniHwtNAvdPB9uziRvVfzviNz7ekL5d/LXnvl0au7PasP3LOl/tn9vJUoQgfIMex9Per9GfyV2i/d/E3C4E32MW99PsKehfL/znn3/B9BV9v+kz/m4KfxeTbll1nnt9JvXr476TBR8AzHn+N8VeRfrPeuzH7APW316+fxWdX+MeS/yj4d2YHR0qfID/zReaRQ8if+aR9ybx+Pns4Rvow88av+klb5c+Uv5nx60b0F0lfk3sF9P7JvTR+xqp/c+5F2PdI49lO9HoJvfbPOXPW4fjvnfUFPIfiY53yLfTr+Bu0kt4NP1uzz5yDjs76AJ/b0ceYrEe0e1v63Z587QtFWDr+jNLv55HjRfr7JuMuvjpmXZX9qvSm+NgM3JK9TJO/ltx/gn+Ap2U/nPaTbiT/5Nzn4WNrcl2Cn6elfyB/5s+u+Lgu9ynGhdw7LpA+RvtUVz7nVx+wzxvoZw/jcfZXTaWzv/pZ/U/wkXvd3N98gN6H4I30PRy93djHc+AydDbH32vKrwVfBZeo/4V0Z/qrjb/31V8O729gGZjzkYHGsze02xTwePqtZjz4Gl97F4qwL/3sqb2agQXjyAPK7UYvjdnDQ/GLoJ9q7HoSeFPW2cplPfu/9vG/5b4UvJqYc8g3lbwrlL9UPz5Bfhv85TxubvwT4t+SfT4+KsVPCpwTfxP8np/zMvhaG296guP1/+XKH629VtLz8/p/5oucB/bx/b2S88JL0P+Dft/A58M5X9IuFcGb1B+S+YZ8F6h/Dv0uI//F8E/B7yPK1805rP47i56Hmh+OhP8h49Iy/LxNv6Nyf0L+nLc1l14R+1W/Mz6Gofsq+1miPXP+n/var9T/lz2W6X8bgUfjrxx97Eifq8xns9j/EejeKr9O/CPQ62i8eJ1+F+qPuV/ZXr0OJePFe9Kt6LsZvEvwP6dQhI/Kz7nrW+wq56+75jyd3m7QDuXihwFfBfgGso868Lxahm9wMDhVvYvo62KwG9gC/Zvop2nWffrh4fBPps8TtEPp+W6L3HMq31P6WOn4PcVvsNT/qUXOQ9TLPm++/C30u5/AlfrfUHheBx/Tnq1yX9Zgw3TKbVV3w/I/ovdy9k/ga9q/ifzcfwzE70r1K8Hfkpz/kKMa+X9R/0T5e6o/S/22OR+MH6v6E9Gvg58Byu+o/lW5n6ePFvRzrvQEeHIv/1ChCC/Hb72MF/jLfcNC+6mcd7zNPsfKb8EO+sjPvuvf/7H/uiL9Bd9jcw8S/0HzV+XMT9Lx3/k2+fg4Lftz+Aeab97LfbrvI+IfYXxbk3vj3IvRbwf9fZhyd4FjlK8r/x/029Hve+TKfVTuqXIv9TE6Y+nrY3p9RPpm5c823n5i/NlR+srcU/r+CXo5R8/5+Sb6Y0F/6WY86yF/d3SrsY/39e/5sVd2Nyh+24UirEk/sfc7yVOXvUyH/3D1z5euRG8zMn7T1wrlTsTH9fBfiJ+d8Dko6wB2FP/fA9jbl/H/0s7V4b2Y/NuR62XpU+XXw1cd9SahH3+E+Cd8UuKfEP+5M+hhX3zclvNU7bUlvN2kL4B/qvmtBf12zjpR/arw5nz6aXx2Zb83Wz/8ZJ6L/332X7k/yf7xVPrpG/9Q5bPu+qvk/mSEdNZ3v5N3vPY7hv6Wxk8VnZ7qX+/7EfB8HLtF/795F57n46eJ/xfUGwXvPHbQSv0zsj7Xr4ZLX4y/IfFro8/X1StPf4fGL5DdtZauh//Sc+dy8Me+4tcff/6ntUM5/LdDP/57nckfv8fS8+1S/PHPOlp+/LIml+gvensX/uhvM3Z7C7he+zUi36HGmfrwP2v8uDT+7Prnt/SzLz1eB3/WT8+rvw361+PvFP015yer2F9/+fGDrg3vnfEXl/9S/CbI1xOd3C9dB++Z+BiQexjtv469/AZ2xN/6rD/0t8OsY96Wjn9SH3gvzX4EH0/lft/3vMv4PPdl6ke/zfAZPU9Uvj97uwVcQN7K8tvT/7n0/4F0E/hr5HyIHdSUboe/zsaXKdq1EjqXad/aGxfhKO20GoyePsB/zoc+wv+SnI8r35Lc2adlf1ZNe2Y+iX/ugkIR9kIn89lN7PNcdvES/n/Pukm6Z87jtWtL89zm5HkT/n1jT+QtfZ+zA/kKYDXwWuU/UT/nOavo4Q355XNeiv9dlHtNfl98PafeD+yrR9af+mUt8Mrcg8jfht4uIO+D8XOSf0YRlK0HB4DV2c9p5Dkz9PAZ/8RS/4D4Bdye9T58txaKsHn8AXL+bH0T/6dH0Fur/Az7ierKzc/+DP7SfVfmgVPxu6f8/vh6RLmd037spUr2tfjL/mhv+O7KPVv8ddhv7PYI/HwsfTn8V7LnyeBjuZ8h3x7acy75PgRPQH8PeBtpv23xO0p6a/3yY+X2wN+6nC+lX+aekb3/lfM3cuf++PSS++Mhvtcmz874zvjUQf5z6HXE90vSpecVfytfOefj6I2k3+ybHibPGOuTA9UfT463o/+8v0C3Avl3hP8c8+kf5J7Ifv6VXpF7Vfq8Kf5L6r+U8Zo8X8YvWP5n8NQj15HGjwX4ewf/V8SupY/O/b76jXyftNGG9WeTtx0+HqCv+E+1ld6N/hrEv4U8Hxn3c09Xej93IPvOOcIC8i/WTwawz2uMQ8caP1/H10bmm3fBUn+m79lz/JKuyvsW/D2f8S9+GeTYXf3cV2TdGT+MrEe3l66Cn/dzz00/L9LrDHLkHCrnT5+TJ/cbue/I/cY3xtW5xrkP2cvF6vck1xvwVNGu8f8/BH/V4h+O7wL8x5Er7/e+0s55v3c+/rcAq1r/35lxWP8+F/xau26U/RV93ky/3/i+Iz4b42/rQhGWV755HN3R+10/HorPTdHpp93v8H2O/jWS/MO0d96VHpx9Aj6uRi/+NvHDmSF9v/Zoz45K/YNuZc9Xsu+/pOfS827ozYT3NfpulPds7Otk/G9Or1vAH7/Q+zKvsZ/m5Iu/QG/y5b6qq/qDtctH4Ah8npf3LvgdQE/HyK9Gvw21z2Xxh8g5t3Rb/C3Nuxn9dDvt9zb5cj+d++rcT+c95j30m3eZfcBL2V0PcCw7aC6/q34TP8Ah4DR87omfpdoj9yK9wfgT5d4x95C5f8x9ee7Rc28+IOO78hdk/Ed3Bv66yN+WPreEb8u8X2QPK5Q/kZzxT4z/efzO44ee/dg++v8/8O0tPUn9l4vg/7sn3ov8t9HPEPWm5x1q5h0V7y8U4ejMdzlfw8cBvm/i+97x34X3TePXX/pPXXSeNZ7lXcjbGUfwl/fLzeNvEj8C8jbD38zs19B9JP53eVePr+bk2DjnI/jOvij7pOyP+rGnl9B/Uv0K8n/G38cZt+Xn/G+F9s67yrzTPgi+v/WbTdD9U7ou/Hn38gx9TEBvmvTn+J+acz9y7Ir+bvIr+r4GvrXKP8WuVmY+xkcL+vlW/zqdfPsZbzfWb/IOqEvsO/6u6P9iPTELbGt9sit8Z7L3Oei8lzgD+GhoPBoJfwX2cgz+l5LvD3wcwa7+Qb91/Oblz5S/sfwexr9X5PcvobeYPV6f9x7Sf5ScX7Y0fuX8MueZeT+Y94J573JXoQjPMZ7fQT/TwVPiD6Jeefzdyp6G5fyLPbxKX2/LP1z7vSp9ad650kdv8i9Av3fOJdDN/dDB+m8H5c5in+XxH//wq6VL/cvy/jLzau7r++T+Nu9D5B9Ob/G/XGO8+JD8g2N3+OtEntPoYyC8J5LvFfTb4etX6ael817zFnSX4yPvA7uwjy/xfV/e1ytX2fj5Xt6fgwO1R9Z5r2+3IZ/hb5ryp1q3viDdlRzf6A//651+jfg/ozOJHDfET067fUbeq7Pfxf8A8v+bd6T0kzgEa/G1Bhyv/XP/FP/DQSX+qSvw/zL9xG9nAngL+fvBtw6sn3Wx+i+Q55f4LWR8Qb+N8WQX8Hb66Z/2p7+vyN3RPNQZvhOlH0T3aHrOeL8Z/X4O72dg/KcaJg5GoQifYi/H4e+A+IPlPrbEf7Fi7qulx+c9Vfxb49ekXvyV0z9+0D8Por9C3k8qf6B2vZE8ndhBM3YY/5T4c8ZPJf4pXdCb4Xv8X2vQb8Xcl+S9mXKPwb9Zif/kxLy7lP7NvuXk+AGzs83oJX4/uZdZA2/2OTcbj+eBseeLyV8G7zJ4j2cP2+b9svXnp+xjsvSR8s9D/0h62CnnpfA/7PvX0hn3s79KPJOzwJ7ox//qPvxVMK50AysVijDr79L3PXvRd/YL2UesYWd5rz0a3djJMvDprPPg31f666zj0NlY+R/1k5/AN+NvqH7WSxfRw7nkm6f/fwzOBRNf4yb6ezzxVdj93Jx3yv9K/pX1N8x/D76T8TU/+3v5zdTP+/vV2mcEOiPMtznnWC+d844d6WNTco1Sboec75vvb8+4pFz8d75C/w31RsZfF/1x2r9q1h3gV8rlPOyXQhEmXkX8v65itxnfs37K+H5hziPwOw6+7+nnLvzfDQ6PH6/8ys4f3jdP9wL7Z/8f/yBwdfy70K+jf/dnhwPA3DNuTN8VwHP04zZZJ4Mfxd+FHTxD/sfld8HPMPItzv0b+5wJJn5W4mntkfEVvFr9mtrvTOkx8D2B3jz6ybu1PuylFjwT0/70uVXWk/GTkp93vXnn2zr7t9wP4Pt9cu9ZKML4b02XHztpo1z8Bpf7/jp95x5gP/xfYFxszX4a5/4Tv93Z4/Lcn5XEp9pWvcr4+ij7W/nLzUfZ15TudxbDl3e9c8GT8dEaf4kz0yT+BHk/kPt9fMT/MvE/1sGX8/d96f8p9T9nD4mHtBa+x+QX8j5D/jRyDZVfjry/kacd+h+xl131hxv10xvAH7XPPuRJ/KnJyu8P/9v6xfXgk2DWsfWtu6qwn27x36aPs/D3FP565J0V/sbS/wB6WlLi//cmPGcXinA/8BOwFX5L77GGSCe+z2fgpvjYXf2u8Gf8X0i/R5A/540D874FnJfxT/vNAr8vOYdMfLZa9JI4bYnP9gS+sn4ZgI+sXw6m5/hnxF9jFXvK+fLG2iHnzDlfzvl39g/ZT3xeKMJ74F8Lb1neY+T83ed+4PngbvQ2Gd28K8g7g7wvmJn+r/xW+I7/12f0OYaeF0q/oH7i+zRnN7nXTny1E4xffe3n55p/WiUeXOJL0d8ZhSL8Qv0m2Zf6fmHuV/N+Iuez+E48ra3x8Y7yuT94Qbn4Ieb9fs7vc56/M/7yvrqBcaYhmPfWx5PrDO14YN7Tkucy8v6t3Yex/7wfzvv/fcjx37sv+Mcp/xE6U8CcFyduzIK8a83+IOeNxo1NwE3BvN/7hX0/G3uO3PgrfU9yXvyR1H+cfWffmDgDWW+8An/uH+OX+Q38T7OP+FNOku4Qf0b138l9ecl919Xyz6S/RuSvlPeXm2/ITwf9POdHpffxuaefn/GVvjvBc27e/5Cn1G8x9wW5H3hKv0n8qJ/Q+17+kfrjs/D1LRThGvT/TFwhcsc/NPFFV7O3V7LuRyf9Pfdg+0dv9NMw75PVf4x9NsNP1oWx6wXsptS+hyt/q33xJTmHIt9d8T9LfDHtcC/+DqePX9D7An8H5n7CPJH3X7Olt5d/R/ybyZdzuJzD53ztS3S3zXhXKMIrjF9V8Xd53unCf4Hyr6EfP9/4955tPLgyfrXsaxj8J1n/DYh/ofXxEfLvwf8S9hz7nRr/df3/IjDvoPP+b4zyvenvW/n3xF9de61Tv4f0XfJnmG8eMS8uAavnHCx+K+TLPjHnB9cp91Xi4yk/iH4Sp+IF9pZzldbxryiCshroZj7L/LWl8eAOeh4KTtHe95An8TETBynxj+J/tJh9TtEfjykU4UXKj2Hfo7P+zDtTfM+hr0/0v4r4j/9m/DYXgi3wV0B3NLu6K/co8gfn/gqfibeT+DrttNsp4Bjtu45+S+MCZbx+QH7uYfN+qJvyiV/4iu9/Sud84Jfs/xIXk502p4c/c7+v/RNXYG/pZwpF2JV+jyPXhdKDYq/Gj7PR6Us/ndBfBW/6+2nwXivdzXh8lu8303P8hwbD1xT9QdKDc/+U9RBYiR38kfuckvvS3KPmfXgn+vwy737z7lb5lebFUWDm5V1z/pX4yvga7vtU/K+W3ybv/Mj5Gv4uZ1/35d2M+s3Q3854OVr7naL+QPwfSH9b5/1Y3tfnfVriA8RejF8L1N9Ofvy34s8V/a8j7+Xxb8Nn/Pu75XwL3vbmm50TbyTjY96lsofK6OXcNuPLydJd8Jf3llmP5z1m7ldH4Tf+PIv0s5z/DaePyvQ8U/qGQhG2TFyXxGdiR3vIX4ve3nnvgo/bpDdT/pTEHYYv8YYyX15F3jJwT/I1kn9h/IrYya/o7KG/NQX3BBPnYmd8f0C+D8Ez6eP8vE+C/5a8D5D/FX3F7j6C//mcw2nv9YUirJX9pfwXpZfJfwL/h2mff+H7B0w8tTvR/1q/nobv2vpRxp/lvteKnPT8Pf20YB+J/9oUvwPqb5hOftYPyd8KPyPNU+fkfVDO57XnDlnfkKM8/n9FfxJ+M29+yT4SnzL3HqX7l8TtnKtfLEy8XPl99f+3wDOzH4LvGeUXxK8QX3Xwn3hMByWOKrynZvz0PX75eT8/M/EOYv8558R/zst+1F5ngR+oNx6d8fjLvJLzhgno7WK8WOr7vrkfiP+Pdsk5Wo0ECCDvW8ade8HzrNfeyjvo3O+Cq9CJ/+nP9DoSbO2eqSV5c7+ce4rS9yQ1yZH3jPfJn5T33MabB9H90Pz2BP0fn3iD0T++12S9gm7eK+d9YeLAlsa3yf3qTuSbTr970k/idDSN/0De5yu/OvcF8K9CP3Hf40cW/7F+6D+g3HvqZ37Keem7yuUcNfG/Et84cY33x0f8w54MvvhZ5dwh+yF20co8dHfWjfh/zPhyfM4V0Gsv/2P19mUfldnBZ/SUeMbxx2md82P8vex84SXwla02pPeP8er+zHP09gr6i/CfdyR5f5b3I7cYfxJXfdeME5k/8Hk1OX6VXmK8m8Me/oX/SfyfBH/ii58Se5Gf+OKzjI/N6PHNpAtFGP/KR+m1YeLxone/9ntA/uPkvhn/jcnXBCz1362t/ySeVuJt5XzvSOmX8FGVXeQdyoSSeFqvap+zs7/O/4sofxL4afaJ5M35zCb0nHXgl+Srk/MB9eOvnPPc+CeU+tf2Rj/+hr8Y3+bl/I3esw7tAyY+Sfw/E2+vJvrxk8o7sMS3qEyPWf+enPMhfMU/4jT28AX8pe8jMv4lrsqm4Pv47U4fpf51l8GzMfyzjff/3beq9zz9xX8jcbgTHzj+G/Vzrqr+evgTn6YJ/C8bdxtLZ76J/3z85odJD6HPCvn/jsTrAC9Cf3Pt1yfjtfXWcum/yN9EvXPJ07oknt6qQhHWw1fi6yV+Uvw3Ej+pW96LxU8QH6X+ueeqn/+tyLvTJ+Un3nXe2f6qXRP/elHiaeOvP3rdpXNfcKR68eeL/9412ffAf0vegeFznu+j0BlDr/uhf3TeN+X8Jfdc8hMPqCG88Ud4Wf4y9W9CpzV+u+b8IXGbSuJAJP5ZOf2tKbqbGD9y/pR4xtcr/2P8beKPRx+nqX98xg31t0X/NOP2KOPLkPjHsNfO5PoR/Wfhn269ejz59lMv/uV5j5L7sbE5H6efCfjdQf1u+GqvHR7WH9aBPcBl8MbfP/G5fi3x/+9Cn4nLOIz858i/HZ/b42en+KNm/UD++BU1A3PeuMr82sn3/RPvP/cn/yOuYjv8xv899wOH4X8f+fG//Qg8XX78b6+Hf6/cb9Fvzjfu8L0Z/Y+jt23I3R++W/Cb94Y/0k/8T8rhJ+35HvzL8r9MxrfvpVson7htHe2jEr8tcQ7rJy65cWsafTbF7yz1XgN30T5Nc08U+6Xf3Bf/zn5m5b0hflapX1/9AfTfP35j4KISf4D7yBt/gfgHvJr4KOS5MfcH2qc0nsS75Kqv/gm+76FezsWH5Dyave9iHv9DulfeV5A/7/+HSOf9/0T2EP/O+HvGv3Nv67+9wLx3zjvna40/8dfuLT1OurxxI+cVD6LXVvp+/B4W/2j5W9FPL/0lcXsSxyfxe8rshxaRvzdYld4SXyb3yo3y/jz3y9qzs3XNKOupM/FXkT6eiN9CSfyYQeg0wf8C/a2q/JvwnTiCi+MHCF/uh8bHftCrl/h/8Nchd+K+5/9e5ssfid+8/7mefjbXbluAFcFx8GQ+6M5uG6N/k/q7ym+X9yToxQ++un4dP8I28Kd/n0X+3I8kPshd+H+OXcdPdfecK+X9Sc4vpHMPl/uLE9HN+/q6OffVPzMffAk+XDI//MkeepTs04egcwx8T4CfJd4I+ZtnfcfuusLbVX5l+si712eNZ4uyvtH+8YvJe9n4xxyT80/5jZTP+8vEZUg8ht7Kl8/7DfZ2oXEz6/Wsz3P/lHu8+B1OAhck3kWhCM+DJ+/Jcz77IPq9fM957UDj7ink7wB+Ij/rq11znwxP1ndZP84mf132EP+BwYkvlXt69S/O+F4EZeNA5vjf/eRz2m0quYZK1zKuTDFulDOOlK4TE+8/92P95c9HP3758cuMv37uZ0rPS3OO+j79LMt6SPmsk7M+bms+PVL9+O0vAuMvGP/B+BMenPdlRVDWh3zPS29ZKMLF2u95eFbqH+/Gv5j8iVMf/6X4M20Tv7CcC9D7Q+rnfXGpnb8S/yn1H2YHUxNnGv/5f6CpeQeK7/V55xf/VfaUOKPrpafn/zf10xXa69b4t+c9GZj46/vGfyH/x5b4J8oVMn7T10h6TLz5rN+H+X6o75vkHkX+GPI9Sq494h8k3Tt+/RnP45+Z8134OiReofo/4/+A3EtaXzUria/4nPnwtrwnyfq+xH86/tJr6DPxteNH3FZ75v84Z+b+gz3umn1gyflu3nUk3v9//wcgPQ6+vEsu9d9YkvGHXZWXzv+PHW3+KpAr8cASPzf7sgbwZn+2tOT9RN5N3EDPeT9xLf31068rsK/EEcj7s7w7m4a/vD972PizBtxB+cQJX6p8b+nR0olP0i3zhfbMvXOTkv133/8xvjQ2LuZ/gXqR5zryZz2U/2WoDf+B+I9/Yc4H4mcY/8JHpWvRS21w77xbkb8af9uajzrn/VtJfNzMc/n/gPjTnJf4reAW8VtXL+8TWmQ/BP+9+Mn/eI4seSd6BHtvDW6Nv9Nzj6K9pmuXrC/yPnNR/IXz/wHkbiJ/gvLfq5//88r/d+2f/RG+Okn/ym4PSLzMQhFmvM34+ptyb8tP3NTEn7kb3RnobqR+4uNPzHpD+YnkPk77zjauxu/qPz8s9RM/4yd8Jo5G4mccBn/uc3MPkfuHC9Rvoh/vAs4kx5Xxy0P3Gt9X4ncKe6ifeLXsNfFFv8/7ZnKfVCjCnrkfyboZvvgXtWP/R5kPEv8h8SxzftxL+bvpLe/IEz/wxfjVgI+B8VuNf238anfUD+Nfm/coOZdLP8z53JK8x8t75vgV4G9U/M/xPyz9W/1d4l8lP/9j8av0/MRvyrtH5XO+nHi4ifeReLnZP76lfv7/Y1H8RaT/zfmX/ndr/i+VHvJ/XFmv769+W+nL854d/fhdJt5mA/wmfmPuDzbXPlWtF78yfr9vHXUPeW+XvjjvgKSzr897yPwvbP4nNv8PW1m/m5a4vfC8iL/p9Pexfrpf4iDDd7L+cCKY/4e+rFCE6+A9lL6bkS/z7Tv0t6vypXH+RuT9PFg558jyOxm/5yUOEr0kftp28e/K+8+ck6Cf/+dtg378WPP/vFkfzo5fETyr0l7W8U9pn4raaw18h+Av5/yl5/sr4x/he6n/fd53xD/maelvlMv/vq0nV+n/v92gfAv8tiPvUu2bc4vm7CbnF7Pjz2Q8eIgdv4FO4iN1h39PePM/8PEPiT/5h4UiTHyA+LMk3lriJdxLj4m/NqUIyrqCG2Udk/sb+Cqyi/Z555n2Yr9LEgfTejL2lXuP/G9ui8RVlH8Wut+BY8EG8c/PvS7+j1D/kRJ/18RHTZy9xEf9P0fynhB4nHXdd/TX4/8/8HeKUtIgSqp3EgplFB8jW1mhJDIiKnuWQkiTIrNFpEFJooXshi2KSkhIKiKJhKzfOb/X7f49x+scr38e53pe1/XY135c12txzZL//9uldgGeWrcA32hYgDtsW4Db1CnAseUKcFqDAlyi/u+1CnDlrgX4s/oPwfdraQFei86Z8j/bqQDf3rkA2+5YgN3lPyrdVLlW9Qrwqt0K8Fv89dmqAFtuXYDPorsSvRulx+L3Kvx3Vv8Q9EuqFUBr/K7ZpgB/kr+HdFv1/1BtGLiZ/M/j764aBTgTfGSHAjwCP4PRabZLAb6J36nqd8Xvy8pVBk9T/lT6OdD3d/B5nvQy+ljGblXId7/8hvBfzL4T6fku+h+u3LPkOof+50hXUH9K6KF/kvzf0C2/JTzSs8h/KbqXw9OPXFPVv459OivfS/p9+rm0PP7B+/lBE/XLwvsRe/Ug3xnkW1mlAN8E51UtwEbyl5QpwPjtcOn4887bFeDCSsqDDfB7R/UCnCP9kvRm6f7Kd+dX14Hr5T8k/btyD0vXI9/F5KmIn4n0fzX+j2HvuvygIvlOpL+m9D8PnEtfc+sX4CbyLgKvA2srN3PHf/PRlv0uhr8q+tPodxg7zcTvFvximfYxRvpG+d20l0b8ZoNy/ehnW/7wA/4HK7eafoaofzh4i/qr2PP9ygXYmV7e4D9no/8ivl8k30f8/2n6eVr5AfQePZeXv0G/uB99NfZ9C/pZrP4i8EPwI3qsof6D5H0BH43481T6PwX9FuQ6Hf93k+se8Er87a38ndKXVyjAIdJd0f9RvfXkXoCfnej3hwIomYtuD+kh/G8wfjexzxvo7i//AnhnwNdJejH9HEa+AfAfCM8Xyj3HH58Fb6enOuq/p/7D+D4TnuPorzn7D6hYgN3Y+xHyb8T/TeidwI6z5X9Nnlml+FJ+Z/Jt2r4A5+knKiu/L/rlyXMe/L346VP4r77Dv/Pv5L8vqL+d/CroLyHfW9IflOCLXibI/0T+y+SpIb8uvq8B/9DvPIHvsdID8Pe4+l/AWwveT+lnW/r8aosCfAjc0vel6u8F/1p8zEb/AHa7ivwd0f0D/ET9OuodqlwN+QvoP377BDvEfy/h35eBlbTPUvyP5x8rtcsV4M74PU7/8z/9Tivp9eofx14nsFM1sBn7TYe/n3HhF/7zM/5uoNeflB8m/y3yDSXXtfhpTB8n0MM07fqG0gKcQs4+8D2r/GD8vqtcxsfk/0S/tdD5A3+zybeldnYo+erA04mdrzRuXQF+TM+34r+K9C3wryTfbfQ6TPusgo/t8fta/Ff9q9V/XXoy/Z0nfYL2lvnLofzhC/iOwk8L+RepfyE6P9Pr5/JnZH5K3qnsMwW+1eilP0//fgT9t2L/k/A9h7xHyz9Y+m9yn0KfP8B3C/rryXelcp/SXxV+tR08Y/ln5lfHGp9HaNfb00f09DD4LPz10NsOf5v5U/rLJ9CfyX9+k+7ET+5DtxL+HqLXcvBdQb//U669evP5VT1wj9IC7EKfNejvWfLsAv9g9nsUH+uVq4+/WfCPJt8g8paQ5wLt5wd8HWB+cr36tfDfTf1PM95Jz0TvFunmyk/G36H0XgJ/TfzfCP98+GrIL4e/9M8X039ncnbkHzXlf8Gf4y/H4+dG+r2G/M0yjshfpf6D5K2l3e4uf1f4GsBfhn4fw8eV5JtA3gn4X02e+Gtt48FM9bN+yPh9p/y6ZQuwYuYB+F8D3yx6+RQ/S/HfH98dwnfsof42yg/HTx98VuWP6e/SP6Y/PBV/A+i7DT2tYs/HyHOh9rIEnpa+7wL/G9KflRZgdfK8Jn//jJ/kyDphEP4vl19qXl2BP/TK/It8W8Hfi3yXSk+X3o58HZWfJj0H/in6jU+UL5P2yz67618y3md8rwdfQ/BD+oifzJM+lh46KHcw+aqg24Y+Mt/P/H6S9pJ1+gh2yHq9HD4GaMdTpRtn/NbfXSl/Lj6G0d/17J351I/4bp3xSv4R4Yd+Tqaf1+inr3r9pQfBN5O8t9LD0rQf+b34wzXoXSD9kPT1BVCyAZwAPoj/L5W/RPuoj9/31H+FPlaT/yPz/6/x8Q1+T8HPXOnv2WN348vf8DVUb2/0L4F/sPxT+Ml4/nUX+T9jjyfV/0D999GtIn0VefpJr1bvZHovJd//5DfF3z7gnuD56lWN32Z/hJ7aqF8Hvjb42km9S9m7IX2UVe9C/HYGb6DP2Dl2zXyji353OL8ekfkj/Bvlf6ifbqPeZ/yru+8vgsPgb8A+W5O3AniA/mEQOc7g/9uzT3nllqV/158Vr5tW4K8Dv11D/gOTj79X8XUj+7SWno3P37TXR7TjzdLD0V9p3vc12F47fxS9Uegfgf/O7JX+4wRyHs5vHmHX9vg7y/yrPPk6SI9UP+vvrLuzDh9Fzs/Zawq9reDvndCtJL0t+SpIj8ZH+vPmvqe/z/5P1h9Zd2ySn/XHq/zvRvDz9C/09yQ99aD//vRzAP4zrvwF74qi8WV4AZR8CJ4Pboe/1+i/PnpZr2R9Mhu+ueAcsCn6L5DrWjD7kC3VX6/9/ACuA0dmf4W/HCv9Hb3chZ/T8dfe93fhvyH7gRmfyZt94sXssxlfzcDfwVfh64z+eHrfyjzlaensX0zPfiP6s6T/Zt+90b1J/r6Zn7HXXfRahx++SD9n8r/DM+/F3/zssyv/RNbJ8PYBM6+bwX8zv3ue/u7mF721v3vhfUn9wfqnn7XrduTIfutU6VL2GaJ++q+nyH84uR/F71j5M+CdAd8m9GZKj5GffZDi/Y8Tyb0861Pfe9B/5meZj50BZn7XXvt/1PcD6ee+zA+MG1l3FK9HwtfJYFf8Zr9mA3mfk16I3yX0n3XnTtrv3/SUdWjzov7iO3yckvUdvac9NCbPj9n/sj+yCL7l+Omi/mp+8Sk8P6D3F/m/5edzybsOvrr01wf/u5Ev/ehz8A/EbxnwZ+3pjYxz/PNv7f5d49Fg8o4p2t/rm/0M9Huo/yVYB1xGj8eSZzj552lPe5F3gXnRQvB98Cl+1g0cT58T6evsrL/J1Y1fdAQ/R78z/l9A71x4utHvXfKL5/E7x19975h1LrwT0H+TPG+Bf7HTIPnTMz8BZ4ANlCtlr8vw9wK9b8U+XTOPYM/flX8A/jb4e0z5e/H/p/Q7OW+hp/+x/x3k72tdcyO5WqB3tvyzMu/A30Hs31X+h+w7Dr1V7FdDfmv8nkOfX8Jzv/SGzI/5TRn8rsLHxezThf6zfqxAH/tpH3PsT/cFL1N/HvqL1X8avo9LCzDnGRXp/S56yvpnOf3+mvm4ep3Il/2bO8k/k36yf1NO/ztRudfI15cc6ZcvVD77jOmfD8TXvuQYhO7n8p+GZ098naH+XzkfLICSDeah29DPZvR+oo/GoZNz6JxPy98kP/sul5P3HnrNPGU7fGR+chX9tVW/dfQI//H0NVr+TvB/hP9m2a/Nuhb+CeBD9DsKbAz/K1m/q9fO96X0VSJ/Fv6OQ/93/JTAf6P6U9TbSfk28lcZb46mh17SvcnxNf9+W7/1tvT58nNeMUq6GnkH0M8p+rMJ2tVL2utf7JR590/sMRJ/C7K/In85/ior9778nOcfDX7K/3O+f2T2X6VX0MNc9Zvhqzk4kBxT2P8o48k+vm8F33Xk25G+z4V3JX10Uf4i8nyCXuavOT//iHwTybcevoqJD0DvtOyrk2NK9kmV/873u+HvD3/aR9rFTehkv7ap/rSx/qsc/WW/vJ38gfTeXnoT/qby22ngs+A68v6Gfmt0R/v+Iv4W6//GgY3Mj7M+GWletBJ8n39m37Y7u59j/tlKegT+LlSuLLodSwtwo/zEtdQnb1Xj4M05n8P/ZYkLyP4/e/8q/3PphzJPQq8x/+9NL1fCP3nXf/NXG/0G6tdOf4ruJ+w3Br6n6Wcwe73HT6vKv13+IfrNrcHrlG+IzsHkqSB9Pjpb4ucDeOfR7yP85E38zZJ/A/u0T7wF+nPN9zL/W4iPFqUF+Ap6J6LflD47yB8F7/3snv2Q7NP+Td7E5YzQT2Wfvr/xaiNYlRw/0/sycAg9PMwur/CPf/BzTeyfcUy5nCvmfOcVfOV8sTa8nck3Fl9L5O8Bf1/1b0qcAP+rS9/96LkPmPn2tfHPxFVk/1n9N6SHKn83OvOlu2rPiZ9oC3/iJ75Q/8mc95OjH/kvk9+fXvoq9z35TkJnrvLn0cc86c38oQy/+RD+9L8Hye+aeaX2/So6s9D/h96Olr4++uE32/Cb4vXmN/r97aQPKS3ArIMH0+84dnsef53lJ24l8SqJZ+mifUzhb0+Bl/HX59lnKvrTwaeLzmNPznlQ0Tib8fU2+Zn3l/DnI+mnivQm9cuw0zL10z+9Ra61yqd/WpX9XnB14kPosUL2I+n5NOn95Dehv8ybL4Y/8+fws1Z+l13+zd8s48LZ2f9Xfob0qeT/1vfL2Tnzl8y7Mt8aTg8nwL+A/L3ovTb59mDvGeabZ9FPJXTeVH+o71fgO/EGH/HfFvy3kf7nyYyn9NsdvvPx9wP+lsrfX3v5CZyuXNZTjYvWW8Xz32mZn9D7OvzekPhKeLP+Ph39rE9y/r5f4v/U317+o/Qzh5y36+8n4Wtkzr+k52sfG/G7mX22RPcO5Z5AZzy+0t5vznwJ/2XZ+5Oc7/LDb3IeS/7r+MN8+Efgfx/zjZE5twAPzT4xfg8Bl+JjL/57E36+Vf4i+d9Ev/TxOtiVnpaRqzW/yLr4an6Y9fFE/caj4HXkfAL/f9J/WXByAZTsgI96+Mq50/b4flz9xEV9Cu9O5L8A/2O1hzFgF3p4TP112T+DN/OfififAv8h8G7L3kMS18R+LditsfR39LFD0fnJAPgqwF9N/vv0u55+085flH++fmmd9N35jp9L+cVGdJaWFuCorFfY5e+sE7KOSP/Nz99ip/3Q/8V8ZJb8vvS4r/zv0X8xcS70+AD9bqDfo/FzOLserNxp+pMt+PEoch0pPSP7+fX/LefB0geTbzh4EHhk/IE8s9l9b/ODZ+hpm4z/+B3m+4/SN+tfR9H/Q2B3fFxh3jFUvYXotSPnw/T7q3lQT/r7s8g/45fZB49/ttC+lsB/knLpP58m536lBdiEHf5Hvw3hPwu/u0rXkf9f/V4n+t2fX49F52blm/DfWjX+/T3lTsDf7ex5ru9v0ctf6MeusedJ5E87b8pe+4JNwP2z/4r+rTlPQqeW/MT//SU/8SWZn96tvV7ND68CE89s2VMyCHwe3IV8sUd7cIX20gb9F7SbfvT+NvnqkW88/u/HR8vSArwCf/UwUBM8Sr1jE5/B3xKndGvWOfRcv9a/6Y3NuAb/6Ylzzn6vfqGH8k/y/7ngFDDzuYyrB6j3tX6vZdbH8D8N/7H4yv2LBfJ7wJfxIXGyR5G7LZhzm67Zfy5aVw9U///0p386OPHA6md/8B/0j4xefL8n8eP0N6C0AKuRoyL7P67drAVf0Q6+ynlBzm/hL6/e1fA3oa8S5Xujf6hyd9Bv4lWuUO7W7Efj72P5ua+SeyrXsNfd+q0HwJw/3qn+R/hbmDge7bEn/f5XHNXgxLvz/xn4PRk/R+j3TuOXE+Rn/+uNAijJMvhmfryb+s/R31T8lIBNcv9GfzCMv4ySHgL/FvAdTe7EkW8t/0L99wv4epd9R5VK678Sl7Uz+nXpdy35l2r3i8F31B+J/jLjwDDpcolHxc+anMsW7XdeH/9FvxH7Hp7zzZwn4iv7jNHvB0Xz5uelM39egq9PwbP0U/Xwc1HaB3yHwHOS9Dj0r5D+EP7fEp+SdSs5zuRHJ5UW4IuJv5UuzbkZ/1xlvnQ2OAZ8hLyv0WPOL3OemfPLJex3F1jTvOLRrJPw9SP7vwk+kPMx9PZR/xjfN4PHFO33/+L70eifwb86gGeCe5O3HH2tzH0n+KqRvzieKnFWWX83p/9y7PUU/svLL+/7mezWhb47SMcuuU9xDv11IMde8hO3lDimxC/dob1dhM4i/v8ye7RVbwf5L8O3GH1il6wAR4KNyFEPzL2w3BfbMeuL7Dvz39HskP3nCuy8NVgZvAze6O+wxOmmnyZf4ocTL5z44ZroJC488QHT+HviBLqTJ/3ce+BsfE9g3+yzvC4d++a8bwz6uadTobQAn8q9InSL1yeb2fN+6ao5l6OfhcpXTNwteAn7j0t8mX5ruv58OPna8ufsj7eRvgp/rxkXq4LT8d8091/IfUnOvdE9ln4b+V6jKO6kse+N4DsO/dnq5/7gRfrnveP/0t3l78C+6T8fh68M+jm/bcGfc46b89uW6K6C7yH6a0S+xNOG/l7gPvBfUFqAi3Mux16Jv+7NPl9nPqrcvvK3Ma5VAvuR70L4i/eXsq/0Mf42mu/eZn7VJXFa8usX6X0AuJScXdjhHn41xfdm5Mr6/Trfs25fmPhw8g2lx1fJdVniU+Tfnv13+J6RP4lcL5Hr7ey/Jn4y+2fwZ38xccKt4RuYcSz7xvh/LfGo+I+dY9/H9CcTwc5F+wu3o9+f3WrCs1/OVxMPCmZfpi/8u/o+ET/baO+JPzkE/8XxRyuyvtN+c679U+57yN+G3TuBlcE96O9Q7X0AvYyG5xD0d8fPIu27Bjgn99z4Swd85pws52PD9VuJO2oH37fw537hlfDtiI/m8r+GdwF879HvE+Qrjnf9WLptztfVPwb+Y8FdSwuwHn0Ng68TOmepf6b2sy5xItI7ZX9Vf1hJu5wrnf3V8018O4FVEgeIj9H4fZm/fEgfj+f+Kbo1yfE+/Zwg/z74XkxcCf98PO1FvS7oNcp9cvmr5T8gP/df9sn4lHhG5Xso34Ceci8t9ysTr/Zp4lfpqyL+jpdO/N4L2s+H2uEE+Jaj24R/l+i3tgHnwLd7zvv59W7Sn5cWYM7vc17/Jb67oV8bnsMSn02O8+i3JnwXwdM9cTWZn2dfl9y5V5b4u1/TH9Br1qONlPss8zfplvhL/Hsz/XNrcIz2dQb53uZvg/FdF4z/1DO+Je65VDrxz+fR/wp85nwu9+/6aa+5//N60f3O7Htnv/v8rDel2yh/7n/sgxSPL9XYe1H2v9F9D/8vKzcC/pMKoKRy4jCkX5Z/Mrn+zP114+gQeB8w/+8Mb1fpBehvwvcVuf9IX4nXn6M/vCPvHpg/HkY/HfHVDR/300/635WJ61G/JbybyNtOvzGNXO+AYxPvjd446U7kfFf9n/nLU/jM+XbZovvJieudnPtI+KuecwHwKvUT79WCPvvnvqDvz6B/CXwjwY/hzf2x3E+8mT0SL5r7iTOL+Mv96eeV349d9tSv7AWekH4y+3P4zPlm1lFPKZf1WgXfj8NnDfy0TlwFeFTO1fT7z+C3lfH0LelB2tsA5S6RPxvdX/TfuyTOJ3Ea6HfL/l3uhdHX7jknyv2k3IPC//Csz+lv6+z301vWs/Pxl3is040fT6r/Kr1dSc9bkeNodI7KPjv63dDJ/Lsdu3+feKqifvJEckwiR62cG4D74P9Ici9QPvGS+8CfuLXsT3+gfln+2pTd9wFzHv+d9cnB+EucWVX8/8M+9yZ+Uvnjs49OnkvRyzywN/0lvu03+LMPlPi27vS6IvOXyKl9pN9Pf5/x4F3ls16ZlvhS9I+Rvz+/ejTrEun36H8Jez5HH9Xhe0f9S7OfkHV64oXxk/PWZ6XH09M6+iujf++rfr/Ec4Ll2GN81hv0fS35L9bvbJfxXrpn+i9+k/tuefch7Sf7KcXr/4wr63M+qdwF0hvRO1S59mD2U09E52TpzCdfyDsL7FDVvOTkxCPon45U/l3tby04LOd4+P+EPfbVj30sXYm+cu5+H/mm+34r+sXvduQ9i8cSv1UUP3+R9pL4+TL4eZx+1rDXKbn/kXaR/p4/5/7WhLwnQf5DtIc/Swvw27y/Av84fNyU+7u5n6DdHZZ4YuW+Vy/xP4kHek/9t/H/FTucRn/bqV+e/sqy9+e5pw5f9u+PAkfgN/v5H5ivbKTfxLt2bvBvfl6Lf8E7KvOz/7h/fHHGL3xmPy/vIzzEPr21l7Z534G85ROnh+/miefzvWvuV5QWYN5JOh4/t2Q8Z9/EiyeefHPR+jvr7ay/E++T96meUW8GmPeqsn/xHZh7pG0St80fE6dX3nws92C+x+9m5V9Hf3nmn/q3rcEG4G4ZP9T/ouj9gSk5v8h9OHr9JvKTdxK+H8v9H3ytSXyc/i/n/PeBnyVeN/Mj9Baof6n6veLXYN53OC/33xIXpF/5Bf85P7yZPnOekXOOXtKjyZO4nR3ZpSL8I+SvjJ/iqyH8DdnjYfbpyF65D36C/MQ9Fe9X5XxgGD5zTpDzgYOyv5L5ufzcL69N7zmP6akfzf2IxN9lfHyFHKuyHtZ+q7PTaHBF1tP4rlkUB5Lz6ArkOAT+q/Qvz2Q9VAD/d66cc+Z/8HENvBmPBsOf9c7QtOuMP+TM+2B5R+eA3OfCT843d896UL0n6fMu9RIfmX29rMOyv7et8bAlvl8BN/CjDfBFD9+R6+b0T+o/CP8I6V3lj4GvD7iD/DpF94cSV557Q4kvb8/fumd/lJ7yvtqdOa8Az9Nesv/6E/l/LGr/w7S3+fIPzX1Rcv8Z+dDvxv+fAc9SLv1Z+rfz4d0z95vV78lvfmevcxK/nvv76A/I+I3/wTlfw//0onPmI+QnXjvx27tL5/7xkfD2of9z844I/6sGb0/9wVPoF8cjJk5xSfZTlH9C/9SfHeoqn/P3nLunHef8/W581aK3w4r2mRvn/bDclyXfmux/0svQrIczHmV+a15xp3p3Z54iv0P2e3MOKP1P0f3CLeT3LYp/TnzK8eSolrhg9s25QdZLFehjlvTr6u+p3Bs5n5Vfnn22BiuAh+KnCrrf5L0A+DLfyPl3xoecf2d90T37VTkvzjsH6HdIvCg7X1JagNkfPYk8OVduC+a8+Xrzst/Y5Xv85z7B1frzycbtGonzzvo15/70Pi39knJP479tzv/RPwJ/b+FvYOIF8D8p63/+8V3eYTIfGip/VOK50WuNzqnwvZP5Ajnmpz3Q5x9ZF6Ob9cR7/ONL6bxvkvjXD7N/R+7d4OmUdxzRX46/sxO34/vr8H+ivd8BjsDHIelH1cu+efbRs94pjmdNnGvwZF71Lv7H5F5Dzs/oM+8AHZV3Hsh3Oj39SN+r6GOD9BztP+8f3Jj2k3N8eKPv2CPvO21NP7kvdx7+807bAPItAH8yXleFL/eec9/5JvR+zP1w/N3APgvSz+b8g1//DP4EPkGee9VfhM+sLxK/mXl03ivLvZK8/7pE//wMv5gBfpj7x/Cdkntl6F6d+wnWW9WyvyM9BP9l2Sv3b3Lvpln6D/Lsy84P4+tV+O+jz4H0uwLcFr28Q/o2vWXfL3S6F/UnOXdP/Mp643Huhee++GT5iY+LPXemv/H434z/R+mtFv+5IedR9PEg+T6QvpBdmtDLy/rJF8G8G1v8PtzwonfiGhpPW+sXd5PeEf+ZX2zKPjN5sk/YkX7vobecw73EfpfpPx9J/Cn6N8lfTe5lxok7+HdHfK8GvwEX5v45u+Q9vLyP9xh/yft439Fv4u+GGg8y/j/LPytL552WzYmfkf+M+lmXfSC/Dns1VG8cveb9p+Xk+kX/19z+WvbrHkycFvy5D3KH9FrpvDebd2hX5L6D9rcfOJu8s4KXvq7B5znwJM6lJ/y94O2e+aT8vP/xRfat6TvvgWzkl/fg91P0dkenpvpj0TkteOmnN3/apaifyX3f4riAl9gj5zdvF0DJfDDvPZ3DDjl/vAI/V8OT88e/tNe92KmndO6Z76V+Bf6e8WBr6ddz3xc/n0sPld4Wviey/sl7ionfzjsH7PUqO+Z+3IPo5fyo+D3YUvnxn/hT/Cf7jtfxl7yTd7r62RfL/aTsj+V+Uon+ZDd2XphzUuVuT1wjPnb2/bmcn/D3nAutK7oPuVF7nIPfPtJbZD5N/3kHboZ6WZ8Xv8+W+UzmLy2z/lJuBH3nPmDumz+f+xvo5/55zvdboN8u77Kp/4j8nBv+kHUqfAvp7aSq/y6X88Xq+t1F9LwYfCrv8dF3g/Qz4JlZR0tfm31n6df4T1/414H9wXvxf4/yxffm8n7NKv3JB+qtlt6RPptp74mrKEH3aDD3ZfNeZ8bZjK8lYE+wS2kB7qt+4vZeBqcVxX/1zP6n78XxNf/4nvcfP84+tnK/WG/VAlsZ//7KuaH5Qqu8qwPm3c71GVeV/1H6XPQv5495l6b4vZpmyjcFN7F/zt/eyXoEzH2jbvT1p3HxhuzrS9dRPmbZwzh7yZb/5qe58t/zh4zrTXO+lPuYYPH6+xzj2rvg4tIC/DLxLpn/5r4pfTyZ/pt+m+RdU/odnfVJ/u8A3haJD8v9W3QTfzpX+W3R359ea/DDefy9beLrtcvvwTOL3jc7jN4qqZ93SKeRJ/1vT/g60Mu9+C/+/4E+9HtU4rfSfrSvmmDaU43sryauPPfris7XKuJ7EP3lfK0VfGXQP1b6Efy9i355+U3o4WTytdQuds15p/KJXz0RX0PxdRq+z07/SV/ZD1xqnP1auhV7bkT/o8yXpBvwn005t8m6Xf217FPX+PJd7KV8i8QnZd6E3/Q3rbSH3jkHyf0w+jme3U8A9zY+572TIfj9Fd6tjXev4z/xnbdIp79K/5T7FqvzXkDe0Yh9836xfuw+dsl+VR/+nXs8ub/TF3+5T7gAfCTvIOYdOPSL4+Rynrdc++qq/ljp++DPvt1v+Mn+3cPZP2SXd8EKxv/VpQW4SP36RefdfRIHj5+D6GOc8s+lnSX+GP+9sp+Fn8QnZ52fOOXEJ6+zXhif+ER4TsPfW+S9Cjxcft5Xu036VfbJfLEyvu8l92TpXuRvnrgjes07bZWk8z5bde16CT6rSc8n/4qcXyRuBR9ryD9V/3Cu+rmnf6r8yfqDL33/hp9vVXQ+nPPgpdI3pX9X/jF0R+Mv+1fb0kfi6Z4gd96HGKY/SX+cfnpD3ofEd036O1D/9Kr6p6U/B9uB8Y+c++S+YPH5zwPofMP+5+ceMz53AX/IvVTteW3q42dR4lylL4Qv8Y0558/79Dnvv4U/HAu+lHee8NkcvZz/5B237C+PY7/F6GY+uTHrW/3TM/qF1dL3go/7/rF+8Gj9Z94hewW+/5rHNsH3IHzX58eJg9yDvyzIOJV3QPG33PxjkO8dlf8R/YXa3WN55016tvy8T5N33c7LvQj2eVv+Wnobmnes5F9dACU/g89lfo//EeQemf0l+jgKnv3Zc8vwm/j9rE+KzmXLGR9yPpvz5OfQuz3/p8G+Z+d9rZwPkKMReom/egueLdBfp35H9joPHAEupv9r2W0gO+4GjsRP4j/yjl3iQBL/kf9nyX3w3BfPe/7pv3IvOv1Y+q+cv09M/CCY8/feufdE37dID0w8E399hX0mg4kX2pveb+E3OefKPDXzgq/yPgB+F+U8lD2K/wdqq9zvQu9s8naCN+u7Jfq3vuAFyo/JfjB9dUw/DY7jn+/Tf+Iv8z9Ydel/DX31ocd98r6kchO065yHV6S/3N+YRy/Zv0t8WO7HHYmfI8DDwafyDkTedaO/B9HJ/YGNyv/NTr350aXoZ7wtl3tCpQV4p/w/fT+WXbZkv9w/fzLxDfg9F77493T0Ey+Td+LyPs289HfgbPCt3H9H/zbtpvg977+K5Cqb96HQz7lzbXrOeffV6Ydyv4rcWyTenfy99M97KN8T/ffR/xK+0eAn/OB9/LypP63M/4rfR8y5+qTEK6K/Rv4Xylc0760Evpb5Y/aX8J/3CHJ/ZU7iZvC7lj/eTb5y2lX+1yb/c5P/t8n72HkX+8ei97E/Jncv8CHwoMSzon8vf827Jl9k/wD/NymffY1J+G+j/Kisi5XL/vGF+El8YxX1q+P/ygIo2QofW+CvIX30Ivcryu+SeFz8vcP+b/O/xCkmPrG273nn+XP+mHee12ifB5UW4ODcu+bfk7Sr5fhOfHHijaejfwE/yPlHK/x+lPZDntwz/k39u9TPfe67pfP/iPl/uTfyDgz6l6u/zny4U+IspW9FL/F/f6c9R8/qTzQ+/UnOP8Ae9J73ntaXFmD+b+WM7LsU+VWvIv+aTC/1yfGJ9jmBfvopn362uH99mf/k/9fyf2z5/7WVBfB/+zfZz8n+TT/lJ8GzGPxEwbr8Ysvcr098Lf3kfmjinfNe7M/0WUG9PeXnf0Ly/nAv+BOnWxyfm/jx3O8cwV6JQ0l8TN67G4n+8sQnZ387fpf1Q/yXXorfVUn8aO/Ir37uLW0hv9i/4lc16Odj+sx77DXtfx2Ov7FF7+PnvfxJ8OT+QeaVt/k+k37WoN8j59zgkfjLuy/ZT8g7YHfk/KwoPjJxkfn/klbGv/rGhT3xEXuG7x2Lzrez/zXUfOJG9avmvnDuRYKJa0/83Vr1q5tvHCS/mvST+H9T/c+yziHfG/gfg/5H2tVZRfPHQ9Ouc08t/9OR+zL8or7+JeupM9lzRd5nMC8frtz9vk9CfzE4Dr7f0S8h7w74HU5/g+j3z6L+Ju/EZ399A/vm3aOm9Pwm/SzT/vJOX/6HJO/zpV0syn1IfOT/SIfql/L+du6h5P3t7Ev8DVbGf/YntiLfvdpt4lpfVn9H+Iag3yP9ovQQ/V7ea8h5ct4H6JV2rXzewcv9uJbZX8Jf4jOOJ0/+L+4Gfpn/r2qR+/t1/s135Aj/2T//B2yXc8icl+E3+64v4Df7rzXxk/dvv0x8PPy591s98uQdDukT1R+v/ns5ly9FP+dA0muk8/9dA/l97Zx3Gu9y//db3y8g/0r2nJj7A7m37HtZdE7k3421tz3AW7SP/ZV7Eb2TyfWS9IHxR/avqj3tDuZ/j/M+dXX48v9gVXK/Sf91O3hP3oshzzHSI9nvAbAq/vP/MjnXyD2nnK8Uv5/5lfzcb8l7muPVPx9/tyTeLOfb0vmf5pxXPcAvc68673Hm/x3Oyr5/9s2lT0J/YPpl+cOzLwxuz//LgEvB/A/TVujtzg/P1o+dmPdO9Gev5/8t1Mv41kP6Pva8S391Fvqt0RsGttGP/qX8meBB6I3Pe3Hw5/5IzjvK0V/uZ1cxvh+sH62W99fg+y33gTOuZ5+E/ipn/QLex1/yf1qJb0hcQ7F+Gxftmw9VLvvnuxbdq8s9u9wPyvn4VDD/59Re/p/881LyXQZeS2/bq3dOKf6kZyTeJfRzb1z9/cl3bvbryTlf+jb0vyDff61j8q5Bd/Ty3kLeV+hrvNpDvb+l7839Bn7VTv3F/LAB+jn3zvljzr0fzv2u/K8Qfuarn3iHvHu4Lf7z7mF5/I1KOuca7J/3zJZpb7/6/ql0/g8h8SuJW7kEvva5n83/bkh8FDnyzv737PMgPdxO3q9yvyr/b6Tc9uTJO+x5X/8ads/7+vn/p4OL7t/mPm7u315lvlGJ3Zfyj8SjpP+9Mf/LyG/y/wCXaW+Xg+/kvnPiM+DNeqsZ/x4ifSl95l7srfqb3I/N+/4z856k+nnf/z3yf4+/4vnL1Jy/qD+dfo7K/J4/nkg/DfhJdfLlvfl5iYsvio/6f2F4jBV4nHXdedSWU/s38DuiAQmVMd2GlJQhU5lLyhSlhDKUFJIUicxCyhjKFBFJSeYGEZlLpIhKHiRDGaJEA+W31nt9vtZ6znc91z/H2ufe+5j3fOx9nb9t2f/7PVFegq3AUXVL8KGtS7DBziX4+vYluNmuJdikSglWqVOCh1ctwdN3K8HfNy7BWfCulN4c/ms3KsHHKpXgJ5uU4Aby/9y0BE/ZsQRXS/+xSwm+tl0JzsDXkdJHoHcA/k/HX7sdSnCxdBPle0iPh7cL/ufVJBc4Ft4/6OMZ+D+C51rfr1d/IL6b7lSC4+j7AvLNU/9y/P+t3Bv0W16hBKfJ71sG4vdP+myP7t/wb02OwyuW4JTaJVhVvQ/BetVLcDa9TqWfTvANQ78buMMGJfgSuTbcogTPByuCd5L/PXzvB99j0jvibwL6W2xVglfxgxuVr6D8luh9Sc9v0NMuvr8H36f85z30D9+8BDeH/y38XQf/zduU4MblJfgD/DPVb6f86Mol2F46/v6r+n9Jj2C3A9m34mYlOED+UvZaBn8b9joP/QnKnSH/Ev5RRf5B7LM/eb+mv63Zd776h6h/k/Ln4bMSvTWRvz+/vol+Bsrfjn5GqPcevZyOjxryp6j3aA3lwEH4+Rr/76T9sucp6LdUfpjyW9LXB/S3QP/QGN1Z0vXJ/wn+GpPzFfi7yX9ceit6uUr5cvh2kH5Z/Xbkf0f928ldT/mR8AzD/3r1W4Z/cJLyf+sfL6avA9BpqP676v8G71D0q8ufwz+qw/swvprQTxv6+pt+H+Rft8Pzu/ZQrVoJHq18W3ieYp9e8LdDbxx8l+g/+oD94LuIn6/yfSJ4O/gw+n/XKsHX+NkR0lfSxwf0W5P8S/BzqfyMP2vp7Qd8ZvzZhD+cTV+/wNdVehy5x4AvqP9L7Ev/i8j9DblvkP+T/mgovbVmz6ror9MvDMR/f/Lfh357eF+hj5b4O4R8s+nlOvAg+umJj6r4OB88cssSHMT+TeilJ/x3k+cD/O2vfH/j8mXgWvjXKn+Z9KH4XVxegqPlb0Bvx5HzHfjfQH8v5RcoX5P8eyn/Vvl/438a/1vjpxP+d5B+H/7n4XuO3uorN57+pst/Hf+fa++3KDe3BMr6gFeD68nTQHv5Ub1r2Xkc+l+zx7Zg5gGjyT1Ze7gWvv7KnYe/AcrXg7998NDPJ8aTrfnVrux1hvrr8LsQvBn8gl7bG9/qGwcO0x+frP7V6J6p/Ov0eCH6m2gXq/DRkxxdyd+CnKeV44O+y9hvnfKv+H4+vLdm/EfvXnxcqvxs+ReQd2P8vUQPt4U+e8Q/2qlfW3tYEv+W/6P0VfJ7oXs9/1gBXy35y4nzuPnNevAQfM8yL8r86CPwPvKfxf5dwM7gp/AfQy/b4W8EPu5ln+OMfzeT60vpNeRvSP9Hq1+fnqahvzc+3y0vwQrKv0u/W/GLMu2qEf84Nfzo307hBw9LD0f/Z/b4HlxPf43IcZD++Sv4evn+Dv4+hW8SvlbU/G/8+5B7ovor4Bupfnftpbl6Q+HpTH9Ps8dccBUY/zuK/ueqdw59vYb+FPYeBFY3v92JnmeXkQ/sD96N737wd8D/lupVgX93/d3H5SX4HH+8Vfln8HsZ+AT/vQa/mdd8o3zmN6fyr2Ho/42fyehuR/6Muz3pcWnWKfB15hfdwVfx0Re+6/FTgV/f4Ptt4BTy/c7u0+HtyX6v8asTlH9VOvOTnuw9j95qkbcs/kG+s33P+P6u+vWk56IfPXwvvz/8zehrIjzP4u9A43cTfjo146L8Fej/Cl9x/Mv8/wR4P8s8Wfms384k1lhwrfoz0D9Y+8p8dSx+38PXR+AscA45G6G/Kb5H+z4A/3dq/43wdzV71uIf3Yx/E/X/T7LzzvL7kmdZ2l15CdbLOlm9uzO+mI9dL38y+tvCM5JeJuHvP8ovBO9A/z70voL/ben7yfky/APp4ybwZnCacg+Q7z7wFnpul/W//uzn6IX+fyHnbP59C3zf0fch6H9n/O3Jnkvw+TX93U/uuvDNJ/e47A9on3drn9Okd4bnPyVQtj29vSk9NfMn/n0cOi/gqzP8H+P/bN9H8I8x8n8z3lxiXLhMep/sU9BPD7C6cpfQx4/6jZukH2HHg+FvSO+X0m8DeHrh5xX4jo286HdQfwb5hoYevm5kvy7s0QO+bch3o/Rs+bF35kNVsj6Xv0l5Ca5QvzJ9d2ffo83rz5VuDd/d9N6Z/XdWr4v0vsaTTcCh+oOG6J4K1idXhaxP8NOXfq5D70L62Qr/7fl7S3ofRb6D6C/7Mz/Kfwd/2Z95nV16K/cLuJL+mpLvInztC/958n9Q/m/8XaP8bfLHw/8T+bqw8830c6/vK6V/k7+OfKeid4jvu+gfpsR+vm/NP5b6vj/5atPfSezXBlyD3y+Md2nfM+E/Gj8f4G9m1iPKvQ//Z/xzV/i+wm8L5cey7xT5P+B31/ISHMCfzpQ+lZ22I8cR8N+NbuY/e6T9yJ8AXoHfk/D3vu8dMj6AV6jfRv778B6Ij+b43xZ//bMeIUdn9bekvzuVryW9KfqTyNNEP9AcbIqPASXw7/qmG5j1zXvKzcXXdOkD4f9Tu9p5wxJ8Qvow/OyV/ZXMu/l/Zfmn8teq5H9K+evlj9RfbcrPK2V8hmep+czn8g8AJ6KX/iD9w6vwp3/IvH9L+j0QPxvJPwq95fBcxr4/8o+sx+J/Wa9lfVbVePd2YTzN+NlG/YPw8ZN0W+lm/OMm/LSn91HgZeYvl4L9wJvJv1x764C/TtKPZ58UP5frJxrT58XkPdB4mHOHo4yTZ6X/INc1+tX4ybE5X4DvffgnSlfAX2Pt/SDj2L7Sy9jjOvJHL3+yzzz8nK5/aYzP9dJ30e9K+j9Ku7gc3fr4PxG+TcjblD7K0V9DX7eYR51KjnnKX6p9ZV8o+0TZH3oVn7Pof5PsW8B/G39qCd9s+Vm/rCDPJsadu8pL8HD4s3/ej1x3oTcAH0P4wzJ6X4fPXsHj+4nkbB3/wF/2M7PP2b6w31mF3g/E34f4/Zy8X9PvKunz+fWH5L2SfU4xjg4AD6WHf8i3Sr3d6WUI/38C/hr4maT8T+gNwtfx4CJyd0H/P8qvVL8lve2Bzjvkr8XOS9U7hv5H8fux6veS/hud7+lzNj2/CzbMOQF7fKz+S/z/+bQv8t0K3/vs+2nWQ+zxK/4apZ9U/i36fIT/jlB+G/SfoucD2Lu5djgB/QGZv5L3ct8r0/+b9LcX+7yJr4H0eIr8ppmfkHMQ/hZlPS19gXTmpx+h/6v6v5GjP/rHKj80+znSnfDZV/lV9HC//JX4nEFvG+tnmtP/3vLvwm8l+FdpT1Uzv2HfHcH18j9E50f+84dxfJH04eQ9Ed0X2OFG9TYi/774bgx2BDdXfg16q8G14Fj2mJf9Zfhm+P6A9InsvRT/7dT/Iv0bPq9VvgzdQ+h3BP9cyj7PZf5MP7dr393pryf8w/jTTPLmPHQZ+WLv66IP6YP5w9HwH0i+rfF5Nvrj0NsY/Y3AI9m7O7tW1n8t0T+Ug9/ANz/zC/r5ArwCnVNK4F+/nozfTdXPfuQ5yr9MvuxP3oD/X+Snn+wr/w78DsX/GnAm++yk/jLp0+G5jH5b4Xe8ej9r/5OVOxiftdkz87DMv57Qn3xGn/uicwT+dvX9ZbCe+s3ZJ+cG8+QfDF9D9d+g/xPBmfS4TvkuOQdTPnECiQ/4lXzr4H0C/UH4P7kEyu4HLwukn/OV/7m8BB/IelX9mvRVA/wG/U/oYSL5HsHvU/jdG/5fydU4/safhihfKfEb4AXscgD5VmqfvcmZdn01/C/p397E/wjjySj8Z//pLnAI2Bb+jL8dtcsvpV/N+hL9ffRfxxrft1R/uvn+Mu1ygPRweoo+o+fo9Vz1vzKf/JSeNs++L/o3wlfB+mK29MuZX2d+if87M37Kr0vvF6A7h70+kx5Nr7WUGw7fevlLtefsUxT3/w/RX0xE97ryEpyQc3zzgY3AniVQVhP+z/X/p8BbCR8N4WmdeaV+41b5H/GfC9irJzhZuRPwN5e8C+lzMXpnoP8V+XfP/o/0LPZ5mj7GFc5vv8z5D7nm4zfj11Hy16h3kX7sDfyvwt8Met09cQP0sIP8Rexdm/3vkX5K/k/88R126A//QvxUUu9d9d4n33Dpo9EvtqtV5O/J/2slTkY7OFi5htYVz9Hfo5lvy9+KXzTIvBvcF38fmw+09X2Sfux7/DyOXlv+dIH0vLTPwn5G9jmyf/yZ8kvgq5L5FPtX5C8bsNOG0kfjv2fWdewT+8befcj/VfYXyHEA/Ftm/cBO26U8/s/Df038zcl+uvxH5E/L+gH97vSxln//lf0p/j0G/4fyi5cLcTFpn0OVf1v6RHJl/r89eruhfxj9Dc75F7qj+N0G+rNv1L+IPMV56qn4q88f65dAWQPp/divOfky79oz8Qvw7wrvCeg8if8v4D/Y9yGJyyPHXHz8nngTetmNHmqpP1793ZTPuVvOT27F3otgK3A2fbRi9/f49T++fx/9+H5w9n3xmXiS+cbdXeG5nX+dic9/wFH4O7q8BL/jP2fxv87gvfqhXzKf1G9eI108/+mt/XbDX+YBGf+j9zHoFvWfeKrEV/Xnh53gr6R+XfZtm/0v9Tcg91B4u+OzO/2kP7pd/RqF/ulu7Xo1/RxLf0+j/5xxtyM4lf/+pPyh5D8MPAS8B71L6G9PfLZTP/ObJeR5l707kmMd/jeWH3+7i/2nyt+A3Y6i7+31w3fA3wEfM3Meqj3vyc+WBZ9yh2V/IOeR5JkEjiNP+odb4FuP75XZL8LvP/ITtzFVe3pLfsvE78mfDibOLPGXibc8lL0m4K+O/riT77Xwt0fie9Ev7s9m/+0f9apn/1h6vvrp3/bnV3Xxl/7tRfhrw/saPTbC/33kzX7+fTl/hX+JerelPHob8ocr6Weq+q8lTpH88d/47V3S8d/xOe9LfCF+ZsRfjPMbkidxs7XjX+R9MvsHhfPlzbWnPeXvwR+zP9GKPA+T4z/qZ//kpLRn5Yrn89Pwdxq9TZbulP15/cf75iEz+MtW5N5Hf9aD/+4rPbC8BFvqXy8j5645p8t5Kfsm/i/xgH3w11p+q8L+ZE140r6O9L08cQLwf2w8W6T+MHo4B/61+F0DrgYTn9NCf/Kb/qk1OI18+9PvWZk/k/MZ9t2IP4zA73XKPyv9Lnt2gu8l9bPP9yD5zlB+iu+X4L8//HVynsFuA+W/xX9Oopdh/Hd59Mg+NcA62nfiQ7bT/o9k/3HsfBP5dqDf7ENVML9qpv496k2nn8HyB6mfuMrEWfbVzm4qL8GO5F8MX9XC+L1Lzk19zznhedIr0fsW/jFgPfgaZ38u60X6aYm/xAethvdO6Wbs9Ebm1fR3sXJd2auP73eRsx09XUS+Ndpb+r3XpRfkfBmf72W/hbzX4K+r9Cb0UQX9rG+b0d/Juaeg3A/ysy/cl13PpZ9G6B8p/zv8fw8eCs8d2lNtdKrzuxMTP0Jfy8DP8bcQfDzx19pb9nOyf/MmvL/iP/Ent6b/U/9I/J4dfcjvlP1C+BIn/5j0HvBOQ/eq7PuR40frqZ/BwfqHb+DpQ/7E96XfyP7UTfzvDH52HH1mv6ye9pHz89PZIefnB8duuW8R/899AvOeK8HB5neJp9iP/nK/Z6Tvo6Wfx081/dAL0sPJdyR9NmXv6DnxO0+QP+0v7THtr0PmS4n7ApvSfxn75Zz7Ivp7N/EH8o+jr4746p74d/Umqpd+YgV+T6H/behnAv3eqX6tnJvTU094poIL9f8ng2v48RPqfUBvc/E1S3oX+N/G/xvyP8PfEvI9pn8Yzg8uZZ8P0e+X+zzlJdiRvhfSXyvyfUPPPbXf6eQfXgJlF4FfgtnX7o3fjfHVjX8Pjv/pj1aAt9HD7eTpQW85LxuJ3+zfxT/W0vs+/KdX4k/ocxF5f4y/Zn9RehD++pWX4Mnqf8Hf/9c+zAPslHazFH9T0LtB/l7SdeUnPuiuzC/RvSHy4GcP9t0R/uyDZv/zBeNv4jjf1I/kfsqLxoMJ4AvgKnT2Bl9U/hf89s78NvFP6Gd9k/VOdfrLeJz4rzPJe6H6bdSfKH8b+Z1yLyX3peAbnftHJVB2Hhg91UXvdnapxC4578757CmJZ1FvAn7WZf6WfU/5D2bfn/xH8P/EPe6qHc1S7lv1s2+Z+V/2L3uon3jBxBPulvaTfoEf3JFzqcT3qH+UecAY6cwvW5kvztduHgNHkL+j8t/j+zTphxJ/Yby9R/s+Q3utJv80+YlLSZzK5Ny/ofd6YObvl9Ff7DU2/R59TZZfg/3u037vBYfQV/vcB0BvR/p6CL7T1P8CPAMfOVepn/ZDnnPxk3j3nDvkfDHnEdkvTVz7MfAV49vfRu9836tL70W+cvT3we+z8HbMflP2Z/SLDdhtTMZ77TH3KjaTfzn/q8D+uU+3Ch+Ncv8r46f87+B7LedvhfXYi4lz5l+J2xusn/mcPq7I+RD+Wxt324IvJg419ylzr1e98/B3H/oztdOp0nfI78zv/0J/RfbH4F+p3u/0mv40/ecw9hhPL1tJ75b9kxL4d18y+5TZn6yR9Rz8L2adn/Nh9JtoV2PoeTT+fs49NnCD9IPwT1BvFP/7m/6uVe7uwrxrLrvFvsvZsxi/Pk25+fTZOPHv4Lfyx6q/nHyd087xe23uV/q+T879wDn4/xj8FFyD/1mZt2W/BX9X4/8O4/MP4Npy3xPfqv20wl/2sXviv2/aN/7a5v4x/nJemHEz42jGz+xvjqO/LfB3Dv52I0/d3M/hh5sW9nOyv1OV/9XF3yrp57J/pPxT8J+V/amcS2tvXfG/n+/34LMJPK+SZ5ry22mX2ye+Jfvd7Jd7C43ZIfc43tDfTwN7gBXx2Zs+tiPPpoXx8UTtfyn8J6p3Iztlv2OiceEl40nWMYnnTnx3A/6e+O7TS6DsQfAzMPERue8+k5xX4284/Q3EV+/yEtwNnET+zok74Sd16TPnKEeQL/fGdmGP3B9LPFTipOYU4qUGZv1HH0ezdzvy/6q9l4F/sm/iWxNfk7iab8C/8PcX+cvJlXvIOR+ul3VP7tHJr0xPeb9gNHmq5ZxU+oJCXP4Q6e3lL6KXV7SLz7K/g/86yjfPvWJ6OSrnd+RO/NEN9PRo7IfuJ/q/m8jxo/LZd8j+eBfyvVi4X/lK4Z5l7ld+rV1lfztxrLmfWEP5CtmnSz+T+7X8dyOwIph90s70ck7ORdHZgnzb0cc1Oe8pL8Hs7x3P3pvn3FI654rna++Jrz0357n0/Yx6E8IHfS/Bf+JNEx//We7b5nyUf21Hnq7ZB068MLpfwPdDzrPQv0p+/Hov9Hpnfg9f/LFq9hUTX2pc7K/+VOnsAzV1/p3xbbnxbjp+Vmd/Qf7D5BuP/zPpM/Pe08Ev8b1X1pW5L5Z9aPYZk/sjhfVM1i+5z7ATfL2Ub6r8cu0l/X+v3C/P/QR+n/nBOOnMD1brV9flXq78q3PflT4yz1oHnkz+QfgZJf0dvj5Cf9uMO+R4Ad125LufX/8ifxvpc+lrMHo5P1yb+Z36Z9PnCeptqNys7NPIz751cT97F3Sf1O/+4fuA7FfCWxkcTM9d0E/8b+J9l8GX+4OVjAc1s16InejnFXb5TL2/2PMR/pH+qT965+SdAfnpj/7XOzD/a10S/ZxbAmW/gW+DiT+tSr7KYJWc76D/OH6y/i3GJ5yd85LEM0sfRP7Ehy3VvyROLPFh12c/W7nh9HEEfLnPP5S/zsHPhYX9g0fx11P+cfCfm/4wcczslXuA/ZV/Df4a+Pg+9+u0mwe1m+7SX6q3jfJX4ntE9J79khIou0r9KuT9Cn8HJE4V/x/C+4n69yn/oHL1tY9a6DQmf+4hbcBuuX+U+2qPyc9+de6zPaX9DOOXB0i/k/hC89ofEi+uXs6Prid/4u5r590B+W3pK/eGhxpvvk38RuG9gWvwUSPxf+Rtn3tj0tnf/CHvL8jfoLwE50pvjv+n0K0ufa1yv6J3If664ud+9bN+zHnL2ezRIvdDjC/Hg+nHbsJfJfqpSN5P6C/vU9yffRT15rFX7s9cJ7+O/C3kT5R/JvzHyb8kfiL/ee3uOfK/pFz2//IeQd4nuKbwPsFL7Fch+xjg+uxj0cd4bGddXS33vwr3uvbAb+LoOyX+TX5H7eiTrN+l91f+xcQdw7+Vfi9xLIeAiV9pDn/mf5n3bZv7i/g5Bv0V9PCXclvnXpfv1/O/XdVPfMQ5yr+sH/kJf1fgp17uN7Bf7is3Mt86iT4bSs+Vv579FrPL4MxT6PlU/X8D9q0kv07sS/7vyZn3EXKfPPdrTmfXx6Sn7/Df5X/Lfgn+h2X/kvwZH4rrv5yv5DylGB+S8TPj5uHkyPj5MP1dgV4T5Wdkf4L8s5Xbnr5eYo/EjyRu5G1+kPiRzBsyX8h8YmziA7N/Qw8t8J/1yfno9wCfRe93+MbS+/v4708fX0rn/tTH6Cxn59yfOhW92vAdrFxr6Qb0n3aVeeMP9LNWf7cL+/1mHFyd+AP0rgLXFNr/6+GL/H3wn/PVbvQ1nh6HZPyiv+PR70w/55qPno3/tP/D1Us84kj1P9XeHme/bbTHx32fSu7f4Xkb3zXI18H3hdrFI2BT+c/lfio8aZ+n0deHJfDvu3d5B+94dLKvtAS/h9BT9pc+V28CvD2kWyq/E/q/yR+TOJSsd8tL8C8w8XKHo98Q393yDgT6iae+l97vBu/gn83Qv8X88nfzyiPB9olnMB5+Qv9TyZv7WSP0V1fzqyvBvurnvKiS8i3JlfOjvG+Td226kDPv2+yvPV+V/RB4T4TvcvxuRI4u4L2JZ8TPNvB9R57c7/6iMK+rLP09Pg7Hf96b2AXe7dUvM/5NkrxG/d7421H5BsrPso+c9w+W6s+WgM9rB23U68YvKmd8YOcF2tvn9LYArMjOLQvryYy/7/jeijwHoTseX13oK/dVct/3Y/RnZN6d+zvw10k56cS/f5xzAXi/w99j8DSK/7Jr8X277J/dBn4Dpl1shu569caBW6Kf95vybtNR0nm/6Qh0r9PeH+E/x6Cfd4E+V/53/H6d+xT0kvfA9oudEi8F3/f8tAWYe5yf68d20q/Nw+d8+V20ryvobRr//YicA8mT/Yfsp2T/oQL9NM/+Kf9aIP/rnH9G73mvKOt7fnWm9v+g8Sr3nMozvuTcEH95X+673O9VvgW668GR+qNXc38gcVL0HrushS9xuX9kH0i7vUi72yxxgfR/On8Zjo+fpb+W38v3Nuj8wX73J76MfvuQawk9HFteguPyXmjuS+HvN+n9c96h3OpA/M8vxHMlvmuT9P/aTzt6z7on889t8Pta9inVOzPjv/E56/xZ0lnf78k/T+WXzenjePLlfYNO/P496dwT/kt73zbnDsrtR5/nyP/V98STnYPPw/nlC1lP0cNJ8s+hj07kvBy+nHPmXbC8B/atdJ/wT9+jY1/ppwv9d/rtTegh/Xf2TbKP0gLMfmHu5b+G3jP87+HEf9PXLeBK5X5O/5n3OgrrzayjxuT+X/ohemyj/mH6h89y35z8ldFZrX/f1rzrS+lp9Hwtud/Wjs6VzvsPdeHLuN4RP/P4z6nwnQdmfMt410j9WdZp1XIelP137eskcLr2kvj+jD930mfGoYw/u2oXO4M70EfO2/YjT+5DPZN4AOlLc79B+eL7ol35x0xwH3ZM/9HD94q+f8g/Z5E/98sPQ29D8iQ+KvHqiV/POxKJXz8/6yv2T/x5zgdXl+GTnMvJtxZ/uQ+SeyJDsp9Ln7l/cEz6WX5xj/qZ/81lt0/B3NfP+VDeta7se86Hrs1+WeGdwbwv2Nn3N8Beyk+Rn/Eo55Fdc95I/n/fcSFPW/7RQ/m5/CLtspl0zjO68recJ+X9tNxv35O9uvv+YsY19XO/PPHwuSeT++aL1JtET4lTeUR+3v9ZT695Byjve+V8J+c5Od/ZHH/ZNzwg+2N5D0L9hcaP6drnFHQSp34yfXQAD8y5JDnH8cfN+PfA9MeF+6HRU/TzB/5G6E/z3m7Gl7Pwl3cw+uW8B/8fJ34p9/wSjwlP9o/Gwpd4s5X0/zf6GTebmV/l3mPG0bwHmfcht2KnvA+Z+1251/UFmPtdiZfJ/sVk/cjYxBfyj6zvP8p9CXJflHfL1Es8cOJ/FxbiPm8pxH/+pV/N+5LrpPO+ZOKE36C3B7XnvF+fuLVNE/9ciF/7EP+PS+9ZXoIz4H9Ue00876P4SP/1E/++CCyeH9aUzjuA1fCR+5tvmfeeY3yoaRzL+xW5f7Qw8dD8ZzD+dii8i1MfvTvynpnvDfU/p+Q+s3KJv8++74bsl/laDfw9oH1tpr3lfK1bzhu0u8SrZ/9kAvunX0h/8Zz0SOPZYHAUWLO8BPOe9RP8PPcp0t7G4mcAu+edioU5h9F+8n5q4ntnyt8B3//kHYW8g5P7mLkPS468sz6ZfTsaT08DO4GJN1+s/hXq9WPPe9nvW/ZYzU6Tch8w8Snky32F3GOoQL9t8J+4ucTRZX3Rgf3mKzecXNk/zf2nserl/lPuQ+U+8av47pP7uuUluCn5cm8274DkfmR99XI/rmHhftxE7S/v5bTK+wrkH5X7OjlHhy/nw2vQfTP3h+FbrP5s9TbC7/XyE/9yXyHe8ljl/4E/+9b1Yz9+NpuciS94mR5/Bndhn4tzXliY3x+e+ZH+Ou8r5F2FvM/yWP6fIPqDr0HuC/DXA/Q/jcGcE32Rd4/wO0H9B8n3AnlaZD2m/9mYf7yF7kx8JX488eQXkj/zwNyLy/zvfDD2aEeefxJfyB5boPNtzkVzn5HeWuf+d/abE5+jP1+p/d6We7+5X6I/yTsti6UTz5j9sOu0u8S1Z3/s1cK7kdkHrou/U9i7A3gyeDz6u+O3GPf0pvxB9Nws9z305ydJ35d3c/V77fC7hXp36ber4Dv7pueqP1L734j+esC3J/0lviXxLLPp7wj22ZS8m+X9urxnpH5xPjY28bvyn+WPY/nZ89I5v7sevhb4Pz7va+KnCfseCDYF6+/83/wnLifvzkee3D/PvfOLc66f+13o3wLfttmfjPz4yjnzP+RqnflpIS7qIPbbVn539fIexCL4E1+a+/dN8Jv797mPP6gQz1PfPG8dOf5XXETeucj7JfP4d1X85f5zf+na5NgC/LVwXpVzrB6F86z1+oth+qGm4NL0B/S7Nf0U33fMPlvupWU/LvfV9iZf3j0uvodcR/588h9nnGtL/k3o/0j0/sp7/bFf9s18z7n0GWDi+xPXPyP/86D+y8bLKVnH4GNB7p+ql/9VWlP4v6Xf9FtD878T8i8k33R+m/4v6+uXyHMW+5wB9ivcv5ue+23qL807FvS7G/4y720EZj5cHz/D1WuiPzkp+zP4yfsZiSfO+H+c+seAbdgx7/TP5H/nJc4Qv3XVf8j3vKt0Mfvm/YG94dsL3BOsXYhfXUdfzQr/f5B28232ofhB3ocpvk+Z9zzzPn7eI8y7vOtSnj5u1R56J86B/n5Xv1cJlD0K1taf74R+2lnir2rmnJt+6uoflmf+js455SXYnl++D7/PZe18351/L8v+SvSB/4/hvaTCf8sXuUcb70bT6wD6z/slic+YRu7EaSQ+4wb+k3t5F8C7H0bz3kv2eaolTk/9Ofj+rhC3dBX6ZfqL9eQ9Kvc14Mt+RvY38l5h9jdGapc3439H9twz693C+4VP5R2c3K8q6C3nR7m/kvXFz753z7029t1Qf1+NHh9i75cL79tVpYe96W8R+eaUQNkC6dHo5Xw2/+eQ/3nIPZjcf1ma8y71WyWOn/9mnXmJdHX2yXu2x5h3tUN3W/Zvk/4+7/WAH6HTA/0P1R9O/7eqn/n+I/Sb95vTXtM+++k/3qKny6Xz3mj+D+OewnvI+X+MRvRyU+IWwJHZ/+YHeZ++W87PtN/8r9K++V+Fwv2nmuw5n36a428R+q+T/wX+ewK/GQB/3pXL/nzxfbmK6m+Y//0Dc/42nv8+iJ+83zwn9uN3iQ9qqX5l/H3E37pmfUTexB99ym4L8P8f9quTOLGsD/Nequ95/2l0/j8r8yvyJX7jHvndykuw2H4ra/97wFdFulrhfkzuxfyD39yPudH4WN24v44/VID/+azn6bEWPgbnPqjve/teEb120iv0l4mH2gn/s9XP+715tzfnHnm/dwR/eSRxgtnXyjwXvfxvWt7nz/8T1Yd/DryXZJ2V+F3y76Z+zkNy/rEjfeRd+U+U/xz/V8hvAf91/Cf7P9fmvJyffQh/4i8Hajdfqd+anH3VLyP/wdr3bOne8puyT+Jo9oU3cTTF89ic0+b/MX9i9yOzL8YOeW8n50o5Tyru/+f95rzHmf8/bKZ+8f8p8w5L/qfyLf7ToLwEi3GwOd/M/878Kp3zzVfp9XR2Kb7H8a7+4x2wGX08k3gU6bzjmv+5zHuup5Ev88B6eYdE/YfxdTN+8h7A8/h/Rv2867ECnWPhKb7/0z77J/DnfdRz1buZ3l6S/wH/StzMR8bTD32/jj465H8z2PdZdHOvYwf+kvsedfC/I//4o7DvkvjcH+j1LvCnxOPKH5/9UunEm8d/N5Kf/b2rCvt7ef/v68I7gHn/L+f9d+rfqiXOBZ+r8JP/Lfwz6yfy7s6/sz7IeiHrgzHGr174akh/e4Cjcy5unN4AX3m/L/f1c39/Ze7pwH8evC+Dk8Gfs97LfZD/cQ6X/2dcDj6pf1kmvyt5phqfFuT/t9B/Ov/nRm9n8PPETzdWPvuUJ/OD7E9O5p/fqPe8ci2yf5n3m9kn/xe4uBweesy7ycPoJ+1xIbxz+EefxMHwzynkzf989KXvo8mX95OK7xB+g79+vjckb+LOntIuDqG/Q8HW4BeZD7FX3r/oQ895/6Jt7j8W4kAS/5F40nfJ9SA5El/6CLsfze4z4T0W/YbwtQaPB4+Fb+dC/GzNtE/1878x2b9YLL2svASH5LyPXe+A921wQfYfyJF39fIeYUV4t4JvWOJcyZ84uDOyX4L/Z8mf/23YXv38n8NEethbf3lszj/SLnI/Dr3saw0q7G99RB+5F3E9fxym3F38a1/fh0hnfH8x8T7oPCCdd5Imm58MRCfz3e3RK57f5tz2T/ztRE93gNm3Snx64knzLnz+HzPxMnPMf57Qjs/P/kzijEvg/3v38gj5C+DNu2N5hyzzl/n8sy7/zP3uJwvxQ3l/KvFDeX/qiLyvT67t4U28ZjEePu9X3U8fA+j7NXBT/fUo5XczflXJ+wD8I+/7/c2f8r+b+R/O/P9m4sGfBseDuV85FD/F+NY3pQ+Qn/24f/fppKfxqz/Bb9Hvx3/Sb30Hb+Yji8mX/0V5FayOXv4vfbj+qCu/zX24xN8/BF/eV8v/mOZ9tTr8ZQb/mVlon3kv9zz9Yu+8l5T1R/43QLkO+HgBf/ein/d48l7PzXk/gL7q0sfjJVDWGP68C3YPuB37H6/81fBfDe/D6Zdy/6/wbnnl3KNCfxJ9Ft85Tfzr+PzvOb94Le9cq/9Q4nnIm3aR9w9ekL9C++kG/31pZ/Q1AVxM/3XQH0LuvHt1Ivu9Rz+9S6Dsd/B2cFLeq9Y+Z+Mv/5Oe/0e/nN5WpB0qV598/we91aRleJx13Xf419P/P/A3SUlGRSHlnYQUUrJpIHtWRsguiswSfRRJ2auSRFGilBIykhYyQrKSWUlGZiWS8r2u3+t2d12e18/7n8d1Xuecxz7jec7jcd571yz7f3/jtizBruBD9Uvwz61L8JjtS3DzbUvwtwYleEL1EnyuWgkurVOCL9crwU83K8EFm5TgY+p3hX/7rUrwS7//sF0JbqX/VhVKcNT64EYl+HTdEhy+YQneW7UEH1Rurb7aNiW4I7zXwHMj/ofi63N8fgY+rv1pFUvwdPA8v3+4YwnutHkJvov+NPRfoqcVVUpwJfgOPV6L/vb4eY8dFqxXgvuT/8Pa2tPXnFolOEz/FvR3UnkJ/kCPs3YowR74a1C5BLsrX0qOdvC9r99QevucfFfQ36vkOYc/tIL/8C1KcGt+81aNEjxS/SH8oxX4a+yO/zPo6wv012ePl8nTZOMSXEn/p2xQghPw2RC8Ab3x9Ps2/EvxNYV+Oyq3RO8ifrs+PmrTzx3wfL9pCS4DX6xUgk+zz3fsdwg/naB8BzkrwNuVHBeBb6J/JX72xd8G4HD429Dv1WB1+hms/x3wfUo/dykPYa9vyTdJ+Xh2vw1/e+Dva7+3Zr9D6G9TfrO/3z/ixw20/5v/nMxPPsXXzewxRv0A9YPo9VH0Z5dA2ZVgOf+fwe/L6DXjuDh+X8VHXXhf4J+LlX9H/2jlE8tL8FT+/br69dUPQudH9U3Rew5fF4I38btl9NcR3hn8vAL5jiVGHfwu0a4e/Fuw25bgdfCtw89U/I0k1wz934dvH/32Bd8Fb1V/D3tcqF9/89s2mb/hnUvu0ej+BR6G/ib88QLtLsD/XfRTi53GKY+mnyrwT1PuZb56id22NW+eaV4fjv+D+esx2g+mz9/h6YD/zdijdv1/y/sn/2tg3JzOf/dD9zHyXEO+bfD5hPoZ5Htu63/zHTn+QG+Z/i346/3oPgUeVgJl7+q3LX7H0u/t8G8N31Xot1Xur/+R4BRwLjkrwXuKfp3w0bi8BEfh+1C/D/J7Dfr7gP5f9fvvyreSvwk73AXPDHqrjf/MH5kvdle+Rrk3Pg+D/x3yPgn/eeh9YJ66jH+ejs7+6N6O/w/QXUQ/s5RnK5/JHg/Q/8bm843ATsbnT/jZDr9Lze/1lLPe7Ymf/6FzOX2/gv9XtZ8F/5vm3yPI/yl5++l/Cbkm43cvdHtbV+5Qfzj8d5N/iP69wXbwv63+DfJW1P9z9bPpY57f7yf3cvX3qp+efRJ+r6XvfY2bisbnhmAneniC/C3B8eA4+rsMf08p3wHvi+S7Sf2b/PdVeJ/H3x/sdTW+J1mPrqe/fvjfFv/N0amYfQH+W5oHKoDz1P+q/zJyH6/+WvrcBH9d1N+Nz43YoRH+buW/uyufhY+B7NsO3rPx/yc8t+BjlvKF6N0Uf4H3cvJWzjqqvBn+f9O+vf3EXfifpP5+/A/N+qh//Pty/Ma/4+992asJ/zkH/rXqH8Rve+N8Gvx3sO/e1oUx5SX4GJj1e6L+mY8zP9+Nv574b6jdAPg30e5XdFfoX1W7quT/2XxbgRwrydkd/vvgu1H7V6Nf5Wna747vTeHfknwP0cfb9m01wNe1H6T/9/C11r4V+fvg61nyjMfP3/AP1/9Gdlmrfn/1Wd/mgKP4e/T5gfH4XuY5+vqI/cr5Zx3wG/J/Rz9Tsj9Cd9foFf01+Kqe9VP9BPAV/ByFvwHoV1T/d3kJ9sZvc/qdAP9j9pvDwHrG1+P6X2Y+6oj/v82jt6jvAN8IdHbB7z3k28h8PcG+eiLYAp8N6aMtfW0Czyz2WwD/4/gfxI4f4X+buv9/Ocepnw1/ffys4A+j1ed79zz7onwHN6aHfC925ScXFr4fV7LfT/TxB/wnw5/1eU/yZX1+TP2z/HUB/GcpDyHPcHY9Cv/3svdq+mmd7316eZa+muDnGnjfoqe91HfH/3H42Vj/N5Wr4ndECZStQGcu+f/U/0j4jkdn7+zv9P+Sv1TG72n53iX/hvR9JL1VUD4N/6vQ/1V9fb+fnu9b9B70+/n4ug7+r/ntV2AP8/Fd+v9Jv13Bov+VGRfrgbvS/xH0OZ1/P89favv9WPaaAZ6Dn/3p8Vzl5+njKXy3Is+O6n+2nj1G/p+Uq6ifQe9nk/9S/tgM/7FP7LKOfLHPrfQ9D6xrPfmGHP3Jl/nqM/22Q39Fxo1zgzfZ+4OsM+S7V78j8FMTfxvT+wrwCfq9G5+Xk3cF+71gva5KXztqn+/1fvTwC9gM3g3J01i5Bfo92G1n9SfS8zvBj/9T6fkL/G+qfyPl8eQdAc+r5P0RX3PgW6N9Lfz9brxfDla1vj0JzyXkvxQ8kvwn618ZX+uXl+Bv2e+jdwt/uAO/9cBlmf/Mx9vCs8r4mBr70M9oeEfTz3T9nyTPn+jPKewvhsO/ld9H02cj+M/SvzN+vyX31/DnPKYamPOat/Tf3Hw1Ff53Yj/89CV/F3SXapf1tYX6s7Svr34n/N/ILpvjqyb73F44H5jEzjknyPnA+75bbjCOPiHn2pwfWH/uBNvRc83M3+htlvnV+Po253nkXa3+iZxnwH8g+kfzm6L/jNFvVnkJLoWvIT7zfV6JnW7Q7nr4PyLvfHC5fVDskfk/837WgR3Ao0ug7F7wVXAT7XO+0Rxfi/HVgH32w9d39FFZuzO0604fF5OzhnE5CazIvr+YR1rwr4fgacr/NzEubkRnPP/pqd9Nfp+ivIT8T+Q8FezLHuPLS/AK/XJe2wOfH8C/JfmOoYfWBf/NPJLxfZD+7ylvzS4/kbcZP7xGv5PgX06f8/U/Qf0N9NcA/e3AlvRzMLgfOY6Hb/OcQ/K3C42fuvT4DPzZ72f/PxP97P+74XeU+e8UePfF76P8ZP98p6LzDT29TO/z4H1V+WJ4VlpX2tDTYeB+6J+P7g9+/wGezfjXR7kvgG8KfRxCvtfp5VvlEfi9jX3ehO8w8uxdXoI9tR+lfSX11dA9SXk8/p9CZ6zydepzPpxz4ZwTv6i8c77P8DFA+67qzzYfLSvM34Pw/wt5j8FXvstyn9Jc/zvhW20++CPno/p3R38uf3g750F+z/fCBPXnwj9M/+/yHUmeKvFv68Y77DcXbIrP38HsNy+B/xT8PQvfmTmvAP/M+sHfRtBb9nHZvxXPv4v7u/r4zznpH+Tsm3NO+h5C3jcip/5z7EtfNK9MBX+Dt7/ymeaxocrn4vsT+775mYfQ+xj9f8YXfHML42s+/ZxaXoKH4K+M/irS/4/wlav/Cf+nZb+kf85H/9L/W/booL6L9meq78rfj87+HPxf7tfMxyvATub3PrErdvuBz4Kn00ez+Au4B/hQ+MZf7lNzz/phvuPNd6NyD8QOWf9zvp5z9avRz/l61rMF6s/Hd9a3Rvzmf+zxDP1eB39T+nncvLdXzrvUP5R7Y/JcrTw237f2Ja3Z5UfzcU/tZ+P/DvCbfB+Wl+DT9HUvv6vi+2Iqv+tsPugEng/me/ZK/d/LuZLyhcbDQPo4Fj/ns8fJOUfE9w3kvhGcT7555PkQfA3e1/hPW3gzf2Z+yHzRXL/e6A3EZ87nt+Vv94Bn8cP3y0sw6+m3+p1vvC1EP+vRoeDj7Nkn9/j4Wal8tP5f4G+g+qno3YnOtuo/Zt8O9DFM/Xb0sA17/JjzA/I2o49Z9k/ng9fbr47lt1l/e1hHXy2sx7/x6zb4r6HfKvSfQvcX+lxLvr/op2sJlP0BVo3/5btb+wfI1xKd/eDLfXbut7/M+lOYvzJvJb4i81dD8o4k/1TlB3MObz76NPcfOcfGz+n8s3d5CbbJ/hv+t+g/32EjjKN8T+2l/2LtDmHP7fCf+6ov6HEX80Uv+Lvgryt4G7z7618T31uBtcCq9HAiv6yf+y6/Z38/0bxXNeMfzH7jSfxuxS+2BkeVl+Ds7HvZc5+cr7BXVf0fJefe5ts26quQa7H6jZXfI/+t+g/B531gW3q4DL01ibfBzy76X2Jc9zOuNyHXMO0X5T4AntynnEC+OX4/Tvkg/reMvKuVWyifrX9n+t2i7r/5vYW/5vu6H/9fBc/fOafI/R37jcX3j9rnvOqTxCfpl/Pr+fB/xe9nGnfF89LcL2bc3VUYj/H3+H/Gw/H5/oB/U+PqVTDnvIPg/5rfLYXnydyX0kdl889uygdmfNBn7vv65txE+WX+cjD9j8Bf1on16Odicown3y/4WEwP95lntsj+m3yf479RzvPRb49+pZw7s/Nj6LXTPv74Dfrz6Dn3oImfSdzMrNwT4v8s8sw0Dor7/fP5R2ewE3iz/jkfyLlA7vFzPtCUfuewz3noP43/92v9W+7DEjcEf+J5Ei+UuJ6/Mh74Q0Vwrv3F2+yde9eMkzPga6zcyHyW9fdZ5ay/XbKfQO9U9HP/10u5LTm+yr2L/g+bl0eBU9EZQ9572aUmfX+sXBG9Dc1H25hnzgEvh7+Z+e5Q889i9sv9+RPkvYzf3w02wfeC//j+zv3Ktvz/NPweo/7N7C/wMx79zZS3h68JvaziJ0fCs4J8TfBbB52mytO1iz5+BZvS0xL9+8b/Ew+WcyD8j6Sfm/R72/o7MfEBxs0V/Cv3lO1yvk1/P8G7Kf84Qf9z4dsH/Am+N9QfR7+9+NvT5SX4DPw16fN37fbDRxk+7uM368O3HT6qKZ9H/oZ+fxj9Q42/xIVcxQ6P+D3xIYeaX9sZP8eD1bUbgq/I/5fxtBx/E3MuZrwttH6vUL8C3Rv1e50e9s79GPyHw1+Mn8j69zw5y9R/BWZdOxL+Uwrr3MfWo0Nyv4LOxrlft6+6nh0uNg++Sb/16OPSxMvQ12XKdclXP/d75LuWfF/Rz2z7novopa363fS/gN0WwtsU/XnqHyLvn7Gz8p70knP3l9Uvws8B+HmLXqbr1wmd3sbVAnAheFbO6enlXPg75Hsff3+Zn05KvED2b+Tsg+7N+KqDfuIvE3ewJPeD9DCZfo4wX21JnnHGQ+55ptFP7gf/uUfQP+veiswf1ocK6k+2nu2j34BC/F78dzS+u5Iz42gv8935+KmvnPiGaxO/qf//yFtB/zr0nLidxPP8ym71ct4KXyX0j8X/qfxxa376Ijgz+8fcl9Hbbvw98/tw8j6Fv5O0PyH35+yZuEbD4594x7Hm/YX4vY/8zdlrh3zXm0c/Ns8/wR9GFuIPEo+Q88Bu6K2fOESwQe5RyH8Mfi5WPiLxpvTfnZ5Po9+H6XNf/nU6Px5onA7M/Eme5VnXYm/8VWe3HujfiV57+ruOPCPw8yf8zyQ+jJ1yn5R7plG5r6P30exQM98LiU9L3Ds4jl6/I99Sfj9Z/WDr6yDwU/zm+ybfO/m+WYl+U/K+nvhkfOd+N3Rzz5v73ZP0u1r79uh9A/+eWVfRfx++r6MX/pjzqRfh66f9TPjONk5653zAOHlBfW12r5h7pJwfc+gvyDld+eF85xfu3+9O3C3+E5/6s/b5Lt6gvASXqK+O3/HwLE98D/xrjY91YB9yZtxlXlqkPueFR5A38a4vl0DZ8/DPMt5fBk+1f3mPfg5jz53IfT2+n4ZvK3q9T/uF6B6r3XJ8vQbvCuUNEv9rPH6b+JRCfMs8fn0uee/nlznfa4reEnIuhqcN/3oBvunmvZPyPcpO1ymvr34tOB69KuxRN/sVv/dS7pn4ycRL514UXICvDuglzjnxzR3Zf5+MH/32zv1s7gfZ567cv2f9YJfPwevA7JcuApMX8BL6X+Z+jLx30cMZ+HygvAQHq18fn42sj4k/vNr8/pR578PEIyUeNvsy8rWmj8/RGUt/U9htB3SPzH2W+XBzsBh/t3vmA/jvRDfnN2fibyp61ycOlJ6TX7KkkGeS+J/qxtMi+BuyQzN87pJ4G+vDeuhMyfxMf1fQ7zrlJYkvtl5tpN9i5ZznnMXe56F7jf1Is8R1Gw+Tc15Aj68r/5Tzf3rbWb9b4a9Fvi5gZ7A/+cbidz64X/YTud8ifwX8vUd/e5In5/rN/T6BPE3w2Zlef2GP3Bfl3LWVcuKF39Cvi/o7rV9t+eVK5Zw3jk9+HD4WJF6LHq5lt4zPXspXKv/EHk+Ul+BA5aPpdwD/epxfLVGeY954kn0mgR+Budf/mj5n028v5dyb/4xu4p2vyHyR+yP0HtXuXvqslPwQ+vtB/eeJA8n9bNYL88x14CD8/U6f7XL+gq/Pcr9Er8m7Kebj5Lu6u3LmgQPwvxj9o/jF0WD224kHOwPd4ezyUe5X/H4Kf97FfDCAfOvQ65l8QvoYlXg7+qwAb+6HEwdU9McfEj8Cf3v8ZZ9W3J89mu9b7brpfyB8tfjDGPrbSvmd3O/me4A+Xk5eQMYv+XYFm+E3+/PEBR+X81/lxOntzG9v4UfVlHNeupI+Ew+Y+MDz8HeE8XSmffyj8Sft5mdfzy/+4i9Zt28gX+LgJpMjcSv38ceDyDtUeXP6jf3WoJd5dID2nflTzqcP1z/n0xslXyf33fi4HL7LzFuTzbt96aFLvrfwnziDR/OdiP5X5N3Yd8Qq+9WO+r9mvJ9j/LdUfo0eWprXluOnp/E4B/+bsNdKsC875n71RvpJ3k6bnBPr/wZ91E18nPKYfF/j42D1yT9NfNBY9s18OYy+8v1xk/Uh68vtynNy38/vtwN3Up88yW7Gwy3qX4R/TPbR8Rf0mybeK99n/DdxMYmX6aX8ivYfKXcqL8Fv2W8iPhK/0FL/h7TP/fzXZeQGkw9Xg70Tf5p4xdPUdzUuJqjvovwC/ucnX5h/nZp4ucQH8O/NwbH8dDf2Psn4PJfeLldfS/1o+ruJPdbi92/lnfjPmeUlWIxH+oy/Xgj+yY+X4m+ryKX9ZPpuCn8Ldr1Bu4+VY//nc18E5nttVvgqgbJvwcRpJD4j5ylDEifDf3O+0huebsmnwucn/H8SfTWhv8QRJr5i98z/ytfjuzL5El/7gt8Tf5f42srk6kBvP+E/3/uJo5ue/CD0BsK/Ib4qgRXB3cOH+SD5dlOM7/Xg3zf3M+hcQI7E19ZRPzH31dnf5nzW90byAerzty3UzyNPO/AG8MtC/tfx8Od+cTY+1qH/aPJvcv+A/x/4a/KoZvKfxIW9bF5smXvX8hLsof8a+mnOf/uj+wT+x5GvErmeNY9N1m4h/j/GX23878k+eV8g9575rk1+SDEv4hz4qqHfWfnTxPXRcxN+uhN5G4DrtNuVfNvgZ6Dfp6GT+8b9zSfv+v03/tE9+SrZzxsHO4Hx/9wX1TBv595oDfo7kvdScAp+noP/+jL19LcpPSV/415437YO5N2DV3IejJ965DhDOe9D1CBXOfqj+NmkxB+g/zHIXcp66v+Ccdkg4xGfc9V3135jfP+o/Dg9JK8y+U8TEi+d/C78JD60rnLiQc8nd0NyXa6cfIPkBScfOPnCHxe+H6/VL9+R1ciT9w7a4fN44yDn773oP9+Nc61Pya9fRK7F4NjMD/gZm/tx46YdmPyNhvx7CXrVcu+of+XkveV9hLzboP4C+Cahm+/XC+I/5Et85t708x379ec3XXKuBM6A77vE/+feEB/J892KvaaxQ0d66QQOMn4eo8cR4OTyErzP/LMRvVfhgDWMk+mZP9BtkPcdyP81/ST+qT2+1+V9A/T+sI8Yar68Fr4L6OMT/BzOvpvpn/ORvLdxXu63833Fn07I+zHaPYi//skvRS/7/i3Y46FC/m/ya5P/+zD+8n3bRP1u+GuceCXtvtRup8Rv01/ijvIdm/OBm+CbmXtG/Z4Dzy1Dl52rG+en4G8G+yVv+Q7lUegdmfhkdOLXI9BfRL8jjNNy8+9z9HWM+lWZj8n3tP7xj/hFQ98L8Y/q8LyhX/e855B83+RRqC/GT60yPj7lF7/lO0//q9gt8dsVQk95S+N/D78vyzsI+G+VuAz+X8ynORhfYxLvh958/OUeLN+DuS87bsd/0w29mvhZqv5s9hkFzxf0PSDnaezRMPldyguSn2e+qG1c5Z7sJvQ64jd5JU/h572C//fNdzD9tINnjv5d/N6N3qvA93AJlF0O5nw/5/0/Vv+3nMNz/pH8MeXl/Of53NtkfjR/DAAfhu9N9TNz/5h3mdC5gvyD6XsIeC+4We75c7+Nbgd4En9YQf0B/KIXf6mE32/Qy/lxzpOTP/IDv03eeuKk7859vXLi2epZZ5N/WYy3Sxxe4rESv5Z4tV78L/Gjt6F7gPp90TtJ+Vf6zHsJhyYfAf5qxnfO9XLedyT889DfDF+jtKuK3y55LyDn+OBi+CfQb/Ifr879YOJe8Z+8o+QhJf8o8f/1c2/HDmO0S1zeoqzD+Eledt7tyntdp6E7RP9y7QYmTjHf3fivg27H5FGi31L/v4zXdolrtp//MOdHyRuGJ/eMuV+cjb/dlXfWvmviZMyHh+c9LP59PDmqat9JuTv+PtP/nsTn/Mf7R22tK2vZfQh6ie9J3NNN4L7m/9fhu0b//vpn3f9e/SGF97nyLtcU+He0Lu2S+a+8BFvh7zn6fB58Fqye+dO8Ucu42hGehzP/0vtu9Jf74OSx1TU+ZqK70vhIvNPu+uec5mT91ya/Kvml+uectVni8Ojt0cRBst94MO9bXYFe3rc6G/8/KC/Bf+Jw8v7LFeo/UP8X/Tal/7U5z8P3EOW839HM/PUwvTZVznl6lxIo+wSsYX8yGd3kd67mVx+in/zO9/jT+8nLZq/nyPuM/sPp7QDr4yP6T8ZvJf02DOQ3lfjdVuw/AMz54VHmryr0PAV/byvvwQ5bGocn0tNM+sv+vmO+Y/hz9vnLrMvN8dPP98HPeUcK/ycaN58qL9WulvnjW3L9BF+NxJfwv8QVFPc3W+pXE+ycdwDw/1XOZ/U/g14uY/+djN8LwPvps0buUfjDW/juyU+uAh/kD6+Rd33tBtLvVez+FrlW4W8l/jajhxuSF2E85f2kSjlPY7fkEZxbXoInZp8I5jzjFv1fJPdE9S+yUx/yX6/9IfDup13y5ZbyjwfQ78BPquv/pv7T0GmJr2qJzyX/a/yyPfmOzT5G/cX6rSq8L7VG/Rh2X4+dH1V/HPr91Ocdpry/9Ae6q8FnjbfEyeT9zuSXrKSHvN/Z2O/z8/1CPzPQT75O4sISTzlAeS38f4PrwJsz/vD9iHLtnAvn/AP+7A+K+ZmJS0k8SvH9u13546Kc+xT8dV3ih8pL8Gf+Nlu5mC+QfJ7crx/IPs3MD9foN1B98ptH5L6PHPvkOxC+mvSde9m8z7qJ+aElP2wC3gPf3ubLk9i3Hdgf/mHGWwf9bs/5Dn0lv3Q6uskvzXnG9uR7Rfuaxv3F6jOevvD7dOWMt/ZZX+Bvq5z44LvI8Zf2PbV7P/uZQv78Qdrle+d/ibtI/JZ248Of/i3jt+y/EP2p5JsGvgSuJe8M9tlQ+8RFtFVubjwnvu4K8v+a+zf2P1/998nj0f919dXIcZT6oxOfVcjvOlQ59kpe/GB6zPn9RsknIc8p4DX4z/3ODeaDKeaV57O+8r/M7z/8x/h5BV+V8NVGOd8JP+Z9NfydrV/2O3fpdwJ+Jut/ovJT7Lce/d3MHskfnMjvksc1CUz+1mHoHqp8BH3lvb0Lc3+a83J6TX7D5Xl/QPupeUcu+U/0lXV4KD1n/f3I77mXzj11zqkqZN9LL9PQn5nzYP6Ve/1y6/MuycfG3wZ53xO+DXK/mPh08p2I7kzlEdoX/fTXQvzpU+guL8SfFsdjxuk89rkaXznHvEi7nGMuML99jq876eeD5EOmPvcG5rt32Gc7fG+RfAp4xiTOvQT+eWcz72tuwy/up7/k8R5Innx/jmK3Vnk3I+sregfmvijnCvxvReLvyF8356C1/k3nRnINAPuBp5eX4G765T77LXzmfKSrdmfTa84p837qwuxH844SO/yW+Cr621q/I+Bbg14xf+tH9k8eV7PEg+ceBL5P9e+W8zv+/Rn73If+UO1n55ybXnqQZ0P8tFIuvl+X77Lcl/eDf7Ty1cZfHf3zvZ7v87yPkHcU8i5Cvo8/s14egF7eczycfMX4zvjHI9rtRP68j7OKnD3Rz/1t4mCK8S//Na5zn17FelMZrMNPjyf/Huaj3J9+nveJEv9oX7B53jHXP+/UtWaf+G/8Of6b99KO0n6c9SH56QfkvQByvZN4WuUJedfJPqUx+l/Rf+yduKLYPe9/DebXeySfTflv+t1N/z765bs28WF7m1/38H2yM30lfyfx1JOyH1PO+7/Xsvs0cj+X9znxUxXffbPP9Ptn8DWg34Xq825Om5xP0kviHVvy5z21++fdwKx77JH387/VP3nZ3+e91dyvFuJBEx+a/N7k9yefP/n9i/HXh75z/3cxmPu/CuR/Br0Xyksw8aNf8qu8k5W4uJzzZb7Mewq/5X0BeJJ/mLzDvEue/MP6sT86h2Q/oj750cXzm5yPHsfeyYtKfm7yo45Bd7XxM4n/rsv3bPLp0W0D3x/wt856gH7yLpMflLjBxJ+dkHhm4znvb9bhd53Nz6vh/4o9O4I14bmZHNskPhvsAU/2Y8lry3hIvlvytz/IviH7p+xj8H8W+fOO69jcx+Z9LnQfy/2k+jfRz/4g+4KB+M/+4Dz8Jf4x+6K9kj/LHsmPvKiw35uR/Mic3+JrHvq9Mr7YeVzeIaH/3sbjguRPoXMJPk8lX97tzTu+yd+tjp+2/Kcd2Bf9O8xHa/B1MHsnPmFPcjSGdwN8JL6jmF9bh33yvlVb8rVyPpV7y7yf8J3+DZPfln0e/j9kr639fg9+puv/bt4Dzbs02iV+4w/6602vx2b8aXdl3qc0TnNPl/u5U/jFIPPe8eTM+0HJX8257orC+e5r+N8558LoTte/jfrkXeS9qbwvlX35NHSL+/M/8J33/J6Apzb5t9e+FT5bgBPw0YjfjNRuB+P708QTK3+WuKbc77NvT/vlq8G8vz4859P4u7kMX/jbXv3j7Lc/+XqQN+eTyU/vw745V8j3163kuZ+dH6CHFeTfOfFQ5H2avh/P/SD8exXu95N/M8t4STzMfPY9LOMXHxVynpv3o9V3Us67BdclHxqf2Q9ln5R9Ud6nzP81eFy7cWDem9pBv5b8uwX4aPKY6D/3iy3wm/yUOfjbhp6as3t5zm/p9bTEPViP31c/LPnv8JyX9zBybpr7V3jzTk7FxCflfQt85b4s92PF/N7Xcp6Tczzz96Y5pwNf0K81vIkLTJxg4gPrked6/ttIeTV5872V7698j03NPFECZTeB+X8d+f8cI3POwz82NY6y/847Ivl/IOOSbwd/3kfMviXvfOZ9xIeM24fgmWh85n71v+5FJiX+Mvlv5SWY+LBK6huhl/cH8h5B3u+7MfFg+i/Dx+fkPRv/9eDN+VniaZMf91YhTy75cfWTj508GvrclvwPJL8/7ybk/9+o30D7oez/Fnkuo5/sZ+qiN5J/zFFuSb+55y7eb6/Bb/aTxfdXcz/c3DpytPGb++HTS6BsFPgS2CD+j7/ryktwPn4Sv/mc9lXV99b+Uv3znv7zhXf2855rXbCz/hXoZ2fyD+aPiT9OHH/ij+eqvxWe7ux8P/vXMH4W2bd04Ycb4X9n462rfcKF4Dr4uuXeHJ3EL5+Lft59zb3g3fSb/JGnc89DH/HvS9VflndMs1+ir7w/vwL/+b8QvxT27xnPOX+/JHmZ+NuJ3vOedvvk+5B/ec4/+PFteX+XPE/wt+SnJF8l+SlXwZ/3hf5OHBX5niqBsh7gLPST39Mt72knL4fdEh9/IvzRb4fEW5EncZD5fz+vJ14s+y/zauJWepIneSp5T2d7eh/m97yvU9m4SX5i8hK7kW8y/svwVYsced8v7yrOTn6Admv1z3d/L/bLeVDOAfIe417J71Of88DkbX7n94rw57wg8fzI5dnIst3Nd+fgd8esB+aLq5Wb2TdPKbxjkXjghb67Kvl9uPI7+Mq9eafEGSV/Nve0ifvG4O3aD1bePPkf/O9F/D6D/rDE4/DfgeAO6OV98Ta5/9C/UeIx8TsfzP/ryDsZuX+5C726GZ/Kb+W9ILCz+THvVeT7Pd/tuTfP9/uO9DuY/jIeM/6OwU/iDW/lJ80Zsgd+8p7yl9ol/ijve8aPVsKb9z2vxd9I+nko7+Gob0x/OZcYWTiv6JPvXfj30C/xGzXxlXGR93B/LC/BJ+HN/ngSfhvz7/zfodyXF9+Hy/9LyfslR+X9AvquaT6+jl8fSb6c0+bcN++WFM9/K+nf2LzXw3x8A3rJG0y89LXm55r42yjnaWD0uQv+8n7qHuSarNwocaT0Ww+dV8pL8Df9M/9+nfy0wvuGh6pPvmTOE6rgN+9/5/+ZJZ4v70/kfeq8o5n3M5NXs1z9S/p9r/6TxOcnv7AQl5T9yQHW2wusyxeC2ydeXHmznHcW3pdL/mXzvHusXJm8Z5gfmhoXQ/KOZOKzyTWIvg+jr345p2P/2ehehp/MZ9ebn4rr9MTc35C/Bn08m7wX9ku8S/aTD/OzQcqJG0688H3ajyTfUPWr8Jf/e3Wx/rXJ1yf2T5yp+tyL3J9zf/weh94z/xFf1V59a/zWpv9Wynuhl//Hkv/Pkv/XkvexuiU/Er78v5E1GT8lUEbtZe+CiYN4Gt15xl179igrL4Hk450K/mzdy31DW/Y+k946Jg8V/eMSzwLOJv8u/CLza+bVf9b55D8Zzx+Cu/O/O3M/iK+P824uuDF8PaxLS3K+SZ+3ozOm8P/BxhT+P1jiJTomHou/dEt+KH6Sf/2r8p74z/8XzfuAF8OT9wH/Jv/c8hK8L/uW7I8Z7hf2OkI5/z9jPvstAD8Ga5DvafLkHeTk5d6h/gH8Zf4fpvyDciv+vIi8u9PL1uhn/CXOvTr/zXjMe6712CPvvSa+elHeLzHvtYB3Y/WXkLsRvRfzSxMX9Z1+NdUnPmopv+tnH3tj8oP5b/F9uz3gyzt3ufc+LPen+E++S/PE++uXeO1K6ov/n7RJ/k9WzrnY5Www71PnfbTVeb8i7/wmj0f9VcZT8X3Kg9g3/58t73LknY7cr7zBXxsV/j/ubrmvZe+c7yQOOuc7vUqgrBq+8x2b79cz0F8fX1PVP5bzYHL1NVGdmjj/vFfD7tuCtcHyxG+xZ/6fzyPmp3XoP8m+W9JP8q3v5F8X65d709yn5n2L4rt+WT9Wwlc8X/6rcM6c/Xr28Z/BOxT9lfTdAp/fJ36n8P5j3nvM+4+PZP+b+P28u2f8Jg9zGPaJXZbPrcwTNf0wAL/Vwdg3+mxMz8X/n7Qc4p/RSx5z3lM5D/4pyqvzfgX5FvLvRWAtchyQ+y2/bwjego+Dc99InjngNWBL/nU/v7wHH2uVk981yPzyEfyj8HUa+uvIN1H7k+DJ+3+D2P+28hIcrLxb4iOsL5+bh3slfyL5YtqPRLeP+Wsv/WvlXbjc6+s/TnlWzn/RH588VvoerH/yPxJvuG++L/TLfV8c5RL6W1Z4Dyv//y35w4m/3FN98jXy//n6Jz6fn36dcZx4iuRr6H8s+slPyPqwqXZZJ7I+5L22c9QX3+9NfELiQhMnujX8DbIe0Pt7+D0wcWjoJe/3I3hyv3au8Zp8seSPLaO/9upX87vR+M3/6ToIvbn2BQcq/538l/z/pPIS7FAC//x/u5Hk2aGw//7nvQz9R/v9S78nP/z/AOm0kwl4nHXdefjWwxc38K+tVJKtPborhegXskRKCUlkD2ULP5ItpbJX1tBCi6WSJVuLvWRLCikpRJaQQtmlpMWS57qe+/V2Xd3P8/v+c665Z846Z+Yzc+bMfOdsXfZ//4ZXLMJbtyrCgY2K8NFti3CnKkU4fcsinLxzEf5ZqQgPgT+hThHeBP+EGkW4605FeHztInyvfhHuq/66ekX4T6EIJ8Ivv0kRdiqCstPQaYD/J+S/B/6Z2xThh+r7kmdCzSI8tWER3on+Keh2JdcW+L1Ovs+qF+Fy9ffjvxt+n7HLYzsWYQG/Jg2KsCH9ymm/pFYRHo7/mE2LcJfN8UevoXJf/NsVivA6fJ6G34peHfHpXbcIP6fnpvjVJPco7Z5SfrJ8Ef6E73f0boD+cdsX4QjtduEP37DvizsU4ZXatVEuI9cr9PsFbFmuCAcr96lWhFvS8/WqRbiWnr3AlezZZrsirE+/67U/EZ1d9NN26seT5yF+UrVQhOvVf6r+C/LfrrySHarErug+BP9p+HXZt7L6+9i/Pnnrkfde4+NM5T78pEIRlL0HLgQvwOdnevXnP53pW5X9h/L3O8Am6B6n/040XmfhexY7nIjeenp3BT+nz0R6zNYv76K7Kbs0Qr9ZzY35flTYmP9t+D0M3gou1O5c9n0Zn2PxXcK+f/PLPlsU4Trzza3adSbv1/RZzi6rwBH8505yDzOuRqq/FP8R6o/Uj13U30O/bdAfgu8I9QPUt6L/i+p/pP/j5B4PNqD/f/B7UPu2yoPpMxJ+Of03xXjZQnkC+9yH3mjwcuN6A/n2Y9eF5B9DzqPVL+RPX/Kzitq/x3+70i/9kn5K/+zNr2eQ/3Xy/w5/GvseUijCquS7DP5z+mcJur+Q62T6f0O+9uRrpzyWPA/Q5xD8d1Wejs7p/GURPtPJt8dOG8v7YeYN8t5B/pbkWoveT+Dz5PtU/bPor2Kvxtrdady1w2+mfrqA/k+bD28i91PKzdFvY96tb3zOMmE8Sd9a7NISrKs/jkO/Hr/p4rs2DVxI77/IvW+hCEfS/xT81ymvIP/J8Gbifwn930Qn88FE7VvSqwt5erDzb+gfoP5y/fkEfn+w3yn07WgeOAbcgP5y65Vl4CbmwWXxC3apyg7XKn+ScU7+V5XrwptB3sv4z8VgD/Av/rGqchEOIM8l6DRWfwd9rqXfTez0A/t14Q/nKw+g3+7sMwR+P3a/WbvF6ueSfwdyT2T/a/Gv5ve9CvC0v1Z5GH94FP2nlevQJ+uOh9njEeWsP85g76y/JmU86b8d2f1mdMeCmV/bkacx/NvgN8PvZPN1BePgWHBLdow/XsMu8dM3yDdZfy3w+5naP4P/F+x7OHt1Ud9KfTd8PlX/kvGZ9dsP+vtk/HegRyPyH0y/+/TDE+prq7+ZfM+y44784Xv8LibfNuSqgU8H+K/r783z3Ud/U/KdBa9QKMK15H0G/hD987BxtkL5L/VZt73zP9ZvL5qX5uN/v/XTCey9lt8vQK90/fsB+3Qk1wmxP3m38r1rwT47sc/V6H5J7o+UW6nP/LK//nuWXWbgczw7XmY9eyl+n6qvDL+u8oXqu8Lrrb57EZRN0Q/b8+9PtW/mu/8HezwA3qz+QPTP9vtH/OEt/reA/FdqVw//2fjXZ+/T9cPvynXp+yD7fpR5G72p8N80f33Bbq3YeTftTve9Pc68OVf5Fv39tnl3AvlWld9Yn+vw765/zof3Q6EIH+Xfj6p/Tn0z/j+kCMreJc/Nyg3ZZ3f6TqR/U/INhZ/1VtZf25hfs/66mn+9y6/fAzeD34hePfH/Bt7z+B9G/pZ+H0H+Nvz9NvaYzM9OxT/rnmX85lD98bN+26BcWbvVGSf4ZJ10GPxmfv+Z3bP/vow//gMOBdeRsy38SvRtqx8OQP988r/Hjk3U76n+dvVj4M9U/xv9X8GvzHzRTf2W5It/9IL/pvqu6u/SH/eC1+qPX7M+0j7j+370sj95Ub9/za+/Ac8gfwfzR8G66SjlT9i9kd+b+/1g5dPQr6pdlUIR7kq+pvTZV3/vDTYD832qD/83+Gv5UwX6JH4whD2zz8j+Ygvj72zzRkfrzc3Qexu/CfxirvJk9KZkfCtXIc/xymPp3Zz/3qd8FX/7gZztlNeQ70zyVSD/pfrpa3K0in/on/OMw/+CP6HziP5cjM56/nQS/Y7hv6OUjyD/DvjvCn8EOfdQ/6D+mcEeT/DvjuaRT8k70Lw5lX5HgNeQvxm/vIEeA8De5Blvfm3Db7Zlvyn87wZ2HQjeCA5mp/3YoUDeh9hhHvzd1P+W/Qb95tP/EXg9yNuYXFkfPMU+x2f/zp5/s9cR/ONh8nztO/AVfqXxjHO064BPmd8Hsmd/9nmKXPPwb4DvQdp3Q+f3rB/BD7LuUF8PvZbs1gpswQ7Z/26p/WnkyDy+k/r56rfB/57CxvJdz+5V+EM5dLrxl+Vgk8SP8G+LzuP0rQh/m4xf43YzcHPwWHjPs8v+GVfs/kfif+abGdr3124tfr8p7wSvovb7Kx/NLyfy4yHG3xL0PsT/HPa6F7166D/MvyfD34P9y7TfhZ0eR69RSXyyBfpb+H00+wxJPJjd99Y/9+B7G/kn65+v2Xu4dt3YZ6j5cQg4jFyd4S+Bdw/+6/OdJW/imolnJt45hXyXmTem8sMpYHf0l8E/D3wf/mJ2LI0rH0XfxuQfSJ6H8etD/mX53rPX2dq/xj7nlHwf8j3I92E+/NX6baV91l/KndijJnnOIl8vdDrB39l81hDcmv6dtW+M3q5gzhlmo/+w8j7o9k68nv2uUX8GO+2Jz73850LzUXvyPGW+Gk7/v4ynV/Afp5z9xfv43ULeI+m7BfwuyuPx/5sftMj+0veoG7sfo1079c/rv231XyV8Omk/XP+tUb8m9fSZBr8eug2zv2a/k+if7+MJ9M/3cQV5N6HnLL/PIt/X/KG/cX8qufqwf/YPF5GvOTrvqF9MrnMS59Busfpp2s9Dt5V2Pypfl/0tOuXp1ZF8q4yb2ehcZPwcrP9X8odL2OVX5XPUv8U+V6s/n33GkDPr66yrsy7P+npn8l1Brg3kGEe+5ehmH7MC3Tfh/xp8/XoxPU/RLvG9tmBrMPG99uSdAzanz1j87/c9/BP8FTyDnOv0b0t8DzFfXVkowvp+Pwy/fvSclfMR+iWuPAb+MYnfwr9HubT/qumvRbGn9mPUP6Z/m2vXIvt69N71+1ZgfXLXQq+6+aaN3xvR+0H0z+O/h6nvhv+J6B9kfmlkfmilPD3rBePilewHfd+Gw6/N3hPMA5/hPxn++9nPw5/Dnm9l/tDf4/jdefz3Fvr14j/P0GOU8fwRPvdmvcg+w/V34ozbss/vvtNX6r+xia/Sdz67z2efdfxhnv1SWaEI+tJrDf3rwHs/8STyPUe/bbNv5u+70eNp9mhPv7HoTtT+Lvxb0aetdXobcAT8X4yHnmDmv8yH74DV8H+LvH9l/a3/TlbfYbMi3Av97RIvKRThNeyR/efe5NsLrEy+SeqH4X+e/rqTnv2zfvJ9npvzOXJMh78V/ocnbgnvWfKfhl8renVRfpb91umP2omHaDdNf32g/Sd+/1D5IPzb5nxe/T/0uAp+zs9zbn6Hcs7P90k8G9wT7Jl9IPmyLqzN/+rAf1N5Dn23YJ8V+I+GX077D7R/MPFG8n6i3RfscMr/6J/H4KeftilZ92cf0ED71tlfKg9L3Bz9X80rDcj9i/I68nWF/0fOybJPLhRhd/W7Ko/DZyt6rM3+Le3Z4dTET9BtB+9q7W5R34P//QheCmZ++dR4WmieWqU8Wn/M1p+t2e3PrPPU30W+gei9l/gG/ZO3kP7flp1vUj9M+RzwLHS7gq8bNwvgTyd/bfXnwnsjeSn47Uf/mdkf5byFXfN9Gu771Mn8egA4ulCEzc0fI/j/x+BX/OAX+j+BzxJy3p54l/n+HvNK1gH7ob8+52Fg/CX+sTX9cu78kPni3OzviqDst+zDlFcrx9/L85v4fUX6T/P9mp5zCv3bkfzd8a9KvsXZh+X8w/dzH3QX+P40Il8d+hyiPJA8neAfxW5VEq+xT2mr3A/+SeT4Bp/MF7v7fUD2vYWN+Q2l98XorTZPZHwOovftYC/9NC3xUnoPJ2fmycyP+6ufiM/Z7JN4wNW+y++DV4E3mi8yXm6Dtyf4Z+J1sTv+c+i/g/o30Mn5Vs67cr7VVvuc//ai/2nq5+XcMedn8NdovyW7/GMdUaZ8PTmHGD9Z3xybeDr/msKeLfnFU+AU8k5XLmdc3KTcFr3EWw+g51H4X0j/Z9Ufyv4TEr9B/1p2yzy5FbyTyNeS/JOso0bm/IZ93oWXuNcC9NcrH2Y9kXhV8r1GJ84N/wNyDMg5asav/hheKMKMr9eVy1v/lQOrwr+EHgcmHgV+R5+/2KWZfkv873XzeeJ/pfvDY3KOwX6DlG8HB5F7EPvdl/Nkev9XuSf9q/v9Rr/fYjwvped96luxY2NwNPmO5g/rCkV4rPJz9F9K333RSZ5HS+2/VV+bfer5vi3hL33yvVd+MXke9L8p9OH1RKdW8lGSB5d9OPyf8V+NfvK7foT3e/Y/5tsj9FM142DXnM8p9wTn8P+H2P8d/boA/fns+z4+15P/S3ADmDyah/TrKPxHg/Pg76XdS+i35f/X4b8Nv7mMvcrIfbf65OctwvdD5eTnTaP/BHrlfCv5lRXQn18owt+0rwJ/Frwjyf278mRyJG8j+Rqjzb+v8uMe9L8q41L9au2TN7IH/g+x79702xH9g/h7+eQrKPdG7+7ISa5/yF/d964F+t/Rd/v4v/FwBf9epd1c+NdmP5m8RHbI+Ugdfns7+ye/Lflu1xZB2QngCrBW4qX8er32D9DvMPbrY37vof3d6quz39b8fwL8D9irKvnG8etX+NnLWadrVx3+fzNfJc5F/wfU5zz3HP21Gv2V6g/mz3uoP1D7x81/NQpFuDTnrfTLOKxOv5n0y/puDnmmwX9WfdOcX5bEtcup707+htkfgQv4V434k3J1+99xvlPVE7c2nm4AR/m9Lrn7038dOsl/GEueTuTZhZxdjYdh+J+I3xn89xK/r6Ffzge+TvxV+ZHkD5E75xv9+OMr6k9PPnby8JS/KBThHL8/krwCdjo6+3O/v0r+1b5v59LvD+NhHXg3+Q5Vvxl6c9H5MOv5nGeRZyb/a5o8hazv4CVvJHkkyR85kn3v509r9MfKyI/fufCuRHc8/8j+arfEX/XfFPgPmD8K9kVj+PNB5Ml6pWnGMzu1J0/ymZLftHf8Ef8F5p0L8CvAu1n5Sfpvp/+/zDpbu+QHzSvJj0++0Frj/56MW+0eIk/OE0aU3F/I+UIb819V+INK1inJ+55SKMLS/O+vk/ceO+jfuuRbxe6J93bAt0b0p/el7N4TTH7n2iIo6wEOBqeSdx/0TsD/++QJwh9Nvg/xuVJ/35x4DnkbkHe1/tpZeSb/OTnnW8kHRP8j9LP//7Rk//+P/rqR38zyfWoI/1b2nqdfdiDnztpn/XYrfZ/XX2vQv814nOn3W5V3gJ/xeDQ/y3jN+Gzp+7OQHdaT93P0a/p+fgUv58st+elOfn+yUIR3gFuV5K8O9PtScr2ovin9ppH/ZfAY8mV9mPzfrBOzPvyYf13IPslbuoR85dn7M/Nw3eR76N9P6FMNv73BLeA/oX1//fIAeTfgsxLdDuy+2Dz/Y/L96DMI/tiS/JCcB+R8oF7uq+R8M/0ev845hf75njzPJx+CP/VEr1y+r/Tphn7y139F7wp2PNo4mgpupX4eOTtod2XO19lnkfpXyTMY/pXsuwzsyJ9y7l7P/HKY8XML+XeH/xG77q8fm2s3jb4v4X+y+hvYt27i5zU3bt8G3z8SjzefZd9dYOfsv6v4/vbOuanyzeg8anxNNW6S31wN/17mi0r0bwbuwY6tyTeDvgcmP0x5BPq5N9Ubn5PIf0ER/Hs/pgp+uR/T0bz/nfkl+QzJX+iP/lm5/8FOu+d+Ar/NfqI0f26t8kj1yQftnPmfvO9p9zfYGr+jzD970jfnoXfD34K8e/CTzZWvV98Gv1fQHU+flfS7vgjKqrPLr8q7m+9K76UkPvhp4nP4VUj83fhOflsd7W/JuCHP5OR/0X8u/Ne1f834Xcmvbsi9Od+nfdDfWvvENRJHTPzwAnQn4n89fpP0x3vJG1LeIfmy+Ff2+17oJT74hfIk9sz8uAqfb0LPeO3n96rKnyRfk7y/ssfbYM4Zxub8IOeJhSLsiH/ynXPO2kz719B/owjKjgFHgvnu7Gm++EK/7KWc/V179j7fPHKE8sf419J+Ysn+Ov7fgjz30acpvgfmfpb219Mr+XY7xb/ZLfHYnOfE/uP4x+Hwa+WcPOtb+FvmPD3nqjm/zPkeuvlu9lP/lXnza7A3/Q+jX0f9+bN5/U3lFfzoS/QPwve7xEXJ910RlJ2m/ZnK49TXzL0m9qtPnx+SP8p/d8v9An4wWrkj+zRE70Xz87vw55hvR4Hf5jyzUISv5v4XPhWzr8/5UMl58hr8sz4/SP0b6NUryf+qo30t7ZIn8DH6p/n9MHjZT56a/bp++R1e4iuXJn+E/eNf8bf4V/I2k6+5Sc51kv9cBP/mjSdukfzx0+DvYx5cY72T/e7Z1utXm8dz/ptz4fXwX9HudnAG/NFgvs930udu88SxJfd3sg7K/cVOsb/fl2u3gv1L87XGwUv8qwk5j1I+Hr0b2KeS7+Yz+uNP/dE9/sUeP/PDfMfy/ZpifdHZ+Oul/Bn83G/IfYbcb1iX83fyJH80eV+53/sDf57L7/eyvnrC74sSv8m5Gn0XJL8N/cW5/0ieNxOPzPyddaT2s7LPRu8I7fL9WEu/S/Vfzo/m4HuT8vHwck81+5Dck63NvnXA3OP5nv4L0X+cXcaX5NcsZ4cp/Pd55ZH69TL4L5H7QnbIefkQ9XXI+22+5+hfoJx7+f8h//Pat8t3BfzF9yTr6WfZM3mwOQdNvG0qv/pJ/yYe9DD6RypflO+n9vsknzZ5yckXzb1A9vqQ/ZPflHynxAe3ZPfp5v3yyi+g01O5he/GQWB19JZYjy/O/o4dch8p+eiJvyYem+/zKPZ/jrxnZ9+u/hr2S3wx8cbEF4ewxybodGOvfC9+z32PrIuULyH/fxLXAo9MvCv3cDP+1Tdn51ro5/524la5H9w69xfMJ2vNUzVK4sGl/hO/WQFmvkz+3X36JflbiW+eAE7Tj9smzyP3g8A51tn90En87BF2acouV8BPXGUBOBX95ZlX890jX/LX2sCfZDzMzz3ukncWpsIfjV7DnAPSL/miTXLviLzJH/1OuQ38Q9m9W+yfuB640nh+Gf1n2Pd94+IJfK5M/h/5xqkvzQfKvc3c18x91VuVH2XX1eAVYPIT7877HeDhvp87q782cWlyZF1zNf/cnH++B36R70Di5znvRi/3aBJfHJj4Cju/Df8F9Teiuym/OcT65Dzjc73xdik4hX6Tc55En87m51P1Uw92zn300rjWxehfbr7IOdrpiVMn/5PdJpiXHvZ9TXxkMvznwOQtVYB/br4PyV9K/hn8n/D9itw/Kue+/476ZazyZ/zkJfR/Uf4r748YR3Myf/lOTSJfn+yv9e/F6A8ulGFYBNH/VXhL2O9c/fdi5nv9ezX+Nej3Kv1eYP/cI8s7F7k/dn++F+o/0/4o9G9V3kT5Be3Gw1+W/LLEYelxZPIRSvZd2Ydl/3UL/DFZJ2W/VXK/LPfKSu8/n+735AmW5gdOQvd5cvej7wPqsx7J+vzQvG9Aj5na30qe7IOy/+mQeFbmF/N/8o+z7uuK/yH0zfcv+U+1EtdSTh7qfokrgc+pvzP+W7KemOd7OUz9edrnPGwGuTZNfn4RlBleZZWS58Xfcl57Jv45z835bfI3SvOjVtBvrO/JQuPiEeXW+J9p3lkMDvAdSzxoJH9ZqV/z/sFeGcfmi9fAVeD79DyaXF8q57wq8a2X6Ztzp07qv038gz6Xqz/feFiZfUjOK+FV1h+/J18z97rNAx8mv1b7n+mbPL2flJOfl/t8byVPNu+50L8B++Re2Sn8cGnyA/nDVYUiHKT+o+Qf0Sfz8tSsR9Rn3XNAxmXeKyJfWdZjYFf8KqnvDj/2ODnvRiR+pr8KHLA1PZJ/2CXv0cDP+zWn6L+q/OZM34lD2C/rq0NK3sO4m3xL4e9g/Obdg7yDkPv7fX0fH/ZdyHrrQ+3G8Z9LwQ3gQey6j/5Jnsab4Hj6P5D7e9r/aDz1TDyqUIS7ZvxrP4F8fybfDN5lmacT7y2Cst7ghMR96L+n8fx74mzs8Ch+N9An9ss7I7HfE+x/CbtsDzbKeyq5P6Zfc86W87VnjeuZ7Pta7smSP/GZ+ckHKhRh4jVXsMct2iUuX1n/D8DvBrA/eFHWt/CPQ28Q/MvZN+d4bRIXM47fSHyAPTazby9Hn6/8fgf7JQ/s1uTpJz8avxvpm/PXfur/ybs48FbmfRPyfA7/P+pv50fb5nw7+3r1rejzKT85Me8FsddPyb+En/tCuT+Ue/q5P/QE/VbRrwU4GF7uBef9vP3Qyf3g5Aslfyj5RMmPaZ77zgVQP++pfjt+mbzv5IEn/7ue8b8BbGH898h9Nb/Phv+A+prwK/u9NL/lBHqU3mdJHui3Wb+XxDsSB9kX/TuNv+S9Xqac/Nc2xsMLvhvH86+p6i8pgrLJ4Kb6oxx61ZKnmHw59ns78TH8Vvkur8k9eP2R868Z+n2R8t/Kw/V3Rf5/FznzLt4j9gdVcj9d/df4b8Bn3+yz2PM64yH5QMkPSr5Q9rEXaz8g96rNr92yf899QvWJByT/bZHxnPjd4eyW+F3u82TctC+57zMC/976qS+Y+5ab8fstwb9zHx79bfhfOXwSf+xN/vbkHZR4bcl7FmfQb3GhCBvnfQ72rYFuzm8e1L5P8vfM9zkHKj3/mZ/1VPIic586+cnaVwLfNb/m/cS17JH8+5+Vk39/qvnph3yv894d/VZYF5yK/mzjJ/lQrfhv8htfLRRh7j80R/cVvw/Hrw75GqNXAX7uVW3N/jv7nj1jHt7C/PCZ/him/xvjM1S5Gvrz+f//ymPO+wPb8oMdwRX025U8T2e+Zvd7yZv7u2O1342eHyQ+kPfbsl6OndWP1x+1zSsvqc/7py/l/gZ4N7ia/jnPy/ugeeco59v10a0F5p3VC+Cfj153sDR/6wJ0k0d1Q96HoE9f5Tf4zTuFIsz98afZd192Tf7xH2DOjZ6DnzzonB8t0f+VwKx37sQn3+N/76knP5N8V+S9Vnr1Va5dct8h7zPle5D3mdK/uZd9E7vlfnYT8uS+bXv1Z7F/4svvsUPiy4k3Pwr/j+Q75v4/ecaAB6P/Nj2zvv+P8b5v9sHG6zJ6lbP+S/7dQvPtBvJ9m+9h3n9inyMSr0/+deIO/LU+/t/7zjwJ7u07lH1V8ip3osc7vl8H5p3D3B9jj6yDjkX/S/Kfof4r8l6S+S33T8E9yX+X9p/Q903wY7BK8pyKoKxH3s9Srod/a/11tn6cCb6VuIVy+qm0f/6rX84xvoaZf17A/17tr6DPpvr5bP0zgh1rsG/2KyfiV1N98qk7Z72K/5bsl/ctLiPHHYmn+V5/m3cswQr8p7z++RO/45RvyfkWv0kcqQ26r9DnDfZ+vaQfvkC/HbyH8l5UyftQH/GX39jpROUnyPO/3rWZk/O9rNf9nvchcz45ynh53ne1Yt55o1/243nPs0LijTnn5e+5X3hV9hns8Kj55Az1i5UTf01+YPICry+5v5P4W94fzDtPib89zB7VzE/jyflXoQizXu1mnXFiyfo153PltM/5XM7r9jKu8s5c6ftyr+jHs9nlRr/vo/9yHpz7TDXyDgn+a/L+Jbxq+LTP/bLkv/LvHvzk3/hnST5a3utckPwH+E3J8X3eRWHfnsb30zl3Vf486+PcS9FvY0rub6xgz2W+L7kn/XfyX8jTzzxQ2fhLnnLiN+3Aa/Ffl3zykvP3nMfn/H2R9jeB1dAZrL4/vR+Dfx39d8g9Knyyfz2dP2R9e2/excq9Ie1OyP6RPIl/JR6W+Nc5NTduH/y25HsN/V3QT3ww9/3fhp93uLbSrjJ4QMn8mfk077+Nwi/nBzlPOCD7MePtIHrk3ckKuQdmPm2Wd0HAcuyW/NK8U1Ca/3kw/doXijD7/ezvS+/nHGYeS9z3QvLenngsfsvQ3xv9vL+V97jy/lZV/Xk/u44lx3/ZY6jxNhe9wcqJwy0wv2QfWhqffKzWxviJ11an363Gz3bGycCKG7d7ruReUWt2/xv9G4yrvDv2O355j+zgknV31mvT4b9uvfJ+8maUcz8j73N9jE7u3R2H/t/47US/QuZX9v0VvZV510r/XYHeu/hW8PuWJfm5DfTnVXkHLHFJcG4RlH0OXgUm/7Ndzk/J2QJeX3BD4iNgFX5+Gz3ewjfv+OSd6145fyLfzuwyUTn3H2+Gl3hWvQL85Hfpj2X4ZX/5Vc7H+P2L4FPk7Ke/S98v7Qn/TvbL/dic6+Scp2bup/n9Ufi5P5j7hLm3sVJ/zeSnuV9amX7bRf/kiyZfjj83zX3qvHejPuvflxM3Ryf78z3Ik/e9s+76Wbvq7HF68ouzv1Of+7UHa9eav+V+7d95t1r7DcoNkt/PHzJvH1oyfy81HxwI7sZ/D6Xf89aXLylvknUS+y0lT+28g2ucnIz+kXkfj955B249+RL3Pl37vdPv6A/2vbvO9+9rMPlseW+xBTm72h8kn+857Xc3D80uOV/fjV3/pH/9vKMMf5D65Pmfl/wG8h3P3lPZtat1QN53Kz3fPyj5VuTYJf/fgX0uUm6S8ceeyae5RTnxxfrWt4nrlcb7mvPvDugvIn9n+l9o/OTdtOTTZZztab4eov4a8ud+VsXEE5IXwN/iXxXR75XzVu3yvsal7N4DTD5k8h87Zb+HzxD1+e7nvufm6OU+aOLbjfXbOL/nXD/5F00K6nO+q12XxL+NvwfBH7MeUJ/z7gvwX557X8rtjf/SPNTx2m2feCE69xovHZKfrL87gY35V+5vlPH/t9H9Tn1V/tPH7wPZa2jeu0h+GD+cDv5Qch8x5zUn8J8uft8R/5r6rQZYC7wq+XMl+b+ZB5L/W6Z/F7Pv57Gz9tmvvJA8OPIkv7C+8fdy7sPkPcSS/Xn25Zfn/A5cmvMkcHHmkbyPlXuO5H2DPg/RL/fen7Ju7Arm/0osI3/i1RvoVUn/5H5mzsf/0D73M6cVwb/vWVKv7Aj6JZ//GzD5/rk/tkfWB4nv5j1mes0yP75mfhpJ7u+M/4/p+xPGk+CVka+59e1+4E/GafLoTzQvtgUT70t8bwz7PUa/vCsxhH3z/tpd2n+QPLbsz/hDR3Kfhs7l6nuaH3uBV5JjMPvMMp/9DB6TeDe/PInd3lEufc/sJPxzP6U0n6Vz3j9lz93JuS/5cu6dfMLS8+85uZeR+EnJ+wj92HuQ8fGMdiNSbzyPUr8zvtX131p6vwzm//p8nnsG+C3KfaeS+zn9c99W+7wXkfchDjCunmL/WeaHl5MPwT65X/2Ccu7p1mafSvT8Q/8tp99P+J+RfGf9k/k778r3y/419+PVl8v+Db9qGXfqjzY+HjQ+3laugl4P/vmacvIYk7+Y971eTp6FdnnfawB6eZcr56U5H52hX44qiUPlPdw/tZ+e94nQS3518h5+zv+XYt+8f9c197fUX65/X2CPmebXvFM+Qznvk+fcMPvG5Llk/1jZfFoF3BpMfvWp7JPz5Zw3L839AX6zgd/MV96JHU7l3znHzH427z+/ajxtC4433yxR/5z29+YeInt1znk5+68lXznl/P+RgezxK7kuhpfzx5789RF+PA58ln55dyrrzdxzWpb3L8iV/7Oyqd8Hg4+Yr+bkHjT/z337fXK/ib65b5N7NlnP593Auvoz7wfOZ6+R+n97/jVR/87Gf27intZ/ed+iAf8cBS//jyz/L+9B8uZd0ZwT5nww5/Nz886pcuLJmXd7sV/m47vQ2dH8U9c83pAeuefTAt3uyQPOuyrkn6N93+Tz8bOcDy7N/73J+RC9Pk5+Ebsso1937e6g3yz27cY/dwH7Jj6ZdyHzvg46x5Er//8g/w8j/x/jV3zy/5sq5Twu53jov8R/XwCfRWdgzhf11+N550V5Ev6n4J9zub3Y/yt05vGHOuy8BMz/m8h7BkOSf1SSX3pH3udn18X5/pP/ZOMi4zXvJ+c95UXws378f+6nGJ95n+s2dsv7M8dZPw0Bjy05jz6XvEeD39K7beLj7DEb3d/460XJPyjDH8z7DbkvG/nL4N1ef2P592H/+GlZ4vrqH4NfM++pkS/vw0w3/s4jf+55Hp3zSvh5PzTr7FE5v9a/Q/llT+Xk903Svx/7zhxqHHZQn3k7+SaZz/P96M0vk5f8Wfax5FiavCMw94zy/dsf3+XwD1DeNXEw/d/JOG2nfgA6U7IvUy6fvAzy78tOya9IvsWY5MeU5Ic2I2feF1/OvsfT5zbj6DbyN8l7uugfrr69+snwj0L/afbM/cgNytl/XZb4mf67il0W5t0V/D4kf4F9ds84SX4BOvn/bQewZ95HbFdyfyH3Fgbrz/z/uj3M503ApmDe4xukXPr/pW40jzQ2Xz4GnmOe7IP+POX91a/Ne2F5P05/5d3qp0rud21O7twb3V77ofS8O+dz9K+onHV2I+NrRO51KSfeMJt/fAGvN//IewPT6dsP3M06MN+xHRPfzLyl/AP5tzfetuPfi9itC/7J68p53zP0rJX85JL3c5K3Oin3p/Tnufwj/0dmM/T68I/2eZcWnbvYJ/Pil5lP8v8q0D8F/S7gSPp8AO995QHgHfn/BOoHotc5eSk5T8z9Zeu2u8GR4AjyjuEv3fO+n/qpyfNBL34RP4l/zDdvXquc/6PXiH23S/4+O5fm8w41n+b9xpyr532lYfzqc9+vJ9HL+zP/vlvFHufknov63fP+IPvuD+Zd08STKuLXMe8hJf+FvfPe97bkzvsK+f/Ki9jtKvLn//t1SzwKXu7p535+Lf6ed7a/yf10+uT/BxypP5Nn9JVy9pN5x+uDGhvrXznrH3p9TN/bs99Wzjv7eW837+vnvZ28I5D3GRvmvrX56yN432Q/Sr7ky/3Nn2bAT/7cUPj5vyrj+cPj5Dsj/zcOv9xffka5wP7J28j6J+839NUveV8x98RyP2oz8p2ee5Ng7jfkfeKXCkWY94nz/l3yiZNfvAx8Bv2sL5bCa5p7XvTP/Le+ZB7M/Jf7i7mv+F3yQpNf6nveGDyWHfL+fP+S8+A/yfMmOXP+Mws8if1z/nOPeftz8JCcZ+Gf9w0X5pw960D4d5jv+5T8H638/6wd+Gd9cldVzv257N+zby/NX1nOb3P/t6py7kfkfYK8+5Z3CfI+ffT+s8H/X/832O/pfJeT54LeCvPL1vTro1w+41X7nAfvqh9yvpD9RfKSkqf0Ev0f8705Kv8fxzhLXtumef+Y/mOTz4Lfg/itM7838X1Ovt2DOUfVb4nDJf42J/nNYAf2OQ+/Rokrkzv5wznfPpBdPuYHm4B5d2o2/v+Qty8/e4T996Vv/r/vXsq5R7iaPr8lf0c57ycmPpzz6sSJEx9O/K0WWAdM/O3/ACz6o5t4nHXdd/jX0/8/8HeRSKWIyuqdyt5FpGUUym4oFSI0RdJHewhZpUE2ZVUqMjMyEkoUMjKyyU4IHz74Xdfvdbt/rsvz+n7e/zyu8zrnPPY5zzMe5/HesHHZ///rV6UEf1a+ql4Jvrp1CbbbpgTHKPffsQQP3LwEP65cgh+Bz+9cgifVLsEtG5RgzR1KsGejEjy9vASvVL9O+7cblmDXrUrwnFolOHO7Elyu/dN1SvDkbUtwd+Vh6P8M/wbwSPRvh7+OfjfWL8ET1N+6UwnOrluCr2yPL3hWof8XeVttUYKtwTH6f0+e+/Qbhv9m+legz2XkrEXOS/EztWoJToHvOPydgv9t0f+OPRprdwn5B5KvL3y3kedi+t+0YgkOqFCCr4LP4Hcfdh8EdsHv/eTqA97PX6bjY4HyC/yjHf96CP+z8d9JuzPxdwb7dSfHL/gbC74IdiNXU/zMAXfG53b4b4a/r+DrgM5Y+lkAzyLtl7HzPuoX6d9Iuw74O4kd/02+e42bUWA98vXdrAR7g1fXKMGF6HTA7y3gZeS4Br+N0Fun/UR2+wZ/N9BHW/60hHwt0T8P/8/oX4u+e6rfOfKTpy1/GlpeglX441ba7Yufj9V/smkJbmD3T5Xb4G8d/13J/mu0W4vPQ9VvSS97GgfjyDmEv56Cvw/1ew/+Hvz1ZfA58l6m/1Ttr6fP99U/Qf6Mvz0L43A0PutoP5Lf/gDPEPT7bVmC58C3Cf1epfwWuRv5fa32j5aX4O+Zj5S/Je8M5Qbsexj5zyLnQ/jrUgJlC8FbwJ7aH8ped9DDXL8/iP9T4VtAztrofcKfzvb7dfhpA46ihwbw/UaOe+AbR/5m5Nlbvx3oYZn6Iez/EfgePJerf1z/pfhvyq79we3Z7Up2+wuciM67m5Tg6+bl18Ct9T9Z+zXVSrBW/It8x1YqwZrs+FH1EjwXf+PotyP5+pJ/Bfybs/dd9PS7+eIL+h+g/wr0LtDuV/XH0X9N9fWN4w3on6zcl73q84vR6N9Nvo7G8d709TB+x9HHN/TUhbynqp+Jvzvp80D0XkG/hflimPZl+k/F/8PRFzr7o3O8+pHaz4BnJjiLHdrQ3yrz6mqwF/kmad/B/NQSHw/p/7b6hebfJ8Gt8P+y8mb0fgY7D4LnTfx+hI/XlVvT93n02pue1ynfq/5a/vAevc0pjN+lxttN9LvxRiX4Pv4PZq/evg/LlS+D7zh832PcNGavpvzlLP2ms0ND/daR/xp87Ifeqfr/Tb8N8LUdebbTbpH6mfDWJf9s8m9dXoL9zet9wL7g5pmPfC9O4R/ngTPxdZ36Q/E7kT2XoH8+/2nELx6gz6r02BR/HbU7lzyX0s+P5p2HwQPQy/rrPr8/xP4fKrcn32+F9effxuti+M9U3on+2pLrZOX+8Hbih0Pp52fynQfvpeiNZb9t9a9G7tb8dgr5WtBXbfRPCb/qTzf+TjG/doXvTPVD9K9uXnw04wh8U/uJ5L8cv1lnfAD/JP43CjyPHZ6lh+focw3/fYc8b6DfJPMf/svQ3Vx9P/TH01MT7cbRf2/jYxx75nvWEb+X09uW/O47fKyHv7v+V+D3Vfo6Sn1jdjsA/ibKo/B5JHnbgKPptxn9dK5ZgpPY/WZ8nKj+C3L0Qa8PeT9VrkJf55J7R/PTav1/NR5X8+uuyu/iI/uD39CpyX630M/n5KnPD3YC12j/N37eoZ/W9Lcb/uaRK+vL9vxngfpN/f6Vfs3gOx6+H3wvp5BzmnaT0b/PfNiPfy0Aj1Z/J/la6fcYujPopwV/mEfeJ9nxEfVv4S/fwXz3blN/h/pR9PkO/5jN/k9FHvSPyTyf9Rd9boHf1/F7NDrXsuc0cJT54qryEqyEfht2uxH9mehvoXyD+jOzjlD/AHqH+/16/E5XfyL9NM53n34e0v5d9burPxW+D/C3xPfuIrCS+XlCvoe+Gyvx+Uz8k/wdtdsBvbHwv8leH2ddjN6l+G+r/mv9d8T3juqXZX9Hr2fy0zn8ba/oDyzTfh/8vqi81Hidit9Byruhfwx/Pzb7Kviv1n8j43Jj8B3zYVv+8hC9fEXuw5SPIe8O9Hkr/Z6Z9Se5XyJX1heT8deCXHPorwN6V9NP4+wP9dsFbIn+5exxOn/8Eaxu3J5K/jvij4V15C7kP6b2P+l+on8r9H8z7vfG9x7gIO0amr+r4mc/el5BvufhvZScb8L7Bv62pNcl2r9XXoK11B+oflu/z0X3I3gWmX9amXc+R+cL/TuRbzn9dmaXveEZ6rswHBwGfkeez/TLemUO/zic/p7Legi8mhx7oB//zvlQ/DvnQ3P5y4Xgw/htwU7X8/ecA7xZOA8YAv+F4GDwZOPtI3yvzPkef7iA/vaFp0L0gq8XwOyHq+n/GTnW5Pww54XlJXggfdWKHjK/8pvdlc9VfwC9fa7f3sqb4ntX43Kw+l3421X6L/J9nE5fDYyD7C+q4vdv5fnkPZZ8Z7JnZfRuJ1cV9deS71h+NZ0+ntBuO/iPw89C9G9Vfye/3AB/NeXP4D+bvIP5xRLy7EWeL+BbR38t/f4n/D/hr5/fV+GzKfwv5fzM7zmHGIbfevTxLf3uCc8f9HW+8XuWduvJm/l1tfKH+t2lfRP970Z/Gv9qQQ+H6r8rvCPwczI+xuf7Rx+nafeo37N+6UR/ncH36bc3Os3gOxE8AX811I+E9x78PO33t5Q/Y+9J+k2G5+Kc52ZdEn8k5zfK5/PXF8F7fC8GKU807n8vL8EXlCeS72vtl5NrnvLV+Khjftid/l9nj0n4b1LYTz3I3+fl/Mz8+Sg9fKn8Nfrrzf/dwO7gHeqPg/8EeO/3vetPnofNV8vpNeeIOT88ugTK5oBzwe3J1x3+btmngsPjH/T/B3qVlcdmf0ofx/h9O3R3B6vjayflXubPV5Qrsv8w/PSlp6no3ZZ7B3Yvp59H2WO8cb0OH++yw/H015u80yM3+y9Efwm+vyTv/ehMUl+Tvv/EZw3lz8m/FX+ZAu8+5KiI/lbG54/sfmb8AZ1n6ONZ8GlwY/Kcwi/P1e9bsAn+ch9zJ76OcB4wFx9r+ENx/VBL/y72Zz3p8RzlnfX/N3rPg3/j5+bsN+Hvwh6V8d1VeU7OJ/E3W3kT+ltP/63wd3h5CdbA34/G3yhwc/7eKvs3fDXFV8bb4fg6gFwtwObgVPrvzq4ttO/M/8byh8b00BGfq8ldE/0R5pldsy6E5wb1O8A3lD4mqq+h/gb+Ubx3eJw+HuNf1Zz35H4v588V/D5eu/vBcegcYjx38p3rnP0V/X5v/v8OvJ58u8L/Grvdqt9DyovxeVnmLeVLlGvhP/v9yexem963Qf9IdvuN/nqy35Scn/Pn8fD3Uc75xN/wvsWv94WvFfxN6HUmO+e+axv0hqs/A19d1F+MXif4O4Dvo9+G/Y6w3vre/NxGOfuND8mzI742qv1P+e5Gvz3/eEq/dexwtPrr6PNe9dug351dfme/5uhvjP966I3gD1vx66zvN7Me76X/bHpYq/4v88EOfv+dfUdmnYHvnem7Fb1+p9wO3U7wddO+C/6HGY8f0Ov76N0Bzwh8daX/t/nfT/BXMh/cB/5Nvnbwr9C/KfgAeqPK9aOfrfF5Ejn/pP/L0P3BOL9U+WFyzId3DHyVtetK3pwPDqTnhsq/4u9G/tHS77nXOpp88fv4e87nhipvjN8j/J57ytxPvsYfhoHjyTUb3MP8cWth/viTffvCdxp+c86a89VXcz7HLsuUr6CfV9j1bHq/zXyU+5m74rfk2dt8eZfyGvgu5+c/6PdOxrf2V/j9Rfq7X/2qwr6vP75OUn8NvqbT43vsNCfrO+1zr168bz9f/RL0j8BPXfwf67vVjh7ag9/DN5K+j8y9mHIl9C8zHvbQfiU9vID+f8wPLfB/HjwZHw/wx6H8doHykfl+GTfVwWvw+6H6VvAvJs/R5HxO+V7tr9O/F9iB30zIvgK/35i/XoU/94sN8J9xmPvFp+i7rf4r4B2ZfTS5FvO/55W/oq/1+mdeOyH7tMzP7P0R+EnuUcj3gnGZ9US/wvr9OP7Zhx/N1f+K2Jf//Yz+SuWf0N/Bd6unfqcFkvcw9Xuz++bKb5H/IN+d5uDB4K25Ny3cR/VTLs9+PPpPnAo5cw9WRTnnWJO0G4z+ln6vTk8t6WcA+032+5f6DVM/vbwEl+D3ebB4Xhy6V9X5v+l/Zz7J+ULOG3K+8LV58S76WAbfYPbbiX/mPi73dB/qPwPdndD9lD4G+s7MVz8I/nba5Ry+ZWH/uhyd7F8v5g91lFfD/zH97Wt+bgdOROdS/N1Onu/025Q8g7J/o+/N6OE15dyTdsm9Wu4Rjefcl+T+9wBwgvrc/17K79/X/jLlevj7Qb8L9dsPH4knaIjvWcpzyfM++c/mr1MzzsDcj0yA73fyVKP339GfBX/GQzf2WAX/PN+fhcbjkfC/rf4K/jWbX6yip69yjhN/wMfd+FpIPzWM2/bwXK1fc/x9ot9j/GKV+T/n1zlfmwbGn3O+1pJfVKTnT+n5nvIS7M+/WijPzz1F/JdefgDL6Odnenwa3cxnS9W3UX8Zfp7md6eSbwD+Xs/9uvb70VfORw7T73N0prP/J/Tf0nzQCtwd3wfq34j/tmTHgxL/wJ775lwEbIxeDfxkv3py4mlyPpzvve/vg74rhyjviY819DYcnmvoI/dtWQ9sqv5IeOej35p/PIDvnfhX1p/D9P9F//7kyP3abzn3Z5fcp36f9Ta/PQidJqGnXTd+s0nuGfnPLvTXDkwcRTF+Ivdp7xXu2a7F3yB+fwGYeLLEkbWhrzn0uIr+O5F/iXJd7bcqJ4f6DfirkvUsfFcpD2e3EWB139dTyPM7/v+tnPvJfdAbhX72Y9mf/ZBzpuzHlb+Fb3/+kXjExA/sl/tD+lmh/CK52mhfn/168vvcN1ZT3hW+o+ntDHIfrv/m6P+HvBXI/4dy4tRuQ/857ZeS5yr412X/A75oPm6Q807+Vx/96/U7jnwjjJf7+fVk47ULeu8oV0B3Htg+55fkbZ/1If8aTz+L8b+rfomz/gAfj5rvHgH7gBPY+1j+/w2/H+r319DPfcS/6StxjrmfGGjcvJ24Yeud2eUl+EXBH+Ovg/C/Dt0h4N36VUZ/qPHyjPGzwHg+q8E/5d5Iebh2uT++MPcf4H7WR7egcz7+auKvMjydo0f+fxc69fQbCf7qe/9j4qD5ybvqp2e85DsAX873xhsvB6I3JP6L/8f4a29wre9z7lM2BnfMeRo5zldeQ94PEodLz4vo/0D+Ff+bS9/f4f/EzIf8OP4c/90o9278c2PlQ8lXNeutxKXCd7P6j42nwxMnqlw7ceTsk/u/n/3+Av4Pw39d/Rvm3BDMvmx0YV9WSf/cf1XEf87Pc/+VuKHB5C3GD+3hu7WMf/0LvlfRT3zMAn55H5j468PUn4+/quBO6nMel/uHEwv3D6/T61D0ZibeR33imzvgt3POFXP+iZ9fwewnsn94T//b6O0L9HK/8XW+V37fi34u0r6vea+t8XEiP94Uf5US143/nP9sjc+miU/xe++Mc/QH88ecJ29Q3yHxF/hZ6/eDsx7J+wD4V+ecMfEP/GCw+pwzjCTXxbmfT3wg/F3R64OfxIPVh+9K+BMfNp4+ppWXYEXj42z1TdFLfMDowvezuN49X/km9KbHX+Lf2r2E37vxk/i8fP+z//xc/W36r8+6Dv3EBzYuxAfme9+b/bcFtwafRO+w3Dfh60/yzsBfRd+TO/1+lPnkE/5xCP4mkreR34/C363mh7vIVSf33uobs+9T2bdoNxmem/S/EfwRHIufbci/NvfPiXvM+YH9TOLmm9uv5L3Sv9CLn/XJOVHeG2R/n3ND+HI+l/jIrBsSJ9kInivMT4vNT9NynpbzJeNqRs4H8Z33OQvwvZRco5RzvjzH+iX3Lfvqf6H6Q+DdSP/MY5ex72jzQoXsr/Cb+6XryLs49ybst1HOX9UPB/ei3/mJN/T7vvxmvvk1+8EDzO+5Px1B7iU5XymBss3JDV3ZQHLP5g+VjOM1+HuY/W73vb7ZdyHvhZqj80fhXVgxPnkX+htInt5Zf2W/xv5bkqdV7unhTzxwzq3b0uNf5Ev8feLuM98k/r4luz6r/6/sVlv/YdY7s6IPcLL2o5S7+z7n3uEE+nmGv+Y+bRb+dss7Lv56Gj6uwe+K3L+y6wZwNbgPPn+mz9x/VsfHAv07mz8Gwv+O39clPtDvFfB5JT7fy/me33fWr3g/NYl+Mr/mvC/xnyvw9ULWp+x1Lv0m3inrn0noJf5pSOwfu+feWv1j6qsV4iWnwH8IvxuedzLK7XKvYnw8l3s/5evQy/3OY/SeuO/c7yTurw7+P877RPwNJs8Z+L6X385SPy/vGYyD7G/yfnS29dMb/KxfIT74bHLdSK5NwS/wMwo/DeG7ER+18T+YXLey70LlMvjbFPTzBHvuqf3N7PoGP7gp59c7/bM81Pj7M+M/8Zj8/zB0Bio/jL/EP76Q/WzOq3M/aX6637iZSl/Vyfmz/sdqPyb7NPgn0s+A3BezR2f1v7LLX+jejI968BxZXoJ3gX1yDpt7yjLyghPBlfi7Eb2e+KyXdRU4BZ26+F/Hn55Wfwm/OJH+LgDHJW4H/sQBJx4z7yPeQ7cr/q9XXwb/DP70DD/bVjn3K7P4w038I/fux+u/N308mPhndD5Hvy36Swv7yGnkbl77n/I+Tp5+xvdy/c9nn231K0/8S+yB7lW5f805lvKV+P4Mvs/haUDfoxPvrX3uKb6jj2/B4v7vLP3iL33R7ar+Uno7iB7rGy8vZ372QT7A9/le8F30jjLusi8/urA/30f5CPr7Gz/DlH8wfi7Rbh/lFurfov+b8P0yOx2b95V5H5Vz9cL7hlNCj/y70d8A9n+R/EvBF43jPxMP5vdD4Ts+5/Pof47vvvp9ptxV+63ZNecGIxJPn/kFP4nHzbvOdXlPgd4isBY6ecc+y/euc+6VlbOfGWO+GweOBTP+PrReGg5+AL7Fv2ryh4HG9Xj0d0xcJn99qbwEbyJPFfhz7pp3hTMK8dPJP3B5vq95P0Nfid9L3N64nJfq3xw/eR+zCv+Jo9zG9yTvWfPOtQb8iV97Ad5qeddG/wf4/WX46rJ73j9U8vu/8bFDvp/Zv5ZAWUdwBvhOOTzKlY2rzsrd4T2XvgaCdcGDc15CXweRZxJ9DVE+Av+bkDNx4P3AxMUmHrYXuivwP4VfXZh5UfnsjC/4s99Kvojkh7iRXFPyDtzvVyQ+C78/wrcP+odol3vHnuS8np5z/3iL/ofwx9xP5vvd3/e8P70NACeitz7nYPj7jJzryZH3bnmvnffbef+W92SLs+/VLu/LmmY9qH1H/vhV4rv5a4Wcc6XMHjk3yjnSoqz/6elg+FsnPpZefm/4T/5X4esi+nxEffJ39Mx8n3h4/L5pPn4DXJX9GHmf0z9xTaPZ49nEU5iXd9T+L/6zO/wHw5d101fwTFWf9XfW223pZTP8/0m+rug2AL8h5xj4ni0vwbPhyz7roez7wWr42JB1lvliQOFeabPEo8Efv5+GnxnhDz+5H35S/W7aT1Vexg8TB7BfzucL71p64SNxo/Gf7OuL+/3v2ad8+3/ytwf+kt8i90jF86U38J93bysK+5+WOd9L/gr1D+h/MvtvlHch6o/K+le/p+DbC70j8Zf8Hjcnjwo5k9+j+J5tJTlyPzOWvSuVl+Cr6F+mvBB/++OvMbgFPSQvw1p8Xpn4V/ydRf529H2K9j8p3639b+B84/ck5yhPlUDZL2B18+V6/vs4u8c/z06+EHI2Vu7C7vsq553YYHgHx77Zv9D3tvS5BhwJHkWOGcFP35XyzijvC9irIn89kdwHKD+l/+K818o7E/1HWK+UZR2ifER5CY6yzrxZs33BNn5vQ59f0VPlvCfM/jTx0/h4Ev68R2qTdxP0MRPd+/nP7eanoYU4x8Q3TuVfz8L3lt+3z/mm+lnkvwhfJ6DXA3818FcbLEt8PZj3CjnvyPvu5/hLb/CavGsBe9D34cqbs9cf7DMEuavJuzjxa8pnKCdOtBgfupwdFpsn91Juhu6UvLck/0vK78K/Te5lfBeL+5ev6Pv4nMvxky3RH6t/T/I9iU579Z/R51x4Er/6c+43jd+ci+e+L+fln/GrejmvV45/JT4r76MTp5X4rGn0V5vcL6GT/eOlfs87v/robqV+Efn+8F26THlf7VrmHWHyi+R9P/0W8zUkj8Mv8A8vrPezH0h85zJ+tZH+XZSrwn8mPnqBS/N+W32LvD9Tn/wD/wJzDvGZ+pxP7JD9tvn4XfZ7gv8nP8dF5KlPL3+BZ8C3ln62R+8K/CV+LO+tE++QOIjcr3ZP3CG+kh+ogd/L2OVN35G3wG/gGZJ34+y+MvF6+H/afJR3XsX3XQPYI/dJuWfqjd+8i57Ez+Zrl/fRb6B3Qt4/5N0Z+i+q/wXer3OupP4e+knerNr8+vWU8VcH7KFfJ3xcyD4XgOvZMfu84n4x+8jkF3rXd3MaWN93c3XWL/rXIV/uEeO/xfpj4M394jTfzWfAyeBS/N+Hbm923U397mDut85JXgpy5b5rV/3OIX/m17yvesX+ZC5872Sfpv4i/n4XfC8p/0f5Fvhn5h4E/FX9Rsl3Ul6Cea8xl53PQXcB/QxMvjV6qmK8b5P4yxL473nun+brX4yD6fyxJv19o/9i9L5WvlR94s5+UT+Uv3VGL/uGxPuPy3l2/Jw8G+M38UY30d88+jwP/jPUn5/zheQfw/dZiWdBf1nua9HLeebhynuin3PbXfR7DT85N0i+w+L5Qc5juli3HECPySPzBPzdEi+HnxOSZ0b/19B/jv0rJX7TeMi9Ye4R8/7iB/xtmve48LyW91nKA3b6v/Hv4Vxqd7A++GX0YfzcnHj9vJenh07kSX6zO6If9K8kd+7dTjV/5/7twEL8cNYhZyV+Jfey+L4WnJb3cvBtrzwh7/TYbwJ71MX/GebnvDO/3vi5JefQ4LXw5f5rP/x+UTgPSL+DavyzX/IQdOGfl5gnpii/zZ6JGxtYXoLr6TPxY9vn/jvnYeBfWT/yj/NyLpx4TPWXm2+eSD4MfGyT+N3C/dQIMPdTbeDPe/EJ5Dop99fqb8y7HPJ8nPOp5DWjp8uVk59s0+SvINcRxkPyBXTTfh2+X9VvFnkrlJdg8tIkz0by0+yfuAX1/6GfbdWP4i/PG6cf4H9l4iUK6+Gsl+9Rn/vN3Gce7fdF8B/vezfGOHoc/CPjIPFz8OT8I/ecuSfOe9af0D9WeZbx2It9h9L72sR3qK+MbjE/yj701Sz7cXRrxM70Xw+sjp894N+LXYeyzz3mwZXaJZ/sufSynHwH6/8geZrgr/j+fhf1y4yvq+nzP36vqf3wEijrBZ6n/+HkvIR/XUjP32X/Q/9v8oMt8L0UTL6b280bT5t/8j2paF2QPICNjafkA8x9a+5hc2+U/IB5H5fvY97HzVK/A/4WJU+m/s/gf8D/WB8mf2LGT2/8T0s8Hb0kPqgHfsfQQ9bzuX/MOr+4vv/P/7DPMuO6L/5vzH4N3ob4a2a8NwfzHnkP8tzJn/qBdyQ/WOLPzFdPgAfT97XonIOv7DOK+4use34Da6E/MvHnyd8FjuHnieNLnFbybmRd0YR+kn/rgpwD0PcbiX9n76z7a+b7oT7vZyuy+0p2y3vafvw/79Q7katr4pTULwf3Ms7e0K4TvWR/mfiWXwrr2wnJ78U/7sPvVHgvyToT/sQVJu4/9+97gLl/Tzx0XbArOyY++vfETag/SfkRfHxivZvz2bx3y/dhL9/ba42DHnmnDv9B5K2i/AI9Hpf3KH5PPPM20T/58+4s97q57+1G/1XRzfprcfaZ9Hu69smjVo7OAv6zA/sMzP652j/5PlT/HnkviJ9v4c93/0nwjkJ+0Qa5LyBvs7w30D/5+R7A18f0l/x8B+PvILAZuCBx+mBDds99/bv08Ypx9TK4HPxX8twkv03uufD5Cv0U8xE2Z5ecb32W/RL9Ju/OjzkfSX4MfrOcfKcnPsX3rUP2MckTlvipQnzIo+gkXvc+9j4YnWbJ7wl/4lcSt5J7sNx/vZL4K/Q+zTsU5SPYNfrNfXuPxAeqz7uBvIfO+4FX0V1H7nHK96kfA98F5Ew+trfJ2Zw8vcC16AxEP/ks3wPfBXP+mfwJu9Bzx7xD+R/xAecU4gSuTz4t+s69cPJtFf1xN/IlnmFp4X1l3lvmfeWrvmPJwzgm+4/E5ybfaeJby0sw8ZfJN7WFdjco19E++WxP9Hvy3Sa/7RklUPYSuACcQf+H+57txv49rFeSv3B7+tmFvvvD2558Feh3SvKegMmHm/fbe6CT9wItyVc797mF91tV9b8H/T75npeX4Fr0V+Mn5+7JtzMb/iXwjs/7P37WSH3e/d/Kb84q5AFYyN6N7GuPIU/ij79m3wbJP5O8KInfZufK2vfG30GJH8g+VH3WU4mvPgo/L+NjW+Wf+euz/OIj+uipf/IP1MLvEnZ5Fp95b5f4q8Rd5T1N4q+u4a8TwUngL8kPAG/2Z9mvJd4jee4+Vk7+u5zP98n5aN4JaZd3FMkHnnf8r5A38QMNs37NOzNy3aF+T3Z7I3kZ2CfvR15Ht4py8hLl/U7ef+bd587Kef+ZfEw5zyqefy9UXoXPoxL/m/js5Beih9PQfRL/96j/0PhOnqeX4H8w+6/sJ/WfrD7nUokvPFb7noV4/JxXblZegofp/5D1wmvkXgEmDncef2zHL9qDye+SfJunkXd3ekx+5dXs2Rrdp/BTU/1W+ue+50ryJD/g4767WV9UQWcC/m/G5+fka8v+K3O/zW97+f1AeCuq3y3xvfynW/Y3ud8wv3yTdSJ/W4/PE/H/iHL23feB+T4mP2m+j8lPehf9X57vGHlPzvl94qH0e0G/w9T/krhdetiM/p/SLvuJ7C+y31if+CLzZRt0k8cp+ZuK8bFZnyc/6InJH42fR3xP++qf8+nj1Rf/f8nV+GtfiL/qAG6wX8i79uJ795wvvQFfzplyvpT8XcnXlfxdiU+cnnyT5Eg+yfPIOYbdf2Wf0cl/RZ+P8I9zM16Vs77pqlyee0X2zjvXWpHLPLimvATPyf2I358ofAcy/++n/5vaXQf+Ck/yX8f/7sbHh4n31X9i8IB38oNt6Kt4Pj2afZNfbSbY3/y/NPEV5q27Mj/gK/EED/qeZJ2/QLlMu46Rmz0Sz74M3rwjeZteFyvPKeyncw9YfJ9/q/rT4S3Go+V9WN6FTSXfTYX1yCHJv6Ff1ienw/cDfV2Lr5fZcY3xdzu/el95Dnlzv53/I7Md++Weuw767dD7IPte5Ua+J9/j/xb8v19egtVy7kzvU8E28FdA90vrp9n8IfHX+5s3DgTzPvhp+pmn3730sli5F/7ms8do/ph8Sfn/Q2fiO/HPzfGd+IG8J8g5zwjf0bw3uBe9Y/nFl3knC89cfl7LONkaTP6tbvrnfrG1+f/S7Idz/5081OzbI/EZ8HcHu4G3a5d8MuPJnfwcyS+TfUnyeXyv/srs//RvTr85H96RfPm/XLmnuj7xgvANyrs+7QeQN/mtd6O3+5OXHsw6pwp9N4HvAnK0YJ85xvW9YM5Vv9/5n/h3B4/mXyfwh+QvPgK9vNu5B2zKXt/S9y/kSf6RQSVQdiSY/J2z4f/EuMt5Z+4PRum/XfJA5j1J7pNyPpH/P4G/sew1in0e4S8V1OfeLPGFyYd6N7ot4M/7vsTT7QnfJtrn/qClcVGX/480XmagMznvpZJnOXFg+H8r+VkT7wnm/wj9K/cQeZeQe1NwE/WNtG+d95s5X4L/z+w/6Kt27iFKoGwYGDu1hj/r2axzs649Bb2cb+dcO+fciX/IfeRG+F9XuJ8cyL+aZB3t90tyHs0vk9e6O/9MfuuLzdcnmZc7gA3xtyu/PyjnPOC6xFvC97xxlXdseb9W9J+X+OtH6mcZf/eCz2if9XjOG/OeJOeRyX+VuKBNy0uwpf6Jr8j/NxiSeFp6zPum7C8eyH2Y9tlfVOJvDX1nriTvouQX4bfJDz20kB868VP18fc+eomfSrxP4n+SRyrxP8kr8iL+ZuQdrvpj4PuJHrZNfKnxn7wMiRvakPbql5HrbnY+Ne8s0Mt76ZwHNtXuafRvKIGytuBHYCP9m8Cffe1e7JP73V3wlXjn/D/J/P/I5L87B778n4sv0a/Kr6uBp5lPxsCb+638f4fcayW//q7w5f1F/r/Y5JwvJa8UuFD9CPxvSH7RxCnANxa/+f9jA8id/0OW/z/Ww/fqArBi8t3kPT789ZLHLXkQ8n8U3Ec9yw8/ApNnLfFPdQtxUIl/Wqt99sHHZ5+f+BV8DMs74kJ8eNbd3dBbqPxgzu/N3/m/f3uTM/GWH2j/qHJD8ryT71Uh/1XrQh6s5ENPvuhiPEneqyV+PO/Z8n4t56t531HX7x35R/Z1+f8ieT+b+JiN8r0vL8FKiW9Xn31FveRB4UfvwZvzv6rJa6mc87/kxU3+peTLfZ7/7Wk8HwdfxnfyeT1rPv/v/40if/I7F9dzHydOH/03zWuX/4/znY6+R2+Biaf6CR/r8HtrzkPoO9/nBcrVk0cp5wI5/8JX3jfnvcXS6J8/NTC++tH/S7mX135BeQnmvqVJzif5X/H/oCQf3y30sQD+YVk/0N+hxsPt+m2Zc2D89eKvZ4JngE9ptwU+VyfeG7+JP0ncZPJJ5/1L7k/HkTd5a5LHJvnfT8j3X7/u5Ngn92/4TnxT4p0S3zSTfHuqj1/tn/Vx4j3Av8BT804mefWS969wftE88TP5v1rKOW/OfuYQ9IfQR/Y39RK/rpz38q/iL/8vdiS/fajw/2OzPvuVfmron/XZzeoH4D//32Op8qPG18H6H5b3lvjZJ+sX5c/pYyD+Hocn/x/guPw/YuXnyZ84usfZM3Fvna3f5uGjBvoT+MsI/OfedSv0yvEzQfuLwfHgb+rL0LlQ/zHwjeb/X6Cbe74WhffpVfP+hH7Gs0MF/Z/NuXPuF8N34i+0H80uyTeW9VXeXT6ZvEC5t0/8W+7blHO/+UPO5+FJvqg78JP8O/P443zwW/r+MvOU9dAN6ovxpc8Y70+DM3wPb6KP3At0yzssfOZ+IPNpx8K8mvP8zYy3/+azzH5B/+RXK96TJn/LIN+jl8Hf8o6dfLOSdyF5+/U/iX+8mXPl6NXvOR+an3z0eYfGfk/jN/m7vuPXyYcUu3yqnHcNxfcOZxsftfH3Pf4qJJ4P3ZyHX0eeh+lnb3SfgHfPxPVkHqDPg+j5eeXx8JxFX1vT31zw68SZw5t3DXkHnfiT3FuNQXeE8kP4bc8f1yU+j5z5/2mVjbdW/K519l/5vvK3qvR8KHvlPUHukfLeMfdNic+qnbxveUeAz/x/48QjztQ/66f8/6+/ky+OPvJeK++z+vCHn/nJ67kv1j5xg3kvWYwfrO57dgW9VVP+Av6v0Mv/T9kp330w8UnngxeAiVMazg/yXjb/p/Fv8uX/WyavSzHfyzvsvQLskfyV/P9/3bslv2H+f8pN6Ob/pmxJ3/fTR+7FLsl5j/7/DyrUgXV4nHXdd9jX0/8H8DspDYpIRupOg4TsBlEZyUpJoVC2SLIzCoVkZ4SkQhpGKDNbRiEjyirKyKpIkaR+1/X7PJ5dl/d1fe9/Xte5zzmvfcb7nNd5fcbVKfv/v8ZblWATsEbDEjy8RgkeAR4JriwvwWM2L8FLlU+pXYJz9J9WtQR/2qgEm+vfqX4JtkX/jrra+3+1xiU4Xr/PtynB67YswS+Ud9+iBDsoj2lUgmPBldovqFeCjzUowe3w99h6JfguOXatWII3wfcy/Gdvi2//X79JCX6A30/xWxHe+cozqpXgHvTQcP0SvFj/4fi7n96borNY/YElUPYV/p/W7l7436lQglPR3S/yqj9okxL8kR4XgReTY8HGJXjCBiW4/4YlWEf9Svb5Hd1d/L9feQk+u1kJNmL3bzctwZH0fIt+e+m3GT4nsM/36N2SMj/4mPz7Vy7B9yqVYE30tkX/BfTe9v824FD0ZrPrFfh7WnkwOqOqlOBYfvA+uJr+KtDfafhssHUJDsTvs/T9ALs1hnclOU/GR2V6uNv/h+m/lj2WGhdl4J/8qqX6xeTdHP1B+l/E/k+Aw8GH0TsAfzvo31+/c8k3kH/fq34iuh+x35PqF+f/6A/Qv7/63/nnK+Rvqn50rRKsy8+q1CzBN7R/jn+Np7899H8TnwPCH7ov4mu+9h/As6bhf+W+Sf970Vug38fG3yn4ex/9fdCtqf8Z8G6vfBD6H+hXi39exJ/O4F9Lwd30L2P//vjryx4j9L9duV15CR6h33zlmfh/F7wM/1PxsW/1EqzOPzcEy9jrM+OhK/iw8bJK/Vf4uwXdc/BzJ301Mj5+1n5P8L7Mz9rPzvwEXx/1b7Pfz/BdRo8d2G+59qvp4y12+1f5Kv48kp2O1/50+DcxPnug/yj5M353R6+ffi3gOYM9murfRvlJ7W7QfyK91S4vwS/o72/1Hdi/DOzN/ivxM8Z8Uq7/IuXuym2tC+3AqeCN9NDB/LcLO3Rn74fYoTN/GKi+P3kyP1cgfxdyTWaPtvi/njxbkLOCcfAW/Y/g/1XRG8HePdUvgP9aeJ9B9yD4B+l/LXu3oJeMv6z/Zfr3064Ze9xv/nvD+rQFPprp35Fcs+CpyM/2pr/7oH8W7A5uiM9h+BuH3kr91yPfMeTb0P8voOeDtW9PH1/jezj+2qBfTt4/9f8CvZqZv+n9oYxL8GN4XiL3v9mPKN+Av+3Z+wP/XwDvd+Cb6M0HT/X/O8BXjJc3zNPrbfBf+m+Q77nyEsw6Ej3dRe8bad+UHb9jnzX0V1/7v7TvQ1+VzGuV7LvuMz4a8+tO6E3X/w79f6X/m8wPR2v3hPpjtT+PXP3ADtahm+nze/QGgC+BLejniMJ+N/vhP9WPYd9V4Mfkb8Q+vfCTfU/2QeOV77A/7Et/17PHO5mfsz/Luqd8onLmp7XgM/wn89U+7Hmz9gOVd2OfPfhPF3ZaQ67J+N+H/Wfhezq8DfDfA93t1J+F/kf694d3d/Tfzfyj/5bqj1JfF/6r9N+cX8QPDtJvg6w//LoxvB9n36t/C/3H6z+Kfa/R7hz+l/3LFPbN/uVDeGuR71l4noZ/PPn38f+TyX+R/tPZc57+byrX5P93m9+HqT+K3X+DfyD/vsu8vAn+D4H/KXwvpr9/6eM39dlfZ1/9g3L21/+YzwapX2N96aN+Ovlfw9+P9H+L+nrWqw3QvwaeQ9UvR+9Uev0CvLW8BL/hz0vM87PZ47PMfyWwzn8fVI7/Hkbe5dr/Ac7nx0/jZzH+/yFPHfU3wvcKmO+rhurn8M/3lf8h72jyXW18r826YbwsVb+N75b65OsHtmS3weg9qH32xSuVd8XvwvISPCnrM3oj+Mf2/OIK5c3519vwjaWvkfhrAf9X5D4VvAH8ih5rstfB+K6h3JkfvIH/efSwkJ5fQ397/nQWPayJHfQfrnwm+dqSd2v19eynOhpnlYyX8/B/DbyPqe/Cn+6Arzl5K9LDJuz5OXv2Rq+B+j7oDqKvm+nzD3AP+G7WvxG5r0BvVs5R4Mn+/nxynqC+Tc4h+Hv2+02U/4D/Dfp+DZxGnzvqfyh57zaPH6J8Of2fb907if02pL98n65Erx09zoLnV/g/4e/N6K2B+e0e+mlPLx+Cv7HXl/bD1+L3KXz9hG599juD/u5C7158f0T+uvk+ir78/1D0jzW//Ib/9ch3oPYj8VVXuQc5sj+5vQTKqmt3ofIk9nog6za6lfRfT/+30H3AfmUaP2pFvj7sPZYcl8H3Ys7HCvPBEej8lP0z/9ymvAT3Nv676l8J/Q70MBG+ecbvg+x7IDtUzfilj1X4ug7e28n9Rva/1of6WXfhvTvfP9bXbck5yDx0JH4/4Q9788Nu+BjMP0bzp4ON3zngu+h9Qv4j6edUfL+F/j/89SJ459tPnYrPvfz/G/ue3fnXm03+i28UvR/AH19W3wh/2XcV92N/kbcDv3hH+Sv1nylvjp+5yt/lHIjf3EyOjdjnB/w8wx5b4Dt6CH+P8tvW9PSlchv0RtHnz+AJ5PmqvAT7G99V0D0BzPnFFvTRDT/9+MlF6Hdj3w3Y8z1we/jnK4/Q7lZ6eVH/u/HdFL8z4B9BP8vRn0IPS/DRPf5JrkH43RGdT/S/OedV8A9Dbxw8D/D/l9DZHJ5PtL+KvT5Bf7lyo+yf9V+NznjyZX3IeM34PUb7jN9H6bu18fGI8nz1ldnnNHztb7xfT/7e+j1u3O+Hz22zP+b/i/Ax0XjeVv+H4F2I3yFZD7N/NW7ug2ckeBP+5ul/p/7tzQMLM7/yt1bsNCnjm76a47sPvVXBXxv9vyXfn8bJleovQu+jqv+VqyhvNXDvcvQzn+q/Pbvfov4OfIwl31Vl2uPnXPL2VI5ezjJ+71XOfj7+Vzwn7UT/P6P/kPGdfeT36C/W/2r9cw5xOv5PN94HaH8KOSbirwu9/c2fD895mHZ90S9+1+c85Fz+1te89yJ7vEaOkfT/Jrl7wFOJPH3Q70wfc9HP/mJb80Mf4/Y35Ue1H10CZavJ+UH2Y4X7n8/5Xe5/XqXfqdqfQf6c+3VQv4H+t9HDYPzvp91P/KcGerW1vz33O+Tsq/3H5LtGuRq9ZHxWVc44vTTrBTgffJZ+M29+Bu8V9JN59HDjqyf7vGS9PxP+fc0nN/n/fspVyHm5fvm+/dT6me/cifQ3gbzdlONfc8xnXegp3wPd8f86vm/S/i56eVA582sd+4i3lcfp/34JrNunXQAeBs978D/KLqfQS75PlhuXC8m5Qvl58jVHN+c+75JjEfq38ov6/n+wfhmv35F/PXIPRn8D9RMyfvnfIvvTTuQ/HN4e+jWEZyY/Xq7cXPlyeK7Uf0fj6xzjdAI5diX/MnJ0xPeW6P0D3yz819N+D3w/YXw8Zb6ey8/2Ub4Svq/59Z/gfLCv/s+Qa1P4L6ePb9DP93LORx4l7yfqt+Jvb+S8ULm2+mOMj5zDLlI+Eb1F8B1Ob3UL3x9vm7+yP3idvvbN+KXXifRWXfmkrL/GVV/77145vyD3Pux9MTodM1+Wl+Ao5SXG3ZPG5wz0c96cc+jK+Mw6sCd7LAVfZ6d55O5gXOyvX3V4W9FfX/W9c45Oz3+Rb5n5vjo5einXoKdrS6DsKLA/uBV6z5mvck89hX2a8dPcl+X+rLL22X9OIU+jnMNrVw9/+d56IN+r5DmQHJ9pvwLcgj6b08Ot9H4Ovz1Uub36Mcb/L/yrNz84T/2R5F0EjgWX0f8f5ptlgfxjffz+RC+fKx+jXBH/O8DzEfvknrJeeQnO4C/Xm9+66zc052/0cSX8vekx46cf/Q4i32TltujkXuZx5V+Ucz/zIr/YFz9HZP3L+SJ9bkO//yp/ku+InK/yl7/hrYq/3c1vlxpfV1o/n8h9DDzfk/s+eso97Yb8dSOwKj01xt8f/K0V/9heeRV81ehlT3INzzkX+heVQFkVdluinPWunfZbat+cv3ZFvzL5V+G7o3Yvqe/MHtvxn2PoJ/c7C/G3lh6eg+8SeN6A9/XQV15P/9zXtCZf4mtu074yfX1aXoLD+Nv+2e+TL99VTyWOB/+b4rsJOe5Ef0j8z7yVOJIhhfiRDiWw7pzyQ/pryz45V5nDf6YZL5P1b4XeMnrrhs/O6F+g/9Xad2W3YeAK//879OA/KvtM/vxReQm+otxR+974/gycDF5CP1fip4zehpLjQvheVv0n+Ds75Xz6K/0exOdM9tgkcR701bjBf/v/mPMDdF7E70H0UZm+DtD/MP1aw5P7rN3MpzkXzzl5zsc70MdB4BR0Vqi/g3/VJEd/8Ed2G8Yv6uBzMf+oBc/e5p8W4MfW57PxnbiqxFklvuoRfB5oXqqk/VFZB9XXMv8M1q8VPTyh/rDEE+n/u3kk+9x55Nki8Q+JQ8t+Wn3iGo5mv52z/4XvIfim555Z/234TyvtO+OvD/4yb34HXg5eq/8Y9N/R/wn41qK3GfnuxEcF5c74eM06vh2/XaU8obwE76D389BZhr+cT+d+r2Xhni/3exfl/Jn/7ARezn8G4Kcf/laDg+hzD/Z/G93sc7O/HWU9roO/2/jRKPXjzOu53859d86Pa1mPmlpftgd3J8d72rcm71Xw5H7gqcQFoj9FuSr6dyrfBbZGL+eXr+G/vnn2MfNzhdx/4ud8eqvhPOdv9MaB6+NnKL85XP8v6a8LeUbT42HkWag8Vrk6Orlf7E5/nbQ7jvxv09+J8H/M/6aSbwftTiT3/visy38X43ON8VvdvDBU+XL2zzjMepzv0T3w15K//Ak+Bh6BflXzT/Z/l6JzHfpVy0vwKeP7OfK0R+9V9omdepvvPoe/Xe7V8Ds/5+/wVsPvLdonLuEC/J9CHz3R749ONfUd4T8X3UfYvzZ7DeKf09Db2/+/R2eXyOP/mS9eyfyCXuKCO8KfeIlO5pMpyr/qPzXfl/T6mP/vr91c+HvC/wM/Xqq8b873rT8z0d9HuRl/qhb+6OcFejiWPFXIF/tmX78I/Y7ml7tyr8w/Jumf9SLrR9aTbeD53PpxO7m+VM73bUv+vSk8ibNKfNWd+lWA74+s/w3/K882OZ/b+L/yNjaf/Uo/1fjvH/xzC/S/Nm7nKR8N/4isR/SUfcqgxG+w91E55yDHkTkf0W0oOaYrP0++G42vP8GjjP+cX8xVfoSfPwgmzqwv+WbQ+zvgFuqzfm0KHsh+n2Y9YPeL8bsx/Z+Lfs7D5oCL+GHOxxJ/m/107okTf9oE/nH092z25/Cvb718W7/Eoyb+tCJ6b+d8xv/3YL8XEm8Vf1b/MPrrs8e/iWeFv57+6/HHn+llFv12oa98z+X7Lt97LbKPy/xUiB+9m31/MB7n8qs54CD1Fa37z+c8gT4m4e9vfrsK7Gd/95f6JvkeB3egj/Pgy/l79tPx4/hv9m/ns3v2cVk3TlL/Ovg2Ol/h/zT4d6PXDXIPhd4r9H8PvvIdsRj/0+D9BryHHR5G52dyP2+c9TIeToH3rexPjJ8p4Cr0LzUPLCfPjMRZ8o9e/PpFdj/W+HlOv9rgm2DigRL/k/cZQ8BLwLzPaMlfsj9trTwa/VbkTLxHpzL8q7+H/081j3/In+ok/oHebqG3Z9gj91k5jxyMbs4rT2Dv1fxtIvh43rmUl2DOk3LONBn+F8h/Jv7zPXgy/899ad6RLIfvOH6yQrk9+RJfcIb5e4vEd8P3qH7ZZ3+lPudnub+9L/cDuX/hH13Ryz3SsMSfo5f9R+47cr+R/WH2hWsL+8On6W0BWIl9Mn6r8ceq+Hzf+vMFOVqbD1qBWQ8n5p0IuSaCuR99Cr/d2DV2K9pzBXlz7pt3L4+RI+vJJeAAcDz+btP/pdx3gV1yP0s/p/v/S/7/Ibip/pl/i+cX3+Lnef48lZ3vwV/W3+/1y/3qt9lfJD4PH5PgmcM+zc3vp5s3T839sf7H8q+cL+a8MeeLe6FfXFfmgdXZa3ruW5X3Qv9y/GVfkzjmTZW74e8+duxqfK5O/AF/uQXefBfckvh87f7Bb+K8XqDfC+Fbbt4cAa7Vf0/+v0f2Tb6jTkZnE/58CT5Pw2fecxyf9Y7eL8k6Sz/7mS9e1z7nfxern04fNfBf3zzfLPEp+Mn9RNazxC8s0/9h8vZLvDZ6q4y/jeA/kz5fJ//m7J3z5qH42wb9ueanH/FVpv9M+I6lz57gadaT1fjN+4Naib/Luwj1S+HP/nlPfpT44635329Zn8m9sfqdcj5Njg3huZp8E/C9InFi1pEq6NTHb0323SrnG4X3UYl7Gqlf29zHwXuF/t8WzlfqkP9u7Sfykwrqm7PP34nLIccjiW/T/6ncB+l/W+JP8Jd779yD5/77c/4zN+8A6fty+K6jj+7mhYXs2BKdQxIvgE6P3Luhfwr+n8f/6Ozj2aFHCZSNB4eCt8XOxlPihhNH3BL/e9Jr4ga2g7c5+uXqc19xX86Tc15jXE8h31TwRevDbeaVH/DxHXiYcXVueQmOzPdW9vH0kH1Ezsuzz1ip/mL+OzDnUYX71cTr9eWn7fnj0/qfWQJln4IfgomXzfn/0fDn/D/vmMaxS+LAlhTivz7T7ip6fTZxFOT9FX//gB3o+7nE7ZLvQHq4xP+fJuck/pQ4vMXo5PzqHf2bKLeDJ+9fXzCensLv/TnfyP2T/h/Sf+K5JqD/D79InPaizDs5f4c/7+A2Tzyt+gb65Z3ae/Dmfdqv+i8Cm4JLyJm43duMu7eUO6hvyh7botsE3Jm8m9L7XOtQbeWF5Mj4vA++owvj83v7rrPAt8xv++e7iL+MZPcb8y6bfOXqcx42it5bwr/EeDqLXIuVcz7bL++dtE+c12Dluvx+60J85l7gHfzmdfBV8B187J33JHmXCH/rnG/kvVB5CRb369Pov4H6Q9R3S/xn4vrU51w7++85/PF09vlGeSn8lfnjL+xzt/5f4r8FeruSt5v2Od/fgT/MNO7eMm81VJ9npmfS+yfKibMfy1/ug2eMctahzekn79LyTi3v07Y0b9TlP8fR18aJ48TvreSYrd+R+LuE/nqyT84pnsn7C3gf5Je1wBfo5wNyzwBngRPYZyb7Jz4m8TKJj7kd3cShLIu8hfnj1fISvFT72fpPwU+73Efgt0vul8n9CPxXo/8V/DnvyH3kd3m/nfmD/sagn3vgefA3Ztecb+W8azI9NmXXHv7f1ji8lj4u1P/MxKfley7xi+RZRu6u4P34a2o9OpijPWmc/pn7Ufq/Vf0hiVdGfyf0dwSbgYdov0z/LdA7FP15ymPUJ6/C63nPiH4V/nkvOIx//lBegl+jt6lxOcc+aMvct8P3EjoT6fW57D9zHuU7emrO5bT7hD/2hHeU+f8D9cy/bv1+S/us34lfStzS/YX4pcPg7U6fn+K7M/7W4DvnkYnjy/u0Y5W7w7cR/zsz7+T4Q0f13/PHA/R/Et8zQWTKuvK3dujvnLg+fj5F/8fMi4+AD9Bf3pOvKdzXXKu8K3n70/vX4N3gFXkPZ3wuVd4DH23QP5o9HoL/O/58cs5PrMt/F75D5up/HPy5PzqHfXJ/dJDx9nLOjfB/Ez0Mpc/M75nvf9I/8c5ZF6sqZ70canwPyXeg8bclPndgz9Py3oM9Tsv7NO1Go386f/898emZL9Un7nYveuyv/9bwjQ5d5Z2Nj0/Z5TrwG/3b0f+OxuVhhe+zz3IeR/6b2CHv3x633k8GHwM3Up/3BYmHPUE57wvOQX9azlHBCcnLQV874ifzb+JvRmX9THw9uAP5Mv8lvjDnSzlvep/9Mm9mAGX+vEb/nJ+cwh7Jf9MP3n2Vq2p/Iv4S/zQ050TJi6H9bP+fpF3xPD/xt+PAvG/Ie4cdnM8nv0vidBKfk/j1K3IvkXfV5B9ovB2fe0rwyMRXwLeAf8ziP5/knDX5cfL+Mveg5Kud++3EeRXet/Uynpbod1LOc/Rfa1yNzThkp53Ra4vfRuTYVf0s+HP+fjFYgf4SP5E46FuVt2HfFcqdLRAfoT8bfDbvD8pLMHEzO9NH4mcSj5fv4yvZI/H2W9JLHbD4fmB9dp3Izj3Z41B6rJz4ArAGmPuanANVgy/nRLXp9zT8/UWe17Svg/9vyb+TfscYL09odz55dyP/anJtpX/e8+V9X7dCfEYN+h6d91fGwRD1p/K719TXznsp9HYk72/46qT9APQHq89+vIv9Rt4Hdedf6/GfE9j3kMRPmE/asM9R2ud89EL8jGOf4nvXwex3rnmvBjgw7yVzvw/fFLBK3otkPvD/E8iT+4fz+UHiEmriL/fZObd6JPcShfOrp3Mvhk6Z+nx/7Ebue4JX+Zrkp9KvDT+6GN/JL/KU9WAgfjK/NM39FL0PTN4U5Un8tbj+Zt3N+6Ndyd+enK3p/wD1d5I776Ea89dXcn+P7l3/4/z5UPqoQr5J5Lgz6yf95fw456YPwb8Kvlm5N1d/jvr6+OmVc0fj9pvEXxh/bQtxSP9qXw/959mjIb9NPGXe2+X93XB6yvu7O+Er5nfL+5sNkx8s99mJy1Y/gb1msENH43A1PoaxR/L+FPMB9dDufXh7l5fgCPRmmrfPTjwOftqSv5ny6YnP0+5jeI5EvyP6+5E/8ZQd6D/n/sv8P/G/Ta0XY/CR/e6G+OOmZdgvuwbsmDgv7Svj7xz1DeC/yjzRDhyAv0Mh/kw57xZzb3wbggfyy5wT5nww38OJy8n8sV78R/395vVn/b87vkei/xf/eYJ+Eo/1g/6/sPur6HyonO/B+/n9mEIc3gL0KpN7Gpj7j9yHnEG+xCUmXvGQxOllPJM78X+J39gYvj7m8TOzHyHPpfz1aOOrG7icfPvnvt+8PQw8Pu8M4X8X/43B1nnPAd9Zyc9C7ty/JZ4k70dyv5f8RQ0L+Svyvin7ty/Yrw66Xyr3yPuH3NPle5g+8z4580Lmg+3ocyf1ia9NPG3iax8t3O/kXif3PLl/np54h4J9c7+1Nf3UBQ82nyRf49zkU0r8fOKx8HOb9fAXfDYBR9L//4qb6V1O3sSTxJ78P/cX0ftOhfdQOZ9+BL5XkjczcXKF95EVzQN5J5n3kS/Qy2z89Io/sdev5p/nwGPpdwp+v0D/IXL+k/2G/nPo73P/30X7/fCf9wGV2D/v4CuqT77ErfH7R865874SvpfBn9Bpa7xPY5+crxXji3Le+7L6xfR7uvrr8LMMvXn8b7PcX+Mr5xGt9d898evkS36qZtodDd9q/rJN5n38xP+Sr7Bu1s/Ce8vkp8t9TkvrTfLT5Twn5zx9jJec94xNPoPEXZeXYE/8lKNfWfmFnM+Qbwf8tvf/5C9pp/5f9TvhZw395H36t/yji3nxZ7A7fjcxHv8wT37Nz1/M+W3iJ3Lvj94A/J6dd9XqB6j/K+/7+ceV9DYYzDuL5M8ZBCaPzr3Jfwr/b/B+wc5Z35Kf8b1CnsZJmReVL2CPWsk3lTga+DdG7+vyEjwu97/Gw+3Wl7G5R8j9hv7FPEgL6T/nhwuid3Rzfpj3TImDHcV+e+PnDno5BbykkO+tjvbHk28m/s6Cfz/+v2/uacFq+he/3yajcw77Ft+r5x37NPI/kLyW6seY35IfK/lHnsm7QjDnz5cX5r9XC/PgEPuNgeBQMPe9DXO/k3GoXJf8w+hrX/5zc/Y16m9iv8QRL8j8wk73Kuc77R7lxIv1yPvO5HfI+zvyTUM/+9t8j3VB/668FwV/p/dDcx5MH4lDv1G5HvpXlMC6d595B5r3n/Gv+FXe0cW/Lk5+J3YpxlcnP8j+eX8F752JPyvk1/2gvASTf/RP/8/7xbxnXJ77ucL+MPvC5vA/T968E98IvDr3XOR6OvkF9M/34xG5X+UvuUdM/rnkMzhA/X3KNfJ+Av9L2fNL8l6P/pjcO4DXmUfXwBd7ZXzFjhlfW2VfBO8Vyln/Ps16m7zeYM3cE8OX7+Di92/205lHI0ennP/xj638P+cXffN+wryVPNuXmg+z/1+Gn6/1OznnlOyd+X8c+D49Zf4/HP3aidvTL+9PH8fXTuX6F86Lz7NeDWGntfAmvrVF7j3sD1taD1fp/775ZBb4Hpjz13wfbUi+loXvpXL+mDwAR/DjnZRratebfD8mP3L2N/jN/elU8uf+NPGFffnLIeUlmPjCvJ9/iZwvg4lX24m+36WnnZU3gGcN/pbA3xrfS5WbWK931X+y8vH8+VzjZTQ4HL7kkf2CPpOf+2N+kP3lK/aRWyf+nDxXk+/V3K+hVzfncup/LIGyIWBPdkt+i/WMjwrkzburB+Lf8R9w/eT3ZK+F+Llfv8S1fJ/vx+S3Yvfqea+Uc3r1yUtzD5jx+qNy7ml2pq8vcv9s/DUBx7Jf5pct9XsZn1O0ex6fV/C3OdG3/2d/uNT+7xp2vzb3qeUluEPOU8k/P/GkOU9n9yNKYF182brzD/wmrvBE9kh84Zf0vS0+mhmf+S4Yjv+TwZxD9zJe7iqsz0+aT+agdwG9dAD/NT6S/zv7kSEZ5/pnf3Kv+Tv5ov/I+3/0854559st804159/6JZ408ab3Jv6M/vIuvPj9kfvRj+kx96S5H92lBNblV06+5YH873vyfJY8TOw2Uf8PE3ePfgXzWd5/1uCPyVv4VPLxwrM4787sX97E51L4ivkAksc9+duTb+WAvMOmx+Q/raZ/X+3O5PeJAzuWPmaDjdBPPPg88o2n15XwZf/QAN7kVT8WH8mvPgpbz4H7gj35Td7HXwrmnXziy3vx59b008V4ze8jJD9K5fISvJm93iX/lOQHIHcfcp1YeJ8Q/iNP+O9mXO1jXB+tXCfv442H+9k9eepvZ9fe+nUHjwEPhr86PTyYd8zk2DLnx+SuCG9b8CNy3IjO/8rjuJA9f+Z//9Db+/APTdxsxhU/yP3eePRXgy3R/xr/Jxn3G5NjF3q+MPFf/DXzae7326M/g/7yfmLvwvuJJ/Tvm/dQeZ8CfzPlM3IvCFZHrz9/2DX77OzD9c+73uTXTz73nO9fRW+j6XkMOJ2/TLcer+SXb5mPj9I/8Ql515O4hMrqi/nIkqfs7PL/yhP5ftTu+8T36P+Ofr3pbxb+2iTvh/Jr7J387nmfvTznfMnvk/WN3fN9mu/VfJ92zvcBOrlPzf6kjvpv6Pf45H9KfGUJlM0F54DfwZN1PXEXxfX9AP7TNXlvlHPe2t/+4FxwNj2uZodn4M/6l/dL+T5dSx8V4C9Lfgz4r0u8GjgAf+P42Xs5L0DvZOM88WzPGzc3G0dVldvCfyV8j/GzzdhvDfx5bzgC3m8K7w9vpv/8bsH1/j+f/h/C3ziwmD/yXPPHPHI/6hwn7/K+zH1v/JP+k5/wPe1XwL+3+fxD+OvT/znGSd69Jj7wcfznPiP3HInPPI5ftUB/F+P3D/rNfv5FsPgeJflrk+c6eWyTv7YM3uTrqYfPnXP+zV+O4CeHg4knyPusvMv6jD3zPut1etmQXqYr53vl93yv5TwLH8nvmPcpH6KX38nI72PkfCR57nNOkvORkfj373X5Xa7K+yP07le+jH5P1782ubZVnzx6yZ+d/I+9EsdOnsRvHEOfyTcxBv+n4T/xkvle3j55BtRfZVxfDQ4Bc845PL9/pdwgcUHoJ+5tX+OrDZj3fWfn3DHvysF74KmffET4a4rfTZKPIvnKs39HN/Fzb7P3msTJKtdDPwHS5cq/0f/h8LxgX7YUHApWpPeR5D+f/BPgOxJ/eypvlfwL+pXjL/lUfibXu/hYkDgtbO7t/4OUV8G/l371c05SXoLJn/cmfrO/bIh+9pm5D8o5d+6Fkh/+IfTy+2IHKh8D/x78Pu9H8p4k70cOTv5S9nnX//ejjyvNp/+wYyf7vDPpJ/ntt1W/BP+X4u9z5ZzX5Pwm8X8/5bw39xD+n/j9CfxhPDgRzH1C3gflXdD68O2SfI3mt6/wk/i+5A9M3tO3As1PyYN6KbyXgS8nfwl8DdAvB+uDuZ9daXxtp/+v8Of38Colf2LhfWjy7+b7I/5wg3K+P3aPX6k/ndw35H4+97XsOQKdfRJ/k/hp8hbPT3O/eE3hnD33i4nv+gH+JeTuif43hfcVe5nnkx8qee0Op8/kM1+Bv/70d3W+i9FNfqQT+UMv8OTc75Ijv/f3Tejk/W3u5/DVQ7vF7Deb/LF37P9Iwf4L+H9+L2p43tXqn/1f9n3JV579X/Im5nfILgGbZn+auE7y5D163p/n3rorvov314Pp8yLj68K8M4Y/633yJeb35g7EX74/Gxu3+Q7N9+fkQt7q5Mkdq3/v7N9iH/6QvGWPWF+wXzYbPCjnI8blKzknZYecuzTAb+7VpuS9JvsmP87R7D4D3uTHyX1G43xv8bfk6buB3M3wWU85v++V78r9yFP8vlyB38QRdEscivIo83rP5CFJPhH1B+X3h9jtcP5zBf4akT/x4YkXz+/LXUBP7Qt53PP7kp/yn+bJ36j/GvVvWO939P9XlX/R/lN6+V95AnP+2TLxw/wp56DZDyVuLb/flzyp+d7NuW2+ez8Cc/+deSfzUOafL+3b87sC+Z2B/L7ACnIlr0bybCS/xhL08/tyiRvJ/X0/fr0xv2kQ+yR+O/knkmeEnMk/uR2+Lsh6D/+NyV9Cn1kXry68b5tJnofBGWBH9O+g9x/yXhZ8FjyhEB/aUzn5I1oZrw8nz31+jyL5D0pg3Tu24vu1cfz/YbA2P7lM/7Pybi37kOSxAC8rnC/mvDHni8nfmHyNE00kt9NP8XvyMP4/hX6bmVc6g3dq/y98dctLML9vtTV/yO9bfap8UPwJn9W0X8v+N8OTd0u531zq/8n7+jM/aRI/z3uE7FeMn8SH/sW+b8KTPMX5/cQp5uMq9N9XOb9T2QB/1+V+BL2p+KlJL/mdjK7aVYJ/A/vKTuzYKfsh/ZNP83l+cx1+k2/zL/4dvy76e76P8l3UKu9jQp8c3bO+qj8m55n5vb/koch7kMTvFL7/Jxg/OQfY1LycPMFjwc/x37pwf5f7vOTxbqHdieCb5OiQ/FHa53dHrgYzzwygz2fyu0Jg4g+PNW6Oo+/J8K+iv8R/5l1K3om/nPcYxvvd5F6Z8a8++aCSHyr5omaQ5zT6+UD7U5J/PefvyQfLDsOM/+Qvm88fGqOf96J5H5rfNc7vGef3jvdR38H6cz+848D8Xl0r9ZPQaZH8t/on33/y/99Cjyvxl/cyR7JT3tMkHiDnhyMKeR5zntgP/8lHeSv9zlQ+MfbIu8VC/sFm5PkX32vBjbWfTv8PJ74HHEKug/nRo2Az/vCm/rk3ye/H5T4l+Qq3DD1wUmGde13/fNc+6v/r8sNrfwD77c4fmmiX3xMsfn/n9wXbsd8c9nsSzO9xzc7vzxkXg/lR4rvm0/+X/G+e8vq5nybvAPwfpL6G/rX4f/H7sVHiq0tg3fd2vsPX/b534l3p90byPka/V+G7Bz1dme+l3BPnvSH+OujXL+9X4Huf/v5KfHvubwrvaYbCl/elT5B3Kvx5J5z8f7XMl9nfZb+X/d019J3fhf+p8L09PPc1hfOHhfFf63F+dyi/Q5TfH2qD3+SHTr7o/P5WReXoN/qOfs8hX8Zhcfy15z/7g8cZ3/3xm/fduyZeE928787vJ3dNvo/cI2R+Up/3Hzskbkr7xCvXUn6xEL+c36fJ79HcW7j//z92oYu2eJx13Xn010P7P/BPQiRJKhXqI0Uluwh1i3BHKWRps0RCSYmUSJKyS7Jly94ipUSlkr0U2YokbUSE7FLR95zf+/G8z7nfv3O//7nO9Z6Za595zWvmmnk1r17y/37nlRbgXrUL8Le9C3C/bQrwpFoFuC+8zF4FWGnPAryiTgGur1GA7yufvGsBdt2tAB9U/snuBVilYgFWBWuCs/YowPk7FmDf7clTvgBPJU+jagV4uf9rly3A3vDZlQtwE7r9yb+IfO23pq//u8Anov9OhQKsV6kA58G7sdMZ7Pc6/e5D98l6Bfg7+/zFPqPU/0F5ix0KcF2VAtwBHFFagK9uV4BX02PKTgV4IT5VyVUFvBL8Dd8G+J1D3iPJOUL5fH6YBt+dv46ti3/VAmzKzqfA9yBfh3IF2Bvd+tp1ol/82IK88e+hyrfBvz37PE7fKeKvFX+0Br9grz7oVdylAC8SJ93AYfw3T/kt7HoN/HzyP4VuNfWfgf9Dj3PZY4eaBbiKPiex553i+Uz6XEOfD+FTxdUUsNm2BThrqwLsRK4e5FoD/5D+R+B7MX698L+Y/vXJdy2+o/ixFv4X8dcfYAV+LFXvdvHRDt3x/NhJeXf8t6LnyNICXE++b9l7Gf+1JWdl9mtKrpfJU4adL9N+H/weUv9M8XG08p3LFOB12p1VQg9yfE6vfuBB9BtPnl3ZuwZYHWyM/i3oT2LHReRZgv4K5RuiB3xPej6sPw7X70agXw395ezbVvtm6G/Pf8/ge0rGYXJ/xx4LEhf8U198bKfegcbFc9B9Uf8Yxd6zydNG+X74DiXfcfx7OX3+ze+Nte9F7oH4r/N/e+13If809S7gh8rqPQ9vzC8XgOvIP4Z8Y8HN4ukq/u6u37zn/6OMNx+Q90v+qFZagKPhvdDfjV23of8ocTyWniuVP4DfBdGD/X/YuQB7gxPI8Rs7Li+AkgdB5Etass+jwcFN4JXkb8F/x4FrjfNXk6+q583P5DoNrEO/yfrLaO0fAQcoH61+VX56tLQAu6F/Eb1fo89F/PMBfCr6L4Avgj9rN07cv+p5uwg8MXHMH6/jdz18GPqN9Z+T0DkYfq32zcm/Wvx9QY/XlM8Uv9vR6xN2vUR5V/Xnk7er/68Qn08qfwn9/spf4b+y6D2P/j3i5R313tG+pvY3qn8BfYfrr2XoUR2+P/qrxfcKdv2bHc4hbzv+6MOvV4B34T/Pc6SGec8N8B8F4jr2/gS8FhxJzv7kX43fHfQ7WvxvLICSk8Gx4G/a70zu9+hfGV5b+5uMX+vVf5L+S1NO3rrknw//LPXpezs7PQV/gby94JPhm/XTjL8HkuegzDvQOZt//sVOe4qje8XFw+Aa/b25uN6Gf5qRfyz7VSotwJn88sxe/023A7t+l+dGxkf8p5Bne3SOzfzIuLiAXj3wL8Vnb/1luXZdyHsM/Wew57/55xP47+pvEpe7s99R9PmGnJXwnRr9jKOZf9Yix3Pwt7Trgn9P9B9MPfp+yH4jyb83vQ70/Nofv7nmgwPVu5GcW7HPZ+zb0f/XsteV8DronUaPXvg8y95f88uh8FGJa/IfXwAlL+IzB/4g/oegX0NcHWH++CN9G5L7CfG3SPz/pf2u/HUs+1WHH4//u+LuBs+BS+HD6fcxvzYnX3XtvgA/5a9T1etOvstKC3CV8n74X+j/E8g3mb1qkut8/viRnV5A92Htd4T/yL9TyXsAvhey0y3q36b/3gq2Q3df/DPvPBscgP4i9DMvP1+7ruLtfeW3Kt/Av3+CW7FPLePOh/rF7eBl/Pd+aQE+QN5t0bsV/evpU4LvDfCmyicZb3fHd0UR/X+Jh/eNk0/An8H3IPF1EHrD+OEQ8n9FnnfVPyzzOPW/0x9WB+oHm9jxbfK0QXc+PzXk99P4+z3zrp3R6aZ9u7z/Gjf2FU8V2WsO+dvAdxO3N5D/lQIoORP8A9yL/MMz79TuVXFwqvKryL2EvJ+BfUoLsCN4rnham3k2/g+Ku23442H4YuWPm4/NIP9S/Xm+8iH8uwYczc/V1X9Ov2/Dv3muva79UPSe5Yev2OtG/y/i3/LonqD9wMgv3o5lhxrGibr0iT/j3/i7nLgfxW+z2PcY/uuC3+viumkpPuo3g1dE7376lwfr8k89/LfB72H1K8CX8O+p/HOV94XT4GPZYxz4EHu2VX5LAZS8BZ4H7kb+7+G/4jMavlH5r+JhGX3eZoc309/Z7Rpx0Yw9ZinvmPUA9JqLz18z/+PHvNcMMh7OYp8V8JXgLfTsi+4F/JF1uebk3Q3/VvCX1V+g/nvqXyp+Ryk/gx6/sV/8eRd6t6I3U3w9r9+fjc5k+mQ+kPWC89ltvvg7hH7PofeqennvOQa/PsaTbdnrYnKegH9f/eYe4+Kj7Hs6/h3Ax7R/IO8J2g8gz7XgceoPo/9S+n0OdhRfnch3g/FkunFwMHxb5Xnf+Vvc9jBfz/vPYPregW8F8lfSvnj9cAg7Zh3xHvW3Encbsp7AvkPEy9f8cwN8KXtsYr/G5KvCjsOUn0XfR+lf2fMh7/NHFEBJf/Bd8Cf9fDF7n0WeQzI+Z/4JzzyxeH44ixzLlT/IDi8pX0Ge1vS7jJx5X8/zviO6o8jVtbQA1/P7+/w0OOuI2h+mfR/8K5K3Ef4b2O0a5Y/Cz+WfKvyxMzt8pl5l5afrX4nLxGni8zv9cXfjwzfwnuq9Q5/LwYHkrZD5J38+xM+N4NvSbzv+bQeeAx6s/F32aaH9JnZ8E/024r6teqdkHlpKnwIo6Y3eYPge2g+i/xfwt/h3PTzrxpnfFa8f/8zv68HN4Db4zc16Nbu/Ta456LQUL9X025Pgy/hja/wbaf8lmPl/T/1pVtaB4Jv5ty959jOOzWaf9uSYLT6qkndn9LM+24Le+/P3Duj+hf9eyp8m50H8k/XTysrratePXs/Rv7V43d64NBpsnvVx8m7F/3OL9jcGaF9Wu5fga5X3Zv9D6PMH/rfAL2Wv3dh/BfxOdrjefGB784GX4Zvo1Uz9EvxGiv/J7JX1hqxDrOGnrEfsYf6U59vH6P4Of49ebcBdwJ1KC7AM/w7B7xN8ypF/ivKX9ZMh9DxOeUvyfOH/vvr5ueg9zX57kzPrxWfg/w1/1AcbgKeRfw19fmbvH9A9Tnycan64nfKn+b0u/Ah8bs/7MHp9xM/55GtCn1PYP/2jAb2r8FNVsBP7Z701+37F+4FZtxlGjpPUq0m/jfrVHHz/go8kX6lxMfOKc0q0y/sDf9YFZ4jfP+l/MnwOuEa9AYlv+v3FP3nOjaL/EvGwzHOlvfEl76l1+fMf8vdH91b8L+DPH/Apjq/+8YP6o7LemfVlfM7P/A39scpj5+y33se+1dEbgf8m8t8tngdmf4E/64jfA4rWZ/6hX2VyZL/xxYxf+G5Lrp7ob6/8TfHZWb+4if2qoPe452Ff/O6kT9vsj+GX9d+sB2f99yz6ZV8k+yTD6X+j+keIwz/QG83u5fijX56X7DBB+58it7gcCr5I35vRmw/vgc7d/DXAuHuK5/ar8HX8VB5crX8ezJ71sn9kvJxofrMBvgV8Bf/J+B+Gfzftn2CPWvCF+C3I+qX+8DD+b+knX7H/OeReTe4+4Cv41Wb/6qUF+A57Tcr6PX+3VK9H1nezTuP/T/ivF/vmfeMn8s9Dvz99a+T5Tf7sg86FX8Pv09SfA28Eb4T+o953XibHdHAKfl2L9sW3hp+e9VP0su9Zm30vhi/B947sV6L7LPz0AihZBw4BV2j/DXvmub8WXpv+o9RfCXYMHXZ7HP/kKbyCTvIVHmDvxfA+6G9K/KPzWcY3+iafYBG8C7pPZH0EvczfMm87il6Zv+3Fnl3w+QFeNfsH7LkU/fixJ/0zjyhVv615xiXKzxC/I/2/Qf/emz8Hi8c6+tdA+E38O7UASi4Dy3gebZv1Me2OFjfNwWeU92LPmWAT+rfJ/rnx8gXxPxX8SL2x+nkj43cpPfaFP5T3o7xPsGNt/Xsf85P6YCn9v8J/Pfl/KlqnOJv9ppNnErt0Uj4o6y3s0Zffrufv1qUFWFO7szNf0q5K5rfKq4C7gNtnvSD7i2CF7B8pP0k8VKN3e/E4iH5dxMdK8TyTfKfh/wt6B7HrRHFxBzlvV/92/liR+Tz7zlZejxx7Fq2P7qe8Ff2bkntr/JOH1Ih8G9BpCT+VPvWyL4z/YOVVjK/DPcde1p+zvrJM+yfxXZb5Hfv8xL8jMz8AR5C3jfj8ld9/Axcqrx37wB9ht13o3xu9jeY/G8Bx6mW/uDI/ZN94HP2up1cPeg2BT9S+If2Sr9OHfjPoN1j/n+u51RreSvmn2dDH7zjtz4aPE481tW+feTr7Hkb/7fjxq+wPFr2f5X0s72cnav8v9I43PuT9dw92qCwe5qK7D71noj+U/q+UFmBD7Q5DfyS5j6B31g8fUj/r5WeQ7xJx8i5+L5L/fnKfBd+JHMkbG/M/8sem82/yNPrCm/HXNPZ/gFzl1Hsi+2vse4b6bf3fGWyV/BL9tzM9f6f3S+JlLb/mOb2SfRaQ81b0HiPPWfzfUbxPFgd38FeH7Fuovx0//UzeccmrEe99jbvVwd70acceGZcuzTowP+R5nOd0T+N4nted0d/b/zPEz0jyP0u+5Mv18P9D4Hjttst7OHgD/b7CP/viTdk1++ON6X2CuGtbWoDl0G+i3UPo3pv1UvX/5PcD/X8eepO1H5j5gPHhDfZaot2h9BvDXhvxv5N8pxsfW3kPOQE8kv+3sNcB7FuFv68jT94fnmOPLf6vx/5voP8uWL1Iv07kzP5gefgk8r3M7/vBs1+f/Luv0f2QfLvCd8XnieQ3oJvn0aLktbD72ORRwLdkXZf+N4uD8uL7DvFSXr2MCxknMj4M1b9aqFeOfMl/G4v+rpkfiZ+F2e8UHxegOxS+U/Kf+Hsb/XoLuieJj4wXzYrGkS9LC/AP/ss++Tr1v6fPE+L7Rnz3Qv9p9m+q/r3kzbry6qwvKO/p/+SHrsD/OPr/jO5T5Kmj/UfiOvPXX7Qblvd79NMf59LzdnjyjZKHdAv7Jh+pe57/6A7Efwz+r4mXAeiWY6fMj55kn92zL5Z1JuUne39qCnYFv8FvJf99Rq6D4QvJeyX+v7JP3uvXsccccfOReN5KfD2Hf4vsFxblX2Z8qsBOD8JPoP8U+InkXaNfZD0t62iVyP0GP97FHrtpn4TAF5P/Ru8O2Z8nX1dyfAm/ix0fw7e3+GuAz0/aH+i5dq04OQme+JjBjseAL5P3ZvyuZbdX2fU3+l+P/93s35jdsh5xVOIt+dLsUgu9idoP9/+d4B3gAvbI+vhfpQX4QfIKybO06PmX52Hm6yPJcyE6bbKPjV5Xz78LwFfxHyyeLhUXZdXviU4r9Kdn/kPf1fj1J/+27P0k+3dFvxE/PczeS8B6/JDnUEvyZj81+63Jr3oevclgW+P0t+TJel1/4/Pd+sMkdPcUv9kv/0+eO/x9dpmAb3f4r+R5hL7xf0ty3aT9HHxvFwcvgdPxyfwr+wqZh2X+NUH7q/m7BnnPw+dN/Wkr/aIMeBz932L3MeCN4IzsP2W/Tn8523xhlv6xkFyn619bkf809UrYewu7lIHXol8F8pYBsx+Q9f/D1b/OvKEzfteVFuBKdi2j312o3efkb0DfeezYSRxsUu9u8TSdPT+EX0vfj/hvNnzvvBehn3yT5J/szD/JP3lH/7hS/WXk3CX5MfSaRO/H4PcoTz5V5jVr4IeT51n+zb7GePiPOX+j32+d5y55Ts7zBd/vxFFn8H32yf5N1tVL4Flfb5h8PcXfi5dD0a9KnnvRrQL/OPtBxrusP282XuQ59XDyKWN3/++Y92v0sl6c9eNm7H2Fds3wy3i3iHyxa+zZGr8rM38lT3N07iTnXcpP0+87JW8Xvq/yQf7Pe1LD9IPsI5E/6/edwKvJ8yF5Tsz8mxyz0T9JPJ8Itsz4XPR8npn8J/GX5/WQ9G/2u069ieifkPNXyddgv+21rwR/PfZT/42s/3vedKZv8iCS/3mguKiuH1UDs770AXsuJ+e77HcfeR9DL/vle+R8Cflv4r+ch5jOHseIo3rKkzeTPJqs7yS/Nfva2efO/t1v+uMi7XfS/09P/pL+cqx+Utt4Nkj53vw9g9/WqHdO9t+L1lszn8385BPyXcGvv9LzUvY4U/zUSV5M1unArGMfl/gCK6L/J7kONL4/QZ/78hxk773IOZ582+T5w7/DjWtT4W3YsZJ272nXn30eh3fA/ybj6TCwJvlPR+8ZcXE0PtuLj/eyPiquXoVnf6Ij+tex+6DsQyo/2HOhs/Ydk7+A/qfsm3yBnAOaCJ9tvH0v76v0vj/vN8aFW/jhD+1eUJ7zlDlnmfXMrF8mv+kX7S8WD3cmn0a/+QXMeaOcF0v+6WnaZ531g/gn5zuK8hiyX9GXvt2Sj0ueZeR7lH7JJ7/G+Pxp3v/EW9ZvB+Cf9dux4qtb8pLw/UZ5zjP9zj6/gn1z/oh8E0oLcDJ9P8VvB/o8Rr9x8Ox/LWWX7JM+qV03+nXPOVz0q2SfXvsLlR/j/9PU65716px35K/kq9RSrz15ck6vKzhA+V7sdTI6OY+Y84d5ng3PuknR+ZRq2t+f/O70i+R3i/eZ+uM68O7Md9AbjP9+4MXsc6fyYZnPob8853eMKzPocyl/ziPfm/r1W2DOM+QcQ0Ny/C0+zs+6oPa9zYvWZR8054jI97f4rCUu/4EvId87/DEHv8RDa+UfKn9E/27Dzk3Qv1X5tvT7hr2/Vb/YfsnnSP7GFeQ50zi00fg7Iu+P9M5+6EfwxM9G4+VfYHF+1VDj37C8lxuP+5oHn0mfM9U/t+h5v0k8dhCnveDZv6rl+bY//W7ivwXab8eeyTf/TLucL6rOPhepl3NTy7XvK15KjetV6fEIejPpcQn77ej/AzL/I/cV6LYif7P4n/zZf+8pTrL/fjx7nuO5cyy8P39k/SHrDqvYIesPk/jleXBo3h+VJz8peUk/iat/kh8i/h/g92Xgsez1hvHwTbAH+j0zj0lebNH5ogni7zr0VoH74TePfseTO/O0zMtyfvhD9vsAbKvdjfT5Rv/vRo7LyXc9/v8qLcCp6pclX8aHQ8hzD/k+B48UNxOVJw//PnhZ9huD/lhwofJaOf+Gzrf4thGfm4vWSYrXHx/P+0EBlNQg193wO5KPlP0M9MqCL7Pfsejl3Nv+8C+z/4l/8oney3NKeXNxkH2BB7IfyX4b6JX8+H1yziTnzembfd/i9fm0T/19836S8wfaPajdisw38f9c/fX07qv/3KI8/eUQ+nXDr2ry6QqgZBf2/Sg4evuJpyPETyP4TvyzOPqjV3w+JPlGz7J78pCmF+W/P2+c2RVM/nsl/W5t8iLhOa+R8wixf84r5P6QY/P+knPV5KmR55dxbUDy0uED0bst52WNa/fkHHIpXPz9Bj8an+/Jn/Xu/dHJevjb5NvNuNvS+Pe+8bE+v55sPF4JtgYv49/z8D+ff76l3xj8ayTvNPvW/PUO/tOMq2Oyfgb/m/4Vwbvxq8UPO2h/Ofsmz7Vy0fmNnPurJD6K5wcHJR6z70SfnK/IvmzyOGexb87P38++C7IfzL6foz9Tu8vokXlUC+VZ50le5BB6PKk8+9nZ315GvuxvvwFvz74NtU/+ytver+4Eb+Tn8vgmr+AC+hbnF9SlT23xdzt9d1FenT3eYKeztL8r+xP6dRew+Dx87xL1wV/BN+h7S+7HIV/Okeb8aPIvD6Z3PXbMe3JL8XQQONH4sYScI7S/Lvmm2p+e+Z94O5u9JrPDJzkfxT/Jaz+RHNOz/oLvA+Su5nlbl922sOfO6CYP8m32mQD/Lu9X8NfJl7yi5Bklvyj3aOwBX0Cv03JeVvspJf4HrwJzf0/mjwtLCzDrRTspv5r82Wf5FJ79nvHsuwv8K/1sD/HRvuZ/4ykfxH69lVdg7w/Rq6v8LONRK3Zd7fnYJOfbyDULfI58J5N/Nn1+4o+J2Z/Eb/fkS7HnoexxLP5/k+9vePH8LucWivMf5ygfR+6e4uMG8fI5frP4L/vYj2b8Uf6e+ded5meTPc/+yPNFfHwsvq4HJ6DznP6ffK574Xme7Eue89Q/EH4Rf9XHN+u4+4NZv825ncxvc54n53hey7oO+Do4j/2/9FxoQN9V8GfxH8T++yl/ib3yfjqX/+KXa/gj5wVK6DuLXEPB5JeXoD+TvD3gyc85Ad9y5Ml51cu1/1i7LuToTq8J6md9f2LOa4qTrPd355chyQ8UB9eiH3tVMu9qbXwbVFqAdfj/J3Bs/I/uXbm/B2zGvjmfWV98nYF/E+Xr4WPY892sF/u/PPkWJf+N/s+xW9bnzyDXX+xefP7jUM+t9smLYKdJ2nfR/x8wjzkPfi45ch/byuyH8EfmP6cWvR/slnvXSv9bv0fp1zl5Ktrn/qA31d8T/d+z35T8Xv8fTI5RYM7FLAOXgzkfU93z+nh+bQnOR79rAfznvPF19OgN3yf7tTmfRJ/R8O/4cz6+TdjvNuXZ193dusLi5NsaB+5M/nb20dnvTfxz7ir5fS+I6/ez/s0+Lf5HfmFZ9L7J/Eb9a7I/I26eBcuSb1ftV4v3heQYCc/zt6L57hTj70P4bcj5AvbI+cdv6Zv541T+eAl8AeyFf0V2WorPn8bn5O99Bd+Hv7+E1479c58UvXeiR8/sX4qPp5I/Ab9AeS9+OTfnFZIXDv4l/rMP3y7r2NpPpe+J7HECu+V8Vc6T5XxZ7inK+bJeyafIeg89hqDfqOj9rpXxLO93rdnj6uTH0e8O5d+jN1v7zLdH4TcR/3k5f5NzKcrvYd+eYM4xn1xagHmfuBCdT5L/yF4jlX+CfxP0d0c/58vKwnPOLOfLMq/q7v/YK/Orm8Rf7lfJfSsDtG+T95fEs7iqwz4P02eeuBkG/pJ7LvF/DL3ck/M4POuWOf+XdcuF6O+a++zQi/3zfrOCfdai933O52f/A577qeb4v4f2ub8y9xWeJ14yni0nX/J7co/DV+TJfCh5JVNy3ka9mca/h41/F8LLZH6N/j7Gl+rGl7wfjhB/OZdUfF6pfdH60Grtsj60Fbkr8FPWs7J+dXbWy3O+AH5N1pc991/PPTLmX1Xwu0r5HmDWZ7Ju8xj/FN+zkPWL3N/yKZh8zdzfsip5AfjnfpWcTyirv96M7zbBxUMv4+4vxscd6Zd+kfyJBUV5FMkXjT5XFemV9afV7J/9nSbKD6Tf1ujmnFLuPTw+9zvpjyX4vciuz+ccu/aNPR9vg2/AZxy6T6F7Sc4tia/O4iXzneTnXQ1/l/y5R+HI7OuRbxi75fzYutxXR75/wz/jn6VgzsM8aDzIunnxevpO/PEb+kvRy/Mq6zn9kq9Nrs3sOzTjb86rg0/T/1zlDbU/lXzT0Em+UvKYjocnnyn3a01mlzxf8rwZn/jSr/9tHB2E32DyNNP+MvbPOYHMT0pzjyu5Mz85HP2s62QczPj3Nnn/IX/x/ZZ7ipfF7DBbP3s360fa5b7he0sLMHm4mR/UzHoOeTM/2AzPvbcnZD0p+8dF94flPrFXkz+B/mfJS4Q30D7z88zLsw+d+XnOd2Tel3lgznecxz6b1cv+08VZ72KP78ELwT7snH3ju8Duxpfbled+m89LCzD32lTJezr7nK18Yeav8IniezQ868c5v/p30Xt5J/yG0jPj9VBxPcd71iT2qsHeuQfhcf9PS/5A9oGSn5r7FNi/m+fTW54jh2b9kbyts29N7qPAjTlfTu5t1D+EPJXQz35LNe2SF5L9l+L146wbL875IH7J+u60ovXdu7VP/59ZtL46tABKfgHPBftl/d64dLNxcFv4BvJvyfyQHd4m/xs5P5F7EcHcj5t5TfIqbyktwOL8ytz7lfsLMp7PTl5a1mfp1yH3SrBfvzwfkreUPEH+Xqn9Bv/nXrmztM/7ZtYfc89G3j8fKYD/xFHOkyZ+emt/VPJ9yDMO/YH45zxGLXAB/T/P/mnWr9kv9n8M/9yPkjyv5HddlvOE/s+9P8k/3EM8bwbfEWf9lGffsAm/dIT/Qe671R8BrjX+5/x4zv+dyA65tzDrGwP011PEx4bSAkx+z/E578v/xc+T5E8fp/6a+B+e/MTcr3dM7v1VvrX+MVT/mZT5Fvqdci+Bee0M+EL0bkx+sfIayStFP/ec3EOvJ8nTjX3r5b5Z8ZN7Ok/DfyR7nw5OAZ9DL/fkNsAv71Ht0L+vAEpagwPA5uhnf3x80frhVHQP1N/Wki/3Ky1Fv13uFzYOtwC3iM+76Jd7FrfQL+eNKphPZ3/4GONX/eTfkSf33+X8Ve7BK6c/bA8mX2gV+ll/zbprC/PIvJcN5L8yudfO+98x6Od+35fhc8Hrsj7ILrlnK/dOZn2/p+dH1sdzf1LWx5PPm3uKBrL7EPTTz7IeehY7PqO8Ts4TKR/t+fAK+iPwy3rVbsaDrN/k/qHcl5P7dHL/0Dz17ybXF+yfedbCnPcAs6/7LPiz+PgJ/AXM+km1fM8h+ZJZ78r5GP46g90HJn8y+yv0PwK/3POf+/2b6a83GJ9a5fwiO/1G7mr0vA2e7070ZP+GpQX4dM4V438zeV4B65N3Hjl2Y/8u6O6JTvLbi/Nhkycb/XIf7vHsc49xJvuPf/t/OLq5r/9xcu5N713QbcL+nfHPPRJZr9g5863sn8Dz3tEq9yArL6O8oX7XAPxM+UW5FxD983O/XOIn9zcZNzbmPlL1dzAe5Fxj9nW+Br/lz8n4Fp8PmJL5Fj/cT4/kN+U+on4Zd8Fb1RukfF96/8qP08izZ84N5X4s/8c+yY8+3P/F939tonfumxqUc3M5X2Zcu5z8LcRzndICHCIedvD8vB5+Kbtfl/xb8hWP3/9kP0q/PgJMnvIg8TeBHS7JvC/yoTs38z72z/c3itcz55DnJvir9GtNr/HaH8geeV/P+bqct8v5ztyvdAd4nPnX9rnfxvNlcdH9g/PJ14z949/cg5/77z9m9zvy3Qz+H8q+R2g/vuicSe7PyvM0z9f2WUfPfqf+2Ji+e5mHZP61gL2eJFfuDct+7fn0HUX/PuCyovEv494IeMa/jeh/hX/uGXw++wjsNhcsrz8mHzfrWsnTOYd8l4D3mN91oNdi/JOXtZhdd8k9tPBVymuzbylYK/l/7Pcovp3V34kfM3/L/lPurcg9FtmHyrwy6wWZVx4jPnL+9UjlORef84Hlc38PvbqzTwd0JvJ37rM9sii/LufeMl/OuccX8/5sPp3zVMXnH3M/z03GzXwnJffzlNL3C3r8lrwv/LJvnO+QnJE8Yfp+zD5PZV1FvKwpOj93iH6xVdH5uSvxbYDvhOyrk/8gdmvHbm/lPmN2Xp77NcVPzpnl/rGcDz1R+5PA5GfeBj9Z3DSGbyTPzez7YM7VJV9e+3X0W57+kHuC4GvFaznwEXZom+/56I/JsyrOr8r9WLkPK/djjcn5HPGSe53z/YLc73w8f+xIn8Xqvaa8+P32a/bPe24H42/z3EsLr45exr2Mg8OLxr9n0c05j8389hr68/i3LvoXGO+mk6O5dvnuUNusx4iPYeyX70TlPqw6ufefnRehdya5V7Fn8pJ2FifJS5qQ/Dj6vEu/C7NvBe4vPpoWnSvP/uO2Obee8QH/7L/mnohVWdes+9/lZY3Lb7HbJTkPlPkh/ZLfknX05LO3IfeR5pHF9zSNoV/WpTbDV5BnEPv8yU9ljCM53z+aPCvVW5x4Yccm8CPA3OPxc9H6/8VF8mf9P/c95v7H3Jea+dEM8t5Hz0FgO/Sy7pR9ieQZJb8o36/Idyu2huf7FaeQ+1SwgXoXlxbgFfBd2eEbdpim/AHxUVFcj1XvW34eXLRvln203P/zaPL9so8Ovzd5wvDcS11JvSfRu8L/X+f9wf8/Zp+gAEo6gbeC94uHEbmPEt2cY7qffjl/8YL6b5HrXOX/Nl/bh/71wcHKR+j3+T7GBPa/JPvF+n9F9sh9H0/AD8j9CuoXfw/sA/G+2fh+mTjOPZXbFa0LZJ3gP98H064+uE/WtzPee/6USX4MvAv9lrBP7sHM/Zf/wv8l/aG//tgl8yh2np/nsn7eld65H+EQ9sw88dic9868W/vkXX0nDpJ/daXn+VL6vwTfg/6PsX8X5T/kvAn6FxdAye7a5R6F5F92oFfeS4rfV5KvkvyVH8mb/JWcmxoO/pn9X3ocnPzKzFfZ6ersX7HnO+x8VeKHfMnnfUC8FN9fNZ4fDv8f+1/TxcMMcGa+N0K+2+iV87+V4Tn/W8Ju10CngVmP2Zs9qmV9Sfv059w/8zV75h6a3D+T7zLMoF++y5D1xdzblHuceuT7HEX5rV/Qfz089+el36W/5T7ofH+vtf55ET6Ts56mvDhfYBx//Iz+beR6UPysMz705qd+/i/R/37VT6uS/3r1c768XdH58gH+vzrf58x99DlfhE9H+h0Eboz9sM8+CTf/Z3/k63wXL+vB2jfUPvdf5d6r5OHk/qun2Pto9t8R/js6Zxhvkn+U/Mhq5L9X/DQuLcDN6tXE/wD2/Sr3Vxfd/3JxvgeWe2iy3pL9Y/7L901eKPq+yRL1B4Nb9I8hmT+o3yLr/+TPOd/k3zYgf/b5PsYv72k5T5T3uHfY+1z9/jxwGv8vVl5P/eQFn8f+WUdKvn5TdnhB/C5j35riujTywM+D57tW+Z5V7s8am/dD/femAvj/8gk78/uH/J78gEPJ3zHzDn6bC9+SdWLzjzr+f5ofbybPGvYtw95LyJf9p7/o/4/6hxQ9X/J9xnyXMd9pvEr723JfF3greIn6ya/I9ymSZ5H8iqwnZ305efZZX26vvzfk11XwcuiMUf93MPkiyQ+Zz+8V0Mu9qDvCZ7JX7tlYTv/sH5fPuRzzjAni5Js8vzLfS/4m/y3MfV76X+6xWMY+LbUfQ54b8N8695Mk/874kvyuWkX5XdmXvRHMd3ezP5jz7rPynqL8lJy/KICSfrlfHd4/+Zf6a9bvsp6X9bvc93JY5kHZn+bf3Guce44fAcsrv5/dtniujQNrGO/vJ/fJ9P4r+9jk/0h8HcCfQ+B5v5iU7w/gO844lfl/fXrvA/bg703aZ91pNPqNs19V97/55xxCzqfnfSf5oxnHzywaz5smL68UH/bO9zPHp1/k+Y7+VPoPzbiqff2sc9GvpvisAR5Fv+yT5nt8XxeNXxnPivdP872yfJ8s5zOS/59zuDmfkfzcNeyYPN3k5w4ugJLq+m81sDN6k/T73BeVe6TWap/z+n3Ike9N5vz+2+Ip9wplHyb7L8k/7Kde8hCTf7gKzPeqco9r3t+eUL6WfXYiz/PkX5jzwflOjvEp3wGuaFw/VfsfxcXXyQ/NfQz8Mjr3QqK/n/HqfPF9oviaxT65X297/HKefDp98n6evLy8ny9Efz25r/of349LPkhZ8DMw+U/HZL8Vn71y7i3vNwacfKduID6P07eccTTnMyobh59Hfyr9c/9/vgdwu/J+uV9TvX3znpr+SY/kTTTNfZZF+68X5pxh7ifgp9zHkPsZbi66n+En8jfin/Xwq5O/6/+V4GHgWvRzf0fT3J+m/+b+jtzHlTyl4vykCvQ9PN+BY48TtB/Bnrcap3LP5AryXZnzHeKlbfLg2WulcfOFnA9G53ft/w86xGsTeJx1nXW0VsXXgC95aSSlhCtdP5EWkZCUBkG6GylJL6i00tIlISmhtHRKSUsqoKg0KCkhzbfWd57HtTxr+f6z17wzs2fX5N4zp2TSiP//nYoXwBKkz2QK4MJkAbz5SgDvJAzg/iwBbBMVwA9Jl0gTwArZAtg6RQCHpQxgVeA56uV6OYAlMwbw4qsBPJ05gMUSBLAmdM2EnsuUPxMzgBVjBXAi6VNZA9ge/PFITwb/UdIl0gfwPejJni6AfUg/Ri494Dtn/AAOJH8E/48EjgJuQR4NwTcFuShH5fc7/A2nXi/ym2QP4IWY/+arftx/85eA8geR1yL0loT8k9B/NjKAZ0hnQn4joCsB9Xbwf0noKwz99/i/Ge3kAX+TxAHs/1IAq8QJYE7qL+D/keh9YpIArokK4I/wdRV4j/93oadWiQIYSbs/Un829vVG6gDOSBXAi6RnIb9syCcG6dPySbof/Efyf2n4qk7+jBgBvA28FoCIJOSnhb+z2OWvwO20uwK7zZ0hgJ8i/7u0kxE+95iGnn3gnwa+AskDmBh8n4I/A/bQGv2kJx2FfOxX9qdS6PNL8k8gr/eB72mH5G9PG8A/wTOGdnODLz567Us/3w4cCj816F9dKV+a/rgH+/gUvb0E/r+g40/Kv4U8ykD3JPCeh77c2E1L5LsHeX5Cue/Buxf4KXiKIt/M6O8JdhsD+b2CPbxKvzkIvU0od5L6C6FzN+2th7805DdDnknoJ0mBJ8G3CfmUh77vkfe3UQF8wPhwH7s/TvtbyW8NPyWgYyB4coM/O/hS8v8CyudBfkeRf1bkF5/yt+BnFe2vALbEHitSPwq6roD3bei4Rvuvg2838lzK/2eQj/YyD7uagz1pP0nAfxc5huejhsh7NuUdP+aQbgH+4uCNCb+vUu4A48szxvWDpHdCbyPqv0z50fD3M/QPxF4Xo8c24N8Gn82x32zY5Qfo4Sr1L5FuQLkL1LsI7EZ/r4fdRCOPxuDLTb2JyLmy4xt0ZkOv05FXZsoNRH/NqP8ZdBxCj/3ITxc7gHGRTznsbxv4/0IfCaGvInqaCR1raO90VADfD0BEBfRzinF1DPBV+nNC7Qi93Qc2QR+5wL+P/hoN3A98Sv148HMHO1mMPLYj39Xo6wF6fAT8lvxT5A8C1iG/FPobAB130Mc85JkC+XVhvB+N/DqRnkR+Isp/TXuT0NMQ5NOO8ak59bYwD7SMgm/4Gg2e8+hxMPja0m5rYGX0eQX8eRwPwVcMuVWkfiHGvwXI/yEwHuWKgu8BeK4jh3zw1wb59OX/fdDZlfZzwU8q8J1DP7fJ/w55PAPPBOo3h7412Nsx+G5KPxxD+0koPx/+osEXG/zLaO838N0mfY/8mNhbW9rfy/jQFv23Qf5HwP8dfN4FjgRfcucH9JCC9CLkuwS4GLgMfKXQe2lgLORVCH7fB66Gz2bw3Rz6TkDfUui/Qvme5NdCHl1oryZ4TpFfDHufRP7O0PqqOPXtT/a3luQ3RX5/YDeLgOeRy2XqH6DdH10ngO8p+BzvXUefgZ7a6Lsm9SphDw+Qw6/02xbQfRA5TkYe2ZFPAervga716Ccu8ioFvlqMZ9VI93a8Yv+xFzyO3+UZH1MihzroLw34B0N/OeylGPjbk64Pva5Pz5GeSvt/Q//7tJuJeg2Q/wrkV4h2llIuL/RFUf9P5PthVACPgP8L5B0TPB+Tvw78DZkP+jEO1EdeD8j/EbqXQ9cc+NtM++/S/j7kPofyPWl/MuuOz5BbJ/pPdfJ7Qtc52r0JnhzgTw/+2+D9Bv4HI/+y0FOJemUpl9DxH3n/jd32RM+n+b8kdjUA/log50rw77z2AtgI+Dft5aP+If7vTnoFdHcHbobOjtBfE/7bQdcr2HkD7GwudOSnfiT85FbP8N+RdndQ7jLpJJSfTjoaeA/YFPrjYf/bowJ4JFS/KO2VQj9f0s4q5FUOPBHwkxX5NyGdgfJ1TZPfC/l+gP7bg+co9pqI9i9Az1jgy9A7nPbjos8MwHnk58Xe3nRdDH8r0ENh8MchfxXt1kc/q6CvMXxXcD8DvV/Az2zXa+BbBP751B8N/9toPzb1ppO/Bn3noZ381H+d8o+Yr+rZL0l3Qv9lsJvm0Pec9B+ej2BfG4AbPc9Br32hz3nlIf8Pov4R90/0l/KsZx1/H1L/NPZazf0i9GclPzVy/oT/syOvrtBzDpgcOk+ApwDrp1nAzbT/N+2Pxi4G0M6XpFPTzm+02wH59KTcXdcf8LWRcTAx7dwH//+gqwJyr4/dNUeP7ptrQvef6M/9ax7w7AFewH5OUP8kdpcYuc+ArpvUX4NeTtFuHcono34p9hPVGL9Lko4XFcA3KR/P/Q30NQFfcuiqS7o35fdin4uYj1O7/6SdGrS/FrxVGPfOO+9SvzVyPUJ/nMf4vxp8jt9pkUsx6q8Df2Xs+Rb4OwGvUf4r5F8N+Z8CHqX9W+RPxg6SgC/S+RW558I+ZoH3BvmjsP+RwBFA9VQMeWlf2tWf8JHFfZblaa8W+d+wvkiLXa9FTq6P30De76DXN0nfAm8k/NbAbtuQjiL/f+CdgB52sL/qhd7X0l/SMW42I90S+beHv7/Qs/tT568d8NPK/QH9qyf8/QB/kcgtHrAs9bIg70bUX0I7+6nfALoHwUd90ulofyLri2H0z+HAzvKHPCpCxxbSjq+7qJ8O+ZZ13wT+Q+BLgdxSArN63g09l4DXgBOQfy34iok9xcYOC5OeCZ5o1030hzqu3+B7GnAi7Z8D79vQv5j9exnSa5BfAdprDV87GO/akD6EfuOAbxn05KX9udjDr8Dt9L+r0Hvb9kgPhT7Pv6vT3wqAPxt4f3D+w54LI//Y9NfXwVcF+rJiF2fga4bnc9R7B/ncph/con556nuudgq72wqeTrTfGXgEfuqgv3rY60/gbUC6EXw0DUBET9p7Qvox+GOzLikPXEU/m0757+gvfdF7C2BP52HoTwX/zdFnnSjap/+UoVwP6lUhvzr63sy40hk+OpG/Dfl9CqzhOho87ZBHB2B74JvkJ3f8pP2mrgvg/xPG+8zUex35pUR/7wTgH7kpxw3kv+H5FPZzEzn0RT8nscdNlDsMf7Mdb0PnIcWQ1xXS0dBVkH77MvPdZ1EBvIo+xpL+GDvKAT37sZvp6HUPMAv2sdLzaM8NsO9I6lcDfz74PgZ9lZBfN+rHpfwY9FQB+eyD/izQ8Qrj24fkP0bvg4E9qD8OvY2n32yAr1+QQwnkk5LymynvOOn4GI0+Gjveeu4D7Ev5J+QnA/8szw+pn8b1Pv2hCfmXGH9fA47h/2PwVxh5Lkfvb8HnSsptQr6fua+Hj7LKh/zH5LsPvA9/zid7od95ZRj1P0f+Y4TY4Ur4eQL/T4Efwv8J8tfSvv6YK9CXGPpbI4/W2jv9swf0HWdcfgAcAhxKvWXp/k33DPppbPeH7gPAvxI695GfSv+N4xvt34L/h8hdP9d72F92xv3OtK9/U3+n/s2FlCtCP04A3fvhT//ROOrrP/rN9Rv2mwOYHah/LhP21YL6HaMC2ND9WwAiugDTIz/P+RtR/yLl60LfGuc36HM99bXzLfmDGO9K8H+90PzRz/Mf6v8BfT2Q/x3+vw4/72AvW6nv/OF84fzxlHr9Gc86Y8fuJ9w/fMG6wflxOmnnx46MKyOxW+dJ58dM8JPacZ70LujpgXw8X3af5v7sMP23Uej83PP0rI6v2JXjXGH6qf7rw9CnH1v/dT3ksQn5d4SO1O5T+L8d/LcF6v9PS/30yLM3dH9I+xMYb7R/7X409C5F/q/D1zjoTez6BXm4rtYPpP/nIva8z30B7f5O/eHQo793EPa6gfRH8Bc+fzlKehn9fSkwDvTqXy8IPSeh/xHyq4f8MsDvc/T4GzAn7d6gvH4b/TieNz+lv30dgIgp7t/hvxn6nArfU0ifoP15yH0+cC7wEPXLYX/9aX8leN7Xf0l7tYGboO939zeeV7t+pv52/ePMz5ux+y3AZ8jLc6MPaC/SeZ30Afj5ELv7g/Rz2v+EcdF5cqfnYdDheb/n/+6LPf+/Dj9bKJ+Qdv4HXd9gjxdYJ14E3qfcEfrVUWBFxpGznseC/y/w5+B/z8+/RB8nkdMs0voHkoFvcciPov/kK+yxN/LcR7oS8jnL/xMo73rK9VND5LUb6HnnV9o39nrUdRTtZ/d8EXw/Q+9U2lGPOdHL15QrRr3p0DfP/RHymwz/g5D/ffRlfMkZ5Pkr7eShX+YGXqWc/V+/oP53+5n+Qc9bTsL3EPjzfLQy7dfHjl44b1DffUcW8LofGeX6jv6fBjuNFdofRlJ/vX4N7G0q9dM4LyLf+8hlLPnvYTdPyJ9jvAXyXUf7TWnXfjGf8uOwY+OPFlL/oP0XuT6DrrGMt8ZBlIbfLPDTPCqA+ifKMs5f+w//dm30PgS87hdish807q0/+nkErEk7VeCvB/iqwudk2o8L3Q3ptx+hb/0zxof1CcWHLYD/E9jtYc9x4PtV42Wol4ZyM6k3APurb/vAsH4bY2dNkPNj6IsNf9P0N6LPJ/ZT8HdDX/oXC6LfKPLTwM9ntNcIe6kKvqvg6+T6GHynaN/1wXz4f0D/c3yojH5yArein8+x28bUN+7QOETjD7+G71Xg/xW53tC/Av2toXcS9P1K+9ugJ7z+KEf+m54/kb+Sdso5/jBe7jZOivSn1L8L3Wtdz4DH+W4YdjsQ2A776Iy8LzOepAIWAv9i43/A31X/EfiHhOJXkvL/Ov3t5MfE3t+hH1wInTMvc/8k/qgAjof+ytjfePRQj/H4IXykor96fuR5kudH24y/IN04FD82FXk3oN2f4Wc28jT+yLijyowTxh9dw16vAq8AB7kf0P8N/qXwPwX5FAH/GvS7HPq70v6NAETEx/57kf6N+kWRd37oG+Z+GPpS6o8i7f70HGnjWloCiyCfaPCnYH5Py7hQgnKZaa8pdJ9mXGwWWt+dgt4t1Ed8EdG0r3x7kGGcl/LNpr/FeED61xHaT4N88wFPgm8M9vMR+nSf7Hp2C/iW0T8Lkb5mHB/tJ6X+ZejqRfsrkM+78LMEmBY9zSNff6DnfrNIjwJ/OeylN3ZdgXQM2nuL8q+Az33tq9T3vOgpcBTjnOdKI1ivvATepeh3GHwav5EO+h6536O9+eDJxvjgeqgQ9A2GHuezHeArBH2loH81+aUp7/nxTvQx1v0e+fdD8ZPGTR4zvhN9nYDe5bS7B7o3gn+E6zP60wPsoKDxddjNNeaFG8gxo/E37h/0k4GnreM99EyBzim0F8vzd+p5PtAC/hZq3+irL+1v0z+OfvS/eJ77F/0rPvLZTrnWxl+6T6f9S8a7GI8MHc9ID6G/FIDvnaQTYw+ODytp13HiJniK0a+b8H9j1zHQ9x1y8fxrP/x7/tWQceMT8GOmEdkpXxX5JkCOnud0IX8JcskO3nboy/jYksijN/QOoF4RzyfA97n+/6gAqn/Xa67jviDtes79f0La8RxgBvr4hfGgDTAL+i1Du/o/jce/FPJ/HgztLw+RjqB8U+R7zHhh2k8M/xGeB9N/Y5LuS/296K8zgk/D/wXB19m4G+jMQNq4y4nMu/+j3knoawT9c5h/C+i3pFwN8vUPtTH+BLnoH5pm/A38t6D/VYE+/fs5wK+fX//+QsarXsbhkl7i+SL9rziwG/l50bP3PVzPx2Z95P2Prsj/ifrEvnLQfjfm82LQvw75v0/9D+nfNekHvUk/Qr5bjVOi/dXIYwnyGWe8CPTeI12KeqvBswm43fs42HtB0qMofx06lyHnl7HbHgGIuA3cAn8H0W9e6sVHDt2hd7P+MdrPxf/HqT8N/fdGbltptx38TaG+9w9eAxqnHR5v3Ee5fzrueSjjYBH9jeBfAH+TaScxdEZT33jXMcjHONgMnu/D91Dov218rPGPpN1fLKCdBuD7mf+nUq4seIwf1H/rfnyc68eoAHp/yv3KQ/gcCP2xsM+S5NemvW+Rcwrs/k36bV3s/SfkVIn+XQu7rYD9L4DvPdibfmX9zJPgrwzwoP4v6JgDfWVoNzP/J2J8SYd8HV8fIh/jxry/YjyZfhP9KPpPGoL3GfJ8Bv/PSedFPuuQu3GY+dHfj9hPMeyqqHHg8J/R8zPoMV7kn/gQ7xVA91rjSVwfI9fF6CE28qyCHoxvdt2RjHarQv8R9J+P/Nbw4/nK1TT/5l95yL/riT+BrjdcXxyHnrXQV4pyi4C/M27lMo6b9GHwn4W+odjvIuT/l/H58LcX+t8Qj/eHsKvd3hvxvhnl30EeNUPrWdevXWk3PXibQdcT4Frj74B/Au1f8dB3fO+NoZek4F+DfOODvwB0PwN638rxtyv25fj7JvicF8LzxVoXRPD3Leks1B+O/T8G/uT5Bvm9GZ+To5dI9DbYczrklQJ+jSMzfuwE8ljsOR3wtPEY0Ou+7wztuP/7HfJj0i/bk/Y+zlnkVx06bni+Df17scc49MMltHMD/I6vjqveo3J81f7fA69+TPtDDuQ1DPoeus+m/aT0J8/TwveHOkPfZPTyMfTdJr88/H4AnAv8RbtFXrWAtYHGXzr/rYIfz+n7e4+L9U4F71Vgp8ZvZGF99DF05gDWp77xU19674q0cVRj9N+CfzDt278z0Z/zYt8V5Yv8wci3CuPHTtL5wb8fevTvjcde9e9tDK03XX8ejwrgEeziGPAosAZ0RGGvZUPnu1No3/hc43IbGF9D+z0cr4FTje+CvxvYbSLXS8y/7ah/Gvl4HrSI8sZfRtJ/jB+JS1r/UUfW7Z2Aw4B7wX8cerw/7Hmx94f3Mn+Xpt0J3vsBv/GI9ZF7Dco/R37GD36KfsJx8N5L8z6a/tfhyKcM9ruD+qmh0/X+Teqfhu8bpHMa/6w/AvvJhH0aJ2ScRTNg+PwrfH9qNni8R5XH9QT0D8UePV9qBT1ZoW88+evJ/5J+cR2+3kBe+vfX8v9s/XXQdwR6x2MfLUhvR06eT3wVOveOT/+Jg35TkM4HHQO8TwBfxoXFRF7Ghzm/L8Hu6zL/FKW88TbNjCuHD8dT7zc1pt3h4HuPfM+/eiG//foVXE+KNxQfvwc6a4M/gvHsGXp0PR8HerxfZDy78e5LvB+Hvg8jp4VRAXSff5hyn0DvYvj5m/YH0t49YEb693fUD/sPvMehH2Eu8pwDTMv4k4r8o9A71/tK6Ged91exd+NDNiMv/XEPaX8p6ZnUTw8/7pf+8Pw0tH8ay3r+Z/S/DP0soX4f7H0h//8A3SOw16Kh9yF8L8L3IbZRfy3y+xOo/0R598C+1Yfyj6F9Y9d7vAdD/9V+t3kPEmicWErKrwpARG+g55Tz4TsR9b4i/RF0VKN8KvAsIn0XedbCHtbD5zrgTvRhfK7nI8bnvka6Jfa+xnMK14OUuw6fnksewX4cT8fQv5w3awJzQ5/rBfUd9u8b92Ic2AT6i3Ewceh/cYHn0Mca4BzsZy5Qf5X7zd7Gu6EP41yNb/2E/pIZfpdjVwewv860uwj78j6vftA/wO+7Db7nMF7/B/3Leyjh+MtfmF/qUu4pfLdH/8ZLVsRud4XWR7ewl9fAf4DykfC3IgD/3Ls+CvT+9QLk9SX15pPehZ6KIOel3usKnafUgP7C2E0s7Fj/UnfkMsn1AXqIr/8O+psDWwJ9Z2Qc9d3v9uP/KUDj0Vshn52kjVfPQT8zzqKj96eAO+Ent3EM1BtK/nrkOge9trd/kP/I+F/s/iHpfuAxfnc5MCPljN9tglxTIufzpM9GBXA248t3yNVxJin4Z+sPpF+uJH0Q+lrpnyF/oe8hoA/Pyzw/8zzN+L9G8N/fuBvoOUz7sZH7aeAZ4EL0PBG7Thha/18Mxfca19uHtPG9yRkPMtovkZP90/j1cP8u4Tke8moLHz9RzvjPztDnOtfxxPXtVeQ32rhr78vQbthv73lYEugzvst4LuO7XkZ+1RhXDsJ3cdJXwOe5hvsf90Puf8oyXtx1vMSe66DPVtD9FviOQL/n276/5LtLlXy3xngl2vNebhvwTjJ+FXndoT+OhI9H8F+O8cF3RmoBfWdkB3rZA577wG/dTyJf443/iZ9GP3Mpt8F3jyh/mvZfQH8uz0MoPxb6NxqvoR+D+mmN70Uf68DvPUv9z90pr9/Cdxh8f8F7aYkp/xXt23+u0p/eol98bby+/inoy4Jd3acd3ztxPe763DgV1+el0PcU7CAcP1Db90mgM6dxe9BrPHAj6Da+sSbyqIQ9V/dcm/RD6NQ/oF9gme9nGA8WgIgDQM/789BeP9+XAW9R4/mw123QFz7/7mF8JHyPMK4U/i/ph6W841Wv0H45P+ur1Mwrvr90CvlORH/FPTcDrkMvFcHbSX+H8R3orwvtXaOc9yuXex4M/v2Mj7WYX3xf4+3/uJd7EfqzadfobYH3JfTT+R4Q9Vy361/JQv0GwGfgyRgFP9jrQOjT36af7QDj70zkNo7yMz2/wR7qYR9JoWMY8nqV8eEd0oWh33k6Hfwbv/g5cugOfuNfXKeE1yfnKf8ZeLYil8vGC8CP8YvPsDvjF8cjl/3Aqr43Bf6p0Ku/dD3lLpBOAP5d4N9Au0Wgfxfy2g1M7T1B6NjBuJEL+7yBvI5T3/t/x+D7ONB4sRIhevTzfkO++xXjTEYbF+b+DPzzgB2BPxlfiF48twy/h6T/9RByP4C8jJ9S3+r/Cvyvof0OrDe601+e6g90fqd+NO03gV/jwZvZDnT08x4j9Vt4nwg+6qKn10Lx1p6jhc/PWkBfc+P2gcbnzkRv0dB9yH0N0PcBF1HPdwK9H+m5s3FJjuO+v+D61XXru85n0FcQexgA3rHY0wrk0BK5+A5CO+Q1CnkXZHy6At7xtDcX/jJRb6vrTP7/jvZTM766v+oc2l/NoN9uYB1Ym3R35FWH9j2vdT/q+z/G58yFnxbosTz0l0SukdQrRdr+lwt5GCf5BtA4yZbQPQi+SzGebDZeGD3q59e/3904JuVCef3rvtPyEXJIA/0lzPd8i/Y3oceNwBjkex7s+bDnxROxD99/KoP89qOvaM9p6S/qPR18jyS/Fvw6Hvuenev7At4/A+8B6vehvPOj70X4noTzo+d++g3D53/Glaby3B5ofOlj1hPD5Iu097GO+o4i+JznJpIurn8HOvKBZyb0H/H+KumNxonRvvchbmBH3pe4R/mlvj8GTAb/1WnPdxN6er/K8cX4du8XhN4fuA5/3n/1fp73X72fdwz6PP/73f2t+dA7B9gXuPjVf9MvvdL/s/dUmFfL6rckrb+9KvJdQ3uXoS838u8APy8onw45fG38Ce0ZZzmYcnng1/MWz1+mhc5fbvreLfwMZhw0Pq0y8p1Nu8e8T248K/yXoVx91xvOE/CzCnynwLOe9O/Kh3YTkh4HH53hrxvyzM3/H2T7d7vfAn03aDz6yBTz3//73lBV8NyAH+8NGifo/cEuof3NOeP9oSeScS18L8H7zP/0f+o7Dtj/v0Q+75K/z3sKnsMyfn2P3v5CX7HRVy/+993T8Huovm/kOXn4fLw35byvMRR5bPaesPsX5LYD+Av6j8/4lw79GU/VmPysjEcNXRciz1eMN4W/YdQbTbl93s8kf5Tnj5RrRf0N+h8996N8SuRjfLLxyMYnvwz+4sjDe7qXfYeB8lM8/0avWzx/QY+zkW8u/t9BOhH445D2XayZEbSHfF93/kH+e6KAyO8jyicDzzrSiSg3Cuh7Fh3R82vg3834bBxaDvhtRr134fsucjdOppPnZ9jTYt/5AU9m6Jvge6vUqxi6LzeD/pyJ/jGN9HTab+e5ItD333z/sj96H+C6Gjzeo/B+bA7o+Ml4HONDsIua2MW3vtPg/oJ1iPf0w/fzw/tF46AvGz+vf5b2fQe1uPHFyL8w9X3n1PjilPDzNf1kJPQ08P0L+pVxkN43NR4y0rhW7wtBh+9rGV/xUijOYgblfBfId4J6kfY9rGesL+fSz4Ywjxj/kgW5boH+D6F3Cvz63ld96Avf5zTf/y0n/XH0G/tOAenK5C9BnheNo8GOTnv/jvEiE/TlgL/+lEuuPxE+dwBTobeByP0actdP0J32E0OPfjH9ZPrHTrBefhtYGuj7mrMoNxn+zgA9P9QfPZx0Sv2u2q/xiSE/dXn08w38pkX/h9Cz9/sq0d/0K+hn0L/gvO97Hq4HDkB/MuS/knIDobe962/+9x2JCM9tgQ+R52nkfQZo/Ooe8Pt+4V7P1Y23Qz8tgb8xTh0Cf2HSq9FrIdKfUX8n9rwaOhwf7ugPR261Gf9za//wl5xyvmMXQ78m7cfxfAt+LiGfruRvQW9dvbcCPGh98Lk+/Rj7cX3qeyQ9gXWxH8/HP0d+3pMzrsD3Kachj130k/D7XLM890F/l5w3qT9fvw3576GfaOTbXf8l8ukY2o/1YbzowTgYTXo0+NNBTwZgemBBzzuo9wz4AviK8SH0r1nINTH0HoYvw/mZXiLOAIuD55DnD8gnCePINew/GrvwncAW0JeAfvYx5b1X+hvwLvy9oNxXwHb0V99TcF/rPreP/iXfO8Tu8wErud9BT74DmQ74vnF6tD+U9tbT/kLSw9Gj/mH9wvqJJ4Pf94fiuq8k7ftD3aFfPS+DDvX7DHvwHd7n2LH38cP3J10POP8vxL4e+04g+Teh7wf4agj0fX3XX+H33HznzfdHlkLXceOFsYcq5Jf0fRKg9z0mkJ+Y9rynPY30RfIrQFdC/t9Fep79DrnqJ9U/6v4uEeOD8Wfh88QI0r7zvIV+6jvPrns9B00Cv65/syDP0eipqXEv0O/67RJpzzeNz6wB3kTQazyy71e1wi76ec5Ee55X2e8PoCf7fxHjA5CX8RmrGf+8P/Q95Q8Df4YPzzu6+H4o9d0nlCR/JXIa5T3V0PnIC/srdES57gWOCMA/6yHXR96/DL+n5Ttbnj910y/wH+OwfoUExuN7PgP+vrR/BTgZWNp7a8yLN4wjIJ3A8Z3+Ow/o+5XeB/XdptHGATCgVgf/2+67GTd859X4zS7w5z2vO8aTUe4J6a7APq7f0Ifn+77r5zm/+yHjE6rBV2byn/sukN9n8L1g5HoW6H2OFd7DA3rfozDziX5H310tQX4M+N4IvgTQ2QX+E2GXlSnfGbn9SP5u7HIZdlpI/yXlO0LPztj/rh9H+2J+egKdSzyX8HyN+qmAKYHpwbOY/uy+rwP8fIt9HsR+pyHvKfDfzfu31O8E/eeh2++UnPL+I/rN5vkP+s8A/uWuh9znke5Ffe/1et/X9/3uwc8TYELswHdsUiD/d4HJgUmoX4H2SsP/WO9DIx/9vA+Qx3D4X+39U+MxoWuu+zLod70zCTvtE1r/ZCUdA7pfQc9vQ/899JkUPY8hXYf8VrRbF/pqA3uDvx92G0k933k9AV+zsNfbpIfTH04bfwr+DfRz4ycb0L7vW/muVcbQ+1av0Z89l/P80PO5xeCv4n0f8D6lfftzIdZVxiH5vtUA6PX7Mo7jjt+3fBcG2A7Yjfa9V3rOfQl8/oAcW6Fv3znpQL302G9K/vf7Q36PyO8PGXe/2bhR/fGUuwE914FZ0Mcj+OsG/66zegGTYa8/Mh4v9P1g6PJ+qO9Z1sC+fO/S9y3zo68sxnUhX+dzvxeUHzvNB8yPfP5Gr43Q6xrSBX2v0fgO75k7DpN/Hrq7IZ9G0HME/pdjt6mw/1y073fD6sHfBuTyEmnnz7dZd6Th/3TAK+D/Hr71W+nP8t2wWKRzAvvTn77AXuLwv36XsD/mJb83Ab4fPV92/AzFNRrnWB36lF97v6MDfvf/JdFrduPogZ6/Pvc9cORzgf3FTPCnA1+lAETcBe5E/88pPwz4GfBj+Pf+vu86e4/O952noM+pvv+FPpJ5fx3+jNMzDtv4vDih+LvYofi775gf/O6e3+HzHrPv3fu+k+89+b5TP/6/D9ynPql/HPuf4T0H6Pc7Hp7rLTPuMXS+lxG9+h0p31Py+1HHKH8ceBQ7P0M/Mv7afb33BzxfOYVe32NfUh6+PA/YC937gfvsX56vQnftkB9a/3Mt+tsvjBs1jYdz/4De9G+G47dcT9v/9UcaX5NbfwryXon8P6V/NJFu2g2/d+b6X7zuA1z/HzbuHXtaCh2+b5Oe9Bz7M//7fs1E7NPv9fn9revw359815WuM11fep7m+ZrnaJ6vGf/mvW3jjr2//U9ck/GY4PP+9I5QPPD20PvVQ/Qvgtd3zLLB5/f0H/uL/cj7//eNf8e+/M5TW+q3o/5x40yo34b63q/PCX7v2Xu/3nfTvQf1OXowftjvZfmdkfD3RVJT/l3jYZHX6/C/lf7i9z6rU3405fPSfxbRzpvYo/fnMrqeh27PL3w/0Pg84/KM0/N++nH+Vz++N65+WpNvvKH7Ud9X9LsPkcyvO5Cv+w/jhs7pP0Xfxie0gN6WwAPYxw+h+dd595b3s5DPXOjxuwPGexpfkwj6igJ9/3omcvD7BX5vRjyPkF8+x2vq7yH9C+0kcH0CjB96f9D7i82pn5/0AdoP33f2HnRR7z8gf+NmYkUF0Hsyfn9xCnhfSCd4/L6fcXnheD33RzW9fwtfvtetP2Ax9fYBvb90mfK3KP+V748hv199D538Vch5HPz5Xb0Tvj9M2u/rFcAuorGD1/R/kO/7Qr437Tub54yvgj/jSb2PWdT5xbgI7/WR9j3KxfA/Fb5zY+eFqV+ecvov9Gfov/B9Lu8lek/R+4nzWE/l8t1C0puQ0zbo1S+RF368L+D993B8o/25vnFlyHUb83V66Pivd/2M3/P7k77PcwF8vs/TgXpd+P+F94vJd//SAPmH38dp5fmS+wXSvh9Xgf7kPU3j/Y3v933VKcaBhN5b9XsRfj/iCXz4/YgPSPv9O7+H5/fvMnj/jf8fMT65j8kM/g7AwdiL3wHTP7otABF1gfpLvU/t+5Z+58vv6x6Dvr3IeR8whvdXsNemQO35V79TAt3VmR+zoW/vp1X03TFgDr/vAj3HvbeDfqZjX36/1XgO4x2NZ/f9xYnQcRY79T1w3wHPzPh1GjmNBPr+ws4ARCwD1gH+pj/J94MoXwQ6/f71JPj13bo79EfvD+h/8vswX5DW/1QVeebl/yrYeVL4C3+/0fg94/mMH/K99GrQbTxRQvTbFj3dAM9NoOfmftdRP67+W+ORUwBTAjtT3/XdFyE/jP4X79U0wH69X+N65ArjxlXgUPjPRP0crru9r4S+RznOB+Cf+061SPt+offn7gBvu0/Qf4d8vdcRfp8qvf4X9/3Gj+sfwa6zoscOlCtP/W2ktwLX21+gf4bvfnhPmfHlb+ifQP8Y6X41FJ/pdzWGoge/rzGO8rfB43sUvlPh+yzOr7sp14V859fRofP5/aSvQsdb2HUv6PnceRV8w5H3dfgcRvo89ZvQfqmoAGbwvMj9D+1tRi4JsfcKlL8fWo+7Pvf7q8WQu/dK3gjdL6mE3KsAKwNnIYe5AYh4DGwLvOd7Eb5Lqj8H+vx+nfeEvc9nnID71/D3dn3vwPcN/F6Y66nw97f7Ma/vQr7fA4dA//8B4Vhm0nicdd151I5V+zfwu0QZSqgIcSmU0qBJE6VBo5SUSoqieSJK9SBEs4aHNFJRHlEaaI4mpUia0RxpJpIGDb+13uvz9S7nWt3/fNe+9rn3Me597nMfx953580r/t/fBw3K+EXjMt7RtIyPNSxj5a3KuH/dMj7bvIwfrVPGVX4/UfkB9T9tUsZpdcp4EWyF7pINy3jlRmXsiF4b9J+vXcb+lct4aqmM7+HnJXRP0t8p9bUjz/Pqmyjf57kX9DN1szK23rSMDfz+hP43x9+9Ncs4Fm65pX49vy+6n/v9Ivz/5fc/o49mfleuWaWMs6uX8e+qZby2URlHrItf+BTsqn4X/Z+I7h/0tzH6PfDbHZ4C5zcp4+P0s73ydO0fxN967FIFVoY78pOb18NvtTIOVR6F/lz2X8DuG9Hz+vofzR4D8FGJfm6FnWqV8azQQ39y/FH50lIZ27DzRtp3iF3Idze9LVLfZAP8Kh+Cz7uU79PvI/Ag/T2ifgj/uRUfvZSXkf8c9rySXs5VPlL7ruTvT76l+BtHPzPUX8W+PdV3176afr/F1/n4nK/9Pn7vrfy+8hzljMMxsB/5d9LPJPJ8zW4Zn6fQ/7P0/SX9vsyOx6s/WL8rMi5gZ/SHbFzGh8kxVLmK9q/iY3/tdsL/DPodw34T4Kv8eyn97GV87UlvvdlprPbb1l+b30PgYvU18X87uZuo/wb/zbXP/JN5J/44Qnk5+lt4vqP2H6xPLnr+qFIZ/8H3TdofR7+1+cks7felt2p+30/5TeVv6pXxRPz85ve/tX+gRhnHw9fNt93R2x0/HbWfTY4f6GFr/Q9jn/jrRfp/zPPHeL4J/8h8eLXxcDL7dYKH6W8j/ni6efhM/A3X73Tz5lN+PxKdMey/H/66438pO27tucPp/Ql67sTPq+DvDe2narcjv7hC/3PMx1Xp6V7lmej9xd8G0ecm5rOMz4H6ncAuX9PfJug0RL+n+kH0sr/2r2q/s99P419PaT+EPPGvBcr7an8Lu/fH11v4nUK/mRfGKT/PHseQr5P6I+ijnueG6v8Z8/+j2jVUvoI8vctQsQQOh83wvxy/18GLyDEUnXvqrs3nj+zYg1666u9POAHerH6O+eYS/VWQazJ5tsL3I/TyH3rKfFHTe297etwB3sseSwvz5/GFeXQWvj9Fv5LfX0R/a+PhevS6blHGd+m3Fv84Bd8z1X+gvJx+vkdnov7Hee4t67XWZah4CG6k/0H8eqF56hH2qwuP9vzNcBDcm30bmcf+Mj7/pse8px7AXxv6epL/fsf+h7DP9/Q+xHjvmPcr/a6nn4me/y/+fze/bEGPjeDP6J1Bf0dstTbfn9F/a/1eQF8d+deZnt9J+yPV18H/Qv28YT7Yi9wfwpfwd5p+3iXPTexzVPyvDBXYrbgNzjQffkfe2bDoz6P5Wzd66gt3Nh9Vws/R8HLvz8fRr+99Ug9ez99nFNabWX9ezc+y/uxJHzt47mkCTVe/s/H1PX0NzHpZ+RR+tiG6/fjjAnZsxr9+J88P5Pg568dSGY/A30f6P4H+l5J3nH6WKf+V9R//GaH/fYyDfvjfl7z70ffj5FtffXt81uO/NcwPFeS7mP/syX+2wueKrG/Vn6b/i+nxcHLdwS6v4fMJemobf9Yu66ji+mlX/L+M/t/arau+Kv43zLihp7n6O9P4uAPf5+Hvbe3bqF9O3h/8/is8mz6G0+s5ys3V1yX/q+wxxfh7hv225++/8ZNt4G76+6EMFSfAsfBn8j5n/jsTf32UN9B/U/NWffodCLuR93X8HECv+5U8p/1LvlvP5z838M891c+j/yu1O0l/h5B/Hj7fUT7Z8xvSx4n6/928OJA/rNL/CvNEZeNsoPJgfnEXfdfCV23YGL311f9pXPyDztZZB5Whojt8B9bJetf8dyu9VlH+lbx3kyfr7jf5y1Xkq2D/zTx/Ab1v5/mX2aMleplHMn9U5x+7k3sye/6ov/n00ozfTGCnm/U/iNzv0+vHxtf34V+/mde2hbtnfY2PmVmPs+9C9bcqH0UP0zzXTf1k88ZyuCt7dEenmXb366ex8ox8X5En379nem5n7fcwnp/kR8XvpezftPqX78Pq+i2xy1H674P+8frtAk+A9dl3Xf62i36rGbfN9XsueW8i/yD+Nw1/1/h9fe1vNU+145/nkacefvsYp1Pwe4nx1ZA+OtB/Y/wPJ3cT7Yv7Oy3583v8u7Pn5pLvOX6Teeo+769a9NoE/XPJex//3zbzLzlX63co3Be/PY2PofoZAq+HNejzMO1ewc955NjQeHiF3kbz92bkvyzv5+ybKV+Fv/0K66Nn6e/g+C+97EJP2S/cC9+/5f3ALhfg81n6y/5QVf3WQeck/VfD7xb0+ww8ij7v4B8D/X6n8g/kr0b+t/X7Gn011P94fLXD13/xs5z+l1hf9beuOlC5Bf1coP8R+u+jvIf+P+EHh3lvfku/x6lvbL453DxXk/2Opp+mxttkevwfPkfg72v9taC/A9Cro//r2GM1HK39qfq/yfz2Mr5nGI8NyHeX/v/ExzfKI9R/ws4l8q3kz9tl/U6/z6rvQr9tMn+bH7qx26/wNO2/1f8r9Lsdue6A2/K7V/nDP/gboP2f+ruAfs8wvzya+UX7ol4b6f9H9Ht4/mx8T1D/pfZV+Om0zBf87BPlNvS/m/nhF+Xj6OcW/fbA72B89GGPM2AvOJB8r/CfA/K+VN6VfZ8gbzV+2wNf0+irD786NfbAz1vRP709bp59DLZE7yr0hsMtzTO76e8jz38MP4EPoJ/vvvbG72Ew33/PRk/w5pQTR+CXVQv7xdkfvoJdzjAfdFUfP2puvFShn67Kh2c/S//vkSfxhXn4b6ndOvBX/re9/mfTb81SGcdlX0D5VfJ24V+/s++55H+pDBUN8HOR8vPka2vc9lF/AHlHKt+rvvh99gb+epOnOvq1yHWc5+5iz5fw9TP8Ff1i/CVxl43y3Wv8ZN+4uJ98rN+7Gd+x69f4y/vvUb+fgN/P0T+Z3ifCzNcLyLMBf45+sn8U/WxD/0fwiz3Mv8fyl+vMj5fQwzmwMv7a1V+b/8gT/vvy14/wvxBuoX4+fsbSxyLt6+HvnjJUNNDPYOULyTfV711gcf+CO1YMhVPgYPKNMj99AFeWyvgLvJX/jMp7jp7uwO+X7NPY8yuMk23Itw59ds76yPqw5H06E997oH+p8pfk+wL2peeH0M3+7nT2Pld/5yonXtIXP38YT3tmHODvRvNhW/zfZ76cmv1489XD2r2H/5X5XjMe8p3SXTnfKYv9voN57gz6641ec/JmnfmX+ac2HEj+PfXXhb47Jf6o/RzYDd7Cj7L+yrqrA//I+us1fH2Nr4M5zD/o/s/zHT2/Dv9/QDnxv8T9lmWdTl8f6Hcd/nO18lD6vbYMFcxXcQn9jybv6+z4Gntvha/X2G8qfUznz6eo3x9/C8n3Lbrts4+S/W71x5DjJu/n0fxijPFfDz9j+fES9E8237ZV/xU566G/Pb3MpJdKyo3we0HiH+hPUR5knqtnXjmb/D3IO5n9f8971zjbhXx/42ckfnuzR034P/RPLEPFH+xR3B/urPwZfb2tvKBUxuX89mJYnf5m6b84Hnooj6SfEeTOd2Ut+sl67kP+ewy+HyL3w3k/0ve67JV17DvoPWG8tjOOb+O/Z2vfDL/34X9r7a7Bf76Lu6O/KT7zHfiX5y/1/H8Tj2Kv5D0knlrMf+jl+eZ+f4qe2+n/G/K34wdnZl9X+w/Ydyi9TiB/18R/+fc/+GzNnwdlfWe+eAkeDxegMxr92PMr/C0mzx3JL8F/T/rZXf87GtiN6fdN/T+i37fJ/4d+LzTem+J/TPgxLnZW/hx+of9n+M3eiffh7zfj8wfyzKWPu8lTm990go3hRiX8J15Kvuu0vx5//8PH7bCndpdmv4Gc19F/4rtV6aer8rHKNyS+bnycSr/Z75iJj8uU7zXux8IR5oNHC/kzx9DzduxzMuzi+RPgJfR1N/o1+Uv2NYv7nb3wczZ9Zj8++++va9+Yf9YL5jl6ewXuqJ+D8H+g90GJn29D/1+QfwF+3oRz4c76f1e7hfj9Cb/Z/2+VvBx8Doet9L+I306BI+H8vP/RqRR989+V5G9Jny/Gb8zPl6p/kn2b4Wt9dhqc9S37XclP6psHTiNPe/zfb/wcTf4NtD+DPz/nuXnsuBP++xbyU/7Gx7Xad0O/Ovl2QPf35DdkPeH3GvhLflnifQd4LvHAxP/64rcfPMB4Owu9VhX++MeTigO9N75Cr5/+l5TKmPydU/1e3IffFf0D/d5beQL5L0x7/no1P7qUPjen7/rGzQR2/iBxdnTG4Dfr0L7KiUfenf1a+qsSf0B/gPnsZfJPhzd5vg56k7Kvap68kjz5/nwfnXx3Dkj+W/IXyNfXPNJE/++xX+JdH2nXTXmdxLtgMX5Qy3jJunBJ9sPIdw391aO/2nB58hvQT/ypH71/jI/i/lKF8pX4T7x/Ebwt+2noz9OufeTNfiT6G+PnOXo+h3x/oj+MPJt4/0wgZyf2XifxGXqenv02/MxPvoR2q+Af2c9j//3Z5St0km/Snf4Wst+pyk+pn8Muq/X3MnyF/Mfzj+w/T6TfZ+j7ofi9+uQ/PUo/K81nB6Gzf/JN8j7H7xnKZ5BnHv1NyntR+WP2m4S/H5WzPky+Q/IcdreeG0+Pb2R/B7018Xh6T5w+cftj8Jc8jk/NvwdkP0L9bfBp+KL+Ly9DRY1SGTM/XUg/DyiPhwfB49V/j16+L1eRN+uV5GUkT+Mj5eRn9KePxD1uSLyAPhckHkd/O+hnJ3qfyt/6628dOAz9FvzpKP5wCLlXZX7EzyJ+0DN5JKUyPmO+uhGeCrOerYOvr5V38l75IvtnyV9M/Mlzia8+kbxg+mxNj8+pvwZfXdl/pvfMPtlf9V1wY77LlauQ/2D0sh8yBJ17sp+A/0eUm7LDZPS3w1/W7ZE76/fkXTyCzylwHHoHs+dIer+PfHtq/x37/6P/AZ77inynaV+fvX+Gn2qffMWN2TN5jMfgvz29HEV/R2c9iF594+YbOM34SPyiJ31+ZpxuxI5v6n9SGSqqJT4BN/NcC/7UFM7njw/R4zD+m/3X4eFL+2s9N4rcd5m/b6CfvbIeVt8icat8XyV/gp5qq89+7SL128ClpTImvlabfS9m135waPJ9yfshHAkzrrvgf2ty5fu/Mf0mv/FG8v8Bk++YfPmDkufv9yfJ/w99Jq64Af0sx/9v2V+DY+Dl+B/GrlfCT8m7QPs7jbfW3gsbeZ9Uou+J5qeH42elMiZ/ahvydsbfI+gm/pN8iUezX5t8CuVi/k7WMW9p/zz6X6tvZH5s7blK7BE/3Q3+mX0264PG8GPyPq2/C9jx9eST+H1Y1rfsEX+N/26Nv+qZ35QbsONq5f3ovS3chB4T/0l8K3Gtb5UT3zrWfD/cOHo78TP2Gar+RnqZbh20Zt+MHl6Az5J3P3L05O+nw16Z39hpIX6a6H+Y8ofqq/O3rPdn4C/v1+vLUPEGevXwcRL5H0pckX1+gfuW1Ht+BbrN8bF3vvv436fG0V708iJ6bdTv7vde+m2PfvJHkjeyr3LyRybzl4dgG/KN4idX5LuYPiYqT9T/Kny21//tym3pJ3aJPX5NfD71+L+cX52D/37425s+Jui3sXJv88Yi47k5uarDk5M/wX8v0e/35JiH/3fMX4sSt8Hf3vhdwV8Whx48Lfmz/H2WeesH9t0K/y/qd3/874v/z/3+Dnrv8NvsR/Snz0vx+63xubnxOrjw/X6n5y7P+0P779HpHnqbrS3ff70fR8JRcAf6y379Apj9/DH6b2m+LZFru+SjwOQdNCmVMeeYkn+Q77gv6DPzZebHEr9eBH9Cv0Pi6+RNXviF+Ex+eKOs98pQcQtsRw+XqJ+VeI/yP+Q7Rf9v5v1LbwPxm/hoR5j4aOKlvcyLLflpzcTZ8Hc7fV/Db1fB89RvZd4ZQf7N2HEk+dtlHW7cPgMXZ73Bf2fAk4zz9/WffY3scxTnu6fpKe+vqsqxz4+e39jvVdhnJ3KO1X8/9Z8od8/6in/8VMIO++f9PYM9k/e7Ibmz3s76+BX0Ej+8V/3IumuX89yxOd9Erp9hJ/b+2PM53zIHvyvRy/m6HomnkO8W7aonP7Ow/5l9z5xfbG3+6MwudfnD+ey3q/ZJ1K5FvlbaT+BXv1uf3ojP33J+hL6T75i43LXa90L3QnSL3x9n8/tPyb0pOZZp38G8d3ry5rN+w0fOL1SD1eE7OV+g33x/75PzFfi9jVyJh90OayVxPfmWxtmvcH30i99Xkas9+om3LNLfCeRLfKGWdeNEdB8ulbFG4sv0OSLf5/wg+2fjzYubGZfTjat+MOvBzIPZ78p5upbssz3sAA/jrznPl/NIOe+X833JJ26F/xr0sknWd/RyLjsM9Vzynxp4bz3Ij0YV8gmyb3yffu9kv03xc1YFLJWxpvaZH6sU1sfRW+aX4/B3N766KN+Z8cz/H/Te/Ya9h7DrutZfJ+Az+Uuv4nc/9umf+De+ZuMj5zuu5rc30P9sfrR94fu4BuyA/wHaDYS76++onA9E/yj4KD7u1H9V8m5OrvHk3E3/O2bf03ujwvOrss+mviZ5T/bcoei38HwzenwNndU5D5m8DPrL/smB+Mt+VfKgji1hg/4W0/93yTM2Ph+k5++Mm0rWC3PxO1r7b/H7LL09CWvj/zb0si9c3C9+Pvvj2f9Uvpmdks+Tc5rJE2qk37bK8z3/GL6egsOM96thb/L8pd9J5sMH4e7wx5xjo5dq2edXvkH9Duw4Cj+1sh+V7y96z3nKXuRogb9nzY+z2Pcmepir31P93o/dx6l/Ev0l7LUYnS3odVDef/n+zbki/SY/qjH6Jbhv7bWfS/x9hPkx8ffst9blfyfzu0XwGvKO5H/Z70s8JvGXK8rw/88NaJ/zA8VzHfcah8mnTv5r8jMnwHy/Zl8i+T/L4Jr8H/SWwvrkSR7WoHyfJ58V38tyXhwfB8P2hfzEfC9W0+8+ye/EZ853HkNfuxbOeWb+zfunuD/RgF+Usp9WOB8+NuvEJHrRx1zyJW6QOEJj4zfxg5eST5J4Fr4/x8cYz98Nx8LLsr+W9TO8Dib+knzfd/Sf/aht6aG4XzfO89n/yPdI8uGSLxd9JV7QBN896CH5z8nvz3N9m61dX8l4Xw9uax64Uf1i/nEmeq/R64qsX/CT88r5XrkTnao5D2JctFTfB78D8buv51uyZwflkebLbei1svIs+vtQOfuiu5Hj8OyPo9fS86vJcZT6nO8arP5W9tgg/o2f6fhMnuxt7PUguvne2N/82g//xfOfifu2y/em+a47v+rIX8cl3oevhsmv8f7vif+NjLe/jL/R2e9Sf0vGy5Zr85PzRS3ItxQuIedy9noMvaXJ42aH5xI/Kux7LVTuhP455tsaie+S5wx6uIj8x6F7M7pzwz+9JL6ZcbOZ9vke2N/vbXKfBPmOL0PF3bAy/nrwy/fNZ9/CQfz/ZPbZlj2T/3Am+5xGLx0Tv8NPHfTrZHzqL/GX3H+S+Esjcl9OT+/y3+r6zb5wZXwU94d/83vyCN7GX/IHcm6nXvK7lNec48Ff1j+7sW/WP/Pw9zD/2In/t9F+VBnW5JUmzzT5pVulX/bfQj+XqB/BfsP5Z747c77vLPPWfPz8g+4k9bvj/wD6/TJ5TJ7/ij1yL82P+FiuvCafHjbKfQfGzXM5d4K/MeT8Svt7+GvG657kOV19Z3zdRa93wD+z/jJ/XAlHZD2mvja/2BSdlwr559NyLsH77S/lHKj+U3k5O/TFzzh2qkE/N5S0Q2dj/nM9e8/S/x4wec6JNyf+fBVM/Pkg/r4Zui+SswN6O6PfBb/L/N4858Ot/75Dr6ly7q/Jd23OoY3LPn38lT2+1O8XMPH95J0m3/Rn/T2Z/StyJC8teWrJT8t9AYlTD0S/NnmPL8SN9k88I/urhfjXFHh+4r3st43+GhnnZ5JjpXnrOfz8bF67P/Eh+so9JF34V+4fOQ1fH2Tdy761kz+c8+h5jpzvZ5yxf0O4Jf6ezznVQlxzAMz55AP5d7usy7N/Qz8j6Svny9Y1/rL+/MZ4vfZf8vgfVz6EHO8oD6efr9h1b/Qu1P9E9VnXJk5yHsz6Nueecg6qsnLOP22S+048f7b+E+fvpb8f4N2wD/0V88OZYU2eePFcXPaTPma/V/j/TPPei/SY9d2N/GcA/d/M3zZTvx7CRyH8H+Uxiadot4LcK7KeVP83vayGY/M9RQ9D6WdffOU84pb4X48/j/L7Hpln1Z9LzyvRvVr56VIZf8Lv//A/GZ3cf9Mx3x/6Le5PZV91eOLryhvR8+HkWWTeaMvP1jUv5D61/cibeSX3q31mXH+auJH67L8vY7+T6HMCfYzh/1Wybws/zvngUhmz3306vg9WvjdxBnwNRHdH9r+Mfqcm/oP+d/g5NO9P/pdzTjvrL+ebEp/Zi16OzHnrnNdjrzkw5wty3uBG8+/r5DmfvUble1I59zrknOYN9PMh+2ymvwPxkXjwf/DTsgwVVekl96OM9nsf2DDxR/Y7hl/uQv5z9fsC+z2be7MS7yLP7fibRn/r4/syz2f9XJndFiZvDP8Xov8w+lfrb73kXWs/hV89HD/jH/eq/5J9voCLYIvE6/GXfNvk4fYN/4X7DnOePufn3/PeSd5c8q/zPZx4QuILR5Mn8YWcL7wl50K0y/nC3EtzC35zP82J+HvdeuONnAvFT9afiQ9dQc4blI/A152F93JX/Dekj9z3lfjMsfgrxme+KMRpEp9JPlfyu3KuLPlduV9rY/XZt8j9WlcY90Pg4OR3kX+A9nXxVc/4/pZ/P0quxB0Th0z88TL83YZut+T7JL/Pe+gU47cbvFi73LeQe+n6FO6ne6xUxi6Jw3qfHE2+G3KvEf+9Snl2zn/R63kw9yUdSl8dlO9VfyrM9/m15L6fHX9XzvnN5Hd3JnfyvJPf/brxkLz/dp7LeYDZOX+n/hHzxBfq+9PTevob77kmTdd+PvaIfe7Hf3/66Mi/j1H+GJ8PaD8DnT3ws4v+tkz82vM/qJ+e71/jKfeX7EYfieeN995913fJHfh4M/sVZah4MHnqysn/vp++N8z5a/N18g8G6Df3Yswyfmuh3zf3C3quFZxBnuRfJm6wDFYixy/4qpa4XL4/0T+Y/x4ID4LrlMp4Ef19qL/kr+6Iv9zXmPsbe8DkNye/7hvvza1yPgM/7yZfIgu/7POrf9V4OVa/c/DXWf2Nmp0BF8Or8f+b8bi1eWMBfXTT/iP2mARref8sZo8JuZcjfkUfrdn/A/6wt/m7H39plvwqetuTHnLu7ivY2/vkAHKdgH5Nvy+GK5P3r/xW4rm5Lyp85H4v4yj6jv5rsl9V9LcwL9xDnifwPc/4zPdIvk/mk/8xz4/y+yT8dM25uOwvat+uVMasf/N+Hs9fL05eKD396fl6Wc+wT+7PfZx8w/nHaHJXVe6Bj5zXzDnOZYXznBeZd59EL/eYvE++T+j9K3p/QHma57/P/VnZb8i+YvIjPNc0+9/ZP0l8MfcG8se5+V7TfkvlFuQp3ieV8dYZf8XzBbkfKPcB5b2U/M+sd7P+PQ+/Wf/m+zDfhVtlXvHcBdZTv9D/xsbbAO0nsuer6DZC53X065nfsu+bfeDs/55Thoq3YO4n/IM+ci/RVexavJ8o/IfvCcXvW3yvDx82/16hfm7yz/hR4nOD4TnG+x3mi+Qjr0b/OPab4vm/6Tv3I2+Y+2fwfQnM/dhf5/4aenlK/x9qv6QMFSfB4TD3b27ADyrT+17skfjXb/znSPKtpIe56PUm1yhydvX+eVd/n6v/C9/ttX9c++Rv/g2Tv5l8zsnss7lxvhR/x5LzAHTnsO93cKfEx/jP+JznhqtKZZxO3x1zT1Pi9PSbdXf0XVx/7xB6cDvYx3Pna/9i9gVhW+13Rjf3ww7HzxP4u5V/DMg5NvXTsn+inHPDRxbOD9/HHkvgH8m71D73k+U+sn7Jz1TO/axHeO/mntbcz1o8j5lzmrlf+dXCfUutyHl+yvSVPI35+kt+xkr0vsu+C5yR9wj/H5J9kcI8tj9+lsIDYX31Y3OvBWyo/mX9zIWHZT7Kfmriiznvl3PoyslveZf8ybdPHn7OTyX/tiG9JA83+bcz6aevfl9RznmNpeQ/Bb3cw5T7l7ZNvNHved8+rX41fR5UuCc/eX/VjLe9+UXWv83I08C43iLzM8z31Yb014s8VfH7YuKT3j/Zx59a2L//0vgZbtz0SR5Xzi/hL/cnZX/5M+0zfnKu+GryVw1/ue/BPDMVzvbcYvPRv61DpuJr65wLw8cS+rnC/HeZ8Xc5PLBUxq65v7uQJ/ku/pLHkjhMMf5yLP96jxwfs+Nx+Q5lr73Rq9DfCeichf5Zypez8yLl7A9+op/sD24IE/8+Bz+Jgyf+vbn+D/f7UfSS+8Kn0cdU+HjuC00+P3uMpOfcB537veaQ+x5+9xE7tKKHrDez/qyb86Ha75L9r9y3UojH30b+YYnXkjv32/e1HvjLe/JS653R6i/S74/67QrrlsrYw7wxkJ8MSL4Sesnvyv1Wxf9/kPv7opfoKfr5Puc1C/cnjSzkx665D0B98mMb1Fv798Shc3/bRPWH5XuW/3yNv0bmqwZwHn1Nxd+pef9m/0i/JymPQPdt/U3G5+P4S/54cf9mzf4Aez+TfHL9765+O35Tgx7+5n/reH6z/P8H5fP51w1Zv+k/dsm9FpmPZnqfPG9eSz7aMPyv0C73Q+e+6NwPvSzr41IZ838SXk1+Jn6PhZ2Tv6L9LsbRB9mPoe/90Nkj9yolHu+5HvrP/l/2/XJebbH+X6C/GXB69uFy/sF7fbvcy5jvAHRq6XcY+XZM/jl9JB8wedTJC8z+y/386R74QPILtE88fHHOqRbi4y/Rz8LkQ9LHC8lvZ//sY36W/Vj1uR893x35Dsk94xcnvkzejPuPkn9E/n7oJ96aOOsV5r+Z2q3W31naH5/5q7BPnPVqK+2vor/34efqsx+Y/J3eiaPj9xR2+5Fdt2O//6A/N/Ez38kl9ffov7b+LoeJp2cc/uL7qTW+i/ez1Et+JGxmnr0w9y0pJ/85+dDJf16S/5tCr8tib/zf4/2xK79IPmLul17IPtkvmZX75LU/iH9+WFjnZH2T+2uSp5d7bJKf18L8fyH57iL/puS5PfmD/OEX/J8R++v/SZj7fCppn/jN4fBl+JT2v6M/JvfDm6c+VH86+s+Xyvhr3qPqE1dKPCnx2F7ZH6X/rDez/sz+zq7oZ7/on8Q5E/9g3yPMm4fDPelhzfyv/YzsZ6O/PjsOy/kD5ZzvX26+3JFdnuLHuV8s8bfrydmPPvbWf86LZX2Zc2S5v2ZW7m9KPrznfsz7V3+Zh3JPe+afnHcb7/dT+GPOv43Nfrv2bfw+FB6c/PZSGYv31/yqPADOggejc7v+c2449zqtq//EzXO/6i2F+Pmb9FvH703pM/dP9KKfnKc8DP4M92Dvi5VbK8+h3+n6W6k+5/Fy/q51zl3h47Hco14q4wnsnvtduxmns7V/IOfvPD9N/+1zbqQMFQ3Qv0Z5S/Xf6i/39F5TuK93hfK5/7L+fBn94/nNY/l/AvirzJ/Xgz2sPw/RPud/cu4n/7ck3/8l/rsa3yfD3FfTwbyU81i/G5+3a783+xXvsc7+7Hv8dhd0D6K/3ZUTfyvGd3I/TL7L8z2e7/Xf0G+H3+K5woXJ0/PeagtfY/9WiUPn+yr34rFj/PtX/TXM94R+d6GfxO1fgXvQV+4XSNzmvNzrCnO/+Wjz0q/Gaf6/2J3J26CfnvjLPWO5X6w6e9eAG8J8/17p+dbG9bvK5yb+kHUz/DH5kvr/JnFFOAnm/Z77gXMfcO4HHsI+o+ljmedOY7/EUzvw++/5fe7BuZR+3qCvdeEF+j81910ZD3nvF88/PUP/uf/qWZj7rxbpb7x5/3b81U2+rt+f8Xtz7+fnct5a+2PoM/t0P5E/9zZtSv/Rd/LY57HzTfR6V6mMF6L/hvp74MP5/jCu6vObnBf5GJ0uyT9J/NO4vYq/Jx/9JfqoSb8bJ96Ij7OSf8eOnX3H5X7cVeqbZ59YuS79vJ37rOFcfE2hn+yPZl90R/LdmH0CftMZnpD7DNnvUHy2zX5z7utI/jG+Psn9FIX8j5xjb5k4I31eo9/kHT+Ue0zz3oa5H7ixfvN/iPL/h74wP96f/JF8Hyc+mO8bv9/p9wPxn/vQqtHHnEJ+c+4tyD2+D8H4R+fs79FrHeXcB7aNefHe/B8mmP2Ff1sXb4DPYfzrHPSml8qY+w0Sj7jO81d5frb6nMPanjxH5nuw+dr9p9/z1ec+hZ1zvhJumXWc8Zj3S+4hK94/9ovfv+Q34xN/Z6/LlefBdfjH+lm/sM9SfnIy/8x56uQ1nchPJur3NvZ9KXm25HmfvPn/RrkPsPj/IXI/4NH4vtnvzXP+MfnB7LsKfxexX+J4+b7Jd83h+Mv3TfLXk7d+PfmTV7QqcVX6b0vO2GsD88k1ufc19wDrv0X2RZL/gt7C+B/5kj+SfJI1+SP5/7K5pxtmfnsLX4P1W/z/pbmfpxasA3N/03zjpp5xXUF/+f96N+X/u+HnIXw/of4RfnN07mfIeRXPn0cfOSdyETo5JzIIvQb0N1j5s8TT8fsUO3dTPq5Uxk5+/0y73A/ZNP5rfORccc4ZT+VHn+gv9/pcg8/cD9A3eRnk2d78shX+zlad9XPuD876Of8/NPHsxLsvUX6IPibByfnez/lM9P4tz/wn8uyJbn84zu/J30i+RuafzEf5vn+fPfZCN9/3V/KvvvQy3fsx+1kT8bdXztkqb559AvysSNxZuSn5sz+Y+M3D+X9h2Z/U7jDtRsAt2Dd5r8mDnZV9InK0sS7IeYjjyFlT++L9HhuQ6+esb7wv8n8MFpE/94e9nO+x5EvDscmnSn6XfnPOJedbhvD72eaZwcq3qX8t+zKF+0Py/Z/7/+oYd3vhM/f/Jf/xk+TF0VfyHyvhr5v+P0heQeJHnv8l+1WJG+Ev9/JlvZr7+Xah7+3Nf3/Q2/PkOx793KdWk592Ue6E/qHKe+ae0MRJkx9K7jvI+zr8GZ9H5N4d7fL/7Q7N+9dz+X9axXvOJisX84L+SfvYDR5NziH0cXoZ1uQBLICJ/+9Kr43w9Vr22fXfSb/J/+tfyP/LufOv2X2i8hX6O4P913xnkSvfVwfn3I75b2zOW2W/iz2X5HsC3RXK+5gX3s//UfEeTv7vTPJmH+ETmP2E/H/2nXPuL/kayf8gd6vcS69cm35eyX1Z8HDv8cqJ7/GPErnv4R8l9bXwuxc9TKG/aegvzf3Wytvw00/z/Uxf78FD6SH72Zdk/xrd4v/ZWu29Ncm6ag/95P8P5P8ZvwHz/44/J3/WHeflPvzC+iP/RyPzZf4fdO4Py3mtnuSuwEfOb+V+g9xrkPtPcr9B5r+nPP9bYf5bRR+H0G/X5P/m/U7/b3ruhcL/w5vMrm/RYw24JXr/B3hBZNV4nHXdefTWQ/sH8ESRLSlky10RKhLKY8+atexJQoSEqCdLkSWyhJRSSAttIlmzZa9QkoQ28VQqLXZR1n7n/O7X2zk+5/j+8z7znZlrrm3mM8s1cw+rVOH//w7atIxbbFHGA+uVcUCNMl5VvYw1K