-
Notifications
You must be signed in to change notification settings - Fork 1
/
Chapter_3.lyx
7957 lines (5680 loc) · 139 KB
/
Chapter_3.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.0 created this file. For more info see http://www.lyx.org/
\lyxformat 413
\begin_document
\begin_header
\textclass article
\begin_preamble
\numberwithin{figure}{section}
\numberwithin{table}{section}
\end_preamble
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman palatino
\font_sans default
\font_typewriter default
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize 12
\spacing onehalf
\use_hyperref false
\papersize a4paper
\use_geometry true
\use_amsmath 1
\use_esint 1
\use_mhchem 1
\use_mathdots 1
\cite_engine basic
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\use_refstyle 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 20page%
\topmargin 15page%
\rightmargin 15page%
\bottommargin 15page%
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section
Tracking with
\begin_inset Newline newline
\end_inset
Euler Delta Crossings
\begin_inset CommandInset label
LatexCommand label
name "sec:Euler-Delta-Crossings"
\end_inset
\end_layout
\begin_layout Subsection
Overview
\end_layout
\begin_layout Standard
Tractography methods provide tools to resolve major neuronal fibre bundles
non-invasively and in-vivo
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "Catani2002NeuroImage"
\end_inset
.
Since the development of the first tractography algorithms
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "MCC+99,CLC+99"
\end_inset
nearly
\begin_inset Formula $12$
\end_inset
years ago a great number of methods have been published.
Often these algorithms depend strictly on the underlying voxel model or
acquisition paradigm making it difficult for other researchers to apply
their own reconstruction methods and evaluate their data sets.
\end_layout
\begin_layout Standard
In this work we designed a purely deterministic method which is fast, accurate
and all-inclusive.
Most importantly it can have as input model-based or model-free reconstruction
algorithms of most known algorithms.
We call this algorithm EuDX.
Eu stands for Euler integration, D stands for Delta function which is a
function that checks for many different stopping criteria and X stands
for fibre crossings.
EuDX can deal with any number of crossing fibres as long as the reconstruction
algorithm supports them.
The purpose of this algorithm is to be faithful to the reconstruction results
rather than try to correct or enhance them by introducing regional or global
considerations which is the topic of other methods reviewed below.
Therefore, EuDX serves mainly as a robust method for quickly inspecting
different reconstruction results using streamlines.
EuDX is noise-friendly i.e.
if a voxel is too noisy then EuDX will stop tracking on that voxel.
This property is often useful when validating underlying reconstruction
models.
Branching is also supported by a combination of trilinear interpolation
and propagation along multiple peaks per voxel.
This method is an extension of the method used by Conturo et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "CLC+99"
\end_inset
and Yeh et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "Yeh2010"
\end_inset
with the additional support for propagation along multiple fibre directions.
\end_layout
\begin_layout Standard
In sections
\begin_inset CommandInset ref
LatexCommand ref
reference "sub:Tractography"
\end_inset
,
\begin_inset CommandInset ref
LatexCommand ref
reference "sub:Known-problems"
\end_inset
we discussed some of the ideas and the problems behind the most popular
propagation methods; deterministic and probabilistic.
The focus of this section is to give a more general overview and introduce
many more methods.
\end_layout
\begin_layout Standard
Most tractography techniques, as pointed out in Sotiropoulos thesis
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "sotiropoulos2010processing"
\end_inset
, can be grouped in three categories: a) local, b) global and c) simulated.
Local approaches propagate a curve from a starting (seed) point using locally
greedy criteria, i.e.
tracking sequentially through orientation estimates in adjacent voxels.
Global approaches identify the best path between two points of interest,
according to some optimization criterion, rather than identifying paths
arising from a single point.
Simulated approaches comprise of algorithms that simulate the diffusion
process or solve the diffusion equation to reconstruct white matter tracks.
A detailed literature review is given below.
\end_layout
\begin_layout Subsubsection
Local
\end_layout
\begin_layout Standard
\series bold
Deterministic
\series default
tractography was the first to appear.
