forked from ThFriedrich/atomic_specimen_creation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_cif_gui.m
executable file
·228 lines (196 loc) · 8.81 KB
/
load_cif_gui.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
% Copyright (C) 2022 Thomas Friedrich
% University of Antwerp - All Rights Reserved.
% You may use, distribute and modify
% this code under the terms of the GPL3 license.
% You should have received a copy of the GPL3 license with
% this file. If not, please visit:
% https://www.gnu.org/licenses/gpl-3.0.en.html
% Create a new figure with given size and minimum size
close all;
global mat_ver
mat_ver = version('-release');
mat_ver = str2double(mat_ver(1:4));
screensize = get(0, 'Screensize');
s = round(screensize(3:4)*0.8);
hpf.fig = figure('units','pixels','outerposition',[screensize(3)/2-s(1)/2 screensize(4)/2-s(2)/2 s(1) s(2)],'Name','Cif Import','NumberTitle','off','Visible','on','Resize','on','MenuBar','none','ToolBar','figure');
figRSfun = @(~,~) set(hpf.fig, 'position', max([0 0 900 550], hpf.fig.Position));
hpf.fig.SizeChangedFcn = figRSfun;
% Normalized vertical panel split position and border width
v_sec = 0.15;
h_sec = 0.8;
br = 0.01;
% Create 3 sub-panels
% Image Panel & Axis
hpf.image.pan = uipanel('Parent',hpf.fig,'Title','Visualizations','units','normalized','Position',[br v_sec+br h_sec-br 1-v_sec-(3*br)],'ShadowColor',[0 0 0],'ForegroundColor',[0 0 0],'HighlightColor',[0.95 0.95 0.95],'BackgroundColor',[0.8 0.8 0.8]);
hpf.image.ax1 = subplot(1,2,1,'Parent',hpf.image.pan);
hpf.image.ax2 = subplot(1,2,2,'Parent',hpf.image.pan);
v_sec2 = v_sec*4;
% Atomic Info Panel
hpf.inf.panA = uipanel('Parent',hpf.fig,'Title','Unit cell parameters','units','normalized','Position',[h_sec v_sec2+br 1-h_sec-br 1-v_sec2-(3*br)],'ShadowColor',[0 0 0],'ForegroundColor',[0 0 0],'HighlightColor',[0.95 0.95 0.95],'BackgroundColor',[0.8 0.8 0.8]);
hpf.inf.tblA = uitable('Parent',hpf.inf.panA,'units','normalized','Position',[br br 1-br 1-br*2]);
% Projected Coordinates Panel
hpf.inf.panP = uipanel('Parent',hpf.fig,'Title','Projected Coordinates','units','normalized','Position',[h_sec v_sec+br 1-h_sec-br v_sec2-v_sec],'ShadowColor',[0 0 0],'ForegroundColor',[0 0 0],'HighlightColor',[0.95 0.95 0.95],'BackgroundColor',[0.8 0.8 0.8]);
hpf.inf.tblP = uitable('Parent',hpf.inf.panP,'units','normalized','Position',[br br 1-br 1-br*4]);
% Parameter Panel & Controls
hpf.par.pan = uipanel('Parent',hpf.fig,'Title','Orientation & Controls','units','normalized','Position',[br br*2 1-br*2 v_sec-br],'ShadowColor',[0 0 0],'ForegroundColor',[0 0 0],'HighlightColor',[0.95 0.95 0.95],'BackgroundColor',[0.8 0.8 0.8]);
btn_width = 1/(5+br*7);
hpf.par.load_cif = uicontrol('Parent',hpf.par.pan,'Style','pushbutton','String','Load Cif file','units','normalized','Position',[br br*6 btn_width 0.3],'FontSize',10);