5bxtFIZn1K/be0yrtjR/+uU8fCaZbygVhmPV2/bXbQnv+4OZewpPUP+pto/HF9nrV/Gzv6/x+ZlHLlBGUfDv3Yu47HSzWFJ+TnoTyLPsbDOVmW8Av1fti7jCf4/T/q5umXccZsybrBTGV+Aw8n/WxkqrIEnwtXKTdDu+uS6Tfpx/M1ar4x/aqe7dK1SGS9Xr3Jl9DYs43b4f5G89TfCn/Qr6J+ofBf66bZJGceTb+y22mPf49lxar1/8hV+Wit/AP2/hN+X4aXwbfUGau9+2B821t5Z+DsbtoGP0e+v/PI68j5Br0+Qr4X8OeQ+AL5d75/1Z6l/YIFODfy04de70+PH6jepWsau+s+tyn9HT2vIO4m806WjnxX6z1Ebl3GJdH/yNa9WxspblvF3/WCvUhnbbl/GV5Ufqt3Z6G8l/7AqZfyTXu+W34I/fwCP5udVQ78MFe6EE2Ed9dfpt0fS90v6b3fpe/C9AN916escfNTX3lJ2+JL+m5DnKP50uvIf0+Mh2u+Hnz3gTvR7AToD2OtT9tlLO7/S04f4mQnrKbcp+1fXXs/0fzhY+89rtzL/WE/7L/GP9O8d9dNFhf69Mz4maW82/U2Wfz6/mEt/77NjlxJ+6GcdfVXHx1j9tzf7L8bvSO3VRn+1dIkdz0WngfKL6W+nzcq4ffw13wf6WY2fyez0iPp/0OdUfvwFPX+h3M3+fy4+Z/j/U+gPRH8mvfRQrgr+J+jPz8MfyNNS/XwHQm+H7co4J+MX/eW7txTdfP+q5PuC75Px10T+CPbZt1TGXYxPPenxB/7/HayEvxn4+tJ4cZbxd7F0PfU35W9b8+c34Xz1J9FLa3Zvxe595f+m/iHwSv38U3yM4o9V+ecn6FSih+Hov01v66O/mvxr5Q+gx4x7b+P/E/1hV3gN/jN/GOv/1fFxn3QjfGxK38dod4h2JuDvE+2/gp8LlX9d+hLy/pV+zZ/WQ2+8/lSZHW/C11n010T5bZUvfv/a6Rf1+Md50l+g8xa59qPfE+Bj8p9hl974HA3bamcavqYG+ek12l+D3iB+2p2fDUZnHH13hx8b/96mvwvRXY3v5dIVM78xLj3Hnhfxg6X0U5O/v23+0d/40B5/o9kr877MAzP/21i7VeCd+J4m/zn6OTnjqvwG9PqU9jsap8ZJ/6S9L/N/9K/Sv67Af1XyZD5UmbxV8F+f/fcnf21+eZ38cfynNXpXG5/iP1PpuyE5zmSHG+lhS/Z6m3/+xo5r8LONcflZ8pxKnxuzzwP0fiq+B0l/j799tTceH0OkF6D3tXZ3h0/Q07f4+1r7VdMPtf88+s+huzO5a/n/w/Ar+e9ot510dflPskc/7Y6T3kz+fvTRiXzbkO8I+e/zh/H021h/uIedhuiX7xtfo7ch6tcmdx04kb8Mk79Oe5PZaTb/OlT+MO1ehI/6cAC9dSP3/fiZQf42+BimvwyB9eX3ov+r+X3GxZ9gRf71Kb6G0dts6en853v8for+bPgqfZ7InpNKZWzk/8eiPw/duXAOfEH5J+m1p3HpAvoeJ/9e/P4PdoZr6ec0ftU034vC96ek/71EX9eo14/+p8ofQF/j0TtR/unsMwe2Zp+ftXez/9f0/zbwJvQOId8LxsVm8SN6uiDzIn56vvTr6tfnj0OMV4Px14t8W7LHZvAV9toPf32084Vxqhe7DMj6gT3q4m9nuKn6kwvj/m/SGf+PJP8Icr8SzPeR/z8Nn4L/od+7zN/OY5cG/C/ri9XsOadUxo708o782vg5X/619PCJ9texb+YZmVe8U+g/Qwv9KP0n88WMj5lHZnzcUPk3yPEC+76kfovCuugH6ayP+rP3fbC18eMR9Q9Urjq7P679HbM/wT/+5B89YNY7WU89Q49LyZH1VmV6f4s+LtbuTOmqsAJ5J+rvGT83I1fsUNT/VpkvwhX4naG/Z30Z+zdG/2706/K7M9HblZ6XkP9y7T+D/qXwWHZezP4d0a9RKuNe6LdX/zO4j/rdldtS+x20O4l8r2l/gv4zi94+9T1/kH530O4L0m31w1els/7qr9wR7HUd+jOMC9W1857+cbP8ErteELugezX5jvZdqk7fe0Sf/KOi/Nnon0+Od7Puob/Z6M8t4Us7m2ReDCvwr47av448g/H5Ijo3q/8Cf/iY/uvQ/2P4/ZRe2rPnW+r/V/2B5Dmef/yQfR35mW9l/rUPf8v8awV7XCd/NPv+T7pE3yeRa1f9827t3UHuAcrdKX258qsiN3oN8T8Tfz0L+wG74i/zg7eMx2/CN2D8+wn6GoxOJ+kjtHuucWUyvs6Rzvd5aAVy+q52le6K/33R64z+NtJZ997IP6ait4T/fE6+d5WvDQ9EpzP/+4V/3ILf49jjB/Ivxddw2AEOU/9H6Suzn2Mc2ib7w/pPV+PyFbC2+r/haw2+/gOXqb8R/6rCHzdj529LZVyH/23x/6H/d1T/M/Ycgr/i+vKbfE/Yc6X6/+VfS40ny+DXcA96Ppz+D1Lvbf3lQu3fQJ+r2POc+Kv8q+Rn/+YbfH6Lv1q+J1W0dwZ97yD9hvaPVP5qfNwunf3jBnCn6FN+Q3odFb3qf1kvLGafA+DzxosDzSNeI9eb9HVgxkP0PzQf+sj/N9bOouwvke9M9L6UHpB9tqyb8XW4cXIv/O2vH3SQPhJuwp6fse9T+GxQIq9yD9LfIv8fS6+vqJ/90ykw+6jbq98Q/fnkq8LfGqLzp/7e17z6MHRfJf8w9n9D+wepN5j+LiP35bArPbXS/pX00xnuxD5dpN9i7x/0yxOyjlP/IPKfgO+m/t+Pfw7R3kB+Owgejs/XyHcNu7wqfS3+55HvMfT3pa+W6D+q/Vbs87Pye2d9yA++h9fC99XfMfvN+M45QvZXsu82E95OH9l/S79Yrv/Vlk7/eE5/W8S+m+DvQ/Wn8OdL8VP8fqRfj1E//f105Z/2PXsWdiuVcfOs//TPb+HPcDvtb579I3p5DfbR/jP4vwFWk38c+ovyXYDnGn/X4WNwxm/23jr7s+o30P+W+//F7JD+WIH8n8uvpPxTxou70L8z51z6SeYPd2feD59Rvxn5tuJvNWB1uFj5pr43+8HD9KOv8Xer9p6gl2r0WRGO5J/N0VtRKuMV2v804xr5TuHfC9jnLv3nNP3mdLh11lfsnnncwfrRM/h7h12OY5eT0D/POHKqei+rd4bxtoP8XciRfczsX9Yjz2r1x6o3IeMVOdvj/yJ4Idw84yu/GgDPgr/Q2yj4Jnq19Y/N2X+E/JrovUCf+T5/jO+X6fco/A/GfzP+cBx9vQV/grXobaF+f6xxoAv6g/H7G7wWLuF/X/GXH/jnMunsX5+v/GH4niud71D2yxppN+eVC4wD+T78UfhO5PvwCrm/pa+SeivxvyW/rg6fVm9c1ov0uzW9Z36X89DesLi+zvnMjZmPs/ss/voofvZUf4x2H0Z/rvr3mi/F3+tr51751eirVRkqvAg3LZXxa37Zl/6+kR6R/R3rwsw7DpaOfT6SzrnUmfSf86StpUfm/J68V2nvSno7Ab09tHOL+l3Jdw39b0E/g+RnH2cz+HnOyehvFn0/JH0cf95Z/ZPlTyuVcXvtb5Xzf3xeSo5V8KPs7+BnCJxPvj/Ub0efG+snB6M3gb5qoJdz/smwL/0/xG8rKfej9M3y15mHZH3RE2Z9sRN5L+Q352l3ofxqxqfv9b+MU5vKP5h/v6reGn72QuYf7PMMP3garqfc2fRyHf2/CvvTz338vi/sB7dG/2Z8HUqvDejn15wn0+ta+lkDt+MPe8hf4P9fZJzA36H4m6WdjvRRT/6gzD9LZfxWu9PIsYx+RvO7/7HLPOXnKn8YeY9C7xTp74y/8aO7C350qPlIMzihsJ/QnlyLtLeR/y+WfjXxL75zs+Hp5D2cPh5HZ4T0d8aRrdVvid7b+D2a/NlPyv5SRXxnf+l7dF9BtzF8n30eyfqMnor7O69l3oafd/nbIdq/ld6zTqzk/xPVryQ/4+lD+kNT9j0G//vx+6ZwOX5GGT9b59wV39eit4S/V6PPldKPy/+v9v5Ar0mpjNvhbzm9rcTPi/QRf8n8+EF4EfywMD/NvLRbYX5aW37We0/BueqPLkOFM6WPkn5I+2PwM0t6DTscjf4gev/R+LCn8jeS/1T8XqbeNOlmyk+hn/W1v3+pjF2kj8B/4id64/9r9Edm3z5xStp5MuPHv6zLjke/O/4vQ685Ow2Xv8B48L5x5xp2Pib7COT5zDz8fukn8duWfz3Kzi3g3vjoSv6F0kOMH6fR93zy9oKH08ccfB6pfrWs7zKPS/yG9j7xnXhP/a19R94h11b8/jjlxpJvI/6c9dNu+nfWT6eQ91dyHoTPCf7fg343zvln9l1hxpf/wIwvGW9qZt8v8zzpe7Ofj6/014Xmd9+Ff9+TnF8fxE6d6CfxVImvegler/525NqJXr7CZ1XzkaxHfqL3rFO+ZM/v+M/Nyn+Av6zX9qb3xPFVxV/i90Ya76qxQ74TmV8kTvBc/a4Vf8h+fdN/0Wv6T/YViFmhrvX2IP6UcW8yrIROxsGz1FsIO8BftdMavXXsNhs/qzR4he9ac3KeTc9P0F9/9nif/zzOXleT/3h0EsdzCnxB+ZvRbUC/ddC/nXwPq3+7et/BvuR7l32fpc/m/v+99v8qnAvdQb6cF41X/1D+2Zd9L6D/BvjcLXFn5M35SuJPE2+a+NN7+G83/n0t7A5H4XMj/EwplbGNduI/Wa+VlK+kftZvC/D/rfy/1P8ueuAPv8M74J/4/YY8vbXTRnob/Kxgn+XwQH7eUP0WZajQB86GS9TP+uck2AdmHZT1cZXM++m/Nayb/U1yfVCI1z0FHkHeC1M/62f2+CTn/vp75hcf6TcN4B30MDJxmNo/VflL0L8Y/cRzbaR/D6CXrL9yvpi48Jwz5ny5Mf9pBJvhL+ujjGPL9YOMdyejn/2ym5U/Gz/PoD9X+zXlHyp/UeLP2CPnhhmX4t8539gZvZxz5HyjH3/JPuTgwn7kg2X4exx6Em5Of6fql6fAk+HO6L+Kr9fgPHqqHv0ZL7427q6Cb/GHUewyih5mZb+F/zVKvF/mF/RzDfr3KH8+em3UOxN/J+DndnbaAJ81lN8ZP3XhjvrPSnQOUC/9d3/p9N+c916sXlXzgk7028O4tSrxJtKZnw8xfifOrR96O6CfuJwdCucrj6E33ffhWP3ncXyclPhmfp31bnv6PjjxKdkf8v/9jT9t8Xkt/V5I712Uu4U9BpWhwiQ4Ft3EJ9+F3lfab2Q87cl+GS8zjr6P/4ynfQv9akLi9bI/gK/uMPtJ2T/qyI45L7tBfjv8PaV/NNPvb0TnxZ3+SXdD/jlB/W2ks14YmbiK6C37t8aLjJsPmP9mftVfuh3/GwN/0/6L+LtQ+aaJO5c+0Hxoz9yzkf6qhC/1T1Ev8/zM78PXDehlnA9/D2f9g8+70NmTHXbM+WsZ/v7e7Mg+2+lvN8C27FpD+3ezd8bbjMeJ71hP+0PpN/PcDbO+y7kAHIWvO9j7Zfr4qFTG3chRF/3t9Y+J9FAh/YP+e9FX9klqkP+2xM8kfo+d18Gcn+/NLt2MgyfGvvrDsPR/7W2iPy/L+RL9ng2/hgvJdyT+Ex+SffnEh+T8Mfu9t2R/G/3YZxtYs2CnysaVi417HWDWv09J38COz0g/qr3n2K0Zu+2WeCT8ryLPSngTvE1+Lfo7G91K2hmh/f/Q32Tj5+DM79R/l94/S/yn9JSc66LbGvbnL3uUyngZve6qvfX9//jMX7WTeMnR/Oce6Yb0ORV/DaRn0u889riJHe/gB4lPfQDfv+F7kPSRaZc/Jo6/M38dg89n8b81usV9nr78sRY/3pgeOqmf87Ue8ocWzttOxM8JcBg5f1F/rPa/ynqSfs7P/ii609njGumDYEX/f1d7i/jHKPqvx/51cm+J/ffU/mp0btevfiDfGfQxNPfp9JPe7NIK/dn8IeN4cfx+Kv2NPh9BJ/u0P7HrF/TwGb5qoH+IcWtY4kLRO5Z+sr/2u36T/bXstxXvS3akn97qn0tvy/FxrnbPy/pdey9kPsAfL1Pu+cL5635ZH+Z7yp7PkC/f44XqZ/5Xg/62gpn/PaQ/DIYPw0ryq2i3j3ajp2bxB/KPZ//K/LkSzH7qerBCYX91uv5SK/shmYdIx//j90MK/v+l/tQ29xXU65z7IvhYwF6JZ/lSfrG/Jd4s8WV78L8B+M79h6sStxu/Tnyp9Hn4+EV7f5LzPn601v8T/7UBuYrfr9xLGgFzXyn3lHLekHsEOXdI/PtU/98dv7fxj8Tnd0W3W+5PSI+h32b0ewV9tOSfzRN/ov1LYUf4cuLL6D/ryx7oV5S/WeISlTsaH7+QP/EuywvxMIl/+Sv2L5VxMtxW+ScK64rHpbO+GM7fD1J+lPQo6YukR5hXtpfOePocfo7Dzwz8LpYerV7O93Lel/XrpELc3OuwL/vukLj1xL/i+7Pc79RfDuBXud/cGP2bCud+C5TvlnNj48NgdvsBTk08L/1OSbxiqYzNE7/N3xupd0Pm7YnPo+9r47/SHcm3VPuNM2+W3pL+zjJuDtPug/wv59uJlzmCn7dRPvHhtdD7mZ/tDSuid5p+uF72Q+m7BJ/Q35+E4+D92e/KvRLy5J5J7pd0oZ8+9Pcs+ye+fhF73QZraXdzelxpfM05QvH8YGf//8L/+8EXcz+ZvfeDXZWfxw7Zd8m8P9+xxA/vq/zwrCNhK+V68Ne9/P9D6dXsUd948zH9XEgPf2R9QP8d+M9L0o8ofzF9XJm4I5g4+D3wn3shuSdyYsF/6me+j+/4z2rfhWPo4y/jVOKjO/HL54y7XaR3T/wq/s7H1yPwKvkbqjedXI0zD5af+fA6+hsNMz9+kP5yDlg8/0v8TeJtEn9TB/8t9Y/G2QdFZ5P0P/66DO4JZxXiQ7IOT5xI1vdTyPc+bEzOFom/5HdLjD/Z/85+eGf9Lvf2ri7c35vEPllPZJ3WgP42oP8l8GH6Py3xXejtQz/f8IMp5Mt67w3p7INl/deKH0+gv4742DvxN/Q1nRxHoJd7aGfQ3w700Qb9nB+dnfspviuvw/b4r6Z87pf0KpVxnvqf5z4auXNedqJyXeXf6f/Z1/yQfPGH7vRTh50z/o/Df5+MN8onfvlmdl0f/b3YtxZ6iS+s5P/r8et16NXF34fqb6b8VolfwM8u9DFQuxPhr+jNk3+7dN5/KM7Xm+q/OW/Lfebr8Zt7zi21v4z9J8s/Q/592b/W7unKX6XccO3fwm9y7nyJdruSP/t/NfD9eamMF6Pf3bxlHf67SffO/hC/mw2HwjX42Je8e8MHqv1T3kXkqande/C7D/rFeIF6yif+qx25zo8e+Mtz2X/W3t6wi3FimPy8F9FHv8l7Emvpbwf1dudnWW+OwE/iQh/9l/jQS4y3HRNHl/cVyPV13sfIuAFj3/XYa132tennRvwv5T/voZd4gsXqZ72afb5BhfVrM+2PMQ5873s7Sno8e+Ye5jg4R3vHaL9CqQzPZP2f8TH7YsbBP+gn+ymfyZ8PN/AdXCt/PHlWaK8bfdyc72P8MfM77eR8sKnv27ZwmXID6/0zf47/N5E+TfsPkC/rmSvIN036APy9TL+nJi6D/JvT4y7sfp3v41noTuQXL8K3YAvtX6y9ruS6SHqPQjzklvSS+4i5f7iz9n7F1y7SR6Gf90ryfsksmPdLeupv1yr/Fb1uhH7OF7LfWhUfic/Keq+rdNaDWf+tJO8q+AT//AK9A7K+zzwvcYClMp5hfjEwcRvo57ztA3rP/Yfce8j7JjXZ+3tybyM9jby7kK/Pv8TzJL4295ATX5t42x76V9ZVLeCLmXejn/vOY9j1G/6e+9lLYPYV+8D4X/xuX/Xjf9ux77P85+zcx6f/c8pQ4Xd4P/wN/d340/7o5x7BYDgU/dw7L95H70X/s+FE/Sz7Znez71JYy/izn/Y7kGcivALdrP/zvkLiUs7Eb+JVsj7LezF5Tyb3Gx4x3l+pX91m/En/3oe+7sv9c+UeLeGXXE2MQztKb0i+lv7fR/2TpVsXzoPjr/HfnA9PV/6avLuF39X8o332H9Sfxr9z/zHz98fwk3l89j8OznmHdNbFtyT+mV1yP2MhHIjPnG+0pLfG0sPx0Qr93Kuun/eb6Lcv/p7U3nXqJT62lfHgU/LnfYTch7yXXs+gp37Rs/ov88v2/HIgPFU7ue+T+z+PZv6V/pN5m/6zUDrz+d/p41XYBWZ8fN94uwW/OMz4kvcIBhoHEn9TfD9nw8T9l+HveMPEF26C33Oy3wt/h3Xo/1H0dkncr/zZ8ivC4ei+mPjk9O+cj+FzQ/kr6PvHvB+W97fQyf5/9q9W4Tf7Vxmvbsx9Ef6X73u+i6/AHfCT7+Mi7R1vXnIIProkvhR/beW/xD/PKJVxvvzW6G/Kj17Cx4v0vz7+ttcfdsTfOPq4HrbKfVHyF9crWcfk/ZL96T3f1fUL77/cWXi/IHFRuT//Df7awNyHzT70HglMy/0V/lhX/l/08pj//ym9o/J5fy/v7q0iT/b7cy4+lr5yLv4A+ySeI+vaxHs0ZvcP8Pu0cvdIn07eNfjPPmT2H1fQT+6nPcKOibNMfGXe5avuuzKtsD57VfnXYTFeOnHDjxXih9uT/wvjR+bXi/lB7lcfSt7a5DlOuXn0e2DW5/pn7tH+oXxD9sj9yk4w+6tfyl+UcwTyPkH/nYxXmccW56/Ts7+Gbs5LEo9eO/fL8Js4vsTvtdFuztVyzpbztQ+Md5sb/2ZIr8Bfb/QOIs9Mfpb44Hno/YivxdIz+dvuym9H33f5/13q5zw/fnpA7ndq98qcXxrfi/Oc1jlfpNelxpvL0F+b+wfKnWf8GE/OY0plHEl/H+d9K/L24k/94S7oZRzI+fks+CN6t2X/kH02y/5u4qph9Zy/JX6Zf2efvBG6iSvfL/uo6rfTXhv8D6O/D/D/eBkqnAKXwxH09x55s945VfrNnH/p18fztybSB8t/FL+j4Pbs9az8vK92Ez7zTlbex6qvvcQl5p232/F3v/9nn2f9wv7OMHxvr70Tsp+b9qM3uKv+tH7uJ/hePQwPMH7/wR/HZ38BTuNHB+PzWvw3xc+57LYb+sX3IzMv2jL3QMxfF8GF8M7sL+E7cdB5R3U0+gPpdxB8AOZdx8Q9Laa/bcmfOKjca0w8V/F+Yxf2PhX/GU8z/l+S92IL5x9Zv1bMfj08PPej6S/zu8zriveDsy+cezzF+zt5DyDvA2SdkfcBOivX3Lgxhx7Hy98evYrkm6i92uTLe0bbwlr84GL1FyfuOed1/OFn6anqjWbX4v20FvTXEuY+c95BiT/lPaZNC/6Wd3n+fo9HerjyJxj3M9/KPCzzu/rGnT767XH4yP5QK+NpG/OP29TLfcaXEq9ObzdJZ/5Zn/x5/2bL7LeXyriS3mfQTzv/H4R+3qXMu0hrYN4Hy/o09/y3VD73MN7N+6PwPXgRvVYsxE8lbup/+G9kXPu371D2r6+BiX/J/nXuXTxALw8V3rfNe5J5XzLvLed9ydy7zj3sR6V3zfsuyie+KfFO2YeowN8PVL9h9vtLZRyAvz3xVTv3nbNfyT9+4/dV2LOddtYqPxTemHg/+Vfp31O1dy9576e/vYxXeYep+P7StvjPuVzO6XI+twU6h+P3u7wvJL0P++2V9S/8gH5qkf9j8q3Cxyb021i7B6A3HT/1yFcl363cDyR/3tl9QL9sSm/7aq8pujPYM3Fih7BT4sM66e95Hzf34i+gn99yv1X//Bauld+CPj/SjytoP/d/78t+ND020U6+v0+SZyhsSc7ML3K+kXON6Vmnss9czbaDvWHe99gSva74upweqmedy56r8fdA9gG0l3fk/sh9sNyLz/c393mM02+jk/7SQbu7a3dZ3jtRPnHfiespxn8nbr+u8aMYv/9s7t/AKYmvZKeB6t0PBwTp9aXED8Dt+ekd9NMZ3W/yjmzO2bLfmPuSxqV3YPYnn0TvZ/6xEl+Hlsq4XHpF4mj5c0/87ZX9If7Qid/Pz348/v7tHl3eI1iG363h2YlfIc96mf+ovwv5877iM+jlncW8r5h1cdbDWS8n/i3vAyygh0r66akl7fCD7M+0Np41IX9+f+AUfvmJ/+fd6V65n0Fvt0oPQD/rt6zXsn6LP+feQ+5B1IEPK/9v74LkfYQ69PN84t/pN++nN/JdW0qOxOFknzHxennHvLL8T+jt3/wu3++8e/Fj7mMnXo6/bEj+EfSyDr/b6IfF/cS8v573cebgay4cCBNPezL/qqC9C0tlbKx+PfkN8J17U9mfuF1/bsAuE/CV9/erKT9E+WvIN156IL84iR+21e5MmLiRvFs+iZ8kfiTxdb343cb+PwnmfsRF+PxJOvcjzmS/vEvZCj6gfvYVGutXM+n7ceNb4kISD/INfSUe4AfyLSVP3u9ZLp39kw/JtwxfX8Gr2euHgh2XsFfe4Xsv9xlznpX9f+mcI+SdpJwfzKf3u3LvRf776iee+VvtJs45cc/3qH9S5s9ZJyfegf0Opsd38/sViT+SHsMvtjOfyjtzR7NXDXZvrz/mezfFuNkNjoFrybEg+9Ps91rh/bvtpd/I77dkH1t/eol8ea9277zXSL7Ecya+s0Q/Od/5Puc7+Mm7fvupn3j72Dv7aLkf1V29/qUyVsTPJ/jLu0Z5lzL3JxJ/NY4+cu/nY+lTsr4y/9kYvcHkyfznP/RyFv1/x/9fwdeeGRd9F97M76Xg41v2+pR9P4Zz8Zs4uKxHEi+X98eq8odH6LcYX9Ui8XD0tiLxJcpvlN9DyLtx+kPOTzfPu1D0MDTn/Yl3yrqIHI+RM/Ed83OuhN+36Dn6/ci4k3vlWe/kfnkHfOX+f0+Y+/9V+NNl2sl+Te4//KL/TNEfp0kfm/OzwrvGeec+7xt3y75UzvfzeyDys++Uc8nieeXkvE+KbvF9lcPorWLefYaTSmXsjd9K2r9L+rXsD/OnJbkfj79dcz9N+5NgfpdoM/wlfqUhTNxKQ/Zpp1zW/8XznVnmPfvAxM/n9zGm4GsH6Xek877AG2WoMIHe6qKb8y9mS1h/hXdgD/3taeNW3ufeVnpsqYwbJm6eXipLd0L/l9yfh6PoZyN6uB69rugnHnAo/c6N/2ivp3Q/+mqiP+ReWO6J5X7YpeS5Ea6Fv+W+iXY7avcTmPjPJfzi4rwjCDvj5xL9s1fOv+Gb2r9Kf8k9ufze0mLt30sfNeE++Nkz47f+l/texfcRt6TvXfL+CH3k9xn6Zf3C7v3oPfsnuf+b9WHi4LI+zP7CtfpF9hmyv/A//DxFrgNh4iVH4OdgdB5S/2vtXUm/d+JzSPjP/Z+8YwcvNg58gc8V+k/iKhvl9xdy34A+m+f8iX0fkZ6T+aT+cSu9zcv8nH5moTcz9wEyn5TfW/sj/f/p7L8X3j98BG6lfN7/zLufV8G8/3m8caMOLMHP6e9O5W9VPvcws87Iu6HZXxrDXtlfWkY/Y2EHuLv6+b2N7Kcm3vzv9+Oz3w33h49rJ/vhuQ+a9wSzP74xvU/H/xH42iLnM+j82+/gFOObc38q37/sy4xUvrg/cyx/mAubZ78s70tn3Q1XwL3U3ws/x8HXs55PPBs95V2pvLeQ++tNtJd7ssX7sU34y0Dj8QZZ3+DvKPY/GuY+Q+4v5Hf3su7N/n3Wv6P06+GJ64ST886ScTXzu7xDnvndf/XfzvCvvOfHP/Mew4a5b6NfX6l+4isTVzmwEF/5BX4blsr4Onu+RZ9Zd2Ud1iD7/PJzXptz3BOMLznPrclO+b2JvvxxCf4Wsmd+9+9nOEi973MvkX/ldxDms1877T1Onh70XSfxDPSZc7j8Xk3O3/4qQ4W74UVwGvofay9xx5MK+4X5/Yf8vlzxvnjiJ4rvt+d+0EL0Oyt3Wd5/znioPx8Oe8PP9Kctcp+C3+b3Kofyi5L8QdrbQn6jxDfiexV8SD+4nHw5b7gPToQL5F+gX4yh97HZp0n8qvJvbPVPebrz91PynoL64/T/S/L7IvR1TqmMzegrv7+V+XPmzcXzzeL7ZBML8/eN1M97qssK42dx/yH+n32IxIc3ybtT7JjfN9vd/+9Vv31+/wz92tq/Trt5d3u6/F7sfBj9jZfevVTGUn5vUno2/7ks8hXWRfPkZ32U9yPzPk7iYY4i5+/6z7v8Ivvsddm/sf63N6yWOGzt9/D/Dhkv8p6p/Bm5n0W+duSbzo/yXun1/KM7zPulk7Nep/eXE1eN/mXk/po9fuAHeedyU9/v/P7ZZoXfQetKX4m3yncw8UNVyJt5QM6X8q541pfT8s6c+UXWl/eQ+yOY9y1y/6KBeivNY9bXX+7Nfr/+8he8Wrk7yXlD4kHpvanxvw958p5w9v3yntI7/LA3fhZIr6DfnbSf/YDsD1yf+Db0R/GbvM9xEftNKCmf+7XwGHzO0c4LxrWpxq2xMPO7xBUlnmh3fM7nb8XvRe6z5P7Kg+o/AB9KnJ7287sVY8lxSM5DyP+L/nCpepfB0/DxIPs9BNuyX8b3vMvxOXtXTRyC/LyvlHeV8p5YzgeH02d+/6pz+qn6U+l9o8RVyM/+Yd5bz/5y4jQSn7E294+MU4fBhcrl/b/iPk/e93gq973IfZP0gLSPr9x/z35s9l+L7wEV94Fb0H9L+Br7bMN+zfMuv/r5va2cn69krw20u0L6LvlN6f0c9F7X/kXSzxu3EwdegX46yM936xKY79d26L9D/prGuzelG+X9Avr/0jh5eX5vwv9r6Tej6bdOvp/5fQH9OnFRiZPK+eVM/Wtv9Fvke6qfdeT/l+aeMP3kXfmf6D3vWPwBq5JvlvGjvnQt9R7L+EXvv8Nd+Xt+b7H4+8vF8843+d9G5Ekcfvwj8Y6J25lBb4mHTFxR3lU8J+98JT5c/dwbyT2S3B+5G7387t6h0Z96O8cvct6GftusY+kz73S9nThK8l5ZmF/nHeXER+6q35/u/++w0+/xT3ZczM67Zn9cfn7fY7j28jsf+X2PSugnHvukEj6lzzO+fEPulr5vmSfmd8uPhEckXhGdV/l7vrO7FX5fen5+/5WeO0nfQ3+5T/1w4tzK8Pf7QS/Tx0TYiFxHqZ/x7iT0T4MZ/y6ht0vpsXL2H/H/UH4/h78kTj3x6Tnfvzvzc/Vyvp/3dvI+ZKNC/Efij85i38QhJf6oMrmzD7eBdPbfNsj74jDnQ/l9nH+79zNS/QH8ur9x+0HjTL38Hpx+s4Ze8+5GxdiPH9yYc5O8w5Df8SjE1/1aiK/uqd1P8n559gmyfk5/1+6n+Omh/X3xm3Pq7PNmff5/Tptbbnicdd159JbTGjfwXzQQFZVKhp5CBxkyFWVMZc6UkhLJkKFOIuMRypAOyZCpQqk4B5EpKWRKhhINCA2kkiOkUMi71vt8vtZyr/d9/vmu/dx7X/ua9r73cO19j9y64v/+tmtSxsu2L+PAHco4cuMy3l2zjOO2KOO/65ZxaBkqlpbK2EF6u53K2FV6KhwC721UxuvRWVinjIdJT8XHrtuU8Wz5J+OzTVP81ijj5fC9TcvYDz+LKpXxJXgKbIzeC1XLuHu9Mj4vXaGelyUfgdip2Jt89bYtYyv591JvU/rbu1oZa8n3YuUyfq18zQZlnEPescpX3rGMf9Yv4+vod25YxqvI/wF5mm9UxpHSbRvjlz6X028PWEf5/cm9mj5GblXGBz3fRrovfhpI18f/H+p7H96J3yHKV6j/dn40SPrlLct4Of97h3wb42Ml+vfI3xff10pXwc839Ho1fR/AD+5Svj/5ZuC7PT6/gD3RuwO7u8Pf1TeOwffC1/rNyriMfM+gU5v+e5bKeBN+zla+BX7n47cB/gbi61M4Qr5D0G9cu4zXqPfR6mX8r3yDPV/Cr76Eu8R/+cub+DkXf3XVfx5/r8ceT8NK6LdBf5F8czb7uzxD1XemfuF6/P2s/rns/jv5PmePTtpFE36/cfwJn+9JX8o/BvLnxbCj51U9/0y5avg6HZ6h3j/J3Un9E+h3HHv8Kf9K9I7zvJ3n9+DzAc/HqO8e8l6k37mBPjrgbx/2P4Adeil3Nfo98XMjPldLf0t/rdXbXPnp5PgQnSv5b3v4IL8dvl0ZX2Svj/D5EXtcqZ6r9euD4aVwED1fxq/XwzHwH9rDY/z/SvxMkV4e/eLrIfX+jL992b++/u86+c9R70vSY/EzBFblZ/NKZVyySRl3Re9adqiGvxL7faGe3fF5CvvU0F/9TB/PssOz8rUizzb4XyO9gR5q0Otlnm8ufQa5j2SH09nzeP5Tl3wD8X8dnMZ/LuOPbfE9kV4qyHWB8r35Rw/0ryZvJ/J1VN98fjgFnYeUf5Vf1UXnGvl6e75Yu/+Ifj/E5yT62UZ6Fj9rKJ3+siW9HAxH0dujpTJWl39zuBm8njz7kP9h+rhIvdPwV4v9arDfKey3VvkK8k2hl23Qe5S8A9hzIlwCZ3h+CL4Xo/sB/t/zfA5+o5+5Bf28JP/D8Hj0SqUy3lmrjDVhIzgZ/efxuzf5O5Pjj/Rv2lPGUcfCHuxcU737lqGiOvnuLYyLtpCvOD7qw66PkGs0PJV+63hfpL/pSu4b8DfH+6MLnE/+b9lrNvlOVt8QdH5g35Xs94b/XyfXNPRP5a9Vla8l/0v8fyG7zVLvbHZ6nxzLyfsqvDx+QL6T9DdP0mtbeHcJHfln8sO3pbf3fKF6t1ZfA7gWX9eT6yb2flx7HYD/y9Q3mJ33k55D3lnKtc/7lvzX0F8v+r3Q86non4D+jeS7Cd4Pe6LbSn+2P2yiP9gZvYPIfbX8T6L7gvp/V/8mpTLOx/dPnmf8MKwwjsj4YXf62g3uAWsp39Z7YRI9N+FXj6EzLON6+u4MT8Ln2Ixv1dde/mH86wDt4nR2Oox+837rT55tlT+Yfs+V/hD9Tf2/Ap3v0b8H/U/gDuSooh31096bwsnKjVb/L/zt9MI4/A12ubUCXeXe1X66kX9b8t4p/VnG1eh3Z+9ucLJ2nPH1aPo4XPpk5S/L+En9Y+EM+Dl/acM/jimVcTw9bY3eSVXKOEi/OAsfO3h+Fr0MUv5q9JrR/wb+0cfzE+n/E/w1ZZ+76f0u8t2mna2mzx3J9Rr+Mx8axG+vhwPhcM9vpt8N+H5LPX9IN8T/5fSxDv8/k29v9sp4NuPdD/Cf8cqL6rlFeonydfhV+s0e5NkIvR7oTcTHAPa8lf81kv5N/t34+wnqH84+t8LZ9Pcsec4mz6Hqn8IvF+PvOPy+C2+DmS9/JH9TfO7Jrlfgr7p6j6X35fg8C3+3ez/V4wej5Zuo/Az/t0GnpvfdLcrfU6g/9W6K/+rmm5+y6zzvl1vSrsh/B3086n31ft6P7PEE7A+fV29xPPyZ8q9Ip/0cJN8l/Huu5530ly9pP58YHzcixwX6yQvhibBEz/eyf192/50e6it/In0dVirj5+r70fO96L8fPf+Dfv5E7yr0XsR/NfLdl/UG7XAP8lTiF9Olf/JeWgvXwGsK88P78PctO7yh/KPax0Hs97byb/m/K75PwvfJsJnyx/OnI+mhg/QQ8py1OTmV6yn9cOa7mdeRd3vlfkd/lvd+38I44HH6PY+/nE2+rD/8J/07/3wTX5vj42j5ZpDzCbg1Payitw+VO1y7fl/6fPWPkm9zfGc8dqTnPfVz/+EXj8Uf2f8a/E3hJ79KP6z8Q2X4a53rSen16tsfvy3g6xlnky/6Kc5To5/G2tkP0tH7H7Abu3aBp8Hf8R//PI1d4qfxz+vJu592dQI5eyp/of5uBVym31jJH7ag7238/zU5V0g/oz0fyj6HSv9BP0fL/yy97Cx9E/42xs+3+r/zpd8qzP+/1m42U34pPU6i10vhC3A79F+gnyPQbV4q48lwkf5rBXkPVM8I5c9NP+r/rOOd2eTv+V9F781t/l4+8/418n0H3/L8KfTOhvuo7y7PHyJPu6wbynes+u7n/zegO1X/tBF/6sHOz2Y9DT/pn6vQ7zj0u8C854YofxZ9b591l6wf8KtB8EX+VlX+nfQvjellHH+fjn4z/N/K3iuyHoffLvz6fXgee76H/lXeNztn3Q29rln/wu9e6hvsecaXKzIPg8vgdhl/6w+yvtvN84w/F9NnT3q/mLw9lf844z3p87SnRer/DT/nS79VKuO/079Lt1f/fug3Q6+D8k3kr0nOmdJHe3+8RY6jpFfR9xba7Vzv52PId6Dyr2hvnfQ7reUfxE9Plb8zzHv9Pvr5jr9eLP9Z0s3Vn/X7rNs/IJ31+1EZ3+Bvg/fjZPWcrt/YH38t4ftZP+OXr6PzMfnf5ff30d9QfnIjvd4Nq7PXePVsHvvR8xn4XsLOm7HP2+Tfyftnx8wb4DryZ3w1Sn0ZX2U9sp/39TmwS8bJeV/zvwu0m49LZcz7/FV8zsfPufJlfDmEXSayy6nS87N/QJ7oe1f4Cvq1lPuX9nmm9vmS58P9P8X/ewbV/yI7/Av+D3ZRb9YtXif/NLgnPi4i/130uBH5flH/oezfKvNw/jwH3xfwt8rqzfpJ1lMuY+8r4OXw4uyvsfsLpTLehJ/29P1U9o0yLyf/JP6W/jjj5svYN/3zhfhpir/J+OpC3vPIdwX/HEy+DerJeOt1fG8mPR/9x/jbePw+qP450l/S/1L4VdaP6Hl77fEo//+gnc7FX3/prHdOwUcl9Lvjuxt8xfgh+603ay83wRvh856Py/wZ322kD0O/l/f+Qn7zgfpfzvxZvePwOQYORv+e7NPBvdjhlxJ+s1+M7iP0v2Xm7/JlX2k4+2W/Kfu+2QeeJL2D/M3o43L97s70OFu7vsvznfH9Bnkvw/8Yfne8+or2vkv++vrFJvSUdfrsGy3HzxX0tgn/qSN/XTgaH03w14R+byNfI/X0VP5n9LMveYn2sCf+DkBveub5yk+hh6fos2OpjFuRb5byB6F/AXlq+X8QrJb11zL8tU71QGH98zztuF9h/fNifGddLets6Z+v5C8d+MVY6SvwM1n7zf5nL3oa7fne8Q94A/8+mvy98VGZfSaQd7D6Z+F3L3Juqf7vyXMb/Z0if1f0Hmafw5SbHT2p/wd4M3rr4Kvw09Dhn+PgOeQcp77G/KYEi/63gt4OIv9WcBa9Zf3iIvWdLH0S/p/mT1nHz7r6OPZdy24Zf2Y82g9/e9JTRd5XxhFvF+ILHpDvQulG6D6cuAf/PwUf5jfxv3eQuwJ2Y9+a5K3NTo/Qe0PPh6J3FFysvqyf7KXfOBLW009/wl8uZZcrC++3e8mX9pj2mf3n7Ef3VN9s9f8PjlR+RvrzxBGw75bF/Wn8pr/J/vQr+L2SfYv+s3XGffqHftIHkG9r/ccTmd97/12pvpvkvxk+w68aqb+j/5/kh32874aT81r8nk2elvSyMOMr8t+rXf9bOvtNTfH9FNwpafz9ip8/6PlOfJyi/sronoNuVel+6s986D7+nfnSXPr7gj9fCyfDuvJXZbea5P4NP5lHv80/vpP/GfJnPWMCvu5i96ronJb1bH59afpP/pD1uE35/7H8Pvvl2R/POG1XdjiQn2b/a5L/D6LPdvjN+GBfz8dKD1HuafprzU7HZr2xDBWL5N/Ar9ZrN7/Ba9T3GnnnwmkZL3n+JX88nN6XSjfK+qH6s741EP/n0d+kwvjhD3rO+GGk9OP4WsefGyk/jrxjC/qI/EfhawQ5R8Kt8H8Ufk/wXu4Af0W3Efs8gf+G/l+s/nP49XP8+R/s/Bq5z9X+h/O7heqrrP7r6HO95+9q78+R51D+1I/ehqN7l/p/UO/lsD9+Mp4YQ/7o97nM4+h3kXLzlcs8KPOfeok7yfwCZj7/LnpXZJybOEfyHak/mOX/o6Wvz36I98dr6h0rvRR+mf1g9faR3lQ7fYz/LKf3x6XPyHyPXqfrB4r7Xz8qtwv/qsve+2b+XiE/ujXUvxX+92PfuvR4A32t5rdnkvcM2CNp+nlVfel/tmHftur/t3qL+7PZtz2Nv6/S/9zLT1bj74mUJ2cH/I9N/Il0e3LWlN4JPx3y/qfH1/hnxkczyfk+rEO/b0a//G8lbMUOC9X/vf69DX1sod6s//bHV/qv/5Iz/VfioEr4WgE3Qa+2/mKfEv6k438fJU6WPJ3xczv6t/G7xKFsyg6/aJfF9eYVhfnbTuhl/6uBem4jz278riO6HfjR7v5/Fi6hv+rsPhH9vD/yvsj+9c2eT/U84/zZ9PtY4g/4T+YVmWccJJ14jXf5Qe3MV9W3B75+gHvW+Hv5+urdh/zPKHdi1s/pYZ78O7PvQukW+seOGS9J35P5Gzu0RGe58ks8H0D+t+j9Sfl6eL4d+a6G08l5uefpD+uS+yPpk9Cbyu93zjqP98sc5X9Vf3N8fYrff5bKeHjibej9UP8PUH40/x6g3+iK/mPyN0fvOXJlXNFX+QPI1Z1/Ddc+zso+e9Zl4Hy4Fh8P4u8z/vINuf/HPqdoTxdoBxezzy3Kx3/iN7fSX/znOPy0hgfC5Z7fgp+2+P9Gemj2T9BroZ4dEl/EX3obv/WBfWEv/P+Z9Ufpw/QHw+ivuee/+78DO94We5H70azDwKvpazK5B8h3O3wNvVP5T0NynCa9S+xH7sS3/Aj3ZocT6fsE2E3/kPWHxF+PY8fEFSb++mT6yjzwfnxsSb+1yTNFvz4VtiTf+dr7SerdTXq37L8mvhv9nRIflv0Q+p2Gz/TzR2T9hP5eprdecL36HyJXZfmzj5X9q83UR40V1FfxT/o60B/T/N8aPp9+VDu5EVbmP3XV35Fcict9UEU99Adb6Pem0nsn+Dr/XFOoN3yk/lX084ly9flf9jeyXvy/xHfKn/Xjd9gv+xhV0x/x33X6l1Xsmvnlr/S5QP619NwZH3ur/yJ0X4HfZP5LP1lvmATn6S+y/pA4q8RhfVEqYyv8V8FXH3rdPnJkX5z8S5S7H73Ebz6Lbmd4Gv6zv9Fef7ox/20n3UD9Ddn7Gjgg9sd/e3w9xo9K0s34S+LlBqd/5r+Jn9vF82L/nH67ATm/yfuUvPup/1b53uB/P2e9LOtp/l/p/1Hw8xK+0P9MvzMofkD+F/jxofziWek+if/LOJe+x0u/ir9P6StxMwvgafIn7vh+eAl9LFX+a3brlbg8+JDyX2feCZdl/IH/tewyB2b98kvtclnOw8DmhXjm/uTeK+t8+B9VKuOwdCzKpz/N+Zyanic+5I+8v8iXOKdN8d1C+l36neb/0erfn/5HZJ2CHI/x6/e1u5rkX5JxJ377aJ+D+Mf4wvuquD94iPLFcyGJn0tc4bvKZb6V+dXZ+L5Yvu/xXz3je/wMxP+j+rdVnidO/Fv8HmI8+b/s0/LXefj9Tb2Jf96HHTbge5R2/rHnd2sfjfldznstRm8d/ubh6yT96+foHcw+JXTWov9KqYxPqn8lPs+C2d9exs9qkud1/dd4z7PfvpF+81z6zf579luzD5t918S7zeNPj5OvpXTigxKv9RQsjt8yrks6473+9Jzx4hrPj6CnN/GT/eWcv/uV/qarvzP9xT/m0lc35bOulnjKjLMzvk682yawFfrH85vDlO9VWB/fDD/xv/hdzrvE/xIf+QW5EyeZ+Mga6O2H/gZ+PAC/Y9FvQl/F+MI7+M06mHnI4+jknNEc/UjOI+X81xj5L1P+YOnxpTImfjhxw31h4ocfUu7jnLeBR/PvvO+apx+Eef9l/WGZ/FmHyPpD4lcH+T9xsieQb4T/X5ZO/PGvmR9LL8j8CeZ86lX8ejpsQF8r0BsqnX34nBvI/vubGRDy07bSxym3t/bwq37sAesXa5X/Q7mMV7rwh8TnVt/6/y3ftMxX6f8bej8c7iJ/4jFG5rxKzkmg3w37OWf7ADwy82P0su6ffYCs/2ddLetp28LfS2WcQQ8511o875r1iiPRaSJfq5xb4q+b018D7TvnsJrRZ9aDt/f81qyn0Ncp+Epc4QZYCz/3ZV9N/b3pJ+dvss9S3F95LefGMn+HZ3uec0vHw5XqyXvpav35pdKnJY4l8d3qWwNbJX4Xf6vp7Um4F73dxs+X5v2rv0ocdOKfc75rtHT6s5zPm0W/Vem1cta/9Vc5//g0HKD+2vrlP/nNJvivBn/M/hb/bar8TfA+/P7/zj09k/3NrCv5/zPlD/Y88XZDvCenlcqY92UV/X7W784gf86PbZl5GCzGvzTVvx3MP3+nr+0834IeEpddjNfOeYU7YM4z5PxCa/y0QO8Jdq1KvuOyXozeR5lHJP6Iv6U/SvzZH/S1gL72pZ/HYQ105pHr7sQ1Gp9s4B/3k3d24mP4c33+MVx/3Yt++6F/BP7T320r/S173C39qvdnc350KLwTvSOUf51+9uTfHbP+ja+Z2feHv2d9kv4+9n/OA9VDP/tRa+ihFnr/IN9Y/LTlhzvJv2+pjLvKXwlfL9BfzsddIn8dctaDvZW/kL/0hhcl/pm8s/nfZPW8Cp9j/zr4+5Od6koPIF/i8hKnN0H97ZTfzriqpN03yvn0xAcbT97BnxLvmfFl/Gcd+eNH8Z/sh3zAL9eV4a/9kcQ/Vs/8L+czs/9Aro70P4x+Z+X8JP2Orv338u9m/SrxpznPAgcnPgjdEaUyvsc/L/P8Iu1qOjyaHCfkvZN9IfXfTh930tcx/Ogn9f6Mn2/Jv3fOTeLjJ/45QbudkPhb5YdlfJT1rEL86lz8Ja7mTfX9io8XyfkQegvY5yqY8UrGJ7vSZwf0/03/6zxfwz9+glvyv6mJPynDX+e8cl42571GkvtZ8q7H31DPr6LXr/jlz+QdQb65hfj5xNMnfn478pzEb2cnbhJ/n+B3Tvbr1HMM/zmb/BuTL+vRh8tfDd/nZP2kEJ9yJn94g3+/Br/N+Qz+Vht/u7B3d88PI+/1mUdFf/gfgd798C12qqL+s8iX8XAx/mBh/Njzpt5HNTM/155f0W9MzPlx+m1dGJ9nPJvxa/uMaxJfDTdBP/PJzCN3K8wnP1bvfDgPZr20eP4p554eYp+sZ+yn3ZxB/p7qv13/swO5GsORnm+S+ED0+pEr87uf8LsffFr7y/pz9g+Gkif7CNk/GKhdbM2urxT2Xzcl3wfawc3SzdhvMbm/pJfFsA9+l3l+J7mq5R4gz59jr39oP53Im/dv7ge6ljyJW839QE+g21e7eFJ6DHqZV+WcduZbmWfl/pHcN3JFzqknnXVF7e9f0jfgpzN5EudTLe/B7BPTx1B6GKO/PgD/P+I74+794fqcL0GvLZygnszXi+c7cq4j8XWV+fduGceSY2DK4yfrxEv5QXP/p1/oXugvcn/EbPIdoZ+pkvWI7L/T85uJJymcR+6o3Lv86k79SD38Z98v6zbZ9xvo+bbqy/pz1qOz/tw/+0PqmQzz/l1A7tzPk/Odq6Vz/i371dnPzvmJZYm3Qvdr6dqe53ziTsrnvG/WJ7smfpBda/GTEzNOoK/62b/M+Brd/+R8B+yU83CJN5fvTP3PXvH3UhnHqW9/OD77DJnv6D+6yP9U4k7JwU3+2r/KftbH5Nnee2lI4gfoaUcF12f8Ru+P8s/s7xTvp8m9NHm/nojf42DipJ7N/BU/d+Aj913lfqsx6HVDr2rOO0j35pdZv816btZva3mfrNbPtCL3IHTnq28R+83L+WfP3/T/V9mHLbSXxDsnPiLnvDLPbENfbWET/zdMfBR/zDigR+Zb5J+t/lXqHZb7Etj3Av3GjtmH8Pwz/WsxPipxUSsS58XOGacOK4xPs6+1Y8Gesd+T6LVg/94ZLyZegn0OIXfWsbN+PaEMFd/CjnBR1kO0v7fJdxU/fVi6Jb2OYuexhf2jXeMf+vFV7J/90J7qGw9/hKeyT3v5OxT8+OfsL+YeFXzNzPuO/kbR60j4IPzF8xrkW1Uq46bk2Qn/q/nHzuqdTI4P5Y/fdIcZN8Z/cr9Aznkn3jTx4efylydyb09hfTP764mbyv564qc6s9NF9DEd/yej/5F6c24y5yhzfvJtfriEPMX7c+YV5u1jc8+X/uii9N/qH5pzA/ibwX7vwAZZR1Rf4qoST5W45GbKJ958CTsnHj3x51PQvYZ9tiu87zYn36+5P4M/jmL/efTVXf5r8dc14w/9Se4L6aveFdk/z3yC3lbAL8nXW3pioZ+oE/+Qbyb5nyTfvZ7nfqR3M8+XPkj+67X33M+S+8fOU76XcrmvLvfx5f69+zx/i11baA8t8NU/93eR9wT2mi19n3Y/At4PE+eauPwF6W8L8fnZv8r9A7mPoF/GDfh9j70W8a/PlN+LvnLPUe43+q/8T2tvGUe3gTm/3CnzL35zoP6hvvKJr76DX/yZeALPK9FXJ/Yt3h/3pucV+HpLOvcbJp79XPLfnHg9dM7UX58Be8Dv6HcBvq/AV9bZRukHV/KH3INynXTuQ4k/HIzeJ/qbZ8iXc8VZlymu13TG71aF+LrblM/9dtnfnM7vsr85Hl+5b+KGxLPJl3n78fT0Hntk/r6IPnsU9BT95B7Q7B9mPzH7hy3wXdxfyb7LpejfQL93629uLJWxq/4g56enkDfnpy9X7hf+c1TWAZRfxX9HZJ+Cvg/PPmPkh1nvyfrO1vhrAOsX9mMuoq9t6C/rl0PJ/1//f5f3Kfmyf1riLw+WoeI3eCn9riXPcPwU5+d1+f3t/PQ2+GnGj4nnw9c/C/F9J9Nb9ktPgb0Sn6d9Z9+gG//MvZWJF0j8wKWF/Z2c62rE/svZv2H2IenjPHovns+5JOu/yp2s3B7awVP0NwK2htvyx9bkmame9+Fs+k3cbuIwcw/bX/ev4esbuBI2jz3k+zTxIPR0CX10pvfm2d/JOE79x+V8vn7xfPx+gF6/rKuww0zyZb2qCX7X5h5M8jQi/yPqG5N1dXiw8jmXn3WerGdl/Sr1dirY/yD92iX+/yrrvBkv0c9E+jqdnMPJ95z6G2o/rfltG/x/nfs1yT/G80z4quGLW1Vwk4p5cHrO68qQfYu+/HUg/R7MLofAC7WHpuyXe18e1G/mvsbsbxbPz+XcXOJLbyDfYHglPt7xPPEeGym/gB6PV3/i9vdTbg+Y+P1K9NAh5zToK/P9luQ5VbuqCXMPcuKCc/419/+do/6b/J/zaDmndk3iNcl1bN7juecp43vlnlFuC+l7Ex/An3IfV+Lxc3/15MQnxu/Um/ifhYXzG91zvx49Vuen6Q+6SvfJ+eXMH6QTb/FO+k/8blsYZ16Hj8b+z/n8m/lHDfy0yzl9cuxZhoofs27H/omryb0f2Z/OfkrO1w2FOV83gr5zr2mOs+Z+08ra+wR+X0X6hFIZi/dFZr0y86N98Zdz5jlfnvsDcq/MZtrHJdK5xyzno3Jv0v2F81Ez6e2DnIOCe+Mv8ROJ48x5kMRvfpjzDIm70z6WSlfil1m3yL00Ob+d84+5P6iKdO4PyvzzjMI8NPPPb8rw171RLWHNxJ8mHqQQvzCBvvvpuEbK95Lnm7BXfXxNws8liRMmR6PsH6HTG/+bJn5P/5z7up+mr++yP8gfotfoOfrNOKyO9rOUHj9NPIr+Kfu0xf3Z0B+vH+5d5e/0a9Bn1h1eQCfrDyvJd2/GZ/zrw+wTlOGvdY7a/s/6xlb0WRU+xQ674utu/U3iJ1cV7t9JvGri/tP/Jf7/MXQa00Ml8uc+hqxLdKX3rFckPm939v2eXt6jh2qlMq6kn3ONuxejX7Mw/8r7OOPbxPc+Xjh3l3N4OX+X8tnvCJ2UL973nXvA3yffa/jfjfzHy38l+abRd8bxm+Aj4/lTyZV+qirMfUovJ64KHqKdLFP/57mvC76Q++7pIedjEv+QeIicj/ln1k1gH9gm8S+Jt6T30+BUz+fzl9y3lzikxO9ujF5l+A15M/6fSm+14cvw0ux343t3fOd86Tj6nCX9WOnv8m6Pfl/6rKv+4Tl/pT23U1/uK24rfQ9/SLxRvpPQrBB/lPuluut3l3gf5fzFQu15MVwEc09vzu/nXMX6wvn97C9nX/l4+s78dG4ZKq6BX8EN/DXnHZaUylhH+WP4V/ZlL9DulmR8xZ6ZR8Zf48eZf86h17mwgh6rkO9a6Tb0nvtnnkp8o3K5n+CbxFORL+cjc34g552z/pv7gV5mh4xDzsL3IvWn3zib/6X/yH3AiQvKvcAbo/+O/DPg2/A35dMv36rfLfbPubfmGPYr3l9Tj7zt+MXb+Pkicanor8n4MftX+Mx6XCftPet0uT8578Vm7NsY5v3Ylj8cge7F+JrAP7I+XDxfm/NXF5LnYnI8wI6Js897/Hv90pTMY/1/C/1shc/B0r3V/7p8I3JvsH77/KynZnyB7g7o5Hz34ty3l3Xz3Jei/GfKt6HHxBGuy75H7ovL/hJslvuE8dc3cQn4fK3Q34/OOlSpjIlPO4A/7U2PxfjJ3B+de6Nz31/u98u+WkXGoYXvyTyqPT8Ox2f/3PMJ2Uekr3f0F/k+x5Y5rwG3gK0934Hcm2X9hTy5/+g49R0P2xoHTcj5AnxnX7dX7t0qlXF/47JW2beH32t/FyjXEL0H4I7Zf0K/Ff23zHm/nB+hv3Xwde2sVeJI6P85ej1Y+rqsrxTWX/Idi8y3DqeP9+mni+e1sg7r/5bkyjnNzJ9PVu/Mgl9m/SP+EP/IPZDxj21yLjXzBf3nwOwvsMuX7LqGH05G/zv9Q9ZDEucT+7YjXyX520vn+xc5D5LzI48Xzo/so/20zHhf+cMTL6r/fyTf4dDP3Uze3NeTON+s12V9Lt8ZGgb3p/fsb51DvuxvZb8r+1tN9Rf12HMZ7Cb/zuyW+yHOY8/cD9EdX7lH4PnsY6g/5xVzjrF4v00X9TfG50r6/4o9st+d/e/Whf3vAYkrJPch6j0OTmWPXaU34H+C9DHkyvmWw/XPiYO6mP9cCvvl3An+c34+51hyfiXnYRJv1oyecp9q4pv+pb+/Ovc8w7alMl6rPeR7G8X4woGF833tEj9IPy+it0S//WDWYdH/ifxjvFcOJF9/9J8n18vkyv5K7g/qyC6nwNwz0pF8WT9Yn7jsxFfQfxX8VcCz2GFj9HP/z/X8qw891mOfhvn+nHTx/EHicw9RTeJ0c59J+vfqhX4+8W+Jl0387Eu55xH/+f5F9+zLJ846++eF+N/E/bZAv77nx/DTBoX5SeLHRpEr36/6Sv35TtCBWYdC5zr8tlN+Lr5b4KuK8q/Q92b84sX4iec5D5X7e3Ofb+7vvVB9dZVfw59aK3+Y9j1J/Xso92ziG7IukHtd1b8451z4c331TkJ/X/a7lt8vgLvJ3yT3Fud+vMK9VjlHM7LR3+WZRV85/3Wl90V3/D1KziGe35H9GTgs69/sVIv/XVmGiq/heuWb0l9DdtiUnN3SP6KX+5E/xUfuR+5HX6fja1/p7D/WI//NJfygMxH94n7RRHqql/lH4r3g/fBs9G7QPjKveMZ7aUr2h3J/mXxfKfeE+n7LuRs4lfybyzdFez2fvSupJ/c3DeBfD8j/Ib2vTny79nRB7mWA/ehnI/bN/bxZT8w6YvZPEvf7Zc5Rep773073f+6By/1vt7LvAeSqmnU0z0/JuS2Y8VDiluvx6xvpfSrM/Z1f8oeH2X9JvmeT78qguyU5uia+KuMpcuUezty/+SM75v7P3PtZHB/Nxl/2oYv7z1l/yrpV4gey/lQVf5k3ZR6V+dOr/D/3yuee+eL98jPoM/eDJH5vCL/6jv53QD/nrX4pQ8V6OAauIWfWrbNenfXsteT/LvdB4bfYXr/Qnpbjt0r0jb9rtdfr4K36yZwfuo+99yDX59Jn5XyJ/yfmHCc93pj4F/X/k7yHskfOLx2E3hfKPyq9Fu5mvLZr4kfJ2wf/Dyn3HizOD2rqr4/h90fDE/GX+6Ny/iTfM8h9Uj/Q949wI/y0Qz/nLzIuyvfJMj7K9w5O1L7zHYR8FyHf05jPfvPSnrL+yW8GZ30s69KJQ2S3lfAb+K/En+HvTbgUDi6V8QD+cB55Ei/1ddo3v886TzH+MPvHmT+l/8j8qYr/G8Jh6n+DP/xGvkH0tG++N5G4ds9XkT/f112qfazmF4fCkTD3jB+S/Rx0juA/M5XvnfXRxMNJX03/+a5R3hsVMO+Pufx5uXwtE6eQ9S303mGX4n0dy43fLs53Z6Svw3/iXp/IvA0mDjb3+s1AP98hyPcHVrNnNfXlHE7ON/0n5/7RmQNzz1S+IzhXfT+Rt2XWX9MvwDvgpJx3IO9Y/cop0rnfbXzOK2Rflf+MVF++yzEcroKf5V4zfrNcvflOYUn5fO9wJRwCc3/FHbn/Ur3fwnuV39V7MOe/u+S7P4l/4m8L4Rp2yPmBrfndf7Ivjd8x9NyvsN9Wh/2yvncmvyzG7yaud7hxZif2rYPvGVnfyj46evm+Zn/Ps76SfnMR/aT/fI8+EgdQ3P/PPldx/6un/nIMe1c3Dlkm/VH6l8RdFuKrcz6tuuczE5cGF5BrtPxHwoXxF3J+R3+f68f+J531jo2kT1LPQHI8mfEvefOdvXyfM9/X+yjf60DvA/6S779dWIaKqvj6QHp94l8K44Lsh2R8kO8R5X7afJco+9F36A8yXh4mPUp6aeH9M4482xTmn5lvZv6Z8VXGe7m4K+ePcx65Ob3mnFjL3Aec+xL+P3FdE/N+zXpD7g1K/C7/y/cH8t2BPfIdTvxNou/Ebe+W+xOkT1Uu46Li/CXnubegj9zTlfu5Kvn/fP9nP/DExE9J/ynf5rCkfPqXMfQ2rXA/Rlv6zrj8cOl8X6MxvWb/rkFh/y7+l/l+/DD+V4leX4EbwTdKZXwg+7v4zXd+cj9K1o1zPij3W+Z8UDV+sdj/+R7tPRm/K/8MeT9Cv0b6D/bMPaE7S+e+0NOV3wN/C7IvoP7/AwCLOAF4nHXdefSWw/8/8HeFNpRESeVWUpQ2+9KHypadZMlO1ggRkn2L0CcqZSdrQkifVNayhiSJJFT2iKS0+57zux/PznH9jvuf55lrrpl5bTPXLK953ffWqvh/v/l1ynj4RmU8tmkZF2xYxv3XL+PEqmUcs2UZj9u4jJtsUsYD6pbx9iZlfLlGGbvVLuMx6t+2WRmvV+6tTcv4gfSzW5dxcKUyLoRHwmdKZXy+Whmfg6NhX/mz1NdW/bOrlHEmPoah6yS4sHoZh+PvsPplvFq68+ZlrI2/aTXLOB1+DN8hv503KOMusL78q7cq49B6ZaxCHk0al3GidCPvn0wPEyuXsbHnLfDRjlybS/+9RRm39/7T5HYRfEO7u5PHPt6r8LwVed0hPadUxk/IYx55jCWvKuj7AZ9b4f8W+WvgcfL3kP/3umW8lB3ej+9n4dnsqQl8kL1tof3vlB+L/w/Z8Rb0U7dBGV8lj8HKDZf/Ib4vQ98X6qtNLpfI/xx+Br9Ffx3yaKSdo+lvkPyP8XuDdg+VP1J6E3xvpp9sLH0X+/8dXwvhbLix8hXa7Ql3Q08H/B5DXh8r1087U5Vvv04Z98d/T+1/hv5Om5XxTvU9xx46sN97yGNxwzJ+F/uUv0j/u4g9PUeu22i3gX73m/GlIzp/QN8x2ru+VMaV8Fr2MUm7A9G7KTpPlz+HPH4l9z/hdrHP9cp4K4yeNkX/MPzfpb700/TPn8pQsTO8T//akP4u1t4a9TWkp8/knyL/ffSMML48IX9r8hxPDseib573dyfXo+BJ5P13qYyfeP6C5+9IX6ieLejhFHrZUvo+/W0Vfkbhb0c4zPMB6PsRToK/oO9K731U6Z/1LW5Uxguk58MH4fn6ZxX1jfL8Jngcebaknx/J8Sx8VZH/pvd/hOfCG8j5IHxfrp2t2c+N9FvJeHqN91boT7M9f4/dPKlfXSa9Cv3bse8W5DlCPRtJ/00vn3r+Jf0caxzbUn9oCidqpw0+Z2U8h2fDnvpFLePZGOX31b+/JJ9H8f0J3Awd88i1KTrX4PtWOJCcRvrebq7eJ6UnyL+kVMa92fOL7L+/9BPoWuR7dgv7m8J+jmL3+S6ORnf6Y+yyBr53kI59noiu4+Fv8D/o65z5AP5jz3+iezL9LdL+i75zXbf+Z/vHwv5wU/rvRw9HofcUz/so35e+V7GDT9BzFPt6nDzu1+725JXx5GjtPQbHwqvQO0f9a9jl2+rv73kz/C4irxthFf3z7IJ9tfd+7GtoxhP4Bj5W43OFdpfDZXAw+q/JvCzjo/Sd5LVAfU20e4f8YaUy/ir/UM8HSA9TPt+bfIfy3anLro5g35XJ+1rvp9+fK397eBX731P9JXpZ7Tt/qHRH/D9ATo97f4R+9Yn0R+hpxv6nST/JPvZhr819H6eh6yn1P6Y/DVFfO3b9vfLVtbel8e4xfL9eKuO+9LEP3BtWkj+GXH8kv0tgx9gzvr/yfgvPO+b7x173RvcS/bq29x5F//XobOL5DOWb5zsE3yb/S+WvZ3z70rhTGz0d0fM4fnvhf5z2OpBfbfODpvQ0M98T6avVm3lJJzgaH33J+z/Sr4QOfJyqnpYZD7T3uvc7suuP4DLy/ll6Db63hO/i/1T83eJ7UNLujvhfpD81R29N2AJ+K/9Y/D6Pzh7ou03/f1n+jfJbSPfETwf2PtY4OQbeIP8n9G5HX6dKHyU9ll2PgTvi4ybft5O1ext6b0X/bdE/ez1Pvz2VnBrAY/GzIz2NMC7+LN1Lv3tYu3+r/5gm/6xnYOQu3Vv7jTw/TL+9VPnl6t8y3+UyVEyCm9P/TvrFmdq/If0t8yPyvTByZu/Xoa+5ecIG+GgmvR37G4+u9tp5Sfo7+bW110n59fSXPpk/4+/xfP/xP7ZUxk2NB5knFOcHl7Hjg+lnB/i++jeU7obfp70/kHwPZ2+ZT92h3Yy/3fC7DmwDYx/5rp6Mz8elz1LfyeidgP6G8BPt3Iaer2FDdtlL+evQfT1cyt4WaX8Eu/4eLjKer0D/w5n3omt/6aHsPt+XxrAR/In9rNLeTPLuoNxi7d+e+SDshq+sI5qRy32eL5Guqfyhni/Q3vv6T+b3v6i3P3wffiN/P+PTR+x2X+kl6p/NHv+rH7+U+YF2s/+Q/YYa7CHj6T74HaG9dTPOS/9J7mONi6eT3yD1b6v+H7y/a8Zp9P2FvtvhfPXcj54N2G8bOIydvI+uCvxkfyP7HdnfqM/+jkbnUfC/zf5Jz1r6GvyTvl3RtVv6uX68ULmWxuMF6LgOHSeWylhJ/mDlhsJ24Y9dXoruY/SPGeiZ63k79e8mvXe+78qvy672hRegr6f0aO+tQx+D8bcjfe6vvW3xf4z04fp7M3p9yfg7Gf3X08eX8EB6Olr+t+ofLT1R/Vdrvym5NoFbwR29/yq6m+PjXJj9wtbam6X92+Ff2l2hP91UKuMF2t9K++3Y+wOwrfcyvk3U/mTt7gqHeu9z9nUfHEN/K+QP1x/fhXfAZuT7o/Sf7H6470hl+fXUN1X9N8Pj5C9Hz1jjQkv8vyj/V/nd8fER3MT3/jTyqcVeHieHzdjXSu9PJ+fp6M266ovCfmf2QY8gv2ekt1Z+T+nd0bm59rrS59XouFb5cexhtfKXareNfnWyfbWz9btDvf+IevYvQ8VQuBKOV/9V6huPz+HwDXKJ3Df2/AL6GEW+M6TvRt+2ocPzOvrNfOPOKPRtQf5jyKMNecz1nftI/j7sobp+1x+2JK/65jWfo28OOpZI76D8g54vxc8pyi03HnU3rnSDS8lnSOZ35PlN5nfsY7L+9Ib8eejPOuQ3/P1pvM5+VR/5me81Rm8vdGbe+Rt6R3jvIekDtL+EXDvrP+2lK5fKWEu7T+a8hJ2unZ/hfw96+p58HyX/T7U7V33vaP9A+VPI9xF6fRTOMF+4XPmn4U3K/4yeN9HXk9xuJO+dyH8qfiopdyS7PwU92e9cl14a6E/Z/xyEr3eV29x4PjX7cOi9Ad4Ej1f/EOUfZC9nkFfmpwvZ+yfqf4TeVmf/mF52Vc9ucAp7Pwz/88ljZ3RthP562tueXZ4jnfF8T/Tuh46F9PGheqqxp+PIZ6B2V6Fv8+wPkm8t+fXkf2p82DnrRvVNZCeDlb9O/unwN/axMuW9NwH+j/0/TF5XwV/hHfr3dPrNuJxxOuPzlvL/yPdQer76x5N/VXqfI13X++/pj9vg+0Lp9dXfFz030Vv2Xx9Dxwnq3cZ34QPpw+RfzK6Hk8fl2Z+h3/nkuF72L8h3CLktY/8ZT3L+k/3B1ujZBs5lD1+g/7rC/sN67CLr3Yv1y07weO2fhN+sy1rTW3F9tk7m9/J7SB+pnUXa7+z9D8i9Nvr/1s4v5NeSPHL+eTl97Ibe1cavb/B3RxkqqnuvlfTX8rei1//JPwmeKv/OnFPSU+b/2T+52/vdw490D/wcoT9mHzDnUNkHnArX6L85r875dFt6v8p3/EpYN/u/2rsaFvvneuwt87b9yK+rdB305By8X85x8JP9olekf9V/wv+r6NmMHX6j/4ynnwrt7eO9N/B3sPa3lX4enwOVX4r+b/DVDm6Ev6nZX6GP6D/7R9F/t+zra2+U9rK/MDfnmZErrM4Ot0PXfM9PlX5OfcX9xJzDpv/V097v5NMBHpdzYPPwDvh43POn1beJ8icpt6l09ltb+u6M00+Wwgnyx5HbMXBz8qtCPwPouwf9L4Yz8XUF+X1I3lNgf/L+hP2ORN89vjM9tH8OeQ01/mR/q7XyFfKL87PM25aQ++1wS8+Hqn9T7/fD1y7SVXNOqr3i96lz1lXZ3zFuLqSP9/Bf2bj4ObvKuc0L5Ddffef5vl+gH2fePIHcv4b/hcuy31mGijfgErgV+TQwvh5Pvt3hNuxr7fqDXXyMni+0n/P4nM/nvD5+AM3Qs2P6lfRc7Zay7ib3uXA4+T7O3nbJ/IX+9yGfEzXbF46EK/D3Obldot+/T8+9S2Vcl71VQl9b9D2f81zPh8CRmTcpfwI5HEJOF0u318/+zLxM+y/j6zHyrW38/zLzEjiL/nJ+sIi9XOQ7kXOER6Vznt+tsL+S9egY9Wa9mvXpYPI8lr0Okd4Of397/y3lz4T34e+3MlQ8CU+Fi9nxdfScdfoGhfV55t3nwlf0l6/RN1G5G5T7KOem5HctPdXNvoN0/HnqeH6m56d5PpJ8ov/R8M+cW2vnHuNHP/18P9+77fF/nvevwe/zWa9mfYafZd7fVvuV0f+A8lvDu7K+0f455F+Nfi7UD+O/lP2DA9VbnKfGHyr7BNNh5jFZr2T90ki7Wb801d+bw7syvss/0XjW1TjQIut2/O4SvyLt9oXzvNcbX3vjq55+8iw6eug/b/lOvG2cPw6/NfHxCLs8Ae4r/4/C/stzcAH5tIM5j91Zv/sJf4ajfEYqvoZz0XMZvTVTbyXpG/F/YfZVVdRHufP11wH6W6+c+0ifFv+X7Dum39LDXuQS/65b1R//rqyvxqgn/X1P+r4Af72Nh9VyDiM9iFzilxA/vtXqiZ/QJPxNhm/B85S/l75HZ94a/xZ2M528z1ZvV/TdnPNt7R7v+VHGw+zvT0Hve/BdWEl+XXq5kV6m619H6K9Ps9vD46+H3+/p5wx6+ZHest7J+mY2e32H/Xagn7fopbr6TyTv87V7knR7eluJ7nbSH2a9hv9nlDsXna8rP5reck65UfYHvPdBGdb6ce0Cf8+5Hbu6gZyy31pJ+fPxNwFOhIdkfkYvc3KOYRyPf+Dn6Bnlu/SZ9P9KZRxW8Ev9reCf+gN9daa/oRlf8X86e6uWcy7pSvTzHf464qta1kfa36kMFQ/C+G/Fn6sSfd9Hv+1yfoD/Fvjahd52hUfg/ynlR8JRcD30/Zr9EvxlPvwIO2ysP19M7sdnf1X7r3j+OfqxWXFZ/OuyLmWPdbKf7fnh7Cb+rfF3jX9rDfRWh2+ht5f6X5WeQQ5Pw1tzvpR1FPyQnr5gz83Yz+3aG+p59ayP8T8E3oa+M4wvTaX/0O9ex8dJ6tN9K0b5bn8ivS/5TdM/rzQe1WG/Y9F/IX1eAS+Ad8d/Q7oFvE272V9pSY/j8HV1/EDQP0u755fK2Fb7Gyg/F313ondD9eT8cgp7eQ8uhV3Ir0H8EfE9CE7WfsbhDdSb8flb5WcZb3dAR/w9D5X/SuH7+iK8Rv/tJr+r553Vvxwegt5Z7ONg6UXoW5ZzR3rN/t5d0p3QNYZ8Omg3/jUPqncWu2uv3QcyH/K9XZwPffz98TdPO3Phaeg5R735vu2W9a/8PzO+qm+F93vCDUpl7CG/GvmU5M+TX0f/KsVfC7390Jf+9gxMf0z/u5M97UVOZ6u3gfKb0edD0pXpe5zy8Y/5hHyfUd+B6R/Gn95w43zP1PeD/rkA/gzPo6c7jCuD4PvxB1R/V+1lfjoXPVOzf0gvN8NK+vn16h/iu7SneUbO+XO+Hz/4+Md/YJx8GD5l3D/Id+o941Bb9VeVvx5cH15TKuOm7PVA+j0o9qv9HRv+k7+cJ4zG//r0eSG+GpLzAeq/md5XG+h+J7+byed+8sr5cs6bx8Y/RblX9btf1PeA/FXe3yHjtHoHwo7k/oByH6nnb/23lecPsYsH4EL17ySdftaDPh7VD95h72Pkx191G+WHkeuV5PoVHEQ/g+jxnexbqv8x8v7a+zPVcxqsZTzckXyqqq8xO4n936LeN+AK+GSpjCsL/qG98RP/0Bnezz2MEYX7F9lPm81OLjauNNJ+7uMsIudPcz9H/qfonQFbw7vJ7x3yWI3vTdlX/GpH5nxUP3xSuayf4w+1WdbP0rVzflLwjxoj/UepjIcblzZXfzN8ZvxVbYblitHwXnZwEHofzTkrXKr+EeReB87Qf//M+a/6usOz4HLlu8VPnL3MZte/oK+75xf/y/lfP3bbUPtXSJeyvsFg34KfQfwL5pHb+ej+b/xLpIflPFX7OXeK/dRET2f6yDpkZfyTyCHr36yHs/59Jes09e9hHHpeufH0uaQkH73XyT9d/25FX7+guxZ62uL7MXz/kO9f9i/Yc/ysWrDfa7VXTf2ryLc1e6iV/R3Pz9b+OumHmR+UoaIKO896IOuApuTXMP2NnWb+2197rbMuyHmp/OyzLCDHq4zv8Uf9Cl190u9yX498KqS/xP+nxvcFpTLm/DD77zlHzPnhneztGOWPhsvI9z7y24pdxc7+Un4b/TPz4syTMz++x/u/qrdT7sepP/ePphhHcw8p+5UzyeOhwnwk84+bjZebRO/S5ym/Bt0LjV/T0j/I7/LCeirrq5wvfJ/zNViN/B7Xfvab3oJvwp/Uf4v2ZrH7T40/f6BnL/rPfZ870dFS/2yG//ivv+29aXBB9ifIfzd4v/zt9Zum2q0Bt0Zfvl+NyC/fscznBpRh7box68isHxspPyp2AuNfXB39p3v/M/y9IZ39o+wXXUkeud9yDL730B/i/zY39ycK8/cQWlX9v6FvlnFpHpyGz+znzM+5F3lmf+cn78/KPo/0FfEPQM8S5bsq1xn908hhjvznjRd7ZX8m9zDyXcPvIulF+DsJfwdJn5L+7/crPE8/29B7H5PH3uzwdunci1ia+wHRk+fX468au++k/u6pJ/sn5HUAe2uE7txvfZd8s1/+kPz4B/2hvyyGG7CfqaUyTiqMWxnHMn7FD2Eevu6V7qwfPFTwL4y/YfwL3zZe/AAzH838cxw5zif/wVnXkf/vhfPUnLdOYQfZl1x7b5R+44c8TPpu5TdB34Xa/0x/fVn/nCW9sfqPk449X1jwpyqR26HaGUR+GW/izxL/lhsK/i39fV8eZv8P5f6V/Hxf2xjXLyPHc+Q3Io8u3mssPUP+SnKtS67XGydzD2K658u9dwcclfvM+e6je0j8OeWfWJifHE0fOf86Wn9emHUR/t4r+M9l3zL7mNm/HK/duvQwQXqW/BfIO/f2c950U+7LZH8eNsb/D+iNv8H35FA8fxyn/2XesADfq+AgcqyBv5rwa/pvK/2tdnrFn9nzWvQ6yfPJsBf9HYfeTuxk/dw/YZ/5vlXLfjE5Tibfrux1JX6fUe5ZmHPRpewq56U5J11f+y/EPwp9dT3Puc9g48L/d/7DXsar/7WcY8tvnnMlz3uqfyV+8r062vv5juV+R/bLcr6Rc67sqz0X/xM4Ce6n/EB0x1/0adhG+5lfZl55k3Tml/dmPUtuBxf207JvvaZQT/av8504lp4yD7lK/rv4eQmdhxf8nLfSzm36bc5Dc/65G/oO8Xw/5Uq5t4jup81TR8Jr8H+N9kYW+lfWn929v7F+/YV+mvXTksSPwP9TxoP4vwzQvyaxz+J9t1+zL6jcTO1V1b/eyf37fC/Uuwjm/Dzn5utLl7zfl/xbe3/vUhlvin8t+mcbd+bA+PG0Zq//Q+ce7Pz89D/9/PCcH5NT9pufpO/c28w9ztzfPNz3L/4n38be8PGE9n/3fFnmvfLPIp/MO//Q3mHqf0m7f8p/lR56kP9b5H4B/W3Iznoqf492Y/fF/eT4NXeRPt/7WRduhM4dct4h3UH/+iJ+7vrRseh4KetX9hg/61OL/tbspb72GpLXT4X7UbkP1Vt6P+0vxu9FcCzMucIE4+29pTLm+3WJ+n9G94PabYqf3dVf1byjJqwB4/8cf/v435+V7zN5dfL8Mbgt+Q3BzyX4b0pulybejvFlS/Lrh+/PYc2sT9Gd/clXomftH1vwa3gHnkU+x5D7fO0cLR2/nsyHZ5Fj7+y/5nwk/vzklu9gvn9d8HsZ/r+CdxlH4t+Zfdfsx/annz29/xncIN8D7XdL3JfcP40jQqkMOY+bSi45r8v+xBf0PwdeoL7L2e9h8d+lnxbwLPVfbdy4MvMI40HGp8X02dv4U09/XV/97YxHJyh3JToOiz8leW9Ln9fS26vyc7+pAT3knlPuNw2gt5wb5hwx54cD0fMgbMF+l2V9xl6WFPxTcv9xK3ac72O+l/k+Zh8u+3LZr4t/Xk/pF+kp/o0PZ51Hfrfn/h49N4k/F7v4NvvSmZ/Kz721yzJvUV/ury0p+DU2gfeRT+IOHIjvxNuYjv6cey5BX+Jr5PyzL3v6G38nan9A/BfU17hUxuyHxZ8298J3Iqfi/cv4FR2h/xT9iw5ilwfCA+AP6j8v+3ramSZ9OXs5RL3/Qd9T9Hwj/jbHf+IONJBO/IE/1Jt7VblnlftVk7OeVP9g9pfxOd+n3Lcp3r+eG/9WetxNP39Lfq+cT+I7fvij8B8/pxXwRfwu0X7uA5wCc18g59e3FPwHsp8xVfkq5PKe+nNfKfeTjmSXud90Ys6p1d8W/5PwPY18OpTK+Bt935J4IMaLN5VPnLDEEWsIF8Su0bOH+hI36T7lc39kaua30un3dch146yXjCPP5fzR+9spH/+Zpux3hfYbqG954iXFPzPt4f+cxN/x3juZT+WeTPY51T+zDBWfwUPgt/jNvY7c86gmnf2TNtrbnh1VkEvn3H9iF4nfdB99J37TwcaDAcrfCjsn/oL6T8DfzLr/rK8xfT6nP2f+m/nwI+jMfu0C9KR/Jz5f4vJdBGej7zr9MXFQsh/xjPyd5eccb2rh/K4pfjdHzzLtvyIdP5r4Nyf+0gz9rBb+cv8l8TgSf6NV9lfgQex3V/Iozlu2kZ95Tc4Pa+Ij54g5Dwo91bOvLZ34UBmf9kLPL+ST8eoIdnMHvXbJ+on+6ku3zD0QeCb99PPdGIDeYry43P/J/CrzrcyvHtX+PeYNIzIfyn3I7HfAi9A5tbD/Gr+b7MNm/3Vr41JzuAM8AX25F5170jsYh3M/ejG57hw/kIJ/bPyDtin4CWV8HaG9R2CFdqqie1vphbI1U/FL7mvSY+ZNxfgvH6NnDwUT5yHzm57ouRReAtdFX+InbgH3VT7+xxdo93j9oVbiyyif+1zRc+51Rd/10HUQvubA9K9b2NPp8MT4OZTKeAo5NEbP19LxlxrL7lbDVnEIw38X77dU/j3p1vp97p/WiD+C/jFX+7mPcFXi5tDXiPgLxG8jfins/w3ljwy9+E18qJy/xg/idHKMv8QUclyR+9fqXSXdKvvf9HUv7KqeptqrgZ9f1HeP+hfLT1yVeertLp3956H0N7OwD5r4pZmP9VD+aXrP+L0DufSGufeyC/obGO/21P83lz6+8P2OX1i+27n/2Yrea9FTy6yP4g9Db5+rf6P4CSpfiTzi77aletbuk2Qcjp8o+czER+LmdUb3yMQhKJUx+2K3wW7004rcMk5lvV/0H8z9hdxbyD2WnMecTr/NE3fAe2+w75zH53x+YeF8vol1WwkOTpy+fJ/QsxA/9YxH8b9NPILZsA9M/M7sV+R7k+9Q5seneP81+AOci/9P0bMV+28G++Z8V/4D9Po3feZ+eeIv5Z5qvlu5n7qKvu5R770w69P43+b89NLcC2CfP2i3Hjo+Vd84/P5J3vEf6F/Y313H88rwTHbxufYfYHcZJ2/A3yzlE9+gZs5VzafeId/468V/7yL4KflSe4XmKybCrE8z7x33L/Pfquyqzr/Mnzspl3tTtyg/N+sT41Jtctoo69wt/tle2o8/e9r/iP3XZ/fdc5+4sL7KuqqadrO+2oPccl9iX3K5UHoy+U+C9dXXQ37mU5lnnS8dOy/BxGt9gn66xT8cP/8p+NnGv/ZZ49FscqlKn08p31p/PCP34YwjL8jfgX18gb4e8U81jjSE9xfG+cHxj4vdoKM+THy2gejsI32u8aJ9zl/1u7roeo28W+WclLxyPlsZfU+Uyhj/zpbqjzwjv8/RM4FcXmB/e9NjZ9+lJnBv2Dfn+fQav7+iH8Ua/JyB3pmZt9B/zsdqeJ5zspyPJX/iFv/Mz/t3ZP+EHuZlPq+9e/HzIf66Z58Pf9PZS2/4F/wSfQfon8ONT+3J6wrlc3/tcPz+BXN/Leun+9GXeLOJLxv7jF2uW7DPRfTdDP9r2EPGx/g/Zp4R/8f4Q+bc8nbjxNvSu6KvnQGsLUx8ktfwkfl0C5h5dubdxXgyOV9Yjv7Erf4RX8X41cPVk7iJOVfKfe58/7KPn/s0OY/up734MRX9l3If8bGsk4w/uZ/YR/u5V1cf7kM+ie+duA45D8/5d8/CuiD3vLI+uCb3xtnRddLD5VfGX6fsk7GPxFGdYlx7Vvr9+J/gfwQFJS5q9isTHzX3UhP3uXg/NfeF3qa/3CfK/aHflbsfPpn9OPnDKvANe8OR+sf97CN+6x/AGuS3Pf3skTgLMONf+lPuh6a/pX+t6/l79L2b/N+Un0Dv4+EW9BB/71vIu3Hsl34Sd3NAIf9emDhgvQrjTcahVaUyLipDxWVwV/iIcolPmLiEif+c+ITPGk+Pxd/TWWdI92TvL+PvPOlV+BtCn/92T/hn7T7zL/FzEy8+8eMHJT5PYf2Wddu1hfXbSvrMOqG4Pkh8uezP9yfv7Nvv6vvyIH7bJ1505hcFf/fEaU78h5wnDcFvzl3i31/0+2hJr/ELqQIrw8grcY9eUN8R9LWn9rfWfiv8DNdO9qOy/5TztJyv9Udv/I8meD9x4xJHLvHj2pJnb/W1ls7+b/a7mif+acF/PvNWaq4YAm+jxzfZxYf4PpjdbqaePonr53nit8/JuQK5dSTfZej7BX/xz+lVQkfBP6eNcuskDg/cRPlh7Lpd4t5k/1T5yrF79RzBXoZo7070PKveKfI7kM9LhXXZ+ML67McyVLwAb4CPZD5TuF95Y+F+5XD1dYOtyfXU3CeimHP1g9Hx11H/+fidrFwXeBi725+Cz865MPkOIL/sb++ae/vZny7cb8q9pkqF+01/oDvxbxI3I/FvEi/hU3KdmX1M5T8qfPfyHfyGvPrne5V7crm/Qr+5H3bQv+w/tWLH58DsA/VW/iT9L3788VeM/378euLnc1jW1/jrgu4mOcdEfzfyHZl4mXC490bkfh75dISdYcarxPsdFz8WeA768t1/HV5OXj+yz1HaWYDv5+GvGQ/LsPZ8NeNB1q/XeXAtvB5+gb+Xcl5L7h/Axup/QL0P0nvDwvlgSb+rot51YSX5+X+KRez+ZOnshxyK39hL5k05J815au4TxE8w8Ykin6/Qu6AgnwH4a5r4CPirw34y/7oVroSZf43VrwbDodkvVm/WdVnPZb0XP8ZNyK1H4qJJxx/oe+PCIPOCm+B15Jf7CyvwOYnCc3/hSnxeFXmw/3sL55/Zt9oUJl7aVYmXIF3s/73jj0wuuef6oXQX9B8A/4h9lcr4if4wA87F/x74i1/kX7mnWvCP3JM89grSw+r4U5HP6eywB3wMHy9mAZRzpvjPkNtm5Hoxu6wtvaX6T0w82Pi/SL+M/q08P1D9Wcf/h5085P3c03/N+zmfz/8/bISux6Tz/w9Dsr+l/vhj5j5zH+0lvuw68bMtlfGc7FtLz5DO+fbluW8LD8P/GPnxS8i9zfxvRe5vVmaP68GZuZ/nvfjdJS5m/k8h/nev0OfJ9HgSvEz+jEJ888Q7T/yxTeht06wD4e74LZH3H+RSGw6j//itnMG++hXWnwn79Co6sVOxP/4vpaf4Ky3X/xN/LXEbzlC+evahvb+O78EucBq8Vfncz8q9rNwjif/Ta/R2I/onSicecs4b49ecc6qcPyYeX+LUJS534tOdqfwr8W/Vv1ZmHuZ5c3ZVP/PKnItnXuC9bbJPL38Su4ife8uCv/u5ZajYQP3LpRNfOOc+HXMvXTrnP8X/lyr6RxTjUSRORfSf/a/se61WX/a/PkBX+ln88z6MH0n8NGDGhezzxa85fs6J/xj/zl21n/9FOhN+p/1i/KTE60scpfd8d0azq/dh/P/S73byvNj/8n8j8Zsu+lMnrmD8++Pvn7i6R3lvhY70PjvuSx+Jj51zoNwfSnzsGuz5O9+X6onnhf78L0nieOb/ShJXsL1643cbe0987HfZ4xoYf8+Tc08Nf6+XyjhAekPlL0/8VXTsX/j/h0roOR19Z8D41+X8IucW9cgv5xcTvf8SHA8TPyj/9/emcjnPTrzGJviJn3rWGe3Qf4px6Up200Q68ddms4ev4qeVe6bk05FeMr/tJJ35bXfpbvT2Su41q7+43sz/ieUeYeIlZb/pBXyF//z/3jztf1/4/727lE/cwR7sq77yzxTON3LekfON3CdvA9sW7pc38P79+lvuQef+8/vkdzmMP+RH6Mm91CvoKXHCM7/burDuasieHiGPpfR5N8w65j/xJ5PuGL80/bQ9/K4Ma+MMJo554gsmPnDirc1hp13k5z51d3gzea8gv7ekJ6O3j/fWwV/W/78X9gGy/p9e2BeNH2f+V2oXct8N7pz7VMrn/55aqXdx4rBoP/OX1eRTRTrzl5uynoWNyDP7+/lfjvzPX/Yb8n9/8SeOf/EVBf/idvi7tOBfnf+Hyr7tEYnvpN7s38Y/IH59uS8ZP4EN6C/+XfH3iv9J/B7iB3E0O0v88kPZ8yHwYFgv8wPvZx+2uP+a/+lKvN6cO+yA/omFeVniybTJ99nzVdFjGdbGH068icTReBdmP3FK4m76Ds7LOlr+PujZU7k1+b/A+HuS/1L8xc8w9zTb5zvKXk4j7wY5H0ucaXrJfZJ+yuV/YW7O/SeY/4e5i7yHw2Hwd/XXZO83Ji6A9MPqH6S9bfDXAk7MeSz9Lcf33fH3Vv77zL/R/zM+8/9hywvrwqwTsz5M/NSfjBuJo5r4qfn+ZV1WjAed/0t7CF0f0kP6TfxrniOX+Nms9a9R/hvYMOdH+Ivf/R36b/zvx6Ev8cYTf7wL/ST++CP6z7T8bxE6xyQ+rPr/7X8qn8Jv09zXkH5R+VH4/CH3g+Gh+ved+sUt+kn+Zyz+8fH/j19c/OTW/v8Rus9jhyulEwdksvdfhYfAxKOJP8L6+nni7CW+Xv7fdz7M//zm/30bKpf/Vcz/LOb/Ffcit8RVSZyVxFcprg/Xyzo+cYjgU+g6Kffi1X9bGSrq42updPz94r+W/fP832H82bKu+wXW1J9+RV/udb1tXIz/a+53Jf5o/Fbjx7ou+WX+Gf/+jvEXyjle9iPU05Ueu8F8h/K/Stkvzf8uJT7Cy1B1FcPYZ110t2P/C4yn+T+OK9j/C/nfcf0w/191CXoHwm+Tznmf8nvA3eFI/O8cv0rYB5+z8j9zpTI28H7x/3cSzzL3BxLvMvEtc78m92q6FuLz3ef9C+i1S/yh8F9H/nT6ryF/ivL5f+X8b1ru2eb/lRO/Zy/941HpxO+pSm8ZL7Mhkf+fzv2Pt+ATGU+Uy3p7aP43Ch1Zf+f/q45MXGXyz/3y2xOXUrnsg2b/szieZ5yP/3P88/Mdzfcz/vnn0cu5sCc8knx/Q/8E7eccIfFcf8Lv+uSceAuztJ/7b70K994SH2I/ct8X7gN3Yz9r/ePVl/lU5k+Z/ybO0PcZl7N+Jpf4XR0X+5QeSI7300PucZbUu6wMFW3g+vhb5P3/AwvgKKh4nHWdd/jP1f//X7bMInu9bCGyP6RURhrIzkpWWrasEioUISMhQqjs7JWIsldR9hbJKBnZvtf1e95uXZfzu7z/uV/ndZ7nnMc663Ee57xffSD2//7SpY/wUKoIV+aLsGuCCLMmjHAx6X3ZI3zmwQg3U0+HRBEmSRrhnrQRzk8XYQLSVfJE2D9NhLWor3KOCO/LG2H+rBEWyRZh3cwRFsoZ4a4sEV7j+8G5KA/99RNHOAy+PgFH0H6v1BFOBieB03NHuAi+B4A54G9G/ghfzxBhwowRPgceo/08SSLMDeYFWxWI8B/Kf0S5r0lvov7/pYywmfUki3AL/F5GfldSRPg49H8fj/Bl5cvvOahvBfych5+btJ8BPRYkfYjvBoKrwL3I+ZPkEd5CvznRe3vaz6ie+L4OeryNfCphd8+gl5bYx3foZzf1/gnff4CbqD8J9pgafDMGH9Q/mfTrYHq+20v5W7S7BH7XII/F8LEf+6sMPXUo1wj91afe9eAQcCD2UwV7HYl9x5DDPPLTZIpwFXovi3x78V0b7LsZ3++lf8yFnsvQnR/8hHrGQ+cG+HmD/F3YyS2++wR5DgM/AhfSXlfsYQz9qAr592Of+aFvCPaYGbpXIZ8e6LMb2Ij2JwTlLTct293lP2R8+RM7KYL+fgbTQ99X0DUT/AD9vwLfG+D3KfBl5FcA/a6kXceZIvD/Ce1PwY7PUn/deIRb0V9h6nmR8hXR98/Q9x7YD5wLf2spnzN+dz0Dkc+B+yMcQj/Ihxxegr4t5M8gvwT9fBblO2LHncFOYFLKO546zq6EnjToMw2/t0aeq5FbX+ofhB7eAE8muLv8WOprQXtH4fM56vsLex/MOLKPcW4rv59D3r0Ytw4gP/VxhvbS8X090gNoPwX6fwBsiv5Lk7+T39eDj5LfCXrPoM8S2ifyGAX/12mvteMQ350gvzR0Z4CPdaSnw/9C+G5N/6gIdqB8efh6knY30c4p7OcK+ptIfeWRywXylaNynUB7N6n/hwhi+SjfmnRH0h/fF+EQcAT1vIIdLFN/YHHGm/co34b6boGDwQPI6SP61wbsOjfplvEIjzE+PIa+5jH+VYH+qYzfX4HTQMePRNhLYX4vAg4jPwvtjaL9S+B22jsN349SzwL6T1Hyz1B+D3KZAf+JsaM30NtU6G4IPxmRzwzk9hV6LQ/mpZ4U9Odf6N/3kXZ9UJD5fRl2U4h0Xvgbix3n5PsM2Ecn0ucZ19/GPnuCG8n/DP6OxSN8E/mso963oecj5DII/ID8p5DfaL67yvj/LvJrRbos9c6F/g6Un0m/dH34OXJ1nbiE/rQYbAH9iyi/Gv76YvdXSHdz/RFB7BroOmI77bi+mBDku754Dr1kot6M4KNx+ID+1ZSvKKL3R5BXCfAodqR9n3Ldxzi/DDusjvw+pZ6K2Iv98TLtd6K9P8EpYEnq78v3q8Hk1PMa9lMaua2i3yREvrPJT0Z6O3QlhE7X7xNprxGYCPldRH9zSD+CvPORrgA972A3tZDzu6QzUv+32M98cB74NPwp78Kg+lD+mcFJzFPjaL83+n2Wdp8Bh2Ofs2h/KfSU5vcfSMeQzz7q6wX+At6ivXx8/yvya0q6J+2vwC7SYQfLkXc5xl/nhe18H84Pzleurwow/hRBPpfoN5+Cn4F3yE8N36nAH7GH/NQfR2/3M058Sj8uTn5h+sNZvnsQvkuT353x6DrzWHHovE37JdDXVuxyB/wfor6dEcQQXwzzi82E3ubI4wbYknqT0/4u+C2L/HaSTsh34yn3P+o9Df7N79voF2XQ0w7Sn1G+Pr8fcJzGPquSr31fD+xc+3a96XrH9Y/rz8rI+37soxft3ECOFSn/KHgRfbwFv0PgYyJ4HMxI/aep/1+wJfgw8nuM8X07cvsC/u9gn1nhvyD4MOVfVj6Uewrchb7fIn8+6UWWJx2jfufvxtRbjPQ66HO98wBy+xf6XP/koX/sQR67GZcOU74G9X1F/b+T/pn8SdjtduSdCL0dov6dyLsqep1O+61tH747YLhNsY+Z7r/gtyTpmtj9dukjvwrj2I9gbfqL86vzag7ocH5NRHot3/0CPevhIy+/l8B+8pFOhfzPI5f80NUD+fSn/jzYbW/6fSL43gyWdfzBjo7Szk/w9z31dKO9c4xfbcl33HAcyco6wfFjCHIYCm5EzgWhswv1vYz+S2q31F+b/ErUNzweYQ3Sk5C/+3f38+7fj9KfEqKXpqTXQ+/z0BUDe/Fdf+ovxvcLoLc0+evc54BJ+T0R2AR+xmL/g5DrYHA8+nU+agROA3uQ/wD2mhGMYUepkM9++stf8HMVfexDbxNYl26hHyynnhTUnwu9P0j/HIY99qF8M8o3AUuTPx893Qc92Rn/MjNOlIG+nOi7L+32A8eQfxT9JoH+MtjPNud/8gfEI5zEd/koPwD7z4B+duqvgL7m2MUW8CfsZQ7l9ZvWgs7aYJzy+l1Wosf1yOtx5FcGfR+FDtdRj0HvEfpXNfrtX6Qv077zy6v6vaD/aehqD72XyU/K96P4/WAEsTVgF3Bl/rvpcZ0nvdI3Fb1NA78G34b/VOgzDZgavAr/1ZBLKvRanfTr8Od6py798UH05/pnIeN/fb7vBl0DSb/E/r954H/ehn3qj9Q/eTrwT7ag/Rf0+2FfH0N/6O9ynXYyWH+77n4PPbj+PgQ97ofcJ7n+dt51Hs4GOv/2x246o/erpLMi/3Xo+TZ6fDbwn+3ATvRzlQ78W0dY12RBP3VIL6P8H9CbAL2kRR/3Ub419B5BDq9oD5TXHpOD7keURzbs7UXsbwaYiPLJqK8QdKdgfDmq/yOC2BUwL783RX5t0cdK5Bf2nzLI7yLY0/4Jf3/z/VvIPTHpR+IRuj/ZBd2vg/XIPwu9ZZFrSsaPc+RXpz+lo9+nB/vBxwe0u4R2R4KfY98tPA+hncSMw09Cf0p+L0e7of+lIeNXCzAR+qmO/C7CX02wJPKcAx35qX8y8hxIO7ehb5rjHt+P0F+BfvtAzw3oTkb6Jdq/Rv+JxSNwHXGc9CPYXUmwBLgV+Y1mvne+LO68RP2joe8Cv9eCvmueH6FP/chbSA9CfuMY78eDngP96voW/VQCU/BdWfJzMf7Yv+xvR8hvR3vJkf9P+p8Yl/ajt6X0k7ToYWQ8wq/RT3Z+/w39TEEec5DvP9TXit9fgP936e83GfccLx0fH4bfIuD9zGMJyE+JPm9j184Djv/p4Ws6fPUFizM+ZEJeWcF88NPMdSD1vYAes5E+TPvD0ec/1Ks/Vf+pv2ej36eFnkzw/znySoFdpQT70b7+Qv2HzkfDKP8Q9BQCy1O+DvRdQl4d0GNHsDflJ3v+GI/w9WD/tZR892Hh/itcn7ouTU36AezyN+Q6j9+3UH9d9P847deEP/0bD1HfHeRfGPnpl8xMOc/D2lPf+/D/O3IpFqxjh6GfX6i3CXiYeocof8aN+mBj+sHz0B+umzwvcl3l+jEr9LiOdP24EP5qwXcc/p4mfwl05aXejOhjFPRPg6452P8sMHWwnnF9k452XN/oz/V8LR74e8sxLjWif46n3V6UXw/9rzK+JIb+qvD7Lv12MvLoTfobxu8nsc9s5G9GvmWR/1b4nYXd1aC9LPZrcBOYHn2s8Xyd30vweyXSH1PfL8G+p0uw/0mFPLaDM1wfIYcdjG83sIdfoftv2nf/7r59GWn3784Hzg810Z/zw1T684t8NwA+uiNH7VY7zkA72u+EYP/5DumR6NPz1wLBOa7z1zjnZ9r9nfRF5pEkjF8n6Oe/g48hnzPIZw7fn3VfCH2bGY8+Qe8dsIMJgf9UvcxynMUuW6pH+F5D+gDl55C+RH4bcBV86o/TP7ci8M99E0Esg/5D0heRn/7iW6Djk/7j5vDXAP2NdX0Vj3C954L6PcDs0H8DuVeHj15gOb77gfq+9Xyc9OOU91y7J+01Rc/zoO976P0QvABuQD85kNch6j1AO9f0H0LPcb77xXNU9Pw59puCcuNIX0S+WZHPx8g9KfPwKtofwe9jwOFgfvTnfna758ag+9sUpE9B73TssCX5MyOIDQRT6P+k/WG0Vwo7X8g6pyb5JdHDN6TTUv/v8LeCtOdhngd6/tcA+r9Hz7uQ4/vI0fXLn9DVAlxDffoXGvC9fgb9CzOgOxH9cibp854P0q7jTmHmE8eldvD3NPPmm6Q3QP9Byh8CM6Pfy9BRDH7/gd7P6LfH0Z/zh+Ow5yTGQ8ShOw+YGzzo/pPxZRDrI8dhx9+XqC8TcrxC+hjtd4VO1zn/n38Z+xmof0k/u/FF1HcI7Ax+it71r38L38/DVyP9u9RXmfXRz/SH16CvNuR8AXYFn9c/S/kO2OVB9Kh9v4g+4nzXiPQY5DQYfuuCS9FjMfpra+b1ON+v0l9qfAPfn0K+zhcN4RM23V7FNoF1Ge+Ne/Ocew/1ec7t+rcw4639yf6zHnnFqO82fM6BvlTQcxo9vGf8F4StCuZH/bXTKF+E6s+BaegX73juAP2VyT8Pet5Vl/rKuU4xTg1+3D/E+L0kyZSUn0t/3YXeZpN2/F5NuSfgpwK/H3F9TTvO687zzu81sLum2M8u5Lkd+3f/ORb8HExC/ijKrWFcmIje9K+VJL88+qkAGq8yNDh39hy6CXa3m/mrNv3b9YTriFuea1Cv8Yd7sP/VyHcg9jyF9D7af4jvCxu3SH0z3d9D1yLkdIfyWTz3gN5W8QjbGg9EeivfG8cUxpO5Xm1A+zeDde2D4HDHLbBt4D8pSD3l9G+5PqfeDeBDng+iv+PY77AgjtX41et8Px7760D/+tf4E/trwrvb19+7nfrWUf9E0PGxJvakH/UMmIL201B/T+qvjx0Mhb/EzEsJPHdk/Cuo/qD/Pei4Rn1t4edv2i+J3Z5gvm8Ff/0o57rxC8976E+3kEdB6tHPvgD5zmXc3xOP8CPPjam/APQYv2E8h/Ebc/m+IngZbE/9+nWWU1/oP9Xf/D5ya03/+Zj0U9S3H77qKyd+/w2+dns+B/ah/i+h9zr4g/bIuNOdehxnw/E1MeNZYerNCzZHvm8gl4XYxTvodxP9qBPpjp4jMt7sZHwo7DofbI189I99aTwWcqwFXV+B+jX0Z+yh31+PR1gKeW2GzoTYw37spTB2VgRMTj9UX4uMtwXfpJ7JtOf47j7I+cTx3TiIHmAL6BmN/Gdj/7vBmtDv/li/2m36T+hfizPuFYT+QuTrn9tMfYU8PwCTY59t4Geq4zC4CXqGUt8w9DaZ+Wce9bvf2aT/DHv+A/ulmphhN8vAVmR4fvYT61rP0YxfNv6gk+fkoP6wlZRLB+aGzq7Ql5v5aQf21gn63g3icYzT6RfM168i91fAtqnuLp8O+bnOysnvnp8vhp9k0PUEdtSe/H/hbwJ6vGD/gf43wUn6dRivVmMfsP2fnI+BnbGbHPDzIb+3B3NTfkcQl26cuvHpTxpfhAJrQ98F6DpCfzkMHgK/JH809dWj/uykT9N+UfeX2F195FiXdlxfuJ64gp6Ku3/DHvIi36Wki/P9Qsa7W+Az1F+f/P3ooy+/X6e/ZIKeHdC30XUX+I37M+M6qK876cfRl/7yJvQH++VOyldDgTUYZztiL2PJ93zX89ykwfnZWRSfH7nnBa+5n4OfRcZTgPup/2X6Q1voLYK+PyZ9B7lkov1k2F8m12vGt6DfdKSXw+cM5HUaOsuip87obwT1GU8/AXl5vvIn9X4Izqb+FvEIS2En5WmnJOnzjG/9kG9fsA/YlvzXqO8H+EwFPY63H6PPn8HDoPO79xUKU4/3GUYh15vGP6PfjfB/CP085b4OfMF5GHl0h68e4APYRyfka1zyj+5bwA88F6fdvZTfB+5Cv/3hZwq4FFzAfPso9rQQ+RzTn8f48jv8v23cL/nGh+hvelm/Z+B/ehF7GwSd/ZHPbvKvYWfdwbex35nIpxr1naD++t6bgb8cyCsXmFP/FvpbDr+l4G8S6Xg8wvD+iH4P7XUV9jaAddF85PUe9vss5ez/GdFLH+i7L9XdfCsH+dc/qV8yF2n9k/aPOsjBftKC/DLGLypfxseJ8G98j/fMwvtlu1iProPfNtC1HP76oL9J1NuX9CjyL8JfFuR+2Hgv6r/D9xWRY3Hk18v4VvjRr66fXf/6WtZRxlP+Br0/Un4o313zngTpzfCxjPbLI6em0DlS/zK//w1/A6GvGfwNRx/DkecryNn4RMd/z0+7BvOAcQmvwJ/rrxvUM1H/A3LYSz/YxvjyPONqIb5/DfrqQ88b3h8i/QH2eBb6nqP8M2B/9HUe+SSEfs+TD0K/48cw+kta6P+XdD3K/+Z5GeW6B/PlFur3PGEM484m0u8ynm0GkxlvAT3P6y8C9XP/QDoD3zuubgjG16XYxQrwOzAd/BnPcwO5G+9jfE9Vvr+N3Nfx/UHs+1voaUX6H/AM+qjnvgW84v4Fe2mM/Z1Fv62xtzHQ5/mG8fHGozh/3o/+Pf8z3sDzP/0hY8ELgX/kHej5zbhg6FxO+0Udr+B/DvZznPYzMZ50gY92pD2H87zwR+TiuaH606/RkPx8oP6NJsG+d3ew/63PeukA5X5FP43o94n4vR96mi4dlK8Iv83BMcihbzxC7yO+dI/7z8OoT7/M0UR38/FtBP/FyXsPthryncR6ZSJ4lH66BPtwfL+GHhznHd/1f3cER0CX59dvQYfx5VXBg96vgd7x6OUYmAR6eiPH9si9A/gq+nkLfvST6xc/TH5S9Psy9c6B/qOk0+gvop03wYcpXwd6rxmHTroI5ZfpPwEbg1/B/+TgPswZ0mmofwn2kwY5N4eeX/l+Nvw+Tb+sDu7WPrEb44wKkH6O8g35/QZ8tUO/+9Hfs8G9SO9Jej9SP1FV9NqI/u38O8v7VsYheE+b+rfB7wr6ZW/v2VO/94LvYL/dSXs/+FnssDB2v4Z6jUOYgHxaUf955tGN3j+iPf3Ta0H90+c9rwG9Pzo7HmEJ5L0YfS+i/k+NI6P+n0jvAdNC53XnO/dNtH+V9pMg7x30g+3gVu+rOZ8yn3mOfgn+q0JfWvRcyf0I7Zdz/wK+i/67UV91+FoL5sEOKrheAD8Ee3gfDTsrS3tHwLLqH7txfz6DevuAzaE/IfV8HY9wG3TkxL4eJu387Hzt/Kx/4BfXf4F/QHucDc4K7PMT6L6JHof5/gD09YH+b5xfkYP+SeNmWt8jfia872kcl/Fbx7DfptDVODhP3kV9nsuOof0v0eMa+F4L/uB9Yug7ir0eBrPQXn3yK3n/nnQz6OyE/E/S/iT4S0L6Wf23rAv0g26CvpGUd3/rvnYzmB37yxXsP1o4H5CeHEGsHvgz6PsNlZHL44xvz1FfZ/hJQXvGOX4NGt/YH70/bL9FTpORfyvsyTjkNmAe+PsAvrV3zxX+8n439t4YfJzv++ofgu50tLsuiP/wPqXzRjiflGHcG4wccqDfnbSvP1d/g+9d6N9NTH466q1H+j3jMyKIYSaxcWB16PN+Z1lwNrgdOW8y/gN7PYq851H/Vr7znNx3BOrHI3Td5jo8XH9foN5R8PMUclhE/RW8vw2WB6cbH8j3x8Frxjkgv84IwPhC4w3fD9a3xpd+Y5r2Pd8ue4/3Xc7qBwQX0M/GI98N6Lc5dM/DXs45PqGYPND3BPPDD6QTY0/GXRuHbfy1z5K8Sz7d4r/7wb5P4byvf8Jz5szQ5bjiOOP4cgG7mo6eTnkfh/wfoWctuAZs5/kk81ZvyjUmvwD5OYP3bHzf5gzpvfRX9w8H4NP9g3G5mcFf9c/Cfwrs4nXk/jv1NKL9bthLV/AY+JH+f+qdjP47BecYFYN1/3zSrv/t3/bnZIwbz0G/9yKNz/2R8fMWv2eg3mb8/pT7DfTheWFS1ll5vT/i/Rn663HvnzP/vwQ9TwTx5+NBz92K0P5YypUx/hb5lUYfZcA48vb8qAa/V8GuOqP/OdR/Hn560M6TpE/4Dg32sNI4K7Am5b+j3heR8zbqL4z+jXdc6brEc3b49/0f3/2ZBfr+z3jo+gM8Bn1DKT8FuxpH+5+DZ+2/fP8F/c97It7/vVfcsfntsbcLoHEp3r8eCr01wUlgDvifiJ3oX9ffrn99erC/TRnsb+fDzzuOD+BF45OR6+7gHPmE8dK+KwAmANchH89x2mFfnveUoPw4/VrQ5fz7DO17/64N8uuIfr2Pd4nvE4CfUl9t42uRS1f2R1943kr9e0mfw67PwX8h9O+7AcXRaykP2gL/QCrstJvrT+/HMD7XgZ752F0Byruv0s7D+CjXf677kgXrP9dPxilUcn/kfpd63a/sJN0Reh5iXaS/L7f3dY1/oFwNxquaYCb0t5r+0Yvv3ga9Z2088M7gfLyO55fQPS04n0tC+7ewl5vgbTCH8RWBvbUJzmdrwt8+xptH4G8I/J5zPQiedz0EfaPhV7/VGNLGL+bwXgX2cVP/NPnepzTexvMZ71degJ+mYFfG5ylB/JjzufGXxhfs4XvfnyoEHVeNn0XfM0Dv8Xt/ZD39pa3nYOhtBzgZ+u9DL8aB/QT9TZCXfvNm2gHlvb/ovcUEtOf9xdLYewn6VQHSvqdmfGRDsIHnOdS/PO3dvzcM8mEzhvhii8EB2Il+sQ7GMwf+Md9FagPuB30fSb9ZLuSk/8w40lLoZzvtHSDdhPYG830+yofvYJxm/ve9voWMB4cpXwC9LTTuHPlm4/sKvkeB/Gfpn6J8L36vjd2+ABofb/x+Z+PHQeP3r/D9k9hVw+D8Piv0NkauG+DH+AX9K1Opdx9px6cS9NfzLHxTYhe9yG9IvZfRdw7qr2t8PfVep97/kT6JfH2PJ7X3NoLzCuN8jPsxHigrv+el3nPeG6F+3x/qzu+3KL8E+Zfm98XYb0/ms17Oa9CXhX6bge9OgqNd/9FvEtL/Rxj/Ynwo/LhOcr9vnEpxz/sp18C08xvtGcfie2i+f2a8zArQeEjjH72f2wBcBXpPN6Vx9ZQbI73o9RHvi/DdHcbfSsH9yn3QuRc0nsz9QhnoC+/5vcd4M4l5vx/pitLnewrgWPpxK+eXIG6lHug6Z3Gw7vPeseu/j/juQhAHZPzPgWD8KIh9OH7oAKiFvLy/4H2GqugrE3aUHdwE/XXYT7g/db/q/vRv5PSE/kXjaYxjoX+uoH8uhK827vchM7nnD6SHGN+FvBuD9cAr6Lch5bx3F97HS4r87vVOjX4v4/6MA3zMfY332/S/gfWQj3GxvcDV+pMY/43fOcD3xvEYv3OS740T8Z7+n3z/lPtm6GpiHAp2U4j6HwKn6K9Hvluwi6HGBWHvnn/PxK5ngXPARt6vpNxO7ORncAn1h+N6IegvaZw16eqkd+t/pP6eQVys/r2rnltQ70706znTMuy5J3y/AVb3nA/6nDeMAwnjP87HI0yAPI5j376P1dz1OnbUMrgPdpv+esNzfuTdm/5R1fvt0FcM/NH4duzue7C194eh3/dax9Hvr1K/89n8CGIFQaqNFXMeD+JeUvseCPT53qd+O8/D1rAvMT5eP1l4/ttRewL7IJckyPcd6F+AXS4CP6B930MZ57k16PsoQxg/WqLvGfTrUtR/jHa/AQfQ/knK+/5BIfe7yNH3D3yP8BR4PnivcCT20AV7NK7R+vKjt7ngRtrT32ics+sE44QHQv9I383zvVnS+p+NZ9tKu4PI932yzsG5uefonp8vgK754EL3k+jV8dlxuTpydny+3/GJfu54mhT7GEF6pPYfxLu0Yr5ZCj/h+0z6370fGZ4/Gd9SErsrBX4BLqF/LgbzeN5jXHoE/70juNo0/Bs/bVyfcX762z+knb8cl8C3kI/xIp4ndyC9kPzLtFca9H5iGr7Pi335Pq3v1Xp+cK93FX1foyp243jcHHl7v8h50fnQ+XI99tOMdUsd8Dr9sSjt90WexuUapzuC8t4DWQH9r4Luj943/pxxby54Efo8t/wGfB/U/+N9CuOEKqOfS/EIn6Q+zw3+Cc4TskOv78wN9r091j/GJb4Jf8a1GZ/4XBA/ZLyi5xijGa+dX7diN86vvudWFYxhZ48aL8n3R8Fugf/Z/mTc2CDPA5Gv92KuUl8b7w8gh4HYl++OF/V9L9JZ0I9xvZlB432n6A+ivkX0l/fox95PmBPcU/B+gnEixaDrL8+D4hEeob4a4BHKt6f95oxnd5Qr+Mw97hfNAr1nNIj6amAfiZBjZco7f/4B1gGnoD/PNV8O1gG5Ar0MD8dB5BPed/MenPfnn4a/ifKHvCtjv62wu9FgDvj7Nx5hNs9dseuEyDs3+aewzw3o9STpHPD/BvTrRw3fL3sdut4AK1G+AOW/ikEnOBV8kfzlzBs70MN3pB8xfgC62tB/wv2p72dsMV4BbOP5LPs9z1GK+pAo5Y1ffDaIY9SfGb435Tu4ns+uCN5F9Z1U30ftoryx659InyA/OfqsgtwaUf8d6H+c78dQPi3YDvvzXpP+6dLYk/ecvE/7NfmxYH/n/mMB7br/cD9iPHMN7PsX45sDf6LvGnnf23PE/ujzNHY80Hfekb9xF6uRexh/0Ud/CfYVvs/THH4HwN+78P256znoHaVfhvpfgD7P7zy309/i+Z3z8w9gKdB3f56AnuLQ2QT5bYM+780k4Pvw/swC4+1B77Efxd58b9331z2nOmWcK/p7m3HlHXAh/K+GPu/tG0ddXP8nelkCrgBrol/fpc51j/epq8KPfhn7+zjaPxrcC/L/WaSE/6vGTYE3wJGuB+n/J8D08DeL8nWga7bvuCKvKqQ3YlcfIYfkrts8X0Xul6D7UfA2v3f1fOYe78M86f0WsB/6yQf/+kV93yj0j85k/tVutWPttxrz3nNgVbAC9GdBX+nhazL2oD9mP+0e9ZzR8ZL6kyPP+0DvyRVFTzVY73mPN7y/Oy+CWBxkeRer53kPctmIXKaCPfTPk78FvvQPpIXeOmA/vvN+VQLoCOfbl4P7DQX4viN20gn82/sr9HPP3b9DH56/z6e/GJdTCDqN7+yCfb3lOSG4jfKhXfanvHb7IXLah/72g1eh7wTlnefC96HKkN+W/G6kd6II7+UnY9xN7v076GvieQnYFPT9OePrMxqPjbyMt/f+kfHxxssbHz+S9j8FX0dvxaD/S9K+0x2+z/0Qdux9/RHQs498+2UncBZyyBOP0Phv75EcQQ/Gg/t+mO+GpQveD/M+1tPG/yP/g6Q/or8YR52Z/nfB+BnXM4yb5fjO+zuOjy2CcdLx0fOITxhv0+kvJd99oftB94vtXV9D573iuL2/sCS4x+D9hUJ877tHtYPxqyPyehV7rgtm9nwxAq+fxLyOshI56N/dZxwd/Ovf3Uo+Zhmje8daIk/3Tx+AX4Pe7zW+y/+zpN/F+C75kT/HafkbxX6sFvWdMe6FfP3ySZifQv/8YOx+E7/X094ob3z7cNA4d+PbfZfEP98r8Z0S3yOpDKKu/+JAhtLeSFD/bWPab4B89BP4fpT+xcrY9w3seCbYH/saQP/6EBwIbnZ+pL2c8L+QtPdDH0R+y5DTMBS9l/Yv6Q/03UnsZhrt+x6W72PtD97HegY5/M97fuAXxt/Bv+eLnjfmcP1Gfcb/Gg9s/K/6cfvuXzvkVo113Hr4rYCfxfH9Tb57gHHjQfBR9O//J2gJ7gGrMF9578N7IG5vvP9RlvFuEASuAc/Cn/uRqcilS7A/MX7ZeGXfw/L9K98D9P2LP7wHQv0N7rE/dt8cvr+Sy/WScRD+vwnSJaDP+5ve7/Nen3Hru9yfQY/njP6/pWa+p8z346DDd7L2SodxheTH4N/zwxPoqzDz/kb48P3VJ+gP7tt9h7809A/xnQRwHfZfnvL70t9Np/Hivh/4p+9+Ub4C7R+C/6X67RnHCsC/72NZ/+igHetPSv0FMKzG8PMd5Y8YhwmOBB9hXvJ+dgr/Lwl2tJryabGHk8g3q+djYGv6y1jK+388XB8ch99a+ifARoH/9f17rE9eQN++UxC+T2CcunG3c31PGf4y3+P9Je+fGN/rO23G+RrfexJ7+B08Zbw2+nc/7fv93sOzf/n/FkaD/j+GFa6/IrjnPSr1rb1r/75Xqf/dcwf97p4/JNRvBobvRxuP7v9b/BJ7ykv7+uv14+u3T42e3oZe99+tQd/f7cJ6aDR8FwR936GL70/Qfvi+/ATsrhj8eZ9yJP3Jd5mMS3A8MT7B+cV5pXwwvxREn76r4jsr3t/9CnswfsB4AuMHKqOP8P+P+X/JFkYQ+wx8FVxK+zU97wbXgr2hs6f/L45+mB06foU////d557rgf7/uxHQM9y4ZPrHFezd+2b+n77wfXTji4wrmh3EF+0MzpN9J83zC+3Kd/3WOp/we1vwW9qZZ5wp5cP3340zMb4kE/z6fxDC/3/guq0oeNN3hslPFJxP+39mPZ+uS3ow8tpP+iXk4DmQ/qY+xntB3xn9MZSvBtYi/5r9gXHK/6fi/095Mbgf7H1h7wdnDN5X870131ebhF36f5sK0t9noD//b8UayoX/v2IN42ob6KnI796P8P8HjqAe/1+R/5/oNPL9A8yAHXgv0fM4z+d6B+dzZ/ne94d9j3gq+c9gP8Wwu+dJp7X94N2GT+zH5DuuOM6MYlxxfAnvO3oP0veXvS+SyvfbkIf35xr5LovrF/jeA72/wa/vBIfvA5ezft8FwJ48f/B83Pd75vkeOfoyHmYLGL6P5XrnZ8ax8P8P/ap/B+wJHf7/UN8LWaAfKXg/xPcB/f8yvhPo+4C+v3AEOnyHwfcXGkcQOwt63+k66+s8QVyf7wH5Ps+30L0tePenifOr/mXo9nze8/rE0JsU9P9qd4a+ztC7HnwMevbDl/O28/jB4P8RDEBOU42TBt/i+3bBvWvvYXv/uqLrF+iaKb3Of+T77obvcPj+RnPWf97zDe3ddw9+gi7fPxiIvDYyrhSFrg2kd1DPbeRyE/zc/49N/Y/BZwrkvtv3jPQ/0n5DMHynMRyfr5J2nD5ovuO6cYG07/1C7xV+jXy8X3gHun6D7/B9gan012/BbuDNeIQZ+d53pK6A1bCvkcH6vBjfuz7/0HvVzDfh/wc1vvhLMA/1fEb7zSif8h7xje7XXfdNDfbv/v+Cy8H/MfD/F1T3/8YynrUHPyW/B3bRHflugb6KpP1/r/7/1w+wB///az6+m0M/eQ39VIX+pP5fTDAR6H5+M/U19d1s0hWUL/QOuYd/xHev5mLv4ftXeZC774CG8R0Jobcx6+7w/P//AClJFJl4nHWdd/jP1fvH3/bILDPibSSb8CF7S0k2KXtmZEuEkJSMFhr2KkLKFpUkSjIyQqUI2SEp+3ddv9fj0XU538v7n+d1Xq/XOec+91n3ucd5J80U+//fKvAzsGQcTBzhsEQR/gleykk6ZYRnwU5pIkxdIMIy6SJckzbCEvdEGOP9A7w/kz7CtWA+3p+gvrFgT3A/9C1KGuE06r2b8nLnj/CxjBEevjvC3tDZgvcjKW8rWJ72Vr83ws3QU5TyZ5D/3P0Rbswa4Wc5ImxLvh9yRbib7/eACbT/E+qfwvMUPH+TdHXeH8oSYWvw7cwRroc/LXj+F/T9miTCiTxPeleEXeFTctL7KX8+7b4KdgLT5o7wb/gxD/wWfC4P7aDehfC3Pf1cEP68zPeHwPzQd4Dyk0HPEvuN/kpE+4bB31zQ2yIe4XeUXz1VhOPIlwscz/ej4Nc9lNMQvtxN/h/h+1rGfWVwJe0byPsZ2SP8jHQT6FiRIsIetKsnOJtylqTmfXLeg2upf1+GCPeCL8LPp2g/zYmloZ2L4HMd2vce/TWM9Cza+Sr5T8L37eBYMBfvv6c9LaF3AumD9E9uvp9APR9T/mPxCHNki3A968E6cAH8q+W4APOKtL8lDazFuG9CO2/RnovU+2UEsULgG9D7PfTNBlPC/+uUn5nvxtCuxaRP5Y1wJny/C7pyQMdx+JOT/ppOPw5lnMYp/wT1DgLfBTfR/p3k30D5z1N+knwRfgu9PZyv8HchdG2gvqSk88GftuTvB3+epr9WkH4Y+s+TPyPjKkY6De8TM35HQscosDF82kK+D3i+APwbfqaG7gRwMPOtsus77U7HPE8LFoN/K6H3JtgbXEH7SjPvXK+XxSNsRPm/wO+1YCXbwfcZWY8+oT11wG2OP9r/BNgCfIr3zkfn5wvB/HwdepeDWaFjC/mn0v/nGD8dGe/f0r5r1JeHfWYR798n//fQOxS+dad9Z8m3NdPt36UCX6b946GrsAh9b/NdBejrx7goRf0zyf8V9a2mf4uBq8i3n3EwCrwJvkH7ztP/F8Cs8G875S9iPGdif1pMuiXv+zOe5lFvWvAo/H8KOgrRPy3g4xjyV+T7TymnHLgK+l6EL2fBY2A23n9Avw2D/8PBDyn/KO8vQvd5sCP9typZhKvB6tDbnfxLqa8iWAn8lX7qQzpOujfrlvP7CdrXiXa9Snof9J+MIPYM+C6YjvzF6Pf34X9p+v8m9L1A/48Af2LcZWX8TKG/fwEb8PwCdO6A7lfBspRzBvrSup9A/2XoX877ztAzH752Mg19nen3Ccxzl7m8vL+Xch+j/pPB/leD/vyW/kmmnARdE2lPRsrpSTs3s77nhN4lvM9Ivp+oPwvjoy2EtQMnMT6+Zl5s5nkf2tGD9zHkydHU9wFy5ULSjSh/K/Q3JF2C/BloT3owHdiI97XgX03GZU3SeeO0B3pcN4fRf3fzvDTtr+x6xPu34O9flHsdTMn+l576e0P3NJ4fJn9+xwHYAv62Jf0K42Mz86MEWFz5FXp/oL/rUu4G0t2gLy18r0N76jMfLtN/1anvSgSxauAO6LnAePiX58XBjtT/1H0RNmR/bs9+Nh76V/B9IuiuR3oN9GWDrnr0ay/SNcifQL4y4CLwoHIs9L1Meh5YhHE0m/p2gd3BA/EIW1DeBfBd8EnakwE+KBeH8nINxvdu5tkq+F0W/rbh3FQQeoqQftf9j+8nMr62kd7E+2rQU5Z+rQimYx7uC+QD5bSH6ZfltPdpMCflXYlTLuOmKuh69h30vkb76zFOEoNHaN9Q5tsI5yn70wrov4v3qcE04K+sn7VZ75oq95PORvl1ofsoOBlcy/j5lPLWgZ3BRNTv+jUiWMdcv3pCdybo7kG6IvlzwK/EYB3qv5/16WvGQ0nGXRLKz0X7jjLfToG/g69T/mLau0o5gnQ7xv8k+vk06QbxCN1fHuV79QDh+f8a7bkO3gQ/5/1w6P0e3ASfNkH/ctq3k/ZlAafB/2qsb3NY//aQvkT5KeFbzQhi58AnqedN0s+CjcEJ8GctfGlF+eVZH97ifXrG7SPgMMZvMt5Pg953wTO0Z2o8whvw7RXmXRL48wr0J8CXa+SbBy6h/X0pNz24mPfuL4Po73zQ/TP11KX8Spwv34Dfk5i3k3nvubYK7SsHfkD5noc8J8X43vNSRvg3jvGdQHt3U/5ZshUBU1HOUNpzlvYrNyhHKD+0hF/PUv4gcDr8z6rcDN1Z6fcy4OyA/vB85znY83GM932gvwn0TQXPUW5N+DgGuep1cBnjaBTlJ0B/drAs2JTypwXjphrnf8dPBvh7GLliD+2vRPnb4NcTtL8l6HgpEuwP9yMP7XR9hN51zOtS4EzK30K7+4Bdaf9O1oeM9Pd08o0D1R9sZ3zWhc572MdG0n731/PQmzTQn+anPxIYdyWh4yOejwrOnU8E50/XZdcf1yPXn1+htwN8OAV+T/tPwffktGMy39+kfM+tJaBvNOnDjI9sPC/I80nKgbS/KOX/DN0/Uv/v1D+C+TwKHAm+w3vPNZ6jf1cPQPsWw++P1BOqRyB/QfovBfXW4v1h6LsEvYmoRzkxGc+rkK4Mqk/4IDh3SV8DxqPn+3SBfF2PeaR8vZL8yeF7W9J74Nf7rlfqXeBnLej7h/7/kH53vz5J++2/LkE/7vB8BL83w8+WzM/hvC9LeWPB/dCRivW4MOtkFvWvyHWv0b6k6luotzbpqeQ7xvxvQrueBrOZn3l1Cv49RHoc7z+nP9PRz3exfszg/V7eX6Cd2hm2wJ/GtPcC+AL054Uf39LuZdD9OelqlLue5+vA5LxvwnzKQz89Ab7JerCH9aUh7S/F+JzN+GgAfQ3ot6/U41J+ZvjZg3HyDNgT/Ib++IVxdQb+LKX9s9WPQffP4H7GUYxyFlHfJd5/Qbt68XwPz3erVyV/c/J/R33fgGfph9LQl5n5cgN5MB/9oH5+OvWcBxtTfnLoVw8a6kn3sA89zffP8fw46UKOV8aL+qHK9I/6IfX36te2BvqzGpTb4A79M5l0B+rtS/oG4ysd+S5HEBsJtmL8qt8uzfO/wXSUfze4kO+6ggvJv4b3c8Fs8Gk5++Uv0FUCuoqD6u9r0u5F5PuN9p8G58CfYfBxD98npv5HmLd1wYfBH3lfg3RN8DT1HIOuSoyHXew3hdnfXb9LMH+ag83A8YyPKqwzridTmN83SB+BL67D4frr/HHeHCLt/PkKPrzFuClM+lnKz0R/FIwg9gBYkPb+yzgtzbyvAQ5nffgTerRjTASVP3IxH8fA9/tInyT/u6yXV2hPAvPvNcbf1/TbO9AzgHUiA+WngM99aG9V+NeXtPKXclcR7RqUH6M/HwOnQ/9LlF+S9u4Fi4Oe78fC90v062XSz1C/eptHwaGUP4b3nvc9/y+hPzz/a7/uwPNpYC3aUZ5mVAAvgHP57iXqXRSs8/MYJ4v4vgyYAL5N/uPwuxL9NoN2zoPvudVbkU89kvqj/srFygPgfuUJ5nNucD3zSv3YX5T/JngP/EhM/Z7Py5DPc7rn83C/cB+pCv8f4fvplNOZdJz86l/Uu2gv0z7Wn/HQD+zreYT8Y6D7PuUo8Cn154zvB8CPwb947/noC+jL4XkgOL8s5X130qtZV2LqS8A5zLe4+knozU3+IvRzKvgzhe9yBnKc8ltuxvtAylffV5v370PPX5af63b65kPPPPB98Hn457r1IeV8EKxfF+nPC+AL0KmdUf+CodCtXvYf8pelf9zH5Ld87sJ6pBzaFVT+bMf3+6DzS9Kf8j4P609f9olU2W/Pn4d5MAF6e5GeDH3dIoilh76NpHMwP76n3dvBnYzzQ9D/BvN1AnSPA7tRfgfSHbUT0v+zeD+bcorCt+7K2/EImwT+JxvAasyP3O4bjI+z0FmTclIyH3aS71XXP9p3nO9uQsdm0qe07yEXrYDuTcyfJoy/wdT3HKh/RHv4lIPn30GHdquc0P8D5cXo312kM8Mf+buR+icE/O1NPudnqGdQL18VrAaqnw/18iVA9fYp4G9qsCrzr6z6d/bvrGBtxtfWwL78PHzQzryPdp3g/TL4/DL7eO5g/XTd/I79wvXzHZ4fU/6gXQm8b0R/NwTX0L/fkO6l3wY4D7wej7A5fG8B7qNfp+qfxPNRlNuV9v/J+yHQpV6gUaAfcPydgO4aYHX69xPo8Xw+iPQtxm8mxyX8r0b9Zcj/FfWPp97HwQfJn5z2eK7xnOP55rDnOOZXB967D7hftocu91P3z3D9c91LT76ZpOuqtwPV6+WjPXlB17NptG80dJalHVehz37oxfM+4GzG3VbG1xi+V44J5ZfvKP9B3leD7lNgevhenHl5HPyB8i/TjoGOP/AI/K8f2F1L6b/g+UJ/KbAgz4sxXwrwXD2N/h2pKe+y+z3fXwLXwz/tXXfaR9e7r1PuXDCj+iHm4wXGSQ3qW6l8rr0ogv/WH+2GReBzYXA15Xzq+Yjv1fMfZLyo3/8Eej4G+3tOZh2p4nmOfDNJP0L/fAif9oPlKafUHfy7vg/8vErAh0Hw7Qq4CPrchx5QDmUdfUH7tPZP9PgZlCuhbwD5Urkv0o4dBW4vx3yWY/7WtKcVWAN628Jn/XVOMi6u0X9toH9DsP+ODPbffOSbiVyVgXRF6pfv9sOBgP8t+f4Y9V6Bnp6sH6fZH1bpp6QehfmzgH5OxPhZSLoB9Nen/OWeM9THUn4/6l0OP7aoDyG/er7drBv74ONp2qE9T/veb6S1783xvAzOBZdp/2d8fQROAZPwfh78mA+Wg/4veL8UukaAs1iPJulfBl1FPdeTHsQ40J54DDwa2BcfYt2cQ/0X4M9V3pejnIHwZYD+q7RzL/2fmvminUH7wk/MF/0nlA/0P1NPUBgsBJbRv4z6XgNj+mnT32t5vgZsop6Heu/m+/vhSwFwO9iU8bSY/EvAyeTLC1/n8P2jyvnU8zxpz8vnwW3QH4Mvyr/Kw8q/2kv0Gwj9axfT3z8xThtBz9fqu/i+Of3XVP0H/O1MfZfAGdDxBf2znvOE9r4UjOuGru/Ks+wXylHKT/rdzeV96H83E37OAC9Db3vGzzDG9Zvoh98As8C/7ND9o3IV+R+lfO0O+vkcp54TtPN+nvdl/WpFe9Lw3Sz6vy/zrg94nvIP6JcCPqadBrrqK5+CPZTzoX8O/TYXHE3583n/J/XXoZ93QOffrq/Q/6j+geT/Q/8E6KhGez8n7flX/0T9Ekt5rqP/81JfPnAC/O9I/frtL6Xe0H9/Ku2+DxwHX/NBr/7Z2s+0pykfbyHfEPJ53mrHuhT6Cw1gP90Nff/SbuW4UH5T7lIO0x9O+asu7UvDvLmpnynlP6PdV7sl9KUj/6wIYllo30TS9zF/rrBfx+LUxzy5zPt3WI+VZ/ex/nq+OE49f8L3WY5/8r8KPWPBXJ4DaE/NQE9fhO8agdrN9StXD688r7+s/rOFQP1n/wXne36DvpSMP9cz/aRSBevFVeSlxvChG/OkKPwvDT9KgSXBTeqnKd9zT17q8fyTVL9/6DZuZjv8KwrfH2PcF9c/T/sR4yF1ME868N7zQGrGiecFzwfGx6hHLoAe2XgZ5YO80Pe48oLrCc+VTwvwviXr9AKerwvsoH9Q/0D42h/8lXm5nffK3dVB5XHl8IvUVxXMR/njGU9ZlL/BXuSbAv83Mc70m14GroTf06gvjfZb0rVp/+DA71I5Qv9L9Q97ld9A5YvH6b/6yo3aSxmfhVnXtkPPi8Zfkb+v/qjIG/1IX9O+Aj1Hob+Mdgzm7039LcCK6l/pP/X66vmXB/p99/tboPKA+/9blLcLVE/h+pGT8XofOEz7ifZn2mv8UmLS1am/XASxh0D9qbUjuO6Ph/5w/Tee6i7oNd7K+Kr0xiMxT6rQjmegr5n2Odqtv/JA5VfKKw++r14BOl4P/GifpfzG6heY72Np/yHoPkD7x2uHpLz39J+Gv4kZPzsYH6dJp2L8K3fq/3JYf0D1c/DP8/8sMIH9T7+VSep1A/+Vk+yHrRlPndkvl6ofo3z1U+7D7r/qDdPyfDrpfPDL88x8cE5wvtlMOzbwvXqeQ6D6/SPkU8+vfv9t+v13+HWRdhwlrb+G/hvqw9V/p4BfWym3ufYd9frQl4l6zpD2fDEYunKyD+XQXqf/JeUNBrNTbjP4XpX+XsnzVfoLUE8oN/RiHCtX0LwYzYrNBUtR/2DKbwZdQ9Tz8H4X424nOEo/CNo3XbsbeIVx/qP+F9AVh5/6i+sf/pHxMeT7mPRD+q8xrroyrsuqzzV+gvYbv2k8p/GbyiWJ6R/lFeWU1ZRXWDso7/Prp2v8APNlC5iT8u/iO+1f2me0f71Jed+A+vP8zDh8L5j/ZZSzyH+EcldQ7gLSxxm/e2hfhuD85/rVHHngAeSh/siLU0g7bj0XL6V+z8vKaepbXyCdlfLV+3Ui3xHGgXrB1vrD8j4Z67/npsb62+vngrzTBf4eDOw2Q9STUP9ZBnYa+Dmd9WkS/GnL9+vBa2BKyv8Gemuxf9UAx+rfZ9wP2MA4YeqfwPiYCBY0XoH864zfgR8nPU/zXru/609o/78FPTfBGPPjI+rXPq+8pL++9vklZHNfDeOTzjHfa4B/g/fqf2ncGvXqb6V/levyI9Qbrs/6c9cPzrdfqtfV/wZsGI9wI+XvYtz8ILKuXaM/XqI974AXwUGB/4/nD+0JzlP1zuqhj8Nn9c+v01/XQf2Sf9V/NTgHGgdl/NPH0Fke/At+XKV/vRdAf1b1NepntF86DxaDjbWf8f0O6CtNPcUD+7bzsmNgf7H/1D89EvRfejYQ7cPrGVcLoL8C5S2g3V+Bno8aMZ+P6pcE5tA+FPhvtgv8iep4Xob+CqRTwn/914yPqgIaH9WA9ylob1/qf5znzscO4Gi+c34+F6zP2mGNj+9Lff3A1uo7ya//2/PQrR+c+qvhxj+CreFXQ/dL/afvsL9egY/aKZfT/0Xsj8B/XH8F/ceNG63G8zB+1HVbP682rues4+o71Q+rF74Buv/P4r37v/JAHcrpQ/8PBd+lfaWg7x72i4zqqfTPVw5XP0u9b8P3Lz2fg8YvLIhH6Lm2NfKW91N4vm0E3xuCz6vvp/8v8P1d+re637ueyx/XPeM4SPcNxk2bYPwUDvblUM5UvisNn4aTX/kuJd91Mp4c/hyOR7iG/JXBKmAr4869PwD8kXFaD/pK8v2D4GpwOPUYZ+N53/O79re90HuA9h0EL6pXhp9NeD5VPQH5tTv/pR8Z9RnXb7xIUvhoHIlxJZmgczT5X/R85D0CpKdR725wLfLTG7S3KFgMdL94mX5+0HVD+YX1sQPPl0Nnaupbr/4d+orLT+NjPd/w/BTPjZ89Eo+wdKDXqs179Vszoac2WEd7s365DDDvQ6iBfFWZ+RtX/qbci84/vn+W5+n4bgTvU3j+1d+B9j4NjmZcKLcpx2XhvfLbZ/IL3Afdzej/DvR3ee2WfNectOtYuL7pv6rfn36Axsnq/9eKcha6roD1kJduQLd66m36Ebk/BfLlEuNRKN/4mpbgOt5/yXvvjfHc6DnS82NB+FsI3Gj8FfX/Tj7352e0H1DPaerVThXap1wXXCdycY50fdBvqjpYQzuWcTaMj0Pq+Xl+RfsL3zeIQT+of9kZ6FhNvsWk5/H+XtJ/0D7tN9p1jOcqRVJ9tfLhAehz3DqOHb+eFz0/ep5s6HlHfyT9joL7d1oxnwbHI6zMeWYk9Jeh30YF65PxgKUZ5+VZ/8uRrkn5e6FnC9+PJF1P/3vOXYl5H56/vG9F/9K8+ouQX7n9YZ4rzyvHt4a//4CZeP8L79X/O0+8T6MD6840xlMr1sfW4F7oU//enXzap9W//x5BTHdTlu1YQfpliH7R0P+P+wzjRr+pkuqPQeObXD/Vn+vvof+/97wYt2m/Gb+ZmPeeI8Lzw1bo+xYsTP/+pnxCewaAb4GPMX4m0Z/lydeX8lerB2E/Pwtfi3kPD+V3ojzjJlLTzvz0/1Xo3027hpDeCP8Hks+4TvdLz0/aJ/RbeAD+678g/dJ9PKDfuETjFPPwvfGJxpfov2ecifEl+n/p96UfWF2e/+s9BLw/D34Av7yP6hlwJfnvhQ+91cup1zGeFXqzg6non2ykE6D/HfK9DS7Ur4vvB5DWP+cp0HO8esvR7HOh/vI35Rvjtmm3fsjGlZRzP/Ac5zmD9cr72NoE9wsYz18DrA7+Rn7PI8ZHuy97PgnnRT3p9zv6swLoPS/6zeo/9Tz16Uel31NS1r8kYDLwHPzvAh8Ts168yvz4lffh/SehP57242pB+7Uf5zSelnrC+7Hcj9yfwvu5nmN97EJ5B/Wjov1r6b8WlF+K8XlM+Vn/E/B+7b2cX2ZSn3qkJ8Gr8E+/lDC+w/umjPcK71fSr+MIaeWQPtA/HL4V5bv1+heC9aE/tH9+FozHW4wv7RTalwsH48j+sz9df/fQHvcNxKpYN+jUH9V7QtQvqS/9nP1+Iu3Tz+hF6l1E/szKKeAs1m/vi+xKvi7u//RnUfL/4/2GYDHl48B/SH8i/YfcFzYy7vtA91bQeNUfXR/1J/Q+IOPveT8IrATdIyhHPUCo/9eOpl1Ne1uqxLfnN194v4xxTYegJ4xv8r6ideBY0PuLlK+NW1fOVr7WjqJ9xZ/+GcZ7GLfmemb8xyLG/TXwa/rtJc/PxgVTbxj/U5b++Zx2oi6O1TU+OzhfOK61vyVn/qcAtXdqN3gdurtR7xnWB+8/u8z7Fp6b1LNQjnrzmnfQnzufvMfD+eb8+hB+JAvWYddf/bk9l35Deb84Tpjv/eIRpiS9hvXpT89N0P0pmBK+em7QbmT86evkX0U7HdfGaaS2XfprwPdlpD2/30f+J13vSZ/2PEU5xo/Yvnasv19EEEuh/Zn0e4yvrvo7wt/ZYC7GL8eLmG5Ch8DVyBn6Kek3rn/ITv0Fee89DOH9C8ZzG9+t37Tx3fpN6d+hH/xH2s1IbwCLwr9SxjXQ7i2g8n5t2qe/51DyGyei34bxNpsZZ8bjGH+TW3mOciuT7se8119R/0X9GT3fGs+rn6dxvsb9TiCt/8J1vv+W8vXnWO5+COrfoT7iTnY08+sfMjHR7fnVA3sPZHj/o/eDVIde7wkpSP/oj6OfjnYm7U7t+b4dqByXm/WmJfntx03qm6jf/Vk9lvfAef+b/tLuP+47+k/rd+W5Tz20578pgf+b/nB/BufXl4N9T/uTcTX6d8wP4muMvzfevp3x9+TfDV3l1GOS7smBdBPPHX8Vlb/iEXo+ucLzME7I+xaMVzRuy/sXlLu1e2sH1/6t3kK5+n/s36Qz8l1TxxvjRfu65dfXHsH3yl3uU6H8pV3C+DPjRW1Hmwhix8DB4FXjqinPeJ/w/h7jkf4GjVcyPmltEB9hvITxEY8z3jxHtYBu/UJc57znYrlyDvPKuLPQ/qRdKhHph1y/LJ/xpT2sPfgR+bSbFWAdqQreCz2ttB9EEGvs/IfOSuT3/F2O9/oJVlCvZXy78xvco38q7dymXA8+6L0XYDfGUyLHB+NTvXwSUPt6AvsT5PyPX4L2jyOg9zAdYqPz/qWlPPceRe//1T7ofcapQOXNr+MRKhdXgO+9g3VitedN0gP0W6P8ttDbNlgnPedm4/uRtNN7LLy/wnO7869ZcH7Xzzz0P8/Ec+U65TzPXcp3hXjv+c/zoOc/7WPaxUL/zw3KHZQb3u/hvuS+ph3sBPlKBOUaJ+T9Opci+O98WRH0fLkC+p13R+hn55/xaMov4f2M4X3ynh/1P1dfr3ytnlH9fbgv69divxi/Z9xeG/nB/teZ/J7jt5H2/P4z7dnrvHMc0H+nKW8E6H0mYyhfecn90f3S/dH78Z6N4D9/Xe1zxsv2oV7XM+Nqf1PeZJ514Hm/ArenJ95z+/e+70b7NlL+l+BN49mh737la9Id4xG+B72fgeH5SL9y7bDayXaRNn5oRhBHpH9veF+K96gcJV2S/u7vvqicy/M8pD2Hh+dv7yN9G1wBej9pP+0s5KsJGkcY+m0Zx6id+BTpk+BeyltHv96Q39ovjI/SDhXolboE49P1yXUp1C/qT6EfVOj/5Lq9nfqOBOu4/y/g+djzsudj/Zy0L3lPyRfGBVN/S+rdZxwB84NlLoa4GTsMVjHuj3a777oPa6c9oJxEWvu1cd49kDeLBXp29euh301oXzPuSL+ZMP5Iec77U5X3lO820B7XTeUB9//8lG+cTehfrV5KPZXjR/3Udf3ByXcOzMz40i+rGRj6Z93SXky+KWB2+msQcsCd1skJ0KWcrJ/6CeZpuO8UA92X2tBO5dxQvnUe9+P5KnAy65Px01Upzzhq46c9jxhHqb+MfjLef+c9wN6D5/136luaeY7UPwz6lgXrftdgfdT+Ydyv9xccpnzjEUP/Yf2K+ylfgMqx+k9ph1GPGOoPw/OF5wrvE9Xe9q92DsrpDJ3hvX6hf5j3vdRWr0+6Leuz63LYf/ar/PdeRM8T3o+o3rssaLzCDr5Tn6Z+LSXoPSTGVbRjPhhvYZyF/g9dea4fhOutcnmoF9VONgl+TSM9HSyunwLfF+T5edI3mL8NkG+f4HlL8Cyo3Pwd+b1/XH879TKe7z3ve75/1PnNfO5P+ifWv3soT7laOdvxMyNoV1P1rLR7LfV5P8JPYGXOw8qNypGhfaJzcC5TzvF8ZlyseqEwPtb4Oe3DD4IZeT+T96V53ol0Wt7nZhzon3BC/sJ395lw//H8F9rl3O+123n/u/e+a295jXxPk9a+oD/qw4xX/Vc/43v9WPVfnXwH+6x22zBuIjw/e558T/2jcVTQoT/pI2Bd0Dg8741KDDaFT421+8X4wX/tafrn/0N5+ufrr69/vv3dMNAPOi6MK1Xv+KRx9NCvf9LnYEXev6jegXKd39pDnN9dac8r6oWU1yj/Fmnv0ZpLf6fw/xUoXzku/P+e8H9b1KOqP/VepDM8D+9H8t427z+5SL97/4n+ML1B9Uv6xzTg3OX/LyjA+/8L3lvp/e/h/ZWu1+p9XM/V/2Smnh48T64egXGmnsN7hNV/GB9Zi3VmHPV7D4Dx/5MDuWUl/Zub/O3VJ/Hee7C2wR/15d474n0k6tWVB40P1w9Lv6zNfL8FrI189Av5je+8EpwbmsUjbBHoN41nM35tCOnrlH8NLMf6770G6r/Vh3u/wW7Wt518pz//Qcp9y33M9YB1pwB0lQrW1d88v95B7y490qHfoHEf+eFfB9qn3lv7Vqj/Nu7dOHj9QYx/t//st/Ce21CubAIqd+q/rX5OP+4iwXjtTjon6aKMM/0OPwT36+8KnV/z3DhZ42NvIFf/938soPGP3q9+jnqVw7VvVSbtvq3cp77M/ftUDLrBuaD+yfrV62dv/JP+9QtcZ0D9fPXvNZ68DKifkve7eh4fACoPem4P799WTjeeUXtDaP/W/qB9QLtAeP/WNP1xKU87j/aZce5Xwfj413Ns4N+sPlt+NKe/3F+0p+1RzqacgWCc98Vo/53WxY72M+/rKK8oJzGv1dd7r5f3fBlfYty+cafe11GG9UN7o34z4f1V4b1Z2hG1K3rvpveGNAe9T8Rzteds4108X3vOC/Wr6jUcf97bOMPzBfJttUCuVs5WvpZfyg0NPI/AvwqUa3yn+sxq3mdH2nvG0lL/IPpHfav3HqiPVf+6KpgHjn/PP543PX9637nnz4f5vsodxo/383gvj/4U3s+jX5l+ZuH/D3UPxp/jzvXNuGbjnN2njW/+Jtj/bvA8i/+fxPf+f08of+tvof5G/dIt1jf/17Ij5Yb/b+n/+vn/XVfhfyLGt/p29e/eV+H9FNoF2oD6qeu3Ht4v4TnLeybUB+inEfpnhPVJh/FlrtvK757jPddrP/CcYH79RNR3a3dQH67+u1Dm29vnfWKZvR/yDn4pnp/1WzZuxTiWw9C/mfq004XnC+UK5bS3vG+U8rw/qRb5aoPaZbW3ql8K72fULuA+EtoH1Gf6/yDqO7VPuS/7P4DeY+H9Fd6P1DxY51zfvH/S78L7k9603epZjPdW30da/YT7kPvPH9C74A7rXyH6rSffK2+7jyg/qqfbGujnmtPOXsH5X73AVFD9xnzej3M88Lyz+zP9o50n9Dv0f2RdN7UL6//9O3yYBN3/BHrr0L/O85D38oX39YV6c/U8nsf8Xwz/lzCB8v4m/SR4HFTf8T71+38uT3ougz/+L5D2AuMumulP4HrPd+pF/X83/UreC/rBe04OeD7nufYb/8fS/6/0/5Jd//0fZf2Mjev1/w/WUP5g3od2deVr7e7ai/QfSqN/A3xX7qvD+yKsN8p/ys2h347384frinoy1x31o94jrl7U+8QTIvhPf5jE+ak8AhofYXx7BdYX503dYB1y/ni/jffaGI/n/TbG83kPR3j/hnyRT8oJ8kd5X/+2jqD+bWmRY7y/Tz/QttQ/nLT363jfjvfrOM6OBONQ/bz/S+E+H/4/hXKpcmoq6FY+PUQ+x2F21gf/v/tgitvp9P84P4Ye7WOefweRrwT9bH+rF3c82P/u/64/7qfa311nw/VXvbF+Ku4frkvuH8plymlNA/lMuUo5X3lLOUt/I/no/ud9gt57Zfnq34z7Vi+mXBv6z6m314/NODvj67QPGx9hHEVy1o+9yiFgGB8Y2q28r0y7ln5r+rFpp9F/Tf1Z+P9g/m+Y/iLqvR2Pxp3XDfa3IcH8/D/ji6k8eJx9nXm4j9X6/zf2tvc27m2z5+GDpIlOdepU6hSNGk4SDRJFlKEQGilEGk/SqHlCaR5pIA3SQEmDnDRJVDql0ik5Hd/r+n1eL9d1r2v77X/u636/3+v+rPlZz3rW8+zBjXL+398g7NTWWftWi6z9sWHWfog9Ezs5P2v3wj+wQdZ2xbYoy9odm2ZtG+IPR/8Vtltu1q6H/x77dZusPaNhzMe/8rJ2Kf5S8ju/JGsL8e+rzdpDiTcW/RjszvxuK37nLNJdTZySDln7bBJ/Gv5xmaw9ujRrDyLuwdhj+d0R2JHYt4uztjtx1qJ/FnsO9sZmWVtXmLX/Jv0P2I78bjX124d0J2PXYzdhp2IfxL6yfdZuaZy1ObTna62y9gD48+BPJ90g7BLsPNp7e/x++KvbZ20x+e0N3wu7hnyPgR+N/Y16+bgga6+mnPav9tguxBkLfwTt+Ab21HZZeyjxxhN/HLa4edYeS5ye2FNpny34deiPwd8fO7JJ1h7E79uP0/7bHf0R2BHkpwe6OvsN5ToEuytxbdca6uuFpH2Pp33Owj8b+1+s7fck42Yg+A+2H/mYi72K3z2Y8W//z03Ggf1/FHHtd32xrYl3Pv3XfjMYWwR/QpJ/y/PfpDwpXkL607ADsG1ph9vJ7wzs9eT7e+xt5H8y5f2D9JuwZ9D/CmmPnbMmZxfsOOLaLieRL9vLdiogfTfSHYTtw+9uwd8Puz/2W/iNpN8Huy/2f8TPwd8Nd3dsU/rfpNJYrt+xN9G+1ttA7JfgQylfKfV1H/z92AXwDxP/H+TjaGxFMm973XA+v5r6tf29TqTXB/PxGPmYhT+3Lmtv5/efJ1/PYc8pjOl+2UZ6x0E6Pl7EbiDej9gD+b2Z6Iup55uJO5zfeb1t1j6A/hfS/4xdSD3fAH8bcVZjD6rJ2r2zJmcf7BLsBup5CvmYSdxZ2EfIz2mUYwD2KfRNrCfwUVivR15/HBebsXtxnTicfNtew7Be53eiPavxh8IPwe7CdWbfoqx1nI9Ixncd5exEuTtjB1I+28vrk/Od7Wr/Mp9nJf3rKeKsxnbi9/4KX4t/IL/bVUv5HyLdFPI72XZu9v/Pl9dPryPpdeYc8CZcpz6GX4m9ojSWx3JaLudJx/979Cvnux+3i7+zP3F7kO4TfrcA/0rqYa3rO67vzhunY1fTrx1n99Lf8lkPPliVtfflRV9efYZ8npzJ2s9aZu1tjOt7aiIvru50+tUE1oG3kt8d0A8ti768+vWVWbsd9hn66xR+d02ryIurq/O606p+3vTyaXzTn8Y69A/qqRO/1zETeXF1f1C+AayDNjDfvUH818sjL67uc/ilxL2Q+vkf89qasujLq+9APr7H/5TyFfA7v7SKvLi668BvpJyT6b+dyd8RtNOzpfXzO5dGXlyd6WvIf7vqrH2L3x1eFnlxdb1I/7TjIGtyFmI35kReXN1fqJ/XKfcTrLf/IH7riujLq5+aIZ7rXPK5id/7oCLy4uqeojy/4p9EvAXE37Us8uLqVhD/cMZ7H3RXEfewFtGXV78A/Czmoc70twf4nddqIi+urg/18jH5eAe7iHzfXhd9efWHUY69if8mulzy9UpN5MW36qjPduhaMf+UMf+cWRB5cXUn0P7d0FUQfxb6S4qjL6++Gf3vTsb/7cybP4D/o33kxdV9z/VpT/sf9XUI9s/y6Murf4/8XEC7tqVcd2SydnjCi6trh91IvG/J37u066ll0ZdXfxbxT2NcTGTdVUt/b9Qm8uLqnqMffEI9HUs7r+d3asuiL69+IenPpX7z+b0RxP+0LPLi6nZifned77p/HrZvafTT+4ItiX5cwptef1yiN/0Y8ncP7fsu7XVZRfTlxyTXG/n/VUbe9Pr/S/Sm35H2/IR54RD0p1dEXlzdp9iN5Gsk5VlFe92bE3lxdXMZfyvIzxT6h+P91vLoy6sfSv6W0b/uRH8L7b5XTeTF1d3E78+jfx/NeP8n65ZriiIvrm5n8CGU7wWumw8xzzzcMvLi6l7k9w8nn6sYj2O9DhdGfmyiKyL975TvIdaLc7DON/Li6nZgPJxBO07LZO1g/EEtoi+vfhR+HfWwI3Yq7dSgIvry6q+lHQ5gHjyK/E6in3VtFn159VvnaedZ7DG084Ty6MurP4V8dMFvQ7+aDN6mMvJbcXSvEf9Z8uW8egn3AYcWRl5cnfPzMuK/RTk/Z75oUhZ9efVnUr9dyM9C8rMW3ddVkRdXt5Ly3IW9HN2dmaytqIi+vPq+xFlCf/oP7byI+5lTi6Ivr34Z4+Id4vYkv/2xxxF/clnEe26DT9NXU7/NmD8mYvegPF9WR19e/Ymk/5r76Jm041r8aQ0jvzbRHcF479moft708ml80x9E/Qyz31JvTSuiL6/+K8r3PuVbTf1P57p3akn05dV/Qz1Ow7Yh/jR+7+iy6G/l0b9N/TX2esK8dwHrnzmNIy+ubg/G9znEP4b4nYg/qiz68urHUj8nM/8Npz4uZv4YXRV5cXX9yNe5xL0CO5r4vcujL6++Me3g/bX31adlstb7a3lxdfdg7yN/LbjuvEo/uatV5MXVue4saFk/b3r5NL7puxF/Gu3xK/VaXR55cXU/Uf69KddBtNccdJ9XRV5c3fu0Q7q+G0i/df0mPzBZ3+1H3DW0z+Wuc9CdXxJ9efWnVkX+y9aRN72+vHrTn8O4akJ9tXDdkom8uLq9KP8l6HoSdwPtVZDw4uqK6M+PUa590e1NfWXKoy+vPkN+HuB3nmI+fxp7bUHkxdWtpfzd6Qej9Pld9xfkxdXtST9cyXw8g37RFb5Rwourm0O8h4ifYV7tST/fui5rG3F17bA3Ef9wynkZcY+tjL68+u51kR+Uibzp9eXVm/4Lynkl7bon/eXrmsiLq7vF57CMT8d7ul6U/z3ROQ+8Sv3Mpj6OIv684siLq1tHfSzldza7f0W+h+VFX35psj6QH5oX+WGJPzSJZ/odvL+jfD+SrwvaRF9e/cSKyNeURt70+vLqTf8Y9Xgp9TUZe01t5MXVne9zasrzNfW8HHtYZfTl1Q/j9/uCv818cBz1dULzyIure9XnO67rsIe7v1cefXn19zuf8zzwbtcn3rc0j/5WHv3fqM/HM1k7nXllIM8/BuRHXlzdveAdsLdTXyO9T6yMvLi6pbTLcsp3Mvk7ifufT/KjL6++jDjT6A8DwC+lXh4tj768+mHwbajPHRiXg9HfXhx5cXWua+90/4j+egLz/celkRdXdwrl/6h9/bzp5dP4pk/3RRbiu/8hvzDRuT97GeWbTb+cg32gWeTF1a1hHLycydpf6G+TsBObR15cXZ375NSP89MT5NN5Rl9e/T3k/wPq4e/ev3F96lgZfXn1f6M9J+M/6Tjkurt3q+jLq99C/PPI107EW0G/+q428uLqBlG+M8C3R/85+Ty7deTF1c0h/bSS+nnTy6fxTb8QfCrjbRPzw5T8yIura036uxlPnZnfZ2Wy9t2S6Mur/wv1txh+CO2U7tPKi6u7mXy9SH9+yfsAxsnm0ujLq78D/wDiLsFuz+9NLI++vPpBpB+Kbjb1+iv95EHSzaqun59WGXlxdaa/j/XL9YybU2iHvrmRF1d3D/VzB/3Pdeiu/J7rU3lxdUXJujblTZ+ue9WZfgTXv1rG0zrq7eVM5MXVDWRfY3vqhW6X43GuPrmRT4555TyIfY76OYD83Er/8fogL67uftrnr+5jUE+zaP9Z5dGXVz+f9HdSrpspZx/GQVlZ9OXVH1Ydee8X5E2vL6/e9H0pn8+FDnI9m4m8ePr8qIz66Eu858F/KI+8uLr74S+ifnblOv4i/bNLUeTF1R0DfpPjnv41kva+rVX05dW/yu+/T/28R/tUUG9DKqIvr74L9TEfuw8d61LatWt15MXVfeS5hub186aXT+N/lFwnvX4uYF1SUh158fQ6ux31sx31PZl1/CFVkRdX92/GXzH96UbyNYD62rtd5MXVzaAdatD9m/wczPrh9orIi6v7k/G9lnIe4Dks4rr/Ki+u7hHm/Z6Mq0ryt5bfvbI68uLqPqJdXyPuH7TPj0w091ZGXlzdTO7TxnIdtr5vyGTtZXnRl1f/VknkPQclf1niT0nimf4e6vdbynUY+V1dFXlxdQX44xhX1zM+OsOfWRV5cXWL4NPzL13oL+n5GHF1r9B+ZaX186aXT+ObfhT5+Zb+9R22uCDy4up8fu246kg9/5P95EsTX179m95PMb8exXy1lH59SnHkxdXdQv+7OJO1e/Jc4x3s3wojL66uKfm/k/5dTP9ej/96ZeTXJ7petH8/+sdS4zHfNCyPvLi6ru5bUL5S9uMbobu+QeTF1U3y+SzlK2H/7RnPC9REXlxdJfPXF/Zb4q7id6dih/H7CyjPVz4Pq4u8uLq9aJ/0uvI6+emS8OLqvN6uqqqf75LwaXzTv4TdhXlzf8q9X5PIi6t7k/r1/InnUeZx/W2XH3lxdZ5XeaFF/bzpX0hwdaa/i3ptRH/5D+V9pCzy4uqepB28L+vIfPdP4p7SMvLi6hoy/3/DuOtEe7/G+BnTNPry6nsxfh4lbg3l7UK6CS0iL65uT9LXwu/sOXHyPaJl5MXVDaM+VmaydhL2G+rn58rIi6tb6zxKPquIdyv+PkWRvzXRzaVf9aZ+V9EenZNzUvLi6rpT/yXgY5j3iok/JRN5cXUbmD9nUD//oH46wp9QGHlxdZ7fOyB5Dn4c46RVUfTl0+fj51G+cdRHkdfNsshvxT1/w/hbyLx0GdetIdjDG0VfXv0Lrr+pn5sp3y7WC376/PsMft/n2/rp8++9uK4e7XN8yv00v/dGZeTF1e2Lvdn9uqzJIWxO+1aRF1f3InY/6u8uxt1Q2vXu3MiLq/Ncye6Ui+bK+QD7XU7kxdUNYX3RiziTqBfXq+n6VV79xMoY33jpPrq8uLo9qJ/PfB7CeqY3FfVOaeTF1c2kIueTP/dL3EdxP1ZeXJ3XufcyWbuMcfN35q+fGRfv0+5tuK6cRDusrou8uLob6aeV1OPdXGfaMy7/Wh59efUXUr7ZPtdIztUNaBt5cXWeX7qE68HenoNmHbeoJPLi6vqQr13p566jO+N3ahZ9efW7ej9FuX5PzomMr468uLq21G8O7T2B/C12XV8SeXF1+Z4bbF8/b3r5NL7pB9N/d6K/3u31tzDy4jsl++dnt6qfN718Gt/0Z5GPye6PcZ3d2Cry4ur+5X0z5WuP/0/6f6eKyIur+9rnoMR/gv7aAd0ObSMvri5DPRZTP8u53rxBuT2nIS+urgHxV9IPvE4PgD+tKPIDkuu512+fC11MvYzDjm8eeXF1pT6PoTwvE+94n9tloi+vfji8/cv+NI9+Zn+bt43++lfGj+ceT8yanFcZZ6dVRV5c3RvYme7LEXcX0rmPpS+v/kj7C+VYRzv14/dmV0RfXv0E0q9Mzvlf4X1Vm8iLq/N8v+f+U75f8r5AGt/0Oe4bMs9MIH8lldGXV38S/mhseg7W87HpuVn1OzJ+PiR+Z64n87n+NS6KvLi6odTfEsb1lZTncOK/3TT68ur70q4Huh6ifjrYTm0iL67uD8qXSz42kc9u2Osqoi+vfj7tcAL5+4nyjmJfYkL7yIurG4H/mdc58D9cnxZFXlzdRvK3mN/ZzHyTj/2kXeTF1S2nHg9kPrmMfB7N+mvHoujLqy+nXl1v+DzY58VHVkR/aaJ3/bLJ+wjy1Zz1SYv8yIuru4/4/2F8rHXfhOveluaRF1fXyXwT9yj6Rw/apXfL6MurH0w/eIj4k5jnLuJ3llVGXlzdcuwB3lf5vgrj6v7qyIurG5nJ2s+J/xy6v6ObWR59efV/I//F5MvnOJPpN3uVRF9e/Se+n0Ccie5/Y2uaRV5c3XDf82JeOJv4j9PfXsmLvrz6FzyHl5xbziNfnm++M8HV3eyNSnX9vOnl0/im34Xr2mb61W70lz8KIy+ubinj6blM1r5Hud4AX10UeXF1n9KOhzWrnze9fBrf9Gspl+8JdvR6n/Di6hbAdwa/nnnhGfLbq3X05dXfgL+F+mnAfP4scZdtF3lxdcdR//vTD56jfudhlxdGXlzdk8Spg18B3od0HxZEXlzdGurhZs+9kM+DGC+3lEdfXv0gz1V53phxcQH7Bqclvrz6xdi7GI9HUF+/gq9IeHF1F3v+Yhu86T/YRnzTT89k7ZuMz+8o99M10ZdX/4XrWs87uH+GPacy8uLqRmCHeK6Y/r2cer2iLvLi6sZg89B1cR+B68Y11dGXV/8huPeZb9PO3ld6v6kvr7420Xtfuii5X12U3N+qN/1b7oOSr7nU8/nl0ZdXP4N4zk/uJ7u/7Llb+XTf2X3pp5yHqOcRtPucsujLq+8I7/PeafSvNcwP5zvfkN73m0aTbmpV9OXV+36U78ON9/4D/S2Z6MurP5R89cL/xvsP3yupjry4ulfwvX+rZj3h/uvClpEXV9fBdSnxvie/r1HvMysiL65uBuV/mPy943jAXtci8uLqHiH+w1mTcx79vz/+zznRl1dfTf6bkj/3PXYmbteEF1f3G3YRth3jfQf0mcaRF1e3xPmdftWX/ao7fH7dLPLi6t4l3gzGTwt+ZwP5XlwTeXF1uZTHdePlxHMdfXzLyIur60n6G2vr500vn8Y3/WyfTzF+f8Uubh55cXWD3TdOnsf+Sdz0ua64Op8L9ydf84n3d/rlD5WRF1eXS7mqqJ8D0XXzfqE88uLqmhPf9yE9Lzyd+wfPFcuLq5uCzYcfAf8z5Sopiby4Op9XXUH9NOd+qwW2U4fIi6vrxvXp2UzWfkn8+fTTE8HHtoq4Ovm/UE/XkN8mXFcK2kReXN2/PKdB/g7NmpyffK6eE3lxdR2ol3R/fhQ23b8XV+f++hTi9CNfqyhXhzaRF1e3mv5wHe1sv17Hunhwwourm+/3TRhP37L++ga7Pj/y4ureIj83mT/m2YnU65ll0ZdX38xzLqw3d6RfX4G/Ojf68uofd388ud9qzjp2WMKLq5sAXlBYP2/6ggRXZ/pCyuP3BoZiSwojL55+l2B+8vxrNO3k8y99efXLPf+bydonqa+nsd0LIy+u7jf6c/r8iW6z9fmOvLg6+7f3LZczzhb5vmtyvyOuLhf8SuL7HmH6/uBWvirqtiPOGfSLjVzvV1C+k2ojL65uAtcX1xUN0L1EAT+ujn6DZB3yuuuZTNY+gn4F4+XHssiLq5vheWfa8z8+r2JeXJCJvLi6SubDMvL1Nv1qAOV7ty7y4uqOJ86OxC8if3n+bln05dXv4fu1/I7P3dLncfLi6q72PDTz62jwMdhz8iMvru45ft/7fvcRfqOc7g/op/sQCxhfa/1eB/mdSjqfv8uLq+uB9XzUF7THbdhRlZEXV9eMfK1ifmjk90PI17e5kRdXdxj5+8Xz/tiv0I+ujL68+iZY989nMd7dR2/cJPLi6kqS+yvP82zP+rRni8iLp+d+zqI/rSXeCN8rrom8uDrPMS9ifvjZ897uBya8uLqz+X3vZ95gXdKe/D6SH3lxda8k698V9I8F2D6NIy+ubiTt5/PHQeTvX+BHto28uDrf9xmQnP+Z5/tA+dGXV9+U+jmG+vwH+ToG26Mo8uLq8llPLaM9e/E77+IPz42+vPobfL+E9l1Ce1xE+ca2jby4Op+Tn8s6fRrxf2TdNLVN9OXV7+7zUtp1KuPS9n40P/Li6pzPJpLPD7ANwX0/V19e/Tr6ofsCvoflfoH7BPLi6jw/Pof6+Zr1/K70kzXFkRdXt9T7U+Lv7n0V9VJYHX159ZvpF/0YD3tST2vpHxWNoy+v/ifvkzNZm8+8VuDztbzIi6ub5z6B59uZb/xugufa0u8xqOuO/wn5uo119TW08xGtIy+u7lzy35b8fYq+C7Zhm8iLqzuC+i30OSH1ei/9fE1F9OXVT6f9/Y5MAfoG4BtqIy+uznlhi+3OvNAL+11F5MXVHYf9IdmvuBD95xWRF1e3B/2gH/2jm981gL+jcfTl1T9M/7vOeYXr0o30j+tzIy+u7ini7QTflPoZQlzfv5IXV3et3+Fyn5PybrS9qiMvrs7vB3l/sJpyrmZ8flmc8MVRt9nncz73pV+dR3/1/Qt58a06+vFm4r/HvLLQ70+VRX5hovP52B3Ev8vvP+AfWx35aYluKPH8/sf5vl9Bfa2riLy4uv2oj+f9PqDnlmmnAzORF1c3y/UH14M9KNczfveyTfTl1V9EPN+r+iV53+qpbbyXpc73r/yeoO+p9aGcrq/15dX7PtUZ1M/7xL2N8m0qj7y4uk+J19XzT+4DU+51pZEXVzeX/F3kc03fU/A7LQkvrs731/9bXT/fKeHT+KbPcbzTv72vSO8z5NVfmIm89ynypteXV2/67VyXUU+r3Ccui7y4uiNph2bb4E3fbBvxTe97sO7zXcH8eGVR9Ld+Zy15b/bf1Oc65uMHuD56nZEXV/eE34+gf3oeri/21MLIi6vznNxKvxtEPe/IdfnavMiLq3vB5y3E7+337Ig/MRN5cXU1tOeD1MO72PT7Ivry6ksZf+24rrXlfY0bcshfTuTF1Q2039EvPW85knIdn/Di6jz38RLXA/eZPb/fPy/x20W9+8/dyd+HzKvL3bduHnlxdZt8v9/nZ6zr+zMve/5JXlzdztj1max1f+Yj7LjKyIur+xB7EeOhlnLWYTP5kRdX5/senlP0uxV+12JhZfTl1dfC+/2nq5gfj2LevLQ28uLqbsX/iX69hXzeyPjaNz/68up3Ix9NMlnbk/y9Tr98uiz68upnM68eDJ7jfg22QcvIi6t7mfTF9MthrCty/O5/SeTF1fle6Emel2Se8juLro/kxdUdQ3+yfxSwrrOf5BRFXlzdFck55csZl7fTbo2qIi+uroj3HKa7bvXcB3EHl0ZeXN2N+On7fYMZn+n7f+LqWvheAfEaM86O5Hc3lEZfXv1qxnX6fU2fN6ff30yfQxdiu1Ofk/xeAvX8Rm7kxdX5XDb9buBc7LKqyIun3xdcR/ts8Vw69T2pLPry6tvDV5Cvl/idcvzK3OjLq78vk7Wef3mT9vQ7rfMTXlyd52dO8v0H17OUa2iryIure5F6HI/1OVsV+fuzOvLi6g7m+rC4Rf286eXT+KZ/0nMX1PMXfjepMvLi6tpR/35X1u/JHkc/X5V8j1Zcnd+lfZz4s4nn+5CeZ5cXV+f7k15fn+F69yDzrt87lRdXt4F8vJx8V/czn3eURV9e/SD3u3wvw+/xMD67VUReXN1w/Ed9vgreH7yyNvLi6hZh3ad3P2sHyuX7M/rb2tf3+eSBzOs+n0yfX4qre8/nLuSvHfVyCfOq50P05dX3yETe/7Mkb3p9efWm78c8c63nP/BPaBb5/onufuJ/1aR+3vTyaXzTf0u//oF8rsNv1Dz68uonUf/fg5/o91BdH5ZHXlxdB/rVAb7fRfs0pl0+qY28uLo9/H8dzFM9vA/AX9Iq+vLqn85k7Wzmkf6ec6Vfti+Mvrz639tE/qdGkTe9vrz635P72TzKdfE23i8RVzeR+ujIvDKeebkR5fL9cnlxdTn0j+vc3yfeGNLtVxZ5cXWfef6KdpjJ9eEn6vmq1pEXV3e0/7eM8vm9lNd8j6I28uLqfP9kN3T7Uc+b6Nf750VeXJ3Pvy8gbnPX3ehbJ7y4ugGMI7+XORr+/eT7a/Li6qq8r6mrnzf98gRXZ/rB1Ot1lGus5+HaRV5c3XT3LfLq500vn8Y3/Reem/K9f/I9riry4uoe9vkX/aoE/zrPd1ZEXlzdVfRPny+nvOnl0/imnw7fi/F1POuL3rmRF1f3X+L9QP98jN+b7vddqiIvrs7vrLmv5PcT0//fIi+uzv0nv594IeuD0xnXHxRHXlzdR6Qfwnx+D7q57uc2jry4Ot9b9/98NKCdj8J/ojj68un/BfH+rIp4Dd1vSfiGiW6G31nz+bXrfO/naiMv3ih5j2e65wW9X2Jefqwy8uLqPsdfnzU5E8nXSL+7mRN9efWf+34F9Vrod3WxTVtGXlxdD/L3G3HHuw9HP70zN/Li6jyf4nXR/dlJnr+siLy4uuPoj+M9t0t9+h28zbmRF1fnfuDVlOd96rmG6+ZVLaMvr97zgPsT7wnqaTXj88vm0ZdXX8I85vebp3JdncP1anbyfWdxdW/z+1+xvvmMev0Um9su8uLqVvkdJPql+yLX+75dZeTF1e3u99mox32dd6inNysjL67O/ZlrKY/vo7xPOX0fRV9evf+najn5Od5zovxOdVn05dU/Tv3t4/k87B1+r6oy+vLqd/YcvPd3zDcb2Lf4tGXkxdWd73fWqZ8O6NtjT0x4cXWrWMd4ffC7z36H49uKyIurOxfffbXPiDeW/rox2XcTV9effF0Ov9L7PfrLzxWRF1fn+xo7YbvST1difd4pL66uEfVwU7P6edPLp/FNvzv1MIz2Gel7LYWRF1eX5/N+ynUL9fwA/fOy1pEXV9ea/vVA6/p508un8U3v+dbFyfluz32n52MXJ+dfe9OePp88l3r5qkX05dX7fPNX+vcLrMd8D9j9b3lxdc/7vMPnaYzTZX6vsDL68uo9l+c+YGu/a8H4+qIg8uKtk3Op82nHpcxnnYi7S4fIi6vz/8ZtT5yl1Od72IdqIi+ubg/acR359P9vdOF3jsiLvrz6Gvzzsb5vs4/zcGXkxdX5vs6bvkdNfn0v/fnkPXV59b633sN8cF0bhx3fJPLi6s6hXiZQDwW001rK+3ZJ9OXVj6V/3wGfnp/0fKR8en5yLNbvBd9EP78b/OKWkRdX9yL9/x3qcR7jwv+b5v9LkxdXdzL2cPrXXNa5f/I7C1pFXlzdBMp/BvV8tuf2KW+mJPpnJ/p9ac9R9PNGtNMS8v1NWeTF1d1MvKVefyjPDOIPrE34JlF3K/4Q1mWeR0nPs+jLq1/h+CJf/j/Q3pTX7+voy6t/BT59v34Z1z3fn5cXV9ee/Pjdtu/JZ/oeXfpdN3XD0/fwEt708ml80//MOOpGeXxOfmV55MXVlfoeLvyL4AszWTuqOvLi6u4lf+n7712S813y4up8P/7/AJONhap4nHWdebzXU/7Hb3Xv7W7drdv93v1+kyJCw6TJMspURigMJlvCWDMqyyhZS2QZpA1ZsjaERGbIGoPsaxKZGaRQdmUJ/R6P3/f57PF4n8d1/3k/3q/X65zvWd7nfLZzzj2jLO////6XzdnV9Tn7cVn05c8AP6cp8uPKIv9x4o9L8jP9npvnbLtOOZuHfSobeXF1G8nvG3QvF/G7m+XsPY2RF1d3V8ec/WtDzu4Pf0LXnO2eiby4uuPBxza3zZtePs3f9AdTv9r8nO2C3TkbeXF1NdhF8I90ztmKLjn7YGPkxdWNrMF2y9m/0B5HY7+qiry4ukGU/8eWnP2ue85Wwl9aHX159a/V5ezXPXL2IPBetNtdjdGXVz+hPvKvdY+86fXl1Zv+GviKgpytwq7rFH159YvqI3/D5pE3vb68etO/R71+wn+lJGenN0deXN1q4uhU+Lm08xB+94TqyIur24vxt4H+bc2ZvAMKc3ZBXuTF1W1RSnkoxz606zjafY+ukRdXdyUZfVSbsz2z8MZpJvLi6orAb/oV3vQ3/Ur+pt8HfC7+RdjpXSIvru5i+uck+nV/2vNn6vtWfeTF1a1n/hpI+36HPQ/+vfroy6v/Pe3Zm/H8EvPL6+R7a1X05dX/QFwsYFz8nf7sTb+MbIi8uLqS8pzdknx/S3wNAj+/OfLi6n5HPD8M/3vGSTX+pY3Rl1ffl/JdRz1GtsvZwvY5O6Qx8uLqtsA/IZuzW1fm7NGku6xT5MXVjQBfSPtcznxcju6s/MiLq1tPPfrRrrflTN4D2IF5kRdXdw71asLujm5n4r64Jfry6jcQV8OIy9nE1RjqdXdj9OXVX0s+dRU5u53zEX63qujLqz+O/utMnOxMXBZju5dEXlxdd+ozDrs/5fuaen3eEn159VO5/vQhrkYQ1xnmufrCyIurO5l8nMf60M8zkvlQX179PH6/C+Uqorzp/Ckvrm4R6XclngYzz+yMP686+vLqH2B+2YNy3U97n+n8XxJ5cXU9KMfvqc8W9Msqfrd9U+TF1R1GHPyRcVCE7lbabUpD5MXV7YGdRDtNZH6ZQ3nbN0ReXN0U7AXwo9APK87ZT4i7ywsjrk5+dTZnn6WcXeBXZKIvr76Z9F9hb6FdtuG+rH995MXVreocy/9qp1jOSwojL75JR/+tpx2ngN9EObcri7y4urMo16nUbyP5DSDODqmKvLi6p4mPVeVt86aXT/M3/e8ZH7OJ6xLKe21+5MXVvUH7jsrm7M7GAfl+1Bj9TTz6caRvpjwnE9/n4y+pjvz5iW447fI74jJLfocw31Q2R15c3Xz4ZuLsCfJ/FftUwourm0N/3lXfNm96+TR/039Ou7xHPz1NfPRsjry4uiHYbcnveO5LC2jvEztGXlzdpcTDYNrxJvr1Ruyc/MiLq1tAXGzv/RT1GYG/bSbyIxLdePI9MZuzl6O/hPYqzEZeXN0Gyj+f9rmA8fkY8+LkbOTF1U3GbqA8e3Jf8hzj9tnCyIurW0J7Hky99mW8/db7oNbIi6sbhvW6tox6eV0bm1wXxdX5XDDU+0fy/zvXlx0qIy+ubmvK34788+iPB8h/bkvkxdVlGN938z6gD+XtTtxeVBJ9efU3t0S+uSLypteXV2/6Vsb149TrOHT7tEZeXN3HjKfBtONB2H7k/7e66Murvyx5jlxHvHyHbaiMvLg6n0OXwRfTT09Qr/0boi+v/kTSz/R9gO8faK/elZEXVzeI/q+jf3dnXn0LfExZ5MXV7ci8Mrasbd708mn+pp9PvbbguX4O7dO9IPLi6pbTLx2yOdvR92rYgrLIi6s7iXLMohwzieca7NWZyIuru59+uIvxPZr2nki/7VkdeXF180i/JL9t3vSLqf97lOdc+v2phsiLq+tP/d5sbJs3vXyav+lXEj+3UI87vG9pjL68+gPJ/0Labx/qORR7RsKLq+tJO3i/ehZx6P3sJ5noy6v3/rcr439P/Cr0U5siL66ukHpNMc64XrTH7tQ58uLqSsj/CJ9nmc/+TPxdWR15cXUjwB/lOjGJ+9dWfu+xqsiLq8vD3kt/XE//DKV9XquPvrz6LPE5mXx78D7nbPTXVEVeXN1rtM+BNW3zppdP8ze9980+r7xOf33QGHlxddvRj+vwH2HeOJZ5cFFB5MXVraX/PiWuRhNv07kuNDdGXlzdc5RrKe24Ev924n3HTPRXJvqZlH8UfB/neeeXusiLq9sRu6/PI1z/tiHunq2PvLi6F/FPyubsPrTPHPIdWhR5cXW+p+5LPPse63PsLwk/rCLy25dGX1696cfT/odSn7m060ONkRdXdwXt/CnzzWzi4BP8NfnRl1d/Kfneybg5jHh+ifFQVR55cXWvUK/WzdvmTS+f5m/6lcT9L7xX/ZxxdGqXyIurG0P9z2CefT6bs2/S78uqoy+vvpFyfEEcvkg53/J5IhN9efVz6Z8rvb+kfddQb6+vwyj/0/T/I8TXvpRrAu07nfu5Tff32ciLqzucfBaj+wLc98VN1ZEXV+f74+vgb07a9coukRdXN4c4fJH6jea96lj8R9tFfmyi24V2/Sf5n055H+U68n5j5MXVvc342oY4+hv9cy75HlIffXn1K+n/52jfct970X+zE15c3eeM4/vpB+fhGcTXA0XRl1ffzXFA/NxK+25JeadkIi+ubjDts7vXPfJ7hnp/1xB5cXWfUJ4idJfQP2fTTldloi+vfg78zGzObqScv6F8A5qiL69+RF3k96yPvOn15dWb/mN09zE+iilnt6bIi6vrSn8eQfvM5bp5K7ZbceTF1U0gjr4l38/4nQbq2b8u8uLqnvT9JngJzzVF3q90jby4ug7Y4o5t86aXT/M3/VOUr5TyXk9cXdQUeXF1a7h+Xed9Lfc7XanXjO6RF1d3hfMV1yO/c87wfVl+9OXV+310IvkXMB47YPP9XpoF97sHvt9F5Dckujuw9fz+pbRHNX51ffTl1XdO+GGtkTd9fcJXJ+n/R/wdBb6C+XPb9tGXV3835fc57XDaYxb9eVhJ5MXV5fl+mvYdhe5G34/WR15c3QnEyxOtbfOml0/zN/1ZXv8ZdzdSroqukRdXN4rxPbSkbd708mn+pi+jPV8wXojj45uiL69+Vl3k38lG3vT68upNP8jv/4zXl7FXdYy8uLrXqMcjXH+upp32pd7nl0VfXv062v87rveNlG8S5e5RG3159TvQr5O57xnQIWfbY/9UEH159fOIb78/L+G6+Rz2+aLIi6u7hfKvgN+L9nyHcVKW8OLqNod/xusu89XN2Ntor6dIPxbdybT7xkzkxdX9j9+ZQfttRbutgZ/eFHlxda9g98rm7ADKsyW/N6Ih+vLq59P/7Ym/Fu6rVlPvY0oiL96S3FdeRr5rwJ+k/w6qjry4uq+o17eU71nwb9CNr4y8uLqfSb8b8VvK7/jd+v266Mur9772WOxzjKMafq+iLvLi6h6lfW8H/4Lnm+WUb15V5MXVvUo5zqVcfi9aRfwuK468ePpd6XDu07vzOy+4DqY2+vLqvb7vx33Mk+hnwH9bG3lxdV/Qrk9Szl60yxrG/RPF0ZdXX5PoFxdH/onEX5zkZ/oM719e970Z9xc/do6+vPoM/deJ9j2F/p7vOpjmyIure5z2W0b7/Jd+OZLng52qIi+u7jPK4/uLN8h3NvNG+n5DXN0fqf9U7z+wf6XcO2QiL67uP+Q/Av8jxtt6yv1hZeTF1X1A+/WifHc6/vCzjdGXV38/5VvO/HID+Q5GN7ch8uLqarjO/QB/Ou1S7Xu25siLq7sU3+9Efh9qhPc7kby4ug9pvy38Psl8mofdWBr5vF95r/8T7bGE+HiF332+MPLi6vyut4L8JzJf70r7LG2OvLi6XfCnU451jJNWxvnAmsiLqzuW9ltHOQa7DpF55sS6yIuru5L6nEM+Hch3O+pXUxJ5cXUbGX/9fX52nPK77RqjL69+R/g5xMffqN8A+LebIy+ubjXz4AbXxRGPrhP9piXy4uoq8R8gn7FcDybQLvd1ib78A8l918fgj9DPruuZ2hh9efV58N2pXyP3u99ynX2sJfLi6q6mf3rTLmuYn68lrj6tiLy4ur9SjtMp17c81y3l/mp2Q+TF1X2DPZ7yTeY5qB/p8tpHXlxdB/r3WddhEu9zuQ81zvXl1e9PfSroh+3wP6K+Z9RGXlzdg5T/X/lt86aXT/M3/bnk/zVx9azrTUsjL67uTvq/jvbxfd2h2KUNkRdX9xn2DNrxbp9PGe8+38qLq2siX9dFpLzp5dP8Tf8H2uNn1+EStwObIi+urhje+4J2tMu72CerIy+uzvuLLlwX+3tfRLzcVhB5cXU/Yacxnh7I5uxc7vOml0dfXv2PlOt92rcv8b4d9oJ2kRdXdwrXsT/Rnt7n+x3u2Lroy6vvSXx8DX42/dTi94vmyIurW0b7u67mQ/rpMX53WHP05dX7fSiP8vhc5nPawsLIp89vPtdt6X4C+uMy5t0ltZEXV3eE6zPIP595bSjx8WFB5MXV1bj+l/qcQpyc5nNXY+TF1dUzvptol6HZnN2HdvlvQ+TF1f1Af0wG/we/dyjtfXpD5MXV3eD7MNrnT4yXIYyL1SWRF1fn++yh5DcZ3RuU67OWyIuru5PfH1TfNm96+TR/009y3Ynvz5jfy8qjL6/+JOJzV7+HJPcRXWqjL6/e+wvfC/s+eDhxk75PFlfn+vMPKNfV5Psh9ooukRdXdwnt2oNx8gPX4/7EV7fC6Murn0M55lG+Pn6PczzVRF5cXSf65UvGwWnE12fYT7ORF1d3Nu13TnPbvOnl0/xNvxXlOon2WIV9NxN5cXUXUK5/NLXNm14+zd/0P/v8g73c9z6ZyIurOzzZb+I+E793bFYe/XQfivtTRhMnx1OeO7I5O7I2+vLqz6X9ish3N+bDA12nmYm8uLoe5PslcfQ+7dzZfR+N0ZdX39frP/hvqa/r9Hcoj7z4Jh3zQ0fKtZByLnOdXVHkxdWdQPrbq9rmTS+f5m/6DNeDq5zn/E5eHX159YfTH+9jN9Ietzne2kVfXv29fseB/4n+HE579Uh4cXWjaZeB8CuYn3b1dwoiL67uA+JvEPG4iuvFwcy3XxZEXlzddX7HJP+dXE/G9d3+lRdXN5T+KMlG/bSWqJMXV7c97dOX9vw39+d30r+LOkZeXN1ExkEL7VLg92vmzeNqoi+v/tnGyN/UOfKm15dXb3rXx85xfyD1ezg/8uLq7ki+vzwPvjf9s01J5MXV+Z1lG/ItpXy/JPsL5MXVrWIcrPL7KuOtlt/5TWvkxdU1Yc+hXT9gvHWlXXw/Ky+u7lji8euCtnnTy6f5m/4w+ud74m029b25NfLi6gYm+09eYl57EbtzReTF1S2gHIPhfV/8CPb6hBdX53vk2fBHEy9fEPcjE19e/aLmyP+uc+RHJnp59aZ/lHa6j3rdSFy0lkde/L5kfce39G9ffm8A/dW/IPLi6ta6Tsb3H+R7IdeZlYkvn64Xkp9cGPmViV5evelnZHP2AvrjYexTtZEXV9fOfWWMC9e7nYE/viT68urHEIeHMb7cj/cD1v168uLqZvn+mflxL+pZh1/ZEH159acRn17fH/c9Cb/brzry4uoqqH9/10vzPHU99oXqyIurm0E9niGfM/3O5fU4E3159dd5vwY/n7heQv53d4y8uDrPNehNPouJl4fRLSqNvLi6XsTvc5RrGfndQb88s3nkxdW9QT0G8V6jO+16He8XyjpEXlzdFti3aOc5XJcmoF9QE3lxdYeA96U9fF/2Ezrfl8mLqzsT63fRWczHM13v3xJ5cXXtmV/dR+f+ut60r/sD5cXTfXh/YF65mN8pgN+9IPLi6o4l30tK2+ZNL5/mb/p23s8yr+xNOY8rjLy4ugM9Z8P37q7f5b5oYzby4uo60j67EUcPEl8/+L4nG3lxdVMZX5tTjt35na+I61vqoi+vfgvuX4dTr/34nfW0z6HV0ZdX/xfyner+UtrlZOwpDZEXV3cT1nWJ7qs6n/uS84oiL67O/Vk3uL+KeFpLfJZXRV5cnfujP8/mbBnjpQRbXBl5cXWT3T9Gez5YHX+vsSXy4uqKGT//9f0g5XvT9bllkRdX9yW//y7XozWUs6frOkqiL6/+mNbIv1MSedO/xe9t5joKyr9ZdeJ3j/pTPf+A/nubuDnU/dQJL65uOXZ4x7Z508un+Zu+ivh73X1itOc/M9GXV3+L31Hov1nUMwPv+Rfy4up6EX/ngj/DfHsSdt+6yIurm8B9yvl+T+DnuIznTcqLvLi6UsbL24z725P38c2FkRdX5/rO7WjPm8n4O/j9SiIvrs59a1fSv+Oozxi/l9ZGXlzdTOJzhOtfyHcp4+CTysiLq1tL/73lPhj6+Xfk6/oVfXn10+if3dzn5vdF2uvQxujLq/8pE/meSX6m15dXb/oq2nEx5RqCPSYTfXn1fv+VX18f+WOS/OXVm/5kylNCu+7ieuLCyIurc/3d69znuI95OummFUZfXv37lGOZ99dch5rpp0NaIi+u7ofk/tf73juZn1z/Li+uzvvn0+AH0j/diJsrWiMvru5N2ned11Xyd9/e9iWRF1f3Z+q39FfWt7r+NV0fq/4U38MyLryP6cV8eW9V9OXV/8N9SoyvddxHPel+k9LIi6tbSPvO9Pwsxnsl9aqtjby4ujXep4CvY345knKvL4i8uLqD3H9F/RYST1PwL+4Y+SmJbgnt8V+/q9Kvnlv1Q0PkxdUt8Rw16nGU651oL78/yourG0U+A+A3cN+yB/H5c6fIi6t7kPZfTPneQOe+87l1kRdX53krtfhnE1cvk27L9pEXV/eN662o1/PEx6/twxJX5/vSBX4nZpz9hevD/C7Rl1d/GeXfkfwXMj8NIF7KGiIvru4W7498z8AFdpbv3XkO81wZr7uEYV5ZceTF1d2LreT33ReV7peSF1c33nORknOzdqL/R3eN/E7J/qhJpB9L/42yXq4nrY++vPpC2vcT2vsJ6rMLdnRt5MXVbcSupz4b3U+Cf0NZ9OXVb+8+NfrtKsp5P+U6oj768uq7ws+jHY50/0Y2Z3euiby4uhXuU3L92a/sw9CXV3+P69ypz4l+x8QfUBh9efUNfpchLl51nYXrNqoiL65uPrj78d2n3wPf/fs9El794cn++au4337Z86XKIy+u7nvyc3/cuJzZtC/ulmT/nLi6w+jHUcTJeNrnQubxpVXRl1ffA38H7Gja+3n4FzpFXlzdUfz+F5RvI+3huWITM5EXV7cN+da4/8r1J8yjOzZHX179QH7f/XnXUa5rsbMLIy+u7ifSL2GeGUm5errOuyL68up9L7gL+U/x/ox6XlwceXF1Q+j/P1e1zZtePs3f9C+Q/0LG5eG+N6uJvLi6I10Plc3Z81xH7L7ETPTl1X9L/ae6f9j1crTTTsT73u4fzplN54k90Rh5cXXTsD25n3qb3x9O/xWWRl9e/Ydcn33ferH70pn3vq+Lvrz6vIT3fYO86fXl1Zu+G/W6wvIwDx3QNfLi6v7E+8oS6jWD8fiLz39NkRdXtw/xshbe8wAWMh6H1UVeXN0fPQeYftzAfDQrm7M3t4u8uLprPH8N/DLwrb0fbIq8uLoPsD+3a5s3vXyav+md5/f3uoh9uWvkxdU1eT4h5dsFfT/6a5tM9OXVzyD9Y9aPOLmddGvqoi+vfnLCn9wYedPry6s3/XrvW6in6znT9Z3y6j/0HBauV9/AH8x4u68q+vLq65hf/E7gfOH3hBcTXlxdE7ZPpm3e9PJp/qZf7Xcj9K67OLwh8uLq5hL/K72vYVzeRlz92C7y4upmeg4n7VTu+neux/cVRV9e/dbuTySe+zC+Pf8qPR9LXJ3vh9P75mPI3/MH5MXVXU775WUpL+VcgL2/Y+TF1bk/ZQ39+zh2Ou1yY13kxdXtxvh23WHKm14+zd/0nlf3i+8hfE5tjry4up2p/zzXoaC7C/+egujLq59B/X0/6PfkW73PKoi8ePrduRP5rKBcf8/mbFlT9OXVFxPfFcTHhcSF+//eLou8uLqjyWcK5VuE/g/ETUm3yIure8hz6Ly+Jd89j8hEXlzdMNr/BeOb59ynXeeyWeTF1f2G+50lfn9I1tG5fi5dV6e+gHg40vXR7ldwfslEXlxdK+XPB38U3Xfk67pmeXF1Z9J/h8J7/tdcz/VujLy4uklY9x/2w0/X78qLq9vgd9OObfOml0/zN/272Zz9t+u/8L+pi768+mrqfxT3MQ+6jw7/6OLoy6svpXye3zvI9dKMr/yEF1dXzHXsXdp1Ojr3Wc+vjr68+ibXJVKvPxKXX/C7VbWRF1d3K+NvM+bl07M5O4ly7lAYfXn1U9xXRZz6Hdb16y8m69nl1ft99iDaY3t0QyjXm12iL6++F+X6lHx/Q36F9NOilsiLq9sK/l9+twX3XJ6zspEXV/ek5xFt1jZvevk0f9Pnwx/DddFztrxPlhdX9x/iYhfu4ycyv83lPuG99tGXV7+O8v2ZeWx/95nxe693jr68+n+67pf2GYU9jfkpUx95cXUHM47f9L047yv97jgtG3lxde9gV+S3zZtePs3f9L8wP33MdWma5+oURV5cne+HFpOP39EnonsiP/ry6vcm/cle3+jPe2jv/h0jL67O833GG//0l+cOvNQaeXF1i91XlN82b3r5NH/Tj2V+yVDPT5inq4oiL67O8z/up37/ZF7dHP1+5ZEXV3cx5XjI7/ueL838uLwi8uLqtqX9zyQuH4e/mHSHJLy4ujHUfynt29XzMbyuFkReXN2LlGsI7ex3iYeIk9KG6Murv4fr2wTmw9XojvX9T3705dVfhP8d8ew5H+dRv05V0ZdXfxn99wL5HEe+F9K/U4oiL65uAfm5zrEP5T0Ru2OyDlJc3TL73+9XzHez6DfXf8uLq7vQ/WyOH643hcxvD9dEXlzdAvpnAvH5o+cHct0cno28uLqT/D8G5N/D/3eB3aI88uLqTqU+a8n/IdppN88XrY+8uLqFnv9FO27l+y/PU2iIvrz65Z4vSvlG50zef7DX5kVeXN15fv8iX8/BT8/LlxdXdyn2SMq3recpUd8DM5EXV/eK51GS/3t8R7iL+eH00siLq3NeKMLfmHynKGuJvLi69DtFyptePs3f9L7fe55x4bk3kyoiL65uNvG/mPF9ls9BpLu6Kvry6k8h/q72vDTmhRvpl1mVkRdXdxf1+pF6eJ7Z3Z4r3RR5cXVXeR9Hfp8l7z99vykvrm4Y/fks8Xmjz6u+L2qIvLi6r7ArqN8BzG8jGZ++f5XfhKMbh51G//SgvU/kdx/pFnlxdQ/5PFzdNm96+TR/03s+2Dqs58YPTc6Rl1c/0PMVXa/kOmfPR6qKvLg6v7fdi72V9in0fIls5MXVVVD+X/Aric9Ont9QHn159fsRP9uT/9/gSx2fmciXJjr3d7tPZUKyv2V8so9FXJ3z2WkVbfOm93yWPOYjz5+d2Bx5cXWeT/uc84z7jrgubJuNvLi6Asrne/CTeY54DTs8E3lxdb4v91yAdxgvy7GFZZEXVzeY+vl/SL6ivJ97XnJN9OU36T2/j/ZZ6zom5g/jUL9fS9TLu87uMOImXRcjL67O9XofuU6U33e/8iFl0ZdX7/mbnsc1xf133H8cURt9efWe7+W54/Zzev64vrz6l2iXMf7/I64bZzOOT6+MvLi6fSj/LL930h57k65318iLq+vD9eI/1GO87ynpb9/j6MurX5Xwx3aOvOn15dWb/k2/m/qd1/WsddGXVz8Ivif1fJq4ug67dV305dV/6P4X4phmytuO9r0gL/Li6i4kvlz3dwLPHf5/E9cHpv8fRZ3//8T523Exk3n9gYLoy6fXg1tpl77erxKfI2ojL67uKipyQJe2edPLp/mbfiX18zzD6djSqsiLp+ce9qV9j/c7n/dBjdGXV+/9dbXnK7huGr3rW/Tl1VeRz/d+3yIuujCvD+4ceXF1/2I+9/ub5yIvSc5XkRdXtxvpPdd2PfPav7CLukdeXF2r44n5YWLObPp/c1s3R75fonsXe7XPtcT3q8wTaysjL67O/7/yGfaAbM7eQL08X1hfXv1I4ikLfg73jcuxO3SIvLg6/7/hvfTHhT5/YPdsjL68+oHkey+485TnBq5KeHF1niPo/sZ+zGtH0T4H1UReXN0LlG+96+eJ01PxazPRl1fv/y/yfDH/v9s/uL6NK4y8uLqplKvB7znE1Zf08xetkRdXtw6/A/G5Pf31KnH5TfvIi6t7knbM0L7v0C4VpJvXLvLi6paS30Pun/E50HMcCiMvru508DtL2uZNL5/mb/r0uTn9P3Pp/29T5/93W8t8np6T+1lB9OXVe/6t/59rcs7kufxlz/LIi6s7g/LfR75zmN9u4j7D/9clL67uZvw7iK/V5HsT9pS8yIur+5r2udLvqfxOLXZMx+jLq78efyvPZXfdNvby4siLq3vdddfE0zO2A/XetkfkxdXtTr16N7TNm14+zd/07o96g36tpn73NEVeXF0D9x+3MD73TtaP7toQeXF1ri/1XIK9qKf/r3VM58iLq7vI/4NF+x5APM1C5//n1JdXfzzlOTWbs6/CD/d86Mboy6vvRflPhPc5dlvGqc+38uLqOjJ/+dyb8qaXT/M3/aHgNzBfdfL9Z7vIi6t7mf7dmn6813OE8XuVRX6rRHcF8bQX8XG138n9fzY1kRdX9xj9cErntnnTy6f5m959YCPhPyHuzstEXlzdEL+n1rbNm14+zd/086nfOcxHL7lvrSjy4uqWu66a67Ln1E/1u1J+9OXVT6U808CvSfaXf18YefFrkv3n58Kv8P/fUM4hDZEXV9cb//8ARhuYrnicdZt5dFbV1cbfJISEEJKQkIkkvC9DAAUVcUBUQJwtVrQIglj0AyesA+DAJw5UBKl+gsuK4FTFAQFB+GittiotRaVWRVEEFcQ6otWKIJX6Cdiu9d3fr2vtu2L+2Ws/z3PO3Weffc4999432U6Z//87oVti/9WU2I87Rl8+i36/+sQ2g8/O0C6X2LMykRdX9xr9TixM7Bf5if0l9icl0ZdX36Eg8r9O8bbX/3Wqf9uvKUtsH+Jch/902+jLq++dTezBzYntDj+oOLEDiyMvru5g8vh458T+IpfY/vR7Rl3kxdV9S/4vxb+oVWK3Ed/eysiLq3urIbFfEk9jKTrm/ZjGyIurW0H/kxnf0sRkhmO/zkReXN1MxnVVRWJruya2gbz/uHX05dXPI57N9P85/e0i7rwUL67uz+T3O8Y3lLjuxH6Siby4uv70t4b+Tu2AJa/tq1N8Q9TtqE3scPiBXOck6rJLQeTF1R3H/C/Ib5m3vXy6f9v365LYPeR5GHkbmIu8uLpK1tVtRS3ztpdP92/7cejuyEtss+s5L/Li6grYPw6hTr4k362o778URl5c3dCaxL7JvPSm/5vp/9W8yIurW8783ch4vu2e2G7U1ZjOkRdX9xzrf2Rjy7zt5dP92z7H/PRvn9hTWR+nVUReXN1Q4vqOdbWwKrHjrM+qyIurO4L96Cnsh+wvvYjr0Q6RF1c3vzyxy4lvPvN0Cba5MPLi6iYRfwH8PPL1BNepSfHi6uaSxxriGEWep7O/TSqNvrz6bvjT6K8PedqMP6kp+vLq/871X0c3h/k9jjhfLYq+vPpRrN8n3Q9y8brn10ZeXF136no18VxLfX+B/Twv8uLqNjGereR3PNe5gv7H16X8blE/let/SFz3ottC3E83RV9e/VHkfzlx1FLfP6duMileXN3RrIPl5HU797OdbRJ7SGPkxdVNo/0ExrWber8e+8eqyIurK2U857IePiMvM6m3ZUXRl1d/BPGdTR4fJc7p5GtXbfTl1Q9jftLnqtH4jW0jP/oHzl/3Mr6z6a+S+22PhsiLq3uK+L+hvxuYp/8ir6sKoy+vfgTrezf7y8vk6RXsc9nIi6ubQh5vIK9HUBelnNOuyUZeXF0J/u3E1cy8nsW8962OvLi6hayrKvLzDPU1lOtWdou8uLqV2KPpP9susZdh69pFXlzdYewrO3KJfY/4zsY+m+LF1V3HOK5lPh7iOlPx3yiOvrz6QupjIv1vZTy7GOdnZZEXV7cf8R1JXT+Enci6GVMUfXn1oxsjX1EZedvry6u3/dOcK5rRbSPedpXRl1efx3o4PFUP96XqRF9e/R7yt4j6fIj7waP0u65z5MXV3U/8VeQ1R53tZX+9ti768up3089g8NuZ7zNZr78sjry4ustZv32I6x7W1RfcXz8vj7y4ugnEdSF1dQL5vQx8aEP05dVfyDg8x2S5r6XPO/Li6qYmJvNtpmXe9vLp/m0/gPHtw7rsid3eLvLi6i7MJfZB+jscuxx8R13kxdVNIT9PsB73Zz+fS36fzY+8uLo+5OWO/JZ528un+7f93czLGsY1kfq4tjjy4urOp37fpM6HwP8IOysbeXF1J2HXsT5uoj53Mt41XSIvru5F9oFTuU4H7pfvsu6zlZEXVzeaunyO9XEl9+kK1tXAzpEXV3cy/GrWxV78weyPg9pEf29KX838l4C3ZZy7qI9e9dGXV7+B9fsm/CPkcw/79uTCyIurm8r+fRx8JfU6nbhurI28uLq3c4ldS32M47ngXOzY1pEXV9cF/Fn8Gfgr8V+oiP6MlP4U4tnC+uyNLSQ/a+siL67uBdrvJC9zPMdSJ1+XRV9efSn9zWOfGct62Jf1dmte5MXHpt5bFNLvY/BvY7sWRF5cXV/vG7534bxzGPaUFC+urpTn7/7UUQ/m2/3a/VlfXv0JxNWfOvo78zONOp3eMfry6puYn2eYj+/xm7nu3ObIi6vbQf+PwbvPvY9tKoj8+6n90P3vAc6j5YznT5wP5pdGXlzdMdiDGNd5rOsZ7I8z20VeXN055LUX67Qv87GKuEtrIy+urjf4lewv13KdqzyflURfXv2NzMtQnwup8x6cd/IbIy+u7sSKlq/buyT2L987FU8v/HvYxzeiX8D+fl9R9OXVH0Rd38T8LmF+PmK+st0iL67uOmyJ64x9cRnj+iA/+vLqf+N9mfH9Fb/K/b088uLq6pn/IfDvkI+l5PetksiLq8ujfTXje9d9kfy+Xh55cXX3sv9dTp5eo56/Js+DOkZeXN1X3J+GEd8VzNO35PmbrpEXV/c88V2D7k7WR3/sT4sjL67ub9RnBXHtZV/uQP+92kdfXv3UzpG/rTLytteXV2/7wxjfCvK6HLusdeTF1RW5//sehnHeQ15/Xxt9efV3g7dmH1uL3vvSyIbIi6ubxj76q/qWedvLp/u3/TvuH1xnRi6xB9RHXlxdoefj+pZ528un+7f9WvrfQ30fRN0c2hh5cXUH4r/H+jgdfU/W1bbayIur2wB+EfYM9AuJd32nyIurm804/uBzKfZldG/WRV5c3WbmZwD+EO7rT7ius5EXV3cI95FjyE9rz1vsTwUVkRdXt4H4m+A3sy4+5jpbiyMvrq6KOtpBfG+zvv7l/aMp8uLqijjHd3DdEM+x5P3khsiLq8uS37uIz/cB53JfuK8i+vLqa+nfc8hvifMp+vecoi+vfp3P9+TB7xldqa+N9ZEXV+fzQ2vimk2+F7O/LGkdeXF1izyHsi8PIr4XyG+mKPry6n9Gv2XMy63wrdEPr4y+vPo+ucR+Sj7bUF8l2MWNkRdXt5T5eZD1fCS6G+Dnt4m+vPoruf6T1NGRnNMnc38vqY6+vPpSxvE75udt4ilmXjZVRF5c3SSu/05Fy7zt5dP9234K96eL4Q9jfbXtHHlxdfeTh3R9n49/Xqvop9eH9f899dCVdfYU+8re0ujLqx9fE/nVBZG3vb68etv/iHF+T/+7WDd9aqMvr/4n7C91vt/iOo+wToZVRF5c3Ubq8wt/t0F9D+O61zRFX169cXXJJfYo+l+KPaZ15MXVLeH619PfZ1xvo+fM8siLq2vD9Yf4fZZ6f5F+z+oQeXF1b7Ou/kF8j3Ne/hx7TEHkxdXNIo7H4f3efBPzdHpe5MXVFRF/L+qwDL47+2tzx+jLq1/NvFxNHb3Bep5KXL9rG3lxdbvJw2byOzr13N2+NvLi6g7Cv6SmZd728un+be93uZz3LeYt2yry4ur8fvcq8X3FPu13N7+zyYurK+R+ejz7y4fUdx33td92jL68+lc7Rf7dVH+21383pbf9bOZ1GXVVQ16OLYi8uLrVjGdufsu87eXT/du+inEdgJ3n80xV9OXV/6Ux8vtkI297fXn1tr+U/BzifYr18U1e5MXVvc541tD/zVzvffR5jZEXV7c/9bQql9g/Up/ruM726siLq5vCeD7hPOJz6k78N8qjL6++mfi6sJ9/TpwPcL362ujLq7+bfWA29f0p8R3MvjI7L/Li6j7wvXRey7zt5dP9234k8zmT8X3oe+fa6MurP4T4JxPfCPAi7MMdIy+u7kD63w1/KvnZQF7HpXhxdVn679K1Zd728un+bf8U/OucN9f7u4vGyIurewO73fjYl7pTn3c2RV5c3UTu736fm4M/mn7PLIq8uLqJ7h/sQ+nv4+OKoy+v3u/nL9P/06yn+czr9qrIi6tbn0vsYvgTEpP5FDspE3lxdeuIYxH15Xfi9PdheXF112EftT4ZXxl5H1AffXn1vn96kDiud18E71wffXn1BzZGPts18rbXl1dv+y/xfb9/F/UxuDzyd6W+A0zCDqxsmbf9wBSuzvajyMcY9gff86yojby4uu7s394XJ5CfPv6utDb68upHsi56sa88T33/D88Fq/E3oXuMenzYfb9D5MXVfeV7fK67l3XzIXWzNfV+VFzdGOJ8CX4m62l/5u3lbpEXV/eg3//QPUIer88l9jf1kRdXdzx58/dLX3HuH8xz1H9+v9Q14uo+pZ9N5PcXxPOBz1XtIy+ubh9/F8o8/pk4byOvYztFXlzdVPLxWEPLvO3l0/3b/nzv/7x3bWZ+XiyNvLi63/selfHdAn457ea0j7y4ug7EdyL9E2aGbTNzaFnkxdWtxF6dS+wQ6vl47PLiyIurW0lH8/D3Ute3c37aVRF5cXXD/C5IfCczv677LW0jL67O9x5byc9p5PMa6nZVXfTl1f9vp8j3SPG21++R6t/2R1HH/2TfuQG7Ki/y4urupS79nWYbv5txP3ivLvry6r8mv2Xk58zEZG70/Xcm8uLqviOuP1FXB9B/T3SrSqMvr76auMaxTz1LfqYR19jy6MurX5pL7CXus8T5N8b9fFP05dVfQH/+/8bDjGsidmsm8uLq+jKvY7DnsK/sIb6yTpEXV7cbvx/8X31OJN7DGiMvru5p6mhhQ8u87eXT/dvec6D3Qb+HeH7Sl1fv95Ma8lhAXY5KTGZnU+TF1S3BP8rvpsR3K/vjumzkxdXdS3z+3mkH/Z6BPTMbeXF1Gd+TkN8ZPDcN5n3ApurIi6urYH6fhF/g7yfwGxujL69+J/NyIuO5GtvM/ty1XfTl1U/PRX58WeRtry+v3vYD4FuxzvblfPJxu8iLqzubvOYzrgmMqxXj7lsXeXF1+3L9f9D/AeD9fH9SGH159buY/0HEsZv+PAe36RT5mSldEfENp45fo99ziXNsNvry6j9lXN7nB/k7dOKaVRf9QalzweHMv/f36Yy3G+vl6HaRF1c3h3EsJi+LqOsR2MV5kRdXd7XnbPr5b643GbupKfLi6q7CTiK+2dyPZ/ueoyrFV0Wd/y9UAO/vcdqwLv1djry4uh7YEdS13082cl54vjL68ur93faNrOvh4Cvpd2NN5MXVHUH/v2JeLuC95YXYw5siL66uH/nwd+Mb2Vce43rl2ciLqzsVfxB8W/K609/pV0VeXN3tucSuIA/rWd+ez5ZXRF5c3crU+x3fw1yVej8jL65ulvuYv58lr1WcWx8tiry4utHURxef37mfPoCtbxd5cXX+385z5PF+n3PAT6qOvrz6O3OR71UTedsPpk56eg6nLlaURl9e/Q7G9xnX/cTnAL/rNkReXN057D8L/P2l8bIfzW6IvLg6v+d5fv0n4xmP/a4m8uLqPN/6OzzX/YHEdXFV5MXT+8Nq3+uy/pYx/2+VRV5c3WL2ixGtW+ZtL5/u3/Zb6X8O47yfulrQMfLi6mpY5x/D302+tpGfusbIi6u73DySj0r6t+43FUVfXv3V2NP83ZHziV1aF3159duoy1me65inj1LvR+Q/Sulqcokd8wO87cf8QP+2n+DvlJmf9eR1U03kxdWt5fnz/+jP71M/w78lL/ry6odz/X3BB3CdGeTt3I6RF1d3KfW7mHG9zvy8gR3aKfLi6qZgr2Gcy3wOoy5eqY6+vPqz2ZeuI4421GV3zvNza6Mvr36Y///NuM5Evwh+frfIi6tbT38PdmuZt718un/bl7NOpjCuydiXqiMvrq4f6+NO+BOZ1zW0e6A68uLq3sM+g73AcxT62/OiL6/+p6wfz1niP3QOG5G6nv0uxD+Suh6IX5If+YEp3Rb47anfzfi7mMqmyK9L/Z5mA3X8Cv0ezjxNSb2HmJLi1Xeiny3MRw31/GPwvdWRF1d3HOeMBdSF/6/Qi/Xi92d9efX+P6u836nlm1N+91R/tk//f/TF2PT/T4ur8/f7xczHeH//A/7z/OjLqx/t91p0E9jfepOvbEH05dW34bnpZPo/jrgOsH1+5MXVbWF+/H/mi1L/7/xBWfTl1fv/0fsRxwlc7xS/kxdEXlzd6fCPsD5OIa56+D/kRV5c3VLG80gqLv9P+9DiyKf/f9v416bydiy++Ts2xaufhN+L8X2MfhH20sLIi6s7nvF3YV2xLDIcGzPnVUReXN3N2DX0NxRipHlqF/mRKd2X+C/5fZX6PB+/f3705dX7vPwS47gDfjFxt6qNvrz6Aezf/n+SvyvpzLnRdSr/HxxdT+ZzA3H25lw9Hn96UfTl1TcSxzOpvIzCNz/yo1K6Jt4/W+fO85Wp+dWXT6+Lpf7+knGOZ709Xh95cXXT2M9uyUb/Ur8vtIq8uLol5PeyipZ521+WwtXZfhvx9PO5GNuzS/Tl1fclf5vB92Fep/jdpyT68urPY1wLfU/PvMziOfKK8siLq5tOv7PIr9/t0t/z5MXVDUs9X/qcOJ191efF6annzPTz5b8BYQpLNw==CwAAAACAAAAwMgAADRUAAP0UAAD9FAAAAhUAAMAUAAC3FAAAtxQAALoUAAC/FAAAtxQAAE4IAAA=eJw13S2DMlAUFtpRUVFRUdGLioo6KioqV1FRUQkEAoFAIBAIBAKBQCAQCIQJBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQDDMek9Zv+Hsj2cHvn5fkCGGGWGUMcb5zQSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzx8OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3749Rd+CTDIEMOMMMoY4/xmgkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjnDwcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/z6i78EGGSIYUYYZYxxfjPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577POHAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffv2lXwIMMsQwI4wyxji/mWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32+cMBhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+/AmCQIYYZYZQxxvnNBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPHw445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvj1l38JMMgQw4wwyhjj/GaCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OcPBxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PorvwQYZIhhRhhljHF+M8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvs84cDDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9+/dVfAgwyxDAjjDLGOL+ZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfb5wwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND/98+AMMMsQwI4wyxji/mWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32+cMBhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzc+fQs9f+yXAIEMMM8IoY4zzmwkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnz8ccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zw66//EmCQIYYZYZQxxvnNBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPHw445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvj1N34JMMgQw4wwyhjj/GaCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OcPBxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//FPoDzDIEMOMMMoY4/xmgkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjnDwcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P38aPH/zlwCDDDHMCKOMMc5vJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99/nDAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Ovv/VLgEGGGGaEUcYY5zcTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz5/OOCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754dff/iXAIEMMM8IoY4zzmwkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnz8ccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwT4M/wCBDDDPCKGOM85sJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58/HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/8/Bns+Du/BBhkiGFGGGWMcX4zwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+zzhwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH3793V8CDDLEMCOMMsY4v5lgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99vnDAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/7eLwEGGWKYEUYZY5zfTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77/OGAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745od/BvsCDDLEMCOMMsY4v5lgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99vnDAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c3Pn4HOv/9LgEGGGGaEUcYY5zcTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz5/OOCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754dc/+CXAIEMMM8IoY4zzmwkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnz8ccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zw6//7JcAgQwwzwihjjPObCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfPxxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDPQH+AQYYYZoRRxhjnNxNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPn844JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvn5s8jxD38JMMgQw4wwyhjj/GaCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OcPBxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PpHvwQYZIhhRhhljHF+M8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvs84cDDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9+/eNfAgwyxDAjjDLGOL+ZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfb5wwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND/8s8gUYZIhhRhhljHF+M8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvs84cDDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnim58/C5z/5JcAgwwxzAijjDHObyaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPff5wwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDr3/6S4BBhhhmhFHGGOc3E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+fzjgkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eHXP/slwCBDDDPCKGOM85sJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58/HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88M8Cf4BBhhhmhFHGGOc3E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+fzjgkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eHXP/8lwCBDDDPCKGOM85sJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58/HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88Otf/BJgkCGGGWGUMcb5zQSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzx8OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3749S9/CTDIEMOMMMoY4/xmgkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjnDwcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/wT3BNgkCGGGWGUMcb5zQSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzx8OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3749a9+CTDIEMOMMMoY4/xmgkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjnDwcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/z6178EGGSIYUYYZYxxfjPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577POHAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffv2bXwIMMsQwI4wyxji/mWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32+cMBhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ//BPYFGGSIYUYYZYxxfjPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577POHAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffv3bXwIMMsQwI4wyxji/mWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32+cMBhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//t0vAQYZYpgRRhljnN9MMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvv84YBDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1///pcAgwwxzAijjDHObyaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPff5wwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDP0G9AQYZYpgRRhljnN9MMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvv84YBDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1//4ZcAgwwxzAijjDHObyaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPff5wwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDr//4S4BBhhhmhFHGGOc3E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+fzjgkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eHXf/olwCBDDDPCKGOM85sJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58/HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88E9Af4BBhhhmhFHGGOc3E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+fzjgkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eHX//9LgEGGGGaEUcYY5zcTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz5/OOCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754dd//iXAIEMMM8IoY4zzmwkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnz8ccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zw67/8EmCQIYYZYZQxxvnNBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPHw445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745ItvfvjnME+AQYYYZoRRxhjnNxNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPn844JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnh13/9JcAgQwwzwihjjPObCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfPxxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDrv/0SYJAhhhlhlDHG+c0Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8fDjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++PXffwkwyBDDjDDKGOP8ZoJJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY5w8HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/8c5AvwCBDDDPCKGOM85sJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58/HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88Ot//BJgkCGGGWGUMcb5zQSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzx8OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3749T9/CTDIEMOMMMoY4/xmgkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjnDwcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/z6X78EGGSIYUYYZYxxfjPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577POHAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psf/jnEG2CQIYYZYZQxxvnNBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPHw445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvj1v38JMMgQw4wwyhjj/GaCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OcPBxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//Po/vwQYZIhhRhhljHF+M8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvs84cDDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9+/d9fAgwyxDAjjDLGOL+ZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfb5wwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND79yv/w/dLzYyHicLcUhuAEAACBmQRAEQRAEQRAEQRAEd7OdbbbZZnd2ZzvbbLPNNtvczW7uThCEFwRBEARBEARBEARBEF4QBEEQBEEQhBf2ffP/5Q8WAv+/kMOOOOqY40446ZTTzjjrnPMuuOiSy6646prrbrjpltvuuOue+x546JF/PPbEU88898JLr7z2xlvvvPfBR5/867Mvvvrmux9++uW3P/5z4B98CzrksCOOOua4E0465bQzzjrnvAsuuuSyK6665robbrrltjvuuue+Bx565B+PPfHUM8+98NIrr73x1jvvffDRJ//67Iuvvvnuh59++e2P/xz4h9+CDjnsiKOOOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx75x2NPPPXMcy+89Mprb7z1znsffPTJvz774qtvvvvhp19+++M/B/6db0GHHHbEUcccd8JJp5x2xlnnnHfBRZdcdsVV11x3w0233HbHXffc98BDj/zjsSeeeua5F1565bU33nrnvQ8++uRfn33x1Tff/fDTL7/98Z8DxW9Bhxx2xFHHHHfCSaecdsZZ55x3wUWXXHbFVddcd8NNt9x2x1333PfAQ4/847EnnnrmuRdeeuW1N956570PPvrkX5998dU33/3w0y+//fGfA//ut6BDDjviqGOOO+GkU04746xzzrvgoksuu+Kqa6674aZbbrvjrnvue+ChR/7x2BNPPfPcCy+98tobb73z3gcfffKvz7746pvvfvjpl9/++M+Bf+9b0CGHHXHUMcedcNIpp51x1jnnXXDRJZddcdU1191w0y233XHXPfc98NAj/3jsiaeeee6Fl1557Y233nnvg48++ddnX3z1zXc//PTLb3/858A/+hZ0yGFHHHXMcSecdMppZ5x1znkXXHTJZVdcdc11N9x0y2133HXPfQ889Mg/HnviqWeee+GlV15746133vvgo0/+9dkXX33z3Q8//fLbH/85UPoWdMhhRxx1zHEnnHTKaWecdc55F1x0yWVXXHXNdTfcdMttd9x1z30PPPTIPx574qlnnnvhpVdee+Otd9774KNP/vXZF199890PP/3y2x//OfDvfws65LAjjjrmuBNOOuW0M84657wLLrrksiuuuua6G2665bY77rrnvgceeuQfjz3x1DPPvfDSK6+98dY7733w0Sf/+uyLr7757oeffvntj/8c+A++BR1y2BFHHXPcCSedctoZZ51z3gUXXXLZFVddc90NN91y2x133XPfAw898o/HnnjqmedeeOmV19546533Pvjok3999sVX33z3w0+//PbHfw78h9+CDjnsiKOOOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx75x2NPPPXMcy+89Mprb7z1znsffPTJvz774qtvvvvhp19+++M/B8rfgg457IijjjnuhJNOOe2Ms84574KLLrnsiquuue6Gm2657Y677rnvgYce+cdjTzz1zHMvvPTKa2+89c57H3z0yb8+++Krb7774adffvvjPwf+o29Bhxx2xFHHHHfCSaecdsZZ55x3wUWXXHbFVddcd8NNt9x2x1333PfAQ4/847EnnnrmuRdeeuW1N956570PPvrkX5998dU33/3w0y+//fGfA//xt6BDDjviqGOOO+GkU04746xzzrvgoksuu+Kqa6674aZbbrvjrnvue+ChR/7x2BNPPfPcCy+98tobb73z3gcfffKvz7746pvvfvjpl9/++M+B/+Rb0CGHHXHUMcedcNIpp51x1jnnXXDRJZddcdU1191w0y233XHXPfc98NAj/3jsiaeeee6Fl1557Y233nnvg48++ddnX3z1zXc//PTLb3/850DlW9Ahhx1x1DHHnXDSKaedcdY5511w0SWXXXHVNdfdcNMtt91x1z33PfDQI/947ImnnnnuhZdeee2Nt95574OPPvnXZ1989c13P/z0y29//OfAf/ot6JDDjjjqmONOOOmU084465zzLrjoksuuuOqa62646Zbb7rjrnvseeOiRfzz2xFPPPPfCS6+89sZb77z3wUef/OuzL7765rsffvrltz/+c+A/+xZ0yGFHHHXMcSecdMppZ5x1znkXXHTJZVdcdc11N9x0y2133HXPfQ889Mg/HnviqWeee+GlV15746133vvgo0/+9dkXX33z3Q8//fLbH/858J9/CzrksCOOOua4E0465bQzzjrnvAsuuuSyK6665robbrrltjvuuue+Bx565B+PPfHUM8+98NIrr73x1jvvffDRJ//67Iuvvvnuh59++e2P/xyofgs65LAjjjrmuBNOOuW0M84657wLLrrksiuuuua6G2665bY77rrnvgceeuQfjz3x1DPPvfDSK6+98dY7733w0Sf/+uyLr7757oeffvntj/8c+C++BR1y2BFHHXPcCSedctoZZ51z3gUXXXLZFVddc90NN91y2x133XPfAw898o/HnnjqmedeeOmV19546533Pvjok3999sVX33z3w0+//PbHfw78429Bhxx2xFHHHHfCSaecdsZZ55x3wUWXXHbFVddcd8NNt9x2x1333PfAQ4/847EnnnrmuRdeeuW1N956570PPvrkX5998dU33/3w0y+//fGfA//kW9Ahhx1x1DHHnXDSKaedcdY5511w0SWXXXHVNdfdcNMtt91x1z33PfDQI/947ImnnnnuhZdeee2Nt95574OPPvnXZ1989c13P/z0y29//OdA7VvQIYcdcdQxx51w0imnnXHWOeddcNEll11x1TXX3XDTLbfdcdc99z3w0CP/eOyJp5557oWXXnntjbfeee+Djz7512dffPXNdz/89Mtvf/znwH/5LeiQw4446pjjTjjplNPOOOuc8y646JLLrrjqmutuuOmW2+646577HnjokX889sRTzzz3wkuvvPbGW++898FHn/zrsy+++ua7H3765bc//nPgn34LOuSwI4465rgTTjrltDPOOue8Cy665LIrrrrmuhtuuuW2O+66574HHnrkH4898dQzz73w0iuvvfHWO+998NEn//rsi6+++e6Hn3757Y//HPhn34IOOeyIo4457oSTTjntjLPOOe+Ciy657Iqrrrnuhptuue2Ou+6574GHHvnHY0889cxzL7z0ymtvvPXOex989Mm/Pvviq2++++GnX3774z8H6t+CDjnsiKOOOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx75x2NPPPXMcy+89Mprb7z1znsffPTJvz774qtvvvvhp19+++M/B/6rb0GHHHbEUcccd8JJp5x2xlnnnHfBRZdcdsVV11x3w0233HbHXffc98BDj/zjsSeeeua5F1565bU33nrnvQ8++uRfn33x1Tff/fDTL7/98Z8D//W3oEMOO+KoY4474aRTTjvjrHPOu+CiSy674qprrrvhpltuu+Oue+574KFH/vHYE08989wLL73y2htvvfPeBx998q/Pvvjqm+9++OmX3/74z4F//i3okMOOOOqY40446ZTTzjjrnPMuuOiSy6646prrbrjpltvuuOue+x546JF/PPbEU88898JLr7z2xlvvvPfBR5/867Mvvvrmux9++uW3P/5zoPEt6JDDjjjqmONOOOmU084465zzLrjoksuuuOqa62646Zbb7rjrnvseeOiRfzz2xFPPPPfCS6+89sZb77z3wUef/OuzL7765rsffvrltz/+c+C/+RZ0yGFHHHXMcSecdMppZ5x1znkXXHTJZVdcdc11N9x0y2133HXPfQ889Mg/HnviqWeee+GlV15746133vvgo0/+9dkXX33z3Q8//fLbH/858N9+CzrksCOOOua4E0465bQzzjrnvAsuuuSyK6665robbrrltjvuuue+Bx565B+PPfHUM8+98NIrr73x1jvvffDRJ//67Iuvvvnuh59++e2P/xz4774FHXLYEUcdc9wJJ51y2hlnnXPeBRddctkVV11z3Q033XLbHXfdc98DDz3yj8eeeOqZ51546ZXX3njrnfc++OiTf332xVfffPfDT7/89sd/DjS/BR1y2BFHHXPcCSedctoZZ51z3gUXXXLZFVddc90NN91y2x133XPfAw898o/HnnjqmedeeOmV19546533Pvjok3999sVX33z3w0+//PbHfw7899+CDjnsiKOOOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx75x2NPPPXMcy+89Mprb7z1znsffPTJvz774qtvvvvhp19+++M/B/6Hb0GHHHbEUcccd8JJp5x2xlnnnHfBRZdcdsVV11x3w0233HbHXffc98BDj/zjsSeeeua5F1565bU33nrnvQ8++uRfn33x1Tff/fDTL7/98Z8D/+O3oEMOO+KoY4474aRTTjvjrHPOu+CiSy674qprrrvhpltuu+Oue+574KFH/vHYE08989wLL73y2htvvfPeBx998q/Pvvjqm+9++OmX3/74z4HWt6BDDjviqGOOO+GkU04746xzzrvgoksuu+Kqa6674aZbbrvjrnvue+ChR/7x2BNPPfPcCy+98tobb73z3gcfffKvz7746pvvfvjpl9/++M+B/+lb0CGHHXHUMcedcNIpp51x1jnnXXDRJZddcdU1191w0y233XHXPfc98NAj/3jsiaeeee6Fl1557Y233nnvg48++ddnX3z1zXc//PTLb3/858D//C3okMOOOOqY40446ZTTzjjrnPMuuOiSy6646prrbrjpltvuuOue+x546JF/PPbEU88898JLr7z2xlvvvPfBR5/867Mvvvrmux9++uW3P/5z4H/5FnTIYUccdcxxJ5x0ymlnnHXOeRdcdMllV1x1zXU33HTLbXfcdc99Dzz0yD8ee+KpZ5574aVXXnvjrXfe++CjT/712RdfffPdDz/98tsf/znQ/hZ0yGFHHHXMcSecdMppZ5x1znkXXHTJZVdcdc11N9x0y2133HXPfQ889Mg/HnviqWeee+GlV15746133vvgo0/+9dkXX33z3Q8//fLbH/858L9+CzrksCOOOua4E0465bQzzjrnvAsuuuSyK6665robbrrltjvuuue+Bx565B+PPfHUM8+98NIrr73x1jvvffDRJ//67Iuvvvnuh59++e2P/xz4374FHXLYEUcdc9wJJ51y2hlnnXPeBRddctkVV11z3Q033XLbHXfdc98DDz3yj8eeeOqZ51546ZXX3njrnfc++OiTf332xVfffPfDT7/89sd/Dvzv34IOOeyIo4457oSTTjntjLPOOe+Ciy657Iqrrrnuhptuue2Ou+6574GHHvnHY0889cxzL7z0ymtvvPXOex989Mm/Pvviq2++++GnX3774z8HOt+CDjnsiKOOOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx75x2NPPPXMcy+89Mprb7z1znsffPTJvz774qtvvvvhp19+++M/B/6Pb0GHHHbEUcccd8JJp5x2xlnnnHfBRZdcdsVV11x3w0233HbHXffc98BDj/zjsSeeeua5F1565bU33nrnvQ8++uRfn33x1Tff/fDTL7/98Z8D/+e3oEMOO+KoY4474aRTTjvjrHPOu+CiSy674qprrrvhpltuu+Oue+574KFH/vHYE08989wLL73y2htvvfPeBx998q/Pvvjqm+9++OmX3/74z4H/61vQIYcdcdQxx51w0imnnXHWOeddcNEll11x1TXX3XDTLbfdcdc99z3w0CP/eOyJp5557oWXXnntjbfeee+Djz7512dffPXNdz/89Mtvf/znQPdb0CGHHXHUMcedcNIpp51x1jnnXXDRJZddcdU1191w0y233XHXPfc98NAj/3jsiaeeee6Fl1557Y233nnvg48++ddnX3z1zXc//PTLb3/858C/+BZ0yGFHHHXMcSecdMppZ5x1znkXXHTJZVdcdc11N9x0y2133HXPfQ889Mg/HnviqWeee+GlV15746133vvgo0/+9dkXX33z3Q8//fLbH/858C+/BR1y2BFHHXPcCSedctoZZ51z3gUXXXLZFVddc90NN91y2x133XPfAw898o/HnnjqmedeeOmV19546533Pvjok3999sVX33z3w0+//PbHfw7839+CDjnsiKOOOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx75x2NPPPXMcy+89Mprb7z1znsffPTJvz774qtvvvvhp19+++M/B3rfgg457IijjjnuhJNOOe2Ms84574KLLrnsiquuue6Gm2657Y677rnvgYce+cdjTzz1zHMvvPTKa2+89c57H3z0yb8+++Krb7774adffvvjPwf+n29Bhxx2xFHHHHfCSaecdsZZ55x3wUWXXHbFVddcd8NNt9x2x1333PfAQ4/847EnnnrmuRdeeuW1N956570PPvrkX5998dU33/3w0y+//fGfA//qW9Ahhx1x1DHHnXDSKaedcdY5511w0SWXXXHVNdfdcNMtt91x1z33PfDQI/947ImnnnnuhZdeee2Nt95574OPPvnXZ1989c13P/z0y29//OfA//st6JDDjjjqmONOOOmU084465zzLrjoksuuuOqa62646Zbb7rjrnvseeOiRfzz2xFPPPPfCS6+89sZb77z3wUef/OuzL7765rsffvrltz/+c6D/LeiQw4446pjjTjjplNPOOOuc8y646JLLrrjqmutuuOmW2+646577HnjokX889sRTzzz3wkuvvPbGW++898FHn/zrsy+++ua7H3765bc//nPgX38LOuSwI4465rgTTjrltDPOOue8Cy665LIrrrrmuhtuuuW2O+66574HHnrkH4898dQzz73w0iuvvfHWO+998NEn//rsi6+++e6Hn3757Y//HPg334IOOeyIo4457oSTTjntjLPOOe+Ciy657Iqrrrnuhptuue2Ou+6574GHHvnHY0889cxzL7z0ymtvvPXOex989Mm/Pvviq2++++GnX3774z8H/u23oEMOO+KoY4474aRTTjvjrHPOu+CiSy674qprrrvhpltuu+Oue+574KFH/vHYE08989wLL73y2htvvfPeBx998q/Pvvjqm+9++OmX3/74z4HBt/8PdlHZBHicLcUhuAEAACBmQRAEQXhBEARBEARBEARBEARBEARBEARBsJu7s80222yzzTa7s5vtbOfubLPN3QRBEF4QBEEQhBcEQRD2ffP/5Q/2A/+/kMOOOOofxxx3wkmnnHbGWeecd8FFl1x2xVXXXHfDTbfcdsdd99z3wEOPPPbEU88898JLr7z2xlvvvPfBR5/867Mvvvrmux/+89Mvv/1x4N/5FnTIYUcc9Y9jjjvhpFNOO+Osc8674KJLLrviqmuuu+GmW26746577nvgoUcee+KpZ5574aVXXnvjrXfe++CjT/712RdfffPdD//56Zff/jjwD74FHXLYEUf945jjTjjplNPOOOuc8y646JLLrrjqmutuuOmW2+646577HnjokceeeOqZ51546ZXX3njrnfc++OiTf332xVfffPfDf3765bc/Dvy734IOOeyIo/5xzHEnnHTKaWecdc55F1x0yWVXXHXNdTfcdMttd9x1z30PPPTIY0889cxzL7z0ymtvvPXOex989Mm/Pvviq2++++E/P/3y2x8HBt+CDjnsiKP+ccxxJ5x0ymlnnHXOeRdcdMllV1x1zXU33HTLbXfcdc99Dzz0yGNPPPXMcy+89Mprb7z1znsffPTJvz774qtvvvvhPz/98tsfB/7ht6BDDjviqH8cc9wJJ51y2hlnnXPeBRddctkVV11z3Q033XLbHXfdc98DDz3y2BNPPfPcCy+98tobb73z3gcfffKvz7746pvvfvjPT7/89seBf/Qt6JDDjjjqH8ccd8JJp5x2xlnnnHfBRZdcdsVV11x3w0233HbHXffc98BDjzz2xFPPPPfCS6+89sZb77z3wUef/OuzL7765rsf/vPTL7/9ceAffws65LAjjvrHMcedcNIpp51x1jnnXXDRJZddcdU1191w0y233XHXPfc98NAjjz3x1DPPvfDSK6+98dY7733w0Sf/+uyLr7757of//PTLb38cGH4LOuSwI476xzHHnXDSKaedcdY5511w0SWXXXHVNdfdcNMtt91x1z33PfDQI4898dQzz73w0iuvvfHWO+998NEn//rsi6+++e6H//z0y29/HPj3vgUdctgRR/3jmONOOOmU084465zzLrjoksuuuOqa62646Zbb7rjrnvseeOiRx5546pnnXnjpldfeeOud9z746JN/ffbFV99898N/fvrltz8O/Pvfgg457Iij/nHMcSecdMppZ5x1znkXXHTJZVdcdc11N9x0y2133HXPfQ889MhjTzz1zHMvvPTKa2+89c57H3z0yb8+++Krb7774T8//fLbHwf+g29Bhxx2xFH/OOa4E0465bQzzjrnvAsuuuSyK6665robbrrltjvuuue+Bx565LEnnnrmuRdeeuW1N956570PPvrkX5998dU33/3wn59++e2PA6NvQYccdsRR/zjmuBNOOuW0M84657wLLrrksiuuuua6G2665bY77rrnvgceeuSxJ5565rkXXnrltTfeeue9Dz765F+fffHVN9/98J+ffvntjwP/4begQw474qh/HHPcCSedctoZZ51z3gUXXXLZFVddc90NN91y2x133XPfAw898tgTTz3z3AsvvfLaG2+9894HH33yr8+++Oqb7374z0+//PbHgf/oW9Ahhx1x1D+OOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx557ImnnnnuhZdeee2Nt95574OPPvnXZ1989c13P/znp19+++PAf/wt6JDDjjjqH8ccd8JJp5x2xlnnnHfBRZdcdsVV11x3w0233HbHXffc98BDjzz2xFPPPPfCS6+89sZb77z3wUef/OuzL7765rsf/vPTL7/9cWD8LeiQw4446h/HHHfCSaecdsZZ55x3wUWXXHbFVddcd8NNt9x2x1333PfAQ4889sRTzzz3wkuvvPbGW++898FHn/zrsy+++ua7H/7z0y+//XHgP/kWdMhhRxz1j2OOO+GkU04746xzzrvgoksuu+Kqa6674aZbbrvjrnvue+ChRx574qlnnnvhpVdee+Otd9774KNP/vXZF199890P//npl9/+OPCffgs65LAjjvrHMcedcNIpp51x1jnnXXDRJZddcdU1191w0y233XHXPfc98NAjjz3x1DPPvfDSK6+98dY7733w0Sf/+uyLr7757of//PTLb38c+M++BR1y2BFH/eOY40446ZTTzjjrnPMuuOiSy6646prrbrjpltvuuOue+x546JHHnnjqmedeeOmV19546533Pvjok3999sVX33z3w39++uW3Pw5MvgUdctgRR/3jmONOOOmU084465zzLrjoksuuuOqa62646Zbb7rjrnvseeOiRx5546pnnXnjpldfeeOud9z746JN/ffbFV99898N/fvrltz8O/Offgg457Iij/nHMcSecdMppZ5x1znkXXHTJZVdcdc11N9x0y2133HXPfQ889MhjTzz1zHMvvPTKa2+89c57H3z0yb8+++Krb7774T8//fLbHwf+i29Bhxx2xFH/OOa4E0465bQzzjrnvAsuuuSyK6665robbrrltjvuuue+Bx565LEnnnrmuRdeeuW1N956570PPvrkX5998dU33/3wn59++e2PA//lt6BDDjviqH8cc9wJJ51y2hlnnXPeBRddctkVV11z3Q033XLbHXfdc98DDz3y2BNPPfPcCy+98tobb73z3gcfffKvz7746pvvfvjPT7/89seB6begQw474qh/HHPcCSedctoZZ51z3gUXXXLZFVddc90NN91y2x133XPfAw898tgTTz3z3AsvvfLaG2+9894HH33yr8+++Oqb7374z0+//PbHgf/qW9Ahhx1x1D+OOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx557ImnnnnuhZdeee2Nt95574OPPvnXZ1989c13P/znp19+++PAf/0t6JDDjjjqH8ccd8JJp5x2xlnnnHfBRZdcdsVV11x3w0233HbHXffc98BDjzz2xFPPPPfCS6+89sZb77z3wUef/OuzL7765rsf/vPTL7/9ceC/+RZ0yGFHHPWPY4474aRTTjvjrHPOu+CiSy674qprrrvhpltuu+Oue+574KFHHnviqWeee+GlV15746133vvgo0/+9dkXX33z3Q//+emX3/44MPsWdMhhRxz1j2OOO+GkU04746xzzrvgoksuu+Kqa6674aZbbrvjrnvue+ChRx574qlnnnvhpVdee+Otd9774KNP/vXZF199890P//npl9/+OPDffgs65LAjjvrHMcedcNIpp51x1jnnXXDRJZddcdU1191w0y233XHXPfc98NAjjz3x1DPPvfDSK6+98dY7733w0Sf/+uyLr7757of//PTLb38c+O++BR1y2BFH/eOY40446ZTTzjjrnPMuuOiSy6646prrbrjpltvuuOue+x546JHHnnjqmedeeOmV19546533Pvjok3999sVX33z3w39++uW3Pw7899+CDjnsiKP+ccxxJ5x0ymlnnHXOeRdcdMllV1x1zXU33HTLbXfcdc99Dzz0yGNPPPXMcy+89Mprb7z1znsffPTJvz774qtvvvvhPz/98tsfB+bfgg457Iij/nHMcSecdMppZ5x1znkXXHTJZVdcdc11N9x0y2133HXPfQ889MhjTzz1zHMvvPTKa2+89c57H3z0yb8+++Krb7774T8//fLbHwf+h29Bhxx2xFH/OOa4E0465bQzzjrnvAsuuuSyK6665robbrrltjvuuue+Bx565LEnnnrmuRdeeuW1N956570PPvrkX5998dU33/3wn59++e2PA//kW9Ahhx1x1D+OOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx557ImnnnnuhZdeee2Nt95574OPPvnXZ1989c13P/znp19+++PAP/0WdMhhRxz1j2OOO+GkU04746xzzrvgoksuu+Kqa6674aZbbrvjrnvue+ChRx574qlnnnvhpVdee+Otd9774KNP/vXZF199890P//npl9/+OLD4FnTIYUcc9Y9jjjvhpFNOO+Osc8674KJLLrviqmuuu+GmW26746577nvgoUcee+KpZ5574aVXXnvjrXfe++CjT/712RdfffPdD//56Zff/jjwP34LOuSwI476xzHHnXDSKaedcdY5511w0SWXXXHVNdfdcNMtt91x1z33PfDQI4898dQzz73w0iuvvfHWO+998NEn//rsi6+++e6H//z0y29/HPhn34IOOeyIo/5xzHEnnHTKaWecdc55F1x0yWVXXHXNdTfcdMttd9x1z30PPPTIY0889cxzL7z0ymtvvPXOex989Mm/Pvviq2++++E/P/3y2x8H/qdvQYccdsRR/zjmuBNOOuW0M84657wLLrrksiuuuua6G2665bY77rrnvgceeuSxJ5565rkXXnrltTfeeue9Dz765F+fffHVN9/98J+ffvntjwPLb0GHHHbEUf845rgTTjrltDPOOue8Cy665LIrrrrmuhtuuuW2O+66574HHnrksSeeeua5F1565bU33nrnvQ8++uRfn33x1Tff/fCfn3757Y8D//O3oEMOO+Kofxxz3AknnXLaGWedc94FF11y2RVXXXPdDTfdctsdd91z3wMPPfLYE08989wLL73y2htvvfPeBx998q/Pvvjqm+9++M9Pv/z2x4H/5VvQIYcdcdQ/jjnuhJNOOe2Ms84574KLLrnsiquuue6Gm2657Y677rnvgYceeeyJp5557oWXXnntjbfeee+Djz7512dffPXNdz/856dffvvjwD//FnTIYUcc9Y9jjjvhpFNOO+Osc8674KJLLrviqmuuu+GmW26746577nvgoUcee+KpZ5574aVXXnvjrXfe++CjT/712RdfffPdD//56Zff/jiw+hZ0yGFHHPWPY4474aRTTjvjrHPOu+CiSy674qprrrvhpltuu+Oue+574KFHHnviqWeee+GlV15746133vvgo0/+9dkXX33z3Q//+emX3/448L9+CzrksCOO+scxx51w0imnnXHWOeddcNEll11x1TXX3XDTLbfdcdc99z3w0COPPfHUM8+98NIrr73x1jvvffDRJ//67Iuvvvnuh//89Mtvfxz4374FHXLYEUf945jjTjjplNPOOOuc8y646JLLrrjqmutuuOmW2+646577HnjokceeeOqZ51546ZXX3njrnfc++OiTf332xVfffPfDf3765bc/DvyLb0GHHHbEUf845rgTTjrltDPOOue8Cy665LIrrrrmuhtuuuW2O+66574HHnrksSeeeua5F1565bU33nrnvQ8++uRfn33x1Tff/fCfn3757Y8D629Bhxx2xFH/OOa4E0465bQzzjrnvAsuuuSyK6665robbrrltjvuuue+Bx565LEnnnrmuRdeeuW1N956570PPvrkX5998dU33/3wn59++e2PA//yW9Ahhx1x1D+OOe6Ek0457YyzzjnvgosuueyKq6657oabbrntjrvuue+Bhx557ImnnnnuhZdeee2Nt95574OPPvnXZ1989c13P/znp19+++PAv/oWdMhhRxz1j2OOO+GkU04746xzzrvgoksuu+Kqa6674aZbbrvjrnvue+ChRx574qlnnnvhpVdee+Otd9774KNP/vXZF199890P//npl9/+OPCvvwUdctgRR/3jmONOOOmU084465zzLrjoksuuuOqa62646Zbb7rjrnvseeOiRx5546pnnXnjpldfeeOud9z746JN/ffbFV99898N/fvrltz8ObL4FHXLYEUf945jjTjjplNPOOOuc8y646JLLrrjqmutuuOmW2+646577HnjokceeeOqZ51546ZXX3njrnfc++OiTf332xVfffPfDf3765bc/Dvzv34IOOeyIo/5xzHEnnHTKaWecdc55F1x0yWVXXHXNdTfcdMttd9x1z30PPPTIY0889cxzL7z0ymtvvPXOex989Mm/Pvviq2++++E/P/3y2x8H/o9vQYccdsRR/zjmuBNOOuW0M84657wLLrrksiuuuua6G2665bY77rrnvgceeuSxJ5565rkXXnrltTfeeue9Dz765F+fffHVN9/98J+ffvntjwP/57egQw474qh/HHPcCSedctoZZ51z3gUXXXLZFVddc90NN91y2x133XPfAw898tgTTz3z3AsvvfLaG2+9894HH33yr8+++Oqb7374z0+//PbHge23oEMOO+Kofxxz3AknnXLaGWedc94FF11y2RVXXXPdDTfdctsdd91z3wMPPfLYE08989wLL73y2htvvfPeBx998q/Pvvjqm+9++M9Pv/z2x4H/61vQIYcdcdQ/jjnuhJNOOe2Ms84574KLLrnsiquuue6Gm2657Y677rnvgYceeeyJp5557oWXXnntjbfeee+Djz7512dffPXNdz/856dffvvjwP/9LeiQw4446h/HHHfCSaecdsZZ55x3wUWXXHbFVddcd8NNt9x2x1333PfAQ4889sRTzzz3wkuvvPbGW++898FHn/zrsy+++ua7H/7z0y+//XHg//kWdMhhRxz1j2OOO+GkU04746xzzrvgoksuu+Kqa6674aZbbrvjrnvue+ChRx574qlnnnvhpVdee+Otd9774KNP/vXZF199890P//npl9/+OLD7FnTIYUcc9Y9jjjvhpFNOO+Osc8674KJLLrviqmuuu+GmW26746577nvgoUcee+KpZ5574aVXXnvjrXfe++CjT/712RdfffPdD//56Zff/jjwb74FHXLYEUf945jjTjjplNPOOOuc8y646JLLrrjqmutuuOmW2+646577HnjokceeeOqZ51546ZXX3njrnfc++OiTf332xVfffPfDf3765bc/Dvzbb0GHHHbEUf845rgTTjrltDPOOue8Cy665LIrrrrmuhtuuuW2O+66574HHnrksSeeeua5F1565bU33nrnvQ8++uRfn33x1Tff/fCfn3757Y8D/++3oEMOO+Kofxxz3AknnXLaGWedc94FF11y2RVXXXPdDTfdctsdd91z3wMPPfLYE08989wLL73y2htvvfPeBx998q/Pvvjqm+9++M9Pv/z2x4H9t/8Pd+bZQHicLcUv2AEAAOBnex5BEARBEARBEARBEARBEAThC8IXBEEQBEEQBEEQBEEQBEEQBEFwN9tss83dbLOd29zNNtu5zTa3uc3+PM997y/83uAu8G8KMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqr/GGNv6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy8D/+CPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwip/WOMv62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwy8A//CPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyh/W+Ms6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/wy8G//EWSIYUYYZYxxJphkimlmmGWOeRZYZIllVljlD2v8ZZ0NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffhnY/xFkiGFGGGWMcSaYZIppZphljnkWWGSJZVZY5Q9r/GWdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH34Z+Hf+CDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6zyhzX+ss4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pvwz8u38EGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVvnDGn9ZZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odfBv69P4IMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqr/GGNv6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy8Dhz+CDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq/xhjb+ss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888MvA//+H0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV/rDGX9bZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754ZeB/+CPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwip/WOMv62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwy8B/+EeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlT+s8Zd1Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvhl4PhHkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU/rPGXdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb374ZeA/+iPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyh/W+Ms6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/wy8B//EWSIYUYYZYxxJphkimlmmGWOeRZYZIllVljlD2v8ZZ0NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffhn4T/4IMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrPKHNf6yzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+/DJz+CDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6zyhzX+ss4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pvwz8oz+CDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq/xhjb+ss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888MvA//4jyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqf1jjL+tssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MvAf/pHkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU/rPGXdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb374ZeD8R5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVP6zxl3U22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++GXgP/sjyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMof1vjLOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/8MvCf/xFkiGFGGGWMcSaYZIppZphljnkWWGSJZVZY5Q9r/GWdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH34Z+C/+CDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6zyhzX+ss4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pvwxc/ggyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMius8oc1/rLOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND78M/Jd/BBlimBFGGWOcCSaZYpoZZpljngUWWWKZFVb5wxp/WWeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHXwb+qz+CDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq/xhjb+ss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888MvA//kjyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqf1jjL+tssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MvA9Y8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKn9Y4y/rbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLwD/9I8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKH9b4yzobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//DLwX/8RZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWOUPa/xlnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9+Gfhv/ggyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMius8oc1/rLOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND78M3P4IMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrPKHNf6yzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+/DPyzP4IMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqr/GGNv6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy8D//yPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwip/WOMv62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwy8B/+0eQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlT+s8Zd1Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvhl4P5HkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU/rPGXdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb374ZeC/+yPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyh/W+Ms6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/wy8N//EWSIYUYYZYxxJphkimlmmGWOeRZYZIllVljlD2v8ZZ0NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffhn4H/4IMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrPKHNf6yzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+/DDz+CDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6zyhzX+ss4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pvwz8j38EGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVvnDGn9ZZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odfBv6nP4IMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqr/GGNv6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy8D/+KPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwip/WOMv62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwy8DzjyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqf1jjL+tssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MvAv/wjyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMof1vjLOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/8MvA//xFkiGFGGGWMcSaYZIppZphljnkWWGSJZVZY5Q9r/GWdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH34Z+F/+CDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6zyhzX+ss4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pvwy8/ggyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMius8oc1/rLOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND78M/K9/BBlimBFGGWOcCSaZYpoZZpljngUWWWKZFVb5wxp/WWeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHXwb+tz+CDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq/xhjb+ss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888MvA//7H0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV/rDGX9bZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754ZeB9x9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVf6wxl/W2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXgX/1R5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVP6zxl3U22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++GXg//gjyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMof1vjLOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/8MvB//hFkiGFGGGWMcSaYZIppZphljnkWWGSJZVZY5Q9r/GWdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH34Z+PwRZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWOUPa/xlnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9+GfjXfwQZYpgRRhljnAkmmWKaGWaZY54FFllimRVW+cMaf1lng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh18G/q8/ggwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqv8YY2/rLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDLwP/9x9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVf6wxl/W2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXge8fQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVX+sMZf1tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhl4H/548gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKn9Y4y/rbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLwP/7R5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVP6zxl3U22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++GXg//sjyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMof1vjLOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/8MhD4t/7N/39ygdh9eJwt1yETAgCXllFWPxUVlVVUVFR0UVFRUVFRUQkEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEFz9zi3nBzwz78z9Q+BPAv/vggwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8Cd/9A8MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfAX9CfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+Iv6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88Msf/3z4/wiDDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwl/RnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/rL+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwF/Rn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/++OcP3//nDwwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8Bf1Z9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4a/ozyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8Df11/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvljIKQ/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8Df0Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6m/gwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8Df0p9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hgI688gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8qf4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfA39afQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+Dv6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfAxH9GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgb+rP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfD39GeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+vv4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sdAVH8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgH+jPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/EP9GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgX+kP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MRDTn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPjH+jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwP/RH8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgn+rPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38MxPVnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/pn+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwD/Xn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPgz/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4GE/gwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8C/0J9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4l/ozyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8D/0p/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvljIKk/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8K/1Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6N/gwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8C/1Z9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hhI6c8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8O/0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bf68/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8B/0Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/BtL6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA/9RfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+A/6c8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8Z/0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+BjP4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfAf9GfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+K/6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA/9NfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375YyCrP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfDf9WeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+h/4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfA/9SfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4YyOnPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/C/9GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgf+tP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfB/9GeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwbyf/T/AtC86Mh4nC3RoRcBAIDYYXvvgiAIgiAIgiAIgiDYZpttdrOb3dlmm2222WZ3ttmd22wTBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEHY27vvV74/4PcH+b8W+P8FGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgr/+Vf8AgQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8Df8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bv+k/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wxUPCfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+Fv+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA3/bfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+Dv+M8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888MvfwwU/WeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+rv8MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfA3/OfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+Pv+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfAyX/GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgX/gP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfCH/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwP/0H8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WOg7D+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwj/xnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/sh/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4B/7zyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DFT8Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6J/wwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8Af+88gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8if8MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sdA1X8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgn/rPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/DP/GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgX/uP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MVDzn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPgX/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwP/0n8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgX/nPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M1P1nkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/rX/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwL/xn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPi3/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwMN/xlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4F/5z+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHw7/1nkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/oP/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHQNN/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4D/6zyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DPwn/xlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4H/7D+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHQ8p9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4L/4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8Df+o/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8Gf+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA23/GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgf/qP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfDf/GeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+u/8MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sdAx38GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgf/jPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/Ln/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwF/4zyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DHT9Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv7SfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+B/+s8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8L/8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bnv8MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfA//afQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+D/+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA//XfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y6D/V/4/0lHpBHicLdGhFwEAgNhh994FQRAEQRAEQRAEQRAEQRAEQRAEQRAEQbDNdrZzm2222WY322yzzTa32WZ3bhMEQRAEQRAEQRAEQdjbu+9Xvj/g94f9Pwj8/4IMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfDX/so/ZJAhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv66/wwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8Df8J9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hgY+M8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8Tf8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bv+U/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8Ef+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA0P/GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgb/tP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfB3/GeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+2H8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WNg5D+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwJ/4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8Df9d/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4O/5zyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DIz9Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6+/wwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8A/8J9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4h/4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8DE/8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bf+Q/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8I/9Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6J/wwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8DUfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+Cf+s8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8M/8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bf+4/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wxMPOfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+Bf+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA3/qP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfAv/WeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwbm/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwP/yn8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgX/vPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/Bv/GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgYX/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwL/1n0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPh3/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwP/3n8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WNg6T+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwH/xnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/qP/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwH/yn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GFj5zyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DPxn/xlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4H/4j+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwX/1nkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G1v4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8Df+Y/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8N/8Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv67/wwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8DGfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+B/+M8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8T/8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+B/+U/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wxsPWfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+N/+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA3/uP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfAX/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwM7/xlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4G/9J9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4P/4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8D/9d/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvljYP9X/j/T5ulAeJwt0a8fAQCA3mG3zwVBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBsM0229zNNttss80227nNbbZzm23247PtecP7/AHfP9z/QeD/LsgQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA3/5//uHDDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwF/Rn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPir+jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwMH/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4G/pj+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHw1/VnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/ob+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwFF/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4G/qzyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DPwt/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4G/rT+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DFw0p9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4I/0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+BP9afQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+Dv6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA2f9GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgb+rP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfD39GeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+vv4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfARX8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgH+jPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/EP9GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgX+kP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MXDVn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPjH+jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwP/RH8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgn+rPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M3PRnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/pn+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwD/Xn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPgX+jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwN3/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4F/qT+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwr/RnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/rX+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwEN/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4N/ozyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DPxb/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4E/0Z9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hh46s8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8qf4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfAv9OfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+Pf6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfAy/9GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgT/Tn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPgP+jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwP/UX8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgrT+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwn/RnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/rP+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwJ/rzyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DHz0Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv5CfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+C/6M8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8V/0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Br/4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfAf9OfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+O/6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA/9DfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+CnP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfA/9WeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+l/4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfA/9afQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4YCPyl//f/B86B6H14nC3WIRcCgJaVURyfiorKKCoqKjqoqKioqKioBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIjr59y/4B3zpr3T8E/iTw/y7IEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwN/4Y/+gUGGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPgT/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4G/qD+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//PHPh/9HGGSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgb+kP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfCX9WeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+iv4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sc/f/j/P39gkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/qr+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwF/Tn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPjr+jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwMh/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4G/oT+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwN/VnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/pb+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHQFh/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4E/1Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv62/gwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8Df0Z9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hiI6M8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8Xf0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bv6c/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8Pf1Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/BqL6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA/9AfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+Af6s8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8I/0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+BmP4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfAP9afQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+Cf6M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA/9UfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375YyCuP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfDP9GeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+uf4MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfAn+nPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38MJPRnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/oX+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwL/Un0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPhX+jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwNJ/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4F/rT+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwb/RnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/q3+DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHQEp/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4N/pzyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DPx7/RlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4H/oD+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DGQ1p9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4j/ozyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8D/0l/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4D/rzyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DGT0Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6L/gwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8B/1Z9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4b/ozyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8DWf0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+B/64/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8D/0Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6n/gwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx0BOfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+B/6c8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8b/0ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+B/6M/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wxkP+j/xcsy/jIeJwt0aEXAQCA2GFv74IgCIIgCIIgCIIg2GabbXazm93ZZpttttlmd7bZndtsEwRBEARBEARBEARBEARBEARBEARBEARB2Nu771e+P+D3B/m/Fvj/BRlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4K//lX/AIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/A3/GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgb/pP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MVDwn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPhb/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwN/238GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPg7/jPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38MFP1nkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/q7/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwN/zn0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPj7/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwMl/xlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4F/4D+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHwh/4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8D/9B/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvljoOw/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8I/8Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv7IfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+Af+88gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888MvfwxU/GeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+if8MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfAH/vPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/In/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHQNV/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4J/6zyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DPwz/xlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4F/7j+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DFQ859BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4F/4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8D/9J/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4F/5zyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DNT9Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv61/wwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8C/8Z9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4t/4zyBDDjDDKGONMMMkU08wwyxzzLLDIEsussMoa62ywyRbb7LDLHvsccMgRx5xwyhnnXHDJFdfccMsd9zzwyBPPvPDKG+988MkX3/zwyx8DDf8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bf+c/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8O/9Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv6D/wwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx0DTfwYZYpgRRhljnAkmmWKaGWaZY54FFllimRVWWWOdDTbZYpsddtljnwMOOeKYE04545wLLrnimhtuueOeBx554pkXXnnjnQ8++eKbH375Y+A/+s8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwz8J/8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+B/+w/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx0PKfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+C/+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA3/qP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfBn/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwNt/xlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4H/6j+DDDHMCKOMMc4Ek0wxzQyzzDHPAossscwKq6yxzgabbLHNDrvssc8BhxxxzAmnnHHOBZdccc0Nt9xxzwOPPPHMC6+88c4Hn3zxzQ+//DHw3/xnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/rv/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHQMd/BhlimBFGGWOcCSaZYpoZZpljngUWWWKZFVZZY50NNtlimx122WOfAw454pgTTjnjnAsuueKaG265454HHnnimRdeeeOdDz754psffvlj4H/4zyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DPy5/wwyxDAjjDLGOBNMMsU0M8wyxzwLLLLEMiusssY6G2yyxTY77LLHPgcccsQxJ5xyxjkXXHLFNTfccsc9DzzyxDMvvPLGOx988sU3P/zyx8Bf+M8gQwwzwihjjDPBJFNMM8Msc8yzwCJLLLPCKmuss8EmW2yzwy577HPAIUccc8IpZ5xzwSVXXHPDLXfc88AjTzzzwitvvPPBJ19888Mvfwx0/WeQIYYZYZQxxplgkimmmWGWOeZZYJEllllhlTXW2WCTLbbZYZc99jngkCOOOeGUM8654JIrrrnhljvueeCRJ5554ZU33vngky+++eGXPwb+0n8GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WPgf/rPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/C//GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgZ7/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwP/2n0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPg//jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwP/138GGWKYEUYZY5wJJplimhlmmWOeBRZZYpkVVlljnQ022WKbHXbZY58DDjnimBNOOeOcCy654pobbrnjngceeeKZF155450PPvnimx9++WOg/1f+Py5g+QR4nC3RoRcBAGLAYW/vgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiC4zd1s5zbbbLP3BEEQBEEQBEEQBEEQBEEQBEEQhL179/3K9wf8/tD/h8DfCjLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwB//7h8YZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bf/SfQYYYZoRRxhhngkmmmGaGWeaYZ4FFllhmhVXWWGeDTbbYZodd9tjngEOOOOaEU84454JLrrjmhlvuuOeBR5545oVX3njng0+++OaHX/4Y+Cf/GWSIYUYYZYxxJphkimlmmGWOeRZYZIllVlhljXU22GSLbXbYZY99DjjkiGNOOOWMcy645IprbrjljnseeOSJZ1545Y13Pvjki29++OWPgYH/DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwJ/8Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv7sP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MfDP/jPIEMOMMMoY40wwyRTTzDDLHPMssMgSy6ywyhrrbLDJFtvssMse+xxwyBHHnHDKGedccMkV19xwyx33PPDIE8+88Mob73zwyRff/PDLHwND/xlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4F/8Z9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4V/8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bv/jPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38MjPxnkCGGGWGUMcaZYJIppplhljnmWWCRJZZZYZU11tlgky222WGXPfY54JAjjjnhlDPOueCSK6654ZY77nngkSeeeeGVN9754JMvvvnhlz8G/uo/gwwxzAijjDHOBJNMMc0Ms8wxzwKLLLHMCqussc4Gm2yxzQ677LHPAYccccwJp5xxzgWXXHHNDbfccc8DjzzxzAuvvPHOB5988c0Pv/wx8G/+M8gQw4wwyhjjTDDJFNPMMMsc8yywyBLLrLDKGutssMkW2+ywyx77HHDIEceccMoZ51xwyRXX3HDLHfc88MgTz7zwyhvvfPDJF9/88MsfA//uP4MMMcwIo4wxzgSTTDHNDLPMMc8CiyyxzAqrrLHOBptssc0Ou+yxzwGHHHHMCaeccc4Fl1xxzQ233HHPA4888cwLr7zxzgeffPHND7/8MTD2n0GGGGaEUcYYZ4JJpphmhlnmmGeBRZZYZoVV1lhng0222GaHXfbY54BDjjjmhFPOOOeCS6645oZb7rjngUeeeOaFV95454NPvvjmh1/+GPgP/xlkiGFGGGWMcSaYZIppZphljnkWWGSJZVZYZY11Nthki2122GWPfQ445IhjTjjljHMuuOSKa2645Y57HnjkiWdeeOWNdz745Itvfvjlj4H/9J9BhhhmhFHGGGeCSaaYZoZZ5phngUWWWGaFVdZYZ4NNtthmh1322OeAQ4445oRTzjjngkuuuOaGW+6454FHnnjmhVfeeOeDT7745odf/hj4L/8ZZIhhRhhljHEmmGSKaWaYZY55FlhkiWVWWGWNdTbYZIttdthlj30OOOSIY0445YxzLrjkimtuuOWOex545IlnXnjljXc++OSLb3745Y+Bif8MMsQwI4wyxjgTTDLFNDPMMsc8CyyyxDIrrLLGOhtsssU2O+yyxz4HHHLEMSeccsY5F1xyxTU33HLHPQ888sQzL7zyxjsffPLFNz/88sfAf/vPIEMMM8IoY4wzwSRTTDPDLHPMs8AiSyyzwiprrLPBJltss8Mue+xzwCFHHHPCKWecc8ElV1xzwy133PPAI08888Irb7zzwSdffPPDL38M/I//DDLEMCOMMsY4E0wyxTQzzDLHPAssssQyK6yyxjobbLLFNjvsssc+BxxyxDEnnHLGORdccsU1N9xyxz0PPPLEMy+88sY7H3zyxTc//PLHwP/6zyBDDDPCKGOMM8EkU0wzwyxzzLPAIksss8Iqa6yzwSZbbLPDLnvsc8AhRxxzwilnnHPBJVdcc8Mtd9zzwCNPPPPCK2+888EnX3zzwy9/DEz9Z5AhhhlhlDHGmWCSKaaZYZY55llgkSWWWWGVNdbZYJMtttlhlz32OeCQI4454ZQzzrngkiuuueGWO+554JEnnnnhlTfe+eCTL7754Zc/Bv7PfwYZYpgRRvn/KGWPag==AgAAAACAAABGJgAANQAAACAAAAA=eJztwSEBAAAAgKDu/8EeAQoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGME7AEx4nO3BMQEAAADCoH/9AxtEoAAAAAAAAAAAAPg12pp+zA== + + diff --git a/inputFiles/surfaceGeneration/cube_8.vtu b/inputFiles/surfaceGeneration/cube_8.vtu new file mode 100644 index 00000000000..150d23b3b1a --- /dev/null +++ b/inputFiles/surfaceGeneration/cube_8.vtu @@ -0,0 +1,84 @@ + + + + + + 0 1 2 + 3 4 5 + 6 7 8 + 9 10 11 + 12 13 14 + 15 16 17 + 18 19 20 + 21 22 23 + 24 25 26 + + + + + 0 1 2 3 4 5 6 7 + + + 3 3 3 3 3 3 + 3 3 3 3 3 3 + + + + + -1 -1 -1 + 0 -1 -1 + 1 -1 -1 + -1 0 -1 + 0 0 -1 + 1 0 -1 + -1 1 -1 + 0 1 -1 + 1 1 -1 + -1 -1 0 + 0 -1 0 + 1 -1 0 + -1 0 0 + 0 0 0 + 1 0 0 + -1 1 0 + 0 1 0 + 1 1 0 + -1 -1 1 + 0 -1 1 + 1 -1 1 + -1 0 1 + 0 0 1 + 1 0 1 + -1 1 1 + 0 1 1 + 1 1 1 + + + + + 0 1 4 3 9 10 13 12 + 1 2 5 4 10 11 14 13 + 3 4 7 6 12 13 16 15 + 4 5 8 7 13 14 17 16 + 9 10 13 12 18 19 22 21 + 10 11 14 13 19 20 23 22 + 12 13 16 15 21 22 25 24 + 13 14 17 16 22 23 26 25 + + + 8 + 16 + 24 + 32 + 40 + 48 + 56 + 64 + + + 12 12 12 12 12 12 12 12 + + + + + diff --git a/inputFiles/surfaceGeneration/cube_8.xml b/inputFiles/surfaceGeneration/cube_8.xml new file mode 100644 index 00000000000..2f002bb34b9 --- /dev/null +++ b/inputFiles/surfaceGeneration/cube_8.xml @@ -0,0 +1,235 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/scripts/setupPythonEnvironment.bash b/scripts/setupPythonEnvironment.bash index 2faf325275e..9e7babb894a 100755 --- a/scripts/setupPythonEnvironment.bash +++ b/scripts/setupPythonEnvironment.bash @@ -11,8 +11,7 @@ PIP_CMD="pip --disable-pip-version-check" PACKAGE_BRANCH=main -declare -a TARGET_PACKAGES=("geos-mesh-tools" - "geos-mesh-doctor" +declare -a TARGET_PACKAGES=("geos-mesh" "geos-xml-tools" "hdf5-wrapper" "pygeos-tools" @@ -25,6 +24,7 @@ declare -a LINK_SCRIPTS=("preprocess_xml" "geos_ats_log_check" "geos_ats_restart_check" "geos_ats_curve_check" + "mesh-doctor" "activate" "python") diff --git a/scripts/test_submodule_updated.sh b/scripts/test_submodule_updated.sh index e2668a41f60..604d95f2f80 100755 --- a/scripts/test_submodule_updated.sh +++ b/scripts/test_submodule_updated.sh @@ -30,7 +30,7 @@ declare -Ar main_branches=( ["LvArray"]="origin/develop" ["integratedTests"]="origin/develop" ["hdf5_interface"]="origin/master" - ["PVTPackage"]="origin/master" + ["PVTPackage"]="origin/develop" ) diff --git a/src/cmake/thirdparty/SetupGeosxThirdParty.cmake b/src/cmake/thirdparty/SetupGeosxThirdParty.cmake index e30dbd937bc..28549eb8927 100644 --- a/src/cmake/thirdparty/SetupGeosxThirdParty.cmake +++ b/src/cmake/thirdparty/SetupGeosxThirdParty.cmake @@ -670,7 +670,7 @@ if(DEFINED HYPRE_DIR AND ENABLE_HYPRE) find_package( rocsolver REQUIRED ) find_package( rocsparse REQUIRED ) find_package( rocrand REQUIRED ) - append( APPEND HYPRE_DEPENDS roc::rocblas roc::rocsparse roc::rocsolver roc::rocrand ) + list( APPEND HYPRE_DEPENDS roc::rocblas roc::rocsparse roc::rocsolver roc::rocrand ) endif( ) find_and_import( NAME hypre diff --git a/src/coreComponents/LvArray b/src/coreComponents/LvArray index c9d97b4676d..9b1c0049497 160000 --- a/src/coreComponents/LvArray +++ b/src/coreComponents/LvArray @@ -1 +1 @@ -Subproject commit c9d97b4676d47d1da7d2a63a1a5cbf31f7b54965 +Subproject commit 9b1c00494974c73ff38f8590f010f624efe9964c diff --git a/src/coreComponents/codingUtilities/CMakeLists.txt b/src/coreComponents/codingUtilities/CMakeLists.txt index fdccb254f5e..d25e033e688 100644 --- a/src/coreComponents/codingUtilities/CMakeLists.txt +++ b/src/coreComponents/codingUtilities/CMakeLists.txt @@ -1,8 +1,26 @@ +# SPDX-License-Identifier: LGPL-2.1-only +# +# Copyright (c) 2016-2024 Lawrence Livermore National Security LLC +# Copyright (c) 2018-2024 Total, S.A +# Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University +# Copyright (c) 2023-2024 Chevron +# Copyright (c) 2019- GEOS/GEOSX Contributors +# All rights reserved +# +# See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. +# +#-------------------------------------------------------------------------------------------------- + +#[[ + Package: codingUtilities + + Contains definition of runtime types. Also contains common traits. +#]] + # # Specify all headers # set( codingUtilities_headers - EnumStrings.hpp RTTypes.hpp Parsing.hpp SFINAE_Macros.hpp diff --git a/src/coreComponents/codingUtilities/RTTypes.hpp b/src/coreComponents/codingUtilities/RTTypes.hpp index ea1bed2bdc6..93f6d89aed8 100644 --- a/src/coreComponents/codingUtilities/RTTypes.hpp +++ b/src/coreComponents/codingUtilities/RTTypes.hpp @@ -24,6 +24,7 @@ #define GEOS_CODINGUTILITIES_RTTYPES_HPP #include "common/DataTypes.hpp" +#include "common/format/EnumStrings.hpp" #include "common/format/Format.hpp" #include "common/logger/Logger.hpp" @@ -232,7 +233,30 @@ struct TypeName } }; -} +/** + * @brief Base types TypeRegex specializations + */ +///@{ + +/** + * @brief Specialization of TypeRegex for enumeration types with strings attached (pun intended). + * @tparam ENUM the type of enumeration + */ +template< typename ENUM > +struct TypeRegex< ENUM, std::enable_if_t< internal::HasEnumStrings< ENUM > > > +{ + /** + * @brief @return Regex for validating enumeration inputs for @p ENUM type. + */ + static Regex get() + { + return Regex( EnumStrings< ENUM >::concat( "|" ), + "Input value must be one of { " + EnumStrings< ENUM >::concat( ", " ) + " }." ); + } +}; + +///@} +} #endif /* GEOS_CODINGUTILITIES_RTTYPES_HPP */ diff --git a/src/coreComponents/codingUtilities/traits.hpp b/src/coreComponents/codingUtilities/traits.hpp index 8ab60cddd52..740430a56d3 100644 --- a/src/coreComponents/codingUtilities/traits.hpp +++ b/src/coreComponents/codingUtilities/traits.hpp @@ -96,6 +96,14 @@ HAS_MEMBER_FUNCTION( capacity, localIndex, ); */ HAS_MEMBER_FUNCTION_NO_RTYPE( resize, 0 ); +/** + * @brief Defines a static constexpr bool HasMemberFunction_resizeDefault< @p CLASS > + * that is true iff the method @p CLASS ::resizeDefault( int, int, int) exists. + * @tparam CLASS The type to test. + */ +HAS_MEMBER_FUNCTION_NO_RTYPE( resizeDefault, 0, 0 ); + + /** * @brief Defines a static constexpr bool HasMemberFunction_reserve< @p CLASS > * that is true iff the method @p CLASS ::reserve( localIndex ) exists. diff --git a/src/coreComponents/common/CMakeLists.txt b/src/coreComponents/common/CMakeLists.txt index 32e5a412824..ec9e350db1d 100644 --- a/src/coreComponents/common/CMakeLists.txt +++ b/src/coreComponents/common/CMakeLists.txt @@ -1,3 +1,25 @@ +# SPDX-License-Identifier: LGPL-2.1-only +# +# Copyright (c) 2016-2024 Lawrence Livermore National Security LLC +# Copyright (c) 2018-2024 Total, S.A +# Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University +# Copyright (c) 2023-2024 Chevron +# Copyright (c) 2019- GEOS/GEOSX Contributors +# All rights reserved +# +# See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. +# +#-------------------------------------------------------------------------------------------------- + +#[[ +Package: common + +Contains the definition of the basic static types of GEOS. +Also provides commonly used components for such as logging, formatting, memory and wrapper of + dependencies. +#]] + + # # Specify all headers # @@ -6,6 +28,7 @@ set( common_headers format/table/TableLayout.hpp format/table/TableFormatter.hpp format/table/TableData.hpp + format/EnumStrings.hpp format/Format.hpp format/StringUtilities.hpp logger/Logger.hpp diff --git a/src/coreComponents/common/MpiWrapper.hpp b/src/coreComponents/common/MpiWrapper.hpp index 998524d3b13..f6f0136eb55 100644 --- a/src/coreComponents/common/MpiWrapper.hpp +++ b/src/coreComponents/common/MpiWrapper.hpp @@ -608,6 +608,16 @@ struct MpiWrapper */ template< typename T > static void max( Span< T const > src, Span< T > dst, MPI_Comm comm = MPI_COMM_GEOS ); + + + /** + * @brief Convenience function for MPI_Gather using a MPI_MAX operation on struct of value and location + * @brief Max is performed on value and location (global index) is returned + * @param[in] struct to send into the max gather. + * @return struct with max val and location + */ + template< typename T > static T maxValLoc( T localValueLocation, MPI_Comm comm = MPI_COMM_GEOS ); + }; namespace internal @@ -1115,7 +1125,32 @@ void MpiWrapper::reduce( Span< T const > const src, Span< T > const dst, Reducti reduce( src.data(), dst.data(), LvArray::integerConversion< int >( src.size() ), getMpiOp( op ), root, comm ); } +// Mpi helper function to return struct containing the max value and location across ranks +template< typename T > +T MpiWrapper::maxValLoc( T localValueLocation, MPI_Comm comm ) +{ + // Ensure T is trivially copyable + static_assert( std::is_trivially_copyable< T >::value, "maxValLoc requires a trivially copyable type" ); + // T to have only 2 data members named value and location + static_assert( (sizeof(T::value)+sizeof(T::location)) == sizeof(T) ); + + // Ensure T has value and location members are scalars + static_assert( std::is_scalar_v< decltype(T::value) > || std::is_scalar_v< decltype(T::location) >, "members of struct should be scalar" ); + static_assert( !std::is_pointer_v< decltype(T::value) > && !std::is_pointer_v< decltype(T::location) >, "members of struct should not be pointers" ); + + // receive "buffer" + int const numProcs = commSize( comm ); + std::vector< T > recvValLoc( numProcs ); + + MPI_Allgather( &localValueLocation, sizeof(T), MPI_BYTE, recvValLoc.data(), sizeof(T), MPI_BYTE, comm ); + + T maxValLoc= *std::max_element( recvValLoc.begin(), + recvValLoc.end(), + []( auto & lhs, auto & rhs ) -> bool {return lhs.value < rhs.value; } ); + + return maxValLoc; +} } /* namespace geos */ #endif /* GEOS_COMMON_MPIWRAPPER_HPP_ */ diff --git a/src/coreComponents/codingUtilities/EnumStrings.hpp b/src/coreComponents/common/format/EnumStrings.hpp similarity index 88% rename from src/coreComponents/codingUtilities/EnumStrings.hpp rename to src/coreComponents/common/format/EnumStrings.hpp index 0c6bc40065d..4d4c2eaa6ce 100644 --- a/src/coreComponents/codingUtilities/EnumStrings.hpp +++ b/src/coreComponents/common/format/EnumStrings.hpp @@ -22,11 +22,11 @@ * of these strings, like stream insertion/extraction operators. */ -#ifndef GEOS_CODINGUTILITIES_ENUMSTRINGS_HPP -#define GEOS_CODINGUTILITIES_ENUMSTRINGS_HPP +#ifndef GEOS_COMMON_FORMAT_ENUMSTRINGS_HPP +#define GEOS_COMMON_FORMAT_ENUMSTRINGS_HPP #include "common/format/StringUtilities.hpp" -#include "codingUtilities/RTTypes.hpp" +// #include "codingUtilities/RTTypes.hpp" #include "common/DataTypes.hpp" #include "common/logger/Logger.hpp" #include "common/format/Format.hpp" @@ -66,6 +66,15 @@ constexpr int countArgs( ARGS ... ) * may be used to get access to strings at runtime. While not strictly necessary, * it is recommended that macro call immediately follows the enum definition * (or the class definition, if enum is defined inside a class). + * + * enum struct VTKOutputMode + * { + * BINARY, + * ASCII + * }; + * ENUM_STRINGS( VTKOutputMode, + * "binary", + * "ascii" ); */ #define ENUM_STRINGS( ENUM, ... ) \ inline auto const & getEnumStrings( ENUM const ) \ @@ -74,6 +83,11 @@ constexpr int countArgs( ARGS ... ) return ss; \ } \ \ + inline auto const & getEnumTypeNameString( ENUM const ) \ + { \ + return #ENUM; \ + } \ + \ inline std::ostream & operator<<( std::ostream & os, ENUM const e ) \ { \ os << EnumStrings< ENUM >::toString( e ); \ @@ -139,7 +153,7 @@ struct EnumStrings std::size_t size = std::distance( std::begin( strings ), std::end( strings ) ); base_type const index = static_cast< base_type >( e ); GEOS_THROW_IF( index >= LvArray::integerConversion< base_type >( size ), - "Invalid value " << index << " of type " << TypeName< ENUM >::brief() << ". Valid range is 0.." << size - 1, + "Invalid value " << index << " of type " << getEnumTypeNameString( enum_type{} ) << ". Valid range is 0.." << size - 1, InputError ); return strings[ index ]; } @@ -154,7 +168,7 @@ struct EnumStrings auto const & strings = get(); auto const it = std::find( std::begin( strings ), std::end( strings ), s ); GEOS_THROW_IF( it == std::end( strings ), - "Invalid value '" << s << "' of type " << TypeName< enum_type >::brief() << ". Valid options are: " << concat( ", " ), + "Invalid value '" << s << "' of type " << getEnumTypeNameString( enum_type{} ) << ". Valid options are: " << concat( ", " ), InputError ); enum_type const e = static_cast< enum_type >( LvArray::integerConversion< base_type >( std::distance( std::begin( strings ), it ) ) ); return e; @@ -166,23 +180,6 @@ namespace internal IS_VALID_EXPRESSION( HasEnumStrings, ENUM, getEnumStrings( std::declval< ENUM >() ) ); } -/** - * @brief Specialization of TypeRegex for enumeration types with strings attached (pun intended). - * @tparam ENUM the type of enumeration - */ -template< typename ENUM > -struct TypeRegex< ENUM, std::enable_if_t< internal::HasEnumStrings< ENUM > > > -{ - /** - * @brief @return Regex for validating enumeration inputs for @p ENUM type. - */ - static Regex get() - { - return Regex( EnumStrings< ENUM >::concat( "|" ), - "Input value must be one of { " + EnumStrings< ENUM >::concat( ", " ) + " }." ); - } -}; - } // namespace geos // Formatter specialization for enums @@ -209,4 +206,4 @@ struct GEOS_FMT_NS::formatter< Enum, std::enable_if_t< std::is_enum< Enum >::val } }; -#endif //GEOS_CODINGUTILITIES_ENUMSTRINGS_HPP +#endif //GEOS_COMMON_FORMAT_ENUMSTRINGS_HPP diff --git a/src/coreComponents/common/format/StringUtilities.cpp b/src/coreComponents/common/format/StringUtilities.cpp index cd13ba3919e..b8f316456f8 100644 --- a/src/coreComponents/common/format/StringUtilities.cpp +++ b/src/coreComponents/common/format/StringUtilities.cpp @@ -73,12 +73,41 @@ string removeStringAndFollowingContent( string_view const str, return string( newStr ); } +// Add comma separators for thousands +template< typename T > +string addCommaSeparators( T const & num ) +{ + static_assert( std::is_integral< T >::value, "addCommaSeparators only supports integral types" ); + + string const numStr = std::to_string( num ); + string result; + + for( std::size_t i = 0; i < numStr.size(); ++i ) + { + result += numStr[i]; + if((numStr.size() - i - 1) % 3 == 0 && i != numStr.size() - 1 ) + { + result += ","; + } + } + return result; +} + +template string addCommaSeparators( int const & num ); +template string addCommaSeparators( long int const & num ); +template string addCommaSeparators( long long int const & num ); + // put definition here so we can control the allowable values of T and // modication of this function triggers a whole code recompile...which // should be avoided. template< typename T > string toMetricPrefixString( T const & value ) { + if( std::fpclassify( value ) == FP_ZERO ) + { + return " 0.0 "; + } + // These are the metric prefixes corrosponding to kilo, mega, giga...etc. char const prefixes[12] = { 'f', 'p', 'n', 'u', 'm', ' ', 'K', 'M', 'G', 'T', 'P', 'E'}; string rval; diff --git a/src/coreComponents/common/format/StringUtilities.hpp b/src/coreComponents/common/format/StringUtilities.hpp index 8f083816c86..b98f03afef9 100644 --- a/src/coreComponents/common/format/StringUtilities.hpp +++ b/src/coreComponents/common/format/StringUtilities.hpp @@ -227,6 +227,15 @@ string_view trimSpaces( string_view str ); string removeStringAndFollowingContent( string_view str, string_view strToRemove ); +/** + * @brief Add comma separators to an integral number for readability. + * @tparam T the integral type of the number to format. + * @param[in] num the integral number to format. + * @return a string representation of the number with comma separators. + */ +template< typename T > +string addCommaSeparators( T const & num ); + /** * @brief Take a string, and return a array1d with the cast values * @tparam T the type to which the string will be cast diff --git a/src/coreComponents/constitutive/CMakeLists.txt b/src/coreComponents/constitutive/CMakeLists.txt index c6e3fd499e9..b8a3d02c811 100644 --- a/src/coreComponents/constitutive/CMakeLists.txt +++ b/src/coreComponents/constitutive/CMakeLists.txt @@ -1,3 +1,22 @@ +# SPDX-License-Identifier: LGPL-2.1-only +# +# Copyright (c) 2016-2024 Lawrence Livermore National Security LLC +# Copyright (c) 2018-2024 Total, S.A +# Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University +# Copyright (c) 2023-2024 Chevron +# Copyright (c) 2019- GEOS/GEOSX Contributors +# All rights reserved +# +# See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. +# +#-------------------------------------------------------------------------------------------------- + +#[[ +Package: constitutive + +Contains the implementation of constitutive models for fluid and rock properties. +#]] + # # Specify all headers # @@ -33,7 +52,7 @@ set( constitutive_headers dispersion/DispersionBase.hpp dispersion/DispersionFields.hpp dispersion/DispersionSelector.hpp - dispersion/LinearIsotropicDispersion.hpp + dispersion/LinearIsotropicDispersion.hpp fluid/multifluid/Layouts.hpp fluid/multifluid/MultiFluidSelector.hpp fluid/multifluid/MultiFluidBase.hpp @@ -64,9 +83,9 @@ set( constitutive_headers fluid/multifluid/CO2Brine/functions/PVTFunctionHelpers.hpp fluid/multifluid/CO2Brine/functions/SpanWagnerCO2Density.hpp fluid/multifluid/CO2Brine/functions/WaterDensity.hpp - fluid/multifluid/compositional/functions/CompositionalProperties.hpp - fluid/multifluid/compositional/functions/CompositionalPropertiesImpl.hpp - fluid/multifluid/compositional/functions/CubicEOSPhaseModel.hpp + fluid/multifluid/compositional/functions/CompositionalProperties.hpp + fluid/multifluid/compositional/functions/CompositionalPropertiesImpl.hpp + fluid/multifluid/compositional/functions/CubicEOSPhaseModel.hpp fluid/multifluid/compositional/functions/FugacityCalculator.hpp fluid/multifluid/compositional/functions/KValueInitialization.hpp fluid/multifluid/compositional/functions/NegativeTwoPhaseFlash.hpp @@ -78,8 +97,10 @@ set( constitutive_headers fluid/multifluid/compositional/models/CriticalVolume.hpp fluid/multifluid/compositional/models/EquationOfState.hpp fluid/multifluid/compositional/models/FunctionBase.hpp + fluid/multifluid/compositional/models/ImmiscibleWaterDensity.hpp fluid/multifluid/compositional/models/ImmiscibleWaterFlashModel.hpp fluid/multifluid/compositional/models/ImmiscibleWaterParameters.hpp + fluid/multifluid/compositional/models/ImmiscibleWaterViscosity.hpp fluid/multifluid/compositional/models/LohrenzBrayClarkViscosity.hpp fluid/multifluid/compositional/models/LohrenzBrayClarkViscosityImpl.hpp fluid/multifluid/compositional/models/NegativeTwoPhaseFlashModel.hpp @@ -147,7 +168,7 @@ set( constitutive_headers solid/ElasticTransverseIsotropic.hpp solid/ElasticOrthotropic.hpp solid/InvariantDecompositions.hpp - solid/PerfectlyPlastic.hpp + solid/PerfectlyPlastic.hpp solid/PorousSolid.hpp solid/PropertyConversions.hpp solid/SolidBase.hpp @@ -223,8 +244,10 @@ set( constitutive_sources fluid/multifluid/compositional/models/CompositionalDensity.cpp fluid/multifluid/compositional/models/ConstantViscosity.cpp fluid/multifluid/compositional/models/CriticalVolume.cpp + fluid/multifluid/compositional/models/ImmiscibleWaterDensity.cpp fluid/multifluid/compositional/models/ImmiscibleWaterFlashModel.cpp fluid/multifluid/compositional/models/ImmiscibleWaterParameters.cpp + fluid/multifluid/compositional/models/ImmiscibleWaterViscosity.cpp fluid/multifluid/compositional/models/LohrenzBrayClarkViscosity.cpp fluid/multifluid/compositional/models/NegativeTwoPhaseFlashModel.cpp fluid/multifluid/compositional/CompositionalMultiphaseFluid.cpp diff --git a/src/coreComponents/constitutive/ConstitutivePassThru.hpp b/src/coreComponents/constitutive/ConstitutivePassThru.hpp index decabffbb6a..3ec1b954192 100644 --- a/src/coreComponents/constitutive/ConstitutivePassThru.hpp +++ b/src/coreComponents/constitutive/ConstitutivePassThru.hpp @@ -50,6 +50,7 @@ #include "permeability/SlipDependentPermeability.hpp" #include "permeability/WillisRichardsPermeability.hpp" #include "contact/CoulombFriction.hpp" +#include "contact/RateAndStateFriction.hpp" namespace geos @@ -84,6 +85,23 @@ struct ConstitutivePassThru< ElasticIsotropic > } }; +/** + * Specialization for models that derive from FrictionBase. + */ +template<> +struct ConstitutivePassThru< FrictionBase > +{ + template< typename LAMBDA > + static + void execute( ConstitutiveBase & constitutiveRelation, LAMBDA && lambda ) + { + ConstitutivePassThruHandler< CoulombFriction, + RateAndStateFriction >::execute( constitutiveRelation, + std::forward< LAMBDA >( lambda ) ); + } +}; + + /** * Specialization for models that derive from CoulombFriction. */ diff --git a/src/coreComponents/constitutive/ExponentialRelation.hpp b/src/coreComponents/constitutive/ExponentialRelation.hpp index 64866627cbd..e2215b23f1b 100644 --- a/src/coreComponents/constitutive/ExponentialRelation.hpp +++ b/src/coreComponents/constitutive/ExponentialRelation.hpp @@ -21,7 +21,7 @@ #define GEOS_CONSITUTIVE_EXPONENTIALRELATION_HPP_ #include "common/DataTypes.hpp" -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" #include diff --git a/src/coreComponents/constitutive/PVTPackage b/src/coreComponents/constitutive/PVTPackage index 59d81b149e3..3bf1c021569 160000 --- a/src/coreComponents/constitutive/PVTPackage +++ b/src/coreComponents/constitutive/PVTPackage @@ -1 +1 @@ -Subproject commit 59d81b149e35ea5db0d715e608217d8bd56e9291 +Subproject commit 3bf1c02156911768f022fc2954939ee1c1c2f66d diff --git a/src/coreComponents/constitutive/capillaryPressure/JFunctionCapillaryPressure.hpp b/src/coreComponents/constitutive/capillaryPressure/JFunctionCapillaryPressure.hpp index 270adb15902..58ceb90ab73 100644 --- a/src/coreComponents/constitutive/capillaryPressure/JFunctionCapillaryPressure.hpp +++ b/src/coreComponents/constitutive/capillaryPressure/JFunctionCapillaryPressure.hpp @@ -22,7 +22,7 @@ #include "constitutive/capillaryPressure/CapillaryPressureBase.hpp" -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" #include "functions/TableFunction.hpp" namespace geos diff --git a/src/coreComponents/constitutive/contact/CoulombFriction.hpp b/src/coreComponents/constitutive/contact/CoulombFriction.hpp index d117d8895e5..a43fdcbbdc0 100644 --- a/src/coreComponents/constitutive/contact/CoulombFriction.hpp +++ b/src/coreComponents/constitutive/contact/CoulombFriction.hpp @@ -85,17 +85,25 @@ class CoulombFrictionUpdates : public FrictionBaseUpdates GEOS_HOST_DEVICE inline - virtual void updateFractureState( localIndex const k, - arraySlice1d< real64 const > const & dispJump, + virtual void updateFractureState( arraySlice1d< real64 const > const & dispJump, arraySlice1d< real64 const > const & tractionVector, integer & fractureState ) const override final; + GEOS_HOST_DEVICE + inline + virtual void updateElasticSlip( localIndex const k, + arraySlice1d< real64 const > const & dispJump, + arraySlice1d< real64 const > const & oldDispJump, + arraySlice1d< real64 const > const & tractionVector, + integer const & fractureState ) const override final; + GEOS_HOST_DEVICE inline virtual void updateTraction( arraySlice1d< real64 const > const & oldDispJump, arraySlice1d< real64 const > const & dispJump, arraySlice1d< real64 const > const & penalty, arraySlice1d< real64 const > const & traction, + real64 const faceArea, bool const symmetric, bool const fixedLimitTau, real64 const normalTractionTolerance, @@ -111,6 +119,7 @@ class CoulombFrictionUpdates : public FrictionBaseUpdates arraySlice1d< real64 const > const & deltaDispJump, arraySlice1d< real64 const > const & penalty, arraySlice1d< real64 const > const & traction, + real64 const faceArea, arraySlice1d< real64 > const & tractionNew ) const override final; GEOS_HOST_DEVICE @@ -221,7 +230,7 @@ GEOS_HOST_DEVICE real64 CoulombFrictionUpdates::computeLimitTangentialTractionNorm( real64 const & normalTraction, real64 & dLimitTangentialTractionNorm_dTraction ) const { - dLimitTangentialTractionNorm_dTraction = m_frictionCoefficient; + dLimitTangentialTractionNorm_dTraction = -m_frictionCoefficient; return ( m_cohesion - normalTraction * m_frictionCoefficient ); } @@ -238,15 +247,15 @@ inline void CoulombFrictionUpdates::computeShearTraction( localIndex const k, real64 const slip[2] = { dispJump[1] - oldDispJump[1], dispJump[2] - oldDispJump[2] }; - - real64 const tau[2] = { m_shearStiffness * ( slip[0] + m_elasticSlip[k][0] ), - m_shearStiffness * ( slip[1] + m_elasticSlip[k][1] ) }; - switch( fractureState ) { case fields::contact::FractureState::Stick: { - // Elastic slip case + // Elastic tangential deformation + + real64 const tau[2] = { m_shearStiffness * ( slip[0] + m_elasticSlip[k][0] ), + m_shearStiffness * ( slip[1] + m_elasticSlip[k][1] ) }; + // Tangential components of the traction are equal to tau tractionVector[1] = tau[0]; tractionVector[2] = tau[1]; @@ -254,14 +263,12 @@ inline void CoulombFrictionUpdates::computeShearTraction( localIndex const k, dTractionVector_dJump[1][1] = m_shearStiffness; dTractionVector_dJump[2][2] = m_shearStiffness; - // The slip is only elastic: we add the full slip to the elastic one - LvArray::tensorOps::add< 2 >( m_elasticSlip[k], slip ); - break; } case fields::contact::FractureState::Slip: { - // Plastic slip case + // Plastic tangential deformation + real64 dLimitTau_dNormalTraction; real64 const limitTau = computeLimitTangentialTractionNorm( tractionVector[0], dLimitTau_dNormalTraction ); @@ -274,27 +281,19 @@ inline void CoulombFrictionUpdates::computeShearTraction( localIndex const k, dTractionVector_dJump[1][0] = dTractionVector_dJump[0][0] * dLimitTau_dNormalTraction * slip[0] / slipNorm; dTractionVector_dJump[1][1] = limitTau * pow( slip[1], 2 ) / pow( LvArray::tensorOps::l2NormSquared< 2 >( slip ), 1.5 ); - dTractionVector_dJump[1][2] = limitTau * slip[0] * slip[1] / pow( LvArray::tensorOps::l2NormSquared< 2 >( slip ), 1.5 ); + dTractionVector_dJump[1][2] = -limitTau * slip[0] * slip[1] / pow( LvArray::tensorOps::l2NormSquared< 2 >( slip ), 1.5 ); dTractionVector_dJump[2][0] = dTractionVector_dJump[0][0] * dLimitTau_dNormalTraction * slip[1] / slipNorm; - dTractionVector_dJump[2][1] = limitTau * slip[0] * slip[1] / pow( LvArray::tensorOps::l2NormSquared< 2 >( slip ), 1.5 ); + dTractionVector_dJump[2][1] = -limitTau * slip[0] * slip[1] / pow( LvArray::tensorOps::l2NormSquared< 2 >( slip ), 1.5 ); dTractionVector_dJump[2][2] = limitTau * pow( slip[0], 2 ) / pow( LvArray::tensorOps::l2NormSquared< 2 >( slip ), 1.5 ); - // Compute elastic component of the slip for this case - real64 const plasticSlip[2] = { tractionVector[1] / m_shearStiffness, - tractionVector[2] / m_shearStiffness }; - - LvArray::tensorOps::copy< 2 >( m_elasticSlip[k], slip ); - LvArray::tensorOps::subtract< 2 >( m_elasticSlip[k], plasticSlip ); - break; } } } GEOS_HOST_DEVICE -inline void CoulombFrictionUpdates::updateFractureState( localIndex const k, - arraySlice1d< real64 const > const & dispJump, +inline void CoulombFrictionUpdates::updateFractureState( arraySlice1d< real64 const > const & dispJump, arraySlice1d< real64 const > const & tractionVector, integer & fractureState ) const { @@ -303,8 +302,6 @@ inline void CoulombFrictionUpdates::updateFractureState( localIndex const k, if( dispJump[0] > -m_displacementJumpThreshold ) { fractureState = FractureState::Open; - m_elasticSlip[k][0] = 0.0; - m_elasticSlip[k][1] = 0.0; } else { @@ -319,7 +316,45 @@ inline void CoulombFrictionUpdates::updateFractureState( localIndex const k, // Yield function (not necessary but makes it clearer) real64 const yield = tauNorm - limitTau; - fractureState = yield < 0 ? FractureState::Stick : FractureState::Slip; + if( yield < 0 ) + { + fractureState = FractureState::Stick; + } + else + { + fractureState = FractureState::Slip; + } + } +} + +GEOS_HOST_DEVICE +inline void CoulombFrictionUpdates::updateElasticSlip( localIndex const k, + arraySlice1d< real64 const > const & dispJump, + arraySlice1d< real64 const > const & oldDispJump, + arraySlice1d< real64 const > const & tractionVector, + integer const & fractureState ) const +{ + using namespace fields::contact; + + if( fractureState == FractureState::Open ) + { + m_elasticSlip[k][0] = 0.0; + m_elasticSlip[k][1] = 0.0; + } + else + { + if( fractureState == FractureState::Stick ) + { + // The slip is only elastic: we add the full slip to the elastic one + real64 const slip[2] = { dispJump[1] - oldDispJump[1], + dispJump[2] - oldDispJump[2] }; + LvArray::tensorOps::add< 2 >( m_elasticSlip[k], slip ); + } + else if( fractureState == FractureState::Slip ) + { + m_elasticSlip[k][0] = tractionVector[1] / m_shearStiffness; + m_elasticSlip[k][1] = tractionVector[2] / m_shearStiffness; + } } } @@ -328,6 +363,7 @@ inline void CoulombFrictionUpdates::updateTraction( arraySlice1d< real64 const > arraySlice1d< real64 const > const & dispJump, arraySlice1d< real64 const > const & penalty, arraySlice1d< real64 const > const & traction, + real64 const faceArea, bool const symmetric, bool const fixedLimitTau, real64 const normalTractionTolerance, @@ -344,9 +380,9 @@ inline void CoulombFrictionUpdates::updateTraction( arraySlice1d< real64 const > // Compute the trial traction real64 tractionTrial[ 3 ]; - tractionTrial[ 0 ] = traction[0] + penalty[0] * dispJump[0]; - tractionTrial[ 1 ] = traction[1] + penalty[1] * (dispJump[1] - oldDispJump[1]); - tractionTrial[ 2 ] = traction[2] + penalty[1] * (dispJump[2] - oldDispJump[2]); + tractionTrial[ 0 ] = traction[0] + penalty[0] * dispJump[0] * faceArea; + tractionTrial[ 1 ] = traction[1] + penalty[1] * (dispJump[1] - oldDispJump[1]) * faceArea; + tractionTrial[ 2 ] = traction[2] + penalty[1] * (dispJump[2] - oldDispJump[2]) * faceArea; // Compute tangential trial traction norm real64 const tau[2] = { tractionTrial[1], @@ -389,7 +425,9 @@ inline void CoulombFrictionUpdates::updateTraction( arraySlice1d< real64 const > tractionNew[2] = tractionTrial[2]; if( fractureState != FractureState::Open ) + { fractureState = FractureState::Stick; + } } else if( limitTau <= tangentialTractionTolerance ) { @@ -400,7 +438,9 @@ inline void CoulombFrictionUpdates::updateTraction( arraySlice1d< real64 const > tractionNew[2] = (fixedLimitTau) ? tractionTrial[2] : 0.0; if( fractureState != FractureState::Open ) + { fractureState = FractureState::Slip; + } } else { @@ -462,15 +502,16 @@ inline void CoulombFrictionUpdates::updateTractionOnly( arraySlice1d< real64 con arraySlice1d< real64 const > const & deltaDispJump, arraySlice1d< real64 const > const & penalty, arraySlice1d< real64 const > const & traction, + real64 const faceArea, arraySlice1d< real64 > const & tractionNew ) const { // TODO: Pass this tol as an argument or define a new class member real64 const zero = LvArray::NumericLimits< real64 >::epsilon; - tractionNew[0] = traction[0] + penalty[0] * dispJump[0]; - tractionNew[1] = traction[1] + penalty[1] * deltaDispJump[1]; - tractionNew[2] = traction[2] + penalty[1] * deltaDispJump[2]; + tractionNew[0] = traction[0] + penalty[0] * dispJump[0] * faceArea; + tractionNew[1] = traction[1] + penalty[1] * deltaDispJump[1] * faceArea; + tractionNew[2] = traction[2] + penalty[1] * deltaDispJump[2] * faceArea; real64 const tau[2] = { tractionNew[1], tractionNew[2] }; diff --git a/src/coreComponents/constitutive/contact/FrictionBase.hpp b/src/coreComponents/constitutive/contact/FrictionBase.hpp index e05923f2998..2011310ee6e 100644 --- a/src/coreComponents/constitutive/contact/FrictionBase.hpp +++ b/src/coreComponents/constitutive/contact/FrictionBase.hpp @@ -83,11 +83,26 @@ class FrictionBaseUpdates */ GEOS_HOST_DEVICE inline - virtual void updateFractureState( localIndex const k, - arraySlice1d< real64 const > const & dispJump, + virtual void updateFractureState( arraySlice1d< real64 const > const & dispJump, arraySlice1d< real64 const > const & tractionVector, integer & fractureState ) const - { GEOS_UNUSED_VAR( k, dispJump, tractionVector, fractureState ); } + { GEOS_UNUSED_VAR( dispJump, tractionVector, fractureState ); } + + /** + * @brief Evaluate and store the elastic slip + * @param[in] dispJump the displacement jump + * @param[in] oldDispJump the previous displacement jump + * @param[in] tractionVector the traction vector + * @param[out] fractureState the fracture state + */ + GEOS_HOST_DEVICE + inline + virtual void updateElasticSlip( localIndex const k, + arraySlice1d< real64 const > const & dispJump, + arraySlice1d< real64 const > const & oldDispJump, + arraySlice1d< real64 const > const & tractionVector, + integer const & fractureState ) const + { GEOS_UNUSED_VAR( k, dispJump, oldDispJump, tractionVector, fractureState ); } /** * @brief Update the trial traction vector ( return mapping ) @@ -109,6 +124,7 @@ class FrictionBaseUpdates arraySlice1d< real64 const > const & dispJump, arraySlice1d< real64 const > const & penalty, arraySlice1d< real64 const > const & traction, + real64 const faceArea, bool const symmetric, bool const fixedLimitTau, real64 const normalTractionTolerance, @@ -117,7 +133,7 @@ class FrictionBaseUpdates real64 ( & tractionNew )[3], integer & fractureState ) const { - GEOS_UNUSED_VAR( oldDispJump, dispJump, penalty, traction, symmetric, fixedLimitTau, + GEOS_UNUSED_VAR( oldDispJump, dispJump, penalty, traction, faceArea, symmetric, fixedLimitTau, normalTractionTolerance, tangentialTractionTolerance, dTraction_dDispJump, tractionNew, fractureState ); } @@ -136,8 +152,9 @@ class FrictionBaseUpdates arraySlice1d< real64 const > const & deltaDispJump, arraySlice1d< real64 const > const & penalty, arraySlice1d< real64 const > const & traction, + real64 const faceArea, arraySlice1d< real64 > const & tractionNew ) const - { GEOS_UNUSED_VAR( dispJump, deltaDispJump, penalty, traction, tractionNew ); } + { GEOS_UNUSED_VAR( dispJump, deltaDispJump, penalty, traction, faceArea, tractionNew ); } /** * @brief Check for the constraint satisfaction @@ -175,7 +192,11 @@ class FrictionBaseUpdates inline virtual real64 computeLimitTangentialTractionNorm( real64 const & normalTraction, real64 & dLimitTangentialTractionNorm_dTraction ) const - { GEOS_UNUSED_VAR( normalTraction, dLimitTangentialTractionNorm_dTraction ); return 0; }; + { + GEOS_UNUSED_VAR( normalTraction ); + dLimitTangentialTractionNorm_dTraction = 0.0; + return 0; + } protected: diff --git a/src/coreComponents/constitutive/contact/FrictionSelector.hpp b/src/coreComponents/constitutive/contact/FrictionSelector.hpp index 8eab7ff72dd..08b7a232a1b 100644 --- a/src/coreComponents/constitutive/contact/FrictionSelector.hpp +++ b/src/coreComponents/constitutive/contact/FrictionSelector.hpp @@ -23,6 +23,7 @@ #include "constitutive/ConstitutivePassThruHandler.hpp" #include "constitutive/contact/CoulombFriction.hpp" #include "constitutive/contact/FrictionlessContact.hpp" +#include "constitutive/contact/RateAndStateFriction.hpp" namespace geos { @@ -35,7 +36,8 @@ void constitutiveUpdatePassThru( FrictionBase const & contact, LAMBDA && lambda ) { ConstitutivePassThruHandler< FrictionlessContact, - CoulombFriction >::execute( contact, std::forward< LAMBDA >( lambda ) ); + CoulombFriction, + RateAndStateFriction >::execute( contact, std::forward< LAMBDA >( lambda ) ); } template< typename LAMBDA > @@ -43,7 +45,8 @@ void constitutiveUpdatePassThru( FrictionBase & contact, LAMBDA && lambda ) { ConstitutivePassThruHandler< FrictionlessContact, - CoulombFriction >::execute( contact, std::forward< LAMBDA >( lambda ) ); + CoulombFriction, + RateAndStateFriction >::execute( contact, std::forward< LAMBDA >( lambda ) ); } } /* namespace constitutive */ diff --git a/src/coreComponents/constitutive/contact/FrictionlessContact.hpp b/src/coreComponents/constitutive/contact/FrictionlessContact.hpp index 83e53fd8e14..31a13a088c2 100644 --- a/src/coreComponents/constitutive/contact/FrictionlessContact.hpp +++ b/src/coreComponents/constitutive/contact/FrictionlessContact.hpp @@ -58,25 +58,10 @@ class FrictionlessContactUpdates : public FrictionBaseUpdates GEOS_HOST_DEVICE inline - virtual void updateFractureState( localIndex const k, - arraySlice1d< real64 const > const & dispJump, + virtual void updateFractureState( arraySlice1d< real64 const > const & dispJump, arraySlice1d< real64 const > const & tractionVector, integer & fractureState ) const override final; - - /** - * @brief Evaluate the limit tangential traction norm and return the derivative wrt normal traction - * @param[in] normalTraction the normal traction - * @param[out] dLimitTangentialTractionNorm_dTraction the derivative of the limit tangential traction norm wrt normal traction - * @return the limit tangential traction norm - */ - GEOS_HOST_DEVICE - inline - virtual real64 computeLimitTangentialTractionNorm( real64 const & normalTraction, - real64 & dLimitTangentialTractionNorm_dTraction ) const override final - { GEOS_UNUSED_VAR( normalTraction, dLimitTangentialTractionNorm_dTraction ); return 0.0; } - -private: }; @@ -132,12 +117,11 @@ class FrictionlessContact : public FrictionBase GEOS_HOST_DEVICE -inline void FrictionlessContactUpdates::updateFractureState( localIndex const k, - arraySlice1d< real64 const > const & dispJump, +inline void FrictionlessContactUpdates::updateFractureState( arraySlice1d< real64 const > const & dispJump, arraySlice1d< real64 const > const & tractionVector, integer & fractureState ) const { - GEOS_UNUSED_VAR( k, tractionVector ); + GEOS_UNUSED_VAR( tractionVector ); using namespace fields::contact; fractureState = dispJump[0] > m_displacementJumpThreshold ? FractureState::Open : FractureState::Stick; } diff --git a/src/coreComponents/constitutive/contact/RateAndStateFriction.hpp b/src/coreComponents/constitutive/contact/RateAndStateFriction.hpp index 9b9341ce1aa..bab0684bca6 100644 --- a/src/coreComponents/constitutive/contact/RateAndStateFriction.hpp +++ b/src/coreComponents/constitutive/contact/RateAndStateFriction.hpp @@ -110,8 +110,7 @@ class RateAndStateFriction : public FrictionBase GEOS_HOST_DEVICE inline - virtual void updateFractureState( localIndex const k, - arraySlice1d< real64 const > const & dispJump, + virtual void updateFractureState( arraySlice1d< real64 const > const & dispJump, arraySlice1d< real64 const > const & tractionVector, integer & fractureState ) const override final; @@ -239,13 +238,12 @@ class RateAndStateFriction : public FrictionBase }; GEOS_HOST_DEVICE -inline void RateAndStateFriction::KernelWrapper::updateFractureState( localIndex const k, - arraySlice1d< real64 const > const & dispJump, +inline void RateAndStateFriction::KernelWrapper::updateFractureState( arraySlice1d< real64 const > const & dispJump, arraySlice1d< real64 const > const & tractionVector, integer & fractureState ) const { - GEOS_UNUSED_VAR( tractionVector, k ); + GEOS_UNUSED_VAR( tractionVector ); using namespace fields::contact; if( dispJump[0] > -m_displacementJumpThreshold ) diff --git a/src/coreComponents/constitutive/fluid/multifluid/CO2Brine/CO2BrineFluid.hpp b/src/coreComponents/constitutive/fluid/multifluid/CO2Brine/CO2BrineFluid.hpp index eb31780f4d4..3675ff4ac81 100644 --- a/src/coreComponents/constitutive/fluid/multifluid/CO2Brine/CO2BrineFluid.hpp +++ b/src/coreComponents/constitutive/fluid/multifluid/CO2Brine/CO2BrineFluid.hpp @@ -20,7 +20,7 @@ #ifndef GEOS_CONSTITUTIVE_FLUID_MULTIFLUID_CO2BRINE_CO2BRINEFLUID_HPP_ #define GEOS_CONSTITUTIVE_FLUID_MULTIFLUID_CO2BRINE_CO2BRINEFLUID_HPP_ -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" #include "constitutive/fluid/multifluid/MultiFluidBase.hpp" #include "constitutive/fluid/multifluid/MultiFluidUtils.hpp" #include "constitutive/fluid/multifluid/CO2Brine/PhaseModel.hpp" diff --git a/src/coreComponents/constitutive/fluid/multifluid/CO2Brine/functions/EzrokhiBrineDensity.cpp b/src/coreComponents/constitutive/fluid/multifluid/CO2Brine/functions/EzrokhiBrineDensity.cpp index 7ba7020fa9e..a1a7c238df4 100644 --- a/src/coreComponents/constitutive/fluid/multifluid/CO2Brine/functions/EzrokhiBrineDensity.cpp +++ b/src/coreComponents/constitutive/fluid/multifluid/CO2Brine/functions/EzrokhiBrineDensity.cpp @@ -59,7 +59,7 @@ EzrokhiBrineDensity::EzrokhiBrineDensity( string const & name, void EzrokhiBrineDensity::makeCoefficients( string_array const & inputPara ) { - // compute brine density following Ezrokhi`s method (referenced in Eclipse TD, Aqueous phase properties) + // compute brine density following Ezrokhi`s method // Reference : Zaytsev, I.D. and Aseyev, G.G. Properties of Aqueous Solutions of Electrolytes, Boca Raton, Florida, USA CRC Press (1993). m_waterCompressibility = 4.5e-10; // Pa-1 diff --git a/src/coreComponents/constitutive/fluid/multifluid/CO2Brine/functions/EzrokhiBrineViscosity.cpp b/src/coreComponents/constitutive/fluid/multifluid/CO2Brine/functions/EzrokhiBrineViscosity.cpp index c300237899a..c0411ad922b 100644 --- a/src/coreComponents/constitutive/fluid/multifluid/CO2Brine/functions/EzrokhiBrineViscosity.cpp +++ b/src/coreComponents/constitutive/fluid/multifluid/CO2Brine/functions/EzrokhiBrineViscosity.cpp @@ -57,7 +57,7 @@ EzrokhiBrineViscosity::EzrokhiBrineViscosity( string const & name, void EzrokhiBrineViscosity::makeCoefficients( string_array const & inputPara ) { - // compute brine viscosity following Ezrokhi`s method (referenced in Eclipse TD, Aqueous phase properties) + // compute brine viscosity following Ezrokhi`s method // Reference : Zaytsev, I.D. and Aseyev, G.G. Properties of Aqueous Solutions of Electrolytes, Boca Raton, Florida, USA CRC Press (1993). GEOS_THROW_IF_LT_MSG( inputPara.size(), 5, GEOS_FMT( "{}: insufficient number of model parameters", m_functionName ), diff --git a/src/coreComponents/constitutive/fluid/multifluid/CO2Brine/functions/PVTFunctionHelpers.cpp b/src/coreComponents/constitutive/fluid/multifluid/CO2Brine/functions/PVTFunctionHelpers.cpp index a05497483eb..b0297d9b00e 100644 --- a/src/coreComponents/constitutive/fluid/multifluid/CO2Brine/functions/PVTFunctionHelpers.cpp +++ b/src/coreComponents/constitutive/fluid/multifluid/CO2Brine/functions/PVTFunctionHelpers.cpp @@ -45,7 +45,7 @@ BlackOilTables::readTable( string const & fileName, // Remove whitespace and end-of-line characters, if any str = stringutilities::trim( str, " \r" ); - // Remove # and -- (Eclipse-style) comments + // Remove # and -- comments str = stringutilities::removeStringAndFollowingContent( str, "#" ); str = stringutilities::removeStringAndFollowingContent( str, "--" ); diff --git a/src/coreComponents/constitutive/fluid/multifluid/MultiFluidSelector.hpp b/src/coreComponents/constitutive/fluid/multifluid/MultiFluidSelector.hpp index 580a965061b..7ca5afe50cc 100644 --- a/src/coreComponents/constitutive/fluid/multifluid/MultiFluidSelector.hpp +++ b/src/coreComponents/constitutive/fluid/multifluid/MultiFluidSelector.hpp @@ -53,6 +53,7 @@ void constitutiveUpdatePassThru( constitutive::MultiFluidBase const & fluid, #if !defined(GEOS_DEVICE_COMPILE) CO2BrineEzrokhiThermalFluid, CompositionalTwoPhaseLohrenzBrayClarkViscosity, + CompositionalThreePhaseLohrenzBrayClarkViscosity, #endif CompositionalTwoPhaseConstantViscosity >::execute( fluid, std::forward< LAMBDA >( lambda ) ); @@ -75,6 +76,7 @@ void constitutiveUpdatePassThru( constitutive::MultiFluidBase & fluid, #if !defined(GEOS_DEVICE_COMPILE) CO2BrineEzrokhiThermalFluid, CompositionalTwoPhaseLohrenzBrayClarkViscosity, + CompositionalThreePhaseLohrenzBrayClarkViscosity, #endif CompositionalTwoPhaseConstantViscosity >::execute( fluid, std::forward< LAMBDA >( lambda ) ); diff --git a/src/coreComponents/constitutive/fluid/multifluid/blackOil/BlackOilFluid.cpp b/src/coreComponents/constitutive/fluid/multifluid/blackOil/BlackOilFluid.cpp index 4a4118c1cbf..66e017b23fe 100644 --- a/src/coreComponents/constitutive/fluid/multifluid/blackOil/BlackOilFluid.cpp +++ b/src/coreComponents/constitutive/fluid/multifluid/blackOil/BlackOilFluid.cpp @@ -49,7 +49,7 @@ void BlackOilFluid::postInputInitialization() void BlackOilFluid::readInputDataFromTableFunctions() { - GEOS_THROW( GEOS_FMT( "{}: this option is not implemented yet, please provide PVT files in standard Eclipse format", getFullName() ), + GEOS_THROW( GEOS_FMT( "{}: this option is not implemented yet, please provide PVT files in standard text format", getFullName() ), InputError ); } diff --git a/src/coreComponents/constitutive/fluid/multifluid/blackOil/BlackOilFluid.hpp b/src/coreComponents/constitutive/fluid/multifluid/blackOil/BlackOilFluid.hpp index 112c677bad3..f789a7a82c2 100644 --- a/src/coreComponents/constitutive/fluid/multifluid/blackOil/BlackOilFluid.hpp +++ b/src/coreComponents/constitutive/fluid/multifluid/blackOil/BlackOilFluid.hpp @@ -276,7 +276,7 @@ class BlackOilFluid : public BlackOilFluidBase virtual void readInputDataFromPVTFiles() override; /** - * @brief Read all the PVT table provided by the user in Eclipse format + * @brief Read all the PVT table provided by the user in text format * @param[in] oilTable the oil table data read from file * @param[in] oilSurfaceMassDensity the oil phase surface mass density * @param[in] oilSurfaceMolecularWeight the oil phase surface molecular weight diff --git a/src/coreComponents/constitutive/fluid/multifluid/blackOil/BlackOilFluidBase.hpp b/src/coreComponents/constitutive/fluid/multifluid/blackOil/BlackOilFluidBase.hpp index dbca6083fca..eb7215a8361 100644 --- a/src/coreComponents/constitutive/fluid/multifluid/blackOil/BlackOilFluidBase.hpp +++ b/src/coreComponents/constitutive/fluid/multifluid/blackOil/BlackOilFluidBase.hpp @@ -144,7 +144,7 @@ class BlackOilFluidBase : public MultiFluidBase virtual void readInputDataFromTableFunctions() = 0; /** - * @brief Read all the PVT table provided by the user in Eclipse format + * @brief Read all the PVT table provided by the user in text format */ virtual void readInputDataFromPVTFiles() = 0; diff --git a/src/coreComponents/constitutive/fluid/multifluid/blackOil/DeadOilFluid.hpp b/src/coreComponents/constitutive/fluid/multifluid/blackOil/DeadOilFluid.hpp index 69311e692f2..86d82b50114 100644 --- a/src/coreComponents/constitutive/fluid/multifluid/blackOil/DeadOilFluid.hpp +++ b/src/coreComponents/constitutive/fluid/multifluid/blackOil/DeadOilFluid.hpp @@ -148,7 +148,7 @@ class DeadOilFluid : public BlackOilFluidBase virtual void readInputDataFromTableFunctions() override; /** - * @brief Read all the PVT table provided by the user in Eclipse format + * @brief Read all the PVT table provided by the user in text format */ virtual void readInputDataFromPVTFiles() override; diff --git a/src/coreComponents/constitutive/fluid/multifluid/compositional/CompositionalMultiphaseFluid.cpp b/src/coreComponents/constitutive/fluid/multifluid/compositional/CompositionalMultiphaseFluid.cpp index aa91a802388..6e95fed3f4c 100644 --- a/src/coreComponents/constitutive/fluid/multifluid/compositional/CompositionalMultiphaseFluid.cpp +++ b/src/coreComponents/constitutive/fluid/multifluid/compositional/CompositionalMultiphaseFluid.cpp @@ -22,6 +22,7 @@ #include "constitutive/fluid/multifluid/CO2Brine/functions/PVTFunctionHelpers.hpp" #include "constitutive/fluid/multifluid/MultiFluidFields.hpp" #include "codingUtilities/Utilities.hpp" +#include "common/format/StringUtilities.hpp" namespace geos { @@ -51,6 +52,7 @@ CompositionalMultiphaseFluid( string const & name, Group * const parent ) m_parameters( createModelParameters() ) { using InputFlags = dataRepository::InputFlags; + using RestartFlags = dataRepository::RestartFlags; getWrapperBase( viewKeyStruct::componentNamesString() ).setInputFlag( InputFlags::REQUIRED ); getWrapperBase( viewKeyStruct::componentMolarWeightString() ).setInputFlag( InputFlags::REQUIRED ); @@ -80,13 +82,18 @@ CompositionalMultiphaseFluid( string const & name, Group * const parent ) // Link parameters specific to each model m_parameters->registerParameters( this ); + + // Register extra wrappers to enable auto-cloning + registerWrapper( "phaseOrder", &m_phaseOrder ) + .setSizedFromParent( 0 ) + .setRestartFlags( RestartFlags::NO_WRITE ); } template< typename FLASH, typename PHASE1, typename PHASE2, typename PHASE3 > integer CompositionalMultiphaseFluid< FLASH, PHASE1, PHASE2, PHASE3 >::getWaterPhaseIndex() const { - string const expectedWaterPhaseNames[] = { "water" }; - return PVTProps::PVTFunctionHelpers::findName( m_phaseNames, expectedWaterPhaseNames, viewKeyStruct::phaseNamesString() ); + integer const aqueous = static_cast< integer >(PhaseType::AQUEOUS); + return m_phaseOrder.size() > aqueous ? m_phaseOrder[aqueous] : -1; } template< typename FLASH, typename PHASE1, typename PHASE2, typename PHASE3 > @@ -170,6 +177,12 @@ void CompositionalMultiphaseFluid< FLASH, PHASE1, PHASE2, PHASE3 >::postInputIni } } + // Determine the phase ordering + m_phaseOrder.resize( 3 ); + m_phaseOrder[PhaseType::LIQUID] = findPhaseIndex( "oil,liq,liquid" ); + m_phaseOrder[PhaseType::VAPOUR] = findPhaseIndex( "gas,vap,vapor,vapour" ); + m_phaseOrder[PhaseType::AQUEOUS] = findPhaseIndex( "wat,water,aqueous" ); + m_parameters->postInputInitialization( this, *m_componentProperties ); } @@ -210,6 +223,7 @@ CompositionalMultiphaseFluid< FLASH, PHASE1, PHASE2, PHASE3 >::createKernelWrapp *m_phase1, *m_phase2, *m_phase3, + m_phaseOrder.toViewConst(), m_componentMolarWeight, m_useMass, m_phaseFraction.toView(), @@ -247,6 +261,22 @@ void CompositionalMultiphaseFluid< FLASH, PHASE1, PHASE2, PHASE3 >::createModels *m_parameters ); } +template< typename FLASH, typename PHASE1, typename PHASE2, typename PHASE3 > +integer CompositionalMultiphaseFluid< FLASH, PHASE1, PHASE2, PHASE3 >::findPhaseIndex( string names ) const +{ + auto const nameContainer = stringutilities::tokenize( names, ",", true, false ); + + for( integer ip = 0; ip < numFluidPhases(); ++ip ) + { + std::string const phaseName = stringutilities::toLower( m_phaseNames[ip] ); + if( std::find( nameContainer.begin(), nameContainer.end(), phaseName ) != nameContainer.end()) + { + return ip; + } + } + return -1; +} + // Create the fluid models template< typename FLASH, typename PHASE1, typename PHASE2, typename PHASE3 > std::unique_ptr< compositional::ModelParameters > @@ -269,6 +299,11 @@ template class CompositionalMultiphaseFluid< compositional::NegativeTwoPhaseFlashModel, compositional::PhaseModel< compositional::CompositionalDensity, compositional::LohrenzBrayClarkViscosity, compositional::NullModel >, compositional::PhaseModel< compositional::CompositionalDensity, compositional::LohrenzBrayClarkViscosity, compositional::NullModel > >; +template class CompositionalMultiphaseFluid< + compositional::ImmiscibleWaterFlashModel, + compositional::PhaseModel< compositional::CompositionalDensity, compositional::LohrenzBrayClarkViscosity, compositional::NullModel >, + compositional::PhaseModel< compositional::CompositionalDensity, compositional::LohrenzBrayClarkViscosity, compositional::NullModel >, + compositional::PhaseModel< compositional::ImmiscibleWaterDensity, compositional::ImmiscibleWaterViscosity, compositional::NullModel > >; REGISTER_CATALOG_ENTRY( ConstitutiveBase, CompositionalTwoPhaseConstantViscosity, @@ -280,6 +315,11 @@ REGISTER_CATALOG_ENTRY( ConstitutiveBase, string const &, dataRepository::Group * const ) +REGISTER_CATALOG_ENTRY( ConstitutiveBase, + CompositionalThreePhaseLohrenzBrayClarkViscosity, + string const &, + dataRepository::Group * const ) + } // namespace constitutive } // namespace geos diff --git a/src/coreComponents/constitutive/fluid/multifluid/compositional/CompositionalMultiphaseFluid.hpp b/src/coreComponents/constitutive/fluid/multifluid/compositional/CompositionalMultiphaseFluid.hpp index a8f846aac39..b43047ade63 100644 --- a/src/coreComponents/constitutive/fluid/multifluid/compositional/CompositionalMultiphaseFluid.hpp +++ b/src/coreComponents/constitutive/fluid/multifluid/compositional/CompositionalMultiphaseFluid.hpp @@ -23,6 +23,9 @@ #include "constitutive/fluid/multifluid/compositional/CompositionalMultiphaseFluidUpdates.hpp" #include "constitutive/fluid/multifluid/compositional/models/ConstantViscosity.hpp" #include "constitutive/fluid/multifluid/compositional/models/CompositionalDensity.hpp" +#include "constitutive/fluid/multifluid/compositional/models/ImmiscibleWaterDensity.hpp" +#include "constitutive/fluid/multifluid/compositional/models/ImmiscibleWaterFlashModel.hpp" +#include "constitutive/fluid/multifluid/compositional/models/ImmiscibleWaterViscosity.hpp" #include "constitutive/fluid/multifluid/compositional/models/LohrenzBrayClarkViscosity.hpp" #include "constitutive/fluid/multifluid/compositional/models/NegativeTwoPhaseFlashModel.hpp" #include "constitutive/fluid/multifluid/compositional/models/ModelParameters.hpp" @@ -110,15 +113,27 @@ class CompositionalMultiphaseFluid : public MultiFluidBase virtual void resizeFields( localIndex const size, localIndex const numPts ) override; + enum PhaseType : integer + { + LIQUID = 0, + VAPOUR = 1, + AQUEOUS = 2, + }; + private: // Create the fluid models void createModels(); + integer findPhaseIndex( string names ) const; + static std::unique_ptr< compositional::ModelParameters > createModelParameters(); // Flash model std::unique_ptr< FLASH > m_flash{}; + // Phase ordering + array1d< integer > m_phaseOrder; + // Phase models std::unique_ptr< PHASE1 > m_phase1{}; std::unique_ptr< PHASE2 > m_phase2{}; @@ -142,6 +157,11 @@ using CompositionalTwoPhaseLohrenzBrayClarkViscosity = CompositionalMultiphaseFl compositional::NegativeTwoPhaseFlashModel, compositional::PhaseModel< compositional::CompositionalDensity, compositional::LohrenzBrayClarkViscosity, compositional::NullModel >, compositional::PhaseModel< compositional::CompositionalDensity, compositional::LohrenzBrayClarkViscosity, compositional::NullModel > >; +using CompositionalThreePhaseLohrenzBrayClarkViscosity = CompositionalMultiphaseFluid< + compositional::ImmiscibleWaterFlashModel, + compositional::PhaseModel< compositional::CompositionalDensity, compositional::LohrenzBrayClarkViscosity, compositional::NullModel >, + compositional::PhaseModel< compositional::CompositionalDensity, compositional::LohrenzBrayClarkViscosity, compositional::NullModel >, + compositional::PhaseModel< compositional::ImmiscibleWaterDensity, compositional::ImmiscibleWaterViscosity, compositional::NullModel > >; } /* namespace constitutive */ diff --git a/src/coreComponents/constitutive/fluid/multifluid/compositional/CompositionalMultiphaseFluidUpdates.hpp b/src/coreComponents/constitutive/fluid/multifluid/compositional/CompositionalMultiphaseFluidUpdates.hpp index 1567f4b4c46..c3a301e98a5 100644 --- a/src/coreComponents/constitutive/fluid/multifluid/compositional/CompositionalMultiphaseFluidUpdates.hpp +++ b/src/coreComponents/constitutive/fluid/multifluid/compositional/CompositionalMultiphaseFluidUpdates.hpp @@ -46,6 +46,7 @@ class CompositionalMultiphaseFluidUpdates final : public MultiFluidBase::KernelW PHASE1 const & phase1, PHASE2 const & phase2, PHASE3 const & phase3, + arrayView1d< integer const > const & phaseOrder, arrayView1d< real64 const > const & componentMolarWeight, bool const useMass, MultiFluidBase::PhaseProp::ViewType phaseFrac, @@ -122,6 +123,9 @@ class CompositionalMultiphaseFluidUpdates final : public MultiFluidBase::KernelW // Flash kernel wrapper typename FLASH::KernelWrapper m_flash; + // The ordering of phases + arrayView1d< integer const > const m_phaseOrder; + // Phase model kernel wrappers typename PHASE1::KernelWrapper m_phase1; typename PHASE2::KernelWrapper m_phase2; @@ -138,6 +142,7 @@ CompositionalMultiphaseFluidUpdates( compositional::ComponentProperties const & PHASE1 const & phase1, PHASE2 const & phase2, PHASE3 const & phase3, + arrayView1d< integer const > const & phaseOrder, arrayView1d< real64 const > const & componentMolarWeight, bool const useMass, MultiFluidBase::PhaseProp::ViewType phaseFrac, @@ -161,6 +166,7 @@ CompositionalMultiphaseFluidUpdates( compositional::ComponentProperties const & std::move( totalDensity ) ), m_componentProperties( componentProperties.createKernelWrapper() ), m_flash( flash.createKernelWrapper() ), + m_phaseOrder( phaseOrder ), m_phase1( phase1.createKernelWrapper() ), m_phase2( phase2.createKernelWrapper() ), m_phase3( phase3.createKernelWrapper() ), @@ -262,31 +268,31 @@ CompositionalMultiphaseFluidUpdates< FLASH, PHASE1, PHASE2, PHASE3 >::compute( m_phase1.density.compute( m_componentProperties, pressure, temperature, - phaseCompFrac.value[0].toSliceConst(), - phaseDens.value[0], - phaseDens.derivs[0], - phaseMassDensity.value[0], - phaseMassDensity.derivs[0], + phaseCompFrac.value[m_phaseOrder[0]].toSliceConst(), + phaseDens.value[m_phaseOrder[0]], + phaseDens.derivs[m_phaseOrder[0]], + phaseMassDensity.value[m_phaseOrder[0]], + phaseMassDensity.derivs[m_phaseOrder[0]], m_useMass ); m_phase2.density.compute( m_componentProperties, pressure, temperature, - phaseCompFrac.value[1].toSliceConst(), - phaseDens.value[1], - phaseDens.derivs[1], - phaseMassDensity.value[1], - phaseMassDensity.derivs[1], + phaseCompFrac.value[m_phaseOrder[1]].toSliceConst(), + phaseDens.value[m_phaseOrder[1]], + phaseDens.derivs[m_phaseOrder[1]], + phaseMassDensity.value[m_phaseOrder[1]], + phaseMassDensity.derivs[m_phaseOrder[1]], m_useMass ); if constexpr (2 < FLASH::KernelWrapper::getNumberOfPhases()) { m_phase3.density.compute( m_componentProperties, pressure, temperature, - phaseCompFrac.value[2].toSliceConst(), - phaseDens.value[2], - phaseDens.derivs[2], - phaseMassDensity.value[2], - phaseMassDensity.derivs[2], + phaseCompFrac.value[m_phaseOrder[2]].toSliceConst(), + phaseDens.value[m_phaseOrder[2]], + phaseDens.derivs[m_phaseOrder[2]], + phaseMassDensity.value[m_phaseOrder[2]], + phaseMassDensity.derivs[m_phaseOrder[2]], m_useMass ); } @@ -294,31 +300,31 @@ CompositionalMultiphaseFluidUpdates< FLASH, PHASE1, PHASE2, PHASE3 >::compute( m_phase1.viscosity.compute( m_componentProperties, pressure, temperature, - phaseCompFrac.value[0].toSliceConst(), - phaseMassDensity.value[0], - phaseMassDensity.derivs[0].toSliceConst(), - phaseVisc.value[0], - phaseVisc.derivs[0], + phaseCompFrac.value[m_phaseOrder[0]].toSliceConst(), + phaseMassDensity.value[m_phaseOrder[0]], + phaseMassDensity.derivs[m_phaseOrder[0]].toSliceConst(), + phaseVisc.value[m_phaseOrder[0]], + phaseVisc.derivs[m_phaseOrder[0]], m_useMass ); m_phase2.viscosity.compute( m_componentProperties, pressure, temperature, - phaseCompFrac.value[1].toSliceConst(), - phaseMassDensity.value[1], - phaseMassDensity.derivs[1].toSliceConst(), - phaseVisc.value[1], - phaseVisc.derivs[1], + phaseCompFrac.value[m_phaseOrder[1]].toSliceConst(), + phaseMassDensity.value[m_phaseOrder[1]], + phaseMassDensity.derivs[m_phaseOrder[1]].toSliceConst(), + phaseVisc.value[m_phaseOrder[1]], + phaseVisc.derivs[m_phaseOrder[1]], m_useMass ); if constexpr (2 < FLASH::KernelWrapper::getNumberOfPhases()) { m_phase3.viscosity.compute( m_componentProperties, pressure, temperature, - phaseCompFrac.value[2].toSliceConst(), - phaseMassDensity.value[2], - phaseMassDensity.derivs[2].toSliceConst(), - phaseVisc.value[2], - phaseVisc.derivs[2], + phaseCompFrac.value[m_phaseOrder[2]].toSliceConst(), + phaseMassDensity.value[m_phaseOrder[2]], + phaseMassDensity.derivs[m_phaseOrder[2]].toSliceConst(), + phaseVisc.value[m_phaseOrder[2]], + phaseVisc.derivs[m_phaseOrder[2]], m_useMass ); } diff --git a/src/coreComponents/constitutive/fluid/multifluid/compositional/models/EquationOfState.hpp b/src/coreComponents/constitutive/fluid/multifluid/compositional/models/EquationOfState.hpp index dd6b3d294c7..f88b8608b39 100644 --- a/src/coreComponents/constitutive/fluid/multifluid/compositional/models/EquationOfState.hpp +++ b/src/coreComponents/constitutive/fluid/multifluid/compositional/models/EquationOfState.hpp @@ -23,7 +23,7 @@ #include "ModelParameters.hpp" #include "constitutive/fluid/multifluid/MultiFluidBase.hpp" #include "dataRepository/InputFlags.hpp" -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" namespace geos { diff --git a/src/coreComponents/constitutive/fluid/multifluid/compositional/models/ImmiscibleWaterDensity.cpp b/src/coreComponents/constitutive/fluid/multifluid/compositional/models/ImmiscibleWaterDensity.cpp new file mode 100644 index 00000000000..e257b3b984a --- /dev/null +++ b/src/coreComponents/constitutive/fluid/multifluid/compositional/models/ImmiscibleWaterDensity.cpp @@ -0,0 +1,82 @@ +/* + * ------------------------------------------------------------------------------------------------------------ + * SPDX-License-Identifier: LGPL-2.1-only + * + * Copyright (c) 2016-2024 Lawrence Livermore National Security LLC + * Copyright (c) 2018-2024 Total, S.A + * Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University + * Copyright (c) 2018-2024 Chevron + * Copyright (c) 2019- GEOS/GEOSX Contributors + * All rights reserved + * + * See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. + * ------------------------------------------------------------------------------------------------------------ + */ + +/** + * @file ImmiscibleWaterDensity.cpp + */ + +#include "ImmiscibleWaterDensity.hpp" +#include "ImmiscibleWaterParameters.hpp" +#include "dataRepository/InputFlags.hpp" + +namespace geos +{ + +namespace constitutive +{ + +namespace compositional +{ + +ImmiscibleWaterDensityUpdate::ImmiscibleWaterDensityUpdate( real64 const waterMolecularWeight, + real64 const referencePressure, + real64 const referenceTemperature, + real64 const density, + real64 const compressibility, + real64 const expansionCoefficient ): + m_waterMolecularWeight( waterMolecularWeight ), + m_referencePressure( referencePressure ), + m_referenceTemperature( referenceTemperature ), + m_density( density ), + m_compressibility( compressibility ), + m_expansionCoefficient( expansionCoefficient ) +{} + +ImmiscibleWaterDensity::ImmiscibleWaterDensity( string const & name, + ComponentProperties const & componentProperties, + integer const phaseIndex, + ModelParameters const & modelParameters ): + FunctionBase( name, componentProperties ), + m_parameters( modelParameters ) +{ + GEOS_UNUSED_VAR( phaseIndex ); + integer const h2oIndex = ImmiscibleWaterParameters::getWaterComponentIndex( componentProperties ); + GEOS_THROW_IF_LT_MSG( h2oIndex, 0, "Water component not found", InputError ); + m_waterMolecularWeight = componentProperties.getComponentMolarWeight()[h2oIndex]; +} + +ImmiscibleWaterDensity::KernelWrapper +ImmiscibleWaterDensity::createKernelWrapper() const +{ + ImmiscibleWaterParameters const * waterParameters = m_parameters.get< ImmiscibleWaterParameters >(); + return KernelWrapper( m_waterMolecularWeight, + waterParameters->m_waterReferencePressure, + waterParameters->m_waterReferenceTemperature, + waterParameters->m_waterDensity, + waterParameters->m_waterCompressibility, + waterParameters->m_waterExpansionCoefficient ); +} + +std::unique_ptr< ModelParameters > +ImmiscibleWaterDensity::createParameters( std::unique_ptr< ModelParameters > parameters ) +{ + return ImmiscibleWaterParameters::create( std::move( parameters ) ); +} + +} // namespace compositional + +} // namespace constitutive + +} // namespace geos diff --git a/src/coreComponents/constitutive/fluid/multifluid/compositional/models/ImmiscibleWaterDensity.hpp b/src/coreComponents/constitutive/fluid/multifluid/compositional/models/ImmiscibleWaterDensity.hpp new file mode 100644 index 00000000000..9d258085649 --- /dev/null +++ b/src/coreComponents/constitutive/fluid/multifluid/compositional/models/ImmiscibleWaterDensity.hpp @@ -0,0 +1,140 @@ +/* + * ------------------------------------------------------------------------------------------------------------ + * SPDX-License-Identifier: LGPL-2.1-only + * + * Copyright (c) 2016-2024 Lawrence Livermore National Security LLC + * Copyright (c) 2018-2024 Total, S.A + * Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University + * Copyright (c) 2018-2024 Chevron + * Copyright (c) 2019- GEOS/GEOSX Contributors + * All rights reserved + * + * See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. + * ------------------------------------------------------------------------------------------------------------ + */ + +/** + * @file ImmiscibleWaterDensity.cpp + */ + +#ifndef GEOS_CONSTITUTIVE_FLUID_MULTIFLUID_COMPOSITIONAL_MODELS_IMMISCIBLEWATERDENSITY_HPP_ +#define GEOS_CONSTITUTIVE_FLUID_MULTIFLUID_COMPOSITIONAL_MODELS_IMMISCIBLEWATERDENSITY_HPP_ + +#include "FunctionBase.hpp" +#include "constitutive/fluid/multifluid/Layouts.hpp" + +namespace geos +{ + +namespace constitutive +{ + +namespace compositional +{ + +class ImmiscibleWaterDensityUpdate final : public FunctionBaseUpdate +{ + using Deriv = geos::constitutive::multifluid::DerivativeOffset; +public: + ImmiscibleWaterDensityUpdate( real64 const waterMolecularWeight, + real64 const referencePressure, + real64 const referenceTemperature, + real64 const density, + real64 const compressibility, + real64 const expansionCoefficient ); + + template< integer USD1, integer USD2 > + GEOS_HOST_DEVICE + void compute( ComponentProperties::KernelWrapper const & componentProperties, + real64 const & pressure, + real64 const & temperature, + arraySlice1d< real64 const, USD1 > const & phaseComposition, + real64 & molarDensity, + arraySlice1d< real64, USD2 > const & dMolarDensity, + real64 & massDensity, + arraySlice1d< real64, USD2 > const & dMassDensity, + bool useMass ) const; + +private: + real64 const m_waterMolecularWeight; + real64 const m_referencePressure; + real64 const m_referenceTemperature; + real64 const m_density; + real64 const m_compressibility; + real64 const m_expansionCoefficient; +}; + +class ImmiscibleWaterDensity : public FunctionBase +{ +public: + ImmiscibleWaterDensity( string const & name, + ComponentProperties const & componentProperties, + integer const phaseIndex, + ModelParameters const & modelParameters ); + + static string catalogName() { return "ImmiscibleWaterDensity"; } + + virtual FunctionType functionType() const override + { + return FunctionType::DENSITY; + } + + /// Type of kernel wrapper for in-kernel update + using KernelWrapper = ImmiscibleWaterDensityUpdate; + + /** + * @brief Create an update kernel wrapper. + * @return the wrapper + */ + KernelWrapper createKernelWrapper() const; + + // Create parameters unique to this model + static std::unique_ptr< ModelParameters > createParameters( std::unique_ptr< ModelParameters > parameters ); + +private: + ModelParameters const & m_parameters; + real64 m_waterMolecularWeight{0.0}; +}; + +template< integer USD1, integer USD2 > +GEOS_HOST_DEVICE +void ImmiscibleWaterDensityUpdate::compute( + ComponentProperties::KernelWrapper const & componentProperties, + real64 const & pressure, + real64 const & temperature, + arraySlice1d< real64 const, USD1 > const & phaseComposition, + real64 & molarDensity, + arraySlice1d< real64, USD2 > const & dMolarDensity, + real64 & massDensity, + arraySlice1d< real64, USD2 > const & dMassDensity, + bool useMass ) const +{ + GEOS_UNUSED_VAR( componentProperties ); + GEOS_UNUSED_VAR( phaseComposition ); + GEOS_UNUSED_VAR( useMass ); + + LvArray::forValuesInSlice( dMolarDensity, setZero ); + LvArray::forValuesInSlice( dMassDensity, setZero ); + + real64 const density = m_density * + LvArray::math::exp( m_compressibility * (pressure - m_referencePressure) ) * + LvArray::math::exp( -m_expansionCoefficient * (temperature - m_referenceTemperature) ); + real64 const dDensity_dp = m_compressibility * density; + real64 const dDensity_dT = -m_expansionCoefficient * density; + + massDensity = density; + dMassDensity[Deriv::dP] = dDensity_dp; + dMassDensity[Deriv::dT] = dDensity_dT; + + molarDensity = density / m_waterMolecularWeight; + dMolarDensity[Deriv::dP] = dDensity_dp / m_waterMolecularWeight; + dMolarDensity[Deriv::dT] = dDensity_dT / m_waterMolecularWeight; +} + +} // end namespace compositional + +} // end namespace constitutive + +} // end namespace geos + +#endif //GEOS_CONSTITUTIVE_FLUID_MULTIFLUID_COMPOSITIONAL_MODELS_IMMISCIBLEWATERDENSITY_HPP_ diff --git a/src/coreComponents/constitutive/fluid/multifluid/compositional/models/ImmiscibleWaterParameters.cpp b/src/coreComponents/constitutive/fluid/multifluid/compositional/models/ImmiscibleWaterParameters.cpp index 87c1d659435..ddb64316270 100644 --- a/src/coreComponents/constitutive/fluid/multifluid/compositional/models/ImmiscibleWaterParameters.cpp +++ b/src/coreComponents/constitutive/fluid/multifluid/compositional/models/ImmiscibleWaterParameters.cpp @@ -63,7 +63,41 @@ integer ImmiscibleWaterParameters::getWaterComponentIndex( ComponentProperties c void ImmiscibleWaterParameters::registerParametersImpl( MultiFluidBase * fluid ) { - GEOS_UNUSED_VAR( fluid ); + fluid->registerWrapper( viewKeyStruct::waterReferencePressureString(), &m_waterReferencePressure ). + setInputFlag( dataRepository::InputFlags::REQUIRED ). + setDescription( "The reference pressure for water density and viscosity" ); + + fluid->registerWrapper( viewKeyStruct::waterReferenceTemperatureString(), &m_waterReferenceTemperature ). + setInputFlag( dataRepository::InputFlags::OPTIONAL ). + setDefaultValue( m_waterReferenceTemperature ). + setDescription( "The reference temperature for water density and viscosity" ); + + fluid->registerWrapper( viewKeyStruct::waterDensityString(), &m_waterDensity ). + setInputFlag( dataRepository::InputFlags::REQUIRED ). + setDescription( "The water density at the reference pressure and temperature" ); + + fluid->registerWrapper( viewKeyStruct::waterViscosityString(), &m_waterViscosity ). + setInputFlag( dataRepository::InputFlags::REQUIRED ). + setDescription( "The water viscosity at the reference pressure and temperature" ); + + fluid->registerWrapper( viewKeyStruct::waterCompressibilityString(), &m_waterCompressibility ). + setInputFlag( dataRepository::InputFlags::REQUIRED ). + setDescription( "The compressibility of water" ); + + fluid->registerWrapper( viewKeyStruct::waterViscosityCompressibilityString(), &m_waterViscosityCompressibility ). + setInputFlag( dataRepository::InputFlags::OPTIONAL ). + setDefaultValue( m_waterViscosityCompressibility ). + setDescription( "The compressibility (normalized derivative with respect to pressure) of the water viscosity" ); + + fluid->registerWrapper( viewKeyStruct::waterExpansionCoefficientString(), &m_waterExpansionCoefficient ). + setInputFlag( dataRepository::InputFlags::OPTIONAL ). + setDefaultValue( m_waterExpansionCoefficient ). + setDescription( "The volumetric coefficient of thermal expansion of water" ); + + fluid->registerWrapper( viewKeyStruct::waterViscosityExpansionCoefficientString(), &m_waterViscosityExpansionCoefficient ). + setInputFlag( dataRepository::InputFlags::OPTIONAL ). + setDefaultValue( m_waterViscosityExpansionCoefficient ). + setDescription( "The coefficient of thermal expansion (normalized derivative with respect to temperature) of water viscosity" ); } void ImmiscibleWaterParameters::postInputInitializationImpl( MultiFluidBase const * fluid, @@ -80,6 +114,24 @@ void ImmiscibleWaterParameters::postInputInitializationImpl( MultiFluidBase cons GEOS_FMT( "{}: water component not found '{}'", fluid->getFullName(), MultiFluidBase::viewKeyStruct::componentNamesString() ), InputError ); + + // Pretty much everything should be positive + auto const checkLowerBound = [&]( real64 const & value, real64 const & bound, string const & attribute ) + { + GEOS_THROW_IF_LT_MSG( value, bound, + GEOS_FMT( "{}: invalid number of value in attribute '{}'. Should be greater than {}", + fluid->getFullName(), bound, attribute ), + InputError ); + }; + + real64 constexpr epsilon = MultiFluidConstants::epsilon; + + checkLowerBound( m_waterDensity, epsilon, viewKeyStruct::waterDensityString()); + checkLowerBound( m_waterViscosity, epsilon, viewKeyStruct::waterViscosityString()); + checkLowerBound( m_waterCompressibility, 0.0, viewKeyStruct::waterCompressibilityString()); + checkLowerBound( m_waterViscosityCompressibility, 0.0, viewKeyStruct::waterViscosityCompressibilityString()); + checkLowerBound( m_waterExpansionCoefficient, 0.0, viewKeyStruct::waterExpansionCoefficientString()); + checkLowerBound( m_waterViscosityExpansionCoefficient, 0.0, viewKeyStruct::waterViscosityExpansionCoefficientString()); } } // end namespace compositional diff --git a/src/coreComponents/constitutive/fluid/multifluid/compositional/models/ImmiscibleWaterParameters.hpp b/src/coreComponents/constitutive/fluid/multifluid/compositional/models/ImmiscibleWaterParameters.hpp index 9404e565f83..da1e0e4ddf4 100644 --- a/src/coreComponents/constitutive/fluid/multifluid/compositional/models/ImmiscibleWaterParameters.hpp +++ b/src/coreComponents/constitutive/fluid/multifluid/compositional/models/ImmiscibleWaterParameters.hpp @@ -44,6 +44,27 @@ class ImmiscibleWaterParameters : public ModelParameters static integer getWaterComponentIndex( ComponentProperties const & componentProperties ); + struct viewKeyStruct + { + static constexpr char const * waterReferencePressureString() { return "waterReferencePressure"; } + static constexpr char const * waterReferenceTemperatureString() { return "waterReferenceTemperature"; } + static constexpr char const * waterDensityString() { return "waterDensity"; } + static constexpr char const * waterViscosityString() { return "waterViscosity"; } + static constexpr char const * waterCompressibilityString() { return "waterCompressibility"; } + static constexpr char const * waterViscosityCompressibilityString() { return "waterViscosityCompressibility"; } + static constexpr char const * waterExpansionCoefficientString() { return "waterExpansionCoefficient"; } + static constexpr char const * waterViscosityExpansionCoefficientString() { return "waterViscosityExpansionCoefficient"; } + }; + + real64 m_waterReferencePressure; + real64 m_waterReferenceTemperature{293.15}; + real64 m_waterDensity; + real64 m_waterViscosity; + real64 m_waterCompressibility; + real64 m_waterViscosityCompressibility{0.0}; + real64 m_waterExpansionCoefficient{0.0}; + real64 m_waterViscosityExpansionCoefficient{0.0}; + protected: void registerParametersImpl( MultiFluidBase * fluid ) override; diff --git a/src/coreComponents/constitutive/fluid/multifluid/compositional/models/ImmiscibleWaterViscosity.cpp b/src/coreComponents/constitutive/fluid/multifluid/compositional/models/ImmiscibleWaterViscosity.cpp new file mode 100644 index 00000000000..d1e5cd30867 --- /dev/null +++ b/src/coreComponents/constitutive/fluid/multifluid/compositional/models/ImmiscibleWaterViscosity.cpp @@ -0,0 +1,75 @@ +/* + * ------------------------------------------------------------------------------------------------------------ + * SPDX-License-Identifier: LGPL-2.1-only + * + * Copyright (c) 2016-2024 Lawrence Livermore National Security LLC + * Copyright (c) 2018-2024 Total, S.A + * Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University + * Copyright (c) 2018-2024 Chevron + * Copyright (c) 2019- GEOS/GEOSX Contributors + * All rights reserved + * + * See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. + * ------------------------------------------------------------------------------------------------------------ + */ + +/** + * @file ImmiscibleWaterViscosity.cpp + */ + +#include "ImmiscibleWaterViscosity.hpp" +#include "ImmiscibleWaterParameters.hpp" + +namespace geos +{ + +namespace constitutive +{ + +namespace compositional +{ + +ImmiscibleWaterViscosityUpdate::ImmiscibleWaterViscosityUpdate( real64 const referencePressure, + real64 const referenceTemperature, + real64 const viscosity, + real64 const compressibility, + real64 const expansionCoefficient ): + m_referencePressure( referencePressure ), + m_referenceTemperature( referenceTemperature ), + m_viscosity( viscosity ), + m_compressibility( compressibility ), + m_expansionCoefficient( expansionCoefficient ) +{} + +ImmiscibleWaterViscosity::ImmiscibleWaterViscosity( string const & name, + ComponentProperties const & componentProperties, + integer const phaseIndex, + ModelParameters const & modelParameters ): + FunctionBase( name, componentProperties ), + m_parameters( modelParameters ) +{ + GEOS_UNUSED_VAR( phaseIndex ); +} + +ImmiscibleWaterViscosity::KernelWrapper +ImmiscibleWaterViscosity::createKernelWrapper() const +{ + ImmiscibleWaterParameters const * waterParameters = m_parameters.get< ImmiscibleWaterParameters >(); + return KernelWrapper( waterParameters->m_waterReferencePressure, + waterParameters->m_waterReferenceTemperature, + waterParameters->m_waterViscosity, + waterParameters->m_waterViscosityCompressibility, + waterParameters->m_waterViscosityExpansionCoefficient ); +} + +std::unique_ptr< ModelParameters > +ImmiscibleWaterViscosity::createParameters( std::unique_ptr< ModelParameters > parameters ) +{ + return ImmiscibleWaterParameters::create( std::move( parameters ) ); +} + +} // namespace compositional + +} // namespace constitutive + +} // end namespace geos diff --git a/src/coreComponents/constitutive/fluid/multifluid/compositional/models/ImmiscibleWaterViscosity.hpp b/src/coreComponents/constitutive/fluid/multifluid/compositional/models/ImmiscibleWaterViscosity.hpp new file mode 100644 index 00000000000..815769110ab --- /dev/null +++ b/src/coreComponents/constitutive/fluid/multifluid/compositional/models/ImmiscibleWaterViscosity.hpp @@ -0,0 +1,130 @@ +/* + * ------------------------------------------------------------------------------------------------------------ + * SPDX-License-Identifier: LGPL-2.1-only + * + * Copyright (c) 2016-2024 Lawrence Livermore National Security LLC + * Copyright (c) 2018-2024 Total, S.A + * Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University + * Copyright (c) 2018-2024 Chevron + * Copyright (c) 2019- GEOS/GEOSX Contributors + * All rights reserved + * + * See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. + * ------------------------------------------------------------------------------------------------------------ + */ + +/** + * @file ImmiscibleWaterViscosity.hpp + */ + +#ifndef GEOS_CONSTITUTIVE_FLUID_MULTIFLUID_COMPOSITIONAL_MODELS_IMMISCIBLEWATERVISCOSITY_HPP_ +#define GEOS_CONSTITUTIVE_FLUID_MULTIFLUID_COMPOSITIONAL_MODELS_IMMISCIBLEWATERVISCOSITY_HPP_ + +#include "FunctionBase.hpp" +#include "constitutive/fluid/multifluid/Layouts.hpp" + +namespace geos +{ + +namespace constitutive +{ + +namespace compositional +{ + +class ImmiscibleWaterViscosityUpdate final : public FunctionBaseUpdate +{ + using Deriv = geos::constitutive::multifluid::DerivativeOffset; +public: + ImmiscibleWaterViscosityUpdate( real64 const referencePressure, + real64 const referenceTemperature, + real64 const viscosity, + real64 const compressibility, + real64 const expansionCoefficient ); + + template< integer USD1, integer USD2 > + GEOS_HOST_DEVICE + void compute( ComponentProperties::KernelWrapper const & componentProperties, + real64 const & pressure, + real64 const & temperature, + arraySlice1d< real64 const, USD1 > const & phaseComposition, + real64 const & density, + arraySlice1d< real64 const, USD2 > const & dDensity, + real64 & viscosity, + arraySlice1d< real64, USD2 > const & dViscosity, + bool useMass ) const; + +private: + real64 const m_referencePressure; + real64 const m_referenceTemperature; + real64 const m_viscosity; + real64 const m_compressibility; + real64 const m_expansionCoefficient; +}; + +class ImmiscibleWaterViscosity : public FunctionBase +{ +public: + ImmiscibleWaterViscosity( string const & name, + ComponentProperties const & componentProperties, + integer const phaseIndex, + ModelParameters const & modelParameters ); + + static string catalogName() { return ""; } + + FunctionType functionType() const override + { + return FunctionType::VISCOSITY; + } + + /// Type of kernel wrapper for in-kernel update + using KernelWrapper = ImmiscibleWaterViscosityUpdate; + + /** + * @brief Create an update kernel wrapper. + * @return the wrapper + */ + KernelWrapper createKernelWrapper() const; + + // Create parameters unique to this model + static std::unique_ptr< ModelParameters > createParameters( std::unique_ptr< ModelParameters > parameters ); + +private: + ModelParameters const & m_parameters; +}; + +template< integer USD1, integer USD2 > +GEOS_HOST_DEVICE +GEOS_FORCE_INLINE +void ImmiscibleWaterViscosityUpdate::compute( ComponentProperties::KernelWrapper const & componentProperties, + real64 const & pressure, + real64 const & temperature, + arraySlice1d< real64 const, USD1 > const & phaseComposition, + real64 const & density, + arraySlice1d< real64 const, USD2 > const & dDensity, + real64 & viscosity, + arraySlice1d< real64, USD2 > const & dViscosity, + bool useMass ) const +{ + GEOS_UNUSED_VAR( componentProperties ); + GEOS_UNUSED_VAR( phaseComposition ); + GEOS_UNUSED_VAR( density ); + GEOS_UNUSED_VAR( dDensity ); + GEOS_UNUSED_VAR( useMass ); + + LvArray::forValuesInSlice( dViscosity, setZero ); + + viscosity = m_viscosity * + LvArray::math::exp( m_compressibility * (pressure - m_referencePressure) ) * + LvArray::math::exp( -m_expansionCoefficient * (temperature - m_referenceTemperature) ); + dViscosity[Deriv::dP] = m_compressibility * viscosity; + dViscosity[Deriv::dT] = -m_expansionCoefficient * viscosity; +} + +} // end namespace compositional + +} // end namespace constitutive + +} // end namespace geos + +#endif //GEOS_CONSTITUTIVE_FLUID_MULTIFLUID_COMPOSITIONAL_MODELS_IMMISCIBLEWATERVISCOSITY_HPP_ diff --git a/src/coreComponents/constitutive/fluid/multifluid/compositional/models/LohrenzBrayClarkViscosity.hpp b/src/coreComponents/constitutive/fluid/multifluid/compositional/models/LohrenzBrayClarkViscosity.hpp index e87373c09a6..95cb6644d9f 100644 --- a/src/coreComponents/constitutive/fluid/multifluid/compositional/models/LohrenzBrayClarkViscosity.hpp +++ b/src/coreComponents/constitutive/fluid/multifluid/compositional/models/LohrenzBrayClarkViscosity.hpp @@ -22,7 +22,7 @@ #include "FunctionBase.hpp" -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" namespace geos { diff --git a/src/coreComponents/constitutive/fluid/multifluid/reactive/ReactiveBrineFluid.hpp b/src/coreComponents/constitutive/fluid/multifluid/reactive/ReactiveBrineFluid.hpp index 9ba08387cf6..2ee7cf86687 100644 --- a/src/coreComponents/constitutive/fluid/multifluid/reactive/ReactiveBrineFluid.hpp +++ b/src/coreComponents/constitutive/fluid/multifluid/reactive/ReactiveBrineFluid.hpp @@ -20,7 +20,7 @@ #ifndef GEOS_CONSTITUTIVE_FLUID_REACTIVEBRINEFLUID_HPP_ #define GEOS_CONSTITUTIVE_FLUID_REACTIVEBRINEFLUID_HPP_ -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" #include "constitutive/fluid/multifluid/reactive/ReactiveMultiFluid.hpp" #include "constitutive/fluid/multifluid/MultiFluidUtils.hpp" #include "constitutive/fluid/multifluid/CO2Brine/PhaseModel.hpp" diff --git a/src/coreComponents/constitutive/fluid/multifluid/reactive/ReactiveMultiFluid.hpp b/src/coreComponents/constitutive/fluid/multifluid/reactive/ReactiveMultiFluid.hpp index 460f45c2c35..3a9cd32f95c 100644 --- a/src/coreComponents/constitutive/fluid/multifluid/reactive/ReactiveMultiFluid.hpp +++ b/src/coreComponents/constitutive/fluid/multifluid/reactive/ReactiveMultiFluid.hpp @@ -21,7 +21,7 @@ #define GEOS_CONSTITUTIVE_FLUID_MULTIFLUID_REACTIVE_REACTIVEMULTIFLUID_HPP_ -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" #include "constitutive/fluid/multifluid/MultiFluidBase.hpp" #include "constitutive/fluid/multifluid/reactive/chemicalReactions/EquilibriumReactions.hpp" #include "constitutive/fluid/multifluid/reactive/chemicalReactions/KineticReactions.hpp" diff --git a/src/coreComponents/constitutive/fluid/singlefluid/ParticleFluid.hpp b/src/coreComponents/constitutive/fluid/singlefluid/ParticleFluid.hpp index 3d621f888d0..c218ffbbad4 100644 --- a/src/coreComponents/constitutive/fluid/singlefluid/ParticleFluid.hpp +++ b/src/coreComponents/constitutive/fluid/singlefluid/ParticleFluid.hpp @@ -20,7 +20,7 @@ #ifndef GEOS_CONSTITUTIVE_FLUID_SINGLEFLUID_PARTICLEFLUID_HPP_ #define GEOS_CONSTITUTIVE_FLUID_SINGLEFLUID_PARTICLEFLUID_HPP_ -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" #include "constitutive/fluid/singlefluid/ParticleFluidBase.hpp" namespace geos diff --git a/src/coreComponents/constitutive/relativePermeability/BrooksCoreyBakerRelativePermeability.hpp b/src/coreComponents/constitutive/relativePermeability/BrooksCoreyBakerRelativePermeability.hpp index 57181e7f726..723abef4df9 100644 --- a/src/coreComponents/constitutive/relativePermeability/BrooksCoreyBakerRelativePermeability.hpp +++ b/src/coreComponents/constitutive/relativePermeability/BrooksCoreyBakerRelativePermeability.hpp @@ -86,7 +86,7 @@ class BrooksCoreyBakerRelativePermeabilityUpdate final : public RelativePermeabi * @param[in] maxValue the endpoint relative permeability value * * This function evaluates the relperm function and its derivative at a given phase saturation - * Reference: Eclipse technical description and Petrowiki + * Reference: Petrowiki */ GEOS_HOST_DEVICE GEOS_FORCE_INLINE diff --git a/src/coreComponents/constitutive/relativePermeability/BrooksCoreyStone2RelativePermeability.hpp b/src/coreComponents/constitutive/relativePermeability/BrooksCoreyStone2RelativePermeability.hpp index 99e6caff614..c6486d65551 100644 --- a/src/coreComponents/constitutive/relativePermeability/BrooksCoreyStone2RelativePermeability.hpp +++ b/src/coreComponents/constitutive/relativePermeability/BrooksCoreyStone2RelativePermeability.hpp @@ -86,7 +86,7 @@ class BrooksCoreyStone2RelativePermeabilityUpdate final : public RelativePermeab * @param[in] maxValue the endpoint relative permeability value * * This function evaluates the relperm function and its derivative at a given phase saturation - * Reference: Eclipse technical description and Petrowiki + * Reference: Petrowiki */ GEOS_HOST_DEVICE inline diff --git a/src/coreComponents/constitutive/relativePermeability/RelativePermeabilityBase.hpp b/src/coreComponents/constitutive/relativePermeability/RelativePermeabilityBase.hpp index da634a6ac48..16100d449d2 100644 --- a/src/coreComponents/constitutive/relativePermeability/RelativePermeabilityBase.hpp +++ b/src/coreComponents/constitutive/relativePermeability/RelativePermeabilityBase.hpp @@ -24,7 +24,7 @@ #include "constitutive/ConstitutiveBase.hpp" #include "constitutive/relativePermeability/layouts.hpp" #include "common/GEOS_RAJA_Interface.hpp" -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" namespace geos { diff --git a/src/coreComponents/constitutive/relativePermeability/RelativePermeabilityInterpolators.hpp b/src/coreComponents/constitutive/relativePermeability/RelativePermeabilityInterpolators.hpp index eae8eb8b394..b2e18b9df9a 100644 --- a/src/coreComponents/constitutive/relativePermeability/RelativePermeabilityInterpolators.hpp +++ b/src/coreComponents/constitutive/relativePermeability/RelativePermeabilityInterpolators.hpp @@ -46,8 +46,8 @@ struct Baker * @param[in] dGoRelPerm_dOilVolFrac * * This function interpolates the two-phase relperms to compute the three-phase relperm - * The interpolation is based on the modified Baker method, also used as default in Eclipse - * Reference: Eclipse technical description and PetroWiki + * The interpolation is based on the modified Baker method + * Reference: PetroWiki */ GEOS_HOST_DEVICE GEOS_FORCE_INLINE @@ -131,7 +131,6 @@ struct Stone2 * * This function interpolates the two-phase relperms to compute the three-phase relperm * The interpolation is based on the modified Stone 2 method - * Reference: Eclipse technical description */ GEOS_HOST_DEVICE GEOS_FORCE_INLINE diff --git a/src/coreComponents/constitutive/relativePermeability/TableRelativePermeabilityHysteresis.cpp b/src/coreComponents/constitutive/relativePermeability/TableRelativePermeabilityHysteresis.cpp index 4eb224bb5e2..5fda6ae4c6a 100644 --- a/src/coreComponents/constitutive/relativePermeability/TableRelativePermeabilityHysteresis.cpp +++ b/src/coreComponents/constitutive/relativePermeability/TableRelativePermeabilityHysteresis.cpp @@ -488,7 +488,7 @@ void TableRelativePermeabilityHysteresis::computeLandCoefficient() ipNonWetting = m_phaseOrder[PhaseType::GAS]; } - // Note: for simplicity, the notations are taken from IX documentation (although this breaks our phaseVolFrac naming convention) + // Note: for simplicity, the notations are taken reservoir simulation literature (although this breaks our phaseVolFrac naming convention) // Step 1: Land parameter for the wetting phase diff --git a/src/coreComponents/constitutive/relativePermeability/TableRelativePermeabilityHysteresis.hpp b/src/coreComponents/constitutive/relativePermeability/TableRelativePermeabilityHysteresis.hpp index 1ecd09e95f7..7e5edb71292 100644 --- a/src/coreComponents/constitutive/relativePermeability/TableRelativePermeabilityHysteresis.hpp +++ b/src/coreComponents/constitutive/relativePermeability/TableRelativePermeabilityHysteresis.hpp @@ -568,7 +568,7 @@ class TableRelativePermeabilityHysteresis : public RelativePermeabilityBase /// Max krwo value (unique as krwo and krgo are considred non hysteretical in our implementation) real64 m_waterOilMaxRelPerm; - /// enum class to dispatch interpolator (Baker/Eclipse,StoneII) + /// enum class to dispatch interpolator (Baker,StoneII) ThreePhaseInterpolator m_threePhaseInterpolator; }; @@ -711,11 +711,11 @@ TableRelativePermeabilityHysteresis::KernelWrapper:: real64 & phaseRelPerm, real64 & dPhaseRelPerm_dPhaseVolFrac ) const { - // note: for simplicity, the notations are taken from IX documentation (although this breaks our phaseVolFrac naming convention) + // note: for simplicity, the notations are taken from reservoir simulation literature (although this breaks our phaseVolFrac naming + // convention) // Step 1: for a given value of the max historical saturation, Shy, compute the trapped critical saturation, Scrt, - // using Land's method. The calculation includes the modifications from Jerauld. This is equation 2.162 from - // the IX technical description. + // using Land's method. The calculation includes the modifications from Jerauld. real64 const S = phaseVolFraction; real64 const Scri = imbibitionPhaseMinVolFraction; real64 const Scrd = drainagePhaseMinVolFraction; @@ -744,9 +744,8 @@ TableRelativePermeabilityHysteresis::KernelWrapper:: else { // Step 2: compute the normalized saturation, S_norm, at which the imbibition relperm curve will be evaluated. - // This is equation 2.166 from the IX technical description. real64 const ratio = ( Smx - Scri ) / ( Shy - Scrt ); - real64 const Snorm = Scri + ( S - Scrt ) * ratio; // normalized saturation from equation 2.166 + real64 const Snorm = Scri + ( S - Scrt ) * ratio; // normalized saturation real64 const dSnorm_dS = ratio; // Step 3: evaluate the imbibition relperm, kri(Snorm), at the normalized saturation, Snorm. @@ -761,7 +760,6 @@ TableRelativePermeabilityHysteresis::KernelWrapper:: real64 const krdAtSmx = drainageRelPermEndPoint; // Step 6: apply the formula blending drainage and imbibition relperms from the Killough model. - // This equation 2.165 from the IX technical description. real64 const drainageRelPermRatio = krdAtShy / krdAtSmx; phaseRelPerm = kriAtSnorm * drainageRelPermRatio; dPhaseRelPerm_dPhaseVolFrac = dkriAtSnorm_dS * drainageRelPermRatio; diff --git a/src/coreComponents/constitutive/relativePermeability/VanGenuchtenBakerRelativePermeability.hpp b/src/coreComponents/constitutive/relativePermeability/VanGenuchtenBakerRelativePermeability.hpp index 88ac8c2eafc..cf3d399f2ef 100644 --- a/src/coreComponents/constitutive/relativePermeability/VanGenuchtenBakerRelativePermeability.hpp +++ b/src/coreComponents/constitutive/relativePermeability/VanGenuchtenBakerRelativePermeability.hpp @@ -87,7 +87,7 @@ class VanGenuchtenBakerRelativePermeabilityUpdate final : public RelativePermeab * @return (void) * * This function evaluates the relperm function and its derivative at a given phase saturation - * Reference: Eclipse technical description and Petrowiki + * Reference: Petrowiki */ GEOS_HOST_DEVICE GEOS_FORCE_INLINE diff --git a/src/coreComponents/constitutive/relativePermeability/VanGenuchtenStone2RelativePermeability.hpp b/src/coreComponents/constitutive/relativePermeability/VanGenuchtenStone2RelativePermeability.hpp index 9896b892950..28c9adda0b7 100644 --- a/src/coreComponents/constitutive/relativePermeability/VanGenuchtenStone2RelativePermeability.hpp +++ b/src/coreComponents/constitutive/relativePermeability/VanGenuchtenStone2RelativePermeability.hpp @@ -87,7 +87,7 @@ class VanGenuchtenStone2RelativePermeabilityUpdate final : public RelativePermea * @return (void) * * This function evaluates the relperm function and its derivative at a given phase saturation - * Reference: Eclipse technical description and Petrowiki + * Reference: Petrowiki */ GEOS_HOST_DEVICE inline diff --git a/src/coreComponents/constitutive/unitTests/CMakeLists.txt b/src/coreComponents/constitutive/unitTests/CMakeLists.txt index acb2691e2aa..560f34682d6 100644 --- a/src/coreComponents/constitutive/unitTests/CMakeLists.txt +++ b/src/coreComponents/constitutive/unitTests/CMakeLists.txt @@ -11,6 +11,7 @@ set( gtest_geosx_tests testElasticTransverseIsotropic.cpp testKValueInitialization.cpp testImmiscibleWaterFlashModel.cpp + testImmiscibleWaterProperties.cpp testLohrenzBrayClarkViscosity.cpp testModifiedCamClay.cpp testMultiFluidSelector.cpp diff --git a/src/coreComponents/constitutive/unitTests/testImmiscibleWaterProperties.cpp b/src/coreComponents/constitutive/unitTests/testImmiscibleWaterProperties.cpp new file mode 100644 index 00000000000..6b31ceffc9e --- /dev/null +++ b/src/coreComponents/constitutive/unitTests/testImmiscibleWaterProperties.cpp @@ -0,0 +1,285 @@ +/* + * ------------------------------------------------------------------------------------------------------------ + * SPDX-License-Identifier: LGPL-2.1-only + * + * Copyright (c) 2016-2024 Lawrence Livermore National Security LLC + * Copyright (c) 2018-2024 Total, S.A + * Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University + * Copyright (c) 2023-2024 Chevron + * Copyright (c) 2019- GEOS/GEOSX Contributors + * All rights reserved + * + * See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. + * ------------------------------------------------------------------------------------------------------------ + */ + +// Source includes +#include "codingUtilities/UnitTestUtilities.hpp" +#include "constitutive/fluid/multifluid/compositional/models/ImmiscibleWaterParameters.hpp" +#include "constitutive/fluid/multifluid/compositional/models/ImmiscibleWaterDensity.hpp" +#include "constitutive/fluid/multifluid/compositional/models/ImmiscibleWaterViscosity.hpp" +#include "TestFluid.hpp" +#include "TestFluidUtilities.hpp" + +using namespace geos::constitutive::compositional; + +namespace geos +{ +namespace testing +{ + +template< int NC > +using TestData = std::tuple< + real64 const, // pressure + real64 const, // temperature + Feed< NC > const, // phase composition + real64 const, // expected molar density + real64 const, // expected mass density + real64 const // expected viscosity + >; + +template< int NC > +struct FluidData {}; + +template<> +struct FluidData< 3 > +{ + static std::unique_ptr< TestFluid< 3 > > createFluid() + { + auto fluid = TestFluid< 3 >::create( {Fluid::C1, Fluid::C10, Fluid::H2O} ); + std::array< real64, 3 > const bics = {0.25, 0.0, 0.0}; + fluid->setBinaryCoefficients( bics ); + return fluid; + } +}; + +template< int NC > +class ImmiscibleWaterPropertiesTestFixture : public ::testing::TestWithParam< TestData< NC > > +{ + static constexpr real64 relTol = 1.0e-5; + static constexpr real64 absTol = 1.0e-7; + static constexpr int numComps = NC; + static constexpr int numDofs = NC + 2; + using Deriv = geos::constitutive::multifluid::DerivativeOffset; +public: + ImmiscibleWaterPropertiesTestFixture() + : m_fluid( FluidData< NC >::createFluid() ) + { + ComponentProperties const & componentProperties = this->m_fluid->getComponentProperties(); + + m_parameters = ImmiscibleWaterDensity::createParameters( std::make_unique< ModelParameters >() ); + m_parameters = ImmiscibleWaterViscosity::createParameters( std::move( m_parameters ) ); + + auto * waterParameters = const_cast< ImmiscibleWaterParameters * >(m_parameters->get< ImmiscibleWaterParameters >()); + waterParameters->m_waterReferencePressure = 215.0e5; + waterParameters->m_waterDensity = 1020.0; + waterParameters->m_waterCompressibility = 4.1483E-10; + waterParameters->m_waterViscosityCompressibility = 2.0E-11; + waterParameters->m_waterViscosity = 0.32929e-3; + + m_density = std::make_unique< ImmiscibleWaterDensity >( "PhaseDensity", componentProperties, 0, *m_parameters ); + m_viscosity = std::make_unique< ImmiscibleWaterViscosity >( "PhaseViscosity", componentProperties, 0, *m_parameters ); + } + + ~ImmiscibleWaterPropertiesTestFixture() = default; + + void testProperties( TestData< NC > const & data ) + { + real64 const pressure = std::get< 0 >( data ); + real64 const temperature = std::get< 1 >( data ); + stackArray1d< real64, numComps > phaseComposition; + TestFluid< NC >::createArray( phaseComposition, std::get< 2 >( data )); + real64 const expectedMolarDensity = std::get< 3 >( data ); + real64 const expectedMassDensity = std::get< 4 >( data ); + real64 const expectedViscosity = std::get< 5 >( data ); + + real64 molarDensity = 0.0; + real64 massDensity = 0.0; + real64 viscosity = 0.0; + stackArray1d< real64, numDofs > tempDerivs( numDofs ); + + auto componentProperties = m_fluid->createKernelWrapper(); + auto densityKernelWrapper = m_density->createKernelWrapper(); + auto viscosityKernelWrapper = m_viscosity->createKernelWrapper(); + + densityKernelWrapper.compute( componentProperties, + pressure, + temperature, + phaseComposition.toSliceConst(), + molarDensity, + tempDerivs.toSlice(), + massDensity, + tempDerivs.toSlice(), + false ); + + viscosityKernelWrapper.compute( componentProperties, + pressure, + temperature, + phaseComposition.toSliceConst(), + massDensity, + tempDerivs.toSliceConst(), + viscosity, + tempDerivs.toSlice(), + false ); + + checkRelativeError( molarDensity, expectedMolarDensity, relTol, absTol ); + checkRelativeError( massDensity, expectedMassDensity, relTol, absTol ); + checkRelativeError( viscosity, expectedViscosity, relTol, absTol ); + } + + void testPropertyDerivatives( TestData< NC > const & data ) + { + real64 const pressure = std::get< 0 >( data ); + real64 const temperature = std::get< 1 >( data ); + stackArray1d< real64, numComps > phaseComposition; + TestFluid< NC >::createArray( phaseComposition, std::get< 2 >( data )); + + auto componentProperties = m_fluid->createKernelWrapper(); + auto densityKernelWrapper = m_density->createKernelWrapper(); + auto viscosityKernelWrapper = m_viscosity->createKernelWrapper(); + + real64 molarDensity = 0.0; + real64 massDensity = 0.0; + real64 viscosity = 0.0; + stackArray1d< real64, numDofs > molarDensityDerivs( numDofs ); + stackArray1d< real64, numDofs > massDensityDerivs( numDofs ); + stackArray1d< real64, numDofs > viscosityDerivs( numDofs ); + stackArray1d< real64, 3 > derivatives( 3 ); + + densityKernelWrapper.compute( componentProperties, + pressure, + temperature, + phaseComposition.toSliceConst(), + molarDensity, + molarDensityDerivs.toSlice(), + massDensity, + massDensityDerivs.toSlice(), + false ); + + viscosityKernelWrapper.compute( componentProperties, + pressure, + temperature, + phaseComposition.toSliceConst(), + massDensity, + massDensityDerivs.toSliceConst(), + viscosity, + viscosityDerivs.toSlice(), + false ); + + // Viscosity values are very small so we will inflate the values to avoid false positives due + // to the absolute value check + real64 constexpr viscosityScale = 1.0e6; + + auto calculateProperties = [&]( real64 const p, real64 const t, auto const & zmf, auto & values ) { + stackArray1d< real64, numDofs > tempDerivs( numDofs ); + densityKernelWrapper.compute( componentProperties, p, t, zmf.toSliceConst(), + values[0], tempDerivs.toSlice(), values[1], tempDerivs.toSlice(), false ); + viscosityKernelWrapper.compute( componentProperties, p, t, zmf.toSliceConst(), + values[1], tempDerivs.toSliceConst(), values[2], tempDerivs.toSlice(), false ); + values[2] *= viscosityScale; + }; + + auto concatDerivatives = [&]( int idof ){ + derivatives[0] = molarDensityDerivs[idof]; + derivatives[1] = massDensityDerivs[idof]; + derivatives[2] = viscosityScale * viscosityDerivs[idof]; + }; + + // Compare against numerical derivatives + // -- Pressure derivative + concatDerivatives( Deriv::dP ); + real64 const dp = 1.0e-4 * pressure; + internal::testNumericalDerivative< 3 >( pressure, dp, derivatives.toSliceConst(), + [&]( real64 const p, auto & values ) { + calculateProperties( p, temperature, phaseComposition, values ); + }, absTol, relTol ); + + // -- Temperature derivative + concatDerivatives( Deriv::dT ); + real64 const dT = 1.0e-6 * temperature; + internal::testNumericalDerivative< 3 >( temperature, dT, derivatives.toSliceConst(), + [&]( real64 const t, auto & values ) { + calculateProperties( pressure, t, phaseComposition, values ); + }, absTol, relTol ); + + // -- Composition derivatives derivative + real64 const dz = 1.0e-7; + for( integer ic = 0; ic < NC; ++ic ) + { + concatDerivatives( Deriv::dC+ic ); + internal::testNumericalDerivative< 3 >( 0.0, dz, derivatives.toSliceConst(), + [&]( real64 const z, auto & values ) { + stackArray1d< real64, numComps > zmf( numComps ); + for( integer jc = 0; jc < numComps; ++jc ) + { + zmf[jc] = phaseComposition[jc]; + } + zmf[ic] += z; + calculateProperties( pressure, temperature, zmf, values ); + }, absTol, relTol ); + } + } + +protected: + std::unique_ptr< TestFluid< NC > > m_fluid{}; + std::unique_ptr< ImmiscibleWaterDensity > m_density{}; + std::unique_ptr< ImmiscibleWaterViscosity > m_viscosity{}; + std::unique_ptr< ModelParameters > m_parameters{}; +}; + +using ImmiscibleWaterProperties3 = ImmiscibleWaterPropertiesTestFixture< 3 >; + +TEST_P( ImmiscibleWaterProperties3, testProperties ) +{ + testProperties( GetParam() ); +} + +TEST_P( ImmiscibleWaterProperties3, testPropertyDerivatives ) +{ + testPropertyDerivatives( GetParam() ); +} + +//------------------------------------------------------------------------------- +// Data +//------------------------------------------------------------------------------- + +/* UNCRUSTIFY-OFF */ + +INSTANTIATE_TEST_SUITE_P( + ImmiscibleWaterProperties, ImmiscibleWaterProperties3, + ::testing::Values( + TestData< 3 >( 2.0e+06, 293.15, { 0.30, 0.30, 0.40 }, 5.616333e+04, 1.011782e+03, 3.291616e-04 ), + TestData< 3 >( 1.5e+07, 293.15, { 0.30, 0.30, 0.40 }, 5.646702e+04, 1.017253e+03, 3.292472e-04 ), + TestData< 3 >( 6.0e+07, 293.15, { 0.30, 0.30, 0.40 }, 5.753101e+04, 1.036421e+03, 3.295437e-04 ), + TestData< 3 >( 2.0e+06, 353.15, { 0.30, 0.30, 0.40 }, 5.616333e+04, 1.011782e+03, 3.291616e-04 ), + TestData< 3 >( 1.5e+07, 353.15, { 0.30, 0.30, 0.40 }, 5.646702e+04, 1.017253e+03, 3.292472e-04 ), + TestData< 3 >( 6.0e+07, 353.15, { 0.30, 0.30, 0.40 }, 5.753101e+04, 1.036421e+03, 3.295437e-04 ), + TestData< 3 >( 2.0e+06, 573.15, { 0.30, 0.30, 0.40 }, 5.616333e+04, 1.011782e+03, 3.291616e-04 ), + TestData< 3 >( 1.5e+07, 573.15, { 0.30, 0.30, 0.40 }, 5.646702e+04, 1.017253e+03, 3.292472e-04 ), + TestData< 3 >( 6.0e+07, 573.15, { 0.30, 0.30, 0.40 }, 5.753101e+04, 1.036421e+03, 3.295437e-04 ), + TestData< 3 >( 2.0e+06, 293.15, { 0.00, 0.00, 1.00 }, 5.616333e+04, 1.011782e+03, 3.291616e-04 ), + TestData< 3 >( 1.5e+07, 293.15, { 0.00, 0.00, 1.00 }, 5.646702e+04, 1.017253e+03, 3.292472e-04 ), + TestData< 3 >( 6.0e+07, 293.15, { 0.00, 0.00, 1.00 }, 5.753101e+04, 1.036421e+03, 3.295437e-04 ), + TestData< 3 >( 2.0e+06, 353.15, { 0.00, 0.00, 1.00 }, 5.616333e+04, 1.011782e+03, 3.291616e-04 ), + TestData< 3 >( 1.5e+07, 353.15, { 0.00, 0.00, 1.00 }, 5.646702e+04, 1.017253e+03, 3.292472e-04 ), + TestData< 3 >( 6.0e+07, 353.15, { 0.00, 0.00, 1.00 }, 5.753101e+04, 1.036421e+03, 3.295437e-04 ), + TestData< 3 >( 2.0e+06, 573.15, { 0.00, 0.00, 1.00 }, 5.616333e+04, 1.011782e+03, 3.291616e-04 ), + TestData< 3 >( 1.5e+07, 573.15, { 0.00, 0.00, 1.00 }, 5.646702e+04, 1.017253e+03, 3.292472e-04 ), + TestData< 3 >( 6.0e+07, 573.15, { 0.00, 0.00, 1.00 }, 5.753101e+04, 1.036421e+03, 3.295437e-04 ), + TestData< 3 >( 2.0e+06, 293.15, { 0.20, 0.80, 0.00 }, 5.616333e+04, 1.011782e+03, 3.291616e-04 ), + TestData< 3 >( 1.5e+07, 293.15, { 0.20, 0.80, 0.00 }, 5.646702e+04, 1.017253e+03, 3.292472e-04 ), + TestData< 3 >( 6.0e+07, 293.15, { 0.20, 0.80, 0.00 }, 5.753101e+04, 1.036421e+03, 3.295437e-04 ), + TestData< 3 >( 2.0e+06, 353.15, { 0.20, 0.80, 0.00 }, 5.616333e+04, 1.011782e+03, 3.291616e-04 ), + TestData< 3 >( 1.5e+07, 353.15, { 0.20, 0.80, 0.00 }, 5.646702e+04, 1.017253e+03, 3.292472e-04 ), + TestData< 3 >( 6.0e+07, 353.15, { 0.20, 0.80, 0.00 }, 5.753101e+04, 1.036421e+03, 3.295437e-04 ), + TestData< 3 >( 2.0e+06, 573.15, { 0.20, 0.80, 0.00 }, 5.616333e+04, 1.011782e+03, 3.291616e-04 ), + TestData< 3 >( 1.5e+07, 573.15, { 0.20, 0.80, 0.00 }, 5.646702e+04, 1.017253e+03, 3.292472e-04 ), + TestData< 3 >( 6.0e+07, 573.15, { 0.20, 0.80, 0.00 }, 5.753101e+04, 1.036421e+03, 3.295437e-04 ) + ) +); + +/* UNCRUSTIFY-ON */ + +} // testing + +} // geos diff --git a/src/coreComponents/constitutiveDrivers/CMakeLists.txt b/src/coreComponents/constitutiveDrivers/CMakeLists.txt index 41e4a946d28..4cc69dd4935 100644 --- a/src/coreComponents/constitutiveDrivers/CMakeLists.txt +++ b/src/coreComponents/constitutiveDrivers/CMakeLists.txt @@ -1,3 +1,23 @@ +# SPDX-License-Identifier: LGPL-2.1-only +# +# Copyright (c) 2016-2024 Lawrence Livermore National Security LLC +# Copyright (c) 2018-2024 Total, S.A +# Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University +# Copyright (c) 2023-2024 Chevron +# Copyright (c) 2019- GEOS/GEOSX Contributors +# All rights reserved +# +# See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. +# +#-------------------------------------------------------------------------------------------------- + +#[[ +Package: constitutiveDrivers + +Contains fluid and rock constitutive model tests to calibrate constitutive model parameters to + experimental data. +#]] + # # Specify all headers # @@ -19,6 +39,7 @@ set( constitutiveDrivers_sources fluid/multiFluid/CO2Brine/PVTDriverRunTestCO2BrinePhillipsThermalFluid.cpp fluid/multiFluid/CO2Brine/PVTDriverRunTestCO2BrineEzrokhiFluid.cpp fluid/multiFluid/CO2Brine/PVTDriverRunTestCO2BrineEzrokhiThermalFluid.cpp + fluid/multiFluid/compositional/PVTDriverRunTestCompositionalThreePhaseLohrenzBrayClarkViscosity.cpp fluid/multiFluid/compositional/PVTDriverRunTestCompositionalTwoPhaseConstantViscosity.cpp fluid/multiFluid/compositional/PVTDriverRunTestCompositionalTwoPhaseLohrenzBrayClarkViscosity.cpp fluid/multiFluid/reactive/ReactiveFluidDriver.cpp diff --git a/src/coreComponents/constitutiveDrivers/fluid/multiFluid/compositional/PVTDriverRunTestCompositionalThreePhaseLohrenzBrayClarkViscosity.cpp b/src/coreComponents/constitutiveDrivers/fluid/multiFluid/compositional/PVTDriverRunTestCompositionalThreePhaseLohrenzBrayClarkViscosity.cpp new file mode 100644 index 00000000000..c7ae9568177 --- /dev/null +++ b/src/coreComponents/constitutiveDrivers/fluid/multiFluid/compositional/PVTDriverRunTestCompositionalThreePhaseLohrenzBrayClarkViscosity.cpp @@ -0,0 +1,27 @@ +/* + * ------------------------------------------------------------------------------------------------------------ + * SPDX-License-Identifier: LGPL-2.1-only + * + * Copyright (c) 2016-2024 Lawrence Livermore National Security LLC + * Copyright (c) 2018-2024 Total, S.A + * Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University + * Copyright (c) 2018-2024 Chevron + * Copyright (c) 2019- GEOS/GEOSX Contributors + * All rights reserved + * + * See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. + * ------------------------------------------------------------------------------------------------------------ + */ + +/* + * PVTDriverRunTestCompositionalThreePhaseLohrenzBrayClarkViscosity.cpp + */ + +#include "constitutiveDrivers/fluid/multiFluid/PVTDriverRunTest.hpp" +#include "constitutive/fluid/multifluid/compositional/CompositionalMultiphaseFluid.hpp" + +namespace geos +{ +template void PVTDriver::runTest< constitutive::CompositionalThreePhaseLohrenzBrayClarkViscosity >( + constitutive::CompositionalThreePhaseLohrenzBrayClarkViscosity &, arrayView2d< real64 > const & ); +} diff --git a/src/coreComponents/dataRepository/BufferOps_inline.hpp b/src/coreComponents/dataRepository/BufferOps_inline.hpp index cd87b74e7eb..14b16a04402 100644 --- a/src/coreComponents/dataRepository/BufferOps_inline.hpp +++ b/src/coreComponents/dataRepository/BufferOps_inline.hpp @@ -1527,7 +1527,10 @@ Unpack( buffer_unit_type const * & buffer, relatedObjectGlobalToLocalMap, clearFlag ); - unmappedGlobalIndices[li].insert( unmappedIndices.data(), unmappedIndices.size() ); + if( unmappedIndices.size() > 0 ) + { + unmappedGlobalIndices[li].insert( unmappedIndices.data(), unmappedIndices.size() ); + } } return sizeOfUnpackedChars; } @@ -1644,7 +1647,10 @@ Unpack( buffer_unit_type const * & buffer, // insert unknown global indices related to the local index into an additional mapping to resolve externally unmapped.resize( LvArray::sortedArrayManipulation::makeSortedUnique( unmapped.begin(), unmapped.end() ) ); - unmappedGlobalIndices[li].insert( unmapped.begin(), unmapped.end() ); + if( unmapped.size() > 0 ) + { + unmappedGlobalIndices[li].insert( unmapped.begin(), unmapped.end() ); + } } // If there were element lists that didn't fit in the map, rebuild the whole thing @@ -1762,7 +1768,11 @@ Pack( buffer_unit_type * & buffer, arraySlice1d< globalIndex const > const & relatedObjectLocalToGlobalMap ) { localIndex sizeOfPackedChars = 0; - array1d< globalIndex > junk; + array1d< globalIndex > invalidGlobalIndices( var.size( 1 ) ); + for( localIndex a=0; a( buffer, indices.size() ); for( localIndex a=0; a const & unmappedGI = iterUnmappedGI==unmappedGlobalIndices.end() ? - junk : + invalidGlobalIndices : iterUnmappedGI->second; sizeOfPackedChars += Pack< DO_PACKING >( buffer, diff --git a/src/coreComponents/dataRepository/CMakeLists.txt b/src/coreComponents/dataRepository/CMakeLists.txt index f3e4e82628e..49f4404cbd6 100644 --- a/src/coreComponents/dataRepository/CMakeLists.txt +++ b/src/coreComponents/dataRepository/CMakeLists.txt @@ -1,4 +1,26 @@ +# SPDX-License-Identifier: LGPL-2.1-only +# +# Copyright (c) 2016-2024 Lawrence Livermore National Security LLC +# Copyright (c) 2018-2024 Total, S.A +# Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University +# Copyright (c) 2023-2024 Chevron +# Copyright (c) 2019- GEOS/GEOSX Contributors +# All rights reserved +# +# See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. +# +#-------------------------------------------------------------------------------------------------- + +#[[ +Package: dataRepository + +Provides the building blocks for the data structure of GEOS objects. +Also contains a wrapper to process entries from an xml file into data types. +#]] + +# # Specify all headers +# set( dataRepository_headers BufferOps.hpp BufferOpsDevice.hpp @@ -26,7 +48,9 @@ set( dataRepository_headers GroupContext.hpp WrapperContext.hpp ) +# # Specify all sources +# set( dataRepository_sources BufferOpsDevice.cpp ConduitRestart.cpp diff --git a/src/coreComponents/dataRepository/ExecutableGroup.hpp b/src/coreComponents/dataRepository/ExecutableGroup.hpp index dd3da89af5b..201b6642227 100644 --- a/src/coreComponents/dataRepository/ExecutableGroup.hpp +++ b/src/coreComponents/dataRepository/ExecutableGroup.hpp @@ -20,7 +20,7 @@ #ifndef GEOS_DATAREPOSITORY_EXECUTABLEGROUP_HPP_ #define GEOS_DATAREPOSITORY_EXECUTABLEGROUP_HPP_ -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" #include "common/DataTypes.hpp" #include "Group.hpp" diff --git a/src/coreComponents/dataRepository/Wrapper.hpp b/src/coreComponents/dataRepository/Wrapper.hpp index 881d9df2a6c..a75bf3cb9c5 100644 --- a/src/coreComponents/dataRepository/Wrapper.hpp +++ b/src/coreComponents/dataRepository/Wrapper.hpp @@ -411,7 +411,7 @@ class Wrapper final : public WrapperBase virtual void resize( localIndex const newSize ) override { wrapperHelpers::move( *m_data, hostMemorySpace, true ); - wrapperHelpers::resizeDefault( reference(), newSize, m_default ); + wrapperHelpers::resizeDefault( reference(), newSize, m_default, this->getName() ); } /// @cond DO_NOT_DOCUMENT diff --git a/src/coreComponents/dataRepository/unitTests/testXmlWrapper.cpp b/src/coreComponents/dataRepository/unitTests/testXmlWrapper.cpp index 32141eb0e28..ce1dbaf3e7e 100644 --- a/src/coreComponents/dataRepository/unitTests/testXmlWrapper.cpp +++ b/src/coreComponents/dataRepository/unitTests/testXmlWrapper.cpp @@ -16,7 +16,7 @@ #include #include "dataRepository/xmlWrapper.hpp" -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" using namespace geos; diff --git a/src/coreComponents/dataRepository/wrapperHelpers.hpp b/src/coreComponents/dataRepository/wrapperHelpers.hpp index 021dbf018e3..c77b178d5f2 100644 --- a/src/coreComponents/dataRepository/wrapperHelpers.hpp +++ b/src/coreComponents/dataRepository/wrapperHelpers.hpp @@ -33,6 +33,7 @@ #include "common/GeosxMacros.hpp" #include "common/Span.hpp" #include "codingUtilities/traits.hpp" +#include "LvArray/src/system.hpp" #if defined(GEOS_USE_PYGEOSX) #include "LvArray/src/python/python.hpp" @@ -188,18 +189,40 @@ resize( T & GEOS_UNUSED_PARAM( value ), localIndex const GEOS_UNUSED_PARAM( newSize ) ) {} - -template< typename T, int NDIM, typename PERMUTATION > -inline std::enable_if_t< DefaultValue< Array< T, NDIM, PERMUTATION > >::has_default_value > -resizeDefault( Array< T, NDIM, PERMUTATION > & value, +template< typename T > +inline std::enable_if_t< traits::HasMemberFunction_resizeDefault< T > && + DefaultValue< T >::has_default_value > +resizeDefault( T & value, localIndex const newSize, - DefaultValue< Array< T, NDIM, PERMUTATION > > const & defaultValue ) + DefaultValue< T > const & defaultValue, + string const & ) { value.resizeDefault( newSize, defaultValue.value ); } template< typename T > -inline void -resizeDefault( T & value, localIndex const newSize, DefaultValue< T > const & GEOS_UNUSED_PARAM( defaultValue ) ) -{ resize( value, newSize ); } +inline std::enable_if_t< !