Tracks (also known as streamlines) are created as trajectories in the form
of polylines; orthograde and retrograde along an initial direction at a
specific point (seed) in the 3D volume.
In FACT
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "MCC+99"
\end_inset
tracks are propagated in unequal steps governed by the entry point of the
streamline in the voxel (see Fig.
\begin_inset ERT
status open
\begin_layout Plain Layout
~
\end_layout
\end_inset
\begin_inset CommandInset ref
LatexCommand ref
reference "fig:FACTvsEuDX"
\end_inset
).
Euler integration with equal steps was used in Conturo et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "CLC+99"
\end_inset
and similarly Runge-Kutta integration was used in Basser et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "BPP+00"
\end_inset
.
Deterministic approaches usually stop propagating when a low anisotropy
region (usually FA <
\begin_inset Formula $0.2$
\end_inset
) is found.
This is useful in order to avoid propagation within the CSF where anatomical
tracts do not exist or within deep gray matter regions where tracking is
uncertain.
They usually also check for large angular changes (e.g.
larger than
\begin_inset Formula $90{}^{\circ}$
\end_inset
) between successive steps to avoid unrealistically sharp turns.
\end_layout
\begin_layout Standard
Deterministic methods can also be utilized when multiple orientations are
estimated in a single voxel (crossing fibres).
These orientations can for example be obtained as the principal eigenvectors
of multiple Tensors fitted to the data
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "Tuch2002ThesisMIT"
\end_inset
, or from the local peaks of the diffusion ODF estimated using DSI
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "wedeen2005mapping"
\end_inset
and QBI
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "Tuch2004"
\end_inset
or from the orientations from the fibre ODFs
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "tournier2004direct"
\end_inset
.
There are different approaches for propagating across voxels where more
than one fibre orientation has been identified.
One approach is, upon entering a voxel, to choose the orientation that
produces the smallest curvature with the incoming path used in Wedeen et
al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "WWS+08"
\end_inset
.
Another approach follows all orientations that do not exceed a curvature
threshold, by initiating a new streamline per orientation using in Chao
et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "chao2008multiple"
\end_inset
and Descoteaux et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "Descoteaux2009"
\end_inset
.
\end_layout
\begin_layout Standard
An interesting point is that most methods of this category utilize only
the fibre orientation estimates.
Tensor deflection tractography (TEND) proposed by
\lang british
Lazar et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "LWT+03"
\end_inset
\lang english
is a FACT variant that uses the whole DTI Tensor rather than just its principal
eigenvector to determine the direction of curve propagation.
\end_layout
\begin_layout Standard
All the methods described up to this point provide binary connectivity informati
on i.e.
a voxel B can be either connected or not connected to the seed S, depending
on whether a streamline from S passes through B.
\end_layout
\begin_layout Standard
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
Streamline tractography utilizes only the fibre orientation estimates.
In general, more information is available upon post-processing ofDWimages.
For example, with DTI a diffusion tensor is computed.
For perfectly spherical tensors the deflection angle is zero, while for
oblate tensors, the deflection is towards the ellip- soid plane.
Tensor deflection tractography is less sensitive to noise than streamline,
as shown in simulations for straight tracts (Lazar et al., 2003).
It can also propagate through regions of perpendicular fibre crossings,
where the principal eigenvector of the underlying oblate Tensor is meaningless.
However, Tensor deflection underestimates curvature for curved tracts.
Furthermore, TEND results should be interpreted carefully, as an incoming
direction that coincides with any of the Tensor eigenvectors will not be
deflected by that Tensor; even if it is perpendicular to the principal
eigenvector of a highly prolate Tensor (Lazar et al., 2003).
All the methods presented in this section are deterministic and provide
binary connectivity information.
A voxel B can be either connected or not connected to the seed S, depending
on whether a streamline from S passes through B.
To tackle this issue, a group of probabilistic tractography approaches
have been developed and these are presented in the following section.