hpf.par.close = uicontrol('Parent',hpf.par.pan,'Style','pushbutton','String','Cancel','units','normalized','Position',[br+btn_width br*6 btn_width 0.3],'FontSize',10);
hpf.par.save_mat = uicontrol('Parent',hpf.par.pan,'Style','pushbutton','String','Save projected coordinates','units','normalized','Position',[br+btn_width*2 br*6 btn_width 0.3],'FontSize',10);
hpf.par.save_txt = uicontrol('Parent',hpf.par.pan,'Style','pushbutton','String','Export StatSTEM DB file','units','normalized','Position',[br+btn_width*3 br*6 btn_width 0.3],'FontSize',10);
hpf.par.bg = uibuttongroup('Parent',hpf.par.pan,'BorderType','etchedout','Position',[br br+0.4 btn_width 0.3]);
hpf.par.tb1 = uicontrol('Style','radiobutton','String','(uvw)','Parent',hpf.par.bg,'units','normalized','Position',[br br 0.5 1]);
hpf.par.tb2 = uicontrol('Style','radiobutton','String','[hkl]','Parent',hpf.par.bg,'units','normalized','Position',[0.5+br br 0.5 1]);
hpf.par.edit_vec = uicontrol('Style','edit','Parent',hpf.par.pan,'String','0 0 1','units','normalized','Position',[btn_width+br br+0.4 btn_width 0.3]);
% Callbacks
set(hpf.par.close,'Callback',{@closeFig,hpf.fig})
set(hpf.par.save_mat,'Callback',{@save_mat,hpf})
set(hpf.par.save_txt,'Callback',{@save_txt,hpf})
set(hpf.par.load_cif,'Callback',{@load_cif,hpf})
set(hpf.par.edit_vec,'Callback',{@align_vec,hpf})
set(hpf.par.tb1,'Callback',{@align_vec,hpf})
set(hpf.par.tb2,'Callback',{@align_vec,hpf})
function align_vec(~,~,hpf)
global crystal_par R
T_hkl = str2num(hpf.par.edit_vec.String); %#ok<ST2NM>
[atoms, R, crystal_par] = tfm_align_duplicate_cut(crystal_par, T_hkl, 0, 0, 0, 0, false, hpf.par.tb2.Value);
%Plot projection
cla(hpf.image.ax2)
tfm_plot_crystal(atoms, 'g', [R [0 0 0]'], 'h', hpf.image.ax2,'2d');
fcn_set_proj_coordinates(hpf, atoms)
end
function hpf = load_cif(~, ~, hpf)
global crystal_par
[file,cif_path] = uigetfile('*.cif');
[~,n,~] = fileparts(file);
if ~isempty(file)
cla(hpf.image.ax1)
crystal_par = tfm_get_uc_from_cif([cif_path filesep file]);
crystal_par.name = n;
g = tfm_direct_structure_matrix(crystal_par.a, crystal_par.b, crystal_par.c,...
crystal_par.alpha, crystal_par.beta, crystal_par.gamma);
crystal_par.atoms(:,2:4) = crystal_par.atoms(:,2:4)*g;
tfm_plot_crystal(crystal_par.atoms, 'g', [g [0 0 0]'],'h', hpf.image.ax1)
hpf.inf.tblA.RowName = fieldnames(rmfield(crystal_par,{'atoms','transformations','asym_uc'}));
hpf.inf.tblA.Data = struct2cell(rmfield(crystal_par,{'atoms','transformations','asym_uc'}));
align_vec([],[],hpf)
end
% hpf.inf.tblA.Position(0) = 0;
end
function fcn_set_proj_coordinates(hpf, atoms)
hpf.inf.tblP.ColumnName = {'Type', 'X', 'Y', 'Z'};
hpf.inf.tblP.ColumnWidth = {60,60,60,60};
hpf.inf.tblP.Data = round(atoms(:,1:4),4);
end
function save_txt(~,~,hpf)
global crystal_par mat_ver
proj_coordinates = hpf.inf.tblP.Data;