( traits::HasMemberFunction_resizeDefault< T > && + DefaultValue< T >::has_default_value ) > +resizeDefault( T & value, + localIndex const newSize, + DefaultValue< T > const & GEOS_UNUSED_PARAM( defaultValue ), + string const & name ) +{ +#if !defined(NDEBUG) + GEOS_LOG_RANK_0( GEOS_FMT( "Warning: For Wrapper<{}>::name() = {}:\n" + " wrapperHelpers::resizeDefault<{}>() called, but the SFINAE filter failed:\n" + " traits::HasMemberFunction_resizeDefault< {} > = {}\n " + " DefaultValue< {} >::has_default_value = {}", + LvArray::system::demangleType< T >(), + name, + LvArray::system::demangleType< T >(), + LvArray::system::demangleType< T >(), + traits::HasMemberFunction_resizeDefault< T >, + LvArray::system::demangleType< T >(), + DefaultValue< T >::has_default_value ) ); +#else + GEOS_UNUSED_VAR( name ); +#endif + resize( value, newSize ); +} template< typename T, int NDIM, typename PERMUTATION > @@ -490,6 +513,133 @@ pullDataFromConduitNode( Array< T, NDIM, PERMUTATION > & var, std::memcpy( var.data(), valuesNode.data_ptr(), numBytesFromArray ); } + + +template< typename T, typename INDEX_TYPE > +std::enable_if_t< bufferOps::can_memcpy< T > > +pushDataToConduitNode( ArrayOfArrays< T, INDEX_TYPE > const & var2, + conduit::Node & node ) +{ + ArrayOfArraysView< T const, INDEX_TYPE > const & var = var2.toViewConst(); + internal::logOutputType( LvArray::system::demangleType( var ), "Output array via external pointer: " ); + + // ArrayOfArrays::m_numArrays + INDEX_TYPE const numArrays = var.size(); + conduit::DataType const numArraysType( conduitTypeInfo< INDEX_TYPE >::id, 1 ); + node[ "__numberOfArrays__" ].set( numArraysType, const_cast< void * >( static_cast< void const * >(&numArrays) ) ); + + // ArrayOfArrays::m_offsets + INDEX_TYPE const * const offsets = var.getOffsets(); + conduit::DataType const offsetsType( conduitTypeInfo< INDEX_TYPE >::id, numArrays+1 ); + node[ "__offsets__" ].set_external( offsetsType, const_cast< void * >( static_cast< void const * >( offsets ) ) ); + + // ArrayOfArrays::m_sizes + INDEX_TYPE const * const sizes = var.getSizes(); + conduit::DataType const sizesType( conduitTypeInfo< INDEX_TYPE >::id, numArrays ); + node[ "__sizes__" ].set_external( sizesType, const_cast< void * >( static_cast< void const * >( sizes ) ) ); + + // **** WARNING: alters the uninitialized values in the ArrayOfArrays **** + T * const values = const_cast< T * >(var.getValues()); + for( INDEX_TYPE i = 0; i < numArrays; ++i ) + { + INDEX_TYPE const curOffset = offsets[ i ]; + INDEX_TYPE const nextOffset = offsets[ i + 1 ]; + for( INDEX_TYPE j = curOffset + var.sizeOfArray( i ); j < nextOffset; ++j ) + { + if constexpr ( std::is_arithmetic< T >::value ) + { + values[ j ] = 0; + } + else + { + values[ j ] = T(); + } + } + } + + constexpr int conduitTypeID = conduitTypeInfo< T >::id; + constexpr int sizeofConduitType = conduitTypeInfo< T >::sizeOfConduitType; + conduit::DataType const dtype( conduitTypeID, offsets[numArrays] * sizeof( T ) / sizeofConduitType ); + + // Push the data into conduit + node[ "__values__" ].set_external( dtype, values ); +} + +template< typename T, typename INDEX_TYPE > +std::enable_if_t< bufferOps::can_memcpy< T > > +pullDataFromConduitNode( ArrayOfArrays< T, INDEX_TYPE > & var, + conduit::Node const & node ) +{ + + // numArrays node + conduit::Node const & numArraysNode = node.fetch_existing( "__numberOfArrays__" ); + INDEX_TYPE const * const numArrays = numArraysNode.value(); + + // offsets node + conduit::Node const & offsetsNode = node.fetch_existing( "__offsets__" ); + conduit::DataType const & offsetsDataType = offsetsNode.dtype(); + INDEX_TYPE const * const offsets = offsetsNode.value(); + INDEX_TYPE const sizeOffsets = offsetsDataType.number_of_elements(); + + // sizes node + conduit::Node const & sizesNode = node.fetch_existing( "__sizes__" ); + conduit::DataType const & sizesDataType = sizesNode.dtype(); + INDEX_TYPE const * const sizes = sizesNode.value(); + INDEX_TYPE const sizeSizes = sizesDataType.number_of_elements(); + + // Check that the numArrays, sizes and offsets are consistent. + GEOS_ERROR_IF_NE( *numArrays, sizeSizes ); + GEOS_ERROR_IF_NE( *numArrays+1, sizeOffsets ); + + // values node + conduit::Node const & valuesNode = node.fetch_existing( "__values__" ); + conduit::DataType const & valuesDataType = valuesNode.dtype(); + const INDEX_TYPE valuesSize = valuesDataType.number_of_elements(); + + // should preallocate var.m_values with estimated sizes + INDEX_TYPE const arraySizeEstimate = (*numArrays)==0 ? 0 : valuesSize / (*numArrays); + var.resize( *numArrays, arraySizeEstimate ); + var.reserveValues( valuesSize ); + + // correctly set the sizes and capacities of each sub-array + localIndex allocatedSize = 0; + for( INDEX_TYPE i = 0; i < *numArrays; ++i ) + { + INDEX_TYPE const arrayAllocation = offsets[i+1] - offsets[i]; + var.setCapacityOfArray( i, arrayAllocation ); + var.resizeArray( i, sizes[ i ] ); + allocatedSize += arrayAllocation; + } + + // make sure that the allocated size is the same as the number of values read + GEOS_ERROR_IF_NE( valuesSize, allocatedSize ); + + // make sure the allocatedSize is consistent wit the last offset + GEOS_ERROR_IF_NE( allocatedSize, offsets[sizeOffsets-1] ); + + // get a view because the ArrayOfArraysView data accessors are protected + ArrayOfArraysView< T const, INDEX_TYPE > const & varView = var.toViewConst(); + INDEX_TYPE const * const varOffsets = varView.getOffsets(); + INDEX_TYPE const * const varSizes = varView.getSizes(); + + // check that the offsets that are read are the same as the ones that were allocated + GEOS_ERROR_IF_NE( varOffsets[0], offsets[0] ); + + // check each subarray has the identical capacity and size + for( INDEX_TYPE i = 0; i<*numArrays; ++i ) + { + GEOS_ERROR_IF_NE( varOffsets[i+1], offsets[i+1] ); + GEOS_ERROR_IF_NE( varSizes[i], sizes[i] ); + } + + // copy the values + localIndex numBytesFromArray = allocatedSize * sizeof( T ); + GEOS_ERROR_IF_NE( numBytesFromArray, valuesDataType.strided_bytes() ); + std::memcpy( const_cast< T * >(varView.getValues()), valuesNode.data_ptr(), numBytesFromArray ); +} + + + template< typename T > void pushDataToConduitNode( InterObjectRelation< T > const & var, conduit::Node & node ) diff --git a/src/coreComponents/denseLinearAlgebra/CMakeLists.txt b/src/coreComponents/denseLinearAlgebra/CMakeLists.txt index 1d15320355c..259a0ab9ff1 100644 --- a/src/coreComponents/denseLinearAlgebra/CMakeLists.txt +++ b/src/coreComponents/denseLinearAlgebra/CMakeLists.txt @@ -1,11 +1,34 @@ +# SPDX-License-Identifier: LGPL-2.1-only +# +# Copyright (c) 2016-2024 Lawrence Livermore National Security LLC +# Copyright (c) 2018-2024 Total, S.A +# Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University +# Copyright (c) 2023-2024 Chevron +# Copyright (c) 2019- GEOS/GEOSX Contributors +# All rights reserved +# +# See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. +# +#-------------------------------------------------------------------------------------------------- + +#[[ +Package: denseLinearAlgebra + +Contains dense linear algebra functions and interfaces to BLAS and LAPACK packages. +#]] + +# # Specify all headers +# set( denseLinearAlgebra_headers common/layouts.hpp denseLASolvers.hpp interfaces/blaslapack/BlasLapackFunctions.h interfaces/blaslapack/BlasLapackLA.hpp ) +# # Specify all sources +# set( denseLinearAlgebra_sources interfaces/blaslapack/BlasLapackLA.cpp ) @@ -18,7 +41,7 @@ blt_add_library( NAME denseLinearAlgebra SOURCES ${denseLinearAlgebra_sources} HEADERS ${denseLinearAlgebra_headers} DEPENDS_ON ${decoratedDependencies} - OBJECT ${GEOS_BUILD_OBJ_LIBS} + OBJECT ${GEOS_BUILD_OBJ_LIBS} SHARED ${GEOS_BUILD_SHARED_LIBS} ) diff --git a/src/coreComponents/discretizationMethods/CMakeLists.txt b/src/coreComponents/discretizationMethods/CMakeLists.txt index 06d03ca8fa9..ae7cff10390 100644 --- a/src/coreComponents/discretizationMethods/CMakeLists.txt +++ b/src/coreComponents/discretizationMethods/CMakeLists.txt @@ -1,3 +1,22 @@ +# SPDX-License-Identifier: LGPL-2.1-only +# +# Copyright (c) 2016-2024 Lawrence Livermore National Security LLC +# Copyright (c) 2018-2024 Total, S.A +# Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University +# Copyright (c) 2023-2024 Chevron +# Copyright (c) 2019- GEOS/GEOSX Contributors +# All rights reserved +# +# See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. +# +#-------------------------------------------------------------------------------------------------- + +#[[ +Package: discretizationMethods + +Gives access to the discretization methods and their components for applications to the mesh. +#]] + # # Specify all headers # diff --git a/src/coreComponents/events/CMakeLists.txt b/src/coreComponents/events/CMakeLists.txt index 3a7fe6a7a92..4f80fe771ab 100644 --- a/src/coreComponents/events/CMakeLists.txt +++ b/src/coreComponents/events/CMakeLists.txt @@ -1,3 +1,23 @@ +# SPDX-License-Identifier: LGPL-2.1-only +# +# Copyright (c) 2016-2024 Lawrence Livermore National Security LLC +# Copyright (c) 2018-2024 Total, S.A +# Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University +# Copyright (c) 2023-2024 Chevron +# Copyright (c) 2019- GEOS/GEOSX Contributors +# All rights reserved +# +# See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. +# +#-------------------------------------------------------------------------------------------------- + +#[[ +Package: events + +Contains GEOS event types. +Manages the events and tasks. +#]] + # # Specify all headers # diff --git a/src/coreComponents/fieldSpecification/AquiferBoundaryCondition.cpp b/src/coreComponents/fieldSpecification/AquiferBoundaryCondition.cpp index dffd783e997..afaa450a27e 100644 --- a/src/coreComponents/fieldSpecification/AquiferBoundaryCondition.cpp +++ b/src/coreComponents/fieldSpecification/AquiferBoundaryCondition.cpp @@ -163,7 +163,7 @@ void AquiferBoundaryCondition::postInputInitialization() void AquiferBoundaryCondition::setupDefaultPressureInfluenceFunction() { - // default table; see Eclipse or Intersect documentation + // default table array1d< array1d< real64 > > dimensionlessTime; dimensionlessTime.resize( 1 ); @@ -281,14 +281,13 @@ void AquiferBoundaryCondition::setGravityVector( R1Tensor const & gravityVector void AquiferBoundaryCondition::computeTimeConstant() { - // equation 5.3 of the Eclipse TD m_timeConstant = m_viscosity * m_porosity * m_totalCompressibility * m_innerRadius * m_innerRadius; m_timeConstant /= m_permeability; } void AquiferBoundaryCondition::computeInfluxConstant() { - // equation 5.4 of the Eclipse TD, including the constant 6.283 of the Carter-Tracy model + // 6.283 is the constant of the Carter-Tracy model m_influxConstant = 6.283 * m_thickness * ( m_angle / 360.0 ) * m_porosity * m_totalCompressibility * m_innerRadius * m_innerRadius; } diff --git a/src/coreComponents/fieldSpecification/AquiferBoundaryCondition.hpp b/src/coreComponents/fieldSpecification/AquiferBoundaryCondition.hpp index 9ee270df074..00333656f74 100644 --- a/src/coreComponents/fieldSpecification/AquiferBoundaryCondition.hpp +++ b/src/coreComponents/fieldSpecification/AquiferBoundaryCondition.hpp @@ -357,7 +357,7 @@ AquiferBoundaryCondition::KernelWrapper:: real64 const & areaFraction, real64 & dAquiferVolFlux_dPres ) const { - // compute the dimensionless time (equation 5.5 of the Eclipse TD) + // compute the dimensionless time real64 const dimensionlessTimeAtBeginningOfStep = timeAtBeginningOfStep / m_timeConstant; real64 const dimensionlessTimeAtEndOfStep = ( timeAtBeginningOfStep + dt ) / m_timeConstant; @@ -368,15 +368,15 @@ AquiferBoundaryCondition::KernelWrapper:: // compute the potential difference between the reservoir (old pressure) and the aquifer real64 const potDiff = m_initialPressure - reservoirPressure_n - m_density * ( m_gravCoef - reservoirGravCoef ); - // compute the a (equation 5.8 of the Eclipse TD) + // compute the a real64 const timeConstantInv = 1.0 / m_timeConstant; real64 const denom = presInfluence - dimensionlessTimeAtBeginningOfStep * dPresInfluence_dTime; real64 const a = timeConstantInv * ( m_influxConstant * potDiff - m_cumulativeFlux * dPresInfluence_dTime ) / denom; - // compute the b (equation 5.9 of the Eclipse TD) + // compute the b real64 const b = timeConstantInv * m_influxConstant / denom; - // compute the average inflow rate Q (equation 5.7 of the Eclipse TD) + // compute the average inflow rate Q real64 const aquiferVolFlux = areaFraction * ( a - b * ( reservoirPressure - reservoirPressure_n ) ); dAquiferVolFlux_dPres = -areaFraction * b; diff --git a/src/coreComponents/fieldSpecification/CMakeLists.txt b/src/coreComponents/fieldSpecification/CMakeLists.txt index 943e95ab809..d93d54fe702 100644 --- a/src/coreComponents/fieldSpecification/CMakeLists.txt +++ b/src/coreComponents/fieldSpecification/CMakeLists.txt @@ -1,3 +1,24 @@ +# SPDX-License-Identifier: LGPL-2.1-only +# +# Copyright (c) 2016-2024 Lawrence Livermore National Security LLC +# Copyright (c) 2018-2024 Total, S.A +# Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University +# Copyright (c) 2023-2024 Chevron +# Copyright (c) 2019- GEOS/GEOSX Contributors +# All rights reserved +# +# See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. +# +#-------------------------------------------------------------------------------------------------- + +#[[ +Package: fieldSpecification + +Contains: + - field specification objects definition. + - an interface to manage these objects. +#]] + # # Specify all headers # diff --git a/src/coreComponents/fileIO/CMakeLists.txt b/src/coreComponents/fileIO/CMakeLists.txt index 3b70d456190..95ffd8fcb63 100644 --- a/src/coreComponents/fileIO/CMakeLists.txt +++ b/src/coreComponents/fileIO/CMakeLists.txt @@ -1,4 +1,27 @@ +# SPDX-License-Identifier: LGPL-2.1-only +# +# Copyright (c) 2016-2024 Lawrence Livermore National Security LLC +# Copyright (c) 2018-2024 Total, S.A +# Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University +# Copyright (c) 2023-2024 Chevron +# Copyright (c) 2019- GEOS/GEOSX Contributors +# All rights reserved +# +# See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. +# +#-------------------------------------------------------------------------------------------------- + +#[[ +Package: fileIO + +Contains: + - I/O interfaces for the packing components and supported outputs and their python wrappers. + - a coupler for data exchange with CHOMBO. +#]] + +# # Specify all headers +# set( fileIO_headers Outputs/BlueprintOutput.hpp Outputs/OutputBase.hpp @@ -14,7 +37,9 @@ set( fileIO_headers timeHistory/HDFHistoryIO.hpp timeHistory/HistoryCollection.hpp ) +# # Specify all sources +# set( fileIO_sources Outputs/BlueprintOutput.cpp Outputs/OutputBase.cpp @@ -51,10 +76,10 @@ endif() if( ENABLE_SILO ) list( APPEND dependencyList silo HDF5::HDF5) - list( APPEND fileIO_headers - silo/SiloFile.hpp + list( APPEND fileIO_headers + silo/SiloFile.hpp Outputs/SiloOutput.hpp ) - list( APPEND fileIO_sources + list( APPEND fileIO_sources silo/SiloFile.cpp Outputs/SiloOutput.cpp ) endif( ) diff --git a/src/coreComponents/fileIO/Outputs/BlueprintOutput.cpp b/src/coreComponents/fileIO/Outputs/BlueprintOutput.cpp index 21457e7796e..cad26fcbb54 100644 --- a/src/coreComponents/fileIO/Outputs/BlueprintOutput.cpp +++ b/src/coreComponents/fileIO/Outputs/BlueprintOutput.cpp @@ -129,53 +129,57 @@ BlueprintOutput::BlueprintOutput( string const & name, } /////////////////////////////////////////////////////////////////////////////////////////////////// -bool BlueprintOutput::execute( real64 const time, - real64 const, - integer const cycle, - integer const, - real64 const, +bool BlueprintOutput::execute( real64 const time_n, + real64 const GEOS_UNUSED_PARAM( dt ), + integer const cycleNumber, + integer const GEOS_UNUSED_PARAM( eventCounter ), + real64 const GEOS_UNUSED_PARAM( eventProgress ), DomainPartition & domain ) { GEOS_MARK_FUNCTION; - MeshLevel const & meshLevel = domain.getMeshBody( 0 ).getBaseDiscretization(); + { + Timer timer( m_outputTimer ); - conduit::Node meshRoot; - conduit::Node & mesh = meshRoot[ "mesh" ]; - conduit::Node & coordset = mesh[ "coordsets/nodes" ]; - conduit::Node & topologies = mesh[ "topologies" ]; + MeshLevel const & meshLevel = domain.getMeshBody( 0 ).getBaseDiscretization(); - mesh[ "state/time" ] = time; - mesh[ "state/cycle" ] = cycle; + conduit::Node meshRoot; + conduit::Node & mesh = meshRoot[ "mesh" ]; + conduit::Node & coordset = mesh[ "coordsets/nodes" ]; + conduit::Node & topologies = mesh[ "topologies" ]; - addNodalData( meshLevel.getNodeManager(), coordset, topologies, mesh[ "fields" ] ); + mesh[ "state/time" ] = time_n; + mesh[ "state/cycle" ] = cycleNumber; - dataRepository::Group averagedElementData( "averagedElementData", this ); - addElementData( meshLevel.getElemManager(), coordset, topologies, mesh[ "fields" ], averagedElementData ); + addNodalData( meshLevel.getNodeManager(), coordset, topologies, mesh[ "fields" ] ); - /// The Blueprint will complain if the fields node is present but empty. - if( mesh[ "fields" ].number_of_children() == 0 ) - { - mesh.remove( "fields" ); - } + dataRepository::Group averagedElementData( "averagedElementData", this ); + addElementData( meshLevel.getElemManager(), coordset, topologies, mesh[ "fields" ], averagedElementData ); + + /// The Blueprint will complain if the fields node is present but empty. + if( mesh[ "fields" ].number_of_children() == 0 ) + { + mesh.remove( "fields" ); + } - /// Verify that the mesh conforms to the Blueprint. - conduit::Node info; - GEOS_ASSERT_MSG( conduit::blueprint::verify( "mesh", meshRoot, info ), info.to_json() ); + /// Verify that the mesh conforms to the Blueprint. + conduit::Node info; + GEOS_ASSERT_MSG( conduit::blueprint::verify( "mesh", meshRoot, info ), info.to_json() ); - /// Generate the Blueprint index. - conduit::Node fileRoot; - conduit::Node & index = fileRoot[ "blueprint_index/mesh" ]; - conduit::blueprint::mesh::generate_index( mesh, "mesh", MpiWrapper::commSize(), index ); + /// Generate the Blueprint index. + conduit::Node fileRoot; + conduit::Node & index = fileRoot[ "blueprint_index/mesh" ]; + conduit::blueprint::mesh::generate_index( mesh, "mesh", MpiWrapper::commSize(), index ); - /// Verify that the index conforms to the Blueprint. - info.reset(); - GEOS_ASSERT_MSG( conduit::blueprint::mesh::index::verify( index, info ), info.to_json() ); + /// Verify that the index conforms to the Blueprint. + info.reset(); + GEOS_ASSERT_MSG( conduit::blueprint::mesh::index::verify( index, info ), info.to_json() ); - /// Write out the root index file, then write out the mesh. - string const completePath = GEOS_FMT( "{}/blueprintFiles/cycle_{:07}", OutputBase::getOutputDirectory(), cycle ); - string const filePathForRank = dataRepository::writeRootFile( fileRoot, completePath ); - conduit::relay::io::save( meshRoot, filePathForRank, "hdf5" ); + /// Write out the root index file, then write out the mesh. + string const completePath = GEOS_FMT( "{}/blueprintFiles/cycle_{:07}", OutputBase::getOutputDirectory(), cycleNumber ); + string const filePathForRank = dataRepository::writeRootFile( fileRoot, completePath ); + conduit::relay::io::save( meshRoot, filePathForRank, "hdf5" ); + } return false; } @@ -307,7 +311,19 @@ void BlueprintOutput::writeOutConstitutiveData( dataRepository::Group const & co } ); } +namespace logInfo +{ +struct BlueprintOutputTimer : public OutputTimerBase +{ + std::string_view getDescription() const override { return "Blueprint output timing"; } +}; +} +logInfo::OutputTimerBase const & BlueprintOutput::getTimerCategory() const +{ + static logInfo::BlueprintOutputTimer timer; + return timer; +} REGISTER_CATALOG_ENTRY( OutputBase, BlueprintOutput, string const &, dataRepository::Group * const ) diff --git a/src/coreComponents/fileIO/Outputs/BlueprintOutput.hpp b/src/coreComponents/fileIO/Outputs/BlueprintOutput.hpp index 7d17570d47d..fd963698c3c 100644 --- a/src/coreComponents/fileIO/Outputs/BlueprintOutput.hpp +++ b/src/coreComponents/fileIO/Outputs/BlueprintOutput.hpp @@ -36,6 +36,12 @@ class ElementRegionManager; */ class BlueprintOutput : public OutputBase { +protected: + /** + * @copydoc OutputBase::getTimerCategory + */ + logInfo::OutputTimerBase const & getTimerCategory() const override; + public: /** diff --git a/src/coreComponents/fileIO/Outputs/ChomboIO.cpp b/src/coreComponents/fileIO/Outputs/ChomboIO.cpp index 674f1e4eace..26f73a9eb43 100644 --- a/src/coreComponents/fileIO/Outputs/ChomboIO.cpp +++ b/src/coreComponents/fileIO/Outputs/ChomboIO.cpp @@ -30,6 +30,20 @@ namespace geos using namespace dataRepository; +namespace logInfo +{ +struct ChomboOutputTimer : public OutputTimerBase +{ + std::string_view getDescription() const override { return "Chombo output timing"; } +}; +} + +logInfo::OutputTimerBase const & ChomboIO::getTimerCategory() const +{ + static logInfo::ChomboOutputTimer timer; + return timer; +} + ChomboIO::ChomboIO( string const & name, Group * const parent ): OutputBase( name, parent ), m_coupler( nullptr ), diff --git a/src/coreComponents/fileIO/Outputs/ChomboIO.hpp b/src/coreComponents/fileIO/Outputs/ChomboIO.hpp index c483f066968..c9e60cf2f79 100644 --- a/src/coreComponents/fileIO/Outputs/ChomboIO.hpp +++ b/src/coreComponents/fileIO/Outputs/ChomboIO.hpp @@ -89,6 +89,12 @@ class ChomboIO final : public OutputBase } viewKeys; /// @endcond +protected: + /** + * @copydoc OutputBase::getTimerCategory + */ + logInfo::OutputTimerBase const & getTimerCategory() const override; + private: ChomboCoupler * m_coupler; string m_outputPath; diff --git a/src/coreComponents/fileIO/Outputs/OutputBase.cpp b/src/coreComponents/fileIO/Outputs/OutputBase.cpp index 0733dd38cc5..54dcab668e6 100644 --- a/src/coreComponents/fileIO/Outputs/OutputBase.cpp +++ b/src/coreComponents/fileIO/Outputs/OutputBase.cpp @@ -29,6 +29,7 @@ using namespace dataRepository; OutputBase::OutputBase( string const & name, Group * const parent ): ExecutableGroup( name, parent ), + m_outputTimer(), m_childDirectory(), m_parallelThreads( 1 ) { @@ -43,6 +44,8 @@ OutputBase::OutputBase( string const & name, setInputFlag( InputFlags::OPTIONAL ). setDescription( "Number of plot files." ); + // Add the Timers log level + addLogLevel< logInfo::OutputTimers >(); } OutputBase::~OutputBase() @@ -106,5 +109,23 @@ void OutputBase::setupDirectoryStructure() } } +void OutputBase::cleanup( real64 const GEOS_UNUSED_PARAM( time_n ), + integer const GEOS_UNUSED_PARAM( cycleNumber ), + integer const GEOS_UNUSED_PARAM( eventCounter ), + real64 const GEOS_UNUSED_PARAM( eventProgress ), + DomainPartition & GEOS_UNUSED_PARAM( domain ) ) +{ + // Report timing statistics + real64 const time = std::chrono::duration< double >( m_outputTimer ).count(); + real64 const minTime = MpiWrapper::min( time ); + real64 const maxTime = MpiWrapper::max( time ); + if( maxTime > 0 ) + { + GEOS_LOG_LEVEL_INFO_RANK_0( logInfo::OutputTimers, + GEOS_FMT( "{}: file writing time = {} s (min), {} s (max)", + getName(), minTime, maxTime ) ); + } +} + } /* namespace geos */ diff --git a/src/coreComponents/fileIO/Outputs/OutputBase.hpp b/src/coreComponents/fileIO/Outputs/OutputBase.hpp index f4129433f7d..ae957e22213 100644 --- a/src/coreComponents/fileIO/Outputs/OutputBase.hpp +++ b/src/coreComponents/fileIO/Outputs/OutputBase.hpp @@ -21,11 +21,50 @@ #include "dataRepository/Group.hpp" #include "dataRepository/ExecutableGroup.hpp" - +#include "dataRepository/LogLevelsInfo.hpp" // For logInfo namespace +#include "common/Timer.hpp" namespace geos { +namespace logInfo +{ +/** + * @brief Base timer category for output operations + * @details Provides configuration for logging output operation timing information + */ +struct OutputTimers +{ + /** + * @brief Get the description of this timer + * @return String view containing the timer description + */ + static std::string_view getDescription() { return "Output timing information"; } + + /** + * @brief Get the minimum log level for this timer + * @return Integer representing the minimum log level + */ + static constexpr int getMinLogLevel() { return 1; } +}; + +/** + * @brief Base interface for specific output type timers + * @details Each output type (VTK, Silo, etc.) implements this interface to provide + * its own timing category. This is used in conjunction with OutputTimers: + * - OutputTimerBase: For polymorphic behavior in derived output classes + * - OutputTimers: For the general output timing logging infrastructure + */ +struct OutputTimerBase +{ + /** + * @brief Get the description of this timer + * @return String view containing the timer description + */ + virtual std::string_view getDescription() const = 0; +}; +} + /** * @class OutputBase * @@ -102,6 +141,22 @@ class OutputBase : public ExecutableGroup **/ virtual void initializePreSubGroups() override; + /// Timer used to track duration of file writing operations for this specific output type + std::chrono::system_clock::duration m_outputTimer; + + /** + * @brief Get the timer category for this output type + * @return Reference to the output timer base for timing statistics + */ + virtual logInfo::OutputTimerBase const & getTimerCategory() const = 0; + + /// @copydoc geos::ExecutableGroup::cleanup + virtual void cleanup( real64 const time_n, + integer const cycleNumber, + integer const eventCounter, + real64 const eventProgress, + DomainPartition & domain ) override; + private: string m_childDirectory; integer m_parallelThreads; diff --git a/src/coreComponents/fileIO/Outputs/PythonOutput.cpp b/src/coreComponents/fileIO/Outputs/PythonOutput.cpp index e78f8835a06..5891fe55e26 100644 --- a/src/coreComponents/fileIO/Outputs/PythonOutput.cpp +++ b/src/coreComponents/fileIO/Outputs/PythonOutput.cpp @@ -18,6 +18,20 @@ namespace geos { +namespace logInfo +{ +struct PythonOutputTimer : public OutputTimerBase +{ + std::string_view getDescription() const override { return "Python output timing"; } +}; +} + +logInfo::OutputTimerBase const & PythonOutput::getTimerCategory() const +{ + static logInfo::PythonOutputTimer timer; + return timer; +} + REGISTER_CATALOG_ENTRY( OutputBase, PythonOutput, string const &, dataRepository::Group * const ) } // namespace geos diff --git a/src/coreComponents/fileIO/Outputs/PythonOutput.hpp b/src/coreComponents/fileIO/Outputs/PythonOutput.hpp index 0e6c3cebb85..a73b6781654 100644 --- a/src/coreComponents/fileIO/Outputs/PythonOutput.hpp +++ b/src/coreComponents/fileIO/Outputs/PythonOutput.hpp @@ -75,6 +75,9 @@ class PythonOutput : public OutputBase GEOS_UNUSED_VAR( domain ); return true; } + +protected: + logInfo::OutputTimerBase const & getTimerCategory() const override; }; diff --git a/src/coreComponents/fileIO/Outputs/RestartOutput.cpp b/src/coreComponents/fileIO/Outputs/RestartOutput.cpp index 6fb7a2c6b19..6eb07281cf6 100644 --- a/src/coreComponents/fileIO/Outputs/RestartOutput.cpp +++ b/src/coreComponents/fileIO/Outputs/RestartOutput.cpp @@ -24,6 +24,14 @@ namespace geos using namespace dataRepository; +namespace logInfo +{ +struct RestartOutputTimer : public OutputTimerBase +{ + std::string_view getDescription() const override { return "Restart output timing"; } +}; +} + RestartOutput::RestartOutput( string const & name, Group * const parent ): OutputBase( name, parent ) @@ -41,19 +49,24 @@ bool RestartOutput::execute( real64 const GEOS_UNUSED_PARAM( time_n ), { GEOS_MARK_FUNCTION; - Group & rootGroup = this->getGroupByPath( "/Problem" ); + { + Timer timer( m_outputTimer ); - // Ignoring the eventProgress indicator for now to be compliant with the integrated test repo - // integer const eventProgressPercent = static_cast(eventProgress * 100.0); - string const fileName = GEOS_FMT( "{}_restart_{:09}", getFileNameRoot(), cycleNumber ); - - rootGroup.prepareToWrite(); - writeTree( joinPath( OutputBase::getOutputDirectory(), fileName ), *(rootGroup.getConduitNode().parent()) ); - rootGroup.finishWriting(); + Group & rootGroup = this->getGroupByPath( "/Problem" ); + string const fileName = GEOS_FMT( "{}_restart_{:09}", getFileNameRoot(), cycleNumber ); + rootGroup.prepareToWrite(); + writeTree( joinPath( OutputBase::getOutputDirectory(), fileName ), *(rootGroup.getConduitNode().parent()) ); + rootGroup.finishWriting(); + } return false; } +logInfo::OutputTimerBase const & RestartOutput::getTimerCategory() const +{ + static logInfo::RestartOutputTimer timer; + return timer; +} REGISTER_CATALOG_ENTRY( OutputBase, RestartOutput, string const &, Group * const ) } /* namespace geos */ diff --git a/src/coreComponents/fileIO/Outputs/RestartOutput.hpp b/src/coreComponents/fileIO/Outputs/RestartOutput.hpp index a2a12be781c..11c8715ed76 100644 --- a/src/coreComponents/fileIO/Outputs/RestartOutput.hpp +++ b/src/coreComponents/fileIO/Outputs/RestartOutput.hpp @@ -78,6 +78,12 @@ class RestartOutput : public OutputBase dataRepository::ViewKey writeFEMFaces = { "writeFEMFaces" }; } viewKeys; /// @endcond + +protected: + /** + * @copydoc OutputBase::getTimerCategory + */ + logInfo::OutputTimerBase const & getTimerCategory() const override; }; diff --git a/src/coreComponents/fileIO/Outputs/SiloOutput.cpp b/src/coreComponents/fileIO/Outputs/SiloOutput.cpp index 756facc2da1..ba03ceead5f 100644 --- a/src/coreComponents/fileIO/Outputs/SiloOutput.cpp +++ b/src/coreComponents/fileIO/Outputs/SiloOutput.cpp @@ -28,6 +28,20 @@ namespace geos using namespace dataRepository; +namespace logInfo +{ +struct SiloOutputTimer : public OutputTimerBase +{ + std::string_view getDescription() const override { return "Silo output timing"; } +}; +} + +logInfo::OutputTimerBase const & SiloOutput::getTimerCategory() const +{ + static logInfo::SiloOutputTimer timer; + return timer; +} + SiloOutput::SiloOutput( string const & name, Group * const parent ): OutputBase( name, parent ), @@ -122,31 +136,35 @@ bool SiloOutput::execute( real64 const time_n, { GEOS_MARK_FUNCTION; - SiloFile silo; - - int const size = MpiWrapper::commSize( MPI_COMM_GEOS ); - int const rank = MpiWrapper::commRank( MPI_COMM_GEOS ); - MpiWrapper::barrier( MPI_COMM_GEOS ); - - integer const numFiles = parallelThreads() == 0 ? size : parallelThreads(); - - // TODO set this during initialization - // silo.setOutputDirectory( getGlobalState().getCommandLineOptions().outputDirectory ), - silo.setOutputDirectory( getOutputDirectory() ), - silo.setPlotLevel( m_plotLevel ); - silo.setWriteEdgeMesh( m_writeEdgeMesh ); - silo.setWriteFaceMesh( m_writeFaceMesh ); - silo.setWriteCellElementMesh( m_writeCellElementMesh ); - silo.setWriteFaceElementMesh( m_writeFaceElementMesh ); - silo.setOnlyPlotSpecifiedFieldNamesFlag( m_onlyPlotSpecifiedFieldNames ); - silo.setFieldNames( m_fieldNames.toViewConst() ); - silo.setPlotFileRoot( m_plotFileRoot ); - silo.initialize( numFiles ); - silo.waitForBatonWrite( rank, cycleNumber, eventCounter, false ); - silo.writeDomainPartition( domain, cycleNumber, time_n + dt * eventProgress, 0 ); - silo.handOffBaton(); - silo.clearEmptiesFromMultiObjects( cycleNumber ); - silo.finish(); + { + Timer timer( m_outputTimer ); + + SiloFile silo; + + int const size = MpiWrapper::commSize( MPI_COMM_GEOS ); + int const rank = MpiWrapper::commRank( MPI_COMM_GEOS ); + MpiWrapper::barrier( MPI_COMM_GEOS ); + + integer const numFiles = parallelThreads() == 0 ? size : parallelThreads(); + + // TODO set this during initialization + // silo.setOutputDirectory( getGlobalState().getCommandLineOptions().outputDirectory ), + silo.setOutputDirectory( getOutputDirectory() ), + silo.setPlotLevel( m_plotLevel ); + silo.setWriteEdgeMesh( m_writeEdgeMesh ); + silo.setWriteFaceMesh( m_writeFaceMesh ); + silo.setWriteCellElementMesh( m_writeCellElementMesh ); + silo.setWriteFaceElementMesh( m_writeFaceElementMesh ); + silo.setOnlyPlotSpecifiedFieldNamesFlag( m_onlyPlotSpecifiedFieldNames ); + silo.setFieldNames( m_fieldNames.toViewConst() ); + silo.setPlotFileRoot( m_plotFileRoot ); + silo.initialize( numFiles ); + silo.waitForBatonWrite( rank, cycleNumber, eventCounter, false ); + silo.writeDomainPartition( domain, cycleNumber, time_n + dt * eventProgress, 0 ); + silo.handOffBaton(); + silo.clearEmptiesFromMultiObjects( cycleNumber ); + silo.finish(); + } return false; } diff --git a/src/coreComponents/fileIO/Outputs/SiloOutput.hpp b/src/coreComponents/fileIO/Outputs/SiloOutput.hpp index bb3574f3745..6b0a371974f 100644 --- a/src/coreComponents/fileIO/Outputs/SiloOutput.hpp +++ b/src/coreComponents/fileIO/Outputs/SiloOutput.hpp @@ -85,6 +85,12 @@ class SiloOutput : public OutputBase } siloOutputViewKeys; /// @endcond +protected: + /** + * @copydoc OutputBase::getTimerCategory + */ + logInfo::OutputTimerBase const & getTimerCategory() const override; + private: void postInputInitialization() override; diff --git a/src/coreComponents/fileIO/Outputs/TimeHistoryOutput.cpp b/src/coreComponents/fileIO/Outputs/TimeHistoryOutput.cpp index d01edac3dcf..7e1299aac57 100644 --- a/src/coreComponents/fileIO/Outputs/TimeHistoryOutput.cpp +++ b/src/coreComponents/fileIO/Outputs/TimeHistoryOutput.cpp @@ -25,6 +25,20 @@ namespace geos { using namespace dataRepository; +namespace logInfo +{ +struct TimeHistoryOutputTimer : public OutputTimerBase +{ + std::string_view getDescription() const override { return "Time history output timing"; } +}; +} + +logInfo::OutputTimerBase const & TimeHistoryOutput::getTimerCategory() const +{ + static logInfo::TimeHistoryOutputTimer timer; + return timer; +} + TimeHistoryOutput::TimeHistoryOutput( string const & name, Group * const parent ): OutputBase( name, parent ), @@ -166,12 +180,18 @@ bool TimeHistoryOutput::execute( real64 const GEOS_UNUSED_PARAM( time_n ), DomainPartition & GEOS_UNUSED_PARAM( domain ) ) { GEOS_MARK_FUNCTION; - localIndex newBuffered = m_io.front()->getBufferedCount( ); - for( auto & th_io : m_io ) + { - th_io->write( ); + Timer timer( m_outputTimer ); + + localIndex newBuffered = m_io.front()->getBufferedCount( ); + for( auto & th_io : m_io ) + { + th_io->write( ); + } + m_recordCount += newBuffered; } - m_recordCount += newBuffered; + return false; } diff --git a/src/coreComponents/fileIO/Outputs/TimeHistoryOutput.hpp b/src/coreComponents/fileIO/Outputs/TimeHistoryOutput.hpp index d7793943d9c..e2846f7c312 100644 --- a/src/coreComponents/fileIO/Outputs/TimeHistoryOutput.hpp +++ b/src/coreComponents/fileIO/Outputs/TimeHistoryOutput.hpp @@ -114,6 +114,12 @@ class TimeHistoryOutput : public OutputBase virtual PyTypeObject * getPythonType() const override; #endif +protected: + /** + * @copydoc OutputBase::getTimerCategory + */ + logInfo::OutputTimerBase const & getTimerCategory() const override; + private: /** diff --git a/src/coreComponents/fileIO/Outputs/VTKOutput.cpp b/src/coreComponents/fileIO/Outputs/VTKOutput.cpp index da364d0e4db..b6f4348899e 100644 --- a/src/coreComponents/fileIO/Outputs/VTKOutput.cpp +++ b/src/coreComponents/fileIO/Outputs/VTKOutput.cpp @@ -18,7 +18,7 @@ */ #include "VTKOutput.hpp" - +#include "common/MpiWrapper.hpp" #if defined(GEOS_USE_PYGEOSX) #include "fileIO/python/PyVTKOutputType.hpp" @@ -29,6 +29,20 @@ namespace geos using namespace dataRepository; +namespace logInfo +{ +struct VTKOutputTimer : public OutputTimerBase +{ + std::string_view getDescription() const override { return "VTK output timing"; } +}; +} + +logInfo::OutputTimerBase const & VTKOutput::getTimerCategory() const +{ + static logInfo::VTKOutputTimer timer; + return timer; +} + VTKOutput::VTKOutput( string const & name, Group * const parent ): OutputBase( name, parent ), @@ -56,6 +70,11 @@ VTKOutput::VTKOutput( string const & name, setInputFlag( InputFlags::OPTIONAL ). setDescription( "Level detail plot. Only fields with lower of equal plot level will be output." ); + registerWrapper( viewKeysStruct::numberOfTargetProcesses, &m_numberOfTargetProcesses ). + setApplyDefaultValue( MpiWrapper::commSize() ). + setInputFlag( InputFlags::OPTIONAL ). + setDescription( "Number of output aggregate files to be written." ); + registerWrapper( viewKeysStruct::writeGhostCells, &m_writeGhostCells ). setApplyDefaultValue( 0 ). setInputFlag( InputFlags::OPTIONAL ). @@ -75,7 +94,7 @@ VTKOutput::VTKOutput( string const & name, registerWrapper( viewKeysStruct::fieldNames, &m_fieldNames ). setRTTypeName( rtTypes::CustomTypes::groupNameRefArray ). setInputFlag( InputFlags::OPTIONAL ). - setDescription( "Names of the fields to output. If this attribute is specified, GEOSX outputs all the fields specified by the user, regardless of their `plotLevel`" ); + setDescription( "Names of the fields to output. If this attribute is specified, GEOS outputs all the fields specified by the user, regardless of their `plotLevel`" ); registerWrapper( viewKeysStruct::levelNames, &m_levelNames ). setInputFlag( InputFlags::OPTIONAL ). @@ -102,6 +121,14 @@ void VTKOutput::postInputInitialization() m_writer.setLevelNames( m_levelNames.toViewConst() ); m_writer.setOnlyPlotSpecifiedFieldNamesFlag( m_onlyPlotSpecifiedFieldNames ); + GEOS_ERROR_IF_LT_MSG( m_numberOfTargetProcesses, 1, + GEOS_FMT( "{}: processes count cannot be less than 1.", + getWrapperDataContext( viewKeysStruct::numberOfTargetProcesses ) ) ); + GEOS_ERROR_IF_GT_MSG( m_numberOfTargetProcesses, MpiWrapper::commSize(), + GEOS_FMT( "{}: processes count cannot exceed the launched ranks count.", + getWrapperDataContext( viewKeysStruct::numberOfTargetProcesses ) ) ); + m_writer.setNumberOfTargetProcesses( m_numberOfTargetProcesses ); + string const fieldNamesString = viewKeysStruct::fieldNames; string const onlyPlotSpecifiedFieldNamesString = viewKeysStruct::onlyPlotSpecifiedFieldNames; @@ -146,14 +173,20 @@ bool VTKOutput::execute( real64 const time_n, real64 const GEOS_UNUSED_PARAM ( eventProgress ), DomainPartition & domain ) { - GEOS_LOG_LEVEL_RANK_0( 1, GEOS_FMT( "{}: writing {} at time {} s (cycle number {})", getName(), m_fieldNames, time_n + dt, cycleNumber )); - - m_writer.setWriteGhostCells( m_writeGhostCells ); - m_writer.setWriteFaceElementsAs3D ( m_writeFaceElementsAs3D ); - m_writer.setOutputMode( m_writeBinaryData ); - m_writer.setOutputRegionType( m_outputRegionType ); - m_writer.setPlotLevel( m_plotLevel ); - m_writer.write( time_n, cycleNumber, domain ); + GEOS_MARK_FUNCTION; + + GEOS_LOG_LEVEL_RANK_0( 2, GEOS_FMT( "{}: writing {} at time {} s (cycle number {})", getName(), m_fieldNames, time_n + dt, cycleNumber )); + + { + Timer timer( m_outputTimer ); + + m_writer.setWriteGhostCells( m_writeGhostCells ); + m_writer.setWriteFaceElementsAs3D ( m_writeFaceElementsAs3D ); + m_writer.setOutputMode( m_writeBinaryData ); + m_writer.setOutputRegionType( m_outputRegionType ); + m_writer.setPlotLevel( m_plotLevel ); + m_writer.write( time_n, cycleNumber, domain ); + } return false; } diff --git a/src/coreComponents/fileIO/Outputs/VTKOutput.hpp b/src/coreComponents/fileIO/Outputs/VTKOutput.hpp index 871a6497569..bf36e900eaf 100644 --- a/src/coreComponents/fileIO/Outputs/VTKOutput.hpp +++ b/src/coreComponents/fileIO/Outputs/VTKOutput.hpp @@ -77,6 +77,9 @@ class VTKOutput : public OutputBase DomainPartition & domain ) override { execute( time_n, 0, cycleNumber, eventCounter, eventProgress, domain ); + + // Call parent class cleanup to get the timing statistics + OutputBase::cleanup( time_n, cycleNumber, eventCounter, eventProgress, domain ); } /** @@ -97,6 +100,7 @@ class VTKOutput : public OutputBase static constexpr auto onlyPlotSpecifiedFieldNames = "onlyPlotSpecifiedFieldNames"; static constexpr auto fieldNames = "fieldNames"; static constexpr auto levelNames = "levelNames"; + static constexpr auto numberOfTargetProcesses = "numberOfTargetProcesses"; } vtkOutputViewKeys; /// @endcond @@ -108,12 +112,21 @@ class VTKOutput : public OutputBase virtual PyTypeObject * getPythonType() const override; #endif +protected: + /** + * @copydoc OutputBase::getTimerCategory + */ + logInfo::OutputTimerBase const & getTimerCategory() const override; + private: string m_plotFileRoot; integer m_writeFaceMesh; integer m_plotLevel; + /// Aggregate output data to be written + integer m_numberOfTargetProcesses; + /// Should the vtk files contain the ghost cells or not. integer m_writeGhostCells; diff --git a/src/coreComponents/fileIO/vtk/VTKPolyDataWriterInterface.cpp b/src/coreComponents/fileIO/vtk/VTKPolyDataWriterInterface.cpp index be65508921b..bafc1bf89da 100644 --- a/src/coreComponents/fileIO/vtk/VTKPolyDataWriterInterface.cpp +++ b/src/coreComponents/fileIO/vtk/VTKPolyDataWriterInterface.cpp @@ -33,11 +33,14 @@ #include #include #include - +#include // System includes #include #include +#include "mesh/generators/VTKUtilities.hpp" + + namespace geos { @@ -1041,7 +1044,7 @@ void VTKPolyDataWriterInterface::writeElementFields( ElementRegionBase const & r void VTKPolyDataWriterInterface::writeCellElementRegions( real64 const time, ElementRegionManager const & elemManager, NodeManager const & nodeManager, - string const & path ) const + string const & path ) { elemManager.forElementRegions< CellElementRegion >( [&]( CellElementRegion const & region ) { @@ -1055,15 +1058,13 @@ void VTKPolyDataWriterInterface::writeCellElementRegions( real64 const time, writeTimestamp( ug.GetPointer(), time ); writeElementFields( region, ug->GetCellData() ); writeNodeFields( nodeManager, VTKCells.nodes, ug->GetPointData() ); - - string const regionDir = joinPath( path, region.getName() ); - writeUnstructuredGrid( regionDir, ug.GetPointer() ); + writeUnstructuredGrid( path, region, ug.GetPointer() ); } ); } void VTKPolyDataWriterInterface::writeParticleRegions( real64 const time, ParticleManager const & particleManager, - string const & path ) const + string const & path ) { particleManager.forParticleRegions< ParticleRegion >( [&]( ParticleRegion const & region ) { @@ -1077,15 +1078,14 @@ void VTKPolyDataWriterInterface::writeParticleRegions( real64 const time, writeTimestamp( ug.GetPointer(), time ); writeParticleFields( region, ug->GetCellData() ); - string const regionDir = joinPath( path, region.getName() ); - writeUnstructuredGrid( regionDir, ug.GetPointer() ); + writeUnstructuredGrid( path, region, ug.GetPointer() ); } ); } void VTKPolyDataWriterInterface::writeWellElementRegions( real64 const time, ElementRegionManager const & elemManager, NodeManager const & nodeManager, - string const & path ) const + string const & path ) { elemManager.forElementRegions< WellElementRegion >( [&]( WellElementRegion const & region ) { @@ -1098,9 +1098,7 @@ void VTKPolyDataWriterInterface::writeWellElementRegions( real64 const time, writeTimestamp( ug.GetPointer(), time ); writeElementFields( region, ug->GetCellData() ); - - string const regionDir = joinPath( path, region.getName() ); - writeUnstructuredGrid( regionDir, ug.GetPointer() ); + writeUnstructuredGrid( path, region, ug.GetPointer() ); } ); } @@ -1109,7 +1107,7 @@ void VTKPolyDataWriterInterface::writeSurfaceElementRegions( real64 const time, NodeManager const & nodeManager, EmbeddedSurfaceNodeManager const & embSurfNodeManager, FaceManager const & faceManager, - string const & path ) const + string const & path ) { elemManager.forElementRegions< SurfaceElementRegion >( [&]( SurfaceElementRegion const & region ) { @@ -1140,9 +1138,7 @@ void VTKPolyDataWriterInterface::writeSurfaceElementRegions( real64 const time, writeTimestamp( ug.GetPointer(), time ); writeElementFields( region, ug->GetCellData() ); - - string const regionDir = joinPath( path, region.getName() ); - writeUnstructuredGrid( regionDir, ug.GetPointer() ); + writeUnstructuredGrid( path, region, ug.GetPointer() ); } ); } @@ -1188,13 +1184,11 @@ void VTKPolyDataWriterInterface::writeVtmFile( integer const cycle, string const meshPath = joinPath( getCycleSubFolder( cycle ), meshBodyName, meshLevelName ); - int const mpiSize = MpiWrapper::commSize(); - auto addElementRegion = [&]( ElementRegionBase const & region ) { std::vector< string > const blockPath{ meshBody.getName(), meshLevel.getName(), region.getCatalogName(), region.getName() }; string const regionPath = joinPath( meshPath, region.getName() ); - for( int i = 0; i < mpiSize; i++ ) + for( const auto & i : m_targetProcessesId.at( region.getName()) ) { string const dataSetName = getRankFileName( i ); string const dataSetFile = joinPath( regionPath, dataSetName + ".vtu" ); @@ -1207,7 +1201,7 @@ void VTKPolyDataWriterInterface::writeVtmFile( integer const cycle, string const & regionName = region.getName(); std::vector< string > const blockPath{ meshBodyName, meshLevelName, region.getCatalogName(), regionName }; string const regionPath = joinPath( meshPath, regionName ); - for( int i = 0; i < mpiSize; i++ ) + for( const auto & i : m_targetProcessesId.at( region.getName()) ) { string const dataSetName = getRankFileName( i ); string const dataSetFile = joinPath( regionPath, dataSetName + ".vtu" ); @@ -1256,8 +1250,11 @@ int toVtkOutputMode( VTKOutputMode const mode ) } void VTKPolyDataWriterInterface::writeUnstructuredGrid( string const & path, - vtkUnstructuredGrid * ug ) const + ObjectManagerBase const & region, + vtkUnstructuredGrid * ug ) { + string const regionDir = joinPath( path, region.getName() ); + vtkSmartPointer< vtkAlgorithm > filter; // If we want to get rid of the ghost ranks, we use the appropriate `vtkThreshold` filter. @@ -1279,15 +1276,51 @@ void VTKPolyDataWriterInterface::writeUnstructuredGrid( string const & path, } filter->SetInputDataObject( ug ); - filter->Update(); - - makeDirectory( path ); - string const vtuFilePath = joinPath( path, getRankFileName( MpiWrapper::commRank() ) + ".vtu" ); - auto const vtuWriter = vtkSmartPointer< vtkXMLUnstructuredGridWriter >::New(); - vtuWriter->SetInputData( filter->GetOutputDataObject( 0 ) ); - vtuWriter->SetFileName( vtuFilePath.c_str() ); - vtuWriter->SetDataMode( toVtkOutputMode( m_outputMode ) ); - vtuWriter->Write(); + + vtkSmartPointer< vtkMultiProcessController > controller = vtk::getController(); + vtkMultiProcessController::SetGlobalController( controller ); + + // In case of m_numberOfTargetProcesses == GetNumberOfProcesses the filter returns a shallow copy + // The behavior is the same as previously in this case. The rank number is computed instead of implicitly written + vtkNew< vtkAggregateDataSetFilter > aggregate; + aggregate->SetInputConnection( filter->GetOutputPort()); + aggregate->SetNumberOfTargetProcesses( m_numberOfTargetProcesses ); + aggregate->SetMergePoints( false ); + aggregate->Update(); + + int localCommRank = -1; + if( vtkDataSet::SafeDownCast( aggregate->GetOutput())->GetNumberOfPoints() != 0 ) + { + localCommRank = MpiWrapper::commRank(); + makeDirectory( regionDir ); + string const vtuFilePath = joinPath( regionDir, getRankFileName( localCommRank ) + ".vtu" ); + auto const vtuWriter = vtkSmartPointer< vtkXMLUnstructuredGridWriter >::New(); + vtuWriter->SetInputData( aggregate->GetOutput() ); + vtuWriter->SetFileName( vtuFilePath.c_str() ); + vtuWriter->SetDataMode( toVtkOutputMode( m_outputMode ) ); + vtuWriter->Write(); + } + + const int size = MpiWrapper::commSize( MPI_COMM_GEOS ); + std::vector< int > globalValues( size ); + + // Everything is done on rank 0 + MpiWrapper::gather( &localCommRank, + 1, + globalValues.data(), + 1, + 0, + MPI_COMM_GEOS ); + + if( MpiWrapper::commRank() == 0 ) + { + // any rank that does not hold data will not participate in the output + globalValues.erase( std::remove_if( globalValues.begin(), + globalValues.end(), + []( int x ) { return x == -1; } ), + globalValues.end()); + m_targetProcessesId[region.getName()] = globalValues; + } } void VTKPolyDataWriterInterface::write( real64 const time, diff --git a/src/coreComponents/fileIO/vtk/VTKPolyDataWriterInterface.hpp b/src/coreComponents/fileIO/vtk/VTKPolyDataWriterInterface.hpp index 526c8e3fb77..20bbc54923a 100644 --- a/src/coreComponents/fileIO/vtk/VTKPolyDataWriterInterface.hpp +++ b/src/coreComponents/fileIO/vtk/VTKPolyDataWriterInterface.hpp @@ -17,11 +17,12 @@ #define GEOS_FILEIO_VTK_VTKPOLYDATAWRITERINTERFACE_HPP_ #include "common/DataTypes.hpp" +#include "mesh/ObjectManagerBase.hpp" #include "dataRepository/WrapperBase.hpp" #include "dataRepository/Wrapper.hpp" #include "fileIO/vtk/VTKPVDWriter.hpp" #include "fileIO/vtk/VTKVTMWriter.hpp" -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" class vtkUnstructuredGrid; class vtkPointData; @@ -167,6 +168,14 @@ class VTKPolyDataWriterInterface { m_levelNames.insert( levelNames.begin(), levelNames.end() ); } + /** + * @brief Set the Number Of Target Processes + * @param[in] numberOfTargetProcesses the number of processes + */ + void setNumberOfTargetProcesses( integer const numberOfTargetProcesses ) + { + m_numberOfTargetProcesses = numberOfTargetProcesses; + } /** * @brief Main method of this class. Write all the files for one time step. @@ -210,7 +219,7 @@ class VTKPolyDataWriterInterface void clearData(); -private: +protected: /** * @brief Check if plotting is enabled for this field @@ -223,33 +232,38 @@ class VTKPolyDataWriterInterface * @brief Writes the files for all the CellElementRegions. * @details There will be one file written per CellElementRegion and per rank. * @param[in] time the time-step - * @param[in] cycle the current cycle number * @param[in] elemManager the ElementRegionManager containing the CellElementRegions to be output * @param[in] nodeManager the NodeManager containing the nodes of the domain to be output - * @param[in] meshLevelName the name of the MeshLevel containing the nodes and elements to be output - * @param[in] meshBodyName the name of the MeshBody containing the nodes and elements to be output + * @param[in] path the path to the file to output */ void writeCellElementRegions( real64 time, ElementRegionManager const & elemManager, NodeManager const & nodeManager, - string const & path ) const; - - void writeParticleRegions( real64 const time, - ParticleManager const & particleManager, - string const & path ) const; + string const & path ); /** * @brief Writes the files containing the well representation * @details There will be one file written per WellElementRegion and per rank * @param[in] time the time-step - * @param[in] cycle the current cycle number * @param[in] elemManager the ElementRegionManager containing the WellElementRegions to be output * @param[in] nodeManager the NodeManager containing the nodes of the domain to be output + * @param[in] path The path to the file to output */ void writeWellElementRegions( real64 time, ElementRegionManager const & elemManager, NodeManager const & nodeManager, - string const & path ) const; + string const & path ); + + /** + * @brief Writes the files containing the particle representation + * @details There will be one file written per ParticleRegion and per rank + * @param[in] time the time-step + * @param[in] particleManager the ParticleManager containing the ParticleRegions to be output + * @param[in] path the root path where the mesh will be written + */ + void writeParticleRegions( real64 const time, + ParticleManager const & particleManager, + string const & path ); /** * @brief Writes the files containing the faces elements @@ -266,16 +280,15 @@ class VTKPolyDataWriterInterface NodeManager const & nodeManager, EmbeddedSurfaceNodeManager const & embSurfNodeManager, FaceManager const & faceManager, - string const & path ) const; + string const & path ); /** * @brief Writes a VTM file for the time-step \p time. * @details a VTM file is a VTK Multiblock file. It contains relative path to different files organized in blocks. * @param[in] cycle the current cycle number - * @param[in] elemManager the ElementRegionManager containing all the regions to be output and referred to in the VTM file + * @param[in] domain the DomainPartition containing all the regions to be output and referred to in the VTM file * @param[in] vtmWriter a writer specialized for the VTM file format */ - void writeVtmFile( integer const cycle, DomainPartition const & domain, VTKVTMWriter const & vtmWriter ) const; @@ -297,6 +310,11 @@ class VTKPolyDataWriterInterface void writeElementFields( ElementRegionBase const & subRegion, vtkCellData * cellData ) const; + /** + * @brief Writes all the fields associated to the elements of \p region if their plotlevel is <= m_plotLevel + * @param[in] region ParticleRegion being written + * @param[in] cellData a VTK object containing all the fields associated with the elements + */ void writeParticleFields( ParticleRegionBase const & region, vtkCellData * cellData ) const; @@ -305,13 +323,15 @@ class VTKPolyDataWriterInterface * @details The unstructured grid is the last element in the hierarchy of the output, * it contains the cells connectivities and the vertices coordinates as long as the * data fields associated with it - * @param[in] ug a VTK SmartPointer to the VTK unstructured grid. * @param[in] path directory path for the grid file + * @param[in] region ElementRegionBase beeing written + * @param[in] ug a VTK SmartPointer to the VTK unstructured grid. */ void writeUnstructuredGrid( string const & path, - vtkUnstructuredGrid * ug ) const; + ObjectManagerBase const & region, + vtkUnstructuredGrid * ug ); -private: +protected: /// Output directory name string m_outputDir; @@ -352,6 +372,12 @@ class VTKPolyDataWriterInterface /// Defines whether to plot a faceElement as a 3D volumetric element or not. bool m_writeFaceElementsAs3D; + + /// Number of target processes to aggregate the data to be written + integer m_numberOfTargetProcesses; + + /// Map a region name to the array of ranks outputed for it + std::map< string, std::vector< integer > > m_targetProcessesId; }; } // namespace vtk diff --git a/src/coreComponents/finiteElement/CMakeLists.txt b/src/coreComponents/finiteElement/CMakeLists.txt index 3343eb53258..5d7c38fa465 100644 --- a/src/coreComponents/finiteElement/CMakeLists.txt +++ b/src/coreComponents/finiteElement/CMakeLists.txt @@ -1,3 +1,22 @@ +# SPDX-License-Identifier: LGPL-2.1-only +# +# Copyright (c) 2016-2024 Lawrence Livermore National Security LLC +# Copyright (c) 2018-2024 Total, S.A +# Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University +# Copyright (c) 2023-2024 Chevron +# Copyright (c) 2019- GEOS/GEOSX Contributors +# All rights reserved +# +# See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. +# +#-------------------------------------------------------------------------------------------------- + +#[[ +Package: finiteElement + +Contains the interface and implementation of finite element formulations. +#]] + # # Specify all headers # diff --git a/src/coreComponents/finiteElement/PDEUtilities.hpp b/src/coreComponents/finiteElement/PDEUtilities.hpp index 015a68f92f1..e060d4d339d 100644 --- a/src/coreComponents/finiteElement/PDEUtilities.hpp +++ b/src/coreComponents/finiteElement/PDEUtilities.hpp @@ -20,7 +20,7 @@ #ifndef GEOS_FINITEELEMENT_PDEUTILITIES_HPP_ #define GEOS_FINITEELEMENT_PDEUTILITIES_HPP_ -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" namespace geos { diff --git a/src/coreComponents/finiteVolume/CMakeLists.txt b/src/coreComponents/finiteVolume/CMakeLists.txt index 39dd4450445..b561b024d73 100644 --- a/src/coreComponents/finiteVolume/CMakeLists.txt +++ b/src/coreComponents/finiteVolume/CMakeLists.txt @@ -1,3 +1,23 @@ +# SPDX-License-Identifier: LGPL-2.1-only +# +# Copyright (c) 2016-2024 Lawrence Livermore National Security LLC +# Copyright (c) 2018-2024 Total, S.A +# Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University +# Copyright (c) 2023-2024 Chevron +# Copyright (c) 2019- GEOS/GEOSX Contributors +# All rights reserved +# +# See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. +# +#-------------------------------------------------------------------------------------------------- + +#[[ +Package: finiteVolume + +Implementation and access to finite volume method. The main data structures of this package are + the stencils: connection values at the interfaces of the volume elements. +#]] + # # Specify all headers # diff --git a/src/coreComponents/finiteVolume/TwoPointFluxApproximation.cpp b/src/coreComponents/finiteVolume/TwoPointFluxApproximation.cpp index ab28f40a6ea..4b1178bb545 100644 --- a/src/coreComponents/finiteVolume/TwoPointFluxApproximation.cpp +++ b/src/coreComponents/finiteVolume/TwoPointFluxApproximation.cpp @@ -384,6 +384,7 @@ void TwoPointFluxApproximation::cleanMatrixMatrixConnectionsDFM( MeshLevel & mes // This is there to shut off previously connected cells // that are not connected anymore due to dynamic fracturing. cellStencil.zero( faceMap[kfe][0] ); + cellStencil.zero( faceMap[kfe][1] ); } ); } @@ -418,14 +419,14 @@ void TwoPointFluxApproximation::addFractureMatrixConnectionsDFM( MeshLevel & mes SurfaceElementRegion & fractureRegion = elemManager.getRegion< SurfaceElementRegion >( faceElementRegionName ); localIndex const fractureRegionIndex = fractureRegion.getIndexInParent(); FaceElementSubRegion & fractureSubRegion = fractureRegion.getUniqueSubRegion< FaceElementSubRegion >(); - OrderedVariableToManyElementRelation const & elems2dToElems3d = fractureSubRegion.getToCellRelation(); + FixedToManyElementRelation const & elems2dToElems3d = fractureSubRegion.getToCellRelation(); SortedArrayView< localIndex const > const new2dElems = fractureSubRegion.m_newFaceElements.toViewConst(); FaceElementSubRegion::FaceMapType const & faceMap = fractureSubRegion.faceList(); - ArrayOfArraysView< localIndex const > elemRegionList = elems2dToElems3d.m_toElementRegion.toViewConst(); - ArrayOfArraysView< localIndex const > elemSubRegionList = elems2dToElems3d.m_toElementSubRegion.toViewConst(); - ArrayOfArraysView< localIndex const > elemList = elems2dToElems3d.m_toElementIndex.toViewConst(); + arrayView2d< localIndex const > const elemRegionList = elems2dToElems3d.m_toElementRegion.toViewConst(); + arrayView2d< localIndex const > const elemSubRegionList = elems2dToElems3d.m_toElementSubRegion.toViewConst(); + arrayView2d< localIndex const > const elemList = elems2dToElems3d.m_toElementIndex.toViewConst(); // reserve memory for the connections of this region if( cellStencil.size() != 0 ) @@ -447,7 +448,6 @@ void TwoPointFluxApproximation::addFractureMatrixConnectionsDFM( MeshLevel & mes forAll< serialPolicy >( new2dElems.size(), [ new2dElems, - &elems2dToElems3d, &faceToCellStencil, &faceMap, elemRegionList, @@ -465,7 +465,7 @@ void TwoPointFluxApproximation::addFractureMatrixConnectionsDFM( MeshLevel & mes { localIndex const kfe = new2dElems[k]; { - localIndex const numElems = elems2dToElems3d.m_toElementSubRegion.sizeOfArray( kfe ); + localIndex const numElems = 2; GEOS_ERROR_IF( numElems > maxElems, "Max stencil size exceeded by fracture-cell connector " << kfe ); diff --git a/src/coreComponents/functions/CMakeLists.txt b/src/coreComponents/functions/CMakeLists.txt index 8e73070438c..bf8eed9b134 100644 --- a/src/coreComponents/functions/CMakeLists.txt +++ b/src/coreComponents/functions/CMakeLists.txt @@ -1,3 +1,22 @@ +# SPDX-License-Identifier: LGPL-2.1-only +# +# Copyright (c) 2016-2024 Lawrence Livermore National Security LLC +# Copyright (c) 2018-2024 Total, S.A +# Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University +# Copyright (c) 2023-2024 Chevron +# Copyright (c) 2019- GEOS/GEOSX Contributors +# All rights reserved +# +# See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. +# +#-------------------------------------------------------------------------------------------------- + +#[[ +Package : functions + +Contains classes for storing and computing arbitrary N-dimensional functions. +#]] + # # Specify all headers # diff --git a/src/coreComponents/functions/MultivariableTableFunction.hpp b/src/coreComponents/functions/MultivariableTableFunction.hpp index fd6e99c891d..cc924974f49 100644 --- a/src/coreComponents/functions/MultivariableTableFunction.hpp +++ b/src/coreComponents/functions/MultivariableTableFunction.hpp @@ -22,7 +22,7 @@ #include "FunctionBase.hpp" -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" #include "LvArray/src/tensorOps.hpp" namespace geos diff --git a/src/coreComponents/functions/TableFunction.hpp b/src/coreComponents/functions/TableFunction.hpp index 676807847a7..bd1fe75903a 100644 --- a/src/coreComponents/functions/TableFunction.hpp +++ b/src/coreComponents/functions/TableFunction.hpp @@ -22,7 +22,7 @@ #include "FunctionBase.hpp" -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" #include "LvArray/src/tensorOps.hpp" #include "common/format/table/TableFormatter.hpp" #include "common/Units.hpp" diff --git a/src/coreComponents/linearAlgebra/CMakeLists.txt b/src/coreComponents/linearAlgebra/CMakeLists.txt index 81c3536dfdd..0b62b22690a 100644 --- a/src/coreComponents/linearAlgebra/CMakeLists.txt +++ b/src/coreComponents/linearAlgebra/CMakeLists.txt @@ -1,4 +1,29 @@ +# SPDX-License-Identifier: LGPL-2.1-only +# +# Copyright (c) 2016-2024 Lawrence Livermore National Security LLC +# Copyright (c) 2018-2024 Total, S.A +# Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University +# Copyright (c) 2023-2024 Chevron +# Copyright (c) 2019- GEOS/GEOSX Contributors +# All rights reserved +# +# See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. +# +#-------------------------------------------------------------------------------------------------- + +#[[ +Package: linearAlgebra + +Contains: + - management implementations to handle all degrees of freedom associated with field element on + mesh elements. + - linear solvers implementations. + - interfaces to different external linear solvers libraries (hypre, Petsc, trilinos). +#]] + +# # Specify all headers +# set( linearAlgebra_headers DofManager.hpp DofManagerHelpers.hpp @@ -35,8 +60,9 @@ set( linearAlgebra_headers utilities/NormalOperator.hpp utilities/ReverseCutHillMcKeeOrdering.hpp utilities/TransposeOperator.hpp ) - +# # Specify all sources +# set( linearAlgebra_sources DofManager.cpp solvers/BicgstabSolver.cpp diff --git a/src/coreComponents/linearAlgebra/docs/DofManager.rst b/src/coreComponents/linearAlgebra/docs/DofManager.rst index d13e2ee7c9c..6948b36f1ae 100644 --- a/src/coreComponents/linearAlgebra/docs/DofManager.rst +++ b/src/coreComponents/linearAlgebra/docs/DofManager.rst @@ -2,8 +2,6 @@ DoF Manager ############################################################################### -This will contains a description of the DoF manager in GEOS. - Brief description ======================== diff --git a/src/coreComponents/linearAlgebra/docs/LinearSolvers.rst b/src/coreComponents/linearAlgebra/docs/LinearSolvers.rst index b4b68dfc682..6f68efac64d 100644 --- a/src/coreComponents/linearAlgebra/docs/LinearSolvers.rst +++ b/src/coreComponents/linearAlgebra/docs/LinearSolvers.rst @@ -14,14 +14,14 @@ Any physics solver relying on standard finite element and finite volume techniqu \mathsf{A} \mathsf{x} = \mathsf{b} -with a :math:`\mathsf{A}` a square sparse matrix, :math:`\mathsf{x}` the solution vector, and :math:`\mathsf{b}` the right-hand side. +where :math:`\mathsf{A}` is the square sparse matrix, :math:`\mathsf{x}` the solution vector, and :math:`\mathsf{b}` the right-hand side. For example, in a classical linear elastostatics problem :math:`\mathsf{A}` is the stiffness matrix, and :math:`\mathsf{x}` and :math:`\mathsf{b}` are the displacement and nodal force vectors, respectively. This solution stage represents the most computationally expensive portion of a typical simulation. Solution algorithms generally belong to two families of methods: direct methods and iterative methods. In GEOS both options are made available wrapping around well-established open-source linear algebra libraries, namely -`HYPRE `__, +`HYPRE `__, `PETSc `__, `SuperLU `__, and `Trilinos `__. @@ -38,7 +38,7 @@ Irrespective of the selected direct solver implementation, three stages can be i (#) **Solve Stage**: the solution to the linear systems involving the factorized matrix is computed (#) **Finalize Stage**: the systems involving the factorized matrix have been solved and the direct solver lifetime ends -The default option in GEOS relies on `SuperLU `__, a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear equations, that is called taking advantage of the interface provided in `HYPRE `__. +The default option in GEOS relies on `SuperLU `__, a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear equations, that is called taking advantage of the interface provided in `HYPRE `__. ****************** Iterative methods @@ -110,8 +110,8 @@ This section provides a brief description of the available preconditioners. - `PETSc documentation `__, - `Trilinos documentation `__. -* **MGR**: multigrid reduction. Available through *hypre* interface only. Specific documentation coming soon. - Further details can be found in `MGR documentation `__. +* **MGR**: multigrid reduction. Available through *hypre* interface only. + Further details can be found in `MGR documentation `__, also see section below. * **Block**: custom preconditioner designed for a 2 x 2 block matrix. @@ -119,7 +119,7 @@ This section provides a brief description of the available preconditioners. HYPRE MGR Preconditioner ************************ -MGR stands for multigrid reduction, a multigrid method that uses the interpolation, restriction operators, and the Galerkin triple product, to reduce a linear system to a smaller one, similar to a Schur complement approach. As such, it is designed to target block linear systems resulting from discretizations of multiphysics problems. GEOS uses MGR through an implementation in `HYPRE `__. More information regarding MGR can be found `here `__. Currently, MGR strategies are implemented for hydraulic fracturing, poroelastic, compositional flow with and without wells. More multiphysics solvers with MGR will be enabled in the future. +MGR stands for multigrid reduction, a multigrid method that uses the interpolation, restriction operators, and the Galerkin triple product, to reduce a linear system to a smaller one, similar to a Schur complement approach. As such, it is designed to target block linear systems resulting from discretizations of multiphysics problems. GEOS uses MGR through an implementation in `HYPRE `__. More information regarding MGR can be found `here `__. Currently, MGR strategies are implemented for hydraulic fracturing, singlephase and multiphase poromechanics, singlephase poromechanics with fractures, compositional flow with and without wells. More multiphysics solvers with MGR will be enabled in the future. To use MGR for a specific block system, several components need to be specified. @@ -157,3 +157,16 @@ Moreover, a block scaling is available. Feasible options are: * none: keep the original scaling; * Frobenius norm: equilibrate Frobenius norm of the diagonal blocks; * user provided. + +******************** +Adaptive tolerance +******************** + +This feature is available for iterative solvers and can be enabled using `krylovAdaptiveTol` flag in `LinearSolverParameters`. It follows the Eisenstat-Walker inexact Newton approach described in [Eisenstat and Walker 1996]. The key idea is to relax the linear solver tolerance at the beginning of the nonlinear iterations loop and tighten it when getting closer to the final solution. The initial tolerance is defined by `krylovWeakestTol` and starting from second nonlinear iteration the tolerance is chosen using the following steps: + +- compute the current to previous nonlinear norm ratio: :math:`\mathsf{nr} = \mathsf{min}( \mathsf{norm}^{curr} / \mathsf{norm}^{prev}, 1.0 )` +- estimate the new linear solver tolerance: :math:`\mathsf{tol}_{new} = \mathsf{\gamma} \cdot \mathsf{nr}^{ax}` +- compute a safeguard to avoid too sharp tolerance reduction: :math:`\mathsf{tol}_{alt} = \mathsf{tol}_{old}^{2}` (the bound is the quadratic reduction with respect to the previous tolerance value) +- apply safeguards and compute the final tolerance: :math:`\mathsf{tol} = \mathsf{max}( \mathsf{tol}_{new}, \mathsf{tol}_{alt} )`, :math:`\mathsf{tol} = \mathsf{min}( \mathsf{tol}_{max}, \mathsf{max}( \mathsf{tol}_{min}, \mathsf{tol} ) )` + +Here :math:`\mathsf{\gamma}` is the forcing term, :math:`ax` is the adaptivity exponent, :math:`\mathsf{tol}_{min}` and :math:`\mathsf{tol}_{max}` are prescribed tolerance bounds (defined by `krylovStrongestTol` and `krylovWeakestTol`, respectively). diff --git a/src/coreComponents/linearAlgebra/interfaces/hypre/HypreInterface.cpp b/src/coreComponents/linearAlgebra/interfaces/hypre/HypreInterface.cpp index 5b056df8de7..70591e59973 100644 --- a/src/coreComponents/linearAlgebra/interfaces/hypre/HypreInterface.cpp +++ b/src/coreComponents/linearAlgebra/interfaces/hypre/HypreInterface.cpp @@ -40,12 +40,19 @@ namespace geos void HypreInterface::initialize() { -#ifdef GEOS_USE_OPENMP - GEOS_LOG_RANK_0_IF( omp_get_max_threads()>1, - "OMP_NUM_THREADS > 1 may not be optimal for certain hypre preconditioning options. " ); +#if defined(GEOS_USE_OPENMP) && defined(HYPRE_USING_OPENMP) + GEOS_LOG_RANK_0_IF( omp_get_max_threads() > 1, + "\n" + "********************************************************************\n" + "* *\n" + "* WARNING: OMP_NUM_THREADS > 1 MAY NOT BE OPTIMAL FOR CERTAIN *\n" + "* HYPRE PRECONDITIONING OPTIONS! *\n" + "* *\n" + "********************************************************************\n" + ); #endif - HYPRE_Init(); + HYPRE_Initialize(); #if GEOS_USE_HYPRE_DEVICE == GEOS_USE_HYPRE_CUDA || GEOS_USE_HYPRE_DEVICE == GEOS_USE_HYPRE_HIP HYPRE_SetExecutionPolicy( HYPRE_EXEC_DEVICE ); HYPRE_SetSpGemmUseVendor( 0 ); @@ -53,6 +60,15 @@ void HypreInterface::initialize() #endif HYPRE_SetMemoryLocation( hypre::memoryLocation ); HYPRE_SetPrintErrorMode( 1 ); + +#if defined(HYPRE_USING_UMPIRE) + HYPRE_SetUmpireUMPoolName( "HYPRE_UM" ); + HYPRE_SetUmpireHostPoolName( "HYPRE_HOST" ); + HYPRE_SetUmpireDevicePoolName( "HYPRE_DEVICE" ); + HYPRE_SetUmpirePinnedPoolName( "HYPRE_PINNED" ); +#endif + + HYPRE_SetLogLevel( getenv( "HYPRE_LOG_LEVEL" ) ? atoi( getenv( "HYPRE_LOG_LEVEL" ) ) : 0 ); } void HypreInterface::finalize() diff --git a/src/coreComponents/linearAlgebra/interfaces/hypre/HypreMGR.hpp b/src/coreComponents/linearAlgebra/interfaces/hypre/HypreMGR.hpp index eef5b70b45b..feca89dd6d0 100644 --- a/src/coreComponents/linearAlgebra/interfaces/hypre/HypreMGR.hpp +++ b/src/coreComponents/linearAlgebra/interfaces/hypre/HypreMGR.hpp @@ -91,11 +91,7 @@ class MGRStrategyBase MGRCoarseGridMethod m_levelCoarseGridMethod[numLevels]; ///< Coarse grid method for each level MGRGlobalSmootherType m_levelGlobalSmootherType[numLevels]; ///< Global smoother type for each level HYPRE_Int m_levelGlobalSmootherIters[numLevels]{ -1 }; ///< Number of global smoother iterations for each level -#if GEOS_USE_HYPRE_DEVICE == GEOS_USE_HYPRE_CPU HYPRE_Real m_coarseGridThreshold{ 1.0e-20 }; ///< Coarse grid truncation threshold -#else - HYPRE_Real m_coarseGridThreshold{ 0.0 }; ///< Coarse grid truncation threshold -#endif // TODO: the following options are currently commented out in MGR's code. // Let's consider their use when re-enable in hypre @@ -167,21 +163,24 @@ class MGRStrategyBase GEOS_LAI_CHECK_ERROR( HYPRE_MGRSetLevelSmoothIters( precond.ptr, m_levelGlobalSmootherIters ) ); GEOS_LAI_CHECK_ERROR( HYPRE_MGRSetTruncateCoarseGridThreshold( precond.ptr, m_coarseGridThreshold ) ); GEOS_LAI_CHECK_ERROR( HYPRE_MGRSetNonCpointsToFpoints( precond.ptr, 1 )); + GEOS_LAI_CHECK_ERROR( HYPRE_MGRSetNonGalerkinMaxElmts( precond.ptr, 1 )); } /** * @brief Set up BoomerAMG to perform the solve for the displacement system * @param solver the solver wrapper + * @param separateComponents flag controlling the use of the separate displacement component (SDC) approximation */ - void setDisplacementAMG( HyprePrecWrapper & solver ) + void setDisplacementAMG( HyprePrecWrapper & solver, + integer const & separateComponents ) { GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGCreate( &solver.ptr ) ); GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetTol( solver.ptr, 0.0 ) ); GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetMaxIter( solver.ptr, 1 ) ); GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetMaxRowSum( solver.ptr, 1.0 ) ); - GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetStrongThreshold( solver.ptr, 0.8 ) ); + GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetStrongThreshold( solver.ptr, 0.6 ) ); GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetPrintLevel( solver.ptr, 0 ) ); - + GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetInterpType( solver.ptr, hypre::getAMGInterpolationType( LinearSolverParameters::AMG::InterpType::modifiedExtendedE )) ); #if GEOS_USE_HYPRE_DEVICE == GEOS_USE_HYPRE_CUDA || GEOS_USE_HYPRE_DEVICE == GEOS_USE_HYPRE_HIP GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetCoarsenType( solver.ptr, hypre::getAMGCoarseningType( LinearSolverParameters::AMG::CoarseningType::PMIS ) ) ); GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetRelaxType( solver.ptr, hypre::getAMGRelaxationType( LinearSolverParameters::AMG::SmootherType::chebyshev ) ) ); @@ -191,6 +190,7 @@ class MGRStrategyBase #endif GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetNumFunctions( solver.ptr, 3 ) ); + GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetFilterFunctions( solver.ptr, separateComponents ) ); solver.setup = HYPRE_BoomerAMGSetup; solver.solve = HYPRE_BoomerAMGSolve; @@ -207,11 +207,12 @@ class MGRStrategyBase GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetPrintLevel( solver.ptr, 0 ) ); GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetMaxIter( solver.ptr, 1 ) ); GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetAggNumLevels( solver.ptr, 1 ) ); - GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetAggPMaxElmts( solver.ptr, 16 ) ); + GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetAggPMaxElmts( solver.ptr, 20 ) ); + GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetAggInterpType( solver.ptr, hypre::getAMGAggressiveInterpolationType( LinearSolverParameters::AMG::AggInterpType::multipass ) ) ); GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetTol( solver.ptr, 0.0 ) ); #if GEOS_USE_HYPRE_DEVICE == GEOS_USE_HYPRE_CUDA || GEOS_USE_HYPRE_DEVICE == GEOS_USE_HYPRE_HIP - GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetAggNumLevels( solver.ptr, 0 ) ); - GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetCoarsenType( solver.ptr, toUnderlying( AMGCoarseningType::PMIS ) ) ); + GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetAggInterpType( solver.ptr, hypre::getAMGAggressiveInterpolationType( LinearSolverParameters::AMG::AggInterpType::modifiedExtendedE ) ) ); + GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetCoarsenType( solver.ptr, hypre::getAMGCoarseningType( LinearSolverParameters::AMG::CoarseningType::PMIS ) ) ); GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetRelaxType( solver.ptr, getAMGRelaxationType( LinearSolverParameters::AMG::SmootherType::l1jacobi ) ) ); GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetNumSweeps( solver.ptr, 2 ) ); GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetMaxRowSum( solver.ptr, 1.0 ) ); @@ -256,14 +257,16 @@ class MGRStrategyBase * @brief Set up BoomerAMG to perform the mechanics F-solve for the first F-relaxation * @param precond the preconditioner wrapper * @param mgrData auxiliary MGR data + * @param separateComponents flag controlling the use of the separate displacement component (SDC) approximation * * @note This function should be rethought once MGR allows for customizing boomerAMG (or * any other solver) for F-relaxation at any level */ void setMechanicsFSolver( HyprePrecWrapper & precond, - HypreMGRData & mgrData ) + HypreMGRData & mgrData, + integer const & separateComponents ) { - setDisplacementAMG( mgrData.mechSolver ); + setDisplacementAMG( mgrData.mechSolver, separateComponents ); HYPRE_MGRSetFSolver( precond.ptr, mgrData.mechSolver.solve, mgrData.mechSolver.setup, mgrData.mechSolver.ptr ); } diff --git a/src/coreComponents/linearAlgebra/interfaces/hypre/HyprePreconditioner.cpp b/src/coreComponents/linearAlgebra/interfaces/hypre/HyprePreconditioner.cpp index cd4bc6321e9..0d76b175eab 100644 --- a/src/coreComponents/linearAlgebra/interfaces/hypre/HyprePreconditioner.cpp +++ b/src/coreComponents/linearAlgebra/interfaces/hypre/HyprePreconditioner.cpp @@ -88,7 +88,6 @@ void createAMG( LinearSolverParameters const & params, GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetTol( precond.ptr, 0.0 ) ); GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetMaxIter( precond.ptr, 1 ) ); GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetPrintLevel( precond.ptr, logLevel ) ); - GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetNumFunctions( precond.ptr, params.dofsPerNode ) ); // Set maximum number of multigrid levels (default 25) GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetMaxLevels( precond.ptr, LvArray::integerConversion< HYPRE_Int >( params.amg.maxLevels ) ) ); @@ -174,7 +173,9 @@ void createAMG( LinearSolverParameters const & params, GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetPMaxElmts( precond.ptr, params.amg.interpolationMaxNonZeros ) ); } + // Unknown-based AMG parameters GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetNumFunctions( precond.ptr, params.amg.numFunctions ) ); + GEOS_LAI_CHECK_ERROR( HYPRE_BoomerAMGSetFilterFunctions( precond.ptr, params.amg.separateComponents ) ); if( params.amg.aggressiveNumLevels ) { @@ -340,32 +341,6 @@ void HyprePreconditioner::create( DofManager const * const dofManager ) HypreMatrix const & HyprePreconditioner::setupPreconditioningMatrix( HypreMatrix const & mat ) { - GEOS_MARK_FUNCTION; - - if( m_params.preconditionerType == LinearSolverParameters::PreconditionerType::mgr && m_params.mgr.separateComponents ) - { - GEOS_LAI_ASSERT_MSG( mat.dofManager() != nullptr, "MGR preconditioner requires a DofManager instance" ); - HypreMatrix Pu; - HypreMatrix Auu; - { - Stopwatch timer( m_makeRestrictorTime ); - mat.dofManager()->makeRestrictor( { { m_params.mgr.displacementFieldName, { 3, true } } }, mat.comm(), true, Pu ); - } - { - Stopwatch timer( m_computeAuuTime ); - mat.multiplyPtAP( Pu, Auu ); - } - { - Stopwatch timer( m_componentFilterTime ); - Auu.separateComponentFilter( m_precondMatrix, m_params.dofsPerNode ); - } - } - else if( m_params.preconditionerType == LinearSolverParameters::PreconditionerType::amg && m_params.amg.separateComponents ) - { - Stopwatch timer( m_componentFilterTime ); - mat.separateComponentFilter( m_precondMatrix, m_params.dofsPerNode ); - return m_precondMatrix; - } return mat; } @@ -385,12 +360,6 @@ void HyprePreconditioner::setup( Matrix const & mat ) { LvArray::system::FloatingPointExceptionGuard guard( FE_ALL_EXCEPT ); - // Perform setup of the MGR mechanics F-solver with SDC matrix, if used - if( m_mgrData && m_mgrData->mechSolver.ptr && m_mgrData->mechSolver.setup ) - { -// GEOS_LAI_CHECK_ERROR( m_mgrData->mechSolver.setup( m_mgrData->mechSolver.ptr, m_precondMatrix.unwrapped(), nullptr, nullptr ) ); - } - // Perform setup of the main solver, if needed if( m_precond->setup ) { diff --git a/src/coreComponents/linearAlgebra/interfaces/hypre/HyprePreconditioner.hpp b/src/coreComponents/linearAlgebra/interfaces/hypre/HyprePreconditioner.hpp index 1f13028f4e1..ee7382f8ae3 100644 --- a/src/coreComponents/linearAlgebra/interfaces/hypre/HyprePreconditioner.hpp +++ b/src/coreComponents/linearAlgebra/interfaces/hypre/HyprePreconditioner.hpp @@ -95,26 +95,6 @@ class HyprePreconditioner final : public PreconditionerBase< HypreInterface > */ HyprePrecWrapper const & unwrapped() const; - /** - * @brief @return time spent setting up separate component matrix. - */ - real64 componentFilterTime() const - { - return m_componentFilterTime; - } - - /// @return time to construct restrictor matrix. - real64 makeRestrictorTime() const - { - return m_makeRestrictorTime; - } - - /// @return time to apply restrictor matrix. - real64 computeAuuTime() const - { - return m_computeAuuTime; - } - private: /** @@ -144,15 +124,6 @@ class HyprePreconditioner final : public PreconditionerBase< HypreInterface > /// Null space vectors std::unique_ptr< HypreNullSpace > m_nullSpace; - - /// Timing of separate component matrix construction - real64 m_componentFilterTime = 0.0; - - /// Timing of the restrictor matrix construction - real64 m_makeRestrictorTime = 0.0; - - /// Timing of the cost of applying the restrictor matrix to the system - real64 m_computeAuuTime = 0.0; }; } diff --git a/src/coreComponents/linearAlgebra/interfaces/hypre/HypreSolver.cpp b/src/coreComponents/linearAlgebra/interfaces/hypre/HypreSolver.cpp index e882d55faba..a3f87354ed6 100644 --- a/src/coreComponents/linearAlgebra/interfaces/hypre/HypreSolver.cpp +++ b/src/coreComponents/linearAlgebra/interfaces/hypre/HypreSolver.cpp @@ -201,11 +201,7 @@ void HypreSolver::setup( HypreMatrix const & mat ) clear(); Base::setup( mat ); Stopwatch timer( m_result.setupTime ); - m_precond.setup( mat ); - m_componentFilterTime = m_precond.componentFilterTime(); - m_makeRestrictorTime = m_precond.makeRestrictorTime(); - m_computeAuuTime = m_precond.computeAuuTime(); m_solver = std::make_unique< HypreSolverWrapper >(); createHypreKrylovSolver( m_params, mat.comm(), *m_solver ); @@ -276,14 +272,18 @@ void HypreSolver::solve( HypreVector const & rhs, if( m_params.logLevel >= 1 ) { - GEOS_LOG_RANK_0( " Linear Solver | " << m_result.status << - " | Iterations: " << m_result.numIterations << - " | Final Rel Res: " << m_result.residualReduction << - " | Make Restrictor Time: " << m_makeRestrictorTime << - " | Compute Auu Time: " << m_computeAuuTime << - " | SC Filter Time: " << m_componentFilterTime << - " | Setup Time: " << m_result.setupTime << " s" << - " | Solve Time: " << m_result.solveTime << " s" ); + HYPRE_BigInt global_num_rows, global_num_nonzeros; + + // This involves an MPI collective call, and therefore we call it only when necessary + GEOS_LAI_CHECK_ERROR( HYPRE_IJMatrixGetGlobalInfo( matrix().unwrappedIJ(), + &global_num_rows, + &global_num_rows, // This is intentional and assuming the matrix is square + &global_num_nonzeros ) ); + + GEOS_LOG_RANK_0( GEOS_FMT( " Linear Solver | {} | Unknowns: {} | Nonzeros: {} | Iterations: {} | Final Rel Res: {:.4e} | Setup Time: {:.3f} s | Solve Time: {:.3f} s", + m_result.status, stringutilities::addCommaSeparators( global_num_rows ), + stringutilities::addCommaSeparators( global_num_nonzeros ), m_result.numIterations, + m_result.residualReduction, m_result.setupTime, m_result.solveTime ) ); } } diff --git a/src/coreComponents/linearAlgebra/interfaces/hypre/HypreSolver.hpp b/src/coreComponents/linearAlgebra/interfaces/hypre/HypreSolver.hpp index 40364992a06..7cc8c5b5738 100644 --- a/src/coreComponents/linearAlgebra/interfaces/hypre/HypreSolver.hpp +++ b/src/coreComponents/linearAlgebra/interfaces/hypre/HypreSolver.hpp @@ -93,11 +93,6 @@ class HypreSolver final : public LinearSolverBase< HypreInterface > /// Pointers to hypre functions for the krylov solver std::unique_ptr< HypreSolverWrapper > m_solver; - - /// Time of the most recent SC matrix construction - real64 m_componentFilterTime; - real64 m_makeRestrictorTime; - real64 m_computeAuuTime; }; } // end geos namespace diff --git a/src/coreComponents/linearAlgebra/interfaces/hypre/HypreUtils.hpp b/src/coreComponents/linearAlgebra/interfaces/hypre/HypreUtils.hpp index a205fe074c7..a309557dd81 100644 --- a/src/coreComponents/linearAlgebra/interfaces/hypre/HypreUtils.hpp +++ b/src/coreComponents/linearAlgebra/interfaces/hypre/HypreUtils.hpp @@ -399,6 +399,8 @@ inline HYPRE_Int getAMGCoarseType( LinearSolverParameters::AMG::CoarseType const { LinearSolverParameters::AMG::CoarseType::direct, 9 }, { LinearSolverParameters::AMG::CoarseType::chebyshev, 16 }, { LinearSolverParameters::AMG::CoarseType::l1jacobi, 18 }, + { LinearSolverParameters::AMG::CoarseType::gsElimWPivoting, 99 }, + { LinearSolverParameters::AMG::CoarseType::gsElimWInverse, 199 }, }; return findOption( typeMap, type, "multigrid coarse solver", "HyprePreconditioner" ); } diff --git a/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/HybridSinglePhasePoromechanics.hpp b/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/HybridSinglePhasePoromechanics.hpp index f79ad85fb27..687be08785a 100644 --- a/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/HybridSinglePhasePoromechanics.hpp +++ b/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/HybridSinglePhasePoromechanics.hpp @@ -84,10 +84,11 @@ class HybridSinglePhasePoromechanics : public MGRStrategyBase< 2 > /** * @brief Setup the MGR strategy. + * @param mgrParams MGR configuration parameters * @param precond preconditioner wrapper * @param mgrData auxiliary MGR data */ - void setup( LinearSolverParameters::MGR const &, + void setup( LinearSolverParameters::MGR const & mgrParams, HyprePrecWrapper & precond, HypreMGRData & mgrData ) { @@ -96,7 +97,7 @@ class HybridSinglePhasePoromechanics : public MGRStrategyBase< 2 > GEOS_LAI_CHECK_ERROR( HYPRE_MGRSetPMaxElmts( precond.ptr, 0 )); // Configure the BoomerAMG solver used as F-relaxation for the first level - setMechanicsFSolver( precond, mgrData ); + setMechanicsFSolver( precond, mgrData, mgrParams.separateComponents ); // Configure the BoomerAMG solver used as mgr coarse solver for the pressure reduced system setPressureAMG( mgrData.coarseSolver ); diff --git a/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/Hydrofracture.hpp b/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/Hydrofracture.hpp index faf44e8adaf..6983d364a89 100644 --- a/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/Hydrofracture.hpp +++ b/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/Hydrofracture.hpp @@ -70,17 +70,18 @@ class Hydrofracture : public MGRStrategyBase< 1 > /** * @brief Setup the MGR strategy. + * @param mgrParams MGR configuration parameters * @param precond preconditioner wrapper * @param mgrData auxiliary MGR data */ - void setup( LinearSolverParameters::MGR const &, + void setup( LinearSolverParameters::MGR const & mgrParams, HyprePrecWrapper & precond, HypreMGRData & mgrData ) { setReduction( precond, mgrData ); // Configure the BoomerAMG solver used as F-relaxation for the first level - setMechanicsFSolver( precond, mgrData ); + setMechanicsFSolver( precond, mgrData, mgrParams.separateComponents ); // Configure the BoomerAMG solver used as mgr coarse solver for the pressure reduced system setPressureAMG( mgrData.coarseSolver ); diff --git a/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/LagrangianContactMechanics.hpp b/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/LagrangianContactMechanics.hpp index 2ad38a87132..68dd3e5c837 100644 --- a/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/LagrangianContactMechanics.hpp +++ b/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/LagrangianContactMechanics.hpp @@ -76,10 +76,11 @@ class LagrangianContactMechanics : public MGRStrategyBase< 1 > /** * @brief Setup the MGR strategy. + * @param mgrParams MGR configuration parameters * @param precond preconditioner wrapper * @param mgrData auxiliary MGR data */ - void setup( LinearSolverParameters::MGR const &, + void setup( LinearSolverParameters::MGR const & mgrParams, HyprePrecWrapper & precond, HypreMGRData & mgrData ) { @@ -87,7 +88,7 @@ class LagrangianContactMechanics : public MGRStrategyBase< 1 > // Configure the BoomerAMG solver used as mgr coarse solver for the displacement reduced system // (note that no separate displacement component approach is used here) - setDisplacementAMG( mgrData.coarseSolver ); + setDisplacementAMG( mgrData.coarseSolver, mgrParams.separateComponents ); } }; diff --git a/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/MultiphasePoromechanics.hpp b/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/MultiphasePoromechanics.hpp index dcbe732e90e..cfeca18d3f1 100644 --- a/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/MultiphasePoromechanics.hpp +++ b/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/MultiphasePoromechanics.hpp @@ -72,20 +72,20 @@ class MultiphasePoromechanics : public MGRStrategyBase< 3 > setupLabels(); // Level 0 - m_levelFRelaxType[0] = MGRFRelaxationType::amgVCycle; - m_levelFRelaxIters[0] = 1; - m_levelInterpType[0] = MGRInterpolationType::jacobi; - m_levelRestrictType[0] = MGRRestrictionType::injection; - m_levelCoarseGridMethod[0] = MGRCoarseGridMethod::nonGalerkin; - m_levelGlobalSmootherType[0] = MGRGlobalSmootherType::none; + m_levelFRelaxType[0] = MGRFRelaxationType::amgVCycle; + m_levelFRelaxIters[0] = 1; + m_levelInterpType[0] = MGRInterpolationType::jacobi; + m_levelRestrictType[0] = MGRRestrictionType::injection; + m_levelCoarseGridMethod[0] = MGRCoarseGridMethod::nonGalerkin; + m_levelGlobalSmootherType[0] = MGRGlobalSmootherType::none; // Level 1 - m_levelFRelaxType[1] = MGRFRelaxationType::jacobi; - m_levelFRelaxIters[1] = 1; - m_levelInterpType[1] = MGRInterpolationType::jacobi; - m_levelRestrictType[1] = MGRRestrictionType::injection; - m_levelCoarseGridMethod[1] = MGRCoarseGridMethod::galerkin; - m_levelGlobalSmootherType[1] = MGRGlobalSmootherType::none; + m_levelFRelaxType[1] = MGRFRelaxationType::jacobi; + m_levelFRelaxIters[1] = 1; + m_levelInterpType[1] = MGRInterpolationType::jacobi; + m_levelRestrictType[1] = MGRRestrictionType::injection; + m_levelCoarseGridMethod[1] = MGRCoarseGridMethod::galerkin; + m_levelGlobalSmootherType[1] = MGRGlobalSmootherType::none; // Level 2 m_levelFRelaxType[2] = MGRFRelaxationType::none; @@ -98,17 +98,18 @@ class MultiphasePoromechanics : public MGRStrategyBase< 3 > /** * @brief Setup the MGR strategy. + * @param mgrParams MGR configuration parameters * @param precond preconditioner wrapper * @param mgrData auxiliary MGR data */ - void setup( LinearSolverParameters::MGR const &, + void setup( LinearSolverParameters::MGR const & mgrParams, HyprePrecWrapper & precond, HypreMGRData & mgrData ) { setReduction( precond, mgrData ); // Configure the BoomerAMG solver used as F-relaxation for the first level - setMechanicsFSolver( precond, mgrData ); + setMechanicsFSolver( precond, mgrData, mgrParams.separateComponents ); // Configure the BoomerAMG solver used as mgr coarse solver for the pressure reduced system setPressureAMG( mgrData.coarseSolver ); diff --git a/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/MultiphasePoromechanicsReservoirFVM.hpp b/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/MultiphasePoromechanicsReservoirFVM.hpp index 69038faa599..18293db1f12 100644 --- a/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/MultiphasePoromechanicsReservoirFVM.hpp +++ b/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/MultiphasePoromechanicsReservoirFVM.hpp @@ -118,7 +118,7 @@ class MultiphasePoromechanicsReservoirFVM : public MGRStrategyBase< 4 > /** * @brief Setup the MGR strategy. - * @param mgrParams parameters for the configuration of the MGR recipe + * @param mgrParams MGR configuration parameters * @param precond preconditioner wrapper * @param mgrData auxiliary MGR data */ @@ -136,7 +136,7 @@ class MultiphasePoromechanicsReservoirFVM : public MGRStrategyBase< 4 > setReduction( precond, mgrData ); // Configure the BoomerAMG solver used as F-relaxation for the first level - setMechanicsFSolver( precond, mgrData ); + setMechanicsFSolver( precond, mgrData, mgrParams.separateComponents ); // Configure the BoomerAMG solver used as mgr coarse solver for the pressure reduced system setPressureAMG( mgrData.coarseSolver ); diff --git a/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/SinglePhasePoromechanics.hpp b/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/SinglePhasePoromechanics.hpp index 6a4994b90a7..da9b9b8e2d8 100644 --- a/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/SinglePhasePoromechanics.hpp +++ b/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/SinglePhasePoromechanics.hpp @@ -70,17 +70,18 @@ class SinglePhasePoromechanics : public MGRStrategyBase< 1 > /** * @brief Setup the MGR strategy. + * @param mgrParams MGR configuration parameters * @param precond preconditioner wrapper * @param mgrData auxiliary MGR data */ - void setup( LinearSolverParameters::MGR const &, + void setup( LinearSolverParameters::MGR const & mgrParams, HyprePrecWrapper & precond, HypreMGRData & mgrData ) { setReduction( precond, mgrData ); // Configure the BoomerAMG solver used as F-relaxation for the first level - setMechanicsFSolver( precond, mgrData ); + setMechanicsFSolver( precond, mgrData, mgrParams.separateComponents ); // Configure the BoomerAMG solver used as mgr coarse solver for the pressure reduced system setPressureAMG( mgrData.coarseSolver ); diff --git a/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/SinglePhasePoromechanicsReservoirFVM.hpp b/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/SinglePhasePoromechanicsReservoirFVM.hpp index 26b054f9a2d..88be6a13d9b 100644 --- a/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/SinglePhasePoromechanicsReservoirFVM.hpp +++ b/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/SinglePhasePoromechanicsReservoirFVM.hpp @@ -85,17 +85,18 @@ class SinglePhasePoromechanicsReservoirFVM : public MGRStrategyBase< 2 > /** * @brief Setup the MGR strategy. + * @param mgrParams MGR configuration parameters * @param precond preconditioner wrapper * @param mgrData auxiliary MGR data */ - void setup( LinearSolverParameters::MGR const &, + void setup( LinearSolverParameters::MGR const & mgrParams, HyprePrecWrapper & precond, HypreMGRData & mgrData ) { setReduction( precond, mgrData ); // Configure the BoomerAMG solver used as F-relaxation for the first level - setMechanicsFSolver( precond, mgrData ); + setMechanicsFSolver( precond, mgrData, mgrParams.separateComponents ); // Configure the BoomerAMG solver used as mgr coarse solver for the pressure reduced system setPressureAMG( mgrData.coarseSolver ); diff --git a/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/SolidMechanicsEmbeddedFractures.hpp b/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/SolidMechanicsEmbeddedFractures.hpp index 7da6fb6229f..52324cc6ba1 100644 --- a/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/SolidMechanicsEmbeddedFractures.hpp +++ b/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/SolidMechanicsEmbeddedFractures.hpp @@ -75,17 +75,18 @@ class SolidMechanicsEmbeddedFractures : public MGRStrategyBase< 1 > /** * @brief Setup the MGR strategy. + * @param mgrParams MGR configuration parameters * @param precond preconditioner wrapper * @param mgrData auxiliary MGR data */ - void setup( LinearSolverParameters::MGR const &, + void setup( LinearSolverParameters::MGR const & mgrParams, HyprePrecWrapper & precond, HypreMGRData & mgrData ) { setReduction( precond, mgrData ); // Configure the BoomerAMG solver used as mgr coarse solver for the displacement reduced system - setDisplacementAMG( mgrData.coarseSolver ); + setDisplacementAMG( mgrData.coarseSolver, mgrParams.separateComponents ); } }; diff --git a/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/ThermalMultiphasePoromechanics.hpp b/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/ThermalMultiphasePoromechanics.hpp index 129e2b4abd0..1abf2f77d94 100644 --- a/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/ThermalMultiphasePoromechanics.hpp +++ b/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/ThermalMultiphasePoromechanics.hpp @@ -75,20 +75,20 @@ class ThermalMultiphasePoromechanics : public MGRStrategyBase< 3 > setupLabels(); // Level 0 - m_levelFRelaxType[0] = MGRFRelaxationType::amgVCycle; - m_levelFRelaxIters[0] = 1; - m_levelInterpType[0] = MGRInterpolationType::jacobi; - m_levelRestrictType[0] = MGRRestrictionType::injection; - m_levelCoarseGridMethod[0] = MGRCoarseGridMethod::nonGalerkin; - m_levelGlobalSmootherType[0] = MGRGlobalSmootherType::none; + m_levelFRelaxType[0] = MGRFRelaxationType::amgVCycle; + m_levelFRelaxIters[0] = 1; + m_levelInterpType[0] = MGRInterpolationType::jacobi; + m_levelRestrictType[0] = MGRRestrictionType::injection; + m_levelCoarseGridMethod[0] = MGRCoarseGridMethod::nonGalerkin; + m_levelGlobalSmootherType[0] = MGRGlobalSmootherType::none; // Level 1 - m_levelFRelaxType[1] = MGRFRelaxationType::jacobi; - m_levelFRelaxIters[1] = 1; - m_levelInterpType[1] = MGRInterpolationType::jacobi; - m_levelRestrictType[1] = MGRRestrictionType::injection; - m_levelCoarseGridMethod[1] = MGRCoarseGridMethod::galerkin; - m_levelGlobalSmootherType[1] = MGRGlobalSmootherType::none; + m_levelFRelaxType[1] = MGRFRelaxationType::jacobi; + m_levelFRelaxIters[1] = 1; + m_levelInterpType[1] = MGRInterpolationType::jacobi; + m_levelRestrictType[1] = MGRRestrictionType::injection; + m_levelCoarseGridMethod[1] = MGRCoarseGridMethod::galerkin; + m_levelGlobalSmootherType[1] = MGRGlobalSmootherType::none; // Level 2 m_levelFRelaxType[2] = MGRFRelaxationType::none; @@ -101,18 +101,18 @@ class ThermalMultiphasePoromechanics : public MGRStrategyBase< 3 > /** * @brief Setup the MGR strategy. + * @param mgrParams MGR configuration parameters * @param precond preconditioner wrapper * @param mgrData auxiliary MGR data */ - void setup( LinearSolverParameters::MGR const &, + void setup( LinearSolverParameters::MGR const & mgrParams, HyprePrecWrapper & precond, HypreMGRData & mgrData ) { setReduction( precond, mgrData ); - // CHECK: the mechanics solver setup was missing: was there a reason? // Configure the BoomerAMG solver used as F-relaxation for the first level - setMechanicsFSolver( precond, mgrData ); + setMechanicsFSolver( precond, mgrData, mgrParams.separateComponents ); // Configure the BoomerAMG solver used as mgr coarse solver for the pressure/temperature reduced system setPressureTemperatureAMG( mgrData.coarseSolver ); diff --git a/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/ThermalSinglePhasePoromechanics.hpp b/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/ThermalSinglePhasePoromechanics.hpp index af5889fc7cd..d14919e57ee 100644 --- a/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/ThermalSinglePhasePoromechanics.hpp +++ b/src/coreComponents/linearAlgebra/interfaces/hypre/mgrStrategies/ThermalSinglePhasePoromechanics.hpp @@ -72,18 +72,18 @@ class ThermalSinglePhasePoromechanics : public MGRStrategyBase< 1 > /** * @brief Setup the MGR strategy. + * @param mgrParams MGR configuration parameters * @param precond preconditioner wrapper * @param mgrData auxiliary MGR data */ - void setup( LinearSolverParameters::MGR const &, + void setup( LinearSolverParameters::MGR const & mgrParams, HyprePrecWrapper & precond, HypreMGRData & mgrData ) { setReduction( precond, mgrData ); - // CHECK: the mechanics solver setup was missing: was there a reason? // Configure the BoomerAMG solver used as F-relaxation for the first level - setMechanicsFSolver( precond, mgrData ); + setMechanicsFSolver( precond, mgrData, mgrParams.separateComponents ); // Configure the BoomerAMG solver used as mgr coarse solver for the pressure/temperature reduced system setPressureTemperatureAMG( mgrData.coarseSolver ); diff --git a/src/coreComponents/linearAlgebra/utilities/LinearSolverParameters.hpp b/src/coreComponents/linearAlgebra/utilities/LinearSolverParameters.hpp index 7483a1721a9..cd0aecfc572 100644 --- a/src/coreComponents/linearAlgebra/utilities/LinearSolverParameters.hpp +++ b/src/coreComponents/linearAlgebra/utilities/LinearSolverParameters.hpp @@ -20,7 +20,7 @@ #ifndef GEOS_LINEARALGEBRA_UTILITIES_LINEARSOLVERPARAMETERS_HPP_ #define GEOS_LINEARALGEBRA_UTILITIES_LINEARSOLVERPARAMETERS_HPP_ -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" namespace geos { @@ -118,7 +118,7 @@ struct LinearSolverParameters real64 relTolerance = 1e-6; ///< Relative convergence tolerance for iterative solvers integer maxIterations = 200; ///< Max iterations before declaring convergence failure #if GEOS_USE_HYPRE_DEVICE == GEOS_USE_HYPRE_CUDA || GEOS_USE_HYPRE_DEVICE == GEOS_USE_HYPRE_HIP - integer maxRestart = 50; ///< Max number of vectors in Krylov basis before restarting (GPUs) + integer maxRestart = 100; ///< Max number of vectors in Krylov basis before restarting (GPUs) #else integer maxRestart = 200; ///< Max number of vectors in Krylov basis before restarting (CPUs) #endif @@ -184,7 +184,9 @@ struct LinearSolverParameters l1sgs, ///< l1-Symmetric Gauss-Seidel chebyshev, ///< Chebyshev polynomial (GPU support in hypre) direct, ///< Direct solver as preconditioner - bgs ///< Gauss-Seidel smoothing (backward sweep) + bgs, ///< Gauss-Seidel smoothing (backward sweep) + gsElimWPivoting, ///< Gaussian Elimination with pivoting direct solver + gsElimWInverse ///< Direct inverse with Gaussian Elimination }; /// AMG coarsening types (HYPRE only) @@ -298,9 +300,8 @@ struct LinearSolverParameters StrategyType strategy = StrategyType::invalid; ///< Predefined MGR solution strategy (solver specific) integer separateComponents = false; ///< Apply a separate displacement component (SDC) filter before AMG construction - string displacementFieldName; ///< Displacement field name need for SDC filter - integer areWellsShut = false; ///< Flag to let MGR know that wells are shut, and that jacobi can be applied to the - ///< well block + integer areWellsShut = false; ///< Flag to let MGR know that wells are shut, and that jacobi can be applied to the + ///< well block } mgr; ///< Multigrid reduction (MGR) parameters @@ -424,7 +425,9 @@ ENUM_STRINGS( LinearSolverParameters::AMG::CoarseType, "l1sgs", "chebyshev", "direct", - "bgs" ); + "bgs", + "gsElimWPivoting", + "gsElimWInverse" ); /// Declare strings associated with enumeration values. ENUM_STRINGS( LinearSolverParameters::AMG::CoarseningType, diff --git a/src/coreComponents/mainInterface/CMakeLists.txt b/src/coreComponents/mainInterface/CMakeLists.txt index af6b85e76cf..1e21b437bc0 100644 --- a/src/coreComponents/mainInterface/CMakeLists.txt +++ b/src/coreComponents/mainInterface/CMakeLists.txt @@ -1,3 +1,25 @@ +# SPDX-License-Identifier: LGPL-2.1-only +# +# Copyright (c) 2016-2024 Lawrence Livermore National Security LLC +# Copyright (c) 2018-2024 Total, S.A +# Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University +# Copyright (c) 2023-2024 Chevron +# Copyright (c) 2019- GEOS/GEOSX Contributors +# All rights reserved +# +# See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. +# +#-------------------------------------------------------------------------------------------------- + +#[[ +Package: mainInterface + +Contains: + - GEOS `main` entry point. + - the class managing the operation flow of the problem being ran in GEOS. + - basic initialization and environment setup routines. +#]] + # # Specify all headers # diff --git a/src/coreComponents/mainInterface/ProblemManager.cpp b/src/coreComponents/mainInterface/ProblemManager.cpp index 7e811191bb4..d60a61663b7 100644 --- a/src/coreComponents/mainInterface/ProblemManager.cpp +++ b/src/coreComponents/mainInterface/ProblemManager.cpp @@ -39,6 +39,7 @@ #include "fileIO/Outputs/OutputBase.hpp" #include "fileIO/Outputs/OutputManager.hpp" #include "functions/FunctionManager.hpp" +#include "mesh/ExternalDataSourceManager.hpp" #include "mesh/DomainPartition.hpp" #include "mesh/MeshBody.hpp" #include "mesh/MeshManager.hpp" @@ -73,6 +74,8 @@ ProblemManager::ProblemManager( conduit::Node & root ): setInputFlags( InputFlags::PROBLEM_ROOT ); + registerGroup< ExternalDataSourceManager >( groupKeys.externalDataSourceManager ); + m_fieldSpecificationManager = ®isterGroup< FieldSpecificationManager >( groupKeys.fieldSpecificationManager ); m_eventManager = ®isterGroup< EventManager >( groupKeys.eventManager ); diff --git a/src/coreComponents/mainInterface/ProblemManager.hpp b/src/coreComponents/mainInterface/ProblemManager.hpp index 7787b31bffd..6067f1b4391 100644 --- a/src/coreComponents/mainInterface/ProblemManager.hpp +++ b/src/coreComponents/mainInterface/ProblemManager.hpp @@ -243,6 +243,7 @@ class ProblemManager : public dataRepository::Group dataRepository::GroupKey constitutiveManager = { "Constitutive" }; ///< Constitutive key dataRepository::GroupKey domain = { "domain" }; ///< Domain key dataRepository::GroupKey eventManager = { "Events" }; ///< Events key + dataRepository::GroupKey externalDataSourceManager = { "ExternalDataSource" }; ///< External Data Source key dataRepository::GroupKey fieldSpecificationManager = { "FieldSpecifications" }; ///< Field specification key dataRepository::GroupKey functionManager = { "Functions" }; ///< Functions key dataRepository::GroupKey geometricObjectManager = { "Geometry" }; ///< Geometry key diff --git a/src/coreComponents/math/CMakeLists.txt b/src/coreComponents/math/CMakeLists.txt index 53c52e1abdb..1afa1d60688 100644 --- a/src/coreComponents/math/CMakeLists.txt +++ b/src/coreComponents/math/CMakeLists.txt @@ -1,3 +1,22 @@ +# SPDX-License-Identifier: LGPL-2.1-only +# +# Copyright (c) 2016-2024 Lawrence Livermore National Security LLC +# Copyright (c) 2018-2024 Total, S.A +# Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University +# Copyright (c) 2023-2024 Chevron +# Copyright (c) 2019- GEOS/GEOSX Contributors +# All rights reserved +# +# See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. +# +#-------------------------------------------------------------------------------------------------- + +#[[ +Package : math + +Contains interpolation and extrapolation math functions. +#]] + # # Specify all headers # @@ -6,12 +25,12 @@ set( math_headers extrapolation/Extrapolation.hpp) blt_add_library( NAME math - SOURCES + SOURCES HEADERS ${math_headers} - DEPENDS_ON + DEPENDS_ON SHARED FALSE ) - + target_include_directories( math INTERFACE ${CMAKE_SOURCE_DIR}/coreComponents ) install( TARGETS math LIBRARY DESTINATION ${CMAKE_INSTALL_PREFIX}/lib ) diff --git a/src/coreComponents/mesh/CMakeLists.txt b/src/coreComponents/mesh/CMakeLists.txt index f6fbb61e2e3..277df76bc4a 100644 --- a/src/coreComponents/mesh/CMakeLists.txt +++ b/src/coreComponents/mesh/CMakeLists.txt @@ -1,4 +1,29 @@ +# SPDX-License-Identifier: LGPL-2.1-only +# +# Copyright (c) 2016-2024 Lawrence Livermore National Security LLC +# Copyright (c) 2018-2024 Total, S.A +# Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University +# Copyright (c) 2023-2024 Chevron +# Copyright (c) 2019- GEOS/GEOSX Contributors +# All rights reserved +# +# See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. +# +#-------------------------------------------------------------------------------------------------- + +#[[ +Package: mesh + +Contains: + - components allowing to import, store and access the mesh. + - partitioning and communication tools (ParMETIS, Scotch and VTK interfaces). + - GEOS components defining simple geometric objects. + - basic geometric and mesh utilities. +#]] + +# # Specify all headers +# set( mesh_headers BufferOps.hpp CellElementRegion.hpp @@ -10,6 +35,8 @@ set( mesh_headers ElementRegionManager.hpp ElementSubRegionBase.hpp ElementType.hpp + ExternalDataSourceBase.hpp + ExternalDataSourceManager.hpp EmbeddedSurfaceNodeManager.hpp EmbeddedSurfaceSubRegion.hpp MeshFields.hpp @@ -55,12 +82,13 @@ set( mesh_headers generators/InternalMeshGenerator.hpp generators/InternalWellGenerator.hpp generators/InternalWellboreGenerator.hpp + generators/MeshComponentBase.hpp generators/MeshGeneratorBase.hpp generators/ParMETISInterface.hpp generators/ParticleMeshGenerator.hpp generators/PartitionDescriptor.hpp generators/PrismUtilities.hpp - generators/WellGeneratorABC.hpp + generators/Region.hpp generators/WellGeneratorBase.hpp mpiCommunications/CommID.hpp mpiCommunications/CommunicationTools.hpp @@ -78,13 +106,15 @@ set( mesh_headers simpleGeometricObjects/SimpleGeometricObjectBase.hpp simpleGeometricObjects/PlanarGeometricObject.hpp simpleGeometricObjects/ThickPlane.hpp - utilities/AverageOverQuadraturePointsKernel.hpp + utilities/AverageOverQuadraturePointsKernel.hpp utilities/CIcomputationKernel.hpp utilities/ComputationalGeometry.hpp utilities/MeshMapUtilities.hpp utilities/StructuredGridUtilities.hpp ) +# # Specify all sources +# set( mesh_sources BufferOps.cpp CellElementRegion.cpp @@ -97,6 +127,8 @@ set( mesh_sources ElementSubRegionBase.cpp EmbeddedSurfaceNodeManager.cpp EmbeddedSurfaceSubRegion.cpp + ExternalDataSourceBase.cpp + ExternalDataSourceManager.cpp FaceElementSubRegion.cpp FaceManager.cpp MeshBody.cpp @@ -129,9 +161,11 @@ set( mesh_sources generators/InternalMeshGenerator.cpp generators/InternalWellGenerator.cpp generators/InternalWellboreGenerator.cpp + generators/MeshComponentBase.cpp generators/MeshGeneratorBase.cpp generators/ParMETISInterface.cpp generators/ParticleMeshGenerator.cpp + generators/Region.cpp generators/WellGeneratorBase.cpp mpiCommunications/CommID.cpp mpiCommunications/CommunicationTools.cpp @@ -157,6 +191,7 @@ if( ENABLE_VTK ) set( mesh_headers ${mesh_headers} generators/CollocatedNodes.hpp generators/VTKFaceBlockUtilities.hpp + generators/VTKHierarchicalDataSource.hpp generators/VTKMeshGenerator.hpp generators/VTKMeshGeneratorTools.hpp generators/VTKWellGenerator.hpp @@ -165,11 +200,12 @@ if( ENABLE_VTK ) set( mesh_sources ${mesh_sources} generators/CollocatedNodes.cpp generators/VTKFaceBlockUtilities.cpp + generators/VTKHierarchicalDataSource.cpp generators/VTKMeshGenerator.cpp generators/VTKMeshGeneratorTools.cpp generators/VTKWellGenerator.cpp generators/VTKUtilities.cpp - ) + ) list( APPEND dependencyList VTK::IOLegacy VTK::FiltersParallelDIY2 ) if( ENABLE_MPI ) list( APPEND dependencyList VTK::IOParallelXML VTK::ParallelMPI ) diff --git a/src/coreComponents/mesh/CellElementSubRegion.cpp b/src/coreComponents/mesh/CellElementSubRegion.cpp index 0b13ba2dea2..255e732c8e3 100644 --- a/src/coreComponents/mesh/CellElementSubRegion.cpp +++ b/src/coreComponents/mesh/CellElementSubRegion.cpp @@ -192,6 +192,11 @@ localIndex CellElementSubRegion::unpackUpDownMaps( buffer_unit_type const * & bu this->globalToLocalMap(), faceList().relatedObjectGlobalToLocal() ); + + GEOS_ERROR_IF_NE( m_unmappedGlobalIndicesInNodelist.size(), 0 ); + GEOS_ERROR_IF_NE( m_unmappedGlobalIndicesInEdgelist.size(), 0 ); + GEOS_ERROR_IF_NE( m_unmappedGlobalIndicesInFacelist.size(), 0 ); + return unPackedSize; } diff --git a/src/coreComponents/mesh/DomainPartition.cpp b/src/coreComponents/mesh/DomainPartition.cpp index 0dd8a8a3623..9604c30932c 100644 --- a/src/coreComponents/mesh/DomainPartition.cpp +++ b/src/coreComponents/mesh/DomainPartition.cpp @@ -328,24 +328,8 @@ void DomainPartition::outputPartitionInformation() const return std::make_pair( objectManager.getNumberOfLocalIndices(), objectManager.getNumberOfGhosts() ); }; - auto addCommaSeparators = []( localIndex const num ) - { - std::string const numStr = std::to_string( num ); - std::string result; - for( std::size_t i = 0; i < numStr.size(); ++i ) - { - result += numStr[i]; - if( ( numStr.size() - i - 1 ) % 3 == 0 && i != numStr.size() - 1 ) - { - result += ","; - } - } - return result; - }; - GEOS_LOG_RANK_0( "MPI Partition information:" ); - forMeshBodies( [&]( MeshBody const & meshBody ) { meshBody.getMeshLevels().forSubGroupsIndex< MeshLevel >( [&]( int const level, MeshLevel const & meshLevel ) @@ -427,24 +411,24 @@ void DomainPartition::outputPartitionInformation() const GEOS_LOG_RANK_0( GEOS_FMT( " | min | {:>13} | {:>13} | {:>13} | {:>13} | {:>13} | {:>13} | {:>13} | {:>13} |", - addCommaSeparators( minNumLocalNodes ), - addCommaSeparators( minNumGhostNodes ), - addCommaSeparators( minNumLocalEdges ), - addCommaSeparators( minNumGhostEdges ), - addCommaSeparators( minNumLocalFaces ), - addCommaSeparators( minNumGhostFaces ), - addCommaSeparators( minNumLocalElems ), - addCommaSeparators( minNumGhostElems ) ) ); + stringutilities::addCommaSeparators( minNumLocalNodes ), + stringutilities::addCommaSeparators( minNumGhostNodes ), + stringutilities::addCommaSeparators( minNumLocalEdges ), + stringutilities::addCommaSeparators( minNumGhostEdges ), + stringutilities::addCommaSeparators( minNumLocalFaces ), + stringutilities::addCommaSeparators( minNumGhostFaces ), + stringutilities::addCommaSeparators( minNumLocalElems ), + stringutilities::addCommaSeparators( minNumGhostElems ) ) ); GEOS_LOG_RANK_0( GEOS_FMT( " | max | {:>13} | {:>13} | {:>13} | {:>13} | {:>13} | {:>13} | {:>13} | {:>13} |", - addCommaSeparators( maxNumLocalNodes ), - addCommaSeparators( maxNumGhostNodes ), - addCommaSeparators( maxNumLocalEdges ), - addCommaSeparators( maxNumGhostEdges ), - addCommaSeparators( maxNumLocalFaces ), - addCommaSeparators( maxNumGhostFaces ), - addCommaSeparators( maxNumLocalElems ), - addCommaSeparators( maxNumGhostElems ) ) ); + stringutilities::addCommaSeparators( maxNumLocalNodes ), + stringutilities::addCommaSeparators( maxNumGhostNodes ), + stringutilities::addCommaSeparators( maxNumLocalEdges ), + stringutilities::addCommaSeparators( maxNumGhostEdges ), + stringutilities::addCommaSeparators( maxNumLocalFaces ), + stringutilities::addCommaSeparators( maxNumGhostFaces ), + stringutilities::addCommaSeparators( maxNumLocalElems ), + stringutilities::addCommaSeparators( maxNumGhostElems ) ) ); GEOS_LOG_RANK_0( " |------------------------------------------------------------------------------------------------------------------------------------------------|" ); @@ -456,14 +440,14 @@ void DomainPartition::outputPartitionInformation() const { GEOS_LOG( GEOS_FMT( " | {:14} | {:>13} | {:>13} | {:>13} | {:>13} | {:>13} | {:>13} | {:>13} | {:>13} | ", rank, - addCommaSeparators( numLocalNodes ), - addCommaSeparators( numGhostNodes ), - addCommaSeparators( numLocalEdges ), - addCommaSeparators( numGhostEdges ), - addCommaSeparators( numLocalFaces ), - addCommaSeparators( numGhostFaces ), - addCommaSeparators( numLocalElems ), - addCommaSeparators( numGhostElems ) ) ); + stringutilities::addCommaSeparators( numLocalNodes ), + stringutilities::addCommaSeparators( numGhostNodes ), + stringutilities::addCommaSeparators( numLocalEdges ), + stringutilities::addCommaSeparators( numGhostEdges ), + stringutilities::addCommaSeparators( numLocalFaces ), + stringutilities::addCommaSeparators( numGhostFaces ), + stringutilities::addCommaSeparators( numLocalElems ), + stringutilities::addCommaSeparators( numGhostElems ) ) ); } MpiWrapper::barrier(); } diff --git a/src/coreComponents/mesh/EdgeManager.cpp b/src/coreComponents/mesh/EdgeManager.cpp index 6ef8d9daf97..e751cd61729 100644 --- a/src/coreComponents/mesh/EdgeManager.cpp +++ b/src/coreComponents/mesh/EdgeManager.cpp @@ -270,6 +270,7 @@ localIndex EdgeManager::unpackUpDownMaps( buffer_unit_type const * & buffer, m_toFacesRelation.relatedObjectGlobalToLocal(), overwriteUpMaps ); + GEOS_ERROR_IF_NE( m_unmappedGlobalIndicesInToNodes.size(), 0 ); return unPackedSize; } diff --git a/src/coreComponents/mesh/ElementRegionManager.cpp b/src/coreComponents/mesh/ElementRegionManager.cpp index 6f3669a0a19..e953e42de03 100644 --- a/src/coreComponents/mesh/ElementRegionManager.cpp +++ b/src/coreComponents/mesh/ElementRegionManager.cpp @@ -18,6 +18,7 @@ #include "ElementRegionManager.hpp" +#include "common/DataLayouts.hpp" #include "common/TimingMacros.hpp" #include "mesh/mpiCommunications/CommunicationTools.hpp" #include "SurfaceElementRegion.hpp" @@ -30,6 +31,7 @@ #include "mesh/generators/LineBlockABC.hpp" #include "mesh/CellElementRegionSelector.hpp" + namespace geos { using namespace dataRepository; @@ -149,18 +151,31 @@ void ElementRegionManager::generateMesh( CellBlockManagerABC const & cellBlockMa array2d< localIndex > const blockToSubRegion = this->getCellBlockToSubRegionMap( cellBlockManager ); this->forElementRegions< SurfaceElementRegion >( [&]( SurfaceElementRegion & elemRegion ) { - SurfaceElementSubRegion & subRegion = elemRegion.getUniqueSubRegion< SurfaceElementSubRegion >(); + SurfaceElementSubRegion & surfaceSubRegion = elemRegion.getUniqueSubRegion< SurfaceElementSubRegion >(); // While indicated as containing element subregion information, // `relation` currently contains cell block information // that will be transformed into element subregion information. // This is why we copy the information into a temporary, // which frees space for the final information (of same size). - OrderedVariableToManyElementRelation & relation = subRegion.getToCellRelation(); - ToCellRelation< ArrayOfArrays< localIndex > > const tmp( relation.m_toElementSubRegion, - relation.m_toElementIndex ); - meshMapUtilities::transformCellBlockToRegionMap< parallelHostPolicy >( blockToSubRegion.toViewConst(), - tmp, - relation ); + if( auto * const faceElementSubRegion = dynamic_cast< FaceElementSubRegion * >( &surfaceSubRegion ) ) + { + FixedToManyElementRelation & relation = faceElementSubRegion->getToCellRelation(); + ToCellRelation< array2d< localIndex > > const tmp( relation.m_toElementSubRegion, + relation.m_toElementIndex ); + + meshMapUtilities::transformCellBlockToRegionMap< parallelHostPolicy >( blockToSubRegion.toViewConst(), + tmp, + relation ); + } + else if( auto * const embeddedSurfaceSubRegion = dynamic_cast< EmbeddedSurfaceSubRegion * >( &surfaceSubRegion ) ) + { + OrderedVariableToManyElementRelation & relation = embeddedSurfaceSubRegion->getToCellRelation(); + ToCellRelation< ArrayOfArrays< localIndex > > const tmp( relation.m_toElementSubRegion, + relation.m_toElementIndex ); + meshMapUtilities::transformCellBlockToRegionMap< parallelHostPolicy >( blockToSubRegion.toViewConst(), + tmp, + relation ); + } } ); } @@ -521,14 +536,6 @@ int ElementRegionManager::packUpDownMapsImpl( buffer_unit_type * & buffer, return packedSize; } -//template int -//ElementRegionManager:: -//PackUpDownMapsImpl( buffer_unit_type * & buffer, -// ElementViewAccessor> const & packList ) const; -//template int -//ElementRegionManager:: -//PackUpDownMapsImpl( buffer_unit_type * & buffer, -// ElementViewAccessor> const & packList ) const; int ElementRegionManager::unpackUpDownMaps( buffer_unit_type const * & buffer, @@ -564,6 +571,98 @@ ElementRegionManager::unpackUpDownMaps( buffer_unit_type const * & buffer, return unpackedSize; } +int ElementRegionManager::packFaceElementToFaceSize( ElementViewAccessor< arrayView1d< localIndex > > const & packList ) const +{ + buffer_unit_type * junk = nullptr; + return packFaceElementToFaceImpl< false >( junk, packList ); +} + +int ElementRegionManager::packFaceElementToFace( buffer_unit_type * & buffer, + ElementViewAccessor< arrayView1d< localIndex > > const & packList ) const +{ + return packFaceElementToFaceImpl< true >( buffer, packList ); +} + +template< bool DO_PACKING, typename T > +int ElementRegionManager::packFaceElementToFaceImpl( buffer_unit_type * & buffer, + T const & packList ) const +{ + int packedSize = 0; + + packedSize += bufferOps::Pack< DO_PACKING >( buffer, numRegions() ); + + for( typename dataRepository::indexType kReg=0; kReg( buffer, elemRegion.getName() ); + + + + localIndex numFaceElementSubregions = 0; + elemRegion.forElementSubRegionsIndex< FaceElementSubRegion >( + [&]( localIndex const, FaceElementSubRegion const & ) + { + ++numFaceElementSubregions; + } ); + + + packedSize += bufferOps::Pack< DO_PACKING >( buffer, numFaceElementSubregions ); + + elemRegion.forElementSubRegionsIndex< FaceElementSubRegion >( + [&]( localIndex const esr, FaceElementSubRegion const & subRegion ) + { + packedSize += bufferOps::Pack< DO_PACKING >( buffer, subRegion.getName() ); + + arrayView1d< localIndex > const elemList = packList[kReg][esr]; + if( DO_PACKING ) + { + packedSize += subRegion.packToFaceRelation( buffer, elemList ); + } + else + { + packedSize += subRegion.packToFaceRelationSize( elemList ); + } + } ); + } + + return packedSize; +} + + +int +ElementRegionManager::unpackFaceElementToFace( buffer_unit_type const * & buffer, + ElementReferenceAccessor< localIndex_array > & packList, + bool const overwriteMap ) +{ + int unpackedSize = 0; + + localIndex numRegionsRead; + unpackedSize += bufferOps::Unpack( buffer, numRegionsRead ); + for( localIndex kReg=0; kReg( + [&]( localIndex const kSubReg, FaceElementSubRegion & subRegion ) + { + string subRegionName; + unpackedSize += bufferOps::Unpack( buffer, subRegionName ); + GEOS_ERROR_IF( subRegionName != subRegion.getName(), + "Unpacked subregion name (" << subRegionName << ") does not equal object name (" << subRegion.getName() << ")" ); + + localIndex_array & elemList = packList[kReg][kSubReg]; + unpackedSize += subRegion.unpackToFaceRelation( buffer, elemList, false, overwriteMap ); + } ); + } + + return unpackedSize; +} + + int ElementRegionManager::packFracturedElementsSize( ElementViewAccessor< arrayView1d< localIndex > > const & packList, string const fractureRegionName ) const { @@ -693,6 +792,94 @@ ElementRegionManager::getCellBlockToSubRegionMap( CellBlockManagerABC const & ce return blockMap; } +void ElementRegionManager::outputObjectConnectivity() const +{ + int const numRanks = MpiWrapper::commSize(); + int const thisRank = MpiWrapper::commRank(); + + for( int rank=0; rankgetName().c_str() ); + + forElementRegions< CellElementRegion >( [&]( CellElementRegion const & elemRegion ) + { + elemRegion.forElementSubRegions< CellElementSubRegion >( [&]( CellElementSubRegion const & subRegion ) + { + printf( " %s\n", subRegion.getName().c_str() ); + + CellElementSubRegion::NodeMapType const & elemToNodeRelation = subRegion.nodeList(); + arrayView2d< localIndex const, cells::NODE_MAP_USD > const elemToNode = elemToNodeRelation; + arrayView1d< globalIndex const > const & elemLocalToGlobal = subRegion.localToGlobalMap(); + auto const & elemGlobalToLocal = subRegion.globalToLocalMap(); + arrayView1d< globalIndex const > const & nodeLocalToGlobal = elemToNodeRelation.relatedObjectLocalToGlobal(); + auto const & refCoords = getParent().getGroup< NodeManager >( "nodeManager" ).referencePosition(); + + printf( " ElementToNodes map:\n" ); + for( localIndex k=0; k const sortedGlobalToLocalMap( elemGlobalToLocal.begin(), + elemGlobalToLocal.end()); + for( auto indexPair : sortedGlobalToLocalMap ) + { + globalIndex const gk = indexPair.first; + localIndex const k = indexPair.second; + + printf( " %3d( %3lld ): ", k, gk ); + for( localIndex a=0; a & packList, bool const overwriteMap ); + + /** + * @brief Get the buffer size needed to pack element-to-node and element-to-face maps. + * @param packList list of indices to pack + * @return the size of data packed. + */ + int packFaceElementToFaceSize( ElementViewAccessor< arrayView1d< localIndex > > const & packList ) const; + + /** + * @brief Pack element-to-node and element-to-face maps. + * @param buffer pointer to the buffer to be packed + * @param packList list of indices to pack + * @return the size of data packed. + */ + int packFaceElementToFace( buffer_unit_type * & buffer, + ElementViewAccessor< arrayView1d< localIndex > > const & packList ) const; + + /** + * @brief Unpack element-to-node and element-to-face maps. + * @param buffer pointer to the buffer to be unpacked + * @param packList list of indices to pack + * @param overwriteMap flag to indicate whether to overwrite the local map + * @return the size of data packed. + */ + int unpackFaceElementToFace( buffer_unit_type const * & buffer, + ElementReferenceAccessor< localIndex_array > & packList, + bool const overwriteMap ); + /** * @brief Get the buffer size needed to pack the set of fractured elements and the map toEmbSurfaces. * @param packList list of indices to pack @@ -1121,6 +1149,12 @@ class ElementRegionManager : public ObjectManagerBase ElementReferenceAccessor< localIndex_array > & packList, string const fractureRegionName ); + /** + * @brief Function to output connectivity in order to assist debugging issues + * with object connectivity. + */ + virtual void outputObjectConnectivity() const override final; + private: @@ -1154,6 +1188,12 @@ class ElementRegionManager : public ObjectManagerBase int packUpDownMapsImpl( buffer_unit_type * & buffer, T const & packList ) const; + + template< bool DO_PACKING, typename T > + int + packFaceElementToFaceImpl( buffer_unit_type * & buffer, + T const & packList ) const; + /** * @brief Unpack element-to-node and element-to-face maps. * @param buffer pointer to the buffer to be unpacked diff --git a/src/coreComponents/mesh/ElementType.hpp b/src/coreComponents/mesh/ElementType.hpp index 67208235e3b..0dd913402cd 100644 --- a/src/coreComponents/mesh/ElementType.hpp +++ b/src/coreComponents/mesh/ElementType.hpp @@ -20,7 +20,7 @@ #ifndef GEOS_MESH_ELEMENTTYPE_HPP #define GEOS_MESH_ELEMENTTYPE_HPP -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" namespace geos { diff --git a/src/coreComponents/mesh/EmbeddedSurfaceSubRegion.cpp b/src/coreComponents/mesh/EmbeddedSurfaceSubRegion.cpp index 83f603d9992..ab0714cfc42 100644 --- a/src/coreComponents/mesh/EmbeddedSurfaceSubRegion.cpp +++ b/src/coreComponents/mesh/EmbeddedSurfaceSubRegion.cpp @@ -43,7 +43,8 @@ EmbeddedSurfaceSubRegion::EmbeddedSurfaceSubRegion( string const & name, SurfaceElementSubRegion( name, parent ), m_numOfJumpEnrichments( 3 ), m_connectivityIndex(), - m_parentPlaneName() + m_parentPlaneName(), + m_2dElemToElems() { m_elementType = ElementType::Polygon; @@ -63,10 +64,25 @@ EmbeddedSurfaceSubRegion::EmbeddedSurfaceSubRegion( string const & name, setRTTypeName( rtTypes::CustomTypes::groupNameRefArray ). setDescription( "A map of surface element to the parent fracture name" ); + registerWrapper( viewKeyStruct::surfaceElementsToCellRegionsString(), &m_2dElemToElems.m_toElementRegion ). + setPlotLevel( PlotLevel::NOPLOT ). + setDescription( "A map of face element local indices to the cell local indices" ); + + registerWrapper( viewKeyStruct::surfaceElementsToCellSubRegionsString(), &m_2dElemToElems.m_toElementSubRegion ). + setPlotLevel( PlotLevel::NOPLOT ). + setDescription( "A map of face element local indices to the cell local indices" ); + + registerWrapper( viewKeyStruct::surfaceElementsToCellIndexString(), &m_2dElemToElems.m_toElementIndex ). + setPlotLevel( PlotLevel::NOPLOT ). + setDescription( "A map of face element local indices to the cell local indices" ); + m_normalVector.resizeDimension< 1 >( 3 ); m_tangentVector1.resizeDimension< 1 >( 3 ); m_tangentVector2.resizeDimension< 1 >( 3 ); m_2dElemToElems.resize( 0, 1 ); + + m_2dElemToElems.setElementRegionManager( dynamicCast< ElementRegionManager & >( getParent().getParent().getParent().getParent() ) ); + } void EmbeddedSurfaceSubRegion::calculateElementGeometricQuantities( NodeManager const & GEOS_UNUSED_PARAM( nodeManager ), diff --git a/src/coreComponents/mesh/EmbeddedSurfaceSubRegion.hpp b/src/coreComponents/mesh/EmbeddedSurfaceSubRegion.hpp index 311b8aec610..85dbf465049 100644 --- a/src/coreComponents/mesh/EmbeddedSurfaceSubRegion.hpp +++ b/src/coreComponents/mesh/EmbeddedSurfaceSubRegion.hpp @@ -232,6 +232,23 @@ class EmbeddedSurfaceSubRegion : public SurfaceElementSubRegion */ std::vector< struct surfaceWithGhostNodes > surfaceWithGhostNodes() { return m_surfaceWithGhostNodes; } + /** + * @brief Get the surface element to cells map. + * @return The surface element to cells map + */ + OrderedVariableToManyElementRelation & getToCellRelation() + { + return m_2dElemToElems; + } + + /** + * @copydoc getToCellRelation() + */ + OrderedVariableToManyElementRelation const & getToCellRelation() const + { + return m_2dElemToElems; + } + ///@} private: @@ -258,6 +275,10 @@ class EmbeddedSurfaceSubRegion : public SurfaceElementSubRegion /// Surfaces with ghost nodes std::vector< struct surfaceWithGhostNodes > m_surfaceWithGhostNodes; + + /// Map between the surface elements and the cells + OrderedVariableToManyElementRelation m_2dElemToElems; + }; diff --git a/src/coreComponents/mesh/ExternalDataSourceBase.cpp b/src/coreComponents/mesh/ExternalDataSourceBase.cpp new file mode 100644 index 00000000000..a3b8fd0c1b2 --- /dev/null +++ b/src/coreComponents/mesh/ExternalDataSourceBase.cpp @@ -0,0 +1,54 @@ +/* + * ------------------------------------------------------------------------------------------------------------ + * SPDX-License-Identifier: LGPL-2.1-only + * + * Copyright (c) 2018-2020 Lawrence Livermore National Security LLC + * Copyright (c) 2018-2020 The Board of Trustees of the Leland Stanford Junior University + * Copyright (c) 2018-2020 TotalEnergies + * Copyright (c) 2019- GEOSX Contributors + * All rights reserved + * + * See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. + * ------------------------------------------------------------------------------------------------------------ + */ + +#include "ExternalDataSourceBase.hpp" + +namespace geos +{ +using namespace dataRepository; + +ExternalDataSourceBase::ExternalDataSourceBase( string const & name, Group * const parent ): + Group( name, parent ) +{ + setInputFlags( InputFlags::OPTIONAL_NONUNIQUE ); +} + +Group * ExternalDataSourceBase::createChild( string const & childKey, string const & childName ) +{ + GEOS_LOG_RANK_0( "Adding External Data Source: " << childKey << ", " << childName ); + std::unique_ptr< ExternalDataSourceBase > event = ExternalDataSourceBase::CatalogInterface::factory( childKey, childName, this ); + return &this->registerGroup< ExternalDataSourceBase >( childName, std::move( event ) ); +} + +void ExternalDataSourceBase::expandObjectCatalogs() +{ + // Only add children if the parent is of type EventManager + // otherwise, this would fall into a loop + if( strcmp( this->getParent().getName().c_str(), "ExternalDataSource" ) == 0 ) + { + for( auto & catalogIter: ExternalDataSourceBase::getCatalog()) + { + createChild( catalogIter.first, catalogIter.first ); + } + } +} + +ExternalDataSourceBase::CatalogInterface::CatalogType & ExternalDataSourceBase::getCatalog() +{ + static ExternalDataSourceBase::CatalogInterface::CatalogType catalog; + return catalog; +} + + +} diff --git a/src/coreComponents/mesh/ExternalDataSourceBase.hpp b/src/coreComponents/mesh/ExternalDataSourceBase.hpp new file mode 100644 index 00000000000..8dabca1abe0 --- /dev/null +++ b/src/coreComponents/mesh/ExternalDataSourceBase.hpp @@ -0,0 +1,77 @@ +/* + * ------------------------------------------------------------------------------------------------------------ + * SPDX-License-Identifier: LGPL-2.1-only + * + * Copyright (c) 2018-2020 Lawrence Livermore National Security LLC + * Copyright (c) 2018-2020 The Board of Trustees of the Leland Stanford Junior University + * Copyright (c) 2018-2020 TotalEnergies + * Copyright (c) 2019- GEOSX Contributors + * All rights reserved + * + * See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. + * ------------------------------------------------------------------------------------------------------------ + */ + +/** + * @file ExternalDataSourceBase.hpp + */ + +#ifndef GEOS_MESH_EXTERNALDATASOURCEBASE_HPP +#define GEOS_MESH_EXTERNALDATASOURCEBASE_HPP + +#include "dataRepository/Group.hpp" +#include "dataRepository/WrapperBase.hpp" +#include "codingUtilities/Utilities.hpp" +#include "common/DataTypes.hpp" + + +namespace geos +{ + +/** + * @class ExternalDataSourceBase + * @brief The ExternalDataSourceBase class provides an abstract base class implementation for different mesh types. + * The ExternalDataSourceBase is the Group specialization for different type of mesh handling. + */ +class ExternalDataSourceBase : public dataRepository::Group +{ +public: + + /** + * @brief Main constructor for ExternalDataSourceBase base class. + * @param[in] name of the ExternalDataSourceBase object + * @param[in] parent the parent Group pointer for the ExternalDataSourceBase object + */ + explicit ExternalDataSourceBase( string const & name, + Group * const parent ); + + /// This function is used to expand any catalogs in the data structure + virtual void expandObjectCatalogs() override; + + /// using alias for templated Catalog ExternalDataSourceBase type + using CatalogInterface = dataRepository::CatalogInterface< ExternalDataSourceBase, string const &, Group * const >; + + /** + * @brief Create a new geometric object (box, plane, etc) as a child of this group. + * @param childKey the catalog key of the new geometric object to create + * @param childName the name of the new geometric object in the repository + * @return the group child + */ + virtual Group * createChild( string const & childKey, string const & childName ) override; + + /** + * @brief Accessor for the singleton Catalog object + * @return a static reference to the Catalog object + */ + static CatalogInterface::CatalogType & getCatalog(); + + /** + * @brief This function provides the capability to open an external data repository + * from another component whatever its format. + */ + virtual void open() = 0; +}; + +} + +#endif /* GEOS_MESH_EXTERNALDATASOURCEBASE_HPP */ diff --git a/src/coreComponents/mesh/ExternalDataSourceManager.cpp b/src/coreComponents/mesh/ExternalDataSourceManager.cpp new file mode 100644 index 00000000000..c8259594713 --- /dev/null +++ b/src/coreComponents/mesh/ExternalDataSourceManager.cpp @@ -0,0 +1,63 @@ +/* + * ------------------------------------------------------------------------------------------------------------ + * SPDX-License-Identifier: LGPL-2.1-only + * + * Copyright (c) 2016-2024 Lawrence Livermore National Security LLC + * Copyright (c) 2018-2024 Total, S.A + * Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University + * Copyright (c) 2023-2024 Chevron + * Copyright (c) 2019- GEOS/GEOSX Contributors + * All rights reserved + * + * See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. + * ------------------------------------------------------------------------------------------------------------ + */ + + +#include "ExternalDataSourceManager.hpp" +#include "ExternalDataSourceBase.hpp" + + +namespace geos +{ + +using namespace dataRepository; + +ExternalDataSourceManager::ExternalDataSourceManager( string const & name, + Group * const parent ): + Group( name, parent ) +{ + setInputFlags( InputFlags::REQUIRED ); +} + +ExternalDataSourceManager::~ExternalDataSourceManager() +{} + +Group * ExternalDataSourceManager::createChild( string const & childKey, string const & childName ) +{ + GEOS_LOG_RANK_0( "Adding External Data Source: " << childKey << ", " << childName ); + std::unique_ptr< ExternalDataSourceBase > externalDataSource = ExternalDataSourceBase::CatalogInterface::factory( childKey, childName, this ); + return &this->registerGroup< ExternalDataSourceBase >( childName, std::move( externalDataSource ) ); +} + + +void ExternalDataSourceManager::expandObjectCatalogs() +{ + // During schema generation, register one of each type derived from ExternalDataSourceBase here + for( auto & catalogIter: ExternalDataSourceBase::getCatalog()) + { + createChild( catalogIter.first, catalogIter.first ); + } +} + + +void ExternalDataSourceManager::open( DomainPartition & GEOS_UNUSED_PARAM( domain ) ) +{ + forSubGroups< ExternalDataSourceBase >( []( ExternalDataSourceBase & external ) + { + external.open(); + } ); +} + + +} /* namespace geos */ diff --git a/src/coreComponents/mesh/ExternalDataSourceManager.hpp b/src/coreComponents/mesh/ExternalDataSourceManager.hpp new file mode 100644 index 00000000000..2e6141af4e3 --- /dev/null +++ b/src/coreComponents/mesh/ExternalDataSourceManager.hpp @@ -0,0 +1,76 @@ +/* + * ------------------------------------------------------------------------------------------------------------ + * SPDX-License-Identifier: LGPL-2.1-only + * + * Copyright (c) 2016-2024 Lawrence Livermore National Security LLC + * Copyright (c) 2018-2024 Total, S.A + * Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University + * Copyright (c) 2023-2024 Chevron + * Copyright (c) 2019- GEOS/GEOSX Contributors + * All rights reserved + * + * See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. + * ------------------------------------------------------------------------------------------------------------ + */ + +/** + * @file ExternalDataSourceManager.hpp + */ + +#ifndef GEOS_MESH_EXTERNALDATASOURCEMANAGER_HPP_ +#define GEOS_MESH_EXTERNALDATASOURCEMANAGER_HPP_ + +#include "dataRepository/Group.hpp" +#include "mesh/DomainPartition.hpp" + +namespace geos +{ + +/** + * @class ExternalDataSourceManager + * @brief This class manages a data repository whereof objects can be imported to GEOS (reservoir mesh, well mesh) + */ +class ExternalDataSourceManager : public dataRepository::Group +{ +public: + + /** + * @brief Constructor for the ExternalDataSourceManager object. + * @param[in] name the name of the ExternalDataSourceManager object in the repository + * @param[in] parent the parent group of the ExternalDataSourceManager object being constructed + */ + ExternalDataSourceManager( string const & name, + Group * const parent ); + + virtual ~ExternalDataSourceManager() override; + + + /** + * @brief Create a new sub data repository. + * @param[in] childKey the key of the new object in the ObjectCatalog + * @param[in] childName the name of the new object in the collection of sub-meshes + * @return A pointer to the Group node in the dataRepository of the new object created + */ + virtual Group * createChild( string const & childKey, string const & childName ) override; + + /// This function is used to expand any catalogs in the data structure + virtual void expandObjectCatalogs() override; + + /** + * @brief Generate the meshes of the physical DomainPartition. + * @param[in] domain a reference to the physical domain + */ + void open( DomainPartition & domain ); + +private: + + /** + * @brief Deleted default constructor of the ExternalDataSourceManager + */ + ExternalDataSourceManager() = delete; + +}; + +} /* namespace geos */ + +#endif /* GEOS_MESH_EXTERNALDATASOURCEMANAGER_HPP_ */ diff --git a/src/coreComponents/mesh/FaceElementSubRegion.cpp b/src/coreComponents/mesh/FaceElementSubRegion.cpp index 31c0dcce7c0..3537ca4fba4 100644 --- a/src/coreComponents/mesh/FaceElementSubRegion.cpp +++ b/src/coreComponents/mesh/FaceElementSubRegion.cpp @@ -33,7 +33,8 @@ FaceElementSubRegion::FaceElementSubRegion( string const & name, m_unmappedGlobalIndicesInToEdges(), m_unmappedGlobalIndicesInToFaces(), m_newFaceElements(), - m_toFacesRelation() + m_toFacesRelation(), + m_2dElemToElems() { m_elementType = ElementType::Hexahedron; @@ -42,6 +43,7 @@ FaceElementSubRegion::FaceElementSubRegion( string const & name, registerWrapper( viewKeyStruct::detJString(), &m_detJ ).setSizedFromParent( 1 ).reference(); registerWrapper( viewKeyStruct::faceListString(), &m_toFacesRelation ). + setApplyDefaultValue( -1 ). setDescription( "Map to the faces attached to each FaceElement." ). reference().resize( 0, 2 ); @@ -65,6 +67,21 @@ FaceElementSubRegion::FaceElementSubRegion( string const & name, setDescription( "A map eventually containing all the collocated nodes." ). setSizedFromParent( 1 ); + registerWrapper( viewKeyStruct::surfaceElementsToCellRegionsString(), &m_2dElemToElems.m_toElementRegion ). + setApplyDefaultValue( -1 ). + setPlotLevel( PlotLevel::NOPLOT ). + setDescription( "A map of face element local indices to the cell local indices" ); + + registerWrapper( viewKeyStruct::surfaceElementsToCellSubRegionsString(), &m_2dElemToElems.m_toElementSubRegion ). + setApplyDefaultValue( -1 ). + setPlotLevel( PlotLevel::NOPLOT ). + setDescription( "A map of face element local indices to the cell local indices" ); + + registerWrapper( viewKeyStruct::surfaceElementsToCellIndexString(), &m_2dElemToElems.m_toElementIndex ). + setApplyDefaultValue( -1 ). + setPlotLevel( PlotLevel::NOPLOT ). + setDescription( "A map of face element local indices to the cell local indices" ); + #ifdef GEOS_USE_SEPARATION_COEFFICIENT registerWrapper( viewKeyStruct::separationCoeffString(), &m_separationCoefficient ). setApplyDefaultValue( 0.0 ). @@ -77,12 +94,16 @@ FaceElementSubRegion::FaceElementSubRegion( string const & name, m_2dElemToElems.resize( 0, 2 ); m_numNodesPerElement = 8; + + + m_2dElemToElems.setElementRegionManager( dynamicCast< ElementRegionManager & >( getParent().getParent().getParent().getParent() ) ); + } void FaceElementSubRegion::copyFromCellBlock( FaceBlockABC const & faceBlock ) { localIndex const num2dElements = faceBlock.num2dElements(); - resize( faceBlock.num2dElements() ); + resize( num2dElements ); m_toNodesRelation.base() = faceBlock.get2dElemToNodes(); m_toEdgesRelation.base() = faceBlock.get2dElemToEdges(); @@ -156,22 +177,26 @@ void FaceElementSubRegion::copyFromCellBlock( FaceBlockABC const & faceBlock ) // we store the cell block mapping at the sub region mapping location. // It will later be transformed into a sub regions mapping. // Last, we fill the regions mapping with dummy -1 values that should all be replaced eventually. - auto const elem2dToElems = faceBlock.get2dElemToElems(); - m_2dElemToElems.resize( num2dElements, 2 ); - for( int i = 0; i < num2dElements; ++i ) + auto const & elem2dToElems = faceBlock.get2dElemToElems(); + for( int kfe = 0; kfe < num2dElements; ++kfe ) { - for( localIndex const & j: elem2dToElems.toCellIndex[i] ) + for( localIndex k=0; k const & elem2dToFaces = faceBlock.get2dElemToFaces(); + + for( localIndex kfe = 0; kfe < num2dElements; ++kfe ) + { + for( localIndex kf=0; kfglobalToLocalMap() ); + + GEOS_ERROR_IF_NE( m_unmappedGlobalIndicesInToNodes.size(), 0 ); + GEOS_ERROR_IF_NE( m_unmappedGlobalIndicesInToEdges.size(), 0 ); +// GEOS_ERROR_IF_NE( m_unmappedGlobalIndicesInToFaces.size(), 0 ); + + return unPackedSize; +} + +localIndex FaceElementSubRegion::packToFaceRelationSize( arrayView1d< localIndex const > const & packList ) const +{ + buffer_unit_type * junk = nullptr; + return packToFaceRelationImpl< false >( junk, packList ); +} + +localIndex FaceElementSubRegion::packToFaceRelation( buffer_unit_type * & buffer, + arrayView1d< localIndex const > const & packList ) const +{ + return packToFaceRelationImpl< true >( buffer, packList ); +} + + +template< bool DO_PACKING > +localIndex FaceElementSubRegion::packToFaceRelationImpl( buffer_unit_type * & buffer, + arrayView1d< localIndex const > const & packList ) const +{ + arrayView1d< globalIndex const > const localToGlobal = this->localToGlobalMap(); + arrayView1d< globalIndex const > const faceLocalToGlobal = m_toFacesRelation.relatedObjectLocalToGlobal(); + + localIndex packedSize = 0; + packedSize += bufferOps::Pack< DO_PACKING >( buffer, string( viewKeyStruct::faceListString() ) ); + packedSize += bufferOps::Pack< DO_PACKING >( buffer, + m_toFacesRelation.toViewConst(), + m_unmappedGlobalIndicesInToFaces, + packList, + localToGlobal, + faceLocalToGlobal ); + return packedSize; +} + + +localIndex FaceElementSubRegion::unpackToFaceRelation( buffer_unit_type const * & buffer, + localIndex_array & packList, + bool const GEOS_UNUSED_PARAM( overwriteUpMaps ), + bool const GEOS_UNUSED_PARAM( overwriteDownMaps ) ) +{ + localIndex unPackedSize = 0; + + string faceListString; + unPackedSize += bufferOps::Unpack( buffer, faceListString ); + GEOS_ERROR_IF_NE( faceListString, viewKeyStruct::faceListString() ); + + unPackedSize += bufferOps::Unpack( buffer, + m_toFacesRelation, + packList, + m_unmappedGlobalIndicesInToFaces, + this->globalToLocalMap(), + m_toFacesRelation.relatedObjectGlobalToLocal() ); + return unPackedSize; } @@ -367,52 +450,46 @@ localIndex FaceElementSubRegion::unpackUpDownMaps( buffer_unit_type const * & bu * @param[in,out] elem2dToFaces This mapping will be corrected if needed to match @p elem2dToElems3d. */ void fixNeighborMappingsInconsistency( string const & fractureName, - OrderedVariableToManyElementRelation const & elem2dToElems3d, + FixedToManyElementRelation const & elem2dToElems3d, FaceElementSubRegion::FaceMapType & elem2dToFaces ) { { - localIndex const num2dElems = elem2dToFaces.size(); + localIndex const num2dElems = elem2dToFaces.size( 0 ); for( int e2d = 0; e2d < num2dElems; ++e2d ) { - std::set< localIndex > const sizes{ - elem2dToFaces[e2d].size(), - elem2dToElems3d.m_toElementRegion[e2d].size(), - elem2dToElems3d.m_toElementSubRegion[e2d].size(), - elem2dToElems3d.m_toElementIndex[e2d].size() - }; - - if( sizes.size() != 1 || sizes.find( 2 ) == sizes.cend() ) + if( !