-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinject.py
151 lines (120 loc) · 5.72 KB
/
inject.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import torch
import torch.nn as nn
import numpy as np
from tqdm import tqdm
import pdb
import os
import argparse
from utils_inject import *
from baselines import *
from knowledge_neuron import *
from hardconcrete import hard_concrete
from slim import slim
def inject(args, model, tokenizer, inputs, mask):
torch.manual_seed(0)
# set tunable parameters
params = []
for n, p in model.named_parameters():
if f"{model.attr_dict['ffn_out']}.weight" in n:
p.requires_grad = True
params.append(p)
else:
p.requires_grad = False
optimizer = torch.optim.Adam(params, lr=args.lr)
if 'gpt2' not in args.model_name:
mask = mask.squeeze()
# training
model.train()
for i in range(args.epoch):
optimizer.zero_grad()
outputs = model(**inputs)
loss, logits = outputs[:2]
print(i, loss.item())
if loss.item() < 5e-2: break
loss.backward()
for ly in range(model.config.n_layer):
attr_str = f"{model.attr_dict['transformer_layer']}.{ly}.{model.attr_dict['ffn_out']}.weight.grad"
grad = get_attributes(model, attr_str)
grad *= mask[ly] # [inner, hidden] * [inner, 1] or [hidden, inner] * [inner]
optimizer.step()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--verbose", action="store_true")
parser.add_argument("--disk_dir", type=str, default="YOUR_DISK")
parser.add_argument("--model_name", type=str, default='gpt2')
parser.add_argument("--ratio", type=float, default=1e-2, help="inject/mask ratio")
parser.add_argument("--epoch", type=int, default=100)
parser.add_argument("--n_batches", type=int, default=16)
parser.add_argument("--ig_steps", type=int, default=20, help="KN, integrated gradients steps")
parser.add_argument("--lr", type=float, default=1e-2)
parser.add_argument("--lambda_l1", type=float, default=1000)
parser.add_argument("--threshold", type=float, default=1e-1)
parser.add_argument("--stop_loss", type=float, default=1e-1)
parser.add_argument("--mask_p", type=float, default=0.5, help="HC")
parser.add_argument("--beta", type=float, default=2/3, help="HC temperature")
parser.add_argument("--do_inject", action="store_true")
parser.add_argument("--do_discover", action="store_true")
parser.add_argument("--do_probs", action="store_true")
parser.add_argument("--save_ckpt", action="store_true")
parser.add_argument("--discover_method", type=str)
parser.add_argument('--seed_list', type=int, nargs='+')
parser.add_argument("--n_blocks", type=int, default=3, help="do_probs")
args = parser.parse_args()
assert args.do_inject or args.do_discover or args.do_probs
args.device = device
print(args)
data = load_data()
tokenizer, model = load_pretrained(args)
ffn_pt = get_all_ffn_weights(model) # cpu
args.inner_dim = model.inner_dim
if args.seed_list is None:
args.seed_list = list(range(len(data)))
if args.do_inject:
for seed in tqdm(args.seed_list):
args.seed = seed
args.out_dir = os.path.join(args.disk_dir, f'out_{args.model_name}', str(args.ratio), str(seed))
os.makedirs(args.out_dir, exist_ok=True)
inputs = tokenize_input(tokenizer, data[seed])
mask = generate_random_mask(args, model.config.n_layer, model.inner_dim)
inject(args, model, tokenizer, inputs, mask)
print(f"Save finetuned weights to {os.path.join(args.out_dir, 'flat_model.pt')}...")
ffn_ft = get_all_ffn_weights(model).detach().cpu()
flat_tunable_ids = torch.nonzero(mask.view(-1).cpu(), as_tuple=True)[0]
if 'gpt2' not in args.model_name: # -> [n_layer, inner_dim, hidden_dim]
ffn_ft = ffn_ft.transpose(1,2).contiguous()
ffn_ft = ffn_ft.view(-1, ffn_ft.shape[-1])[flat_tunable_ids] # [n_tuned, hidden]
print(ffn_ft.shape)
torch.save(ffn_ft, os.path.join(args.out_dir, 'flat_model.pt'))
# restore model to pretrained weights ("ffn_pt")
all_ffn_restore(model, ffn_pt.to(args.device))
if args.do_discover:
patched = False
for seed in tqdm(args.seed_list):
# fill in fintuned weights; keep the other parameters as pretrained
fill_finetuned(args, model, ffn_pt, seed)
gold_set = get_gold_set(args.out_dir)
inputs = tokenize_input(tokenizer, data[seed])
if args.discover_method == 'slim':
if not patched:
patch_slim(model)
patched = True
model.to(device) # send the coef_parameters in patch to gpu
else:
reinit_slim(model)
slim(args, model, tokenizer, inputs, gold_set)
elif args.discover_method == 'HC':
if not patched:
patch_hardconcrete(model, args.model_name, mask_p=args.mask_p, beta=args.beta)
patched = True
model.to(device)
else:
if 'gpt2' in args.model_name: # the newly loaded weights need to be transposed
transpose_conv1d(model)
reinit_hardconcrete(model)
hard_concrete(args, model, tokenizer, inputs, gold_set)
elif args.discover_method == 'zero':
fast_zero_out_vector(args, model, tokenizer, inputs, gold_set)
elif args.discover_method == 'kn':
integrated_gradients(args, model, tokenizer, inputs, gold_set)
elif args.discover_method == 'act':
largest_act(args, model, tokenizer, inputs, gold_set)