elm = tfm_Z_str(proj_coordinates(:,1));
xyz = proj_coordinates(:,2:4);
[a, b, c, alpha] = get_projected_lattice();
[~, id_min] = vector_distances([0 0],xyz);
xyz = xyz - xyz(id_min,:);
% xyz2 = tfm_loop_dim([proj_coordinates(:,2) xyz],a,2);
% xyz2 = tfm_loop_dim(xyz2,b,2);
% figure(3); clf;
% scatter3(xyz2(:,2),xyz2(:,3), xyz2(:,4)); hold on;
% quiver3(0 ,0 ,0 , a(1) , a(2), a(3));
% quiver3(0 ,0 ,0 , b(1) , b(2), b(3));
% quiver3(0 ,0 ,0 , c(1) , c(2), c(3));
% hold off; xlabel('x'); ylabel('y');
% axis equal;
% view([0 0 1]);
xyz_frac = round(xyz/[a' b' c'],4);
xyz_frac = xyz_frac - floor(xyz_frac);
formatSpecXY = '%s %0.4f %0.4f';
formatSpecZ = '%s %0.4f';
txt = {
['Database file for StatSTEM'];
['length_a ' num2str(vector_length(a),4)];
['length_b ' num2str(vector_length(b),4)];
['length_c ' num2str(vector_length(c),4)];
['angle_ab ' num2str(alpha,4)];
'';
'atoms x y';
};
for ik = 1:length(elm)
str = {sprintf(formatSpecXY,elm{ik},xyz_frac(ik,1),xyz_frac(ik,2))};
txt(end+1)=str;
end
txt(end+1)={''};
txt(end+1)={'zInfo'};
for ik = 1:length(elm)
str = {sprintf(formatSpecZ,elm{ik},xyz_frac(ik,3))};
txt(end+1)=str;
end
default_name = [replace([crystal_par.name '_' hpf.par.edit_vec.String]," ","") '.txt'];
[file,path] = uiputfile(default_name);
if path ~= 0
if mat_ver > 2021
qute_opt = "none";
else
qute_opt = 0;
end
writecell(txt,[path filesep file],'Delimiter','tab','QuoteStrings',qute_opt)
end
end
function save_mat(~,~,hpf)
global crystal_par
proj_coordinates = hpf.inf.tblP.Data;
default_name = replace([crystal_par.name '_' hpf.par.edit_vec.String]," ","");
uisave({'proj_coordinates'},default_name)
end
function closeFig(~,~,fig)
close(fig)
end
function [a, b, c, alpha] = get_projected_lattice()
global R
% decompose oriented lattice matrix into vectors
ap = R(1,:);
bp = R(2,:);
cp = R(3,:);
% compute projected areas
A = [fcn_vec_area_parallelogram(ap,bp),...
fcn_vec_area_parallelogram(ap,cp),...
fcn_vec_area_parallelogram(bp,cp)];
[~, iA] = max(A);
% use the vector pair spanning the smallest projected area
% as new 2D lattice vectors
if iA == 1
a = ap;
b = bp;
c = cp;
elseif iA == 2
a = ap;
b = cp;
c = bp;
elseif iA == 3
a = bp;
b = cp;
c = ap;
end
a = [a(1:2) 0];
b = [b(1:2) 0];
c = [0 0 sum(c)];
alpha = atan2d(norm(cross(a,b)), dot(a,b));
end
function A = fcn_vec_area_parallelogram(a,b)
ang_ab = fcn_vec_angle_xy(a, b);
A = vector_length(a(1:2))*vector_length(b(1:2))*sind(ang_ab);
end
function alpha = fcn_vec_angle_xy(a, b)
a(3) = 0;
b(3) = 0;
alpha = atan2d(norm(cross(a,b)), dot(a,b));
end
function [d, id_min, id_max] = vector_distances(v_ref,xy)
d = zeros(1,length(xy));
for id = 1: length(d)
d(id) = sqrt((v_ref(1)-xy(id,1))^2+(v_ref(2)-xy(id,2))^2);
end
[~, id_min] = min(d);
[~, id_max] = max(d);
end
function d = vector_length(v)
d = sqrt(sum(v.^2));
end