( elem2dToFaces[e2d][0] == -1 || elem2dToFaces[e2d][1] == -1 || + elem2dToElems3d.m_toElementRegion[e2d][0] == -1 || elem2dToElems3d.m_toElementRegion[e2d][1] == -1 || + elem2dToElems3d.m_toElementSubRegion[e2d][0] == -1 || elem2dToElems3d.m_toElementSubRegion[e2d][1] == -1 || + elem2dToElems3d.m_toElementSubRegion[e2d][0] == -1 || elem2dToElems3d.m_toElementSubRegion[e2d][1] == -1 ) ) { - continue; - } - - localIndex const f0 = elem2dToFaces[e2d][0]; - localIndex const er0 = elem2dToElems3d.m_toElementRegion[e2d][0]; - localIndex const esr0 = elem2dToElems3d.m_toElementSubRegion[e2d][0]; - localIndex const ei0 = elem2dToElems3d.m_toElementIndex[e2d][0]; - auto const & faces0 = elem2dToElems3d.getElementRegionManager()->getRegion( er0 ).getSubRegion< CellElementSubRegion >( esr0 ).faceList()[ei0]; - - localIndex const f1 = elem2dToFaces[e2d][1]; - localIndex const er1 = elem2dToElems3d.m_toElementRegion[e2d][1]; - localIndex const esr1 = elem2dToElems3d.m_toElementSubRegion[e2d][1]; - localIndex const ei1 = elem2dToElems3d.m_toElementIndex[e2d][1]; - auto const & faces1 = elem2dToElems3d.getElementRegionManager()->getRegion( er1 ).getSubRegion< CellElementSubRegion >( esr1 ).faceList()[ei1]; - - bool const match00 = std::find( faces0.begin(), faces0.end(), f0 ) != faces0.end(); - bool const match11 = std::find( faces1.begin(), faces1.end(), f1 ) != faces1.end(); - bool const match01 = std::find( faces0.begin(), faces0.end(), f1 ) != faces0.end(); - bool const match10 = std::find( faces1.begin(), faces1.end(), f0 ) != faces1.end(); - - bool const matchCrossed = !match00 && !match11 && match01 && match10; - bool const matchStraight = match00 && match11 && !match01 && !match10; - - if( matchCrossed ) - { - std::swap( elem2dToFaces[e2d][0], elem2dToFaces[e2d][1] ); - } - else if( !matchStraight ) - { - GEOS_ERROR( "Mapping neighbor inconsistency detected for fracture " << fractureName ); + localIndex const f0 = elem2dToFaces[e2d][0]; + localIndex const er0 = elem2dToElems3d.m_toElementRegion[e2d][0]; + localIndex const esr0 = elem2dToElems3d.m_toElementSubRegion[e2d][0]; + localIndex const ei0 = elem2dToElems3d.m_toElementIndex[e2d][0]; + auto const & faces0 = elem2dToElems3d.getElementRegionManager()->getRegion( er0 ).getSubRegion< CellElementSubRegion >( esr0 ).faceList()[ei0]; + + localIndex const f1 = elem2dToFaces[e2d][1]; + localIndex const er1 = elem2dToElems3d.m_toElementRegion[e2d][1]; + localIndex const esr1 = elem2dToElems3d.m_toElementSubRegion[e2d][1]; + localIndex const ei1 = elem2dToElems3d.m_toElementIndex[e2d][1]; + auto const & faces1 = elem2dToElems3d.getElementRegionManager()->getRegion( er1 ).getSubRegion< CellElementSubRegion >( esr1 ).faceList()[ei1]; + + bool const match00 = std::find( faces0.begin(), faces0.end(), f0 ) != faces0.end(); + bool const match11 = std::find( faces1.begin(), faces1.end(), f1 ) != faces1.end(); + bool const match01 = std::find( faces0.begin(), faces0.end(), f1 ) != faces0.end(); + bool const match10 = std::find( faces1.begin(), faces1.end(), f0 ) != faces1.end(); + + bool const matchCrossed = !match00 && !match11 && match01 && match10; + bool const matchStraight = match00 && match11 && !match01 && !match10; + + if( matchCrossed ) + { + std::swap( elem2dToFaces[e2d][0], elem2dToFaces[e2d][1] ); + } + else if( !matchStraight ) + { + GEOS_ERROR( "Mapping neighbor inconsistency detected for fracture " << fractureName ); + } } } } @@ -433,6 +510,11 @@ void FaceElementSubRegion::fixUpDownMaps( bool const clearIfUnmapped ) clearIfUnmapped ); fixNeighborMappingsInconsistency( getName(), m_2dElemToElems, m_toFacesRelation ); + + GEOS_ERROR_IF_NE( m_unmappedGlobalIndicesInToNodes.size(), 0 ); + GEOS_ERROR_IF_NE( m_unmappedGlobalIndicesInToEdges.size(), 0 ); + GEOS_ERROR_IF_NE( m_unmappedGlobalIndicesInToFaces.size(), 0 ); + } /** @@ -827,7 +909,7 @@ map< localIndex, localIndex > buildEdgesToFace2d( arrayView1d< localIndex const * Even if we should have a more explicit design, * the current function resets this implicit information in our mappings. */ -void fixNodesOrder( ArrayOfArraysView< localIndex const > const elem2dToFaces, +void fixNodesOrder( arrayView2d< localIndex const > const elem2dToFaces, ArrayOfArraysView< localIndex const > const facesToNodes, ArrayOfArrays< localIndex > & elem2dToNodes ) { @@ -837,9 +919,12 @@ void fixNodesOrder( ArrayOfArraysView< localIndex const > const elem2dToFaces, std::vector< localIndex > nodesOfFace; for( localIndex fi: elem2dToFaces[e2d] ) { - for( localIndex ni: facesToNodes[fi] ) + if( fi != -1 ) { - nodesOfFace.push_back( ni ); + for( localIndex ni: facesToNodes[fi] ) + { + nodesOfFace.push_back( ni ); + } } } elem2dToNodes.clearArray( e2d ); @@ -937,10 +1022,6 @@ void FaceElementSubRegion::fixSecondaryMappings( NodeManager const & nodeManager // When there's neighbor missing, we search for a face that would lie on the collocated nodes of the fracture element. for( int e2d = 0; e2d < num2dElems; ++e2d ) { - if( m_2dElemToElems.m_toElementIndex.sizeOfArray( e2d ) >= 2 ) // All the neighbors are known. - { - continue; - } std::set< globalIndex > refNodes; if( m_toNodesRelation[e2d].size() != 0 ) @@ -977,12 +1058,12 @@ void FaceElementSubRegion::fixSecondaryMappings( NodeManager const & nodeManager for( ElemPath const & path: match->second ) { // This `if` prevents from storing the same data twice. - if( m_2dElemToElems.m_toElementIndex.sizeOfArray( e2d ) == 0 || m_2dElemToElems.m_toElementIndex[e2d][0] != path.ei ) + if( m_2dElemToElems.m_toElementIndex.size( 1 ) == 0 || m_2dElemToElems.m_toElementIndex[e2d][0] != path.ei ) { - m_2dElemToElems.m_toElementRegion.emplaceBack( e2d, path.er ); - m_2dElemToElems.m_toElementSubRegion.emplaceBack( e2d, path.esr ); - m_2dElemToElems.m_toElementIndex.emplaceBack( e2d, path.ei ); - m_toFacesRelation.emplaceBack( e2d, path.face ); + m_2dElemToElems.m_toElementRegion( e2d, 1 ) = path.er; + m_2dElemToElems.m_toElementSubRegion( e2d, 1 ) = path.esr; + m_2dElemToElems.m_toElementIndex( e2d, 1 ) = path.ei; + m_toFacesRelation( e2d, 1 ) = path.face; for( localIndex const & n: path.nodes ) { auto currentNodes = m_toNodesRelation[e2d]; @@ -1001,7 +1082,7 @@ void FaceElementSubRegion::fixSecondaryMappings( NodeManager const & nodeManager std::vector< localIndex > isolatedFractureElements; for( int e2d = 0; e2d < num2dElems; ++e2d ) { - if( m_2dElemToElems.m_toElementIndex.sizeOfArray( e2d ) < 2 && m_ghostRank[e2d] < 0 ) + if( m_2dElemToElems.m_toElementIndex.size( 1 )< 2 && m_ghostRank[e2d] < 0 ) { isolatedFractureElements.push_back( e2d ); } @@ -1053,7 +1134,7 @@ std::set< std::set< globalIndex > > FaceElementSubRegion::getCollocatedNodes() c void FaceElementSubRegion::flipFaceMap( FaceManager & faceManager, ElementRegionManager const & elemManager ) { - ArrayOfArraysView< localIndex > const & elems2dToFaces = faceList().toView(); + arrayView2d< localIndex > const & elems2dToFaces = faceList().toView(); arrayView2d< localIndex const > const & faceToElementRegionIndex = faceManager.elementRegionList(); arrayView2d< localIndex const > const & faceToElementSubRegionIndex = faceManager.elementSubRegionList(); arrayView2d< localIndex const > const & faceToElementIndex = faceManager.elementList(); @@ -1063,28 +1144,26 @@ void FaceElementSubRegion::flipFaceMap( FaceManager & faceManager, forAll< parallelHostPolicy >( this->size(), [=]( localIndex const kfe ) { - if( elems2dToFaces.sizeOfArray( kfe ) != 2 ) + if( !( elems2dToFaces[kfe][0] == -1 || elems2dToFaces[kfe][1] == -1 ) ) { - return; - } - - localIndex & f0 = elems2dToFaces[kfe][0]; - localIndex & f1 = elems2dToFaces[kfe][1]; + localIndex & f0 = elems2dToFaces[kfe][0]; + localIndex & f1 = elems2dToFaces[kfe][1]; - localIndex const er0 = faceToElementRegionIndex[f0][0]; - localIndex const esr0 = faceToElementSubRegionIndex[f0][0]; - localIndex const ek0 = faceToElementIndex[f0][0]; + localIndex const er0 = faceToElementRegionIndex[f0][0]; + localIndex const esr0 = faceToElementSubRegionIndex[f0][0]; + localIndex const ek0 = faceToElementIndex[f0][0]; - localIndex const er1 = faceToElementRegionIndex[f1][0]; - localIndex const esr1 = faceToElementSubRegionIndex[f1][0]; - localIndex const ek1 = faceToElementIndex[f1][0]; + localIndex const er1 = faceToElementRegionIndex[f1][0]; + localIndex const esr1 = faceToElementSubRegionIndex[f1][0]; + localIndex const ek1 = faceToElementIndex[f1][0]; - globalIndex const globalIndexElem0 = cellElemGlobalIndex[er0][esr0][ek0]; - globalIndex const globalIndexElem1 = cellElemGlobalIndex[er1][esr1][ek1]; + globalIndex const globalIndexElem0 = cellElemGlobalIndex[er0][esr0][ek0]; + globalIndex const globalIndexElem1 = cellElemGlobalIndex[er1][esr1][ek1]; - if( globalIndexElem0 > globalIndexElem1 ) - { - std::swap( f0, f1 ); + if( globalIndexElem0 > globalIndexElem1 ) + { + std::swap( f0, f1 ); + } } } ); @@ -1093,7 +1172,7 @@ void FaceElementSubRegion::flipFaceMap( FaceManager & faceManager, void FaceElementSubRegion::fixNeighboringFacesNormals( FaceManager & faceManager, ElementRegionManager const & elemManager ) { - ArrayOfArraysView< localIndex > const & elems2dToFaces = faceList().toView(); + arrayView2d< localIndex > const & elems2dToFaces = faceList().toView(); arrayView2d< localIndex const > const & faceToElementRegionIndex = faceManager.elementRegionList(); arrayView2d< localIndex const > const & faceToElementSubRegionIndex = faceManager.elementSubRegionList(); arrayView2d< localIndex const > const & faceToElementIndex = faceManager.elementList(); @@ -1107,44 +1186,42 @@ void FaceElementSubRegion::fixNeighboringFacesNormals( FaceManager & faceManager arrayView2d< real64 > const faceNormal = faceManager.faceNormal(); forAll< parallelHostPolicy >( this->size(), [=, &faceToNodes]( localIndex const kfe ) { - if( elems2dToFaces.sizeOfArray( kfe ) != 2 ) + if( !( elems2dToFaces[kfe][0] == -1 || elems2dToFaces[kfe][1] == -1 ) ) { - return; - } + localIndex const f0 = elems2dToFaces[kfe][0]; + localIndex const f1 = elems2dToFaces[kfe][1]; - localIndex const f0 = elems2dToFaces[kfe][0]; - localIndex const f1 = elems2dToFaces[kfe][1]; + /// Note: I am assuming that the 0 element is the elementSubregion one for faces + /// touching both a 3D and a 2D cell. + localIndex const er0 = faceToElementRegionIndex[f0][0]; + localIndex const esr0 = faceToElementSubRegionIndex[f0][0]; + localIndex const ek0 = faceToElementIndex[f0][0]; - /// Note: I am assuming that the 0 element is the elementSubregion one for faces - /// touching both a 3D and a 2D cell. - localIndex const er0 = faceToElementRegionIndex[f0][0]; - localIndex const esr0 = faceToElementSubRegionIndex[f0][0]; - localIndex const ek0 = faceToElementIndex[f0][0]; + localIndex const er1 = faceToElementRegionIndex[f1][0]; + localIndex const esr1 = faceToElementSubRegionIndex[f1][0]; + localIndex const ek1 = faceToElementIndex[f1][0]; - localIndex const er1 = faceToElementRegionIndex[f1][0]; - localIndex const esr1 = faceToElementSubRegionIndex[f1][0]; - localIndex const ek1 = faceToElementIndex[f1][0]; + real64 f0e0vector[3] = LVARRAY_TENSOROPS_INIT_LOCAL_3( faceCenter[f0] ); + real64 f1e1vector[3] = LVARRAY_TENSOROPS_INIT_LOCAL_3( faceCenter[f1] ); - real64 f0e0vector[3] = LVARRAY_TENSOROPS_INIT_LOCAL_3( faceCenter[f0] ); - real64 f1e1vector[3] = LVARRAY_TENSOROPS_INIT_LOCAL_3( faceCenter[f1] ); + LvArray::tensorOps::subtract< 3 >( f0e0vector, elemCenter[er0][esr0][ek0] ); + LvArray::tensorOps::subtract< 3 >( f1e1vector, elemCenter[er1][esr1][ek1] ); - LvArray::tensorOps::subtract< 3 >( f0e0vector, elemCenter[er0][esr0][ek0] ); - LvArray::tensorOps::subtract< 3 >( f1e1vector, elemCenter[er1][esr1][ek1] ); - - // If the vector connecting the face center and the elem center is in the same - // direction as the unit normal, we flip the normal coz it should be pointing outward - // (i.e., towards the fracture element). - if( LvArray::tensorOps::AiBi< 3 >( faceNormal[f0], f0e0vector ) < 0.0 ) - { - GEOS_WARNING( GEOS_FMT( "For fracture element {}, I had to flip the normal nf0 of face {}", kfe, f0 ) ); - LvArray::tensorOps::scale< 3 >( faceNormal[f0], -1.0 ); - std::reverse( faceToNodes[f0].begin(), faceToNodes[f0].end() ); - } - if( LvArray::tensorOps::AiBi< 3 >( faceNormal[f1], f1e1vector ) < 0.0 ) - { - GEOS_WARNING( GEOS_FMT( "For fracture element {}, I had to flip the normal nf1 of face {}", kfe, f1 ) ); - LvArray::tensorOps::scale< 3 >( faceNormal[f1], -1.0 ); - std::reverse( faceToNodes[f1].begin(), faceToNodes[f1].end() ); + // If the vector connecting the face center and the elem center is in the same + // direction as the unit normal, we flip the normal coz it should be pointing outward + // (i.e., towards the fracture element). + if( LvArray::tensorOps::AiBi< 3 >( faceNormal[f0], f0e0vector ) < 0.0 ) + { + GEOS_WARNING( GEOS_FMT( "For fracture element {}, I had to flip the normal nf0 of face {}", kfe, f0 ) ); + LvArray::tensorOps::scale< 3 >( faceNormal[f0], -1.0 ); + std::reverse( faceToNodes[f0].begin(), faceToNodes[f0].end() ); + } + if( LvArray::tensorOps::AiBi< 3 >( faceNormal[f1], f1e1vector ) < 0.0 ) + { + GEOS_WARNING( GEOS_FMT( "For fracture element {}, I had to flip the normal nf1 of face {}", kfe, f1 ) ); + LvArray::tensorOps::scale< 3 >( faceNormal[f1], -1.0 ); + std::reverse( faceToNodes[f1].begin(), faceToNodes[f1].end() ); + } } } ); diff --git a/src/coreComponents/mesh/FaceElementSubRegion.hpp b/src/coreComponents/mesh/FaceElementSubRegion.hpp index 88edf84dec2..41b4d298d94 100644 --- a/src/coreComponents/mesh/FaceElementSubRegion.hpp +++ b/src/coreComponents/mesh/FaceElementSubRegion.hpp @@ -39,7 +39,7 @@ class FaceElementSubRegion : public SurfaceElementSubRegion public: /// Face element to faces map type - using FaceMapType = InterObjectRelation< ArrayOfArrays< localIndex > >; + using FaceMapType = FixedOneToManyRelation; /** * @name Static factory catalog functions @@ -110,6 +110,38 @@ class FaceElementSubRegion : public SurfaceElementSubRegion bool const overwriteUpMaps, bool const overwriteDownMaps ) override; + + /** + * @brief Size of packing of the FaceElement to face relation. + * @param packList The list of face elements to pack + * @return The size of the packed data + */ + localIndex packToFaceRelationSize( arrayView1d< localIndex const > const & packList ) const; + + /** + * @brief Pack the FaceElement to face relation. + * @param buffer The buffer to pack the data into + * @param packList The list of face elements to pack + * @return The size of the packed data + */ + localIndex packToFaceRelation( buffer_unit_type * & buffer, + arrayView1d< localIndex const > const & packList ) const; + + /** + * @brief Unpack the FaceElement to face relation. + * @param buffer The buffer to unpack the data from + * @param packList The list of face elements to unpack + * @param overwriteUpMaps Flag to overwrite the up maps + * @param overwriteDownMaps Flag to overwrite the down maps + * @return The size of the unpacked data + */ + localIndex unpackToFaceRelation( buffer_unit_type const * & buffer, + array1d< localIndex > & packList, + bool const overwriteUpMaps, + bool const overwriteDownMaps ); + + + virtual void fixUpDownMaps( bool const clearIfUnmapped ) override; /** @@ -311,6 +343,23 @@ class FaceElementSubRegion : public SurfaceElementSubRegion return m_2dElemToCollocatedNodesBuckets.toViewConst(); } + /** + * @brief Get the surface element to cells map. + * @return The surface element to cells map + */ + FixedToManyElementRelation & getToCellRelation() + { + return m_2dElemToElems; + } + + /** + * @copydoc getToCellRelation() + */ + FixedToManyElementRelation const & getToCellRelation() const + { + return m_2dElemToElems; + } + private: /** @@ -324,6 +373,11 @@ class FaceElementSubRegion : public SurfaceElementSubRegion localIndex packUpDownMapsImpl( buffer_unit_type * & buffer, arrayView1d< localIndex const > const & packList ) const; + + template< bool DO_PACKING > + localIndex packToFaceRelationImpl( buffer_unit_type * & buffer, + arrayView1d< localIndex const > const & packList ) const; + /// The array of shape function derivaties. array4d< real64 > m_dNdX; @@ -339,6 +393,9 @@ class FaceElementSubRegion : public SurfaceElementSubRegion */ ArrayOfArrays< array1d< globalIndex > > m_2dElemToCollocatedNodesBuckets; + /// Map between the surface elements and the cells + FixedToManyElementRelation m_2dElemToElems; + #ifdef GEOS_USE_SEPARATION_COEFFICIENT /// Separation coefficient array1d< real64 > m_separationCoefficient; diff --git a/src/coreComponents/mesh/FaceManager.cpp b/src/coreComponents/mesh/FaceManager.cpp index b5924f7fde4..710e3d5d47b 100644 --- a/src/coreComponents/mesh/FaceManager.cpp +++ b/src/coreComponents/mesh/FaceManager.cpp @@ -22,6 +22,7 @@ #include "common/GEOS_RAJA_Interface.hpp" #include "common/logger/Logger.hpp" #include "common/TimingMacros.hpp" +#include "common/MpiWrapper.hpp" #include "LvArray/src/tensorOps.hpp" #include "mesh/BufferOps.hpp" #include "mesh/ElementRegionManager.hpp" @@ -123,17 +124,18 @@ void FaceManager::setDomainBoundaryObjects( ElementRegionManager const & elemReg } FaceElementSubRegion const & subRegion = region.getUniqueSubRegion< FaceElementSubRegion >(); - ArrayOfArraysView< localIndex const > const elem2dToFaces = subRegion.faceList().toViewConst(); - for( int ei = 0; ei < elem2dToFaces.size(); ++ei ) + arrayView2d< localIndex const > const elem2dToFaces = subRegion.faceList().toViewConst(); + for( int ei = 0; ei < elem2dToFaces.size( 0 ); ++ei ) { - if( elem2dToFaces.sizeOfArray( ei ) == 2 ) + if( elem2dToFaces[ei][0] == -1 || elem2dToFaces[ei][1] == -1 ) { - continue; - } - - for( localIndex const & face: elem2dToFaces[ei] ) - { - isFaceOnDomainBoundary[face] = 1; + for( localIndex const & face: elem2dToFaces[ei] ) + { + if( face != -1 ) + { + isFaceOnDomainBoundary[face] = 1; + } + } } } }; @@ -179,22 +181,25 @@ void FaceManager::setGeometricalRelations( CellBlockManagerABC const & cellBlock // The fracture subregion knows the faces it's connected to. // And since a 2d element is connected to a given face, and since a face can only have 2 neighbors, // then the second neighbor of the face is bound to be undefined (i.e. -1). - ArrayOfArraysView< localIndex const > const & elem2dToFaces = subRegion.faceList().toViewConst(); - for( localIndex ei = 0; ei < elem2dToFaces.size(); ++ei ) + arrayView2d< localIndex const > const & elem2dToFaces = subRegion.faceList().toViewConst(); + for( localIndex ei = 0; ei < elem2dToFaces.size( 0 ); ++ei ) { - for( localIndex const & face: elem2dToFaces[ei] ) + for( localIndex const & faceIndex: elem2dToFaces[ei] ) { - GEOS_ERROR_IF_EQ_MSG( m_toElements.m_toElementRegion( face, 0 ), -1, GEOS_FMT( err, face ) ); - GEOS_ERROR_IF_EQ_MSG( m_toElements.m_toElementSubRegion( face, 0 ), -1, GEOS_FMT( err, face ) ); - GEOS_ERROR_IF_EQ_MSG( m_toElements.m_toElementIndex( face, 0 ), -1, GEOS_FMT( err, face ) ); + if( faceIndex != -1 ) + { + GEOS_ERROR_IF_EQ_MSG( m_toElements.m_toElementRegion( faceIndex, 0 ), -1, GEOS_FMT( err, faceIndex ) ); + GEOS_ERROR_IF_EQ_MSG( m_toElements.m_toElementSubRegion( faceIndex, 0 ), -1, GEOS_FMT( err, faceIndex ) ); + GEOS_ERROR_IF_EQ_MSG( m_toElements.m_toElementIndex( faceIndex, 0 ), -1, GEOS_FMT( err, faceIndex ) ); - GEOS_ERROR_IF_NE_MSG( m_toElements.m_toElementRegion( face, 1 ), -1, GEOS_FMT( err, face ) ); - GEOS_ERROR_IF_NE_MSG( m_toElements.m_toElementSubRegion( face, 1 ), -1, GEOS_FMT( err, face ) ); - GEOS_ERROR_IF_NE_MSG( m_toElements.m_toElementIndex( face, 1 ), -1, GEOS_FMT( err, face ) ); + GEOS_ERROR_IF_NE_MSG( m_toElements.m_toElementRegion( faceIndex, 1 ), -1, GEOS_FMT( err, faceIndex ) ); + GEOS_ERROR_IF_NE_MSG( m_toElements.m_toElementSubRegion( faceIndex, 1 ), -1, GEOS_FMT( err, faceIndex ) ); + GEOS_ERROR_IF_NE_MSG( m_toElements.m_toElementIndex( faceIndex, 1 ), -1, GEOS_FMT( err, faceIndex ) ); - m_toElements.m_toElementRegion( face, 1 ) = er; - m_toElements.m_toElementSubRegion( face, 1 ) = esr; - m_toElements.m_toElementIndex( face, 1 ) = ei; + m_toElements.m_toElementRegion( faceIndex, 1 ) = er; + m_toElements.m_toElementSubRegion( faceIndex, 1 ) = esr; + m_toElements.m_toElementIndex( faceIndex, 1 ) = ei; + } } } }; @@ -513,6 +518,9 @@ localIndex FaceManager::unpackUpDownMaps( buffer_unit_type const * & buffer, m_toElements.getElementRegionManager(), overwriteUpMaps ); + GEOS_ERROR_IF_NE( m_unmappedGlobalIndicesInToNodes.size(), 0 ); + GEOS_ERROR_IF_NE( m_unmappedGlobalIndicesInToEdges.size(), 0 ); + return unPackedSize; } diff --git a/src/coreComponents/mesh/MeshLevel.cpp b/src/coreComponents/mesh/MeshLevel.cpp index fe3c98b6eca..626f88f2af6 100644 --- a/src/coreComponents/mesh/MeshLevel.cpp +++ b/src/coreComponents/mesh/MeshLevel.cpp @@ -339,7 +339,7 @@ void MeshLevel::generateAdjacencyLists( arrayView1d< localIndex const > const & { ArrayOfArraysView< localIndex const > const elems2dToNodes = subRegion.nodeList().toViewConst(); ArrayOfArraysView< localIndex const > const elem2dToEdges = subRegion.edgeList().toViewConst(); - ArrayOfArraysView< localIndex const > const elems2dToFaces = subRegion.faceList().toViewConst(); + arrayView2d< localIndex const > const elems2dToFaces = subRegion.faceList().toViewConst(); for( localIndex const ei: elementAdjacencySet[er][esr] ) { @@ -353,7 +353,10 @@ void MeshLevel::generateAdjacencyLists( arrayView1d< localIndex const > const & } for( localIndex const & fi: elems2dToFaces[ei] ) { - faceAdjacencySet.insert( fi ); + if( fi != -1 ) + { + faceAdjacencySet.insert( fi ); + } } } }; diff --git a/src/coreComponents/mesh/MeshManager.cpp b/src/coreComponents/mesh/MeshManager.cpp index 3fa5ab4825a..b88a4ca9a31 100644 --- a/src/coreComponents/mesh/MeshManager.cpp +++ b/src/coreComponents/mesh/MeshManager.cpp @@ -44,8 +44,8 @@ MeshManager::~MeshManager() Group * MeshManager::createChild( string const & childKey, string const & childName ) { GEOS_LOG_RANK_0( "Adding Mesh: " << childKey << ", " << childName ); - std::unique_ptr< MeshGeneratorBase > solver = MeshGeneratorBase::CatalogInterface::factory( childKey, childName, this ); - return &this->registerGroup< MeshGeneratorBase >( childName, std::move( solver ) ); + std::unique_ptr< MeshGeneratorBase > mesh = MeshGeneratorBase::CatalogInterface::factory( childKey, childName, this ); + return &this->registerGroup< MeshGeneratorBase >( childName, std::move( mesh ) ); } diff --git a/src/coreComponents/mesh/MeshObjectPath.hpp b/src/coreComponents/mesh/MeshObjectPath.hpp index b6cb34adb75..832ef9a5548 100644 --- a/src/coreComponents/mesh/MeshObjectPath.hpp +++ b/src/coreComponents/mesh/MeshObjectPath.hpp @@ -21,7 +21,7 @@ #define GEOS_MESH_MESHOBJECTPATH_HPP_ -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" #include "MeshLevel.hpp" namespace geos diff --git a/src/coreComponents/mesh/NodeManager.cpp b/src/coreComponents/mesh/NodeManager.cpp index d59752f09da..aa839d8cf4a 100644 --- a/src/coreComponents/mesh/NodeManager.cpp +++ b/src/coreComponents/mesh/NodeManager.cpp @@ -26,6 +26,7 @@ #include "mesh/FaceManager.hpp" #include "mesh/ToElementRelation.hpp" #include "mesh/utilities/MeshMapUtilities.hpp" +#include "common/MpiWrapper.hpp" namespace geos { @@ -271,7 +272,7 @@ localIndex NodeManager::unpackUpDownMaps( buffer_unit_type const * & buffer, string temp; unPackedSize += bufferOps::Unpack( buffer, temp ); - GEOS_ERROR_IF( temp != viewKeyStruct::edgeListString(), "" ); + GEOS_ERROR_IF_NE( temp, viewKeyStruct::edgeListString() ); unPackedSize += bufferOps::Unpack( buffer, m_toEdgesRelation, packList, @@ -360,6 +361,90 @@ void NodeManager::depopulateUpMaps( std::set< localIndex > const & receivedNodes } } -REGISTER_CATALOG_ENTRY( ObjectManagerBase, NodeManager, string const &, Group * const ) +void NodeManager::outputObjectConnectivity() const +{ + + int const numRanks = MpiWrapper::commSize(); + int const thisRank = MpiWrapper::commRank(); + + for( int rank=0; rankgetName().c_str() ); + + printf( " Reference positions:\n" ); + for( localIndex a=0; asize(); ++a ) + { + printf( " %3d( %3lld ): %6.2f, %6.2f, %6.2f \n", a, m_localToGlobalMap( a ), m_referencePosition( a, 0 ), m_referencePosition( a, 1 ), m_referencePosition( a, 2 ) ); + } + + printf( "\n Reference positions (sorted by global):\n" ); + map< globalIndex, localIndex > const sortedGlobalToLocalMap( m_globalToLocalMap.begin(), m_globalToLocalMap.end()); + for( auto indexPair : sortedGlobalToLocalMap ) + { + localIndex const a = indexPair.second; + printf( " %3d( %3lld ): %6.2f, %6.2f, %6.2f \n", a, m_localToGlobalMap( a ), m_referencePosition( a, 0 ), m_referencePosition( a, 1 ), m_referencePosition( a, 2 ) ); + } + + printf( " toEdgesRelation: \n" ); + arrayView1d< globalIndex const > const & edgeLocalToGlobal = m_toEdgesRelation.relatedObjectLocalToGlobal(); + for( localIndex a=0; asize(); ++a ) + { + printf( " %3d(%3lld): ", a, m_localToGlobalMap( a ) ); + + for( localIndex b=0; b const & faceLocalToGlobal = m_toFacesRelation.relatedObjectLocalToGlobal(); + for( localIndex a=0; asize(); ++a ) + { + printf( " %3d(%3lld): ", a, m_localToGlobalMap( a ) ); + + for( localIndex b=0; b( elemCenter[ kfe ], faceCenter[ faceIndices[ 0 ] ] ); - faceMap.resizeArray( kfe, 2 ); faceMap[kfe][0] = faceIndices[0]; faceMap[kfe][1] = faceIndices[1]; @@ -168,19 +168,20 @@ localIndex SurfaceElementRegion::addToFractureMesh( real64 const time_np1, } // Add the cell region/subregion/index to the faceElementToCells map - OrderedVariableToManyElementRelation & faceElementsToCells = subRegion.getToCellRelation(); + FixedToManyElementRelation & faceElementsToCells = subRegion.getToCellRelation(); for( localIndex ke = 0; ke < 2; ++ke ) { + localIndex const er = faceToElementRegion[faceIndices[ke]][ke]; localIndex const esr = faceToElementSubRegion[faceIndices[ke]][ke]; localIndex const ei = faceToElementIndex[faceIndices[ke]][ke]; if( er != -1 && esr != -1 && ei != -1 ) { - faceElementsToCells.m_toElementRegion.emplaceBack( kfe, er ); - faceElementsToCells.m_toElementSubRegion.emplaceBack( kfe, esr ); - faceElementsToCells.m_toElementIndex.emplaceBack( kfe, ei ); + faceElementsToCells.m_toElementRegion[kfe][ke] = er; + faceElementsToCells.m_toElementSubRegion[kfe][ke] = esr; + faceElementsToCells.m_toElementIndex[kfe][ke] = ei; } } @@ -214,7 +215,7 @@ localIndex SurfaceElementRegion::addToFractureMesh( real64 const time_np1, { SortedArrayView< localIndex const > const & faceSet = faceManager->sets().getReference< SortedArray< localIndex > >( setIter.first ); SortedArray< localIndex > & faceElementSet = subRegion.sets().registerWrapper< SortedArray< localIndex > >( setIter.first ).reference(); - for( localIndex a = 0; a < faceMap.size(); ++a ) + for( localIndex a = 0; a < faceMap.size( 0 ); ++a ) { if( faceSet.count( faceMap[a][0] ) ) { diff --git a/src/coreComponents/mesh/SurfaceElementRegion.hpp b/src/coreComponents/mesh/SurfaceElementRegion.hpp index 182d4f730b0..9abd8a6ed06 100644 --- a/src/coreComponents/mesh/SurfaceElementRegion.hpp +++ b/src/coreComponents/mesh/SurfaceElementRegion.hpp @@ -22,7 +22,7 @@ #define GEOS_MESH_SURFACEELEMENTREGION_HPP_ #include "ElementRegionBase.hpp" -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" namespace geos { diff --git a/src/coreComponents/mesh/SurfaceElementSubRegion.cpp b/src/coreComponents/mesh/SurfaceElementSubRegion.cpp index d763dfe41ba..9f946de082f 100644 --- a/src/coreComponents/mesh/SurfaceElementSubRegion.cpp +++ b/src/coreComponents/mesh/SurfaceElementSubRegion.cpp @@ -31,7 +31,6 @@ using namespace dataRepository; SurfaceElementSubRegion::SurfaceElementSubRegion( string const & name, dataRepository::Group * const parent ): ElementSubRegionBase( name, parent ), - m_2dElemToElems(), m_unmappedGlobalIndicesInToNodes(), m_toNodesRelation(), m_toEdgesRelation(), @@ -47,18 +46,6 @@ SurfaceElementSubRegion::SurfaceElementSubRegion( string const & name, registerWrapper( viewKeyStruct::edgeListString(), &m_toEdgesRelation ). setDescription( "Map to the edges attached to each SurfaceElement." ); - registerWrapper( viewKeyStruct::surfaceElementsToCellRegionsString(), &m_2dElemToElems.m_toElementRegion ). - setPlotLevel( PlotLevel::NOPLOT ). - setDescription( "A map of face element local indices to the cell local indices" ); - - registerWrapper( viewKeyStruct::surfaceElementsToCellSubRegionsString(), &m_2dElemToElems.m_toElementSubRegion ). - setPlotLevel( PlotLevel::NOPLOT ). - setDescription( "A map of face element local indices to the cell local indices" ); - - registerWrapper( viewKeyStruct::surfaceElementsToCellIndexString(), &m_2dElemToElems.m_toElementIndex ). - setPlotLevel( PlotLevel::NOPLOT ). - setDescription( "A map of face element local indices to the cell local indices" ); - registerField( fields::elementAperture{}, &m_elementAperture ); registerField( fields::elementArea{}, &m_elementArea ); @@ -78,8 +65,6 @@ SurfaceElementSubRegion::SurfaceElementSubRegion( string const & name, viewKeyStruct::surfaceElementsToCellSubRegionsString(), viewKeyStruct::surfaceElementsToCellIndexString() } ); - // TODO there has to be a cleaner way than this. - m_2dElemToElems.setElementRegionManager( dynamicCast< ElementRegionManager & >( getParent().getParent().getParent().getParent() ) ); } diff --git a/src/coreComponents/mesh/SurfaceElementSubRegion.hpp b/src/coreComponents/mesh/SurfaceElementSubRegion.hpp index 0860c98d574..0ec1adba3a2 100644 --- a/src/coreComponents/mesh/SurfaceElementSubRegion.hpp +++ b/src/coreComponents/mesh/SurfaceElementSubRegion.hpp @@ -154,23 +154,6 @@ class SurfaceElementSubRegion : public ElementSubRegionBase localIndex numNodesPerElement( localIndex const k ) const final { return m_toNodesRelation[k].size(); } - /** - * @brief Get the surface element to cells map. - * @return The surface element to cells map - */ - OrderedVariableToManyElementRelation & getToCellRelation() - { - return m_2dElemToElems; - } - - /** - * @copydoc getToCellRelation() - */ - OrderedVariableToManyElementRelation const & getToCellRelation() const - { - return m_2dElemToElems; - } - ///@} @@ -283,9 +266,6 @@ class SurfaceElementSubRegion : public ElementSubRegionBase protected: - /// Map between the surface elements and the cells - OrderedVariableToManyElementRelation m_2dElemToElems; - /// Unmapped surface elements to nodes map map< localIndex, array1d< globalIndex > > m_unmappedGlobalIndicesInToNodes; diff --git a/src/coreComponents/mesh/generators/InternalMeshGenerator.hpp b/src/coreComponents/mesh/generators/InternalMeshGenerator.hpp index e358b6c2aff..40b0b01ee90 100644 --- a/src/coreComponents/mesh/generators/InternalMeshGenerator.hpp +++ b/src/coreComponents/mesh/generators/InternalMeshGenerator.hpp @@ -20,7 +20,7 @@ #ifndef GEOS_MESH_GENERATORS_INTERNALMESHGENERATOR_HPP #define GEOS_MESH_GENERATORS_INTERNALMESHGENERATOR_HPP -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" #include "mesh/generators/MeshGeneratorBase.hpp" #include "mesh/generators/CellBlockManager.hpp" #include "mesh/mpiCommunications/SpatialPartition.hpp" diff --git a/src/coreComponents/mesh/generators/InternalWellGenerator.cpp b/src/coreComponents/mesh/generators/InternalWellGenerator.cpp index ae15917ebc1..81fc219dbbc 100644 --- a/src/coreComponents/mesh/generators/InternalWellGenerator.cpp +++ b/src/coreComponents/mesh/generators/InternalWellGenerator.cpp @@ -63,5 +63,5 @@ void InternalWellGenerator::postInputInitialization() } -REGISTER_CATALOG_ENTRY( WellGeneratorBase, InternalWellGenerator, string const &, Group * const ) +REGISTER_CATALOG_ENTRY( MeshComponentBase, InternalWellGenerator, string const &, Group * const ) } diff --git a/src/coreComponents/mesh/generators/InternalWellboreGenerator.hpp b/src/coreComponents/mesh/generators/InternalWellboreGenerator.hpp index e9d86c930e6..c4b63aec5ac 100644 --- a/src/coreComponents/mesh/generators/InternalWellboreGenerator.hpp +++ b/src/coreComponents/mesh/generators/InternalWellboreGenerator.hpp @@ -20,7 +20,7 @@ #ifndef GEOS_MESHUTILITIES_INTERNALWELLBOREGENERATOR_HPP #define GEOS_MESHUTILITIES_INTERNALWELLBOREGENERATOR_HPP -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" #include "dataRepository/Group.hpp" #include "InternalMeshGenerator.hpp" diff --git a/src/coreComponents/mesh/generators/MeshComponentBase.cpp b/src/coreComponents/mesh/generators/MeshComponentBase.cpp new file mode 100644 index 00000000000..896bb0745a0 --- /dev/null +++ b/src/coreComponents/mesh/generators/MeshComponentBase.cpp @@ -0,0 +1,39 @@ +/* + * ------------------------------------------------------------------------------------------------------------ + * SPDX-License-Identifier: LGPL-2.1-only + * + * Copyright (c) 2016-2024 Lawrence Livermore National Security LLC + * Copyright (c) 2018-2024 Total, S.A + * Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University + * Copyright (c) 2023-2024 Chevron + * Copyright (c) 2019- GEOS/GEOSX Contributors + * All rights reserved + * + * See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. + * ------------------------------------------------------------------------------------------------------------ + */ + +#include "MeshComponentBase.hpp" + +namespace geos +{ + +using namespace dataRepository; + +MeshComponentBase::MeshComponentBase( const string & name, + Group * const parent ) + : Group( name, parent ) +{ + setInputFlags( InputFlags::OPTIONAL_NONUNIQUE ); +} + +MeshComponentBase::~MeshComponentBase() +{} + +MeshComponentBase::CatalogInterface::CatalogType & MeshComponentBase::getCatalog() +{ + static CatalogInterface::CatalogType catalog; + return catalog; +} + +} diff --git a/src/coreComponents/mesh/generators/MeshComponentBase.hpp b/src/coreComponents/mesh/generators/MeshComponentBase.hpp new file mode 100644 index 00000000000..3f1553dd449 --- /dev/null +++ b/src/coreComponents/mesh/generators/MeshComponentBase.hpp @@ -0,0 +1,70 @@ +/* + * ------------------------------------------------------------------------------------------------------------ + * SPDX-License-Identifier: LGPL-2.1-only + * + * Copyright (c) 2016-2024 Lawrence Livermore National Security LLC + * Copyright (c) 2018-2024 Total, S.A + * Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University + * Copyright (c) 2023-2024 Chevron + * Copyright (c) 2019- GEOS/GEOSX Contributors + * All rights reserved + * + * See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. + * ------------------------------------------------------------------------------------------------------------ + */ + +/* + * @file MeshComponentBase.hpp + * + */ + +#ifndef GEOS_MESH_GENERATORS_MESHCOMPONENTBASE_HPP_ +#define GEOS_MESH_GENERATORS_MESHCOMPONENTBASE_HPP_ + +#include "dataRepository/Group.hpp" +#include "codingUtilities/Utilities.hpp" +#include "common/DataTypes.hpp" + + +namespace geos +{ + +/** + * @class MeshComponentBase + * + * Abstract base class defining the information provided by any the well generator class. + */ +class MeshComponentBase : public dataRepository::Group +{ +public: + + /** + * @brief Constructor. + * @param name name of the object in the data hierarchy. + * @param parent pointer to the parent group in the data hierarchy. + */ + MeshComponentBase( string const & name, + Group * const parent ); + + /** + * @brief Default destructor. + */ + virtual ~MeshComponentBase(); + + /** + * @brief Get the catalog name. + * @return the name of this type in the catalog + */ + static string catalogName() { return "MeshComponentBase"; } + + /** + * @brief Type alias for catalog interface used by this class. See CatalogInterface. + */ + using CatalogInterface = dataRepository::CatalogInterface< MeshComponentBase, string const &, Group * const >; + + /// @copydoc dataRepository::Group::getCatalog() + static CatalogInterface::CatalogType & getCatalog(); +}; + +} +#endif /* GEOS_MESH_GENERATORS_MESHCOMPONENTBASE_HPP_ */ diff --git a/src/coreComponents/mesh/generators/MeshGeneratorBase.cpp b/src/coreComponents/mesh/generators/MeshGeneratorBase.cpp index b4de9e8fc33..8a474eaf09f 100644 --- a/src/coreComponents/mesh/generators/MeshGeneratorBase.cpp +++ b/src/coreComponents/mesh/generators/MeshGeneratorBase.cpp @@ -16,7 +16,7 @@ #include "MeshGeneratorBase.hpp" #include "mesh/generators/CellBlockManager.hpp" #include "mesh/generators/ParticleBlockManager.hpp" - +#include "mesh/generators/MeshComponentBase.hpp" namespace geos { using namespace dataRepository; @@ -30,14 +30,14 @@ MeshGeneratorBase::MeshGeneratorBase( string const & name, Group * const parent Group * MeshGeneratorBase::createChild( string const & childKey, string const & childName ) { GEOS_LOG_RANK_0( "Adding Mesh attribute: " << childKey << ", " << childName ); - std::unique_ptr< WellGeneratorBase > wellGen = WellGeneratorBase::CatalogInterface::factory( childKey, childName, this ); - return &this->registerGroup< WellGeneratorBase >( childName, std::move( wellGen ) ); + std::unique_ptr< MeshComponentBase > comp = MeshComponentBase::CatalogInterface::factory( childKey, childName, this ); + return &this->registerGroup< MeshComponentBase >( childName, std::move( comp ) ); } void MeshGeneratorBase::expandObjectCatalogs() { - // During schema generation, register one of each type derived from WellGeneratorBase here - for( auto & catalogIter: WellGeneratorBase::getCatalog()) + // During schema generation, register one of each type derived from MeshComponentBase here + for( auto & catalogIter: MeshComponentBase::getCatalog()) { createChild( catalogIter.first, catalogIter.first ); } diff --git a/src/coreComponents/mesh/generators/ParticleMeshGenerator.hpp b/src/coreComponents/mesh/generators/ParticleMeshGenerator.hpp index 0306f1931bd..e6060f0b854 100644 --- a/src/coreComponents/mesh/generators/ParticleMeshGenerator.hpp +++ b/src/coreComponents/mesh/generators/ParticleMeshGenerator.hpp @@ -22,7 +22,7 @@ #include "mesh/generators/MeshGeneratorBase.hpp" -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" namespace geos { diff --git a/src/coreComponents/mesh/generators/Region.cpp b/src/coreComponents/mesh/generators/Region.cpp new file mode 100644 index 00000000000..05212f599d8 --- /dev/null +++ b/src/coreComponents/mesh/generators/Region.cpp @@ -0,0 +1,46 @@ +/* + * ------------------------------------------------------------------------------------------------------------ + * SPDX-License-Identifier: LGPL-2.1-only + * + * Copyright (c) 2016-2024 Lawrence Livermore National Security LLC + * Copyright (c) 2018-2024 Total, S.A + * Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University + * Copyright (c) 2023-2024 Chevron + * Copyright (c) 2019- GEOS/GEOSX Contributors + * All rights reserved + * + * See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. + * ------------------------------------------------------------------------------------------------------------ + */ + +/** + * @file Region.cpp + */ + +#include "Region.hpp" + + +namespace geos +{ + +using namespace dataRepository; + +Region::Region( string const & name, + Group * const parent ) + : MeshComponentBase( name, parent ) +{ + registerWrapper( viewKeyStruct::idString(), &m_id ). + setInputFlag( InputFlags::REQUIRED ). + setDescription( "Interval region identifier" ); + + registerWrapper( viewKeyStruct::pathInRepositoryString(), &m_pathInRepository ). + setInputFlag( InputFlags::REQUIRED ). + setDescription( "Path of the dataset in the repository" ); +} + +Region::~Region() +{} + +REGISTER_CATALOG_ENTRY( MeshComponentBase, Region, string const &, Group * const ) + +} diff --git a/src/coreComponents/mesh/generators/Region.hpp b/src/coreComponents/mesh/generators/Region.hpp new file mode 100644 index 00000000000..4fce224a0a5 --- /dev/null +++ b/src/coreComponents/mesh/generators/Region.hpp @@ -0,0 +1,76 @@ + +/* + * ------------------------------------------------------------------------------------------------------------ + * SPDX-License-Identifier: LGPL-2.1-only + * + * Copyright (c) 2016-2024 Lawrence Livermore National Security LLC + * Copyright (c) 2018-2024 Total, S.A + * Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University + * Copyright (c) 2023-2024 Chevron + * Copyright (c) 2019- GEOS/GEOSX Contributors + * All rights reserved + * + * See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. + * ------------------------------------------------------------------------------------------------------------ + */ + +/** + * @file Region.hpp + */ + +#ifndef GEOS_MESH_GENERATORS_REGION_HPP +#define GEOS_MESH_GENERATORS_REGION_HPP + +#include "MeshComponentBase.hpp" + +namespace geos +{ + +/** + * @brief Region parameters with Group capabilities + * + * This class has dataRepository::Group capabilities to allow for XML input. + * + */ +class Region : public MeshComponentBase +{ +public: + /** + * @brief Constructor. + * @param name name of the object in the data hierarchy. + * @param parent pointer to the parent group in the data hierarchy. + */ + Region( const string & name, Group * const parent ); + + /** + * @brief Default destructor. + */ + ~Region() override; + + /** + * @brief Get the catalog name. + * @return the name of this type in the catalog + */ + static string catalogName() { return "Region"; } + + ///@cond DO_NOT_DOCUMENT + /// Keys appearing in XML + struct viewKeyStruct + { + static constexpr char const * idString() { return "id"; } + static constexpr char const * pathInRepositoryString() { return "pathInRepository"; } + }; + /// @endcond + +private: + + /// Interval region identifier + integer m_id = 0; + + /// Path of the dataset in the repository + string m_pathInRepository = ""; +}; + +} // namespace GEOS + +#endif diff --git a/src/coreComponents/mesh/generators/VTKHierarchicalDataSource.cpp b/src/coreComponents/mesh/generators/VTKHierarchicalDataSource.cpp new file mode 100644 index 00000000000..cd7c1ce27ba --- /dev/null +++ b/src/coreComponents/mesh/generators/VTKHierarchicalDataSource.cpp @@ -0,0 +1,72 @@ +/* + * ------------------------------------------------------------------------------------------------------------ + * SPDX-License-Identifier: LGPL-2.1-only + * + * Copyright (c) 2016-2024 Lawrence Livermore National Security LLC + * Copyright (c) 2018-2024 Total, S.A + * Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University + * Copyright (c) 2023-2024 Chevron + * Copyright (c) 2019- GEOS/GEOSX Contributors + * All rights reserved + * + * See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. + * ------------------------------------------------------------------------------------------------------------ + */ + +/** + * @file VTKHierarchicalDataSource.cpp + */ + +#include "mesh/generators/VTKHierarchicalDataSource.hpp" +#include "mesh/generators/VTKUtilities.hpp" +#include + +namespace geos +{ +using namespace dataRepository; + +VTKHierarchicalDataSource::VTKHierarchicalDataSource( string const & name, + Group * const parent ) + : ExternalDataSourceBase( name, parent ) +{ + registerWrapper( viewKeyStruct::filePathString(), &m_filePath ). + setRTTypeName( rtTypes::CustomTypes::groupNameRef ). + setInputFlag( InputFlags::REQUIRED ). + setApplyDefaultValue( "attribute" ). + setDescription( "Path to the mesh file" ); +} + +void VTKHierarchicalDataSource::open() +{ + string const extension = m_filePath.extension(); + GEOS_ERROR_IF( extension != "vtpc", "Unsupported vtk extension. File must be a vtpc file" ); + + vtkNew< vtkXMLPartitionedDataSetCollectionReader > reader; + reader->SetFileName( m_filePath.c_str()); + reader->Update(); + + m_collection = vtkSmartPointer< vtkPartitionedDataSetCollection >( vtkPartitionedDataSetCollection::SafeDownCast( reader->GetOutput())); + m_dataAssembly = vtkSmartPointer< vtkDataAssembly >( m_collection->GetDataAssembly() ); + + GEOS_ERROR_IF( m_dataAssembly == nullptr, "No data Assembly attached to this collection" ); +} + +vtkSmartPointer< vtkPartitionedDataSet > +VTKHierarchicalDataSource::search( string const & path ) +{ + int node = m_dataAssembly->GetFirstNodeByPath( path.c_str()); + GEOS_ERROR_IF( node == -1, "Node doesn't exist" ); + GEOS_ERROR_IF( m_dataAssembly->GetNumberOfChildren( node ) > 0, "Only leaf nodes can be queried." ); + + std::vector< unsigned int > indices = m_dataAssembly->GetDataSetIndices( node, false ); + + GEOS_ERROR_IF( indices.size() == 0, "Queried node has no dataset attached." ); + GEOS_ERROR_IF( indices.size() > 1, "Current constraint each tree node has only one dataset." ); + + return m_collection->GetPartitionedDataSet( indices[0] ); +} + +REGISTER_CATALOG_ENTRY( ExternalDataSourceBase, VTKHierarchicalDataSource, string const &, Group * const ) + + +} diff --git a/src/coreComponents/mesh/generators/VTKHierarchicalDataSource.hpp b/src/coreComponents/mesh/generators/VTKHierarchicalDataSource.hpp new file mode 100644 index 00000000000..bf737d4913b --- /dev/null +++ b/src/coreComponents/mesh/generators/VTKHierarchicalDataSource.hpp @@ -0,0 +1,93 @@ +/* + * ------------------------------------------------------------------------------------------------------------ + * SPDX-License-Identifier: LGPL-2.1-only + * + * Copyright (c) 2016-2024 Lawrence Livermore National Security LLC + * Copyright (c) 2018-2024 Total, S.A + * Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University + * Copyright (c) 2023-2024 Chevron + * Copyright (c) 2019- GEOS/GEOSX Contributors + * All rights reserved + * + * See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. + * ------------------------------------------------------------------------------------------------------------ + */ + +/** + * @file VTKHierarchicalDataSource.hpp + */ + +#ifndef GEOS_MESH_GENERATORS_VTKHIERARCHICALDATASOURCE_HPP +#define GEOS_MESH_GENERATORS_VTKHIERARCHICALDATASOURCE_HPP + +#include "dataRepository/Group.hpp" +#include "mesh/ExternalDataSourceBase.hpp" + +#include +#include +#include +#include +#include + +namespace geos +{ + +/** + * @class VTKHierarchicalDataSource + * @brief This class provides an API to access VTKPartitionedDataSetCollection through a vtkDataAssembly + */ +class VTKHierarchicalDataSource : public ExternalDataSourceBase +{ +public: + + /** + * @brief Main constructor for VTKHierarchicalDataSource base class. + * @param[in] name of the VTKHierarchicalDataSource object + * @param[in] parent the parent Group pointer for the VTKHierarchicalDataSource object + */ + VTKHierarchicalDataSource( string const & name, Group * const parent ); + + virtual ~VTKHierarchicalDataSource() override = default; + + /** + * @brief Return the name of the MeshGenerator in object catalog. + * @return string that contains the catalog name of the MeshGenerator + */ + static string catalogName() { return "VTKHierarchicalDataSource"; } + + /** + * @brief Opens a vtkPartitionedDataSetCollection and gets the colletion and the associated dataAssembly + * + */ + void open() override; + + /** + * @brief Performs a search in the dataAssembly to find a node of PartitionedDataSets + * + * @param path the path in the data assembly tree + * @return the found dataset + */ + vtkSmartPointer< vtkPartitionedDataSet > search( string const & path ); + +private: + + ///@cond DO_NOT_DOCUMENT + struct viewKeyStruct + { + constexpr static char const * filePathString() { return "file"; } + }; + /// @endcond + + /// Path to the mesh file + Path m_filePath; + + /// DataAssembly to query the dataset collection + vtkSmartPointer< vtkDataAssembly > m_dataAssembly; + + /// Collection of datasets + vtkSmartPointer< vtkPartitionedDataSetCollection > m_collection; +}; + +} + +#endif diff --git a/src/coreComponents/mesh/generators/VTKMeshGenerator.cpp b/src/coreComponents/mesh/generators/VTKMeshGenerator.cpp index d1402d21821..7ed1c0ae2df 100644 --- a/src/coreComponents/mesh/generators/VTKMeshGenerator.cpp +++ b/src/coreComponents/mesh/generators/VTKMeshGenerator.cpp @@ -19,22 +19,30 @@ #include "VTKMeshGenerator.hpp" +#include "mesh/ExternalDataSourceManager.hpp" #include "mesh/generators/VTKFaceBlockUtilities.hpp" #include "mesh/generators/VTKMeshGeneratorTools.hpp" #include "mesh/generators/CellBlockManager.hpp" +#include "mesh/generators/Region.hpp" #include "common/DataTypes.hpp" #include +#include +#include +#include namespace geos { using namespace dataRepository; - VTKMeshGenerator::VTKMeshGenerator( string const & name, Group * const parent ) - : ExternalMeshGeneratorBase( name, parent ) + : ExternalMeshGeneratorBase( name, parent ), + m_dataSource( nullptr ) { + getWrapperBase( ExternalMeshGeneratorBase::viewKeyStruct::filePathString()). + setInputFlag( InputFlags::OPTIONAL ); + registerWrapper( viewKeyStruct::regionAttributeString(), &m_attributeName ). setRTTypeName( rtTypes::CustomTypes::groupNameRef ). setInputFlag( InputFlags::OPTIONAL ). @@ -75,6 +83,34 @@ VTKMeshGenerator::VTKMeshGenerator( string const & name, " If set to 0 (default value), the GlobalId arrays in the input mesh are used if available, and generated otherwise." " If set to a negative value, the GlobalId arrays in the input mesh are not used, and generated global Ids are automatically generated." " If set to a positive value, the GlobalId arrays in the input mesh are used and required, and the simulation aborts if they are not available" ); + + registerWrapper( viewKeyStruct::dataSourceString(), &m_dataSourceName ). + setInputFlag( InputFlags::OPTIONAL ). + setDescription( "Name of the VTK data source" ); +} + +void VTKMeshGenerator::postInputInitialization() +{ + ExternalMeshGeneratorBase::postInputInitialization(); + + GEOS_ERROR_IF( !this->m_filePath.empty() && !m_dataSourceName.empty(), + getDataContext() << ": Access to the mesh via file or data source are mutually exclusive. " + "You can't set " << viewKeyStruct::dataSourceString() << " or " << viewKeyStruct::meshPathString() << " and " << + ExternalMeshGeneratorBase::viewKeyStruct::filePathString() ); + + if( !m_dataSourceName.empty()) + { + ExternalDataSourceManager & externalDataManager = this->getGroupByPath< ExternalDataSourceManager >( "/Problem/ExternalDataSource" ); + + m_dataSource = externalDataManager.getGroupPointer< VTKHierarchicalDataSource >( m_dataSourceName ); + + GEOS_THROW_IF( m_dataSource == nullptr, + getDataContext() << ": VTK Data Object Source not found: " << m_dataSourceName, + InputError ); + + m_dataSource->open(); + } + } void VTKMeshGenerator::fillCellBlockManager( CellBlockManager & cellBlockManager, SpatialPartition & partition ) @@ -86,10 +122,67 @@ void VTKMeshGenerator::fillCellBlockManager( CellBlockManager & cellBlockManager vtkSmartPointer< vtkMultiProcessController > controller = vtk::getController(); vtkMultiProcessController::SetGlobalController( controller ); - GEOS_LOG_RANK_0( GEOS_FMT( "{} '{}': reading mesh from {}", catalogName(), getName(), m_filePath ) ); { + vtk::AllMeshes allMeshes; + GEOS_LOG_LEVEL_RANK_0( 2, " reading the dataset..." ); - vtk::AllMeshes allMeshes = vtk::loadAllMeshes( m_filePath, m_mainBlockName, m_faceBlockNames ); + + if( !m_filePath.empty()) + { + GEOS_LOG_RANK_0( GEOS_FMT( "{} '{}': reading mesh from {}", catalogName(), getName(), m_filePath ) ); + allMeshes = vtk::loadAllMeshes( m_filePath, m_mainBlockName, m_faceBlockNames ); + } + else if( !m_dataSourceName.empty()) + { + if( MpiWrapper::commRank() == 0 ) + { + std::vector< vtkSmartPointer< vtkPartitionedDataSet > > partitions; + vtkNew< vtkAppendFilter > appender; + appender->MergePointsOn(); + for( auto & [key, value] : this->getSubGroups()) + { + Region const & region = this->getGroup< Region >( key ); + + string path = region.getWrapper< string >( Region::viewKeyStruct::pathInRepositoryString()).reference(); + integer region_id = region.getWrapper< integer >( Region::viewKeyStruct::idString()).reference(); + + GEOS_LOG_RANK_0( GEOS_FMT( "{} '{}': reading partition from {}", catalogName(), getName(), path ) ); + vtkPartitionedDataSet * p = m_dataSource->search( path ); + + //load the grid + vtkDataObject * block = p->GetPartition( 0 ); + if( block->IsA( "vtkDataSet" ) ) + { + vtkSmartPointer< vtkDataSet > dataset = vtkDataSet::SafeDownCast( block ); + + vtkIntArray * arr = vtkIntArray::New(); + arr->SetName( m_attributeName.c_str()); + arr->SetNumberOfComponents( 1 ); + arr->SetNumberOfTuples( dataset->GetNumberOfCells()); + + arr->FillValue( region_id ); + + dataset->GetCellData()->AddArray( arr ); + appender->AddInputDataObject( dataset ); + } + } + appender->Update(); + vtkUnstructuredGrid * result = vtkUnstructuredGrid::SafeDownCast( appender->GetOutputDataObject( 0 ) ); + allMeshes.setMainMesh( result ); + + //DEBUG code + vtkNew< vtkXMLUnstructuredGridWriter > writer; + writer->SetFileName( "tmp_output.vtu" ); + writer->SetInputData( result ); + writer->Write(); + } + else + { + vtkUnstructuredGrid * result = vtkUnstructuredGrid::New(); + allMeshes.setMainMesh( result ); + } + } + GEOS_LOG_LEVEL_RANK_0( 2, " redistributing mesh..." ); vtk::AllMeshes redistributedMeshes = vtk::redistributeMeshes( getLogLevel(), allMeshes.getMainMesh(), allMeshes.getFaceBlocks(), comm, m_partitionMethod, m_partitionRefinement, m_useGlobalIds ); @@ -215,6 +308,7 @@ void VTKMeshGenerator::freeResources() m_faceBlockMeshes.clear(); } + REGISTER_CATALOG_ENTRY( MeshGeneratorBase, VTKMeshGenerator, string const &, Group * const ) } // namespace geos diff --git a/src/coreComponents/mesh/generators/VTKMeshGenerator.hpp b/src/coreComponents/mesh/generators/VTKMeshGenerator.hpp index 6d2eabe911f..cad9378dde4 100644 --- a/src/coreComponents/mesh/generators/VTKMeshGenerator.hpp +++ b/src/coreComponents/mesh/generators/VTKMeshGenerator.hpp @@ -22,8 +22,8 @@ #include "mesh/generators/ExternalMeshGeneratorBase.hpp" #include "mesh/generators/VTKUtilities.hpp" +#include "mesh/generators/VTKHierarchicalDataSource.hpp" #include "mesh/mpiCommunications/SpatialPartition.hpp" - #include namespace geos @@ -45,10 +45,10 @@ class VTKMeshGenerator : public ExternalMeshGeneratorBase VTKMeshGenerator( const string & name, Group * const parent ); -/** - * @brief Return the name of the VTKMeshGenerator in object Catalog. - * @return string that contains the key name to VTKMeshGenerator in the Catalog - */ + /** + * @brief Return the name of the VTKMeshGenerator in object Catalog. + * @return string that contains the key name to VTKMeshGenerator in the Catalog + */ static string catalogName() { return "VTKMesh"; } /** @@ -88,7 +88,7 @@ class VTKMeshGenerator : public ExternalMeshGeneratorBase * surfaces of interest, with triangles and/or quads holding an attribute value * of 1, 2 or 3, three node sets named "1", "2" and "3" will be instantiated by this method */ - virtual void fillCellBlockManager( CellBlockManager & cellBlockManager, SpatialPartition & partition ) override; + void fillCellBlockManager( CellBlockManager & cellBlockManager, SpatialPartition & partition ) override; void importFieldOnArray( Block block, string const & blockName, @@ -96,7 +96,10 @@ class VTKMeshGenerator : public ExternalMeshGeneratorBase bool isMaterialField, dataRepository::WrapperBase & wrapper ) const override; - virtual void freeResources() override; + void freeResources() override; + +protected: + void postInputInitialization() override; private: @@ -110,6 +113,13 @@ class VTKMeshGenerator : public ExternalMeshGeneratorBase constexpr static char const * partitionRefinementString() { return "partitionRefinement"; } constexpr static char const * partitionMethodString() { return "partitionMethod"; } constexpr static char const * useGlobalIdsString() { return "useGlobalIds"; } + constexpr static char const * dataSourceString() { return "dataSourceName"; } + constexpr static char const * meshPathString() { return "meshPath"; } + }; + + struct groupKeyStruct + { + constexpr static char const * regionString() { return "VTKRegion"; } }; /// @endcond @@ -155,6 +165,16 @@ class VTKMeshGenerator : public ExternalMeshGeneratorBase /// Lists of VTK cell ids, organized by element type, then by region vtk::CellMapType m_cellMap; + + /// Repository name + string m_dataSourceName; + + /// path to the mesh in the repository + string m_meshPath; + + /// Repository of VTK objects + VTKHierarchicalDataSource * m_dataSource; + }; } // namespace geos diff --git a/src/coreComponents/mesh/generators/VTKWellGenerator.cpp b/src/coreComponents/mesh/generators/VTKWellGenerator.cpp index c6294c35683..173412ca23b 100644 --- a/src/coreComponents/mesh/generators/VTKWellGenerator.cpp +++ b/src/coreComponents/mesh/generators/VTKWellGenerator.cpp @@ -101,5 +101,5 @@ void VTKWellGenerator::fillPolylineDataStructure( ) } } -REGISTER_CATALOG_ENTRY( WellGeneratorBase, VTKWellGenerator, string const &, Group * const ) +REGISTER_CATALOG_ENTRY( MeshComponentBase, VTKWellGenerator, string const &, Group * const ) } diff --git a/src/coreComponents/mesh/generators/WellGeneratorABC.hpp b/src/coreComponents/mesh/generators/WellGeneratorABC.hpp deleted file mode 100644 index c1719d5badf..00000000000 --- a/src/coreComponents/mesh/generators/WellGeneratorABC.hpp +++ /dev/null @@ -1,205 +0,0 @@ -/* - * ------------------------------------------------------------------------------------------------------------ - * SPDX-License-Identifier: LGPL-2.1-only - * - * Copyright (c) 2016-2024 Lawrence Livermore National Security LLC - * Copyright (c) 2018-2024 Total, S.A - * Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University - * Copyright (c) 2023-2024 Chevron - * Copyright (c) 2019- GEOS/GEOSX Contributors - * All rights reserved - * - * See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. - * ------------------------------------------------------------------------------------------------------------ - */ - -/* - * @file WellGeneratorABC.hpp - * - */ - -#ifndef GEOS_MESH_GENERATORS_WELLGENERATORABC_HPP_ -#define GEOS_MESH_GENERATORS_WELLGENERATORABC_HPP_ - -#include "dataRepository/Group.hpp" -#include "codingUtilities/Utilities.hpp" -#include "common/DataTypes.hpp" - - -namespace geos -{ - -/** - * @class WellGeneratorABC - * - * Abstract base class defining the information provided by any the well generator class. - */ -class WellGeneratorABC : public dataRepository::Group -{ -public: - - /** - * @brief Constructor. - * @param name name of the object in the data hierarchy. - * @param parent pointer to the parent group in the data hierarchy. - */ - WellGeneratorABC( const string & name, - Group * const parent ) - : - Group( name, parent ) - { } - - /** - * @brief Main function of the class that generates the well geometry - */ - virtual void generateWellGeometry( ) = 0; - - /** - * @name Getters / Setters - */ - ///@{ - - // getters for element data - - /** - * @brief Get the global number of well elements. - * @return the global number of elements - */ - virtual globalIndex numElements() const = 0; - - /** - * @brief Getter to the Segment to PolyNode mapping - * @return The Segment to PolyNode mapping as a 2D array - */ - virtual const array2d< globalIndex > & getSegmentToPolyNodeMap() const = 0; - - /** - * @brief Get the number of nodes per well element - * @return the number of nodes per well element - */ - virtual globalIndex numNodesPerElement() const = 0; - - /** - * @brief Get the Coordinates of the polyline nodes - * @return the Coordinates of the polyline nodes - */ - virtual const array2d< real64 > & getPolyNodeCoord() const = 0; - - /** - * @return The minimum segment length - */ - virtual real64 getMinSegmentLength() const = 0; - - /** - * @return The minimum element length - */ - virtual real64 getMinElemLength() const = 0; - - /** - * @return The list of perforation names - */ - virtual const string_array & getPerforationList() const = 0; - - /** - * @brief Get the physical location of the centers of well elements. - * @return list of center locations of the well elements - */ - virtual arrayView2d< real64 const > getElemCoords() const = 0; - - /** - * @brief Get the global indices mapping an element to the next. - * @return list providing the global index of the next element for each element - */ - virtual arrayView1d< globalIndex const > getNextElemIndex() const = 0; - - /** - * @brief Get the global indices mapping an element to the previous ones. - * @return list providing the global indices of the previous elements for each element - */ - virtual arrayView1d< arrayView1d< globalIndex const > const > getPrevElemIndices() const = 0; - - /** - * @brief Get the global indices of the well nodes nodes connected to each element. - * @return list providing the global index of the well nodes for each well element - */ - virtual arrayView2d< globalIndex const > getElemToNodesMap() const = 0; - - /** - * @brief Get the volume of the well elements. - * @return list of volumes of the well elements - */ - virtual arrayView1d< real64 const > getElemVolume() const = 0; - - /** - * @brief Get the radius in the well. - * @return the radius in the well - */ - virtual real64 getElementRadius() const = 0; - - // getters for node data - - /** - * @brief Get the global number of well nodes. - * @return the global number of nodes - */ - virtual globalIndex numNodes() const = 0; - - /** - * @brief Get the physical location of the centers of well elements. - * @return list of center locations of the well elements - */ - virtual arrayView2d< real64 const > getNodeCoords() const = 0; - - - - // getters for perforation data - /** - * @brief Get the global number of perforations on this well. - * @return the global number of elements - */ - virtual globalIndex numPerforations() const = 0; - - /** - * @brief Get the locations of the perforations. - * @return list of locations of all the perforations on the well - */ - virtual arrayView2d< real64 const > getPerfCoords() const = 0; - - /** - * @brief Get the well transmissibility at the perforations. - * @return list of well transmissibility at all the perforations on the well - */ - virtual arrayView1d< real64 const > getPerfTransmissibility() const = 0; - - /** - * @brief Get the skin factor at a perforation. - * @return the skin factor at a perforation - */ - virtual arrayView1d< real64 const > getPerfSkinFactor() const = 0; - - /** - * @brief Get the global indices of the well elements connected to each perforation. - * @return list providing the global index of the connected well element for each perforation - */ - virtual arrayView1d< globalIndex const > getPerfElemIndex() const = 0; - - /** - * @returns The number of physical dimensions - */ - virtual int getPhysicalDimensionsNumber() const = 0; - - /** - * Getter for the associated well region name - * @return the associated well region name - */ - virtual const string getWellRegionName() const = 0; - - /** - * Getter for the associated well control name - * @return the associated well control name - */ - virtual const string getWellControlsName() const = 0; - ///@} -}; -} -#endif /* GEOS_MESH_GENERATORS_WELLGENERATORABC_HPP_ */ diff --git a/src/coreComponents/mesh/generators/WellGeneratorBase.cpp b/src/coreComponents/mesh/generators/WellGeneratorBase.cpp index 1617aa3fdb4..5e8efb4bc61 100644 --- a/src/coreComponents/mesh/generators/WellGeneratorBase.cpp +++ b/src/coreComponents/mesh/generators/WellGeneratorBase.cpp @@ -25,7 +25,7 @@ namespace geos using namespace dataRepository; WellGeneratorBase::WellGeneratorBase( string const & name, Group * const parent ): - WellGeneratorABC( name, parent ) + MeshComponentBase( name, parent ) , m_numPerforations( 0 ) , m_numElemsPerSegment( 0 ) , m_minSegmentLength( 1e-2 ) @@ -39,8 +39,6 @@ WellGeneratorBase::WellGeneratorBase( string const & name, Group * const parent , m_nDims( 3 ) , m_polylineHeadNodeId( -1 ) { - setInputFlags( InputFlags::OPTIONAL_NONUNIQUE ); - registerWrapper( viewKeyStruct::radiusString(), &m_radius ). setInputFlag( InputFlags::REQUIRED ). setSizedFromParent( 0 ). @@ -97,12 +95,6 @@ void WellGeneratorBase::expandObjectCatalogs() createChild( viewKeyStruct::perforationString(), viewKeyStruct::perforationString() ); } -WellGeneratorBase::CatalogInterface::CatalogType & WellGeneratorBase::getCatalog() -{ - static WellGeneratorBase::CatalogInterface::CatalogType catalog; - return catalog; -} - void WellGeneratorBase::generateWellGeometry( ) { fillPolylineDataStructure(); diff --git a/src/coreComponents/mesh/generators/WellGeneratorBase.hpp b/src/coreComponents/mesh/generators/WellGeneratorBase.hpp index 99f1af95924..ca29973ae36 100644 --- a/src/coreComponents/mesh/generators/WellGeneratorBase.hpp +++ b/src/coreComponents/mesh/generators/WellGeneratorBase.hpp @@ -21,7 +21,7 @@ #ifndef GEOS_MESH_GENERATORS_WELLGENERATORBASE_HPP_ #define GEOS_MESH_GENERATORS_WELLGENERATORBASE_HPP_ -#include "mesh/generators/WellGeneratorABC.hpp" +#include "mesh/generators/MeshComponentBase.hpp" #include "dataRepository/Group.hpp" #include "codingUtilities/Utilities.hpp" #include "common/DataTypes.hpp" @@ -35,7 +35,7 @@ namespace geos * * This class processes the data of a single well from the XML and generates the well geometry */ -class WellGeneratorBase : public WellGeneratorABC +class WellGeneratorBase : public MeshComponentBase { public: @@ -50,10 +50,6 @@ class WellGeneratorBase : public WellGeneratorABC /// This function is used to expand any catalogs in the data structure virtual void expandObjectCatalogs() override; - /// using alias for templated Catalog meshGenerator type - using CatalogInterface = dataRepository::CatalogInterface< WellGeneratorBase, string const &, Group * const >; - - /** * @brief Create a new geometric object (box, plane, etc) as a child of this group. * @param childKey the catalog key of the new geometric object to create @@ -62,16 +58,10 @@ class WellGeneratorBase : public WellGeneratorABC */ virtual Group * createChild( string const & childKey, string const & childName ) override; - /** - * @brief Accessor for the singleton Catalog object - * @return a static reference to the Catalog object - */ - static CatalogInterface::CatalogType & getCatalog(); - /** * @brief Main function of the class that generates the well geometry */ - void generateWellGeometry( ) override; + void generateWellGeometry( ); /** @@ -85,76 +75,76 @@ class WellGeneratorBase : public WellGeneratorABC * @brief Get the global number of well elements. * @return the global number of elements */ - globalIndex numElements() const override { return m_numElems; } + globalIndex numElements() const { return m_numElems; } /** * @brief Getter to the Segment to PolyNode mapping * @return The Segment to PolyNode mapping as a 2D array */ - const array2d< globalIndex > & getSegmentToPolyNodeMap() const override { return m_segmentToPolyNodeMap; }; + const array2d< globalIndex > & getSegmentToPolyNodeMap() const { return m_segmentToPolyNodeMap; }; /** * @brief Get the number of nodes per well element * @return the number of nodes per well element */ - globalIndex numNodesPerElement() const override { return m_numNodesPerElem; } + globalIndex numNodesPerElement() const { return m_numNodesPerElem; } /** * @brief Get the Coordinates of the polyline nodes * @return the Coordinates of the polyline nodes */ - const array2d< real64 > & getPolyNodeCoord() const override { return m_polyNodeCoords; } + const array2d< real64 > & getPolyNodeCoord() const { return m_polyNodeCoords; } /** * @return The minimum segment length */ - real64 getMinSegmentLength() const override { return m_minSegmentLength; } + real64 getMinSegmentLength() const { return m_minSegmentLength; } /** * @return The minimum element length */ - real64 getMinElemLength() const override { return m_minElemLength; } + real64 getMinElemLength() const { return m_minElemLength; } /** * @return The list of perforation names */ - const string_array & getPerforationList() const override { return m_perforationList; } + const string_array & getPerforationList() const { return m_perforationList; } /** * @brief Get the physical location of the centers of well elements. * @return list of center locations of the well elements */ - arrayView2d< real64 const > getElemCoords() const override { return m_elemCenterCoords; } + arrayView2d< real64 const > getElemCoords() const { return m_elemCenterCoords; } /** * @brief Get the global indices mapping an element to the next. * @return list providing the global index of the next element for each element */ - arrayView1d< globalIndex const > getNextElemIndex() const override { return m_nextElemId; } + arrayView1d< globalIndex const > getNextElemIndex() const { return m_nextElemId; } /** * @brief Get the global indices mapping an element to the previous ones. * @return list providing the global indices of the previous elements for each element */ - arrayView1d< arrayView1d< globalIndex const > const > getPrevElemIndices() const override { return m_prevElemId.toNestedViewConst(); } + arrayView1d< arrayView1d< globalIndex const > const > getPrevElemIndices() const { return m_prevElemId.toNestedViewConst(); } /** * @brief Get the global indices of the well nodes nodes connected to each element. * @return list providing the global index of the well nodes for each well element */ - arrayView2d< globalIndex const > getElemToNodesMap() const override { return m_elemToNodesMap; } + arrayView2d< globalIndex const > getElemToNodesMap() const { return m_elemToNodesMap; } /** * @brief Get the volume of the well elements. * @return list of volumes of the well elements */ - arrayView1d< real64 const > getElemVolume() const override { return m_elemVolume; } + arrayView1d< real64 const > getElemVolume() const { return m_elemVolume; } /** * @brief Get the radius in the well. * @return the radius in the well */ - real64 getElementRadius() const override { return m_radius; } + real64 getElementRadius() const { return m_radius; } // getters for node data @@ -162,61 +152,61 @@ class WellGeneratorBase : public WellGeneratorABC * @brief Get the global number of well nodes. * @return the global number of nodes */ - globalIndex numNodes() const override { return m_numNodes; } + globalIndex numNodes() const { return m_numNodes; } /** * @brief Get the physical location of the centers of well elements. * @return list of center locations of the well elements */ - arrayView2d< real64 const > getNodeCoords() const override { return m_nodeCoords; } + arrayView2d< real64 const > getNodeCoords() const { return m_nodeCoords; } // getters for perforation data /** * @brief Get the global number of perforations on this well. * @return the global number of elements */ - globalIndex numPerforations() const override { return m_numPerforations; } + globalIndex numPerforations() const { return m_numPerforations; } /** * @brief Get the locations of the perforations. * @return list of locations of all the perforations on the well */ - arrayView2d< real64 const > getPerfCoords() const override { return m_perfCoords; } + arrayView2d< real64 const > getPerfCoords() const { return m_perfCoords; } /** * @brief Get the well transmissibility at the perforations. * @return list of well transmissibility at all the perforations on the well */ - arrayView1d< real64 const > getPerfTransmissibility() const override { return m_perfTransmissibility; } + arrayView1d< real64 const > getPerfTransmissibility() const { return m_perfTransmissibility; } /** * @brief Get the skin factor at a perforation. * @return the skin factor at a perforation */ - arrayView1d< real64 const > getPerfSkinFactor() const override { return m_perfSkinFactor; }; + arrayView1d< real64 const > getPerfSkinFactor() const { return m_perfSkinFactor; }; /** * @brief Get the global indices of the well elements connected to each perforation. * @return list providing the global index of the connected well element for each perforation */ - arrayView1d< globalIndex const > getPerfElemIndex() const override { return m_perfElemId; } + arrayView1d< globalIndex const > getPerfElemIndex() const { return m_perfElemId; } /** * @returns The number of physical dimensions */ - int getPhysicalDimensionsNumber() const override { return m_nDims; } + int getPhysicalDimensionsNumber() const { return m_nDims; } /** * Getter for the associated well region name * @return the associated well region name */ - const string getWellRegionName() const override { return m_wellRegionName; } + const string getWellRegionName() const { return m_wellRegionName; } /** * Getter for the associated well control name * @return the associated well control name */ - const string getWellControlsName() const override { return m_wellControlsName; } + const string getWellControlsName() const { return m_wellControlsName; } ///@cond DO_NOT_DOCUMENT struct viewKeyStruct diff --git a/src/coreComponents/mesh/mpiCommunications/CommunicationTools.cpp b/src/coreComponents/mesh/mpiCommunications/CommunicationTools.cpp index 87dd288c167..d5d0b781ebf 100644 --- a/src/coreComponents/mesh/mpiCommunications/CommunicationTools.cpp +++ b/src/coreComponents/mesh/mpiCommunications/CommunicationTools.cpp @@ -851,6 +851,12 @@ void CommunicationTools::setupGhosts( MeshLevel & meshLevel, MpiWrapper::waitAll( commData.size(), commData.mpiSendBufferSizeRequest(), commData.mpiSendBufferSizeStatus() ); MpiWrapper::waitAll( commData.size(), commData.mpiSendBufferRequest(), commData.mpiSendBufferStatus() ); + // unpack the ghost inter-object maps and other data + for( auto & neighbor : neighbors ) + { + neighbor.unpackGhostsData( meshLevel, commData.commID() ); + } + nodeManager.setReceiveLists(); edgeManager.setReceiveLists(); faceManager.setReceiveLists(); @@ -1099,4 +1105,78 @@ void CommunicationTools::synchronizeFields( FieldIdentifiers const & fieldsToBeS synchronizeUnpack( mesh, neighbors, icomm, onDevice ); } + +void CommunicationTools::checkSendRecv( ObjectManagerBase const & objectManager, + std::vector< NeighborCommunicator > & neighbors ) +{ + MPI_iCommData commData; + commData.resize( neighbors.size() ); + arrayView1d< globalIndex const > const & localToGlobal = objectManager.localToGlobalMap(); + + std::cout< const ghostsToSend = objectManager.getNeighborData( neighborRank ).ghostsToSend(); + array1d< globalIndex > ghostsToSendGlobal( ghostsToSend.size() ); + + std::cout<<" Rank "< ghostThatAreSentToMeGlobal; + + MpiWrapper::recv( ghostThatAreSentToMeGlobal, + neighborRank, + tag, + MPI_COMM_GEOS, + &commData.mpiRecvBufferStatus( i ) ); + + arrayView1d< localIndex const > const ghostsToRecv = objectManager.getNeighborData( neighborRank ).ghostsToReceive(); + array1d< globalIndex > ghostToRecvGlobal( ghostsToRecv.size() ); + + + std::cout<<" Rank "< & neighbors ); + private: std::set< int > m_freeCommIDs; static CommunicationTools * m_instance; diff --git a/src/coreComponents/mesh/mpiCommunications/MPI_iCommData.cpp b/src/coreComponents/mesh/mpiCommunications/MPI_iCommData.cpp index 2e0d7920437..91160261987 100644 --- a/src/coreComponents/mesh/mpiCommunications/MPI_iCommData.cpp +++ b/src/coreComponents/mesh/mpiCommunications/MPI_iCommData.cpp @@ -37,14 +37,14 @@ MPI_iCommData::~MPI_iCommData() { for( int neighbor=0; neighbor >; -using ElemAdjListRefWrapType = ElementRegionManager::ElementViewAccessor< ReferenceWrapper< localIndex_array > >; -using ElemAdjListRefType = ElementRegionManager::ElementReferenceAccessor< localIndex_array >; inline int GhostSize( NodeManager & nodeManager, arrayView1d< localIndex const > const nodeAdjacencyList, EdgeManager & edgeManager, arrayView1d< localIndex const > const edgeAdjacencyList, FaceManager & faceManager, arrayView1d< localIndex const > const faceAdjacencyList, - ElementRegionManager & elemManager, ElemAdjListViewType const & elementAdjacencyList ) + ElementRegionManager & elemManager, NeighborCommunicator::ElemAdjListViewType const & elementAdjacencyList ) { int bufferSize = 0; bufferSize += nodeManager.packGlobalMapsSize( nodeAdjacencyList, 0 ); @@ -211,7 +208,7 @@ inline int PackGhosts( buffer_unit_type * sendBufferPtr, NodeManager & nodeManager, arrayView1d< localIndex const > const nodeAdjacencyList, EdgeManager & edgeManager, arrayView1d< localIndex const > const edgeAdjacencyList, FaceManager & faceManager, arrayView1d< localIndex const > const faceAdjacencyList, - ElementRegionManager & elemManager, ElemAdjListViewType const & elementAdjacencyList ) + ElementRegionManager & elemManager, NeighborCommunicator::ElemAdjListViewType const & elementAdjacencyList ) { int packedSize = 0; packedSize += nodeManager.packGlobalMaps( sendBufferPtr, nodeAdjacencyList, 0 ); @@ -301,43 +298,55 @@ void NeighborCommunicator::unpackGhosts( MeshLevel & mesh, ElementRegionManager & elemManager = mesh.getElemManager(); buffer_type const & receiveBuff = receiveBuffer( commID ); - buffer_unit_type const * receiveBufferPtr = receiveBuff.data(); + m_receiveBufferPtr = receiveBuff.data(); + + m_unpackedSize = 0; - buffer_type::size_type unpackedSize = 0; + m_nodeUnpackList.resize( 0 ); + m_unpackedSize += nodeManager.unpackGlobalMaps( m_receiveBufferPtr, m_nodeUnpackList, 0 ); - localIndex_array nodeUnpackList; - unpackedSize += nodeManager.unpackGlobalMaps( receiveBufferPtr, nodeUnpackList, 0 ); + m_edgeUnpackList.resize( 0 ); + m_unpackedSize += edgeManager.unpackGlobalMaps( m_receiveBufferPtr, m_edgeUnpackList, 0 ); - localIndex_array edgeUnpackList; - unpackedSize += edgeManager.unpackGlobalMaps( receiveBufferPtr, edgeUnpackList, 0 ); + m_faceUnpackList.resize( 0 ); + m_unpackedSize += faceManager.unpackGlobalMaps( m_receiveBufferPtr, m_faceUnpackList, 0 ); - localIndex_array faceUnpackList; - unpackedSize += faceManager.unpackGlobalMaps( receiveBufferPtr, faceUnpackList, 0 ); + m_elementAdjacencyReceiveListArray = elemManager.constructReferenceAccessor< localIndex_array >( ObjectManagerBase::viewKeyStruct::ghostsToReceiveString(), + std::to_string( this->m_neighborRank ) ); - ElemAdjListRefType elementAdjacencyReceiveListArray = - elemManager.constructReferenceAccessor< localIndex_array >( ObjectManagerBase::viewKeyStruct::ghostsToReceiveString(), - std::to_string( this->m_neighborRank ) ); - unpackedSize += elemManager.unpackGlobalMaps( receiveBufferPtr, - elementAdjacencyReceiveListArray ); + m_unpackedSize += elemManager.unpackGlobalMaps( m_receiveBufferPtr, + m_elementAdjacencyReceiveListArray ); + +} + +void NeighborCommunicator::unpackGhostsData( MeshLevel & mesh, + int const commID ) +{ + NodeManager & nodeManager = mesh.getNodeManager(); + EdgeManager & edgeManager = mesh.getEdgeManager(); + FaceManager & faceManager = mesh.getFaceManager(); + ElementRegionManager & elemManager = mesh.getElemManager(); ElemAdjListViewType elementAdjacencyReceiveList = elemManager.constructViewAccessor< array1d< localIndex >, arrayView1d< localIndex > >( ObjectManagerBase::viewKeyStruct::ghostsToReceiveString(), std::to_string( this->m_neighborRank ) ); - unpackedSize += nodeManager.unpackUpDownMaps( receiveBufferPtr, nodeUnpackList, false, false ); - unpackedSize += edgeManager.unpackUpDownMaps( receiveBufferPtr, edgeUnpackList, false, false ); - unpackedSize += faceManager.unpackUpDownMaps( receiveBufferPtr, faceUnpackList, false, false ); - unpackedSize += elemManager.unpackUpDownMaps( receiveBufferPtr, elementAdjacencyReceiveListArray, false ); + + m_unpackedSize += nodeManager.unpackUpDownMaps( m_receiveBufferPtr, m_nodeUnpackList, false, false ); + m_unpackedSize += edgeManager.unpackUpDownMaps( m_receiveBufferPtr, m_edgeUnpackList, false, false ); + m_unpackedSize += faceManager.unpackUpDownMaps( m_receiveBufferPtr, m_faceUnpackList, false, false ); + m_unpackedSize += elemManager.unpackUpDownMaps( m_receiveBufferPtr, m_elementAdjacencyReceiveListArray, false ); parallelDeviceEvents events; - unpackedSize += nodeManager.unpack( receiveBufferPtr, nodeUnpackList, 0, false, events ); - unpackedSize += edgeManager.unpack( receiveBufferPtr, edgeUnpackList, 0, false, events ); - unpackedSize += faceManager.unpack( receiveBufferPtr, faceUnpackList, 0, false, events ); - unpackedSize += elemManager.unpack( receiveBufferPtr, elementAdjacencyReceiveList ); - waitAllDeviceEvents( events ); + m_unpackedSize += nodeManager.unpack( m_receiveBufferPtr, m_nodeUnpackList, 0, false, events ); + m_unpackedSize += edgeManager.unpack( m_receiveBufferPtr, m_edgeUnpackList, 0, false, events ); + m_unpackedSize += faceManager.unpack( m_receiveBufferPtr, m_faceUnpackList, 0, false, events ); + m_unpackedSize += elemManager.unpack( m_receiveBufferPtr, elementAdjacencyReceiveList ); - GEOS_ERROR_IF_NE( receiveBuff.size(), unpackedSize ); + waitAllDeviceEvents( events ); + buffer_type const & receiveBuff = receiveBuffer( commID ); + GEOS_ERROR_IF_NE( receiveBuff.size(), m_unpackedSize ); } void NeighborCommunicator::prepareAndSendSyncLists( MeshLevel const & mesh, diff --git a/src/coreComponents/mesh/mpiCommunications/NeighborCommunicator.hpp b/src/coreComponents/mesh/mpiCommunications/NeighborCommunicator.hpp index 43314f693a6..f5d52efd988 100644 --- a/src/coreComponents/mesh/mpiCommunications/NeighborCommunicator.hpp +++ b/src/coreComponents/mesh/mpiCommunications/NeighborCommunicator.hpp @@ -22,6 +22,7 @@ #include "common/GEOS_RAJA_Interface.hpp" #include "dataRepository/ReferenceWrapper.hpp" #include "LvArray/src/limits.hpp" +#include "../ElementRegionManager.hpp" namespace geos { @@ -41,6 +42,9 @@ class MPI_iCommData; class NeighborCommunicator { public: + using ElemAdjListViewType = ElementRegionManager::ElementViewAccessor< arrayView1d< localIndex > >; + using ElemAdjListRefWrapType = ElementRegionManager::ElementViewAccessor< ReferenceWrapper< localIndex_array > >; + using ElemAdjListRefType = ElementRegionManager::ElementReferenceAccessor< localIndex_array >; explicit NeighborCommunicator( int rank ); @@ -193,6 +197,9 @@ class NeighborCommunicator void unpackGhosts( MeshLevel & meshLevel, int const commID ); + void unpackGhostsData( MeshLevel & meshLevel, + int const commID ); + /** * Posts non-blocking sends to m_neighborRank for * both the size and regular communication buffers @@ -210,7 +217,7 @@ class NeighborCommunicator /** * Unpack the receive buffer and process synchronization - * list information recieved from m_neighborRank. + * list information received from m_neighborRank. * This must be called after PostRecv is called, and * the request associated with that recv has * completed (retrieve the request using GetRecvRequest) @@ -294,6 +301,15 @@ class NeighborCommunicator std::vector< buffer_type > m_sendBuffer; std::vector< buffer_type > m_receiveBuffer; + localIndex_array m_nodeUnpackList; + localIndex_array m_edgeUnpackList; + localIndex_array m_faceUnpackList; + ElemAdjListRefType m_elementAdjacencyReceiveListArray; + buffer_type::size_type m_unpackedSize = 0; + buffer_unit_type const * m_receiveBufferPtr = nullptr; + + + }; template< typename T > diff --git a/src/coreComponents/physicsSolvers/CMakeLists.txt b/src/coreComponents/physicsSolvers/CMakeLists.txt index 3a8c812dab6..64487629fd3 100644 --- a/src/coreComponents/physicsSolvers/CMakeLists.txt +++ b/src/coreComponents/physicsSolvers/CMakeLists.txt @@ -1,4 +1,28 @@ +# SPDX-License-Identifier: LGPL-2.1-only +# +# Copyright (c) 2016-2024 Lawrence Livermore National Security LLC +# Copyright (c) 2018-2024 Total, S.A +# Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University +# Copyright (c) 2023-2024 Chevron +# Copyright (c) 2019- GEOS/GEOSX Contributors +# All rights reserved +# +# See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. +# +#-------------------------------------------------------------------------------------------------- + +#[[ +Package: physicsSolvers + +Contains: + - physics solvers base and manager classes. + - implementations of different physics models. + - physics solver wrapper designed for PyGEOSX interface. +#]] + +# # Specify solver headers +# set( physicsSolvers_headers LinearSolverParameters.hpp NonlinearSolverParameters.hpp @@ -9,7 +33,9 @@ set( physicsSolvers_headers FieldStatisticsBase.hpp LogLevelsInfo.hpp ) +# # Specify solver sources +# set( physicsSolvers_sources LinearSolverParameters.cpp NonlinearSolverParameters.cpp @@ -37,7 +63,7 @@ endif() if( GEOS_ENABLE_SIMPLEPDE ) add_subdirectory( simplePDE ) endif() - + if( GEOS_ENABLE_SOLIDMECHANICS ) add_subdirectory( solidMechanics ) include( solidMechanics/kernels/SolidMechanicsKernels.cmake) diff --git a/src/coreComponents/physicsSolvers/NonlinearSolverParameters.hpp b/src/coreComponents/physicsSolvers/NonlinearSolverParameters.hpp index 0d68e7e6787..a084b693774 100644 --- a/src/coreComponents/physicsSolvers/NonlinearSolverParameters.hpp +++ b/src/coreComponents/physicsSolvers/NonlinearSolverParameters.hpp @@ -16,7 +16,7 @@ #ifndef GEOS_PHYSICSSOLVERS_NONLINEARSOLVERPARAMETERS_HPP_ #define GEOS_PHYSICSSOLVERS_NONLINEARSOLVERPARAMETERS_HPP_ -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" #include "dataRepository/Group.hpp" #include "physicsSolvers/PhysicsSolverBaseKernels.hpp" diff --git a/src/coreComponents/physicsSolvers/PhysicsSolverBase.cpp b/src/coreComponents/physicsSolvers/PhysicsSolverBase.cpp index 1e2ef81d5a9..13066188e5c 100644 --- a/src/coreComponents/physicsSolvers/PhysicsSolverBase.cpp +++ b/src/coreComponents/physicsSolvers/PhysicsSolverBase.cpp @@ -350,17 +350,17 @@ void PhysicsSolverBase::logEndOfCycleInformation( integer const cycleNumber, std::vector< real64 > const & subStepDt ) const { // The formating here is a work in progress. - GEOS_LOG_RANK_0( "\n------------------------- TIMESTEP END -------------------------" ); - GEOS_LOG_RANK_0( GEOS_FMT( " - Cycle: {}", cycleNumber ) ); - GEOS_LOG_RANK_0( GEOS_FMT( " - N substeps: {}", numOfSubSteps ) ); + GEOS_LOG_LEVEL_INFO_RANK_0( logInfo::TimeStep, "\n------------------------- TIMESTEP END -------------------------" ); + GEOS_LOG_LEVEL_INFO_RANK_0( logInfo::TimeStep, GEOS_FMT( " - Cycle: {}", cycleNumber ) ); + GEOS_LOG_LEVEL_INFO_RANK_0( logInfo::TimeStep, GEOS_FMT( " - N substeps: {}", numOfSubSteps ) ); std::string logMessage = " - dt:"; for( integer i = 0; i < numOfSubSteps; ++i ) { logMessage += " " + units::TimeFormatInfo::fromSeconds( subStepDt[i] ).toString(); } // Log the complete message once - GEOS_LOG_RANK_0( logMessage ); - GEOS_LOG_RANK_0( "------------------------------------------------------------------\n" ); + GEOS_LOG_LEVEL_INFO_RANK_0( logInfo::TimeStep, logMessage ); + GEOS_LOG_LEVEL_INFO_RANK_0( logInfo::TimeStep, "------------------------------------------------------------------\n" ); } real64 PhysicsSolverBase::setNextDt( real64 const & currentDt, diff --git a/src/coreComponents/physicsSolvers/PhysicsSolverBaseKernels.hpp b/src/coreComponents/physicsSolvers/PhysicsSolverBaseKernels.hpp index d8583904996..e085177bae8 100644 --- a/src/coreComponents/physicsSolvers/PhysicsSolverBaseKernels.hpp +++ b/src/coreComponents/physicsSolvers/PhysicsSolverBaseKernels.hpp @@ -20,7 +20,7 @@ #ifndef GEOS_PHYSICSSOLVERS_SOLVERBASEKERNELS_HPP #define GEOS_PHYSICSSOLVERS_SOLVERBASEKERNELS_HPP -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" #include "common/DataTypes.hpp" #include "common/MpiWrapper.hpp" diff --git a/src/coreComponents/physicsSolvers/contact/CMakeLists.txt b/src/coreComponents/physicsSolvers/contact/CMakeLists.txt index c9bf75bec3e..ac5fbe3bc1a 100644 --- a/src/coreComponents/physicsSolvers/contact/CMakeLists.txt +++ b/src/coreComponents/physicsSolvers/contact/CMakeLists.txt @@ -3,18 +3,21 @@ set( physicsSolvers_headers ${physicsSolvers_headers} contact/ContactSolverBase.hpp contact/ContactFields.hpp - contact/SolidMechanicsEFEMKernelsBase.hpp - contact/SolidMechanicsEFEMKernels.hpp - contact/SolidMechanicsEFEMStaticCondensationKernels.hpp - contact/SolidMechanicsEFEMKernelsHelper.hpp contact/SolidMechanicsEmbeddedFractures.hpp contact/SolidMechanicsLagrangeContact.hpp + contact/SolidMechanicsLagrangeContactBubbleStab.hpp contact/SolidMechanicsAugmentedLagrangianContact.hpp - contact/SolidMechanicsALMKernelsBase.hpp - contact/SolidMechanicsALMKernels.hpp - contact/SolidMechanicsALMKernelsHelper.hpp - contact/SolidMechanicsALMJumpUpdateKernels.hpp - contact/SolidMechanicsALMBubbleKernels.hpp + contact/kernels/SolidMechanicsConformingContactKernelsBase.hpp + contact/kernels/SolidMechanicsDisplacementJumpUpdateKernels.hpp + contact/kernels/SolidMechanicsEFEMKernelsBase.hpp + contact/kernels/SolidMechanicsEFEMKernels.hpp + contact/kernels/SolidMechanicsEFEMStaticCondensationKernels.hpp + contact/kernels/SolidMechanicsEFEMKernelsHelper.hpp + contact/kernels/SolidMechanicsALMKernelsBase.hpp + contact/kernels/SolidMechanicsALMKernels.hpp + contact/kernels/SolidMechanicsConformingContactKernelsHelper.hpp + contact/kernels/SolidMechanicsContactFaceBubbleKernels.hpp + contact/kernels/SolidMechanicsLagrangeContactKernels.hpp contact/LogLevelsInfo.hpp PARENT_SCOPE ) @@ -25,5 +28,6 @@ set( physicsSolvers_sources contact/ContactSolverBase.cpp contact/SolidMechanicsEmbeddedFractures.cpp contact/SolidMechanicsLagrangeContact.cpp + contact/SolidMechanicsLagrangeContactBubbleStab.cpp contact/SolidMechanicsAugmentedLagrangianContact.cpp PARENT_SCOPE ) \ No newline at end of file diff --git a/src/coreComponents/physicsSolvers/contact/ContactFields.hpp b/src/coreComponents/physicsSolvers/contact/ContactFields.hpp index 4792ca2d019..3a5005774e9 100644 --- a/src/coreComponents/physicsSolvers/contact/ContactFields.hpp +++ b/src/coreComponents/physicsSolvers/contact/ContactFields.hpp @@ -21,7 +21,7 @@ #define GEOS_PHYSICSSOLVERS_CONTACT_CONTACTFIELDS_HPP_ #include "mesh/MeshFields.hpp" -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" namespace geos { @@ -74,6 +74,14 @@ DECLARE_FIELD( dispJump, WRITE_AND_READ, "Displacement jump vector in the local reference system" ); +DECLARE_FIELD( dispJump_n, + "displacementJump", + array2d< real64 >, + 0, + NOPLOT, + WRITE_AND_READ, + "Displacement jump vector in the local reference system at the current time-step" ); + DECLARE_FIELD( slip, "slip", array1d< real64 >, @@ -82,6 +90,14 @@ DECLARE_FIELD( slip, NO_WRITE, "Slip." ); +DECLARE_FIELD( deltaSlip, + "deltaSlip", + array2d< real64 >, + 0.0, + LEVEL_0, + WRITE_AND_READ, + "Slip increment" ); + DECLARE_FIELD( deltaDispJump, "deltaDisplacementJump", array2d< real64 >, @@ -106,6 +122,14 @@ DECLARE_FIELD( traction, WRITE_AND_READ, "Fracture traction vector in the local reference system." ); +DECLARE_FIELD( traction_n, + "traction_n", + array2d< real64 >, + 0, + NOPLOT, + WRITE_AND_READ, + "Initial fracture traction vector in the local reference system at this time-step." ); + DECLARE_FIELD( deltaTraction, "deltaTraction", array2d< real64 >, @@ -146,6 +170,14 @@ DECLARE_FIELD( oldFractureState, NO_WRITE, "Fracture state at the previous timestep." ); +DECLARE_FIELD( targetIncrementalJump, + "targetIncrementalJump", + array2d< real64 >, + 0, + NOPLOT, + WRITE_AND_READ, + "It's the target incremental jump in a timestep (e.g., slip coming from RS)." ); + ENUM_STRINGS( FractureState::State, "stick", "new_slip", "slip", "open" ); diff --git a/src/coreComponents/physicsSolvers/contact/ContactSolverBase.cpp b/src/coreComponents/physicsSolvers/contact/ContactSolverBase.cpp index 63210cb686c..4b6aaef3599 100644 --- a/src/coreComponents/physicsSolvers/contact/ContactSolverBase.cpp +++ b/src/coreComponents/physicsSolvers/contact/ContactSolverBase.cpp @@ -92,6 +92,8 @@ void ContactSolverBase::registerDataOnMesh( dataRepository::Group & meshBodies ) subRegion.registerField< fields::contact::oldFractureState >( getName() ); subRegion.registerField< fields::contact::slip >( getName() ); + + subRegion.registerField< fields::contact::deltaSlip >( getName() ); } ); } ); @@ -251,4 +253,4 @@ void ContactSolverBase::setConstitutiveNamesCallSuper( ElementSubRegionBase & su } } -} /* namespace geos */ +} /* namespace geos */ diff --git a/src/coreComponents/physicsSolvers/contact/SolidMechanicsAugmentedLagrangianContact.cpp b/src/coreComponents/physicsSolvers/contact/SolidMechanicsAugmentedLagrangianContact.cpp index 6ace1301164..852370c6371 100644 --- a/src/coreComponents/physicsSolvers/contact/SolidMechanicsAugmentedLagrangianContact.cpp +++ b/src/coreComponents/physicsSolvers/contact/SolidMechanicsAugmentedLagrangianContact.cpp @@ -20,10 +20,12 @@ #include "mesh/DomainPartition.hpp" #include "SolidMechanicsAugmentedLagrangianContact.hpp" -#include "physicsSolvers/contact/SolidMechanicsALMKernels.hpp" -#include "physicsSolvers/contact/SolidMechanicsALMSimultaneousKernels.hpp" -#include "physicsSolvers/contact/SolidMechanicsALMJumpUpdateKernels.hpp" -#include "physicsSolvers/contact/SolidMechanicsALMBubbleKernels.hpp" +#include "physicsSolvers/contact/kernels/SolidMechanicsConformingContactKernelsBase.hpp" +#include "physicsSolvers/contact/kernels/SolidMechanicsALMKernels.hpp" +#include "physicsSolvers/contact/kernels/SolidMechanicsALMKernelsBase.hpp" +#include "physicsSolvers/contact/kernels/SolidMechanicsALMSimultaneousKernels.hpp" +#include "physicsSolvers/contact/kernels/SolidMechanicsDisplacementJumpUpdateKernels.hpp" +#include "physicsSolvers/contact/kernels/SolidMechanicsContactFaceBubbleKernels.hpp" #include "physicsSolvers/contact/LogLevelsInfo.hpp" #include "constitutive/ConstitutiveManager.hpp" @@ -44,15 +46,14 @@ SolidMechanicsAugmentedLagrangianContact::SolidMechanicsAugmentedLagrangianConta m_faceTypeToFiniteElements["Quadrilateral"] = std::make_unique< finiteElement::H1_QuadrilateralFace_Lagrange1_GaussLegendre2 >(); m_faceTypeToFiniteElements["Triangle"] = std::make_unique< finiteElement::H1_TriangleFace_Lagrange1_Gauss1 >(); + LinearSolverParameters & linParams = m_linearSolverParameters.get(); addLogLevel< logInfo::Configuration >(); + linParams.isSymmetric = true; + linParams.dofsPerNode = 3; + linParams.mgr.separateComponents = true; // TODO Implement the MGR strategy - - // Set the default linear solver parameters - //LinearSolverParameters & linParams = m_linearSolverParameters.get(); - //linParams.dofsPerNode = 3; - //linParams.isSymmetric = true; - //linParams.amg.separateComponents = true; + //linParams.mgr.strategy = LinearSolverParameters::MGR::StrategyType::solidMechanicsAugumentedLagrangianContact; } SolidMechanicsAugmentedLagrangianContact::~SolidMechanicsAugmentedLagrangianContact() @@ -82,26 +83,13 @@ void SolidMechanicsAugmentedLagrangianContact::registerDataOnMesh( dataRepositor { fractureRegion.forElementSubRegions< SurfaceElementSubRegion >( [&]( SurfaceElementSubRegion & subRegion ) { + subRegion.registerField< fields::contact::deltaTraction >( getName() ). + reference().resizeDimension< 1 >( 3 ); + // Register the rotation matrix subRegion.registerField< contact::rotationMatrix >( this->getName() ). reference().resizeDimension< 1, 2 >( 3, 3 ); - // Register the traction field - subRegion.registerField< contact::traction >( this->getName() ). - reference().resizeDimension< 1 >( 3 ); - - // Register the displacement jump - subRegion.registerField< contact::dispJump >( this->getName() ). - reference().resizeDimension< 1 >( 3 ); - - // Register the delta displacement jump - subRegion.registerField< contact::deltaDispJump >( this->getName() ). - reference().resizeDimension< 1 >( 3 ); - - // Register the displacement jump old - subRegion.registerField< contact::oldDispJump >( this->getName() ). - reference().resizeDimension< 1 >( 3 ); - // Register the penalty coefficients for the iterative procedure subRegion.registerField< contact::iterativePenalty >( this->getName() ). reference().resizeDimension< 1 >( 5 ); @@ -245,7 +233,7 @@ void SolidMechanicsAugmentedLagrangianContact::implicitStepSetup( real64 const & FaceElementSubRegion & subRegion = region.getUniqueSubRegion< FaceElementSubRegion >(); arrayView2d< real64 const > const faceNormal = faceManager.faceNormal(); - ArrayOfArraysView< localIndex const > const elemsToFaces = subRegion.faceList().toViewConst(); + arrayView2d< localIndex const > const elemsToFaces = subRegion.faceList().toViewConst(); arrayView2d< real64 > const incrBubbleDisp = faceManager.getField< fields::solidMechanics::incrementalBubbleDisplacement >(); @@ -253,12 +241,19 @@ void SolidMechanicsAugmentedLagrangianContact::implicitStepSetup( real64 const & arrayView3d< real64 > const rotationMatrix = subRegion.getField< fields::contact::rotationMatrix >().toView(); + arrayView2d< real64 > const unitNormal = subRegion.getNormalVector(); + arrayView2d< real64 > const unitTangent1 = subRegion.getTangentVector1(); + arrayView2d< real64 > const unitTangent2 = subRegion.getTangentVector2(); + // Compute rotation matrices - solidMechanicsALMKernels::ComputeRotationMatricesKernel:: + solidMechanicsConformingContactKernels::ComputeRotationMatricesKernel:: launch< parallelDevicePolicy<> >( subRegion.size(), faceNormal, elemsToFaces, - rotationMatrix ); + rotationMatrix, + unitNormal, + unitTangent1, + unitTangent2 ); // Set the tollerances computeTolerances( domain ); @@ -493,13 +488,13 @@ void SolidMechanicsAugmentedLagrangianContact::assembleSystem( real64 const time real64 const gravityVectorData[3] = LVARRAY_TENSOROPS_INIT_LOCAL_3( gravityVector() ); - solidMechanicsALMKernels::ALMBubbleFactory kernelFactory( dispDofNumber, - bubbleDofNumber, - dofManager.rankOffset(), - localMatrix, - localRhs, - dt, - gravityVectorData ); + solidMechanicsConformingContactKernels::FaceBubbleFactory kernelFactory( dispDofNumber, + bubbleDofNumber, + dofManager.rankOffset(), + localMatrix, + localRhs, + dt, + gravityVectorData ); real64 maxTraction = finiteElement:: regionBasedKernelApplication @@ -586,7 +581,7 @@ real64 SolidMechanicsAugmentedLagrangianContact::calculateResidualNorm( real64 c arrayView1d< integer const > const ghostRank = subRegion.ghostRank(); - ArrayOfArraysView< localIndex const > const elemsToFaces = subRegion.faceList().toViewConst(); + arrayView2d< localIndex const > const elemsToFaces = subRegion.faceList().toViewConst(); arrayView1d< globalIndex const > const bubbleDofNumber = faceManager.getReference< globalIndex_array >( bubbleDofKey ); @@ -700,13 +695,13 @@ void SolidMechanicsAugmentedLagrangianContact::applySystemSolution( DofManager c arrayView1d< localIndex const > const & faceElementList ) { - solidMechanicsALMKernels::ALMJumpUpdateFactory kernelFactory( dispDofNumber, - bubbleDofNumber, - dofManager.rankOffset(), - voidMatrix.toViewConstSizes(), - voidRhs.toView(), - dt, - faceElementList ); + solidMechanicsConformingContactKernels::DispJumpUpdateFactory kernelFactory( dispDofNumber, + bubbleDofNumber, + dofManager.rankOffset(), + voidMatrix.toViewConstSizes(), + voidRhs.toView(), + dt, + faceElementList ); real64 maxTraction = finiteElement:: interfaceBasedKernelApplication @@ -788,7 +783,7 @@ bool SolidMechanicsAugmentedLagrangianContact::updateConfiguration( DomainPartit arrayView1d< real64 const > const & normalTractionTolerance = subRegion.getReference< array1d< real64 > >( viewKeyStruct::normalTractionToleranceString() ); - arrayView1d< real64 const > const area = subRegion.getElementArea().toViewConst(); + arrayView1d< real64 const > const faceElementArea = subRegion.getElementArea().toViewConst(); std::ptrdiff_t const sizes[ 2 ] = {subRegion.size(), 3}; traction_new.resize( 2, sizes ); @@ -811,6 +806,7 @@ bool SolidMechanicsAugmentedLagrangianContact::updateConfiguration( DomainPartit traction, dispJump, deltaDispJump, + faceElementArea, traction_new_v ); } else @@ -822,6 +818,7 @@ bool SolidMechanicsAugmentedLagrangianContact::updateConfiguration( DomainPartit traction, dispJump, deltaDispJump, + faceElementArea, traction_new_v ); } } ); @@ -844,7 +841,6 @@ bool SolidMechanicsAugmentedLagrangianContact::updateConfiguration( DomainPartit normalDisplacementTolerance, slidingTolerance, slidingCheckTolerance, - area, fractureState, condConv_v ); } ); @@ -968,6 +964,8 @@ bool SolidMechanicsAugmentedLagrangianContact::updateConfiguration( DomainPartit arrayView2d< real64 const > const deltaDispJump = subRegion.getField< contact::deltaDispJump >(); + arrayView1d< real64 const > const faceElementArea = subRegion.getField< fields::elementArea >(); + constitutiveUpdatePassThru( frictionLaw, [&] ( auto & castedFrictionLaw ) { using FrictionType = TYPEOFREF( castedFrictionLaw ); @@ -979,6 +977,7 @@ bool SolidMechanicsAugmentedLagrangianContact::updateConfiguration( DomainPartit oldDispJump, dispJump, iterativePenalty, + faceElementArea, m_symmetric, normalTractionTolerance, traction, @@ -1196,7 +1195,7 @@ void SolidMechanicsAugmentedLagrangianContact::createBubbleCellList( DomainParti arrayView1d< localIndex > const tmpSpace_v = tmpSpace.toView(); // Store indexes of faces in the temporany array. { - ArrayOfArraysView< localIndex const > const elemsToFaces = subRegion.faceList().toViewConst(); + arrayView2d< localIndex const > const elemsToFaces = subRegion.faceList().toViewConst(); forAll< parallelDevicePolicy<> >( subRegion.size(), [ = ] GEOS_HOST_DEVICE ( localIndex const kfe ) { @@ -1370,7 +1369,7 @@ void SolidMechanicsAugmentedLagrangianContact::addCouplingNumNonzeros( DomainPar SurfaceElementRegion const & region = elemManager.getRegion< SurfaceElementRegion >( getUniqueFractureRegionName() ); FaceElementSubRegion const & subRegion = region.getUniqueSubRegion< FaceElementSubRegion >(); - ArrayOfArraysView< localIndex const > const elemsToFaces = subRegion.faceList().toViewConst(); + arrayView2d< localIndex const > const elemsToFaces = subRegion.faceList().toViewConst(); for( localIndex kfe=0; kfe( getUniqueFractureRegionName() ); FaceElementSubRegion const & subRegion = region.getUniqueSubRegion< FaceElementSubRegion >(); - ArrayOfArraysView< localIndex const > const elemsToFaces = subRegion.faceList().toViewConst(); + arrayView2d< localIndex const > const elemsToFaces = subRegion.faceList().toViewConst(); ArrayOfArraysView< localIndex const > const faceToNodeMap = faceManager.nodeList().toViewConst(); static constexpr int maxNumDispFaceDof = 3 * 4; @@ -1607,7 +1606,7 @@ void SolidMechanicsAugmentedLagrangianContact::computeTolerances( DomainPartitio { arrayView1d< real64 const > const faceArea = subRegion.getElementArea().toViewConst(); arrayView3d< real64 const > const faceRotationMatrix = subRegion.getField< fields::contact::rotationMatrix >().toView(); - ArrayOfArraysView< localIndex const > const elemsToFaces = subRegion.faceList().toViewConst(); + arrayView2d< localIndex const > const elemsToFaces = subRegion.faceList().toViewConst(); arrayView1d< real64 > const normalTractionTolerance = subRegion.getReference< array1d< real64 > >( viewKeyStruct::normalTractionToleranceString() ); @@ -1636,7 +1635,7 @@ void SolidMechanicsAugmentedLagrangianContact::computeTolerances( DomainPartitio real64 averageConstrainedModulus = 0.0; real64 averageBoxSize0 = 0.0; - for( localIndex i = 0; i < elemsToFaces.sizeOfArray( kfe ); ++i ) + for( localIndex i = 0; i < 2; ++i ) { localIndex const faceIndex = elemsToFaces[kfe][i]; localIndex const er = faceToElemRegion[faceIndex][0]; diff --git a/src/coreComponents/physicsSolvers/contact/SolidMechanicsEmbeddedFractures.cpp b/src/coreComponents/physicsSolvers/contact/SolidMechanicsEmbeddedFractures.cpp index 0beb4428f2b..5c1ff768efc 100644 --- a/src/coreComponents/physicsSolvers/contact/SolidMechanicsEmbeddedFractures.cpp +++ b/src/coreComponents/physicsSolvers/contact/SolidMechanicsEmbeddedFractures.cpp @@ -32,9 +32,9 @@ #include "mesh/SurfaceElementRegion.hpp" #include "physicsSolvers/solidMechanics/SolidMechanicsFields.hpp" #include "physicsSolvers/solidMechanics/SolidMechanicsLagrangianFEM.hpp" -#include "physicsSolvers/contact/SolidMechanicsEFEMKernels.hpp" -#include "physicsSolvers/contact/SolidMechanicsEFEMStaticCondensationKernels.hpp" -#include "physicsSolvers/contact/SolidMechanicsEFEMJumpUpdateKernels.hpp" +#include "physicsSolvers/contact/kernels/SolidMechanicsEFEMKernels.hpp" +#include "physicsSolvers/contact/kernels/SolidMechanicsEFEMStaticCondensationKernels.hpp" +#include "physicsSolvers/contact/kernels/SolidMechanicsEFEMJumpUpdateKernels.hpp" namespace geos { @@ -68,15 +68,16 @@ void SolidMechanicsEmbeddedFractures::postInputInitialization() LinearSolverParameters & linParams = m_linearSolverParameters.get(); + linParams.dofsPerNode = 3; if( m_useStaticCondensation ) { - linParams.dofsPerNode = 3; linParams.isSymmetric = true; linParams.amg.separateComponents = true; } else { linParams.mgr.strategy = LinearSolverParameters::MGR::StrategyType::solidMechanicsEmbeddedFractures; + linParams.mgr.separateComponents = true; } } @@ -153,6 +154,20 @@ void SolidMechanicsEmbeddedFractures::implicitStepComplete( real64 const & time_ arrayView2d< real64 > oldDispJump = subRegion.getField< contact::oldDispJump >(); arrayView2d< real64 const > const dispJump = subRegion.getField< contact::dispJump >(); + // update elastic slip before copying dispJump to oldDispJump + string const & frictionLawName = subRegion.template getReference< string >( viewKeyStruct::frictionLawNameString() ); + FrictionBase const & frictionLaw = getConstitutiveModel< FrictionBase >( subRegion, frictionLawName ); + arrayView2d< real64 const > const & traction = subRegion.getField< fields::contact::traction >(); + arrayView1d< integer > const & fractureState = subRegion.getField< fields::contact::fractureState >(); + constitutiveUpdatePassThru( frictionLaw, [&] ( auto & castedFrictionLaw ) + { + using FrictionType = TYPEOFREF( castedFrictionLaw ); + typename FrictionType::KernelWrapper frictionWrapper = castedFrictionLaw.createKernelUpdates(); + + updateElasticSlip( subRegion, frictionWrapper, dispJump, oldDispJump, traction, fractureState ); + } ); + + // now update oldDispJump = dispJump forAll< parallelDevicePolicy<> >( subRegion.size(), [=] GEOS_HOST_DEVICE ( localIndex const k ) { @@ -161,6 +176,20 @@ void SolidMechanicsEmbeddedFractures::implicitStepComplete( real64 const & time_ } ); } +template< typename WRAPPER_TYPE > +void SolidMechanicsEmbeddedFractures::updateElasticSlip( EmbeddedSurfaceSubRegion const & subRegion, + WRAPPER_TYPE & frictionWrapper, + arrayView2d< real64 const > const & dispJump, + arrayView2d< real64 const > const & oldDispJump, + arrayView2d< real64 const > const & traction, + arrayView1d< integer > const & fractureState ) +{ + forAll< parallelDevicePolicy<> >( subRegion.size(), [=] GEOS_HOST_DEVICE ( localIndex const kfe ) + { + frictionWrapper.updateElasticSlip( kfe, dispJump[kfe], oldDispJump[kfe], traction[kfe], fractureState[kfe] ); + } ); +} + void SolidMechanicsEmbeddedFractures::setupDofs( DomainPartition const & domain, DofManager & dofManager ) const { @@ -785,7 +814,7 @@ bool SolidMechanicsEmbeddedFractures::updateConfiguration( DomainPartition & dom if( ghostRank[kfe] < 0 ) { integer const originalFractureState = fractureState[kfe]; - frictionWrapper.updateFractureState( kfe, dispJump[kfe], traction[kfe], fractureState[kfe] ); + frictionWrapper.updateFractureState( dispJump[kfe], traction[kfe], fractureState[kfe] ); checkActiveSetSub.min( compareFractureStates( originalFractureState, fractureState[kfe] ) ); } } ); diff --git a/src/coreComponents/physicsSolvers/contact/SolidMechanicsEmbeddedFractures.hpp b/src/coreComponents/physicsSolvers/contact/SolidMechanicsEmbeddedFractures.hpp index d9c0e113851..64aed9bd227 100644 --- a/src/coreComponents/physicsSolvers/contact/SolidMechanicsEmbeddedFractures.hpp +++ b/src/coreComponents/physicsSolvers/contact/SolidMechanicsEmbeddedFractures.hpp @@ -63,6 +63,14 @@ class SolidMechanicsEmbeddedFractures : public ContactSolverBase real64 const & dt, DomainPartition & domain ) override final; + template< typename WRAPPER_TYPE > + static void updateElasticSlip( EmbeddedSurfaceSubRegion const & subRegion, + WRAPPER_TYPE & frictionWrapper, + arrayView2d< real64 const > const & dispJump, + arrayView2d< real64 const > const & oldDispJump, + arrayView2d< real64 const > const & traction, + arrayView1d< integer > const & fractureState ); + virtual void assembleSystem( real64 const time, real64 const dt, DomainPartition & domain, diff --git a/src/coreComponents/physicsSolvers/contact/SolidMechanicsLagrangeContact.cpp b/src/coreComponents/physicsSolvers/contact/SolidMechanicsLagrangeContact.cpp index 08d5fec172e..bcde95cdb7a 100644 --- a/src/coreComponents/physicsSolvers/contact/SolidMechanicsLagrangeContact.cpp +++ b/src/coreComponents/physicsSolvers/contact/SolidMechanicsLagrangeContact.cpp @@ -77,7 +77,6 @@ SolidMechanicsLagrangeContact::SolidMechanicsLagrangeContact( const string & nam LinearSolverParameters & linSolParams = m_linearSolverParameters.get(); linSolParams.mgr.strategy = LinearSolverParameters::MGR::StrategyType::lagrangianContactMechanics; linSolParams.mgr.separateComponents = true; - linSolParams.mgr.displacementFieldName = solidMechanics::totalDisplacement::key(); linSolParams.dofsPerNode = 3; } @@ -304,7 +303,7 @@ void SolidMechanicsLagrangeContact::computeTolerances( DomainPartition & domain arrayView1d< integer const > const & ghostRank = subRegion.ghostRank(); arrayView1d< real64 const > const & faceArea = subRegion.getElementArea().toViewConst(); arrayView3d< real64 const > const & faceRotationMatrix = subRegion.getReference< array3d< real64 > >( viewKeyStruct::rotationMatrixString() ); - ArrayOfArraysView< localIndex const > const & elemsToFaces = subRegion.faceList().toViewConst(); + arrayView2d< localIndex const > const & elemsToFaces = subRegion.faceList().toViewConst(); arrayView1d< real64 > const & normalTractionTolerance = subRegion.getReference< array1d< real64 > >( viewKeyStruct::normalTractionToleranceString() ); @@ -334,7 +333,7 @@ void SolidMechanicsLagrangeContact::computeTolerances( DomainPartition & domain real64 averageConstrainedModulus = 0.0; real64 averageBoxSize0 = 0.0; - for( localIndex i = 0; i < elemsToFaces.sizeOfArray( kfe ); ++i ) + for( localIndex i = 0; i < 2; ++i ) { localIndex const faceIndex = elemsToFaces[kfe][i]; localIndex const er = faceToElemRegion[faceIndex][0]; @@ -502,19 +501,15 @@ void SolidMechanicsLagrangeContact::computeFaceDisplacementJump( DomainPartition { arrayView3d< real64 > const & rotationMatrix = subRegion.getReference< array3d< real64 > >( viewKeyStruct::rotationMatrixString() ); - ArrayOfArraysView< localIndex const > const & elemsToFaces = subRegion.faceList().toViewConst(); + arrayView2d< localIndex const > const & elemsToFaces = subRegion.faceList().toViewConst(); arrayView1d< real64 const > const & area = subRegion.getElementArea().toViewConst(); - arrayView2d< real64 > const & dispJump = subRegion.getField< contact::dispJump >(); - arrayView1d< real64 > const & slip = subRegion.getField< fields::contact::slip >(); - arrayView1d< real64 > const & aperture = subRegion.getField< fields::elementAperture >(); + arrayView2d< real64 > const dispJump = subRegion.getField< contact::dispJump >(); + arrayView1d< real64 > const slip = subRegion.getField< fields::contact::slip >(); + arrayView1d< real64 > const aperture = subRegion.getField< fields::elementAperture >(); forAll< parallelHostPolicy >( subRegion.size(), [=] ( localIndex const kfe ) { - if( elemsToFaces.sizeOfArray( kfe ) != 2 ) - { - return; - } // Contact constraints localIndex const numNodesPerFace = faceToNodeMap.sizeOfArray( elemsToFaces[kfe][0] ); @@ -691,7 +686,7 @@ void SolidMechanicsLagrangeContact:: FaceElementSubRegion const & subRegion ) { arrayView1d< real64 const > const & pressure = subRegion.getReference< array1d< real64 > >( flow::pressure::key() ); - ArrayOfArraysView< localIndex const > const & elemsToFaces = subRegion.faceList().toViewConst(); + arrayView2d< localIndex const > const & elemsToFaces = subRegion.faceList().toViewConst(); forAll< serialPolicy >( subRegion.size(), [=]( localIndex const kfe ) { @@ -948,7 +943,7 @@ void SolidMechanicsLagrangeContact::computeRotationMatrices( DomainPartition & d [&]( localIndex const, FaceElementSubRegion & subRegion ) { - ArrayOfArraysView< localIndex const > const & elemsToFaces = subRegion.faceList().toViewConst(); + arrayView2d< localIndex const > const & elemsToFaces = subRegion.faceList().toViewConst(); arrayView3d< real64 > const & rotationMatrix = subRegion.getReference< array3d< real64 > >( viewKeyStruct::rotationMatrixString() ); @@ -958,10 +953,7 @@ void SolidMechanicsLagrangeContact::computeRotationMatrices( DomainPartition & d forAll< parallelHostPolicy >( subRegion.size(), [=]( localIndex const kfe ) { - if( elemsToFaces.sizeOfArray( kfe ) != 2 ) - { - return; - } + localIndex const f0 = elemsToFaces[kfe][0]; localIndex const f1 = elemsToFaces[kfe][1]; @@ -1349,14 +1341,11 @@ void SolidMechanicsLagrangeContact:: arrayView1d< globalIndex const > const & tracDofNumber = subRegion.getReference< globalIndex_array >( tracDofKey ); arrayView2d< real64 const > const & traction = subRegion.getReference< array2d< real64 > >( contact::traction::key() ); arrayView3d< real64 const > const & rotationMatrix = subRegion.getReference< array3d< real64 > >( viewKeyStruct::rotationMatrixString() ); - ArrayOfArraysView< localIndex const > const & elemsToFaces = subRegion.faceList().toViewConst(); + arrayView2d< localIndex const > const & elemsToFaces = subRegion.faceList().toViewConst(); forAll< parallelHostPolicy >( subRegion.size(), [=] ( localIndex const kfe ) { - if( elemsToFaces.sizeOfArray( kfe ) != 2 ) - { - return; - } + localIndex const numNodesPerFace = faceToNodeMap.sizeOfArray( elemsToFaces[kfe][0] ); globalIndex rowDOF[3 * m_maxFaceNodes]; // this needs to be changed when dealing with arbitrary element types @@ -1470,7 +1459,7 @@ void SolidMechanicsLagrangeContact:: arrayView1d< real64 const > const & area = subRegion.getElementArea(); arrayView3d< real64 const > const & rotationMatrix = subRegion.getReference< array3d< real64 > >( viewKeyStruct::rotationMatrixString() ); - ArrayOfArraysView< localIndex const > const & elemsToFaces = subRegion.faceList().toViewConst(); + arrayView2d< localIndex const > const & elemsToFaces = subRegion.faceList().toViewConst(); arrayView2d< real64 const > const & traction = subRegion.getField< contact::traction >(); arrayView1d< integer const > const & fractureState = subRegion.getField< contact::fractureState >(); arrayView2d< real64 const > const & dispJump = subRegion.getField< contact::dispJump >(); @@ -1484,10 +1473,7 @@ void SolidMechanicsLagrangeContact:: forAll< parallelHostPolicy >( subRegion.size(), [=] ( localIndex const kfe ) { - if( elemsToFaces.sizeOfArray( kfe ) != 2 ) - { - return; - } + if( ghostRank[kfe] < 0 ) { @@ -1594,7 +1580,7 @@ void SolidMechanicsLagrangeContact:: { elemRHS[i] = Ja * ( traction[kfe][i] - limitTau * sliding[ i-1 ] / slidingNorm ); - dRdT( i, 0 ) = Ja * dLimitTau_dNormalTraction * sliding[ i-1 ] / slidingNorm; + dRdT( i, 0 ) = -Ja * dLimitTau_dNormalTraction * sliding[ i-1 ] / slidingNorm; dRdT( i, i ) = Ja; } @@ -1642,7 +1628,7 @@ void SolidMechanicsLagrangeContact:: { elemRHS[i] = Ja * traction[kfe][i] * ( 1.0 - limitTau / vauxNorm ); - dRdT( i, 0 ) = Ja * traction[kfe][i] * dLimitTau_dNormalTraction / vauxNorm; + dRdT( i, 0 ) = -Ja * traction[kfe][i] * dLimitTau_dNormalTraction / vauxNorm; dRdT( i, i ) = Ja; } } @@ -1729,7 +1715,7 @@ void SolidMechanicsLagrangeContact::assembleStabilization( MeshLevel const & mes FaceElementSubRegion const & fractureSubRegion = fractureRegion.getUniqueSubRegion< FaceElementSubRegion >(); GEOS_ERROR_IF( !fractureSubRegion.hasField< contact::traction >(), "The fracture subregion must contain traction field." ); - ArrayOfArraysView< localIndex const > const elem2dToFaces = fractureSubRegion.faceList().toViewConst(); + arrayView2d< localIndex const > const elem2dToFaces = fractureSubRegion.faceList().toViewConst(); // Get the state of fracture elements arrayView1d< integer const > const & fractureState = diff --git a/src/coreComponents/physicsSolvers/contact/SolidMechanicsLagrangeContactBubbleStab.cpp b/src/coreComponents/physicsSolvers/contact/SolidMechanicsLagrangeContactBubbleStab.cpp new file mode 100644 index 00000000000..086139a90f3 --- /dev/null +++ b/src/coreComponents/physicsSolvers/contact/SolidMechanicsLagrangeContactBubbleStab.cpp @@ -0,0 +1,1180 @@ +/* + * ------------------------------------------------------------------------------------------------------------ + * SPDX-License-Identifier: LGPL-2.1-only + * + * Copyright (c) 2016-2024 Lawrence Livermore National Security LLC + * Copyright (c) 2018-2024 Total, S.A + * Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University + * Copyright (c) 2023-2024 Chevron + * Copyright (c) 2019- GEOS/GEOSX Contributors + * All rights reserved + * + * See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. + * ------------------------------------------------------------------------------------------------------------ + */ + +/** + * @file SolidMechanicsLagrangeContactBubbleStab.cpp + * + */ + +#include "mesh/DomainPartition.hpp" +#include "SolidMechanicsLagrangeContactBubbleStab.hpp" + +#include "physicsSolvers/contact/kernels/SolidMechanicsConformingContactKernelsBase.hpp" +#include "physicsSolvers/contact/kernels/SolidMechanicsLagrangeContactKernels.hpp" +#include "physicsSolvers/contact/kernels/SolidMechanicsDisplacementJumpUpdateKernels.hpp" +#include "physicsSolvers/contact/kernels/SolidMechanicsContactFaceBubbleKernels.hpp" +#include "physicsSolvers/contact/LogLevelsInfo.hpp" + +#include "constitutive/ConstitutiveManager.hpp" +#include "constitutive/contact/FrictionSelector.hpp" +#include "fieldSpecification/FieldSpecificationManager.hpp" + + +namespace geos +{ + +using namespace constitutive; +using namespace dataRepository; +using namespace fields; + +SolidMechanicsLagrangeContactBubbleStab::SolidMechanicsLagrangeContactBubbleStab( const string & name, + Group * const parent ): + ContactSolverBase( name, parent ) +{ + m_faceTypeToFiniteElements["Quadrilateral"] = std::make_unique< finiteElement::H1_QuadrilateralFace_Lagrange1_GaussLegendre2 >(); + m_faceTypeToFiniteElements["Triangle"] = std::make_unique< finiteElement::H1_TriangleFace_Lagrange1_Gauss1 >(); + +} + +SolidMechanicsLagrangeContactBubbleStab::~SolidMechanicsLagrangeContactBubbleStab() +{ + // TODO Auto-generated destructor stub +} + +real64 SolidMechanicsLagrangeContactBubbleStab::solverStep( real64 const & time_n, + real64 const & dt, + const integer cycleNumber, + DomainPartition & domain ) +{ + if( cycleNumber == 0 ) + { + /// Apply initial conditions to the Fault + FieldSpecificationManager & fieldSpecificationManager = FieldSpecificationManager::getInstance(); + + forDiscretizationOnMeshTargets ( domain.getMeshBodies(), [&]( string const &, + MeshLevel & mesh, + arrayView1d< string const > const & ) + + { + fieldSpecificationManager.applyInitialConditions( mesh ); + // Would like to do it like this but it is not working. There is a cast in Object path that tries to cast + // all objects that derive from ElementSubRegionBase to the specified type so this obviously fails. + // fieldSpecificationManager.forSubGroups< FieldSpecificationBase >( [&] ( FieldSpecificationBase const & fs ) + // { + // if( fs.initialCondition() ) + // { + // fs.apply< SurfaceElementSubRegion >( mesh, + // [&]( FieldSpecificationBase const & bc, + // string const &, + // SortedArrayView< localIndex const > const & targetSet, + // SurfaceElementSubRegion & targetGroup, + // string const fieldName ) + // { + // bc.applyFieldValue< FieldSpecificationEqual >( targetSet, 0.0, targetGroup, fieldName ); + // } ); + // } + // } ); + } ); + } + + return ContactSolverBase::solverStep( time_n, dt, cycleNumber, domain ); +} + +void SolidMechanicsLagrangeContactBubbleStab::registerDataOnMesh( Group & meshBodies ) +{ + ContactSolverBase::registerDataOnMesh( meshBodies ); + + forDiscretizationOnMeshTargets( meshBodies, [&] ( string const &, + MeshLevel & meshLevel, + arrayView1d< string const > const & ) + { + FaceManager & faceManager = meshLevel.getFaceManager(); + + // Register the total bubble displacement + faceManager.registerField< solidMechanics::totalBubbleDisplacement >( this->getName() ). + reference().resizeDimension< 1 >( 3 ); + + // Register the incremental bubble displacement + faceManager.registerField< solidMechanics::incrementalBubbleDisplacement >( this->getName() ). + reference().resizeDimension< 1 >( 3 ); + } ); + + forFractureRegionOnMeshTargets( meshBodies, [&] ( SurfaceElementRegion & fractureRegion ) + { + fractureRegion.forElementSubRegions< SurfaceElementSubRegion >( [&]( SurfaceElementSubRegion & subRegion ) + { + // Register the