-
Notifications
You must be signed in to change notification settings - Fork 1
/
Chapter_2.lyx
8414 lines (6039 loc) · 152 KB
/
Chapter_2.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.0 created this file. For more info see http://www.lyx.org/
\lyxformat 413
\begin_document
\begin_header
\textclass article
\begin_preamble
\numberwithin{figure}{section}
\numberwithin{table}{section}
\end_preamble
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman palatino
\font_sans default
\font_typewriter default
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize 12
\spacing onehalf
\use_hyperref false
\papersize default
\use_geometry true
\use_amsmath 1
\use_esint 1
\use_mhchem 1
\use_mathdots 1
\cite_engine basic
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\use_refstyle 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 20page%
\topmargin 15page%
\rightmargin 15page%
\bottommargin 15page%
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section
Cartesian Lattice
\begin_inset Newline newline
\end_inset
Q-space Reconstructions
\begin_inset CommandInset label
LatexCommand label
name "sec:Cartesian-Lattice-Q-space"
\end_inset
\end_layout
\begin_layout Subsection
Overview
\end_layout
\begin_layout Standard
Between one to two thirds of imaging voxels in the human brain's white matter
are thought to contain multiple fibre bundle crossings
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "Behrens2007NeuroImage"
\end_inset
,
\begin_inset CommandInset citation
LatexCommand cite
key "Tournier2008"
\end_inset
in which case the Diffusion Tensor model proposed by Basser et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "Basser1994"
\end_inset
breaks down.
High Angular Resolution Diffusion Imaging (HARDI)
\begin_inset CommandInset citation
LatexCommand cite
key "Tuch2002"
\end_inset
, Diffusion Spectrum Imaging (DSI)
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "callaghan1988nmr"
\end_inset
,
\begin_inset CommandInset citation
LatexCommand cite
key "wedeen2005mapping"
\end_inset
or Higher Order Tensors
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "ozarslan2003generalized"
\end_inset
,
\begin_inset CommandInset citation
LatexCommand cite
key "barmpoutis2009regularized"
\end_inset
and many more reconstruction methods have been proposed to overcome the
limitations of the Diffusion Tensor.
These methods can be divided into those which need specific acquisition
parametrizations, and those which can be used independently of q-space
structure.
For instance, for Q-ball Imaging
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "Tuch2004"
\end_inset
sampling needs to be on one or more spherical grids, and in Generalized
Q-sampling Imaging (GQI)
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "Yeh2010"
\end_inset
, requires sampling on a Cartesian grid; by contrast DTI can be used independent
ly of q-space structure.
A further division considers the level of model assumptions for the diffusion
process.
Although all methods have some underlying assumptions we generally separate
them in model-based and model-free.
Model-based methods like the Single Tensor or Multi Tensor require a number
of parameters to be fitted.
By contrast, in model-free methods fitting is not necessary and the directional
ity of the underlying tissue can be approximated by some re-parametrization
or re-transformation of the signal.
The latter is usually more efficient than fitting models with many parameters
which typically call for iterative methods.
\end_layout
\begin_layout Standard
This chapter presents, evaluates and compares different model-free methods
for the reconstruction of orientation distribution functions using diffusion
MRI data sampled on a Cartesian lattice in q-space.
This non-parametric nature of the algorithms described here allows for
the identification of multiple fibre crossings.
In addition, a new method is presented named Diffusion Nabla Imaging (DNI)
and a family of methods is defined called the Equatorial Inversion Transform
(EIT).
The EIT is a new way to represent and reconstruct the diffusion signal.
Our results show that EIT can perform better or as well as the current
state-of-the art methods i.e.
DSI and GQI.
\end_layout
\begin_layout Subsection
Theory
\end_layout
\begin_layout Standard
We start from the classical formulation shown in Eq.