\end_layout
\end_inset
\lang british
\begin_inset Note Note
status collapsed
\begin_layout Plain Layout
\lang british
Other deterministic approaches can be found here A recent deterministic
algorithm called Tensorlines
\begin_inset CommandInset citation
LatexCommand cite
key "weinstein1999tad"
\end_inset
shares the problems of the other deterministic algorithms by failing in
relatively sharp turns and Meyer's Loop.
Furthermore, because these methods need a continuous field this necessitates
the use of interpolation e.g.
nearest, bicubic or trilinear.
The amount and type of interpolation is another factor that can change
dramatically the results of tractography and it is very rarely reported.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\series bold
Probabilistic
\series default
tractography was introduced by Parker et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "Parker2003"
\end_inset
and Behrens et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "Behrens2003MRM"
\end_inset
.
Here the standard procedure is to calculate a spatial distribution of tracks
arising from a single seed rather than a single track.
In each propagation step of each streamline, a random perturbation of the
underlying fibre orientation estimate is followed.
Perturbations are generated using functions that characterize the uncertainty
in the fibre orientation within each voxel.
A probabilistic index of connectivity (PICo) is defined between a seed
and an arbitrary point as
\begin_inset Formula $M/N$
\end_inset
; where
\begin_inset Formula $N$
\end_inset
is the number of all the tracks that start from the seed and
\begin_inset Formula $M$
\end_inset
is the number of tracks that traverse the seed and the arbitrary point.
\end_layout
\begin_layout Standard
Probabilistic approaches mainly differ in the way that the orientation uncertain
ty is assessed.
Most commonly a Bayesian framework will be used to calculate the posterior
probability of the reconstruction model's orientation parameters
\begin_inset CommandInset citation
LatexCommand cite
key "Behrens2003MRM"
\end_inset
,
\begin_inset CommandInset citation
LatexCommand cite
key "Behrens2007NeuroImage"
\end_inset
,
\begin_inset CommandInset citation
LatexCommand cite
key "hosey2005inference"
\end_inset
,
\begin_inset CommandInset citation
LatexCommand cite
key "friman2006bayesian"
\end_inset
and
\begin_inset CommandInset citation
LatexCommand cite
key "zhang2009probabilistic"
\end_inset
.
In Behrens et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "Behrens2003MRM"
\end_inset
,
\begin_inset CommandInset citation
LatexCommand cite
key "Behrens2007NeuroImage"
\end_inset
Monte Carlo-Markov chain (MCMC) was used to sample the orientation posterior
distribution.
In Friman et al.
\begin_inset CommandInset citation
LatexCommand cite
key "friman2006bayesian"
\end_inset
the posterior was computed numerically after using Dirac priors.
In Zhange et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "zhang2009probabilistic"
\end_inset
particle filtering was used for the same purpose.
\end_layout
\begin_layout Standard
\series bold
Bootstrap
\series default
tractography is another method which characterizes the uncertainty of the
fibre orientation.
Pajevic et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "pajevic2003parametric"
\end_inset
and Lazar et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "lazar2005bootstrap"
\end_inset
are two of the first to apply this method in dMRI.
This is a non-parametric approach where a diffusion acquisition is repeated
many times creating a large set of images for the same subject.
Some images from this set are drawn in random with replacement.
This process gives a single bootstrap sample.
Drawing many samples will give a distribution for the fibre orientation.
The advantage of bootstrap tractography is that no ad-hoc assumptions are
made on the noise and it is sensitive to all sources of variability that
affect the acquired data set.
The disadvantage is that many repeated acquisitions are required; at least
\begin_inset Formula $5$
\end_inset
for DTI according to O'Gorman et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "o2006just"
\end_inset
.
\end_layout
\begin_layout Standard
Model-based residual bootstrap offers an alternative, since it requires
only a single data acquisition (Chung et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "chung2006comparison"
\end_inset
, Berman et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "berman2008probabilistic"
\end_inset
, Haroon et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "haroon2009using"
\end_inset
, Jones et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "jones2008tractography"
\end_inset
).
