forked from lh3/bwa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkthread.c
256 lines (228 loc) · 6.69 KB
/
kthread.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#include <pthread.h>
#include <stdlib.h>
#include <limits.h>
/************
* kt_for() *
************/
struct kt_for_t;
typedef struct {
struct kt_for_t *t;
long i;
} ktf_worker_t;
typedef struct kt_for_t {
int n_threads;
long n;
ktf_worker_t *w;
void (*func)(void*,long,int);
void *data;
} kt_for_t;
static inline long steal_work(kt_for_t *t)
{
int i, min_i = -1;
long k, min = LONG_MAX;
for (i = 0; i < t->n_threads; ++i)
if (min > t->w[i].i) min = t->w[i].i, min_i = i;
k = __sync_fetch_and_add(&t->w[min_i].i, t->n_threads);
return k >= t->n? -1 : k;
}
static void *ktf_worker(void *data)
{
ktf_worker_t *w = (ktf_worker_t*)data;
long i;
for (;;) {
i = __sync_fetch_and_add(&w->i, w->t->n_threads);
if (i >= w->t->n) break;
w->t->func(w->t->data, i, w - w->t->w);
}
while ((i = steal_work(w->t)) >= 0)
w->t->func(w->t->data, i, w - w->t->w);
pthread_exit(0);
}
void kt_for(int n_threads, void (*func)(void*,long,int), void *data, long n)
{
if (n_threads > 1) {
int i;
kt_for_t t;
pthread_t *tid;
t.func = func, t.data = data, t.n_threads = n_threads, t.n = n;
t.w = (ktf_worker_t*)alloca(n_threads * sizeof(ktf_worker_t));
tid = (pthread_t*)alloca(n_threads * sizeof(pthread_t));
for (i = 0; i < n_threads; ++i)
t.w[i].t = &t, t.w[i].i = i;
for (i = 0; i < n_threads; ++i) pthread_create(&tid[i], 0, ktf_worker, &t.w[i]);
for (i = 0; i < n_threads; ++i) pthread_join(tid[i], 0);
} else {
long j;
for (j = 0; j < n; ++j) func(data, j, 0);
}
}
/***************************
* kt_for with thread pool *
***************************/
struct kt_forpool_t;
typedef struct {
struct kt_forpool_t *t;
long i;
int action;
} kto_worker_t;
typedef struct kt_forpool_t {
int n_threads, n_pending;
long n;
pthread_t *tid;
kto_worker_t *w;
void (*func)(void*,long,int);
void *data;
pthread_mutex_t mutex;
pthread_cond_t cv_m, cv_s;
} kt_forpool_t;
static inline long kt_fp_steal_work(kt_forpool_t *t)
{
int i, min_i = -1;
long k, min = LONG_MAX;
for (i = 0; i < t->n_threads; ++i)
if (min > t->w[i].i) min = t->w[i].i, min_i = i;
k = __sync_fetch_and_add(&t->w[min_i].i, t->n_threads);
return k >= t->n? -1 : k;
}
static void *kt_fp_worker(void *data)
{
kto_worker_t *w = (kto_worker_t*)data;
kt_forpool_t *fp = w->t;
for (;;) {
long i;
int action;
pthread_mutex_lock(&fp->mutex);
if (--fp->n_pending == 0)
pthread_cond_signal(&fp->cv_m);
w->action = 0;
while (w->action == 0) pthread_cond_wait(&fp->cv_s, &fp->mutex);
action = w->action;
pthread_mutex_unlock(&fp->mutex);
if (action < 0) break;
for (;;) { // process jobs allocated to this worker
i = __sync_fetch_and_add(&w->i, fp->n_threads);
if (i >= fp->n) break;
fp->func(fp->data, i, w - fp->w);
}
while ((i = kt_fp_steal_work(fp)) >= 0) // steal jobs allocated to other workers
fp->func(fp->data, i, w - fp->w);
}
pthread_exit(0);
}
void *kt_forpool_init(int n_threads)
{
kt_forpool_t *fp;
int i;
fp = (kt_forpool_t*)calloc(1, sizeof(kt_forpool_t));
fp->n_threads = fp->n_pending = n_threads;
fp->tid = (pthread_t*)calloc(fp->n_threads, sizeof(pthread_t));
fp->w = (kto_worker_t*)calloc(fp->n_threads, sizeof(kto_worker_t));
for (i = 0; i < fp->n_threads; ++i) fp->w[i].t = fp;
pthread_mutex_init(&fp->mutex, 0);
pthread_cond_init(&fp->cv_m, 0);