\begin_inset space ~
\end_inset
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:kq"
\end_inset
of joint k-space and q-space imaging described in Callaghan
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "Callaghan1991OUP"
\end_inset
,
\begin_inset CommandInset citation
LatexCommand cite
key "callaghan1988nmr"
\end_inset
using the narrow pulse gradient spin echo (PGSE) sequence of Tanner and
Stejskal
\begin_inset Formula
\begin{eqnarray}
RF(\mathbf{k},\mathbf{q}) & = & \int\rho(\mathbf{v})\exp(i2\pi\mathbf{k}\cdot\mathbf{v})\int P_{\Delta}(\mathbf{v},\mathbf{r})\exp(i2\pi\mathbf{q}\cdot\mathbf{r})\, d\mathbf{r\,}d\mathbf{v}\label{eq:kq}
\end{eqnarray}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
noindent
\end_layout
\end_inset
Here
\begin_inset Formula $RF$
\end_inset
represents the complex RF signal measured at spatial wave vector
\begin_inset Formula $\mathbf{k}$
\end_inset
and magnetic gradient wave vector
\begin_inset Formula $\mathbf{q}$
\end_inset
,
\begin_inset Formula $\rho$
\end_inset
is the local spin density (number of protons per unit volume contributing
to the RF signal),
\begin_inset Formula $\Delta$
\end_inset
is the time between diffusion gradients,
\begin_inset Formula $P_{\Delta}$
\end_inset
is the average diffusion propagator (transition probability distribution),
\series bold
\begin_inset Formula $\mathbf{v}$
\end_inset
\series default
is the voxel coordinate, and
\begin_inset Formula $\mathbf{r}$
\end_inset
is the diffusion displacement.
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
the narrow pulse approximation allows us to easily understand the intrinsic
Fourier relationship between the MR signal and the underlying water mobility
that is a mirror of the tissue compartmentation.
However, in practice, the duration of the diffusion-encoding gradient is
not negligible compared to the diffusion time (i.e., ), so the formalism
developed above must be reexamined.
Interestingly, the reconstruction described in Eq.
[4]
\end_layout
\end_inset
\end_layout
\begin_layout Standard
The k-space reconstruction with the narrow pulse approximation
\begin_inset CommandInset citation
LatexCommand cite
key "Wedeen"
\end_inset
gives us diffusion weighted image data
\begin_inset Formula $S$
\end_inset
which reveal the average propagator
\begin_inset Formula $P_{\Delta}$
\end_inset
of each voxel
\begin_inset Formula
\begin{eqnarray}
S(\mathbf{v},\mathbf{q}) & = & \int\rho(\mathbf{v})P_{\Delta}(\mathbf{v},\mathbf{r})\exp(i2\pi\mathbf{q}\cdot\mathbf{r})d\mathbf{r}\label{eq:W}
\end{eqnarray}
\end_inset
\end_layout
\begin_layout Standard
For the rest of the chapter we consider each voxel independently and assume
intra-voxel spatial homogeneity so we can drop explicit reference to
\begin_inset Formula $\mathbf{v}$
\end_inset
and
\begin_inset Formula $\Delta$
\end_inset
.
We note in passing that the shape of
\begin_inset Formula $P_{\Delta}$
\end_inset
and hence of the ODF may change with different values of
\begin_inset Formula $\Delta$
\end_inset
.
We will not pursue this matter further here.
We can also replace the spin density
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
\color none
\lang british
\begin_inset Formula $\rho(\mathbf{v})$
\end_inset
\family default
\series default
\shape default
\size default
\emph default
\bar default
\noun default
\color inherit
\lang english
with
\begin_inset Formula $S_{0}$
\end_inset
i.e.
the measured signal without diffusion weighting
\begin_inset Formula $\mathbf{q}=\mathbf{0}$
\end_inset
.
Therefore we can write
\begin_inset Formula
\begin{eqnarray}
S(\mathbf{q}) & = & S_{0}\int P(\mathbf{r})\exp(i2\pi\mathbf{q}\cdot\mathbf{r})d\mathbf{r}\label{eq:S}
\end{eqnarray}
\end_inset
\end_layout
\begin_layout Standard
By applying the 3D Fourier transform in Eq.
\begin_inset space ~
\end_inset
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:S"
\end_inset
we can reconstruct the average propagator also known as the diffusion spectrum
\begin_inset CommandInset citation
LatexCommand cite
key "Wedeen"
\end_inset
or diffusion propagator
\begin_inset Formula
\begin{eqnarray}
P(\mathbf{r}) & = & S_{0}^{-1}\int S(\mathbf{q})\exp(-i2\pi\mathbf{q}\cdot\mathbf{r})d\mathbf{q}\label{eq:P}
\end{eqnarray}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
noindent
\end_layout
\end_inset
It was shown by Wedeen et al.
\begin_inset CommandInset citation
LatexCommand cite
key "Wedeen"
\end_inset
that the dMRI signal is positive for any type of spin motion without net
flux (i.e.
\begin_inset ERT
status open
\begin_layout Plain Layout
~
\end_layout
\end_inset
spin displacements due to thermal molecular agitation) or other random fluxes
such as intravoxel incoherent motion.
Under this assumption we can replace the complex signal
\begin_inset Formula $S$
\end_inset
with its modulus
\begin_inset Formula $|S|$
\end_inset
in Eq.
