forked from bcaitech1/p3-mrc-gaama
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_pororo.py
195 lines (155 loc) · 7.04 KB
/
inference_pororo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
"""
Open-Domain Question Answering 을 수행하는 inference 코드 입니다.
대부분의 로직은 train.py 와 비슷하나 retrieval, predict
"""
from pororo import Pororo
from konlpy.tag import Mecab
import argparse
import logging
import os
import sys
from datasets import load_metric, load_from_disk, Sequence, Value, Features, Dataset, DatasetDict
from subprocess import Popen, PIPE, STDOUT
from elasticsearch import Elasticsearch
from transformers import AutoConfig, AutoModelForQuestionAnswering, AutoTokenizer
import time
from collections import defaultdict
from tqdm import tqdm
import json
import numpy as np
from transformers import (
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TrainingArguments,
set_seed,
)
from utils_qa import postprocess_qa_predictions, check_no_error, tokenize
from trainer_qa import QuestionAnsweringTrainer
from retrieval import SparseRetrieval
from arguments import (
ModelArguments,
DataTrainingArguments,
)
logger = logging.getLogger(__name__)
def main():
# 가능한 arguments 들은 ./arguments.py 나 transformer package 안의 src/transformers/training_args.py 에서 확인 가능합니다.
# --help flag 를 실행시켜서 확인할 수 도 있습니다.
# mrc = Pororo(task="mrc", lang="ko")
parser = HfArgumentParser(
(ModelArguments, DataTrainingArguments, TrainingArguments)
)
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
training_args.do_train = True
print(f"model is from {model_args.model_name_or_path}")
print(f"data is from {data_args.dataset_name}")
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
# Set the verbosity to info of the Transformers logger (on main process only):
logger.info("Training/evaluation parameters %s", training_args)
# Set seed before initializing model.
set_seed(training_args.seed)
datasets = load_from_disk(data_args.dataset_name)
print(datasets)
# Load pretrained model and tokenizer
config = AutoConfig.from_pretrained(
model_args.config_name
if model_args.config_name
else model_args.model_name_or_path,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name
if model_args.tokenizer_name
else model_args.model_name_or_path,
use_fast=True,
)
model = AutoModelForQuestionAnswering.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
)
# run passage retrieval if true
if data_args.eval_retrieval:
datasets = run_sparse_retrieval(datasets, training_args, data_args)
print("============check==============")
# eval or predict mrc model
if training_args.do_eval or training_args.do_predict:
run_mrc(data_args, training_args, model_args, datasets, tokenizer, model)
def run_sparse_retrieval(datasets, training_args, data_args):
#### retreival process ####
retriever = SparseRetrieval(tokenize_fn=tokenize,
data_path="/opt/ml/input/data",
context_path="wikipedia_documents.json",
args = data_args
)
if data_args.embedding_mode != 'bm25_new' and data_args.embedding_mode != 'elastic':
retriever.get_sparse_embedding()
if data_args.embedding_mode == 'elastic':
es = setting_elastic()
df = retriever.retrieve_elastic(datasets['validation'], topk=data_args.topk, what='val', es = es)
else:
df = retriever.retrieve(datasets['validation'], topk=data_args.topk, what='val')
if training_args.do_predict: # test data 에 대해선 정답이 없으므로 id question context 로만 데이터셋이 구성됩니다.
f = Features({'context': Value(dtype='string', id=None),
'score': Value(dtype='string', id=None),
'id': Value(dtype='string', id=None),
'question': Value(dtype='string', id=None)})
elif training_args.do_eval: # train data 에 대해선 정답이 존재하므로 id question context answer 로 데이터셋이 구성됩니다.
f = Features({'answers': Sequence(feature={'text': Value(dtype='string', id=None),
'answer_start': Value(dtype='int32', id=None)},
length=-1, id=None),
'context': Value(dtype='string', id=None),
'id': Value(dtype='string', id=None),
'question': Value(dtype='string', id=None)})
datasets = DatasetDict({'validation': Dataset.from_pandas(df, features=f)})
print(datasets)
return datasets
def write_json_file(filename, data):
with open(filename, "w+") as writer:
try:
writer.write(json.dumps(data, indent=4, ensure_ascii=False) + "\n")
except ValueError as e:
print('Writing failed! Error: {}'.format(e))
return None
def run_mrc(data_args, training_args, model_args, datasets, tokenizer, model):
# only for eval or predict
column_names = datasets["validation"].column_names
question_column_name = "question" if "question" in column_names else column_names[0]
context_column_name = "context" if "context" in column_names else column_names[1]
answer_column_name = "answers" if "answers" in column_names else column_names[2]
json_dump_data = defaultdict(set)
mrc = Pororo(task="mrc", lang="ko")
for idx, element in tqdm(enumerate(datasets['validation'])):
contexts = element['context'].split('[SEP]')
scores_softmax = element['score'].split('[SEP]')
answers = []
# topk passage 검사
assert len(contexts) == data_args.topk
for i, context in enumerate(contexts):
# print(element['question'], context)
answer = mrc(element['question'], context)
for ii in range(len(answer)):
answer[ii][2] = float(answer[ii][2]) * float(scores_softmax[i])
answers.append(answer)
# answers = mrc(element['question'], element['context'])
answers = [y for x in answers for y in x]
# exit()
# sorting
answers.sort(key=lambda t: t[2], reverse=True)
json_dump_data[element['id']] = answers[0][0]
json_write_dir = os.path.join('/opt/ml/code/outputs/test_dataset/koelectra-pororo-top10', 'predictions_pp.json')
write_json_file(json_write_dir, json_dump_data)
def setting_elastic():
es_server = Popen(['/opt/ml/elasticsearch-7.9.2/bin/elasticsearch'],
stdout=PIPE, stderr=STDOUT,
preexec_fn=lambda: os.setuid(1)
)
# time.sleep(30)
es = Elasticsearch('localhost:9200')
return es
if __name__ == "__main__":
main()