pthread_cond_init(&fp->cv_s, 0);
for (i = 0; i < fp->n_threads; ++i) pthread_create(&fp->tid[i], 0, kt_fp_worker, &fp->w[i]);
pthread_mutex_lock(&fp->mutex);
while (fp->n_pending) pthread_cond_wait(&fp->cv_m, &fp->mutex);
pthread_mutex_unlock(&fp->mutex);
return fp;
}
void kt_forpool_destroy(void *_fp)
{
kt_forpool_t *fp = (kt_forpool_t*)_fp;
int i;
for (i = 0; i < fp->n_threads; ++i) fp->w[i].action = -1;
pthread_cond_broadcast(&fp->cv_s);
for (i = 0; i < fp->n_threads; ++i) pthread_join(fp->tid[i], 0);
pthread_cond_destroy(&fp->cv_s);
pthread_cond_destroy(&fp->cv_m);
pthread_mutex_destroy(&fp->mutex);
free(fp->w); free(fp->tid); free(fp);
}
void kt_forpool(void *_fp, void (*func)(void*,long,int), void *data, long n)
{
kt_forpool_t *fp = (kt_forpool_t*)_fp;
long i;
if (fp && fp->n_threads > 1) {
fp->n = n, fp->func = func, fp->data = data, fp->n_pending = fp->n_threads;
for (i = 0; i < fp->n_threads; ++i) fp->w[i].i = i, fp->w[i].action = 1;
pthread_mutex_lock(&fp->mutex);
pthread_cond_broadcast(&fp->cv_s);
while (fp->n_pending) pthread_cond_wait(&fp->cv_m, &fp->mutex);
pthread_mutex_unlock(&fp->mutex);
} else for (i = 0; i < n; ++i) func(data, i, 0);
}
/*****************
* kt_pipeline() *
*****************/
struct ktp_t;
typedef struct {
struct ktp_t *pl;
int64_t index;
int step;
void *data;
} ktp_worker_t;
typedef struct ktp_t {
void *shared;
void *(*func)(void*, int, void*);
int64_t index;
int n_workers, n_steps;
ktp_worker_t *workers;
pthread_mutex_t mutex;
pthread_cond_t cv;
} ktp_t;
static void *ktp_worker(void *data)
{
ktp_worker_t *w = (ktp_worker_t*)data;
ktp_t *p = w->pl;
while (w->step < p->n_steps) {
// test whether we can kick off the job with this worker
pthread_mutex_lock(&p->mutex);
for (;;) {
int i;
// test whether another worker is doing the same step
for (i = 0; i < p->n_workers; ++i) {
if (w == &p->workers[i]) continue; // ignore itself
if (p->workers[i].step <= w->step && p->workers[i].index < w->index)
break;
}
if (i == p->n_workers) break; // no workers with smaller indices are doing w->step or the previous steps
pthread_cond_wait(&p->cv, &p->mutex);
}
pthread_mutex_unlock(&p->mutex);
// working on w->step
w->data = p->func(p->shared, w->step, w->step? w->data : 0); // for the first step, input is NULL
// update step and let other workers know
pthread_mutex_lock(&p->mutex);
w->step = w->step == p->n_steps - 1 || w->data? (w->step + 1) % p->n_steps : p->n_steps;
if (w->step == 0) w->index = p->index++;
pthread_cond_broadcast(&p->cv);
pthread_mutex_unlock(&p->mutex);
}
pthread_exit(0);
}
void kt_pipeline(int n_threads, void *(*func)(void*, int, void*), void *shared_data, int n_steps)
{
ktp_t aux;
pthread_t *tid;
int i;
if (n_threads < 1) n_threads = 1;
aux.n_workers = n_threads;
aux.n_steps = n_steps;
aux.func = func;
aux.shared = shared_data;
aux.index = 0;
pthread_mutex_init(&aux.mutex, 0);
pthread_cond_init(&aux.cv, 0);
aux.workers = (ktp_worker_t*)alloca(n_threads * sizeof(ktp_worker_t));
for (i = 0; i < n_threads; ++i) {
ktp_worker_t *w = &aux.workers[i];
w->step = 0; w->pl = &aux; w->data = 0;
w->index = aux.index++;
}
tid = (pthread_t*)alloca(n_threads * sizeof(pthread_t));
for (i = 0; i < n_threads; ++i) pthread_create(&tid[i], 0, ktp_worker, &aux.workers[i]);
for (i = 0; i < n_threads; ++i) pthread_join(tid[i], 0);
pthread_mutex_destroy(&aux.mutex);
pthread_cond_destroy(&aux.cv);
}