rotation matrix + subRegion.registerField< contact::rotationMatrix >( this->getName() ). + reference().resizeDimension< 1, 2 >( 3, 3 ); + + subRegion.registerField< fields::contact::deltaTraction >( getName() ). + reference().resizeDimension< 1 >( 3 ); + + subRegion.registerField< fields::contact::targetIncrementalJump >( getName() ). + reference().resizeDimension< 1 >( 3 ); + } ); + } ); +} + +void SolidMechanicsLagrangeContactBubbleStab::setupDofs( DomainPartition const & domain, + DofManager & dofManager ) const +{ + GEOS_MARK_FUNCTION; + + SolidMechanicsLagrangianFEM::setupDofs( domain, dofManager ); + + map< std::pair< string, string >, array1d< string > > meshTargets; + forDiscretizationOnMeshTargets( domain.getMeshBodies(), [&] ( string const & meshBodyName, + MeshLevel const & meshLevel, + arrayView1d< string const > const & regionNames ) + { + array1d< string > regions; + ElementRegionManager const & elementRegionManager = meshLevel.getElemManager(); + elementRegionManager.forElementRegions< SurfaceElementRegion >( regionNames, + [&]( localIndex const, + SurfaceElementRegion const & region ) + { + regions.emplace_back( region.getName() ); + } ); + meshTargets[std::make_pair( meshBodyName, meshLevel.getName())] = std::move( regions ); + } ); + + dofManager.addField( solidMechanics::totalBubbleDisplacement::key(), + FieldLocation::Face, + 3, + meshTargets ); + + dofManager.addField( contact::traction::key(), + FieldLocation::Elem, + 3, + meshTargets ); + + // Add coupling between bubble + dofManager.addCoupling( solidMechanics::totalBubbleDisplacement::key(), + solidMechanics::totalBubbleDisplacement::key(), + DofManager::Connector::Elem ); + + dofManager.addCoupling( contact::traction::key(), + contact::traction::key(), + DofManager::Connector::Elem ); + + dofManager.addCoupling( solidMechanics::totalDisplacement::key(), + contact::traction::key(), + DofManager::Connector::Elem, + meshTargets ); + + dofManager.addCoupling( solidMechanics::totalBubbleDisplacement::key(), + contact::traction::key(), + DofManager::Connector::Elem, + meshTargets ); + + dofManager.addCoupling( solidMechanics::totalDisplacement::key(), + solidMechanics::totalBubbleDisplacement::key(), + DofManager::Connector::Elem, + meshTargets ); +} + +void SolidMechanicsLagrangeContactBubbleStab::setupSystem( DomainPartition & domain, + DofManager & dofManager, + CRSMatrix< real64, globalIndex > & localMatrix, + ParallelVector & rhs, + ParallelVector & solution, + bool const GEOS_UNUSED_PARAM( setSparsity ) ) +{ + + + // setup monolithic coupled system + + // Create the lists of interface elements that have same type. + createFaceTypeList( domain ); + + // Create the lists of interface elements that have same type and same fracture state. + updateStickSlipList( domain ); + + // Create the list of cell elements that they are enriched with bubble functions. + createBubbleCellList( domain ); + + dofManager.setDomain( domain ); + setupDofs( domain, dofManager ); + dofManager.reorderByRank(); + + // Set the sparsity pattern without the Abu and Aub blocks. + SparsityPattern< globalIndex > patternDiag; + dofManager.setSparsityPattern( patternDiag ); + + // Get the original row lengths (diagonal blocks only) + array1d< localIndex > rowLengths( patternDiag.numRows() ); + for( localIndex localRow = 0; localRow < patternDiag.numRows(); ++localRow ) + { + rowLengths[localRow] = patternDiag.numNonZeros( localRow ); + } + + // Add the number of nonzeros induced by coupling + this->addCouplingNumNonzeros( domain, dofManager, rowLengths.toView() ); + + // Create a new pattern with enough capacity for coupled matrix + SparsityPattern< globalIndex > pattern; + pattern.resizeFromRowCapacities< parallelHostPolicy >( patternDiag.numRows(), patternDiag.numColumns(), rowLengths.data() ); + + // Copy the original nonzeros + for( localIndex localRow = 0; localRow < patternDiag.numRows(); ++localRow ) + { + globalIndex const * cols = patternDiag.getColumns( localRow ).dataIfContiguous(); + pattern.insertNonZeros( localRow, cols, cols + patternDiag.numNonZeros( localRow ) ); + } + + // Add the nonzeros from coupling + this->addCouplingSparsityPattern( domain, dofManager, pattern.toView() ); + + // Finally, steal the pattern into a CRS matrix + localMatrix.assimilate< parallelDevicePolicy<> >( std::move( pattern ) ); + localMatrix.setName( this->getName() + "/localMatrix" ); + + rhs.setName( this->getName() + "/rhs" ); + rhs.create( dofManager.numLocalDofs(), MPI_COMM_GEOS ); + + solution.setName( this->getName() + "/solution" ); + solution.create( dofManager.numLocalDofs(), MPI_COMM_GEOS ); + + computeRotationMatrices( domain ); +} + +void SolidMechanicsLagrangeContactBubbleStab::computeRotationMatrices( DomainPartition & domain ) const +{ + forDiscretizationOnMeshTargets( domain.getMeshBodies(), [&] ( string const &, + MeshLevel & mesh, + arrayView1d< string const > const & ) + { + + FaceManager & faceManager = mesh.getFaceManager(); + ElementRegionManager & elemManager = mesh.getElemManager(); + + SurfaceElementRegion & region = elemManager.getRegion< SurfaceElementRegion >( getUniqueFractureRegionName() ); + FaceElementSubRegion & subRegion = region.getUniqueSubRegion< FaceElementSubRegion >(); + + arrayView2d< real64 const > const faceNormal = faceManager.faceNormal(); + arrayView2d< localIndex const > const elemsToFaces = subRegion.faceList().toViewConst(); + + arrayView2d< real64 > const incrBubbleDisp = + faceManager.getField< fields::solidMechanics::incrementalBubbleDisplacement >(); + + arrayView3d< real64 > const rotationMatrix = + subRegion.getField< fields::contact::rotationMatrix >().toView(); + + arrayView2d< real64 > const unitNormal = subRegion.getNormalVector(); + arrayView2d< real64 > const unitTangent1 = subRegion.getTangentVector1(); + arrayView2d< real64 > const unitTangent2 = subRegion.getTangentVector2(); + + // Compute rotation matrices + solidMechanicsConformingContactKernels::ComputeRotationMatricesKernel::launch< parallelDevicePolicy<> >( subRegion.size(), + faceNormal, + elemsToFaces, + rotationMatrix, + unitNormal, + unitTangent1, + unitTangent2 ); + + forAll< parallelDevicePolicy<> >( subRegion.size(), + [ = ] + GEOS_HOST_DEVICE ( localIndex const k ) + { + localIndex const kf0 = elemsToFaces[k][0]; + localIndex const kf1 = elemsToFaces[k][1]; + LvArray::tensorOps::fill< 3 >( incrBubbleDisp[kf0], 0.0 ); + LvArray::tensorOps::fill< 3 >( incrBubbleDisp[kf1], 0.0 ); + } ); + } ); +} + +void SolidMechanicsLagrangeContactBubbleStab::implicitStepSetup( real64 const & time_n, + real64 const & dt, + DomainPartition & domain ) +{ + SolidMechanicsLagrangianFEM::implicitStepSetup( time_n, dt, domain ); +} + +void SolidMechanicsLagrangeContactBubbleStab::assembleSystem( real64 const time, + real64 const dt, + DomainPartition & domain, + DofManager const & dofManager, + CRSMatrixView< real64, globalIndex const > const & localMatrix, + arrayView1d< real64 > const & localRhs ) +{ + GEOS_MARK_FUNCTION; + + SolidMechanicsLagrangianFEM::assembleSystem( time, + dt, + domain, + dofManager, + localMatrix, + localRhs ); + + assembleStabilization( dt, domain, dofManager, localMatrix, localRhs ); + + assembleContact( dt, domain, dofManager, localMatrix, localRhs ); + + // parallel_matrix.create( localMatrix.toViewConst(), dofManager.numLocalDofs(), MPI_COMM_GEOS ); + // parallel_matrix.write("newMatrix.mtx"); + // std::cout << localRhs << std::endl; +} + +void SolidMechanicsLagrangeContactBubbleStab::assembleStabilization( real64 const dt, + DomainPartition & domain, + DofManager const & dofManager, + CRSMatrixView< real64, globalIndex const > const & localMatrix, + arrayView1d< real64 > const & localRhs ) +{ + // Loop for assembling contributes of bubble elements (Abb, Abu, Aub) + forDiscretizationOnMeshTargets( domain.getMeshBodies(), [&] ( string const &, + MeshLevel & mesh, + arrayView1d< string const > const & regionNames ) + { + NodeManager const & nodeManager = mesh.getNodeManager(); + FaceManager const & faceManager = mesh.getFaceManager(); + + string const & dispDofKey = dofManager.getKey( solidMechanics::totalDisplacement::key() ); + string const & bubbleDofKey = dofManager.getKey( solidMechanics::totalBubbleDisplacement::key() ); + + arrayView1d< globalIndex const > const dispDofNumber = nodeManager.getReference< globalIndex_array >( dispDofKey ); + arrayView1d< globalIndex const > const bubbleDofNumber = faceManager.getReference< globalIndex_array >( bubbleDofKey ); + + real64 const gravityVectorData[3] = LVARRAY_TENSOROPS_INIT_LOCAL_3( gravityVector() ); + + + solidMechanicsConformingContactKernels::FaceBubbleFactory kernelFactory( dispDofNumber, + bubbleDofNumber, + dofManager.rankOffset(), + localMatrix, + localRhs, + dt, + gravityVectorData ); + + real64 maxTraction = finiteElement:: + regionBasedKernelApplication + < parallelDevicePolicy< >, + constitutive::ElasticIsotropic, + CellElementSubRegion >( mesh, + regionNames, + getDiscretizationName(), + SolidMechanicsLagrangianFEM::viewKeyStruct::solidMaterialNamesString(), + kernelFactory ); + + GEOS_UNUSED_VAR( maxTraction ); + + } ); +} + +void SolidMechanicsLagrangeContactBubbleStab::assembleContact( real64 const dt, + DomainPartition & domain, + DofManager const & dofManager, + CRSMatrixView< real64, globalIndex const > const & localMatrix, + arrayView1d< real64 > const & localRhs ) +{ + forDiscretizationOnMeshTargets( domain.getMeshBodies(), [&] ( string const & meshName, + MeshLevel & mesh, + arrayView1d< string const > const & ) + { + NodeManager const & nodeManager = mesh.getNodeManager(); + FaceManager const & faceManager = mesh.getFaceManager(); + + string const & dispDofKey = dofManager.getKey( solidMechanics::totalDisplacement::key() ); + string const & bubbleDofKey = dofManager.getKey( solidMechanics::totalBubbleDisplacement::key() ); + string const & tractionDofKey = dofManager.getKey( contact::traction::key() ); + + arrayView1d< globalIndex const > const dispDofNumber = nodeManager.getReference< globalIndex_array >( dispDofKey ); + arrayView1d< globalIndex const > const bubbleDofNumber = faceManager.getReference< globalIndex_array >( bubbleDofKey ); + + string const & fractureRegionName = this->getUniqueFractureRegionName(); + + forFiniteElementOnStickFractureSubRegions( meshName, [&] ( string const &, + finiteElement::FiniteElementBase const & subRegionFE, + arrayView1d< localIndex const > const & faceElementList, + bool const ) + { + solidMechanicsLagrangeContactKernels::LagrangeContactFactory kernelFactory( dispDofNumber, + bubbleDofNumber, + dofManager.rankOffset(), + localMatrix, + localRhs, + dt, + faceElementList, + tractionDofKey ); + + real64 maxTraction = finiteElement:: + interfaceBasedKernelApplication + < parallelDevicePolicy< >, + constitutive::FrictionBase >( mesh, + fractureRegionName, + faceElementList, + subRegionFE, + viewKeyStruct::frictionLawNameString(), + kernelFactory ); + + GEOS_UNUSED_VAR( maxTraction ); + } ); + } ); +} + +void SolidMechanicsLagrangeContactBubbleStab::implicitStepComplete( real64 const & time_n, + real64 const & dt, + DomainPartition & domain ) +{ + SolidMechanicsLagrangianFEM::implicitStepComplete( time_n, dt, domain ); + + forDiscretizationOnMeshTargets( domain.getMeshBodies(), [&] ( string const &, + MeshLevel & mesh, + arrayView1d< string const > const & ) + { + mesh.getElemManager().forElementSubRegions< FaceElementSubRegion >( [&]( FaceElementSubRegion & subRegion ) + { + arrayView2d< real64 > const deltaTraction = subRegion.getField< contact::deltaTraction >(); + arrayView2d< real64 > const deltaDispJump = subRegion.getField< contact::deltaDispJump >(); + arrayView2d< real64 const > const dispJump = subRegion.getField< contact::dispJump >(); + arrayView2d< real64 > const oldDispJump = subRegion.getField< contact::oldDispJump >(); + + forAll< parallelHostPolicy >( subRegion.size(), [=] ( localIndex const kfe ) + { + LvArray::tensorOps::fill< 3 >( deltaDispJump[kfe], 0.0 ); + LvArray::tensorOps::fill< 3 >( deltaTraction[kfe], 0.0 ); + LvArray::tensorOps::copy< 3 >( oldDispJump[kfe], dispJump[kfe] ); + } ); + } ); + } ); +} + +real64 SolidMechanicsLagrangeContactBubbleStab::calculateResidualNorm( real64 const & time, + real64 const & dt, + DomainPartition const & domain, + DofManager const & dofManager, + arrayView1d< real64 const > const & localRhs ) +{ + GEOS_MARK_FUNCTION; + + real64 const solidResidual = SolidMechanicsLagrangianFEM::calculateResidualNorm( time, dt, domain, dofManager, localRhs ); + + real64 const contactResidual = calculateContactResidualNorm( domain, dofManager, localRhs ); + + return sqrt( solidResidual * solidResidual + contactResidual * contactResidual ); +} + +real64 SolidMechanicsLagrangeContactBubbleStab::calculateContactResidualNorm( DomainPartition const & domain, + DofManager const & dofManager, + arrayView1d< real64 const > const & localRhs ) +{ + string const & dofKey = dofManager.getKey( contact::traction::key() ); + globalIndex const rankOffset = dofManager.rankOffset(); + + real64 stickResidual = 0.0; + forDiscretizationOnMeshTargets( domain.getMeshBodies(), [&] ( string const &, + MeshLevel const & mesh, + arrayView1d< string const > const & regionNames ) + { + mesh.getElemManager().forElementSubRegions< FaceElementSubRegion >( regionNames, + [&]( localIndex const, FaceElementSubRegion const & subRegion ) + { + arrayView1d< globalIndex const > const & dofNumber = subRegion.getReference< array1d< globalIndex > >( dofKey ); + arrayView1d< integer const > const & ghostRank = subRegion.ghostRank(); + arrayView1d< real64 const > const & area = subRegion.getElementArea(); + + RAJA::ReduceSum< parallelHostReduce, real64 > stickSum( 0.0 ); + forAll< parallelHostPolicy >( subRegion.size(), [=] ( localIndex const k ) + { + if( ghostRank[k] < 0 ) + { + localIndex const localRow = LvArray::integerConversion< localIndex >( dofNumber[k] - rankOffset ); + for( localIndex dim = 0; dim < 3; ++dim ) + { + real64 const norm = localRhs[localRow + dim] / area[k]; + stickSum += norm * norm; + } + } + } ); + + stickResidual += stickSum.get(); + } ); + } ); + + stickResidual = MpiWrapper::sum( stickResidual ); + stickResidual = sqrt( stickResidual ); + + if( getLogLevel() >= 1 && logger::internal::rank==0 ) + { + std::cout << GEOS_FMT( " ( Rt ) = ( {:15.6e} )", stickResidual ); + } + + return sqrt( stickResidual * stickResidual ); +} + + +void SolidMechanicsLagrangeContactBubbleStab::applySystemSolution( DofManager const & dofManager, + arrayView1d< real64 const > const & localSolution, + real64 const scalingFactor, + real64 const dt, + DomainPartition & domain ) +{ + GEOS_MARK_FUNCTION; + + SolidMechanicsLagrangianFEM::applySystemSolution( dofManager, localSolution, scalingFactor, dt, domain ); + + dofManager.addVectorToField( localSolution, + contact::traction::key(), + contact::deltaTraction::key(), + scalingFactor ); + + dofManager.addVectorToField( localSolution, + contact::traction::key(), + contact::traction::key(), + scalingFactor ); + + dofManager.addVectorToField( localSolution, + solidMechanics::totalBubbleDisplacement::key(), + solidMechanics::totalBubbleDisplacement::key(), + scalingFactor ); + + dofManager.addVectorToField( localSolution, + solidMechanics::totalBubbleDisplacement::key(), + solidMechanics::incrementalBubbleDisplacement::key(), + scalingFactor ); + + + // Loop for updating the displacement jump + forDiscretizationOnMeshTargets( domain.getMeshBodies(), [&] ( string const & meshName, + MeshLevel & mesh, + arrayView1d< string const > const & ) + + { + + NodeManager const & nodeManager = mesh.getNodeManager(); + FaceManager const & faceManager = mesh.getFaceManager(); + + string const & dispDofKey = dofManager.getKey( solidMechanics::totalDisplacement::key() ); + string const & bubbleDofKey = dofManager.getKey( solidMechanics::totalBubbleDisplacement::key() ); + + arrayView1d< globalIndex const > const dispDofNumber = nodeManager.getReference< globalIndex_array >( dispDofKey ); + arrayView1d< globalIndex const > const bubbleDofNumber = faceManager.getReference< globalIndex_array >( bubbleDofKey ); + + string const & fractureRegionName = this->getUniqueFractureRegionName(); + + CRSMatrix< real64, globalIndex > const voidMatrix; + array1d< real64 > const voidRhs; + + forFiniteElementOnFractureSubRegions( meshName, [&] ( string const &, + finiteElement::FiniteElementBase const & subRegionFE, + arrayView1d< localIndex const > const & faceElementList ) + { + + solidMechanicsConformingContactKernels::DispJumpUpdateFactory kernelFactory( dispDofNumber, + bubbleDofNumber, + dofManager.rankOffset(), + voidMatrix.toViewConstSizes(), + voidRhs.toView(), + dt, + faceElementList ); + + real64 maxTraction = finiteElement:: + interfaceBasedKernelApplication + < parallelDevicePolicy< >, + constitutive::NullModel >( mesh, + fractureRegionName, + faceElementList, + subRegionFE, + "", + kernelFactory ); + + GEOS_UNUSED_VAR( maxTraction ); + + } ); + } ); + + forDiscretizationOnMeshTargets( domain.getMeshBodies(), [&] ( string const &, + MeshLevel & mesh, + arrayView1d< string const > const & ) + { + FieldIdentifiers fieldsToBeSync; + + fieldsToBeSync.addFields( FieldLocation::Face, + { solidMechanics::incrementalBubbleDisplacement::key(), + solidMechanics::totalBubbleDisplacement::key() } ); + + fieldsToBeSync.addElementFields( { contact::traction::key(), + contact::deltaTraction::key(), + contact::dispJump::key() }, + { getUniqueFractureRegionName() } ); + + CommunicationTools::getInstance().synchronizeFields( fieldsToBeSync, + mesh, + domain.getNeighbors(), + true ); + } ); +} + +void SolidMechanicsLagrangeContactBubbleStab::addCouplingNumNonzeros( DomainPartition & domain, + DofManager & dofManager, + arrayView1d< localIndex > const & rowLengths ) const +{ + + forDiscretizationOnMeshTargets( domain.getMeshBodies(), [&] ( string const &, + MeshLevel const & mesh, + arrayView1d< string const > const & regionNames ) + { + + ElementRegionManager const & elemManager = mesh.getElemManager(); + NodeManager const & nodeManager = mesh.getNodeManager(); + FaceManager const & faceManager = mesh.getFaceManager(); + + ArrayOfArraysView< localIndex const > const faceToNodeMap = faceManager.nodeList().toViewConst(); + + globalIndex const rankOffset = dofManager.rankOffset(); + + string const bubbleDofKey = dofManager.getKey( solidMechanics::totalBubbleDisplacement::key() ); + string const dispDofKey = dofManager.getKey( solidMechanics::totalDisplacement::key() ); + + arrayView1d< globalIndex const > const bubbleDofNumber = faceManager.getReference< globalIndex_array >( bubbleDofKey ); + arrayView1d< globalIndex const > const dispDofNumber = nodeManager.getReference< globalIndex_array >( dispDofKey ); + + elemManager.forElementSubRegions< CellElementSubRegion >( regionNames, [&]( localIndex const, CellElementSubRegion const & cellElementSubRegion ) + { + + arrayView1d< localIndex const > const bubbleElemsList = cellElementSubRegion.bubbleElementsList(); + arrayView2d< localIndex const > const faceElemsList = cellElementSubRegion.faceElementsList(); + + localIndex const numDispDof = 3*cellElementSubRegion.numNodesPerElement(); + + for( localIndex bi=0; bi( bubbleDofNumber[k] - rankOffset ); + + if( localRow >= 0 && localRow < rowLengths.size() ) + { + for( localIndex i=0; i<3; ++i ) + { + rowLengths[localRow + i] += numDispDof; + } + } + + for( localIndex a=0; a( dispDofNumber[node] - rankOffset ); + + if( localDispRow >= 0 && localDispRow < rowLengths.size() ) + { + for( int d=0; d<3; ++d ) + { + rowLengths[localDispRow + d] += 3; + } + } + } + } + + } ); + + SurfaceElementRegion const & region = elemManager.getRegion< SurfaceElementRegion >( getUniqueFractureRegionName() ); + FaceElementSubRegion const & subRegion = region.getUniqueSubRegion< FaceElementSubRegion >(); + arrayView2d< localIndex const > const elemsToFaces = subRegion.faceList().toViewConst(); + + for( localIndex kfe=0; kfe( bubbleDofNumber[kf] - rankOffset ); + + if( localRow >= 0 && localRow < rowLengths.size() ) + { + for( localIndex i=0; i<3; ++i ) + { + rowLengths[localRow + i] += numDispDof; + } + } + + for( localIndex a=0; a( dispDofNumber[node] - rankOffset ); + + if( localDispRow >= 0 && localDispRow < rowLengths.size() ) + { + for( int d=0; d<3; ++d ) + { + rowLengths[localDispRow + d] += 3; + } + } + } + } + + } + + } ); +} + +void SolidMechanicsLagrangeContactBubbleStab::addCouplingSparsityPattern( DomainPartition const & domain, + DofManager const & dofManager, + SparsityPatternView< globalIndex > const & pattern ) const +{ + + forDiscretizationOnMeshTargets( domain.getMeshBodies(), [&] ( string const &, + MeshLevel const & mesh, + arrayView1d< string const > const & regionNames ) + { + + ElementRegionManager const & elemManager = mesh.getElemManager(); + NodeManager const & nodeManager = mesh.getNodeManager(); + FaceManager const & faceManager = mesh.getFaceManager(); + + globalIndex const rankOffset = dofManager.rankOffset(); + + string const bubbleDofKey = dofManager.getKey( solidMechanics::totalBubbleDisplacement::key() ); + string const dispDofKey = dofManager.getKey( solidMechanics::totalDisplacement::key() ); + + arrayView1d< globalIndex const > const bubbleDofNumber = faceManager.getReference< globalIndex_array >( bubbleDofKey ); + arrayView1d< globalIndex const > const dispDofNumber = nodeManager.getReference< globalIndex_array >( dispDofKey ); + + static constexpr int maxNumDispDof = 3 * 8; + + elemManager.forElementSubRegions< CellElementSubRegion >( regionNames, [&]( localIndex const, CellElementSubRegion const & cellElementSubRegion ) + { + + arrayView1d< localIndex const > const bubbleElemsList = cellElementSubRegion.bubbleElementsList(); + arrayView2d< localIndex const > const faceElemsList = cellElementSubRegion.faceElementsList(); + + localIndex const numDispDof = 3*cellElementSubRegion.numNodesPerElement(); + + for( localIndex bi=0; bi eqnRowIndicesDisp ( numDispDof ); + stackArray1d< globalIndex, 3 > eqnRowIndicesBubble( 3 ); + stackArray1d< globalIndex, maxNumDispDof > dofColIndicesDisp ( numDispDof ); + stackArray1d< globalIndex, 3 > dofColIndicesBubble( 3 ); + + for( localIndex idof = 0; idof < 3; ++idof ) + { + eqnRowIndicesBubble[idof] = bubbleDofNumber[k] + idof - rankOffset; + dofColIndicesBubble[idof] = bubbleDofNumber[k] + idof; + } + + for( localIndex a=0; a= 0 && eqnRowIndicesDisp[i] < pattern.numRows() ) + { + for( localIndex j = 0; j < dofColIndicesBubble.size(); ++j ) + { + pattern.insertNonZero( eqnRowIndicesDisp[i], dofColIndicesBubble[j] ); + } + } + } + + for( localIndex i = 0; i < eqnRowIndicesBubble.size(); ++i ) + { + if( eqnRowIndicesBubble[i] >= 0 && eqnRowIndicesBubble[i] < pattern.numRows() ) + { + for( localIndex j=0; j < dofColIndicesDisp.size(); ++j ) + { + pattern.insertNonZero( eqnRowIndicesBubble[i], dofColIndicesDisp[j] ); + } + } + } + + } + + } ); + + SurfaceElementRegion const & region = elemManager.getRegion< SurfaceElementRegion >( getUniqueFractureRegionName() ); + FaceElementSubRegion const & subRegion = region.getUniqueSubRegion< FaceElementSubRegion >(); + arrayView2d< localIndex const > const elemsToFaces = subRegion.faceList().toViewConst(); + ArrayOfArraysView< localIndex const > const faceToNodeMap = faceManager.nodeList().toViewConst(); + + static constexpr int maxNumDispFaceDof = 3 * 4; + + for( localIndex kfe=0; kfe eqnRowIndicesDisp ( numDispDof ); + stackArray1d< globalIndex, 3 > eqnRowIndicesBubble( 3 ); + stackArray1d< globalIndex, maxNumDispFaceDof > dofColIndicesDisp ( numDispDof ); + stackArray1d< globalIndex, 3 > dofColIndicesBubble( 3 ); + + for( localIndex idof = 0; idof < 3; ++idof ) + { + eqnRowIndicesBubble[idof] = bubbleDofNumber[kf] + idof - rankOffset; + dofColIndicesBubble[idof] = bubbleDofNumber[kf] + idof; + } + + for( localIndex a=0; a= 0 && eqnRowIndicesDisp[i] < pattern.numRows() ) + { + for( localIndex j = 0; j < dofColIndicesBubble.size(); ++j ) + { + pattern.insertNonZero( eqnRowIndicesDisp[i], dofColIndicesBubble[j] ); + } + } + } + + for( localIndex i = 0; i < eqnRowIndicesBubble.size(); ++i ) + { + if( eqnRowIndicesBubble[i] >= 0 && eqnRowIndicesBubble[i] < pattern.numRows() ) + { + for( localIndex j=0; j < dofColIndicesDisp.size(); ++j ) + { + pattern.insertNonZero( eqnRowIndicesBubble[i], dofColIndicesDisp[j] ); + } + } + } + + } + } + } ); + +} + +void SolidMechanicsLagrangeContactBubbleStab::updateStickSlipList( DomainPartition const & domain ) +{ + + forDiscretizationOnMeshTargets( domain.getMeshBodies(), [&] ( string const & meshName, + MeshLevel const & mesh, + arrayView1d< string const > const & ) + + { + + ElementRegionManager const & elemManager = mesh.getElemManager(); + SurfaceElementRegion const & region = elemManager.getRegion< SurfaceElementRegion >( getUniqueFractureRegionName() ); + FaceElementSubRegion const & subRegion = region.getUniqueSubRegion< FaceElementSubRegion >(); + + arrayView1d< integer const > const fractureState = subRegion.getField< contact::fractureState >(); + + forFiniteElementOnFractureSubRegions( meshName, [&] ( string const & finiteElementName, + finiteElement::FiniteElementBase const &, + arrayView1d< localIndex const > const & faceElementList ) + { + + array1d< localIndex > keys( subRegion.size()); + array1d< localIndex > vals( subRegion.size()); + array1d< localIndex > stickList; + array1d< localIndex > slipList; + RAJA::ReduceSum< ReducePolicy< parallelDevicePolicy<> >, localIndex > nStick_r( 0 ); + RAJA::ReduceSum< ReducePolicy< parallelDevicePolicy<> >, localIndex > nSlip_r( 0 ); + + arrayView1d< localIndex > const keys_v = keys.toView(); + arrayView1d< localIndex > const vals_v = vals.toView(); + forAll< parallelDevicePolicy<> >( faceElementList.size(), + [ = ] + GEOS_HOST_DEVICE ( localIndex const kfe ) + { + + localIndex const faceIndex = faceElementList[kfe]; + if( fractureState[faceIndex] == contact::FractureState::Stick ) + { + keys_v[kfe]=0; + vals_v[kfe]=faceIndex; + nStick_r += 1; + } + else if(( fractureState[faceIndex] == contact::FractureState::Slip ) || + (fractureState[faceIndex] == contact::FractureState::NewSlip)) + { + keys_v[kfe]=1; + vals_v[kfe]=faceIndex; + nSlip_r += 1; + } + else + { + keys_v[kfe] = 2; + } + + } ); + + localIndex nStick = static_cast< localIndex >(nStick_r.get()); + localIndex nSlip = static_cast< localIndex >(nSlip_r.get()); + + // Sort vals according to keys to ensure that + // elements of the same type are adjacent in the vals list. + // This arrangement allows for efficient copying into the container + // by leveraging parallelism. + RAJA::sort_pairs< parallelDevicePolicy<> >( keys_v, vals_v ); + + stickList.resize( nStick ); + slipList.resize( nSlip ); + arrayView1d< localIndex > const stickList_v = stickList.toView(); + arrayView1d< localIndex > const slipList_v = slipList.toView(); + + forAll< parallelDevicePolicy<> >( nStick, [ = ] + GEOS_HOST_DEVICE ( localIndex const kfe ) + { + stickList_v[kfe] = vals_v[kfe]; + } ); + + forAll< parallelDevicePolicy<> >( nSlip, [ = ] + GEOS_HOST_DEVICE ( localIndex const kfe ) + { + slipList_v[kfe] = vals_v[nStick+kfe]; + } ); + + this->m_faceTypesToFaceElementsStick[meshName][finiteElementName] = stickList; + this->m_faceTypesToFaceElementsSlip[meshName][finiteElementName] = slipList; + + GEOS_LOG_LEVEL_INFO_RANK_0( logInfo::Configuration, GEOS_FMT( "# stick elements: {}, # slip elements: {}", nStick, nSlip )) + } ); + } ); + +} + +void SolidMechanicsLagrangeContactBubbleStab::createFaceTypeList( DomainPartition const & domain ) +{ + + // Generate lists containing elements of various face types + forDiscretizationOnMeshTargets( domain.getMeshBodies(), [&] ( string const & meshName, + MeshLevel const & mesh, + arrayView1d< string const > const ) + { + FaceManager const & faceManager = mesh.getFaceManager(); + ElementRegionManager const & elemManager = mesh.getElemManager(); + ArrayOfArraysView< localIndex const > const faceToNodeMap = faceManager.nodeList().toViewConst(); + + SurfaceElementRegion const & region = elemManager.getRegion< SurfaceElementRegion >( getUniqueFractureRegionName() ); + FaceElementSubRegion const & subRegion = region.getUniqueSubRegion< FaceElementSubRegion >(); + + array1d< localIndex > keys( subRegion.size()); + array1d< localIndex > vals( subRegion.size()); + array1d< localIndex > quadList; + array1d< localIndex > triList; + RAJA::ReduceSum< ReducePolicy< parallelDevicePolicy<> >, localIndex > nTri_r( 0 ); + RAJA::ReduceSum< ReducePolicy< parallelDevicePolicy<> >, localIndex > nQuad_r( 0 ); + + arrayView1d< localIndex > const keys_v = keys.toView(); + arrayView1d< localIndex > const vals_v = vals.toView(); + // Determine the size of the lists and generate the vector keys and vals for parallel indexing into lists. + // (With RAJA, parallelizing this operation seems the most viable approach.) + forAll< parallelDevicePolicy<> >( subRegion.size(), + [ = ] GEOS_HOST_DEVICE ( localIndex const kfe ) + { + + localIndex const numNodesPerFace = faceToNodeMap.sizeOfArray( kfe ); + if( numNodesPerFace == 3 ) + { + keys_v[kfe]=0; + vals_v[kfe]=kfe; + nTri_r += 1; + } + else if( numNodesPerFace == 4 ) + { + keys_v[kfe]=1; + vals_v[kfe]=kfe; + nQuad_r += 1; + } + else + { + GEOS_ERROR( "SolidMechanicsLagrangeContactBubbleStab:: invalid face type" ); + } + } ); + + localIndex nQuad = static_cast< localIndex >(nQuad_r.get()); + localIndex nTri = static_cast< localIndex >(nTri_r.get()); + + // Sort vals according to keys to ensure that + // elements of the same type are adjacent in the vals list. + // This arrangement allows for efficient copying into the container + // by leveraging parallelism. + RAJA::sort_pairs< parallelDevicePolicy<> >( keys_v, vals_v ); + + quadList.resize( nQuad ); + triList.resize( nTri ); + arrayView1d< localIndex > const quadList_v = quadList.toView(); + arrayView1d< localIndex > const triList_v = triList.toView(); + + forAll< parallelDevicePolicy<> >( nTri, [ = ] GEOS_HOST_DEVICE ( localIndex const kfe ) + { + triList_v[kfe] = vals_v[kfe]; + } ); + + forAll< parallelDevicePolicy<> >( nQuad, [ = ] GEOS_HOST_DEVICE ( localIndex const kfe ) + { + quadList_v[kfe] = vals_v[nTri+kfe]; + } ); + + this->m_faceTypesToFaceElements[meshName]["Quadrilateral"] = quadList; + this->m_faceTypesToFaceElements[meshName]["Triangle"] = triList; + } ); + +} + +void SolidMechanicsLagrangeContactBubbleStab::createBubbleCellList( DomainPartition & domain ) const +{ + + forDiscretizationOnMeshTargets( domain.getMeshBodies(), [&] ( string const &, + MeshLevel & mesh, + arrayView1d< string const > const regionNames ) + { + ElementRegionManager & elemManager = mesh.getElemManager(); + + SurfaceElementRegion const & region = elemManager.getRegion< SurfaceElementRegion >( getUniqueFractureRegionName() ); + FaceElementSubRegion const & subRegion = region.getUniqueSubRegion< FaceElementSubRegion >(); + // Array to store face indexes + array1d< localIndex > tmpSpace( 2*subRegion.size()); + SortedArray< localIndex > faceIdList; + + arrayView1d< localIndex > const tmpSpace_v = tmpSpace.toView(); + // Store indexes of faces in the temporany array. + { + arrayView2d< localIndex const > const elemsToFaces = subRegion.faceList().toViewConst(); + + forAll< parallelDevicePolicy<> >( subRegion.size(), [ = ] GEOS_HOST_DEVICE ( localIndex const kfe ) + { + + localIndex const kf0 = elemsToFaces[kfe][0], kf1 = elemsToFaces[kfe][1]; + tmpSpace_v[2*kfe] = kf0, tmpSpace_v[2*kfe+1] = kf1; + + } ); + } + + // Sort indexes to enable efficient searching using binary search. + RAJA::stable_sort< parallelDevicePolicy<> >( tmpSpace_v ); + faceIdList.insert( tmpSpace_v.begin(), tmpSpace_v.end()); + + // Search for bubble element on each CellElementSubRegion and + // store element indexes, global and local face indexes. + elemManager.forElementSubRegions< CellElementSubRegion >( regionNames, [&]( localIndex const, CellElementSubRegion & cellElementSubRegion ) + { + + arrayView2d< localIndex const > const elemsToFaces = cellElementSubRegion.faceList().toViewConst(); + + RAJA::ReduceSum< ReducePolicy< parallelDevicePolicy<> >, localIndex > nBubElems_r( 0 ); + + localIndex const n_max = cellElementSubRegion.size() * elemsToFaces.size( 1 ); + array1d< localIndex > keys( n_max ); + array1d< localIndex > perms( n_max ); + array1d< localIndex > vals( n_max ); + array1d< localIndex > localFaceIds( n_max ); + + arrayView1d< localIndex > const keys_v = keys.toView(); + arrayView1d< localIndex > const perms_v = perms.toView(); + arrayView1d< localIndex > const vals_v = vals.toView(); + arrayView1d< localIndex > const localFaceIds_v = localFaceIds.toView(); + SortedArrayView< localIndex const > const faceIdList_v = faceIdList.toViewConst(); + + forAll< parallelDevicePolicy<> >( cellElementSubRegion.size(), + [ = ] + GEOS_HOST_DEVICE ( localIndex const kfe ) + { + for( int i=0; i < elemsToFaces.size( 1 ); ++i ) + { + perms_v[kfe*elemsToFaces.size( 1 )+i] = kfe*elemsToFaces.size( 1 )+i; + if( faceIdList_v.contains( elemsToFaces[kfe][i] )) + { + keys_v[kfe*elemsToFaces.size( 1 )+i] = 0; + vals_v[kfe*elemsToFaces.size( 1 )+i] = kfe; + localFaceIds_v[kfe*elemsToFaces.size( 1 )+i] = i; + nBubElems_r += 1; + } + else + { + keys_v[kfe*elemsToFaces.size( 1 )+i] = 1; + vals_v[kfe*elemsToFaces.size( 1 )+i] = -1; + localFaceIds_v[kfe*elemsToFaces.size( 1 )+i] = -1; + } + } + } ); + + // Sort perms according to keys to ensure that bubble elements are adjacent + // and occupy the first positions of the list. + // This arrangement allows for efficient copying into the container + // by leveraging parallelism. + localIndex nBubElems = static_cast< localIndex >(nBubElems_r.get()); + RAJA::sort_pairs< parallelDevicePolicy<> >( keys_v, perms_v ); + + array1d< localIndex > bubbleElemsList; + bubbleElemsList.resize( nBubElems ); + + arrayView1d< localIndex > const bubbleElemsList_v = bubbleElemsList.toView(); + + forAll< parallelDevicePolicy<> >( n_max, [ = ] GEOS_HOST_DEVICE ( localIndex const k ) + { + keys_v[k] = vals_v[perms_v[k]]; + } ); + + forAll< parallelDevicePolicy<> >( nBubElems, [ = ] GEOS_HOST_DEVICE ( localIndex const k ) + { + bubbleElemsList_v[k] = keys_v[k]; + } ); + cellElementSubRegion.setBubbleElementsList( bubbleElemsList.toViewConst()); + + forAll< parallelDevicePolicy<> >( n_max, [ = ] GEOS_HOST_DEVICE ( localIndex const k ) + { + keys_v[k] = localFaceIds_v[perms_v[k]]; + } ); + + array2d< localIndex > faceElemsList; + faceElemsList.resize( nBubElems, 2 ); + + arrayView2d< localIndex > const faceElemsList_v = faceElemsList.toView(); + + forAll< parallelDevicePolicy<> >( nBubElems, + [ = ] + GEOS_HOST_DEVICE ( localIndex const k ) + { + localIndex const kfe = bubbleElemsList_v[k]; + faceElemsList_v[k][0] = elemsToFaces[kfe][keys_v[k]]; + faceElemsList_v[k][1] = keys_v[k]; + } ); + cellElementSubRegion.setFaceElementsList( faceElemsList.toViewConst()); + + } ); + + } ); + +} + +REGISTER_CATALOG_ENTRY( PhysicsSolverBase, SolidMechanicsLagrangeContactBubbleStab, string const &, Group * const ) + +} /* namespace geos */ diff --git a/src/coreComponents/physicsSolvers/contact/SolidMechanicsLagrangeContactBubbleStab.hpp b/src/coreComponents/physicsSolvers/contact/SolidMechanicsLagrangeContactBubbleStab.hpp new file mode 100644 index 00000000000..b1256f47d1f --- /dev/null +++ b/src/coreComponents/physicsSolvers/contact/SolidMechanicsLagrangeContactBubbleStab.hpp @@ -0,0 +1,240 @@ +/* + * ------------------------------------------------------------------------------------------------------------ + * SPDX-License-Identifier: LGPL-2.1-only + * + * Copyright (c) 2016-2024 Lawrence Livermore National Security LLC + * Copyright (c) 2018-2024 Total, S.A + * Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University + * Copyright (c) 2023-2024 Chevron + * Copyright (c) 2019- GEOS/GEOSX Contributors + * All rights reserved + * + * See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. + * ------------------------------------------------------------------------------------------------------------ + */ + +/** + * @file SolidMechanicsLagrangeContactBubbleStab.hpp + * + */ + +#ifndef GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSLAGRANGECONTACTBUBBLESTAB_HPP_ +#define GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSLAGRANGECONTACTBUBBLESTAB_HPP_ + +#include "physicsSolvers/contact/ContactSolverBase.hpp" + +namespace geos +{ + +class NumericalMethodsManager; + +class SolidMechanicsLagrangeContactBubbleStab : public ContactSolverBase +{ +public: + + SolidMechanicsLagrangeContactBubbleStab( const string & name, + Group * const parent ); + + ~SolidMechanicsLagrangeContactBubbleStab() override; + + /** + * @brief name of the node manager in the object catalog + * @return string that contains the catalog name to generate a new NodeManager object through the object catalog. + */ + static string catalogName() + { + return "SolidMechanicsLagrangeContactBubbleStab"; + } + /** + * @copydoc SolverBase::getCatalogName() + */ + string getCatalogName() const override { return catalogName(); } + + virtual void registerDataOnMesh( Group & MeshBodies ) override final; + + real64 solverStep( real64 const & time_n, + real64 const & dt, + const integer cycleNumber, + DomainPartition & domain ) override final; + + virtual void + setupDofs( DomainPartition const & domain, + DofManager & dofManager ) const override; + + virtual void + setupSystem( DomainPartition & domain, + DofManager & dofManager, + CRSMatrix< real64, globalIndex > & localMatrix, + ParallelVector & rhs, + ParallelVector & solution, + bool const setSparsity = true ) override final; + + virtual void + implicitStepSetup( real64 const & time_n, + real64 const & dt, + DomainPartition & domain ) override final; + + virtual void + implicitStepComplete( real64 const & time_n, + real64 const & dt, + DomainPartition & domain ) override final; + + virtual void + assembleSystem( real64 const time, + real64 const dt, + DomainPartition & domain, + DofManager const & dofManager, + CRSMatrixView< real64, globalIndex const > const & localMatrix, + arrayView1d< real64 > const & localRhs ) override; + + virtual real64 + calculateResidualNorm( real64 const & time, + real64 const & dt, + DomainPartition const & domain, + DofManager const & dofManager, + arrayView1d< real64 const > const & localRhs ) override; + + virtual void + applySystemSolution( DofManager const & dofManager, + arrayView1d< real64 const > const & localSolution, + real64 const scalingFactor, + real64 const dt, + DomainPartition & domain ) override; + + void assembleContact( real64 const dt, + DomainPartition & domain, + DofManager const & dofManager, + CRSMatrixView< real64, globalIndex const > const & localMatrix, + arrayView1d< real64 > const & localRhs ); + + void assembleStabilization( real64 const dt, + DomainPartition & domain, + DofManager const & dofManager, + CRSMatrixView< real64, globalIndex const > const & localMatrix, + arrayView1d< real64 > const & localRhs ); + + real64 calculateContactResidualNorm( DomainPartition const & domain, + DofManager const & dofManager, + arrayView1d< real64 const > const & localRhs ); + + /** + * @brief Loop over the finite element type on the fracture subregions of meshName and apply callback. + * @tparam LAMBDA The callback function type + * @param meshName The mesh name. + * @param lambda The callback function. Take the finite element type name and + * the list of face element of the same type. + */ + template< typename LAMBDA > + void forFiniteElementOnFractureSubRegions( string const & meshName, LAMBDA && lambda ) const + { + std::map< string, + array1d< localIndex > > const & faceTypesToFaceElements = m_faceTypesToFaceElements.at( meshName ); + + for( const auto & [finiteElementName, faceElementList] : faceTypesToFaceElements ) + { + arrayView1d< localIndex const > const faceElemList = faceElementList.toViewConst(); + + finiteElement::FiniteElementBase const & subRegionFE = *(m_faceTypeToFiniteElements.at( finiteElementName )); + + lambda( finiteElementName, subRegionFE, faceElemList ); + } + } + + /** + * @brief Loop over the finite element type on the stick fracture subregions of meshName and apply callback. + * @tparam LAMBDA The callback function type + * @param meshName The mesh name. + * @param lambda The callback function. Take the finite element type name and + * the list of face element of the same type. + */ + template< typename LAMBDA > + void forFiniteElementOnStickFractureSubRegions( string const & meshName, LAMBDA && lambda ) const + { + bool const isStickState = true; + + std::map< string, array1d< localIndex > > const & + faceTypesToFaceElements = m_faceTypesToFaceElementsStick.at( meshName ); + + for( const auto & [finiteElementName, faceElementList] : faceTypesToFaceElements ) + { + arrayView1d< localIndex const > const faceElemList = faceElementList.toViewConst(); + + finiteElement::FiniteElementBase const & subRegionFE = *(m_faceTypeToFiniteElements.at( finiteElementName )); + + lambda( finiteElementName, subRegionFE, faceElemList, isStickState ); + } + } + +/** + * @brief Create the list of finite elements of the same type + * for each FaceElementSubRegion (Triangle or Quadrilateral) + * and of the same fracture state (Stick or Slip). + * @param domain The physical domain object + */ + void updateStickSlipList( DomainPartition const & domain ); + + /** + * @brief Create the list of finite elements of the same type + * for each FaceElementSubRegion (Triangle or Quadrilateral). + * @param domain The physical domain object + */ + void createFaceTypeList( DomainPartition const & domain ); + + /** + * @brief Create the list of elements belonging to CellElementSubRegion + * that are enriched with the bubble basis functions + * @param domain The physical domain object + */ + void createBubbleCellList( DomainPartition & domain ) const; + + /** + * @brief Compute rotation matrices and unit normal vectors for Face elements. + * @param domain The domain partition object + */ + void computeRotationMatrices( DomainPartition & domain ) const; + + +private: + /** + * @brief add the number of non-zero elements induced by the coupling between + * nodal and bubble displacement. + * @param domain the physical domain object + * @param dofManager degree-of-freedom manager associated with the linear system + * @param rowLengths the array containing the number of non-zero elements for each row + */ + void addCouplingNumNonzeros( DomainPartition & domain, + DofManager & dofManager, + arrayView1d< localIndex > const & rowLengths ) const; + + /** + * @Brief add the sparsity pattern induced by the coupling + * @param domain the physical domain object + * @param dofManager degree-of-freedom manager associated with the linear system + * @param pattern the sparsity pattern + */ + void addCouplingSparsityPattern( DomainPartition const & domain, + DofManager const & dofManager, + SparsityPatternView< globalIndex > const & pattern ) const; + + /// Finite element type to face element index map + std::map< string, std::map< string, array1d< localIndex > > > m_faceTypesToFaceElements; + + /// Finite element type to face element index map (stick mode) + std::map< string, std::map< string, array1d< localIndex > > > m_faceTypesToFaceElementsStick; + + /// Finite element type to face element index map (slip mode) + std::map< string, std::map< string, array1d< localIndex > > > m_faceTypesToFaceElementsSlip; + + /// Finite element type to finite element object map + std::map< string, std::unique_ptr< geos::finiteElement::FiniteElementBase > > m_faceTypeToFiniteElements; + + struct viewKeyStruct : ContactSolverBase::viewKeyStruct + { + constexpr static char const * rotationMatrixString() { return "rotationMatrix"; } + }; + +}; + +} /* namespace geos */ + +#endif /* GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSLAGRANGECONTACTBUBBLESTAB_HPP_ */ diff --git a/src/coreComponents/physicsSolvers/contact/SolidMechanicsPenaltyContact.cpp b/src/coreComponents/physicsSolvers/contact/SolidMechanicsPenaltyContact.cpp index 167c23fd1b9..c1c3ec434d7 100644 --- a/src/coreComponents/physicsSolvers/contact/SolidMechanicsPenaltyContact.cpp +++ b/src/coreComponents/physicsSolvers/contact/SolidMechanicsPenaltyContact.cpp @@ -159,7 +159,7 @@ void SolidMechanicsPenaltyContact::assembleContact( DomainPartition & domain, real64 const contactStiffness = m_contactPenaltyStiffness; arrayView1d< real64 > const area = subRegion.getElementArea(); - ArrayOfArraysView< localIndex const > const elemsToFaces = subRegion.faceList().toViewConst(); + arrayView2d< localIndex const > const elemsToFaces = subRegion.faceList().toViewConst(); // TODO: use parallel policy? forAll< serialPolicy >( subRegion.size(), [=] ( localIndex const kfe ) diff --git a/src/coreComponents/physicsSolvers/contact/SolidMechanicsALMKernels.hpp b/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsALMKernels.hpp similarity index 88% rename from src/coreComponents/physicsSolvers/contact/SolidMechanicsALMKernels.hpp rename to src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsALMKernels.hpp index 9f5c53f5132..4f50212c5be 100644 --- a/src/coreComponents/physicsSolvers/contact/SolidMechanicsALMKernels.hpp +++ b/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsALMKernels.hpp @@ -17,10 +17,12 @@ * @file SolidMechanicsALMKernels.hpp */ -#ifndef GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSALMKERNELS_HPP_ -#define GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSALMKERNELS_HPP_ +#ifndef GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSALMKERNELS_HPP_ +#define GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSALMKERNELS_HPP_ + +#include "SolidMechanicsConformingContactKernelsBase.hpp" +#include "mesh/MeshFields.hpp" -#include "SolidMechanicsALMKernelsBase.hpp" namespace geos { @@ -34,13 +36,13 @@ namespace solidMechanicsALMKernels template< typename CONSTITUTIVE_TYPE, typename FE_TYPE > class ALM : - public ALMKernelsBase< CONSTITUTIVE_TYPE, - FE_TYPE > + public solidMechanicsConformingContactKernels::ConformingContactKernelsBase< CONSTITUTIVE_TYPE, + FE_TYPE > { public: /// Alias for the base class. - using Base = ALMKernelsBase< CONSTITUTIVE_TYPE, - FE_TYPE >; + using Base = solidMechanicsConformingContactKernels::ConformingContactKernelsBase< CONSTITUTIVE_TYPE, + FE_TYPE >; /// Maximum number of nodes per element, which is equal to the maxNumTestSupportPointPerElem and /// maxNumTrialSupportPointPerElem by definition. @@ -49,6 +51,15 @@ class ALM : /// Compile time value for the number of quadrature points per element. static constexpr int numQuadraturePointsPerElem = FE_TYPE::numQuadraturePoints; + /// The number of displacement dofs per element. + static constexpr int numUdofs = Base::numUdofs; + + /// The number of bubble dofs per element. + static constexpr int numBdofs = Base::numBdofs; + + /// The number of lagrange multiplier dofs per element. + static constexpr int numTdofs = Base::numTdofs; + using Base::m_elemsToFaces; using Base::m_faceToNodes; using Base::m_finiteElementSpace; @@ -58,7 +69,6 @@ class ALM : using Base::m_dofRankOffset; using Base::m_X; using Base::m_rotationMatrix; - using Base::m_penalty; using Base::m_dispJump; using Base::m_oldDispJump; using Base::m_matrix; @@ -98,7 +108,9 @@ class ALM : inputDt, faceElementList ), m_traction( elementSubRegion.getField< fields::contact::traction >().toViewConst()), - m_symmetric( isSymmetric ) + m_symmetric( isSymmetric ), + m_penalty( elementSubRegion.getField< fields::contact::iterativePenalty >().toViewConst() ), + m_faceArea( elementSubRegion.getField< fields::elementArea >().toViewConst() ) {} //*************************************************************************** @@ -109,27 +121,18 @@ class ALM : struct StackVariables : public Base::StackVariables { - /// The number of displacement dofs per element. - static constexpr int numUdofs = numNodesPerElem * 3 * 2; - - /// The number of lagrange multiplier dofs per element. - static constexpr int numTdofs = 3; - - /// The number of bubble dofs per element. - static constexpr int numBdofs = 3*2; - public: GEOS_HOST_DEVICE StackVariables(): Base::StackVariables(), - dispEqnRowIndices{}, - dispColIndices{}, - bEqnRowIndices{}, - bColIndices{}, - localRu{}, - localRb{}, - localAutAtu{ {} }, + dispEqnRowIndices{}, + dispColIndices{}, + bEqnRowIndices{}, + bColIndices{}, + localRu{}, + localRb{}, + localAutAtu{ {} }, localAbtAtb{ {} }, localAbtAtu{ {} }, localAutAtb{ {} }, @@ -196,8 +199,6 @@ class ALM : { constexpr int shift = numNodesPerElem * 3; - constexpr int numTdofs = 3; - int permutation[numNodesPerElem]; m_finiteElementSpace.getPermutation( permutation ); @@ -251,10 +252,6 @@ class ALM : GEOS_UNUSED_VAR( k ); constexpr real64 zero = LvArray::NumericLimits< real64 >::epsilon; - constexpr int numUdofs = numNodesPerElem * 3 * 2; - - constexpr int numBdofs = 3*2; - real64 matRRtAtu[3][numUdofs], matDRtAtu[3][numUdofs]; real64 matRRtAtb[3][numBdofs], matDRtAtb[3][numBdofs]; @@ -268,6 +265,7 @@ class ALM : m_dispJump[k], m_penalty[k], m_traction[k], + m_faceArea[k], m_symmetric, m_symmetric, zero, @@ -372,6 +370,10 @@ class ALM : bool const m_symmetric; + /// The array containing the penalty coefficients for each element. + arrayView2d< real64 const > const m_penalty; + + arrayView1d< real64 const > const m_faceArea; }; /// The factory used to construct the kernel. @@ -410,6 +412,7 @@ struct ComputeTractionKernel arrayView2d< real64 const > const & traction, arrayView2d< real64 const > const & dispJump, arrayView2d< real64 const > const & deltaDispJump, + arrayView1d< real64 const > const & faceArea, arrayView2d< real64 > const & tractionNew ) { @@ -417,7 +420,7 @@ struct ComputeTractionKernel { contactWrapper.updateTractionOnly( dispJump[k], deltaDispJump[k], - penalty[k], traction[k], tractionNew[k] ); + penalty[k], traction[k], faceArea[k], tractionNew[k] ); } ); } @@ -428,4 +431,4 @@ struct ComputeTractionKernel } // namespace geos -#endif /* GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSALMKERNELS_HPP_ */ +#endif /* GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSALMKERNELS_HPP_ */ diff --git a/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsALMKernelsBase.hpp b/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsALMKernelsBase.hpp new file mode 100644 index 00000000000..18e5c3b1a4d --- /dev/null +++ b/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsALMKernelsBase.hpp @@ -0,0 +1,173 @@ +/* + * ------------------------------------------------------------------------------------------------------------ + * SPDX-License-Identifier: LGPL-2.1-only + * + * Copyright (c) 2016-2024 Lawrence Livermore National Security LLC + * Copyright (c) 2018-2024 Total, S.A + * Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University + * Copyright (c) 2023-2024 Chevron + * Copyright (c) 2019- GEOS/GEOSX Contributors + * All rights reserved + * + * See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. + * ------------------------------------------------------------------------------------------------------------ + */ + +/** + * @file SolidMechanicsALMKernelsBase.hpp + */ + +#ifndef GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSALMKERNELSBASE_HPP_ +#define GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSALMKERNELSBASE_HPP_ + +#include "finiteElement/kernelInterface/InterfaceKernelBase.hpp" +#include "SolidMechanicsConformingContactKernelsHelper.hpp" + +namespace geos +{ + +namespace solidMechanicsALMKernels +{ + +/** + * @brief A struct to check for constraint satisfaction + */ +struct ConstraintCheckKernel +{ + + /** + * @brief Launch the kernel function to check the constraint satisfaction + * @tparam POLICY the type of policy used in the kernel launch + * @tparam CONTACT_WRAPPER the type of contact wrapper doing the fracture traction updates + * @param[in] size the size of the subregion + * @param[in] traction the array containing the current traction + * @param[in] dispJump the array containing the displacement jump + * @param[in] deltaDispJump the array containing the delta displacement jump + * @param[in] normalTractionTolerance Check tolerance (normal traction) + * @param[in] normalDisplacementTolerance Check tolerance (compenetration) + * @param[in] slidingTolerance Check tolerance (sliding) + * @param[in] slidingCheckTolerance Check tolerance (if shear strass exceeds tauLim) + * @param[in] area interface element area + * @param[in] fractureState the array containing the fracture state + * @param[out] condConv the array containing the convergence flag: + * 0: Constraint conditions satisfied + * 1: Open + * 2: Compenetration + * 3: Slip exceeds sliding tolerance + * 4: Shear stress exceeds tauLim + */ + template< typename POLICY, typename CONTACT_WRAPPER > + static void + launch( localIndex const size, + CONTACT_WRAPPER const & contactWrapper, + arrayView1d< integer const > const & ghostRank, + arrayView2d< real64 > const & traction, + arrayView2d< real64 const > const & dispJump, + arrayView2d< real64 const > const & deltaDispJump, + arrayView1d< real64 const > const & normalTractionTolerance, + arrayView1d< real64 const > const & normalDisplacementTolerance, + arrayView1d< real64 const > const & slidingTolerance, + real64 const slidingCheckTolerance, + arrayView1d< integer const > const & fractureState, + arrayView1d< integer > const & condConv ) + { + + forAll< POLICY >( size, [=] GEOS_HOST_DEVICE ( localIndex const k ) + { + if( ghostRank[k] < 0 ) + { + contactWrapper.constraintCheck( dispJump[k], + deltaDispJump[k], + traction[k], + fractureState[k], + normalTractionTolerance[k], + normalDisplacementTolerance[k], + slidingTolerance[k], + slidingCheckTolerance, + condConv[k] ); + } + + } ); + } +}; + +/** + * @brief A struct to check for constraint satisfaction + */ +struct UpdateStateKernel +{ + + /** + * @brief Launch the kernel function to check the constraint satisfaction + * @tparam POLICY the type of policy used in the kernel launch + * @tparam CONTACT_WRAPPER the type of contact wrapper doing the fracture traction updates + * @param[in] size the size of the subregion + * @param[in] oldDispJump the array containing the old displacement jump (previous time step) + * @param[in] dispJump the array containing the displacement jump + * @param[in] penalty the array containing the penalty coefficients + * @param[in] symmetric flag to compute symmetric penalty matrix + * @param[in] normalTractionTolerance Check tolerance (normal traction) + * @param[in] traction the array containing the current traction + * @param[in] fractureState the array containing the fracture state + */ + template< typename POLICY, typename CONTACT_WRAPPER > + static void + launch( localIndex const size, + CONTACT_WRAPPER const & contactWrapper, + arrayView2d< real64 const > const & oldDispJump, + arrayView2d< real64 const > const & dispJump, + arrayView2d< real64 > const & penalty, + arrayView1d< real64 const > const & faceArea, + bool const symmetric, + arrayView1d< real64 const > const & normalTractionTolerance, + arrayView2d< real64 > const & traction, + arrayView1d< integer > const & fractureState ) + + { + forAll< POLICY >( size, [=] GEOS_HOST_DEVICE ( localIndex const k ) + { + + real64 const zero = LvArray::NumericLimits< real64 >::epsilon; + + real64 localPenalty[3][3]{}; + real64 localTractionNew[3]{}; + contactWrapper.updateTraction( oldDispJump[k], + dispJump[k], + penalty[k], + traction[k], + faceArea[k], + symmetric, + false, + normalTractionTolerance[k], + zero, + localPenalty, + localTractionNew, + fractureState[k] ); + + if( fractureState[k] == fields::contact::FractureState::Open ) + { + + LvArray::tensorOps::fill< 3 >( localTractionNew, 0.0 ); + } + else if( LvArray::math::abs( localTractionNew[ 0 ] ) < normalTractionTolerance[k] ) + { + LvArray::tensorOps::fill< 3 >( localTractionNew, 0.0 ); + fractureState[k] = fields::contact::FractureState::Slip; + } + + LvArray::tensorOps::copy< 3 >( traction[k], localTractionNew ); + penalty[k][2] = -localPenalty[1][1]; + penalty[k][3] = -localPenalty[2][2]; + penalty[k][4] = -localPenalty[1][2]; + + } ); + } + +}; + +} // namespace SolidMechanicsALMKernels + +} // namespace geos + + +#endif /* GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSALMKERNELSBASE_HPP_ */ diff --git a/src/coreComponents/physicsSolvers/contact/SolidMechanicsALMSimultaneousKernels.hpp b/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsALMSimultaneousKernels.hpp similarity index 87% rename from src/coreComponents/physicsSolvers/contact/SolidMechanicsALMSimultaneousKernels.hpp rename to src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsALMSimultaneousKernels.hpp index f9cd307b6fe..4a39f3580ee 100644 --- a/src/coreComponents/physicsSolvers/contact/SolidMechanicsALMSimultaneousKernels.hpp +++ b/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsALMSimultaneousKernels.hpp @@ -16,10 +16,11 @@ * @file SolidMechanicsALMSimultaneousKernels.hpp */ -#ifndef GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSALMSIMULTANEOUSKERNELS_HPP_ -#define GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSALMSIMULTANEOUSKERNELS_HPP_ +#ifndef GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSALMSIMULTANEOUSKERNELS_HPP_ +#define GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSALMSIMULTANEOUSKERNELS_HPP_ -#include "SolidMechanicsALMKernelsBase.hpp" +#include "SolidMechanicsConformingContactKernelsBase.hpp" +#include "mesh/MeshFields.hpp" namespace geos { @@ -33,13 +34,13 @@ namespace solidMechanicsALMKernels template< typename CONSTITUTIVE_TYPE, typename FE_TYPE > class ALMSimultaneous : - public ALMKernelsBase< CONSTITUTIVE_TYPE, - FE_TYPE > + public solidMechanicsConformingContactKernels::ConformingContactKernelsBase< CONSTITUTIVE_TYPE, + FE_TYPE > { public: /// Alias for the base class. - using Base = ALMKernelsBase< CONSTITUTIVE_TYPE, - FE_TYPE >; + using Base = solidMechanicsConformingContactKernels::ConformingContactKernelsBase< CONSTITUTIVE_TYPE, + FE_TYPE >; /// Maximum number of nodes per element, which is equal to the maxNumTestSupportPointPerElem and /// maxNumTrialSupportPointPerElem by definition. @@ -48,6 +49,15 @@ class ALMSimultaneous : /// Compile time value for the number of quadrature points per element. static constexpr int numQuadraturePointsPerElem = FE_TYPE::numQuadraturePoints; + /// The number of displacement dofs per element. + static constexpr int numUdofs = Base::numUdofs; + + /// The number of bubble dofs per element. + static constexpr int numBdofs = Base::numBdofs; + + /// The number of lagrange multiplier dofs per element. + static constexpr int numTdofs = Base::numTdofs; + using Base::m_elemsToFaces; using Base::m_faceToNodes; using Base::m_finiteElementSpace; @@ -56,7 +66,6 @@ class ALMSimultaneous : using Base::m_dofRankOffset; using Base::m_X; using Base::m_rotationMatrix; - using Base::m_penalty; using Base::m_dispJump; using Base::m_oldDispJump; using Base::m_matrix; @@ -94,7 +103,9 @@ class ALMSimultaneous : inputRhs, inputDt, faceElementList ), - m_traction( elementSubRegion.getField< fields::contact::traction >().toViewConst()) + m_traction( elementSubRegion.getField< fields::contact::traction >().toViewConst()), + m_penalty( elementSubRegion.getField< fields::contact::iterativePenalty >().toViewConst() ), + m_faceArea( elementSubRegion.getField< fields::elementArea >().toViewConst() ) {} //*************************************************************************** @@ -192,8 +203,6 @@ class ALMSimultaneous : { constexpr int shift = numNodesPerElem * 3; - constexpr int numTdofs = 3; - int permutation[numNodesPerElem]; m_finiteElementSpace.getPermutation( permutation ); @@ -255,10 +264,6 @@ class ALMSimultaneous : GEOS_UNUSED_VAR( k ); //constexpr real64 zero = 1.e-10; - constexpr int numUdofs = numNodesPerElem * 3 * 2; - - constexpr int numBdofs = 3*2; - real64 matRRtAtu[3][numUdofs], matDRtAtu[3][numUdofs]; real64 matRRtAtb[3][numBdofs], matDRtAtb[3][numBdofs]; @@ -270,9 +275,9 @@ class ALMSimultaneous : // Compute the trial traction real64 dispJump[ 3 ]; - dispJump[0] = stack.dispJumpLocal[0]; - dispJump[1] = stack.dispJumpLocal[1] - stack.oldDispJumpLocal[1]; - dispJump[2] = stack.dispJumpLocal[2] - stack.oldDispJumpLocal[2]; + dispJump[0] = stack.dispJumpLocal[0] * m_faceArea[k]; + dispJump[1] = ( stack.dispJumpLocal[1] - stack.oldDispJumpLocal[1] ) * m_faceArea[k]; + dispJump[2] = ( stack.dispJumpLocal[2] - stack.oldDispJumpLocal[2] ) * m_faceArea[k]; LvArray::tensorOps::scaledCopy< 3 >( tractionNew, stack.tLocal, -1.0 ); LvArray::tensorOps::Ri_add_AijBj< 3, 3 >( tractionNew, stack.localPenalty, dispJump ); @@ -377,6 +382,11 @@ class ALMSimultaneous : protected: arrayView2d< real64 const > const m_traction; + + /// The array containing the penalty coefficients for each element. + arrayView2d< real64 const > const m_penalty; + + arrayView1d< real64 const > const m_faceArea; }; /// The factory used to construct the kernel. @@ -412,16 +422,17 @@ struct ComputeTractionSimultaneousKernel arrayView2d< real64 const > const & traction, arrayView2d< real64 const > const & dispJump, arrayView2d< real64 const > const & deltaDispJump, + arrayView1d< real64 const > const & faceElementArea, arrayView2d< real64 > const & tractionNew ) { forAll< POLICY >( size, [=] GEOS_HOST_DEVICE ( localIndex const kfe ) { - tractionNew[kfe][0] = traction[kfe][0] + penalty[kfe][0] * dispJump[kfe][0]; - tractionNew[kfe][1] = traction[kfe][1] + penalty[kfe][2] * deltaDispJump[kfe][1] + - penalty[kfe][4] * deltaDispJump[kfe][2]; - tractionNew[kfe][2] = traction[kfe][2] + penalty[kfe][3] * deltaDispJump[kfe][2] + - penalty[kfe][4] * deltaDispJump[kfe][1]; + tractionNew[kfe][0] = traction[kfe][0] + penalty[kfe][0] * dispJump[kfe][0] * faceElementArea[kfe]; + tractionNew[kfe][1] = traction[kfe][1] + ( penalty[kfe][2] * deltaDispJump[kfe][1]+ + penalty[kfe][4] * deltaDispJump[kfe][2] ) * faceElementArea[kfe]; + tractionNew[kfe][2] = traction[kfe][2] + ( penalty[kfe][3] * deltaDispJump[kfe][2] + + penalty[kfe][4] * deltaDispJump[kfe][1] ) * faceElementArea[kfe]; } ); } @@ -432,4 +443,4 @@ struct ComputeTractionSimultaneousKernel } // namespace geos -#endif /* GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSALMKERNELS_HPP_ */ +#endif /* GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSALMKERNELS_HPP_ */ diff --git a/src/coreComponents/physicsSolvers/contact/SolidMechanicsALMKernelsBase.hpp b/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsConformingContactKernelsBase.hpp similarity index 51% rename from src/coreComponents/physicsSolvers/contact/SolidMechanicsALMKernelsBase.hpp rename to src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsConformingContactKernelsBase.hpp index 4f3504e3d5f..495e4fa677b 100644 --- a/src/coreComponents/physicsSolvers/contact/SolidMechanicsALMKernelsBase.hpp +++ b/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsConformingContactKernelsBase.hpp @@ -17,16 +17,17 @@ * @file SolidMechanicsALMKernelsBase.hpp */ -#ifndef GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSALMKERNELSBASE_HPP_ -#define GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSALMKERNELSBASE_HPP_ +#ifndef GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSCONFORMINGCONTACTKERNELSBASE_HPP_ +#define GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSCONFORMINGCONTACTKERNELSBASE_HPP_ #include "finiteElement/kernelInterface/InterfaceKernelBase.hpp" -#include "SolidMechanicsALMKernelsHelper.hpp" +#include "SolidMechanicsConformingContactKernelsHelper.hpp" +#include "codingUtilities/Utilities.hpp" namespace geos { -namespace solidMechanicsALMKernels +namespace solidMechanicsConformingContactKernels { /** @@ -36,7 +37,7 @@ namespace solidMechanicsALMKernels */ template< typename CONSTITUTIVE_TYPE, typename FE_TYPE > -class ALMKernelsBase : +class ConformingContactKernelsBase : public finiteElement::InterfaceKernelBase< CONSTITUTIVE_TYPE, FE_TYPE, 3, 3 > @@ -54,6 +55,15 @@ class ALMKernelsBase : /// Compile time value for the number of quadrature points per element. static constexpr int numQuadraturePointsPerElem = FE_TYPE::numQuadraturePoints; + /// The number of displacement dofs per element. + static constexpr int numUdofs = numNodesPerElem * 3 * 2; + + /// The number of lagrange multiplier dofs per element. + static constexpr int numTdofs = 3; + + /// The number of bubble dofs per element. + static constexpr int numBdofs = 3*2; + using Base::m_dofNumber; using Base::m_dofRankOffset; using Base::m_finiteElementSpace; @@ -64,20 +74,20 @@ class ALMKernelsBase : * @brief Constructor * @copydoc geos::finiteElement::InterfaceKernelBase::InterfaceKernelBase */ - ALMKernelsBase( NodeManager const & nodeManager, - EdgeManager const & edgeManager, - FaceManager const & faceManager, - localIndex const targetRegionIndex, - FaceElementSubRegion & elementSubRegion, - FE_TYPE const & finiteElementSpace, - CONSTITUTIVE_TYPE & inputConstitutiveType, - arrayView1d< globalIndex const > const uDofNumber, - arrayView1d< globalIndex const > const bDofNumber, - globalIndex const rankOffset, - CRSMatrixView< real64, globalIndex const > const inputMatrix, - arrayView1d< real64 > const inputRhs, - real64 const inputDt, - arrayView1d< localIndex const > const & faceElementList ): + ConformingContactKernelsBase( NodeManager const & nodeManager, + EdgeManager const & edgeManager, + FaceManager const & faceManager, + localIndex const targetRegionIndex, + FaceElementSubRegion & elementSubRegion, + FE_TYPE const & finiteElementSpace, + CONSTITUTIVE_TYPE & inputConstitutiveType, + arrayView1d< globalIndex const > const uDofNumber, + arrayView1d< globalIndex const > const bDofNumber, + globalIndex const rankOffset, + CRSMatrixView< real64, globalIndex const > const inputMatrix, + arrayView1d< real64 > const inputRhs, + real64 const inputDt, + arrayView1d< localIndex const > const & faceElementList ): Base( nodeManager, edgeManager, faceManager, @@ -97,8 +107,7 @@ class ALMKernelsBase : m_bDofNumber( bDofNumber ), m_rotationMatrix( elementSubRegion.getField< fields::contact::rotationMatrix >().toViewConst()), m_dispJump( elementSubRegion.getField< fields::contact::dispJump >().toView() ), - m_oldDispJump( elementSubRegion.getField< fields::contact::oldDispJump >().toViewConst() ), - m_penalty( elementSubRegion.getField< fields::contact::iterativePenalty >().toViewConst() ) + m_oldDispJump( elementSubRegion.getField< fields::contact::oldDispJump >().toViewConst() ) {} //*************************************************************************** @@ -107,14 +116,7 @@ class ALMKernelsBase : */ struct StackVariables { - /// The number of displacement dofs per element. - static constexpr int numUdofs = numNodesPerElem * 3 * 2; - - /// The number of lagrange multiplier dofs per element. - static constexpr int numTdofs = 3; - /// The number of bubble dofs per element. - static constexpr int numBdofs = 3*2; public: @@ -191,20 +193,16 @@ class ALMKernelsBase : } //END_kernelLauncher + template< typename LAMBDA = NoOpFunc > GEOS_HOST_DEVICE inline void quadraturePointKernel( localIndex const k, localIndex const q, - StackVariables & stack ) const + StackVariables & stack, + LAMBDA && lambda = NoOpFunc{} ) const { GEOS_UNUSED_VAR( k ); - constexpr int numUdofs = numNodesPerElem * 3 * 2; - - constexpr int numTdofs = 3; - - constexpr int numBdofs = 3*2; - real64 const detJ = m_finiteElementSpace.transformedQuadratureWeight( q, stack.X ); real64 N[ numNodesPerElem ]; @@ -220,19 +218,21 @@ class ALMKernelsBase : m_finiteElementSpace.getPermutation( permutation ); // TODO: Try using bilinear utilities to perform these two operations - solidMechanicsALMKernelsHelper::accumulateAtuLocalOperator< numTdofs, - numUdofs, - numNodesPerElem >( stack.localAtu, - N, - permutation, + solidMechanicsConformingContactKernelsHelper::accumulateAtuLocalOperator< numTdofs, + numUdofs, + numNodesPerElem >( stack.localAtu, + N, + permutation, + detJ ); + + solidMechanicsConformingContactKernelsHelper::accumulateAtuLocalOperator< numTdofs, + numBdofs, + 1 >( stack.localAtb, + BubbleN, + bperm, detJ ); - solidMechanicsALMKernelsHelper::accumulateAtuLocalOperator< numTdofs, - numBdofs, - 1 >( stack.localAtb, - BubbleN, - bperm, - detJ ); + lambda( detJ ); } protected: @@ -244,7 +244,7 @@ class ALMKernelsBase : ArrayOfArraysView< localIndex const > const m_faceToNodes; /// The array of array containing the element to face map. - ArrayOfArraysView< localIndex const > const m_elemsToFaces; + arrayView2d< localIndex const > const m_elemsToFaces; /// The array containing the list of face element of the same type. arrayView1d< localIndex const > const m_faceElementList; @@ -260,12 +260,9 @@ class ALMKernelsBase : /// The array containing the displacement jump of previus time step. arrayView2d< real64 const > const m_oldDispJump; - - /// The array containing the penalty coefficients for each element. - arrayView2d< real64 const > const m_penalty; - }; + /** * @brief A struct to compute rotation matrices */ @@ -284,8 +281,11 @@ struct ComputeRotationMatricesKernel static void launch( localIndex const size, arrayView2d< real64 const > const & faceNormal, - ArrayOfArraysView< localIndex const > const & elemsToFaces, - arrayView3d< real64 > const & rotationMatrix ) + arrayView2d< localIndex const > const & elemsToFaces, + arrayView3d< real64 > const & rotationMatrix, + arrayView2d< real64 > const & unitNormal, + arrayView2d< real64 > const & unitTangent1, + arrayView2d< real64 > const & unitTangent2 ) { forAll< POLICY >( size, [=] GEOS_HOST_DEVICE ( localIndex const k ) @@ -302,149 +302,26 @@ struct ComputeRotationMatricesKernel LvArray::tensorOps::normalize< 3 >( Nbar ); computationalGeometry::RotationMatrix_3D( Nbar, rotationMatrix[k] ); - } ); - } + real64 const columnVector1[3] = { rotationMatrix[k][ 0 ][ 1 ], + rotationMatrix[k][ 1 ][ 1 ], + rotationMatrix[k][ 2 ][ 1 ] }; -}; - -/** - * @brief A struct to check for constraint satisfaction - */ -struct ConstraintCheckKernel -{ - - /** - * @brief Launch the kernel function to check the constraint satisfaction - * @tparam POLICY the type of policy used in the kernel launch - * @tparam CONTACT_WRAPPER the type of contact wrapper doing the fracture traction updates - * @param[in] size the size of the subregion - * @param[in] traction the array containing the current traction - * @param[in] dispJump the array containing the displacement jump - * @param[in] deltaDispJump the array containing the delta displacement jump - * @param[in] normalTractionTolerance Check tolerance (normal traction) - * @param[in] normalDisplacementTolerance Check tolerance (compenetration) - * @param[in] slidingTolerance Check tolerance (sliding) - * @param[in] slidingCheckTolerance Check tolerance (if shear strass exceeds tauLim) - * @param[in] area interface element area - * @param[in] fractureState the array containing the fracture state - * @param[out] condConv the array containing the convergence flag: - * 0: Constraint conditions satisfied - * 1: Open - * 2: Compenetration - * 3: Slip exceeds sliding tolerance - * 4: Shear stress exceeds tauLim - */ - template< typename POLICY, typename CONTACT_WRAPPER > - static void - launch( localIndex const size, - CONTACT_WRAPPER const & contactWrapper, - arrayView1d< integer const > const & ghostRank, - arrayView2d< real64 > const & traction, - arrayView2d< real64 const > const & dispJump, - arrayView2d< real64 const > const & deltaDispJump, - arrayView1d< real64 const > const & normalTractionTolerance, - arrayView1d< real64 const > const & normalDisplacementTolerance, - arrayView1d< real64 const > const & slidingTolerance, - real64 const slidingCheckTolerance, - arrayView1d< real64 const > const & area, - arrayView1d< integer const > const & fractureState, - arrayView1d< integer > const & condConv ) - { - - forAll< POLICY >( size, [=] GEOS_HOST_DEVICE ( localIndex const k ) - { - if( ghostRank[k] < 0 ) - { - contactWrapper.constraintCheck( dispJump[k], - deltaDispJump[k], - traction[k], - fractureState[k], - normalTractionTolerance[k], - normalDisplacementTolerance[k]*area[k], - slidingTolerance[k]*area[k], - slidingCheckTolerance, - condConv[k] ); - } - - } ); - } -}; - -/** - * @brief A struct to check for constraint satisfaction - */ -struct UpdateStateKernel -{ - - /** - * @brief Launch the kernel function to check the constraint satisfaction - * @tparam POLICY the type of policy used in the kernel launch - * @tparam CONTACT_WRAPPER the type of contact wrapper doing the fracture traction updates - * @param[in] size the size of the subregion - * @param[in] oldDispJump the array containing the old displacement jump (previous time step) - * @param[in] dispJump the array containing the displacement jump - * @param[in] penalty the array containing the penalty coefficients - * @param[in] symmetric flag to compute symmetric penalty matrix - * @param[in] normalTractionTolerance Check tolerance (normal traction) - * @param[in] traction the array containing the current traction - * @param[in] fractureState the array containing the fracture state - */ - template< typename POLICY, typename CONTACT_WRAPPER > - static void - launch( localIndex const size, - CONTACT_WRAPPER const & contactWrapper, - arrayView2d< real64 const > const & oldDispJump, - arrayView2d< real64 const > const & dispJump, - arrayView2d< real64 > const & penalty, - bool const symmetric, - arrayView1d< real64 const > const & normalTractionTolerance, - arrayView2d< real64 > const & traction, - arrayView1d< integer > const & fractureState ) - - { - forAll< POLICY >( size, [=] GEOS_HOST_DEVICE ( localIndex const k ) - { - - real64 const zero = LvArray::NumericLimits< real64 >::epsilon; - - real64 localPenalty[3][3]{}; - real64 localTractionNew[3]{}; - contactWrapper.updateTraction( oldDispJump[k], - dispJump[k], - penalty[k], - traction[k], - symmetric, - false, - normalTractionTolerance[k], - zero, - localPenalty, - localTractionNew, - fractureState[k] ); - - if( fractureState[k] == fields::contact::FractureState::Open ) - { - - LvArray::tensorOps::fill< 3 >( localTractionNew, 0.0 ); - } - else if( LvArray::math::abs( localTractionNew[ 0 ] ) < normalTractionTolerance[k] ) - { - LvArray::tensorOps::fill< 3 >( localTractionNew, 0.0 ); - fractureState[k] = fields::contact::FractureState::Slip; - } - - LvArray::tensorOps::copy< 3 >( traction[k], localTractionNew ); - penalty[k][2] = -localPenalty[1][1]; - penalty[k][3] = -localPenalty[2][2]; - penalty[k][4] = -localPenalty[1][2]; + real64 const columnVector2[3] = { rotationMatrix[k][ 0 ][ 2 ], + rotationMatrix[k][ 1 ][ 2 ], + rotationMatrix[k][ 2 ][ 2 ] }; + LvArray::tensorOps::copy< 3 >( unitNormal[k], Nbar ); + LvArray::tensorOps::copy< 3 >( unitTangent1[k], columnVector1 ); + LvArray::tensorOps::copy< 3 >( unitTangent2[k], columnVector2 ); } ); } }; -} // namespace SolidMechanicsALMKernels + +} // namespace solidMechanicsConformingContactKernels } // namespace geos -#endif /* GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSALMKERNELSBASE_HPP_ */ +#endif /* GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSCONFORMINGCONTACTKERNELSBASE_HPP_ */ diff --git a/src/coreComponents/physicsSolvers/contact/SolidMechanicsALMKernelsHelper.hpp b/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsConformingContactKernelsHelper.hpp similarity index 82% rename from src/coreComponents/physicsSolvers/contact/SolidMechanicsALMKernelsHelper.hpp rename to src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsConformingContactKernelsHelper.hpp index 02250a60170..fc8fb5f6f72 100644 --- a/src/coreComponents/physicsSolvers/contact/SolidMechanicsALMKernelsHelper.hpp +++ b/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsConformingContactKernelsHelper.hpp @@ -15,18 +15,18 @@ /** - * @file SolidMechanicsALMKernelsHelper.hpp + * @file SolidMechanicsConformingContactKernelsHelper.hpp */ -#ifndef GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSALMKERNELSHELPER_HPP_ -#define GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSALMKERNELSHELPER_HPP_ +#ifndef GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSCONFORMINGCONTACTKERNELSHELPER_HPP_ +#define GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSCONFORMINGCONTACTKERNELSHELPER_HPP_ #include "common/GeosxMacros.hpp" namespace geos { -namespace solidMechanicsALMKernelsHelper +namespace solidMechanicsConformingContactKernelsHelper { template< int I_SIZE, @@ -76,8 +76,8 @@ void assembleStrainOperator( real64 ( & strainMatrix )[I_SIZE][J_SIZE], } } -} // solidMechanicsALMKernelsHelper +} // solidMechanicsConformingContactKernelsHelper } // geos -#endif /* GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSALMKERNELSHELPER_HPP_ */ +#endif /* GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSCONFORMINGCONTACTKERNELSHELPER_HPP_ */ diff --git a/src/coreComponents/physicsSolvers/contact/SolidMechanicsALMBubbleKernels.hpp b/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsContactFaceBubbleKernels.hpp similarity index 85% rename from src/coreComponents/physicsSolvers/contact/SolidMechanicsALMBubbleKernels.hpp rename to src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsContactFaceBubbleKernels.hpp index 4b76b7a4a3d..0d622571def 100644 --- a/src/coreComponents/physicsSolvers/contact/SolidMechanicsALMBubbleKernels.hpp +++ b/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsContactFaceBubbleKernels.hpp @@ -14,14 +14,14 @@ */ /** - * @file SolidMechanicsALMBubbleKernels.hpp + * @file SolidMechanicsContactFaceBubbleKernels.hpp */ -#ifndef GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSALMBUBBLEKERNELS_HPP_ -#define GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSALMBUBBLEKERNELS_HPP_ +#ifndef GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSCONTACTFACEBUBBLEKERNELS_HPP_ +#define GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSCONTACTFACEBUBBLEKERNELS_HPP_ #include "physicsSolvers/solidMechanics/kernels/ImplicitSmallStrainQuasiStatic.hpp" -#include "SolidMechanicsALMKernelsHelper.hpp" +#include "SolidMechanicsConformingContactKernelsHelper.hpp" // TODO: Use the bilinear form utilities //#include "finiteElement/BilinearFormUtilities.hpp" @@ -29,7 +29,7 @@ namespace geos { -namespace solidMechanicsALMKernels +namespace solidMechanicsConformingContactKernels { /** @@ -40,7 +40,7 @@ namespace solidMechanicsALMKernels template< typename SUBREGION_TYPE, typename CONSTITUTIVE_TYPE, typename FE_TYPE > -class ALMBubbleKernels : +class FaceBubbleKernels : public solidMechanicsLagrangianFEMKernels::ImplicitSmallStrainQuasiStatic< SUBREGION_TYPE, CONSTITUTIVE_TYPE, FE_TYPE > @@ -75,20 +75,20 @@ class ALMBubbleKernels : * @brief Constructor * @copydoc geos::finiteElement::ImplicitKernelBase::ImplicitKernelBase */ - ALMBubbleKernels( NodeManager const & nodeManager, - EdgeManager const & edgeManager, - FaceManager const & faceManager, - localIndex const targetRegionIndex, - SUBREGION_TYPE const & elementSubRegion, - FE_TYPE const & finiteElementSpace, - CONSTITUTIVE_TYPE & inputConstitutiveType, - arrayView1d< globalIndex const > const uDofNumber, - arrayView1d< globalIndex const > const bDofNumber, - globalIndex const rankOffset, - CRSMatrixView< real64, globalIndex const > const inputMatrix, - arrayView1d< real64 > const inputRhs, - real64 const inputDt, - real64 const (&inputGravityVector)[3] ): + FaceBubbleKernels( NodeManager const & nodeManager, + EdgeManager const & edgeManager, + FaceManager const & faceManager, + localIndex const targetRegionIndex, + SUBREGION_TYPE const & elementSubRegion, + FE_TYPE const & finiteElementSpace, + CONSTITUTIVE_TYPE & inputConstitutiveType, + arrayView1d< globalIndex const > const uDofNumber, + arrayView1d< globalIndex const > const bDofNumber, + globalIndex const rankOffset, + CRSMatrixView< real64, globalIndex const > const inputMatrix, + arrayView1d< real64 > const inputRhs, + real64 const inputDt, + real64 const (&inputGravityVector)[3] ): Base( nodeManager, edgeManager, faceManager, @@ -280,10 +280,10 @@ class ALMBubbleKernels : m_constitutiveUpdate.getElasticStiffness( k, q, stack.constitutiveStiffness ); real64 strainMatrix[6][nUdof]; - solidMechanicsALMKernelsHelper::assembleStrainOperator< 6, nUdof, numNodesPerElem >( strainMatrix, dNdX ); + solidMechanicsConformingContactKernelsHelper::assembleStrainOperator< 6, nUdof, numNodesPerElem >( strainMatrix, dNdX ); real64 strainBubbleMatrix[6][nBubbleUdof]; - solidMechanicsALMKernelsHelper::assembleStrainOperator< 6, nBubbleUdof, numFacesPerElem >( strainBubbleMatrix, dBubbleNdX ); + solidMechanicsConformingContactKernelsHelper::assembleStrainOperator< 6, nBubbleUdof, numFacesPerElem >( strainBubbleMatrix, dBubbleNdX ); // TODO: It would be nice use BilinearFormUtilities::compute @@ -425,18 +425,18 @@ class ALMBubbleKernels : }; /// The factory used to construct a QuasiStatic kernel. -using ALMBubbleFactory = finiteElement::KernelFactory< ALMBubbleKernels, - arrayView1d< globalIndex const > const, - arrayView1d< globalIndex const > const, - globalIndex const, - CRSMatrixView< real64, globalIndex const > const, - arrayView1d< real64 > const, - real64 const, - real64 const (&) [3] >; +using FaceBubbleFactory = finiteElement::KernelFactory< FaceBubbleKernels, + arrayView1d< globalIndex const > const, + arrayView1d< globalIndex const > const, + globalIndex const, + CRSMatrixView< real64, globalIndex const > const, + arrayView1d< real64 > const, + real64 const, + real64 const (&) [3] >; -} // namespace SolidMechanicsALMBubbleKernels +} // namespace SolidMechanicsContactFaceBubbleKernels } // namespace geos -#endif /* GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSALMBUBBLEKERNELS_HPP_ */ +#endif /* GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSCONTACTFACEBUBBLEKERNELS_HPP_ */ diff --git a/src/coreComponents/physicsSolvers/contact/SolidMechanicsALMJumpUpdateKernels.hpp b/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsDisplacementJumpUpdateKernels.hpp similarity index 71% rename from src/coreComponents/physicsSolvers/contact/SolidMechanicsALMJumpUpdateKernels.hpp rename to src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsDisplacementJumpUpdateKernels.hpp index 1f434b3a13e..ba0bc23272a 100644 --- a/src/coreComponents/physicsSolvers/contact/SolidMechanicsALMJumpUpdateKernels.hpp +++ b/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsDisplacementJumpUpdateKernels.hpp @@ -17,15 +17,16 @@ * @file SolidMechanicsALMUpdateKernels.hpp */ -#ifndef GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSALMUPDATEKERNELS_HPP_ -#define GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSALMUPDATEKERNELS_HPP_ +#ifndef GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSDISPLACEMENTJUPDATEKERNELS_HPP_ +#define GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSDISPLACEMENTJUPDATEKERNELS_HPP_ -#include "SolidMechanicsALMKernelsBase.hpp" +#include "SolidMechanicsConformingContactKernelsBase.hpp" +#include "mesh/MeshFields.hpp" namespace geos { -namespace solidMechanicsALMKernels +namespace solidMechanicsConformingContactKernels { /** @@ -33,19 +34,28 @@ namespace solidMechanicsALMKernels */ template< typename CONSTITUTIVE_TYPE, typename FE_TYPE > -class ALMJumpUpdate : - public ALMKernelsBase< CONSTITUTIVE_TYPE, - FE_TYPE > +class DispJumpUpdate : + public ConformingContactKernelsBase< CONSTITUTIVE_TYPE, + FE_TYPE > { public: /// Alias for the base class; - using Base = ALMKernelsBase< CONSTITUTIVE_TYPE, - FE_TYPE >; + using Base = ConformingContactKernelsBase< CONSTITUTIVE_TYPE, + FE_TYPE >; /// Maximum number of nodes per element, which is equal to the maxNumTestSupportPointPerElem and /// maxNumTrialSupportPointPerElem by definition. static constexpr int numNodesPerElem = Base::maxNumTestSupportPointsPerElem; + /// The number of displacement dofs per element. + static constexpr int numUdofs = Base::numUdofs; + + /// The number of bubble dofs per element. + static constexpr int numBdofs = Base::numBdofs; + + /// The number of lagrange multiplier dofs per element. + static constexpr int numTdofs = Base::numTdofs; + using Base::m_X; using Base::m_finiteElementSpace; using Base::m_dofNumber; @@ -59,20 +69,20 @@ class ALMJumpUpdate : * @brief Constructor * @copydoc geos::finiteElement::InterfaceKernelBase::InterfaceKernelBase */ - ALMJumpUpdate( NodeManager const & nodeManager, - EdgeManager const & edgeManager, - FaceManager const & faceManager, - localIndex const targetRegionIndex, - FaceElementSubRegion & elementSubRegion, - FE_TYPE const & finiteElementSpace, - CONSTITUTIVE_TYPE & inputConstitutiveType, - arrayView1d< globalIndex const > const uDofNumber, - arrayView1d< globalIndex const > const bDofNumber, - globalIndex const rankOffset, - CRSMatrixView< real64, globalIndex const > const inputMatrix, - arrayView1d< real64 > const inputRhs, - real64 const inputDt, - arrayView1d< localIndex const > const & faceElementList ): + DispJumpUpdate( NodeManager const & nodeManager, + EdgeManager const & edgeManager, + FaceManager const & faceManager, + localIndex const targetRegionIndex, + FaceElementSubRegion & elementSubRegion, + FE_TYPE const & finiteElementSpace, + CONSTITUTIVE_TYPE & inputConstitutiveType, + arrayView1d< globalIndex const > const uDofNumber, + arrayView1d< globalIndex const > const bDofNumber, + globalIndex const rankOffset, + CRSMatrixView< real64, globalIndex const > const inputMatrix, + arrayView1d< real64 > const inputRhs, + real64 const inputDt, + arrayView1d< localIndex const > const & faceElementList ): Base( nodeManager, edgeManager, faceManager, @@ -91,7 +101,9 @@ class ALMJumpUpdate : m_bubbleDisp( faceManager.getField< fields::solidMechanics::totalBubbleDisplacement >() ), m_incrDisp( nodeManager.getField< fields::solidMechanics::incrementalDisplacement >() ), m_incrBubbleDisp( faceManager.getField< fields::solidMechanics::incrementalBubbleDisplacement >() ), - m_deltaDispJump( elementSubRegion.getField< fields::contact::deltaDispJump >().toView() ) + m_deltaDispJump( elementSubRegion.getField< fields::contact::deltaDispJump >().toView() ), + m_elementArea( elementSubRegion.getField< fields::elementArea >().toView() ), + m_slip( elementSubRegion.getField< fields::contact::slip >().toView() ) {} //*************************************************************************** @@ -102,25 +114,16 @@ class ALMJumpUpdate : struct StackVariables : public Base::StackVariables { - /// The number of displacement dofs per element. - static constexpr int numUdofs = numNodesPerElem * 3 * 2; - - /// The number of bubble dofs per element. - static constexpr int numBdofs = 3 * 2; - - /// The number of lagrange multiplier dofs per element. - static constexpr int numTdofs = 3; - public: GEOS_HOST_DEVICE StackVariables(): Base::StackVariables(), - uLocal{}, - bLocal{}, - duLocal{}, - dbLocal{}, - deltaDispJumpLocal{} + uLocal{}, + bLocal{}, + duLocal{}, + dbLocal{}, + deltaDispJumpLocal{} {} /// Stack storage for the element local displacement vector @@ -208,11 +211,6 @@ class ALMJumpUpdate : real64 complete( localIndex const k, StackVariables & stack ) const { - - constexpr int numUdofs = numNodesPerElem * 3 * 2; - - constexpr int numBdofs = 3 * 2; - real64 matRtAtu[3][numUdofs]; real64 matRtAtb[3][numBdofs]; @@ -232,12 +230,17 @@ class ALMJumpUpdate : LvArray::tensorOps::Ri_add_AijBj< 3, numBdofs >( stack.deltaDispJumpLocal, matRtAtb, stack.dbLocal ); // Store the results + real64 const scale = 1 / m_elementArea[k]; + for( int i=0; i<3; ++i ) { - m_dispJump[ k ][ i ] = stack.dispJumpLocal[ i ]; - m_deltaDispJump[ k ][ i ] = stack.deltaDispJumpLocal[ i ]; + m_dispJump[ k ][ i ] = scale * stack.dispJumpLocal[ i ]; + m_deltaDispJump[ k ][ i ] = scale * stack.deltaDispJumpLocal[ i ]; } + m_slip[k] = LvArray::math::sqrt( LvArray::math::square( m_dispJump( k, 1 ) ) + LvArray::math::square( m_dispJump( k, 2 ) ) ); + + return 0.0; } @@ -258,19 +261,23 @@ class ALMJumpUpdate : /// The rank-global delta displacement jump array. arrayView2d< real64 > const m_deltaDispJump; + arrayView1d< real64 const > const m_elementArea; + + arrayView1d< real64 > const m_slip; + }; -using ALMJumpUpdateFactory = finiteElement::InterfaceKernelFactory< ALMJumpUpdate, - arrayView1d< globalIndex const > const, - arrayView1d< globalIndex const > const, - globalIndex const, - CRSMatrixView< real64, globalIndex const > const, - arrayView1d< real64 > const, - real64 const, - arrayView1d< localIndex const > const >; +using DispJumpUpdateFactory = finiteElement::InterfaceKernelFactory< DispJumpUpdate, + arrayView1d< globalIndex const > const, + arrayView1d< globalIndex const > const, + globalIndex const, + CRSMatrixView< real64, globalIndex const > const, + arrayView1d< real64 > const, + real64 const, + arrayView1d< localIndex const > const >; } // namespace SolidMechanicsALMKernels } // namespace geos -#endif /* GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSALMUPDATEKERNELS_HPP_ */ +#endif /* GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSDISPLACEMENTJUPDATEKERNELS_HPP_ */ diff --git a/src/coreComponents/physicsSolvers/contact/SolidMechanicsEFEMJumpUpdateKernels.hpp b/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsEFEMJumpUpdateKernels.hpp similarity index 97% rename from src/coreComponents/physicsSolvers/contact/SolidMechanicsEFEMJumpUpdateKernels.hpp rename to src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsEFEMJumpUpdateKernels.hpp index 26e6ea5abe0..cca58c08ddd 100644 --- a/src/coreComponents/physicsSolvers/contact/SolidMechanicsEFEMJumpUpdateKernels.hpp +++ b/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsEFEMJumpUpdateKernels.hpp @@ -18,8 +18,8 @@ * @file SolidMechanicsEFEMKernels.hpp */ -#ifndef GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSEFEMJUMPUPDATEKERNELS_HPP_ -#define GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSEFEMJUMPUPDATEKERNELS_HPP_ +#ifndef GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSEFEMJUMPUPDATEKERNELS_HPP_ +#define GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSEFEMJUMPUPDATEKERNELS_HPP_ #include "SolidMechanicsEFEMKernelsBase.hpp" @@ -246,4 +246,4 @@ using EFEMJumpUpdateFactory = finiteElement::KernelFactory< EFEMJumpUpdate, } // namespace geos -#endif /* GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSEFEMJUMPUPDATEKERNELS_HPP_ */ +#endif /* GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSEFEMJUMPUPDATEKERNELS_HPP_ */ diff --git a/src/coreComponents/physicsSolvers/contact/SolidMechanicsEFEMKernels.hpp b/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsEFEMKernels.hpp similarity index 98% rename from src/coreComponents/physicsSolvers/contact/SolidMechanicsEFEMKernels.hpp rename to src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsEFEMKernels.hpp index f683446af4b..ff06f6137c1 100644 --- a/src/coreComponents/physicsSolvers/contact/SolidMechanicsEFEMKernels.hpp +++ b/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsEFEMKernels.hpp @@ -18,8 +18,8 @@ * @file SolidMechanicsEFEMKernels.hpp */ -#ifndef GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSEFEMKERNELS_HPP_ -#define GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSEFEMKERNELS_HPP_ +#ifndef GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSEFEMKERNELS_HPP_ +#define GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSEFEMKERNELS_HPP_ #include "SolidMechanicsEFEMKernelsBase.hpp" @@ -347,4 +347,4 @@ struct StateUpdateKernel } // namespace geos -#endif /* GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSEFEMKERNELS_HPP_ */ +#endif /* GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSEFEMKERNELS_HPP_ */ diff --git a/src/coreComponents/physicsSolvers/contact/SolidMechanicsEFEMKernelsBase.hpp b/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsEFEMKernelsBase.hpp similarity index 98% rename from src/coreComponents/physicsSolvers/contact/SolidMechanicsEFEMKernelsBase.hpp rename to src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsEFEMKernelsBase.hpp index 5f1c22b7c19..dd3d95d49b9 100644 --- a/src/coreComponents/physicsSolvers/contact/SolidMechanicsEFEMKernelsBase.hpp +++ b/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsEFEMKernelsBase.hpp @@ -18,8 +18,8 @@ * @file SolidMechanicsEFEMKernels.hpp */ -#ifndef GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSEFEMKERNELSBASE_HPP_ -#define GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSEFEMKERNELSBASE_HPP_ +#ifndef GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSEFEMKERNELSBASE_HPP_ +#define GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSEFEMKERNELSBASE_HPP_ #include "physicsSolvers/solidMechanics/kernels/ImplicitSmallStrainQuasiStatic.hpp" #include "SolidMechanicsEFEMKernelsHelper.hpp" @@ -345,4 +345,4 @@ class EFEMKernelsBase : } // namespace geos -#endif /* GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSEFEMKERNELSBASE_HPP_ */ +#endif /* GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSEFEMKERNELSBASE_HPP_ */ diff --git a/src/coreComponents/physicsSolvers/contact/SolidMechanicsEFEMKernelsHelper.hpp b/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsEFEMKernelsHelper.hpp similarity index 94% rename from src/coreComponents/physicsSolvers/contact/SolidMechanicsEFEMKernelsHelper.hpp rename to src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsEFEMKernelsHelper.hpp index 3018fb975c7..dc5232d75ee 100644 --- a/src/coreComponents/physicsSolvers/contact/SolidMechanicsEFEMKernelsHelper.hpp +++ b/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsEFEMKernelsHelper.hpp @@ -18,8 +18,8 @@ * @file EFEMKernelsHelper.hpp */ -#ifndef GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSEFEMKERNELSHELPER_HPP_ -#define GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSEFEMKERNELSHELPER_HPP_ +#ifndef GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSEFEMKERNELSHELPER_HPP_ +#define GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSEFEMKERNELSHELPER_HPP_ #include "common/DataTypes.hpp" @@ -152,4 +152,4 @@ void assembleEquilibriumOperator( real64 ( & eqMatrix )[3][6], } // geos -#endif /* SRC_CORECOMPONENTS_PHYSICSSOLVERS_CONTACT_EFEMKERNELSHELPER_HPP_ */ +#endif /* SRC_CORECOMPONENTS_PHYSICSSOLVERS_CONTACT_KERNELS_EFEMKERNELSHELPER_HPP_ */ diff --git a/src/coreComponents/physicsSolvers/contact/SolidMechanicsEFEMStaticCondensationKernels.hpp b/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsEFEMStaticCondensationKernels.hpp similarity index 97% rename from src/coreComponents/physicsSolvers/contact/SolidMechanicsEFEMStaticCondensationKernels.hpp rename to src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsEFEMStaticCondensationKernels.hpp index 83dfa5fd884..980d6d61892 100644 --- a/src/coreComponents/physicsSolvers/contact/SolidMechanicsEFEMStaticCondensationKernels.hpp +++ b/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsEFEMStaticCondensationKernels.hpp @@ -18,8 +18,8 @@ * @file SolidMechanicsEFEMKernels.hpp */ -#ifndef GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSEFEMSTATICCONDENSATIONKERNELS_HPP_ -#define GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSEFEMSTATICCONDENSATIONKERNELS_HPP_ +#ifndef GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSEFEMSTATICCONDENSATIONKERNELS_HPP_ +#define GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSEFEMSTATICCONDENSATIONKERNELS_HPP_ #include "SolidMechanicsEFEMKernelsBase.hpp" @@ -252,4 +252,4 @@ using EFEMStaticCondensationFactory = finiteElement::KernelFactory< EFEMStaticCo } // namespace geos -#endif /* GEOS_PHYSICSSOLVERS_CONTACT_SOLIDMECHANICSEFEMSTATICCONDENSATIONKERNELS_HPP_ */ +#endif /* GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSEFEMSTATICCONDENSATIONKERNELS_HPP_ */ diff --git a/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsLagrangeContactKernels.hpp b/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsLagrangeContactKernels.hpp new file mode 100644 index 00000000000..90fdec8ec4f --- /dev/null +++ b/src/coreComponents/physicsSolvers/contact/kernels/SolidMechanicsLagrangeContactKernels.hpp @@ -0,0 +1,438 @@ +/* + * ------------------------------------------------------------------------------------------------------------ + * SPDX-License-Identifier: LGPL-2.1-only + * + * Copyright (c) 2016-2024 Lawrence Livermore National Security LLC + * Copyright (c) 2018-2024 Total, S.A + * Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University + * Copyright (c) 2023-2024 Chevron + * Copyright (c) 2019- GEOS/GEOSX Contributors + * All rights reserved + * + * See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. + * ------------------------------------------------------------------------------------------------------------ + */ + +/** + * @file SolidMechanicsALMKernelsBase.hpp + */ + +#ifndef GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSLAGRANGECONTACTKERNELS_HPP_ +#define GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSLAGRANGECONTACTKERNELS_HPP_ + +#include "finiteElement/kernelInterface/InterfaceKernelBase.hpp" +#include "SolidMechanicsConformingContactKernelsBase.hpp" + +namespace geos +{ + +namespace solidMechanicsLagrangeContactKernels +{ + +/** + * @copydoc geos::finiteElement::ImplicitKernelBase + */ +template< typename CONSTITUTIVE_TYPE, + typename FE_TYPE > +class LagrangeContact : + public solidMechanicsConformingContactKernels::ConformingContactKernelsBase< CONSTITUTIVE_TYPE, + FE_TYPE > +{ +public: + /// Alias for the base class. + using Base = solidMechanicsConformingContactKernels::ConformingContactKernelsBase< CONSTITUTIVE_TYPE, + FE_TYPE >; + + /// Maximum number of nodes per element, which is equal to the maxNumTestSupportPointPerElem and + /// maxNumTrialSupportPointPerElem by definition. + static constexpr int numNodesPerElem = Base::maxNumTestSupportPointsPerElem; + + /// Compile time value for the number of quadrature points per element. + static constexpr int numQuadraturePointsPerElem = FE_TYPE::numQuadraturePoints; + + using Base::numUdofs; + using Base::numTdofs; + using Base::numBdofs; + + using Base::m_elemsToFaces; + using Base::m_faceToNodes; + using Base::m_finiteElementSpace; + using Base::m_constitutiveUpdate; + using Base::m_dofNumber; + using Base::m_bDofNumber; + using Base::m_dofRankOffset; + using Base::m_X; + using Base::m_rotationMatrix; + using Base::m_dispJump; + using Base::m_oldDispJump; + using Base::m_matrix; + using Base::m_rhs; + + /** + * @brief Constructor + * @copydoc geos::finiteElement::InterfaceKernelBase::InterfaceKernelBase + */ + LagrangeContact( NodeManager const & nodeManager, + EdgeManager const & edgeManager, + FaceManager const & faceManager, + localIndex const targetRegionIndex, + FaceElementSubRegion & elementSubRegion, + FE_TYPE const & finiteElementSpace, + CONSTITUTIVE_TYPE & inputConstitutiveType, + arrayView1d< globalIndex const > const uDofNumber, + arrayView1d< globalIndex const > const bDofNumber, + globalIndex const rankOffset, + CRSMatrixView< real64, globalIndex const > const inputMatrix, + arrayView1d< real64 > const inputRhs, + real64 const inputDt, + arrayView1d< localIndex const > const & faceElementList, + string const tractionDofKey ): + Base( nodeManager, + edgeManager, + faceManager, + targetRegionIndex, + elementSubRegion, + finiteElementSpace, + inputConstitutiveType, + uDofNumber, + bDofNumber, + rankOffset, + inputMatrix, + inputRhs, + inputDt, + faceElementList ), + m_traction( elementSubRegion.getField< fields::contact::traction >().toViewConst() ), + m_tDofNumber( elementSubRegion.getReference< globalIndex_array >( tractionDofKey ).toViewConst() ), + m_incrDisp( nodeManager.getField< fields::solidMechanics::incrementalDisplacement >() ), + m_incrBubbleDisp( faceManager.getField< fields::solidMechanics::incrementalBubbleDisplacement >() ), + m_targetIncrementalJump( elementSubRegion.getField< fields::contact::targetIncrementalJump >().toViewConst() ) + {} + + /** + * @copydoc finiteElement::KernelBase::StackVariables + */ + struct StackVariables : public Base::StackVariables + { +public: + + GEOS_HOST_DEVICE + StackVariables(): + Base::StackVariables(), + dispEqnRowIndices{}, + dispColIndices{}, + bEqnRowIndices{}, + bColIndices{}, + tColIndices{}, + localRu{}, + localRb{}, + localRt{}, + localAtt{ {} }, + localAut{ {} }, + localAbt{ {} }, + duLocal{}, + dbLocal{} + {} + + /// C-array storage for the element local row degrees of freedom. + localIndex dispEqnRowIndices[numUdofs]; + + /// C-array storage for the element local column degrees of freedom. + globalIndex dispColIndices[numUdofs]; + + /// C-array storage for the element local row degrees of freedom. + localIndex bEqnRowIndices[numBdofs]; + + /// C-array storage for the element local column degrees of freedom. + globalIndex bColIndices[numBdofs]; + + /// C-array storage for the traction local row degrees of freedom. + localIndex tEqnRowIndices[numTdofs]; + + /// C-array storage for the element local column degrees of freedom. + globalIndex tColIndices[numTdofs]; + + /// C-array storage for the element local Ru residual vector. + real64 localRu[numUdofs]; + + /// C-array storage for the element local Rb residual vector. + real64 localRb[numBdofs]; + + /// C-array storage for the element local Rt residual vector. + real64 localRt[numTdofs]; + + /// C-array storage for the element local Att matrix. + real64 localAtt[numTdofs][numTdofs]; + + /// C-array storage for the element local Aut matrix. + real64 localAut[numUdofs][numTdofs]; + + /// C-array storage for the element local Abt matrix. + real64 localAbt[numBdofs][numTdofs]; + + /// Stack storage for the element local incremental displacement vector + real64 duLocal[numUdofs]; + + /// Stack storage for the element local incremental bubble displacement vector + real64 dbLocal[numBdofs]; + }; + + //*************************************************************************** + + //START_kernelLauncher + template< typename POLICY, + typename KERNEL_TYPE > + static + real64 + kernelLaunch( localIndex const numElems, + KERNEL_TYPE const & kernelComponent ) + { + return Base::template kernelLaunch< POLICY, KERNEL_TYPE >( numElems, kernelComponent ); + } + //END_kernelLauncher + + /** + * @brief Copy global values from primary field to a local stack array. + * @copydoc ::geos::finiteElement::InterfaceKernelBase::setup + */ + GEOS_HOST_DEVICE + inline + void setup( localIndex const k, + StackVariables & stack ) const + { + constexpr int shift = numNodesPerElem * 3; + + int permutation[numNodesPerElem]; + m_finiteElementSpace.getPermutation( permutation ); + + localIndex const kf0 = m_elemsToFaces[k][0]; + localIndex const kf1 = m_elemsToFaces[k][1]; + for( localIndex a=0; a( matRRtAtu, stack.localRotationMatrix, stack.localAtu ); + // transp(R) * Atb + LvArray::tensorOps::Rij_eq_AkiBkj< 3, numBdofs, 3 >( matRRtAtb, stack.localRotationMatrix, stack.localAtb ); + + LvArray::tensorOps::copy< numTdofs, numUdofs >( stack.localAtu, matRRtAtu ); + LvArray::tensorOps::copy< numTdofs, numBdofs >( stack.localAtb, matRRtAtb ); + + LvArray::tensorOps::scale< numTdofs, numUdofs >( stack.localAtu, -1.0 ); + LvArray::tensorOps::scale< numTdofs, numBdofs >( stack.localAtb, -1.0 ); + + LvArray::tensorOps::transpose< numUdofs, numTdofs >( stack.localAut, stack.localAtu ); + LvArray::tensorOps::transpose< numBdofs, numTdofs >( stack.localAbt, stack.localAtb ); + + // Compute the traction contribute of the local residuals + LvArray::tensorOps::Ri_eq_AijBj< numUdofs, numTdofs >( tractionR, stack.localAut, m_traction[k] ); + LvArray::tensorOps::Ri_eq_AijBj< numBdofs, numTdofs >( tractionRb, stack.localAbt, m_traction[k] ); + + // Compute the local residuals + // Force Balance for nodal displacement dofs + LvArray::tensorOps::scaledAdd< numUdofs >( stack.localRu, tractionR, 1.0 ); + // Force Balance for the bubble dofs + LvArray::tensorOps::scaledAdd< numBdofs >( stack.localRb, tractionRb, 1.0 ); + + fillGlobalMatrix( stack ); + + return 0.0; + } + +protected: + + arrayView2d< real64 const > const m_traction; + + arrayView1d< globalIndex const > const m_tDofNumber; + + arrayView2d< real64 const, nodes::INCR_DISPLACEMENT_USD > const m_incrDisp; + + arrayView2d< real64 const > const m_incrBubbleDisp; + + arrayView2d< real64 const > const m_targetIncrementalJump; + + /** + * @brief Create the list of finite elements of the same type + * for each FaceElementSubRegion (Triangle or Quadrilateral) + * and of the same fracture state (Stick or Slip). + * @param domain The physical domain object + */ + void updateStickSlipList( DomainPartition const & domain ); + + /** + * @brief Create the list of finite elements of the same type + * for each FaceElementSubRegion (Triangle or Quadrilateral). + * @param domain The physical domain object + */ + void createFaceTypeList( DomainPartition const & domain ); + + /** + * @brief Create the list of elements belonging to CellElementSubRegion + * that are enriched with the bubble basis functions + * @param domain The physical domain object + */ + void createBubbleCellList( DomainPartition & domain ) const; + + /** + * @brief Fill global matrix and residual vector + * + * @param stack stack variables + */ + GEOS_HOST_DEVICE + void fillGlobalMatrix( StackVariables & stack ) const + { + + for( localIndex i=0; i < numTdofs; ++i ) + { + localIndex const dof = LvArray::integerConversion< localIndex >( stack.tEqnRowIndices[ i ] ); + + if( dof < 0 || dof >= m_matrix.numRows() ) continue; + + // TODO: May not need to be an atomic operation + RAJA::atomicAdd< parallelDeviceAtomic >( &m_rhs[dof], stack.localRt[i] ); + + // Fill in matrix block Att + m_matrix.template addToRowBinarySearchUnsorted< parallelDeviceAtomic >( dof, + stack.tColIndices, + stack.localAtt[i], + numTdofs ); + + // Fill in matrix block Atu + m_matrix.template addToRowBinarySearchUnsorted< parallelDeviceAtomic >( dof, + stack.dispColIndices, + stack.localAtu[i], + numUdofs ); + + // Fill in matrix block Atb + m_matrix.template addToRowBinarySearchUnsorted< parallelDeviceAtomic >( dof, + stack.bColIndices, + stack.localAtb[i], + numBdofs ); + } + + for( localIndex i=0; i < numUdofs; ++i ) + { + localIndex const dof = LvArray::integerConversion< localIndex >( stack.dispEqnRowIndices[ i ] ); + + if( dof < 0 || dof >= m_matrix.numRows() ) continue; + + // Is it necessary? Each row should be indepenedent + RAJA::atomicAdd< parallelDeviceAtomic >( &m_rhs[dof], stack.localRu[i] ); + + // Fill in matrix + m_matrix.template addToRowBinarySearchUnsorted< parallelDeviceAtomic >( dof, + stack.tColIndices, + stack.localAut[i], + numTdofs ); + + } + + for( localIndex i=0; i < numBdofs; ++i ) + { + localIndex const dof = LvArray::integerConversion< localIndex >( stack.bEqnRowIndices[ i ] ); + + if( dof < 0 || dof >= m_matrix.numRows() ) continue; + + // Is it necessary? Each row should be indepenedent + RAJA::atomicAdd< parallelDeviceAtomic >( &m_rhs[dof], stack.localRb[i] ); + + // Fill in matrix + m_matrix.template addToRowBinarySearchUnsorted< parallelDeviceAtomic >( dof, + stack.tColIndices, + stack.localAbt[i], + numTdofs ); + } + } + +}; + +/// The factory used to construct the kernel. +using LagrangeContactFactory = finiteElement::InterfaceKernelFactory< LagrangeContact, + arrayView1d< globalIndex const > const, + arrayView1d< globalIndex const > const, + globalIndex const, + CRSMatrixView< real64, globalIndex const > const, + arrayView1d< real64 > const, + real64 const, + arrayView1d< localIndex const > const, + string const >; + +} // namespace solidMechanicsLagrangeContactKernels + +} // namespace geos + + +#endif /* GEOS_PHYSICSSOLVERS_CONTACT_KERNELS_SOLIDMECHANICSLAGRANGECONTACTKERNELS_HPP_ */ diff --git a/src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseBase.cpp b/src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseBase.cpp index 08e7176fdbe..9eb10dbab90 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseBase.cpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseBase.cpp @@ -78,6 +78,7 @@ CompositionalMultiphaseBase::CompositionalMultiphaseBase( const string & name, m_allowCompDensChopping( 1 ), m_useTotalMassEquation( 1 ), m_useSimpleAccumulation( 1 ), + m_useNewGravity( 0 ), m_minCompDens( isothermalCompositionalMultiphaseBaseKernels::minDensForDivision ) { //START_SPHINX_INCLUDE_00 @@ -164,6 +165,12 @@ CompositionalMultiphaseBase::CompositionalMultiphaseBase( const string & name, setApplyDefaultValue( 1 ). setDescription( "Flag indicating whether simple accumulation form is used" ); + this->registerWrapper( viewKeyStruct::useNewGravityString(), &m_useNewGravity ). + setSizedFromParent( 0 ). + setInputFlag( InputFlags::OPTIONAL ). + setApplyDefaultValue( 0 ). + setDescription( "Flag indicating whether new gravity treatment is used" ); + this->registerWrapper( viewKeyStruct::minCompDensString(), &m_minCompDens ). setSizedFromParent( 0 ). setInputFlag( InputFlags::OPTIONAL ). @@ -831,30 +838,25 @@ real64 CompositionalMultiphaseBase::updateFluidState( ElementSubRegionBase & sub } void CompositionalMultiphaseBase::initializeFluidState( MeshLevel & mesh, - DomainPartition & domain, arrayView1d< string const > const & regionNames ) { GEOS_MARK_FUNCTION; integer const numComp = m_numComponents; - // 1. Compute hydrostatic equilibrium in the regions for which corresponding field specification tag has been specified - computeHydrostaticEquilibrium(); - mesh.getElemManager().forElementSubRegions( regionNames, [&]( localIndex const, ElementSubRegionBase & subRegion ) { - // 2. Assume global component fractions have been prescribed. + // Assume global component fractions have been prescribed. // Initialize constitutive state to get fluid density. updateFluidModel( subRegion ); - // 3. Back-calculate global component densities from fractions and total fluid density + // Back-calculate global component densities from fractions and total fluid density // in order to initialize the primary solution variables - string const & fluidName = subRegion.getReference< string >( viewKeyStruct::fluidNamesString() ); + string const & fluidName = subRegion.template getReference< string >( viewKeyStruct::fluidNamesString() ); MultiFluidBase const & fluid = getConstitutiveModel< MultiFluidBase >( subRegion, fluidName ); arrayView2d< real64 const, multifluid::USD_FLUID > const totalDens = fluid.totalDensity(); - arrayView2d< real64 const, compflow::USD_COMP > const compFrac = subRegion.getField< fields::flow::globalCompFraction >(); arrayView2d< real64, compflow::USD_COMP > const compDens = @@ -867,10 +869,13 @@ void CompositionalMultiphaseBase::initializeFluidState( MeshLevel & mesh, compDens[ei][ic] = totalDens[ei][0] * compFrac[ei][ic]; } } ); - } ); - // with initial component densities defined - check if they need to be corrected to avoid zero diags etc - chopNegativeDensities( domain ); + // with initial component densities defined - check if they need to be corrected to avoid zero diags etc + if( m_allowCompDensChopping ) + { + chopNegativeDensities( subRegion ); + } + } ); // for some reason CUDA does not want the host_device lambda to be defined inside the generic lambda // I need the exact type of the subRegion for updateSolidflowProperties to work well. @@ -878,115 +883,65 @@ void CompositionalMultiphaseBase::initializeFluidState( MeshLevel & mesh, SurfaceElementSubRegion >( regionNames, [&]( localIndex const, auto & subRegion ) { - // 4. Initialize/update dependent state quantities + // Initialize/update dependent state quantities - // 4.1 Update the constitutive models that only depend on - // - the primary variables - // - the fluid constitutive quantities (as they have already been updated) - // We postpone the other constitutive models for now - // In addition, to avoid multiplying permeability/porosity bay netToGross in the assembly kernel, we do it once and for all here - arrayView1d< real64 const > const netToGross = subRegion.template getField< fields::flow::netToGross >(); - CoupledSolidBase const & porousSolid = - getConstitutiveModel< CoupledSolidBase >( subRegion, subRegion.template getReference< string >( viewKeyStruct::solidNamesString() ) ); - PermeabilityBase const & permeabilityModel = - getConstitutiveModel< PermeabilityBase >( subRegion, subRegion.template getReference< string >( viewKeyStruct::permeabilityNamesString() ) ); - permeabilityModel.scaleHorizontalPermeability( netToGross ); - porousSolid.scaleReferencePorosity( netToGross ); - saveConvergedState( subRegion ); // necessary for a meaningful porosity update in sequential schemes - updatePorosityAndPermeability( subRegion ); updateCompAmount( subRegion ); updatePhaseVolumeFraction( subRegion ); - // Now, we initialize and update each constitutive model one by one + // Update the constitutive models that only depend on + // - the primary variables + // - the fluid constitutive quantities (as they have already been updated) + // We postpone the other constitutive models for now - // 4.2 Save the computed porosity into the old porosity - // - // Note: - // - This must be called after updatePorosityAndPermeability - // - This step depends on porosity - string const & solidName = subRegion.template getReference< string >( viewKeyStruct::solidNamesString() ); - CoupledSolidBase const & porousMaterial = getConstitutiveModel< CoupledSolidBase >( subRegion, solidName ); - porousMaterial.initializeState(); - - // 4.3 Initialize/update the relative permeability model using the initial phase volume fraction - // This is needed to handle relative permeability hysteresis - // Also, initialize the fluid model - // - // Note: - // - This must be called after updatePhaseVolumeFraction - // - This step depends on phaseVolFraction + // Now, we initialize and update each constitutive model one by one // initialized phase volume fraction arrayView2d< real64 const, compflow::USD_PHASE > const phaseVolFrac = subRegion.template getField< fields::flow::phaseVolumeFraction >(); - string const & relpermName = subRegion.template getReference< string >( viewKeyStruct::relPermNamesString() ); - RelativePermeabilityBase & relPermMaterial = - getConstitutiveModel< RelativePermeabilityBase >( subRegion, relpermName ); - relPermMaterial.saveConvergedPhaseVolFractionState( phaseVolFrac ); // this needs to happen before calling updateRelPermModel + // Initialize/update the relative permeability model using the initial phase volume fraction + // Note: + // - This must be called after updatePhaseVolumeFraction + // - This step depends on phaseVolFraction + RelativePermeabilityBase & relPerm = + getConstitutiveModel< RelativePermeabilityBase >( subRegion, subRegion.template getReference< string >( viewKeyStruct::relPermNamesString() ) ); + relPerm.saveConvergedPhaseVolFractionState( phaseVolFrac ); // this needs to happen before calling updateRelPermModel updateRelPermModel( subRegion ); - relPermMaterial.saveConvergedState(); // this needs to happen after calling updateRelPermModel + relPerm.saveConvergedState(); // this needs to happen after calling updateRelPermModel string const & fluidName = subRegion.template getReference< string >( viewKeyStruct::fluidNamesString() ); - MultiFluidBase & fluidMaterial = getConstitutiveModel< MultiFluidBase >( subRegion, fluidName ); - fluidMaterial.initializeState(); + MultiFluidBase & fluid = getConstitutiveModel< MultiFluidBase >( subRegion, fluidName ); + fluid.initializeState(); - // 4.4 Then, we initialize/update the capillary pressure model - // + // Update the phase mobility // Note: - // - This must be called after updatePorosityAndPermeability - // - This step depends on porosity and permeability + // - This must be called after updateRelPermModel + // - This step depends phaseRelPerm + updatePhaseMobility( subRegion ); + + // Initialize/update the capillary pressure model + // Note: + // - This must be called after updatePorosityAndPermeability and updatePhaseVolumeFraction + // - This step depends on porosity, permeability, and phaseVolFraction if( m_hasCapPressure ) { // initialized porosity - arrayView2d< real64 const > const porosity = porousMaterial.getPorosity(); + CoupledSolidBase const & porousSolid = + getConstitutiveModel< CoupledSolidBase >( subRegion, subRegion.template getReference< string >( viewKeyStruct::solidNamesString() ) ); + arrayView2d< real64 const > const porosity = porousSolid.getPorosity(); - string const & permName = subRegion.template getReference< string >( viewKeyStruct::permeabilityNamesString() ); - PermeabilityBase const & permeabilityMaterial = - getConstitutiveModel< PermeabilityBase >( subRegion, permName ); // initialized permeability + PermeabilityBase const & permeabilityMaterial = + getConstitutiveModel< PermeabilityBase >( subRegion, subRegion.template getReference< string >( viewKeyStruct::permeabilityNamesString() ) ); arrayView3d< real64 const > const permeability = permeabilityMaterial.permeability(); - string const & capPressureName = subRegion.template getReference< string >( viewKeyStruct::capPressureNamesString() ); - CapillaryPressureBase const & capPressureMaterial = - getConstitutiveModel< CapillaryPressureBase >( subRegion, capPressureName ); - capPressureMaterial.initializeRockState( porosity, permeability ); // this needs to happen before calling updateCapPressureModel + CapillaryPressureBase const & capPressure = + getConstitutiveModel< CapillaryPressureBase >( subRegion, subRegion.template getReference< string >( viewKeyStruct::capPressureNamesString() ) ); + capPressure.initializeRockState( porosity, permeability ); // this needs to happen before calling updateCapPressureModel updateCapPressureModel( subRegion ); } - // 4.5 Update the phase mobility - // - // Note: - // - This must be called after updateRelPermModel - // - This step depends phaseRelPerm - updatePhaseMobility( subRegion ); - - // 4.6 We initialize the rock thermal quantities: conductivity and solid internal energy - // - // Note: - // - This must be called after updatePorosityAndPermeability and updatePhaseVolumeFraction - // - This step depends on porosity and phaseVolFraction - if( m_isThermal ) - { - // initialized porosity - arrayView2d< real64 const > const porosity = porousMaterial.getPorosity(); - - string const & thermalConductivityName = subRegion.template getReference< string >( viewKeyStruct::thermalConductivityNamesString() ); - MultiPhaseThermalConductivityBase const & conductivityMaterial = - getConstitutiveModel< MultiPhaseThermalConductivityBase >( subRegion, thermalConductivityName ); - conductivityMaterial.initializeRockFluidState( porosity, phaseVolFrac ); - // note that there is nothing to update here because thermal conductivity is explicit for now - - updateSolidInternalEnergyModel( subRegion ); - string const & solidInternalEnergyName = subRegion.template getReference< string >( viewKeyStruct::solidInternalEnergyNamesString() ); - SolidInternalEnergy const & solidInternalEnergyMaterial = - getConstitutiveModel< SolidInternalEnergy >( subRegion, solidInternalEnergyName ); - solidInternalEnergyMaterial.saveConvergedState(); - - updateEnergy( subRegion ); - } - - // Step 4.7: if the diffusion and/or dispersion is/are supported, initialize the two models + // If the diffusion and/or dispersion is/are supported, initialize the two models if( m_hasDiffusion ) { string const & diffusionName = subRegion.template getReference< string >( viewKeyStruct::diffusionNamesString() ); @@ -1004,24 +959,42 @@ void CompositionalMultiphaseBase::initializeFluidState( MeshLevel & mesh, } } ); +} - // 5. Save initial pressure - mesh.getElemManager().forElementSubRegions( regionNames, [&]( localIndex const, - ElementSubRegionBase & subRegion ) +void CompositionalMultiphaseBase::initializeThermalState( MeshLevel & mesh, arrayView1d< string const > const & regionNames ) +{ + mesh.getElemManager().forElementSubRegions< CellElementSubRegion, + SurfaceElementSubRegion >( regionNames, [&]( localIndex const, + auto & subRegion ) { - arrayView1d< real64 const > const pres = subRegion.getField< fields::flow::pressure >(); - arrayView1d< real64 > const initPres = subRegion.getField< fields::flow::initialPressure >(); - arrayView1d< real64 const > const temp = subRegion.getField< fields::flow::temperature >(); - arrayView1d< real64 > const initTemp = subRegion.template getField< fields::flow::initialTemperature >(); - initPres.setValues< parallelDevicePolicy<> >( pres ); - initTemp.setValues< parallelDevicePolicy<> >( temp ); + // initialized porosity + CoupledSolidBase const & porousSolid = + getConstitutiveModel< CoupledSolidBase >( subRegion, subRegion.template getReference< string >( viewKeyStruct::solidNamesString() ) ); + arrayView2d< real64 const > const porosity = porousSolid.getPorosity(); + + // initialized phase volume fraction + arrayView2d< real64 const, compflow::USD_PHASE > const phaseVolFrac = + subRegion.template getField< fields::flow::phaseVolumeFraction >(); + + string const & thermalConductivityName = subRegion.template getReference< string >( viewKeyStruct::thermalConductivityNamesString()); + MultiPhaseThermalConductivityBase const & conductivityMaterial = + getConstitutiveModel< MultiPhaseThermalConductivityBase >( subRegion, thermalConductivityName ); + conductivityMaterial.initializeRockFluidState( porosity, phaseVolFrac ); + // note that there is nothing to update here because thermal conductivity is explicit for now + + updateSolidInternalEnergyModel( subRegion ); + string const & solidInternalEnergyName = subRegion.template getReference< string >( viewKeyStruct::solidInternalEnergyNamesString()); + SolidInternalEnergy const & solidInternalEnergyMaterial = + getConstitutiveModel< SolidInternalEnergy >( subRegion, solidInternalEnergyName ); + solidInternalEnergyMaterial.saveConvergedState(); + + updateEnergy( subRegion ); } ); } -void CompositionalMultiphaseBase::computeHydrostaticEquilibrium() +void CompositionalMultiphaseBase::computeHydrostaticEquilibrium( DomainPartition & domain ) { FieldSpecificationManager & fsManager = FieldSpecificationManager::getInstance(); - DomainPartition & domain = this->getGroupByPath< DomainPartition >( "/Problem/domain" ); integer const numComps = m_numComponents; integer const numPhases = m_numPhases; @@ -1281,8 +1254,7 @@ void CompositionalMultiphaseBase::initializePostInitialConditionsPreSubGroups() arrayView1d< string const > const & regionNames ) { FieldIdentifiers fieldsToBeSync; - fieldsToBeSync.addElementFields( { fields::flow::pressure::key(), - fields::flow::globalCompDensity::key() }, + fieldsToBeSync.addElementFields( { fields::flow::globalCompDensity::key() }, regionNames ); CommunicationTools::getInstance().synchronizeFields( fieldsToBeSync, mesh, domain.getNeighbors(), false ); @@ -1295,35 +1267,10 @@ void CompositionalMultiphaseBase::initializePostInitialConditionsPreSubGroups() string const & fluidName = subRegion.template getReference< string >( viewKeyStruct::fluidNamesString() ); MultiFluidBase & fluid = getConstitutiveModel< MultiFluidBase >( subRegion, fluidName ); fluid.setMassFlag( m_useMass ); - - saveConvergedState( subRegion ); // necessary for a meaningful porosity update in sequential schemes - updatePorosityAndPermeability( subRegion ); - - CoupledSolidBase const & porousSolid = - getConstitutiveModel< CoupledSolidBase >( subRegion, - subRegion.template getReference< string >( viewKeyStruct::solidNamesString() ) ); - porousSolid.initializeState(); - } ); - - // Initialize primary variables from applied initial conditions - initializeFluidState( mesh, domain, regionNames ); - - mesh.getElemManager().forElementRegions< SurfaceElementRegion >( regionNames, - [&]( localIndex const, - SurfaceElementRegion & region ) - { - region.forElementSubRegions< FaceElementSubRegion >( [&]( FaceElementSubRegion & subRegion ) - { - subRegion.getWrapper< real64_array >( fields::flow::hydraulicAperture::key() ). - setApplyDefaultValue( region.getDefaultAperture() ); - } ); } ); - } ); - // report to the user if some pore volumes are very small - // note: this function is here because: 1) porosity has been initialized and 2) NTG has been applied - validatePoreVolumes( domain ); + initializeState( domain ); } void @@ -2071,9 +2018,6 @@ void CompositionalMultiphaseBase::chopNegativeDensities( DomainPartition & domai using namespace isothermalCompositionalMultiphaseBaseKernels; - integer const numComp = m_numComponents; - real64 const minCompDens = m_minCompDens; - forDiscretizationOnMeshTargets( domain.getMeshBodies(), [&]( string const &, MeshLevel & mesh, arrayView1d< string const > const & regionNames ) @@ -2082,25 +2026,33 @@ void CompositionalMultiphaseBase::chopNegativeDensities( DomainPartition & domai [&]( localIndex const, ElementSubRegionBase & subRegion ) { - arrayView1d< integer const > const ghostRank = subRegion.ghostRank(); + chopNegativeDensities( subRegion ); + } ); + } ); +} - arrayView2d< real64, compflow::USD_COMP > const compDens = - subRegion.getField< fields::flow::globalCompDensity >(); +void CompositionalMultiphaseBase::chopNegativeDensities( ElementSubRegionBase & subRegion ) +{ + integer const numComp = m_numComponents; + real64 const minCompDens = m_minCompDens; - forAll< parallelDevicePolicy<> >( subRegion.size(), [=] GEOS_HOST_DEVICE ( localIndex const ei ) + arrayView1d< integer const > const ghostRank = subRegion.ghostRank(); + + arrayView2d< real64, compflow::USD_COMP > const compDens = + subRegion.getField< fields::flow::globalCompDensity >(); + + forAll< parallelDevicePolicy<> >( subRegion.size(), [=] GEOS_HOST_DEVICE ( localIndex const ei ) + { + if( ghostRank[ei] < 0 ) + { + for( integer ic = 0; ic < numComp; ++ic ) { - if( ghostRank[ei] < 0 ) + if( compDens[ei][ic] < minCompDens ) { - for( integer ic = 0; ic < numComp; ++ic ) - { - if( compDens[ei][ic] < minCompDens ) - { - compDens[ei][ic] = minCompDens; - } - } + compDens[ei][ic] = minCompDens; } - } ); - } ); + } + } } ); } @@ -2300,6 +2252,7 @@ void CompositionalMultiphaseBase::computeCFLNumbers( geos::DomainPartition & dom isothermalCompositionalMultiphaseBaseKernels::KernelLaunchSelector1 < isothermalCompositionalMultiphaseFVMKernels::CFLFluxKernel >( numComps, numPhases, + m_useNewGravity, dt, stencilWrapper, compFlowAccessors.get( fields::flow::pressure{} ), diff --git a/src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseBase.hpp b/src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseBase.hpp index cfd06428707..1e657613848 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseBase.hpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseBase.hpp @@ -268,6 +268,7 @@ class CompositionalMultiphaseBase : public FlowSolverBase static constexpr char const * allowLocalCompDensChoppingString() { return "allowLocalCompDensityChopping"; } static constexpr char const * useTotalMassEquationString() { return "useTotalMassEquation"; } static constexpr char const * useSimpleAccumulationString() { return "useSimpleAccumulation"; } + static constexpr char const * useNewGravityString() { return "useNewGravity"; } static constexpr char const * minCompDensString() { return "minCompDens"; } static constexpr char const * maxSequentialCompDensChangeString() { return "maxSequentialCompDensChange"; } static constexpr char const * minScalingFactorString() { return "minScalingFactor"; } @@ -282,12 +283,14 @@ class CompositionalMultiphaseBase : public FlowSolverBase * from prescribed intermediate values (i.e. global densities from global fractions) * and any applicable hydrostatic equilibration of the domain */ - void initializeFluidState( MeshLevel & mesh, DomainPartition & domain, arrayView1d< string const > const & regionNames ); + virtual void initializeFluidState( MeshLevel & mesh, arrayView1d< string const > const & regionNames ) override; + + virtual void initializeThermalState( MeshLevel & mesh, arrayView1d< string const > const & regionNames ) override; /** * @brief Compute the hydrostatic equilibrium using the compositions and temperature input tables */ - void computeHydrostaticEquilibrium(); + virtual void computeHydrostaticEquilibrium( DomainPartition & domain ) override; /** * @brief Function to perform the Application of Dirichlet type BC's @@ -362,6 +365,8 @@ class CompositionalMultiphaseBase : public FlowSolverBase */ void chopNegativeDensities( DomainPartition & domain ); + void chopNegativeDensities( ElementSubRegionBase & subRegion ); + virtual real64 setNextDtBasedOnStateChange( real64 const & currentDt, DomainPartition & domain ) override; @@ -482,6 +487,9 @@ class CompositionalMultiphaseBase : public FlowSolverBase /// flag indicating whether simple accumulation form is used integer m_useSimpleAccumulation; + /// flag indicating whether new gravity treatment is used + integer m_useNewGravity; + /// minimum allowed global component density real64 m_minCompDens; diff --git a/src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseFVM.cpp b/src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseFVM.cpp index 784c7810169..8eec4acbef0 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseFVM.cpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseFVM.cpp @@ -36,8 +36,6 @@ #include "mesh/mpiCommunications/CommunicationTools.hpp" #include "physicsSolvers/fluidFlow/FlowSolverBaseFields.hpp" #include "physicsSolvers/fluidFlow/CompositionalMultiphaseBaseFields.hpp" -#include "physicsSolvers/fluidFlow/kernels/compositional/AccumulationKernel.hpp" -#include "physicsSolvers/fluidFlow/kernels/compositional/ThermalAccumulationKernel.hpp" #include "physicsSolvers/fluidFlow/kernels/compositional/ResidualNormKernel.hpp" #include "physicsSolvers/fluidFlow/kernels/compositional/ThermalResidualNormKernel.hpp" #include "physicsSolvers/fluidFlow/kernels/compositional/SolutionScalingKernel.hpp" @@ -50,10 +48,10 @@ #include "physicsSolvers/fluidFlow/kernels/compositional/ThermalDiffusionDispersionFluxComputeKernel.hpp" #include "physicsSolvers/fluidFlow/kernels/compositional/StabilizedFluxComputeKernel.hpp" #include "physicsSolvers/fluidFlow/kernels/compositional/DissipationFluxComputeKernel.hpp" -#include "physicsSolvers/fluidFlow/kernels/compositional/PhaseMobilityKernel.hpp" -#include "physicsSolvers/fluidFlow/kernels/compositional/ThermalPhaseMobilityKernel.hpp" #include "physicsSolvers/fluidFlow/kernels/compositional/DirichletFluxComputeKernel.hpp" #include "physicsSolvers/fluidFlow/kernels/compositional/ThermalDirichletFluxComputeKernel.hpp" +#include "physicsSolvers/fluidFlow/kernels/compositional/PhaseMobilityKernel.hpp" +#include "physicsSolvers/fluidFlow/kernels/compositional/ThermalPhaseMobilityKernel.hpp" #include "physicsSolvers/fluidFlow/kernels/compositional/AquiferBCKernel.hpp" namespace geos @@ -233,6 +231,7 @@ void CompositionalMultiphaseFVM::assembleFluxTerms( real64 const dt, elemDofKey, m_hasCapPressure, m_useTotalMassEquation, + m_useNewGravity, fluxApprox.upwindingParams(), getName(), mesh.getElemManager(), @@ -437,10 +436,10 @@ real64 CompositionalMultiphaseFVM::calculateResidualNorm( real64 const & GEOS_UN // step 3: second reduction across MPI ranks real64 residualNorm = 0.0; + array1d< real64 > globalResidualNorm; + globalResidualNorm.resize( numNorm ); if( m_isThermal ) { - array1d< real64 > globalResidualNorm; - globalResidualNorm.resize( numNorm ); if( normType == physicsSolverBaseKernels::NormType::Linf ) { physicsSolverBaseKernels::LinfResidualNormHelper:: @@ -458,8 +457,6 @@ real64 CompositionalMultiphaseFVM::calculateResidualNorm( real64 const & GEOS_UN } else { - array1d< real64 > globalResidualNorm; - globalResidualNorm.resize( numNorm - 1 ); if( normType == physicsSolverBaseKernels::NormType::Linf ) { physicsSolverBaseKernels::LinfResidualNormHelper:: @@ -472,11 +469,8 @@ real64 CompositionalMultiphaseFVM::calculateResidualNorm( real64 const & GEOS_UN } residualNorm = sqrt( globalResidualNorm[0] * globalResidualNorm[0] + globalResidualNorm[1] * globalResidualNorm[1] ); - if( getLogLevel() >= 1 && logger::internal::rank == 0 ) - { - std::cout << GEOS_FMT( " ( Rmass Rvol ) = ( {:4.2e} {:4.2e} )", - globalResidualNorm[0], globalResidualNorm[1] ); - } + GEOS_LOG_LEVEL_INFO_RANK_0_NLR( logInfo::Convergence, GEOS_FMT( " ( Rmass Rvol ) = ( {:4.2e} {:4.2e} )", + globalResidualNorm[0], globalResidualNorm[1] ) ); } return residualNorm; @@ -490,9 +484,13 @@ real64 CompositionalMultiphaseFVM::scalingForSystemSolution( DomainPartition & d string const dofKey = dofManager.getKey( viewKeyStruct::elemDofFieldString() ); real64 scalingFactor = 1.0; - real64 maxDeltaPres = 0.0, maxDeltaCompDens = 0.0, maxDeltaTemp = 0.0; real64 minPresScalingFactor = 1.0, minCompDensScalingFactor = 1.0, minTempScalingFactor = 1.0; + + std::vector< valueAndLocationType > regionDeltaPresMaxLoc; + std::vector< valueAndLocationType > regionDeltaTempMaxLoc; + std::vector< valueAndLocationType > regionDeltaCompDensMaxLoc; + forDiscretizationOnMeshTargets( domain.getMeshBodies(), [&]( string const &, MeshLevel & mesh, arrayView1d< string const > const & regionNames ) @@ -501,6 +499,7 @@ real64 CompositionalMultiphaseFVM::scalingForSystemSolution( DomainPartition & d [&]( localIndex const, ElementSubRegionBase & subRegion ) { + arrayView1d< globalIndex const > const localToGlobalMap = subRegion.localToGlobalMap(); arrayView1d< real64 const > const pressure = subRegion.getField< fields::flow::pressure >(); arrayView1d< real64 const > const temperature = subRegion.getField< fields::flow::temperature >(); arrayView2d< real64 const, compflow::USD_COMP > const compDens = subRegion.getField< fields::flow::globalCompDensity >(); @@ -509,6 +508,7 @@ real64 CompositionalMultiphaseFVM::scalingForSystemSolution( DomainPartition & d arrayView1d< real64 > compDensScalingFactor = subRegion.getField< fields::flow::globalCompDensityScalingFactor >(); const integer temperatureOffset = m_numComponents+1; + auto const subRegionData = m_isThermal ? thermalCompositionalMultiphaseBaseKernels:: @@ -545,38 +545,68 @@ real64 CompositionalMultiphaseFVM::scalingForSystemSolution( DomainPartition & d dofKey, subRegion, localSolution ); - - if( m_scalingType == ScalingType::Global ) + if( subRegion.size() > 0 || subRegion.size() != subRegion.getNumberOfGhosts() ) { - scalingFactor = std::min( scalingFactor, subRegionData.localMinVal ); + if( m_scalingType == ScalingType::Global ) + { + scalingFactor = std::min( scalingFactor, subRegionData.localMinVal ); + } + + regionDeltaPresMaxLoc.push_back( valueAndLocationType( subRegionData.localMaxDeltaPres, localToGlobalMap[subRegionData.localMaxDeltaPresLoc] ) ); + minPresScalingFactor = std::min( minPresScalingFactor, subRegionData.localMinPresScalingFactor ); + + regionDeltaCompDensMaxLoc.push_back( valueAndLocationType( subRegionData.localMaxDeltaCompDens, localToGlobalMap[subRegionData.localMaxDeltaCompDensLoc] ) ); + minCompDensScalingFactor = std::min( minCompDensScalingFactor, subRegionData.localMinCompDensScalingFactor ); + + if( m_isThermal ) + { + regionDeltaTempMaxLoc.push_back( valueAndLocationType( subRegionData.localMaxDeltaTemp, localToGlobalMap[subRegionData.localMaxDeltaTempLoc] ) ); + minTempScalingFactor = std::min( minTempScalingFactor, subRegionData.localMinTempScalingFactor ); + } } - maxDeltaPres = std::max( maxDeltaPres, subRegionData.localMaxDeltaPres ); - maxDeltaCompDens = std::max( maxDeltaCompDens, subRegionData.localMaxDeltaCompDens ); - maxDeltaTemp = std::max( maxDeltaTemp, subRegionData.localMaxDeltaTemp ); - minPresScalingFactor = std::min( minPresScalingFactor, subRegionData.localMinPresScalingFactor ); - minCompDensScalingFactor = std::min( minCompDensScalingFactor, subRegionData.localMinCompDensScalingFactor ); - minTempScalingFactor = std::min( minTempScalingFactor, subRegionData.localMinTempScalingFactor ); } ); } ); + auto [localDeltaPresMax, localPresMaxLoc] = *std::max_element( begin( regionDeltaPresMaxLoc ), end( regionDeltaPresMaxLoc ), []( auto & lhs, auto & rhs ) { + return lhs.value < rhs.value; + } ); + auto globalDeltaPresMax = MpiWrapper::maxValLoc( valueAndLocationType( localDeltaPresMax, localPresMaxLoc )); + auto [ localDeltaCompDensMax, localCompDensMaxLoc ] = *std::max_element( begin( regionDeltaCompDensMaxLoc ), end( regionDeltaCompDensMaxLoc ), []( auto & lhs, auto & rhs ) { + return lhs.value < rhs.value; + } ); + auto globalDeltaCompDensMax = MpiWrapper::maxValLoc( valueAndLocationType( localDeltaCompDensMax, localCompDensMaxLoc )); + scalingFactor = MpiWrapper::min( scalingFactor ); - maxDeltaPres = MpiWrapper::max( maxDeltaPres ); - maxDeltaCompDens = MpiWrapper::max( maxDeltaCompDens ); minPresScalingFactor = MpiWrapper::min( minPresScalingFactor ); minCompDensScalingFactor = MpiWrapper::min( minCompDensScalingFactor ); string const massUnit = m_useMass ? "kg/m3" : "mol/m3"; - GEOS_LOG_LEVEL_INFO_RANK_0( logInfo::Solution, GEOS_FMT( " {}: Max pressure change = {} Pa (before scaling)", - getName(), GEOS_FMT( "{:.