\begin_inset space ~
\end_inset
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:P"
\end_inset
\begin_inset Formula
\begin{eqnarray}
P(\mathbf{r}) & = & S_{0}^{-1}\int|S(\mathbf{q})|\exp(-i2\pi\mathbf{q}\cdot\mathbf{r})d\mathbf{q}\label{eq:P_modulus}
\end{eqnarray}
\end_inset
\end_layout
\begin_layout Standard
The modulus of the signal coincides with the output of the standard MRI
scanners as dMRI and that simplifies the acquisition procedure.
It represents the density of the average relative spin displacement in
a voxel.
In other words,
\begin_inset Formula $P(\mathbf{r})$
\end_inset
is a measure of the probability that a spin in a chosen voxel , during
the experimental mixing time
\begin_inset Formula $\Delta$
\end_inset
, would make a vector displacement
\begin_inset Formula $\mathbf{r}$
\end_inset
.
We can visualize the propagator for every voxel as a 3D density volume
(see Fig.
\begin_inset space ~
\end_inset
\begin_inset CommandInset ref
LatexCommand ref
reference "Flo:ODF"
\end_inset
).
\end_layout
\begin_layout Standard
In the classical DSI acquisition, at each location, diffusion-weighted images
are acquired for
\begin_inset Formula $N=515$
\end_inset
or fewer values of q-encoding, comprising in q-space the points of a cubic
lattice within the sphere of five lattice units in radius.
Therefore,
\begin_inset Formula
\begin{eqnarray}
\mathbf{q} & = & \alpha\mathbf{q}_{x}+\beta\mathbf{q}_{y}+\gamma\mathbf{q}_{z}\label{eq:q_lattice}
\end{eqnarray}
\end_inset
\end_layout
\begin_layout Standard
\noindent
\align block
with
\begin_inset Formula $\alpha,\beta,\gamma\in\mathbb{Z}^{+}$
\end_inset
and
\begin_inset Formula $(\alpha^{2}+\beta^{2}+\gamma^{2})^{1/2}\leq5$
\end_inset
.
The signal is premultiplied by a Hanning window before Fourier transform
in order to ensure a smooth attenuation of the signal at high
\begin_inset Formula $q$
\end_inset
values.
Often, to obtain data for the complete grid of
\begin_inset Formula $515$
\end_inset
q-vectors (which also means that we need to collect
\begin_inset Formula $515$
\end_inset
diffusion weighted volumes), the overall acquisition time would be too
long and a smaller number of unique q-vectors are employed for just a single
hemisphere usually between
\begin_inset Formula $101$
\end_inset
to
\begin_inset Formula $257$
\end_inset
points
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "Kuo"
\end_inset
.
This is valid because the underlying self-diffusion process is symmetric
and so the signal is symmetric, therefore the vectors can be mapped on
the other hemisphere to create the full q-space.
\end_layout
\begin_layout Standard
Since we are mainly interested in the angular structure of the underlying
tissue, we further simplify the data by taking the weighted radial summation
of
\begin_inset Formula $P(\mathbf{r})$
\end_inset
\lang british
\begin_inset Formula
\begin{equation}
\psi_{DSI}(\hat{\mathbf{u}})=\int_{0}^{\infty}P(r\hat{\mathbf{u}})r^{2}dr\label{eq:ODF_DSI}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
noindent
\end_layout
\end_inset
This defines the
\lang british
orientation density function (ODF) for DSI which measures the quantity of
diffusion in the direction of the unit vector
\begin_inset Formula $\mathbf{\hat{u}}$
\end_inset
where
\begin_inset Formula $\mathbf{r=}r\hat{\mathbf{u}}$
\end_inset
.
\end_layout
\begin_layout Standard
\lang british
Note at this point that in order to find the ODF we have to first create
the diffusion propagator by
\lang english
applying
\lang british
the Fourier transform on the lattice.
\lang english
Yeh et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "Yeh2010"
\end_inset
proposed a direct way to calculate a slightly different ODF using the Cosine
transform.
\end_layout
\begin_layout Standard
\align block
In order to represent the average propagator in the scale of spin quantity
Yeh et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "Yeh2010"
\end_inset
introduced the
\emph on
spin density function
\emph default
\begin_inset Formula $Q$
\end_inset
which is estimated by scaling the average propagator
\begin_inset Formula $P_{\Delta}$
\end_inset
with the spin density
\begin_inset Formula $\rho$
\end_inset
, i.e.
\begin_inset Formula $Q(\mathbf{r})=\rho P(\mathbf{r})=S_{0}P(\mathbf{r})$
\end_inset
.
From Eq.
