Do Localization Methods Actually Localize Memorized Data in LLMs? A Tale of Two Benchmarks (NAACL 2024)
Ting-Yun Chang, Jesse Thomason, and Robin Jia
📜 https://arxiv.org/abs/2311.09060
- Quick Start:
$ pip install -r requirements.txt
- INJ Benchmark
- Data
- Information Injection
- Run Localization Methods
- DEL Benchmark
- Data
- Run Localization Methods
- Data Source : ECBD dataset from
Onoe et al., 2022
, seeREADME
- Preprocessed Data:
data/ecbd
$ bash script/ecbd/inject.sh MODEL
- MODEL:
gpt2
,gpt2-xl
,EleutherAI/pythia-2.8b-deduped-v0
,EleutherAI/pythia-6.9b-deduped
- We release our collected data at
data/pile/EleutherAI
$ bash script/ecbd/METHOD_NAME.sh MODEL
- e.g.,
bash script/ecbd/HC.sh EleutherAI/pythia-6.9b-deduped
- METHOD_NAME
- Data Source: Please follow
EleutherAI's instructions
to download pretrained data in batches - Identify memorized data with our filters:
$ bash script/pile/find.sh MODEL
- We release our collected data at
data/pile/EleutherAI
- We release our manually collected data at
data/manual/memorized_data-gpt2-xl.jsonl
- We randomly sample 2048 sequences from the Pile-dedupe to calculate perplexity
- shared by all LLMs
- Tokenized data at
data/pile/*/pile_random_batch.pt
$ bash script/pile/METHOD_NAME.sh MODEL
- For Pythia models
- METHOD_NAME
$ bash script/manual/METHOD_NAME.sh
- For GPT2-XL