{}f}", maxDeltaPres, 3 ) ) ); - GEOS_LOG_LEVEL_INFO_RANK_0( logInfo::Solution, GEOS_FMT( " {}: Max component density change = {} {} (before scaling)", - getName(), GEOS_FMT( "{:.{}f}", maxDeltaCompDens, 3 ), massUnit ) ); + GEOS_LOG_LEVEL_INFO_RANK_0( logInfo::Solution, + GEOS_FMT( " {}: Max pressure change = {:.3f} Pa (before scaling) at cell {}", + getName(), + globalDeltaPresMax.value, + globalDeltaPresMax.location ) ); + + GEOS_LOG_LEVEL_INFO_RANK_0( logInfo::Solution, + GEOS_FMT( " {}: Max component density change = {:.3f} {} (before scaling) at cell {}", + getName(), + globalDeltaCompDensMax.value, + massUnit, + globalDeltaCompDensMax.location ) ); if( m_isThermal ) { - maxDeltaTemp = MpiWrapper::max( maxDeltaTemp ); + auto [localDeltaTempMax, localDeltaTempMaxLoc ] = *std::max_element( begin( regionDeltaTempMaxLoc ), end( regionDeltaTempMaxLoc ), []( auto & lhs, auto & rhs ) { + return lhs.value < rhs.value; + } ); + auto globalMaxDeltaTemp = MpiWrapper::maxValLoc( valueAndLocationType( localDeltaTempMax, localDeltaTempMaxLoc )); + minTempScalingFactor = MpiWrapper::min( minTempScalingFactor ); - GEOS_LOG_LEVEL_INFO_RANK_0( logInfo::Solution, GEOS_FMT( " {}: Max temperature change = {} K (before scaling)", - getName(), GEOS_FMT( "{:.{}f}", maxDeltaTemp, 3 ) ) ); + GEOS_LOG_LEVEL_INFO_RANK_0( logInfo::Solution, + GEOS_FMT( " {}: Max temperature change = {:.3f} K (before scaling) at cell maxRegionDeltaTempLoc {}", + getName(), + globalMaxDeltaTemp.value, + globalMaxDeltaTemp.location ) ); } if( m_scalingType == ScalingType::Local ) diff --git a/src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseFVM.hpp b/src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseFVM.hpp index 88249873115..48efd363a96 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseFVM.hpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseFVM.hpp @@ -174,6 +174,19 @@ class CompositionalMultiphaseFVM : public CompositionalMultiphaseBase Local ///< Scale the Newton update locally (modifies the Newton direction) }; + /** + * @brief Storage for value and element location, used to determine global max + location + */ + template< typename VALUE_TYPE, typename INDEX_TYPE > + struct valueAndLocation + { + valueAndLocation(){} + valueAndLocation( VALUE_TYPE val, INDEX_TYPE loc ): value( val ), location( loc ){} + VALUE_TYPE value; + INDEX_TYPE location; + }; + typedef valueAndLocation< real64, globalIndex > valueAndLocationType; + protected: virtual void postInputInitialization() override; diff --git a/src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseHybridFVM.cpp b/src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseHybridFVM.cpp index bedfa0c3261..d6a0c9568d6 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseHybridFVM.cpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseHybridFVM.cpp @@ -31,7 +31,6 @@ #include "physicsSolvers/fluidFlow/FlowSolverBaseFields.hpp" #include "physicsSolvers/fluidFlow/CompositionalMultiphaseBaseFields.hpp" #include "physicsSolvers/fluidFlow/kernels/compositional/CompositionalMultiphaseHybridFVMKernels.hpp" -#include "physicsSolvers/fluidFlow/kernels/compositional/AccumulationKernel.hpp" #include "physicsSolvers/fluidFlow/kernels/compositional/SolutionScalingKernel.hpp" #include "physicsSolvers/fluidFlow/kernels/compositional/SolutionCheckKernel.hpp" #include "physicsSolvers/fluidFlow/kernels/compositional/ResidualNormKernel.hpp" diff --git a/src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseStatistics.cpp b/src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseStatistics.cpp index 1aea8723fd8..4e9337b4368 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseStatistics.cpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/CompositionalMultiphaseStatistics.cpp @@ -427,7 +427,7 @@ void CompositionalMultiphaseStatistics::computeRegionStatistics( real64 const ti GEOS_FMT( "{} Phase mass: {} {}", statPrefix, regionStatistics.phaseMass, massUnit ) ); - // metric 1: trapping computed with the Land trapping coefficient (similar to Eclipse) + // metric 1: trapping computed with the Land trapping coefficient GEOS_LOG_LEVEL_INFO_RANK_0( logInfo::Statistics, GEOS_FMT( "{} Trapped phase mass (metric 1): {} {}", statPrefix, regionStatistics.trappedPhaseMass, massUnit ) ); diff --git a/src/coreComponents/physicsSolvers/fluidFlow/FlowSolverBase.cpp b/src/coreComponents/physicsSolvers/fluidFlow/FlowSolverBase.cpp index f803e7c7e1e..8cd3ff1b942 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/FlowSolverBase.cpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/FlowSolverBase.cpp @@ -286,16 +286,6 @@ void FlowSolverBase::saveSequentialIterationState( DomainPartition & domain ) m_sequentialTempChange = m_isThermal ? MpiWrapper::max( maxTempChange ) : 0.0; } -void FlowSolverBase::enableFixedStressPoromechanicsUpdate() -{ - m_isFixedStressPoromechanicsUpdate = true; -} - -void FlowSolverBase::enableJumpStabilization() -{ - m_isJumpStabilized = true; -} - void FlowSolverBase::setConstitutiveNamesCallSuper( ElementSubRegionBase & subRegion ) const { PhysicsSolverBase::setConstitutiveNamesCallSuper( subRegion ); @@ -455,6 +445,12 @@ void FlowSolverBase::initializePostInitialConditionsPreSubGroups() arrayView1d< string const > const & regionNames ) { precomputeData( mesh, regionNames ); + + FieldIdentifiers fieldsToBeSync; + fieldsToBeSync.addElementFields( { fields::flow::pressure::key(), fields::flow::temperature::key() }, + regionNames ); + + CommunicationTools::getInstance().synchronizeFields( fieldsToBeSync, mesh, domain.getNeighbors(), false ); } ); } @@ -491,6 +487,97 @@ void FlowSolverBase::precomputeData( MeshLevel & mesh, } } +void FlowSolverBase::initializeState( DomainPartition & domain ) +{ + // Compute hydrostatic equilibrium in the regions for which corresponding field specification tag has been specified + computeHydrostaticEquilibrium( domain ); + + forDiscretizationOnMeshTargets( domain.getMeshBodies(), [&]( string const &, + MeshLevel & mesh, + arrayView1d< string const > const & regionNames ) + { + initializePorosityAndPermeability( mesh, regionNames ); + initializeHydraulicAperture( mesh, regionNames ); + + // Initialize primary variables from applied initial conditions + initializeFluidState( mesh, regionNames ); + + // Initialize the rock thermal quantities: conductivity and solid internal energy + // Note: + // - This must be called after updatePorosityAndPermeability and updatePhaseVolumeFraction + // - This step depends on porosity and phaseVolFraction + if( m_isThermal ) + { + initializeThermalState( mesh, regionNames ); + } + + // Save initial pressure and temperature fields + saveInitialPressureAndTemperature( mesh, regionNames ); + } ); + + // report to the user if some pore volumes are very small + // note: this function is here because: 1) porosity has been initialized and 2) NTG has been applied + validatePoreVolumes( domain ); +} + +void FlowSolverBase::initializePorosityAndPermeability( MeshLevel & mesh, arrayView1d< string const > const & regionNames ) +{ + // Update porosity and permeability + // In addition, to avoid multiplying permeability/porosity bay netToGross in the assembly kernel, we do it once and for all here + mesh.getElemManager().forElementSubRegions< CellElementSubRegion, SurfaceElementSubRegion >( regionNames, [&]( localIndex const, + auto & subRegion ) + { + // Apply netToGross to reference porosity and horizontal permeability + CoupledSolidBase const & porousSolid = + getConstitutiveModel< CoupledSolidBase >( subRegion, subRegion.template getReference< string >( viewKeyStruct::solidNamesString() ) ); + PermeabilityBase const & permeability = + getConstitutiveModel< PermeabilityBase >( subRegion, subRegion.template getReference< string >( viewKeyStruct::permeabilityNamesString() ) ); + arrayView1d< real64 const > const netToGross = subRegion.template getField< fields::flow::netToGross >(); + porousSolid.scaleReferencePorosity( netToGross ); + permeability.scaleHorizontalPermeability( netToGross ); + + // in some initializeState versions it uses newPorosity, so let's run updatePorosityAndPermeability to compute something + saveConvergedState( subRegion ); // necessary for a meaningful porosity update in sequential schemes + updatePorosityAndPermeability( subRegion ); + porousSolid.initializeState(); + + // run final update + saveConvergedState( subRegion ); // necessary for a meaningful porosity update in sequential schemes + updatePorosityAndPermeability( subRegion ); + + // Save the computed porosity into the old porosity + // Note: + // - This must be called after updatePorosityAndPermeability + // - This step depends on porosity + porousSolid.saveConvergedState(); + } ); +} + +void FlowSolverBase::initializeHydraulicAperture( MeshLevel & mesh, const arrayView1d< const string > & regionNames ) +{ + mesh.getElemManager().forElementRegions< SurfaceElementRegion >( regionNames, + [&]( localIndex const, + SurfaceElementRegion & region ) + { + region.forElementSubRegions< SurfaceElementSubRegion >( [&]( SurfaceElementSubRegion & subRegion ) + { subRegion.getWrapper< real64_array >( fields::flow::hydraulicAperture::key()).setApplyDefaultValue( region.getDefaultAperture()); } ); + } ); +} + +void FlowSolverBase::saveInitialPressureAndTemperature( MeshLevel & mesh, const arrayView1d< const string > & regionNames ) +{ + mesh.getElemManager().forElementSubRegions( regionNames, [&]( localIndex const, + ElementSubRegionBase & subRegion ) + { + arrayView1d< real64 const > const pres = subRegion.getField< fields::flow::pressure >(); + arrayView1d< real64 > const initPres = subRegion.getField< fields::flow::initialPressure >(); + arrayView1d< real64 const > const temp = subRegion.getField< fields::flow::temperature >(); + arrayView1d< real64 > const initTemp = subRegion.template getField< fields::flow::initialTemperature >(); + initPres.setValues< parallelDevicePolicy<> >( pres ); + initTemp.setValues< parallelDevicePolicy<> >( temp ); + } ); +} + void FlowSolverBase::updatePorosityAndPermeability( CellElementSubRegion & subRegion ) const { GEOS_MARK_FUNCTION; diff --git a/src/coreComponents/physicsSolvers/fluidFlow/FlowSolverBase.hpp b/src/coreComponents/physicsSolvers/fluidFlow/FlowSolverBase.hpp index 6b65e91e979..23897ccb899 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/FlowSolverBase.hpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/FlowSolverBase.hpp @@ -100,9 +100,9 @@ class FlowSolverBase : public PhysicsSolverBase */ void updateStencilWeights( DomainPartition & domain ) const; - void enableFixedStressPoromechanicsUpdate(); + void enableFixedStressPoromechanicsUpdate() { m_isFixedStressPoromechanicsUpdate = true; } - void enableJumpStabilization(); + void enableJumpStabilization() { m_isJumpStabilized = true; } void updatePorosityAndPermeability( CellElementSubRegion & subRegion ) const; @@ -114,39 +114,12 @@ class FlowSolverBase : public PhysicsSolverBase */ virtual void saveSequentialIterationState( DomainPartition & domain ) override; - /** - * @brief For each equilibrium initial condition, loop over all the target cells and compute the min/max elevation - * @param[in] domain the domain partition - * @param[in] equilNameToEquilId the map from the name of the initial condition to the initial condition index (used in min/maxElevation) - * @param[out] maxElevation the max elevation for each initial condition - * @param[out] minElevation the min elevation for each initial condition - */ - void findMinMaxElevationInEquilibriumTarget( DomainPartition & domain, // cannot be const... - std::map< string, localIndex > const & equilNameToEquilId, - arrayView1d< real64 > const & maxElevation, - arrayView1d< real64 > const & minElevation ) const; - - /** - * @brief For each source flux boundary condition, loop over all the target cells and sum the owned cells - * @param[in] time the time at the beginning of the time step - * @param[in] dt the time step size - * @param[in] domain the domain partition - * @param[in] bcNameToBcId the map from the name of the boundary condition to the boundary condition index - * @param[out] bcAllSetsSize the total number of owned cells for each source flux boundary condition - */ - void computeSourceFluxSizeScalingFactor( real64 const & time, - real64 const & dt, - DomainPartition & domain, // cannot be const... - std::map< string, localIndex > const & bcNameToBcId, - arrayView1d< globalIndex > const & bcAllSetsSize ) const; - integer & isThermal() { return m_isThermal; } /** * @return The unit in which we evaluate the amount of fluid per element (Mass or Mole). */ - virtual units::Unit getMassUnit() const - { return units::Unit::Mass; } + virtual units::Unit getMassUnit() const { return units::Unit::Mass; } /** * @brief Function to activate the flag allowing negative pressure @@ -173,6 +146,36 @@ class FlowSolverBase : public PhysicsSolverBase real64 const & timeAtBeginningOfStep, real64 const & dt ); + virtual void initializeFluidState( MeshLevel & mesh, const arrayView1d< const string > & regionNames ) { GEOS_UNUSED_VAR( mesh, regionNames ); } + + virtual void initializeThermalState( MeshLevel & mesh, const arrayView1d< const string > & regionNames ) { GEOS_UNUSED_VAR( mesh, regionNames ); } + + /** + * @brief For each equilibrium initial condition, loop over all the target cells and compute the min/max elevation + * @param[in] domain the domain partition + * @param[in] equilNameToEquilId the map from the name of the initial condition to the initial condition index (used in min/maxElevation) + * @param[out] maxElevation the max elevation for each initial condition + * @param[out] minElevation the min elevation for each initial condition + */ + void findMinMaxElevationInEquilibriumTarget( DomainPartition & domain, // cannot be const... + std::map< string, localIndex > const & equilNameToEquilId, + arrayView1d< real64 > const & maxElevation, + arrayView1d< real64 > const & minElevation ) const; + + /** + * @brief For each source flux boundary condition, loop over all the target cells and sum the owned cells + * @param[in] time the time at the beginning of the time step + * @param[in] dt the time step size + * @param[in] domain the domain partition + * @param[in] bcNameToBcId the map from the name of the boundary condition to the boundary condition index + * @param[out] bcAllSetsSize the total number of owned cells for each source flux boundary condition + */ + void computeSourceFluxSizeScalingFactor( real64 const & time, + real64 const & dt, + DomainPartition & domain, // cannot be const... + std::map< string, localIndex > const & bcNameToBcId, + arrayView1d< globalIndex > const & bcAllSetsSize ) const; + protected: /** @@ -207,6 +210,16 @@ class FlowSolverBase : public PhysicsSolverBase virtual void initializePostInitialConditionsPreSubGroups() override; + void initializeState( DomainPartition & domain ); + + virtual void computeHydrostaticEquilibrium( DomainPartition & domain ) { GEOS_UNUSED_VAR( domain ); } + + void initializePorosityAndPermeability( MeshLevel & mesh, arrayView1d< string const > const & regionNames ); + + void initializeHydraulicAperture( MeshLevel & mesh, const arrayView1d< const string > & regionNames ); + + void saveInitialPressureAndTemperature( MeshLevel & mesh, const arrayView1d< const string > & regionNames ); + virtual void setConstitutiveNamesCallSuper( ElementSubRegionBase & subRegion ) const override; /// the number of Degrees of Freedom per cell diff --git a/src/coreComponents/physicsSolvers/fluidFlow/SinglePhaseBase.cpp b/src/coreComponents/physicsSolvers/fluidFlow/SinglePhaseBase.cpp index 8261e822868..812c342de0a 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/SinglePhaseBase.cpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/SinglePhaseBase.cpp @@ -40,8 +40,6 @@ #include "mesh/mpiCommunications/CommunicationTools.hpp" #include "physicsSolvers/fluidFlow/FlowSolverBaseFields.hpp" #include "physicsSolvers/fluidFlow/SinglePhaseBaseFields.hpp" -#include "physicsSolvers/fluidFlow/kernels/singlePhase/AccumulationKernels.hpp" -#include "physicsSolvers/fluidFlow/kernels/singlePhase/ThermalAccumulationKernels.hpp" #include "physicsSolvers/fluidFlow/kernels/singlePhase/MobilityKernel.hpp" #include "physicsSolvers/fluidFlow/kernels/singlePhase/SolutionCheckKernel.hpp" #include "physicsSolvers/fluidFlow/kernels/singlePhase/SolutionScalingKernel.hpp" @@ -406,105 +404,12 @@ void SinglePhaseBase::initializePostInitialConditionsPreSubGroups() DomainPartition & domain = this->getGroupByPath< DomainPartition >( "/Problem/domain" ); - - forDiscretizationOnMeshTargets( domain.getMeshBodies(), [&]( string const &, - MeshLevel & mesh, - arrayView1d< string const > const & regionNames ) - { - FieldIdentifiers fieldsToBeSync; - fieldsToBeSync.addElementFields( { fields::flow::pressure::key() }, - regionNames ); - - CommunicationTools::getInstance().synchronizeFields( fieldsToBeSync, mesh, domain.getNeighbors(), false ); - - // Moved the following part from ImplicitStepSetup to here since it only needs to be initialized once - // They will be updated in applySystemSolution and ImplicitStepComplete, respectively - mesh.getElemManager().forElementSubRegions< CellElementSubRegion, SurfaceElementSubRegion >( regionNames, [&]( localIndex const, - auto & subRegion ) - { - // Compute hydrostatic equilibrium in the regions for which corresponding field specification tag has been specified - computeHydrostaticEquilibrium(); - - // 1. update porosity, permeability, and density/viscosity - // In addition, to avoid multiplying permeability/porosity bay netToGross in the assembly kernel, we do it once and for all here - arrayView1d< real64 const > const netToGross = subRegion.template getField< fields::flow::netToGross >(); - CoupledSolidBase const & porousSolid = - getConstitutiveModel< CoupledSolidBase >( subRegion, subRegion.template getReference< string >( viewKeyStruct::solidNamesString() ) ); - PermeabilityBase const & permeabilityModel = - getConstitutiveModel< PermeabilityBase >( subRegion, subRegion.template getReference< string >( viewKeyStruct::permeabilityNamesString() ) ); - permeabilityModel.scaleHorizontalPermeability( netToGross ); - porousSolid.scaleReferencePorosity( netToGross ); - saveConvergedState( subRegion ); // necessary for a meaningful porosity update in sequential schemes - updatePorosityAndPermeability( subRegion ); - - SingleFluidBase const & fluid = - getConstitutiveModel< SingleFluidBase >( subRegion, subRegion.template getReference< string >( viewKeyStruct::fluidNamesString() ) ); - updateFluidState( subRegion ); - - // 2. save the initial density (for use in the single-phase poromechanics solver to compute the deltaBodyForce) - fluid.initializeState(); - - // 3. save the initial/old porosity - porousSolid.initializeState(); - - // 4. initialize the rock thermal quantities: conductivity and solid internal energy - if( m_isThermal ) - { - // initialized porosity - arrayView2d< real64 const > const porosity = porousSolid.getPorosity(); - - string const & thermalConductivityName = subRegion.template getReference< string >( viewKeyStruct::thermalConductivityNamesString() ); - SinglePhaseThermalConductivityBase const & conductivityMaterial = - getConstitutiveModel< SinglePhaseThermalConductivityBase >( subRegion, thermalConductivityName ); - conductivityMaterial.initializeRockFluidState( porosity ); - // note that there is nothing to update here because thermal conductivity is explicit for now - - updateSolidInternalEnergyModel( subRegion ); - string const & solidInternalEnergyName = subRegion.template getReference< string >( viewKeyStruct::solidInternalEnergyNamesString() ); - SolidInternalEnergy const & solidInternalEnergyMaterial = - getConstitutiveModel< SolidInternalEnergy >( subRegion, solidInternalEnergyName ); - solidInternalEnergyMaterial.saveConvergedState(); - } - } ); - - mesh.getElemManager().forElementRegions< SurfaceElementRegion >( regionNames, - [&]( localIndex const, - SurfaceElementRegion & region ) - { - region.forElementSubRegions< FaceElementSubRegion >( [&]( FaceElementSubRegion & subRegion ) - { - subRegion.getWrapper< real64_array >( fields::flow::hydraulicAperture::key() ). - setApplyDefaultValue( region.getDefaultAperture() ); - } ); - } ); - - mesh.getElemManager().forElementSubRegions( regionNames, [&]( localIndex const, - ElementSubRegionBase & subRegion ) - { - // Save initial pressure field - arrayView1d< real64 const > const pres = subRegion.getField< fields::flow::pressure >(); - arrayView1d< real64 > const initPres = subRegion.getField< fields::flow::initialPressure >(); - arrayView1d< real64 const > const & temp = subRegion.template getField< fields::flow::temperature >(); - arrayView1d< real64 > const initTemp = subRegion.template getField< fields::flow::initialTemperature >(); - initPres.setValues< parallelDevicePolicy<> >( pres ); - initTemp.setValues< parallelDevicePolicy<> >( temp ); - - // finally update mass and energy - updateMass( subRegion ); - if( m_isThermal ) - updateEnergy( subRegion ); - } ); - } ); - - // report to the user if some pore volumes are very small - // note: this function is here because: 1) porosity has been initialized and 2) NTG has been applied - validatePoreVolumes( domain ); + FlowSolverBase::initializeState( domain ); } -void SinglePhaseBase::computeHydrostaticEquilibrium() +void SinglePhaseBase::computeHydrostaticEquilibrium( DomainPartition & domain ) { FieldSpecificationManager & fsManager = FieldSpecificationManager::getInstance(); - DomainPartition & domain = this->getGroupByPath< DomainPartition >( "/Problem/domain" ); real64 const gravVector[3] = LVARRAY_TENSOROPS_INIT_LOCAL_3( gravityVector() ); @@ -678,6 +583,48 @@ void SinglePhaseBase::computeHydrostaticEquilibrium() } ); } +void SinglePhaseBase::initializeFluidState( MeshLevel & mesh, arrayView1d< string const > const & regionNames ) +{ + mesh.getElemManager().forElementSubRegions< CellElementSubRegion, SurfaceElementSubRegion >( regionNames, [&]( localIndex const, + auto & subRegion ) + { + SingleFluidBase const & fluid = + getConstitutiveModel< SingleFluidBase >( subRegion, subRegion.template getReference< string >( viewKeyStruct::fluidNamesString())); + updateFluidState( subRegion ); + + // 2. save the initial density (for use in the single-phase poromechanics solver to compute the deltaBodyForce) + fluid.initializeState(); + + updateMass( subRegion ); + } ); +} + +void SinglePhaseBase::initializeThermalState( MeshLevel & mesh, arrayView1d< string const > const & regionNames ) +{ + mesh.getElemManager().forElementSubRegions< CellElementSubRegion, SurfaceElementSubRegion >( regionNames, [&]( localIndex const, + auto & subRegion ) + { + // initialized porosity + CoupledSolidBase const & porousSolid = + getConstitutiveModel< CoupledSolidBase >( subRegion, subRegion.template getReference< string >( viewKeyStruct::solidNamesString() ) ); + arrayView2d< real64 const > const porosity = porousSolid.getPorosity(); + + string const & thermalConductivityName = subRegion.template getReference< string >( viewKeyStruct::thermalConductivityNamesString()); + SinglePhaseThermalConductivityBase const & conductivityMaterial = + getConstitutiveModel< SinglePhaseThermalConductivityBase >( subRegion, thermalConductivityName ); + conductivityMaterial.initializeRockFluidState( porosity ); + // note that there is nothing to update here because thermal conductivity is explicit for now + + updateSolidInternalEnergyModel( subRegion ); + string const & solidInternalEnergyName = subRegion.template getReference< string >( viewKeyStruct::solidInternalEnergyNamesString()); + SolidInternalEnergy const & solidInternalEnergyMaterial = + getConstitutiveModel< SolidInternalEnergy >( subRegion, solidInternalEnergyName ); + solidInternalEnergyMaterial.saveConvergedState(); + + updateEnergy( subRegion ); + } ); +} + void SinglePhaseBase::implicitStepSetup( real64 const & GEOS_UNUSED_PARAM( time_n ), real64 const & GEOS_UNUSED_PARAM( dt ), DomainPartition & domain ) @@ -707,8 +654,8 @@ void SinglePhaseBase::implicitStepSetup( real64 const & GEOS_UNUSED_PARAM( time_ } ); - mesh.getElemManager().forElementSubRegions< FaceElementSubRegion >( regionNames, [&]( localIndex const, - FaceElementSubRegion & subRegion ) + mesh.getElemManager().forElementSubRegions< SurfaceElementSubRegion >( regionNames, [&]( localIndex const, + SurfaceElementSubRegion & subRegion ) { arrayView1d< real64 const > const aper = subRegion.getField< fields::flow::hydraulicAperture >(); arrayView1d< real64 > const aper0 = subRegion.getField< fields::flow::aperture0 >(); @@ -728,6 +675,7 @@ void SinglePhaseBase::implicitStepSetup( real64 const & GEOS_UNUSED_PARAM( time_ fluid.saveConvergedState(); } ); + } ); } @@ -791,8 +739,8 @@ void SinglePhaseBase::implicitStepComplete( real64 const & time, } ); - mesh.getElemManager().forElementSubRegions< FaceElementSubRegion >( regionNames, [&]( localIndex const, - FaceElementSubRegion & subRegion ) + mesh.getElemManager().forElementSubRegions< SurfaceElementSubRegion >( regionNames, [&]( localIndex const, + SurfaceElementSubRegion & subRegion ) { arrayView1d< integer const > const elemGhostRank = subRegion.ghostRank(); arrayView1d< real64 const > const volume = subRegion.getElementVolume(); @@ -817,7 +765,6 @@ void SinglePhaseBase::implicitStepComplete( real64 const & time, } } ); } ); - } ); } diff --git a/src/coreComponents/physicsSolvers/fluidFlow/SinglePhaseBase.hpp b/src/coreComponents/physicsSolvers/fluidFlow/SinglePhaseBase.hpp index bf1cd19eadd..9e40ecda15f 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/SinglePhaseBase.hpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/SinglePhaseBase.hpp @@ -335,10 +335,14 @@ class SinglePhaseBase : public FlowSolverBase virtual void initializePostInitialConditionsPreSubGroups() override; + virtual void initializeFluidState( MeshLevel & mesh, arrayView1d< string const > const & regionNames ) override; + + virtual void initializeThermalState( MeshLevel & mesh, arrayView1d< string const > const & regionNames ) override; + /** * @brief Compute the hydrostatic equilibrium using the compositions and temperature input tables */ - void computeHydrostaticEquilibrium(); + virtual void computeHydrostaticEquilibrium( DomainPartition & domain ) override; /** * @brief Update the cell-wise pressure gradient diff --git a/src/coreComponents/physicsSolvers/fluidFlow/SinglePhaseFVM.cpp b/src/coreComponents/physicsSolvers/fluidFlow/SinglePhaseFVM.cpp index b87ce6bcf75..760394bb02b 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/SinglePhaseFVM.cpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/SinglePhaseFVM.cpp @@ -33,8 +33,6 @@ #include "fieldSpecification/AquiferBoundaryCondition.hpp" #include "physicsSolvers/fluidFlow/FlowSolverBaseFields.hpp" #include "physicsSolvers/fluidFlow/SinglePhaseBaseFields.hpp" -#include "physicsSolvers/fluidFlow/kernels/singlePhase/AccumulationKernels.hpp" -#include "physicsSolvers/fluidFlow/kernels/singlePhase/ThermalAccumulationKernels.hpp" #include "physicsSolvers/fluidFlow/kernels/singlePhase/ResidualNormKernel.hpp" #include "physicsSolvers/fluidFlow/kernels/singlePhase/FluxComputeKernel.hpp" #include "physicsSolvers/fluidFlow/kernels/singlePhase/ThermalFluxComputeKernel.hpp" diff --git a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/C1PPUPhaseFlux.hpp b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/C1PPUPhaseFlux.hpp index a254aa9f97d..07e5d54df99 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/C1PPUPhaseFlux.hpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/C1PPUPhaseFlux.hpp @@ -79,6 +79,7 @@ struct C1PPUPhaseFlux compute( integer const numPhase, integer const ip, integer const hasCapPressure, + integer const useNewGravity, localIndex const ( &seri )[numFluxSupportPoints], localIndex const ( &sesri )[numFluxSupportPoints], localIndex const ( &sei )[numFluxSupportPoints], @@ -110,7 +111,7 @@ struct C1PPUPhaseFlux real64 dPresGrad_dC[numFluxSupportPoints][numComp]{}; real64 dGravHead_dP[numFluxSupportPoints]{}; real64 dGravHead_dC[numFluxSupportPoints][numComp]{}; - PotGrad::compute< numComp, numFluxSupportPoints >( numPhase, ip, hasCapPressure, seri, sesri, sei, trans, dTrans_dPres, pres, + PotGrad::compute< numComp, numFluxSupportPoints >( numPhase, ip, hasCapPressure, useNewGravity, seri, sesri, sei, trans, dTrans_dPres, pres, gravCoef, phaseVolFrac, dPhaseVolFrac, dCompFrac_dCompDens, phaseMassDens, dPhaseMassDens, phaseCapPressure, dPhaseCapPressure_dPhaseVolFrac, potGrad, dPresGrad_dP, dPresGrad_dC, dGravHead_dP, dGravHead_dC ); diff --git a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/CFLKernel.cpp b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/CFLKernel.cpp index b416573af0b..e2f32348bcc 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/CFLKernel.cpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/CFLKernel.cpp @@ -22,6 +22,7 @@ #include "finiteVolume/SurfaceElementStencil.hpp" #include "finiteVolume/EmbeddedSurfaceToCellStencil.hpp" #include "finiteVolume/FaceElementToCellStencil.hpp" +#include "CFLKernel.hpp" namespace geos { @@ -32,12 +33,13 @@ namespace isothermalCompositionalMultiphaseFVMKernels /******************************** CFLFluxKernel ********************************/ -template< integer NC, localIndex NUM_ELEMS, localIndex maxStencilSize > +template< integer NC > GEOS_HOST_DEVICE inline void CFLFluxKernel:: compute( integer const numPhases, + integer const useNewGravity, localIndex const stencilSize, real64 const dt, arraySlice1d< localIndex const > const seri, @@ -67,27 +69,7 @@ CFLFluxKernel:: real64 gravHead{}; // calculate quantities on primary connected cells - integer denom = 0; - for( localIndex i = 0; i < NUM_ELEMS; ++i ) - { - localIndex const er = seri[i]; - localIndex const esr = sesri[i]; - localIndex const ei = sei[i]; - - bool const phaseExists = (phaseVolFrac[er][esr][ei][ip] > 0); - if( !phaseExists ) - { - continue; - } - - // average density across the face - densMean += phaseMassDens[er][esr][ei][0][ip]; - denom++; - } - if( denom > 1 ) - { - densMean /= denom; - } + calculateMeanDensity( useNewGravity, ip, stencilSize, seri, sesri, sei, phaseVolFrac, phaseMassDens, densMean ); //***** calculation of phase volumetric flux ***** @@ -138,10 +120,43 @@ CFLFluxKernel:: } } -template< integer NC, typename STENCILWRAPPER_TYPE > +GEOS_HOST_DEVICE +inline void -CFLFluxKernel:: +CFLFluxKernel::calculateMeanDensity( integer const useNewGravity, integer const ip, localIndex const stencilSize, + arraySlice1d< localIndex const > const seri, + arraySlice1d< localIndex const > const sesri, + arraySlice1d< localIndex const > const sei, + ElementViewConst< arrayView2d< real64 const, compflow::USD_PHASE > > const & phaseVolFrac, + ElementViewConst< arrayView3d< real64 const, multifluid::USD_PHASE > > const & phaseMassDens, + real64 & densMean ) +{ + integer denom = 0; + for( localIndex i = 0; i < stencilSize; ++i ) + { + localIndex const er = seri[i]; + localIndex const esr = sesri[i]; + localIndex const ei = sei[i]; + + bool const phaseExists = (phaseVolFrac[er][esr][ei][ip] > 0); + if( useNewGravity && !phaseExists ) + { + continue; + } + + // average density across the face + densMean += phaseMassDens[er][esr][ei][0][ip]; + denom++; + } + if( denom > 1 ) + { + densMean /= denom; + } +} +template< integer NC, typename STENCILWRAPPER_TYPE > +void CFLFluxKernel:: launch( integer const numPhases, + integer const useNewGravity, real64 const dt, STENCILWRAPPER_TYPE const & stencilWrapper, ElementViewConst< arrayView1d< real64 const > > const & pres, @@ -161,9 +176,6 @@ CFLFluxKernel:: typename STENCILWRAPPER_TYPE::IndexContainerViewConstType const & sesri = stencilWrapper.getElementSubRegionIndices(); typename STENCILWRAPPER_TYPE::IndexContainerViewConstType const & sei = stencilWrapper.getElementIndices(); - localIndex constexpr numElems = STENCILWRAPPER_TYPE::maxNumPointsInFlux; - localIndex constexpr maxStencilSize = STENCILWRAPPER_TYPE::maxStencilSize; - forAll< parallelDevicePolicy<> >( stencilWrapper.size(), [=] GEOS_HOST_DEVICE ( localIndex const iconn ) { // compute transmissibility @@ -176,23 +188,24 @@ CFLFluxKernel:: transmissibility, dTrans_dPres ); - CFLFluxKernel::compute< NC, numElems, maxStencilSize >( numPhases, - sei[iconn].size(), - dt, - seri[iconn], - sesri[iconn], - sei[iconn], - transmissibility[0], - pres, - gravCoef, - phaseVolFrac, - phaseRelPerm, - phaseVisc, - phaseDens, - phaseMassDens, - phaseCompFrac, - phaseOutflux, - compOutflux ); + CFLFluxKernel::compute< NC >( numPhases, + useNewGravity, + sei[iconn].size(), + dt, + seri[iconn], + sesri[iconn], + sei[iconn], + transmissibility[0], + pres, + gravCoef, + phaseVolFrac, + phaseRelPerm, + phaseVisc, + phaseDens, + phaseMassDens, + phaseCompFrac, + phaseOutflux, + compOutflux ); } ); } @@ -200,6 +213,7 @@ CFLFluxKernel:: template \ void CFLFluxKernel:: \ launch< NC, STENCILWRAPPER_TYPE >( integer const numPhases, \ + integer const useNewGravity, \ real64 const dt, \ STENCILWRAPPER_TYPE const & stencil, \ ElementViewConst< arrayView1d< real64 const > > const & pres, \ diff --git a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/CFLKernel.hpp b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/CFLKernel.hpp index 8449d57e43e..a2242e202fb 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/CFLKernel.hpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/CFLKernel.hpp @@ -23,6 +23,7 @@ #include "common/DataLayouts.hpp" #include "common/DataTypes.hpp" #include "common/GEOS_RAJA_Interface.hpp" +#include "constitutive/fluid/multifluid/Layouts.hpp" #include "constitutive/fluid/multifluid/MultiFluidBase.hpp" #include "constitutive/fluid/multifluid/MultiFluidFields.hpp" #include "constitutive/permeability/PermeabilityBase.hpp" @@ -83,11 +84,10 @@ struct CFLFluxKernel using RelPermAccessors = StencilMaterialAccessors< constitutive::RelativePermeabilityBase, fields::relperm::phaseRelPerm >; - template< integer NC, localIndex NUM_ELEMS, localIndex maxStencilSize > - GEOS_HOST_DEVICE - inline - static void + template< integer NC > + GEOS_HOST_DEVICE inline static void compute( integer const numPhases, + integer const useNewGravity, localIndex const stencilSize, real64 const dt, arraySlice1d< localIndex const > const seri, @@ -105,9 +105,19 @@ struct CFLFluxKernel ElementView< arrayView2d< real64, compflow::USD_PHASE > > const & phaseOutflux, ElementView< arrayView2d< real64, compflow::USD_COMP > > const & compOutflux ); + GEOS_HOST_DEVICE inline static void + calculateMeanDensity( integer const useNewGravity, integer const ip, localIndex const stencilSize, + arraySlice1d< localIndex const > const seri, + arraySlice1d< localIndex const > const sesri, + arraySlice1d< localIndex const > const sei, + ElementViewConst< arrayView2d< real64 const, compflow::USD_PHASE > > const & phaseVolFrac, + ElementViewConst< arrayView3d< real64 const, constitutive::multifluid::USD_PHASE > > const & phaseMassDens, + real64 & densMean ); + template< integer NC, typename STENCILWRAPPER_TYPE > static void launch( integer const numPhases, + integer const useNewGravity, real64 const dt, STENCILWRAPPER_TYPE const & stencil, ElementViewConst< arrayView1d< real64 const > > const & pres, diff --git a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/CompositionalMultiphaseHybridFVMKernels.hpp b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/CompositionalMultiphaseHybridFVMKernels.hpp index c388cad6da5..ea1f4ec0d12 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/CompositionalMultiphaseHybridFVMKernels.hpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/CompositionalMultiphaseHybridFVMKernels.hpp @@ -33,7 +33,6 @@ #include "physicsSolvers/PhysicsSolverBaseKernels.hpp" #include "physicsSolvers/fluidFlow/CompositionalMultiphaseBaseFields.hpp" #include "physicsSolvers/fluidFlow/StencilAccessors.hpp" -#include "physicsSolvers/fluidFlow/kernels/compositional/AccumulationKernel.hpp" #include "physicsSolvers/fluidFlow/kernels/compositional/PropertyKernelBase.hpp" #include "physicsSolvers/fluidFlow/kernels/compositional/KernelLaunchSelectors.hpp" diff --git a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/DiffusionDispersionFluxComputeKernel.hpp b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/DiffusionDispersionFluxComputeKernel.hpp index ac5ab4265da..e8ea185c993 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/DiffusionDispersionFluxComputeKernel.hpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/DiffusionDispersionFluxComputeKernel.hpp @@ -33,7 +33,6 @@ #include "mesh/ElementRegionManager.hpp" #include "physicsSolvers/fluidFlow/CompositionalMultiphaseUtilities.hpp" #include "physicsSolvers/fluidFlow/StencilAccessors.hpp" -#include "physicsSolvers/fluidFlow/kernels/compositional/KernelLaunchSelectors.hpp" namespace geos { diff --git a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/DissipationFluxComputeKernel.hpp b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/DissipationFluxComputeKernel.hpp index 1b4183c8c1a..62df1c74088 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/DissipationFluxComputeKernel.hpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/DissipationFluxComputeKernel.hpp @@ -185,6 +185,7 @@ class FluxComputeKernel : public isothermalCompositionalMultiphaseFVMKernels::Fl // // We use the lambda below (called **inside** the phase loop of the base computeFlux) to compute dissipation terms Base::computeFlux( iconn, stack, [&] ( integer const ip, + integer const GEOS_UNUSED_PARAM( useNewGravity ), localIndex const (&k)[2], localIndex const (&seri)[2], localIndex const (&sesri)[2], diff --git a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/FluxComputeKernel.hpp b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/FluxComputeKernel.hpp index d28ecf41b41..acd5c371d7f 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/FluxComputeKernel.hpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/FluxComputeKernel.hpp @@ -277,6 +277,7 @@ class FluxComputeKernel : public FluxComputeKernelBase ( m_numPhases, ip, m_kernelFlags.isSet( KernelFlags::CapPressure ), + m_kernelFlags.isSet( KernelFlags::NewGravity ), seri, sesri, sei, trans, dTrans_dPres, @@ -303,6 +304,7 @@ class FluxComputeKernel : public FluxComputeKernelBase ( m_numPhases, ip, m_kernelFlags.isSet( KernelFlags::CapPressure ), + m_kernelFlags.isSet( KernelFlags::NewGravity ), seri, sesri, sei, trans, dTrans_dPres, @@ -329,6 +331,7 @@ class FluxComputeKernel : public FluxComputeKernelBase ( m_numPhases, ip, m_kernelFlags.isSet( KernelFlags::CapPressure ), + m_kernelFlags.isSet( KernelFlags::NewGravity ), seri, sesri, sei, trans, dTrans_dPres, @@ -352,7 +355,8 @@ class FluxComputeKernel : public FluxComputeKernelBase // call the lambda in the phase loop to allow the reuse of the phase fluxes and their derivatives // possible use: assemble the derivatives wrt temperature, and the flux term of the energy equation for this phase - compFluxKernelOp( ip, k, seri, sesri, sei, connectionIndex, + compFluxKernelOp( ip, m_kernelFlags.isSet( KernelFlags::NewGravity ), + k, seri, sesri, sei, connectionIndex, k_up, seri[k_up], sesri[k_up], sei[k_up], potGrad, phaseFlux, dPhaseFlux_dP, dPhaseFlux_dC ); @@ -525,6 +529,7 @@ class FluxComputeKernelFactory string const & dofKey, integer const hasCapPressure, integer const useTotalMassEquation, + integer const useNewGravity, UpwindingParameters upwindingParams, string const & solverName, ElementRegionManager const & elemManager, @@ -547,6 +552,8 @@ class FluxComputeKernelFactory kernelFlags.set( KernelFlags::CapPressure ); if( useTotalMassEquation ) kernelFlags.set( KernelFlags::TotalMassEquation ); + if( useNewGravity ) + kernelFlags.set( KernelFlags::NewGravity ); if( upwindingParams.upwindingScheme == UpwindingScheme::C1PPU && isothermalCompositionalMultiphaseFVMKernelUtilities::epsC1PPU > 0 ) kernelFlags.set( KernelFlags::C1PPU ); diff --git a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/FluxComputeKernelBase.hpp b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/FluxComputeKernelBase.hpp index f36124d6ed6..340d5c7f5f8 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/FluxComputeKernelBase.hpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/FluxComputeKernelBase.hpp @@ -47,12 +47,13 @@ enum class KernelFlags CapPressure = 1 << 0, // 1 /// Flag indicating whether total mass equation is formed or not TotalMassEquation = 1 << 1, // 2 + /// Flag indicating whether new gravity treatment is used or not + NewGravity = 1 << 2, // 4 /// Flag indicating whether C1-PPU is used or not - C1PPU = 1 << 2, // 4 + C1PPU = 1 << 3, // 8 /// Flag indicating whether IHU is used or not - IHU = 1 << 3 // 8 + IHU = 1 << 4 // 16 /// Add more flags like that if needed: - // Flag5 = 1 << 4, // 16 // Flag6 = 1 << 5, // 32 // Flag7 = 1 << 6, // 64 // Flag8 = 1 << 7 //128 diff --git a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/IHUPhaseFlux.hpp b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/IHUPhaseFlux.hpp index ec9b3c55783..bce2f8cd261 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/IHUPhaseFlux.hpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/IHUPhaseFlux.hpp @@ -65,7 +65,7 @@ upwindMobilityViscous( localIndex const numPhase, ElementViewConst< arrayView3d< real64 const, compflow::USD_PHASE_DC > > const & dPhaseVolFrac, ElementViewConst< arrayView3d< real64 const, constitutive::cappres::USD_CAPPRES > > const & phaseCapPressure, ElementViewConst< arrayView4d< real64 const, constitutive::cappres::USD_CAPPRES_DS > > const & dPhaseCapPressure_dPhaseVolFrac, - integer const capPressureFlag, + integer const hasCapPressure, localIndex & upwindDir, real64 & mobility, real64( &dMobility_dP), @@ -99,7 +99,7 @@ upwindMobilityViscous( localIndex const numPhase, dPhaseVolFrac, phaseCapPressure, dPhaseCapPressure_dPhaseVolFrac, - capPressureFlag, + hasCapPressure, upwindDir ); localIndex const er_up = seri[upwindDir]; @@ -139,7 +139,8 @@ upwindMobilityGravity( localIndex const numPhase, ElementViewConst< arrayView3d< real64 const, compflow::USD_PHASE_DC > > const & dPhaseVolFrac, ElementViewConst< arrayView3d< real64 const, constitutive::cappres::USD_CAPPRES > > const & phaseCapPressure, ElementViewConst< arrayView4d< real64 const, constitutive::cappres::USD_CAPPRES_DS > > const & dPhaseCapPressure_dPhaseVolFrac, - integer const capPressureFlag, + integer const hasCapPressure, + integer const useNewGravity, localIndex & upwindDir, real64 & mobility, real64( &dMobility_dP), @@ -174,7 +175,8 @@ upwindMobilityGravity( localIndex const numPhase, dPhaseVolFrac, phaseCapPressure, dPhaseCapPressure_dPhaseVolFrac, - capPressureFlag, + hasCapPressure, + useNewGravity, upwindDir ); localIndex const er_up = seri[upwindDir]; @@ -213,7 +215,7 @@ upwindMobilityCapillary( localIndex const numPhase, ElementViewConst< arrayView3d< real64 const, compflow::USD_PHASE_DC > > const & dPhaseVolFrac, ElementViewConst< arrayView3d< real64 const, constitutive::cappres::USD_CAPPRES > > const & phaseCapPressure, ElementViewConst< arrayView4d< real64 const, constitutive::cappres::USD_CAPPRES_DS > > const & dPhaseCapPressure_dPhaseVolFrac, - integer const capPressureFlag, + integer const hasCapPressure, localIndex & upwindDir, real64 & mobility, real64( &dMobility_dP), @@ -247,7 +249,7 @@ upwindMobilityCapillary( localIndex const numPhase, dPhaseVolFrac, phaseCapPressure, dPhaseCapPressure_dPhaseVolFrac, - capPressureFlag, + hasCapPressure, upwindDir ); localIndex const er_up = seri[upwindDir]; @@ -290,7 +292,7 @@ computeFractionalFlowViscous( localIndex const numPhase, ElementViewConst< arrayView3d< real64 const, compflow::USD_PHASE_DC > > const & dPhaseVolFrac, ElementViewConst< arrayView3d< real64 const, constitutive::cappres::USD_CAPPRES > > const & phaseCapPressure, ElementViewConst< arrayView4d< real64 const, constitutive::cappres::USD_CAPPRES_DS > > const & dPhaseCapPressure_dPhaseVolFrac, - integer const capPressureFlag, + integer const hasCapPressure, localIndex & k_up_main, real64 & fractionalFlow, real64 ( & dFractionalFlow_dP)[numFluxSupportPoints], @@ -341,7 +343,7 @@ computeFractionalFlowViscous( localIndex const numPhase, dPhaseVolFrac, phaseCapPressure, dPhaseCapPressure_dPhaseVolFrac, - capPressureFlag, + hasCapPressure, k_up, mob, dMob_dP, @@ -405,7 +407,8 @@ computeFractionalFlowGravity( localIndex const numPhase, ElementViewConst< arrayView3d< real64 const, compflow::USD_PHASE_DC > > const & dPhaseVolFrac, ElementViewConst< arrayView3d< real64 const, constitutive::cappres::USD_CAPPRES > > const & phaseCapPressure, ElementViewConst< arrayView4d< real64 const, constitutive::cappres::USD_CAPPRES_DS > > const & dPhaseCapPressure_dPhaseVolFrac, - integer const capPressureFlag, + integer const hasCapPressure, + integer const useNewGravity, localIndex & k_up_main, real64 & fractionalFlow, real64 ( & dFractionalFlow_dP)[numFluxSupportPoints], @@ -455,7 +458,8 @@ computeFractionalFlowGravity( localIndex const numPhase, dPhaseVolFrac, phaseCapPressure, dPhaseCapPressure_dPhaseVolFrac, - capPressureFlag, + hasCapPressure, + useNewGravity, k_up, mob, dMob_dP, @@ -517,7 +521,7 @@ computeFractionalFlowCapillary( localIndex const numPhase, ElementViewConst< arrayView3d< real64 const, compflow::USD_PHASE_DC > > const & dPhaseVolFrac, ElementViewConst< arrayView3d< real64 const, constitutive::cappres::USD_CAPPRES > > const & phaseCapPressure, ElementViewConst< arrayView4d< real64 const, constitutive::cappres::USD_CAPPRES_DS > > const & dPhaseCapPressure_dPhaseVolFrac, - integer const capPressureFlag, + integer const hasCapPressure, localIndex & k_up_main, real64 & fractionalFlow, real64 ( & dFractionalFlow_dP)[numFluxSupportPoints], @@ -565,7 +569,7 @@ computeFractionalFlowCapillary( localIndex const numPhase, dPhaseVolFrac, phaseCapPressure, dPhaseCapPressure_dPhaseVolFrac, - capPressureFlag, + hasCapPressure, k_up, mob, dMob_dP, @@ -658,6 +662,7 @@ struct computePotentialGravity GEOS_HOST_DEVICE static void compute( localIndex const GEOS_UNUSED_PARAM( numPhase ), localIndex const ip, + integer const useNewGravity, localIndex const (&seri)[numFluxSupportPoints], localIndex const (&sesri)[numFluxSupportPoints], localIndex const (&sei)[numFluxSupportPoints], @@ -697,7 +702,46 @@ struct computePotentialGravity } } - //inner loop to get average density + calculateMeanDensity( useNewGravity, ip, seri, sesri, sei, phaseVolFrac, dCompFrac_dCompDens, phaseMassDens, dPhaseMassDens, dProp_dComp, + densMean, dDensMean_dPres, dDensMean_dComp ); + + // compute potential difference MPFA-style + for( localIndex i = 0; i < numFluxSupportPoints; ++i ) + { + localIndex const er = seri[i]; + localIndex const esr = sesri[i]; + localIndex const ei = sei[i]; + + real64 const gravD = transmissibility[i] * gravCoef[er][esr][ei]; + real64 const dGravD_dP = dTrans_dPres[i] * gravCoef[er][esr][ei]; + pot += densMean * gravD; + + // need to add contributions from both cells the mean density depends on + for( localIndex j = 0; j < numFluxSupportPoints; ++j ) + { + dPot_dPres[j] += dDensMean_dPres[j] * gravD + densMean * dGravD_dP; + for( localIndex jc = 0; jc < numComp; ++jc ) + { + dPot_dComp[j][jc] += dDensMean_dComp[j][jc] * gravD; + } + } + } + } + + template< localIndex numComp, localIndex numFluxSupportPoints > + GEOS_HOST_DEVICE + static void calculateMeanDensity( integer const useNewGravity, + localIndex const ip, + localIndex const (&seri)[numFluxSupportPoints], + localIndex const (&sesri)[numFluxSupportPoints], + localIndex const (&sei)[numFluxSupportPoints], + ElementViewConst< arrayView2d< real64 const, compflow::USD_PHASE > > const & phaseVolFrac, + ElementViewConst< arrayView3d< real64 const, compflow::USD_COMP_DC > > const & dCompFrac_dCompDens, + ElementViewConst< arrayView3d< real64 const, constitutive::multifluid::USD_PHASE > > const & phaseMassDens, + ElementViewConst< arrayView4d< real64 const, constitutive::multifluid::USD_PHASE_DC > > const & dPhaseMassDens, + real64 (& dProp_dComp)[numComp], + real64 & densMean, real64 (& dDensMean_dPres)[numFluxSupportPoints], real64 (& dDensMean_dComp)[numFluxSupportPoints][numComp] ) + { integer denom = 0; for( localIndex i = 0; i < numFluxSupportPoints; ++i ) { @@ -706,7 +750,7 @@ struct computePotentialGravity localIndex const ei = sei[i]; bool const phaseExists = (phaseVolFrac[er][esr][ei][ip] > 0); - if( !phaseExists ) + if( useNewGravity && !phaseExists ) { continue; } @@ -742,29 +786,6 @@ struct computePotentialGravity } } } - - // compute potential difference MPFA-style - for( localIndex i = 0; i < numFluxSupportPoints; ++i ) - { - localIndex const er = seri[i]; - localIndex const esr = sesri[i]; - localIndex const ei = sei[i]; - - real64 const gravD = transmissibility[i] * gravCoef[er][esr][ei]; - real64 const dGravD_dP = dTrans_dPres[i] * gravCoef[er][esr][ei]; - pot += densMean * gravD; - - // need to add contributions from both cells the mean density depends on - for( localIndex j = 0; j < numFluxSupportPoints; ++j ) - { - dPot_dPres[j] += dDensMean_dPres[j] * gravD + densMean * dGravD_dP; - for( localIndex jc = 0; jc < numComp; ++jc ) - { - dPot_dComp[j][jc] += dDensMean_dComp[j][jc] * gravD; - } - } - } - } }; @@ -856,7 +877,8 @@ static void computePotentialFluxesGravity( localIndex const numPhase, ElementViewConst< arrayView4d< real64 const, constitutive::multifluid::USD_PHASE_DC > > const & dPhaseMassDens, ElementViewConst< arrayView3d< real64 const, constitutive::cappres::USD_CAPPRES > > const & phaseCapPressure, ElementViewConst< arrayView4d< real64 const, constitutive::cappres::USD_CAPPRES_DS > > const & dPhaseCapPressure_dPhaseVolFrac, - localIndex const capPressureFlag, + localIndex const hasCapPressure, + integer const useNewGravity, localIndex( &k_up), localIndex (&k_up_o), real64 & phaseFlux, @@ -876,6 +898,7 @@ static void computePotentialFluxesGravity( localIndex const numPhase, // UpwindHelpers::computePotentialGravity::compute< numComp, numFluxSupportPoints >( numPhase, ip, + useNewGravity, seri, sesri, sei, @@ -920,7 +943,8 @@ static void computePotentialFluxesGravity( localIndex const numPhase, dPhaseVolFrac, phaseCapPressure, dPhaseCapPressure_dPhaseVolFrac, - capPressureFlag, + hasCapPressure, + useNewGravity, k_up, fflow, dFflow_dP, @@ -940,6 +964,7 @@ static void computePotentialFluxesGravity( localIndex const numPhase, //Fetch pot for phase j!=i defined as \rho_j g dz/dx UpwindHelpers::computePotentialGravity::compute< numComp, numFluxSupportPoints >( numPhase, jp, + useNewGravity, seri, sesri, sei, @@ -986,7 +1011,8 @@ static void computePotentialFluxesGravity( localIndex const numPhase, dPhaseVolFrac, phaseCapPressure, dPhaseCapPressure_dPhaseVolFrac, - capPressureFlag, + hasCapPressure, + useNewGravity, k_up_o, mobOther, dMobOther_dP, @@ -1049,7 +1075,7 @@ static void computePotentialFluxesCapillary( localIndex const numPhase, ElementViewConst< arrayView4d< real64 const, constitutive::multifluid::USD_PHASE_DC > > const & dPhaseMassDens, ElementViewConst< arrayView3d< real64 const, constitutive::cappres::USD_CAPPRES > > const & phaseCapPressure, ElementViewConst< arrayView4d< real64 const, constitutive::cappres::USD_CAPPRES_DS > > const & dPhaseCapPressure_dPhaseVolFrac, - localIndex const capPressureFlag, + localIndex const hasCapPressure, localIndex( &k_up), localIndex (&k_up_o), real64 & phaseFlux, @@ -1110,7 +1136,7 @@ static void computePotentialFluxesCapillary( localIndex const numPhase, dPhaseVolFrac, phaseCapPressure, dPhaseCapPressure_dPhaseVolFrac, - capPressureFlag, + hasCapPressure, k_up, fflow, dFflow_dP, @@ -1174,7 +1200,7 @@ static void computePotentialFluxesCapillary( localIndex const numPhase, dPhaseVolFrac, phaseCapPressure, dPhaseCapPressure_dPhaseVolFrac, - capPressureFlag, + hasCapPressure, k_up_o, mobOther, dMobOther_dP, @@ -1261,7 +1287,7 @@ class UpwindScheme ElementViewConst< arrayView3d< real64 const, compflow::USD_PHASE_DC > > const & dPhaseVolFrac, ElementViewConst< arrayView3d< real64 const, constitutive::cappres::USD_CAPPRES > > const & phaseCapPressure, ElementViewConst< arrayView4d< real64 const, constitutive::cappres::USD_CAPPRES_DS > > const & dPhaseCapPressure_dPhaseVolFrac, - integer const capPressureFlag, + integer const hasCapPressure, localIndex & upwindDir ) { @@ -1286,7 +1312,7 @@ class UpwindScheme dPhaseVolFrac, phaseCapPressure, dPhaseCapPressure_dPhaseVolFrac, - capPressureFlag, + hasCapPressure, pot ); //all definition has been changed to fit pot>0 => first cell is upstream @@ -1314,7 +1340,8 @@ class UpwindScheme ElementViewConst< arrayView3d< real64 const, compflow::USD_PHASE_DC > > const & dPhaseVolFrac, ElementViewConst< arrayView3d< real64 const, constitutive::cappres::USD_CAPPRES > > const & phaseCapPressure, ElementViewConst< arrayView4d< real64 const, constitutive::cappres::USD_CAPPRES_DS > > const & dPhaseCapPressure_dPhaseVolFrac, - integer const capPressureFlag, + integer const hasCapPressure, + integer const useNewGravity, localIndex & upwindDir ) { @@ -1340,7 +1367,8 @@ class UpwindScheme dPhaseVolFrac, phaseCapPressure, dPhaseCapPressure_dPhaseVolFrac, - capPressureFlag, + hasCapPressure, + useNewGravity, pot ); //all definition has been changed to fit pot>0 => first cell is upstream @@ -1368,7 +1396,7 @@ class UpwindScheme ElementViewConst< arrayView3d< real64 const, compflow::USD_PHASE_DC > > const & dPhaseVolFrac, ElementViewConst< arrayView3d< real64 const, constitutive::cappres::USD_CAPPRES > > const & phaseCapPressure, ElementViewConst< arrayView4d< real64 const, constitutive::cappres::USD_CAPPRES_DS > > const & dPhaseCapPressure_dPhaseVolFrac, - integer const capPressureFlag, + integer const hasCapPressure, localIndex & upwindDir ) { @@ -1393,7 +1421,7 @@ class UpwindScheme dPhaseVolFrac, phaseCapPressure, dPhaseCapPressure_dPhaseVolFrac, - capPressureFlag, + hasCapPressure, pot ); //all definition has been changed to fit pot>0 => first cell is upstream @@ -1486,7 +1514,7 @@ class HybridUpwind : public UpwindScheme ElementViewConst< arrayView3d< real64 const, compflow::USD_PHASE_DC > > const & dPhaseVolFrac, ElementViewConst< arrayView3d< real64 const, constitutive::cappres::USD_CAPPRES > > const & phaseCapPressure, ElementViewConst< arrayView4d< real64 const, constitutive::cappres::USD_CAPPRES_DS > > const & dPhaseCapPressure_dPhaseVolFrac, - integer const GEOS_UNUSED_PARAM( capPressureFlag ), + integer const GEOS_UNUSED_PARAM( hasCapPressure ), real64 & potential ) { @@ -1538,7 +1566,8 @@ class HybridUpwind : public UpwindScheme ElementViewConst< arrayView3d< real64 const, compflow::USD_PHASE_DC > > const & dPhaseVolFrac, ElementViewConst< arrayView3d< real64 const, constitutive::cappres::USD_CAPPRES > > const & phaseCapPressure, ElementViewConst< arrayView4d< real64 const, constitutive::cappres::USD_CAPPRES_DS > > const & dPhaseCapPressure_dPhaseVolFrac, - integer const GEOS_UNUSED_PARAM( capPressureFlag ), + integer const GEOS_UNUSED_PARAM( hasCapPressure ), + integer const useNewGravity, real64 & potential ) { @@ -1558,6 +1587,7 @@ class HybridUpwind : public UpwindScheme UpwindHelpers::computePotentialGravity::compute< numComp, numFluxSupportPoints >( numPhase, ipp, + useNewGravity, seri, sesri, sei, @@ -1602,7 +1632,7 @@ class HybridUpwind : public UpwindScheme ElementViewConst< arrayView3d< real64 const, compflow::USD_PHASE_DC > > const & dPhaseVolFrac, ElementViewConst< arrayView3d< real64 const, constitutive::cappres::USD_CAPPRES > > const & phaseCapPressure, ElementViewConst< arrayView4d< real64 const, constitutive::cappres::USD_CAPPRES_DS > > const & dPhaseCapPressure_dPhaseVolFrac, - integer const GEOS_UNUSED_PARAM( capPressureFlag ), + integer const GEOS_UNUSED_PARAM( hasCapPressure ), real64 & potential ) { @@ -1685,6 +1715,7 @@ struct IHUPhaseFlux compute( integer const numPhase, integer const ip, integer const hasCapPressure, + integer const useNewGravity, localIndex const ( &seri )[numFluxSupportPoints], localIndex const ( &sesri )[numFluxSupportPoints], localIndex const ( &sei )[numFluxSupportPoints], @@ -1732,7 +1763,7 @@ struct IHUPhaseFlux for( integer jp = 0; jp < numPhase; ++jp ) { - PPUPhaseFlux::compute( numPhase, jp, hasCapPressure, + PPUPhaseFlux::compute( numPhase, jp, hasCapPressure, useNewGravity, seri, sesri, sei, trans, dTrans_dPres, pres, gravCoef, @@ -1886,6 +1917,7 @@ struct IHUPhaseFlux phaseCapPressure, dPhaseCapPressure_dPhaseVolFrac, hasCapPressure, + useNewGravity, k_up_g, k_up_og, gravitationalPhaseFlux, diff --git a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/PPUPhaseFlux.hpp b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/PPUPhaseFlux.hpp index c8ac5256d98..58ba51a9f94 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/PPUPhaseFlux.hpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/PPUPhaseFlux.hpp @@ -75,6 +75,7 @@ struct PPUPhaseFlux compute( integer const numPhase, integer const ip, integer const hasCapPressure, + integer const useNewGravity, localIndex const ( &seri )[numFluxSupportPoints], localIndex const ( &sesri )[numFluxSupportPoints], localIndex const ( &sei )[numFluxSupportPoints], @@ -106,7 +107,7 @@ struct PPUPhaseFlux real64 dPresGrad_dC[numFluxSupportPoints][numComp]{}; real64 dGravHead_dP[numFluxSupportPoints]{}; real64 dGravHead_dC[numFluxSupportPoints][numComp]{}; - PotGrad::compute< numComp, numFluxSupportPoints >( numPhase, ip, hasCapPressure, seri, sesri, sei, trans, dTrans_dPres, pres, + PotGrad::compute< numComp, numFluxSupportPoints >( numPhase, ip, hasCapPressure, useNewGravity, seri, sesri, sei, trans, dTrans_dPres, pres, gravCoef, phaseVolFrac, dPhaseVolFrac, dCompFrac_dCompDens, phaseMassDens, dPhaseMassDens, phaseCapPressure, dPhaseCapPressure_dPhaseVolFrac, potGrad, dPresGrad_dP, dPresGrad_dC, dGravHead_dP, dGravHead_dC ); diff --git a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/PotGrad.hpp b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/PotGrad.hpp index 14f702792db..138175d5c89 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/PotGrad.hpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/PotGrad.hpp @@ -46,6 +46,7 @@ struct PotGrad compute ( integer const numPhase, integer const ip, integer const hasCapPressure, + integer const useNewGravity, localIndex const ( &seri )[numFluxSupportPoints], localIndex const ( &sesri )[numFluxSupportPoints], localIndex const ( &sei )[numFluxSupportPoints], @@ -87,53 +88,7 @@ struct PotGrad real64 gravHead = 0.0; real64 dCapPressure_dC[numComp]{}; - real64 dProp_dC[numComp]{}; - - // calculate quantities on primary connected cells - integer denom = 0; - for( integer i = 0; i < numFluxSupportPoints; ++i ) - { - localIndex const er = seri[i]; - localIndex const esr = sesri[i]; - localIndex const ei = sei[i]; - - bool const phaseExists = (phaseVolFrac[er][esr][ei][ip] > 0); - if( !phaseExists ) - { - continue; - } - - // density - real64 const density = phaseMassDens[er][esr][ei][0][ip]; - real64 const dDens_dP = dPhaseMassDens[er][esr][ei][0][ip][Deriv::dP]; - - applyChainRule( numComp, - dCompFrac_dCompDens[er][esr][ei], - dPhaseMassDens[er][esr][ei][0][ip], - dProp_dC, - Deriv::dC ); - - // average density and derivatives - densMean += density; - dDensMean_dP[i] = dDens_dP; - for( integer jc = 0; jc < numComp; ++jc ) - { - dDensMean_dC[i][jc] = dProp_dC[jc]; - } - denom++; - } - if( denom > 1 ) - { - densMean /= denom; - for( integer i = 0; i < numFluxSupportPoints; ++i ) - { - dDensMean_dP[i] /= denom; - for( integer jc = 0; jc < numComp; ++jc ) - { - dDensMean_dC[i][jc] /= denom; - } - } - } + calculateMeanDensity( useNewGravity, ip, seri, sesri, sei, phaseVolFrac, dCompFrac_dCompDens, phaseMassDens, dPhaseMassDens, densMean, dDensMean_dP, dDensMean_dC ); /// compute the TPFA potential difference for( integer i = 0; i < numFluxSupportPoints; i++ ) @@ -199,6 +154,68 @@ struct PotGrad } + template< integer numComp, integer numFluxSupportPoints > + GEOS_HOST_DEVICE + static void + calculateMeanDensity( integer const useNewGravity, + integer const ip, + localIndex const ( &seri )[numFluxSupportPoints], + localIndex const ( &sesri )[numFluxSupportPoints], + localIndex const ( &sei )[numFluxSupportPoints], + ElementViewConst< arrayView2d< real64 const, compflow::USD_PHASE > > const & phaseVolFrac, + ElementViewConst< arrayView3d< real64 const, compflow::USD_COMP_DC > > const & dCompFrac_dCompDens, + ElementViewConst< arrayView3d< real64 const, constitutive::multifluid::USD_PHASE > > const & phaseMassDens, + ElementViewConst< arrayView4d< real64 const, constitutive::multifluid::USD_PHASE_DC > > const & dPhaseMassDens, + real64 & densMean, real64 ( & dDensMean_dP)[numFluxSupportPoints], real64 ( & dDensMean_dC )[numFluxSupportPoints][numComp] ) + { + real64 dDens_dC[numComp]{}; + + integer denom = 0; + for( integer i = 0; i < numFluxSupportPoints; ++i ) + { + localIndex const er = seri[i]; + localIndex const esr = sesri[i]; + localIndex const ei = sei[i]; + + bool const phaseExists = (phaseVolFrac[er][esr][ei][ip] > 0); + if( useNewGravity && !phaseExists ) + { + continue; + } + + // density + real64 const density = phaseMassDens[er][esr][ei][0][ip]; + real64 const dDens_dP = dPhaseMassDens[er][esr][ei][0][ip][Deriv::dP]; + + applyChainRule( numComp, + dCompFrac_dCompDens[er][esr][ei], + dPhaseMassDens[er][esr][ei][0][ip], + dDens_dC, + Deriv::dC ); + + // average density and derivatives + densMean += density; + dDensMean_dP[i] = dDens_dP; + for( integer jc = 0; jc < numComp; ++jc ) + { + dDensMean_dC[i][jc] = dDens_dC[jc]; + } + denom++; + } + if( denom > 1 ) + { + densMean /= denom; + for( integer i = 0; i < numFluxSupportPoints; ++i ) + { + dDensMean_dP[i] /= denom; + for( integer jc = 0; jc < numComp; ++jc ) + { + dDensMean_dC[i][jc] /= denom; + } + } + } + } + }; } // namespace isothermalCompositionalMultiPhaseFVMKernelUtilities diff --git a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/ReactiveCompositionalMultiphaseOBLKernels.hpp b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/ReactiveCompositionalMultiphaseOBLKernels.hpp index bc76898511d..362fc17a562 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/ReactiveCompositionalMultiphaseOBLKernels.hpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/ReactiveCompositionalMultiphaseOBLKernels.hpp @@ -606,7 +606,7 @@ class FluxComputeKernelBase static constexpr real64 secondsToDaysMult = 1.0 / (60 * 60 * 24); - // transmissibility in DARTS is the same as in Eclipse (Metric): + // transmissibility in DARTS is Metric: // T = c * (k * A) / d, where c is Darcy constant, k is permeability [mD], A is area [m2] and d is distance [m] // Darcy constant takes care of unit translation (from SI to Metric), it includes conversion of [s]->[day], [cp->Pa * s], [Pa]->[bar] and // [mD->m2]: diff --git a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/SolutionScalingKernel.hpp b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/SolutionScalingKernel.hpp index 3158d2f7537..7cdbd3456cb 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/SolutionScalingKernel.hpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/SolutionScalingKernel.hpp @@ -21,6 +21,7 @@ #define GEOS_PHYSICSSOLVERS_FLUIDFLOW_COMPOSITIONAL_SOLUTIONSCALINGKERNEL_HPP #include "physicsSolvers/fluidFlow/kernels/compositional/SolutionScalingAndCheckingKernelBase.hpp" +#include "physicsSolvers/fluidFlow/kernels/compositional/AccumulationKernel.hpp" #include "physicsSolvers/fluidFlow/CompositionalMultiphaseFVM.hpp" namespace geos @@ -106,24 +107,33 @@ class SolutionScalingKernel : public SolutionScalingAndCheckingKernelBase< real6 StackVariables( real64 _localMinVal, real64 _localMaxDeltaPres, + localIndex _localMaxDeltaPresLoc, real64 _localMaxDeltaTemp, + localIndex _localMaxDeltaTempLoc, real64 _localMaxDeltaCompDens, + localIndex _localMaxDeltaCompDensLoc, real64 _localMinPresScalingFactor, real64 _localMinTempScalingFactor, real64 _localMinCompDensScalingFactor ) : Base::StackVariables( _localMinVal ), localMaxDeltaPres( _localMaxDeltaPres ), + localMaxDeltaPresLoc( _localMaxDeltaPresLoc ), localMaxDeltaTemp( _localMaxDeltaTemp ), + localMaxDeltaTempLoc( _localMaxDeltaTempLoc ), localMaxDeltaCompDens( _localMaxDeltaCompDens ), + localMaxDeltaCompDensLoc( _localMaxDeltaCompDensLoc ), localMinPresScalingFactor( _localMinPresScalingFactor ), localMinTempScalingFactor( _localMinTempScalingFactor ), localMinCompDensScalingFactor( _localMinCompDensScalingFactor ) { } real64 localMaxDeltaPres; + localIndex localMaxDeltaPresLoc; real64 localMaxDeltaTemp; + localIndex localMaxDeltaTempLoc; real64 localMaxDeltaCompDens; + localIndex localMaxDeltaCompDensLoc; real64 localMinPresScalingFactor; real64 localMinTempScalingFactor; @@ -145,9 +155,9 @@ class SolutionScalingKernel : public SolutionScalingAndCheckingKernelBase< real6 { RAJA::ReduceMin< ReducePolicy< POLICY >, real64 > globalScalingFactor( 1.0 ); - RAJA::ReduceMax< ReducePolicy< POLICY >, real64 > maxDeltaPres( 0.0 ); - RAJA::ReduceMax< ReducePolicy< POLICY >, real64 > maxDeltaTemp( 0.0 ); - RAJA::ReduceMax< ReducePolicy< POLICY >, real64 > maxDeltaCompDens( 0.0 ); + RAJA::ReduceMaxLoc< ReducePolicy< POLICY >, real64 > maxDeltaPres( std::numeric_limits< real64 >::min(), -1 ); + RAJA::ReduceMaxLoc< ReducePolicy< POLICY >, real64 > maxDeltaTemp( std::numeric_limits< real64 >::min(), -1 ); + RAJA::ReduceMaxLoc< ReducePolicy< POLICY >, real64 > maxDeltaCompDens( std::numeric_limits< real64 >::min(), -1 ); RAJA::ReduceMin< ReducePolicy< POLICY >, real64 > minPresScalingFactor( 1.0 ); RAJA::ReduceMin< ReducePolicy< POLICY >, real64 > minTempScalingFactor( 1.0 ); @@ -166,9 +176,9 @@ class SolutionScalingKernel : public SolutionScalingAndCheckingKernelBase< real6 globalScalingFactor.min( stack.localMinVal ); - maxDeltaPres.max( stack.localMaxDeltaPres ); - maxDeltaTemp.max( stack.localMaxDeltaTemp ); - maxDeltaCompDens.max( stack.localMaxDeltaCompDens ); + maxDeltaPres.maxloc( stack.localMaxDeltaPres, ei ); + maxDeltaTemp.maxloc( stack.localMaxDeltaTemp, ei ); + maxDeltaCompDens.maxloc( stack.localMaxDeltaCompDens, ei ); minPresScalingFactor.min( stack.localMinPresScalingFactor ); minTempScalingFactor.min( stack.localMinTempScalingFactor ); @@ -177,8 +187,11 @@ class SolutionScalingKernel : public SolutionScalingAndCheckingKernelBase< real6 return StackVariables( globalScalingFactor.get(), maxDeltaPres.get(), + maxDeltaPres.getLoc(), maxDeltaTemp.get(), + maxDeltaTemp.getLoc(), maxDeltaCompDens.get(), + maxDeltaCompDens.getLoc(), minPresScalingFactor.get(), minTempScalingFactor.get(), minCompDensScalingFactor.get() ); @@ -191,8 +204,11 @@ class SolutionScalingKernel : public SolutionScalingAndCheckingKernelBase< real6 Base::setup( ei, stack ); stack.localMaxDeltaPres = 0.0; + stack.localMaxDeltaPresLoc = -1; stack.localMaxDeltaTemp = 0.0; + stack.localMaxDeltaTempLoc = -1; stack.localMaxDeltaCompDens = 0.0; + stack.localMaxDeltaCompDensLoc =-1; stack.localMinPresScalingFactor = 1.0; stack.localMinTempScalingFactor = 1.0; diff --git a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/StabilizedFluxComputeKernel.hpp b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/StabilizedFluxComputeKernel.hpp index de9e92c8b80..71801e9ee59 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/StabilizedFluxComputeKernel.hpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/StabilizedFluxComputeKernel.hpp @@ -193,6 +193,7 @@ class FluxComputeKernel : public isothermalCompositionalMultiphaseFVMKernels::Fl // // We use the lambda below (called **inside** the phase loop of the base computeFlux) to compute stabilization terms Base::computeFlux( iconn, stack, [&] ( integer const ip, + integer const GEOS_UNUSED_PARAM( useNewGravity ), localIndex const (&k)[2], localIndex const (&seri)[2], localIndex const (&sesri)[2], diff --git a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/ThermalFluxComputeKernel.hpp b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/ThermalFluxComputeKernel.hpp index 17395f62324..8d7190cc70b 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/ThermalFluxComputeKernel.hpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/kernels/compositional/ThermalFluxComputeKernel.hpp @@ -197,6 +197,7 @@ class FluxComputeKernel : public isothermalCompositionalMultiphaseFVMKernels::Fl // such as potGrad, phaseFlux, and the indices of the upwind cell // We use the lambda below (called **inside** the phase loop of the base computeFlux) to access these variables Base::computeFlux( iconn, stack, [&] ( integer const ip, + integer const useNewGravity, localIndex const (&k)[2], localIndex const (&seri)[2], localIndex const (&sesri)[2], @@ -234,7 +235,7 @@ class FluxComputeKernel : public isothermalCompositionalMultiphaseFVMKernels::Fl localIndex const ei = sei[i]; bool const phaseExists = (m_phaseVolFrac[er_up][esr_up][ei_up][ip] > 0); - if( !phaseExists ) + if( useNewGravity && !phaseExists ) { continue; } diff --git a/src/coreComponents/physicsSolvers/fluidFlow/kernels/singlePhase/SinglePhaseHybridFVMKernels.hpp b/src/coreComponents/physicsSolvers/fluidFlow/kernels/singlePhase/SinglePhaseHybridFVMKernels.hpp index 13e5eeabfcb..124e454d90f 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/kernels/singlePhase/SinglePhaseHybridFVMKernels.hpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/kernels/singlePhase/SinglePhaseHybridFVMKernels.hpp @@ -37,7 +37,6 @@ #include "physicsSolvers/fluidFlow/FlowSolverBaseFields.hpp" #include "physicsSolvers/fluidFlow/SinglePhaseBaseFields.hpp" #include "physicsSolvers/fluidFlow/StencilAccessors.hpp" -#include "physicsSolvers/fluidFlow/kernels/singlePhase/AccumulationKernels.hpp" #include "physicsSolvers/fluidFlow/kernels/HybridFVMHelperKernels.hpp" #include "physicsSolvers/PhysicsSolverBaseKernels.hpp" #include "codingUtilities/Utilities.hpp" diff --git a/src/coreComponents/physicsSolvers/fluidFlow/wells/CompositionalMultiphaseWell.cpp b/src/coreComponents/physicsSolvers/fluidFlow/wells/CompositionalMultiphaseWell.cpp index 95f59c179ec..dbd4637d01b 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/wells/CompositionalMultiphaseWell.cpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/wells/CompositionalMultiphaseWell.cpp @@ -42,8 +42,6 @@ #include "physicsSolvers/fluidFlow/wells/kernels/CompositionalMultiphaseWellKernels.hpp" #include "physicsSolvers/fluidFlow/wells/kernels/ThermalCompositionalMultiphaseWellKernels.hpp" #include "physicsSolvers/fluidFlow/wells/kernels/PerforationFluxKernels.hpp" -#include "physicsSolvers/fluidFlow/kernels/compositional/AccumulationKernel.hpp" -#include "physicsSolvers/fluidFlow/kernels/compositional/ThermalAccumulationKernel.hpp" #include "physicsSolvers/fluidFlow/kernels/compositional/SolutionScalingKernel.hpp" #include "physicsSolvers/fluidFlow/kernels/compositional/ThermalSolutionScalingKernel.hpp" #include "physicsSolvers/fluidFlow/kernels/compositional/SolutionCheckKernel.hpp" @@ -62,7 +60,6 @@ namespace geos using namespace dataRepository; using namespace constitutive; -using namespace compositionalMultiphaseWellKernels; CompositionalMultiphaseWell::CompositionalMultiphaseWell( const string & name, Group * const parent ) @@ -910,7 +907,8 @@ void CompositionalMultiphaseWell::updateTotalMassDensity( WellElementSubRegion & subRegion, fluid ) : - TotalMassDensityKernelFactory:: + compositionalMultiphaseWellKernels:: + TotalMassDensityKernelFactory:: createAndLaunch< parallelDevicePolicy<> >( m_numComponents, m_numPhases, subRegion, @@ -976,8 +974,10 @@ void CompositionalMultiphaseWell::initializeWells( DomainPartition & domain, rea { ElementRegionManager & elemManager = mesh.getElemManager(); - PresTempCompFracInitializationKernel::CompFlowAccessors resCompFlowAccessors( mesh.getElemManager(), flowSolver.getName() ); - PresTempCompFracInitializationKernel::MultiFluidAccessors resMultiFluidAccessors( mesh.getElemManager(), flowSolver.getName() ); + compositionalMultiphaseWellKernels::PresTempCompFracInitializationKernel::CompFlowAccessors + resCompFlowAccessors( mesh.getElemManager(), flowSolver.getName() ); + compositionalMultiphaseWellKernels::PresTempCompFracInitializationKernel::MultiFluidAccessors + resMultiFluidAccessors( mesh.getElemManager(), flowSolver.getName() ); elemManager.forElementSubRegions< WellElementSubRegion >( regionNames, [&]( localIndex const, @@ -1011,7 +1011,8 @@ void CompositionalMultiphaseWell::initializeWells( DomainPartition & domain, rea // 1) Loop over all perforations to compute an average mixture density and component fraction // 2) Initialize the reference pressure // 3) Estimate the pressures in the well elements using the average density - PresTempCompFracInitializationKernel:: + compositionalMultiphaseWellKernels:: + PresTempCompFracInitializationKernel:: launch( perforationData.size(), subRegion.size(), numComp, @@ -1053,11 +1054,12 @@ void CompositionalMultiphaseWell::initializeWells( DomainPartition & domain, rea wellElemCompFrac ); } ); - CompDensInitializationKernel::launch( subRegion.size(), - numComp, - wellElemCompFrac, - wellElemTotalDens, - wellElemCompDens ); + compositionalMultiphaseWellKernels:: + CompDensInitializationKernel::launch( subRegion.size(), + numComp, + wellElemCompFrac, + wellElemTotalDens, + wellElemCompDens ); // 5) Recompute the pressure-dependent properties updateSubRegionState( subRegion ); @@ -1310,7 +1312,7 @@ CompositionalMultiphaseWell::calculateResidualNorm( real64 const & time_n, else { real64 subRegionResidualNorm[1]{}; - ResidualNormKernelFactory:: + compositionalMultiphaseWellKernels::ResidualNormKernelFactory:: createAndLaunch< parallelDevicePolicy<> >( m_numComponents, numDofPerWellElement(), m_targetPhaseIndex, @@ -1914,24 +1916,25 @@ void CompositionalMultiphaseWell::assemblePressureRelations( real64 const & time bool controlHasSwitched = false; isothermalCompositionalMultiphaseBaseKernels:: - KernelLaunchSelectorCompTherm< PressureRelationKernel >( numFluidComponents(), - isThermal, - subRegion.size(), - dofManager.rankOffset(), - subRegion.isLocallyOwned(), - subRegion.getTopWellElementIndex(), - m_targetPhaseIndex, - wellControls, - time_n + dt, // controls evaluated with BHP/rate of the end of step - wellElemDofNumber, - wellElemGravCoef, - nextWellElemIndex, - wellElemPres, - wellElemTotalMassDens, - dWellElemTotalMassDens, - controlHasSwitched, - localMatrix, - localRhs ); + KernelLaunchSelectorCompTherm< compositionalMultiphaseWellKernels::PressureRelationKernel > + ( numFluidComponents(), + isThermal, + subRegion.size(), + dofManager.rankOffset(), + subRegion.isLocallyOwned(), + subRegion.getTopWellElementIndex(), + m_targetPhaseIndex, + wellControls, + time_n + dt, // controls evaluated with BHP/rate of the end of step + wellElemDofNumber, + wellElemGravCoef, + nextWellElemIndex, + wellElemPres, + wellElemTotalMassDens, + dWellElemTotalMassDens, + controlHasSwitched, + localMatrix, + localRhs ); if( controlHasSwitched ) { diff --git a/src/coreComponents/physicsSolvers/fluidFlow/wells/WellControls.hpp b/src/coreComponents/physicsSolvers/fluidFlow/wells/WellControls.hpp index 107c013cfd3..fefa7e4435b 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/wells/WellControls.hpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/wells/WellControls.hpp @@ -21,7 +21,7 @@ #ifndef GEOS_PHYSICSSOLVERS_FLUIDFLOW_WELLS_WELLCONTROLS_HPP #define GEOS_PHYSICSSOLVERS_FLUIDFLOW_WELLS_WELLCONTROLS_HPP -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" #include "dataRepository/Group.hpp" #include "functions/TableFunction.hpp" diff --git a/src/coreComponents/physicsSolvers/fluidFlow/wells/kernels/CompositionalMultiphaseWellKernels.hpp b/src/coreComponents/physicsSolvers/fluidFlow/wells/kernels/CompositionalMultiphaseWellKernels.hpp index 1ca6ebac997..1995119e9f4 100644 --- a/src/coreComponents/physicsSolvers/fluidFlow/wells/kernels/CompositionalMultiphaseWellKernels.hpp +++ b/src/coreComponents/physicsSolvers/fluidFlow/wells/kernels/CompositionalMultiphaseWellKernels.hpp @@ -33,7 +33,6 @@ #include "physicsSolvers/fluidFlow/CompositionalMultiphaseBaseFields.hpp" #include "physicsSolvers/fluidFlow/FlowSolverBaseFields.hpp" #include "physicsSolvers/fluidFlow/StencilAccessors.hpp" -#include "physicsSolvers/fluidFlow/kernels/compositional/AccumulationKernel.hpp" #include "physicsSolvers/fluidFlow/kernels/compositional/PropertyKernelBase.hpp" #include "physicsSolvers/fluidFlow/kernels/compositional/SolutionScalingKernel.hpp" #include "physicsSolvers/fluidFlow/kernels/compositional/SolutionCheckKernel.hpp" diff --git a/src/coreComponents/physicsSolvers/inducedSeismicity/CMakeLists.txt b/src/coreComponents/physicsSolvers/inducedSeismicity/CMakeLists.txt index 7edf040454d..c8f23c55323 100644 --- a/src/coreComponents/physicsSolvers/inducedSeismicity/CMakeLists.txt +++ b/src/coreComponents/physicsSolvers/inducedSeismicity/CMakeLists.txt @@ -4,6 +4,7 @@ set( physicsSolvers_headers inducedSeismicity/inducedSeismicityFields.hpp inducedSeismicity/rateAndStateFields.hpp inducedSeismicity/QuasiDynamicEQ.hpp + inducedSeismicity/QuasiDynamicEQRK32.hpp inducedSeismicity/SeismicityRate.hpp inducedSeismicity/kernels/RateAndStateKernels.hpp inducedSeismicity/kernels/SeismicityRateKernels.hpp @@ -12,6 +13,7 @@ set( physicsSolvers_headers # Specify solver sources set( physicsSolvers_sources ${physicsSolvers_sources} - inducedSeismicity/QuasiDynamicEQ.cpp + inducedSeismicity/QuasiDynamicEQ.cpp + inducedSeismicity/QuasiDynamicEQRK32.cpp inducedSeismicity/SeismicityRate.cpp PARENT_SCOPE ) diff --git a/src/coreComponents/physicsSolvers/inducedSeismicity/QuasiDynamicEQ.cpp b/src/coreComponents/physicsSolvers/inducedSeismicity/QuasiDynamicEQ.cpp index 059fa9d33e1..d00e64357e0 100644 --- a/src/coreComponents/physicsSolvers/inducedSeismicity/QuasiDynamicEQ.cpp +++ b/src/coreComponents/physicsSolvers/inducedSeismicity/QuasiDynamicEQ.cpp @@ -32,6 +32,7 @@ namespace geos using namespace dataRepository; using namespace fields; using namespace constitutive; +using namespace rateAndStateKernels; QuasiDynamicEQ::QuasiDynamicEQ( const string & name, Group * const parent ): @@ -149,8 +150,8 @@ real64 QuasiDynamicEQ::solverStep( real64 const & time_n, /// 2. Solve for slip rate and state variable and, compute slip GEOS_LOG_LEVEL_RANK_0( 1, "Rate and State solver" ); - - integer const maxNewtonIter = m_nonlinearSolverParameters.m_maxIterNewton; + integer const maxIterNewton = m_nonlinearSolverParameters.m_maxIterNewton; + real64 const newtonTol = m_nonlinearSolverParameters.m_newtonTol; forDiscretizationOnMeshTargets( domain.getMeshBodies(), [&]( string const &, MeshLevel & mesh, arrayView1d< string const > const & regionNames ) @@ -161,7 +162,8 @@ real64 QuasiDynamicEQ::solverStep( real64 const & time_n, SurfaceElementSubRegion & subRegion ) { // solve rate and state equations. - rateAndStateKernels::createAndLaunch< parallelDevicePolicy<> >( subRegion, viewKeyStruct::frictionLawNameString(), m_shearImpedance, maxNewtonIter, time_n, dtStress ); + createAndLaunch< ImplicitFixedStressRateAndStateKernel, parallelDevicePolicy<> >( subRegion, viewKeyStruct::frictionLawNameString(), m_shearImpedance, maxIterNewton, newtonTol, time_n, + dtStress ); // save old state saveOldStateAndUpdateSlip( subRegion, dtStress ); } ); diff --git a/src/coreComponents/physicsSolvers/inducedSeismicity/QuasiDynamicEQ.hpp b/src/coreComponents/physicsSolvers/inducedSeismicity/QuasiDynamicEQ.hpp index edff334c003..97b202ee7e6 100644 --- a/src/coreComponents/physicsSolvers/inducedSeismicity/QuasiDynamicEQ.hpp +++ b/src/coreComponents/physicsSolvers/inducedSeismicity/QuasiDynamicEQ.hpp @@ -47,7 +47,7 @@ class QuasiDynamicEQ : public PhysicsSolverBase struct viewKeyStruct : public PhysicsSolverBase::viewKeyStruct { /// stress solver name - static constexpr char const * stressSolverNameString() { return "stressSolverName"; } + constexpr static char const * stressSolverNameString() { return "stressSolverName"; } /// Friction law name string constexpr static char const * frictionLawNameString() { return "frictionLawName"; } /// Friction law name string diff --git a/src/coreComponents/physicsSolvers/inducedSeismicity/QuasiDynamicEQRK32.cpp b/src/coreComponents/physicsSolvers/inducedSeismicity/QuasiDynamicEQRK32.cpp new file mode 100644 index 00000000000..7b569118934 --- /dev/null +++ b/src/coreComponents/physicsSolvers/inducedSeismicity/QuasiDynamicEQRK32.cpp @@ -0,0 +1,478 @@ +/* + * ------------------------------------------------------------------------------------------------------------ + * SPDX-License-Identifier: LGPL-2.1-only + * + * Copyright (c) 2016-2024 Lawrence Livermore National Security LLC + * Copyright (c) 2018-2024 Total, S.A + * Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University + * Copyright (c) 2023-2024 Chevron + * Copyright (c) 2019- GEOS/GEOSX Contributors + * All rights reserved + * + * See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. + * ------------------------------------------------------------------------------------------------------------ + */ + +/** + * @file QuasiDynamicEQRK32.cpp + */ + +#include "QuasiDynamicEQRK32.hpp" + +#include "dataRepository/InputFlags.hpp" +#include "mesh/DomainPartition.hpp" +#include "kernels/RateAndStateKernels.hpp" +#include "rateAndStateFields.hpp" +#include "physicsSolvers/contact/ContactFields.hpp" +#include "fieldSpecification/FieldSpecificationManager.hpp" + +namespace geos +{ + +using namespace dataRepository; +using namespace fields; +using namespace constitutive; +using namespace rateAndStateKernels; + +QuasiDynamicEQRK32::QuasiDynamicEQRK32( const string & name, + Group * const parent ): + PhysicsSolverBase( name, parent ), + m_stressSolver( nullptr ), + m_stressSolverName( "SpringSlider" ), + m_shearImpedance( 0.0 ), + m_butcherTable( BogackiShampine32Table()), // TODO: The butcher table should be specified in the XML input. + m_successfulStep( false ), + m_controller( PIDController( { 1.0/18.0, 1.0/9.0, 1.0/18.0 }, + 1.0e-6, 1.0e-6, 0.81 )) // TODO: The control parameters should be specified in the XML input +{ + this->registerWrapper( viewKeyStruct::shearImpedanceString(), &m_shearImpedance ). + setInputFlag( InputFlags::REQUIRED ). + setDescription( "Shear impedance." ); + + this->registerWrapper( viewKeyStruct::stressSolverNameString(), &m_stressSolverName ). + setInputFlag( InputFlags::OPTIONAL ). + setDescription( "Name of solver for computing stress. If empty, the spring-slider model is run." ); +} + +void QuasiDynamicEQRK32::postInputInitialization() +{ + + // Initialize member stress solver as specified in XML input + if( !m_stressSolverName.empty() ) + { + m_stressSolver = &this->getParent().getGroup< PhysicsSolverBase >( m_stressSolverName ); + } + + PhysicsSolverBase::postInputInitialization(); +} + +QuasiDynamicEQRK32::~QuasiDynamicEQRK32() +{ + // TODO Auto-generated destructor stub +} + + +void QuasiDynamicEQRK32::registerDataOnMesh( Group & meshBodies ) +{ + PhysicsSolverBase::registerDataOnMesh( meshBodies ); + + forDiscretizationOnMeshTargets( meshBodies, [&] ( string const &, + MeshLevel & mesh, + arrayView1d< string const > const & regionNames ) + { + ElementRegionManager & elemManager = mesh.getElemManager(); + + elemManager.forElementSubRegions< SurfaceElementSubRegion >( regionNames, + [&]( localIndex const, + SurfaceElementSubRegion & subRegion ) + { + // Scalar functions on fault + subRegion.registerField< rateAndState::stateVariable >( getName() ); + subRegion.registerField< rateAndState::stateVariable_n >( getName() ); + subRegion.registerField< rateAndState::slipRate >( getName() ); + + // Tangent (2-component) functions on fault + string const labels2Comp[2] = {"tangent1", "tangent2" }; + subRegion.registerField< rateAndState::slipVelocity >( getName() ). + setDimLabels( 1, labels2Comp ).reference().resizeDimension< 1 >( 2 ); + subRegion.registerField< rateAndState::slipVelocity_n >( getName() ). + setDimLabels( 1, labels2Comp ).reference().resizeDimension< 1 >( 2 ); + subRegion.registerField< rateAndState::deltaSlip >( getName() ). + setDimLabels( 1, labels2Comp ).reference().resizeDimension< 1 >( 2 ); + subRegion.registerField< rateAndState::deltaSlip_n >( getName() ). + setDimLabels( 1, labels2Comp ).reference().resizeDimension< 1 >( 2 ); + + // Runge-Kutta stage rates and error + integer const numRKComponents = 3; + subRegion.registerField< rateAndState::rungeKuttaStageRates >( getName() ).reference().resizeDimension< 1, 2 >( m_butcherTable.numStages, numRKComponents ); + subRegion.registerField< rateAndState::error >( getName() ).reference().resizeDimension< 1 >( numRKComponents ); + + + if( !subRegion.hasWrapper( contact::dispJump::key() )) + { + // 3-component functions on fault + string const labels3Comp[3] = { "normal", "tangent1", "tangent2" }; + subRegion.registerField< contact::dispJump >( getName() ). + setDimLabels( 1, labels3Comp ). + reference().resizeDimension< 1 >( 3 ); + subRegion.registerField< contact::dispJump_n >( getName() ). + setDimLabels( 1, labels3Comp ). + reference().resizeDimension< 1 >( 3 ); + subRegion.registerField< contact::traction >( getName() ). + setDimLabels( 1, labels3Comp ). + reference().resizeDimension< 1 >( 3 ); + subRegion.registerField< contact::traction_n >( getName() ). + setDimLabels( 1, labels3Comp ). + reference().resizeDimension< 1 >( 3 ); + + subRegion.registerWrapper< string >( viewKeyStruct::frictionLawNameString() ). + setPlotLevel( PlotLevel::NOPLOT ). + setRestartFlags( RestartFlags::NO_WRITE ). + setSizedFromParent( 0 ); + + string & frictionLawName = subRegion.getReference< string >( viewKeyStruct::frictionLawNameString() ); + frictionLawName = PhysicsSolverBase::getConstitutiveName< FrictionBase >( subRegion ); + GEOS_ERROR_IF( frictionLawName.empty(), GEOS_FMT( "{}: FrictionBase model not found on subregion {}", + getDataContext(), subRegion.getDataContext() ) ); + } + } ); + } ); +} + +real64 QuasiDynamicEQRK32::solverStep( real64 const & time_n, + real64 const & dt, + int const cycleNumber, + DomainPartition & domain ) +{ + if( cycleNumber == 0 ) + { + /// Apply initial conditions to the Fault + FieldSpecificationManager & fieldSpecificationManager = FieldSpecificationManager::getInstance(); + + forDiscretizationOnMeshTargets( domain.getMeshBodies(), [&]( string const &, + MeshLevel & mesh, + arrayView1d< string const > const & ) + + { + fieldSpecificationManager.applyInitialConditions( mesh ); + + } ); + saveState( domain ); + } + + real64 dtAdaptive = dt; + + GEOS_LOG_LEVEL_RANK_0( 1, "Begin adaptive time step" ); + while( true ) // Adaptive time step loop. Performs a Runge-Kutta time stepping with error control on state and slip + { + real64 dtStress; GEOS_UNUSED_VAR( dtStress ); + + // Initial Runge-Kutta stage + stepRateStateODEInitialSubstage( dtAdaptive, domain ); + real64 dtStage = m_butcherTable.c[1]*dtAdaptive; + dtStress = updateStresses( time_n, dtStage, cycleNumber, domain ); + updateSlipVelocity( time_n, dtStage, domain ); + + // Remaining stages + for( integer stageIndex = 1; stageIndex < m_butcherTable.numStages-1; stageIndex++ ) + { + stepRateStateODESubstage( stageIndex, dtAdaptive, domain ); + dtStage = m_butcherTable.c[stageIndex+1]*dtAdaptive; + dtStress = updateStresses( time_n, dtStage, cycleNumber, domain ); + updateSlipVelocity( time_n, dtStage, domain ); + } + + stepRateStateODEAndComputeError( dtAdaptive, domain ); + // Update timestep based on the time step error + real64 const dtNext = setNextDt( dtAdaptive, domain ); + if( m_successfulStep ) // set in setNextDt + { + // Compute stresses, and slip velocity and save results at updated time, + if( !m_butcherTable.FSAL ) + { + dtStress = updateStresses( time_n, dtAdaptive, cycleNumber, domain ); + updateSlipVelocity( time_n, dtAdaptive, domain ); + } + saveState( domain ); + // update the time step and exit the adaptive time step loop + dtAdaptive = dtNext; + break; + } + else + { + // Retry with updated time step + dtAdaptive = dtNext; + } + } + // return time step size achieved by stress solver + return dtAdaptive; +} + +void QuasiDynamicEQRK32::stepRateStateODEInitialSubstage( real64 const dt, DomainPartition & domain ) const +{ + + forDiscretizationOnMeshTargets( domain.getMeshBodies(), [&]( string const &, + MeshLevel & mesh, + arrayView1d< string const > const & regionNames ) + + { + mesh.getElemManager().forElementSubRegions< SurfaceElementSubRegion >( regionNames, + [&]( localIndex const, + SurfaceElementSubRegion & subRegion ) + { + + string const & fricitonLawName = subRegion.template getReference< string >( viewKeyStruct::frictionLawNameString() ); + RateAndStateFriction const & frictionLaw = getConstitutiveModel< RateAndStateFriction >( subRegion, fricitonLawName ); + rateAndStateKernels::EmbeddedRungeKuttaKernel rkKernel( subRegion, frictionLaw, m_butcherTable ); + arrayView3d< real64 > const rkStageRates = subRegion.getField< rateAndState::rungeKuttaStageRates >(); + + if( m_butcherTable.FSAL && m_successfulStep ) + { + forAll< parallelDevicePolicy<> >( subRegion.size(), [=] GEOS_HOST_DEVICE ( localIndex const k ) + { + rkKernel.updateStageRatesFSAL( k ); + rkKernel.updateStageValues( k, 1, dt ); + } ); + } + else + { + forAll< parallelDevicePolicy<> >( subRegion.size(), [=] GEOS_HOST_DEVICE ( localIndex const k ) + { + rkKernel.initialize( k ); + rkKernel.updateStageRates( k, 0 ); + rkKernel.updateStageValues( k, 1, dt ); + } ); + } + } ); + } ); +} + +void QuasiDynamicEQRK32::stepRateStateODESubstage( integer const stageIndex, + real64 const dt, + DomainPartition & domain ) const +{ + + forDiscretizationOnMeshTargets( domain.getMeshBodies(), [&]( string const &, + MeshLevel & mesh, + arrayView1d< string const > const & regionNames ) + + { + mesh.getElemManager().forElementSubRegions< SurfaceElementSubRegion >( regionNames, + [&]( localIndex const, + SurfaceElementSubRegion & subRegion ) + { + + string const & fricitonLawName = subRegion.template getReference< string >( viewKeyStruct::frictionLawNameString() ); + RateAndStateFriction const & frictionLaw = getConstitutiveModel< RateAndStateFriction >( subRegion, fricitonLawName ); + rateAndStateKernels::EmbeddedRungeKuttaKernel rkKernel( subRegion, frictionLaw, m_butcherTable ); + arrayView3d< real64 > const rkStageRates = subRegion.getField< rateAndState::rungeKuttaStageRates >(); + + forAll< parallelDevicePolicy<> >( subRegion.size(), [=] GEOS_HOST_DEVICE ( localIndex const k ) + { + rkKernel.updateStageRates( k, stageIndex ); + rkKernel.updateStageValues( k, stageIndex+1, dt ); + } ); + } ); + } ); +} + +void QuasiDynamicEQRK32::stepRateStateODEAndComputeError( real64 const dt, DomainPartition & domain ) const +{ + forDiscretizationOnMeshTargets( domain.getMeshBodies(), [&]( string const &, + MeshLevel & mesh, + arrayView1d< string const > const & regionNames ) + + { + mesh.getElemManager().forElementSubRegions< SurfaceElementSubRegion >( regionNames, + [&]( localIndex const, + SurfaceElementSubRegion & subRegion ) + { + + string const & fricitonLawName = subRegion.template getReference< string >( viewKeyStruct::frictionLawNameString() ); + RateAndStateFriction const & frictionLaw = getConstitutiveModel< RateAndStateFriction >( subRegion, fricitonLawName ); + rateAndStateKernels::EmbeddedRungeKuttaKernel rkKernel( subRegion, frictionLaw, m_butcherTable ); + arrayView3d< real64 > const rkStageRates = subRegion.getField< rateAndState::rungeKuttaStageRates >(); + if( m_butcherTable.FSAL ) + { + forAll< parallelDevicePolicy<> >( subRegion.size(), [=] GEOS_HOST_DEVICE ( localIndex const k ) + { + // Perform last stage rate update + rkKernel.updateStageRates( k, m_butcherTable.numStages-1 ); + // Update solution to final time and compute errors + rkKernel.updateSolutionAndLocalErrorFSAL( k, dt, m_controller.absTol, m_controller.relTol ); + } ); + } + else + { + forAll< parallelDevicePolicy<> >( subRegion.size(), [=] GEOS_HOST_DEVICE ( localIndex const k ) + { + // Perform last stage rate update + rkKernel.updateStageRates( k, m_butcherTable.numStages-1 ); + // Update solution to final time and compute errors + rkKernel.updateSolutionAndLocalError( k, dt, m_controller.absTol, m_controller.relTol ); + } ); + } + } ); + } ); +} + +real64 QuasiDynamicEQRK32::updateStresses( real64 const & time_n, + real64 const & dt, + const int cycleNumber, + DomainPartition & domain ) const +{ + GEOS_LOG_LEVEL_RANK_0( 1, "Stress solver" ); + // Call member variable stress solver to update the stress state + if( m_stressSolver ) + { + // 1. Solve the momentum balance + real64 const dtStress = m_stressSolver->solverStep( time_n, dt, cycleNumber, domain ); + + return dtStress; + } + else + { + // Spring-slider shear traction computation + forDiscretizationOnMeshTargets( domain.getMeshBodies(), [&]( string const &, + MeshLevel & mesh, + arrayView1d< string const > const & regionNames ) + + { + mesh.getElemManager().forElementSubRegions< SurfaceElementSubRegion >( regionNames, + [&]( localIndex const, + SurfaceElementSubRegion & subRegion ) + { + + arrayView2d< real64 const > const deltaSlip = subRegion.getField< rateAndState::deltaSlip >(); + arrayView2d< real64 > const traction = subRegion.getField< fields::contact::traction >(); + arrayView2d< real64 const > const traction_n = subRegion.getField< fields::contact::traction_n >(); + + string const & fricitonLawName = subRegion.template getReference< string >( viewKeyStruct::frictionLawNameString() ); + RateAndStateFriction const & frictionLaw = getConstitutiveModel< RateAndStateFriction >( subRegion, fricitonLawName ); + + RateAndStateFriction::KernelWrapper frictionKernelWrapper = frictionLaw.createKernelUpdates(); + + forAll< parallelDevicePolicy<> >( subRegion.size(), [=] GEOS_HOST_DEVICE ( localIndex const k ) + { + SpringSliderParameters springSliderParameters = SpringSliderParameters( traction[k][0], + frictionKernelWrapper.getACoefficient( k ), + frictionKernelWrapper.getBCoefficient( k ), + frictionKernelWrapper.getDcCoefficient( k ) ); + + + traction[k][1] = traction_n[k][1] + springSliderParameters.tauRate * dt + - springSliderParameters.springStiffness * deltaSlip[k][0]; + traction[k][2] = traction_n[k][2] + springSliderParameters.tauRate * dt + - springSliderParameters.springStiffness * deltaSlip[k][1]; + } ); + } ); + } ); + return dt; + } +} + +void QuasiDynamicEQRK32::updateSlipVelocity( real64 const & time_n, + real64 const & dt, + DomainPartition & domain ) const +{ + GEOS_LOG_LEVEL_RANK_0( 1, "Rate and State solver" ); + integer const maxIterNewton = m_nonlinearSolverParameters.m_maxIterNewton; + real64 const newtonTol = m_nonlinearSolverParameters.m_newtonTol; + forDiscretizationOnMeshTargets( domain.getMeshBodies(), [&]( string const &, + MeshLevel & mesh, + arrayView1d< string const > const & regionNames ) + + { + mesh.getElemManager().forElementSubRegions< SurfaceElementSubRegion >( regionNames, + [&]( localIndex const, + SurfaceElementSubRegion & subRegion ) + { + // solve rate and state equations. + rateAndStateKernels::createAndLaunch< rateAndStateKernels::ExplicitRateAndStateKernel, parallelDevicePolicy<> >( subRegion, viewKeyStruct::frictionLawNameString(), m_shearImpedance, + maxIterNewton, newtonTol, time_n, dt ); + } ); + } ); +} + +void QuasiDynamicEQRK32::saveState( DomainPartition & domain ) const +{ + forDiscretizationOnMeshTargets( domain.getMeshBodies(), [&]( string const &, + MeshLevel & mesh, + arrayView1d< string const > const & regionNames ) + + { + mesh.getElemManager().forElementSubRegions< SurfaceElementSubRegion >( regionNames, + [&]( localIndex const, + SurfaceElementSubRegion & subRegion ) + { + arrayView1d< real64 const > const stateVariable = subRegion.getField< rateAndState::stateVariable >(); + arrayView2d< real64 const > const slipVelocity = subRegion.getField< rateAndState::slipVelocity >(); + arrayView2d< real64 const > const deltaSlip = subRegion.getField< rateAndState::deltaSlip >(); + arrayView2d< real64 const > const dispJump = subRegion.getField< contact::dispJump >(); + arrayView2d< real64 const > const traction = subRegion.getField< contact::traction >(); + + arrayView1d< real64 > const stateVariable_n = subRegion.getField< rateAndState::stateVariable_n >(); + arrayView2d< real64 > const slipVelocity_n = subRegion.getField< rateAndState::slipVelocity_n >(); + arrayView2d< real64 > const deltaSlip_n = subRegion.getField< rateAndState::deltaSlip >(); + arrayView2d< real64 > const dispJump_n = subRegion.getField< contact::dispJump_n >(); + arrayView2d< real64 > const traction_n = subRegion.getField< contact::traction_n >(); + + forAll< parallelDevicePolicy<> >( subRegion.size(), [=] GEOS_HOST_DEVICE ( localIndex const k ) + { + stateVariable_n[k] = stateVariable[k]; + LvArray::tensorOps::copy< 2 >( deltaSlip_n[k], deltaSlip[k] ); + LvArray::tensorOps::copy< 2 >( slipVelocity_n[k], slipVelocity[k] ); + LvArray::tensorOps::copy< 3 >( dispJump_n[k], dispJump[k] ); + LvArray::tensorOps::copy< 3 >( traction_n[k], traction[k] ); + } ); + } ); + } ); +} + +real64 QuasiDynamicEQRK32::setNextDt( real64 const & currentDt, DomainPartition & domain ) +{ + + // Spring-slider shear traction computation + forDiscretizationOnMeshTargets( domain.getMeshBodies(), [&]( string const &, + MeshLevel const & mesh, + arrayView1d< string const > const & regionNames ) + + { + mesh.getElemManager().forElementSubRegions< SurfaceElementSubRegion >( regionNames, + [&]( localIndex const, + SurfaceElementSubRegion const & subRegion ) + { + arrayView2d< real64 const > const error = subRegion.getField< rateAndState::error >(); + + RAJA::ReduceSum< parallelDeviceReduce, real64 > scaledl2ErrorSquared( 0.0 ); + integer const N = subRegion.size(); + forAll< parallelDevicePolicy<> >( subRegion.size(), [=] GEOS_HOST_DEVICE ( localIndex const k ) + { + scaledl2ErrorSquared += LvArray::tensorOps::l2NormSquared< 3 >( error[k] ); + } ); + m_controller.errors[0] = LvArray::math::sqrt( MpiWrapper::sum( scaledl2ErrorSquared.get() / (3.0*N) )); + } ); + } ); + + // Compute update factor to currentDt using PID error controller + limiter + real64 const dtFactor = m_controller.computeUpdateFactor( m_butcherTable.algHighOrder, m_butcherTable.algLowOrder ); + real64 const nextDt = dtFactor*currentDt; + // Check if step was acceptable + m_successfulStep = (dtFactor >= m_controller.acceptSafety) ? true : false; + if( m_successfulStep ) + { + m_controller.errors[2] = m_controller.errors[1]; + m_controller.errors[1] = m_controller.errors[0]; + GEOS_LOG_LEVEL_RANK_0( 1, GEOS_FMT( "Adaptive time step successful. The next dt will be {:.2e} s", nextDt )); + } + else + { + GEOS_LOG_LEVEL_RANK_0( 1, GEOS_FMT( "Adaptive time step failed. The next dt will be {:.2e} s", nextDt )); + } + + return nextDt; +} + +REGISTER_CATALOG_ENTRY( PhysicsSolverBase, QuasiDynamicEQRK32, string const &, dataRepository::Group * const ) + +} // namespace geos diff --git a/src/coreComponents/physicsSolvers/inducedSeismicity/QuasiDynamicEQRK32.hpp b/src/coreComponents/physicsSolvers/inducedSeismicity/QuasiDynamicEQRK32.hpp new file mode 100644 index 00000000000..0979fd22dd7 --- /dev/null +++ b/src/coreComponents/physicsSolvers/inducedSeismicity/QuasiDynamicEQRK32.hpp @@ -0,0 +1,235 @@ +/* + * ------------------------------------------------------------------------------------------------------------ + * SPDX-License-Identifier: LGPL-2.1-only + * + * Copyright (c) 2016-2024 Lawrence Livermore National Security LLC + * Copyright (c) 2018-2024 Total, S.A + * Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University + * Copyright (c) 2023-2024 Chevron + * Copyright (c) 2019- GEOS/GEOSX Contributors + * All rights reserved + * + * See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. + * ------------------------------------------------------------------------------------------------------------ + */ + +#ifndef GEOS_PHYSICSSOLVERS_INDUCED_QUASIDYNAMICEQRK32_HPP +#define GEOS_PHYSICSSOLVERS_INDUCED_QUASIDYNAMICEQRK32_HPP + +#include "physicsSolvers/PhysicsSolverBase.hpp" +#include "kernels/RateAndStateKernels.hpp" + +namespace geos +{ + +class QuasiDynamicEQRK32 : public PhysicsSolverBase +{ +public: + /// The default nullary constructor is disabled to avoid compiler auto-generation: + QuasiDynamicEQRK32() = delete; + + /// The constructor needs a user-defined "name" and a parent Group (to place this instance in the tree structure of classes) + QuasiDynamicEQRK32( const string & name, + Group * const parent ); + + /// Destructor + virtual ~QuasiDynamicEQRK32() override; + + static string catalogName() { return "QuasiDynamicEQRK32"; } + + /** + * @return Get the final class Catalog name + */ + virtual string getCatalogName() const override { return catalogName(); } + + /// This method ties properties with their supporting mesh + virtual void registerDataOnMesh( Group & meshBodies ) override; + + struct viewKeyStruct : public PhysicsSolverBase::viewKeyStruct + { + /// stress solver name + constexpr static char const * stressSolverNameString() { return "stressSolverName"; } + /// Friction law name string + constexpr static char const * frictionLawNameString() { return "frictionLawName"; } + /// Friction law name string + constexpr static char const * shearImpedanceString() { return "shearImpedance"; } + /// target slip increment + constexpr static char const * timeStepTol() { return "timeStepTol"; } + }; + + virtual real64 solverStep( real64 const & time_n, + real64 const & dt, + integer const cycleNumber, + DomainPartition & domain ) override final; + + + virtual real64 setNextDt( real64 const & currentDt, + DomainPartition & domain ) override final; + + /** + * @brief Computes stage rates for the initial Runge-Kutta substage and updates slip and state + * @param dt + * @param domain + */ + void stepRateStateODEInitialSubstage( real64 const dt, DomainPartition & domain ) const; + + /** + * @brief Computes stage rates at the Runge-Kutta substage specified by stageIndex and updates slip and state + * @param stageIndex + * @param dt + * @param domain + */ + void stepRateStateODESubstage( integer const stageIndex, + real64 const dt, + DomainPartition & domain ) const; + + /** + * @brief Updates slip and state to t + dt and approximates the error + * @param dt + * @param domain + */ + void stepRateStateODEAndComputeError( real64 const dt, DomainPartition & domain ) const; + + real64 updateStresses( real64 const & time_n, + real64 const & dt, + const int cycleNumber, + DomainPartition & domain ) const; + + /** + * @brief Updates rate-and-state slip velocity + * @param domain + */ + void updateSlipVelocity( real64 const & time_n, + real64 const & dt, + DomainPartition & domain ) const; + + /** + * @brief save the current state + * @param domain + */ + void saveState( DomainPartition & domain ) const; + +private: + + virtual void postInputInitialization() override; + + + /// pointer to stress solver + PhysicsSolverBase * m_stressSolver; + + /// stress solver name + string m_stressSolverName; + + /// shear impedance + real64 m_shearImpedance; + + /// Runge-Kutta Butcher table (specifies the embedded RK method) + // TODO: The specific type should not be hardcoded! + // Should be possible to change RK-method based on the table. + rateAndStateKernels::BogackiShampine32Table m_butcherTable; + + bool m_successfulStep; // Flag indicating if the adative time step was accepted + + /** + * @brief Proportional-integral-derivative controller used for updating time step + * based error estimate in the current and previous time steps. + */ + class PIDController + { +public: + + GEOS_HOST_DEVICE + PIDController( std::array< const real64, 3 > const & cparams, + const real64 atol, + const real64 rtol, + const real64 safety ): + controlParameters{ cparams }, + absTol( atol ), + relTol( rtol ), + acceptSafety( safety ), + errors{ {0.0, 0.0, 0.0} } + {} + + /// Default copy constructor + PIDController( PIDController const & ) = default; + + /// Default move constructor + PIDController( PIDController && ) = default; + + /// Deleted default constructor + PIDController() = delete; + + /// Deleted copy assignment operator + PIDController & operator=( PIDController const & ) = delete; + + /// Deleted move assignment operator + PIDController & operator=( PIDController && ) = delete; + + /// Parameters for the PID error controller + const std::array< const real64, 3 > controlParameters; // Controller parameters + + real64 const absTol; // absolut tolerence + + real64 const relTol; // relative tolerence + + real64 const acceptSafety; // Acceptance safety + + std::array< real64, 3 > errors; // Errors for current and two previous updates + // stored as [n+1, n, n-1] + + real64 computeUpdateFactor( integer const algHighOrder, integer const algLowOrder ) + { + // PID error controller + limiter + real64 const k = LvArray::math::min( algHighOrder, algLowOrder ) + 1.0; + real64 const eps0 = 1.0/(errors[0] + std::numeric_limits< real64 >::epsilon()); // n + 1 + real64 const eps1 = 1.0/(errors[1] + std::numeric_limits< real64 >::epsilon()); // n + real64 const eps2 = 1.0/(errors[2] + std::numeric_limits< real64 >::epsilon()); // n-1 + // Compute update factor eps0^(beta0/k)*eps1^(beta1/k)*eps2^(beta2/k) where + // beta0 - beta2 are the control parameters. Also apply limiter to smoothen changes. + // Limiter is 1.0 + atan(x - 1.0). Here use atan(x) = atan2(x, 1.0). + return 1.0 + LvArray::math::atan2( pow( eps0, controlParameters[0] / k ) * + pow( eps1, controlParameters[1] / k ) * + pow( eps2, controlParameters[2] / k ) - 1.0, 1.0 ); + } + }; + + PIDController m_controller; + + + class SpringSliderParameters + { +public: + + GEOS_HOST_DEVICE + SpringSliderParameters( real64 const normalTraction, real64 const a, real64 const b, real64 const Dc ): + tauRate( 1e-4 ), + springStiffness( 0.0 ) + { + real64 const criticalStiffness = normalTraction * (b - a) / Dc; + springStiffness = 0.9 * criticalStiffness; + } + + /// Default copy constructor + SpringSliderParameters( SpringSliderParameters const & ) = default; + + /// Default move constructor + SpringSliderParameters( SpringSliderParameters && ) = default; + + /// Deleted default constructor + SpringSliderParameters() = delete; + + /// Deleted copy assignment operator + SpringSliderParameters & operator=( SpringSliderParameters const & ) = delete; + + /// Deleted move assignment operator + SpringSliderParameters & operator=( SpringSliderParameters && ) = delete; + + real64 tauRate; + + real64 springStiffness; + }; +}; + +} /* namespace geos */ + +#endif /* GEOS_PHYSICSSOLVERS_INDUCED_QUASIDYNAMICEQRK32_HPP */ diff --git a/src/coreComponents/physicsSolvers/inducedSeismicity/kernels/RateAndStateKernels.hpp b/src/coreComponents/physicsSolvers/inducedSeismicity/kernels/RateAndStateKernels.hpp index cf2fc306b6b..87d05f3b443 100644 --- a/src/coreComponents/physicsSolvers/inducedSeismicity/kernels/RateAndStateKernels.hpp +++ b/src/coreComponents/physicsSolvers/inducedSeismicity/kernels/RateAndStateKernels.hpp @@ -27,20 +27,38 @@ namespace geos namespace rateAndStateKernels { + +// TBD: Pass the kernel and add getters for relevant fields to make this function general purpose and avoid +// wrappers? +GEOS_HOST_DEVICE +static void projectSlipRateBase( localIndex const k, + real64 const frictionCoefficient, + real64 const shearImpedance, + arrayView2d< real64 const > const traction, + arrayView1d< real64 const > const slipRate, + arrayView2d< real64 > const slipVelocity ) +{ + // Project slip rate onto shear traction to get slip velocity components + real64 const frictionForce = traction[k][0] * frictionCoefficient; + real64 const projectionScaling = 1.0 / ( shearImpedance + frictionForce / slipRate[k] ); + slipVelocity[k][0] = projectionScaling * traction[k][1]; + slipVelocity[k][1] = projectionScaling * traction[k][2]; +} + /** - * @class RateAndStateKernel + * @class ImplicitFixedStressRateAndStateKernel * * @brief * * @details */ -class RateAndStateKernel +class ImplicitFixedStressRateAndStateKernel { public: - RateAndStateKernel( SurfaceElementSubRegion & subRegion, - constitutive::RateAndStateFriction const & frictionLaw, - real64 const shearImpedance ): + ImplicitFixedStressRateAndStateKernel( SurfaceElementSubRegion & subRegion, + constitutive::RateAndStateFriction const & frictionLaw, + real64 const shearImpedance ): m_slipRate( subRegion.getField< fields::rateAndState::slipRate >() ), m_stateVariable( subRegion.getField< fields::rateAndState::stateVariable >() ), m_stateVariable_n( subRegion.getField< fields::rateAndState::stateVariable_n >() ), @@ -90,7 +108,7 @@ class RateAndStateKernel stack.jacobian[0][0] = dFriction[0]; // derivative of Eq 1 w.r.t. stateVariable stack.jacobian[0][1] = dFriction[1]; // derivative of Eq 1 w.r.t. slipRate stack.jacobian[1][0] = dStateEvolutionLaw[0]; // derivative of Eq 2 w.r.t. stateVariable - stack.jacobian[1][1] = dStateEvolutionLaw[1]; // derivative of Eq 2 w.r.t. m_slipRate + stack.jacobian[1][1] = dStateEvolutionLaw[1]; // derivative of Eq 2 w.r.t. slipRate } GEOS_HOST_DEVICE @@ -109,11 +127,8 @@ class RateAndStateKernel GEOS_HOST_DEVICE void projectSlipRate( localIndex const k ) const { - // Project slip rate onto shear traction to get slip velocity components - real64 const frictionForce = m_traction[k][0] * m_frictionLaw.frictionCoefficient( k, m_slipRate[k], m_stateVariable[k] ); - real64 const projectionScaling = 1.0 / ( m_shearImpedance + frictionForce / m_slipRate[k] ); - m_slipVelocity[k][0] = projectionScaling * m_traction[k][1]; - m_slipVelocity[k][1] = projectionScaling * m_traction[k][2]; + real64 const frictionCoefficient = m_frictionLaw.frictionCoefficient( k, m_slipRate[k], m_stateVariable[k] ); + projectSlipRateBase( k, frictionCoefficient, m_shearImpedance, m_traction, m_slipRate, m_slipVelocity ); } GEOS_HOST_DEVICE @@ -144,18 +159,124 @@ class RateAndStateKernel }; +/** + * @class ExplicitRateAndStateKernel + * + * @brief + * + * @details + */ +class ExplicitRateAndStateKernel +{ +public: + + ExplicitRateAndStateKernel( SurfaceElementSubRegion & subRegion, + constitutive::RateAndStateFriction const & frictionLaw, + real64 const shearImpedance ): + m_slipRate( subRegion.getField< fields::rateAndState::slipRate >() ), + m_stateVariable( subRegion.getField< fields::rateAndState::stateVariable >() ), + m_traction( subRegion.getField< fields::contact::traction >() ), + m_slipVelocity( subRegion.getField< fields::rateAndState::slipVelocity >() ), + m_shearImpedance( shearImpedance ), + m_frictionLaw( frictionLaw.createKernelUpdates() ) + {} + + /** + * @struct StackVariables + * @brief Kernel variables located on the stack + */ + struct StackVariables + { +public: + + GEOS_HOST_DEVICE + StackVariables( ) + {} + + real64 jacobian; + real64 rhs; + + }; + + GEOS_HOST_DEVICE + void setup( localIndex const k, + real64 const dt, + StackVariables & stack ) const + { + GEOS_UNUSED_VAR( dt ); + real64 const normalTraction = m_traction[k][0]; + real64 const shearTractionMagnitude = LvArray::math::sqrt( m_traction[k][1] * m_traction[k][1] + m_traction[k][2] * m_traction[k][2] ); + + // Slip rate is bracketed between [0, shear traction magnitude / shear impedance] + // If slip rate is outside the bracket, re-initialize to the middle value + real64 const upperBound = shearTractionMagnitude/m_shearImpedance; + real64 const bracketedSlipRate = m_slipRate[k] > upperBound ? 0.5*upperBound : m_slipRate[k]; + + stack.rhs = shearTractionMagnitude - m_shearImpedance *bracketedSlipRate - normalTraction * m_frictionLaw.frictionCoefficient( k, bracketedSlipRate, m_stateVariable[k] ); + stack.jacobian = -m_shearImpedance - normalTraction * m_frictionLaw.dFrictionCoefficient_dSlipRate( k, bracketedSlipRate, m_stateVariable[k] ); + } + + GEOS_HOST_DEVICE + void solve( localIndex const k, + StackVariables & stack ) const + { + m_slipRate[k] -= stack.rhs/stack.jacobian; + + // Slip rate is bracketed between [0, shear traction magnitude / shear impedance] + // Check that the update did not end outside of the bracket. + real64 const shearTractionMagnitude = LvArray::math::sqrt( m_traction[k][1] * m_traction[k][1] + m_traction[k][2] * m_traction[k][2] ); + real64 const upperBound = shearTractionMagnitude/m_shearImpedance; + if( m_slipRate[k] > upperBound ) m_slipRate[k] = 0.5*upperBound; + + } + + + GEOS_HOST_DEVICE + camp::tuple< int, real64 > checkConvergence( StackVariables const & stack, + real64 const tol ) const + { + real64 const residualNorm = LvArray::math::abs( stack.rhs ); + int const converged = residualNorm < tol ? 