\begin_inset space ~
\end_inset
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:S"
\end_inset
we obtain
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
\color none
\lang british
\begin_inset Formula
\begin{eqnarray}
S(\mathbf{q}) & = & \int Q(\mathbf{r})\exp(i2\pi\mathbf{q}\cdot\mathbf{r})d\mathbf{r}\label{eq:W2Q}
\end{eqnarray}
\end_inset
\family default
\series default
\shape default
\size default
\emph default
\bar default
\noun default
\color inherit
\lang english
We can apply the Fourier transform again to Eq.
\begin_inset space ~
\end_inset
\begin_inset CommandInset ref
LatexCommand ref
reference "eq:W2Q"
\end_inset
and obtain
\begin_inset Formula
\begin{eqnarray}
Q(\mathbf{r}) & = & \int S(\mathbf{q})exp(-i2\pi\mathbf{q}\cdot\mathbf{r})d\mathbf{q}\label{eq:Q2S_complex}
\end{eqnarray}
\end_inset
Because
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
\color none
\lang british
\begin_inset Formula $Q(\mathbf{r})$
\end_inset
\family default
\series default
\shape default
\size default
\emph default
\bar default
\noun default
\color inherit
\lang english
is real and
\begin_inset Formula $S(\mathbf{q})$
\end_inset
is symmetric (even), i.e.
\begin_inset Formula $S(\mathbf{q})=S(-\mathbf{q})$
\end_inset
, we can use directly the Fourier Cosine transform (see section
\begin_inset CommandInset ref
LatexCommand ref
reference "sub:The-cosine-transform"
\end_inset
) to calculate
\begin_inset Formula
\begin{eqnarray}
Q(\mathbf{r}) & = & \int S(\mathbf{q})cos(2\pi\mathbf{q}\cdot\mathbf{r})d\mathbf{q}\label{eq:cosine_transform}
\end{eqnarray}
\end_inset
\end_layout
\begin_layout Standard
\noindent
and obtain the
\begin_inset Quotes eld
\end_inset
spin
\begin_inset Quotes erd
\end_inset
orientation distribution function (SDF)
\begin_inset Formula $\psi_{GQI}$
\end_inset
from an unweighted truncated radial projection
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{eqnarray}
\psi_{GQI}(\mathbf{\hat{u}}) & = & \intop_{0}^{\lambda}Q(r\mathbf{\hat{u}})dr\label{eq:SDF}\\
& = & \intop_{0}^{\lambda}\int S(\mathbf{q})\cos(2\pi r\mathbf{q}\cdot\mathbf{\hat{u}})d\mathbf{q}dr\\
& = & \lambda\int S(\mathbf{q})\mathtt{sinc}(2\pi\lambda\mathbf{q}\cdot\mathbf{\hat{u}})d\mathbf{q}
\end{eqnarray}
\end_inset
\end_layout
\begin_layout Standard
\noindent
\align block
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
noindent
\end_layout
\end_inset
where
\begin_inset Formula $\lambda$
\end_inset
is a constant called the diffusion sampling length.
This parameter acts as a smoothing factor.
The higher
\begin_inset Formula $\lambda$
\end_inset
the more detailed the SDF will be but also more noisy.
This ODF was used as the basis of the analysis of the GQI method.
It provides a simple direct analytical solution of the ODF which can be
written in a simple matrix form
\begin_inset Formula
\begin{eqnarray}
\bm{\psi}_{GQI}= & \mathbf{s}\cdot\mathtt{sinc}((6D\cdot G\circ\mathbf{b}\circ\mathbb{1})\cdot U^{T})\lambda/\pi\label{eq:GQI_analytical}
\end{eqnarray}
\end_inset
\end_layout
\begin_layout Standard
\noindent
\align block
where
\begin_inset Formula $\cdot$
\end_inset
denotes standard matrix or vector dot product,
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
\color none
\lang british
\begin_inset Formula $\circ$
\end_inset
\family default
\series default
\shape default
\size default
\emph default
\bar default
\noun default
\color inherit
\lang english
denotes the Hadamard product,
\begin_inset Formula $\bm{\psi}{}_{GQI}$
\end_inset
as a
\begin_inset Formula $M$
\end_inset
-dimensional vector with components corresponding to the selected directions
\begin_inset Formula $\hat{\mathbf{u}}$
\end_inset
on the ODF sphere,
\begin_inset Formula $\mathbf{s}$
\end_inset
is a vector with all the signal values, D=0.00251
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "canalesrodriguez2009mdq"
\end_inset
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
\color none
\lang british
where
\begin_inset Formula $D$
\end_inset
is a constant known as the free water diffusion coefficient
\family default
\series default
\shape default