A single bootstrap sample can then be generated by permuting freely the
residuals (or just the signs of the residuals using wild boostrap Jones
et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "jones2008tractography"
\end_inset
, Whitcher et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "whitcher2008using"
\end_inset
) between all model predicted values.
The bootstrap technique was first introduced by Efron
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "efron1979bootstrap"
\end_inset
in
\begin_inset Formula $1979$
\end_inset
.
\end_layout
\begin_layout Standard
\series bold
Other probabilistic
\emph on
\series default
\emph default
approaches estimate the orientation uncertainty as an empirically defined
function.
For example, in Parker et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "Parker2003"
\end_inset
this is determined using the value of FA.
The higher the FA the higher the confidence on the principal eigenvector
of the Tensor.
In Parker and Alexander
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "parker2003probabilistic"
\end_inset
, Monte-Carlo simulations are used to predict the orientation uncertainty
for multiple Tensors and later for PAS
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "parker2005probabilistic"
\end_inset
.
In Descoteaux et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "descoteaux2009deterministic"
\end_inset
, the fODF was used for the same purpose.
Cook et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "cook2004modelling"
\end_inset
used a Watson distribution and Seunarine et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "seunarine2007exploiting"
\end_inset
used a Bingham distribution.
The work of Bjornemo et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "bjornemoMICCAI02"
\end_inset
can also be classified in the same category who created a regularized stochasti
c method for probabilistic tractography.
This method utilizes the principles of a statistical Monte Carlo method
called Sequential Importance Sampling and Resampling (SISR).
This technique is similar with particle filters.
The disadvantage of the method is that it has strong assumptions for the
Single Tensor as the reconstruction model.
However, this is often the case with most tracking algorithms.
\end_layout
\begin_layout Subsubsection
Global
\end_layout
\begin_layout Standard
A limitation of probabilistic tractography is that the probabilistic index
of connectivity decreases with distance from the seed point (see section
\begin_inset space ~
\end_inset
\begin_inset CommandInset ref
LatexCommand ref
reference "sub:Tractography"
\end_inset
,
\begin_inset CommandInset ref
LatexCommand ref
reference "sub:Known-problems"
\end_inset
).
Another limitation is that it is still sensitive to local noise.
Global approaches try to overcome these limitations by being distance-independe
nt and by increasing resistance against noise in a global fashion.
These are achieved by finding an optimal path between two voxels, according
to a global property
\begin_inset CommandInset citation
LatexCommand cite
key "DiffMRIBook"
\end_inset
.
\end_layout
\begin_layout Standard
Jbabdi et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "jbabdi2007bayesian"
\end_inset
developed a
\series bold
Global Bayesian
\series default
model to derive the posterior probability of connections.
The path trajectories represented by splines are compatible with the local
fibre orientations in regions with low uncertainty estimates.
In regions with high uncertainty, the global connectivity information constrain
s the local parameter estimation and affects the path sampling.
\end_layout
\begin_layout Standard
\series bold
Front evolution
\series default
techniques often employ fast marching techniques.
The front expands from the seed neighbours to the next neighbouring nodes
with speeds determined by the local fibre orientations.
As the front propagates, a time of front arrival can be associated with
each visited voxel.
Once all image voxels have been traversed by the front, paths of connection
can be obtained going backwards in the map of front arrival times.
Starting from an arbitrary voxel, a gradient descent algorithm can find
the fastest route back to the seed.
A connectivity index can be associated with each path, representing either
the weakest link along the path or the agreement between the path tangents
and the underlying vector orientation field (see Parker et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "parker2002estimating"
\end_inset
, Tournier et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "tournier2003diffusion"
\end_inset
, Cambell et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "campbell2005flow"
\end_inset
, Fletcher et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "fletcher2007volumetric"
\end_inset
and Gigandet et al.
\begin_inset space ~
\end_inset
\begin_inset CommandInset citation
LatexCommand cite
key "gigandet2009global"