1 : 0; + camp::tuple< int, real64 > result { converged, residualNorm }; + return result; + } + + GEOS_HOST_DEVICE + void projectSlipRate( localIndex const k ) const + { + real64 const frictionCoefficient = m_frictionLaw.frictionCoefficient( k, m_slipRate[k], m_stateVariable[k] ); + projectSlipRateBase( k, frictionCoefficient, m_shearImpedance, m_traction, m_slipRate, m_slipVelocity ); + } + +private: + + arrayView1d< real64 > const m_slipRate; + + arrayView1d< real64 > const m_stateVariable; + + arrayView2d< real64 const > const m_traction; + + arrayView2d< real64 > const m_slipVelocity; + + real64 const m_shearImpedance; + + constitutive::RateAndStateFriction::KernelWrapper m_frictionLaw; + +}; /** * @brief Performs the kernel launch + * @tparam KernelType The Rate-and-state kernel to launch * @tparam POLICY the policy used in the RAJA kernels */ -template< typename POLICY > +template< typename KernelType, typename POLICY > static void createAndLaunch( SurfaceElementSubRegion & subRegion, string const & frictionLawNameKey, real64 const shearImpedance, - integer const maxNewtonIter, + integer const maxIterNewton, + real64 const newtonTol, real64 const time_n, real64 const dt ) { @@ -165,20 +286,20 @@ createAndLaunch( SurfaceElementSubRegion & subRegion, string const & frictionaLawName = subRegion.getReference< string >( frictionLawNameKey ); constitutive::RateAndStateFriction const & frictionLaw = subRegion.getConstitutiveModel< constitutive::RateAndStateFriction >( frictionaLawName ); - RateAndStateKernel kernel( subRegion, frictionLaw, shearImpedance ); + KernelType kernel( subRegion, frictionLaw, shearImpedance ); // Newton loop (outside of the kernel launch) bool allConverged = false; - for( integer iter = 0; iter < maxNewtonIter; iter++ ) + for( integer iter = 0; iter < maxIterNewton; iter++ ) { RAJA::ReduceMin< parallelDeviceReduce, int > converged( 1 ); RAJA::ReduceMax< parallelDeviceReduce, real64 > residualNorm( 0.0 ); forAll< POLICY >( subRegion.size(), [=] GEOS_HOST_DEVICE ( localIndex const k ) { - RateAndStateKernel::StackVariables stack; + typename KernelType::StackVariables stack; kernel.setup( k, dt, stack ); kernel.solve( k, stack ); - auto const [elementConverged, elementResidualNorm] = kernel.checkConvergence( stack, 1.0e-6 ); + auto const [elementConverged, elementResidualNorm] = kernel.checkConvergence( stack, newtonTol ); converged.min( elementConverged ); residualNorm.max( elementResidualNorm ); } ); @@ -202,8 +323,260 @@ createAndLaunch( SurfaceElementSubRegion & subRegion, } ); } +/** + * @brief Butcher table for embedded RK3(2) method using Kuttas third order + * method for the high-order update, and an explicit trapezoidal rule + * based on the first and third stage rates for the low-order update. + */ +struct Kutta32Table +{ + integer constexpr static algHighOrder = 3; // High-order update order + integer constexpr static algLowOrder = 2; // Low-order update order + integer constexpr static numStages = 3; // Number of stages + real64 const a[2][2] = { { 1.0/2.0, 0.0 }, // Coefficients for stage value updates + { -1.0, 2.0 } }; // (lower-triangular part of table). + real64 const c[3] = { 0.0, 1.0/2.0, 1.0 }; // Coefficients for time increments of substages + real64 const b[3] = { 1.0/6.0, 4.0/6.0, 1.0/6.0 }; // Quadrature weights used to step the solution to next time + real64 const bStar[3] = { 1.0/2.0, 0.0, 1.0/2.0 }; // Quadrature weights used for low-order comparision solution + real64 constexpr static FSAL = false; // Not first same as last +}; + +/** + * @brief Butcher table for the BogackiShampine 3(2) method. + */ +struct BogackiShampine32Table +{ + integer constexpr static algHighOrder = 3; // High-order update order + integer constexpr static algLowOrder = 2; // Low-order update order + integer constexpr static numStages = 4; // Number of stages + real64 const a[3][3] = { { 1.0/2.0, 0.0, 0.0 }, // Coefficients for stage value updates + { 0.0, 3.0/4.0, 0.0 }, // (lower-triangular part of table). + { 2.0/9.0, 1.0/3.0, 4.0/9.0 } }; + real64 const c[4] = { 0.0, 1.0/2.0, 3.0/4.0, 1.0 }; // Coefficients for time increments of substages + real64 const b[4] = { 2.0/9.0, 1.0/3.0, 4.0/9.0, 0.0 }; // Quadrature weights used to step the solution to next time + real64 const bStar[4] = { 7.0/24.0, 1.0/4.0, 1.0/3.0, 1.0/8.0}; // Quadrature weights used for low-order comparision solution + bool constexpr static FSAL = true; // First same as last (can reuse the last stage rate in next + // update) +}; + +/** + * @brief Runge-Kutta method used to time integrate slip and state. Uses of a high order + * update used to integrate the solutions, and a lower order update to estimate the error + * in the time step. + * + * @tparam Butcher table defining the Runge-Kutta method. + */ +template< typename TABLE_TYPE > class EmbeddedRungeKuttaKernel +{ + +public: + EmbeddedRungeKuttaKernel( SurfaceElementSubRegion & subRegion, + constitutive::RateAndStateFriction const & frictionLaw, + TABLE_TYPE butcherTable ): + m_stateVariable( subRegion.getField< fields::rateAndState::stateVariable >() ), + m_stateVariable_n( subRegion.getField< fields::rateAndState::stateVariable_n >() ), + m_slipRate( subRegion.getField< fields::rateAndState::slipRate >() ), + m_slipVelocity( subRegion.getField< fields::rateAndState::slipVelocity >() ), + m_slipVelocity_n( subRegion.getField< fields::rateAndState::slipVelocity_n >() ), + m_deltaSlip( subRegion.getField< fields::rateAndState::deltaSlip >() ), + m_deltaSlip_n( subRegion.getField< fields::rateAndState::deltaSlip_n >() ), + m_dispJump( subRegion.getField< fields::contact::dispJump >() ), + m_dispJump_n( subRegion.getField< fields::contact::dispJump_n >() ), + m_error( subRegion.getField< fields::rateAndState::error >() ), + m_stageRates( subRegion.getField< fields::rateAndState::rungeKuttaStageRates >() ), + m_frictionLaw( frictionLaw.createKernelUpdates() ), + m_butcherTable( butcherTable ) + {} + + /** + * @brief Initialize slip and state buffers + */ + GEOS_HOST_DEVICE + void initialize( localIndex const k ) const + { + LvArray::tensorOps::copy< 2 >( m_slipVelocity[k], m_slipVelocity_n[k] ); + m_slipRate[k] = LvArray::tensorOps::l2Norm< 2 >( m_slipVelocity_n[k] ); + m_stateVariable[k] = m_stateVariable_n[k]; + } + + /** + * @brief Re-uses the last stage rate from the previous time step as the first + * in the next update. Only valid for FSAL (first-same-as-last) Runge-Kutta methods. + */ + GEOS_HOST_DEVICE + void updateStageRatesFSAL( localIndex const k ) const + { + LvArray::tensorOps::copy< 3 >( m_stageRates[k][0], m_stageRates[k][m_butcherTable.numStages-1] ); + } + + /** + * @brief Updates the stage rates rates (the right-hand-side of the ODEs for slip and state) + */ + GEOS_HOST_DEVICE + void updateStageRates( localIndex const k, integer const stageIndex ) const + { + m_stageRates[k][stageIndex][0] = m_slipVelocity[k][0]; + m_stageRates[k][stageIndex][1] = m_slipVelocity[k][1]; + m_stageRates[k][stageIndex][2] = m_frictionLaw.stateEvolution( k, m_slipRate[k], m_stateVariable[k] ); + } + + /** + * @brief Update stage values (slip, state and displacement jump) to a Runge-Kutta substage. + */ + GEOS_HOST_DEVICE + void updateStageValues( localIndex const k, integer const stageIndex, real64 const dt ) const + { + + real64 stateVariableIncrement = 0.0; + real64 deltaSlipIncrement[2] = {0.0, 0.0}; + + for( integer i = 0; i < stageIndex; i++ ) + { + deltaSlipIncrement[0] += m_butcherTable.a[stageIndex-1][i] * m_stageRates[k][i][0]; + deltaSlipIncrement[1] += m_butcherTable.a[stageIndex-1][i] * m_stageRates[k][i][1]; + stateVariableIncrement += m_butcherTable.a[stageIndex-1][i] * m_stageRates[k][i][2]; + } + m_deltaSlip[k][0] = m_deltaSlip_n[k][0] + dt*deltaSlipIncrement[0]; + m_deltaSlip[k][1] = m_deltaSlip_n[k][1] + dt*deltaSlipIncrement[1]; + m_stateVariable[k] = m_stateVariable_n[k] + dt*stateVariableIncrement; + + m_dispJump[k][1] = m_dispJump_n[k][1] + m_deltaSlip[k][0]; + m_dispJump[k][2] = m_dispJump_n[k][2] + m_deltaSlip[k][1]; + } + + /** + * @brief Updates slip, state and displacement jump to the next time computes error the local error + * in the time step + */ + GEOS_HOST_DEVICE + void updateSolutionAndLocalError( localIndex const k, real64 const dt, real64 const absTol, real64 const relTol ) const + { + + real64 deltaSlipIncrement[2] = {0.0, 0.0}; + real64 deltaSlipIncrementLowOrder[2] = {0.0, 0.0}; + + real64 stateVariableIncrement = 0.0; + real64 stateVariableIncrementLowOrder = 0.0; + + for( localIndex i = 0; i < m_butcherTable.numStages; i++ ) + { + + // High order update of solution + deltaSlipIncrement[0] += m_butcherTable.b[i] * m_stageRates[k][i][0]; + deltaSlipIncrement[1] += m_butcherTable.b[i] * m_stageRates[k][i][1]; + stateVariableIncrement += m_butcherTable.b[i] * m_stageRates[k][i][2]; + + // Low order update for error + deltaSlipIncrementLowOrder[0] += m_butcherTable.bStar[i] * m_stageRates[k][i][0]; + deltaSlipIncrementLowOrder[1] += m_butcherTable.bStar[i] * m_stageRates[k][i][1]; + stateVariableIncrementLowOrder += m_butcherTable.bStar[i] * m_stageRates[k][i][2]; + } + + m_deltaSlip[k][0] = m_deltaSlip_n[k][0] + dt * deltaSlipIncrement[0]; + m_deltaSlip[k][1] = m_deltaSlip_n[k][1] + dt * deltaSlipIncrement[1]; + m_stateVariable[k] = m_stateVariable_n[k] + dt * stateVariableIncrement; + + real64 const deltaSlipLowOrder[2] = {m_deltaSlip_n[k][0] + dt * deltaSlipIncrementLowOrder[0], + m_deltaSlip_n[k][1] + dt * deltaSlipIncrementLowOrder[1]}; + real64 const stateVariableLowOrder = m_stateVariable_n[k] + dt * stateVariableIncrementLowOrder; + + m_dispJump[k][1] = m_dispJump_n[k][1] + m_deltaSlip[k][0]; + m_dispJump[k][2] = m_dispJump_n[k][2] + m_deltaSlip[k][1]; + + // Compute error + m_error[k][0] = computeError( m_deltaSlip[k][0], deltaSlipLowOrder[0], absTol, relTol ); + m_error[k][1] = computeError( m_deltaSlip[k][1], deltaSlipLowOrder[1], absTol, relTol ); + m_error[k][2] = computeError( m_stateVariable[k], stateVariableLowOrder, absTol, relTol ); + } + + /** + * @brief Updates slip, state and displacement jump to the next time computes error the local error + * in the time step. Uses the FSAL (first-same-as-last) property. + */ + GEOS_HOST_DEVICE + void updateSolutionAndLocalErrorFSAL( localIndex const k, real64 const dt, real64 const absTol, real64 const relTol ) const + { + + real64 deltaSlipIncrementLowOrder[2] = {0.0, 0.0}; + real64 stateVariableIncrementLowOrder = 0.0; + + for( localIndex i = 0; i < m_butcherTable.numStages; i++ ) + { + // In FSAL algorithms the last RK substage update coincides with the + // high-order update. Only need to compute increments for the the + // low-order updates for error computation. + deltaSlipIncrementLowOrder[0] += m_butcherTable.bStar[i] * m_stageRates[k][i][0]; + deltaSlipIncrementLowOrder[1] += m_butcherTable.bStar[i] * m_stageRates[k][i][1]; + stateVariableIncrementLowOrder += m_butcherTable.bStar[i] * m_stageRates[k][i][2]; + } + + real64 const deltaSlipLowOrder[2] = {m_deltaSlip_n[k][0] + dt * deltaSlipIncrementLowOrder[0], + m_deltaSlip_n[k][1] + dt * deltaSlipIncrementLowOrder[1]}; + real64 const stateVariableLowOrder = m_stateVariable_n[k] + dt * stateVariableIncrementLowOrder; + + m_dispJump[k][1] = m_dispJump_n[k][1] + m_deltaSlip[k][0]; + m_dispJump[k][2] = m_dispJump_n[k][2] + m_deltaSlip[k][1]; + + // Compute error + m_error[k][0] = computeError( m_deltaSlip[k][0], deltaSlipLowOrder[0], absTol, relTol ); + m_error[k][1] = computeError( m_deltaSlip[k][1], deltaSlipLowOrder[1], absTol, relTol ); + m_error[k][2] = computeError( m_stateVariable[k], stateVariableLowOrder, absTol, relTol ); + } + + /** + * @brief Computes the relative error scaled by error tolerances + */ + GEOS_HOST_DEVICE + real64 computeError( real64 const highOrderApprox, real64 const lowOrderApprox, real64 const absTol, real64 const relTol ) const + { + return (highOrderApprox - lowOrderApprox) / + ( absTol + relTol * LvArray::math::max( LvArray::math::abs( highOrderApprox ), LvArray::math::abs( lowOrderApprox ) )); + } + +private: + + /// Current state variable + arrayView1d< real64 > const m_stateVariable; + + /// State variable at t = t_n + arrayView1d< real64 > const m_stateVariable_n; + + /// Current slip rate (magnitude of slip velocity) + arrayView1d< real64 > const m_slipRate; + + /// Current slip velocity + arrayView2d< real64 > const m_slipVelocity; + + /// Slip velocity at time t_n + arrayView2d< real64 > const m_slipVelocity_n; + + /// Current slip change + arrayView2d< real64 > const m_deltaSlip; + + /// Slip change at time t_n + arrayView2d< real64 > const m_deltaSlip_n; + + /// Current displacment jump + arrayView2d< real64 > const m_dispJump; + + /// Displacment jump at time t_n + arrayView2d< real64 > const m_dispJump_n; + + /// Local error for each solution component stored as slip1, slip2, state + arrayView2d< real64 > const m_error; + + /// Stage rates for each solution component stored as slip1, slip2, state + arrayView3d< real64 > const m_stageRates; + + /// Friction law used for rate-and-state updates + constitutive::RateAndStateFriction::KernelWrapper m_frictionLaw; + + /// Butcher table used for explicit time stepping of slip and state + TABLE_TYPE m_butcherTable; +}; + } /* namespace rateAndStateKernels */ -}/* namespace geos */ +} /* namespace geos */ #endif /* GEOS_PHYSICSSOLVERS_RATEANDSTATEKERNELS_HPP_ */ diff --git a/src/coreComponents/physicsSolvers/inducedSeismicity/rateAndStateFields.hpp b/src/coreComponents/physicsSolvers/inducedSeismicity/rateAndStateFields.hpp index 8031ab1c344..df5e63a2d19 100644 --- a/src/coreComponents/physicsSolvers/inducedSeismicity/rateAndStateFields.hpp +++ b/src/coreComponents/physicsSolvers/inducedSeismicity/rateAndStateFields.hpp @@ -36,10 +36,26 @@ DECLARE_FIELD( slipRate, "slipRate", array1d< real64 >, 1.0e-6, - LEVEL_0, + NOPLOT, WRITE_AND_READ, "Slip rate" ); +DECLARE_FIELD( slipVelocity, + "slipVelocity", + array2d< real64 >, + 0.70710678118e-6, + LEVEL_0, + WRITE_AND_READ, + "Slip velocity" ); + +DECLARE_FIELD( slipVelocity_n, + "slipVelocity_n", + array2d< real64 >, + 0.70710678118e-6, + NOPLOT, + WRITE_AND_READ, + "Slip velocity at previous time step" ); + DECLARE_FIELD( stateVariable, "stateVariable", array1d< real64 >, @@ -48,21 +64,14 @@ DECLARE_FIELD( stateVariable, WRITE_AND_READ, "Rate- and state-dependent friction state variable" ); -DECLARE_FIELD( slipVelocity, - "slipVelocity", - array2d< real64 >, - 1.0e-6, - LEVEL_0, - WRITE_AND_READ, - "Slip velocity" ); - DECLARE_FIELD( stateVariable_n, "stateVariable_n", array1d< real64 >, 0.6, NOPLOT, WRITE_AND_READ, - "Rate- and state-dependent friction state variable at previous time step" ); + "Initial rate- and state-dependent friction state variable at this time step" ); + DECLARE_FIELD( deltaSlip, "deltaSlip", @@ -72,6 +81,31 @@ DECLARE_FIELD( deltaSlip, WRITE_AND_READ, "Slip increment" ); +DECLARE_FIELD( deltaSlip_n, + "deltaSlip_n", + array2d< real64 >, + 0.0, + NOPLOT, + WRITE_AND_READ, + "Initial slip increment at this time step" ); + + +DECLARE_FIELD( rungeKuttaStageRates, + "rungeKuttaStageRates", + array3d< real64 >, + 0.0, + NOPLOT, + WRITE_AND_READ, + "Runge-Kutta stage rates for rate-and-state variables" ); + + +DECLARE_FIELD( error, + "error", + array2d< real64 >, + 0.0, + LEVEL_0, + WRITE_AND_READ, + "Error for rate-and-state fields" ); } diff --git a/src/coreComponents/physicsSolvers/multiphysics/CompositionalMultiphaseReservoirAndWells.cpp b/src/coreComponents/physicsSolvers/multiphysics/CompositionalMultiphaseReservoirAndWells.cpp index 9cb0333497d..560569a8b63 100644 --- a/src/coreComponents/physicsSolvers/multiphysics/CompositionalMultiphaseReservoirAndWells.cpp +++ b/src/coreComponents/physicsSolvers/multiphysics/CompositionalMultiphaseReservoirAndWells.cpp @@ -77,10 +77,15 @@ void CompositionalMultiphaseReservoirAndWells<>:: setMGRStrategy() { + LinearSolverParameters & linearSolverParameters = this->m_linearSolverParameters.get(); + + linearSolverParameters.mgr.separateComponents = true; + linearSolverParameters.dofsPerNode = 3; + if( flowSolver()->getLinearSolverParameters().mgr.strategy == LinearSolverParameters::MGR::StrategyType::compositionalMultiphaseHybridFVM ) { // add Reservoir - m_linearSolverParameters.get().mgr.strategy = LinearSolverParameters::MGR::StrategyType::compositionalMultiphaseReservoirHybridFVM; + linearSolverParameters.mgr.strategy = LinearSolverParameters::MGR::StrategyType::compositionalMultiphaseReservoirHybridFVM; } else if( isThermal() ) { @@ -90,7 +95,7 @@ setMGRStrategy() else { // add Reservoir - m_linearSolverParameters.get().mgr.strategy = LinearSolverParameters::MGR::StrategyType::compositionalMultiphaseReservoirFVM; + linearSolverParameters.mgr.strategy = LinearSolverParameters::MGR::StrategyType::compositionalMultiphaseReservoirFVM; } } @@ -99,6 +104,11 @@ void CompositionalMultiphaseReservoirAndWells< MultiphasePoromechanics<> >:: setMGRStrategy() { + LinearSolverParameters & linearSolverParameters = this->m_linearSolverParameters.get(); + + linearSolverParameters.mgr.separateComponents = true; + linearSolverParameters.dofsPerNode = 3; + // flow solver here is indeed flow solver, not poromechanics solver if( flowSolver()->getLinearSolverParameters().mgr.strategy == LinearSolverParameters::MGR::StrategyType::compositionalMultiphaseHybridFVM ) { @@ -107,7 +117,7 @@ setMGRStrategy() else { // add Reservoir - m_linearSolverParameters.get().mgr.strategy = LinearSolverParameters::MGR::StrategyType::multiphasePoromechanicsReservoirFVM; + linearSolverParameters.mgr.strategy = LinearSolverParameters::MGR::StrategyType::multiphasePoromechanicsReservoirFVM; } } diff --git a/src/coreComponents/physicsSolvers/multiphysics/HydrofractureSolver.cpp b/src/coreComponents/physicsSolvers/multiphysics/HydrofractureSolver.cpp index d3322e839ff..fc1e3798cd4 100644 --- a/src/coreComponents/physicsSolvers/multiphysics/HydrofractureSolver.cpp +++ b/src/coreComponents/physicsSolvers/multiphysics/HydrofractureSolver.cpp @@ -84,8 +84,7 @@ HydrofractureSolver< POROMECHANICS_SOLVER >::HydrofractureSolver( const string & // This may need to be different depending on whether poroelasticity is on or not. m_linearSolverParameters.get().mgr.strategy = LinearSolverParameters::MGR::StrategyType::hydrofracture; - m_linearSolverParameters.get().mgr.separateComponents = false; - m_linearSolverParameters.get().mgr.displacementFieldName = solidMechanics::totalDisplacement::key(); + m_linearSolverParameters.get().mgr.separateComponents = true; m_linearSolverParameters.get().dofsPerNode = 3; } @@ -293,7 +292,7 @@ void HydrofractureSolver< POROMECHANICS_SOLVER >::updateHydraulicApertureAndFrac arrayView1d< real64 const > const volume = subRegion.getElementVolume(); arrayView1d< real64 > const deltaVolume = subRegion.getField< flow::deltaVolume >(); arrayView1d< real64 const > const area = subRegion.getElementArea(); - ArrayOfArraysView< localIndex const > const elemsToFaces = subRegion.faceList().toViewConst(); + arrayView2d< localIndex const > const elemsToFaces = subRegion.faceList().toViewConst(); string const porousSolidName = subRegion.template getReference< string >( FlowSolverBase::viewKeyStruct::solidNamesString() ); CoupledSolidBase const & porousSolid = subRegion.template getConstitutiveModel< CoupledSolidBase >( porousSolidName ); @@ -707,16 +706,12 @@ assembleForceResidualDerivativeWrtPressure( DomainPartition & domain, { arrayView1d< real64 const > const & fluidPressure = subRegion.getField< flow::pressure >(); arrayView1d< real64 const > const & area = subRegion.getElementArea(); - ArrayOfArraysView< localIndex const > const & elemsToFaces = subRegion.faceList().toViewConst(); + arrayView2d< localIndex const > const & elemsToFaces = subRegion.faceList().toViewConst(); // if matching on lassen/crusher, move to device policy using execPolicy = serialPolicy; forAll< execPolicy >( subRegion.size(), [=] ( localIndex const kfe ) { - if( elemsToFaces.sizeOfArray( kfe ) != 2 ) - { - return; - } constexpr int kfSign[2] = { -1, 1 }; @@ -820,7 +815,7 @@ assembleFluidMassResidualDerivativeWrtDisplacement( DomainPartition const & doma arrayView1d< real64 const > const aperture = subRegion.getElementAperture(); arrayView1d< real64 const > const area = subRegion.getElementArea(); - ArrayOfArraysView< localIndex const > const elemsToFaces = subRegion.faceList().toViewConst(); + arrayView2d< localIndex const > const elemsToFaces = subRegion.faceList().toViewConst(); ArrayOfArraysView< localIndex const > const faceToNodeMap = faceManager.nodeList().toViewConst(); arrayView2d< real64 const > const faceNormal = faceManager.faceNormal(); @@ -1025,7 +1020,7 @@ void HydrofractureSolver< POROMECHANICS_SOLVER >::initializeNewFractureFields( D ArrayOfArraysView< localIndex const > const & fractureConnectorsToFaceElements = subRegion.m_2dFaceTo2dElems.toViewConst(); map< localIndex, localIndex > const & edgesToConnectorEdges = subRegion.m_edgesTo2dFaces; - ArrayOfArraysView< localIndex const > const faceMap = subRegion.faceList().toViewConst(); + arrayView2d< localIndex const > const faceMap = subRegion.faceList().toViewConst(); arrayView1d< real64 > const fluidPressure_n = subRegion.getField< fields::flow::pressure_n >(); arrayView1d< real64 > const fluidPressure = subRegion.getField< fields::flow::pressure >(); diff --git a/src/coreComponents/physicsSolvers/multiphysics/HydrofractureSolverKernels.hpp b/src/coreComponents/physicsSolvers/multiphysics/HydrofractureSolverKernels.hpp index 18416ef2083..41f959bf396 100644 --- a/src/coreComponents/physicsSolvers/multiphysics/HydrofractureSolverKernels.hpp +++ b/src/coreComponents/physicsSolvers/multiphysics/HydrofractureSolverKernels.hpp @@ -40,7 +40,7 @@ struct DeformationUpdateKernel arrayView2d< real64 const, nodes::TOTAL_DISPLACEMENT_USD > const & u, arrayView2d< real64 const > const & faceNormal, ArrayOfArraysView< localIndex const > const & faceToNodeMap, - ArrayOfArraysView< localIndex const > const & elemsToFaces, + arrayView2d< localIndex const > const & elemsToFaces, arrayView1d< real64 const > const & area, arrayView1d< real64 const > const & volume, arrayView1d< real64 > const & deltaVolume, @@ -66,8 +66,6 @@ struct DeformationUpdateKernel forAll< POLICY >( size, [=] GEOS_HOST_DEVICE ( localIndex const kfe ) mutable { - if( elemsToFaces.sizeOfArray( kfe ) != 2 ) - { return; } localIndex const kf0 = elemsToFaces[kfe][0]; localIndex const kf1 = elemsToFaces[kfe][1]; @@ -184,7 +182,7 @@ struct FluidMassResidualDerivativeAssemblyKernel localIndex const numNodesPerFace, arraySlice1d< localIndex const > const & columns, arraySlice1d< real64 const > const & values, - ArrayOfArraysView< localIndex const > const elemsToFaces, + arrayView2d< localIndex const > const elemsToFaces, ArrayOfArraysView< localIndex const > const faceToNodeMap, arrayView1d< globalIndex const > const dispDofNumber, real64 const (&Nbar)[ 3 ], @@ -218,7 +216,7 @@ struct FluidMassResidualDerivativeAssemblyKernel globalIndex const rankOffset, HYDRAULICAPERTURE_WRAPPER const & hydraulicApertureWrapper, integer const useQuasiNewton, - ArrayOfArraysView< localIndex const > const elemsToFaces, + arrayView2d< localIndex const > const elemsToFaces, ArrayOfArraysView< localIndex const > const faceToNodeMap, arrayView2d< real64 const > const faceNormal, arrayView1d< real64 const > const area, diff --git a/src/coreComponents/physicsSolvers/multiphysics/MultiphasePoromechanics.cpp b/src/coreComponents/physicsSolvers/multiphysics/MultiphasePoromechanics.cpp index 4d1e0114728..c477f2b83d3 100644 --- a/src/coreComponents/physicsSolvers/multiphysics/MultiphasePoromechanics.cpp +++ b/src/coreComponents/physicsSolvers/multiphysics/MultiphasePoromechanics.cpp @@ -49,7 +49,6 @@ MultiphasePoromechanics< FLOW_SOLVER, MECHANICS_SOLVER >::MultiphasePoromechanic LinearSolverParameters & linearSolverParameters = this->m_linearSolverParameters.get(); linearSolverParameters.mgr.strategy = LinearSolverParameters::MGR::StrategyType::multiphasePoromechanics; linearSolverParameters.mgr.separateComponents = true; - linearSolverParameters.mgr.displacementFieldName = solidMechanics::totalDisplacement::key(); linearSolverParameters.dofsPerNode = 3; } diff --git a/src/coreComponents/physicsSolvers/multiphysics/SinglePhasePoromechanics.cpp b/src/coreComponents/physicsSolvers/multiphysics/SinglePhasePoromechanics.cpp index 46233badae0..8026c45a80a 100644 --- a/src/coreComponents/physicsSolvers/multiphysics/SinglePhasePoromechanics.cpp +++ b/src/coreComponents/physicsSolvers/multiphysics/SinglePhasePoromechanics.cpp @@ -49,7 +49,6 @@ SinglePhasePoromechanics< FLOW_SOLVER, MECHANICS_SOLVER >::SinglePhasePoromechan LinearSolverParameters & linearSolverParameters = this->m_linearSolverParameters.get(); linearSolverParameters.mgr.strategy = LinearSolverParameters::MGR::StrategyType::singlePhasePoromechanics; linearSolverParameters.mgr.separateComponents = true; - linearSolverParameters.mgr.displacementFieldName = solidMechanics::totalDisplacement::key(); linearSolverParameters.dofsPerNode = 3; } diff --git a/src/coreComponents/physicsSolvers/multiphysics/SinglePhasePoromechanicsConformingFractures.cpp b/src/coreComponents/physicsSolvers/multiphysics/SinglePhasePoromechanicsConformingFractures.cpp index 77bbc8fdeab..bf257cda107 100644 --- a/src/coreComponents/physicsSolvers/multiphysics/SinglePhasePoromechanicsConformingFractures.cpp +++ b/src/coreComponents/physicsSolvers/multiphysics/SinglePhasePoromechanicsConformingFractures.cpp @@ -47,8 +47,7 @@ SinglePhasePoromechanicsConformingFractures< FLOW_SOLVER >::SinglePhasePoromecha { LinearSolverParameters & params = this->m_linearSolverParameters.get(); params.mgr.strategy = LinearSolverParameters::MGR::StrategyType::singlePhasePoromechanicsConformingFractures; - params.mgr.separateComponents = false; - params.mgr.displacementFieldName = solidMechanics::totalDisplacement::key(); + params.mgr.separateComponents = true; params.dofsPerNode = 3; } @@ -378,15 +377,13 @@ addTransmissibilityCouplingPattern( DomainPartition const & domain, GEOS_ERROR_IF( !fractureSubRegion.hasWrapper( flow::pressure::key() ), this->getDataContext() << ": The fracture subregion must contain pressure field." ); - ArrayOfArraysView< localIndex const > const elem2dToFaces = fractureSubRegion.faceList().toViewConst(); + arrayView2d< localIndex const > const elem2dToFaces = fractureSubRegion.faceList().toViewConst(); arrayView1d< globalIndex const > const & presDofNumber = fractureSubRegion.getReference< globalIndex_array >( presDofKey ); globalIndex const rankOffset = dofManager.rankOffset(); - ArrayOfArraysView< localIndex const > const & elemsToFaces = fractureSubRegion.faceList().toViewConst(); - fvDiscretization.forStencils< SurfaceElementStencil >( mesh, [&]( SurfaceElementStencil const & stencil ) { forAll< serialPolicy >( stencil.size(), [=] ( localIndex const iconn ) @@ -413,11 +410,9 @@ addTransmissibilityCouplingPattern( DomainPartition const & domain, localIndex const fractureIndex = sei[iconn][kf]; // Get the number of nodes - localIndex const numNodesPerFace = faceToNodeMap.sizeOfArray( elemsToFaces[fractureIndex][0] ); + localIndex const numNodesPerFace = faceToNodeMap.sizeOfArray( elem2dToFaces[fractureIndex][0] ); // Loop over the two sides of each fracture element - GEOS_ERROR_IF( elem2dToFaces.sizeOfArray( fractureIndex ) != 2, - "Fracture face " << fractureIndex << " has to be shared by two cells." ); for( localIndex kf1 = 0; kf1 < 2; ++kf1 ) { localIndex const faceIndex = elem2dToFaces[fractureIndex][kf1]; @@ -479,7 +474,7 @@ assembleForceResidualDerivativeWrtPressure( MeshLevel const & mesh, arrayView1d< globalIndex const > const & presDofNumber = subRegion.getReference< globalIndex_array >( presDofKey ); arrayView1d< real64 const > const & pressure = subRegion.getReference< array1d< real64 > >( flow::pressure::key() ); - ArrayOfArraysView< localIndex const > const & elemsToFaces = subRegion.faceList().toViewConst(); + arrayView2d< localIndex const > const & elemsToFaces = subRegion.faceList().toViewConst(); forAll< serialPolicy >( subRegion.size(), [=]( localIndex const kfe ) { @@ -593,7 +588,7 @@ assembleFluidMassResidualDerivativeWrtDisplacement( MeshLevel const & mesh, arrayView1d< globalIndex const > const & presDofNumber = subRegion.getReference< array1d< globalIndex > >( presDofKey ); - ArrayOfArraysView< localIndex const > const & elemsToFaces = subRegion.faceList().toViewConst(); + arrayView2d< localIndex const > const & elemsToFaces = subRegion.faceList().toViewConst(); arrayView1d< real64 const > const & area = subRegion.getElementArea().toViewConst(); arrayView1d< integer const > const & fractureState = subRegion.getField< fields::contact::fractureState >(); diff --git a/src/coreComponents/physicsSolvers/multiphysics/SinglePhasePoromechanicsEmbeddedFractures.cpp b/src/coreComponents/physicsSolvers/multiphysics/SinglePhasePoromechanicsEmbeddedFractures.cpp index 67aa66cb051..0e1c3dd7198 100644 --- a/src/coreComponents/physicsSolvers/multiphysics/SinglePhasePoromechanicsEmbeddedFractures.cpp +++ b/src/coreComponents/physicsSolvers/multiphysics/SinglePhasePoromechanicsEmbeddedFractures.cpp @@ -20,7 +20,7 @@ #include "SinglePhasePoromechanicsEmbeddedFractures.hpp" #include "constitutive/contact/HydraulicApertureRelationSelector.hpp" #include "constitutive/fluid/singlefluid/SingleFluidBase.hpp" -#include "physicsSolvers/contact/SolidMechanicsEFEMKernelsHelper.hpp" +#include "physicsSolvers/contact/kernels/SolidMechanicsEFEMKernelsHelper.hpp" #include "physicsSolvers/fluidFlow/SinglePhaseBase.hpp" #include "physicsSolvers/multiphysics/poromechanicsKernels/SinglePhasePoromechanicsEFEM.hpp" #include "physicsSolvers/multiphysics/poromechanicsKernels/SinglePhasePoromechanics.hpp" @@ -44,8 +44,7 @@ SinglePhasePoromechanicsEmbeddedFractures::SinglePhasePoromechanicsEmbeddedFract { LinearSolverParameters & params = m_linearSolverParameters.get(); params.mgr.strategy = LinearSolverParameters::MGR::StrategyType::singlePhasePoromechanicsEmbeddedFractures; - params.mgr.separateComponents = false; - params.mgr.displacementFieldName = solidMechanics::totalDisplacement::key(); + params.mgr.separateComponents = true; params.dofsPerNode = 3; } diff --git a/src/coreComponents/physicsSolvers/multiphysics/poromechanicsKernels/SinglePhasePoromechanicsEFEM.hpp b/src/coreComponents/physicsSolvers/multiphysics/poromechanicsKernels/SinglePhasePoromechanicsEFEM.hpp index ad5ccf38ab1..e88ce14509f 100644 --- a/src/coreComponents/physicsSolvers/multiphysics/poromechanicsKernels/SinglePhasePoromechanicsEFEM.hpp +++ b/src/coreComponents/physicsSolvers/multiphysics/poromechanicsKernels/SinglePhasePoromechanicsEFEM.hpp @@ -278,7 +278,9 @@ class SinglePhasePoromechanicsEFEM : arrayView1d< real64 const > const m_surfaceArea; - arrayView1d< real64 const > const m_elementVolume; + arrayView1d< real64 const > const m_elementVolumeCell; + + arrayView1d< real64 const > const m_elementVolumeFrac; arrayView1d< real64 const > const m_deltaVolume; diff --git a/src/coreComponents/physicsSolvers/multiphysics/poromechanicsKernels/SinglePhasePoromechanicsEFEM_impl.hpp b/src/coreComponents/physicsSolvers/multiphysics/poromechanicsKernels/SinglePhasePoromechanicsEFEM_impl.hpp index 0aac71f9acb..9229f1ff774 100644 --- a/src/coreComponents/physicsSolvers/multiphysics/poromechanicsKernels/SinglePhasePoromechanicsEFEM_impl.hpp +++ b/src/coreComponents/physicsSolvers/multiphysics/poromechanicsKernels/SinglePhasePoromechanicsEFEM_impl.hpp @@ -26,7 +26,7 @@ #include "physicsSolvers/fluidFlow/SinglePhaseBaseFields.hpp" #include "physicsSolvers/multiphysics/poromechanicsKernels/SinglePhasePoromechanics.hpp" #include "physicsSolvers/multiphysics/poromechanicsKernels/SinglePhasePoromechanicsEFEM.hpp" -#include "physicsSolvers/contact/SolidMechanicsEFEMKernelsHelper.hpp" +#include "physicsSolvers/contact/kernels/SolidMechanicsEFEMKernelsHelper.hpp" namespace geos { @@ -91,8 +91,9 @@ SinglePhasePoromechanicsEFEM( NodeManager const & nodeManager, m_tVec2( embeddedSurfSubRegion.getTangentVector2() ), m_surfaceCenter( embeddedSurfSubRegion.getElementCenter() ), m_surfaceArea( embeddedSurfSubRegion.getElementArea() ), - m_elementVolume( elementSubRegion.getElementVolume() ), - m_deltaVolume( elementSubRegion.template getField< fields::flow::deltaVolume >() ), + m_elementVolumeCell( elementSubRegion.getElementVolume() ), + m_elementVolumeFrac( embeddedSurfSubRegion.getElementVolume() ), + m_deltaVolume( embeddedSurfSubRegion.template getField< fields::flow::deltaVolume >() ), m_fracturedElems( elementSubRegion.fracturedElementsList() ), m_cellsToEmbeddedSurfaces( elementSubRegion.embeddedSurfacesList().toViewConst() ), m_gravityVector{ inputGravityVector[0], inputGravityVector[1], inputGravityVector[2] }, @@ -148,7 +149,7 @@ setup( localIndex const k, { localIndex const embSurfIndex = m_cellsToEmbeddedSurfaces[k][0]; - stack.hInv = m_surfaceArea[embSurfIndex] / m_elementVolume[k]; + stack.hInv = m_surfaceArea[embSurfIndex] / m_elementVolumeCell[k]; for( localIndex a=0; agetParent().getGroupPointer< PhysicsSolverBase >( m_surfaceGeneratorName ); @@ -1387,7 +1388,7 @@ void SolidMechanicsLagrangianFEM::applyContactConstraint( DofManager const & dof real64 const contactStiffness = m_contactPenaltyStiffness; arrayView1d< real64 > const area = subRegion.getElementArea(); - ArrayOfArraysView< localIndex const > const elemsToFaces = subRegion.faceList().toViewConst(); + arrayView2d< localIndex const > const elemsToFaces = subRegion.faceList().toViewConst(); // TODO: use parallel policy? forAll< serialPolicy >( subRegion.size(), [=] ( localIndex const kfe ) diff --git a/src/coreComponents/physicsSolvers/solidMechanics/SolidMechanicsLagrangianFEM.hpp b/src/coreComponents/physicsSolvers/solidMechanics/SolidMechanicsLagrangianFEM.hpp index fb5fd9def7a..6d331793e7b 100644 --- a/src/coreComponents/physicsSolvers/solidMechanics/SolidMechanicsLagrangianFEM.hpp +++ b/src/coreComponents/physicsSolvers/solidMechanics/SolidMechanicsLagrangianFEM.hpp @@ -20,7 +20,7 @@ #ifndef GEOS_PHYSICSSOLVERS_SOLIDMECHANICS_SOLIDMECHANICSLAGRANGIANFEM_HPP_ #define GEOS_PHYSICSSOLVERS_SOLIDMECHANICS_SOLIDMECHANICSLAGRANGIANFEM_HPP_ -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" #include "common/TimingMacros.hpp" #include "kernels/SolidMechanicsLagrangianFEMKernels.hpp" #include "kernels/StrainHelper.hpp" diff --git a/src/coreComponents/physicsSolvers/solidMechanics/SolidMechanicsMPM.hpp b/src/coreComponents/physicsSolvers/solidMechanics/SolidMechanicsMPM.hpp index 71200129938..b528b6d9e7f 100644 --- a/src/coreComponents/physicsSolvers/solidMechanics/SolidMechanicsMPM.hpp +++ b/src/coreComponents/physicsSolvers/solidMechanics/SolidMechanicsMPM.hpp @@ -20,7 +20,7 @@ #ifndef GEOS_PHYSICSSOLVERS_SOLIDMECHANICS_MPM_HPP_ #define GEOS_PHYSICSSOLVERS_SOLIDMECHANICS_MPM_HPP_ -#include "codingUtilities/EnumStrings.hpp" +#include "common/format/EnumStrings.hpp" #include "common/TimingMacros.hpp" #include "kernels/SolidMechanicsLagrangianFEMKernels.hpp" #include "kernels/ExplicitMPM.hpp" diff --git a/src/coreComponents/physicsSolvers/surfaceGeneration/CMakeLists.txt b/src/coreComponents/physicsSolvers/surfaceGeneration/CMakeLists.txt index 9bcfd8fdc9b..eb2b85d0357 100644 --- a/src/coreComponents/physicsSolvers/surfaceGeneration/CMakeLists.txt +++ b/src/coreComponents/physicsSolvers/surfaceGeneration/CMakeLists.txt @@ -17,5 +17,6 @@ set( physicsSolvers_sources surfaceGeneration/EmbeddedSurfaceGenerator.cpp surfaceGeneration/EmbeddedSurfacesParallelSynchronization.cpp surfaceGeneration/ParallelTopologyChange.cpp + surfaceGeneration/ParallelTopologyChangeNoFixup.cpp surfaceGeneration/SurfaceGenerator.cpp PARENT_SCOPE ) \ No newline at end of file diff --git a/src/coreComponents/physicsSolvers/surfaceGeneration/ParallelTopologyChange.cpp b/src/coreComponents/physicsSolvers/surfaceGeneration/ParallelTopologyChange.cpp index 8cdac92ae68..1c7a39796fb 100644 --- a/src/coreComponents/physicsSolvers/surfaceGeneration/ParallelTopologyChange.cpp +++ b/src/coreComponents/physicsSolvers/surfaceGeneration/ParallelTopologyChange.cpp @@ -26,7 +26,7 @@ #include "mesh/mpiCommunications/CommunicationTools.hpp" #include "mesh/mpiCommunications/MPI_iCommData.hpp" - +#if PARALLEL_TOPOLOGY_CHANGE_METHOD==0 namespace geos { @@ -507,7 +507,7 @@ void packNewModifiedObjectsToGhosts( NeighborCommunicator * const neighbor, elemRegion.forElementSubRegionsIndex< FaceElementSubRegion >( [&]( localIndex const esr, FaceElementSubRegion & subRegion ) { - ArrayOfArraysView< localIndex const > const faceList = subRegion.faceList().toViewConst(); + arrayView2d< localIndex const > const faceList = subRegion.faceList().toViewConst(); localIndex_array & elemGhostsToSend = subRegion.getNeighborData( neighbor->neighborRank() ).ghostsToSend(); elemGhostsToSend.move( hostMemorySpace ); for( localIndex const & k : receivedObjects.newElements.at( {er, esr} ) ) @@ -1024,3 +1024,4 @@ void parallelTopologyChange::synchronizeTopologyChange( MeshLevel * const mesh, } /* namespace geos */ +#endif // PARALLEL_TOPOLOGY_CHANGE_METHOD==0 diff --git a/src/coreComponents/physicsSolvers/surfaceGeneration/ParallelTopologyChange.hpp b/src/coreComponents/physicsSolvers/surfaceGeneration/ParallelTopologyChange.hpp index 901a12b30af..5d7f42debf3 100644 --- a/src/coreComponents/physicsSolvers/surfaceGeneration/ParallelTopologyChange.hpp +++ b/src/coreComponents/physicsSolvers/surfaceGeneration/ParallelTopologyChange.hpp @@ -22,6 +22,8 @@ #include "physicsSolvers/surfaceGeneration/SurfaceGenerator.hpp" +#define PARALLEL_TOPOLOGY_CHANGE_METHOD 1 + namespace geos { class MeshLevel; @@ -37,6 +39,59 @@ void synchronizeTopologyChange( MeshLevel * const mesh, ModifiedObjectLists & receivedObjects, int mpiCommOrder ); + + +struct TopologyChangeStepData +{ + void init( ElementRegionManager const & elemManager ) + { + m_nodes.resize( 0 ); + m_edges.resize( 0 ); + m_faces.resize( 0 ); + m_elements.resize( elemManager.numRegions() ); + m_elementsView.resize( elemManager.numRegions() ); + m_elementsData.resize( elemManager.numRegions() ); + m_size = 0; + + for( localIndex er=0; er m_elements; + ElementRegionManager::ElementViewAccessor< arrayView1d< localIndex > > m_elementsView; + + array1d< array1d< localIndex_array > > m_elementsData; + buffer_type::size_type m_size; + +}; + +struct TopologyChangeUnpackStepData : public TopologyChangeStepData +{ + void init( buffer_type const & receiveBuffer, + ElementRegionManager const & elemManager ) + { + m_bufferPtr = receiveBuffer.data(); + TopologyChangeStepData::init( elemManager ); + } + + buffer_unit_type const * m_bufferPtr; +}; + } } diff --git a/src/coreComponents/physicsSolvers/surfaceGeneration/ParallelTopologyChangeNoFixup.cpp b/src/coreComponents/physicsSolvers/surfaceGeneration/ParallelTopologyChangeNoFixup.cpp new file mode 100644 index 00000000000..174f4f701ad --- /dev/null +++ b/src/coreComponents/physicsSolvers/surfaceGeneration/ParallelTopologyChangeNoFixup.cpp @@ -0,0 +1,1291 @@ +/* + * ------------------------------------------------------------------------------------------------------------ + * SPDX-License-Identifier: LGPL-2.1-only + * + * Copyright (c) 2016-2024 Lawrence Livermore National Security LLC + * Copyright (c) 2018-2024 Total, S.A + * Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University + * Copyright (c) 2023-2024 Chevron + * Copyright (c) 2019- GEOS/GEOSX Contributors + * All rights reserved + * + * See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. + * ------------------------------------------------------------------------------------------------------------ + */ + +/** + * @file ParallelTopologyChange.cpp + */ + +#include "ParallelTopologyChange.hpp" + +#include "common/GeosxMacros.hpp" +#include "common/TimingMacros.hpp" +#include "mesh/ElementRegionManager.hpp" +#include "mesh/MeshFields.hpp" +#include "mesh/mpiCommunications/CommunicationTools.hpp" +#include "mesh/mpiCommunications/MPI_iCommData.hpp" + +#if PARALLEL_TOPOLOGY_CHANGE_METHOD==1 +namespace geos +{ + +using namespace dataRepository; + +namespace parallelTopologyChange +{ + + +template< typename T > +void filterNonOwnedFromContainer( array1d< localIndex > & newList, + T const & container, + arrayView1d< localIndex const > const & ghostRank, + integer const neighborRank ) +{ + newList.resize( container.size()); + { + localIndex a=0; + for( auto index : container ) + { + if( ghostRank[index] == neighborRank ) + { + newList[a] = index; + ++a; + } + } + newList.resize( a ); + } +} + +template< typename T > +void filterNonOwnedFromContainer( array1d< localIndex > & newList, + T const & container, + arrayView1d< localIndex const > const & parentIndices, + arrayView1d< localIndex const > const & ghostRank, + integer const neighborRank ) +{ + newList.resize( container.size()); + { + localIndex a=0; + for( auto index : container ) + { + localIndex const parentIndex = ObjectManagerBase::getParentRecursive( parentIndices, index ); + if( ghostRank[parentIndex] == neighborRank ) + { + newList[a] = index; + ++a; + } + } + newList.resize( a ); + } +} + +void filterNewObjectsForPackToGhosts( std::set< localIndex > const & objectList, + arrayView1d< localIndex > const & parentIndices, + localIndex_array & ghostsToSend, + localIndex_array & objectsToSend ) +{ + + ghostsToSend.move( hostMemorySpace ); + //TODO this needs to be inverted since the ghostToSend list should be much longer.... + // and the objectList is a searchable set. + for( auto const index : objectList ) + { + localIndex const parentIndex = parentIndices[index]; + for( localIndex a=0; a const & objectList, + localIndex_array const & ghostsToSend, + localIndex_array & objectsToSend ) +{ + ghostsToSend.move( hostMemorySpace ); + for( localIndex a=0; a 0 ) + { + objectsToSend.emplace_back( ghostsToSend[a] ); + } + } +} + + + +//***** 1A *****// +void packNewAndModifiedObjectsToOwningRanks( NeighborCommunicator & neighbor, + MeshLevel * const meshLevel, + ModifiedObjectLists const & modifiedObjects, + int const commID ) +{ + int bufferSize = 0; + + NodeManager & nodeManager = meshLevel->getNodeManager(); + EdgeManager & edgeManager = meshLevel->getEdgeManager(); + FaceManager & faceManager = meshLevel->getFaceManager(); + ElementRegionManager & elemManager = meshLevel->getElemManager(); + + arrayView1d< integer const > const & nodeGhostRank = nodeManager.ghostRank(); + arrayView1d< integer const > const & edgeGhostRank = edgeManager.ghostRank(); + arrayView1d< integer const > const & faceGhostRank = faceManager.ghostRank(); + + arrayView1d< localIndex const > const & parentNodeIndices = nodeManager.getField< fields::parentIndex >(); + arrayView1d< localIndex const > const & parentEdgeIndices = edgeManager.getField< fields::parentIndex >(); + arrayView1d< localIndex const > const & parentFaceIndices = faceManager.getField< fields::parentIndex >(); + + int const neighborRank = neighbor.neighborRank(); + + array1d< localIndex > newNodePackListArray; filterNonOwnedFromContainer( newNodePackListArray, modifiedObjects.newNodes, parentNodeIndices, nodeGhostRank, neighborRank ); + array1d< localIndex > modNodePackListArray; filterNonOwnedFromContainer( modNodePackListArray, modifiedObjects.modifiedNodes, parentNodeIndices, nodeGhostRank, neighborRank ); + array1d< localIndex > newEdgePackListArray; filterNonOwnedFromContainer( newEdgePackListArray, modifiedObjects.newEdges, parentEdgeIndices, edgeGhostRank, neighborRank ); + array1d< localIndex > modEdgePackListArray; filterNonOwnedFromContainer( modEdgePackListArray, modifiedObjects.modifiedEdges, parentEdgeIndices, edgeGhostRank, neighborRank ); + array1d< localIndex > newFacePackListArray; filterNonOwnedFromContainer( newFacePackListArray, modifiedObjects.newFaces, parentFaceIndices, faceGhostRank, neighborRank ); + array1d< localIndex > modFacePackListArray; filterNonOwnedFromContainer( modFacePackListArray, modifiedObjects.modifiedFaces, parentFaceIndices, faceGhostRank, neighborRank ); + + + ElementRegionManager::ElementViewAccessor< arrayView1d< localIndex > > newElemPackList; + array1d< array1d< localIndex_array > > newElemData; + ElementRegionManager::ElementReferenceAccessor< localIndex_array > modElemPackList; + array1d< array1d< localIndex_array > > modElemData; + newElemPackList.resize( elemManager.numRegions()); + newElemData.resize( elemManager.numRegions()); + modElemPackList.resize( elemManager.numRegions()); + modElemData.resize( elemManager.numRegions()); + for( localIndex er=0; er const & subRegionGhostRank = subRegion.ghostRank(); + if( modifiedObjects.modifiedElements.count( {er, esr} ) > 0 ) + { + std::set< localIndex > const & elemList = modifiedObjects.modifiedElements.at( {er, esr} ); + filterNonOwnedFromContainer( modElemData[er][esr], elemList, subRegionGhostRank, neighborRank ); + } + + if( modifiedObjects.newElements.count( {er, esr} ) > 0 ) + { + std::set< localIndex > const & elemList = modifiedObjects.newElements.at( {er, esr} ); + filterNonOwnedFromContainer( newElemData[er][esr], elemList, subRegionGhostRank, neighborRank ); + } + + newElemPackList[er][esr] = newElemData[er][esr]; + modElemPackList[er][esr].set( modElemData[er][esr] ); + } + } + + // if we start packing sizing on device + async, poll for completion + parallelDeviceEvents sizeEvents; + bufferSize += nodeManager.packGlobalMapsSize( newNodePackListArray, 0 ); + bufferSize += edgeManager.packGlobalMapsSize( newEdgePackListArray, 0 ); + bufferSize += faceManager.packGlobalMapsSize( newFacePackListArray, 0 ); + bufferSize += elemManager.packGlobalMapsSize( newElemPackList ); + + bufferSize += nodeManager.packParentChildMapsSize( newNodePackListArray ); + bufferSize += edgeManager.packParentChildMapsSize( newEdgePackListArray ); + bufferSize += faceManager.packParentChildMapsSize( newFacePackListArray ); + bufferSize += elemManager.packFaceElementToFaceSize( newElemPackList ); + + bufferSize += nodeManager.packUpDownMapsSize( newNodePackListArray ); + bufferSize += edgeManager.packUpDownMapsSize( newEdgePackListArray ); + bufferSize += faceManager.packUpDownMapsSize( newFacePackListArray ); + bufferSize += elemManager.packUpDownMapsSize( newElemPackList ); + + bufferSize += nodeManager.packSize( newNodePackListArray, 0, false, sizeEvents ); + bufferSize += edgeManager.packSize( newEdgePackListArray, 0, false, sizeEvents ); + bufferSize += faceManager.packSize( newFacePackListArray, 0, false, sizeEvents ); + bufferSize += elemManager.packSize( newElemPackList ); + + bufferSize += nodeManager.packUpDownMapsSize( modNodePackListArray ); + bufferSize += edgeManager.packUpDownMapsSize( modEdgePackListArray ); + bufferSize += faceManager.packUpDownMapsSize( modFacePackListArray ); + bufferSize += elemManager.packUpDownMapsSize( modElemPackList ); + + bufferSize += nodeManager.packParentChildMapsSize( modNodePackListArray ); + bufferSize += edgeManager.packParentChildMapsSize( modEdgePackListArray ); + bufferSize += faceManager.packParentChildMapsSize( modFacePackListArray ); + + bufferSize += nodeManager.packSize( modNodePackListArray, 0, false, sizeEvents ); + bufferSize += edgeManager.packSize( modEdgePackListArray, 0, false, sizeEvents ); + bufferSize += faceManager.packSize( modFacePackListArray, 0, false, sizeEvents ); + + waitAllDeviceEvents( sizeEvents ); + neighbor.resizeSendBuffer( commID, bufferSize ); + + buffer_type & sendBuffer = neighbor.sendBuffer( commID ); + buffer_unit_type * sendBufferPtr = sendBuffer.data(); + + // empty event buffer + int packedSize = 0; + parallelDeviceEvents packEvents; + + packedSize += nodeManager.packGlobalMaps( sendBufferPtr, newNodePackListArray, 0 ); + packedSize += edgeManager.packGlobalMaps( sendBufferPtr, newEdgePackListArray, 0 ); + packedSize += faceManager.packGlobalMaps( sendBufferPtr, newFacePackListArray, 0 ); + packedSize += elemManager.packGlobalMaps( sendBufferPtr, newElemPackList ); + + packedSize += nodeManager.packParentChildMaps( sendBufferPtr, newNodePackListArray ); + packedSize += edgeManager.packParentChildMaps( sendBufferPtr, newEdgePackListArray ); + packedSize += faceManager.packParentChildMaps( sendBufferPtr, newFacePackListArray ); + packedSize += elemManager.packFaceElementToFace( sendBufferPtr, newElemPackList ); + + packedSize += nodeManager.packUpDownMaps( sendBufferPtr, newNodePackListArray ); + packedSize += edgeManager.packUpDownMaps( sendBufferPtr, newEdgePackListArray ); + packedSize += faceManager.packUpDownMaps( sendBufferPtr, newFacePackListArray ); + packedSize += elemManager.packUpDownMaps( sendBufferPtr, newElemPackList ); + + packedSize += nodeManager.pack( sendBufferPtr, newNodePackListArray, 0, false, packEvents ); + packedSize += edgeManager.pack( sendBufferPtr, newEdgePackListArray, 0, false, packEvents ); + packedSize += faceManager.pack( sendBufferPtr, newFacePackListArray, 0, false, packEvents ); + packedSize += elemManager.pack( sendBufferPtr, newElemPackList ); + + packedSize += nodeManager.packUpDownMaps( sendBufferPtr, modNodePackListArray ); + packedSize += edgeManager.packUpDownMaps( sendBufferPtr, modEdgePackListArray ); + packedSize += faceManager.packUpDownMaps( sendBufferPtr, modFacePackListArray ); + packedSize += elemManager.packUpDownMaps( sendBufferPtr, modElemPackList ); + + packedSize += nodeManager.packParentChildMaps( sendBufferPtr, modNodePackListArray ); + packedSize += edgeManager.packParentChildMaps( sendBufferPtr, modEdgePackListArray ); + packedSize += faceManager.packParentChildMaps( sendBufferPtr, modFacePackListArray ); + + packedSize += nodeManager.pack( sendBufferPtr, modNodePackListArray, 0, false, packEvents ); + packedSize += edgeManager.pack( sendBufferPtr, modEdgePackListArray, 0, false, packEvents ); + packedSize += faceManager.pack( sendBufferPtr, modFacePackListArray, 0, false, packEvents ); + + // poll for pack completion here + waitAllDeviceEvents( packEvents ); + GEOS_ERROR_IF( bufferSize != packedSize, + "Allocated Buffer Size ("<getNodeManager(); + EdgeManager & edgeManager = mesh->getEdgeManager(); + FaceManager & faceManager = mesh->getFaceManager(); + ElementRegionManager & elemManager = mesh->getElemManager(); + + unpackStateData.init( neighbor.receiveBuffer( commID ), elemManager ); + buffer_unit_type const * & receiveBufferPtr = unpackStateData.m_bufferPtr; + + localIndex_array & newLocalNodes = unpackStateData.m_nodes; + localIndex_array & newLocalEdges = unpackStateData.m_edges; + localIndex_array & newLocalFaces = unpackStateData.m_faces; + ElementRegionManager::ElementReferenceAccessor< array1d< localIndex > > & newLocalElements = unpackStateData.m_elements; + array1d< array1d< localIndex_array > > & newLocalElementsData = unpackStateData.m_elementsData; + + newLocalNodes.resize( 0 ); + newLocalEdges.resize( 0 ); + newLocalFaces.resize( 0 ); + + + newLocalElements.resize( elemManager.numRegions()); + newLocalElementsData.resize( elemManager.numRegions()); + for( localIndex er=0; er & allNewNodes = receivedObjects.newNodes; + std::set< localIndex > & allNewEdges = receivedObjects.newEdges; + std::set< localIndex > & allNewFaces = receivedObjects.newFaces; + map< std::pair< localIndex, localIndex >, std::set< localIndex > > & allNewElements = receivedObjects.newElements; + + allNewNodes.insert( newLocalNodes.begin(), newLocalNodes.end() ); + allNewEdges.insert( newLocalEdges.begin(), newLocalEdges.end() ); + allNewFaces.insert( newLocalFaces.begin(), newLocalFaces.end() ); + + for( localIndex er=0; ergetNodeManager(); + EdgeManager & edgeManager = mesh->getEdgeManager(); + FaceManager & faceManager = mesh->getFaceManager(); + ElementRegionManager & elemManager = mesh->getElemManager(); + + localIndex_array & newNodesToSend = packData.m_nodes; + localIndex_array & newEdgesToSend = packData.m_edges; + localIndex_array & newFacesToSend = packData.m_faces; + ElementRegionManager::ElementViewAccessor< arrayView1d< localIndex > > & newElemsToSend = packData.m_elementsView; + array1d< array1d< localIndex_array > > & newElemsToSendData = packData.m_elementsData; + + + localIndex_array & nodeGhostsToSend = nodeManager.getNeighborData( neighbor.neighborRank() ).ghostsToSend(); + localIndex_array & edgeGhostsToSend = edgeManager.getNeighborData( neighbor.neighborRank() ).ghostsToSend(); + localIndex_array & faceGhostsToSend = faceManager.getNeighborData( neighbor.neighborRank() ).ghostsToSend(); + + arrayView1d< localIndex > const & nodalParentIndices = nodeManager.getField< fields::parentIndex >(); + arrayView1d< localIndex > const & edgeParentIndices = edgeManager.getField< fields::parentIndex >(); + arrayView1d< localIndex > const & faceParentIndices = faceManager.getField< fields::parentIndex >(); + + filterNewObjectsForPackToGhosts( modifiedObjects.newNodes, nodalParentIndices, nodeGhostsToSend, newNodesToSend ); + filterNewObjectsForPackToGhosts( modifiedObjects.newEdges, edgeParentIndices, edgeGhostsToSend, newEdgesToSend ); + filterNewObjectsForPackToGhosts( modifiedObjects.newFaces, faceParentIndices, faceGhostsToSend, newFacesToSend ); + + SortedArray< localIndex > faceGhostsToSendSet; + for( localIndex const & kf : faceGhostsToSend ) + { + faceGhostsToSendSet.insert( kf ); + } + + newElemsToSendData.resize( elemManager.numRegions() ); + newElemsToSend.resize( elemManager.numRegions() ); + for( localIndex er=0; er( [&]( localIndex const esr, + FaceElementSubRegion & subRegion ) + { + arrayView2d< localIndex const > const faceList = subRegion.faceList().toViewConst(); + localIndex_array & elemGhostsToSend = subRegion.getNeighborData( neighbor.neighborRank() ).ghostsToSend(); + elemGhostsToSend.move( hostMemorySpace ); + for( localIndex const & k : modifiedObjects.newElements.at( {er, esr} ) ) + { + if( faceGhostsToSendSet.count( faceList( k, 0 ) ) ) + { + newElemsToSendData[er][esr].emplace_back( k ); + elemGhostsToSend.emplace_back( k ); + } + } + newElemsToSend[er][esr] = newElemsToSendData[er][esr]; + } ); + } + + int bufferSize = 0; + + bufferSize += nodeManager.packGlobalMapsSize( newNodesToSend, 0 ); + bufferSize += edgeManager.packGlobalMapsSize( newEdgesToSend, 0 ); + bufferSize += faceManager.packGlobalMapsSize( newFacesToSend, 0 ); + bufferSize += elemManager.packGlobalMapsSize( newElemsToSend ); + bufferSize += elemManager.packFaceElementToFaceSize( newElemsToSend ); + + neighbor.resizeSendBuffer( commID, bufferSize ); + + buffer_type & sendBuffer = neighbor.sendBuffer( commID ); + buffer_unit_type * sendBufferPtr = sendBuffer.data(); + + int packedSize = 0; + + packedSize += nodeManager.packGlobalMaps( sendBufferPtr, newNodesToSend, 0 ); + packedSize += edgeManager.packGlobalMaps( sendBufferPtr, newEdgesToSend, 0 ); + packedSize += faceManager.packGlobalMaps( sendBufferPtr, newFacesToSend, 0 ); + packedSize += elemManager.packGlobalMaps( sendBufferPtr, newElemsToSend ); + packedSize += elemManager.packFaceElementToFace( sendBufferPtr, newElemsToSend ); + + GEOS_ERROR_IF( bufferSize != packedSize, "Allocated Buffer Size is not equal to packed buffer size" ); +} + + +//***** 2b *****// +void unpackNewObjectsOnGhosts( NeighborCommunicator & neighbor, + int commID, + MeshLevel * const mesh, + ModifiedObjectLists & receivedObjects ) +{ + + NodeManager & nodeManager = mesh->getNodeManager(); + EdgeManager & edgeManager = mesh->getEdgeManager(); + FaceManager & faceManager = mesh->getFaceManager(); + ElementRegionManager & elemManager = mesh->getElemManager(); + + localIndex_array & nodeGhostsToRecv = nodeManager.getNeighborData( neighbor.neighborRank() ).ghostsToReceive(); + localIndex_array & edgeGhostsToRecv = edgeManager.getNeighborData( neighbor.neighborRank() ).ghostsToReceive(); + localIndex_array & faceGhostsToRecv = faceManager.getNeighborData( neighbor.neighborRank() ).ghostsToReceive(); + + buffer_type const & receiveBuffer = neighbor.receiveBuffer( commID ); + buffer_unit_type const * receiveBufferPtr = receiveBuffer.data(); + + localIndex_array newGhostNodes; + localIndex_array newGhostEdges; + localIndex_array newGhostFaces; + + ElementRegionManager::ElementReferenceAccessor< localIndex_array > newGhostElems; + array1d< array1d< localIndex_array > > newGhostElemsData; + newGhostElems.resize( elemManager.numRegions() ); + newGhostElemsData.resize( elemManager.numRegions() ); + for( localIndex er=0; er 0 ) + { + nodeGhostsToRecv.move( hostMemorySpace ); + for( localIndex a=0; a 0 ) + { + edgeGhostsToRecv.move( hostMemorySpace ); + for( localIndex a=0; a 0 ) + { + faceGhostsToRecv.move( hostMemorySpace ); + for( localIndex a=0; a( + [&]( localIndex const er, localIndex const esr, ElementRegionBase &, ElementSubRegionBase & subRegion ) + { + localIndex_array & elemGhostsToReceive = subRegion.getNeighborData( neighbor.neighborRank() ).ghostsToReceive(); + if( newGhostElemsData[er][esr].size() > 0 ) + { + elemGhostsToReceive.move( hostMemorySpace ); + + for( localIndex const & newElemIndex : newGhostElemsData[er][esr] ) + { + elemGhostsToReceive.emplace_back( newElemIndex ); + receivedObjects.newElements[ { er, esr } ].insert( newElemIndex ); + } + } + } ); + + receivedObjects.newNodes.insert( newGhostNodes.begin(), newGhostNodes.end() ); + receivedObjects.newEdges.insert( newGhostEdges.begin(), newGhostEdges.end() ); + receivedObjects.newFaces.insert( newGhostFaces.begin(), newGhostFaces.end() ); +} + + + +//***** 3a *****// +localIndex unpackNewAndModifiedObjectsDataOnOwningRanks( MeshLevel * const mesh, + ModifiedObjectLists & receivedObjects, + TopologyChangeUnpackStepData & unpackStateData ) +{ + GEOS_MARK_FUNCTION; + + NodeManager & nodeManager = mesh->getNodeManager(); + EdgeManager & edgeManager = mesh->getEdgeManager(); + FaceManager & faceManager = mesh->getFaceManager(); + ElementRegionManager & elemManager = mesh->getElemManager(); + + buffer_unit_type const * & receiveBufferPtr = unpackStateData.m_bufferPtr; + + localIndex_array & newLocalNodes = unpackStateData.m_nodes; + localIndex_array & newLocalEdges = unpackStateData.m_edges; + localIndex_array & newLocalFaces = unpackStateData.m_faces; + + ElementRegionManager::ElementReferenceAccessor< array1d< localIndex > > & newLocalElements = unpackStateData.m_elements; + + localIndex_array modifiedLocalNodes; + localIndex_array modifiedLocalEdges; + localIndex_array modifiedLocalFaces; + + ElementRegionManager::ElementReferenceAccessor< localIndex_array > modifiedLocalElements; + array1d< array1d< localIndex_array > > modifiedLocalElementsData; + + modifiedLocalElements.resize( elemManager.numRegions()); + modifiedLocalElementsData.resize( elemManager.numRegions()); + for( localIndex er=0; er & allModifiedNodes = receivedObjects.modifiedNodes; + std::set< localIndex > & allModifiedEdges = receivedObjects.modifiedEdges; + std::set< localIndex > & allModifiedFaces = receivedObjects.modifiedFaces; + map< std::pair< localIndex, localIndex >, std::set< localIndex > > & allModifiedElements = receivedObjects.modifiedElements; + + allModifiedNodes.insert( modifiedLocalNodes.begin(), modifiedLocalNodes.end() ); + + allModifiedEdges.insert( modifiedLocalEdges.begin(), modifiedLocalEdges.end() ); + + allModifiedFaces.insert( modifiedLocalFaces.begin(), modifiedLocalFaces.end() ); + + for( localIndex er=0; ergetNodeManager(); + EdgeManager & edgeManager = mesh->getEdgeManager(); + FaceManager & faceManager = mesh->getFaceManager(); + ElementRegionManager & elemManager = mesh->getElemManager(); + + localIndex_array & newNodesToSend = packData.m_nodes; + localIndex_array & newEdgesToSend = packData.m_edges; + localIndex_array & newFacesToSend = packData.m_faces; + ElementRegionManager::ElementViewAccessor< arrayView1d< localIndex > > & newElemsToSend = packData.m_elementsView; + // array1d< array1d< localIndex_array > > & newElemsToSendData = packData.m_elementsData; + + localIndex_array modNodesToSend; + localIndex_array modEdgesToSend; + localIndex_array modFacesToSend; + ElementRegionManager::ElementReferenceAccessor< localIndex_array > modElemsToSend; + array1d< array1d< localIndex_array > > modElemsToSendData; + + localIndex_array & nodeGhostsToSend = nodeManager.getNeighborData( neighbor.neighborRank() ).ghostsToSend(); + localIndex_array & edgeGhostsToSend = edgeManager.getNeighborData( neighbor.neighborRank() ).ghostsToSend(); + localIndex_array & faceGhostsToSend = faceManager.getNeighborData( neighbor.neighborRank() ).ghostsToSend(); + + filterModObjectsForPackToGhosts( receivedObjects.modifiedNodes, nodeGhostsToSend, modNodesToSend ); + filterModObjectsForPackToGhosts( receivedObjects.modifiedEdges, edgeGhostsToSend, modEdgesToSend ); + filterModObjectsForPackToGhosts( receivedObjects.modifiedFaces, faceGhostsToSend, modFacesToSend ); + + // newElemsToSendData.resize( elemManager.numRegions() ); + // newElemsToSend.resize( elemManager.numRegions() ); + modElemsToSendData.resize( elemManager.numRegions() ); + modElemsToSend.resize( elemManager.numRegions() ); + for( localIndex er=0; er( [&]( localIndex const esr, + // FaceElementSubRegion & subRegion ) + // { + // ArrayOfArraysView< localIndex const > const faceList = subRegion.faceList().toViewConst(); + // localIndex_array & elemGhostsToSend = subRegion.getNeighborData( neighbor.neighborRank() ).ghostsToSend(); + // elemGhostsToSend.move( hostMemorySpace ); + // for( localIndex const & k : receivedObjects.newElements.at( {er, esr} ) ) + // { + // if( faceGhostsToSendSet.count( faceList( k, 0 ) ) ) + // { + // newElemsToSendData[er][esr].emplace_back( k ); + // elemGhostsToSend.emplace_back( k ); + // } + // } + // newElemsToSend[er][esr] = newElemsToSendData[er][esr]; + // } ); + + elemRegion.forElementSubRegionsIndex< ElementSubRegionBase >( [&]( localIndex const esr, + ElementSubRegionBase const & subRegion ) + { + modElemsToSend[er][esr].set( modElemsToSendData[er][esr] ); + arrayView1d< localIndex const > const & elemGhostsToSend = subRegion.getNeighborData( neighbor.neighborRank() ).ghostsToSend(); + for( localIndex const ghostToSend : elemGhostsToSend ) + { + if( receivedObjects.modifiedElements.at( { er, esr } ).count( ghostToSend ) > 0 ) + { + modElemsToSendData[er][esr].emplace_back( ghostToSend ); + } + } + } ); + } + + parallelDeviceEvents sizeEvents; + int bufferSize = 0; + + + bufferSize += nodeManager.packUpDownMapsSize( newNodesToSend ); + bufferSize += edgeManager.packUpDownMapsSize( newEdgesToSend ); + bufferSize += faceManager.packUpDownMapsSize( newFacesToSend ); + bufferSize += elemManager.packUpDownMapsSize( newElemsToSend ); + + bufferSize += nodeManager.packParentChildMapsSize( newNodesToSend ); + bufferSize += edgeManager.packParentChildMapsSize( newEdgesToSend ); + bufferSize += faceManager.packParentChildMapsSize( newFacesToSend ); + + bufferSize += nodeManager.packSize( newNodesToSend, 0, false, sizeEvents ); + bufferSize += edgeManager.packSize( newEdgesToSend, 0, false, sizeEvents ); + bufferSize += faceManager.packSize( newFacesToSend, 0, false, sizeEvents ); + bufferSize += elemManager.packSize( newElemsToSend ); + + bufferSize += nodeManager.packUpDownMapsSize( modNodesToSend ); + bufferSize += edgeManager.packUpDownMapsSize( modEdgesToSend ); + bufferSize += faceManager.packUpDownMapsSize( modFacesToSend ); + bufferSize += elemManager.packUpDownMapsSize( modElemsToSend ); + + bufferSize += nodeManager.packParentChildMapsSize( modNodesToSend ); + bufferSize += edgeManager.packParentChildMapsSize( modEdgesToSend ); + bufferSize += faceManager.packParentChildMapsSize( modFacesToSend ); + + waitAllDeviceEvents( sizeEvents ); + neighbor.resizeSendBuffer( commID, bufferSize ); + + buffer_type & sendBuffer = neighbor.sendBuffer( commID ); + buffer_unit_type * sendBufferPtr = sendBuffer.data(); + + parallelDeviceEvents packEvents; + int packedSize = 0; + + packedSize += nodeManager.packUpDownMaps( sendBufferPtr, newNodesToSend ); + packedSize += edgeManager.packUpDownMaps( sendBufferPtr, newEdgesToSend ); + packedSize += faceManager.packUpDownMaps( sendBufferPtr, newFacesToSend ); + packedSize += elemManager.packUpDownMaps( sendBufferPtr, newElemsToSend ); + + packedSize += nodeManager.packParentChildMaps( sendBufferPtr, newNodesToSend ); + packedSize += edgeManager.packParentChildMaps( sendBufferPtr, newEdgesToSend ); + packedSize += faceManager.packParentChildMaps( sendBufferPtr, newFacesToSend ); + + packedSize += nodeManager.pack( sendBufferPtr, newNodesToSend, 0, false, packEvents ); + packedSize += edgeManager.pack( sendBufferPtr, newEdgesToSend, 0, false, packEvents ); + packedSize += faceManager.pack( sendBufferPtr, newFacesToSend, 0, false, packEvents ); + packedSize += elemManager.pack( sendBufferPtr, newElemsToSend ); + + packedSize += nodeManager.packUpDownMaps( sendBufferPtr, modNodesToSend ); + packedSize += edgeManager.packUpDownMaps( sendBufferPtr, modEdgesToSend ); + packedSize += faceManager.packUpDownMaps( sendBufferPtr, modFacesToSend ); + packedSize += elemManager.packUpDownMaps( sendBufferPtr, modElemsToSend ); + + packedSize += nodeManager.packParentChildMaps( sendBufferPtr, modNodesToSend ); + packedSize += edgeManager.packParentChildMaps( sendBufferPtr, modEdgesToSend ); + packedSize += faceManager.packParentChildMaps( sendBufferPtr, modFacesToSend ); + + GEOS_ERROR_IF( bufferSize != packedSize, "Allocated Buffer Size is not equal to packed buffer size" ); + + waitAllDeviceEvents( packEvents ); +} + + +//***** 3c ***** +void unpackNewAndModifiedObjectsDataOnGhosts( NeighborCommunicator & neighbor, + int commID, + MeshLevel * const mesh, + ModifiedObjectLists & receivedObjects ) +{ + + NodeManager & nodeManager = mesh->getNodeManager(); + EdgeManager & edgeManager = mesh->getEdgeManager(); + FaceManager & faceManager = mesh->getFaceManager(); + ElementRegionManager & elemManager = mesh->getElemManager(); + + buffer_type const & receiveBuffer = neighbor.receiveBuffer( commID ); + buffer_unit_type const * receiveBufferPtr = receiveBuffer.data(); + + localIndex_array newGhostNodes; + localIndex_array newGhostEdges; + localIndex_array newGhostFaces; + + localIndex_array modGhostNodes; + localIndex_array modGhostEdges; + localIndex_array modGhostFaces; + + ElementRegionManager::ElementReferenceAccessor< localIndex_array > newGhostElems; + array1d< array1d< localIndex_array > > newGhostElemsData; + newGhostElems.resize( elemManager.numRegions() ); + newGhostElemsData.resize( elemManager.numRegions() ); + ElementRegionManager::ElementReferenceAccessor< localIndex_array > modGhostElems; + array1d< array1d< localIndex_array > > modGhostElemsData; + modGhostElems.resize( elemManager.numRegions() ); + modGhostElemsData.resize( elemManager.numRegions() ); + for( localIndex er=0; er( + [&]( localIndex const er, localIndex const esr, ElementRegionBase &, ElementSubRegionBase & ) + { + receivedObjects.modifiedElements[ { er, esr } ].insert( modGhostElemsData[er][esr].begin(), + modGhostElemsData[er][esr].end() ); + } ); + + receivedObjects.modifiedNodes.insert( modGhostNodes.begin(), modGhostNodes.end() ); + receivedObjects.modifiedEdges.insert( modGhostEdges.begin(), modGhostEdges.end() ); + receivedObjects.modifiedFaces.insert( modGhostFaces.begin(), modGhostFaces.end() ); + +} + + + +void updateConnectorsToFaceElems( std::set< localIndex > const & newFaceElements, + FaceElementSubRegion & faceElemSubRegion ) +{ + ArrayOfArrays< localIndex > & connectorToElem = faceElemSubRegion.m_2dFaceTo2dElems; + map< localIndex, localIndex > & edgesToConnectorEdges = faceElemSubRegion.m_edgesTo2dFaces; + array1d< localIndex > & connectorEdgesToEdges = faceElemSubRegion.m_2dFaceToEdge; + + ArrayOfArraysView< localIndex const > const facesToEdges = faceElemSubRegion.edgeList().toViewConst(); + + for( localIndex const & kfe : newFaceElements ) + { + arraySlice1d< localIndex const > const faceToEdges = facesToEdges[kfe]; + for( localIndex ke=0; ke & neighbors, + ModifiedObjectLists & modifiedObjects, + ModifiedObjectLists & receivedObjects, + int mpiCommOrder ) +{ + + NodeManager & nodeManager = mesh->getNodeManager(); + EdgeManager & edgeManager = mesh->getEdgeManager(); + FaceManager & faceManager = mesh->getFaceManager(); + ElementRegionManager & elemManager = mesh->getElemManager(); + + + /************************************************************************************************ + * The goal is to synchronize the changes from the rank that has topology changes to + * ranks that have copies of the objects that were changed. In this "original" implementation, we + * do this without map unpacking optimizations intended to reduce communications. + * + * Nomenclature is key to understanding the process: + * - "New" objects are objects that have just been created on by the "active color rank (ACR)" + * - "Modified" objects are objects that have been modified by the ACR. + * + * - ACR (active color rank) is the rank that has created the topology changes. Given the way we + * map the colors to ranks, the ACR are NOT neighbors...i.e. do not communicate with each other. + * - OR (Owning rank/s) is the rank that owns the "new/modified" objects. This may or may not be + * the ACR. + * - GR (Ghosted rank/s) is the rank that has a ghost copy of the "new/modified" object. + * + * note: object parents define the owning rank. + * note: for any receive/unpack operation, the current rank is the rank performing the operation + * from each neighbor...i.e. the current rank is the OR and the GR. + * + * The sequence of steps are: + * 1a) On the ACR, pack the new/modified objects that are not owned by the ACR and send them to + * their OR. + * 1b) On the OR, unpack the new objects that are owned by the rank that has the changes. DO NOT + * unpack the maps as they will potentially contain indices that are not on the OR. + * + * At this point the OR has all the new objects that it owns...but not the maps or the fields. + * + * 2a) On the OR, pack the new objects that are owned by the rank and send them to the ranks + * where they are ghosted (GR). DO NOT PACK THE MAPS as they are incomplete. + * 2b) On the GR, unpack the new objects. + * + * Now everyone has all the objects and we can pack/send/receive/unpack the maps. + * + * 3a) On the OR, unpack the map modification on owning ranks from 1b). + * + * Now the OR has the correct maps. + * + * 3b) On the OR, pack the map/field modification and send to the GR. + * 3c) On the GR, unpack the map/field modifications. + * + ***********************************************************************************************/ + + + + //*********************************************************************************************** + // 1a) On the ACR, pack the new/modified objects that are not owned by the ACR and send them to + // their OR. + //*********************************************************************************************** + +// std::cout<<"***** Step 1a *****"< step1bUnpackData( neighbors.size() ); + for( unsigned int count=0; count( [&]( localIndex const er, + localIndex const esr, + ElementRegionBase &, + FaceElementSubRegion & subRegion ) + { + subRegion.inheritGhostRankFromParentFace( faceManager, receivedObjects.newElements[{er, esr}] ); + } ); + + MpiWrapper::waitAll( commData1.size(), + commData1.mpiSendBufferSizeRequest(), + commData1.mpiSendBufferSizeStatus() ); + + MpiWrapper::waitAll( commData1.size(), + commData1.mpiSendBufferRequest(), + commData1.mpiSendBufferSizeStatus() ); + + modifiedObjects.insert( receivedObjects ); + + + //************************************************************************************************ + // 2a) On the OR, pack the new objects that are owned by the rank and send them to the ranks + // where they are ghosted (GR). DO NOT PACK THE MAPS as they are incomplete. + //************************************************************************************************ + + MpiWrapper::barrier(); +// std::cout<<"***** Step 2a *****"< step2and3PackData( neighbors.size() ); + + // pack the new objects to send to ghost ranks + for( unsigned int neighborIndex=0; neighborIndex( [&]( localIndex const er, + localIndex const esr, + ElementRegionBase const &, + FaceElementSubRegion & subRegion ) + { + updateConnectorsToFaceElems( receivedObjects.newElements.at( {er, esr} ), subRegion ); + } ); + + + std::set< localIndex > allTouchedNodes; + allTouchedNodes.insert( modifiedObjects.newNodes.begin(), modifiedObjects.newNodes.end() ); + allTouchedNodes.insert( modifiedObjects.modifiedNodes.begin(), modifiedObjects.modifiedNodes.end() ); + nodeManager.depopulateUpMaps( allTouchedNodes, + edgeManager.nodeList(), + faceManager.nodeList().toViewConst(), + elemManager ); + + std::set< localIndex > allTouchedEdges; + allTouchedEdges.insert( modifiedObjects.newEdges.begin(), modifiedObjects.newEdges.end() ); + allTouchedEdges.insert( modifiedObjects.modifiedEdges.begin(), modifiedObjects.modifiedEdges.end() ); + edgeManager.depopulateUpMaps( allTouchedEdges, + faceManager.edgeList().toViewConst() ); + + std::set< localIndex > allTouchedFaces; + allTouchedFaces.insert( modifiedObjects.newFaces.begin(), modifiedObjects.newFaces.end() ); + allTouchedFaces.insert( modifiedObjects.modifiedFaces.begin(), modifiedObjects.modifiedFaces.end() ); + faceManager.depopulateUpMaps( allTouchedFaces, elemManager ); + + nodeManager.enforceStateFieldConsistencyPostTopologyChange( modifiedObjects.modifiedNodes ); + edgeManager.enforceStateFieldConsistencyPostTopologyChange( modifiedObjects.modifiedEdges ); + faceManager.enforceStateFieldConsistencyPostTopologyChange( modifiedObjects.modifiedFaces ); + + +} + +} + + + +} /* namespace geos */ +#endif // PARALLEL_TOPOLOGY_CHANGE_METHOD==1 diff --git a/src/coreComponents/physicsSolvers/surfaceGeneration/SurfaceGenerator.cpp b/src/coreComponents/physicsSolvers/surfaceGeneration/SurfaceGenerator.cpp index 26089417c74..add1dc1f8e7 100644 --- a/src/coreComponents/physicsSolvers/surfaceGeneration/SurfaceGenerator.cpp +++ b/src/coreComponents/physicsSolvers/surfaceGeneration/SurfaceGenerator.cpp @@ -18,7 +18,6 @@ */ #include "SurfaceGenerator.hpp" -#include "ParallelTopologyChange.hpp" #include "mesh/mpiCommunications/CommunicationTools.hpp" #include "mesh/mpiCommunications/NeighborCommunicator.hpp" @@ -36,6 +35,7 @@ #include "physicsSolvers/fluidFlow/FlowSolverBaseFields.hpp" #include "kernels/surfaceGenerationKernels.hpp" +#include "ParallelTopologyChange.hpp" #include @@ -722,7 +722,7 @@ int SurfaceGenerator::separationDriver( DomainPartition & domain, elementManager.forElementSubRegions< FaceElementSubRegion >( [&]( FaceElementSubRegion & subRegion ) { FaceElementSubRegion::NodeMapType & nodeMap = subRegion.nodeList(); - ArrayOfArraysView< localIndex const > const faceMap = subRegion.faceList().toViewConst(); + arrayView2d< localIndex const > const faceMap = subRegion.faceList().toViewConst(); for( localIndex kfe=0; kfe const & faceToEdgeMap = faceManager.edgeList().toViewConst(); - arraySlice1d< localIndex const > const & nodeToRegionMap = nodeManager.elementRegionList()[nodeID]; - arraySlice1d< localIndex const > const & nodeToSubRegionMap = nodeManager.elementSubRegionList()[nodeID]; - arraySlice1d< localIndex const > const & nodeToElementMap = nodeManager.elementList()[nodeID]; + arraySlice1d< localIndex const > const nodeToRegionMap = nodeManager.elementRegionList()[nodeID]; + arraySlice1d< localIndex const > const nodeToSubRegionMap = nodeManager.elementSubRegionList()[nodeID]; + arraySlice1d< localIndex const > const nodeToElementMap = nodeManager.elementList()[nodeID]; // BACKWARDS COMPATIBILITY HACK! // @@ -1936,6 +1936,7 @@ void SurfaceGenerator::performFracture( const localIndex nodeID, this->m_originalFaceToEdges.toViewConst(), faceIndices ); m_faceElemsRupturedThisSolve.insert( newFaceElement ); + GEOS_LOG_LEVEL_INFO_BY_RANK( logInfo::SurfaceGenerator, GEOS_FMT ( "Created new FaceElement {} when creating face {} from {}", newFaceElement, newFaceIndex, faceIndex ) ); modifiedObjects.newElements[ {fractureElementRegion.getIndexInParent(), 0} ].insert( newFaceElement ); } } // if( faceManager.SplitObject( faceIndex, newFaceIndex ) ) diff --git a/src/coreComponents/physicsSolvers/wavePropagation/sem/acoustic/secondOrderEqn/isotropic/AcousticWaveEquationSEM.cpp b/src/coreComponents/physicsSolvers/wavePropagation/sem/acoustic/secondOrderEqn/isotropic/AcousticWaveEquationSEM.cpp index 059259cb12b..a3c8a6cc967 100644 --- a/src/coreComponents/physicsSolvers/wavePropagation/sem/acoustic/secondOrderEqn/isotropic/AcousticWaveEquationSEM.cpp +++ b/src/coreComponents/physicsSolvers/wavePropagation/sem/acoustic/secondOrderEqn/isotropic/AcousticWaveEquationSEM.cpp @@ -77,7 +77,7 @@ void AcousticWaveEquationSEM::registerDataOnMesh( Group & meshBodies ) nodeManager.registerField< acousticfields::Pressure_nm1, acousticfields::Pressure_n, acousticfields::Pressure_np1, - acousticfields::PressureDoubleDerivative, + acousticfields::PressureForward, acousticfields::ForcingRHS, acousticfields::AcousticMassVector, acousticfields::DampingVector, @@ -106,6 +106,7 @@ void AcousticWaveEquationSEM::registerDataOnMesh( Group & meshBodies ) subRegion.registerField< acousticfields::AcousticVelocity >( getName() ); subRegion.registerField< acousticfields::AcousticDensity >( getName() ); subRegion.registerField< acousticfields::PartialGradient >( getName() ); + subRegion.registerField< acousticfields::PartialGradient2 >( getName() ); } ); } ); @@ -298,6 +299,8 @@ void AcousticWaveEquationSEM::initializePostInitialConditionsPreSubGroups() arrayView1d< real32 > grad = elementSubRegion.getField< acousticfields::PartialGradient >(); grad.zero(); + arrayView1d< real32 > grad2 = elementSubRegion.getField< acousticfields::PartialGradient2 >(); + grad2.zero(); finiteElement::FiniteElementDispatchHandler< SEM_FE_TYPES >::dispatch3D( fe, [&] ( auto const finiteElement ) { @@ -881,43 +884,35 @@ real64 AcousticWaveEquationSEM::explicitStepForward( real64 const & time_n, { NodeManager & nodeManager = mesh.getNodeManager(); - arrayView1d< real32 > const p_nm1 = nodeManager.getField< acousticfields::Pressure_nm1 >(); arrayView1d< real32 > const p_n = nodeManager.getField< acousticfields::Pressure_n >(); - arrayView1d< real32 > const p_np1 = nodeManager.getField< acousticfields::Pressure_np1 >(); if( computeGradient && cycleNumber >= 0 ) { - arrayView1d< real32 > const p_dt2 = nodeManager.getField< acousticfields::PressureDoubleDerivative >(); - if( m_enableLifo ) { if( !m_lifo ) { int const rank = MpiWrapper::commRank( MPI_COMM_GEOS ); - std::string lifoPrefix = GEOS_FMT( "lifo/rank_{:05}/pdt2_shot{:06}", rank, m_shotIndex ); - m_lifo = std::make_unique< LifoStorage< real32, localIndex > >( lifoPrefix, p_dt2, m_lifoOnDevice, m_lifoOnHost, m_lifoSize ); + std::string lifoPrefix = GEOS_FMT( "lifo/rank_{:05}/p_forward_shot{:06}", rank, m_shotIndex ); + m_lifo = std::make_unique< LifoStorage< real32, localIndex > >( lifoPrefix, p_n, m_lifoOnDevice, m_lifoOnHost, m_lifoSize ); } m_lifo->pushWait(); } - forAll< EXEC_POLICY >( nodeManager.size(), [=] GEOS_HOST_DEVICE ( localIndex const nodeIdx ) - { - p_dt2[nodeIdx] = (p_np1[nodeIdx] - 2*p_n[nodeIdx] + p_nm1[nodeIdx]) / pow( dt, 2 ); - } ); if( m_enableLifo ) { // Need to tell LvArray data is on GPU to avoir HtoD copy - p_dt2.move( LvArray::MemorySpace::cuda, false ); - m_lifo->pushAsync( p_dt2 ); + p_n.move( LvArray::MemorySpace::cuda, false ); + m_lifo->pushAsync( p_n ); } else { GEOS_MARK_SCOPE ( DirectWrite ); - p_dt2.move( LvArray::MemorySpace::host, false ); + p_n.move( LvArray::MemorySpace::host, false ); int const rank = MpiWrapper::commRank( MPI_COMM_GEOS ); - std::string fileName = GEOS_FMT( "lifo/rank_{:05}/pressuredt2_{:06}_{:08}.dat", rank, m_shotIndex, cycleNumber ); + std::string fileName = GEOS_FMT( "lifo/rank_{:05}/pressure_forward_{:06}_{:08}.dat", rank, m_shotIndex, cycleNumber ); int lastDirSeparator = fileName.find_last_of( "/\\" ); std::string dirName = fileName.substr( 0, lastDirSeparator ); if( string::npos != (size_t)lastDirSeparator && !directoryExists( dirName )) @@ -929,7 +924,7 @@ real64 AcousticWaveEquationSEM::explicitStepForward( real64 const & time_n, GEOS_THROW_IF( !wf, getDataContext() << ": Could not open file "<< fileName << " for writing", InputError ); - wf.write( (char *)&p_dt2[0], p_dt2.size()*sizeof( real32 ) ); + wf.write( (char *)&p_n[0], p_n.size()*sizeof( real32 ) ); wf.close( ); GEOS_THROW_IF( !wf.good(), getDataContext() << ": An error occured while writing "<< fileName, @@ -959,12 +954,18 @@ real64 AcousticWaveEquationSEM::explicitStepBackward( real64 const & time_n, { NodeManager & nodeManager = mesh.getNodeManager(); - arrayView1d< real32 const > const mass = nodeManager.getField< acousticfields::AcousticMassVector >(); - arrayView1d< real32 > const p_nm1 = nodeManager.getField< acousticfields::Pressure_nm1 >(); arrayView1d< real32 > const p_n = nodeManager.getField< acousticfields::Pressure_n >(); arrayView1d< real32 > const p_np1 = nodeManager.getField< acousticfields::Pressure_np1 >(); + //// Compute q_dt2 and store it in p_nm1 + SortedArrayView< localIndex const > const solverTargetNodesSet = m_solverTargetNodesSet.toViewConst(); + forAll< EXEC_POLICY >( solverTargetNodesSet.size(), [=] GEOS_HOST_DEVICE ( localIndex const n ) + { + localIndex const a = solverTargetNodesSet[n]; + p_nm1[a] = (p_np1[a] - 2*p_n[a] + p_nm1[a]) / pow( dt, 2 ); + } ); + EventManager const & event = getGroupByPath< EventManager >( "/Problem/Events" ); real64 const & maxTime = event.getReference< real64 >( EventManager::viewKeyStruct::maxTimeString() ); int const maxCycle = int(round( maxTime / dt )); @@ -973,11 +974,11 @@ real64 AcousticWaveEquationSEM::explicitStepBackward( real64 const & time_n, { ElementRegionManager & elemManager = mesh.getElemManager(); - arrayView1d< real32 > const p_dt2 = nodeManager.getField< acousticfields::PressureDoubleDerivative >(); + arrayView1d< real32 > const p_forward = nodeManager.getField< acousticfields::PressureForward >(); if( m_enableLifo ) { - m_lifo->pop( p_dt2 ); + m_lifo->pop( p_forward ); if( m_lifo->empty() ) delete m_lifo.release(); } @@ -986,37 +987,60 @@ real64 AcousticWaveEquationSEM::explicitStepBackward( real64 const & time_n, GEOS_MARK_SCOPE ( DirectRead ); int const rank = MpiWrapper::commRank( MPI_COMM_GEOS ); - std::string fileName = GEOS_FMT( "lifo/rank_{:05}/pressuredt2_{:06}_{:08}.dat", rank, m_shotIndex, cycleNumber ); + std::string fileName = GEOS_FMT( "lifo/rank_{:05}/pressure_forward_{:06}_{:08}.dat", rank, m_shotIndex, cycleNumber ); std::ifstream wf( fileName, std::ios::in | std::ios::binary ); GEOS_THROW_IF( !wf, getDataContext() << ": Could not open file "<< fileName << " for reading", InputError ); - p_dt2.move( LvArray::MemorySpace::host, true ); - wf.read( (char *)&p_dt2[0], p_dt2.size()*sizeof( real32 ) ); + p_forward.move( LvArray::MemorySpace::host, true ); + wf.read( (char *)&p_forward[0], p_forward.size()*sizeof( real32 ) ); wf.close( ); remove( fileName.c_str() ); } elemManager.forElementSubRegions< CellElementSubRegion >( regionNames, [&]( localIndex const, CellElementSubRegion & elementSubRegion ) { - arrayView1d< real32 const > const velocity = elementSubRegion.getField< acousticfields::AcousticVelocity >(); + arrayView2d< wsCoordType const, nodes::REFERENCE_POSITION_USD > const nodeCoords = nodeManager.getField< fields::referencePosition32 >().toViewConst(); arrayView1d< real32 > grad = elementSubRegion.getField< acousticfields::PartialGradient >(); + arrayView1d< real32 > grad2 = elementSubRegion.getField< acousticfields::PartialGradient2 >(); arrayView2d< localIndex const, cells::NODE_MAP_USD > const & elemsToNodes = elementSubRegion.nodeList(); - constexpr localIndex numNodesPerElem = 8; arrayView1d< integer const > const elemGhostRank = elementSubRegion.ghostRank(); GEOS_MARK_SCOPE ( updatePartialGradient ); - forAll< EXEC_POLICY >( elementSubRegion.size(), [=] GEOS_HOST_DEVICE ( localIndex const eltIdx ) + + //COMPUTE GRADIENTS with respect to K=1/rho*c2 (grad) and b=1/rho (grad2) + finiteElement::FiniteElementBase const & + fe = elementSubRegion.getReference< finiteElement::FiniteElementBase >( getDiscretizationName() ); + + finiteElement::FiniteElementDispatchHandler< SEM_FE_TYPES >::dispatch3D( fe, [&] ( auto const finiteElement ) { - if( elemGhostRank[eltIdx]<0 ) - { - for( localIndex i = 0; i < numNodesPerElem; ++i ) - { - localIndex nodeIdx = elemsToNodes[eltIdx][i]; - grad[eltIdx] += (-2/velocity[eltIdx]) * mass[nodeIdx]/8.0 * (p_dt2[nodeIdx] * p_n[nodeIdx]); - } - } + using FE_TYPE = TYPEOFREF( finiteElement ); + + AcousticMatricesSEM::GradientKappaBuoyancy< FE_TYPE > kernelG( finiteElement ); + kernelG.template computeGradient< EXEC_POLICY, ATOMIC_POLICY >( elementSubRegion.size(), + nodeCoords, + elemsToNodes, + elemGhostRank, + p_nm1, + p_n, + p_forward, + grad, + grad2 ); + + } ); + + // // Change of variables to return grad with respect to c and rho + // arrayView1d< real32 const > const velocity = elementSubRegion.getField< acousticfields::AcousticVelocity >(); + // arrayView1d< real32 const > const density = elementSubRegion.getField< acousticfields::AcousticDensity >(); + // forAll< EXEC_POLICY >( elementSubRegion.size(), [=] GEOS_HOST_DEVICE ( localIndex const eltIdx ) + // { + // if( elemGhostRank[eltIdx]<0 ) + // { + // grad2[eltIdx] = -1/(pow(density[eltIdx]*velocity[eltIdx],2)) * grad[eltIdx] - 1/pow(density[eltIdx],2) * grad2[eltIdx]; + // grad[eltIdx]= -2/(density[eltIdx]*pow(velocity[eltIdx],3)) * grad[eltIdx]; + // } + // } ); } ); } diff --git a/src/coreComponents/physicsSolvers/wavePropagation/sem/acoustic/shared/AcousticFields.hpp b/src/coreComponents/physicsSolvers/wavePropagation/sem/acoustic/shared/AcousticFields.hpp index dd067a11a1f..de61245599c 100644 --- a/src/coreComponents/physicsSolvers/wavePropagation/sem/acoustic/shared/AcousticFields.hpp +++ b/src/coreComponents/physicsSolvers/wavePropagation/sem/acoustic/shared/AcousticFields.hpp @@ -59,13 +59,13 @@ DECLARE_FIELD( Pressure_np1, WRITE_AND_READ, "Scalar pressure at time n+1." ); -DECLARE_FIELD( PressureDoubleDerivative, - "pressureDoubleDerivative", +DECLARE_FIELD( PressureForward, + "pressureForward", array1d< real32 >, 0, NOPLOT, WRITE_AND_READ, - "Double derivative of the pressure for each node to compute the gradient" ); + "Pressure field from forward pass on each node to compute the gradient" ); DECLARE_FIELD( Velocity_x, "velocity_x", @@ -99,6 +99,14 @@ DECLARE_FIELD( PartialGradient, WRITE_AND_READ, "Partiel gradient computed during backward propagation" ); +DECLARE_FIELD( PartialGradient2, + "partialGradient2", + array1d< real32 >, + 0, + NOPLOT, + WRITE_AND_READ, + "Partial gradient for density/velocity computed during backward propagation" ); + DECLARE_FIELD( ForcingRHS, "rhs", array1d< real32 >, diff --git a/src/coreComponents/physicsSolvers/wavePropagation/sem/acoustic/shared/AcousticMatricesSEMKernel.hpp b/src/coreComponents/physicsSolvers/wavePropagation/sem/acoustic/shared/AcousticMatricesSEMKernel.hpp index b311d04d45d..9d3d14fa31c 100644 --- a/src/coreComponents/physicsSolvers/wavePropagation/sem/acoustic/shared/AcousticMatricesSEMKernel.hpp +++ b/src/coreComponents/physicsSolvers/wavePropagation/sem/acoustic/shared/AcousticMatricesSEMKernel.hpp @@ -152,7 +152,70 @@ struct AcousticMatricesSEM }; + template< typename FE_TYPE > + struct GradientKappaBuoyancy + { + + GradientKappaBuoyancy( FE_TYPE const & finiteElement ) + : m_finiteElement( finiteElement ) + {} + + /** + * @brief Launch the computation of the 2 gradients relative to the coeff of the wave equation K=1/rho*c2 and b=1/rho + * @tparam EXEC_POLICY the execution policy + * @tparam ATOMIC_POLICY the atomic policy + * @param[in] size the number of cells in the subRegion + * @param[in] nodeCoords coordinates of the nodes + * @param[in] elemsToNodes map from element to nodes + * @param[in] q_dt2 second order derivative in time of backward + * @param[in] q_n current time step of backward + * @param[in] p_n current time step of forward + * @param[out] grad first part of gradient vector with respect to K=1/rho*c2 + * @param[out] grad2 second part of gradient vector with respact to b=1/rho + */ + template< typename EXEC_POLICY, typename ATOMIC_POLICY > + void + computeGradient( localIndex const size, + arrayView2d< WaveSolverBase::wsCoordType const, nodes::REFERENCE_POSITION_USD > const nodeCoords, + arrayView2d< localIndex const, cells::NODE_MAP_USD > const elemsToNodes, + arrayView1d< integer const > const elemGhostRank, + arrayView1d< real32 const > const q_dt2, + arrayView1d< real32 const > const q_n, + arrayView1d< real32 const > const p_n, + arrayView1d< real32 > const grad, + arrayView1d< real32 > const grad2 ) + { + forAll< EXEC_POLICY >( size, [=] GEOS_HOST_DEVICE ( localIndex const e ) + { + if( elemGhostRank[e]<0 ) + { + // only the eight corners of the mesh cell are needed to compute the Jacobian + real64 xLocal[ 8 ][ 3 ]; + for( localIndex a = 0; a < 8; ++a ) + { + localIndex const nodeIndex = elemsToNodes( e, FE_TYPE::meshIndexToLinearIndex3D( a ) ); + for( localIndex i = 0; i < 3; ++i ) + { + xLocal[a][i] = nodeCoords( nodeIndex, i ); + } + } + constexpr localIndex numQuadraturePointsPerElem = FE_TYPE::numQuadraturePoints; + for( localIndex q = 0; q < numQuadraturePointsPerElem; ++q ) + { + localIndex nodeIdx = elemsToNodes( e, q ); + grad[e] += q_dt2[nodeIdx] * p_n[nodeIdx] * m_finiteElement.computeMassTerm( q, xLocal ); + m_finiteElement.template computeStiffnessTerm( q, xLocal, [&] ( const int i, const int j, const real64 val ) + { + grad2[e] += val* q_n[elemsToNodes( e, j )] * p_n[elemsToNodes( e, i )]; + } ); + } + } + } ); // end loop over element + } + /// The finite element space/discretization object for the element type in the subRegion + FE_TYPE const & m_finiteElement; + }; }; diff --git a/src/coreComponents/physicsSolvers/wavePropagation/sem/elastic/secondOrderEqn/isotropic/ElasticWaveEquationSEM.cpp b/src/coreComponents/physicsSolvers/wavePropagation/sem/elastic/secondOrderEqn/isotropic/ElasticWaveEquationSEM.cpp index 46868959436..361f927d5d5 100644 --- a/src/coreComponents/physicsSolvers/wavePropagation/sem/elastic/secondOrderEqn/isotropic/ElasticWaveEquationSEM.cpp +++ b/src/coreComponents/physicsSolvers/wavePropagation/sem/elastic/secondOrderEqn/isotropic/ElasticWaveEquationSEM.cpp @@ -507,7 +507,7 @@ real64 ElasticWaveEquationSEM::computeTimeStep( real64 & dtOut ) { ux_n[a] = (real64)rand()/(real64) RAND_MAX; uy_n[a] = (real64)rand()/(real64) RAND_MAX; - uy_n[a] = (real64)rand()/(real64) RAND_MAX; + uz_n[a] = (real64)rand()/(real64) RAND_MAX; } //Step 1: Normalize randomized pressure @@ -565,20 +565,20 @@ real64 ElasticWaveEquationSEM::computeTimeStep( real64 & dtOut ) lambdaOld = lambdaNew; //Compute lambdaNew using two dotProducts - dotProductUzUzaux = 0.0; dotProductUxUxaux = 0.0; dotProductUyUyaux = 0.0; + dotProductUzUzaux = 0.0; normUx= 0.0; normUy= 0.0; normUz= 0.0; WaveSolverUtils::dotProduct( sizeNode, ux_n, stiffnessVectorx, dotProductUxUxaux ); WaveSolverUtils::dotProduct( sizeNode, uy_n, stiffnessVectory, dotProductUyUyaux ); - WaveSolverUtils::dotProduct( sizeNode, ux_n, stiffnessVectorz, dotProductUzUzaux ); + WaveSolverUtils::dotProduct( sizeNode, uz_n, stiffnessVectorz, dotProductUzUzaux ); dotProductUtotUtotAux = dotProductUxUxaux+dotProductUyUyaux+dotProductUzUzaux; WaveSolverUtils::dotProduct( sizeNode, ux_n, ux_n, normUx ); - WaveSolverUtils::dotProduct( sizeNode, uy_n, ux_n, normUy ); - WaveSolverUtils::dotProduct( sizeNode, uz_n, ux_n, normUz ); + WaveSolverUtils::dotProduct( sizeNode, uy_n, uy_n, normUy ); + WaveSolverUtils::dotProduct( sizeNode, uz_n, uz_n, normUz ); normUtot = normUx+normUy+normUz; lambdaNew = dotProductUtotUtotAux/normUtot; diff --git a/src/coreComponents/physicsSolvers/wavePropagation/shared/WaveSolverBase.cpp b/src/coreComponents/physicsSolvers/wavePropagation/shared/WaveSolverBase.cpp index c5baf9c7983..f1ac14c24ea 100644 --- a/src/coreComponents/physicsSolvers/wavePropagation/shared/WaveSolverBase.cpp +++ b/src/coreComponents/physicsSolvers/wavePropagation/shared/WaveSolverBase.cpp @@ -484,9 +484,19 @@ void WaveSolverBase::computeTargetNodeSet( arrayView2d< localIndex const, cells: void WaveSolverBase::incrementIndexSeismoTrace( real64 const time_n ) { - while( (m_dtSeismoTrace * m_indexSeismoTrace) <= (time_n + epsilonLoc) && m_indexSeismoTrace < m_nsamplesSeismoTrace ) + if( m_forward ) + { + while( (m_dtSeismoTrace * m_indexSeismoTrace) <= (time_n + epsilonLoc) && m_indexSeismoTrace < m_nsamplesSeismoTrace ) + { + m_indexSeismoTrace++; + } + } + else { - m_indexSeismoTrace++; + while( (m_dtSeismoTrace * m_indexSeismoTrace) >= (time_n - epsilonLoc) && m_indexSeismoTrace > 0 ) + { + m_indexSeismoTrace--; + } } } @@ -515,12 +525,14 @@ void WaveSolverBase::computeAllSeismoTraces( real64 const time_n, if( m_nsamplesSeismoTrace == 0 ) return; integer const dir = m_forward ? +1 : -1; - for( localIndex iSeismo = m_indexSeismoTrace; iSeismo < m_nsamplesSeismoTrace; iSeismo++ ) + integer const beginIndex = m_forward ? m_indexSeismoTrace : m_nsamplesSeismoTrace-m_indexSeismoTrace; + for( localIndex iSeismo = beginIndex; iSeismo < m_nsamplesSeismoTrace; iSeismo++ ) { - real64 const timeSeismo = m_dtSeismoTrace * (m_forward ? iSeismo : (m_nsamplesSeismoTrace - 1) - iSeismo); - if( dir * timeSeismo > dir * (time_n + epsilonLoc) ) + localIndex seismoIndex = m_forward ? iSeismo : m_nsamplesSeismoTrace-iSeismo; + real64 const timeSeismo = m_dtSeismoTrace * seismoIndex; + if( dir * timeSeismo > dir * time_n + epsilonLoc ) break; - WaveSolverUtils::computeSeismoTrace( time_n, dir * dt, timeSeismo, iSeismo, m_receiverNodeIds, + WaveSolverUtils::computeSeismoTrace( time_n, dir * dt, timeSeismo, seismoIndex, m_receiverNodeIds, m_receiverConstants, m_receiverIsLocal, var_np1, var_n, varAtReceivers, coeffs, add ); } } @@ -535,12 +547,14 @@ void WaveSolverBase::compute2dVariableAllSeismoTraces( localIndex const regionIn if( m_nsamplesSeismoTrace == 0 ) return; integer const dir = m_forward ? +1 : -1; - for( localIndex iSeismo = m_indexSeismoTrace; iSeismo < m_nsamplesSeismoTrace; iSeismo++ ) + integer const beginIndex = m_forward ? m_indexSeismoTrace : m_nsamplesSeismoTrace-m_indexSeismoTrace; + for( localIndex iSeismo = beginIndex; iSeismo < m_nsamplesSeismoTrace; iSeismo++ ) { - real64 const timeSeismo = m_dtSeismoTrace * (m_forward ? iSeismo : (m_nsamplesSeismoTrace - 1) - iSeismo); - if( dir * timeSeismo > dir * (time_n + epsilonLoc)) + localIndex seismoIndex = m_forward ? iSeismo : m_nsamplesSeismoTrace-iSeismo; + real64 const timeSeismo = m_dtSeismoTrace * seismoIndex; + if( dir * timeSeismo > dir * time_n + epsilonLoc ) break; - WaveSolverUtils::compute2dVariableSeismoTrace( time_n, dir * dt, regionIndex, m_receiverRegion, timeSeismo, iSeismo, m_receiverElem, + WaveSolverUtils::compute2dVariableSeismoTrace( time_n, dir * dt, regionIndex, m_receiverRegion, timeSeismo, seismoIndex, m_receiverElem, m_receiverConstants, m_receiverIsLocal, var_np1, var_n, varAtReceivers ); } } diff --git a/src/coreComponents/schema/CMakeLists.txt b/src/coreComponents/schema/CMakeLists.txt index c62fba76b07..344f72e6234 100644 --- a/src/coreComponents/schema/CMakeLists.txt +++ b/src/coreComponents/schema/CMakeLists.txt @@ -1,4 +1,21 @@ +# SPDX-License-Identifier: LGPL-2.1-only +# +# Copyright (c) 2016-2024 Lawrence Livermore National Security LLC +# Copyright (c) 2018-2024 Total, S.A +# Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University +# Copyright (c) 2023-2024 Chevron +# Copyright (c) 2019- GEOS/GEOSX Contributors +# All rights reserved +# +# See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. +# +#-------------------------------------------------------------------------------------------------- + +#[[ +Package: schema +Contains XML schema definition and functions to generate it. +#]] # # Specify all headers diff --git a/src/coreComponents/schema/schema.xsd b/src/coreComponents/schema/schema.xsd index 3b44be8867d..37187d91c06 100644 --- a/src/coreComponents/schema/schema.xsd +++ b/src/coreComponents/schema/schema.xsd @@ -185,6 +185,12 @@ + + + + + + @@ -393,6 +399,10 @@ + + + + @@ -461,6 +471,10 @@ + + + + @@ -609,6 +623,10 @@ + + + + @@ -965,7 +983,7 @@ - + @@ -1075,6 +1093,25 @@ + + + + + + + + + + + + + + + + + + + @@ -1494,6 +1531,10 @@ stress - traction is applied to the faces as specified by the inner product of i + + + + @@ -1504,6 +1545,10 @@ stress - traction is applied to the faces as specified by the inner product of i + + + + @@ -1515,6 +1560,10 @@ stress - traction is applied to the faces as specified by the inner product of i + + + + @@ -1530,6 +1579,7 @@ stress - traction is applied to the faces as specified by the inner product of i + @@ -1601,6 +1651,14 @@ stress - traction is applied to the faces as specified by the inner product of i + + + + + + + + @@ -1630,6 +1688,7 @@ stress - traction is applied to the faces as specified by the inner product of i + @@ -1698,6 +1757,7 @@ stress - traction is applied to the faces as specified by the inner product of i + @@ -1705,6 +1765,8 @@ stress - traction is applied to the faces as specified by the inner product of i + + @@ -1712,7 +1774,7 @@ stress - traction is applied to the faces as specified by the inner product of i - + @@ -1796,7 +1858,7 @@ stress - traction is applied to the faces as specified by the inner product of i - + @@ -1867,7 +1929,7 @@ the relative residual norm satisfies: - + @@ -2051,6 +2113,11 @@ the relative residual norm satisfies: + + @@ -2067,6 +2134,11 @@ the relative residual norm satisfies: + + @@ -2081,6 +2153,11 @@ the relative residual norm satisfies: + + @@ -2089,6 +2166,11 @@ the relative residual norm satisfies: + + @@ -2099,6 +2181,11 @@ the relative residual norm satisfies: + + @@ -2137,7 +2224,7 @@ the relative residual norm satisfies: - + @@ -2145,6 +2232,8 @@ the relative residual norm satisfies: + + @@ -2202,6 +2291,7 @@ the relative residual norm satisfies: + @@ -2224,6 +2314,7 @@ the relative residual norm satisfies: + @@ -2325,12 +2416,16 @@ Level 0 outputs no specific information for this solver. Higher levels require m + + + + @@ -2406,12 +2501,16 @@ Level 0 outputs no specific information for this solver. Higher levels require m + + + + @@ -2477,12 +2576,16 @@ Level 0 outputs no specific information for this solver. Higher levels require m + + + + @@ -2574,6 +2677,8 @@ Level 0 outputs no specific information for this solver. Higher levels require m + + @@ -2661,6 +2766,8 @@ Level 0 outputs no specific information for this solver. Higher levels require m + + @@ -2934,12 +3041,16 @@ Level 0 outputs no specific information for this solver. Higher levels require m + + + + @@ -3009,12 +3120,16 @@ Level 0 outputs no specific information for this solver. Higher levels require m + + + + @@ -3130,7 +3245,7 @@ Level 0 outputs no specific information for this solver. Higher levels require m - + @@ -3153,7 +3268,7 @@ Local- Add jump stabilization on interior of macro elements--> - + @@ -3427,12 +3542,60 @@ Level 0 outputs no specific information for this solver. Higher levels require m + + - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - @@ -4212,6 +4375,58 @@ Level 0 outputs no specific information for this solver. Higher levels require m + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + @@ -4784,6 +4999,7 @@ Level 0 outputs no specific information for this solver. Higher levels require m + @@ -5122,6 +5338,55 @@ The expected format is "{ waterMax, oilMax }", in that order--> + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + @@ -6132,6 +6397,16 @@ If you want to do a three-phase simulation, please use instead wettingIntermedia + + + + + + + + + + diff --git a/src/coreComponents/schema/schema.xsd.other b/src/coreComponents/schema/schema.xsd.other index 1e47d69b920..df77d61e607 100644 --- a/src/coreComponents/schema/schema.xsd.other +++ b/src/coreComponents/schema/schema.xsd.other @@ -173,6 +173,7 @@ + @@ -279,6 +280,16 @@ + + + + + + + + + + @@ -380,6 +391,7 @@ + @@ -390,6 +402,7 @@ + @@ -398,6 +411,7 @@ + @@ -418,6 +432,7 @@ + @@ -471,7 +486,7 @@ - + @@ -523,6 +538,7 @@ + @@ -540,6 +556,7 @@ + @@ -555,7 +572,7 @@ - + @@ -592,7 +609,7 @@ - + @@ -615,8 +632,8 @@ - - + + @@ -643,7 +660,7 @@ - + @@ -662,8 +679,8 @@ - - + + @@ -684,7 +701,7 @@ - + @@ -703,8 +720,8 @@ - - + + @@ -717,7 +734,7 @@ - + @@ -728,7 +745,7 @@ - + @@ -741,7 +758,7 @@ - + @@ -754,7 +771,7 @@ - + @@ -770,7 +787,7 @@ - + @@ -804,7 +821,7 @@ - + @@ -837,8 +854,8 @@ - - + + @@ -867,7 +884,7 @@ - + @@ -884,8 +901,8 @@ - - + + @@ -898,7 +915,7 @@ - + @@ -911,7 +928,7 @@ - + @@ -924,7 +941,7 @@ - + @@ -937,7 +954,7 @@ - + @@ -950,7 +967,7 @@ - + @@ -965,7 +982,7 @@ - + @@ -976,7 +993,7 @@ - + @@ -989,7 +1006,7 @@ - + @@ -1000,7 +1017,7 @@ - + @@ -1008,8 +1025,17 @@ - - + + + + + + + + + + + @@ -1024,7 +1050,7 @@ - + @@ -1037,7 +1063,7 @@ - + @@ -1048,7 +1074,7 @@ - + @@ -1059,7 +1085,7 @@ - + @@ -1072,7 +1098,7 @@ - + @@ -1087,7 +1113,7 @@ - + @@ -1102,7 +1128,7 @@ - + @@ -1115,7 +1141,7 @@ - + @@ -1130,7 +1156,7 @@ - + @@ -1141,7 +1167,7 @@ - + @@ -1154,7 +1180,7 @@ - + @@ -1167,7 +1193,7 @@ - + @@ -1182,7 +1208,7 @@ - + @@ -1198,7 +1224,7 @@ - + @@ -1213,7 +1239,7 @@ - + @@ -1230,7 +1256,7 @@ - + @@ -1247,7 +1273,24 @@ - + + + + + + + + + + + + + + + + + + @@ -1262,7 +1305,7 @@ - + @@ -1275,7 +1318,7 @@ - + @@ -1314,7 +1357,7 @@ - + @@ -1343,7 +1386,7 @@ - + @@ -1436,7 +1479,7 @@ - + @@ -1455,6 +1498,7 @@ + @@ -1933,6 +1977,56 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + @@ -1972,6 +2066,8 @@ + + @@ -2020,6 +2116,8 @@ + + @@ -2587,7 +2685,20 @@ - + + + + + + + + + + + + + + @@ -2992,7 +3103,7 @@ - + @@ -3020,7 +3131,7 @@ - + @@ -3039,11 +3150,11 @@ - + - + @@ -3053,7 +3164,7 @@ - + @@ -3063,11 +3174,11 @@ - + - + @@ -3077,7 +3188,7 @@ - + @@ -3087,7 +3198,7 @@ - + @@ -3097,7 +3208,7 @@ - + @@ -3121,7 +3232,7 @@ - + @@ -3139,7 +3250,7 @@ - + @@ -3151,7 +3262,7 @@ - + @@ -3163,7 +3274,7 @@ - + @@ -3171,11 +3282,11 @@ - + - + @@ -3198,7 +3309,7 @@ - + @@ -3224,7 +3335,7 @@ - + @@ -3245,7 +3356,7 @@ - + @@ -3275,7 +3386,7 @@ - + @@ -3289,7 +3400,7 @@ - + @@ -3316,7 +3427,7 @@ - + @@ -3355,7 +3466,7 @@ - + diff --git a/src/coreComponents/unitTests/CMakeLists.txt b/src/coreComponents/unitTests/CMakeLists.txt index e9072bbbc1e..e270b21da1c 100644 --- a/src/coreComponents/unitTests/CMakeLists.txt +++ b/src/coreComponents/unitTests/CMakeLists.txt @@ -1,3 +1,23 @@ +# SPDX-License-Identifier: LGPL-2.1-only +# +# Copyright (c) 2016-2024 Lawrence Livermore National Security LLC +# Copyright (c) 2018-2024 Total, S.A +# Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University +# Copyright (c) 2023-2024 Chevron +# Copyright (c) 2019- GEOS/GEOSX Contributors +# All rights reserved +# +# See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. +# +#-------------------------------------------------------------------------------------------------- + +#[[ +Package: mainInterface + +Contains high-level unit tests that depends typically depends on mainInterface components like the +ProblemManager. +#]] + add_subdirectory( toolchain ) add_subdirectory( testingUtilities ) add_subdirectory( xmlTests ) diff --git a/src/coreComponents/unitTests/constitutiveTests/CMakeLists.txt b/src/coreComponents/unitTests/constitutiveTests/CMakeLists.txt index 523c6c89500..f59c739a956 100644 --- a/src/coreComponents/unitTests/constitutiveTests/CMakeLists.txt +++ b/src/coreComponents/unitTests/constitutiveTests/CMakeLists.txt @@ -28,6 +28,7 @@ set( gtest_pvt_xmls testPVT_CO2Brine.xml testPVT_CO2BrineTables.xml testPVT_PhaseComposition.xml + testPVT_ThreePhaseCompositional.xml ) set( gtest_reactivefluid_xmls diff --git a/src/coreComponents/unitTests/constitutiveTests/testPVT_ThreePhaseCompositional.xml b/src/coreComponents/unitTests/constitutiveTests/testPVT_ThreePhaseCompositional.xml new file mode 100644 index 00000000000..79c4892078e --- /dev/null +++ b/src/coreComponents/unitTests/constitutiveTests/testPVT_ThreePhaseCompositional.xml @@ -0,0 +1,83 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/src/coreComponents/unitTests/constitutiveTests/testPVT_ThreePhaseCompositional_blackOil.txt b/src/coreComponents/unitTests/constitutiveTests/testPVT_ThreePhaseCompositional_blackOil.txt new file mode 100644 index 00000000000..53e20dce320 --- /dev/null +++ b/src/coreComponents/unitTests/constitutiveTests/testPVT_ThreePhaseCompositional_blackOil.txt @@ -0,0 +1,113 @@ +# column 1 = time +# column 2 = pressure +# column 3 = temperature +# column 4 = density +# column 5 = total compressibility +# columns 6-8 = phase fractions +# columns 9-11 = phase densities +# columns 12-14 = phase mass densities +# columns 15-17 = phase viscosities +# columns 18-20 = oil phase fractions [C1, C7+, H2O] +# columns 21-23 = gas phase fractions [C1, C7+, H2O] +# columns 24-26 = water phase fractions [C1, C7+, H2O] +0.0000e+00 3.5000e+07 5.5315e+02 6.1560e+03 6.0169e-09 8.8729e-01 0.0000e+00 1.1271e-01 5.5295e+03 5.5295e+03 5.6953e+04 5.2265e+02 5.2265e+02 1.0257e+03 1.0240e-04 1.0240e-04 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +2.0000e-02 3.4000e+07 5.5315e+02 6.1183e+03 6.2707e-09 8.8729e-01 0.0000e+00 1.1271e-01 5.4953e+03 5.4953e+03 5.6930e+04 5.1941e+02 5.1941e+02 1.0253e+03 1.0027e-04 1.0027e-04 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +4.0000e-02 3.3000e+07 5.5315e+02 6.0792e+03 6.5439e-09 8.8729e-01 0.0000e+00 1.1271e-01 5.4598e+03 5.4598e+03 5.6906e+04 5.1606e+02 5.1606e+02 1.0249e+03 9.8135e-05 9.8135e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +6.0000e-02 3.2000e+07 5.5315e+02 6.0387e+03 6.8385e-09 8.8729e-01 0.0000e+00 1.1271e-01 5.4230e+03 5.4230e+03 5.6882e+04 5.1258e+02 5.1258e+02 1.0245e+03 9.6007e-05 9.6007e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +8.0000e-02 3.1000e+07 5.5315e+02 5.9966e+03 7.1573e-09 8.8729e-01 0.0000e+00 1.1271e-01 5.3847e+03 5.3847e+03 5.6859e+04 5.0896e+02 5.0896e+02 1.0240e+03 9.3883e-05 9.3883e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.0000e-01 3.0000e+07 5.5315e+02 5.9528e+03 7.5032e-09 8.8729e-01 0.0000e+00 1.1271e-01 5.3450e+03 5.3450e+03 5.6835e+04 5.0521e+02 5.0521e+02 1.0236e+03 9.1761e-05 9.1761e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.2000e-01 2.9000e+07 5.5315e+02 5.9072e+03 7.8796e-09 8.8729e-01 0.0000e+00 1.1271e-01 5.3036e+03 5.3036e+03 5.6812e+04 5.0129e+02 5.0129e+02 1.0232e+03 8.9642e-05 8.9642e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.4000e-01 2.8000e+07 5.5315e+02 5.8597e+03 8.2906e-09 8.8729e-01 0.0000e+00 1.1271e-01 5.2604e+03 5.2604e+03 5.6788e+04 4.9721e+02 4.9721e+02 1.0228e+03 8.7525e-05 8.7525e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.6000e-01 2.7000e+07 5.5315e+02 5.8100e+03 8.7412e-09 8.8729e-01 0.0000e+00 1.1271e-01 5.2153e+03 5.2153e+03 5.6765e+04 4.9295e+02 4.9295e+02 1.0223e+03 8.5409e-05 8.5409e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.8000e-01 2.6000e+07 5.5315e+02 5.7580e+03 9.2370e-09 8.8729e-01 0.0000e+00 1.1271e-01 5.1682e+03 5.1682e+03 5.6741e+04 4.8849e+02 4.8849e+02 1.0219e+03 8.3293e-05 8.3293e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +2.0000e-01 2.5000e+07 5.5315e+02 5.7036e+03 9.7851e-09 8.8729e-01 0.0000e+00 1.1271e-01 5.1187e+03 5.1187e+03 5.6717e+04 4.8382e+02 4.8382e+02 1.0215e+03 8.1175e-05 8.1175e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +2.2000e-01 2.4000e+07 5.5315e+02 5.6174e+03 1.7179e-08 8.8110e-01 6.1877e-03 1.1271e-01 5.0414e+03 4.9180e+03 5.6694e+04 4.8521e+02 1.3086e+02 1.0211e+03 8.1572e-05 2.1495e-05 3.2929e-04 4.8901e-01 5.1099e-01 0.0000e+00 9.3267e-01 6.7327e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +2.4000e-01 2.3000e+07 5.5315e+02 5.5204e+03 1.7647e-08 8.7325e-01 1.4036e-02 1.1271e-01 4.9562e+03 4.7398e+03 5.6670e+04 4.8864e+02 1.2549e+02 1.0206e+03 8.2813e-05 2.1134e-05 3.2929e-04 4.7405e-01 5.2595e-01 0.0000e+00 9.3352e-01 6.6484e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +2.6000e-01 2.2000e+07 5.5315e+02 5.4225e+03 1.8162e-08 8.6581e-01 2.1475e-02 1.1271e-01 4.8719e+03 4.5585e+03 5.6647e+04 4.9205e+02 1.2016e+02 1.0202e+03 8.4061e-05 2.0788e-05 3.2929e-04 4.5873e-01 5.4127e-01 0.0000e+00 9.3426e-01 6.5741e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +2.8000e-01 2.1000e+07 5.5315e+02 5.3234e+03 1.8732e-08 8.5874e-01 2.8551e-02 1.1271e-01 4.7885e+03 4.3743e+03 5.6623e+04 4.9543e+02 1.1486e+02 1.0198e+03 8.5316e-05 2.0456e-05 3.2929e-04 4.4303e-01 5.5697e-01 0.0000e+00 9.3490e-01 6.5103e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +3.0000e-01 2.0000e+07 5.5315e+02 5.2230e+03 1.9369e-08 8.5198e-01 3.5311e-02 1.1271e-01 4.7061e+03 4.1872e+03 5.6600e+04 4.9880e+02 1.0961e+02 1.0194e+03 8.6578e-05 2.0139e-05 3.2929e-04 4.2693e-01 5.7307e-01 0.0000e+00 9.3542e-01 6.4579e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +3.2000e-01 1.9000e+07 5.5315e+02 5.1210e+03 2.0089e-08 8.4549e-01 4.1796e-02 1.1271e-01 4.6246e+03 3.9973e+03 5.6576e+04 5.0214e+02 1.0438e+02 1.0189e+03 8.7844e-05 1.9835e-05 3.2929e-04 4.1042e-01 5.8958e-01 0.0000e+00 9.3582e-01 6.4178e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +3.4000e-01 1.8000e+07 5.5315e+02 5.0171e+03 2.0911e-08 8.3924e-01 4.8049e-02 1.1271e-01 4.5439e+03 3.8047e+03 5.6553e+04 5.0547e+02 9.9197e+01 1.0185e+03 8.9115e-05 1.9544e-05 3.2929e-04 3.9347e-01 6.0653e-01 0.0000e+00 9.3609e-01 6.3914e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +3.6000e-01 1.7000e+07 5.5315e+02 4.9110e+03 2.1861e-08 8.3318e-01 5.4111e-02 1.1271e-01 4.4641e+03 3.6096e+03 5.6530e+04 5.0878e+02 9.4045e+01 1.0181e+03 9.0389e-05 1.9265e-05 3.2929e-04 3.7608e-01 6.2392e-01 0.0000e+00 9.3620e-01 6.3802e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +3.8000e-01 1.6000e+07 5.5315e+02 4.8022e+03 2.2976e-08 8.2726e-01 6.0026e-02 1.1271e-01 4.3852e+03 3.4119e+03 5.6506e+04 5.1208e+02 8.8928e+01 1.0177e+03 9.1664e-05 1.8998e-05 3.2929e-04 3.5822e-01 6.4178e-01 0.0000e+00 9.3614e-01 6.3864e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +4.0000e-01 1.5000e+07 5.5315e+02 4.6901e+03 2.4303e-08 8.2145e-01 6.5840e-02 1.1271e-01 4.3071e+03 3.2118e+03 5.6483e+04 5.1536e+02 8.3846e+01 1.0173e+03 9.2939e-05 1.8741e-05 3.2929e-04 3.3987e-01 6.6013e-01 0.0000e+00 9.3587e-01 6.4127e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +4.2000e-01 1.4000e+07 5.5315e+02 4.5740e+03 2.5910e-08 8.1568e-01 7.1608e-02 1.1271e-01 4.2299e+03 3.0095e+03 5.6459e+04 5.1864e+02 7.8800e+01 1.0168e+03 9.4210e-05 1.8494e-05 3.2929e-04 3.2102e-01 6.7898e-01 0.0000e+00 9.3537e-01 6.4625e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +4.4000e-01 1.3000e+07 5.5315e+02 4.4527e+03 2.7893e-08 8.0990e-01 7.7391e-02 1.1271e-01 4.1535e+03 2.8050e+03 5.6436e+04 5.2190e+02 7.3789e+01 1.0164e+03 9.5475e-05 1.8255e-05 3.2929e-04 3.0163e-01 6.9837e-01 0.0000e+00 9.3459e-01 6.5406e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +4.6000e-01 1.2000e+07 5.5315e+02 4.3251e+03 3.0392e-08 8.0402e-01 8.3265e-02 1.1271e-01 4.0779e+03 2.5984e+03 5.6412e+04 5.2516e+02 6.8814e+01 1.0160e+03 9.6732e-05 1.8022e-05 3.2929e-04 2.8170e-01 7.1830e-01 0.0000e+00 9.3347e-01 6.6532e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +4.8000e-01 1.1000e+07 5.5315e+02 4.1891e+03 3.3618e-08 7.9796e-01 8.9328e-02 1.1271e-01 4.0031e+03 2.3899e+03 5.6389e+04 5.2841e+02 6.3876e+01 1.0156e+03 9.7975e-05 1.7795e-05 3.2929e-04 2.6120e-01 7.3880e-01 0.0000e+00 9.3191e-01 6.8088e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +5.0000e-01 1.0000e+07 5.5315e+02 4.0424e+03 3.7901e-08 7.9158e-01 9.5711e-02 1.1271e-01 3.9291e+03 2.1796e+03 5.6366e+04 5.3165e+02 5.8976e+01 1.0151e+03 9.9202e-05 1.7569e-05 3.2929e-04 2.4011e-01 7.5989e-01 0.0000e+00 9.2981e-01 7.0194e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +5.2000e-01 9.6040e+06 5.5315e+02 3.9806e+03 3.9996e-08 7.8892e-01 9.8365e-02 1.1271e-01 3.9000e+03 2.0959e+03 5.6356e+04 5.3293e+02 5.7046e+01 1.0150e+03 9.9682e-05 1.7479e-05 3.2929e-04 2.3159e-01 7.6841e-01 0.0000e+00 9.2878e-01 7.1215e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +5.4000e-01 9.2080e+06 5.5315e+02 3.9162e+03 4.2382e-08 7.8618e-01 1.0111e-01 1.1271e-01 3.8710e+03 2.0119e+03 5.6347e+04 5.3421e+02 5.5122e+01 1.0148e+03 1.0016e-04 1.7389e-05 3.2929e-04 2.2297e-01 7.7703e-01 0.0000e+00 9.2764e-01 7.2363e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +5.6000e-01 8.8120e+06 5.5315e+02 3.8490e+03 4.5115e-08 7.8332e-01 1.0397e-01 1.1271e-01 3.8422e+03 1.9277e+03 5.6338e+04 5.3549e+02 5.3205e+01 1.0146e+03 1.0063e-04 1.7299e-05 3.2929e-04 2.1425e-01 7.8575e-01 0.0000e+00 9.2635e-01 7.3653e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +5.8000e-01 8.4160e+06 5.5315e+02 3.7785e+03 4.8266e-08 7.8033e-01 1.0696e-01 1.1271e-01 3.8135e+03 1.8432e+03 5.6329e+04 5.3677e+02 5.1293e+01 1.0145e+03 1.0110e-04 1.7207e-05 3.2929e-04 2.0543e-01 7.9457e-01 0.0000e+00 9.2489e-01 7.5105e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +6.0000e-01 8.0200e+06 5.5315e+02 3.7044e+03 5.1924e-08 7.7719e-01 1.1010e-01 1.1271e-01 3.7849e+03 1.7585e+03 5.6319e+04 5.3805e+02 4.9388e+01 1.0143e+03 1.0156e-04 1.7113e-05 3.2929e-04 1.9650e-01 8.0350e-01 0.0000e+00 9.2326e-01 7.6743e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +6.2000e-01 7.6240e+06 5.5315e+02 3.6260e+03 5.6202e-08 7.7386e-01 1.1343e-01 1.1271e-01 3.7565e+03 1.6736e+03 5.6310e+04 5.3933e+02 4.7489e+01 1.0141e+03 1.0202e-04 1.7018e-05 3.2929e-04 1.8748e-01 8.1252e-01 0.0000e+00 9.2141e-01 7.8594e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +6.4000e-01 7.2280e+06 5.5315e+02 3.5428e+03 6.1247e-08 7.7031e-01 1.1698e-01 1.1271e-01 3.7281e+03 1.5884e+03 5.6301e+04 5.4061e+02 4.5597e+01 1.0140e+03 1.0247e-04 1.6920e-05 3.2929e-04 1.7834e-01 8.2166e-01 0.0000e+00 9.1931e-01 8.0692e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +6.6000e-01 6.8320e+06 5.5315e+02 3.4539e+03 6.7247e-08 7.6650e-01 1.2079e-01 1.1271e-01 3.6999e+03 1.5031e+03 5.6292e+04 5.4188e+02 4.3711e+01 1.0138e+03 1.0292e-04 1.6818e-05 3.2929e-04 1.6910e-01 8.3090e-01 0.0000e+00 9.1692e-01 8.3080e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +6.8000e-01 6.4360e+06 5.5315e+02 3.3585e+03 7.4453e-08 7.6236e-01 1.2493e-01 1.1271e-01 3.6718e+03 1.4176e+03 5.6282e+04 5.4316e+02 4.1832e+01 1.0136e+03 1.0335e-04 1.6713e-05 3.2929e-04 1.5975e-01 8.4025e-01 0.0000e+00 9.1419e-01 8.5810e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +7.0000e-01 6.0400e+06 5.5315e+02 3.2554e+03 8.3199e-08 7.5783e-01 1.2946e-01 1.1271e-01 3.6438e+03 1.3319e+03 5.6273e+04 5.4443e+02 3.9959e+01 1.0135e+03 1.0379e-04 1.6602e-05 3.2929e-04 1.5029e-01 8.4971e-01 0.0000e+00 9.1105e-01 8.8948e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +7.2000e-01 5.6440e+06 5.5315e+02 3.1435e+03 9.3938e-08 7.5281e-01 1.3448e-01 1.1271e-01 3.6160e+03 1.2460e+03 5.6264e+04 5.4570e+02 3.8093e+01 1.0133e+03 1.0421e-04 1.6485e-05 3.2929e-04 1.4071e-01 8.5929e-01 0.0000e+00 9.0742e-01 9.2579e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +7.4000e-01 5.2480e+06 5.5315e+02 3.0210e+03 1.0730e-07 7.4718e-01 1.4011e-01 1.1271e-01 3.5883e+03 1.1600e+03 5.6255e+04 5.4698e+02 3.6233e+01 1.0131e+03 1.0463e-04 1.6359e-05 3.2929e-04 1.3102e-01 8.6898e-01 0.0000e+00 9.0319e-01 9.6812e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +7.6000e-01 4.8520e+06 5.5315e+02 2.8861e+03 1.2415e-07 7.4077e-01 1.4652e-01 1.1271e-01 3.5607e+03 1.0738e+03 5.6245e+04 5.4825e+02 3.4381e+01 1.0130e+03 1.0503e-04 1.6224e-05 3.2929e-04 1.2122e-01 8.7878e-01 0.0000e+00 8.9821e-01 1.0179e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +7.8000e-01 4.4560e+06 5.5315e+02 2.7364e+03 1.4578e-07 7.3336e-01 1.5393e-01 1.1271e-01 3.5332e+03 9.8750e+02 5.6236e+04 5.4952e+02 3.2535e+01 1.0128e+03 1.0543e-04 1.6076e-05 3.2929e-04 1.1129e-01 8.8871e-01 0.0000e+00 8.9228e-01 1.0772e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +8.0000e-01 4.0600e+06 5.5315e+02 2.5691e+03 1.7403e-07 7.2461e-01 1.6268e-01 1.1271e-01 3.5058e+03 9.0104e+02 5.6227e+04 5.5079e+02 3.0696e+01 1.0126e+03 1.0582e-04 1.5911e-05 3.2929e-04 1.0125e-01 8.9875e-01 0.0000e+00 8.8514e-01 1.1486e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +8.2000e-01 3.6640e+06 5.5315e+02 2.3811e+03 2.1172e-07 7.1406e-01 1.7323e-01 1.1271e-01 3.4786e+03 8.1446e+02 5.6218e+04 5.5206e+02 2.8865e+01 1.0125e+03 1.0619e-04 1.5725e-05 3.2929e-04 9.1082e-02 9.0892e-01 0.0000e+00 8.7640e-01 1.2360e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +8.4000e-01 3.2680e+06 5.5315e+02 2.1686e+03 2.6326e-07 7.0095e-01 1.8634e-01 1.1271e-01 3.4515e+03 7.2776e+02 5.6208e+04 5.5333e+02 2.7040e+01 1.0123e+03 1.0656e-04 1.5512e-05 3.2929e-04 8.0792e-02 9.1921e-01 0.0000e+00 8.6548e-01 1.3452e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +8.6000e-01 2.8720e+06 5.5315e+02 1.9276e+03 3.3583e-07 6.8411e-01 2.0318e-01 1.1271e-01 3.4245e+03 6.4096e+02 5.6199e+04 5.5460e+02 2.5222e+01 1.0121e+03 1.0691e-04 1.5261e-05 3.2929e-04 7.0376e-02 9.2962e-01 0.0000e+00 8.5148e-01 1.4852e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +8.8000e-01 2.4760e+06 5.5315e+02 1.6549e+03 4.4172e-07 6.6146e-01 2.2583e-01 1.1271e-01 3.3976e+03 5.5407e+02 5.6190e+04 5.5587e+02 2.3412e+01 1.0120e+03 1.0725e-04 1.4958e-05 3.2929e-04 5.9832e-02 9.4017e-01 0.0000e+00 8.3298e-01 1.6702e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +9.0000e-01 2.0800e+06 5.5315e+02 1.3487e+03 6.0350e-07 6.2908e-01 2.5821e-01 1.1271e-01 3.3708e+03 4.6709e+02 5.6181e+04 5.5714e+02 2.1609e+01 1.0118e+03 1.0757e-04 1.4583e-05 3.2929e-04 4.9159e-02 9.5084e-01 0.0000e+00 8.0745e-01 1.9255e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +9.2000e-01 1.6840e+06 5.5315e+02 1.0126e+03 8.6704e-07 5.7850e-01 3.0879e-01 1.1271e-01 3.3442e+03 3.8004e+02 5.6172e+04 5.5841e+02 1.9813e+01 1.0116e+03 1.0788e-04 1.4097e-05 3.2929e-04 3.8354e-02 9.6165e-01 0.0000e+00 7.7004e-01 2.2996e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +9.4000e-01 1.2880e+06 5.5315e+02 6.6052e+02 1.3428e-06 4.8744e-01 3.9985e-01 1.1271e-01 3.3176e+03 2.9292e+02 5.6162e+04 5.5968e+02 1.8025e+01 1.0115e+03 1.0818e-04 1.3437e-05 3.2929e-04 2.7415e-02 9.7259e-01 0.0000e+00 7.1015e-01 2.8985e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +9.6000e-01 8.9200e+05 5.5315e+02 3.2534e+02 2.3985e-06 2.7229e-01 6.1500e-01 1.1271e-01 3.2912e+03 2.0575e+02 5.6153e+04 5.6094e+02 1.6244e+01 1.0113e+03 1.0845e-04 1.2477e-05 3.2929e-04 1.6340e-02 9.8366e-01 0.0000e+00 5.9920e-01 4.0080e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +9.8000e-01 4.9600e+05 5.5315e+02 1.2779e+02 2.1211e-06 8.8729e-01 0.0000e+00 1.1271e-01 1.1342e+02 1.1342e+02 5.6144e+04 1.0720e+01 1.0720e+01 1.0112e+03 1.1716e-05 1.1716e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.0000e+00 1.0000e+05 5.5315e+02 2.4746e+01 1.0099e-05 8.8729e-01 0.0000e+00 1.1271e-01 2.1958e+01 2.1958e+01 5.6135e+04 2.0755e+00 2.0755e+00 1.0110e+03 1.1560e-05 1.1560e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.0200e+00 4.9600e+05 5.8315e+02 1.2012e+02 2.1009e-06 8.8729e-01 0.0000e+00 1.1271e-01 1.0660e+02 1.0660e+02 5.6144e+04 1.0076e+01 1.0076e+01 1.0112e+03 1.2221e-05 1.2221e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.0400e+00 8.9200e+05 5.8315e+02 2.2354e+02 1.2093e-06 8.8729e-01 0.0000e+00 1.1271e-01 1.9843e+02 1.9843e+02 5.6153e+04 1.8756e+01 1.8756e+01 1.0113e+03 1.2405e-05 1.2405e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.0600e+00 1.2880e+06 5.8315e+02 3.4774e+02 1.7667e-06 4.3627e-02 8.4366e-01 1.1271e-01 3.0621e+03 2.9504e+02 5.6162e+04 5.1804e+02 2.7265e+01 1.0115e+03 8.2939e-05 1.2695e-05 3.2929e-04 2.4366e-02 9.7563e-01 0.0000e+00 5.1344e-01 4.8656e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.0800e+00 1.6840e+06 5.8315e+02 6.0704e+02 1.1265e-06 3.0186e-01 5.8543e-01 1.1271e-01 3.0890e+03 3.7828e+02 5.6172e+04 5.1649e+02 2.9209e+01 1.0116e+03 8.2756e-05 1.3409e-05 3.2929e-04 3.6932e-02 9.6307e-01 0.0000e+00 6.1026e-01 3.8974e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.1000e+00 2.0800e+06 5.8315e+02 8.8181e+02 7.8965e-07 4.2838e-01 4.5891e-01 1.1271e-01 3.1161e+03 4.6143e+02 5.6181e+04 5.1495e+02 3.1163e+01 1.0118e+03 8.2556e-05 1.3965e-05 3.2929e-04 4.9339e-02 9.5066e-01 0.0000e+00 6.7192e-01 3.2808e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.1200e+00 2.4760e+06 5.8315e+02 1.1539e+03 5.8364e-07 5.0379e-01 3.8350e-01 1.1271e-01 3.1432e+03 5.4447e+02 5.6190e+04 5.1339e+02 3.3128e+01 1.0120e+03 8.2339e-05 1.4414e-05 3.2929e-04 6.1589e-02 9.3841e-01 0.0000e+00 7.1454e-01 2.8546e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.1400e+00 2.8720e+06 5.8315e+02 1.4127e+03 4.4720e-07 5.5409e-01 3.3320e-01 1.1271e-01 3.1706e+03 6.2740e+02 5.6199e+04 5.1184e+02 3.5105e+01 1.0121e+03 8.2106e-05 1.4788e-05 3.2929e-04 7.3685e-02 9.2632e-01 0.0000e+00 7.4571e-01 2.5429e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.1600e+00 3.2680e+06 5.8315e+02 1.6532e+03 3.5221e-07 5.9019e-01 2.9710e-01 1.1271e-01 3.1980e+03 7.1021e+02 5.6208e+04 5.1028e+02 3.7093e+01 1.0123e+03 8.1860e-05 1.5107e-05 3.2929e-04 8.5630e-02 9.1437e-01 0.0000e+00 7.6944e-01 2.3056e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.1800e+00 3.6640e+06 5.8315e+02 1.8738e+03 2.8372e-07 6.1751e-01 2.6978e-01 1.1271e-01 3.2257e+03 7.9289e+02 5.6218e+04 5.0871e+02 3.9092e+01 1.0125e+03 8.1599e-05 1.5383e-05 3.2929e-04 9.7426e-02 9.0257e-01 0.0000e+00 7.8808e-01 2.1192e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.2000e+00 4.0600e+06 5.8315e+02 2.0746e+03 2.3298e-07 6.3902e-01 2.4827e-01 1.1271e-01 3.2534e+03 8.7543e+02 5.6227e+04 5.0714e+02 4.1103e+01 1.0126e+03 8.1325e-05 1.5628e-05 3.2929e-04 1.0908e-01 8.9092e-01 0.0000e+00 8.0306e-01 1.9694e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.2200e+00 4.4560e+06 5.8315e+02 2.2571e+03 1.9456e-07 6.5648e-01 2.3081e-01 1.1271e-01 3.2813e+03 9.5783e+02 5.6236e+04 5.0557e+02 4.3124e+01 1.0128e+03 8.1039e-05 1.5847e-05 3.2929e-04 1.2058e-01 8.7942e-01 0.0000e+00 8.1535e-01 1.8465e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.2400e+00 4.8520e+06 5.8315e+02 2.4230e+03 1.6492e-07 6.7102e-01 2.1627e-01 1.1271e-01 3.3094e+03 1.0401e+03 5.6245e+04 5.0399e+02 4.5158e+01 1.0130e+03 8.0742e-05 1.6047e-05 3.2929e-04 1.3195e-01 8.6805e-01 0.0000e+00 8.2557e-01 1.7443e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.2600e+00 5.2480e+06 5.8315e+02 2.5742e+03 1.4168e-07 6.8338e-01 2.0390e-01 1.1271e-01 3.3376e+03 1.1221e+03 5.6255e+04 5.0240e+02 4.7203e+01 1.0131e+03 8.0433e-05 1.6230e-05 3.2929e-04 1.4318e-01 8.5682e-01 0.0000e+00 8.3419e-01 1.6581e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.2800e+00 5.6440e+06 5.8315e+02 2.7125e+03 1.2319e-07 6.9409e-01 1.9320e-01 1.1271e-01 3.3660e+03 1.2040e+03 5.6264e+04 5.0081e+02 4.9259e+01 1.0133e+03 8.0115e-05 1.6401e-05 3.2929e-04 1.5427e-01 8.4573e-01 0.0000e+00 8.4154e-01 1.5846e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.3000e+00 6.0400e+06 5.8315e+02 2.8394e+03 1.0830e-07 7.0351e-01 1.8378e-01 1.1271e-01 3.3945e+03 1.2857e+03 5.6273e+04 4.9921e+02 5.1327e+01 1.0135e+03 7.9786e-05 1.6561e-05 3.2929e-04 1.6523e-01 8.3477e-01 0.0000e+00 8.4786e-01 1.5214e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.3200e+00 6.4360e+06 5.8315e+02 2.9565e+03 9.6164e-08 7.1191e-01 1.7538e-01 1.1271e-01 3.4232e+03 1.3673e+03 5.6282e+04 4.9761e+02 5.3407e+01 1.0136e+03 7.9448e-05 1.6713e-05 3.2929e-04 1.7606e-01 8.2394e-01 0.0000e+00 8.5333e-01 1.4667e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.3400e+00 6.8320e+06 5.8315e+02 3.0649e+03 8.6168e-08 7.1948e-01 1.6781e-01 1.1271e-01 3.4520e+03 1.4486e+03 5.6292e+04 4.9600e+02 5.5498e+01 1.0138e+03 7.9102e-05 1.6858e-05 3.2929e-04 1.8676e-01 8.1324e-01 0.0000e+00 8.5811e-01 1.4189e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.3600e+00 7.2280e+06 5.8315e+02 3.1660e+03 7.7854e-08 7.2640e-01 1.6089e-01 1.1271e-01 3.4809e+03 1.5297e+03 5.6301e+04 4.9439e+02 5.7601e+01 1.0140e+03 7.8748e-05 1.6997e-05 3.2929e-04 1.9733e-01 8.0267e-01 0.0000e+00 8.6229e-01 1.3771e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.3800e+00 7.6240e+06 5.8315e+02 3.2605e+03 7.0879e-08 7.3276e-01 1.5453e-01 1.1271e-01 3.5101e+03 1.6106e+03 5.6310e+04 4.9277e+02 5.9717e+01 1.0141e+03 7.8386e-05 1.7132e-05 3.2929e-04 2.0778e-01 7.9222e-01 0.0000e+00 8.6597e-01 1.3403e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.4000e+00 8.0200e+06 5.8315e+02 3.3492e+03 6.4979e-08 7.3868e-01 1.4861e-01 1.1271e-01 3.5394e+03 1.6913e+03 5.6319e+04 4.9114e+02 6.1844e+01 1.0143e+03 7.8016e-05 1.7263e-05 3.2929e-04 2.1811e-01 7.8189e-01 0.0000e+00 8.6923e-01 1.3077e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.4200e+00 8.4160e+06 5.8315e+02 3.4330e+03 5.9949e-08 7.4422e-01 1.4307e-01 1.1271e-01 3.5688e+03 1.7717e+03 5.6329e+04 4.8951e+02 6.3983e+01 1.0145e+03 7.7640e-05 1.7391e-05 3.2929e-04 2.2831e-01 7.7169e-01 0.0000e+00 8.7211e-01 1.2789e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.4400e+00 8.8120e+06 5.8315e+02 3.5124e+03 5.5632e-08 7.4946e-01 1.3783e-01 1.1271e-01 3.5984e+03 1.8519e+03 5.6338e+04 4.8787e+02 6.6135e+01 1.0146e+03 7.7258e-05 1.7517e-05 3.2929e-04 2.3840e-01 7.6160e-01 0.0000e+00 8.7467e-01 1.2533e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.4600e+00 9.2080e+06 5.8315e+02 3.5880e+03 5.1902e-08 7.5444e-01 1.3285e-01 1.1271e-01 3.6282e+03 1.9319e+03 5.6347e+04 4.8623e+02 6.8299e+01 1.0148e+03 7.6869e-05 1.7641e-05 3.2929e-04 2.4838e-01 7.5162e-01 0.0000e+00 8.7695e-01 1.2305e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.4800e+00 9.6040e+06 5.8315e+02 3.6601e+03 4.8659e-08 7.5920e-01 1.2809e-01 1.1271e-01 3.6581e+03 2.0115e+03 5.6356e+04 4.8457e+02 7.0476e+01 1.0150e+03 7.6475e-05 1.7765e-05 3.2929e-04 2.5824e-01 7.4176e-01 0.0000e+00 8.7898e-01 1.2102e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.5000e+00 1.0000e+07 5.8315e+02 3.7291e+03 4.5824e-08 7.6378e-01 1.2351e-01 1.1271e-01 3.6882e+03 2.0910e+03 5.6366e+04 4.8291e+02 7.2665e+01 1.0151e+03 7.6075e-05 1.7888e-05 3.2929e-04 2.6799e-01 7.3201e-01 0.0000e+00 8.8078e-01 1.1922e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.5200e+00 1.1000e+07 5.8315e+02 3.8922e+03 4.0073e-08 7.7474e-01 1.1254e-01 1.1271e-01 3.7648e+03 2.2903e+03 5.6389e+04 4.7869e+02 7.8250e+01 1.0156e+03 7.5043e-05 1.8197e-05 3.2929e-04 2.9214e-01 7.0786e-01 0.0000e+00 8.8451e-01 1.1549e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.5400e+00 1.2000e+07 5.8315e+02 4.0423e+03 3.5793e-08 7.8515e-01 1.0214e-01 1.1271e-01 3.8426e+03 2.4877e+03 5.6412e+04 4.7441e+02 8.3920e+01 1.0160e+03 7.3984e-05 1.8510e-05 3.2929e-04 3.1562e-01 6.8438e-01 0.0000e+00 8.8727e-01 1.1273e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.5600e+00 1.3000e+07 5.8315e+02 4.1824e+03 3.2518e-08 7.9527e-01 9.2016e-02 1.1271e-01 3.9214e+03 2.6831e+03 5.6436e+04 4.7007e+02 8.9678e+01 1.0164e+03 7.2901e-05 1.8830e-05 3.2929e-04 3.3847e-01 6.6153e-01 0.0000e+00 8.8925e-01 1.1075e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.5800e+00 1.4000e+07 5.8315e+02 4.3149e+03 2.9952e-08 8.0535e-01 8.1944e-02 1.1271e-01 4.0014e+03 2.8763e+03 5.6459e+04 4.6568e+02 9.5527e+01 1.0168e+03 7.1797e-05 1.9161e-05 3.2929e-04 3.6073e-01 6.3927e-01 0.0000e+00 8.9060e-01 1.0940e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.6000e+00 1.5000e+07 5.8315e+02 4.4414e+03 2.7899e-08 8.1555e-01 7.1735e-02 1.1271e-01 4.0824e+03 3.0673e+03 5.6483e+04 4.6121e+02 1.0147e+02 1.0173e+03 7.0674e-05 1.9505e-05 3.2929e-04 3.8242e-01 6.1758e-01 0.0000e+00 8.9143e-01 1.0857e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.6200e+00 1.6000e+07 5.8315e+02 4.5631e+03 2.6223e-08 8.2607e-01 6.1222e-02 1.1271e-01 4.1647e+03 3.2559e+03 5.6506e+04 4.5668e+02 1.0752e+02 1.0177e+03 6.9535e-05 1.9866e-05 3.2929e-04 4.0358e-01 5.9642e-01 0.0000e+00 8.9180e-01 1.0820e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.6400e+00 1.7000e+07 5.8315e+02 4.6810e+03 2.4832e-08 8.3705e-01 5.0240e-02 1.1271e-01 4.2481e+03 3.4420e+03 5.6530e+04 4.5206e+02 1.1367e+02 1.0181e+03 6.8382e-05 2.0245e-05 3.2929e-04 4.2423e-01 5.7577e-01 0.0000e+00 8.9179e-01 1.0821e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.6600e+00 1.8000e+07 5.8315e+02 4.7958e+03 2.3660e-08 8.4867e-01 3.8624e-02 1.1271e-01 4.3328e+03 3.6254e+03 5.6553e+04 4.4735e+02 1.1994e+02 1.0185e+03 6.7214e-05 2.0645e-05 3.2929e-04 4.4441e-01 5.5559e-01 0.0000e+00 8.9142e-01 1.0858e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.6800e+00 1.9000e+07 5.8315e+02 4.9081e+03 2.2657e-08 8.6110e-01 2.6192e-02 1.1271e-01 4.4188e+03 3.8061e+03 5.6576e+04 4.4254e+02 1.2633e+02 1.0189e+03 6.6034e-05 2.1068e-05 3.2929e-04 4.6414e-01 5.3586e-01 0.0000e+00 8.9072e-01 1.0928e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.7000e+00 2.0000e+07 5.8315e+02 5.0183e+03 2.1788e-08 8.7455e-01 1.2742e-02 1.1271e-01 4.5061e+03 3.9839e+03 5.6600e+04 4.3761e+02 1.3286e+02 1.0194e+03 6.4840e-05 2.1517e-05 3.2929e-04 4.8347e-01 5.1653e-01 0.0000e+00 8.8972e-01 1.1028e-01 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.7200e+00 2.1000e+07 5.8315e+02 5.1233e+03 1.5507e-08 8.8729e-01 0.0000e+00 1.1271e-01 4.5927e+03 4.5927e+03 5.6623e+04 4.3410e+02 4.3410e+02 1.0198e+03 6.4038e-05 6.4038e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.7400e+00 2.2000e+07 5.8315e+02 5.2003e+03 1.4379e-08 8.8729e-01 0.0000e+00 1.1271e-01 4.6625e+03 4.6625e+03 5.6647e+04 4.4069e+02 4.4069e+02 1.0202e+03 6.5972e-05 6.5972e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.7600e+00 2.3000e+07 5.8315e+02 5.2730e+03 1.3388e-08 8.8729e-01 0.0000e+00 1.1271e-01 4.7283e+03 4.7283e+03 5.6670e+04 4.4691e+02 4.4691e+02 1.0206e+03 6.7891e-05 6.7891e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.7800e+00 2.4000e+07 5.8315e+02 5.3417e+03 1.2511e-08 8.8729e-01 0.0000e+00 1.1271e-01 4.7905e+03 4.7905e+03 5.6694e+04 4.5280e+02 4.5280e+02 1.0211e+03 6.9797e-05 6.9797e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.8000e+00 2.5000e+07 5.8315e+02 5.4068e+03 1.1730e-08 8.8729e-01 0.0000e+00 1.1271e-01 4.8495e+03 4.8495e+03 5.6717e+04 4.5837e+02 4.5837e+02 1.0215e+03 7.1695e-05 7.1695e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.8200e+00 2.6000e+07 5.8315e+02 5.4686e+03 1.1031e-08 8.8729e-01 0.0000e+00 1.1271e-01 4.9055e+03 4.9055e+03 5.6741e+04 4.6367e+02 4.6367e+02 1.0219e+03 7.3587e-05 7.3587e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.8400e+00 2.7000e+07 5.8315e+02 5.5275e+03 1.0402e-08 8.8729e-01 0.0000e+00 1.1271e-01 4.9589e+03 4.9589e+03 5.6765e+04 4.6872e+02 4.6872e+02 1.0223e+03 7.5475e-05 7.5475e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.8600e+00 2.8000e+07 5.8315e+02 5.5837e+03 9.8334e-09 8.8729e-01 0.0000e+00 1.1271e-01 5.0099e+03 5.0099e+03 5.6788e+04 4.7353e+02 4.7353e+02 1.0228e+03 7.7360e-05 7.7360e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.8800e+00 2.9000e+07 5.8315e+02 5.6374e+03 9.3169e-09 8.8729e-01 0.0000e+00 1.1271e-01 5.0586e+03 5.0586e+03 5.6812e+04 4.7814e+02 4.7814e+02 1.0232e+03 7.9245e-05 7.9245e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.9000e+00 3.0000e+07 5.8315e+02 5.6888e+03 8.8460e-09 8.8729e-01 0.0000e+00 1.1271e-01 5.1052e+03 5.1052e+03 5.6835e+04 4.8254e+02 4.8254e+02 1.0236e+03 8.1131e-05 8.1131e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.9200e+00 3.1000e+07 5.8315e+02 5.7381e+03 8.4151e-09 8.8729e-01 0.0000e+00 1.1271e-01 5.1499e+03 5.1499e+03 5.6859e+04 4.8677e+02 4.8677e+02 1.0240e+03 8.3018e-05 8.3018e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.9400e+00 3.2000e+07 5.8315e+02 5.7854e+03 8.0196e-09 8.8729e-01 0.0000e+00 1.1271e-01 5.1929e+03 5.1929e+03 5.6882e+04 4.9083e+02 4.9083e+02 1.0245e+03 8.4907e-05 8.4907e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.9600e+00 3.3000e+07 5.8315e+02 5.8309e+03 7.6552e-09 8.8729e-01 0.0000e+00 1.1271e-01 5.2342e+03 5.2342e+03 5.6906e+04 4.9473e+02 4.9473e+02 1.0249e+03 8.6800e-05 8.6800e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +1.9800e+00 3.4000e+07 5.8315e+02 5.8747e+03 7.3187e-09 8.8729e-01 0.0000e+00 1.1271e-01 5.2739e+03 5.2739e+03 5.6930e+04 4.9849e+02 4.9849e+02 1.0253e+03 8.8696e-05 8.8696e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 +2.0000e+00 3.5000e+07 5.8315e+02 5.9169e+03 7.0071e-09 8.8729e-01 0.0000e+00 1.1271e-01 5.3122e+03 5.3122e+03 5.6953e+04 5.0211e+02 5.0211e+02 1.0257e+03 9.0597e-05 9.0597e-05 3.2929e-04 5.0000e-01 5.0000e-01 0.0000e+00 9.1515e-01 8.4850e-02 0.0000e+00 0.0000e+00 0.0000e+00 1.0000e+00 diff --git a/src/coreComponents/unitTests/fieldSpecificationTests/testAquiferBoundaryCondition.cpp b/src/coreComponents/unitTests/fieldSpecificationTests/testAquiferBoundaryCondition.cpp index 05de91b1a60..e894ca9b92a 100644 --- a/src/coreComponents/unitTests/fieldSpecificationTests/testAquiferBoundaryCondition.cpp +++ b/src/coreComponents/unitTests/fieldSpecificationTests/testAquiferBoundaryCondition.cpp @@ -37,7 +37,7 @@ TEST( FieldSpecification, Aquifer ) AquiferBoundaryCondition & aquiferBC = dynamicCast< AquiferBoundaryCondition & >( *fieldSpecificationManager.createChild( "Aquifer", "aquiferBoundaryCondition" ) ); - // set up the aquifer as in the simulation matched against IX + // set up the aquifer auto & aquiferPorosity = aquiferBC.getReference< real64 >( AquiferBoundaryCondition::viewKeyStruct::aquiferPorosityString() ); aquiferPorosity = 2e-1; @@ -89,7 +89,7 @@ TEST( FieldSpecification, Aquifer ) areaFraction, dAquiferVolFlux_dPres ); - // observed flux value in the simulation matched against IX + // observed flux value real64 const refAquiferVolFlux = -0.2043541482797776; ASSERT_NEAR( refAquiferVolFlux, aquiferVolFlux, 1e-10 ); diff --git a/src/coreComponents/unitTests/wavePropagationTests/CMakeLists.txt b/src/coreComponents/unitTests/wavePropagationTests/CMakeLists.txt index fab0a741e73..c1296f06b10 100644 --- a/src/coreComponents/unitTests/wavePropagationTests/CMakeLists.txt +++ b/src/coreComponents/unitTests/wavePropagationTests/CMakeLists.txt @@ -6,7 +6,9 @@ set( gtest_geosx_tests testWavePropagationDAS.cpp testWavePropagationElasticVTI.cpp testWavePropagationAttenuation.cpp - testWavePropagationAcousticFirstOrder.cpp ) + testWavePropagationAcousticFirstOrder.cpp + testWavePropagationAdjoint1.cpp + ) set( tplDependencyList ${parallelDeps} gtest ) diff --git a/src/coreComponents/unitTests/wavePropagationTests/testWavePropagation.cpp b/src/coreComponents/unitTests/wavePropagationTests/testWavePropagation.cpp index f2e52c68305..f1cb6261cfe 100644 --- a/src/coreComponents/unitTests/wavePropagationTests/testWavePropagation.cpp +++ b/src/coreComponents/unitTests/wavePropagationTests/testWavePropagation.cpp @@ -198,7 +198,11 @@ TEST_F( AcousticWaveEquationSEMTest, SeismoTrace ) //Assert on time-step computed with the automatci time-step routine real64 const dtOut = propagator->getReference< real64 >( AcousticWaveEquationSEM::viewKeyStruct::timeStepString() ); - ASSERT_TRUE( dtOut < 0.04 ); + real64 const Vp = 1500.0; + real64 const h = 100.0; + real64 const cflConstant = 1/sqrt( 3 ); + real64 const dtTheo = (cflConstant*h)/Vp; + ASSERT_TRUE( dtOut < dtTheo ); real64 time_n = time; // run for 1s (10 steps) diff --git a/src/coreComponents/unitTests/wavePropagationTests/testWavePropagationAdjoint1.cpp b/src/coreComponents/unitTests/wavePropagationTests/testWavePropagationAdjoint1.cpp new file mode 100644 index 00000000000..68c7618fecc --- /dev/null +++ b/src/coreComponents/unitTests/wavePropagationTests/testWavePropagationAdjoint1.cpp @@ -0,0 +1,404 @@ +/* + * ------------------------------------------------------------------------------------------------------------ + * SPDX-License-Identifier: LGPL-2.1-only + * + * Copyright (c) 2016-2024 Lawrence Livermore National Security LLC + * Copyright (c) 2018-2024 Total, S.A + * Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University + * Copyright (c) 2023-2024 Chevron + * Copyright (c) 2019- GEOS/GEOSX Contributors + * All rights reserved + * + * See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details. + * ------------------------------------------------------------------------------------------------------------ + */ + +// using some utility classes from the following unit test +#include "unitTests/fluidFlowTests/testCompFlowUtils.hpp" + +#include "common/DataTypes.hpp" +#include "mainInterface/initialization.hpp" +#include "mainInterface/ProblemManager.hpp" +#include "mesh/DomainPartition.hpp" +#include "mainInterface/GeosxState.hpp" +#include "physicsSolvers/PhysicsSolverManager.hpp" +#include "physicsSolvers/wavePropagation/shared/WaveSolverBase.hpp" +#include "physicsSolvers/wavePropagation/sem/acoustic/secondOrderEqn/isotropic/AcousticWaveEquationSEM.hpp" + +#include + +using namespace geos; +using namespace geos::dataRepository; +using namespace geos::testing; + +CommandLineOptions g_commandLineOptions; + +// This unit test checks the interpolation done to extract seismic traces from a wavefield. +// It computes a seismogram at a receiver co-located with the source and compares it to the surrounding receivers. +char const * xmlInput = + R"xml( + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + )xml"; + +class AcousticWaveEquationSEMTest : public ::testing::Test +{ +public: + + AcousticWaveEquationSEMTest(): + state( std::make_unique< CommandLineOptions >( g_commandLineOptions ) ) + {} + +protected: + + void SetUp() override + { + setupProblemFromXML( state.getProblemManager(), xmlInput ); + } + + static real64 constexpr time = 0.0; + static real64 constexpr dt = 5e-3; + static real64 constexpr eps = std::numeric_limits< real64 >::epsilon(); + + GeosxState state; + AcousticWaveEquationSEM * propagator; +}; + +real64 constexpr AcousticWaveEquationSEMTest::time; +real64 constexpr AcousticWaveEquationSEMTest::dt; +real64 constexpr AcousticWaveEquationSEMTest::eps; + +TEST_F( AcousticWaveEquationSEMTest, SeismoTrace ) +{ + + DomainPartition & domain = state.getProblemManager().getDomainPartition(); + propagator = &state.getProblemManager().getPhysicsSolverManager().getGroup< AcousticWaveEquationSEM >( "acousticSolver" ); + + // Check source term (sourceCoordinates and sourceValue) + array2d< real32 > rhsForward; + rhsForward.resize( 51, 1 ); + real32 * ptrTimeSourceFrequency = &propagator->getReference< real32 >( AcousticWaveEquationSEM::viewKeyStruct::timeSourceFrequencyString() ); + real32 * ptrTimeSourceDelay = &propagator->getReference< real32 >( AcousticWaveEquationSEM::viewKeyStruct::timeSourceDelayString() ); + localIndex * ptrRickerOrder = &propagator->getReference< localIndex >( AcousticWaveEquationSEM::viewKeyStruct::rickerOrderString() ); + + real64 time_n = time; + std::cout << "Begin forward:" << time_n << std::endl; + // run for 0.25s (100 steps) + for( int i=0; i<50; i++ ) + { + rhsForward[i][0]=WaveSolverUtils::evaluateRicker( time_n, *ptrTimeSourceFrequency, *ptrTimeSourceDelay, *ptrRickerOrder ); + propagator->explicitStepForward( time_n, dt, i, domain, false ); + time_n += dt; + } + // cleanup (triggers calculation of the remaining seismograms data points) + propagator->cleanup( 1.0, 50, 0, 0, domain ); + + // retrieve seismo + arrayView2d< real32 > const pReceivers = propagator->getReference< array2d< real32 > >( AcousticWaveEquationSEM::viewKeyStruct::pressureNp1AtReceiversString() ).toView(); + + // move it to CPU, if needed + pReceivers.move( hostMemorySpace, false ); + + // check number of seismos and trace length + ASSERT_EQ( pReceivers.size( 1 ), 5 ); + ASSERT_EQ( pReceivers.size( 0 ), 51 ); + + /*----------Save receiver forward----------------------*/ + array2d< real32 > uForward; + uForward.resize( 51, 1 ); + + // save receiver value forward on uForward. + for( int i = 0; i < 51; i++ ) + { + /*std::cout << "time: " << i*dt << std::endl; + std::cout << "pReceivers1 " << i << ":" << pReceivers[i][0] << std::endl; + std::cout << "pReceivers2 " << i << ":" << pReceivers[i][1] << std::endl; + std::cout << "pReceivers3 " << i << ":" << pReceivers[i][2] << std::endl; + std::cout << "pReceivers4 " << i << ":" << pReceivers[i][3] << std::endl; + std::cout << "rhsForward " << i << ":" << rhsForward[i][0] << std::endl;*/ + uForward[i][0] = pReceivers[i][0]; + pReceivers[i][0] = 0.; + pReceivers[i][1] = 0.; + pReceivers[i][2] = 0.; + pReceivers[i][3] = 0.; + } + + ASSERT_EQ( rhsForward.size( 1 ), 1 ); + ASSERT_EQ( rhsForward.size( 0 ), 51 ); + + arrayView2d< localIndex > const rNodeIds = propagator->getReference< array2d< localIndex > >( AcousticWaveEquationSEM::viewKeyStruct::receiverNodeIdsString() ).toView(); + rNodeIds.move( hostMemorySpace, false ); + localIndex sNodesIdsAfterModif=rNodeIds[0][0]; + std::cout << "ref back sNodeIds[0][0]:" << sNodesIdsAfterModif << std::endl; + + /*---------------------------------------------------*/ + + std::cout << "Begin backward:" << time_n << std::endl; + + //----------Switch source and receiver1 position for backward----------------------// + arrayView2d< real64 > const sCoord = propagator->getReference< array2d< real64 > >( AcousticWaveEquationSEM::viewKeyStruct::sourceCoordinatesString() ).toView(); + arrayView2d< real64 > const rCoord = propagator->getReference< array2d< real64 > >( AcousticWaveEquationSEM::viewKeyStruct::receiverCoordinatesString() ).toView(); + + for( int i = 0; i < 3; i++ ) + { + real64 tmp_double; + tmp_double=rCoord[0][i]; + rCoord[0][i]=sCoord[0][i]; + sCoord[0][i]=tmp_double; + } + + sCoord.registerTouch( hostMemorySpace ); + rCoord.registerTouch( hostMemorySpace ); + + std::cout << "sCoord :" << sCoord[0][0] <<" "<< sCoord[0][1] <<" "<< sCoord[0][2] << std::endl; + std::cout << "rCoord1 :" << rCoord[0][0] <<" "<< rCoord[0][1] <<" "<< rCoord[0][2] << std::endl; + std::cout << "rCoord2 :" << rCoord[1][0] <<" "<< rCoord[1][1] <<" "<< rCoord[1][2] << std::endl; + std::cout << "rCoord3 :" << rCoord[2][0] <<" "<< rCoord[2][1] <<" "<< rCoord[2][2] << std::endl; + std::cout << "rCoord4 :" << rCoord[3][0] <<" "<< rCoord[3][1] <<" "<< rCoord[3][2] << std::endl; + + //change timeSourceFrequency + std::cout << "timeSourceFrequency forward:" << *ptrTimeSourceFrequency << std::endl; + real32 newTimeFreq=2; + *ptrTimeSourceFrequency = newTimeFreq; + std::cout << "timeSourceFrequency backward:" << *ptrTimeSourceFrequency << std::endl; + + //reinit m_indexSeismoTrace + localIndex * ptrISeismo = &propagator->getReference< localIndex >( AcousticWaveEquationSEM::viewKeyStruct::indexSeismoTraceString() ); + *ptrISeismo = pReceivers.size( 0 )-1; + //reinit m_forward + localIndex * ptrForward = &propagator->getReference< localIndex >( AcousticWaveEquationSEM::viewKeyStruct::forwardString() ); + *ptrForward = 0; + + //"propagator->reinit()" not enough because state field not reinit to zero + //propagator->reinit(); + state.getProblemManager().applyInitialConditions(); + + array2d< real32 > rhsBackward; + rhsBackward.resize( 51, 1 ); + + arrayView2d< localIndex > const sNodeIds_new2 = propagator->getReference< array2d< localIndex > >( AcousticWaveEquationSEM::viewKeyStruct::sourceNodeIdsString() ).toView(); + sNodeIds_new2.move( hostMemorySpace, false ); + std::cout << "sNodeIds[0][0] second get2:" << sNodeIds_new2[0][0] << std::endl; + ASSERT_TRUE( sNodeIds_new2[0][0] == sNodesIdsAfterModif ); + + /*---------------------------------------------------*/ + // run backward solver + for( int i = 50; i > 0; i-- ) + { + rhsBackward[i][0]=WaveSolverUtils::evaluateRicker( time_n, *ptrTimeSourceFrequency, *ptrTimeSourceDelay, *ptrRickerOrder ); + propagator->explicitStepBackward( time_n, dt, i, domain, false ); + time_n -= dt; + //check source node in backward loop + arrayView2d< localIndex > const sNodeIds_loop = propagator->getReference< array2d< localIndex > >( AcousticWaveEquationSEM::viewKeyStruct::sourceNodeIdsString() ).toView(); + sNodeIds_loop.move( hostMemorySpace, false ); + ASSERT_TRUE( sNodeIds_loop[0][0] == sNodesIdsAfterModif ); + } + + // move it to CPU, if needed + pReceivers.move( hostMemorySpace, false ); + + localIndex mForward2 = propagator->getReference< localIndex >( AcousticWaveEquationSEM::viewKeyStruct::forwardString() ); + std::cout << "m_forward second get:" << mForward2 << std::endl; + ASSERT_TRUE( mForward2 == 0 ); + + arrayView2d< localIndex > const sNodeIds_new3 = propagator->getReference< array2d< localIndex > >( AcousticWaveEquationSEM::viewKeyStruct::sourceNodeIdsString() ).toView(); + sNodeIds_new3.move( hostMemorySpace, false ); + std::cout << "sNodeIds[0][0] get3:" << sNodeIds_new3[0][0] << std::endl; + ASSERT_TRUE( sNodeIds_new3[0][0] == sNodesIdsAfterModif ); + + real32 const timeSourceFrequency_new = propagator->getReference< real32 >( AcousticWaveEquationSEM::viewKeyStruct::timeSourceFrequencyString() ); + ASSERT_TRUE( std::abs( timeSourceFrequency_new - newTimeFreq ) < 1.e-8 ); + + /*std::cout << "pReceiver size(0):" << pReceivers.size(0) << std::endl; + std::cout << "pReceiver size(1):" << pReceivers.size(1) << std::endl;*/ + + + /*----------Save receiver backward----------------------*/ + array2d< real32 > qBackward; + qBackward.resize( 51, 1 ); + + real32 sum_ufb=0.; + real32 sum_qff=0.; + real32 sum_u2=0.; + real32 sum_q2=0.; + real32 sum_ff2=0.; + real32 sum_fb2=0.; + + // fill backward field at receiver. + for( int i=50; i > 0; i-- ) + { + /*std::cout << "back time: " << i*dt << std::endl; + std::cout << "back pReceivers1 " << i << ":" << pReceivers[i][0] << std::endl; + std::cout << "back pReceivers2 " << i << ":" << pReceivers[i][1] << std::endl; + std::cout << "back pReceivers3 " << i << ":" << pReceivers[i][2] << std::endl; + std::cout << "back pReceivers4 " << i << ":" << pReceivers[i][3] << std::endl; + std::cout << "back rhsBackward " << i << ":" << rhsBackward[i][0] << std::endl;*/ + qBackward[i][0] = pReceivers[i][0]; + } + + //check transitivity with sum + for( int i=0; i<51; i++ ) + { + sum_ufb += uForward[i][0]*rhsBackward[i][0]; + sum_qff += qBackward[i][0]*rhsForward[i][0]; + + sum_u2 += uForward[i][0]*uForward[i][0]; + sum_q2 += qBackward[i][0]*qBackward[i][0]; + sum_ff2 += rhsForward[i][0]*rhsForward[i][0]; + sum_fb2 += rhsBackward[i][0]*rhsBackward[i][0]; + /*std::cout << "sum evol sum_ufb:" << sum_ufb << " / sum_qff:" << sum_qff << std::endl; + std::cout << "uForward:" << uForward[i][0] << " / qBackward:" << qBackward[i][0] << std::endl; + std::cout << "ufb:" << uForward[i][0]*rhsBackward[i][0] << " / qff:" << qBackward[i][0]*rhsForward[i][0] << std::endl;*/ + } + + // check scalar products and are non null + ASSERT_TRUE( sum_ufb > 1.e-8 ); + ASSERT_TRUE( sum_qff > 1.e-8 ); + + // check || - ||/max(||f||.||q||,||f'||.||u||) < 10^1or2 x epsilon_machine with f rhs direct and f' rhs backward + std::cout << ": " << sum_ufb << " / : " << sum_qff << std::endl; + std::cout << "|| - ||=" << std::abs( sum_ufb-sum_qff ) << " / ||f||.||q||=" << std::sqrt( sum_q2*sum_ff2 ); + std::cout << " / ||f'||.||u||=" << std::sqrt( sum_fb2*sum_u2 ) << " / ||f||.||f'||=" << std::sqrt( sum_ff2*sum_fb2 ) << std::endl; + real32 diffToCheck; + diffToCheck=std::abs( sum_ufb-sum_qff ) / std::max( std::sqrt( sum_fb2*sum_u2 ), std::sqrt( sum_q2*sum_ff2 )); + std::cout << " Diff to compare with 2.e-4: " << diffToCheck << std::endl; + ASSERT_TRUE( diffToCheck < 2.e-4 ); +} + +int main( int argc, char * * argv ) +{ + ::testing::InitGoogleTest( &argc, argv ); + g_commandLineOptions = *geos::basicSetup( argc, argv ); + int const result = RUN_ALL_TESTS(); + geos::basicCleanup(); + return result; +} diff --git a/src/coreComponents/unitTests/wavePropagationTests/testWavePropagationDAS.cpp b/src/coreComponents/unitTests/wavePropagationTests/testWavePropagationDAS.cpp index 4446ac3a945..f36795c930d 100644 --- a/src/coreComponents/unitTests/wavePropagationTests/testWavePropagationDAS.cpp +++ b/src/coreComponents/unitTests/wavePropagationTests/testWavePropagationDAS.cpp @@ -188,7 +188,7 @@ TEST_F( ElasticWaveEquationSEMTest, SeismoTrace ) //Assert on time-step computed with the automatci time-step routine real64 const dtOut = propagator->getReference< real64 >( ElasticWaveEquationSEM::viewKeyStruct::timeStepString() ); - ASSERT_TRUE( dtOut < 0.04 ); + ASSERT_TRUE( dtOut < 0.05 ); // retrieve seismo