-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathAssignment1_ArshJain.py
50 lines (39 loc) · 1.35 KB
/
Assignment1_ArshJain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#code not working on VSCode
#GOOGLE COLAB LINK
"""https://colab.research.google.com/drive/1FY-F5Krpc11tG2WFL-3RQYrsdBbE495G?usp=sharing"""
import cv2
import numpy as np
import matplotlib.pyplot as plt
def detect_tennis_ball(image_path):
image = cv2.imread(image_path)
# Convert to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Apply Gaussian blur to reduce noise and improve edge detection
blurred = cv2.GaussianBlur(gray, (9, 9), 2)
# Perform Canny edge detection
edges = cv2.Canny(blurred, 50, 150)
# Use Hough Circle Transform to detect circles
circles = cv2.HoughCircles(
edges,
cv2.HOUGH_GRADIENT,
dp=1.2,
minDist=50,
param1=100,
param2=30,
minRadius=10,
maxRadius=50
)
# If some circles are detected, let's highlight them
if circles is not None:
circles = np.round(circles[0, :]).astype("int")
for (x, y, r) in circles:
# Draw the circle in the output image
cv2.circle(image, (x, y), r, (0, 255, 0), 4)
# Convert BGR image to RGB for displaying with matplotlib
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Display the resulting image using matplotlib
plt.imshow(image_rgb)
plt.axis('off') # Hide axis
plt.show()
image_path = 'ball3.jpg'
detect_tennis_ball(image_path)